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Abstract

Carbon Capture and Sequestration (CCS) appears to be a practical technology for large-
scale storage of CO, to reduce anthropogenic CO, emissions. Risk is an inevitable
component of any geological project with the aim of storing CO,, and thus, is a concern to
the public, policy makers, and scientists. Uncertainty that arises in the application of
mathematical Carbon Sequestration (CS) models has a negative impact on the quality of
risk assessment. Parameter uncertainty is believed to play a dominant role in the
uncertainty of the outputs of the CS system models. However, reducing parameter
uncertainty in CS models involves a trade-off between accuracy and computational

efficiency of the model calibration methodology.

The goal of this thesis is to reduce the trade-off between accuracy and computational
efficiency when calibrating CS models. This is accomplished by, one, reducing the
dimensionality of the parameter space; two, developing efficient calibration algorithms;
and, three, reducing the computational cost of model simulation during calibration. The

primary contributions of this thesis are:

1. The development of a sensitivity analysis to identify which parameters contribute
the most to the uncertainty of the CS system model output, accounting for both
parameter uncertainty and model structure.

2. The development of a computationally efficient and flexible Bayesian Importance
Sampling (IS) method for continuous calibration of CS models using noisy
monitoring data collected during the injection phase.

3. The development of the Response Surface Methodology (RSM) in a novel adaptive
way to mitigate the computational demand of CS model calibration with negligible

effect on the accuracy of the results.

The methodologies and results presented in this thesis contribute to efficient calibration of
CS models by identifying the most influential parameters in uncertainty of CS model

outputs and calibrating those models accurately and efficiently.
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Chapter 1.
Introduction

1.1. Carbon Capture and Sequestration

1.1.1. Global Warming

Global warming poses a significant challenge to society in the 21 century, with potentially
drastic environmental consequences (IPCC, 2013). The average surface temperature has

increased worldwide since the 19™ century, as shown in Figure 1-1.
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Figure 1-1: The average surface temperature anomaly between 1850 and 2012 relative to 1961 t01990,
according to three different analyses. Grey shades in the bottom plot indicate uncertainty ranges. From:
(IPCC, 2013).



The increase in global temperature is largely attributed to the concentration of
anthropogenic greenhouse gases in the Earth’s atmosphere, gases such as carbon dioxide
(CO;) and methane. The concentrations of theses have increased significantly since the
beginning of the industrial age (IPCC, 2013). CO, is responsible for the majority of the
anthropogenic green-house gas emissions. Atmospheric concentration of CO, was 391 ppm
in 2011 and has increased by 40% since 1750 (IEA, 2012; IPCC, 2013), more than half of
which has occurred in the past 45 years (The Royal Society, 2014). This sharp increase is
significantly larger than what can be attributed to natural fluctuations over the past 650,000
years (Siegenthaler et al., 2005; Gasda, 2008) and there is a general agreement that this
increase is directly correlated with the global warming (IPCC, 2013).

Phenomena such as more warmer days and fewer cooler days in most land areas, more
frequent heat waves, heavier and more frequent precipitations, heavier and longer
droughts, more tropical cyclonic activities and extreme increases in sea levels are likely
correlated with the global warming (IPCC, 2013). Among the scientific community, it is
generally agreed that significant action must be taken to drastically reduce the CO,
emissions to mitigate global warming. Several solutions have been proposed, including
using less carbon-intensive fossil fuels (e.g., natural gas instead of coal), improving the
efficiency of current energy production methods, using renewable energy sources (e.g.,
solar, wind, hydro, and geothermal energy), using nuclear power plants, and Carbon
Capture and Sequestration (CCS) in order to mitigate the increasing concentration of

CO2 in the Earth’s atmosphere.

1.1.2. Carbon Capture and Sequestration Overview

CCS is the process of capturing CO, from anthropogenic point sources, i.e., the sources
with large emission rates such as fossil fuel-based power plants, cement production plants
and refineries, and transporting the CO, to a safe and long-term storage site, in order to
isolate it from the atmosphere (IPCC, 2005). CCS is an attractive option to reduce CO,
emissions because CCS can be utilized immediately with minor disruptions in current

energy production methods and with minor adjustments made to the related infrastructure



(Seto & McRae, 2011). While CCS does not reduce the amount of CO, produced from the
point sources, it can be considered a solution in relation to climate change, as CCS can
mitigate CO2 emissions over the next decades. By capturing COz emissions in the
present, it allows for the continued use of current energy production methods with
fewer immediate environmental impacts, affording researchers time to effectively
replace current methods with more sustainable solutions in the future (Ebigbo et al.,

2007).

As shown in Figure 1-2, a CCS project consists of four stages: capture, transportation,
injection, and storage. In the capture stage, CO: is separated from other emissions at
the point source. Then, in the transportation stage, it is transported to a proper
storage site. In the injection stage, CO; is injected into a reservoir. Finally, in the
storage stage, it is stored separately from the atmosphere. This thesis will only
address Carbon Sequestration strategies. Thus, the abbreviation “CS” will be
employed for the rest of the thesis, as “CCS” also incorporates processes of Carbon

Capture.
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Figure 1-2: The process of Carbon Capture and Sequestration (CCS), including the four stages of capture,
transportation, injection and storage. From: (CO2CRC, 2013).



Deep geological formations, as shown in Figure 1-2, are among the most practical storage
options for CO,. CO; in its supercritical form (above 304.25 K and 7.39 MPa) has a critical
density of 467 kg/m’ and occupies over 200 times less volume than CO; in the atmospheric
conditions (IPCC, 2005). CO, will remain in a supercritical state if it is injected deeper
than 800 m underground where the pressure and temperature exceed the critical pressure
and temperature of CO,. The idea behind geological storage of CO, is that by injecting
supercritical CO; in a deep enough subsurface porous formation that is covered by an
overlaying impermeable layer, CO, can be potentially stored for hundreds to thousands of
years. Such storage times allow for the development of efficient long-term immobilizing
mechanisms such as the dissolution of CO, into formation fluid (solubility trapping) and
chemical reactions of dissolved CO, with minerals (mineral trapping), as they could isolate
CO; indefinitely from the atmosphere (IPCC, 2005). The target subsurface porous
formation is usually referred to as the “reservoir” and the impermeable overlaying layer is
referred to as the “caprock”. Deep saline aquifers are commonly considered the most
practical CS reservoir because of their large capacity, the integrity of the caprock, the
worldwide distribution, and the low economic value (Ebigbo et al., 2007; Zhao et al.,

2010; Seto & Mcrae, 2011).

The density of supercritical CO, is less than the density of the resident brine in the saline
aquifers (Ehlig-Economides & Economides, 2010; IPCC, 2005; Nordbotton et al., 2005).
Thus, the supercritical CO, forms a buoyant phase beneath the caprock. As shown in
Figure 1-3, this buoyant phase is usually referred to as “CO; plume”. Due to the buoyancy
forces, any geological or man-made opening in the caprock can provide a pathway for
leakage of the supercritical CO,. Pressure build-up due to injection in the reservoir might
also cause the resident fluid of the reservoir to migrate to other formations. Figure 1-3
illustrates three of the potential leakage pathways in a CS system, i.e., caprock fractures,
caprock faults and wells. Leakage risk is commonly considered as the most significant risk
of a CS system and the primary factor measuring success or failure of a CS project

(LeNeveu, 2008).
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Figure 1-3: Three of potential leakage/migration pathways for the supercritical CO, or the resident fluid of
the reservoir: (a) caprock fractures, (b) caprock faults and (c) wells. Modified from: (CO2CRC, 2013).

Quantitative risk assessment is a promising tool to forecast probability and the
consequences of incidents (e.g., leakage) and to make informed risk-based decisions
before, during, and/or after the injection of supercritical CO, in a CS project. A
quantitative risk assessment requires a knowledge of probability distributions of system
parameters and/or system behaviour forecasts. Accurate and precise knowledge of these
distributions results in a more accurate and meaningful risk assessment, generating more
effective risk management and better decision making abilities. As will be described in the
following sub-section, uncertainties are the primary complicating factors in producing an
accurate risk assessment, and uncertainties are especially prominent during the initial

stages of a CS project (Wilson & Monea, 2004).

1.1.3. Carbon Sequestration Uncertainties

Uncertainties in our knowledge of the properties and behaviour of a CS system leads to
uncertainty in the prediction of the CS system behaviour, such as plume migration,
pressure buildup and flow rate through a leakage pathway. These uncertainties pose
significant problems to generating accurate risk assessments, effectively managing risk,
and making informed decisions. Uncertainty in a quantity (e.g., porosity of the target
formation or flow rate through a leakage pathway) is due to a lack of knowledge (epistemic

uncertainty), inherent randomness of that quantity (aleatory uncertainty) or both (Ang &



Tang, 2006). Unlike aleatory uncertainty, epistemic uncertainty is reducible through data

collection and calibration efforts.

The primary components of epistemic uncertainty are, one, system models; two,
parameters; and, three, measurements (Bedi & Harrison, 2012). Since this thesis primarily
addresses epistemic uncertainty in CS, these three components of epistemic uncertainty are

briefly described below in a CS context.

Model Uncertainty: A typical CS system can be described by a deterministic mathematical

model, g(x,t,m), where x is location, t is time and m is the vector of model parameters.

It can be related to the true behaviour of the CS system by

dy (x,t) = g(x, t,m) + €504 (1.1)

where d;,,(x,t) is the true system behaviour (e.g., pressure or saturation) at time t and
location x, and &,,,4 1s the model error that represents the epistemic uncertainty about the
outputs of the system model. Various analytical, semi-analytical, and numerical models
have been developed to predict different aspects of the behaviour of a CS system such as
CO; plume evolution (Nordbotton ef al., 2005; Malekzadeh & Dusseault, 2013), leakage to
the surface through possible pathways (Gracie & Craig, 2011), leakage to ground water
formations (Humez et al., 2011), CO, dissolution into the brine (LeNeveu, 2008), and
long-term mineralization of CO, (LeNeveu, 2008). Figure 1-4 shows a sample of a
simulation of the distributions of CO, saturation and pressure in the reservoir in a CS
project (Ghaderi & Leonenko, 2009). In Figure 1-4, model outputs are the average
saturation of CO; and the average pressure, in each grid block of the reservoir domain (i.e.,
x) where t is 50 years, and d,,, (x, t) is the real average saturation of CO, and pressure, in

the same grid block of the CS system and in the same time.

All of the models discussed above are subject to uncertainty due to the complexity of the
physics of the multiphase, multi-component flow. Furthermore, uncertainty is increased by
simplifying assumptions such as idealization of parameter correlations (i.e., use of
empirical relationships), and/or by using approximate numerical solutions. Moreover, lack

of knowledge about site characteristics such as undetected fractures and faults and



unidentified heterogeneities decrease the predictive ability of the models. In a recent study,
(Nordbotton et al., 2012) investigated uncertainty in several CO, plume propagation
models using a benchmark problem and highlighted the role of model uncertainty in CS

systems.
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Figure 1-4: Simulation of saturation (left) and pressure (right) fields in the Wabamun Area Sequestration
Project (WASP) with 10 injector wells and after 50 years of injection. Modified from: (Ghaderi & Leonenko,
2009).

Measurement Uncertainty: Several techniques are available for monitoring a CS system.

Some of the currently available techniques for monitoring CS systems are:

e 3D and 4D seismic (Chadwick et al., 2004) that can be used for 3D and time-lapse
3D estimation of subsurface conditions (e.g., estimation of CO, saturation and
reservoir geometry, based on reflection of seismic waves).

e Gravity (Nooner ef al., 2007) that can be used for the estimation of CO, distribution
in the reservoir based on subsurface mass redistribution, that results in gravity
variation (Glegola, 2012).

e Electromagnetic (Hoversten et al., 2004) that estimates properties of the CS system
based on measurements of electrical properties of the reservoir (e.g., based on
borehole-to-surface measurements of electrical resistivity of the reservoir)

(Zhdanov et al., 2013).



e Time lapse satellite imaging (Raikes ef al., 2008) that uses satellite measurements
to find surface deformation due to CO; injection and pressure elevation.

e Fluid sampling from observation wells (Freifeld et al., 2005) that can determine
presence and/or saturation of CO,, or other materials such brine or trackers, in a

formation by sampling from the formation fluid.

A CS monitoring system can be described in a mathematical relationship with the true
system behaviour in which the monitoring system provides an estimate of the system

behaviour,

dobs (x,t) = dtru (x,t) + €obs (1.2)

where d,, (x,t) is the observed (monitored) value of the true system behaviour,
d;,(x,t), at time t and location x and &, is the observation/monitoring error which
represents the epistemic uncertainty about the monitoring data. The observation error, €,p;,
indicates the accuracy of the monitoring and depends on both monitoring technique and

project characteristics.

In CS projects, remote measurements of physical parameters of the subsurface are subject
to large errors and considerable uncertainly (Prestona et al., 2005). Direct measurements of
system characteristics (such as porosity and permeability of the reservoir) or system
behaviour (such as pressure and saturation) are more accurate than remote measurements,
but they are very limited compared to reservoir extents because drilling monitoring wells
penetrates the caprock of the target formation and creates potential leakage pathways for

supercritical CO,.

Parameter Uncertainty: Models require a set of parameters to describe a system, i.e., m in

equation (1.1). The parameters describing a CS system can be physical characteristics of
the system (e.g., porosity, injection depth, and reservoir temperature) or parameters
introduced in constitutive relationships (e.g., Young’s modulus or Brooks-Corey
relationship constants). Uncertainty in the parameters is a major factor that impedes the CS
models’ predictive capability (Celia & Nordbotton, 2009). CS system parameters are

subject to significant uncertainty due to heterogeneity, limited data and imperfect



measurements. As described in Section 1.1.3, uncertainty about m is considered epistemic

in this thesis.

As an example, reservoir porosity is a parameter with a great influence on the uncertainty
of the behaviour of a CS system (Sarkarfarshi er al., 2014). Figure 1-5 illustrates a
histogram of the porosity in over 1200 oil reservoirs in the U.S. according to the U.S.
National Petroleum Council (NPC, 1984). Kopp et al. used this histogram in a quantitative
risk analysis (Kopp et al., 2010). According to Figure 1-5, uncertainty about the porosity is
noticeable. This uncertainty results in an uncertain forecast of system behaviour and risk
measures. It can also be seen in Figure 1-5 that this histogram does not follow any standard
Probability Distribution Function (PDF), such as Normal or Log-Normal PDFs, which
makes efficient and accurate uncertainty analysis and calibration efforts challenging (Kopp

etal.,2010).
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Figure 1-5: Histogram of relative frequency of porosity in over 1200 crude oil reservoirs in U.S. according to
the U.S. National Petroleum Council (NPC) public database (NPC, 1984). Solid curve shows a Normal
distribution with a mean and a standard deviation similar to the histogram data. From: (Kopp et al., 2010).

1.2. Problem Statement

Among the major sources of epistemic uncertainty described above (model, parameter, and

measurement uncertainty), parameter uncertainty is believed to play the dominant role in



the uncertainty of modelling the behaviour of a CS system and quantitative risk assessment
(Celia & Nordbotton, 2009; Polson et al., 2012). Thus, effective model calibration methods
are required to reduce parameter uncertainty and to obtain accurate quantitative risk

measurcs.

Combining equations (1.1) and (1.2), it is possible to relate monitoring data, model output

and parameters, and monitoring and modelling errors, as

dobs(x: t) = g(x: t,m) + Eobs T Emod (1.3)

where the system model, g(x,t,m), is a deterministic function of model parameters m,
and observation and model errors, £,p,s and &,,,4, are random errors subject to epistemic
uncertainty. Typically, calibration of a CS system involves finding either the optimal value
of the uncertain parameters deterministically, or estimating the probability distribution of
the uncertain parameters based on the monitoring data while accounting for monitoring and
modelling errors. In other words, the objective of calibration is either deterministically
finding the optimal value (or values) of model parameters m which minimizes the
discrepancy between d,,(x,t) and g(x,t,m) in equation (1.3), or finding the probability

distribution of model parameters m from equation (1.3) using formal statistical methods.

The optimal value or the probability distribution of m at time t can be used for forecasting
the system behaviour beyond time t. Unlike seeking the optimal value of m in a
deterministic calibration framework, finding the probability distribution of m in a formal
statistical framework allows probabilistically forecasting the system behaviour which can
be used for a probabilistic risk analysis (Wilson & Monea, 2004). In this thesis, the term
“calibration” is reserved for the latter approach, i.e., the process of finding or estimating
the probability distribution of parameters of a deterministic CS model, using a formal
statistical framework, and utilizing the site monitoring data. Where required to refer to the
former calibration approach, the term “deterministic calibration” is used instead. The
concept and process of calibration in this thesis are explained mathematically and in more

detail in Section 2.4.
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CS system are normally characterized by nonlinear and computationally expensive models,
and a large number of uncertain parameters described by non-Gaussian distributions. For
the purpose of this thesis, a “linear/nonlinear model” refers to mathematical models with
linear/nonlinear responses with respect to model parameters. Typically, the probability
distribution of model parameters for such nonlinear and non-Gaussian systems cannot be
found exactly from equation (1.3) and must be obtained by approximate means. Accurately
finding the probability distribution of m in a formal statistical framework normally
requires computationally demanding sampling-based solutions (Tavakoli et al., 2013). On
the other hand, finding the probability distribution of m using computationally more
efficient methods is normally inaccurate due to the major simplifying assumptions (Chen,
2003). Thus, a notable trade-off exists between accuracy and computational efficiency

when calibrating complex CS models.

In addition, due to limited monitoring data and limited initial knowledge about the model
parameters, calibrating the model only once, when in the early stages of CO; injection in a
CS project, most likely results in inaccurate and uncertain forecast of future system
behaviour. Thus, a single calibration effort is likely insufficient and a continuous
calibration, i.e., re-calibrating the model when new monitoring data is available, is likely
required to gradually reduce parameter uncertainty using the continuous stream of
monitoring data. A continuous calibration process, however, demands several times more

computational time and resources compared to calibrating the model only once.

There has been a limited number of works to date focusing on how monitoring data can be
incorporated into the calibration of CS models. Johnson & White (Johnson & White, 2012)
used Markov Chain Monte Carlo (MCMC) to inverse seismic signals to refine the
permeability fields. Bhowmik et al. (Bhowmik et al., 2011) stochastically calibrated the
permeability field of a synthetic CS system using pressure data from injection and
monitoring wells. Finally, Espinet and Shoemaker (Espinet & Shoemaker, 2013) and
Tavakoli et al. (Tavakoli et al., 2013) compared a number deterministic and Bayesian
algorithms for calibration of CS systems, respectively, using synthetic case studies.
Deterministic approaches and/or the trade-off between accuracy and computational

efficiency are the major limitations of these works. For instance, the Ensemble Kalman
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Filter (EnKF) based solution used in (Tavakoli et al., 2013) is computationally more
efficient than the MCMC solution used in (Johnson & White, 2012) for calibrating the
permeability field in a CS reservoir. However, the basic assumptions of a Kalman Filter
(KF) solution, i.e., linear model responses and Gaussian probability distributions, makes
the EnKF less accurate compared to a well-designed MCMC algorithm with a sufficiently
large number of samples. Similar works in analogous fields (such as reservoir history
matching) are also subject to the same limitation, i.e., the trade-off between an approximate
and computationally efficient (normally KF-based) solution or an accurate and
computationally intensive (normally MCMC-based) solution (Wen & Chen, 2005; Liu &
Oliver, 2005; Ma et al., 2006; Maucec et al., 2007; Liu & McVay, 2009; Emerick &
Reynolds, 2012; Emerick & Reynolds, 2013; Rosi et al., 2014). Thus, reducing the trade-
off between accuracy and computational efficiency is an ongoing area of research in these

fields.

The existing trade-off between the accuracy of the calibration results and computational
efficiency of the calibration process is one of the primary knowledge gaps in the field of
CS and it is a major hindrance to forecasting system behaviour and quantifying risk
accurately. Thus, further research is required to adapt and develop flexible and
computationally efficient methods to accurately calibrate extremely nonlinear and

computationally costly CS models.

1.3. Research Goal and Objectives

The goal of this thesis is to reduce the trade-off between accuracy and computational
efficiency of calibrating a CS system. In other words, this thesis aims to develop efficient
methods that both reduce the computational cost and improve the accuracy of CS model
calibration. This goal is addressed by proposing three complementary strategies, each
addressing one of the primary causes of the existing trade-off between the accuracy and
computational efficiency (large number of uncertain parameters, computationally
demanding calibration methods, and computationally demanding mathematical models).

The objectives of this thesis are:
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1. To reduce the dimensionality of the parameter space by a parametric sensitivity
analysis and by identifying the parameters which contribute the most to the
uncertainty of a CS model output. The purpose of this reduction is to ensure only
those parameters with most contribution to the uncertainty of a CS model output are
considered in a calibration process. A smaller number of uncertain parameters
demands a smaller number of model simulations in the calibration process and
makes the calibration computationally more efficient.

2. To develop accurate and computationally efficient calibration methods that are
flexible when applied to numerical, nonlinear, and computationally expensive CS
models, and do not limit the type of the probability distribution used to describe the
parameters. To accomplish this objective, an efficient sampling-based method will
be developed, that is able to accurately calibrate the complex CS models with
smaller number of model simulations compared to conventional approaches.

3. To reduce the computational cost of repeatedly executing the resource demanding
system models during the calibration period by introducing an efficient and
accurate adaptive meta-modelling technique. This will be accomplished in order to
approximate the complex CS model by a simple meta-model that will replace the
CS model during most stages of the calibration, reducing the computational

demand of the calibration.

Overall, these objectives are complementary, and each can be utilized individually or more
than one can be utilized collectively, to reduce the computational cost of the calibration
process. Equivalently, they allow available computational resources to be spent more
efficiently to increase the calibration accuracy without demanding additional

computational budget.

1.4. Notation

The statistical methods and algorithms used in this thesis are widely used in various fields
of science and engineering (such as reservoir engineering, hydrology, computer science,

communications, applied mathematics and finance). However, the notation used vary
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between these fields. For instance, it is common to denote the mean of a vector of
parameters m by W,,, Uy, (m), m, and E(m), and to denote the covariance matrix of a

vector of parameters m by £™, X,.., C,., Crum> Cy» P, and Cov(m), in different fields.

The notation adopted in this thesis is commonly used in the literature on hydrocarbon
reservoir model calibration (i.e., reservoir history matching) field and calibration of CS
systems (Abacioglu et al., 2001; Liu & Oliver, 2005; Gu & Oliver, 2005; Wen & Chen,
2005; Ma et al., 2006; Emerick & Reynolds, 2013; Tavakoli ef al., 2013). For instance, the
mean and the covariance matrix of a vector of parameters m are denoted by u,, and C,,,
respectively. Where required by methods introduced in this thesis, additional
superscripts/subscripts are added to the typical notation. Bold font is used to denote vectors
and matrices in this thesis. For example, u,, is used to denote the mean of a vector of

parameters m, and p,, is used to denote the mean of a scalar parameter m.

1.5. Thesis Structure

After an introduction to CCS and problem statement in Chapter 1, Chapter 2 provides a
background on uncertainty analysis and Bayesian techniques to establish the necessary
mathematical foundation for the following chapters. Chapter 2 also presents the general
formulations, notations, and assumptions used in the thesis. Each of the next chapters,
Chapters 3 to 5, address one of the three complementary objectives of the thesis. Even
though each chapter addresses the trade-off between accuracy and computational
efficiency during the calibration of CS models, each chapter does so with a distinct and
unique strategy: reducing the number of uncertain parameters, introducing accurate and
efficient calibration methods, and reducing the computational cost of repetitive model
simulations. More specifically, Chapter 3 presents a quantitative parametric sensitivity
analysis for CS projects. In Chapter 4, a novel and efficient continuous Bayesian
calibration method is introduced. Chapter 5 introduces a new computationally efficient and
accurate method for reducing the computational cost of continuous Bayesian calibration of

CS projects. Chapter 6 summarizes the thesis and identifies potential paths for the future
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works. Finally, Appendix A and Appendix B provide additional supporting information for
topics in Chapters 4 and 5, respectively.
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Chapter 2.
Background and Mathematical Preliminaries

Summary

Carbon Sequestration (CS) system responses are normally nonlinear, non-Gaussian and
complex (Kopp et al., 2010; Oladyshkin et al., 2011-b; Tavakoli et al., 2013). Quantifying,
propagating, and reducing the uncertainties in such systems requires a comprehensive
understanding of the existing uncertainty analysis and model calibration methods. Thus, a
background on uncertainty propagation and Bayesian calibration is presented in this
chapter. The subsequent three chapters will address complementary strategies to
decrease parameter uncertainty efficiently once a comprehensive knowledge base
has been established. In this chapter, the general formulation, the general notation, and a
set of basic assumptions used in the thesis are presented in Section 2.1. In Section 2.2, the
concept of uncertainty propagation is introduced. In Section 2.3, several analytical and
numerical solutions for uncertainty propagation are discussed and the benefits and
limitations of these methods are summarized. These methods provide a mathematical
background for a number of Bayesian calibration methods which are described in Section
2.4 and Section 2.5, as well as the sensitivity analysis method used in Chapter 3. In Section
2.4 model calibration using Bayesian statistics is introduced. In Section 2.5, several
solutions to Bayesian Calibration are described, and the benefits and limitations of these
solutions are summarized. The concepts introduced in Section 2.4 and Section 2.5 provide

a mathematical basis for Chapters 4 and 5.

As reported in Chapter 1, the literature in calibration of CS systems is very limited. Thus,
where applicable, additional literature is cited and discussed in this chapter from other
analogous fields which deal with computationally demanding, nonlinear, high-resolution

and complex models such as reservoir engineering and weather forecasting.
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2.1. Problem Formulation and Basic Assumptions

Equations (1.1) to (1.3) in Chapter 1 described the relationships between the true behaviour
of a CS system, the system model output, and the observations/monitoring data. These
equations are elaborated upon in this section to be able to properly and efficiently explain
uncertainty propagating and calibrating in CS systems, and will be used in the rest of the

thesis.

Let d;y (x, t,) denote the true behaviour of a CS system at a time t,, and at a location x.
Due to the cyclic nature of the calibration algorithms introduced later in Chapters 4 and 5,
n is used as the time or cycle index in a cyclic process and t is used as a vector of time
values in the cyclic process, i.e., t = [tl, ty, ., tzvt] where N; denotes the final cycle of the
cyclic process. To make calculations easier, it is desirable to aggregate the system
behaviour d;.,(x,t,) at multiple locations into a single vector. Thus, let d}., =
[ (1, 80), Ay (X, 84), .., Ay (X, )| denote the true behaviour of the CS system

at time t,, and at locations x; to xy_where N, is the number of locations of interest.

Let d,,s(x,t,) denote the observation (measurement) of d,(x,t,) at time t, and at

location x. Also let dlfys = [dops (X1, tn), dops (X2, £4), ..., dops (X, t)] denote a vector
of measurement of df., at time t,. Measurement of d}}., is assumed to be subject to a
random noise (monitoring error). We denote the vector of measurement noises at locations

X1 to Xy, by €,ps. Thus, equation (1.2) is restated in a more accurate way as

obs = diru + Eops €obs~Tobs(Eobs) (2.1)

where €,,s~T,ps(Eops) denotes that m,,s(€,ps) 1S the probability distribution of &,;.
Typically, it is assumed monitoring/observation error, &£,p¢, 1S not correlated with true
system behaviour, d}..,,, nor time, and monitoring/observation errors at different locations
are not correlated (Rougier, 2009). Thus, m,,s(€,ps) 1S in fact a multivariate probability

distribution of uncorrelated random measurement errors.
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Let g(x,t,, m) denote a deterministic model of the behaviour of a CS system at time t,
and location x in the reservoir. The system model is assumed to be parameterized by a set
of N,, uncertain parameters, m = [ml,mz, ...,mNm], where m; denotes uncertain model
parameter i. Initial conditions, physical system properties and constitutive constants are
examples of m;. Also let m(m) denote an N,,-dimensional non-cumulative probability
distribution that reflects the uncertainty in m. For simplicity of notation, let y™(m) denote

a vector of model outputs at time t, and locations of interest, x; to xy_, i.e., y"*(m) =

[9(xy, tp,m), g(x,, t,m), ..., g2, £, m)].

The difference between the model and the true system behaviour, d}}.,, — y"(m), is called
the model error or the model discrepancy (Rougier, 2009), which is denoted by &},,4,

where the superscript n indicates time dependency of €]}, ;. Thus,

tu = Y(M) + Snmod (2.2)
which is a generalization of (1.1). Combining (2.1) and (2.2), we can write
ops = ¥ (M) + €154 + Eops (2.3)

which is generalization of (1.3). The basic assumptions for developing the equations in this

section are:

The system is described by a model, g(x, t, m), and a vector of parameters, m.
Model parameters, m;, are assumed to be time-invariant random variables.

The uncertainty in the model parameters is epistemic.

© 0w >

Measurement/observation error, £,p, 1S a vector of Independent and Identically
Distributed (IID) random variables, i.e., mutually independent random variables
that have the same probability distribution. It is also assumed that measurement
error is not correlated with location nor time.

E.  Model error is described with a vector, &),,,4, with the same dimensions as the
mode output. Each element of the model error vector can be a random variable or a

variable which depends on time, location, system model, and model parameters.
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F.  Evolution of the system with time is deterministic in the absence of measurement
noise and model error and for a specific value of model parameters.

G. The Bayesian approach is used to define probability. More specifically, unlike the
Frequentist inference which defines probability as the frequency of occurrence of a
certain event in a large number of trials, here the probability is a measure of the

degree of belief in the state of a system or value of a parameter.

Unless stated otherwise, the equations and assumptions presented in this section will be

used in the rest of the thesis for the purpose of consistency.

The next four sections present a background on uncertainty propagation and Bayesian
calibration, based on the assumptions and formulations presented in this section and to

provide the required mathematical foundation for Chapters 3 to 5.

2.2. Propagation of Uncertainty

The purpose of uncertainty propagation is to investigate how the uncertainty of the
parameters, m, affects the uncertainty of the model output, y™(m). In other words, we are
interested in studying the propagation of parameter uncertainty in the CS system model by
finding the probability distribution of y™(m), denoted by m(y™(m)), assuming known
m(m). Several methods exist to estimate ﬂ(y”(m)) given m(m). These methods can be
used depending on the type of m(m), the nature of g(x, t,m), the available computational
resources, and the required accuracy. Some of the most common uncertainty propagation

methods are presented and compared in the following sub-section.

2.3. Mainstream Solutions to Propagation of Uncertainty

As described in the previous section, this section describes some the most common
approaches for propagation of uncertainty of model parameters into the model outputs. A

number of these methods are utilized in the Bayesian update techniques, which are
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described later in this chapter, and also in the sensitivity analysis method described in

Chapter 3.

2.3.1. Analytical Solutions

In very simple cases, the probability distribution of the model output, n(y"(m)), can be
obtained analytically. For instance in a simple case where m is a scalar, N,, = 1, g(x, t,m)
is a scalar and a linear function of m (i.e., g(x,t,,m) = a(t,)m + b(t,)) and mw(m) is
Gaussian with a mean of u,, and a variance of C,,, the probability distribution of y"™(m) is
also Gaussian with a mean of a(t,)u, + b(t,) and a variance of a(t,,)?C,, (Ang & Tang,
20006). As described earlier in Chapter 1, the bold face is removed from model parameters

and model outputs since they are assumed scalars in this sub-section.

In CS applications, the mathematical models are nonlinear and the parameter distributions
are not typically Gaussian. Thus, analytical propagation of uncertainty is not feasible. In
the scalar case, i.e., when N,, = 1 and y™(m) is a scalar, moments of n(y”(m)) can be
approximated using the moments of m(m) and the Taylor series expansion of g(x, t,,, m)
around the mean of w(m), W,,,. The i™ moment of a probability distribution 7(m) around a

fixed parameter value m is

E[m!] = f(m —mp)i m(m)dm (2.4)
Qm

where (),, denotes the parameter space. For instance, the mean of w(m) can be obtained

wheni=1and my =0,

Um = jmn(m)dm (2.5)
Qm

and variance of m(m) can be obtained when i = 2 and m, = yy,,
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Cn = [ Gn = ) m(m)m 2.6)
Qm
Similar to (2.4), the i*" moment of y™(m) around an arbitrary point y, is obtained by

E[(ymm)] = f, 0"(m) = yo)! n(m)dm @.7)

Using i = 1 and y, = 0, the mean of (y™(m)) can be obtained by

pyn = Jy"(m) m(m)dm (2.8)
Qm

Approximating y™(m) by a first order Taylor series expansion about fi,, piyn can be found

as

n dy™(m)
pon = [ |y m + 2 G ) + | ) (2.9)
Qm
Keeping only the first term gives
Py = fyn(ym) m(m)dm (2.10)

Qm
Since y™(m) is not a function of model parameters, m, it can be removed from the integral

and using the fact that the integral of m(m) over Q,, is unity, u,n can be approximated by

Hyn = n(.um) (2.11)

Similarly, the variance of T[(y”(m)) is obtained from (2.7) as

Gy = f [y™(m) — pyn]* w(m)dm (2.12)
O

where y, = p,, and i = 2. Approximating y™(m) by a first order Taylor series expansion

about y,, and approximating p,, by (2.10), C,» can be approximated by
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0y™ (i 2
Cyn = f [y”%ﬂ%(m—um)+---—;v”(um>] m(m)dm (2.13)
Qm

The first term in the Taylor series is cancelled by —y™(u,,). Thus, keeping the first two

term of the Taylor series, the variance of n(y" (m)) can be estimated as

3y (U, 2
Cyn = Qf [% (m— ym)] m(m)dm (2.14)

Since dy™(u,,)/0m is not a function of m, it can be removed from the integral. In
addition, the rest of the integral is equal to C,, as given by (2.6). Thus, Cy,n can be

approximated by

n 2
Con = (ay—("m)> Crm, (2.15)

Such linearization of a nonlinear function for approximating the moments of the
probability distribution of a function of random variables provides a computationally
efficient tool for propagation of uncertainty. However, this assumes that higher order terms
in the Taylor series expansion of y™(m) are negligible. When y™(m) is a highly non-linear

model, more sophisticated estimates of the moments are required (Kuczera, 1988).

2.3.2. Point Estimate Method

As described in the previous sub-section, simple analytical solutions are suboptimal for
propagation of uncertainties in highly non-linear systems. Thus, other uncertainty
propagations should be explored for this purpose. The Point Estimate method for the
Probability Moments (PEPM) is another method for propagation of uncertainty by
estimating moments of T[(y"(m)) when y™(m) is a scalar, given the few first few
moments of m(m) (Rosenblueth, 1975) and is essentially a form of Gauss quadrature

(Christian & Baecher, 1999). In the most commonly used form of PEPM and when only
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one uncertain parameter exists (N,, = 1), PEPM incorporates two quadrature points of the

m /1+("7m)2\ (2.16)

where g,,, denotes the standard deviation of w(m) and v,,, denotes the skewness coefficient

form

My = Um + op

of m(m) which is a function of the third moment of w(m),

1
Vi = —5 f (m — wy)3 w(m)dm (2.17)
Gm
Qm
The i™ moment of y™(m) in PEPM is then approximated by

E[rmm)| = m(ym(an) + Wy () (2.18)

where E [(y"(m))i] denotes the i™ moment of the probability distribution of y™(m) as

defined in (2.7), and the weights, W, ,, are obtained by

(2.19)

The equations above are equivalent to approximating m(m) with W;6(m —m,) +
W,6(m — m,) where 6(m) is the Dirac delta function (Tsai & Franceschini, 2005). It can
be verified that the mean, variance, and skewness coefficient of such approximation of
m(m) is equal to the mean, variance, and skewness coefficient of m(m) (Rosenblueth,

1975).

When the number of uncertain parameters, N,,, is greater than one, a total of 2¥m points
are required by PEPM (Christian & Baecher, 1999). Thus, the computational cost of the
PEPM increases exponentially with N,,. This shortcoming is addressed in several studies,
e.g., (Harrr, 1989; Hong, 1996; Hong, 1998; Christian & Baecher, 1999), a description of
which is beyond the scope of this thesis. A review of point estimate methods used in

environmental engineering applications, including the presented method (also known as the
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Rosenblueth point estimate method) and its variations can be found in (Tsai &

Franceschini, 2005).

2.3.3. Unscented Transformation

As described above, the main drawback of PEPM is that the number of quadrature points
increases exponentially with the number of dimensions of the parameter space (Julier &
Uhlmann, 2004). Unscented Transformation (UT) is a more recently developed method for
obtaining estimations of n(y” (m)) using the statistics of a finite number of points in the
parameter space of m which are chosen deterministically based on w(m) (Wan & Van Der
Merwe, 2001). The main application of UT has been in the Unscented Kalman Filter
(UKF) (Julier & Uhlmann, 1996).

In UT, 2N,,, + 1 weighted parameter sets are deterministically chosen, so that their mean is
equal to W,,, i.e., the mean of m(m), and their covariance matrix is equal to C,,, i.c., the
covariance matrix of w(m). These parameter sets are known as Sigma points. Let x; and 9;
denote i™ Sigma point and weight, respectively. Note that though y; is called a Sigma

point, it is in fact a vector of model parameters, m. y; and ¥; are obtained by

Xo = Hm
—1<9,<1
Nin .
Xi: Hm+ 1_190Cm l:]'IZI"'}Nm
i (2.20)
N .
Xi= M — C i=Ny+1,Ny+2,..,2Ny,
1-19,
i
1-19,
9; = I i=12,..2Ny,

where ( 1N’$ Cm) is the i" row of Cholesky decomposition of 1N—7$Cm. Y, 1s a tuning
—Yo —vYo

parameter which determines how scattered the Sigma points are about p,,. It can be
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verified that these weighted Sigma point and mw(m) have the same mean and covariance

matrix.

The Sigma points are then said to be propagated through g(x,t,, m). Let the aggregated

system model output at locations x; to xy,_, time t, and for parameters x; be denoted as

Y; = [g(xs ta, X, 9 (X2t XD, s G(Xn ot xi)] 1= 0,1, 2N, (2.21)

where Y; are the propagated Sigma points. Statistics of n(y” (m)) are approximated from
statistics of the weighted Y;. For instance, the mean and the covariance matrix of

n(y™(m)) are estimated by

2N,
2.22
By = z 0;Y; (222)
i=0
and
2N,
2.23
Cy = > 0¥ — i) (¥ — ) 223
i=0
respectively.

Similar to the PEPM, UT is equivalent to approximating (m) with leiv(;” 9;,6(m — yx;)
and it can be verified that the mean and covariance matrix of such approximation of 7(m)

is equal to the mean and covariance matrix of 7w(m).

Unlike linearization which is only a first order accurate estimate of the mean and
covariance of n(y” (m)), the UT is up to third order accurate when (m) is Gaussian and
up to second order accurate for an arbitrary m(m) (Julier & Uhlmann, 1996). Other
variants of UT have been developed which are up to third order accurate for any arbitrary
distribution m(m) and at least fourth order accurate for symmetric mw(m) (Julier &
Uhlmann, 1997; Julier, 1998). Thus, UT would outperform Taylor series linearization in
the propagation of uncertainty through non-linear CS models. In addition, considering the

fact that the number of samples increases linearly with the number of parameters N, in UT
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but increases exponentially with the number of parameters N, in PEPM, UT is

computationally more efficient than PEPM.

2.3.4. Monte-Carlo Simulation

Because of the ubiquity by which the Monte-Carlo Simulation (MCS) is used for
propagation of uncertainty in CS and similar applications, it is necessary to explore the
potential possibilities and shortcomings MCS. MCS is a commonly used approach for
propagating the uncertainty of input parameters through nonlinear and complex models
(Mark & Mordechai, 2011). MCS was initially developed during World War II and gained
significant attention in various scientific and engineering applications (Mark & Mordechai,

2011). MCS relies on repetitive model simulation using samples from m(m) in order to

estimate T[(y” (m)).

When m and y™(m) are scalars, the concept behind MCS can be proven using law of large
numbers which states that sample mean almost surely converges to the population mean

when the number of samples tends to infinity (Chen, 2003), i.e.,

1
Um = lim — > m; m;~m(m) (2:24)
where M; are samples from the probability distribution of m. According to definition of y,,

using (2.4),

Ny
1
mmr(m) = lim —Z m; m;~m(m) (2.25)
Qm Ns=co Ns i=1

Equation (2.25) is in fact a numerical integration where Mm; are quadrature points and all

quadrature points has equal weights of 1/N;.

Similar to (2.24) and (2.25), mean of samples from the probability distribution of a
function of a random variable converges to the mean of the probability distribution of that

function when the number of samples tends to infinity. In other words,
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Ny
[ ramonamam = i 5 sy e 2.26)
Qm i=1

where f(m) is an arbitrary function of m, m; are samples from m(m) and f(m;) are
samples from the probability distribution of f(m). By replacing f(m) with (y™(m) — y,)"
and according to (2.7), any moment of n(yn(m)) around an arbitrary point y, can be

approximated using moments of samples from m(y™) as

Ny
i 1 i
E[(y"(m))] = FZ[yn(ﬁij) ~ o) mj~m(m) (2.27)
S ]=1

Thus, the moments of (y™(m)) can be approximated by samples from m(m) which are

propagated through y™(m).

The traditional sampling method for MCS is the inverse CDF method. CDF stands for
Cumulative Distribution Function and is equal to the integral of w(m) over Q,, if m(m) is
continuous, or the summation of w(m) over Q,, if m(m) is discrete. In the inverse CDF
method, N; random numbers (denoted by u;) are drawn from a uniform distribution
between zero and one. Then, Ng samples (denoted by ;) are obtained by inverting the
CDF of m(m) on the previously drawn random numbers (u;), such that u; = I1(7;) where
[1(m) is the CDF of m. Finally, the model output for those samples (7;) is calculated.
Schematic of the inverse CDF method for MCS is illustrated in Figure 2-1.

MCS for a multivariate case, i.e., when N,, > 1, follows a similar logic, as explained in

(Bohdalovd & Slahor, 2007). Regardless of dimension of the parameter vector, MCS
process is equivalent to approximating w(m) by discrete distribution Z?’__Sl d(m —m;) and
propagating each discrete point 7; through the system model to obtain a discrete

approximation of Tt(y" (m)).

The main benefit of MCS over other uncertainty propagation methods is that it is
applicable on all models and probability distributions. The cost of this flexibility is that

MCS is computationally demanding. However, MCS is often used in many applications,
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including CS, due to recent advances in parallel computing (Walton ef al., 2004; Kopp et
al., 2007; Celia & Nordbotton, 2009; Dobossy et al., 2011).

I1(m) (CDF of m)

Samples from U(0,1)
A
v

@ ---"-"-—"—-—"—-—-—-——-—=--=-=-=--

o-----"-"-"-—-=-=-=--

K SRR et

~—
Samples from (m)

Figure 2-1: Schematic of the inverse CDF method for generating samples from a probability distribution
(m) in the MCS method. U(0,1) is a Uniform distribution between zero and one.

2.3.5. Latin Hyper-Cube Sampling

Latin Hyper-Cube Sampling (LHS) is a more recently developed method for sampling
from a probability distribution using a “stratified sample without replacement” approach
(McKay ef al., 1979) and can replace MCS in many applications. In LHS, when N,,, = 1,
the CDF of m is divided into N equally probable intervals or stratifications. Then, one
sample is drawn from each stratification. Thus, the number of samples is equal to the
number of stratifications. Then, similar to MCS, samples can be propagated through
y™(m) for approximating n(y"(m)). Figure 2-2 illustrates LHS in a one-dimensional

parameter space.
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Figure 2-2: Schematic of the inverse CDF method for generating samples from a probability distribution in
the LHS method.

When the dimension of the parameter space is greater than one, i.e., N, > 1, and model
parameters m; are independent, each parameter of each sample m; is drawn independently
from other parameters of that sample and no stratification is used more than once. For
instance, assume N, = 2 and m = [a, b] where a and b are two scalar parameters. Also
assume the number of stratifications is five, i.e., Ny = 5. First, five samples @, to ds and b,
to bg are drawn for each parameter as shown in Figure 2-2 and using the marginal CDFs of
a and b. Then, M, to M are generated as m; = [Aj, §j]. It can be seen that the number of
samples is only dependent on the number of stratifications and does not change with

dimensionality of the parameter space.

The LHS can be more precise than the MCS (Helton & Davis, 2003; Iman, 2008).
However, all stratifications must be used in LHS and the results obtained in the middle of
sampling (i.e., when the number of samples is smaller than the number of stratifications)
could be significantly inaccurate. Furthermore, it is not possible to increase the number of
samples, and therefore, accuracy, without restarting the sampling and discarding all

previous samples in LHS (Helton & Davis, 2003).
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2.3.6. Other Uncertainty Propagation Methods and Comparison

Table 2-1 briefly compares the benefits and drawbacks of the described uncertainty
propagation methods. Several other sampling-based uncertainty propagation methods also
exist such as Rejection Sampling (RS) (Handschin & Mayne, 1969), Stratified Sampling
(Keramat & Kielbasa, 1998) and their variations. A more in depth description of
uncertainty propagation methods can be found in the literature (Chen, 2003) and (De
Rocquigny, 2012). A number of uncertainty propagation tools presented above have

applications in the Bayesian calibration tools which are introduced in the next section.

Table 2-1: A comparison between common uncertainty propagation methods.

Method Benefits Drawbacks

— Requires calculation of the
Jacobian matrices (hard for

Taylor series .
Y numerical models)

. . —  Computationally very fast
linearization pu y very

—  Low accuracy for nonlinear
models

—  Computationally fast (for

. . —  Computational cost increases
lower dimensional problems) P

exponentially with the parameter

Point Estimate - . .
space dimensions

Does not require calculation

Methods of the Jacobian matrices .
) — Low accuracy for nonlinear
—  More flexible than Taylor
.. . models
series linearization
—  Computationally fast (for
lower dimensional problems)
— Higher a and e — Not as accurate as sampling fi
Unscented 1g. I accuracy an m(.>r ot as accura : s sampling for
. flexible than Taylor series extremely nonlinear models and
Transformation

linearization
Does not require calculation
of the Jacobian matrices

non-Gaussian systems

Monte-Carlo
Simulation

Flexible (no assumptions on
model type or probability
distributions)

Does not require calculation
of the Jacobian matrices
Accurate

Computationally demanding

Latin Hyper-Cube
Sampling

Can be more efficient than
MCS

All samples should be drawn
simultaneously

When increasing the sample size,
previous samples should be
discarded
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2.4. Bayesian Calibration

Bayesian frameworks allow updating the prior parameter distribution using new evidence
and are extremely useful when data about state or parameters of a system is initially sparse
or unavailable, e.g., in a CS system. Thus, the calibration methods introduced in Chapters 4
and 5 are based on Bayesian methods. To provide a background on the Bayesian
methodologies for model calibration, i.e., Bayesian update or Bayesian calibration, Bayes’
formula is described and common solutions to Bayes’ formula are presented and compared

in the following sub-sections.

2.4.1. Bayes’ Theorem

Assume that X; and X, are two subsets of events in a sample space S. According to Bayes’
theorem (a.k.a., Bayes’ rule and Bayes’ formula), the conditional probability of X; given
X, 1s

P(X,]|X1)P(X1) (2.28)

P(X1lXz) = P(X,) P(X;) #0

where P (X;) denotes the probability of X; and P(X i |X j) denotes the conditional probability
of X; given X;. According to the total probability law, P(X,) = P(X,|X1) + P(X,|X1),
where X; and X; are Mutually Exclusive and Collectively Exhaustive (MECE) events, i.e.,
X, NX; =@and X; UX, =S. Thus, equation (2.28) can be re-written as

P(X,|X1)P(X1) (2.29)
POGIX) + PUGE )0

P(X1|X2) =

Bayes rule can be used for calibrating a deterministic model by finding/estimating the
posterior distribution of parameters of the model given noisy measurements, as follows.
Assume that the vector of model parameters, m, is a vector of continuous random
variables'. Let m(m|d) denote the probability distribution of model parameters, m,

conditioned by the observations (monitoring data) d. According to Bayes’ formula,

! This assumption is for simplicity of notation. For a discrete random variables, the following integrals will
be changed to summations.
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n(m|d) is proportional to the product of the unconditioned probability distribution of m,
m(m) and the probability of d given m, which is called the likelihood and is denoted by
L(d|m),i.e.,

n(m|d) = c™*. L(d|m)m(m) (2.30)

where c is a normalizing constant and is given by

c =f L(d|m)r(m)dm (2.31)
Q

Finding/estimating the posterior distribution in equations (2.30) is the mathematical
definition of calibration in this thesis. In equations (2.30) and (2.31), m(m) is called the
prior distribution or simply the prior and represents the prior knowledge of m while the
evidence d is not accounted for (Rougier, 2009). The prior distribution is subjective and
can be assigned based on initial measurements, data from similar sites, expert opinion, etc.
The prior distribution is an important part of Bayesian updating and an arbitrary choice of
the prior can negatively impact the credibility of the results (Bedi & Harrison, 2013). The
posterior distribution, T(m|d), represents the probability distribution of m accounting for
the evidence, d, and can be interpreted as the calibrated version of the prior given d. The
likelihood allows us to predict unknown parameters using known evidence (Hall et al.,
2012) and can be defined based on the structure of the model error, €,,,4, as described

below.

2.4.2. Calibration with Unstructured Model Error

It is often assumed that the model error &,,,4, given optimal model parameters, is a vector
of random variables with a probability distribution 7,,,4 (€m0q4) and is independent from

m and time (Kaipio & Somersalo, 2007). Thus, (2.3) can be rewritten as

dgbs = yn(m) + Emod T Eobs Emod ~MTmod (Smod) Sobs"’nobs(eobs) (2'32)
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Let €0t = €moa + €ops and let 1., (€10:) denote the probability distribution of &,;.
Thus, d}, = y™(m) + &, and the likelihood of the measurements dj,, given m is

obtained by (Rougier, 2009)
L(dgpsIm) = w6t (Eror) = ntot(dgbs - yn(m)) (2.33)

Unlike the probability distribution of the monitoring/observation error, ,,s(Eops),
Tmod (Emoa) 18 less likely to be known a priori. The modelling discrepancy, €pq, 1S
commonly ignored, which is realistic if it is negligible compared to measurement noise;
otherwise, it should be prescribed. When &,,,4 is assumed negligible, &, = &,,s and
ot (Etor) = Tops(Eops). When &,,,4 18 not negligible, ,,,4(Emoq) can be estimated by
minimizing the sum of squared errors using a least squares method and fitting a probability
distribution on the resulting residuals (Stedinger et al., 2008) or alternatively, the hyper-
parameters of ;04 (Emod) OF Mot (Ero:) can be included in the uncertain parameter vector

m.

Combining (2.30) and (2.33), the posterior distribution of w(m) at time t,, and accounting

for measurements/observation, dJ, ., is obtained by

Ttot (dgbs -y (m))n(m)

(2.34)
a,, Ttot (dgbs -y (m)) m(m)dm

m(m|dgys) =

It is worth noting that (2.34) is the posterior distribution of m given only the measurements
at time t,. To account for all measurements up to time t,, it should be considered that
elements of €,,; = €0a4 + €ops are time-independent random variables and the probability
of a set of independent events is equal to the product of the probabilities of those event.
Thus, the likelihood of all observations/measurements is equal to the product of the

likelihoods of each of the observations/measurements. Thus, we can re-write equation

(2.34) as

(m|di;? 7 (m) [T eor (dbys —¥'(m)) (2.35)
n(m|d,;s ) = '

fﬂm 0 (m) I—Hl=1 Ttot (débs - yl (m))
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where d};T denotes all monitoring data from time t; to t,, and °(m) denotes initial prior

distribution of m before obtaining any monitoring data. For simplicity of notation, we

denote w(m|d};) by m™(m). It should also be noted that the posterior distribution at time

t, becomes the prior distribution for time t,, 4, i.e., "1 (m) = ¢ L(d*}}|/m)n™ (m).

2.4.3. Calibration with Structured (Autoregressive) Model Error

The model error, &,,,4, may not be a vector of time independent random variables in many
applications. For instance, the nature of the numerical models used in applications such as
CS requires discretization of the governing equations in time (and space), solving the
equations for each time step and proceeding to the next time step. Thus, the model
discrepancy accumulates during such numerical solutions and &,,; becomes time-
dependent. Consequently, it is more realistic to look at the model discrepancy as a first
order autoregressive time series (Vrugt et al., 2009), where the error vector at each time

step is a function of the error vector at the previous time step plus a random noise, £2,,4,

— -1 0 0 0 0
S?nod = u(enmod) t &moa Emod ~Tmod (emod) (2.36)

where €),,4 = d%, — y"(m). For simplicity of calculations, assume N,, = 1, and system
behaviour and model output are scalars. According to (Sorooshian & Dracup, 1980), if the

error has a linear first order autoregressive structure, i.e., U(Epnoq) = U Emoq and
) (ed,) =N (0, ngot), i.e., a Normal distribution with a mean of zero and a variance of

Ceo s where e, = €%,4 + €ops» the likelihood of all observations up to time t,, given m is

obtained by
1
(1-u?)? (—ﬁ[(l—u*)z(d%m—y1<m))2—z?zz(sinod—u*si;éd)z])
Etot

L(d};3m) = ~——5e (2.37)

Then, the posterior distribution of m at time t,, follows from (2.30) and (2.31),

34



L(dgi3'|m)m®(m)

it =
m(m|dyp3) meL(dL..n'm)nO(m)dm

(2.38)

obs

where L(d%;T|m) is given by (2.37). If u* is not known in a priori, it can be treated as one
of the uncertain parameters. Similar to the unstructured model error and for simplicity of
1.n

notation, we denote m(m|d,;e) by ™ (m). Since the errors addressed in this thesis are

primarily unstructured, extension of equation (2.37) for N,,, > 1 is not discussed.

2.5. Mainstream Solutions to Bayesian Calibration

Several solutions exist to solve the Bayesian calibration equations presented in the last two
previous sub-sections. To provide a technical background on these solutions and their
potentials and shortcomings, the mainstream Bayesian calibration solutions are presented

and compared in the subsequent sub-sections.

2.5.1. Conjugate Distributions

In cases where the prior and the likelihood are specific pairs of distributions, the posterior
has an analytical closed form solution which is similar to the prior. These pairs of
distributions are known as conjugate distributions, and were first introduced in (Raiffa &
Schlaifer, 1961). Conjugate distributions are widely listed in statistical literature, e.g., (Ang
& Tang, 2006). Conjugate distributions provide convenient solutions to many statistical
problems. However, they limit the choice of the prior and the likelihood to a limited list of

distributions which are not realistic in many real-life cases.

A widely used example of conjugate distributions are Gaussian distributions; if the prior
and likelihood are both Gaussian, then the posterior is also Gaussian (Ang & Tang, 2006).
Thus, Gaussian distributions are self-conjugate. This property of the Gaussian distributions

is the basis for the Kalman Filter (KF) which is described in the next sub-section.
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2.5.2. Kalman Filter

The Kalman Filter family are recursive Bayesian algorithms for updating the mean and
covariance matrix of the posterior distribution of the state or the parameters of a system
based on uncertain forecast and noisy data and were introduced by Kalman (Kalman,

1960). The original KF assumes Gaussian conjugate distributions.

In this sub-section, the standard notation of KF is used for consistency with the KF
literature. At time t,, assume that d" denotes the state of a system, e.g., saturation or
pressure in a CS system at certain locations and at time t,,, as a column vector. Assume d"

is a linear function of the previous state, d"*~1, and the model control inputs, u", as
d" = F'd" ! + B"u" +w"  w"'~N(0,C) (2.39)

where F™ is the linear state transition model, B™ is the linear control input model and w" is
the Gaussian modelling noise with a mean of zero and a covariance matrix of CJ}, at time
t,. Assume that the measurements are also linearly related to the system states plus a

Gaussian noise, V",
no=H'd"+v"  v"~N(0,C}) (2.40)

where CJ} is the covariance matrix of the measurement noise and H™ maps the system state
to the measurements less measurement noise. For instance, if d™ is the saturation of CO; in
a CS system in 200 grid points and dJ, is the saturation at the 200" grid point, then H™ is

a 1 by 200 vector with zero elements, except for the 200™ element which is equal to one.

At each time step, a KF has two stages: the prediction (forecast) stage and the
measurement update stage. The forecast stage at time t,_; estimates the mean and
covariance matrix of the system state or parameters at time t,, as

dn|n—1 — Fndn—1|n—1 + B™u"
(2.41)

cnt = prcl M (PYT 4
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— nin—-1 . . . .
where d™"™~1 and C dl are the prior mean and covariance matrix of system state at time

—1jn— n-1jn-1 . . .
t, and d™ 1"~ and C d "~ are posterior mean and covariance matrix of system state at

time t,_q.
The measurement update (or simply, update) stage estimates the current mean and
covariance matrix of the system state or parameters at time t,, as

dnln — dnln—l + K (d%. . — Hndnln—l
( obs ) (2.42)

c;i™ = - Kk"HMHC"
where K™ is the optimal Kalman gain at time t,,. Kalman gain indicates how much weight
should be given to the measurements, d?, relative to forecast, d™™~!. Using the normal
conjugate formulation and considering the fact that a linear function of a normally-
distributed random variable has a normal distribution itself, it can be verified that K™ is

given by

K" = C:’11|Tl—1 (Hn)T (ansm—l (Hn)T + C]r}l)_l (243)

In the KF literature, the prior is referred to as background and the posterior is referred to as
analysis. For instance, the prior and posterior covariance matrices are referred to as

background covariance matrix and analysis covariance matrix, respectively.

KF is essentially equivalent to using normal conjugate distributions in the measurement
update stage, as described in Section 2.5, and in the forecast stage KF is essentially
equivalent to using analytical uncertainty propagation for a normal distribution, as
described in Section 2.3. Thus, if the system model and the measurement function are
nonlinear, the KF cannot be used directly. In such cases, the nonlinear models can be
linearized about d™™~* using a first order Taylor series expansion. This version of the KF
is known as the Extended Kalman Filtering (EKF) (Chen, 2003). The main drawback of
the EKF is that it is not accurate when the models are considerably nonlinear. Moreover,
calculating the Jacobian of the model in the Taylor series expansion is nontrivial if a

numerical model is being used, as would be expected of CS.
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An alternative solution to EKF is linearizing the models using UT instead of the Taylor
series expansion. This version of KF is the Unscented Kalman Filter (UKF) (Julier &
Uhlmann, 1996). In UKF, approximated mean and covariance matrix of non-linear
functions of random variables using UT replace the true mean and covariance matrix of
that function in KF formulation, i.e., in (2.41) and (2.42). The UKF formulation is
explained in details in Section 4.2.2 and is not repeated here. Unlike the EKF which is first
order accurate, UKF is at least second order accurate for non-Gaussian Probability

Distribution Functions (PDFs) and third order accurate for Gaussian PDFs (Chen, 2003).

Another solution for applying KF to nonlinear CS models is known as Ensemble Kalman
Filter (EnKF) (Evensen, 1994), where statistics of samples from prior and posterior
distributions are used instead of the statistics of those distributions. EnKF has found
profound application when the number of variables are very large. For example, EnKF has
been used in weather forecast (Houtekamer et al., 2005), reservoir engineering (Naevdal
et al., 2005; Aanonsen et al., 2009) and hydrology (Reichle et al., 2002). It has been also
used for the calibration of CS systems (Tavakoli et al., 2013).

In EnKF, statistics of an ensemble (i.e., a set of samples) are assumed to represent the

mean and covariance matrix of the system state and/or parameters. Let D™"~! =
—15\T —1\T —15\T . . .

[(d?'" 1) , (d;ln 1) ) e, (dZ'Sn 1) ] be a matrix with each column being one of the N

ensemble members at time t,,. Each of these ensemble members is a sample from the prior

distribution of model parameters/system states at time t,,. D"~ is called the background
' T T T o
or prior ensemble. Also, let D}, = [(dgbs,l) (dlps2) s oes (Aps i) ] be a matrix with

each column being the measurements plus a random Gaussian measurement noise. In

EnKF, the analysis or the posterior ensemble is obtained by

pnin = pnin-1 4 Kn(ngS _ HnDTlln—l) (2.44)

The mean and covariance matrix of the members of
T T T
pnin — [(d’f'”) ,(d;'") ,...,(dZL") ] are then used as the analysis state and analysis

covariance matrix of the system. In other words,
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dnln ~ iz d?ln (2.45)
N
=1
and

1<
nn nin nin T 2.46
C, = VSZ (di _ dnln) (di _ dnln) ( )

i=1

Similar to UKF, EnKF does not require calculating the Jacobian of the models. For very
high dimensional state vectors, EnKF is computationally more efficient than UKF (Kim,

2011). However, EnKF could be less accurate than UKF (Ambadan & Tang, 2009).

Replacing the system state with the system parameters m, measurement update stage of
KF-based solutions can be used for estimating the parameters of a system, as described in
(Wan & Van Der Merwe, 2001). In this case, d™™ 1, d™", Cgln_l, and Cgln represent the
mean of 7" 1(m), the mean of m™(m), the covariance matrix of 7™ 1(m), and the

covariance matrix of m™(m), respectively. This process is described in detail in Section

4.2.2.

2.5.3. Multi-Grid Method

When the parameter space is discrete or can be discretized, a group of solutions known as
Multi-Grid (MG) methods (Fedorenko, 1964) can provide the exact solution for Bayes’

formula. MG methods is presented in a simple form in the following.

In a discrete parameter space, the integral in the denominator of Bayes’ formula changes to

a summation. Assume (), is discrete, so that w(m) can be expressed as

Ny
n(m) = ) W2(m — ;) (2:47)
i=1
where ; are the discrete points, W are probability masses so that Z?I:Sl WP =1, and

§(m) is the Dirac delta function. Note that in this thesis m; is used for denoting a sample

of the parameter m and is a vector in general which should not be confused with the earlier
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definition of m; as a component of m. In this case, the normalizing constant in Bayes’

formula is given by

Ny
c= Z L(dpys M) (i) (2.48)
i=1

Thus, the posterior distribution of m in (2.30) is given by

NS
n(m|dgys) = Z W;6(m — ;) (2.49)
i=1
where § (m) is the Dirac delta function and W; are the weights obtained by

W - L(d}yys )W (2.50)

i Py
Zivﬁl L(d},s|m)w?

obs
While MG methods provide the exact solution to Bayes’ in a discrete parameter space, they
are normally approximate for continuous parameter spaces and require a dense
discretization for high accuracy. This requirement makes MG computationally expensive,
especially if a uniform grid is used for discretization. Efforts were made to adaptively
choose or modify the grid points to reduce the computational cost of MG (Bucy &
Youssef, 1974; Kramer & Sorenson, 1988; Cai et al., 1995). However, MG is not used in
more recent works as frequently as more efficient sampling-based methods such as

Markov-Chain Monte-Carlo or Importance Sampling.

2.5.4. Markov-Chain Monte-Carlo

Markov-Chain Monte-Carlo (MCMC) refers to a class of methods that are used for
sampling from a probability distribution by constructing a Markov chain (Chen, 2003) and
are widely applied for sampling from the posterior distribution in Bayes’ formula. A
Markov chain is a memory-less sequence, as the current state of the sequence depends only

on the previous state and not on the states before that. In other words, a sequence

[1?11, m,, ..., r’th] construct a Markov chain only if
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Py, |fiy -1, ity o, .., 1) = P Ty, |fity, 1) (2.51)

where P (m;) stands for probability of the sequence being at state /m; on step i.

Before explaining the application of MCMC in sampling from the posterior distribution in

Bayes’ formula, MCMC is presented in its general form in the following.

One of the main properties of a Markov chain is the transition probability, i.e., the
probability that the chain moves from point m; to ﬁlj and is denoted by a probability
distribution q(fhj|ﬁli). It can be shown that if q(r’hj|r’hi) is symmetric, i.e., q(r’hj|ﬁli) =
q(ﬁlilﬁlj), the following algorithm which is known as the Metropolis algorithm
(Metropolis & Ulam, 1949; Metropolis et al., 1953), generates a Markov chain, where its
members, after discarding a sufficiently large number of initial samples (Nj) known as the
burn-in period, are samples from a probability distribution m(m) known up to a
normalizing constant. In other words, the Metropolis algorithm can be used to generate a
Markov chain [y, My, ..., My, _1, My, Ay, 41, ., My, 1n, | Where [y, i1, ..., Py, on,]

are N; random samples from m(m).
The steps of the Metropolis algorithm are:

A.  Atthe first step (i = 1), choose an initial sample 1M,

B. At each step i > 1, draw a candidate sample m* from a transition kernel or
proposal distribution q(m*|m;_,). Drawing the candidate sample from the
proposal distribution can be done using methods such as inverse CDF method, as
discussed in Section 2.3.4.

C. Calculate the acceptance probability, aycpc, as

(m*) 1> (2.52)

Apcmc = Min (n(ﬁl )’
i-1

D.  Accept m* as m; with a probability of aycuyc, 1.€., generate a random number
between zero and one and accept m* as m,; if that number is not larger than

Apcmc; otherwise, use m;_, as m;.

41



E. Repeat steps 2 to 4 until the desired sample count plus a burn-in count N, is

achieved.

The original Metropolis algorithm was modified by Hasting (Hastings, 1970) to relax the
symmetry condition on the transition kernel. The modified algorithm, known as
Metropolis-Hasting, is similar to the original Metropolis algorithm except for the

acceptance probability which is obtained by

n(m")q(m’|im;_,) ) (2.53)

QAycme = Min — —
<7T(mi—1)Q(mi—1|m*) '

Convergence of the chain can be checked using various tests, a comprehensive review of
which can be found in (Cowlesa & Carlinb, 1996). The choice of the proposal distribution
is an important factor to the convergence rate of the Metropolis-Hastings algorithm
(Brooks et al., 2011). q(im;_,;|m*) = m(m*) seems a straightforward choice which results
in ayeme = 1, i.e., a 100% acceptance rate. However, MCMC is usually used when (m)
is available only up to a normalizing constant. Finding a good proposal distribution for the
Metropolis-Hastings MCMC algorithm has been an ongoing field of research in recent
years (Brooks et al., 2011), an in-depth discussion of which is beyond the scope of this
chapter.

Now, we explaining the application of MCMC in sampling from the posterior distribution
in Bayes’ formula. Assume that w(m|d) is a posterior distribution, given by (2.30), known
up to the normalizing constant. It can be verified that the normalizing constant will cancel
out in the numerator and denominator when obtaining @ ¢ from (2.52) and (2.53). Thus,
the Metropolis algorithm can be used for sampling from a posterior distribution even if the
normalizing constant (which is the primary hard to calculate part of Bayes’ formula) is
unknown. Thus, MCMC methods, and specifically, Metropolis-Hasting algorithm and its
variants, have become one of the standard methods to sample from the posterior
distributions in applications such as groundwater and environmental modelling (Clark,
2005; Hassan et al., 2009; Wu & Zeng, 2013) and reservoir history matching (Liu &
McVay, 2009; Oliver & Chen, 2011). The literature is rich in other variations of MCMC,
e.g., Reversible Jump MCMC (Green, 1995), Gibbs sampler (Geman & Geman, 1984),
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Hybrid Monte Carlo (Durbin & Koopman, 1997) and adaptive variations of MCMC
(Andrieu & Moulines, 2006; Brooks et al., 2011), a description of which is beyond the

scope of this chapter.

The burn-in size of MCMC depends on the problem, choice of the initial chain member
and the transition kernel. The burn-in size can be significant based on the problem and how
the algorithm is designed (Liu & McVay, 2009). Thus, using MCMC for sampling from
the posterior distribution of uncertain parameters of a computationally demanding model
(such as CS models) is subject to the challenge of demanding a large number of model
simulation in the burn-in period which negatively impacts the computational efficiency of

the sampling process (Ma et al., 2006; Liu & McVay, 2009).

2.5.5. Importance Sampling

Importance Sampling (IS), which was initially introduced by (Marshall, 1956), is a solution
for sampling from a probability distribution, w(m), which is available at least up to the
normalizing constant. Similar to MCMC, IS can be used for sampling from the posterior
distribution, given by (2.30), in Bayesian updating. In IS, samples are drawn from a
proposal distribution, g(m), which is close to m(m) and is easy to sample from. Each
sample is then weighted by the ratio of w(m) over g(m) and the weights are normalized to
sum up to one. The proposal distribution encourages samples from more important areas of
the parameter space, i.c., areas with a larger m(m), to reduce the variance of the estimator

and increase efficiency of sampling.

Before explaining the application of the IS in Bayesian updating, first the IS itself is

explained. In the IS method, m(m) is approximated as

Ny
n(m) = 2 W;6(m —m;) i ~q(m) (2.54)
i=1

where M; are the samples randomly drawn from g(m) by using methods such as the
inverse CDF method as explained in Section 2.3.4, and §(m) is the Dirac delta function.

W; are the normalized importance weights, obtained by
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W, = i=1..N, (2.55)
where
w; = nt(m;)/q(m,;) (2.56)

The statistics of m(m) can then be estimated using the statistics of the samples
{m,, M, ...,My } and the importance weights {Wl, Wz,...,WNS}. For instance, the IS

estimation of the mean and covariance matrix of w(m) are

NS
. 2.57
Hm = Z wim, @37)
i=1
and
NS
_ _ _ 2.58
Con = ) Wiy = b (e = i)' @58)
i=1
respectively.

It can be shown that m(m)/q(m) must be finite (Rougier, 2009), which means that the
proposal needs to have heavier tails than the sampling distribution (Owen & Zhou, 2000).
In order to satisfy this condition, a heavy-tailed proposal distribution can be used (Rougier,
2009), or the proposal distribution can be combined with a heavy-tailed distributions such

as the uniform distribution (Hesterberg, 1995; Owen & Zhou, 2000) as

q*(m) = (1 —n)q(m) + ng(m) (2.59)

where 1 is the mixture ratio and varies between zero and one, g(m) is the heavy-tailed

mixture distribution, and g*(m) is the combined proposal distribution.

IS is especially useful when a distribution is hard to sample from but is available up to the
normalizing constant, such as the posterior distribution in Bayes’ formula. Thus, the

application of IS in the Bayesian updating is described in the following.
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Replacing m(m) with m(m|d},) in (2.56), the un-normalized weights of samples from the

posterior distribution are calculated as

S ot (dips — y™ () )" () 1N (2.60)
l q(m;) o
and the normalized weights are calculated according to equation (2.55) as
1 Meor (s = ¥ ()"~ ()
W = q(m,) i=1..N, 2.61)
c-1yMs Ttot (dgbs -y (ﬁli)) (M)
=1 q(m;)

It can be seen that the normalizing constant (c) will be cancelled from numerator and
denominator when calculating the importance weights. Thus, similar to MCMC, the
posterior distribution can be approximated using IS without calculating the normalizing

constant.

Equation (2.61) presents the IS weights when samples are drawn from m(m|d},.). To
sample from ™ (m), i.e., the posterior distribution of m accounting for all monitoring data

up to time t,,, equation (2.61) can be modified to

7 () [T 7eor (dbys — ()

W, = q(m;) i=1.N, (2.62)
e TG T ot (dbys -y )
a@m,)

It has been shown that the optimal proposal distribution in IS should be close to the
posterior distribution (Chen, 2003). However, the posterior distribution is usually
unknown. Researchers have tried to iteratively adjust the proposal distribution to make it
closer to the posterior distribution and so improve the efficiency of the IS. These efforts
resulted in the Adaptive Importance Sampling (AIS) algorithms for iteratively optimizing
the proposal distribution. The VEGAS algorithm (Lepage, 1978; Lepage, 1980) is an
iterative AIS which utilizes the posterior distribution of each iteration to improve the
proposal distribution of the next iteration. Pennanen & Koivu used a stochastic gradient

decent method to adjust the proposal density and minimize the estimator variance
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(Pennanen & Koivu, 2006). More recently developed AIS algorithms, such as Mixture
Population Monte-Carlo (M-PMC) (Cappé€ et al., 2008) and Adaptive Multiple Importance
Sampling (AMIS) (Cournet et al., 2012) utilized a mixture of the posterior distributions
obtained at each iteration to adaptively adjust the proposal distribution. The iterative nature
of these algorithms requires the sampling to be carried out several times until the proposal
distribution gets close to the posterior distribution. This procedure increases the
computational cost of model simulation several times compared to non-iterative
algorithms. Thus, the abovementioned AIS algorithms are not optimal, in terms of
computational efficiency, to be used with computationally costly models such as those

used in CS.

2.5.6. Other Bayesian Calibration Methods and Comparison

While other methods exist to estimate Bayes’ formula, most of them are based on one of
the methods described above. Table 2-2 briefly compares the benefits and the drawbacks of
the described methods for Bayesian update.

Table 2-2: A comparison between common Bayesian update solutions.

Method Benefits Drawbacks

— Applicable only for a limited

Conjugat - C tationall fast
onjugate omputationally very las number of distributions and

famili B .
amilies Analytically tractable specific types of models

Kalman Filter
(measurement
update stage)

— Computationally very fast — Applicable only on linear models
—  Analytically tractable and Gaussian distributions

— Requires calculation of Jacobian

Extended Kalman matrixes (non-trivial for
Filter ) numerical models)

— Computationally very fast
(measurement — Low accuracy for extremely
update stage) nonlinear models and non-

Gaussian distributions
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Method Benefits Drawbacks
—  Computationally faster than

sampling-based methods

(except for systems with very
Unscented large dimensions) )

. Computationally costly for very
Kalman Filter — At least second degree . . .
. high dimensional systems such as

(measurement accurate for nonlinear models

update stage)

and non-Gaussian
distributions

Does not require calculation
of Jacobian matrixes

weather forecast models

Ensemble Kalman

Filter
(measurement
update stage)

Computationally efficient for
very high dimensional
systems such as weather
forecast

Low accuracy for extremely
nonlinear models and non-
Gaussian distributions

Multi-Grid
method

No assumptions on the model
type
Accurate in a dense grid

Computationally costly in a high
resolution grid

Markov-Chain
Monte-Carlo

No assumptions on the model
type or on the distributions
Can be computationally more
efficient than Multi-Grid
method

Burn-in period discards a large
number of samples

Bayesian
Importance
Sampling

No assumptions on the model
type or on the distributions
Computationally more
efficient than Multi-Grid
method for high dimensional
systems

A well-designed IS is
Computationally more
efficient than MCMC since
there is no burn-in period

Requires a proposal distribution
close to the posterior distribution
to be computationally efficient,
specifically in high dimensional
systems

2.6. Discussion and Concluding Remarks

This chapter provided the mathematical basis for Chapters 3 to 5 of the thesis by

introducing a general formulation and general set of assumptions for mathematical

representation of a CS system and by presenting the background for the statistical methods

used for the propagation and mitigation of uncertainty.
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The uncertainty propagation methods presented in Section 2.2 and Section 2.3 are
applicable on various applications namely probabilistic forecast, quantitative risk
assessment and several sensitivity analysis techniques. As reported in Section 2.3.4, MCS
is one of the state-of-the-art uncertainty analysis methods in many applications and has
been the primary tool for the uncertainty propagation in CS systems to date (Walton ef al.,
2004; Kopp et al., 2007; Celia & Nordbotton, 2009; Dobossy et al., 2011). Thus, the
parametric sensitivity analysis conducted in the next chapter (Chapter 3) adapts a
sensitivity measure based on MCS technique. In addition, several uncertainty propagation
methods described in Section 2.2 and Section 2.3 provided a background for a number of
Bayesian update techniques, e.g., UT provided a background for UKF and Taylor series

linearization provided a background for EKF.

On the other hand, the Bayesian update methods presented in Section 2.3.4 and Section 2.5
provided a background for the Bayesian calibration techniques introduced in Chapters 4
and 5. A shown in Table 2-2, each of the presented Bayesian update techniques has
advantages and disadvantages in terms of accuracy and computational efficiency.
However, these methods all tend to be suboptimal for a CS system when considering
accuracy and computational efficiency simultaneously: computationally efficient methods
are normally inaccurate and simulation-based methods are normally computationally
demanding. As formerly discussed in Chapter 1, the trade-off between accuracy and
computational efficiency is the common shortcoming of the efforts to date for the
calibration of CS and comparable systems. Thus, Chapter 4 is an attempt to introduce a
hybrid solution for Bayesian calibration of CS systems, a solution which benefits from the
computational efficiency of an approximate solution and the accuracy of a sampling-based
solution. Then, Chapter 5 will benefit from efficient sampling objective introduced in

Chapter 4 to reduce the number of CS model simulations during the calibration solution.
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Chapter 3.
Parametric Sensitivity Analysis

This chapter is the mirror of the following article. Minor changes are made, mostly in the
Summary and Section 3.1, for greater consistency with the body and notation of the thesis.
Section 3.4.4 does not exist in the article. In this chapter, Sections 3.3.1 and 3.4.3 are co-

authored contributions and I am the main contributor to the rest of the sections.

Sarkarfarshi, M., Malekzadeh, F.A., Gracie, R. and Dusseault, M.B. 2014. Parametric
Sensitivity Analysis for CO, Sequestration. International Journal of Greenhouse Gas

Control, 23: 61-71.

Summary

As described in Chapter 1, the overall goal of this thesis is to reduce the trade-off between
computational cost and accuracy when calibrating CS systems. The first strategy to achieve
this goal 1is to reduce the dimensionality of the CS system’s parameter space, which will be
achieved by identifying the parameters that contribute the most to the uncertainty of a CS
model output, and excluding parameters with little or no effect on the uncertainty of a CS
model output from the calibration. Thus, the purpose of this chapter is to present a
sensitivity analysis to quantify the impact of different uncertain parameters on the overall
uncertainty of CO; plume evolution and to provide a basis for reducing the dimensionality

and computational cost of future calibration and forecast efforts.

The sensitivity analysis method used in this chapter is based on the Monte-Carlo
Simulation (MCS), which was formerly described in Chapter 2. The measure of sensitivity
used in this chapter includes both the role of the parameter in the model, and the parameter
uncertainty, in order to distinguish between parameters with equal influence in the model

output, yet that have different degrees of intrinsic uncertainty. In a case study, the
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sensitivity of the plume interface location, the maximum breakthrough distance of CO,,
and the moment of inertia of the CO, plume with respect to intrinsic physical system
parameters and parameters introduced in constitutive relationships is investigated. The
probability distributions of parameters of the Nisku aquifer which is targeted for CO,
injection in Alberta, Canada are used in the case study. It is also shown that the
contribution of constitutive relationship parameters in plume evolution uncertainty can be

as high as that of the physical characteristics of the system.

3.1. Introduction

As reported in Chapter 1, any prediction of the long-term fate of the injected CO, or
assessment of risk in CS systems is subject to several sources of uncertainty and parameter
uncertainty is believed to be the dominant source of uncertainty in a CS system (Celia &
Nordbotton, 2009; Polson et al., 2012). Uncertainty in the parameters of geological
systems such as CS comes from limited knowledge of the aquifer properties and
conditions, heterogeneity of the aquifer, sparse and inaccurate measurements of the
aquifer, data interpolation and model calibration strategies (Alshuhail et al., 2009; Lavoie

& Keith, 2010; Zhao et al., 2010; Sarkarfarshi & Gracie, 2013).

In this chapter, a quantitative sensitivity analysis is presented to quantify the impact of
different uncertain parameters on the uncertainty of CO, plume evolution in deep saline
aquifers. This quantitative comparison which is the first objective for accurate and
computationally efficient calibration of CS models in this thesis provides a basis for
reducing the dimensionality and computational cost of future calibration and forecast
efforts. In other words, this comparison allows to focus our attention on the parameters that
have the greatest impact on the uncertainty and reduce the computational cost of
probabilistic model forecast and model calibration techniques. In addition, methodology

and results of this chapter can contribute to prioritizing data collection activities.

We hypothesize that the influence of constitutive relationship parameters in CO, plume
evolution uncertainty can be as high as the influence of the intrinsic physical characteristics

of the system. Two parameter groups considered in this study are:
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A. Physical Parameters: Intrinsic physical characteristics of the system such as
porosity, reservoir depth, reservoir geometry and reservoir temperature.

B. Constitutive Relationship Parameters: Constitutive relationship parameters
introduced in constitutive equations and in idealized parameter correlations, such as
parameters in relative permeability-saturation and capillary pressure-saturation

relationships.

To date, sensitivity analysis, in a CS context, directly or indirectly, has been conducted
only in a limited number of studies. For instance, (Kopp et al., 2007) conducted a
sensitivity analysis investigation where the sensitivity of CO, arrival time, free-phase CO,
to total injected CO, fractions, dissolved CO, fractions, and pressure build-up in a 2D
dipping aquifer model, defined by 15 parameters, was examined using the extended Morris
Method (Morris, 1991; Campolongo et al., 2005). Kopp et al. concluded that horizontal
permeability, injection interval and reservoir dimensions were the most influential
parameters, whereas porosity, sorting factor (i.e., the exponent in the Brooks and Corey
relationship), injection temperature, and dip angle were the least influential parameters.
This approach provides a qualitative basis for global ranking of parameters, but the site-

specific degree of uncertainty of parameters was not reflected in the measure of sensitivity.

(Sifuentes et al., 2009) and (Han et al., 2011) studied the contribution of different
parameters to the residual (capillary) trapping and solubility trapping mechanisms in CS
projects with a sensitivity analysis. However, the trapping mechanisms and time scales of

interest in these studies were different from those investigated here.

(Golder Associates, 2010) performed a sensitivity analysis on leakage through abandoned
wells, using Wabamun Area Sequestration Project data. They used tornado charts and XY
function charts to graphically present the sensitivity of leakage from an abandoned well,
and also to present the sensitivity of the maximum radius of the CO, plume to different
parameters. Parameter bounds were selected based on the mean and quantiles of the
probability distribution of the parameters. Such representation provides a quick and easy
guide for the decision makers for identifying the degree of correlation between each

parameter and the model output. However, it does not account for the shape of the
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probability distribution of the parameters since parameter values in the XY plot are chosen
from an equally-spaced grid and tornado charts just incorporated the mean value of the

parameter and upper and lower bounds of the parameter ranges.

Sensitivity of CO, saturation distribution, plume arrival time, site injectivity and storage
capacity to the heterogeneity in porosity and permeability fields is investigated by a small
number of authors. For instance, (Lengler ef al., 2010) investigated the impact of
heterogeneity of petrophysical properties of the Ketzin CS site in Germany on the
saturation distribution of the CO, and arrival time of the plume to a vertical column 50 m
from the injection well. They concluded that permeability heterogeneity reduced the CO,
arrival time at observation wells, decreased the sharpness of the plume interface, and
reduced injectivity. (Deng et al., 2012) showed that storage capacity can also be affected
by heterogeneity. Using a hypothetical CS site in the Rock Springs Uplift, they showed
that heterogeneity in porosity and permeability fields can reduce the storage capacity by
64% and reduce the maximum injection time by a factor of three, compared to previous

homogeneous estimates by (Surdam et al., 2007).

These studies provide valuable insight into the correlations between characteristics of a CS
system and various measures of plume extension, trapping mechanisms and leakage.
However, none of these studies incorporates parameter roles in the model and parameter
distributions at the same time in the measure of sensitivity, or compares the effect of

physical and constitutive relationship parameters in the uncertainty of CS model outputs.

The sensitivity analysis presented in this chapter distinguishes between parameters with the
same significance in the model structure, but different degrees of uncertainty. For example,
consider reservoir effective porosity and the CO, injection rate where the former is usually
much more uncertain than the latter. Moreover, the approach taken in this chapter requires
a realistic characterization of parameter uncertainty; therefore the properties of the Nisku
aquifer in Alberta are used to characterize parameter distributions in a hypothetical CO,
geosequestration site. Though the sensitivity analysis and a parameter ranking is conducted

based on site-specific data; the approach is general and applicable to other CS sites.

52



To account for both the role of the parameters in the model and parameter uncertainty,
sensitivity measures such as global sensitivity indices (Homma & Saltelli, 1996; Sobol,
2001) or Relative Deviation (RD) (Hamby, 1994) can be used. Due to simplicity and
easiness of application, the RD method is selected for the sensitivity analysis in this
chapter. RD is defined to be equal to the Coefficient Of Variation (COV) in the model
output, subjected to parameter variations, and provides a reliable sensitivity measure

(Hamby, 1994; Hamby, 1995). Parameters are ranked based on three criteria:

I. the vertically averaged RD of the CO, plume boundaries, measured at different
times,

II. the RD of the maximum radial extension of the plume, measured at different times;
and

II1. the RD of the moment of inertia of the plume, measured at different times.

RD is a sampling based method requiring repetitive model runs. Such a method requires a
computationally efficient model to conduct repetitive simulations in a reasonable amount
of time. A two-phase flow, two-dimensional Finite Element (FE) model is used to simulate
CO; plume evolution in a saline aquifer. To make the sensitivity analysis computationally
tractable, the system model assumes an axisymmetric geometry, homogeneous rock
properties, a single injection well, and an incompressible rock matrix. The system model is

discussed in detail in Section 3.3.

In Section 3.2, sensitivity analysis using RD method is described and formulated. Next, a
synthetic CS case study is described in Section 3.3 and criteria for ranking the parameters
in the sensitivity analysis are described in Section 3.3.4. Sensitivity analysis results are
described in Section 3.3.5 and discussed in Section 3.4. Finally, conclusions are

summarized in Section 3.5.

3.2. Methodology

The objective of a sensitivity analysis is to identify which mathematical model input

parameters most significantly impact the uncertainty in the model outputs. The sources of
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uncertainty of input parameters cannot be related in a straightforward way to the
uncertainty in the model output because each input parameter may be associated with a
different degree of uncertainty. Dissimilarities in uncertainty arise due to different
temporal and spatial variability of the parameters, different measurement/monitoring data
used to calibrate the parameters and so on. To compare the influence of different
parameters on model output uncertainty, it is necessary to take into account both how much
uncertainty is attributed to each parameter, as well as the role of the parameter in the

mathematical structure of the model.

In the RD algorithm, model output uncertainty is measured through the coefficient of
variation, while sampling input parameters One-At-a-Time (OAT) from parameter

probability distribution functions.

The RD method and the OAT sampling approach are now described in a more

mathematical form.

As described previously in Chapter 2, let g(x, t,,, m) denote a deterministic system model
at time t,, and at location x and with an scalar output, which is parameterized by a set of
N, time-invariant and location-invariant uncertain parameters, m = [ml,mz, ...,mNm].

Assume each m; has a marginal probability distribution m;(m;).

Let D" = {g (x, t) [,uml,,umz, oo My T s iy, s ...,umNmD j=1 ...NS} denote a set
of N; model evaluations where for each sample j, all inputs m,.; are chosen equal to the
mean value of their probability distribution, p,,, and m; is randomly sampled from
m;(m;), ie., M;;~m;(m;). Thus, D" is essentially the output of a Monte Carlo

Simulation (MCS).

The relative deviation of m; at time t,, and location x is donated by RD;"" and is equal to
the standard deviation of D}™, normalized by the mean of D™ and it is considered a

measure of the sensitivity of g(x, t,,, m) to m;. In other words,

RD™ = L (3.1)



where opxn and pprxn are standard deviation and mean of D}, respectively.
l l

Consequently, both the degree of uncertainty in parameter m; and the role of m; in the
mathematical model are reflected in the sensitivity measure RD;"™. The correlation
between parameters is not considered here. The accuracy of the RD method depends upon

N, and a larger Ny produces more accurate results.

Algorithm 1 illustrates a pseudo-code of the RD method used in this chapter. The first step
of the RD method is to obtain Ng; random samples from each of the N,, probability
distribution, m;(m;). Next, for each time interval of interest (t,), for each coordinate in the
domain of interest (x;) and for each parameter (m;), the model is evaluated N, times using
the N; random samples of the parameter (7;;) while rest of the parameters are held
constant at their mean values. Once the Ng model evaluations have been recorded, the RD

for parameter m; can be evaluated for each coordinate and time of interest.

Algorithml1: The pseudo-code for the RD method used in this chapter. Modified from: (Sarkarfarshi et al.,
2014).

Set Ny = the number of desired simulations for each parameter and set N,, = number of parameters
Sett = [tl, ty, ., tNt] as the time grid and set X = [xl, X, e, xNx] as the space grid
Fori=1to N,
Forj = 1to Ng
Draw m; ; from m;(m;)
End
End
Forn=1to N,
Fork =1to N,
Fori=1to N,
Forj =1 to Ng
Evaluate g (x, th, [,uml, Hmgs = r Bamy_y» r’fli,j,umm, ) ,umNm])
End
Set DF™ = {g(%, ty, [Hmys Hings woos Bang_y» Pt jo imgy s s By ])1J = 1 o0 N}
Evaluate RD; *" = 0 pn / ppxn for my, t, and x;
End

End
End
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3.3. Case Study

3.3.1. System Model

Model Description: The injection and migration of CO, are assumed to take place in an

infinite, horizontal and homogeneous saline aquifer (Figure 3-1). The aquifer is assumed to
be rigid, bounded above and below by impermeable formations, of constant thickness (B)
and with a constant porosity (¢p). Both the CO, (non-wetting phase) and the host brine
(wetting phase) are assumed to be incompressible Newtonian fluids of constant density (p,
and p,,, respectively) and constant viscosity (i, and u,,, respectively), which is reasonable
if pressure and temperature do not vary greatly during the injection process. The CO, and
the brine phases are taken to be immiscible. The total CO, injection rate, @, is constant in
time. Injection is assumed to occur from a vertical well that fully penetrates the whole
thickness of the target formation; thus, injection is modelled as a line source with an

injection rate of Q /B per unit length.

‘Q

Figure 3-1: Migration of CO, into an infinite, horizontal and homogeneous saline aquifer. Color gradient in
CO, zone shows the saturation transition. From: (Sarkarfarshi et al., 2014).

We wish to model the impact of gravity drainage on the evolution of a CO; plume in the
early stages of injection. Because the density of the injected CO; is less than that of the
host brine (p,, < py), the injected CO, phase will rise towards the top of the aquifer. Thus,
the CO, will spread at a faster rate at the top of the aquifer compared to the bottom,

resulting in a COy/brine front similar to that illustrated in Figure 3-1. In the presence of
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capillary pressure effects, the CO,/brine front is not a sharp interface where the brine
saturation, S,,, abruptly jumps from 1 to S,, but consists of a transition zone where S,
varies from 1 to S, where S, denotes the residual saturation for the brine in the porous

medium.

The volumetric flux, q;, of phase i within the aquifer is given by a generalized Darcy's

Law

kk,;

q; = (Vp; — pig), [ = wp ornp (3.2)

i

where i = wp corresponds to the wetting phase (brine), i = np corresponds to the non-
wetting phase (CO»), k is the intrinsic permeability, g is the acceleration due to gravity,

k,; is the relative permeability of phase i and p; is the pressure of phase i.

Relative permeability is often a function of saturation. Let S,, denote the saturation of the

brine; the effective saturation is defined as

Se=41-5, Sw > Sr (3.3)

0 S,<S,

Laboratory measurements in the Nisku aquifer (Bennion & Bachu, 2005; Bennion &
Bachu, 2006) demonstrate that k,; is a nonlinear function of saturation. The value of k,;

can be reasonably represented by the Corey-Brooks correlation:

Kpy = SO (3.4)

and
k= B(1—S,)% (3.5)

where £ is the endpoint relative permeability of the non-wetting phase (CO;) and «; are

empirical parameters. In this study, it is assumed that a,, = a,, = a for simplicity.

The capillary pressure is defined as
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Pc = Pnp — Pwp (3.6)

The capillary pressure is generally non-zero and is known to be a function of saturation.

We will assume that capillary pressure is governed by a Brooks-Corey function of the form

pe = AS;° 3.7
where A is the entry capillary pressure. Constitutive parameters a, , A and o must be

suitably chosen for a given target formation. These four parameters plus the viscosity of

CO; are classified as constitutive relationship parameters.
Flow of the CO; and brine is governed by the conservation of mass for each phase, which
can be written as
as;
®pi a_tl +p;V.q; = Q;, i=worn (3.8)
where Q; is the source/sink mass flux of phase i and S; is the saturation of phase i.

Finite Element Solution: Approximate solutions of (3.8) incorporating three-dimensional

domains, arbitrary boundary condition, heterogeneities and multiple sources and sinks can
be obtained using numerical simulators such as TOUGH2 (Pruess & Spycher, 2007);
however, such a model is computationally too expensive for the sensitivity analysis
considered here. Instead, we solve (3.8) for an axisymmetric domain where injection

occurs at the center of the domain.

A numerical solution of equation (3.8) is obtained using the Finite Element Method (FEM),
with appropriate stabilization (Morton, 2010). A structured mesh of linear finite elements
discretizes the domain. The FEM code has been validated against the recently developed
semi-analytical solution of Malekzadeh and Dusseault (Malekzadeh & Dusseault, 2013).
The MD2013 model assumed that the injection of CO, occurs at the center of an
axisymmetric domain, which is initially completely saturated with brine. The semi-
analytical solution MD2013 is orders of magnitude more computationally efficient than the
FEM model and is thus generally more useful for sensitivity and risk analyses. However,

the semi-analytical solution exhibits some instability over the range of values of f and «
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encountered in the distribution of these parameters for the Nisku aquifer. Therefore, the

slower but more stable FEM solution is used in this study.

A schematic of typical saturation profile of the MD2013 and FEM solutions is illustrated in
Figure 3-2. It can be seen that there is a saturation transition zone between regions of fully
saturated brine (S,, = 1) and fully saturated CO; (S,, = S,). b(r, t) is the boundary of the
plume, separating the areas of S,, = 1 and S, < 1. Not obvious from Figure 3-2, is that the
solution of (3.8) involves a small shock front where the brine saturation jumps abruptly
from S, = 1 t0 Sgyone at the CO, front. The location and magnitude of the shock front are
obtained naturally from the semi-analytical solution MD2013; however, in the FEM
solution, the shock is smoothed out. It does not appear that the smoothing of the shock

front significantly impacts the accuracy of the FEM model.

\

Figure 3-2: Axisymmetric CO, transition zone and plume boundary. From: (Sarkarfarshi et al., 2014).

In this study, the aquifer is modelled as an axisymmetric and homogeneous domain with a
radius of 1 km. No flow boundary conditions are assumed on the upper and lower
boundaries of the domain. A uniform mass flux is applied along the left most boundary

(r=0) and hydrostatic pressure is prescribed along the right most boundary (r=1 km). The
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domain is chosen sufficiently large in the radial direction so that the saturation front is far
from the boundary and there is negligible effect on the motion of the saturation front. A
uniform mesh of triangular elements, with 100 equally-spaced nodes in the radial direction

and 5 equally-spaced nodes in the vertical direction, is used.

3.3.2. The Nisku Aquifer

The Nisku aquifer is a carbonate unit in the Western Canada Sedimentary Basin; due to oil
exploration and production, it has been subjected to detailed analysis and data collection.
The study site is located near Edmonton, Alberta and was selected as the CO; injection site
for the Project Pioneer” (MIT, 2012; Project Pioneer, 2012). Nisku aquifer characteristics
were gathered in a study led by the University of Calgary called the Wabamun Area
Sequestration Project (WASP) (Lavoie & Keith, 2010) based on wireline geophysical logs,
core analysis, drill stem tests and petrographic studies collected since 1950 (Eisinger &
Jensen, 2009), which provides an appropriate statistical basis for this study. These
characteristics are partially available from (Golder Associates, 2010). In addition, some
other characteristics (including the relative permeability and capillary pressure curves of
two core samples) are available from (Bennion & Bachu, 2005) and (Bennion & Bachu,
2006). In the WASP study area, the saline aquifer is 1730 m deep (Eisinger & Jensen,
2009) and is 64 m thick (Golder Associates, 2010) on average, consisting of both a
dolomite with a porosity of 3%~5% and a permeability of 5~15 mD, and a hypersaline
carbonate mudstone with a porosity of < 2% and a permeability of < 5 mD (Eisinger &

Jensen, 2009).

3.3.3. Parameters

The parameters considered in the sensitivity analysis are tabulated in Table 3-1 and the

probability distribution of each parameter is illustrated in Figure 3-3.

* The project was cancelled in 2012 due to economic reasons (MIT, 2012). However the availability of site
statistics makes it an appropriate choice for this study.
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Table 3-1: Parameters and probability distributions/values used in the sensitivity analysis. D, U, 1 and 2 stand
for Deterministic parameter, Uncertain parameter, 1* group (physical) parameter and 2™ group (constitutive
relationship) parameter, respectively. From: (Sarkarfarshi et al., 2014).

Probability
Parameter Type Mean Unit Reference
distribution/Value
Q Dl 0.1 - Mt/year -
B Ul Lognormal (4.147, 0.14) 63.88 m (Golder Associates, 2010)
k D1 440 - mD (Golder Associates, 2010)
[0) Ul Discrete PMF 0.038 - (Golder Associates, 2010)
(Bennion & Bachu, 2005;
S, Ul Lognormal (-0.924, 0.200) 0.41 - Alberta Geological Survey,
2012)
(Bennion & Bachu, 2006;
Hwp D2 7.49x10* - Pas CREWES, 2012; Golder
Associates, 2010)
Hngp U2 Normal(5%107, 1x107) 5x10°  Pas  (Golder Associates, 2010)
(Bennion & Bachu, 2006;
Pwp DI 1090 - kg/m’  CREWES, 2012; Golder
Associates, 2010)
Pnp Ul Triangular (416, 736, 816) 656 kg/m3 (Golder Associates, 2010)
(Bennion & Bachu, 2005;
a U2 Lognormal (0.992, 0.010) 2.71 - Alberta Geological Survey,
2012)
(Bennion & Bachu, 2005;
B U2 Lognormal (-1.938, 0.385) 0.155 - Alberta Geological Survey,
2012)
(Bennion & Bachu, 2006;
A U2 Lognormal (13.249, 0.632) 0.693 MPa  Alberta Geological Survey,
2012)
(Bennion & Bachu, 2006;
o U2 Lognormal (0.346, 0.01) 1.42 - Alberta Geological Survey,

2012)
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Figure 3-3: Probability distribution of Nisku aquifer characteristics used in this study: (a) porosity, (b) CO,
viscosity, (c) CO, density, (d) aquifer thickness, (e) a, (f) S, (g) residual saturation, (h) entry capillary
pressure, and (i) o. Red dashed lines show the mean value of the distributions. From: (Sarkarfarshi et al.,
2014).

Mean values of the intrinsic permeability (k), the probability mass function for the porosity
(¢) and probability density functions for CO; viscosity (ipp), CO2 density (o), and
formation thickness (B) of the Nisku aquifer are reported in (Golder Associates, 2010).
Changes in the formation thickness results in changes in element height in simulations
related to formation thickness. Such variation in element size is small and did not
significantly impact the accuracy in the FE computations and so does not significantly
impact the RD results. The formation porosity is represented by a PMF (Figure 3-3a) and
the CO, viscosity, the CO, density and the formation thickness are represented by three
PDFs (Figure 3-3b to Figure 3-3d).

63



Brine viscosity (4,,,) and density (py,,) are assumed to be constant with values calculated
from the CREWES fluid properties calculator (CREWES, 2012). In-situ Nisku temperature
and brine salinity are assumed to be 56 °C and 136,817 ppm, respectively (Bennion &
Bachu, 2006). In-situ Nisku pressure is assumed to be 18.2 MPa (Golder Associates,
2010). The resulting brine viscosity and density are 1090 kg/m’ and 7.49x10™ Pa.s,

respectively.

No PDFs/PMFs are reported in the (Golder Associates, 2010) for constitutive law
parameters a, 8, A, o nor residual brine saturation (S,). However, a, f and S, can be
estimated from relative permeability data collected from two core samples, (Bennion &
Bachu, 2008) and (Michael et al., 2009). Entry capillary pressure (4) can also be calculated
from capillary pressure-saturation data of the same cores (Bennion & Bachu, 2006). Due to
the limited data, we have subjectively assumed lognormal PDFs for each of these

parameters. Lognormal PDFs are selected to avoid negative values.

Using a least squares method, the parameters a and [ are estimated by fitting equations
(3.4) and (3.5) to the relative permeability-saturation data for each core (Figure 3-4).
Values of a = 2.70 and 2.72 were obtained for the first and the second core, respectively.
These values are taken as indicators of a small uncertainty in the effective value of a
parameter for the Nisku aquifer. A lognormal distribution is assigned to ¢ with a mean
equal to the mean of the two cores and with a COV of 0.1—indicating little uncertainty

(Figure 3-3e).

Similarly, values for § of 0.23 and 0.08 were estimated for the first and the second core,
respectively, which indicate much more uncertainty compared to a. As illustrated in Figure
3-3f, a lognormal distribution is assigned to § with a mean equal to the mean of § values

of each core and with a COV of 0.4 to capture the large uncertainty in the effective value

of S.

Values for residual saturation (S,) of 0.32 and 0.49 were also estimated, showing less
uncertainty compared to 8, but more uncertainty compared to a. A lognormal distribution
is assigned to the S, with a mean equal to the mean of obtained values and a COV of 0.2

(Figure 3-3g).
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Figure 3-4: Relative permeability data and fitted curves for the (a) first and (b) second core samples of the
Nisku aquifer according to (Alberta Geological Survey, 2012) and (Bennion & Bachu, 2005) data. From:
(Sarkarfarshi et al., 2014).

Using a least squares method, parameters A and o are estimated for each of the cores by
fitting equation (3.7) to the capillary pressure-saturation data (Figure 3-5). Values of 87.7
kPa and 1.3 MPa for A and 1.35 and 1.48 for o were obtained for each sample,
respectively. Two lognormal PDFs are assigned to A and o (Figure 3-3h and Figure 3-31);
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the means of these PDFs are equal to the mean of the obtained values and the COV of A

and o selected, according to their uncertainty, as 0.7 and 0.1, respectively.
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Figure 3-5: Capillary pressure data and fitted curves for the (a) first and (b) second core sample of the Nisku
aquifer, according to (Bennion & Bachu, 2006) data. From: (Sarkarfarshi et al., 2014).

66



3.3.4. Ranking Criteria

Three criteria are chosen to rank the sensitivity of the system to various parameters:

II.

III.

The first criterion is the average plume radius sensitivity and is equal to vertically
averaged sensitivity of the CO; plume radius, evaluated N; times (once at each t,)
for each uncertain parameter m;. This criterion indicates the vertically averaged
sensitivity of the plume radius.

The second criterion is the plume tip sensitivity (sensitivity of the maximum radial
extension of the plume) and is equal to sensitivity of the radius of the CO, plume at
the top of the aquifer, evaluated N; times (once at each t,) for each uncertain
parameter m;. This criterion is selected because leakage of CO, from different
pathways (e.g., abandoned wells, faults, fractures, etc.) initiates from the top of the
aquifer. Thus, the location of the CO, plume tip (the maximum breakthrough
distance of CO, at the top of the aquifer) and its uncertainty is of paramount
importance in determining leakage initiation time and for risk assessment (Kopp e?
al., 2010).

The third criterion is the moment of inertia sensitivity and is equal to the sensitivity
of the moment of inertia of the plume, evaluated N; times (once at each t,,) for each
uncertain parameter m;. The moment of inertia of the plume is defined in equation

(3.9) and can be easily approximated from the finite element solution as

B 1km
I(t,) = f pprdV = f f 2P pn13Sny (r, 2, t,)dr dz (3.9)
1% z=0r=0

where I(t,,) is the moment of inertia of the plume mass at time t,,, V is the volume
of COg, and S, (7, z,t) indicates the saturation of the CO, phase at radius r from
the injection well, height z from the aquifer base, and time t. This criterion
represents the overall sensitivity of the CO, mass spread in the aquifer at different

times.
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3.3.5. Results

A sensitivity analysis by the RD method is conducted by running the model 50 times for
each uncertain parameter, i.e., Ny = 50. The supercritical CO, injection rate is assumed to
be 0.1 Mt/year. The time grid (t) is chosen equal to [1,2,...,12] months and the vertical
node coordinates are used as the space grid (X). Figure 3-6 shows the effective saturation

distribution for the base case in which all parameters are kept at their mean value.
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Figure 3-6: Effective saturation distribution of CO, for the base case, in which all parameters are kept at their
mean value, after 3, 6, 9 and 12 months of injection. From: (Sarkarfarshi et al., 2014).

Figure 3-7, Figure 3-8 and Figure 3-9 illustrate the sensitivity to the uncertain parameters,
according to criteria I, II and III, respectively. It can be seen that the ranking of the
parameters is almost time-invariant. Small fluctuations in Figure 3-7 and Figure 3-8 are
most likely a result of the definition of the plume boundary, which is subject to an error of

<10 m (equal to length of the elements in the radial direction).

In order to compare the relative role of the parameters more readily based on the criteria,
the sensitivity measures can be normalized by their summation. Table 3-2 lists the un-
normalized and the normalized sensitivity measures for each of the three criteria, at the end

of year 1.
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Figure 3-7: Criterion I: average plume radius sensitivity. From: (Sarkarfarshi et al., 2014).
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Figure 3-8: Criterion II: plume tip sensitivity. From: (Sarkarfarshi et al., 2014).
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Figure 3-9: Criterion III: moment of inertia sensitivity. From: (Sarkarfarshi et al., 2014).

Table 3-2: Original and normalized values of measure of sensitivity and the rank of uncertain parameters
according to criteria I, I and III. Modified from: (Sarkarfarshi et al., 2014).

Criterion I 11 I
Measure of sensitivity Measure of sensitivity Measure of sensitivity
Parameter | Rank Rank Rank
Original Normalized Original Normalized Original Normalized
B 5 0.054 0.075 5 0.037 0.049 4 0.249 0.096
E‘. o) 1 0.288 0.400 1 0.257 0.338 1 1.23 0.475
§ Sy 2 0.124 0.172 3 0.144 0.189 3 0.364 0.140
Prp 9 0.002 0.003 9 0.011 0.015 9 0.002 0.001
a 7 0.033 0.046 6 0.036 0.047 7 0.024 0.009
B 4 0.064 0.089 4 0.060 0.079 5 0.093 0.036
g o 8 0.019 0.026 8 0.015 0.019 8 0.018 0.007
% A 3 0.094 0.131 2 0.170 0.223 2 0.563 0.218
o
Hnp |6
0.419 0.058 7 0.031 0.040 6 0.046 0.018
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3.4. Discussion

3.4.1. Sensitivity Analysis Results

According to all three criteria, the formation porosity, ¢, is the parameter that most
influences the uncertainty in the migration of CO,. The difference between the measures of
sensitivity for porosity and the rest of the parameters is significant. This difference is
caused by the role of porosity in the model structure, as well as its degree of uncertainty.
As a marine carbonate reservoir, the Nisku aquifer is subject to extreme heterogeneity in
porosity (Dominguez et al., 1992), and consequently, extreme uncertainty in the effective

value of porosity in the homogeneous system model.

Brine residual saturation, S,, seems to be the second most influential parameter in the
physical parameter group, as it is ranked second in criterion I and third in criteria II and III,
respectively. Aquifer thickness, B, is ranked third among physical parameters and is in the
middle of the overall ranking. Density of CO,, pp,, is ranked as the least important

physical parameter and the least important parameter in the overall ranking.

Among the five constitutive relationship parameters investigated in this study, entry
capillary pressure, A and endpoint relative permeability of the CO,, B, received the highest
ranks, as a result of their considerable degree of uncertainty, in addition to their role in the
model formulation. A is ranked as the second most influential parameter in the uncertainty
of the plume tip and plume moment of inertia and the third most important parameter in the
average location of plume boundaries whereas £ is in the middle of the overall ranking for
all three criteria. It can also be seen that the sensitivity of the plume tip and plume moment
of inertia to A increases with time. Thus, if the same trend continues after year 1, A could
become more significant. Constitutive parameters a and o are far less significant,
compared to A and p, according to all three criteria. This shows the factors in the
constitutive equations of power law form, e.g., equations (3.5) and (3.7), are more
influential on the uncertainty of the plume fate than the exponents in the same equations,

according to the approach and data used here. The ranking of viscosity of COy, Uy, was in
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the middle between constitutive parameters and was not as significant as A and f. The role

of pyy, 1s expected to be more significant in the uncertainty of the pressure plume.

One of the goals of this case study was to test if the influence of constitutive relationship
parameters in plume spread uncertainty is as important as that of the physical parameters.
Apparently, for all three criteria, A is the second or the third most influential parameter and
holds more than 10% of the total normalized measures of sensitivity at year 1. In addition,
at the end of year 1, f is more influential than half of the physical parameters in criteria |
and II. Thus, the role of some constitutive relationship factors such as A and S can be as
important as the role of physical parameters in the uncertainty of the plume fate. This
implies that spending time and effort on a proper choice of constitutive relationship
parameters can play a key role in mitigating the uncertainty in forecasting the CO, plume
fate. The role of constitutive relationship parameters in the risk assessment of CS projects
can be also highlighted through taking into account the role of these parameters in the

uncertainty assessment of the plume tip location (criterion II).

The overall ranking presented in Figure 3-7, Figure 3-8, Figure 3-9 and Table 3-2 can help
prioritize future data collection and calibration efforts. It provides a basis for reducing the
dimensionality of the parameter space in order to reduce the computational cost of further

uncertainty analysis and model calibration by identifying major sources of uncertainty.

3.4.2. Sensitivity Analysis Approach

The main purpose of this study is to present a methodology for comparing the influence of
uncertain parameters in the uncertainty of the CO; plume fate in CS projects. Results of the
sensitivity analysis determine which parameters should be focused on more in future
uncertainty analyses, model calibration and risk assessments. This process becomes more
important when using computationally expensive, full-scale reservoir simulators. A
relatively simple hypothetical aquifer model with simple geometry is used to demonstrate
the methodology; the parameter probability distributions are taken from data collected
from the Nisku aquifer, which is targeted for CS. The results presented are specific to the

aquifer data, boundary conditions, geometry and modelling objective we have used in this

72



study and may not be readily extrapolated to other cases. For instance, if the injection
pressure is fixed at a a constant value instead of fixing the the injection rate, the parameter
rankings could be different. However, the approach taken is quite general and can be

extended to other CS projects.

Results obtained from this approach are dependent on the degree of uncertainty in the input
parameters. Thus, they are valid for the current state of knowledge about the parameters
and they should be updated each time probability distributions are revised. As mentioned
previously in Chapter 2, the Bayesian approach to probability is used in this thesis; hence,
the probability distributions are indicators of degree of belief (and not frequency) in the

effective value of the parameters.

As mentioned in Section 3.3.3, the probability distributions of several parameters were
selected subjectively based on limited data. This is likely to be a situation encountered in
future CS projects. For example, data for parameters estimated from experiments on core
samples (such as relative permeability and capillary pressure functions) may be limited
because acquiring core samples requires penetrating the caprock of the formation and
creates a potential leakage pathway for the CO,, so there is a large motivation to limit the
collection of core samples. In such cases, the PDFs of parameters will likely be assigned by
experts based on limited available data or data from other similar rocks. Recent papers
(Oladyshkin et al., 2011-b; Oladyshkin et al., 2012) present efficient methods for reducing
the subjectivity of the PDFs in data sparse situations, with an application to CO;
geosequestration context. Their methodology is applicable to the present sensitivity
analysis approach, specifically in the site selection stage when most PDFs come from

expert judgment and global databases.

3.4.3. The System Model

Some assumptions of the mathematical model are discussed here for completeness. Note
that the assumptions introduced in the mathematical model do not affect the generality of

the sensitivity analysis methodology.
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Pressure effects on the density and viscosity of the fluids were neglected. The maximum
pressure build-up in the reservoir after 1 year of injection in the base case of this sensitivity
analysis was 2.6% of the initial formation pressure. Thus, neglecting the pressure effect on
the density and viscosity of the fluids should not significantly affect the results. However,
this assumption will not be robust when the permeability of the formation is considerably
smaller or the injection rate is considerably larger. Moreover, maximum pressure build-up
is a constraint on the injection rate in order to make sure it does not exceed the fracture
pressure of the caprock and the injection system tolerance. Thus, in more realistic injection

cases where the pressure build-up is significant, the ranking could be different.

The temperature dependence of the density and viscosity of the fluids has also been
neglected. It is assumed for simplicity that CO, will be injected at the temperature of the
host formation. In reality, CO, will likely be injected at different temperatures from the in-
situ temperature of the host formation. Studies such as (Gor et al., 2013) have highlighted
the importance of temperature in the geological CO, storage process. Thus, the role of
temperature differences between injected supercritical CO, and the host formation should

be revisited in future studies.

The rock matrix was assumed to be rigid and consequently the stress dependence of
permeability was neglected. This assumption is adequate for the small pressure changes
encountered in this study; however, if the rock mass undergoes a significant temperature
change then the role of mechanical deformations will become important. Mechanical
stresses are of paramount significance in the integrity of the caprock and injectivity of the
aquifer in the presence of thermal effects, or when injecting supercritical CO; into less

permeable aquifers or at higher rates.

The aquifer was assumed to be homogeneous and isotropic, in order to limit the number of
uncertain parameters. However, heterogeneity and anisotropy affect the degree of
uncertainty in the effective value of the parameters. For instance, while porosity was
assumed constant in this study, the significant amount of uncertainty in the PMF of the

porosity was a result of extreme heterogeneity in the Nisku formation.
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From a physical point of view, solubility of gas in saline water results in a pressure drop
and changes to the composition of the media. Moreover, vaporization of saline in a dry gas
leads to precipitation of salt and that can block the pores and decrease the permeability of
the media (Mathias et al., 2009; Peysson et al., 2011). CO, and brine phases were
considered immiscible in the model. Due to the limited miscibility of CO, and saline and
the relatively short simulated time of one year, compositional changes have negligible
effect on saturation distribution and so immiscibility of the phases is a valid assumption.
This assumption may not be valid when compositional changes of the media occur or when
longer simulation time are investigated; in these cases, this assumption should be revisited.
Neglecting compositional effects results in slightly higher overall saturation and lower

pressure near the injection well.

An axisymmetric domain with radius of 1 km was used in this study. Considering the
injection rate, injection time and porosity values used in our simulations, the plume front
was always far from the boundaries. At larger injection rates and longer injection times
however, a domain larger than 1 km is required to ensure that the plume boundary does not

reach the domain boundaries.

3.4.4. Contribution to Model Calibration

As described earlier in Chapter 1, the numerical CS models are normally characterized by
extreme nonlinearities and parameter distributions in CS systems are not normally well-
behaved PDFs. Thus, accurate calibration of CS models normally demands sampling-based
solutions which require repetitive simulation of the system model. In general, a larger
number of parameters require a larger number of model simulation in a sampling-based
calibration algorithm. Taking into account the computational cost of model simulation,
reducing dimensionality of the parameter space based on a quantitative sensitivity analysis,
as presented in this chapter, can reduce the number of required model simulations to

achieve a certain degree of accuracy and precision.

It should be noted that while a reduced parameter space obtained based on the results of the

sensitivity analysis can reduce the computational cost of further calibration efforts, it does
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not eliminate the issue of computational cost of CS model calibration. Thus, the next
chapters (Chapters 4 and 5) will focus on developing efficient and accurate calibration
methods and reducing the computational cost of model simulation during the calibration
process of a CS system for furthermore reduction in the computational cost of accurate

model calibration.

3.5. Concluding Remarks

A quantitative methodology is presented in this chapter to compare the contribution of
different parameters to the uncertainty of CO, plume evolution in CS projects. The
methodology accounts for both the degree of uncertainty in each parameter and role of the
parameter in the model structure. Results of such analyses can be used to guide and reduce
time and effort spent on model calibration to obtain trustworthy model forecasts and risk

assessments in CS systems.

The method presented in this chapter is applied to a hypothetical CS site with parameter
distributions inspired by Nisku aquifer, a reservoir targeted for CO, injection in Alberta,
Canada. Two parameter groups are considered: one, physical characteristics of the system;
and, two, constitutive relationship parameters introduced in the constitutive laws and
empirical relationships. Three ranking criteria are used to compare the role of each
parameter in the uncertainty of CO, plume evolution: I. the average plume radius
sensitivity, 1. the plume tip sensitivity and III. the moment of inertia sensitivity. In
addition, the overall roles of physical and constitutive relationship parameter groups are
compared and it is found that the second group is as influential as the first group in the CO,

plume evolution uncertainty.

In the presented case study, porosity and residual saturation were the most influential
physical parameters whereas entry capillary pressure and the endpoint relative permeability
of CO, were the most influential constitutive relationship parameters. Results also showed
that the roles of entry capillary pressure and the endpoint relative permeability of CO;
(from the constitutive relationship parameter group) are as important the roles of the

physical parameters.
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The advantages of the presented sensitivity analysis can be summarized as:

e Ranking parameters of a CS system according to the sensitivity of the model output
to each parameter.

e Accounting for both parameter role in the model and degree of uncertainty about
each parameter.

e Reducing the dimensionality of the parameter space and avoiding unnecessary
calculations in further calibration and probabilistic forecast efforts.

e Demonstration of the importance of constitutive relationship parameters in the

uncertainty of a CS system.
Current work is subject to limitations that can be addressed in future research, namely:

e Parameter correlations are not considered in the presented case study.

e The computationally fast system model in the case study is based on simplifying
assumptions that such as rigidity of the aquifer, incompressibility of the fluids and
isothermality of the injection process which can be relaxed in future works using a
more realistic system model.

e Using a site-specific geometry and including the heterogeneity in the system model

can increase the validity of the results in the case study.

Results of a quantitative sensitivity analysis similar to the case study presented in this
chapter can be used as a basis for reducing the dimensionality of the parameter space for
the purpose of reducing the computational cost of model calibration efforts. This potential
reduction is complementary to developing computationally efficient calibration algorithms
and computationally efficient system models. With a reduced number of parameters, but an
inefficient calibration algorithm and a computationally demanding model, the
computational demand and accuracy trade-off of calibrating CS systems can be still an
issue. Thus, Chapter 4 and Chapter 5 will focus on developing computationally efficient
calibration algorithms and computationally efficient replacements for the system models,

respectively.
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Chapter 4.
Unscented transformation Importance

Sampling (UIS)

This chapter is the mirror of the following article. Minor changes are made, mostly in the
Summary and Sections 4.1, 4.2 and 4.6.4, for more consistency with the body and notation
of the thesis and eliminating redundant information previously presented in Chapter 2.
Section 4.3 does not exist in the article. I am the main contributor to all sections of this

chapter.

Sarkarfarshi, M. and Gracie, R. 2015. Unscented Importance Sampling for Parameter
Calibration of Carbon Sequestration Systems. Stochastic Environmental Research and Risk

Assessment, 29(3): 975-93.

Summary

As described in Chapter 1, a trade-off is commonly required between the computational
cost and accuracy of model calibration efforts for CS and similar engineered systems.
Chapter 3 focused on the first objective of this thesis, i.e., reducing this trade-off by
presenting a methodology for identifying the most significant parameters effecting the
uncertainty of a CS model output and providing a basis for reducing the dimensionality of
the parameter space. However, even in a reduced parameter space, accurate calibration of a
CS model using conventional calibration approaches is computationally demanding. Thus,
in this chapter, we focus on the second objective of this thesis by developing an accurate
and computationally efficient calibration method which is suitable for nonlinear and
computationally expensive CS models and does not assume a specific type of probability

distribution (e.g., Gaussian) for the parameters.
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Utilizing the methods and formulations presented earlier in Chapter 2, a computationally
efficient Bayesian Importance Sampling (IS) method is developed and applied to CS,
which continuously mitigates parameter uncertainty by incorporating time-lapsed noisy
monitoring data. Three case studies are generated to demonstrate the application of this
method, to compare it with other conventional calibration algorithms, and to study the
effect of tuning parameters. It is shown that the calibration method developed in this
chapter outperforms traditional IS in terms of accuracy and computational efficiency, and

outperforms an accurate member of Kalman Filter (KF) family in terms of accuracy.

4.1. Introduction

Chapter 1 described that the parameters of a CS system are uncertain at the start of
injection. Methods for calibration, i.e., using monitoring data to reduce the uncertainty of
the parameters, are therefore desirable. The primary contribution of this chapter is the
development of a new Bayesian calibration method: the Unscented transformation
Importance Sampling (UIS) method. The UIS is the second objective among the three
complementary objectives in this thesis that aid in the accurate and computationally
efficient calibration of CS systems. The UIS continuously, accurately, and efficiently
calibrates the uncertain and non-Gaussian parameter distributions of complex and
nonlinear system models by using continuously streaming monitoring data. Accuracy,
computational efficiency, and compatibility with nonlinear system models and non-
Gaussian probability distributions are the key features of the UIS. The UIS is described in
terms of a general system model and is applied to a linear analytical system model, a
nonlinear analytical system model, and a multiphase flow system model of CO; injection

into a saline aquifer.

As mentioned in Section 1.2 of the thesis, there has been only a limited number of works to
date focusing on how monitoring data can be incorporated into the calibration of CS
models (Bhowmik ef al., 2011; Johnson & White, 2012; Espinet & Shoemaker, 2013;
Tavakoli et al., 2013). Due to the limitations of the abovementioned works, (e.g., being

deterministic, being computationally demanding, or using assumptions such as linearity of
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the models or Gaussian structure of the probability distributions), more research is required
to study, adapt and develop computationally efficient methods that are accurate and able to

calibrate nonlinear and numerical CS models.

UIS is a Bayesian calibration algorithm, which incorporates both expert opinion and noisy
time-lapse monitoring data. In UIS, the proposal distribution of the Bayesian Importance
Sampling (IS) method is continuously updated utilizing the latest monitoring data to
improve sample quality and to mitigate the demand for larger sample size. The proposal
distribution is constructed by mixing a computationally efficient version of Kalman Filters
(KF) and a heavy-tailed defensive distribution (Hesterberg, 1995). The defensive
distribution has two roles. The first role is to ensure the robustness of the importance
sampling step and the second role is to allow the algorithm to seek parameter values that
are not assigned a high probability initially but might gain a large likelihood and improve
the sample quality. The mixture ratio between KF output and the defensive distribution is a
tuning parameter of UIS. While a version of the KF is used for constructing the proposal
density, actual probability distribution of the parameters is not required to be Gaussian. As

a result, UIS is more versatile for parameter estimation than most KF-based methods.

In Section 4.2, Bayesian calibration and UIS are described mathematically. In Sections 4.3
and 4.4, the application of UIS is presented in two analytical case studies. In Section 4.5,
UIS is applied on a more sophisticated CS case study and the sensitivity of UIS to tuning
parameters is investigated. Results of the case study in Section 4.5 are discussed in Section

4.6. Finally, conclusions are presented in Section 4.7.

4.2. Methodology

4.2.1. Problem Formulation

As described previously in Chapter 2, let df,., denote the true behaviour of CS system

(e.g., the CO, saturation distribution in a saline aquifer) at time t,, and at locations x; to

Xy, so that di}.,, = [dtru(xl, tn), Ay (X2, 1), ...,dtru(xNx, tn)], where N, is the number
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of measurement locations. Let di,s = [dops(X1,tn), dops(X2, 6, -, dops(Xn,, tn)]
denote measurements of df,,, at time t, and at locations x; to xy_ with a random
measurement noise, £,y and let ,,s(€,ps) denote the probability distribution of &,,. It is
assumed that &,,¢ is not correlated with d., nor time (Rougier, 2009). In addition, let
y"(m) denote the output of a deterministic mathematical model of the system, g(x, t,m),
in a vector form, at time ¢, and at locations x; to Xy, Ile,
y(m) = [g(xy, t,, m), g(xz, ty, m), ..., g(Xn,, tn, m)|, where m = [my, m,, ..., my_] is
the model parameter vector and mw(m) denotes a N,,-dimensional probability distribution

that reflects the epistemic uncertainty in m.

As formerly described in Section 2.4.2, it is assumed that the discrepancy between d.,
and y"(m), which is denoted by &,,,4, is also a vector of random variables that are
independent from m and time given optimal model parameters (Kaipio & Somersalo,

2007). Let 04 (Emoq) denote the probability distribution of &,,,4. Thus,

gbs = yn (m) t Emod T Eobs Emod ~Mmod (emod) gobs"'ﬂobs(eobs) (4-1)

or

d)ps = y"(m) + &40, Etot~Trot (Etot) 4.2)

where €;o¢ = Emoa + €ops 1S the combined model and observation error and reflects the
uncertainty of model and measurement when the optimal m is used (Liu et al., 2004).
Recalling (2.34) and (2.35), the posterior distribution of m given the monitoring data at

time t,, can be obtained by

”(m)”tot (dgbs - yn (m))
Jo, Tm)Teor (Al =y (m)

n(m|d},,) = (4.3)
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and the posterior distribution of m given all monitoring data up to time t,, can be obtained

by3

n%(m) [Ti=1 ot (dlobs - )’l(m))

) = (4.4)
Jo, 7O Ty ot (dhps — ¥ (m))

n(m|dgs3

The objective in this section is to develop a hybrid method to approximate (4.4) by
combining a computationally efficient method and a flexible and accurate method, i.e., KF

and IS, respectively.

4.2.2. Unscented Kalman Filter (Measurement Update Stage)

Recall from Section 2.5.2, Kalman Filter (KF) is applicable only to linear and Gaussian
systems. While KFs are usually used for estimation of states of dynamic systems, the
measurement update stage of a KF can also be used for parameter estimation, as described
in (Wan & Van Der Merwe, 2001). To formulate the measurement stage of the KF for

solving (4.3), assume:

e m(m) is Gaussian, i.e., t(m) = N(u5, C5,).
o 1yt (&:0r) is Gaussian and has a mean of zero, i.e., Tiot (Etor) = N(O, Cgtot)
e The system model 1S linear, 1e.,

y'(m) = [G(xy, t,)m, G(x,, t,)m, ..., G(xy,, t,)m]

Then, the posterior distribution in (4.4) is also Gaussian and the mean (u%) and the

covariance matrix (Cg,) of m(m|d},,) are

uly = ub + K (diys — y™ (m) 45)

Ch =Ch —K(Chn +C,, )K"

Etot

3 Equations (4.3) and (4.4) are obtained based on the assumption that errors are unstructured. This assumption
will be used in the rest of this chapter, since the artificial errors used in the case studies are unstructured.
Equations (4.3) and (4.4) can be modified as described in section 2.4.3 if a structured error exists.
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where y™? (m) is the prior mean of y"(m), calculated as

y"P (m) = [GCxy, t) i, GOz, t) i, .., G (X, tn ) 1| (4.6)

Cin is the prior covariance matrix of y™(m), calculated as

Con = [G(x1, 1), G(%2, 1), ..., G(2y, 1) |C[G (X1, 1), G (x5, ), o, Gy, tn)]T 4.7

and K is the optimal Kalman gain, calculated as

K = Gy (€0 + ) )

where Cy, ,n is the prior covariance matrix between m and y™(m) and is calculated as

Cmyn = CL[GCxy, ), G, ), o, G2y )] (4.9)

A nonlinear CS system can be linearized using a first order Taylor series expansion, as
done in the Extended Kalman Filtering (EKF) formulation. An alternative solution is
linearizing the system model using Unscented Transformation (UT), as described in
Section 2.3.3. Unlike the EKF, which is first order accurate, UKF is at least second order
accurate for non-Gaussian probability distributions and third order accurate for Gaussian
probability distributions (Chen, 2003). Another clear advantage of the UKF over the EKF
is that it can be used with any nonlinear function (system model) and does not require the
calculation of the Jacobian or Hessian of the function (Chen, 2003), which is non-trivial

when the system model is numerical.

Recalling the Unscented Transformation (UT) formulation in Section 2.3.3, let 2N, + 1
weighted Sigma points be deterministically chosen such that their mean is equal to u2, and

their covariance matrix is equal to CZ, as
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-1<9,<1
N.
Xi = ub + T_cb i=12..,N,y,
1-9,
i (4.10)
Xi= Wn— Cm i=Ny,+1,N, +2,..2N,
1-9,

i

1—-19,
191' = m L= 1,2, .,ZNm

where ( Nom C,bn) is the i™ row of the square root of
i

Nom C2., obtained by Cholesky
1—190 1—

Yo

decomposition, IJ; are weights of the Sigma points and J, determines how scattered the
Sigma points are about y,. The Sigma points are then propagated through the system

model,

Y; = [g(xy, tn, x0), 92t XD, 0 G (Xt X1 1=01,..,2Np (4.11)

The mean, covariance matrix, and cross covariance matrix of the Sigma points, y;, and the

propagated Sigma points, Y;, are calculated as

2Ny,

w, = Z ViXi
i=0
2N,

Py = Z 9;Y;
i=0

(4.12)

2Ny,

Cy = Z 9 [Y; — uy]"[Y; — py]

=0

2N,

Coy = Z Oilxi — I"')(]T[Yi — Hy]

=0
where p, is the mean of the weighted Sigma points, py is the mean of the weighted

propagated Sigma points, Cy is the covariance matrix of the weighted propagated Sigma

84



points, and C,y is the cross covariance matrix of the weighted Sigma points and the

weighted propagated Sigma points.

Substituting (4.12) into (4.5) and (4.8), the posterior mean (u%,) and covariance matrix

(C#) of the posterior distribution of m in (4.3) are approximated as

u = o + K(dyys — py)

(4.13)
Cr =Ch —K(Cy +C,, )K"
where the Kalman gain is obtained by
-1
K =Cyy(Cy +C,,,) (4.14)

Equations (4.13) and (4.14) are the measurement update stage of an UKF. For simplicity of
notation, we denote the posterior Gaussian distribution N(u%, C%) obtained from (4.13)

and (4.14) by UT (r(m), d},).

As described in Section 2.5.2, an alternative KF for nonlinear systems is the Monte-Carlo
approach to KF, known as Ensemble Kalman Filter (EnKF) (Evensen, 1994). EnKF has
found application when the number of variables is very large, e.g., in weather forecast
(Houtekamer et al., 2005), reservoir engineering (Naevdal et al., 2005; Aanonsen et al.,
2009) and hydrology (Reichle et al., 2002; Shu et al., 2005). In a recent study, (Tavakoli ef
al., 2013) demonstrated how EnKF and similar ensemble-based algorithms such as
Ensemble Smoothers (ES) (Van Leeuwen & Evensen, 1996) can be applied to CS. Similar
to UKF, EnKF does not require the calculation of the Jacobian of the models. For very
high dimensional state vectors, EnKF is computationally more efficient than UKF (Kim,
2011). However, EnKF can be less accurate than UKF (Ambadan & Tang, 2009; Mesbah
etal.,2011).

4.2.3. Importance Sampling

The KF-based approximations of the mean and covariance matrix of the posterior

distribution in (4.3) and (4.4) can be inadequate for highly nonlinear models and non-

85



Gaussian probability distributions (Leisenring & Moradkhani, 2011). A common solution
to this issue is drawing random samples from the posterior distribution of the parameters
and describing its statistics with the statistics of the samples (Rougier, 2009). Since the
posterior distribution in (4.4) is usually unavailable, indirect sampling approaches such as
IS or Markov Chain Monte Carlo (MCMC) can be used. As described in Section 2.5.5, in
IS we draw weighted samples from a proposal distribution which is close to the posterior
and is easy to sample from. The proposal distribution encourages samples from areas of
more importance and the weighting ensures that the importance sampling estimator is

unbiased.

Recalling from Section 2.5.5, the general formulation for IS for sampling from 7™ (m) can

be written as

Ny
" (m) = Z W;6(m — m,;) ;~q(m) (4.15)
i=1

where q(m) is the proposal distribution, 7; are the samples, and W; are normalized

weights which are calculated as

70 () [T eor (dbps — ¥ ()

W, = — q(m,) l — i=1..N, (4.16)
we T Ty eor (dbys — (M)
Zizy 2@

As described earlier in Section 2.5.5, the posterior distribution is the optimal proposal
distribution in IS (Chen, 2003). However, the posterior distribution is normally unavailable
in IS. Thus, we aim to approximate the posterior distribution using a computationally

efficient method and use it as the proposal distribution of IS.

4.2.4. Unscented transformation Importance Sampling

The proper choice of the proposal distribution is the key to an efficient importance
sampler. If the proposal distribution is not close to the true posterior, most samples will be

drawn from unimportant areas, which results in decreased accuracy and computational
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efficiency. The significance of a proper choice of the proposal distribution is illustrated in
Figure 4-1 and Figure 4-2. Figure 4-1 illustrates sampling from a proposal distribution
which is close to the actual sampling distribution and Figure 4-2 shows a poor choice for a
proposal distribution. It can be seen that samples in Figure 4-1 are better distributed and
the weights are closer in magnitude compared to those illustrated in Figure 4-2. In Figure
4-2C, however, all samples are located on the left side of the mean of the actual sampling
distribution, making the approximation of the mean using samples biased. Consequently,
more samples are required in the case illustrated in Figure 4-2 compared to that shown in
Figure 4-1 in order to ensure that samples are well distributed throughout the important
areas of the actual sampling distribution. The optimal choice of the proposal distribution
for sampling from 7" (m) is g(m) = 7" (m) (Smith et al., 1997) which is not practical
because if 7" (m) is computable then there is no need for IS (Owen & Zhou, 2000; Van
Der Merwe et al., 2000). Our effort is therefore focused on finding a proposal distribution

close to ™ (m), to enhance the accuracy and computational efficiency of the sampler.

An intuitive and common choice of the proposal distribution is the prior distribution itself
(Van Der Merwe et al., 2000), which reduces (4.16) to the likelihood function. This
“sample from the prior, weight by the likelihood” (Rougier, 2009) approach, however,

does not contain the latest information from the measurements.

A r B r C r Y
—— O ——0—000O—0—0 > O—000 H{ —O—>

Figure 4-1: Importance Sampling using a proposal distribution (solid curve) close to the actual sampling
distribution (dashed curve). Samples in (B) are drawn from the proposal distribution and are weighted
accordingly in (C). Size of the samples indicates sample weights. From: (Sarkarfarshi & Gracie, 2015).
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Figure 4-2: Importance Sampling using a poor proposal distribution (solid curve) which is not close to the
actual sampling distribution (dashed curve). Samples in (B) are drawn from the proposal distribution and are
weighted accordingly in (C). Size of the samples indicates sample weights. Since the sample is clearly biased,
more samples are required which negatively affects the computational efficiency of the sampler. From:
(Sarkarfarshi & Gracie, 2015).

Revising the proposal distribution periodically using the information from measurements
can improve the quality of the samples. For instance, 7™~ 1(m) can be used as the proposal
distribution at time t,, since it is likely to be closer to ™ (m) than the initial proposal.
However, 7"~ 1(m) does not contain the latest measurement information, i.c., dhps.
Another solution is iteratively improving the proposal distribution as in Adaptive
Importance Sampling (AIS) and Population Monte-Carlo (PMC) methods (Lepage, 1980;
Cappé et al., 2004; Pennanen & Koivu, 2006; Douc et al., 2007; Cappé et al., 2008), as
described earlier in Section 2.5.5. However, the iterative nature of these algorithms

requires repeating the IS several times that makes them computationally more demanding

than the original IS and consequently, they are less favorable for CS applications.

Alternatively, an approximation of ™ (m) which is obtained from a computationally faster
solution can be used as the proposal distribution. We propose using the measurement
update stage of the UKF for this purpose and call this approach Unscented transformation
Importance Sampling (UIS). As shown in the flowchart in Figure 4-3, each update cycle in

UIS includes two major steps:

A. UKF step: the posterior distribution of the IS step from the previous cycle,
n™ 1(m), is utilized as the prior of the UKF measurement update at time t,,. For
the initial cycle, the initial prior, 7%(m), is used instead. Next, the Gaussian
approximation of the posterior, UT (7" 1(m),d",,), is obtained using the

measurement update stage of the UKF, as described by (4.13) and (4.14). Thus, the
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UKF step uses dj, to update the prior in which previous monitoring data are
accounted for.

B. IS step: UT (™ 1(m), d%,,) from the UKF step is used as the proposal distribution
for the Bayesian IS as described by (4.4). In this step, the initial prior is used as the
prior in Bayes’ theorem and all monitoring data (d},, to d,) are accounted for in

the weights of the samples.

When new monitoring data becomes available, the algorithm will be repeated. The
stopping criteria are flexible and application-specific. For instance, criteria such as

reaching a certain number of cycles or reaching certain parameter variances can be used.

Start (n = 1)

n=n+1 F---=------> Obtain monitoring data d; at time ¢,

v

1. UKF STEP

n>1
No

Use 7™~ 1(m) as prior of UKF Use n°(m) as prior of UKF

v

Obtain UT ("1 (m), d%,,), i.c., the
Gaussian approximation of posterior

v

2. IMPORTANCE SAMPLING STEP

Use UT (n""~1(m), d?,,,) as the proposal
distribution in IS algorithm

Figure 4-3: Flowchart of Unscented transformation Importance Sampling (UIS). Modified from:
(Sarkarfarshi & Gracie, 2015).
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By substituting proper equations into each block of Figure 4-3, the complete algorithm of

UIS is obtained and is summarized in Algorithm 4-1.

Algorithm 4-1: Algorithm of the UIS. Modified from: (Sarkarfarshi & Gracie, 2015).

1. Setn =n+ 1 where n is monitoring time step (start with n = 1)
2. Obtain monitoring data dZ..
3. UKF step
3.1.  Set the prior of UKF step m}i(m) = N(u% %, C4 1) where pulit = Z?’;l wiimit
and Ct = Z?’;l Wit (mt — pp) (Mt — MZ)Twhen n>1. w% ! and CY 1 are
mean and covariance matrix of 7°(m) when n = 1.

3.2.  Select Sigma points and their weights as follows:

1=,
~ 2N,

Xo = uiyt —1<9,<1 0 i=12,..2Np,

Nin
1_190

cvl] +(i=1,,..,Ny) —(i=Np+1,..,2Np)
i

3.3. Propagate Sigma points through nonlinear system model and obtain
Y; = [gCey, t X0), 9o, tn, X0, s (it X0) ] £ = 0,1, 10 2Ny,

3.4.  Calculate statistics of Sigma points and propagated Sigma points as follows.

2N, 2N,
ny, = Z Vi Xi uy = Z 9;Y;

=0 i=0

2Ny, 2Ny,

Cr= Y ol —m V=] Cov= ) 0ilxi =m0 =]
i i=0

i=0
3.5. Calculate mean and covariance matrix of the Gaussian posterior of UKF step as
wy=xo+ K@l — py) and CL=CL'—K(Cy+C,, )KT where K=
Cyx(Cy +Copp)”
3.6.  SetUT(rP(m),dY,) = N(ulk, CL)
4. IS step
4.1.  Set the proposal distribution g™ (m) = UT (z} (m), d7,s)
42.  Sample [}, M3, ...,r’hﬁs] from g™ (m)
4.3.  Simulate the model for each sample from time zero to t,,.
4.4.  Calculate un-normalized importance weights by
wit = O /g™ (@) [T e, (dbs — Y™ (R )
4.5.  Normalize weights to obtain [Wln, w3, ..., W,GS ]

5. Approximate 7™ (m) with Z?’:SI Ws(m — m7)

Repeat steps 1 to 4 for each calibration cycle until stopping criteria are met.
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This algorithm is inspired by the Unscented Particle Filtering (UPF) (Julier & Uhlmann,
1996) and ensures that the proposal distribution improves with time and contains
information from all the monitoring data up to t,. The final posterior distribution in the
UIS is generated in the IS step. Thus, unlike the KF family, no assumption of the model
structure or distribution types is necessary. Moreover, the sampling based approach in both
steps (UKF and IS) lets different numerical models to be incorporated in a straightforward
way. The abovementioned characteristics make the UIS flexible for parameter calibration

in various applications such as CS.

In the case that the true posterior is multimodal, the presented version of UIS is still
applicable. However, the performance of the algorithm diminishes because the Gaussian
proposal cannot accurately represent multi-modal distributions. For such cases, the
Gaussian approximation of the posterior in the UKF step can be replaced by a Gaussian

mixture model.

4.2.5. Defensive Importance Sampling in UIS

As described in Section 2.5.5, the proposal distribution in IS needs to have a heavier tail
than the actual sampling distribution for the solution to be robust (Owen & Zhou, 2000).
To ensure the tails of the proposal distribution g(m) are heavier than the sampling
distribution, we can mix g(m) with a heavy-tailed distribution §(m), such as a uniform
distribution, in a process called “defensive mixture sampling” (Hesterberg, 1995) or

“defensive importance sampling” (Owen & Zhou, 2000),

q*(m) = (1 —n)q(m) + ng(m) (4.17)

where 7 is the defensive mixture ratio and 0 < 7 < 1. Moreover, the defensive mixture
distribution searches the areas of the parameter space with very small probability density
for potentially better parameter sets. A defensive mixture distribution can be added to UIS

by modifying the sub-step 4.1 of Algorithm 4-1 as

q"(m) = (1 —mUT (my; (m), dgps) +1g(m) (4.18)
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where 7 1s the mixture ratio and is one of the tuning parameters. A very small n does not
affect the sample population and a very large 7 is likely to waste numerous model runs by
encouraging samples with negligible posterior weight. In the literature, 0.1 <7 < 0.5 is

recommended (Hesterberg, 1995; Owen & Zhou, 2000).

4.3. Analytical Case Study I

Before moving to CS case study, a simplified linear problem with a known solution is

presented to demonstrate the application and accuracy of UIS.

4.3.1. Case Description

Assume a simple deterministic, linear, and scalar system described by d;,, (x,t) = 8x +
10t where x is a location varying between 1 and 20 and t is time. d,-, (X, t) is modelled by
a scalar function denoted by g(x, t,[m;, m,]) = m;x + m,t and m; and m, are uncertain,
time-independent and location-independent model parameters. All parameters are

dimensionless.

In three time steps, t; =1, t, = 2 and t3 = 3, d;,(x,t) is measured at two locations,

x = 7 and x = 10, as shown in Figure 4-4. Thus, there are a total of 6 measurements, two

at each time step. These measurements are denoted by d,;,.(7,t,) and d,,.(10,t,) where
n = 1,2,3. Model discrepancy is assumed zero and measurements are assumed to be

subject to an IID Gaussian noise, i.e., dp, = y"([my, m,]) + €, where d}, =

[dobs(7; tn)’ dobs(loi tn)]a yn([ml: mz]) = [9(7» tn' [mlt mz])' 9(10' tn: [mlf mz])],

Eobs~Topbs (Eops) and T,ps(€,ps) is a bivariate Normal distribution with a mean of [0,0]

and a covariance matrix with diagonal elements of V10 and off-diagonal elements of zero.
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Figure 4-4: Schematic of the system behaviour and noisy measurements at an arbitrary time ¢.

Values of m; and m, are assumed uncertain with a joint Gaussian prior distribution
denoted by m°([m,,m,]) with a mean of y([)ml,mz] = [12,12] and a covariance matrix
Cfml,mz] with diagonal elements of 1 and off-diagonal elements of zero. This prior is

equivalent to using independent marginal Gaussian priors with a mean of 12 and a standard

deviation of 1 for m; and m,.

At each of the three time steps, new monitoring data is obtained and the posterior
distribution of m; and m, can be obtained. In other words, our objective is to find the
posterior distribution of m; and m, at each time step, denoted by 7™ ([m,,m,]), where

n = 1,2,3. We call this process a calibration cycle for each of the time steps.

In each time step, Bayes’ formula in equation (4.4) can be re-written as

70 ([my, ma]) Tt [x=7,10 ey s (dobs(x: t) — g(x, t, [my, mz])) (4.19)
c

" ([my, m,]) =
where c is the normalizing constant.

An alternative way to look at this problem is to assume that the monitoring data at each
point in time and space is a realization of a Gaussian random variable with a mean of
g(x,t,[my, m;]) and standard deviation of 10 and m, and m, are uncertain parameters of
the mean of this Gaussian distribution. Thus, according to Bayes’ theorem, we can obtain

the joint posterior distribution of m; and m, given the noisy monitoring data.
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Since m°([my, m;]) and m,,s(€,p,s) are both Gaussian and g(x,t,[m,,m,]) is a linear
function of m; and m,, the posterior distribution of m; and m, in equation (4.19) is a
bivariate Gaussian distribution and can be evaluated exactly. This exact solution is

equivalent to the measurement update stage of the Kalman Filter and can be obtained by

" ([my,m;]) =
0 n (4.20)
m°([my, my]) [1721 [e=7,10 N(dobs(x: t) — g(x, t;, [my, my)), 0'10)

Cc

By expanding and simplifying equation (4.20), it can be shown that ™ ([m,, m,]) is

Gaussian with a covariance matrix of

x2 xt]1
iy Taes [ ]
) = | (€)™ + 21 @20
[my,m;] l [my,m;] 102 }

and a mean of

_ 0 -1 0 4.22
ﬂ?ml,mz] - Cﬁnl,mz](c[ml,mz]) M[mpmz] ( )

The probability distribution of the system model forecast at a specific time t,+ > t,, might
be of interest. Since g(x,t,[m,,m,]) is a linear function of m; and m,, the posterior

distribution of model forecast is also Gaussian with a mean of

u;’/l,n = [X tn*]”flml,mz] (423)

and a covariance matrix of
nn’ _ . x 4.24
C" =[xt lChm,) [tn*] (429

Now, we want to demonstrate how UIS performs in comparison with this exact solution
(which is equivalent to measurement update stage of UKF in this case study) and ordinary
IS with °([m,,m,]) as a static proposal distribution. Thus, we solved this problem three
times using the measurement update stage of UKF, ordinary IS with 100 samples, and UIS

with 100 samples and no defensive mixture distribution.
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4.3.2. Results and Discussion

Figure 4-5 illustrates the joint prior and the joint posterior distributions of m; and m, for
each calibration cycle in each of these three solutions. Since the posterior distributions
obtained by the measurement update stage of UKF are exact in this problem, we use them
as a reference. It can be seen in Figure 4-5 that in UIS, posterior samples resemble the true
posterior distribution very closely while IS samples are unable to do so. It can also be seen
that the location of the prior samples drawn from the proposal distribution in UIS
(regardless of the weights) are close to the true posterior distribution, while this is not the

case in IS.

To compare the accuracy of IS and UIS against the exact solution, the Root Mean Square
Error (RMSE) of the expected value of the posterior predictive distribution of
g(x, t,, [my,my]) at n =3, i.e., the forecast of g(x,t,, [m;,m;]) at time t, =3, is

calculated at the end of each calibration cycle, as

2
RMSEN — J il der (6 3) — g™ (4.25)
20

where ,uZ’s is obtained from equation (4.23).

As shown in Figure 4-6, the RMSE of measurement update stage of UKF (exact solution)
and UIS are very close and notably smaller than IS. Thus, we conclude that UIS results

were very close to exact solution and notably more accurate than ordinary IS.
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Figure 4-5: Prior and posterior distributions of the presented linear problem using measurement update stage of UKF, IS and UIS.
Horizontal and vertical axis indicate m, and m,, respectively. The black Xs indicates the location of true parameter values. In IS and

UIS, the size of the markers indicates the magnitudes of the importance weight. Weights of the samples in prior distributions of IS
and UIS include 1/q™(m}) term.
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Figure 4-6: The RMSE of model output at the end of each calibration cycle for the presented linear problem.
From: (Sarkarfarshi & Gracie, 2015).

To further investigate the performance of UIS and IS, we plotted the importance weights of
the samples at the last calibration cycle for UIS and IS in Figure 4-7. It can be seen in
Figure 4-7a that the weights are very close together in UIS. In other words, the variance of
the weights is very small. The reason for this almost even weight distribution is that the
proposal distribution in UIS were close to the true posterior distribution and thus, un-
normalized importance weights for all samples are close to one. In ordinary IS, however,
one of the samples is carrying more than 95% of the importance weights as shown in
Figure 4-7b due to a poor proposal distribution. In practice, 97 out of 100 samples in IS
had a near zero weight and thus, only three out of 100 samples were effective in the
calculations. To avoid this problem in ordinary IS, the number of samples should be
increased significantly the generate more effective samples. Thus, for the ordinary IS to
obtain the same accuracy as UIS, a significantly larger sample size is required (about 33

times more in this problem).

According to the discussion above, the effective samples size in IS and UIS can be

quantified by a dimensionless number, defined as
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1

ZNS w7 (4.26)

Negr =

N,y 1s in fact a measure for sample quality of a particle filter (Arulampalam ez al., 2002).
When all importance weights are equal, N5 is equal to Ng meaning that the samples are
drawn from the true posterior. When most samples are drawn from non-important areas of
the posterior (e.g., in ordinary IS in this problem), most W; become very close to zero
while a few W; carry most of the weight. In such cases, N,rr becomes closer to one

indicating that only a few samples are effective and sample quality is poor. In the extreme
case that one sample carries all the weight (i.e., one W; equals to one and all other W; equal
zero), Nggyr is equal to one. This situation is known as filter degeneracy in particle filters

(Arulampalam et al., 2002) and should be avoided. The adaptive nature of UIS is expected

to increase Ngsr since the proposal distribution is adaptively adjusted to more closely

resemble the true posterior.

We define the effective sample ratio, denoted by R,ff, as the N,rr normalized by the total
number of samples, i.€., Ropr = Ngss/Ns. Figure 4-8 plots R.ry for IS and UIS in
calibration cycle 3. It can be seen that R,z is close to one for UIS, meaning that all
samples were effective in approximation of the posterior distribution, while R, is close to

zero for IS, meaning that very few samples were effective in approximation of the posterior

distribution.
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Figure 4-7: Importance weights in calibration cycle 3 for the described linear problem for (a) UIS and (b) IS.
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Figure 4-8: The effective sample ratio (R.ff) for IS and UIS in calibration cycle 3 for the described linear
problem.

4.4. Analytical Case Study II

Now, we present another analytical case study with a significantly nonlinear analytical
function as the system model. This case study enables us to investigate the performance of
UIS in nonlinear situations for various numbers of uncertain parameters with a reasonable

computational effort.

4.4.1. Case Description

Assume a deterministic system described by

Npp—1

Ay (x, 8) = Z a? cos(a;;1)? sin(x) + a?,, cos(a;)? sin(t) (4.27)
i=1

where N, is the total number of a;, x is a dimensionless location varying between 1 and

20, t is dimensionless time and
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8 i=135,..
o 3,9, 428
i {10 i =246, .. (4.28)

diry (x,t) is modelled by a scalar function denoted by g(x,t, m) with a similar structure

as

Np—1

glx, t,m) = Z m? cos(m;1)? sin(x) + m?,; cos(m;)? sin(t) (4.29)
i=1

where m; are the uncertain model parameters and m = [ml, my, .., mNm] is the uncertain
parameter vector. In four time steps, n = 1, 2, 3,4, dy,(x, t) is measured at two locations,
x =7 and x = 13. These measurements are denoted by d,,(7,t,) and d,,.(13,t,) for
time step n. Model discrepancy is assumed zero and measurements are assumed to be
subject to an IID Gaussian noise denoted by &5, i.c., dp,s = y*(m) + &,,; where
dioys = [dops(7, 1), dops (13, t) ], y™(m) = [g (7, tp, m), g (10, ty, M)], £0ps~Tops(E0ps)
and 7,ps(€,ps) 1S a bivariate Normal distribution with a mean of [0,0] and a covariance
matrix with diagonal elements of 10 and off-diagonal elements of zero. The prior
distribution of m is assumed to be Gaussian denoted by 7°(m) with a mean of [12, ...,12]

and a covariance matrix with diagonal elements of 1 and off-diagonal elements of zero.

At each of the four time steps, new monitoring data is obtained. Our objective is to find the
posterior distribution of m at each time step, denoted by ™ (m) by using Algorithm 1 and

forn =1,2,3,4.

4.4.2. Calibration Scenarios and Comparison Metrics

We solved this problem using the measurement update stage of UKF, ordinary IS with 200
samples and UIS with 200 samples and no defensive mixture distribution. Three sizes of
the uncertain parameter vector are considered N,, = 10, N,,, = 20 and N,,, = 50. Table 4-1

summarizes all calibration scenarios considered in this case study.
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Table 4-1: Calibration scenarios in the simplified case study. Modified from: (Sarkarfarshi & Gracie, 2015).

. Number of . .
Scenario Sample count Simulations per
Method parameters
Name (Ny) cycle
(Nim)
UKF10 UKF 10 - 21
IS10 IS 10 200 200
UIS10 UIS 10 200 221
UKF20 UKF 20 - 41
1S20 IS 20 200 200
UIS20 UIS 20 200 241
UKF50 UKF 50 - 101
1S50 IS 50 200 200
UIS50 UIS 50 200 301

To compare the accuracy of the methods, the Root Mean Square Error (RMSE) of the
model output at time n = 4 is calculated at the end of each calibration cycle, using the

expected value (mean) of the posterior distribution of g(x, t,, m) by

20 n,472
RMSE™ = J x=1[dtru(§64)—#g ] (4.30)

where ,ug'4 is the mean of the posterior distribution of g(x,t, m), obtained using Monte

Carlo simulation, when ™ (m) is used as the distribution of model parameters.

4.4.3. Results and Discussion

Figure 4-9 plots the RMSE of all scenarios listed in Table 4-1. It can be seen that the
RMSE of UIS is considerably smaller than the RMSE of the UKF measurement stage and
IS in all scenarios. In scenarios with 10 and 20 parameters, IS was more accurate than UKF
but worse than UIS in terms of accuracy. In the scenarios with 50 parameters, IS performed

worse than both UIS and UKF.
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From Table 4-1, it can be seen that the measurement update stage of UKF used the smallest
number of model simulation. However, the UIS was always more accurate than the UKF.
For instance in the case of 20 uncertain parameters, it can be seen from Figure 4-9(b) that
the error measured by the RMSE of UIS20 was more than 10 times smaller than the error
obtained in UKF20. The reason why UIS is more accurate than either IS or UKF is that
UIS samples from a proposal distribution that is closer to the posterior, without assuming
linearity of the model and Gaussian distributions. Thus, UIS is able to capture the true
posterior more accurately than the measurement update stage of UKF and IS without a

dramatic increase in the number of simulations.

It can also be seen from Table 4-1 that UIS used more simulations (10.5%, 20.5% and
50.5% in the scenarios with 10, 20 and 50 parameters, respectively) than ordinary IS, but is
notably more accurate in all scenarios. It can also be seen that the relative accuracy of UIS
over the ordinary IS method increases with the number of parameters. For instance, the
RMSE of UIS10 was less than two times smaller than the RMSE of IS10, while the RMSE
of UIS50 was more than 30 times smaller than the RMSE of IS50. The reason for this
increasing relative accuracy is that UIS adaptively revised the proposal distribution while
ordinary IS sampled from the initial prior in all cycles. Thus, when the number of uncertain
parameters increased, IS was unable to estimate the larger-dimensional posterior
distributions with 200 samples while UIS sampled from important areas of the posterior

distributions and yielded a much smaller RMSE with the same number of samples.

For a more in-depth comparison of UIS with UKF and IS, including an investigation of
effect of tuning parameters on the performance of UIS, a more sophisticated CS case study

is presented in the next section.
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Figure 4-9: The RMSE of model output at the end of each calibration cycle for the scenarios with (a) 10, (b)
20 and (c) 50 parameters. The RMSE of UIS was well below RMSE of both UKF measurement stage and IS
in all cycles of all scenarios. From: (Sarkarfarshi & Gracie, 2015).
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4.5. CS Case Study

A synthetic case study of CO; injection in a deep saline aquifer is generated and used for
two purposes; first, comparing the effectiveness of UIS with the measurement update of
UKF and IS with a static proposal; and second, studying the effect of the number of
samples (N;) and the defensive mixture ratio (1) on the performance of UIS. Nine

calibration scenarios are designed for this task.

4.5.1. Case Description

A horizontal and rigid saline aquifer is assumed, initially saturated with brine. The aquifer
is 20 m thick and its base is located at a depth of 2 km. The aquifer domain is assumed to
be 1020 m x 1020 m. Four facies are assumed within the aquifer, distributed as shown in
Figure 4-10. Each facies is assumed homogeneous with a constant porosity and
permeability. The porosities of the facies are assumed to be ¢, = 0.18, ¢, = 0.13,
¢3 = 0.15 and ¢, = 0.21, respectively. For all four facies, the porosity-permeability
correlation is assumed to be logqo(k;) = 7 + 7log,o(¢p;) where k; is the intrinsic
permeability of facies i in mD and ¢; is the porosity of facies i as a bulk volume fraction

(SPE International, 2013).

Initial salinity of the brine is assumed to be 50,000 ppm. The CO, injection rate (Q) is
assumed to be 0.035 Mt/year and the injection is assumed to take place continuously for 5
years through a vertical well located at the center of the domain and penetrating the whole

thickness of the aquifer.

All parameters are assumed to be known except the porosity and the permeability of the
four facies. The porosities are considered to be the uncertain parameters and the
permeability of each facies is obtained using the porosity-permeability correlation given
above. The prior distribution of the uncertain parameter vector (m = [¢q, P2, P3, P4]) is
assumed to be a multivariate Gaussian distribution with a mean of [0.15,0.15,0.15, 0.15],
diagonal covariance matrix elements of 0.022 and off-diagonal covariance matrix elements

of zero.
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Figure 4-10: True porosity distribution in the reservoir. From: (Sarkarfarshi & Gracie, 2015).

Model error is assumed zero since the same model is used for calibration and generating
the monitoring data. Pressure and saturation at the end of each year are measured at the
injection well and two other monitoring wells, located 110 m away from the injection well
in X and Y directions, respectively. Figure 4-11 illustrates a schematic of the aquifer
dimensions, the injection well and the monitoring wells. The saturation measurement error
is assumed to be Gaussian with a mean of zero and a standard deviation of 0.02. The
pressure measurement error is also assumed to be Gaussian with a mean of zero and a

standard deviation of 500 kPa.

Monitoring wells Injection well

1020 m

¢
i

20m ’,

1020 m

Figure 4-11: Schematic of the aquifer dimensions, injection well and monitoring wells. From: (Sarkarfarshi
& Gracie, 2015).
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4.5.2. System Model

The system model is governed by the mass conservation equations for the multiphase and

multicomponent flow in a porous medium of porosity ¢, which are given by

0% atXﬁpl ) * ZNpl V- (Xppiai) = @ (4.31)

where Ny, is the number of phases, X, ;; is the mass fraction of component £ in phase i, p;

is the density of phase i, S; is the saturation of phase i and Q; is the source/sink mass flux

of phase i. The volume flux of phase i, q;, is given by Darcy’s law,

k..
= (Vp; — pig) (4.32)

i

q; =

where i is the phase index, k is the intrinsic permeability, g is the gravity acceleration and

k,; is the relative permeability of phase i. p; is the pressure of phase i and is obtained by

Di = Pref — Pc (4.33)
where pror is the reference pressure and p. is the capillary pressure. The relative

permeability and the capillary pressure of each phase are assumed functions of saturation.

Schlumberger’s ECLIPSE reservoir simulator is used to solve the above flow equations to
obtain the pressure and the saturation of each phase (CO, and water) and the molar fraction
of each component (salt). The GASWAT keyword in ECLIPSE allows simulating
multiphase equilibrium of gas and aqueous phases using a modified Peng-Robinson
equation of state (Soreide & Whitson, 1992; Schlumberger, 2013). No flow boundary
conditions are specified on the top and the bottom of the reservoir, open boundary
conditions are specified on the reservoir boundaries and an adaptive implicit solution
procedure is used (Tavakoli ef al., 2013). A more detailed description of the flow equations
and the solution options in ECLIPSE is beyond the scope of this chapter and can be found
in the ECLIPSE technical manual (Schlumberger, 2013).
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4.5.3. Calibration Scenarios and Comparison Metrics

Nine calibration scenarios are described in Table 4-2. All scenarios use UIS as the
calibration method, except scenario 1, which uses the measurement update step of UKF
and scenario 2, which uses IS with 7°(m) as the proposal. The 5" scenario is chosen as the
base case for UIS where 200 samples and no defensive mixture distribution are used.
Scenarios 3, 4 and 6 are similar to the base case, except for the number of samples.
Scenarios 7, 8 and 9 have different defensive mixture ratios compared to the base case and
use a uniform mixture distribution bounded between 0.01 and 0.5 for the porosities of all

facies. For all scenarios, 9, in the UKF step is assumed to be zero.

Table 4-2: Calibration scenarios. From: (Sarkarfarshi & Gracie, 2015).

Scenario # Sample count Defensive mixture Model simulations
and name Method (Ny) ratio (1) per cycle
1: UKF UKF - - 9
2:1S IS 200 0 200
3: N50 UIS 50 0 59
4: N100 UIS 100 0 109
5: BASE UIS 200 0 209
6: N500 UIS 500 0 509
7:10.1 UIS 200 0.1 209
8:10.25 UIS 200 0.25 209
9:10.5 UIS 200 0.5 209

Scenarios above are constructed so that three sets of comparisons can be conducted:

1. Comparing measurement stage of UKF, IS (with the prior as proposal) and UIS
(scenarios 1,2 and 3)
2. Comparing the effect of the number of samples in UIS (scenarios 3, 4, 5 and 6)

3. Comparing the effect of the defensive mixture ratios (scenarios 5, 7 and 8)

Three metrics are chosen for these comparisons:
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A. The first metric is the normalized Root Mean Square Error (RMSE) of the
saturation and the pressure fields after 5 years of injection, evaluated after each
calibration cycle, similar to equation (4.30) in the previous case study. The error
expectation of each field is first obtained and is normalized by the variance of
monitoring error corresponding to that field and the sum of the normalized RMSE
of both fields in time and space is used as the comparison metric.

The second metric is the effective sample ratio (Resr).
The third metric is the expectation of the absolute error and standard deviation of
the error for both the saturation and pressure fields. These fields are plotted in

Section 4.6 and discussed qualitatively.

4.5.4. Results

The synthetic “True” system behaviour is generated using true system characteristics and is
perturbed by the monitoring noise, as described in Section 4.5.1. Figure 4-12 is a snapshot
of the true saturation and pressure distribution of CO, within the reservoir after 2 and 5
years of injection. Black “X”s in the saturation plots indicate monitoring locations. The
CO; plume reached the monitoring wells by the second year of injection. Thus, the first
calibration cycle is mostly based on the pressure measurements because the pressure plume

spreads considerably faster than the saturation plume.

Calibration is conducted for all scenarios listed in Table 4-2. After each calibration and
cycle for each scenario, the model is stochastically simulated (i.e., Monte Carlo simulation)
up to year 5 using the weighted samples from the posterior distribution of that cycle. The
expectation and standard deviation of the error between the true and the forecasted
saturation and pressure fields are then generated for each scenario. In all scenarios, the
saturation error expectation and the saturation uncertainty (standard deviation) were more
significant near the plume boundaries. The pressure error expectation and uncertainty were

more complex and did not follow such a standard pattern.
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Figure 4-12: Snapshots of true (a) effective saturation and (b) pressure distribution (Pa) of the reservoir after
2 and 5 years of injection. Black “X”s on saturation plots indicate monitoring locations. From: (Sarkarfarshi

& Gracie, 2015).

The RMSE of all scenarios and R.ss for scenarios 2 to 9 were calculated after each cycle

and are listed in Table 4-3. This table will be used as the reference for further comparisons

in Section 4.6. The overall trend of the table suggests that UIS performed better than both

UKF and IS, increasing the number of samples increased the performance of UIS and a

moderate defensive mixture ratio increased the performance of UIS at the cost of a slight

decrease in Reyy.
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Table 4-3: RMSE and ratio of effective samples for all scenarios. From: (Sarkarfarshi & Gracie, 2015).

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Scenario

RMSE R, RMSE Rg s RMSE R,y RMSE R f RMSE Ry
1: UKF 77.12 - 42.49 - 37.86 - 37.57 - 31.12 -
2:1S 78.48 0.04 73.68 0.005 5030 0.005 57.18 0.005 27.14 0.005
3:N50 77.74  0.03  65.27 0.09 46.68 0.13 40.84 0.042 3281 0.05
4:N100  76.59 0.50 37.16 025 3511 025 2844 0.13 2394 0.18
5:BASE  80.72 030 38.55 0.09 3021 0.17 29.60 065 2205 0.34
6:N500 7542 026 34091 0.15 20.64 034 2845 0.79 2188 044
7:1n0.1 83.61 0.19 33.89 0.17 20.88 050 2000 057 2371 0.27
8:n0.25 7550 028 2283 0.061 3142 0.16 29.01 046 21.17 0.29
9:10.5 78.05 021 39.62 0.13 2974 0.13 28.05 0.16 2204 0.15

4.6. Discussion

Now we compare the calibration scenarios to assess the performance of UIS against UKF
measurement update step and IS, and also investigate the effect of the tuning parameters
(the number of samples and the defensive mixture ratio) on the performance of UIS. We

also discuss the computational cost of these algorithms.

4.6.1. Comparing Calibration Algorithms

The RMSE for UKF, IS and the base case of UIS (scenarios 1, 2 and 5) and the effective
ratio of the samples for IS and the base case of UIS are extracted from Table 4-3 and
plotted in Figure 4-13. It can be seen that UIS had a smaller RMSE compared to both UKF
and IS. With the exception of the last year, UKF measurement update stage performed
better than IS. This is because the static proposal distribution in IS was much wider than
the real posterior. Thus, most samples were drawn from non-important areas of the
posterior distribution, resulting in a large ratio of samples having weights of zero or close

to zero. Thus, the posterior distribution was represented by only a few samples. This
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shortcoming is apparent in Table 4-3 and Figure 4-13b. It can be seen that after the second
year, the number of effective samples for IS was very close to one. The number of samples
should be increased to increase Ngsr for this case, which will also increase the
computational burden. UIS on the other hand used the same number of samples but
adaptively adjusted the proposal with the Gaussian approximation of the real posterior.

This approach resulted in significantly larger R, compared to IS, which is more

desirable.

Figure 4-14 shows the absolute error expectation and the error standard deviation for the
saturation and pressure fields at the end of year five and after five calibration cycles for
UKEF, IS and UIS. In the IS scenario, the uncertainty in both fields were almost zero and
the error expectation for both fields were noticeably higher than UKF and UIS, because of
having one sample carrying most of the importance weight. The uncertainty in both fields
were higher in UKF than in UIS. It is worth noting that while sampling-based solutions
tend to underestimate the uncertainty, UKF results do not necessarily represent the true

uncertainty either, because of the model linearization and the Gaussian assumptions.

The accuracy of UKF is expected to deteriorate more compared to that of UIS when the
distributions become non-Gaussian. The performance of UIS in the case of non-Gaussian
densities will not be affected as much as UKF, since no assumptions is made on the type of

the distributions and UKF stage of UIS generates the proposal not the posterior.
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Figure 4-13: (a) RMSE and (b) R, for scenarios 1 (UKF), 2 (IS with the prior used as proposal) and 5 (Base
case for UIS). Data point connections and the small offset between the data points of the same cycle are for
clarity. UIS demonstrate smaller RMSE compared to UKF and IS and has significantly larger ratio of
effective samples compared to IS. From: (Sarkarfarshi & Gracie, 2015).
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Figure 4-14: Absolute error expectation and standard deviation of saturation (S) and pressure (P) fields at the
end of year 5 and after 5 calibration cycles for UKF, IS and BASE (UIS) scenarios. From: (Sarkarfarshi &
Gracie, 2015).

4.6.2. Effect of the Number of Samples on UIS

Figure 4-15 illustrates the RMSE and R,f; for UIS with 50, 100, 200 and 500 samples
(scenarios 3, 4, 5 and 6), extracted from Table 4-3. The general trend of the RMSE in
Figure 4-15a shows that increasing the number of samples increases the accuracy of UIS,
which was not unexpected in a Monte-Carlo based method. However, the difference
between scenarios deteriorates when the number of samples increases, e.g., the difference
between RMSE of N50 and N100 scenarios is more significant compared to the difference
between RMSE of N100, N200 and N500 scenarios. Taking into account both accuracy
and computational efficiency, N100 scenario maintained the best balance among rest of the

scenarios.

According to Figure 4-15b, the effective sample ratio increased with the number of
samples. This is because the weights are more evenly distributed among the samples when
more samples are drawn from the posterior distribution. As a result, the variance of the

weights decreased and R, s increased with Ny.
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Figure 4-16 shows the absolute error expectation and the error standard deviation of both
fields at the end of year five and after five calibration cycles for UIS with 50 to 500
samples. The uncertainty of both the pressure and the saturation fields are noticeably
underestimated and the error expectations are noticeably higher in the N50 scenario
compared to other scenarios, due to a very small sample size. Scenarios with more samples
are expected to more accurately represent the true uncertainty in the pressure and saturation
fields. Moreover, it can be seen that the error expectation is generally decreasing in both

fields with increasing the sample size.
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Figure 4-16: Absolute error expectation and standard deviation of saturation (S) and pressure (P) fields at the
end of year 5 and after 5 calibration cycles for UIS scenarios with 50, 100, 200 and 500 samples. From:
(Sarkarfarshi & Gracie, 2015).

4.6.3. Effect of the Defensive Mixture Ratio on UIS

The effect of the defensive mixture ratios of zero, 0.1, 0.25 and 0.5 (scenarios 5, 7, 8 and 9)

on the RMSE and R, s of UIS are plotted in Figure 4-16, extracted from Table 4-3. It can

be seen that the 70.1 and 70.25 scenarios resulted in a smaller RMSE compared to the
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other two scenarios. R,¢s for n0.1 and 10.25 scenarios were slightly smaller than the base
case; however, increasing n to 0.5 decreased R.ss significantly. Increasing the defensive
mixture ratio is generally expected to increase the robustness of UIS at the price of a slight
decrease in R, s, provided that the proposal is close to the real posterior. When this is not
the case, e.g., when the system model is poor or the initial prior deviates from the posterior
significantly, the defensive distribution helps search a wider range of the parameter space

and decrease the chance of degeneracy of the UIS.

Figure 4-18 shows the absolute error expectation and the error standard deviation of the
saturation and the pressure fields at the end of year five and after five calibration cycles for
UIS with zero to 0.5 defensive mixture ratios. In general, the error expectations for both

the saturation and the pressure fields decreased with increasing the defensive mixture ratio.

According to current results, we recommend using a defensive mixture ratio between
n=0.1 and n = 0.25 with a uniform defensive distribution. While larger defensive
mixture ratios might result in slightly smaller errors in some cases (e.g., when the prior is

very poorly chosen), they tend to decrease R, s noticeably.

117



90 — T T

85: BASE (10)
S7: UIS 0.1
$8: UIS 110.25
89: UIS 10.5

60

50

RMSE
oo nme

40+ e\ © J

30t omlp =P 1

® 60

20 1 ! 1 L

e
3

85: BASE (n0)
S7: UIS n0.1 ]
S8: UIS n0.25

S9: UIS n0.5 [e3

o
)
\

o
&)
o< B o

Effective sample ratio
o o
w ES
@]
?
]
<

o
M
:

[ |
O

o
-
T

(b)

Figure 4-17: (a) RMSE and (b) R.ff for UIS with defensive mixture ratios of zero, 0.1, 0.25 and 0.50,
respectively. Data point connections and the small offset between the data points of the same cycle are for
clarity. Increasing the defensive ratio up to 0.25 slightly decreased the ratio of the effective samples, but the
decline for n = 0.5 is more significant. The RMSE for n = 0.25 presented the best overall RMSE. From:
(Sarkarfarshi & Gracie, 2015).
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Figure 4-18: Absolute error expectation and standard deviation of saturation (S) and pressure (P) fields at the
end of year 5 and after 5 calibration cycles for UIS scenarios with defensive mixture ratios of zero, 0.1, 0.25
and 0.5, respectively. All defensive mixture densities were uniform bounded between 0.01 and 0.5. From:
(Sarkarfarshi & Gracie, 2015).

4.6.4. Computational Cost

A factor that should be considered when comparing the algorithm accuracies is the
computational cost. The most computationally costly stage of all the algorithms discussed
above was the model simulation stage. The computational cost of optimal size UIS (N100)
was almost half of the computational cost of IS (109 model simulation per cycle versus 200
model simulation per cycle), while the differences in accuracies were significant. The
difference between the computational cost of UKF and the computational cost of optimal
size UIS (N100), however, was significant (109 model simulations per cycle versus 9
model simulations per cycle). UKF, and in general, KF-based algorithms, are
computationally more efficient than sampling-based algorithms such as IS and UIS. The
reason for this computational efficiency is the linearity and Gaussian assumptions in the

KF-based algorithms, which makes them computationally less costly. Sampling-based
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algorithms on the other hand require more samples in order to capture the true posterior
distribution more accurately without these assumptions. Thus, the difference between the
computational costs of N100 UIS and UKF was not un-expected. The accuracy of the UIS,
however, was notably better than UKF, even though the prior distribution and likelihood

were Gaussian in this case study.

The computational demand of calibration of CS models can still be considerable for higher
resolution models and high-dimensional parameter spaces. Thus, using only a
computationally efficient calibration method such as UIS and calibrating smaller number
of parameters based on a sensitivity analysis might be insufficient when computational
resources are limited. As discussed above, model simulation was the most computationally
demanding step during the calibration of the CS case study presented in this chapter. The
adaptive Response Surface Method (RSM) introduced in the next chapter (Chapter 5)
addresses this problem by replacing the computationally costly full model with a

computationally efficient, yet accurate, meta-model.

4.7. Concluding Remarks

The Bayesian Unscented transformation Importance Sampling (UIS) method for mitigating
parameter uncertainty was presented. The methodology revises the joint prior probability

distribution of uncertain parameters utilizing noisy monitoring data.

UIS was applied to two analytical case studies and a synthetic CO, injection case study in
order to be benchmarked against Importance Sampling (IS) with a static proposal and the
measurement update stage of an Unscented Kalman Filter (UKF). The CO; injection case
study was also used to investigate the impact of the number of samples and the defensive
mixture ratio on the performance of UIS. Nine scenarios were designed for these
comparisons. In the linear analytical case study, UIS performed very close to the exact
solution. In the nonlinear analytical case study and CO, injection case study, UIS
outperformed IS and UKF. It was demonstrated that increasing the number of samples
enhances UIS performance, and using a moderate defensive mixture ratio increases UIS

performance slightly with the price of slight decrease in the efficient number of the
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samples. It was suggested that the defensive mixture density becomes more significant

when the prior distribution is chosen more poorly. In the case study, UIS performed best

when a defensive mixture ratio between n = 0.1 and n = 0.25 was used, coupled with a

uniform defensive mixture distribution.

The benefits of UIS can be summarized as:

Bayesian calibration: UIS utilizes monitoring data to periodically revise the
parameter probability distributions and reduces the parameter uncertainty.
Moreover, the revised parameter distributions demonstrate which areas of a
geosequestration site are poorly understood and require heavier monitoring. Thus, it
can also contribute to an adaptive monitoring program.

Model flexibility: no assumptions were made on the system model. Thus, UIS can
be used with linear/nonlinear/analytical/semi-analytical/numerical system models.
Distribution flexibility: no assumptions were made on the type of probability
distributions (prior, posterior, and likelihood). Thus, various continuous, discrete,
formal, and empirical probability distributions can be used as the prior or
likelihood.

Accuracy and computational efficiency: It was shown that UIS can be more
accurate than IS with a static proposal distribution. As a result, to obtain a certain
level of accuracy, UIS is likely to require a considerably smaller number of samples
compared to IS with a static proposal. It was also shown that UIS is more accurate
than the measurement update stage of UKF, even with a Gaussian prior and

likelihood.

Current work is subject to limitations that can be addressed in future research, namely:

Current formulation does not account for systematic error autocorrelation and it is
possible to revisit the formulation in future work to include error autocorrelation
using the equations describe earlier in Section 2.4.3.

As described earlier, the current algorithm could underperform for multi-modal

posterior distributions. In those cases, a bank of UKFs can replace the single UKF
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for generating the proposal distribution. However, the added computational demand

for such cases should be also taken into account.

The UIS provides an efficient tool to calibrate CS models by sampling from the important
areas of the parameter space, i.e., areas with a large posterior density. This process reduces
the demand for a larger sample count compared to the requires sample count of
conventional Bayesian sampling-based algorithms. Depending on the problem
characteristics, the important areas of the parameter space can have substantial overlaps.
Such overlaps result in redundant model simulations in the same areas of the parameter
space. These redundant simulations can be avoided, by using the computationally
demanding system model only in a subset of the cycles and interpolating the model output
in rest of the cycles to further reduce the computational cost of the calibration process.
Thus, an adaptive Response Surface Method (RSM) will be introduced in the next chapter
(Chapter 5) to reduce the computational cost of sampling-based calibration algorithms such
as UIS by adaptively designing, updating and using an accurate and computationally

efficient meta-model during the calibration process.
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Chapter 5.
An Adaptive Response Surface Method for
Continuous Bayesian Model Calibration

This chapter is prepared in the format of an article to be submitted to Stochastic
Environmental Research and Risk Assessment journal, with minor changes, for publication.

I am the main contributor to all sections of this chapter.

Summary

Chapter 4 presented an accurate and computationally efficient tool for calibrating CS
models. The Unscented transformation Importance Sampling (UIS) method presented in
Chapter 4 promotes sampling from more important areas of the parameter space in a
sampling-based calibration process to reduce the demand for a larger number of model
simulations during the calibration process. Combining an efficient calibration method such
as UIS and a reduced parameter space based on the sensitivity analysis presented in
Chapter 3, the number of required model runs during the calibration process of a CS
system can be considerably reduced compared to using conventional calibration
approaches. Reducing the computational cost of each model run, on the other hand, can
further reduce the computational cost of calibrating CS models. Thus, this chapter focuses
on the third objective of the thesis which is the reduction of the computational cost of
running the system model thereby reducing the trade-off between accuracy and

computational efficiency of the calibration.

In this chapter, the Bayesian Adaptive Response Surface Method (BARSM) which is an
adaptive Response Surface Method (RSM) is developed to mitigate the computational cost
of sampling-based and continuous calibration of CS models. It is demonstrated that the
BARSM has a negligible effect on the accuracy of the calibration while providing a

significant increase in efficiency. In the BARSM, a meta-model replaces the
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computationally costly full model during the majority of the calibration cycles. In the rest
of the cycles, the full model is used and samples of these cycles are utilized for adaptively
updating the meta-model. We integrated the BARSM with the UIS calibration algorithm
which was presented in Chapter 4. Then, a synthesized case of supercritical CO; injection
in a saline aquifer is used to assess the performance of the BARSM and to compare it with
a classical RSM approach and the UIS without RSM integration. It is demonstrated that the
error of the meta-model fitted using the BARSM, when samples are drawn from the
posterior parameter distribution, is negligible and considerably smaller than the monitoring
error. We also showed that UIS, the BARSM-integrated UIS and the classical RSM-
integrated UIS generate a Pareto front with computational efficiency and accuracy as the

objective functions.

5.1. Introduction

As discussed in the previous chapters, model calibration for the purpose of uncertainty
mitigation is a critical part of CS projects. The nonlinear nature of numerical CS system
models is problematic when utilizing fast analytical calibration methods and so, sampling
based algorithms are attractive solutions for calibration of nonlinear models. The
computational burden of numerical model simulation is a common obstacle among the
efforts for the calibration of CS models using sampling-based algorithms (Johnson &
White, 2012; Espinet & Shoemaker, 2013; Tavakoli et al., 2013; Sarkarfarshi & Gracie,
2013; Sarkarfarshi & Gracie, 2015). The computational cost of repetitive model simulation
in the sampling-based algorithms can be reduced by using a smaller number of parameters,
by using computationally efficient calibration algorithms that require a small number of

model simulation, and by using a computationally efficient system model.

As described in Chapter 4, computationally efficient algorithms such as Unscented
transformation Importance Sampling (UIS) are capable of accurately obtaining the
posterior distribution of uncertain model parameters with a smaller number of model
simulations than less accurate and computationally more costly algorithms such as ordinary

Importance Sampling (IS). Nevertheless, the computational demand of calibration of CS
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models is still considerable for high resolution models and high-dimensional parameter

spaces.

Few simplified analytical and semi-analytical models for supercritical CO, injection into
saline aquifers are developed with the purpose of reducing the computational burden for
model simulation and model calibration. For example, see: (Nordbotton et al., 2005) and
(Malekzadeh & Dusseault, 2013). These models provide fast and effective tools for
sensitivity analysis, uncertainty analysis and risk assessment in the early stages of a CS
project, e.g., during site selection (Sarkarfarshi et al., 2014). However, the simplifying
assumptions such as incompressibility of the fluids, axisymmetric geometry, homogeneity
of the aquifer, the presence of a single injection well and the absence of potential leakage
sources make them suboptimal for long-term calibration and forecast of a CS site

behaviour.

Another common solution to reduce the computational cost of model simulation is to
replace the computationally demanding “full model” with a faster “meta-model”, which
approximates the true response of the full model. The meta-models are known by various
names, such as surrogate models, Response Surface Method (RSM) models, models of the
model, and emulators (Kleijnen, 1987; Jin et al., 2001; Razavi et al., 2012-a). In the RSM,
the full model response is simulated at a finite number of points in the parameter space that
are chosen by a Design of Experiment (DOE) (Barton, 1994). Then the meta-model is
fitted or “trained” based on the model responses at these data points, and using an
“objective” or “cost” function and a “training algorithm”. Meta-model fitting is essentially
finding the unknown parameters of a function (i.e., the meta-model) to maximize an
objective function, or equivalently, minimize a cost function. This approach aims for a
meta-model that is computationally more efficient compared to the full model and is
differentiable/integrable in some cases so that the problem becomes analytically tractable
(Oladyshkin et al., 2011-a; Razavi et al., 2012-a). Some well-known approaches to meta-
model fitting are Polynomial Regression (PR) (Jin ef al., 2003), Artificial Neural Networks
(ANN) (Smith, 1993), Adaptive Neuro Fuzzy Inference System (ANFIS) (Abraham,
2005), Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991), Radial basis

functions (Buhmann, 2003) and Kriging (Stein, 1999). A comprehensive review of meta-
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modelling approaches in computationally intensive environmental problems can be found

in (Razavi et al., 2012-b).

Simple meta-models can be efficiently trained and used for uncertainty analysis (Isukapalli
et al., 2000), sensitivity analysis (Oladyshkin et al., 2012), risk analysis (Oladyshkin et al.,
2011-a) and uncertainty mitigation (Balakrishnan ez al., 2003). The simple meta-models,
however, are not optimal for calibrating complex, highly nonlinear and high-dimensional
numerical CS models since they are not able to capture sever nonlinearities and
complicated correlations in the whole parameter space. More complex meta-models on the
other hand, are computationally intensive to train and do not necessarily improve the
calibration results when the computational budget is limited (Razavi et al., 2012-a).
Consequently, the choice between a simple and complex meta-model is usually a trade-off

between accuracy and computational efficiency.

Building and continuously revising a simple meta-model with higher accuracy in a subset
of the parameter space, which is used the most during the calibration process, can result in
an accurate and computationally efficient solution for Bayesian calibration of complicated
systems such CS. Based on this idea, we introduce the Bayesian Adaptive Response
Surface Method (BARSM) in this chapter as an adaptive approach for efficiently utilizing
the RSM to reduce the simulation time of ensemble-based and continuous Bayesian
calibration algorithms with non-stationary ensemble members (samples). By continuous,
we mean calibration that is repeated when new observations (i.e., monitoring data) are
obtained. Similar to Chapter 4, every repetition of calibration is called a “cycle” here. The
BARSM is the third objective among the three complementary objectives of this thesis that

seek to achieve efficient and computationally efficient calibration of CS systems.

To avoid confusion, it should be noted that the BARSM is different from the Adaptive
Response Surface Method (ARSM) (Wang et al., 2002; Wang, 2003). The ARSM is aimed
for iterative global optimization problems and revises the meta-model during optimization
iterations, while BARSM is aimed for continuous (but not necessarily iterative) Bayesian

calibration and does not revise the meta-model during a calibration cycle.
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In sampling-based calibration algorithms, each sample represents a combination of model
parameters, and the model is simulated for each sample. The accuracy of the meta-model is
more important in the areas of the parameter space where the samples are most drawn
from. In the BARSM, we take advantage of the fact that in sampling-based calibration
algorithms, the samples are likely to be drawn from areas with larger posterior density,
allowing the training algorithm to adaptively adjust the training samples during calibration
and to increase the accuracy of the meta-model where it is most simulated. Figure 5-1
illustrates this idea by comparing the linear meta-model fit to (a) uniformly chosen training
samples (which we call a “classical” or “traditional” approach) and (b) samples drawn
from the more important areas of the parameter space. It can be seen that while the meta-
model in Figure 5-1 (a) approximates the full model better in the whole parameter space,

the meta-model in Figure 5-1 (b) is more accurate in areas with higher posterior density.
For this purpose, we divide the calibration cycles into two groups:

A.  Full cycles, i.e., cycles which use the full model during the calibration. Full cycles
are no different than full calibration algorithm, except for simulating the full model
for a longer time frame (up to the final calibration time). This longer simulation is
used to calibrate the meta-model.

B.  Meta-cycles, i.e., cycles utilizing a meta-model during the calibration, to enhance
the computational efficiency. The meta-cycles are computationally faster than the
full cycles, assuming that the process of training and simulating the meta-model is

faster than using the full model.

In Section 5.2, the BARSM is described and formulated. Next, in Section 5.3, we integrate
the BARSM with the UIS. A synthetic case study in a CS context is described in Section
5.4 and is used to study the performance of the BARSM against a traditional RSM
integration method and the full UIS in terms of accuracy and computational efficiency.

Finally, conclusions are presented in Section 5.5.
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Figure 5-1: Schematic of fitting a meta-model using (a) linear regression on uniformly chosen samples from
the whole parameter space and (b) linear regression on random samples from areas of the parameter space
with higher probability density. It can be seen that the meta-model in (b) is more accurate than (a) in areas of
the parameter space with higher probability density. These areas are more likely to be sampled from during
the calibration process. Thus, the meta-model in (b) is more accurate than (a) for the purpose of model
calibration.

5.2. Methodology

Assume that measurements of the true behaviour of a system taking place at discrete times

t1, ta, ... , ty, where t, denotes the time elapsed at the n"™ cycle. Similar to the previous
chapters, we denote the true system behaviour at time t,, by df.,,, measurements at time t,,
by d},, and system model output at time t, by y"(m) where
y*(m) = [g(xq, t,, m), g(x,, t,, m), ...,g(xNx, tn,m)] and g(x,t,, m) is the system
model with parameters m = [ml,mz, ...,mNm]. We also assume the discrepancy between
d),. and y"(m) is a vector of random variables, independent from time, location and m,

similar to Chapter 4. Thus,

ops = YH(m) + g4 Etot~Ttot (Etot) (5.1

where &;,; is the combined model and monitoring error and 7.,;(€;,) is the probability

distribution of &,;. Thus, as described in Chapter 2 and according to Bayes’ formula, if the

128



prior distribution of model parameters is denoted by m°(m), the posterior probability

distribution of model parameters given all monitoring data up to time t,, can be obtained by

0 (m) [T2q eor (débs - yl(m))
Jo, 7O T, ot (dhps — ¥ (m))

n(m) = (5.2)

where " (m) = n(m|dL;™). At time t,,,, new monitoring data is obtained and Bayes’
formula can be used to obtain 7"*1(m). Similar to the previous chapter, we call each of

these cycles a “calibration cycle” here.

Assume a sampling-based Bayesian calibration algorithm, such as UIS or MCMC, which
we call the “full calibration algorithm” here, is used for solving equation (5.2) in each
calibration cycle. Assume that at each cycle n, the full calibration algorithm draws N
samples from the parameter space and simulates the full-model for each sample from time

zero to time t,,.

As shown in the flowchart of BARSM in Figure 5-2, calibration cycles are divided into full
cycles and meta-cycles. The first cycle is always a full cycle and each of the following
cycles could be either a full cycle or a meta-cycle. In an arbitrary full cycle n, the
calibration algorithm is run using the full model. However, instead of running the full
model up to t,, we run the model up to the final calibration time, ty, and add the samples
and corresponding full model outputs to a “sample pool”. Next, in another arbitrary meta-
cycle n, the sample pool data is used to train a meta-model and the meta-model replaces
the full model in that cycle. Thus, full model run is avoided in the meta-cycles. If the
computational burden of fitting and running the meta-model is significantly lower than the
full model, the computational cost of the meta-cycles would be negligible compared to the

full cycles.

After a few meta-cycles, the posterior distribution might change noticeably or get more
concentrated compared to the posterior distributions in the previous cycles. Consequently,
adding more samples from the latest posterior distribution to the sample pool makes the

meta-model more accurate in the most recent important areas of the parameter space. So,
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BARSM uses another full cycle after a certain number of meta-cycles to adaptively

improve the accuracy of the meta-model.

( Start (n = 1) )

\ 4
Obtain the monitoring |
data at time ¢, N
This a full R Cyclen —1 No
cycleorn=1 No was a full cycle
Yes
Yes
fm———- > Re-train the meta model
|
Use the full model for :
calibration. 1
|
_____ do_ -, A 4
1 1
h Sample | Use the meta-model for P
1 hl
v " pool I\‘ calibration
For each sample in the B Wb
calibration algorithm, continue :
simulations up to the final 1
calibration time :
!
Add the new samples to the
sample pool
= Proceed to the calibration
" algorithm D
A 4
Obtain the posterior distribution » n=n+1

Figure 5-2: Flowchart of the BARSM for mitigating the computational burden of Bayesian calibration
algorithms for computationally expensive models.
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For simplicity of the calculations, assume that t,, = n years. Also assume that one full
cycle is used after every n,, meta-cycles and the total number of calibration cycles, N, is a
multiple of n,,, + 1. Also assume that the computational cost of a full model run increases
proportionally with the time frame the model is being simulated (e.g., in transient
numerical models) and each calibration cycle requires Ny model simulations. After N,
cycles, the total years of full model run is equal to NyN; (N;+ 1)/2 when the full
calibration algorithm is used and is equal to Ny(n,, + 1) when the BARSM is used. Thus,
the computational cost of calibration of the model in BARSM is reduced compared to the

full calibration algorithm, if N.(N; + 1)/(2n,, + 2) > 1, or equivalently, if

Nt_l

5.3
N, +1 e

Ny >

Since (N; —1)/(N; + 1) is between zero and one, n,, should be equal to or greater than
one. Thus, the BARSM mitigates the computational cost of full model run in sampling-
based Bayesian calibration algorithms if at least one meta-cycle exists after each full cycle.

The ratio of reduction in computational cost of full model run is given by

(M + DN + 1)

RBARSM _
2N,

(5.4)

Figure 5-3 plots RBARSM for N, =1 to 30 and n,, =1 to 29. It can be seen that the
computational cost of full model run can be reduced significantly using the BARSM. n,, is

a parameter of the BARSM and should be chosen on a problem-specific basis.
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Figure 5-3: The ratio of reduction in computational cost of full model run in the BARSM, RBARSM for N,
cycles when n,, meta-cycle are used after each full cycle.

5.3. Integration of BARSM and UIS

The BARSM will be inefficient if the posterior sample collapses, i.e., one of the samples
gains almost all of the posterior importance weight while the posterior importance weight
of all other samples are close to zero. The BARSM will be also inefficient if the samples
are most drawn from areas of the parameter space with smaller posterior distribution. Since
in the UIS the samples are drawn from a continuous proposal distribution close to the
posterior distribution, UIS is an effective method for avoiding collapse and ensuring that
samples are most drawn from areas of the parameter space which have a greater posterior
distribution. Thus, we integrate BARSM with the UIS in this section to demonstrate how it

can be integrated with a sampling-based Bayesian calibration algorithm.

Recalling from the previous chapter, the propagated Sigma points in the UKF step of the
UIS at time t,, are obtained by

Yi = [g(x1: tn'Xi)' g(vatn'Xi)' ""g(xNx' tani)] i=01, :2Nm (55)
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where y; is the i Sigma point and Y; is the propagated Sigma. In addition, the importance
weight of a sample m; drawn in the IS step of the UIS and from an approximate Gaussian

posterior distribution at time t,, is obtained by

.n
-1 n-o(mi)

(.
q@m;) 1 |

Wi =cw Mot (dlobs - yl (ﬁll)) i=1..Ns (5.6)

where W; is the normalized importance weight, ¢, = Zéstl W; is a normalizing constant
and g™ (m) is the proposal distribution of the IS step at time t,,. Equations (5.5) and (5.6)

are the only UIS equations which require running the system model.

At an arbitrary full cycle of the BARSM, typical UIS formulation is used with the full
system model. However, the simulation of the model for each of the samples is continued

until ty, and the samples and corresponding full model output are added to the sample
pool. The sample pool is basically a set of data vectors {[#;, yVe(M;)]:i =1 ... Nsp} where
each m; is the i™ sample (i.c., a parameter set) and yNt¢(i;) is the corresponding full

model output simulated up to ty,.

At arbitrary meta-cycles n, we fit a series of meta-models denoted by g(x,t;, m) to the
sample pool data where [ is the cycle number between one and N; and x is one of the N,
spatial grid points in the domain where the model output is required®. Thus, the total
number of meta-models are N.N,. For instance, if the problem domain is a two
dimensional 50x50 grid, N; = 4, model output is the temperature at each grid point,
measurements are taken in 25 grid points and meta-model is chosen to be linear, we fit a
linear function to the sample pool data for each of the 25 measurement grid points and for
each of the times t; to t,. Thus, a total of 4x25=100 linear meta-models are fitted to the

sample pool data.

Next, we use the meta-model y'(m) instead of the full model in the UIS algorithm during
the cycle n, where y'(m) = [g(xl, t;,m), g(x,, t;, m), ...,g(xNx, tl,m)]. For instance,

equation (5.6) for obtaining the importance weights in the IS step of the UIS changes to

* To use the meta-model for forecasting the system behaviour beyond t,, the I < n condition is released and
the meta-model is trained up to the end of forecast time.
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Wi=C

where &%, = £, + &.,,4 is the discrepancy between the measurements d’, . and y'(m),

&l 4 is the discrepancy between the full model and the meta-model and ﬁ%ot(ééot) is the
probability distribution of &%,,. The probability distribution of &, is assumed to be known
in UIS. If &, is negligible compared to &, it can be neglected and ;¢ (£40) can be
used instead of ﬁéot(ééot) in equation (5.7) and in the UKF step of the UIS. Otherwise, to

obtain 7, (&y¢ ), we need to find 7,04 (804 ) i-€., the probability distribution of &%,

Since polynomial meta-models are computationally efficient to simulate and can be fitted
without carrying out computationally costly iterative training algorithms, we use
polynomial meta-model with least square fitting algorithm in BARSM-integrated UIS.
Least square fitting for polynomial regression is explained in details in Appendix B. Since
the meta-model output is not necessarily equal to the full model output at the training data
points when using least square regression, we approximate ﬁfnod(éﬁnod) by a probability
distribution fitted on the discrepancy of the full model and the meta-model at the sample
pool data. In other words, we fit a probability distribution on &, ,, = y'(im;) — y'(/m;)
where #1; is the i parameter set in the sample pool. Now, by having 7}, 4 (é"ﬁnod) and
ot (Etor), We can find ﬁ%ot(ﬁ'éot) using analytical methods or simulation-based methods

such as MCS.

5.4. Case Study

A synthetic case study of CO; injection into a saline aquifer is used to study the accuracy
and computational efficiency of the BARSM-integrated UIS, to compare it with a classical
RSM integration and full UIS (no RSM), and investigate the effect of frequency of full
cycles on the performance of the BARSM.
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5.4.1. Case Description

The geometry and initial conditions of this case study are mostly similar to the case study
in Section 4.5 of the previous chapter. Supercritical CO; is injected at a constant rate of
0.035 Mt/year for 112 month in an injection well located in the center of the domain.
Porosities of the four facies are assumed the uncertain parameters with a Gaussian
multivariate prior distribution. Prior mean is assumed to be [0.15,0.15,0.15,0.15] and prior

covariance matrix is assumed to be a diagonal matrix with diagonal members of 0.057.

Monitoring is conducted every 8 months at two monitoring wells similar to Figure 4-11.
One calibration cycle is performed at the end of each 8 months. Saturation monitoring error
is assumed Gaussian with a zero mean and a standard deviation of 0.03, and pressure
monitoring error is assumed Gaussian with a zero mean and a standard deviation of 0.5

MPa.

Schlumberger's ECLIPSE E300 reservoir simulator is used for simulating the case
described above with GASWAT keyword and Peng-Robinson equation of state (Soreide &
Whitson, 1992; Schlumberger, 2013), no flow boundary condition on top and bottom of the

aquifer, and open boundary condition on the sides of the aquifer.

5.4.2. Calibration Scenarios

Six calibration scenarios are described in Table 5-1. All scenarios use UIS calibration
algorithm with 200 samples in each cycle and no defensive mixture distribution. Scenario 1
uses original UIS algorithm without RSM integration. Scenarios 2, 3 and 4 use BARSM-
integrated UIS with different numbers of full cycles, as reported in Table 5-1. Scenarios 5
and 6 use UIS with a classical RSM fitting approach, i.e., fitting a response surface at the
beginning of the calibration using 200 and 500 samples from the initial prior distribution,
respectively, and using this meta-model in all calibration cycles. In scenarios 2 to 6, a

quadratic meta-model is used.
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Table 5-1: Calibration scenarios.

Scenario Calibration RSM Full ITIu‘mber of Total Years of

Number and . Training samples Full Model
Method Integration Cycles . .

Name per Full Cycle Simulation
1: UIS UIS - 1to 14 - 14,630
2: BARSM1 UIS BARSM 1,6, 11 209 5,852
3: BARSM2 UIS BARSM 1,11 209 3,901
4: BARSM3 UIS BARSM 1 209 1,951
5:CL1 UIS Classical 0 200 1,867
6: CL2 UIS Classical 0 500 4,667

"By cycle 0, we mean training the meta-model before initiating the calibration.

5.4.3. Results

The first metric we use for comparing the scenarios described in the previous sub-section is
the accuracy of the meta-model in comparison with the full model, in the areas of the
posterior distribution where the model is more likely to be simulated during the calibration.
To do so, for each cycle, 200 samples are drawn from the posterior distribution of model
parameters in scenario 1 which always uses the full model. Meta-models used in each cycle
of scenarios 2 to 6 are simulated using samples drawn at that same cycle. The discrepancy
between full model output and the meta-model output (separately for saturation and

pressure) is then calculated and averaged in the whole field, as

53, (9t MPS) = g3, 1, ME))

EN =
i N, (5.8)
M ~mmVS(m)  i=1t0200 n=1to14

where """ is the i" sample drawn from 7™V (m), i.e., the posterior distribution of m

at cycle n of the UIS scenario, and E* is the average error of the sample i at cycle n. The

136



mean and the 95% central confidence interval® of the errors are then calculated for each

cycle, as
o _ S BT
HE =200
2
e jz%zg(an - i) 59
E — .
200

CIR o ops = 1 + 1.9607
Clg o025 = g — 1.960F

where ug, ¢, CIf g 975 and CIE  o,5 are the mean, standard deviation, and lower and upper
bounds of the 95% confidence interval of the meta-model error at cycle n, respectively.
Figure 5-4 illustrates the mean and the 95% central confidence interval of the meta-model
error, as described above, for (a) saturation and (b) pressure fields, respectively. Three

observations can be made from these figures:

I.  The errors of the meta-model in BARSM scenarios are clearly smaller than those of
classical scenarios. Mean saturation error is close to zero for all scenarios. The 95%
confidence interval is stable and below +2% in BARSMI and below +3.5% in
BARSM2. The 95% confidence interval is below +4.1% in BARSM3 but it has a
growing trend. 95% confidence interval of CL1 and CL2 scenarios are growing and
reached +4.9%, without a significant difference between two scenarios. Moreover,
the mean pressure error is close to zero and the 95% confidence interval is stable
and less than 10 kPa in BARSM1 and BARSM?2 and ~25 kPa in BARSM3. In CL1
and CL2 scenarios, however, both mean and 95% confidence interval of the
pressure error are continuously growing and reached 6.4 MPa and 5.36 MPa,
respectively. Thus, accuracy of the meta-model in all BARSM scenarios was
higher than the accuracy of the meta-model in the classical scenarios in areas of the
parameter space where most samples are drawn from. In addition, increasing the

frequency of the full cycles increased the accuracy of BARSM. It should also be

> Since the distribution of the errors was close to a Normal distribution, the 2.5% and 97.5% quantiles were
obtained by subtracting 1.96 standard deviations from the mean and adding 1.96 standard deviations to the
mean, respectively.
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noted that using a larger sample pool in CL scenarios was not effective in obtaining
a more accurate meta-model.

II.  Full cycles in BARSM scenarios increased meta-model accuracy noticeably. This is
specifically clear in Figure 5-4(a) where the 2.5% and 97.5% quantiles of BARSM1
and BARSM?2 scenarios are narrowed after full cycles. Moreover, a comparison
between meta-model errors in BARSM3 and classical scenarios reveals that the
only full cycle in BARSM3 (which is the first cycle) increased the meta-model
accuracy compared to not having any full cycles, i.e., CL1 and CL2 scenarios.
Thus, adding the full cycles in BARSM was an effective approach in decreasing the
error introduced by using meta-models during the calibration process. In addition,
by adjusting the frequency of the full cycles, meta-model error can be confined and
prevented from increasing continuously.

III.  Third, the errors between the full model and the BARSM meta-models were well
below the monitoring error. In CL scenarios on the other hand, the saturation errors
were comparable to the monitoring error and the pressure errors were well above
the monitoring error. Thus, we can conclude that the additional uncertainty
introduced by using the meta-model in BARSM scenarios was negligible compared

to the monitoring error, while this was not the case in CL scenarios.

A noteworthy difference between Figure 5-4(a) and Figure 5-4(b) is the magnitude of
difference between the meta-model errors in saturation and pressure fields. For instance,
the ratio of 95% confidence intervals of CL2 and BARSMI1 scenarios is ~3 in Figure 5-4(a)
while it is ~2100 in Figure 5-4(b). The reason for this notable difference is the fact that the
parameters being calibrated in this case study are porosities of the facies and permeability
of each facies was obtained by a logarithmic equation, as described in Section 4.5.1 of the
previous chapter. Considering this equation and the fact that pressure gradient increases
with the inverse of permeability, a small change in porosity which causes small changes in
the saturation field can cause large changes in the pressure field. Meta-models in the
BARSM scenarios were notably more accurate where they were more simulated and thus,
they captured these steep changes in the pressure field well while it was not the case for CL
scenarios. As a result, the difference between accuracy of the meta-models in re-generating

the pressure field was more visible compared to the saturation field.
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Figure 5-4: Mean and central 95% confidence interval of meta-models errors for (a) saturation and (b)
pressure field, obtained using equation (5.9). Standard deviation of the monitoring error is plotted by dashed
grey lines. It can be seen that meta-models in BARSM scenarios were more accurate than CL scenarios,
accuracy of meta-model increased with frequency of full cycles and meta-model errors in BARSM scenarios

were smaller than the monitoring error.
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The second metric we use to compare the calibration scenarios is the mean and standard
deviation of the absolute error in the posterior forecast of the pressure and saturation fields
at the end of calibration, as illustrated in Figure 5-5. It can be seen that the posterior error
fields of the BARSM scenarios are close to the UIS scenario. Thus, stochastic simulation
of pressure and saturation fields after calibration using the BARSM-integrated UIS and
original UIS were close. The CL scenarios, on the other hand, had larger errors compared

to the BARSM scenarios and had noticeably larger errors compared to the UIS scenario.

Absolute Saturation Absolute Saturation Absolute Pressure Absolute Pressure
error (mean) error (std) x 10° error (mean) error (std)
1 MPa 500 Pa
%) 0.4
3 0.2 500 kPa
0 0 0
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I Ii1 M-
0 0 0 0
i“ B N
5 1 500 kPa
0 0 0 0

4. BARSM3 3:BARSM2 2: BARSM1

X
2 1 MPa 500 Pa
0 0 0
X
2 1 MPa 500 Pa
0 0 0

X

2 1 MPa 500 Pa
0.4
- 1 500 kPa
0 0 0 0

Figure 5-5: Absolute error expectation and error standard deviation in the posterior forecast of pressure (P)
and saturation (S) fields after 14 calibration cycles.

5.CL1

6.CL2

The third metric we use to compare the calibration scenarios is the Root Mean Square
Error (RMSE) of the posterior forecast of the pressure and saturation fields at the end of

injection, normalized by the standard deviation of monitoring error, and calculated after
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each cycle, similar to equation (4.30) in the second analytical case study of the previous
chapter. Figure 5-6 and Figure 5-7 plot the normalized RMSE of the posterior pressure and
saturation fields, respectively, for all scenarios. Again, it can be seen that the normalized
RMSE obtained in BARSM scenarios are close to the UIS scenario while that the
normalized RMSE obtained in CL scenarios are notably higher than the UIS scenario and

the BARSM scenarios.
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¢ 3: BARSM2
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—8&— 5. CL1
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Figure 5-6: Root Mean Square Error (RMSE) of the posterior forecast of pressure field expectation, obtained
from samples of the posterior distribution, and normalized by standard deviation of the pressure monitoring
error.
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Figure 5-7: Root Mean Square Error (RMSE) of posterior forecast of the saturation field expectation,
obtained from samples of the posterior distribution, and normalized by standard deviation of the saturation
monitoring error.

5.4.4. Discussion

The question that remains to be answered is how to choose the optimal methodology for
CS model calibration among the presented scenarios and based on the presented results.
UIS scenario used the full model during all calibration cycles and was the most accurate
approach overall, hence, the most computationally costly approach among the six. The
computational cost of BARSM and CL scenarios were significantly lower than UIS
scenario and CL1 and BARSM3 scenarios had the least computationally cost. The error
introduced by using the meta-model and the overall calibration error in all BARSM
scenarios were noticeably smaller than the CL scenarios and the BARSM scenarios had

meta-model errors smaller than monitoring error.

142



Choosing the optimal scenario here is essentially a multi-objective optimization problem,
with computational efficiency and accuracy as the two objective functions. To discuss this
better, each of the scenarios in the case study are simulated two additional times.
Additional simulations are to reduce the effect of random sampling on the optimization
results. The smallest RMSE of the forecast of saturation and pressure fields of each
scenario (with reference to the best of the three UIS scenario runs) at the end of calibration
is then considered as a base for comparison. In other words, the absolute differences
between the RMSE of the saturation and pressure fields of each scenario, and the RMSE of
the saturation and pressure fields of the best UIS scenario, are calculated for each of the
three runs for each scenario and at the end of calibration, and the smallest result is used as
a cost function for accuracy of that scenario. Then, the total years of full model simulation
is used as a cost function for computational efficiency. These two cost functions are shown
in a scatter plot in Figure 5-8 for all three runs of all scenarios. For each scenario, the
simulation with the smallest “accuracy cost function” is considered as the representative of

that scenario.

From Figure 5-8, it can be seen that UIS, BARSMI, BARSM2, BARSM3 and CLI
scenarios generate a Pareto frontier (Tamaki et al., 1996), i.e., none of these five scenarios
“dominates” the other ones in both cost functions. Thus, preference over one of the above-
mentioned five scenarios requires either additional criteria (e.g., available computational

resources and required accuracy), or a subjective preference.

It is possible to ‘“scalarize” the cost functions, i.e., merge the two cost functions into a
single combined cost function. A discussion over methods of scalarization is beyond the
scope of this chapter and can be found in multi-objective optimization literature, e.g.,
(Jahn, 1985) and (Miettinen & Mikeld, 2002). As an example, we choose a simple and
commonly used scalarization method, i.e., weighted sum of the normalized cost functions.

Assume 0} denotes the i™ cost function for the j™ scenario. First, we normalize the cost

functions as

_ 0f —min ({Of:k =1... 6})

0 = : _ (5.10)
7 max({0i:k=1..6})—min({0L:k=1.. 6})
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to obtain a dimensionless cost function, 5}, which varies between zero and one (Marler &

Arora, 2004). Then, we define the combined cost function as
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Figure 5-8: Error versus computational cost for all scenarios in (a) saturation and (b) pressure fields. The
solid marks show the best run of each scenario and the hollow marks show other runs of each scenario. The
absolute difference between the RMSE of each scenario at the end of calibration and the RMSE of the best
UIS scenario at the end of calibration is used as a cost function for accuracy of that scenario, and the total
years of full model simulations is used as a cost function for computational efficiency of that scenario.
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to give equal weights to accuracy and computational efficiency. Table 5-2 lists O; for both
pressure and saturation fields and for all scenarios. It can be seen that BARSM 2 and
BARSM3 were the best scenarios among the six. BARSM1 scenario had the third ranking
and CL2 scenario had the fourth ranking. Finally, UIS and CL2 scenarios had the same
ranks. It is clear that the combined cost functions and the weights we used here are not

unique and other weights or scalarization functions might result differently.

According to the results discussed in this section, we conclude that BARSM2 and
BARSM3 scenarios had the best combined accuracy and computational efficiency.
BARSM2 scenario reduced the computational cost of full model simulation by 73%
compared to the original UIS scenario without a significant effect on the accuracy of the
calibration results. BARSM3 scenario reduced the computational cost of full model
simulation by 87% with slightly larger errors compared to BARSM2. BARSMI1 had an
accuracy close to BARSM2 and BARSM3 scenarios, but reduced the computational cost of
full model simulation by 60% which was not as good as BARSM2 and BARSM3
scenarios. CL1 was the most computationally efficient scenario, but had a notably less
accuracy in term of calibration results and meta-model output. Thus, it did not rank better
than the UIS scenario overall. CL2 performed better than CL1 in terms of accuracy, but
had a worse computational efficiency. Overall, CL2 ranked better than CL1. However,
CL2 was not a member of the Pareto frontier since it performed worse than BARSM2 and
BARSM3 scenarios in terms of both cost functions. In addition, it can be seen from Figure
5-8 that the diversities of the RMSE of different runs in the BARSM scenarios were
noticeably lower than those of the CL scenarios. Thus, BARSM scenarios were more
consistent than the CL scenarios to forecast the mean of the pressure and the saturation

fields after calibration.
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Table 5-2: The combined cost function for all scenarios, obtained by sum of the normalized cost functions.

Combined cost function

Scenario
number and Saturation Pressure
name
Cost Rank Cost Rank
1:UIS 1.00 5 1.00 5
2: BARSMI 0.33 3 0.33 3
3: BARSM2 0.17 1 0.32 2
4: BARSM3 0.24 2 0.19 1
5:CL1 1.00 5 1.00 5
6: CL2 0.84 4 0.66 4

5.5. Concluding Remarks

In this chapter, we presented the Bayesian Adaptive Response Surface Method (BARSM),
which is an efficient adaptive approach for incorporating the Response Surface Method
(RSM) to mitigate the computational demand of Bayesian, sampling-based, and continuous
calibration algorithms, with an application in CS. In BARSM, Bayesian calibration cycles
were divided into full cycles and meta-cycles. Samples drawn in the full cycles were used
to train the meta-model, and the meta-model was used instead of the full model in the
meta-cycles to reduce the computational cost of the full model simulation. We presented
the BARSM in a general formulation and also integrated the Unscented transformation

Importance Sampling (UIS) with the BARSM.

A synthetic case study of supercritical CO, injection into a deep saline aquifer was
conducted to investigate how the BARSM performs compared to the UIS and calibration
with a classical and non-adaptive RSM. We also investigated the effect of frequency of full
cycles on the accuracy of calibration and accuracy of the meta-model. Results showed that
the BARSM scenarios performed very close to the full UIS in terms of calibration results
and model forecast, with up to 7.7 times less computational cost. The meta-models trained
by the BARSM were able to accurately reproduce the output of the full model on samples

of the posterior distribution, and with an error noticeably smaller than the monitoring error.
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The results showed that increasing the frequency of the full cycles increase the accuracy of
the BARSM, but the BARSM with a small number of full cycles (e.g., 1 or 2 full cycles in
14 cycles) still performs close to the full calibration algorithm. The meta-model accuracy
and model forecast accuracy in the classic RSM approach were significantly worse than the
BARSM. The classic RSM cases had slightly lower computational cost compared to the
BARSM. Increasing the number of training samples in the classic RSM approach slightly

improved the outcome.

Considering accuracy and computational efficiency as the objectives for choosing the
optimal calibration method, we concluded that the three abovementioned approaches (i.e.,
full UIS, the BARSM integration UIS and the classical RSM) generate a Pareto frontier.
We combined these objectives into a single and subjective cost function and showed that
one of the BARSM integrated scenarios performed the best among the rest of the scenarios.
We also concluded that the BARSM was a reasonable choice for mitigating the
computational cost of CS model calibration because it was able to reduce calibration time

notably with negligible effect on the accuracy compared to the full calibration algorithm.
The benefits of the BARSM and the presented results can be summarized as:

e Reducing the computational cost of full model simulation in sampling-based
Bayesian calibration of CS models with small effect on the accuracy.

e Reducing the demand for simpler models which need to ignore many aspects of the
physics of CS to achieve analytical and computationally fast solutions.

e Avoiding redundant simulation of the full model in similar areas of the parameter
space.

e Demonstrating that the choice between calibration algorithms based on accuracy
and computational efficiency can be a multi-objective optimization problem with

no unique solution.
Current work is subject to limitations that can be addressed in future research, namely:
e With a large number of samples, the BARSM can become more efficient by adding

only a subset of the samples of the full cycles to the sample pool.

147



e Strategies are required to determine which cycles should be a full cycle, either

before or during the calibration process.
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Chapter 6.
Summary, Conclusions and Future Directions

6.1. Summary and Conclusion

This thesis contributed to reducing the trade-off between accuracy and computational
efficiency when calibrating CS models by way of three complementary objectives. In
Chapter 3, a methodology for quantitatively assessing the contribution of parameter
uncertainty in the model output uncertainty is discussed with application to CO, plume
evolution. This method accounts for the degree of uncertainty in each of the parameters, as
well as the role of each parameter in the model structure. Using a synthetic case study
based on Nisku aquifer characteristics, we ranked the parameters based on their
contribution to the uncertainty of CO, plume evolution. Such ranking can be used to reduce
parameter space dimensionality as well as to guide time and effort spent for mitigating the
parameter uncertainty and conduct probabilistic model forecast in future work. We also
showed that the influence of some constitutive relationship parameters in the uncertainty of
CO; plume evolution is as high as the contribution of the physical characteristics of the
system. Thus, these parameters should be focused on in the uncertainty analysis and model

calibration efforts as much as the physical characteristics of the system.

Chapter 4 presents an efficient Bayesian Importance Sampling (IS), the Unscented
transformation Importance Sampling (UIS), for mitigating parameter uncertainty with an
application in geological CO; sequestration. UIS is a method for continuously updating the
prior parameter probability distributions obtained by expert opinion and initial
measurements at the beginning of the project, utilizing Bayesian statistics and noisy
monitoring data. The UIS algorithm 1is flexible and can be used with any
linear/nonlinear/analytical/semi-analytical/numerical system model and any
continuous/discrete probability distribution. It also provides an appropriate balance
between accuracy and computational efficiency. In a synthetic case study, we benchmarked

UIS and showed that it is more accurate than the measurement update stage of Unscented
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Kalman Filter (UKF) and ordinary Importance Sampling (IS). We also showed that while
increasing the number of samples increases the accuracy of the results, UIS is efficient
enough that even with a small number of samples (100 in our case study) performs almost
as accurate as the UIS with a larger number of samples (500 in our case study). We
adjusted the tuning parameters in our case study and concluded that mixing the proposal
distribution in the IS stage of the UIS with a uniform distribution by a ratio of 0.1 to 0.25
enhances the accuracy of the results and helps the algorithm search the parameter space

more efficiently.

In Chapter 5, an efficient approach is introduced to incorporate the Response Surface
Method (RSM) for mitigating the computational cost of sampling-based continuous
Bayesian calibration algorithms, with an application to CS. Our approach is to adaptively
modify the meta-model in some of calibration cycles, in order to make it more accurate in
areas with higher posterior probability density. This meta-model is then used in the rest of
the calibration cycles instead of the original computationally costly model. We showed that
this approach can mitigate the computational cost of model calibration more than 90%. In a
synthetic case study, we benchmarked this approach against a classical RSM integration
approach and against calibration without RSM integration. We showed that our RSM
integration approach performed almost as accurately as the original calibration algorithm
with up to 7.7 time smaller computational cost, while the classical RSM integration
approach was unable to do so. Moreover, the response surface model trained by our
approach reproduced the original model output at samples of the posterior distribution
accurately with an error noticeably smaller than the monitoring error. We also discussed
how to choose the optimal calibration method among the approaches presented in this
chapter and we concluded that these approaches generate a Pareto frontier when accuracy
and computational efficiency are both accounted for. Thus, picking the optimal approach
will be subjective and project specific. Using a subjective combined cost function, a RSM-
integrated UIS using our approach was the best among other methods. We concluded that
our approach for adaptively training the meta-model is a reasonable choice for mitigating
the computational cost of model calibration in CS projects, since it reduces the

computational cost noticeably with a negligible error compared to the full model.
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6.2. Recommendations for Future Research

In Chapter 3, the sensitivity analysis was conducted using a computationally fast system
model that was based on approximations such as rigidity of the aquifer, incompressibility
of the fluids and isothermality of the injection process. These assumptions can be relaxed
in further works using a more realistic system model. Moreover, using site-specific
geometry and including heterogeneity in the system model increases the validity of the
results. The combined effect of the uncertainty of the physical model parameters on the
uncertainty of the model output can be also compared against that of the constitutive model

parameters in future research.

In Chapter 4, UIS might underperform if the posterior distribution is multi-modal. In such
cases, a bank of UKFs can replace the single UKF in the first stage of UIS. Thus, new
formulations compatible with a bank of UKFs can be developed. The performance of such
a modified version should also be investigated against Gaussian-mixture based Kalman
filters. Further work on UIS could also address the fact that the UKF will not be
computationally efficient when number of uncertain parameters is very large. In such
cases, an Ensemble Kalman Filter (EnKF) can replace the UKF in the UIS formulation,
even though it might be less accurate. Moreover, escape mechanisms are developed and
presented in Appendix A to avoid collapse of the UIS in extreme cases. In the future, these

mechanisms should be investigated in greater detail.

The calibration results obtained in Chapters 4 and 5 are obtained using synthetic CS
projects, since we did not have access to real site monitoring data and the computational
demand of using a high-resolution model of a real site in Chapters 4 and 5 was beyond our
available computational resources. The case studies in Chapters 4 and 5 can be repeated
using real site data if the required resources are available. In those cases, the performance
of UIS and the presented RSM-integration method can be re-assessed, and can be

compared with the results of Chapters 4 and 5 case studies.

Finally, in Chapter 5, the meta-model training approach in the full cycles can be evolved to

use the full model only in an optimally chosen subset of the samples in order to increase
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computational efficiency. Solutions to choose that optimal subset of the samples can be

investigated further in future research.
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Appendix A. Escape Mechanisms for UIS

As mentioned in Section 4.5.3, when one of the samples carries all of the weight, i.e., when
one W; is equal to one and all other W; are equal to zero, N,f; becomes equal to one and
the situation is known as degeneracy or collapse of the algorithm (Arulampalam et al.,
2002). Assume UIS collapses or is about to collapse in cycle n and sample . gains
almost all the weight in that cycle so that W, = 1. In this case, the posterior distribution
becomes equal or very close to a Dirac delta function, i.e., n™*(m) = §(m —im,).
Consequently, the prior and posterior distributions of all cycle beyond n become equal or

very close to the same Dirac delta function.

The adaptive nature of UIS, use of the defensive mixture distribution and re-sampling at
every cycle from a continuous proposal distribution, make the degeneracy of the UIS
unlikely. However, in rare cases that N,¢; gets very close to one, escape mechanisms are
required to avoid the collapse of the samples. According to our tests, this might happen if
the posterior distribution is concentrated in a very small area, or when the number of
samples is extremely small. Two escape mechanisms are developed and introduced here to

avoid the collapse of the UIS in these cases.

The first mechanisms is adaptively adjusting the defensive mixture ratio with Ngsr. As
discussed in Section 4.6.3, a larger defensive mixture ratio diminishes the efficiency of
UIS because a large number of samples are drawn from non-important areas of the
parameter space. However, when the algorithm is about to collapse, drawing more samples
from the rest of the parameter space can be beneficial since the collapse might happen near
a suboptimal area and a larger defensive mixture ratio helps searching the parameter space
for better samples. Accordingly, we monitor Nss in all cycles. As shown in Figure A-1, If
N, falls below a certain threshold denoted by N, n will be increased linearly with N,z f
up to a certain limit, so that the maximum 7 is reached when N,¢r = 1. N¢j, and the limits

of 1 are tuning parameters and this escape mechanism.
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Figure A-1: The adaptive adjustment of the defensive mixture ratio () with the effective number of samples
(Negy) in order to avoid sample collapse in UIS.

In our tests, this mechanism was effective in the first case, i.e., when posterior distribution
is concentrated in a very small area. The recommended values for the tuning parameters

based on our tests are Ny, = 0.1 X Ng, Njnin = 0.1 and 1,,,4,=0.5.

The second escape mechanism is preventing the variance of each parameter in the UKF
stage prior distribution, and the proposal distribution for each parameter, to become very
close to zero. To do so, we monitor the covariance matrix of the prior distribution of the
UKF stage in every cycle and prevent the diagonal members of the covariance matrix to
fall below a certain threshold. This threshold is the tuning parameter of this escape
mechanism. In our tests, this mechanism was effective in the second case, i.e., when the
number of samples is extremely small. The recommended value for the threshold of the
diagonal covariance matrix members varies based on the problem. In our tests, a small
fraction of the same element of the covariance matrix of the initial prior distribution, e.g.,

10, responded well.
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Appendix B. Polynomial Regression

In this appendix we describe the process of polynomial regression by least square method
for the purpose of approximating a complex function with a simple polynomial. Assume
g(m) is a complex mathematical model with N,, parameters, m = [ml,mz, ...,mNm].
Assume N, data points (model runs) of the form {[m;, g(Mm;)]:i = 1... N} are available.
First, we derive the formulation for a first order polynomial regression and then we extend

it to higher order polynomials.
Assume a meta-model, g(m), is a linear function of m, to my_ and is defined by

N

gm) = Bo + pimy + Bomy + -+ + B, Mu,, = z pim; (B.1)
i=0

where m, = 1. The difference between the full model g(m) and the meta-model §(m) at

any arbitrary data point m; can be described with an error, & i
y ry p j mod,j

Nm
g(my) = Z Bi i+ émoa;  J=1toNg (B.2)
i=0

where 7, ; is the i parameter of ;. Sum of Squared Errors (SSE) for the N, data points

is obtained by

NSP Nm

2
= j

=0

To minimize the SSE, we obtain partial derivatives of the SSE with respect to S to Sy

and set them equal to zero,

NSP Nm
JdSSE
i .

j=1

or in the matrix form,
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(An"Apn)Bg = Ay Gy (B.5)

where,
1 my, My 1 r’ﬁle
1 m m m
P L 3.6
|1 Myng, Mg, ANm,NspJ
and
Bo
By =P (B.7)
By,
and
[ g(my) ]
6. —| 9 | (B.8)
mE
Lg (mNsp)J

The solution to the system of equations above is obtained by

Bg = (AmTAm)_lAmTGm (B.9)

Now, the output of the full model g(m) for an arbitrary parameter set m can be

approximated by (m) = B"m".

In cases that g(m) is highly nonlinear, the first order linear regression could be a poor
approximation of g(m). Thus, a higher order polynomial can be used instead of the first
order polynomial. Here, we introduce the formulation for a second order polynomial
regression which is the most commonly used from of meta-model used in RSM (Jin et al.,

2003). The formulation for higher order polynomials can be derived in the same fashion.

First, we add the quadratic terms to (B.1),
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gm) = Bo + pymy + -+ By, my_ + By, 41mF + -+ Boy, M+ Pan, 41MaMy

B.10
tot By +(Nm)m1vm—1m1vm (B.10)
mi\ 2
where, (sz) = W We can re-write (B.10) can as
2Nm+(N2m) .
gomy= > B |
k=0

where 1, is one of the parameters term (m;, m? or m;m;;). It can be seen that (B.11) is
still a linear function of the coefficients fj. Thus, the regression formulation for the second
order polynomial can be derived similar to the first order polynomial. Linear regression

formulation for higher order polynomials can be derived in the same fashion.
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