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ABSTRACT 
 

Targeting leukemia stem cells (LSCs) is critical to improving the poor outcome of 

acute myeloid leukemia (AML) patients.  Nutraceuticals (i.e., food derived bioactive 

compounds) provide a wealthy resource for novel anti-cancer, and specifically anti-AML 

drug discovery. With the advent of novel LSC cell lines, preliminary screening of these 

compounds against LSC-like cells can be achieved rapidly. To identify potential novel 

anti-LSC therapeutics, we created and screened a unique library consisting of 288 

nutraceuticals in an MTS assay against TEX leukemia cells, a surrogate LSC line and 

K562, a control cell line which does not possess LSC activity. Here, we identified 

diosmetin, a flavonoid found in citrus fruits and various green plants, as a novel anti- 

LSC agent (EC50: 6.0 ± 1.7µM). To confirm its activity, diosmetin (10µM) reduced 

clonogenic growth of primary AML cells (n = 4) with no effect on normal CD34 positive 

bone marrow derived stem cells (n = 3) observed in colony forming cell assays. A dose-

response and time course analysis performed via the Annexin/PI assay and flow 

cytometry revealed that diosmetin induced apoptosis, as evidenced by the accumulation 

of ANN+/PI- cells. Apoptosis was further confirmed by a subG1 peak after performing 

cell cycle analysis.  

Utilizing the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) tool, we determined that the estrogen receptor (ER) was a potential molecular 

target for diosmetin’s anti-leukemia activity. To assess the role of estrogen receptors, we 

measured ERα and ERβ protein levels in diosmetin sensitive and insensitive cell lines. 

Interestingly, diosmetin sensitive cell lines display significantly elevated ERβ protein 

levels compared to diosmetin insensitive cells. However, this pattern was not observed 
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for ERα. Similar results were observed through quantitative PCR measures, as TEX cells 

displayed levels of ESR2 (ERβ) mRNA, with no observed levels of ESR1 (ERα) mRNA 

levels. The opposite results were observed in K562 cells. Through ER reporter assays, it 

was demonstrated that diosmetin acts as a partial agonist in ERβ reporter cells, increasing 

luciferase activity with increasing doses of diosmetin in ERβ reporter cells. Moreover, we 

find that caspase 8 but not caspase 9 is elevated following diosmetin treatment, consistent 

with the extrinsic pathway of apoptosis and our observed increased in TNF-α, similar to 

previous reports highlighting the link between ERβ agonists and cancer cell death. In 

summary, these studies highlight that estrogen receptors, specifically ERβ, is a novel 

LSC therapeutic target, and the potential role of nutraceuticals as promising compounds 

for future drug discovery endeavours. 
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CHAPTER 1: LITERATURE REVIEW 

 
1.1. Drug discovery and leukemia stem cells 

There are several hallmarks that distinguish cancerous cells from normal cells (i.e., 

uncontrolled proliferation, resisting cell death, evading anti-growth signals).1 In 

leukemia, these distinguishing features can be the result of ineffective differentiation of 

stem cells, which produces heterogeneous progeny. The mechanisms behind this 

heterogeneity are not very well understood, however there is strong evidence that the 

development of leukemia is a hierarchical model, with stem cells at the origin.2 

Current anti-cancer therapies decrease the bulk cancer cell population.1 While this 

may create a dramatic response, long-term remission is unlikely if leukemia stem cells 

are not eliminated. In addition, standard chemotherapy induces cytotoxic effects in 

healthy cells, which have several negative consequences on patients.  In the case of acute 

myeloid leukemia (AML), extremely poor patient outcome is associated with the failure 

of current therapy to target and eliminate leukemia stem cells (LSCs).3 With such poor 

statistics of successful remission without relapse and death (i.e., less than 10%, 5-year 

survival rate for older adults), it is clear that the target for novel AML therapeutics should 

be focused on LSCs.  With the advent of improved cell culture techniques, researchers 

now have the ability to take advantage of high-throughput screening to identify 

compounds with selective toxicity toward LSCs. Rapid screening of large compound 

libraries can be achieved, identifying new molecules in vitro which can be further 

evaluated in vivo. 
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1.2. Acute myeloid leukemia 

AML is a hematopoietic malignancy characterized by an accumulation of immature 

myeloid cells, termed “blasts”, in the marrow.4 As a result, a disruption of hematopoiesis 

occurs, reducing the number of myeloblasts (i.e. blast cells) that become terminally 

differentiated into normal, functioning blood cells. AML is the most common myeloid 

leukemia and consists of many subtypes that share common characteristics. The 

prevalence of AML is approximately 3-8 in 100,000 people, rising to 17.9 in 100,000, in 

populations who are 65 years of age or older4. Although there have been recent advances 

in treatments for other haematological malignancies, poor outcomes for AML patients 

have remained constant for older populations.5 About 15-20 percent of patients fail to 

achieve complete remission and, more than 40 percent of patients who do, will relapse 

within 2 years.6 The prognosis is especially poor for patients over the age of 65, with a 2-

year survival rate of less than 10 percent.7 This is particularly concerning as nearly two 

thirds of AML patients are 65 years or older.8,9  Lastly, AML accounts for 32% of cancer 

related deaths in children.10 

1.2.1. Treatment 
	
  

The main goal of AML therapy is to induce remission and avoid disease 

reoccurrence (i.e., patient relapse). Remission is defined as the presence of fewer than 5 

percent blasts in the bone marrow together with the recovery of normal peripheral blood 

counts.10 Typically all patients who are newly diagnosed with AML are recommended to 

start induction therapy. Traditionally, this includes cytarabine (Ara-C; a pyrimidine 

analog) and daunorubicin (an anthracycline) in a “3+7” regimen.7,10,11 The 3+7 regiment 

consists of daunorubicin at 45mg/m2 intravenously for three days, and cytarabine at 
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100mg/m2 intravenously by continuous infusion for seven days.10 Many side effects result 

from this treatment such as nausea, vomiting, haemorrhage, ataxia, and severe fatigue due 

to the highly cytotoxic nature of these chemotherapeutics. This hinders induction therapy 

treatment options for the majority of AML patients (i.e. those 65 years and older), as their 

tolerance to the cytotoxicity is much lower than that of a younger patient. This is a 

significant problem as it is estimated that only 30 percent of elderly patients are fit to 

undergo treatment beyond palliative care.12 Although there have been efforts to reduce 

the cytotoxic side effects of current treatment standards through the use of other agents, 

there is no alternate treatment that surpasses the success rate of this induction therapy.9  

 Post induction therapy is generally needed following initial therapy, if remission 

has been achieved. Additional therapy is available depending on the ability of the patient 

to withstand further treatment.  These options include: allogenic bone marrow 

transplantation from an human leukocyte antigen-matched donor, autologous bone 

marrow transplantation, or subsequent rounds of chemotherapy.   

 Flaws in current induction therapies are clear; long-term survival is rare due to the 

high rate of relapse. It is obvious that while the current standard of care may eliminate the 

bulk of the immature myeloid cells, it fails greatly in eliminating the cells that are 

responsible for maintaining the disease.   

1.3. Leukemia stem cells  

The hematopoietic system is an organized hierarchy maintained by rare 

hematopoietic stem cells (HSCs) that self-renew and differentiate to produce mature 

blood lineages.4 Leukemia can occur when the regulatory signals for these processes 

become mutated or dysregulated. Leukemia is believed to maintain the hierarchical 
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model that is seen in normal hematopoiesis, with LSCs at the apex (Figure 1).3 Evidence 

has shown the existence of LSCs, which are defined by functional attributes including the 

ability to instigate, maintain and serially propagate leukemia in vivo while retaining the 

capacity to differentiate into committed progeny that lack these properties.4,13,14 The 

earliest studies supporting this claim observed a small population of cells (CD34+/CD38-

) that were able to engraft into immune-compromised mice, whereas the bulk blasts were 

not capable of this.15 Furthermore, the bulk mass has been characterized by limited 

proliferative ability, suggesting that there was a population of malignant progenitor cells 

that must be maintaining the disease.4 Finally, long-term engraftment was observed with 

this cell population (CD34+/CD38-) in mouse xenograft models through serial 

transplantation16, leading to the hypothesis that LSCs retain the ability to regulate self-

renewal through conservation of self-renewal pathways.10 

LSCs represent a very small portion of the AML cell population, accounting for only 

0.1-1% of the blasts.8,17 With the discovery of LSCs, morphological characterization has 

shown that this population expresses surface markers, which are unique from 

hematopoietic stem cells. For example, while LSCs lack the expression of CD90 (Thy-1; 

stem cell marker)18, they have increased expression of CD34+/CD38- (stem cell 

marker/myeloid marker, respectively) phenotype.4 Furthermore, LSCs posses unique 

antigens for receptors including T cell receptor markers, CD9619 and TIM320, as well as 

interleukin 2 and 3 receptor markers, CD2521 and CD12322 respectively. In addition, 

antigens that are associated with cell-cell interactions are found in LSCs including CD448 

involved in cell adhesion, as well as CD4717, which has been associated with the 
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inhibition of phagocytosis as a way of LSC chemo-resistance. The novel LSC antigen, 

CLL-1, has also been identified.23   

It is believed that AML is initiated and maintained by this rare population of LSCs, 

which evade current chemotherapy treatments (Figure 1) through some of their unique 

biological properties such as a quiescent state, multidrug resistant efflux pumps, and 

localized protection in the bone marrow.10 Most of the current therapies for leukemia 

have been designed on general biological properties of malignant blast cells, such as 

rapid cell cycle activity.17,24 However, since LSCs can be found in a quiescent state the 

use of these strategies may not effectively target the LSC population and consequently 

the disease may not be eradicated successfully.25,26 The central role LSCs play in relapse 

and the refractory nature of AML highlights the critical need to develop new 

chemotherapeutic strategies to directly target the LSC population. 

 
 

 

A
.	
  

B	
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Figure 1. Leukemia stem cells (LSCs) are able to evade current chemotherapy 
treatment. (A) Leukemia progression; mutations occur at the progenitor stage, giving 
rise to the LSC. The LSCs produce myeloid blast cells that are unable to differentiate, 
leading to hematopoietic insufficiency. (B) AML treatment; chemotherapy is able to 
eliminate the bulk myeloid blasts, but is unsuccessful in eradicating LSCs. Relapse 
occurs due to the survival of LSCs, which are able to regenerate leukemic blasts and are 
subsequently resistant to chemotherapy. This highlights the need to discover compounds 
that target LSCs. Modified from Jordan, C. The leukemic stem cell. Best Pract. Res. Clin. 
Haematol. 2007.27 
 
1.4. Programmed cell death 

Programmed cell death (PCD) is an important terminal pathway for cells and is 

involved in a variety of biological events that include elimination of harmful cells, 

morphogenesis, and maintenance of tissue homeostasis.28 Dysfunction of programmed 

cell death can lead to physiological implications, most notably the development of cancer 

and resistance to chemotherapy. Increasing evidence suggests that cancer therapy is 

related to, and can be improved by targeting a PCD pathway.29 The ultimate goal of anti-

cancer therapy is to kill cancer cells quickly and effectively. A hallmark of cancer in 

general is the ability to evade PCD, leading to uncontrolled proliferation, which may be a 

reflection of defective or absent cell death machinery.30 In principle, both of these 

components represent a potential target for clinical intervention.  

It is widely accepted that there are three major mechanisms of PCD; apoptosis, 

autophagy and programmed necrosis. Each of these display several phenotypes, affecting 

various intracellular organelles, membranes, and the cell nucleus. Autophagy is a 

catabolic process, which recycles organelles to enhance survival under conditions of 

scarcity or starvation.31 It can be characterized by the generation of autophagosomes, 

large organelles that engulf various cellular components which fuse with lysosomes, to 

generate limiting materials.28 However, in the presence of prolonged autophagy 
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signalling events, the cell may use autophagy as a mode of PCD.31 Programmed necrosis 

is a passive process that was previously thought to be unregulated. Current studies, 

however, have shown evidence that necrosis results from the controlled interplay between 

several signalling pathways, independent from caspases or lysosomes.28,32 Necrosis can 

include signs of regulated process such as mitochondrial dysfunction, enhanced 

generation of reactive oxygen species (ROS), nuclear degradation and ATP depletion.28 

Necrosis is characterized by early loss of integrity of the plasma membrane, allowing 

influx of extracellular fluid which causes swelling of the cell and its organelles.32 

Apoptosis is a genetically regulated process of cell death where cells systematically 

undergo a series of morphological changes and are consumed by surrounding cells.32 Due 

to the relevance of apoptosis in cancer onset, this mechanism of PCD will be explained 

more thoroughly.  

1.5. Apoptosis 

Apoptosis acts as part of a quality control and repair mechanism by eliminating 

damaged or senescent cells. Phenotypic characteristics of apoptosis include cytoplasmic 

and chromatin condensation, membrane blebbing, and the formation of membrane bound 

apoptotic bodies.28 The major biochemical features of apoptosis include activation of 

intracellular proteases, most notably the caspases, and internucleosomal DNA 

fragmentation.32  

Although many genes are involved in the regulation of apoptosis, the key mediators 

are the caspases. Caspases are a group of aspartate-specific cysteine proteases, which 

cleave their substrates on the carboxyl side of the aspartate residue.33,34 There are 14 

known caspases, of which two-thirds have been shown to play a role in apoptosis. 
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Caspases are synthesized as procaspases, which through pro-apoptotic signals are 

digested by protease to form active caspases.28 Apoptosis-related caspases can be divided 

into two groups, the initiator caspases (caspase 8, 9 and 10) and the effector caspases 

(caspases 2, 3, 6 and 7). It is the effector caspases that degrade multiple cell proteins and 

are responsible for the morphological changes that ultimately lead to cell death.33 For 

example, caspases 3 and 7 are involved in the cleavage of the DNA repair protein, 

poly(ADP-ribose)ylation polymerase (PARP).33 PARP is cleaved at the DEVD (Asp-Glu-

Val-Asp) tetra-peptide site which is recognized by both caspase 3 and caspase 7, 

rendering PARP unable to perform DNA repair. Inactivation of PARP allows DNA 

fragmentation to occur, which is characteristic of all apoptotic pathways.32  The 

activation of effector caspases is performed through initiator caspases by cleavage of 

specific aspartate residues that separate the small and large subunits.35 The initiator 

caspases are auto-activated, however they are tightly regulated and often require 

assembly of multicomponent complexes under apoptotic conditions.35  

Caspase activation can commit a cell to two major pathways, death receptor pathway 

(extrinsic pathway) or the mitochondrial pathway (intrinsic pathway). Factors that 

determine which death pathway is activated include the stage of the cell cycle, the type of 

apoptotic stimulus, and the stage of cellular activation.32 Although the pathways are 

distinct, some evidence shows that they may be linked, influencing each other through 

involved molecules.36 

 The mitochondrial pathway is prompted by initiators, which include increased 

intracellular ROS, DNA damage, unfolded protein response, and the deprivation of 

growth factors.37 Intracellular sensors indicate cell damage, ultimately leading to 
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activation of caspase 9, and subsequently leading to cell death (Figure 2A).29 The 

intrinsic apoptotic cascade is regulated by the balance between pro-apoptotic (ex.Bim, 

Puma, Bid, Bax and Bak) and anti-apoptotic (ex. Bcl-2 and Bcl-xl) BCL2 family. 

Increased mitochondrial permeability occurs in response to initiating signals, promoting 

the release of pro-apoptotic proteins, such as cytochrome c, from the intermitochondrial 

membrane space into the cytosol.32 Bax and Bak are Bcl-2 pro-apoptotic proteins which 

are critical players in this loss of mitochondrial membrane potential.37 Cleavage of Bid to 

tBid inhibits the anti-apoptotic BCL2 proteins Bcl-2/Bcl-xl, liberating Bax and Bak.32 

Cytochrome c, when released, is a part of the apoptosome complex. This complex allows 

the activation of caspase 9 which then results in the proteolytic activation of the 

executioner caspases 3 and 7, leading to apoptosis.38 

The death receptor pathway is activated at the cell surface through ligation of 

“death receptors”, initiating apoptosis. Death receptors belong to the tumour necrosis 

factor (TNF) superfamily.16 The most well characterized are Fas, DR3, DR4/5, TNF-R1 

and TNF-R222. Ligation of these receptors initiates a multi-protein cascade starting with 

the activation of caspase 8 or 10, followed by activation of caspase 3 and 7 (Figure 2B). 

Death receptors contain an intracellular death domain (DD), which upon ligand binding 

associates with an adaptor protein called Fas-associated-death-domain (FADD).22 FADD 

interacts with procaspase 8 to form a complex at the receptor called the death inducing 

signalling complex (DISC).23  Once assembled, DISC induces the activation of caspase 8, 

which in turn activates the downstream effector caspases. Crosstalk can also occur 

between the death receptor pathway and the intrinsic pathway, whereby caspase 8 cleaves 
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Bid.22 The truncated form of Bid (tBid) is an inhibitor of the anti-apoptotic proteins found 

within the mitochondria.22 

 

 
 
Figure 2. Pathways of apoptosis. (A) The mitochondrial (intrinsic pathway) involves 
the release of pro-apoptotic proteins leading to the activation of caspase 9. (B) The death 
receptor (extrinsic pathway) involves ligation of death receptors initiating activation of 
caspase 8. Both pathways eventually lead to the activation of caspase 3/7, and ultimately 
apoptosis. Modified from Hotchkiss et al. Mechanisms of Cell death. N Engl J Med. 
200916. 
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1.6. High-throughput screening 

High-throughput screening (HTS) is a drug discovery method as a systematic and 

unbiased approach to identify novel therapeutic agents.39 HTS involves testing a high 

number of compounds very quickly and can be done manually or through a robotic 

system.  

Traditional HTS focused on anti-AML drug discovery, measuring the ability of 

compounds to reduce the viability of leukemia cell lines, has identified many current day 

chemotherapeutic agents such as cytarabine.15 However, these screens have mainly 

targeted AML blast cells, not LSCs. Ideally, screening LSCs as the therapeutic target 

would drive drug discovery towards what it is currently lacking – eradication of LSCs. 

Fortunately, due to recent development of LSC-like cell lines, this methodology can be 

implemented. Further, to design the most robust method for evaluating compounds for 

AML therapeutic potential, parallel screening using a normal cell line would be necessary 

to investigate cytotoxicity towards other cells.15 As mentioned previously, the current 

chemotherapeutics are cytotoxic to normal haematopoietic cells, which is certainly 

unfavourable and difficult for elderly patients to withstand.  

1.6.1. Advent of the LSC cell line 
 

Assessing the toxicity of compounds against primary LSCs is difficult as they are 

exceedingly rare4,40–42, very difficult to purify, and have high cytogenetic variation 

among patients.15 Additionally, primary LSCs cannot be maintained in long term culture 

(only lasting up to 72 hours) without adopting very specialized, and expensive 

techniques.15 To bypass the limitations of using common leukemia cell lines and primary 
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patient samples, the recent advent of new LSC-like cultures have made it possible to 

screen for LSC specific toxicity.  

A novel cell line, TEX, was created by Warner, et al.43 by transducing the 

leukemogenic fusion oncogene TLS-ERG, which is associated with many subtypes of 

AML, into normal HSC from lineage depleted cord blood.43 TEX underwent step-wise 

transformation and immortalization through acquisition of additional genetic changes 

such as LSC markers CD34 (stem cell marker), CD44 (involved in cell-cell adhesion), 

and the stem cell gene CD123 (interleukin-3 receptor).43  

This novel line is driven by LSC-like cells and is able to be cultured long-term, up to 

24 months, differentiate in vitro upon removal of cytokines, and importantly, retain a 

hierarchical organization, unlike traditional leukemia cell lines.15 In vitro and in vivo 

limiting dilution experiments revealed that TEX cells are functionally heterogeneous with 

a minority of cells possessing LSC function (1 in 120 cells in vitro; 1 in 3.8x105 in 

vivo).15 In addition this cell line, uniquely expresses many genes identified in LSCs, as 

well as within the shared LSC/normal HSC signature, indicating that these cells have 

some of the same stem cell regulatory networks and may reflect a more representative 

population for LSCs in vivo.43 Finally, these cells are capable of bone marrow 

engraftment in mice following intrafemoral injection.44 For the purpose of our projects, 

the TEX cell line is the surrogate cell line used as the target to evaluate compounds 

against LSCs.  

1.7. Estrogen receptors 

The estrogen receptor (ER) is a member of the nuclear family of receptor proteins 

that function as DNA transcription factors when bound to their corresponding hormone 
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ligand 17-β-estradiol (E2).45 Once activated by E2, the ER is able to translocate to the 

nucleus and bind to DNA to regulate the activity of genes.45 Elwood V. Jensen 

discovered the classical ER, ERα, at the University of Chicago in 1958.46 It was not until 

1996 that the gene for a second estrogen receptor, ERβ, was identified by Kuiper et al.47 

in rat prostate and ovary using degenerate ERα primers.  

ERα and ERβ are encoded by separate genes and found on separate chromosomes 

(ESR1, locus 6q25.1 and ESR2 , 14q23-24 respectively).48 Furthermore, they produce 

proteins of different sizes; 595 (ERα, 55 kDa) and 530 (ERβ, 59.2 kDa) amino acids.48 

The ERs are widely expressed in different tissue types; however, there are some notable 

differences in their expression patterns. ERα is expressed at high levels in several normal 

tissues classically associated with estrogenic activity including uterus, ovary (theca cells), 

bone and breast.49 ERα is also expressed at high levels in prostate (stroma) and brain but 

to a lesser degree in bladder, liver and thymus.50 ERβ is found at its highest levels in 

normal colon, prostate (epithelium), ovary (granulosa cells), bone marrow and brain, with 

smaller amounts reported in uterus, bladder, lung and testis.49–52  

ERα and ERβ show significant overall sequence homology, and are both 

comprised of five domains (listed from N- to C- terminus; A-F; Figure 3).53,54 The N-

terminal A/B domain is the terminal region involved in activation of gene transcription. 

The C domain, known as the DNA binding domain (DBD), allows ER to dimerize and 

bind to the specific sequence of DNA.55  The hinge region, the D domain, has a role in 

receptor dimerization and in binding to chaperone heat-shock proteins. At the C-terminus 

is the E/F domain, which functions as the ligand-binding domain (LBD), working with 

the N-terminal domain in the regulation of gene transcription.48,56–59 The ER is composed 
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of two active transcriptional domains, activation factor 1 (AF-1) and activation factor 2 

(AF-2). AF-1, located in the A/B domains, is hormonally independent and constitutively 

active when bound to DNA.53 It is responsible for co-activator interaction and amplified 

receptor function.58 AF-2 is a complex region located in the E/F domains and its structure 

and function are governed by ligand binding.60 AF-2 is thought to interact indirectly with 

transcriptional machinery when ligands are bound to the receptor and is involved in 

chaperone protein binding when the receptor is unliganded.58,59 Conformational changes 

occur at AF-2 domain when estrogen is bound, resulting in DNA binding and thus the 

initiation of transcription.61 

 
 
Figure 3. Domain organization and homology of ERα  and ERβ . ERs consist of 5 
domains, N- to -C terminus; labeled A-F. The A/B domain includes the AF-1 and is 
involved in transactivation. The C domain facilitates DNA binding and the D domain is 
the hinge region involved in receptor dimerization. The E/F domain includes the AF-2, 
and contains the ligand binding domain. The percentage indicates the homology retained 
in the corresponding domains between ERα and ERβ. Modified from Marino et al. 
Estrogen Signaling Multiple Pathways to Impact Gene Transcription. Curr. Genomics. 
2006.48 
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1.7.1. Estrogen receptor signaling  
 

Once activated, ERα and ERβ either form homo- or hetero-dimers61, and exert their 

effects through a diverse array of pathways. These pathways mediate genomic and non-

genomic events, which lead to either direct or indirect tissue specific transcriptional 

outcomes (Figure 4).  

Estrogens classically regulate human physiology via diffusion through the plasma 

membrane of target cells and signalling through the intracellular ER. This classical 

genomic signalling, is referred to as genomic signalling, and occurs by direct binding of 

ER dimers to estrogen responsive elements (ERE), which are specific, inverted 

palindromic sequences located on the promoters of target genes (Figure 4A).58 Because 

there are multiple EREs, activated ERs induce many effects. ERs also modulate gene 

expression by a second mechanism that involves protein-protein interaction of ER with 

other transcription factors (stimulating protein 1; Sp-1) and activating protein 1; Ap-1) 

through a process known as transcription factor cross talk (Figure 4B). Through this latter 

transcriptional activation or repression, ERs can therefore influence the expression of 

genes lacking EREs.22-25 In both cases, the recruitment of co-regulators and transcription 

machinery to the transcription start site is initiated, which subsequently activates 

transcription of downstream genes. 

More recently it has been elucidated that ER signalling can occur rapidly through 

non-genomic mechanisms, which involve membrane bound receptors (Figure 4C). 

Membrane-localized ER has elicited activation of downstream pathways such as MAPK, 

PKA and PKC.45 This type of signalling does not require direct binding of DNA to the 

ER, but are mainly mediated by ER-dependent activation or repression of intracellular 
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second messengers.62–64 The mechanistic details of non-genomic signalling have yet to be 

clearly characterized, especially for the E2-ERβ relationship.48 ER can also be activated 

in the absence of a ligand through phosphorylation by the activation of kinases, for 

example, through growth factor receptor activation (Figure 4D).45,65 This action thereby 

activates ERs or associated co-regulators. As an example, the HER2 downstream 

signalling molecules ERK1 and ERK2 can phosphorylate ER, leading to ligand-

independent receptor activation.48 The biological significance of this ER signalling 

remains unclear, but may contribute to hormone-independence of certain tumours.48  

1.7.2. Estrogen receptor activity 
 

Although ERα and ERβ have similar structure, they produce different biological 

effects.45,66 The ERα and ERβ knock-out mice have different phenotypes demonstrating 

the different physiological roles of the two ERs.67–69 The classical ER ligand, E2, binds to 

both ERα and ERβ, however, the two receptors elicit different, and opposing biological 

activity.45 Hence, this suggests that in any given tissue the ERβ/ERα ratio is an important 

determinant to the response to estrogens.70 Estrogens via ERα increases proliferation of 

the breast, uterus and developing prostate71–73 , while estrogens via ERβ inhibits 

proliferation and promotes differentiation in response to ligands in the prostate, 

mammary gland, colon, lung, and immune cells.74–77 
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Figure 4. Estrogen receptor signalling mechanisms. Representation of the 
mechanistically distinct molecular pathways used by the estrogen receptors to regulate 
activity. (A) The classical pathway involves ligand activation and direct DNA binding to 
ERE to initiate transcription. (B) A second pathway that involves indirect DNA binding 
that occurs through protein-protein interactions of other transcription factors following 
ligand binding. (C) Non-genomic signalling occurs rapidly through membrane bound ERs 
which initiate signalling cascades through second messengers after activation by a ligand. 
(D) Ligand-independent signalling can occur through phosphorylation of the ERs by 
activation of kinases, and initiating DNA binding. Modified from Heldring et al. Estrogen 
Receptors: How do They Signal and What Are Their Targets? Physiol. Rev. 2007 45.  
Drawing made using Servier Medical Art Bank. 

  
1.7.3. Estrogen receptors and cancer 
 

ERs have been implicated in the onset, treatment and prevention of cancer. ERα is 

an important target in breast cancer, as it is increased in malignant breast cells, and it 

interacts with estrogen to result in increased proliferation of these cells.78 Selective 
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estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been 

developed to antagonize this action as competitive inhibitors of the ER. Tamoxifen is 

widely used in the treatment of ER positive breast cancers and also as a preventative 

measure for women who have achieved remission.78 While the role of ERβ is not well 

elucidated in breast cancer, it has been associated with favourable prognosis, and disease 

free survival rates, suggesting a protective nature for ERβ.79 Alternatively, studies have 

suggested that ERβ can play an anti-proliferative or pro-apoptotic role in cancer. This 

effect has been observed in prostate and breast cancer80,81, as well as lymphoma70 through 

ERβ agonism. Many ERβ selective agonists are up for development in clinical trials, 

however, to date none are currently approved for the treatment of cancers.57  

1.8. Nutraceuticals and AML 

Nutraceuticals are food-derived bioactive compounds and part of a larger group of 

compounds known as natural health products (NHPs).82 From the earliest days of drug 

discovery NHPs were often the original source of medicinal treatments, typically being 

secondary metabolites containing drug-like activities.83 More recently, NHPs have been 

able to provide not only a drug source, but also templates for synthetic modification.84 

Between 1940 and 2010, a total of 27 anticancer drugs were obtained from natural 

sources.85 Examples include commonly used chemotherapy agents in cancer treatment 

such as vincristine (Madagascar periwinkle), actinomycin D (soil bacteria), and paclitaxel 

(pacific yew tree).85 Additionally, topotecan HCl, dexamethasone, etoposide, cytarabine 

and tamoxifen are mimics of natural products.85 

Benefits of NHPs include: general low toxicity levels and thus harm to the body, or 

normal, healthy cells is minimized.84,86 This can have positive implications for the 
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population of AML patients who are over the age of 65. Additionally, many NHPs have 

already been assessed for cytotoxicity87, and are structurally defined. With only a very 

small portion of known nutraceutical compounds having been tested for novel, anti-

cancer properties and even fewer for anti-leukemic activity, there remains much to be 

explored. Perhaps the most inspiring work while reviewing the clinical utility of 

nutraceuticals as treatment for haematological malignancies is the use of all-trans-retinoic 

acid (ATRA), a key active metabolite of vitamin A. ATRA is best known for the 

treatment of acute promyelocytic leukemia (APML), a subset of AML. After observation 

of ATRA’s in vitro efficacy in the early 1980’s88 for inducing APML cell differentiation, 

ATRA was used successfully to achieve complete remission in APML patients.89 Since 

ATRA was adopted as the main therapy for APML treatments, 5-year survival rates have 

improved to over 90 percent.90,91 

1.9. Diosmetin 

Flavonoids are polyphenolic compounds present in plants known for their protective 

function. More than 4,000 flavonoids mainly classified into flavonols, flavones, 

flavanols, flavanonols, flavanones, and isoflavones have been identified in the edible 

plants, fruit, vegetables, tea, wine, seeds, herbs, spices, whole grains and in the regular 

human diet.92 In the normal US diet, estimated total consumption of flavonoids were 

found to be 1 g/day, including 160mg/day through vegetables and herbs, and an 

additional 290 mg/day through juices and fruits.92 Numerous biological activities of 

flavonoids such as anti-allergic, antibacterial, oestrogenic, anti-tumoural, 

hepatoprotective, antithrombotic and antiviral have been reported in literature.93–95 



	
  

20	
  

To identify novel anti-leukemia agents, our lab screened close to 300 compounds 

from a unique in-house nutraceutical library. This screen identified diosmetin as the most 

potent compound reducing leukemia cell viability. Diosmetin (Figure 5), a compound 

belonging to the flavone class of flavonoids, is widely present in citrus fruits96, plants 

belonging to the genus Teucrium (Lamiacecea)97 and in Portuguese olive leaves98; and up 

to 30 other sources92 found to date. Pharmacologically, diosmetin is reported to exhibit 

anticancer and antimicrobial activities. In vitro anticancer activity of diosmetin was 

evaluated against various tumour cell lines and found that it had significant anticancer 

activity against the brain carcinoma U251 cell lines and moderate activity against breast 

carcinoma MCF7 cell lines.92 In MDA-MB 468 and MCF7 breast cancer cell line, 

diosmetin has been shown to inhibit proliferation, as a result of cytochrome P450 CYP1 

bioactivation.99 In addition, diosmetin has been shown to have growth inhibitory effects 

on P-388 lymphocytic leukemia cells100 as well as  pathogens such as Bacillus subtilis 

and Trichophyton rubrum.101 Although these reports suggest diosmetin indeed has 

beneficial biological activity, the body of data evaluating its potential is still relatively 

small. We report in this thesis a novel function of diosmetin as a potential ERβ agonist. 

 
Figure 5. Structure of diosmetin. Diosmetin is a member of the flavone class of 
flavonoids, found in various sources such as citrus peel and olive tree leaf. Chemical 
name: 5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-benzopyrone. Image taken from 
ChemBankID:2060301. 
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CHAPTER 2: OBJECTIVES AND HYPOTHESIS 
 
The objectives of this project are: 

1) Create and evaluate a nutraceutical specific library for anti-LSC activity; 

2) characterize and evaluate lead compound diosmetin’s mechanism of action and genetic 

target(s) in acute myeloid leukemia cells in vitro and; 3) determine diosmetin’s ex-vivo 

efficacy in primary AML patient cells.  

These objectives fulfilled the hypothesis that: Diosmetin imparts cell death in 

LSCs through estrogen receptor beta (ERβ) activation, initiating caspase-8 and TNFα 

mediated apoptosis. 

Short-term goals: 

The short term goals are to determine diosmetin’s mechanism of action and 

activity in AML, which may further warrant investigation for it’s clinical anti-AML 

application.  

Long-term goals: 

Upon successful completion of the aforementioned short term goals, the next 

steps would be to; 

1) to investigate efficacy and safety in animal models, and  

2) to further investigate the mechanism by which ERβ activation imparts 

LSC-specific death, including assessment of protein-gene interaction between 

ERβ and the promoter sequences and target genes. 
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CHAPTER 3: MATERIALS AND METHODS 
 
3.1. Cell culture 

Unless otherwise stated, all cells were cultured in media supplemented with 10% 

fetal calf serum (FCS; Hyclone, Logan, UT) and antibiotics (100units/mL of 

streptomycin and 100µg/mL of penicillin; Sigma Chemical; St. Louis, MO). All cell lines 

were incubated in a humidified air atmosphere containing 5% CO2 at 37°C.  

KG1a AML, OCI-AML2 AML, K562 chronic myeloid leukemia, HL-60 

promyelocytic leukemia and LP1 human myeloma cell lines were cultured in Iscove’s 

Modified Dulbecco’s Medium (IMDM; Life Technologies; Grand Island, NY).  

TEX leukemia cells were cultured in IMDM supplemented with 15% FCS, antibiotics, 

20ng/mL stem cell factor, 2ng/mL IL3 (Peprotech; Hamburg, Germany), and 2mM L-

glutamine (Sigma Chemical). DU145 prostate cancer, U937 human lymphoma, HeLa 

adenocarcinoma cell lines were cultured in RPMI (Life Technologies).  

Primary human AML samples were obtained from Dr. Mark Minden (Princess 

Margaret Cancer Center), and were cultured at in IMDM, supplemented with 20% FCS 

and antibiotics. These cells contained at least 80% malignant cells among the 

mononuclear cells from consenting AML patients. CD34+ hematopoietic cells from 

normal bone were purchased from Stem Cell Technologies (Vancouver, BC). The 

institutional ethics review boards (University Health Network, Toronto, ON, Canada and 

University of Waterloo, Waterloo, Ontario) approved the use of human  

tissue for this study. 
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3.2. Flow cytometry 

All flow cytometry assays were performed on a Guava easyCyte 8HT Bench Top 

Flow Cytometer (Millipore, Billerica, MA) using GuavaSoft 2.2.3 (Millipore) flow 

cytometry software. 

3.3. Cell growth and viability 

Cell growth and viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) reduction 

assay (Promega, Madison, WI)87,102, Annexin V and PI (ANN/PI) staining (Biovision, 

Mountainview, CA) via flow cytometry102, and colony formation cell assays (CFC)44 , 

according to the manufacturer’s protocol and as previously described. These assays will 

be described more thoroughly within this section. 

3.4. MTS cell viability assay 

The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium, inner salt (MTS) assay is a common colorimetric method for determining 

the number of viable cells in proliferation. Typically, 5µL of drug or vehicle control was 

added to 95µL cells seeded in a 96-well plate at a density allowing 90% confluency at the 

end of the desired incubation time (24-72 hours). 20µL of MTS reduction assay 

(Promega) was added directly to each well and incubated for 2-4 hours at 37°C.  This 

assay works on the principle that the mitochondrial dehydrogenase enzyme reduces the 

MTS salt to a coloured formazan and the absorbance is read directly by a SpectraMax M5 

spectrophotometer (Molecular Devices, Sunnyvale, CA) at 492 nm.32 Visibly, wells with 

proliferating cells results in a dark brown colour, whereas in wells with dead or non-

proliferating cells a yellow colour will be present. 
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3.5. Nutraceutical screen 

A unique nutraceutical library was created and screened similar to previously 

described methods.44 Nutraceuticals were obtained from Chengdu Biopurify 

Phytochemicals Ltd. (n = 288, Sichuan, China), and were reconstituted in dimethyl 

sulfoxide (DMSO; Sigma Chemical) to make 20mM stock solutions. The compounds 

were then diluted further to 200µM stock solutions in phosphate buffered saline (PBS; 

Life Technologies). 100µL of TEX (1.5x105/well) or K562 (1x105/well) cells were 

seeded in 96-well polystyrene tissue culture plates (CELLSTAR, VWR, Mississauga, 

ON). After seeding, cells were treated with 5µL aliquots (1µM and 10µM final 

concentration) of library compound with a final DMSO concentration of less than 0.05% 

v/v. Kinetin riboside or tigecycline (Sigma Chemical), compounds known to induce TEX 

cell death, were used as positive controls at 10µM final concentration. Cell growth and 

viability were measured after 72 hours by the MTS assay. Twelve of the most promising 

compounds from the screen that induced cell death in TEX, but not K562 cells, were 

chosen for further validation in an additional MTS screen (5µM and 10µM final 

concentration). Lead compound, diosmetin (Sigma Chemical, Toronto Research 

Chemicals; Toronto, ON) was selected as the compound of interest in this project, and 

reconstituted in DMSO.  The stock solution (5mM) was diluted in PBS, aliquoted and 

stored at -20°C to prevent excessive freeze thaw cycles. 

3.6. Cell surface marker analysis 

 Eppendorf tubes containing 1x105
 
cells from each cell line being tested were 

prepared. 2µL of a fluorescently conjugated cell surface receptor antibody was added to 

each tube, and incubated for 30 minutes at 2-8°C in the dark. Cells were then washed 
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twice in staining buffer (PBS containing 5% FCS) and analyzed using flow cytometry. 

The antibodies assessed are listed in Table 1. BD CompBeads anti- mouse Ig, k particles 

(BD Biosciences) were used as a positive control. In addition, a colony formation assay 

was used to assess progenitor capabilities of both TEX and K562. Refer to section 3.7 for 

full methodology. 

Table 1. Cell Surface Marker Antibodies   
Surface Marker Isotype Fluorescent tag Manufacturer 

CD33 Mouse IgG1 PE BD Biosciences 
CD19 Mouse IgG1 APC BD Biosciences 
CD34 Mouse IgG1 APC BD Biosciences 
CD38 Mouse IgG1 FITC BD Biosciences 

 
3.7. Colony formation cell assays 

Colony formation cell (CFC) assays with primary AML and normal hematopoietic 

stem cells were performed, as previously described.102 CD34+ bone marrow-derived 

normal stem cells (StemCell Technologies) or AML mononuclear cells (1x105cells/mL) 

were suspended in IMDM media containing 2% FCS.  300µL of cell suspension was 

added to 3mL of MethoCult GF H4434 medium (StemCell Technologies) containing 1% 

methylcellulose in IMDM, 30% FCS, 1% bovine serum albumin (BSA; Sigma 

Chemical), 3U/mL recombinant human erythropoietin, 10-4M 2-mercaptoethanol (2ME), 

2mM L-glutamine, 50ng/ml recombinant human stem cell factor, 10ng/mL recombinant 

human granulocyte macrophage-colony stimulating factor and 10ng/mL recombinant 

human IL-3, in a 15 mL polystyrene tube. Treatment included diosmetin (10µM and 

20µM concentrations) or a vehicle control added directly to the tubes, vortexing at 

medium speed for no longer than 7 seconds. 1.1mL of media was plated in each 35 mm 

dish (104 cells/dish) (Nunclon; Rochester, NY) using a 5mL syringe with a blunt tip 



	
  

26	
  

needle (Covodein, Minnapolis, MN). Duplicate dishes per treatment were stored in a 

100mm Petri dish with an additional uncapped 35mm dish containing distilled water to 

control humidity. The plates were incubated for 7-14 days at 37°C with 5% CO2 and 95% 

humidity. The colonies were counted on an inverted microscope with a cluster of 10 or 

more cells counted as one colony. 

3.8. Annexin V/propidium iodide staining 

Assessments of early apoptosis and cell death were achieved using Annexin 

V/Propidium Iodide (ANN/PI) staining and flow cytometry. When cell death is 

occurring, phosphotidylserine (PS) is translocated to the outer layer of the membrane, the 

external surface of the cell.103 This occurs in the early phases of apoptotic cell death 

during which the cell membrane itself remains intact. Annexin V-FITC (ANN) is a 

calcium dependent phospholipid-binding protein with high affinity for PS.103 Hence, this 

protein can be used as a sensitive indicator for PS exposure upon the cell membrane. 

Propidium iodide (PI) use is based on the principle that apoptotic cells, among other 

typical features, are characterized by DNA fragmentation and, consequently, loss of 

nuclear DNA content.104 Use of a membrane impermeable fluorochrome, such as PI, that 

is capable of binding and labeling DNA can confirm that the cell is undergoing apoptosis 

and not necrosis.104 

Early apoptosis was identified as ANN+/PI-, dead cells as ANN+/PI+, and viable 

cells ANN-/PI-. Cells were seeded in a 96-well plate, using the same method described in 

performing MTS assays. After treatment, cells were centrifuged and resuspended in 

250µL Annexin buffer containing 1µL ANN (150µg/mL, Biovision) and 2.5µL of PI 

(250µg/mL, Biovision) per well. Each experiment included unstained and single stained 
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controls to set for compensation. The cells were incubated at room temperature in the 

dark for 15 minutes before collection and analysis using the flow cytometer.   

3.9. SubG1 peak analysis  

A cell cycle analysis was performed as previously described102 to assess the presence 

of a sub G1 peak, an apoptosis indicator. During normal cell cycle, there are various 

phases of DNA within the cell. Cells will have an amount of DNA in the G0/G1 phase 

and double that amount of DNA when in the G2/M phase.35 When cells are synthesizing 

their DNA during the S phase, the amount of DNA present is anywhere between these 

“1X” and “2X” amounts.35 Anything less than the G0/G1 phase or “sub-G1” indicates 

that cells are undergoing DNA fragmentation, characteristic of apoptosis.35 Briefly, TEX 

cells treated for 48 hours with 10µM diosmetin, were harvested, washed with cold PBS 

and re-suspended in PBS and cold absolute ethanol. Cells were incubated at 37°C for 30 

minutes following treatment of 100ng/mL of DNase-free RNase A (Invitrogen; Carlsbad, 

CA). The cells were then washed with cold PBS, resuspended in PBS and incubated with 

50µg/mL of PI for 15 minutes at room temperature in the dark. DNA content was 

measured by flow cytometry and analyzed with the Guava Cell Cycle software 

(Millipore).  

3.10. Caspase activation 

Caspase-3/7 activation, and thus apoptotic activity induced by diosmetin, was 

measured using the Apo-ONE Homogeneous Caspase-3/7 (Promega) kit and performed 

as previously described.105 This assay involves the non-fluorescent caspase substrate Z-

DEVD-R110, which upon cleavage by caspase 3/7 creates the fluorescent rhodamine 

110. TEX cells (1.5x105) were seeded in a 96-well plate and treated with 10µM 
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diosmetin over a 72-hour time course, as well as 50µM Z-VAD-FMK (Z-VAD; R&D 

Systems, Minneapolis, MN) and 1µM doxorubicin (Sigma Chemical) as controls. After 

treatment, 50µL of APO-ONE homogeneous caspase-3/7 reagent was added to each well 

of a 96-well white walled plate containing 50µL of blank, control or assay treatment. The 

plate was gently centrifuged at 300 RPM for 30 seconds, and then incubated for 30 

minutes at room temperature. Fluorescence was measured using a spectrophotometer at 

an excitation wavelength of 485nm and an emission wavelength of 530nm. 

Caspase-8 substrate (Ac-LETD-AFC; Enzo Life Sciences, Farmingdale, NY) and 

caspase-9 substrate (Ac-LEHD-AMC; Enzo Life Sciences) were used according to the 

manufacturer protocol to measure caspase activation. Briefly, TEX cells were treated 

with diosmetin over a 48-hour time course and lysed. A reaction buffer (substrate stock 

solution, 1M DTT, 100mM EDTA and 20mM pH 7.4 Tris buffer) was prepared with a 

final substrate concentration of 50µM. Equal volumes of cell lysate and reaction buffer 

were mixed in a white walled 96 well plate and incubated for 60 minutes at 37°C. 

Fluorescent measurements were taken from the wells using the appropriate emission and 

excitation wavelengths (caspase 8; 404nm and 505nm respectively, caspase 9; 340nm and 

440 nm respectively).  

An additional study was performed to investigate caspase involvement. TEX cells 

were co-incubated with increasing concentrations of diosmetin (0-20µM final 

concentrations) and Z-VAD (50µM final concentration) and cytotoxicity was assessed 

using a 72-hour MTS assay. We would expect TEX cell death induced by diosmetin to be 

abrogated by Z-VAD if the mechanism of cell death is indeed apoptosis.   
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3.11. Reactive oxygen species detection 

In response to treatment, intracellular reactive oxygen species (ROS) were detected 

by staining cells with the fluorescent dye 2’,7’-dicholorofluorescein diacetate 

(DCFH/DA; Sigma Chemical) as previously described.44  DCFH/DA is able to bypass the 

phospholipid bilayer, and gain access to the interior of the cell where esterases will 

hydrolyze its acetate group.106 The molecule remains inactive until the interaction with 

peroxides, peroxide radicals and hydroxyl radicals, at which point it fluoresces at 

529nm.106 TEX cells (5x105) were treated with 10µM or 20µM diosmetin over a 48-hour 

time course prior to analysis. The treated cells were harvested and resuspended in 5µM 

DCFH/DA in PBS, incubated at 37°C for 30 minutes, then read and analyzed by flow 

cytometry.  

With the use of antioxidants, we assessed if ROS served an important role in 

diosmetin induced apoptosis. Using an MTS assay, TEX cells (1.5x105) were incubated 

with 10µM diosmetin alone, or co-incubated with either 1mM N-acetylcysteine (NAC) or 

1mM α-tocopherol (α-toc) (Sigma Chemical) antioxidants to assess if ROS played a role 

in diosmetin-mediated cell death. This study was then repeated using an ANN/PI assay. 

NAC is an artificial antioxidant known to inhibit ROS-induced apoptosis107. NAC’s anti-

ROS activity occurs through scavenging of free radicals via redox potential of thiols or 

increasing glutathione levels in the cell.108 α-toc acts as a hydrophobic chain breaking 

antioxidant that exerts a protective role against free radical damage to unsaturated lipids, 

and hence membranes and tissues.109 We would expect that diosmetin’s activity would be 

abrogated by co-incubation with antioxidants, if ROS were functionally important in the 

cell death mechanism elicited by diosmetin.  
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3.12. Intracellular cytokine detection (TNFα) 

 TNFα detection was achieved using a flow cytometry assay, as previously 

described.110 TEX and K562 (5x105) cells were seeded in 96-well plates and treated with 

10µM diosmetin or 5mg/mL lipopolysaccarides (LPS) (Sigma Chemical) at time points 

over 48 hours. The cells were then harvested and fixed using 3% paraformaldehyde 

(Sigma Chemical) in PBS for 20 minutes at room temperature. The cells were then 

permeabilized using BD Perm/Wash buffer (BD Biosciences; San Jose, CA), and stained 

with APC mouse anti-human TNF antibody (BD Biosciences) according to the 

manufacturer protocols. Briefly, the fixed cells were incubated in 1X BD Perm/Wash 

buffer for 15 minutes at room temperature. The cells were collected and resuspended in 

50µL of BD Perm/Wash buffer containing 2µL of TNF antibody and incubated for 30 

minutes in the dark at 4°C. The cells were then washed in PBS, and resuspended in 

staining buffer (PBS containing 2% FCS and 0.09% sodium azide) to be analyzed via 

flow cytometry. 

3.13. Predicted target using bioinformatics (DAVID)  

We collaborated with Dr. Andrew Doxey’s lab that specializes in bioinformatics at 

the University of Waterloo, to gain insight on possible predicted molecular targets of 

diosmetin’s selective cytotoxic actions. Given the structure of diosmetin, the Doxey lab 

utilized the Protein Data Bank (PDB; a structural database) for protein structures 

physically bound to a compound similar to that of diosmetin. This search produced a 

small set of structures to analyze. This list of proteins was expanded, using the Possum 

Search K software, to related proteins within a similar binding site composition to obtain 

a list of additional structures, yielding approximately 30 structures in total. To summarize 
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the functions common to and statistically overrepresented within this group, the list of 

proteins was analyzed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) tool. DAVID organizes these lists by their functional annotations 

and assists in recognizing patterns within a set of similar structures.111 A summary of 

clusters involving transcription and gene expression was produced to predict structures 

that are involved in the activity of diosmetin. 

3.14. Evaluation of multiple cell lines  

Multiple cancer cell lines were evaluated for sensitivity to diosmetin treatment using 

an MTS assay. Dose-response curves evaluating diosmetin treatment were generated for 

the following cell lines: TEX, K562, LP1, DU145, HL-60, HeLa, KG1a, U937, AML2 

(see cell culture methods for cell line details). The two cell lines displaying the greatest 

sensitivity to diosmetin treatment, TEX and LP1, and the two cell lines that were most 

insensitive to diosmetin treatment, DU145 and K562, were further analyzed for ER 

protein expression via Western blotting.  

3.15. Western blotting 

3.15.1. Whole Cell Lysate Preparation 
 
 Cold RIPA buffer (Sigma Chemical) supplemented with protease inhibitors 

(Sigma Chemical) was added in a 2:1 ratio to cells collected from each cell line. The cells 

were lysed by vortexing continually for 20 minutes on ice. The protein was collected by 

centrifuging the tubes at 13,200 rpm for 20 minutes at 4°C and collecting the supernatant.   

 
3.15.2. Protein Quantification and Sample Preparation 
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 Total protein content was quantified using the BCA protein assay. For each assay, 

a standard curve was generated using bovine serum albumin (BSA) stock solution (10mg 

BSA, 10mL distilled water) diluted in distilled water to make increasing concentrations 

from 0mg/mL-10mg/mL. Each protein sample was diluted 10 fold with distilled water 

(eg. 10µL protein in 90µL distilled water). On a 96-well plate, 10µL of standards and 

diluted samples were loaded in triplicate. To each well, 200µL of bicinchoninic acid 

(BCA) working reagent (50 parts BCA to 1 part copper II sulphate; Sigma Chemical) was 

added. The plate was incubated at 37°C for 30-60 minutes and the optical density (OD) 

was read on the SpectraMax M5 spectrophotometer at 527 nm. Samples were then 

prepared as follows: 30-50µg total protein (calculated from standard curve) with 5µL 

sample buffer (240mM Tris-HCl at pH 6.8, 6% w/v SDS, 30% v/v sucrose, 0.02% w/v 

bromophenol blue, and 50mM DTT) and RIPA buffer to a total volume of 30µL. Samples 

were either stored at -80°C for later used or boiled at 95°C for 5 minutes, then loaded into 

12 % polyacrylamide gel wells (25µL per sample per well). 

3.15.3. SDS-PAGE and Immunodetection 
 

Proteins were separated by size using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). The gels containing loaded protein samples were run in a 

Mini Trans-Blot Cell (Bio-Rad, Hercules, CA) with electrophoresis buffer (25mM Tris 

base, 190mM glycine, 3.5mM sodium dodecyl sulfate) at 150 V for 1 hour. Trans-Blot 

semi-dry transfer cell was used to transfer the proteins to PVDF membrane (Bio-Rad) in 

transfer buffer (25mM Tris base, 190mM glycine, 20% v/v methanol). The cell was run 

at 20 V for 45minutes.  
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Membranes were then blocked using 5% BSA in Tris-buffered saline (20mM Tris 

base, 150mM NaCl, pH 7.6) with 0.1% Tween (TBS-T) for 1 hour at 4°C. After 

discarding the blocking solution, the membranes were incubated with primary antibodies 

in blocking solution (Table 2) overnight at 4°C. Membranes were washed 4 times in 

TBS-T, and then incubated with the appropriate secondary antibody in blocking solution 

for 1 hour at room temperature. Membranes were washed an additional 5 times in TBS-T. 

Protein detection was achieved by incubating the membranes in Enhanced 

Chemiluminescence (ECL; GE Healthcare, Baie d’Urfe, QC) for 5 minutes at room 

temperature, according to the manufacturer’s instructions. Luminescence was captured 

after 5-10 min using the Kodak Image Station 4000MM Pro and analyzed with a Kodak 

Molecular Imaging Software Version 5.0.1.27. To ensure equal loading, membranes were 

stained with Ponseau S, as previously described.112 

Table 2. Antibodies 

 
3.16. mRNA quantification  

3.16.1. RNA Isolation 
	
  

RNA was isolated from untreated cells (TEX, LP1, DU145, K562 and primary 

AML patient samples) using the GenElute Mammalian Total RNA Miniprep Kit (Sigma 

Chemical) according to the manufacturer’s protocol.  No more than 1 x 107 cells were 

pelleted, resuspended in 250-500µL of lysis buffer, and briefly vortexed. The lysate was 

Antibody Isotype Concentration Secondary 
Concentration 

Molecular 
Weight 

Manufacturer 

ERβ Rabbit 1:1000 1:8000 55 kDa Santa Cruz 
ERα Rabbit 1:1000 1:8000 60 kDa Santa Cruz 

GAPDH Rabbit 1:1000 N/A 37 kDa Thermo 
Scientific 

α-tubulin Rabbit 1:5000 1:10000 50 kDa Santa Cruz 
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quickly added to a filtration column and centrifuged for 2 minutes at maximum speed 

(14,000 x g). Equal volume of 70% ethanol was added to the lysate and transferred to a 

binding column. The column was centrifuged at maximum speed for 15 seconds and the 

flow through liquid was discarded. The column was washed with Washing Buffer 1, 

followed by two washes with Washing Buffer 2. The column was centrifuged at 

maximum speed for 15 seconds each time, decanting the flow through liquid between 

washes. The binding column was centrifuged an additional time at maximum speed for 2 

minutes to ensure filter drying. 50µL of elution buffer was added to the column and 

centrifuged for 1 minute to elute the RNA. The total RNA was quantified and checked for 

purity using the NanoDrop 2000c spectrophotometer (Thermo Scientific). The RNA was 

then either used immediately for cDNA synthesis or store temporarily at -20°C for later 

use. 

3.16.2. cDNA synthesis 
 

cDNA was synthesized using the RevertAid First Strand cDNA Synthesis Kit 

(Thermo Scientific, Waltham MA) and performed according to the manufacturer’s 

protocol. The following reagents were added to a sterile, nuclease-free tube on ice (1 tube 

per RNA sample): 1µL of oligo dT primer (0.5µg/µL), RNA extract amounting to 2.5µg, 

and nuclease free water up to 12µL. The tubes were then incubated at 65° C for 5 minutes 

in the Genius PCR thermal cycler (Techne, Staffordshire, UK).  The tubes were retrieved 

from the thermal cycler and chilled on ice for 15 seconds before the following 

components were added to each sample: 4µL of 5X Reaction Buffer, 1µL of RiboLock 

RNase inhibitor (20U/µL), 2µL of dNTP Mix (10mM) and 1µL of RevertAid M-MuLV 

RT (200U/µL). The tubes were returned to the thermal cycler and incubated for 60 
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minutes at 42°C, then 70°C for 5 minutes. The cDNA was either used immediately or 

stored at -20°C short term.  

3.17. Real Time Quantitative PCR 

Real-time quantitative polymerase chain reaction (qPCR) was performed as 

previously described87 in triplicate using an ABI 7900 Sequence Detection System 

(Applied Biosystems). For each reaction, 25ng RNA equivalent cDNA, 12.5µL of SYBR 

Green PCR Master mix (Thermo Scientific), 0.75µL (300nM) of ERα- and β-specific 

primers (Table 3), and nuclease free water up to 25µL were added to the wells of a PCR 

microplate (Thermo Scientific). GAPDH primers, supplied by the Thermo Scientific 

cDNA Synthesis Kit were used as a loading control. Relative mRNA expression was 

determined by using the ΔΔCT method as previously described102, normalizing to the 

GAPDH controls, and efficiency was calculated using LinRegPCR analysis 

software.113,114 

Table 3. PCR Primers 
Gene Forward  Primer (5’-3’)  Reverse Primer (5’-3’) 
ERα (ESR1) TGCTCAATTCCAGTATGTACC- ATGAGGTGAGTGTTTGAGAG 
ERβ (ESR2) CATTATGGAGTCTGGTCCTG TTCGTATCCCACCTTTCATC 

 
3.18. Estrogen receptor reporter assay 

A Human Estrogen Receptors Reporter Assay Panel (Indigo Biosciences, State 

College, PA) was performed according to manufacturers protocol. The Panel provided 

the necessary materials to investigate ERβ and ERα activation and inhibition by a 

compound of interest. Reporter cells were provided, which are non-human mammalian 

cells engineered to express ERβ or ERα separately. The cells also include the luciferase 

reporter gene functionally linked to a responsive promoter. Thus, quantifying changes in 
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luciferase expression in the treated reporter cells provides a sensitive surrogate measure 

of the changes in ER activities. Luciferase gene expression occurs after ligand-bound ER 

undergoes nuclear translocation, DNA binding, recruitment and assembly of the co-

activators, and ultimately expression of the target gene.   

The ER reporter cells were thawed and resuspended in Cell Recovery Medium 

(CRM). Diosmetin was diluted to 2x the desired final concentrations in Compound 

Screening Media (CSM) supplied in the kit. Briefly, to evaluate diosmetin’s capacity for 

ER activation (agonist assay), 100µL of ER reporter cell suspension was seeded in white 

walled 96-well plates, and immediately dosed with 100µL of increasing concentrations of 

diosmetin. Known ER agonist, 17-β-estradiol, was used as a positive control at the 

submaximal concentration, provided by the manufacturer, specific to the reporter cells 

(ERβ; EC75=150pM, ERα; EC80=1500pM).  To investigate diosmetin’s ER inhibition 

potential (antagonist assay), the same protocol as previously described was applied, 

however, 17-β-estradiol was added directly to the cell suspension before being plated at 

the EC75-80 final concentrations. Following a 22-24 hour incubation period, the media was 

discarded from the plates and 100µL of luciferase detection reagent was added to the 

wells. The plates were incubated at room temperature in the dark for 20 minutes. Light 

emission was quantified by the SpectraMax M5 plate-reading luminometer every 7 

minutes for a total of 35 minutes. The luminescence was then normalized to the control 

(untreated TEX cells). 



	
  

37	
  

3.19. Statistical analysis 

 Unless otherwise stated, the results are presented as mean ± SD. Data were 

analyzed using GraphPad Prism 4.0 (GraphPad Software, USA). p<0.05 was accepted as 

being statistically significant.    

3.20. Additional studies 

3.20.1. Flavonoid Screen 
 
From the 288 compound nutraceutical library, 54 flavonoids (Chendu Biosciences) 

were selected for additional assessment. We were interested in evaluating flavonoids, as a 

group, for selective toxicity in LSC. Using an MTS viability screen, these flavonoids 

were re-screened for cytotoxicity in TEX and K562 cell lines, similar to the original 

screen. Six flavonoids were identified that selectively induce cell death in TEX cells. The 

six “hits” were further validated using the ANN/PI assay via flow cytometry, and found 

that four flavonoids; genistein, luteloin, apigenin, and kaempferol, elicit dose-dependent 

TEX cytotoxicity, with little effect on K562 (control) cells.  

3.20.2. Xenograft mouse models 
 

TEX leukemia cells (2.5x106) were injected subcutaneously into the left flank of 

NOD/SCID (n = 7, Jackson Laboratory, Bar Harbor, ME). The mice were selected at 

random to receive either diosmetin (n = 4) (30 mg/kg/every other day; in 0.9% NaCl and 

0.01% tween-80) or vehicle control (n = 3) (0.9% NaCl and 0.01% tween-80) 

intraperitoneally after palpable tumours were formed. Measurements of tumor volumes 

(tumor length × width2 × 0.5236) were taken every other day using a caliper. Mice were 

sacrificed by asphyxiation by carbon dioxide at day 30, when tumour burden was 

apparent. At this time, tumours were excised, weighed and recorded. All animal studies 
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were carried out according to the regulations of the Canadian Council on Animal Care 

and with the approval of the University of Waterloo, Animal Care Committee. 

3.20.3. Combination studies 
 

Drug interactions between diosmetin and the common chemotherapies, cytarabine 

(Ara-C), daunarubicin (Da) (Sigma Chemical) were assessed using an MTS viability 

assay and analyzed using the Calcusyn (software) median effect model to determine 

combination index (CI) values. CI values of <1 indicate synergism, >1 indicate 

antagonism, and CI=1 indicates no interaction.115,116 The MTS assay included a dose-

response of diosmetin and each chemotherapy separately and together, at 0, 0.5x, 0.75x, 

1x and 2x the IC50 for each drug.  

3.20.4. Effect of tamoxifen on TEX cell viability 
	
  
 Tamoxifen is a SERM widely known for it’s ER antagonist activity through ERα 

binding activity in breast tissue.117 Some breast cancers use estrogen as a means of cell 

proliferation, by binding to the ER and eliciting this response.78 Tamoxifen is used as a 

treatment option for ER positive breast cancers in pre-menopausal women.78 In breast 

tissue, tamoxifen is metabolized into compounds that bind the ERα, but does not activate 

it, therefore blocking the proliferative action of estrogen.117 However, tamoxifen has been 

shown to have agonist activities as well, in tissues such as the endometrium and bone118, 

thus eliciting cell- and tissue-specific responses. To evaluate tamoxifen’s potential 

activity in LSC, we treated TEX cells with increasing concentrations of tamoxifen (0-

100µM, Sigma Chemical) over 72-hours and assessed cell viability using the MTS assay. 

In addition, we co-incubated these increasing concentrations of tamoxifen with 10µM 

diosmetin in a 72-hour MTS assay. 
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CHAPTER 4: RESULTS 
 
4.1.  A nutraceutical screen for novel anti-AML compounds identifies 
diosmetin 
	
  
 To identify nutraceuticals with anti-AML activity we compiled a unique library 

consisting of 288 nutraceuticals from commercially available sources.  The library was 

screened against the surrogate LSC cell line TEX and a control cell line, K562; which is a 

CML cell line that does not possess LSC properties, using the MTS assay following a 72- 

hour incubation period (Figure 6A&B). Twelve lead compounds from this screen, which 

imparted the greatest reduction in TEX cell viability without affecting K562 cell 

viability, were validated in secondary screens (Figure 6C&D). It was found that 

diosmetin, a flavonoid largely found in citrus fruits96 (Figure 6E), was the most potent 

compound, inducing cytotoxicity at relatively low doses. Diosmetin’s activity was further 

validated by generating a dose response curve using the Annexin/PI assay following 72 

hours of incubation (IC50: 6.1 ± 0.5µM) and by time course analysis (Figure 6F&G).   
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Figure 6. Diosmetin (Dios) was identified as a novel anti-LSC agent. (A) A MTS 
screen of 288 nutraceutical compounds, determined that dios was the lead “hit”, reducing 
the viability of a surrogate LSC cell line, TEX with the highest potency, (B) but does not 
reduce the viability of the control line, K562, a chronic myeloid leukemia cell line.  (C) 
Displayed are the top 12 cytotoxic compounds validated from the initial screen in Tex 
and (D) K562. (E) The structure of diosmetin, a flavonoid found in citrus fruits, among 
many other sources. (F) Dios reduces TEX cell viability in a dose and (G) time dependent 
manner. ***p<0.001. All experiments, with exception of the initial screen, were 
performed three times  in triplicate, representative figures are shown.  
 
4.2.  Cell surface marker analysis 

To ensure that our cell line TEX is representative of an LSC population, and that the 

control line is not, our lab performed cell surface marker analysis. Stem cell markers 

CD34+/38- and myeloid markers CD33+/19- were screened using fluorescently tagged 

antibodies. Flow cytometry was used to quantify the proportion of these stained stem cell 

and myeloid markers. We determined that our Tex cell line contains a high proportion of 

both myeloid and leukemia stem cells (77 and 60% respectively), and K562 has little to 

none (Table 4). These markers were tested periodically in TEX cells to assure 

standardization across experiments. We also assessed our cell lines for potential 

progenitor properties using colony formation assays. While TEX cells produced colonies 

in these assays, no colony growth was observed from K562 cells, further indicating TEX 

cells contain characteristics of LSCs while K562 cells do not.  

Table 4. Assessment of cell surface receptors validate the use of TEX as a surrogate 
stem cell population. Myeloid surface markers CD33+/CD19- and stem cell surface 
markers CD34+/CD38- were assessed in the TEX and K562 cell lines using fluorescent 
antibodies via flow cytometry. It was revealed that our chosen cell line of study, TEX, 
does in fact contain a high proportion of myeloid and stem cells. Colony formation assays 
assessing progenitor content in TEX and K562 cells revealed that TEX cells produce 
colonies, while K562 do not have this capability. This indicates that K562 cells are not 
representative of an LSC cell line, while TEX cells display characteristics of LSCs such 
as colony formation.  
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4.3. Diosmetin reduces clonogenic formation in primary AML patient 

samples 
 

Given the cytotoxicity of diosmetin in our surrogate LSC cell line, we tested its 

activity in a functionally defined subset of primitive leukemia cells using the colony 

formation assay. Here, diosmetin (10µM-20µM final concentration) was added to semi-

solid culture media of primary AML patient samples or normal hematopoietic stem cells 

and colonies were counted after 7-14 days of incubation. Diosmetin reduced clonogenic 

growth of primary AML patient samples (n = 3; Figure 7A). However, when incubated 

with normal, CD34+ bone marrow cells (n = 3; Figure 7B), diosmetin had no effect on 

colony formation.  Together, these results demonstrate diosmetin’s selective toxicity 

toward AML progenitor cells. 

Cell line % Cells  

CD33+/CD19- (myeloid)  CD34+/CD38- (LSC) 

TEX 77.36±0.18    59.77±0.038  

K562 0.46±0.12   0.16±0.038   
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Figure 7. Diosmetin reduces colony formation in primary AML patient samples. 
Primary AML patient samples and CD34+ normal hematopoietic stem cells were 
incubated with 10 and 20µM dios in semi-solid media and assessed for colony formation. 
(A) Dios reduces colony formation in primary patient samples (n=3). (B) but had no 
effect in CD34+ normal hematopoietic cells (n=4). *p<0.05. All experiments were 
performed in duplicate. Due to limited number of cells available in each patient sample, 
graphs shown represent a single experiment performed in duplicate. 
 
4.4.   Diosmetin induced death is independent of reactive oxygen species  

  Diosmetin is a member of the flavonoid family, which can induce death through 

the generation of reactive oxygen species (ROS).119–121 Initially, we assessed if diosmetin 

treatment in TEX cells would lead to an increase in ROS. TEX cells were treated with 

10µM diosmetin over 48 hours, stained with DCFH/DA and analyzed via flow cytometry 

to assess diosmetin’s ability to activate ROS. A significant increase is observed starting at 

the 12-hour time point, with the highest increase observed at 24 hours (Figure 8A). Thus, 
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we assessed whether death was ROS-dependent by co-incubating diosmetin with the anti-

oxidants N-acetylcysteine (NAC) or α-tocopherol (αtoc). Cell death was not affected by 

co-incubations with NAC or α-toc, indicating that unlike the typical activity of 

flavonoids, diosmetin-induced death is independent of ROS (Figure 8B). 

 
Figure 8. Diosmetin treatment increases ROS levels in TEX cells. (A) ROS were 
measured in TEX cells treated with 10µM diosmetin for increasing time by DCFH-DA 
by flow cytometry. A 2-3.5 fold increase was observed between 12-14 hours of treatment. 
(B) TEX cells were treated with 10µM diosmetin in the presence or absence of the anti-
oxidants, N-acetyl cysteine (NAC) or α-tocopherol (αtoc). Viability was measured by the 
ANN/PI assay. *p<0.05, **p<0.01, ***p<0.001. Statistics were calculated relative to the 
untreated controls. All experiments were performed three times in triplicate, and 
representative figures are shown.  
 
4.5.   Diosmetin induces extrinsic apoptosis mediated by TNFα 

We next assessed the mode of diosmetin-induced leukemia cell death. Early 

apoptosis (i.e., ANN+/PI-) was detected by flow cytometry in diosmetin treated TEX cell 

(Figure 9A). Apoptosis was confirmed as diosmetin treated TEX cells demonstrated a 

subG1 peak increase, which is an indirect measure of DNA fragmentation - a hallmark of 

apoptosis (Figure 9B). To determine if caspase enzymes were involved in diosmetin-

induced cell death, we performed a caspase 3/7 assay, as previously described.105 

Significant caspase-3/7 activation in TEX cells was observed 24-48 hours after diosmetin 
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treatment (Figure 9C). In addition, we blocked caspase activity using the pan-caspase 

inhibitor Z-VAD (50µM final concentration), that was co-incubated with increasing 

concentrations of diosmetin in TEX cells. Z-VAD partially attenuated diosmetin’s 

activity, further confirming caspase-3/7 enzyme involvement in diosmetin mediated 

apoptosis (Figure 9D). To further elucidate on the mechanism of cell death, we measured 

caspase 8 and 9 activity, which are upstream enzymes that activate caspases 3 and 7. 

Interestingly, at a time that precedes caspase 3/7 activation, caspase 8 but not caspase 9 

was increased following diosmetin treatment (Figure 9E&F).  Induction of caspase-8 is 

consistent with the extrinsic (death receptor) pathway of apoptosis.122  

The death receptor pathway is activated following ligation of cell surface receptors. 

The tumour necrosis factor (TNF) receptor superfamily are an example of a death 

receptor and ligation of these receptors begins a multi-protein cascade starting with 

caspase-8 activation.123 For this reason, we next investigated TNFα levels in diosmetin 

treated TEX and K562 cells by flow cytometry. Here, we observed a 10-fold increase in 

TNFα production following 12 hours of 10µM diosmetin treatment in TEX cells (Figure 

4G). In contrast, there was no change in fluorescence following diosmetin treatment in 

K562 cells (Figure 9H) Lipopolysaccharide (LPS) was used as a positive control, as it 

known to potently activate TNF-α (Figure 9I).124,125 Together, these results demonstrate 

that diosmetin increases levels of TNF-α and induces caspase-8 and -3 mediated 

apoptosis.  
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Figure 9. Diosmetin activates the extrinsic pathway of apoptosis and is mediated by 
TNFα. (A) Diosmetin induces apoptosis in TEX cells (% Annexin+/PI-) as measured by 
flow cytometry using the Annexin/PI assay. (B) In addition, the presence of a subG1 peak 
following diosmetin treatment is observed, characteristic of apoptosis. (C) Diosmetin 
significantly activated caspase 3/7, (D) which was blocked when co-treated with pan-
caspase inhibitor, Z-VAD, indicating caspase activity is important in diosmetin mediated 
cell death. Doxorubicin produced an approximately 2.5 fold change after 12 hours. To 
elucidate the apoptotic pathway it was observed that (E) diosmetin increases activation of 
caspase 8, (F) but not caspase 9. Intracellular cytokine staining measured by flow 
cytometry demonstrated that (G) TEX cells treated for 12 hours with 10µM diosmetin 
increased TNFα production. (H) No increase was shown in K562 cells. (I) LPS was used 
as a positive control for TNFα production. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. All experiments were performed three times in triplicate and 
representative figures are shown.  
 
4.6.   Estrogen receptors are predicted molecular targets 

 Out of 12 hits in our primary and secondary screen, 7 were compounds similar to 

diosmetin’s structure. Thus, to determine the mechanism of diosmetin’s selective 

toxicity, we utilized the DAVID tool, which provides a comprehensive set of annotation 

tools for investigators to use to understand biological meaning behind lists of genes. The 

Protein Data Bank (PDB) was searched for protein structures that were bound to 

diosmetin. To expand this list, the PDB was searched for proteins that appear to have 

similar binding sites using the Possum software. Table 5A displays known protein types 

that diosmetin, and similar structures bind to. Then, using DAVID, these proteins were 

analyzed to find functional clusters involving gene transcription and expression that are 

common among the proteins, which are displayed in Table 5B. From these tables it was 

predicted that nuclear hormone receptors (ERα and ERβ) are involved in diosmetin 

activity. 
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Table 5. Estrogen receptors are a potential target. (A) Using the protein structural 
database, diosmetin was predicted to bind to estrogen receptors alpha and beta (ERα, 
ERβ). (B) Using the DAVID tool, functional clusters common among diosmetin binding 
was defined. 

 
4.7.   Cell line sensitivity is linked to ERβ  

A panel of cell lines was assessed for their sensitivity to diosmetin treatment using 

the MTS assay following 72-hour incubation (Figure 10A).  The cell lines TEX and LP1 

displayed the highest level of sensitivity, while the cell lines K562 and DU145 were 

insensitive to diosmetin (Figure 10A; Left). We next questioned whether expression of 

ERβ and ERα would reveal a pattern consistent with diosmetin sensitivity observed in 

these cell lines. Western blotting of ERβ and ERα protein levels in untreated TEX and 

LP1 showed increased ERβ protein expression compared with untreated K562 and 

DU145 (Figure 10B). No such pattern was observed for ERα protein expression in the 

cell lines (Figure 10C). Similar patterns were observed for mRNA expression. 

 
 

Species Gene)Name 
Homo)sapiens )Estrogen)receptor)1)(ER)Alpha) 

Homo)sapiens )Estrogen)receptor)2)(ER)beta) 
Homo$sapiens $Peroxisome$proliferator1ac3vated$receptor$gamma 
Homo$sapiens $TRF11interac3ng$ankyrin1related$ADP1ribose$polymerase$2 

Homo$sapiens $Transthyre3n 

Annota<on)Cluster) Count P)Value 

$Nuclear$hormone$receptor,$ligand1binding,$core$ 12$ 1.4E118$
$Nuclear$hormone$receptor,$ligand1binding$ 12$ 1.4E118$$

$Steroid$hormone$receptor$ac3vity$ 12$ 2.2E117$
$Ligand1dependent$nuclear$receptor$ac3vity$$ 12$ 1.7E116$

$HOLI$ 12$ 3.0E13$
$Transcrip3on$factor$ac3vity$$ 12$ 1.0E13$

A 

B 
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Figure 10. ERβ as the receptor of interest. (A) Several cell lines were tested for 
sensitivity to diosmetin using the MTS viability assay.  Shown more clearly in (A; right) 
TEX and LP1 displayed the greatest sensitivity to diosmetin, while K562 and DU145 
were insensitive. (B) Western blotting showed that diosmetin sensitive cell lines have 
elevated ERβ compared diosmetin insensitive cell lines. (C) This pattern was not 
observed for ERα protein expression in these cell lines. All experiments were performed 
three times in triplicate.  
 
4.8. Increased ERβ  mRNA expression in diosmetin sensitive cells 
	
  

                  TEX and K562 cell lines were assessed for their relative  ESR1 and ESR2 gene 

expression through the use of qRT-PCR. TEX cells expressed levels of ESR2 
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(ERβ) mRNA, with undetectable amounts of ESR1 (ERα) mRNA expression (Figure 

11A). Conversely, K562 cells expressed small amounts of ESR1 (ERα) mRNA,  

and undetectable amounts of ESR2 (ERβ) mRNA  (Figure 11 A). The patterns observed 

through ERβ and ERα mRNA expression of TEX and K562 cells are consistent with the 

patterns observed in ERβ and ERα protein expression of these cells lines.  

The primary AML patient samples (n = 3) that had previously demonstrated 

reduced clonogenic formation following diosmetin treatment were also assessed for their 

relative ESR1 and ESR2 mRNA levels using qRT-PCR. All three primary samples 

showed expression of ESR2 mRNA levels and undetectable amounts ESR1 mRNA 

(Figure 11B). Together, with the observed protein expression patterns, this suggests that 

diosmetin targets ERβ. 

 
Figure 11. TEX cells express ERβ  mRNA. Expression of ESR1 (ERα) and ESR2 (ERβ) 
mRNA levels in TEX and K562 cells, and Primary AML patient samples that with 
previously observed diosmetin sensitivity was assessed using quantitative PCR. ESR1 
and ESR2 mRNA expression was normalized and reported relative to the GAPDH 
control. (A) TEX cells displayed expression of ESR2 (ERβ) mRNA levels, but 
undetectable levels of ESR1 (ERα) mRNA. Opposite results were observed in K562 
cells, as small amounts of ESR1 mRNA were present, with undeletable expression of 
ESR2. (B) In all three primary cells assessed, ESR2 mRNA expression was present, with 
undetectable amount of ESR1 observed. Cell line experiments were performed three 
times, in triplicate.  
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4.9.  Diosmetin acts as an ERβ  agonist 

 To determine if diosmetin targets and binds to ERβ we performed ER agonist and 

antagonist luciferase reporter assays. In the antagonist assay, reporter cells were co-

incubated with the classical ligand, 17β-Estradiol (E2; optimized EC75 concentration) 

and increasing concentrations of diosmetin. At concentrations, which impart toxicity (8-

10µM), diosmetin had no effect as an antagonist, as luminescence was unaffected (Figure 

12A). In the agonist assay, where reporter cells were treated solely with diosmetin; 

agonist activity was observed at concentrations at or below the EC50, as luminescence 

increased with each dose of diosmetin (Figure 12A). Antagonist activity was also 

observed in ERα cells at diosmetin concentrations above 25µM, and some agonist 

activity was observed for lower concentrations (3-6µM). It was observed that the agonist 

luciferase activity induced by diosmetin in ERα reporter cells were much lower than that 

induced by E2. Furthermore, diosmetin also induced greater luciferase activity in ERβ 

reporter cells than in ERα reporter cells, suggesting that diosmetin has a greater affinity 

for ERβ over ERα, and E2 binds with a higher affinity for ERα than diosmetin (Figure 

12B).  Together, this demonstrates that diosmetin acts best as an ERβ agonist. 
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Figure 12. Diosmetin acts as a ERβ  agonist. (A) Diosmetin acts as an antagonist in ERβ and 
ERα reporter cells at concentrations >25 µM as measured in the ER antagonist luciferase 
reporter assay. (B) Diosmetin acts as an agonist in both ERβ reporter cells at concentrations 
<25 µM, as measured by the ER agonist luciferase reporter assay, However the luciferase 
activity produced in ERα reporter cells was much lower than that produced in ERβ reporter 
cells. Below each graph shows the corresponding MTS viability results, performed parallel to 
the reporter assays, showing that reporter cells were viable after 24 hours of treatment. 
Statistics were calculated in comparison to respective untreated controls. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. All experiments were performed three times in triplicate and 
representative graphs are shown.  

 
4.10. Additional studies 

4.10.1.  Xenograph animal model 
 
 We also performed small scale mouse xenographs.  Given diosmetin’s cytotoxic 

activity in vitro, we decided to assess diosmetin’s capcity to reduce tumour weight in 

vivo. A small number of NOD/SCID mice were injected with TEX cells subcutaneously 

in the left flank, then treated intraperitoneally with either diosmetin (n = 4) or vehicle 
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control (n = 3) every other day for 30 days. Following treatment, the mice were 

sacrificed, and tumours were excised and weighed. The data showed a reduction in 

tumour weight in diosmetin treated mice compared to the controls (Figure 13A). 

Although these results seem promising, tumour weight reduction was insignificant. 

Additional animal studies, which include a greater number of mice, are needed to further 

assess diosmetin’s in vivo efficacy. In addition, mouse body weight was measured 

continuously throughout the experiment and remained unchanged for both diosmetin and 

vehicle treated mice (Figure 13B); however a more robust measure of toxicity, such as 

blood bioanalysis is required to strengthen in vivo safety claims. This lends evidence that 

diosmetin may not impart toxicity while inducing anti-cancer activity.  

 
Figure 13. Diosmetin shows some efficacy in reducing tumor weight in LSC mouse 
xenografts. NOD/SCID mice were subcutaneously injected with TEX cells (n= 4 dios 
treated, n = 3 control) and following implantation were treated intraperitoneally with 30 
mg/kg dios or a PBS control every other day for 18 days. Tumor volume and body 
weights were measured every other day. At the termination of the experiment, mice were 
sacrificed, blood was collected and tumors were excised and weighed. (A) Dios showed a 
reduction in tumor weights, however not significant. (B) Dios treated mice had no 
changes in body weight compared to control treated animals, suggesting little toxicity 
was imparted. 
 
4.10.2. Effects of tamoxifen in TEX cells 
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 Tamoxifen is a well-known SERM that is used most commonly for the treatment 

of ER positive breast cancers.126 Although it is best characterized by its antagonist 

activity in breast tissue mediated through ERα, tamoxifen has agonist activity in other 

tissues such as the endometrium and bone, and has shown some affinity for ERβ.127 With 

this knowledge, we were interested to know if tamoxifen would induce a response in 

TEX cells. When TEX cells were co-incubated with increasing concentrations of 

tamoxifen, no change in viability was observed using the MTS assay (Figure 13). This 

was perhaps an expected outcome, as tamoxifen acts primarily as an ERα antagonist with 

known affinity for ERα. Interestingly however, when increasing concentrations of 

tamoxifen were co-incubated with diosmetin at 10µM, tamoxifen potentiated a further 

decrease in cell viability than with diosmetin alone (Figure 13). Thus, tamoxifen 

sensitized TEX cells to diosmetin-induced cytotoxicity.  
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Figure 14. TEX cells respond to ER ligands. (A) When TEX cells are incubated with 
well-known ERα, tamoxifen, at increasing concentrations no decrease in viability is 
observed. Interestingly, when 10µM diosmetin is co-incubated with increasing 
concentrations of tamoxifen, a reduction in viability is seen in comparison to diosmetin 
treatment alone. ***p<0.001, ****p<0.0001. All experiments were performed three 
times in triplicate and representative graphs are shown. 
 
4.10.3. Additional flavonoid screen  
 
 To assess flavonoids, as a group, for their selective cytotoxicity towards LSC, 54 

flavonoids from our nutraceutical library were selected for an additional MTS viability 

screen. Similar to our initial screen, the flavonoids were assessed for their cytotoxicity in 

both TEX (surrogate LSC) and K562 (control) cells (results not shown. Six compounds 

were identified that selectively killed TEX cells. These six “hits” were further validated 

using the ANN/PI flow cytometry assay, and found flavonoids genistein, luteloin, 

apigenin, and kaempferol elicit dose-dependent TEX cell cytotoxicity, with little effect 

on K562 cells. The EC50 concentrations in TEX cells of genistein, luteolin, and apigenin 

are approximately 7µM, and kaempferol is approximately 10µM (Figure 15A&B). 

Interestingly, there have been numerous reports showing that both genistein and apigenin 

to have strong affinity for ERβ and agonist activity through this receptor.  
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Figure 15. Flavonoids induce selective toxicity in LSC cell line, TEX. 54 flavonoids 
were screened for selective toxicity in LSC, using the surrogate LSC cell line, TEX, and 
control line, K562. Of these compounds, apiginin, luteolin, genistein and kaempferol  
showed reduced viability in (A) TEX cells, with little reduction in (B) K562 cells, 
validated through the ANN/PI flow cytometry assay. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. All experiments were performed three times in triplicate. 
 
4.10.4. Combination studies 
 
 To determine if diosmetin treatment sensitizes cells to chemotherapy, diosmetin 

was combined with cytarabine (Ara-C) and daunorubicin, two common AML 

chemotherapeutics, and assessed via the MTS assay. The drugs were co-incubated in 

TEX cells at 0.5x, 1x, 1.5x, and 2x of each compounds specific EC50 concentration. 

Synergistic treatments have a greater effect in combination than they do individually, 

whereas antagonistic treatments are weaker in combination. A CI value <1 indicates 

synergism, CI>1 indicates antagonism, and CI=1 indicates that there is no interaction (i.e. 

additive effect). CI values for the drug combination are shown in Figure 16A&B. We 

found that when co-incubated with daunorubicin, diosmetin produced an antagonistic 

effect. It was also observed that when co-incubated with cytarabine, there was a small 
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window of concentrations that produced a small synergistic effect (between 

approximately 1x and 1.5x) (Figure 16B). On either side of these concentrations, the 

combination produced an antagonistic effect.  In a recent combination screen in our lab, 

evaluating the CI of other flavonoids with cytarabine and daunorubicin (Figure 16C), we 

have shown flavonoids to have antagonistic effects when co-incubated with these 

chemotherapeutics. Therefore, perhaps flavonoids should be used with caution if 

considered for clinical development or even used as over the counter supplements.  
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Figure 16. Combination indices (CIs) for diosmetin and chemotherapy treatments in 
TEX cells. Tex cells were treated with diosmetin and common chemotherapy treatments 
alone, and in combination with each other to assess for possible potentiating effects by 
calculating a CI. CI < 1 indicates synergism, CI > 1 indicates antagonism and CI = 1 
indicates there is no drug interaction. Diosmetin was co-incubated with (A) daunorubicin 
and (B) cytarabine, common AML therapeutics. Co-incubations with cytarabine resulted 
in what seems to be a dual effect, with a slight synergism within a small window of 
concentrations, and otherwise antagonism. All experiments were performed three times in 
triplicate. (C) Combination indices of other flavonoids with common chemotherapeutics, 
cytarabine (AraC) and daunorubicin (DA), show both antagonistic and synergistic effects. 
 

 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

DA + Luteolin

Fraction Affected

C
o

m
b

in
a

ti
o

n
 In

d
e

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
AraC + Luteolin

Fraction Affected

C
o

m
b

in
a

ti
o

n
 In

d
e

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
DA + Apigenin

Fraction Affected

C
o

m
b

in
a

ti
o

n
 In

d
e

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
AraC + Apigenin

Fraction Affected

C
o

m
b

in
a

ti
o

n
 In

d
e

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
DA + Kaempferol

Fraction Affected

C
o

m
b

in
a

ti
o

n
 In

d
e

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
AraC + Kaempferol

Fraction Affected

C
o

m
b

in
a

ti
o

n
 In

d
e

x

C	
  



	
  

59	
  

CHAPTER 5: DISCUSSION 
 
5.1.   Summary of findings 

A screen of a unique nutraceutical library demonstrated that diosmetin is a novel 

anti-AML agent. In vitro and ex vivo data has demonstrated that diosmetin has selective 

toxicity in AML and AML progenitors with no effect in normal cells.  Mechanistically, 

we highlight ERβ activation inducing extrinsic apoptosis as a novel approach to 

selectively eliminating LSCs. 

We have shown that diosmetin, a flavonoid found in citrus fruits and other various 

plant sources, induces selective cytotoxicity in AML cells and AML progenitors and that 

death was related to ERβ expression. Protein and mRNA levels in cell lines and primary 

AML patient samples sensitive to diosmetin possessed elevated ERβ levels whereas cell 

lines insensitive to diosmetin had low levels. Moreover, reporter assays demonstrated that 

diosmetin acted as a partial ERβ agonist (Figure 18A).  

 
5.2. The nature of ERβ  in cancer 

Activation of ERβ has demonstrated anti-proliferative and pro-apoptotic properties, 

which have been observed in both normal tissue types and pre-clinical studies involving 

prostate, breast, and colon cancer cell lines.80 More recently, literature regarding chronic 

lymphocytic leukemia (CLL) and lymphoma, there have been an observed role for ERβ 

in prognosis and potential treatment.77,70 For example, it has been shown in CLL that 

patients expressing higher ERβ correlated with shorter therapy requirement.128 In 

addition, it has been observed that ERβ selective agonists induced an anti-proliferative 

effect in lymphoma cell (EG7) xenograft mice models.70  
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An anti-proliferative effect of ERβ is suggested from studies involving ERβ 

knockout mice, which display prostate hyperplasia and a myeloproliferative disease 

resembling CML.77,74 Similarly, prostate cancer progression is associated with a 

reduction in ERβ expression suggesting possibility that this receptor exerts a restraining 

effect on proliferation.129,130 Finally, ERβ ligand activation or transfection of ER negative 

cell lines with ERβ results in reduced proliferation, induction of apoptosis, and inhibition 

of tumour formation in prostate80,131, colon132, lymphoma70, or breast cancer81,133 cell 

lines. While positive effects have been observed in the aforementioned tumour types, the 

role of ERβ has not widely been addressed for AML, or LSC specifically. Collectively, 

ERβ activation is a potential anti-cancer target and the studies presented here extend 

these findings to demonstrate the pro-apoptotic/anti-proliferative role for ERβ in AML.   

5.3.   LSC selectivity of diosmetin  

We propose this selectivity is due to diosmetin’s ability to activate ERβ, as several of 

our observations show a relationship between ERβ and diosmetin sensitivity. For 

example, using structural analysis and the DAVID tool, it was predicted that ERs could 

be potential molecular targets. We also show a link between diosmetin sensitivity and 

ERβ expression through Western blotting and qPCR analysis in both cell lines and 

primary AML patient samples. TEX cells, sensitive to diosmetin treatment, showed an 

expression profile that included increased ERβ protein expression, as well as presence of 

ERβ mRNA and an absence of ERα mRNA. Similarly, primary AML patient samples 

that were diosmetin sensitive also revealed a presence of ERβ mRNA and an absence of 

ERα mRNA. In contrast, K562 cells, insensitive to diosmetin treatment, had a differential 

ER protein expression pattern, where ERα mRNA was observed with a lack of ERβ 
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mRNA, as well as larger proportions of ERα protein expression with little ERβ protein 

expression. These results give preliminary evidence for the prediction that diosmetin 

sensitivity is directly associated with a specific expression profile of the ERs.  

Future studies will be aimed at assessing additional AML patient samples for 

diosmetin sensitivity and ERβ expression, through Western blotting and qPCR analysis to 

further confirm this link. We would expect that the primary AML patient samples that 

displayed sensitivity to diosmetin treatment would also show similar ERβ expression 

profiles of the primary patient samples assessed and described previously. In addition, 

ERβ expression will be measured in normal CD34+ bone marrow derived cells, which 

were previously insensitive to diosmetin treatment, in order to strengthen the hypothesis 

that ERβ expression is linked to diosmetin sensitivity. We would expect the normal 

CD34+ to have differential ERβ expression than the diosmetin sensitive primary AML 

samples.  

Given that diosmetin is a flavonoid, it is not surprising that ERs were predicted to be 

involved in diosmetin’s activity, as many flavonoids have been shown to possess ER 

binding. Diosmetin is an o-methylated flavone of the flavonoid family which has not 

been previously studied for its cytotoxicity in leukemia cells. Structure-activity 

relationship studies confirm that flavonoids with a C2-C3 double bond and a 4-carbonyl-

group are typically associated with higher cytotoxicity.134 Both of these features are 

present in the structure of diosmetin (Figure 17, left panel). Flavonoids are known for 

their ability to induce ROS-mediated apoptosis119–121; however, diosmetin’s anti-AML 

activity was shown to be independent of ROS. Instead, we show diosmetin’s activity was 

related to its ability to bind to ERβ.  Other flavonoids have also shown a distinct affinity 
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for ERβ binding. For example, genistein (Figure 17B) has shown high binding affinity for 

ERβ and a suppressive effect on CLL and lymphoma cells in vitro and in combination 

with other chemotherapy treatments.135,136 Apigenin (Figure 17B, right panel) has also 

been found to have anti-proliferative activities, but in breast and prostate cancer cell 

lines, through ERβ mediated apoptosis.137 Together, this information points to flavonoids 

as potential anti-cancer agents, specifically through targeting ERβ. Interestingly, in an 

additional screen focused on evaluating flavonoids for their anti-LSC activity, genistein 

and apigenin (Figure 17B) were among the four flavonoids that imparted cytotoxicity in 

TEX cells, while having no effect on the control cell line K562. Perhaps future studies 

should be aimed at attempting to characterize the relationship between flavonoids and 

ERβ and identifying the potential alternate mechanisms by which this relationship can 

induce apoptosis.  
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Figure 17. Basic structure of flavonoids. (A) Basic structure of flavonoids and 
structure-related activity. (B) Chemical structures of apigenin and genistein, two 
flavonoids with known affinity for ERβ, and have been observed to produce pro-
apoptotic responses. These structures are very similar to that of diosmetin (Figure 5, 
Chapter 1). Figure modified from Chan et al, Structurally related cytotoxic effects of 
flavonoids on human cancer cells in vitro.Arch Pharm Res. 2008. 138 
 
5.4.   Diosmetin’s mechanism of action 

Diosmetin induced caspase-mediated extrinsic apoptosis through the activation of 

caspase-8 and increases in TNFα (Figure 18B). These findings are consistent with data 

supporting a similar mechanisms involving ERβ activation in prostate cancer and in 

human hepatocellular carcinoma cell (HCC) lines 80,139 TNFα, a biologically active 

cytokine, can elicit a wide range of biological responses such as inflammation, apoptosis, 
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cell proliferation, and immunity.140 TNFα signals through two receptors, TNFR1 and 

TNFR2, which are expressed in most cells. The binding of TNFα to TNFR1 promotes the 

recruitment of several adaptor molecules, including TNFR-associated death domain 

(DD), Fas-associated DD (FADD), and pro-caspase 8.32  

It was found that ERβ-mediated apoptotic response following siRNA knockdown of 

TNFα in a human prostate cancer cell line.80 In the same study, the authors quantified 

prostatic apoptosis in TNFα knock-out (TNFαKO) mice following ERβ agonist 

treatment. While the TNFαKO mice failed to show any increase in apoptosis following 

ERβ agonist treatment, an increase was observed in the wild type mice.80 In another 

study, HCC cell line HATT2 were transfected to over-express ERβ (HA22T-hER-β) and 

assessed for ERβ mediated apoptosis through TNFα production.139 Increased DNA 

fragmentation, as well as caspase-3 and -8 (but not caspase-9 activity) were found in 

hERβ-overexpressed HA22T cells treated with estrogen. These effects were not observed 

in hERα-overexpressed cells. An increase in TNFα RNA and protein levels were strongly 

correlated with overexpressed hERβ and E2 treatment in HA22T cells. In addition, the 

HA22T-hERβ was transfected with the hTNFα promoter-luciferase reporter gene and 

assessed for luciferase activity upon treatment with E2. It was observed that hER-β 

induced luciferase activity in a ligand dependent manner. Future studies will be aimed at 

elucidating on the mechanism by which diosmetin activates TNF-α in AML.  

While additional studies are required to display show that ERβ activates the 

transcription of TNFα genes, searching the Champion ChiP Transcription Factor Portal 

(SAbioscience database) revealed that there is an ERα binding domain on the TNFα 

promoter region. Since ERα and ERβ have a high level of homology for the DNA 
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binding domain it could be possible that there is an ERβ binding site that may not have 

yet been validated. A potential experiment that could elucidate this question would be the 

chromatin immunoprecipiation (ChIP) assay, which is used to determine whether specific 

proteins are associated with specific genomic sequences, such as DNA binding sites. 

Through a ChIP experiment, it would be possible to further investigate the interaction 

between ERβ and the TNFα promoter.  
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Figure 18. Diosmetin’s mechanism of action. (A) Diosmetin was identified as the most 
potent compound to selectively reduce cell viability, by apoptosis, of the surrogate LSC 
cell line, TEX. It is proposed that diosmetin induces apoptosis through binding to the 
ERβ, a nuclear receptor that acts as a transcription factor, and instigating agonist 
activities. Once bound by dios, the ERβ receptors form a dimer and translocates to the 
nucleus to initiate gene transcription. Evidence presented in this thesis demonstrate that it 
is  likely that the ERβ dimer binds to the TNFα promoter and induces TNFα gene 
transcription. (B) TNFα, an intracellular cytokine, is a ligand to the TNFR1 death 
receptor, which initiates the extrinsic pathway of apoptosis. The cascade begins through 
the activation of caspase 8, followed by the activation of caspase 3/7, which then initiates 
apoptosis (refer to Chapter 1, Figure 2). It was observed that dios treatment increased 
caspase 8 activation, but not caspase 9 activation, consistent with the proposed 
mechanism of action. Figure modified from Huang et al. Opposing action of estrogen 
receptors alpha and beta on tumor necrosis factor-alpha gene expression and caspase-8-
mediated apoptotic effects in HA22T cells. Mol. Cell. Biochem. 2006.139Drawing made 
using Servier Medical Art Bank. 

5.5.   Effects of tamoxifen in TEX cells 

Tamoxifen is shown to have no effect on TEX cells when incubated at increasing 

concentrations, however, when co-incubated with diosmetin, it increases diosmetin-

mediated cytotoxicity. When investigating the CI values of diosmetin and tamoxifen 

(results not shown), it appeared there was a synergistic effect, however since tamoxifen 

had no effect on TEX cells, this relationship cannot be accurately calculated. The 

rationale for an increased sensitivity to diosmetin treatment in TEX cells may be that 

tamoxifen is a well-known ERα antagonist, blocking the proliferative response following 

of ERα ligation.141 When treated in TEX cells, we would expect to see a lack of response 

as TEX cells have been shown to possess smaller amounts of ERα protein and mRNA 

levels. However, when co-incubated with diosmetin, it is possible that tamoxifen is 

binding to ERα, which has a small presence in TEX cells. It was observed that diosmetin 

had some affinity for ERα in an agonist reporter assay, in which case it may have 

induced a small amount of proliferation, but not enough to overcome the anti-
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proliferative effects through ERβ. Tamoxifen treatment may have blocked ERα from 

diosmetin binding, through competition with tamoxifen binding. With the antagonistic 

effects of tamoxifen on ERα, this may have reduced the opposing agonist action of 

diosmetin bound to ERα, therefore increasing diosmetin’s efficacy through ERβ.  

5.6. Clinical relevance  

Although a wide spectrum of ERβ specific agonists are under clinical development 

(i.e. ERB-041, WAY-202196, diarylpropionitrile, etc.), none have yet been FDA 

approved57 and have not been widely tested as therapeutic potential in hematological 

malignancies.70 This study supports the rationale for preclinical testing and evaluation of 

the potential for clinical applications of ER-based therapies for AML, specifically 

focusing on ERβ agonists, either alone or in combination with existing chemotherapy 

regimens. For example, as previously described, CLL patient treatment duration is 

positively correlated with ERβ expression further supporting the need for additional 

investigation regarding the use of ERβ in deciding on treatment options. Moreover, some 

studies have shown a suppressive effect of genistein in vitro, alone or in combination 

with fludarabine.135,136 While studies such as this observe positive effects of combination 

therapy, our studies investigating diosmetin co-incubation with common chemotherapies 

showed antagonistic effects, stressing the importance of evaluating the effect of potential 

therapeutic strategies on current ones. An interesting detail to consider is ERβ 

methylation, resulting in decreased ERβ activity. Increased ERβ methylation has been 

observed in colon or breast tumors142,143, especially those that are at a more advanced 

stage, further highlighting the need for more specific interrogation into the role of ERβ in 
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AML, including expression patterns in normal and malignant cells. Nonetheless, our 

research provides seminal evidence into the role or ERβ in AML.  

5.6.1. ERβ tissue expression patterns  
	
  

While considering ERβ as a potential treatment option for AML and other cancers, 

monitoring for side effects, given the differential expression of ER in many different 

tissues, is necessary. For example, concerns regarding immunosuppression, as a high 

expression of ER splice variants in normal immune cells have been observed.70,128  

However, as previously mentioned, the net effect of a ligand is determined by the balance 

between ERα and ERβ within different cells and tissues, as the two receptors induce 

opposing biological activity.77 Therefore, side effects will largely depend on the 

expression profiles of the cell and tissue type, and may not be easily predicted. 

 ERα and ERβ regulate different genes in response to E2 and SERMs.52,144 For 

example, one study found that only 40% of the genes regulated by E2 in U2OS cells that 

express ERα are also regulated in U20S cells that express ERβ.52 Furthermore, different 

ligands may differ in their affinity for ERα and ERβ isoforms. Although the DNA-

binding domains of ERα and ERβ share a high level of homology, their ligand-binding 

domains (LBDs) have approximately 58% homology.48 Because of this discrepancy in 

their LBDs, the two ER subtypes can bind ligands, both agonists and antagonists, with 

different affinities.71,145 Moreover, the different ER dimer combinations may respond 

differently to various ligands, which may translate into tissue- and cell-specific agonistic 

and antagonistic effects.146 Finally, studies have suggested that differences in co-regulator 

levels and recruitment to a promoter can determine the functionality of the ER in 

different tissue types.147 Needless to say, ER action can be rather complicated and future 
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preclinical in vivo studies using ER agonists, such as diosmetin, are warranted to 

determine the full potential and safety of this class of agonist for treatment against LSC.  

5.7.   Limitations 

 While this project provides good support for the use of nutraceuticals in 

discovering new therapeutics or molecular targets for future development, there are some 

limitations.  Although our focus was specifically to investigate nutraceuticals for anti-

cancer activity in LSCs, our initial screen involved the use of our surrogate LSC cell line 

TEX, and a control line lacking LSC characteristics, K562. It is more common for a 

screen to involve a number of cell lines across a list of cancers for a more robust report. 

For example, the US National Cancer institute conducts large scale screens to identify 

novel anticancer drugs. A typically screen would involve upwards of 60 different cell 

lines from 9 different tumour types.148 Unfortunately our lab does not have access to such 

a wealth of cell lines; however, we were able to screen diosmetin in 9 cell lines 

representing a range of cancers. In addition, having only one cell line acting as the target 

cell line might limit the validity of the results, however, the LSC line, TEX, used was 

designed to be highly representative of both LSC and myeloid blasts. Furthermore, to 

ensure TEX cells maintained the LSC phenotype (high CD34+/CD38-), cell surface 

markers were analyzed regularly and cells were only used up to 15 passages. Although 

another surrogate LSC line exists, it was unavailable for use in our lab.  

We were fortunate enough to obtain primary AML patient samples through 

collaboration with Princess Margaret Cancer Center to assess for reduction of progenitor 

cells through diosmetin treatment, as well as assess ER mRNA expression. Colony 

formation cell assays have been widely accepted as a robust measure to evaluate 
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cytotoxicity of a compound against progenitor populations in samples.3 These assays 

provided further validation to effects that were observed in vitro. Although the use of 

these samples was extremely valuable to this project, the number of samples we were 

provided with were still relatively few, with a small number of isolated cells per sample. 

For example, similar drug discovery studies report the use of 20 or more primary patient 

samples.149 In addition, studies using primary patient samples to evaluate protein 

expression would have been beneficial, however these studies require a large number of 

cells. Unfortunately, our lab does not have direct access to primary patient samples, and 

thus we rely on our collaborator’s availability to issue samples to us.  

 Another limitation to these studies is the lack of data regarding diosmetin’s 

efficacy and safety in vivo. While we showed a reduction in tumour volume following 

diosmetin treatment in xenograft mice models, these results were insignificant, likely due 

to the low number of mice used in the study (n = 3). While we were fortunate enough to 

have tested diosmetin’s capacity in vivo in some capacity, more mice are needed to 

investigate the true efficacy and safety of both diosmetin as a compound, and targeting 

ERβ in vivo. A more robust measure of toxicity is needed, more than just preliminary 

measurement for weight changes during treatment, including a blood bioanalysis. Animal 

models can be time intensive and relatively expensive, so for the purposes of this project, 

were not extensively used. In addition, designing an in vivo study using an engraftment 

mouse model to ensure better investigation of treatment effects on LSCs. Given the 

differential expression patterns ERs found in the human body, and the natural progression 

of pre-clinical studies, in vivo models would be a clear future consideration for this 

project.  
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 In addition, it is important to consider potential post-translational modifications of 

compounds that can occur. It is possible that the active compound may be a modification 

of diosmetin’s structure. For example, Vasilis et al. found that there were two metabolites 

of diosmetin, luteolin, and an un-identifiable metabolite, which were responsible for the 

cytotoxic activity in breast cancer cells.99 It would be beneficial to assess if diosmetin is 

metabolized in TEX cells to a more active form with a slightly altered structure. It would 

also be of value to assess if luteloin possesses ERβ affinity and activating properties.  

 Finally, to have strengthened the validity of proposing that ERβ mediates 

apoptosis induced by diosmetin, obtaining an ERβ knock out cell line, or alternatively 

using siRNA transfection to knock out ERβ in TEX cells would have been valuable. 

More definitive evidence of the role of ERβ in diosmetin induced, LSC specific cell 

through observations of abrogation of cell death following diosmetin treatment in either 

ERβ knock out cells, or ERβ- TEX cells. Unfortunately, despite efforts in contacting 

researchers who have previously utilized ERβ knockout cells to potentially obtain these 

cells, we were unable to make a connection. Additionally, due to time restraints, 

generating ERβ knock out TEX cells was not possible, but would be a future 

consideration of this project to further validate the proposed mechanism of action. 

5.8.   Conclusions 

Given the devastatingly poor prognosis for the majority of AML patients, the need to 

increase the efficacy of treatment is clear. It has been widely observed that LSCs are 

responsible for initiation, maintenance and relapse of the disease, and also express 

biological properties that allow them to evade current chemotherapy treatment. Thus, 

goals for improving patient outcome should be focused on developing therapeutic 
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strategies to eliminate LSCs. Nutraceuticals provide a virtually untapped resource for the 

discovery of new anti-cancer agents. In this thesis, we discuss the efficacy of the 

flavonoid compound diosmetin in imparting selective cell death in LSCs. Through the 

project presented here, apoptotic cell death in our surrogate LSC line, TEX, was proposed 

to be mediated by ERβ, which is linked to an increase in TNFα. The presented studies 

highlight a promising novel target, ERβ, for AML treatment, as well as nutraceutical as a 

vast resource for novel anti-cancer drug discovery. 
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Appendix A: Research activity resulting from this program 

PUBLICATIONS AND MANUSCRIPTS ��� 

Rota SG, Doxey A, Dude I,  and Spagnuolo PA. Estrogen receptor is a 
novel target in acute myeloid leukemia. In preparation.  

Lee EA, Angka L, Rota SG, Hurren R, Wang XM, Gronda M, Bernard 
D, Minden M, Mitchell A, Joseph JW, Datti A, Wrana J, Quadrilatero 
J, Schimmer AD, Spagnuolo PA. Targeting mitochondria with avocatin 
B induces selective leukemia cell death. Cancer Research. April 24, 
2015. 

Angka L, Lee EA, Rota SG, et al. Glucopsychosine increases cytosolic 
calcium to induce calpain- mediated apoptosis of acute myeloid 
leukemia cells. Cancer letters. Mar 12 2014. 

PRESENTATIONS 

Oral presentation. High throughput screening as a method to identify 
novel anti-cancer nutraceuticals. Natural Health Product Research 
Society of Canada. Windsor, ON. May 2013 

Poster. Estrogen receptor is a novel target in acute myeloid leukemia. 
Till and McCulloch Meetings 2014. Ottawa, ON. Oct 2014 

Poster. Estrogen receptor is a novel target in acute myeloid leukemia. 
AFPC Rx&D Poster Competition, University of Waterloo School of 
Pharmacy. Kitchener, ON. May 2014. Awarded second place. 
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