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Abstract

In this thesis we examine a variety of question regarding several quantum information-
theoretic concepts as they manifest in the context of relativistic quantum fields. In partic-
ular, we study the qualitative and quantitative structure of entanglement (as well as more
generalized quantum correlations) in field theory. Primarily we study the nature of vacuum
entanglement, but consider spatial correlations in more general field states as well. We also
discuss several novel aspects of particle creation phenomena, which generally go hand in
hand with the presence of field entanglement. Such investigations are important from two
perspectives. First, we gain enlightening new insight into the nature of quantum fields
and, therefore, into the fundamental constituents of the matter contained in our universe.
Second, we are able to consider the possibility of utilizing the relativistic nature of quan-
tum fields as a resource for quantum technological tasks such as entanglement distribution,
information processing, and metrology.

As a general guiding principle, here we approach such questions from an operational
perspective. That is, we focus less on the mathematical facts derivable from a given theory
and instead attempt to answer in what concretely physical ways such facts manifest them-
selves. For example, in what ways can vacuum entanglement actually be experimentally
detected and measured, at least in principle? Such an approach allows us to circumvent
otherwise problematic interpretational issues. It also lends itself more naturally to the
proposal of real world experiments regarding, and utilizations of, the physics being inves-
tigated. In this thesis we utilize two models of detection as applied to field theory.

The first is one that we will develop from scratch and use to great effect in a number
of studies; this is the non-perturbative oscillator detector. In this context, a “detector” is
simply some quantum system that is allowed to interact in some way with a quantum field.
The response of this system then gives us information about the field properties. Typically
such studies are done perturbatively, which presents several severe limitations on what may
be investigated. We develop an alternative model, in which the detector is identified as a
quantum harmonic oscillator, that allows non-perturbative solutions. We go on to apply
this model to a variety of studies. We start by the examining the Unruh effect in a cavity
setting. Not only are we able to examine the thermalization behavior of such a detector
(which is stronger than what can be achieved perturbatively), we also demonstrate that
the Unruh response is largely independent of the cavity boundary conditions, indicating a
surprising amount of generality and universality to the phenomenon. We also consider the
spacelike extraction of spatial entanglement by a set of such detectors. This includes the
harvesting of genuine tripartite entanglement out of the vacuum, as well as the observation
that the extractable quantum discord (a generalized measure of quantum correlations) can
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be greatly amplified by thermal fluctuations in the field, in opposite behavior to entan-
glement. This calls into question the nature of quantum discord, but also suggests at the
possibility of using environmental noise as a quantum computational resource. Next, we
use the oscillator detector model to great effect by proposing a method of reliably and
sustainably generating and distributing entanglement via a cavity field. This protocol is
inherently non-perturbative, and we refer to it as entanglement farming. Lastly, we modify
the farming scenario to discover a very sensitive resonance effect that generates a large dif-
ference in the protocol output due to a minute change in system parameters, including the
length of cavity being used. We put this forth as a potential method of quantum seismic
metrology.

The second model that we will consider simply involves performing projective measure-
ments onto a given set of field modes. We will find, however, that such an approach allows
us to solve previously intractable problems. In particular, we apply this procedure to the
physically sensible choice of localized, positive frequency field modes. Using this model
we perform two different studies. In the first, we consider the response of an observer
accelerating not through the vacuum state but rather a thermal state. Such a setting has
not been (properly) studied previously, due to the computational challenges involved. By
applying the localized projective measurement model we are able determine that such an
observer sees both an Unruh response from acceleration and a response from the field ther-
mality and that, critically, these responses are distinguishable. We then go on to examine
the degradation of quantum correlations between two observers due to the acceleration of
one of the observers. This is a prototypical scenario of interest and, by applying realistic
measurement assumptions, we obtain results qualitatively different from many previous
works on the issue.

In addition to these models, we question the nature of vacuum entanglement and par-
ticle creation by considering an operationally straightforward procedure that greatly de-
mystifies these phenomena and puts them on to solid, physically concrete grounds. This
operation is that of very quickly introducing a boundary condition onto one’s field, for
example by creating a mirror. The real particles generated in this process will then be
quantum entangled with each other, even if they are created at spatially separate locations,
and this entanglement derives exactly from the previously present vacuum entanglement.
Not only does this realization provide an operationally satisfying interpretation of vacuum
entanglement, it also suggests a straightforward procedure for its experimental verification.

In all of this, the computational framework that we will rely upon is that of Gaussian
quantum mechanics. This is a restriction of continuous variable quantum mechanics that,
while limited in its applicability, provides extremely powerful computational tools in the
cases that it may be used. The scenarios of interest in this thesis fall within this category

v



and lend themselves naturally to a Gaussian approach. With this we are able to perform,
near trivially, many otherwise intractable studies.

The publications that comprise this thesis, in order of presentation, are as follows:
[1,2,3,4,5,6,7, 8. We will also include some material from [9] in the preliminaries, and
there is an additional publication, [10], that was performed as part of my doctorate but is
not included here.
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The maximum value of 2 (¢;p2) achieved over the course of 10 vibrational pe-
riods as a function of the log of the vibrational frequency . The parameters
for the solid line (blue) are the same as for Fig. 10.6: Ly = 8, Q = /Ly,
A = 0.01, and 7" = 20 with At = 7. The dashed line (red) represents
the case that all parameters have been scaled by an order of magnitude:
Ly =08, Q=mn/Lyp, N\ =0.1, and T = 2 with At = T". In both cases the
amplitude of vibration is assumed to scale with the initial length, such that
A = (1 x1073)Ly always. We see that by scaling our system in such a way
we can achieve sensitivity coverage over a range of vibrational frequencies.

A schematic of the type of setup we consider. A two-mode squeezed state is
produced from a non-linear crystal in two Gaussian modes ¢4 (Alice) and
¢p (Bob). An observer Rob accelerating with constant proper acceleration
a in the z-direction carries a detector that makes measurments of the field
in a mode ¥g at time ¢ = 0 when his velocity, v, is zero. . . . . . . . . . ..

A plot of logarithmic negativity Fy (blue, solid), discord D(A, B) (green,
dashed) and discord D(B, A) (red, dotted) as functions of z = e=2™ where
the state in consideration is a two-mode squeezed state using Unruh modes
with squeezing parameter s = 1. We see that Ey and D(A, B) decay to
zero as () — 0 whereas D(B, A) asymptotes to a finite value. . . . . . . ..

A plot of logarithmic negativity Ey (blue, solid), discord D(A, B) (green,
dashed) and discord D(B, A) (red, dotted) as functions of acceleration,
where the state being considered is the two-mode squeezed state, with
squeezing parameter s = 1, and with Bob’s mode in the localized Gaus-
sian, ¢p(z — 1/a) with N = 6 and cut-off value chosen to AL = 3. We
see that, unlike when Unruh modes are used, the entanglement experiences
sudden death at a finite acceleration. The quantum discord remains even
beyond this point of entanglement extinction. Both of the discords, however,

decay to zero in the alL — oo limit. . . . . . . ... ... ... ... . ...
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13.1

13.2

13.3

13.4

13.5

13.6

Sketch of the one dimensional cavity setting. We start (¢ < 0) considering
a cavity in its vacuum state |0)g. At some instant (f = 0) we slam a
mirror separating the cavity into two regions. As explained in the text,
the normal modes in these separated subcavities correspond to the localized
modes of the cavity without mirror, which we will show suffice to analize
states, correlations and particle production after slamming the mirror. The
horizontal line corresponds to ¢t = 0, the diagonal lines represent the light
cone starting at the slamming event. . . . . . . .. ... ...

The cavity for the cases studied in this chapter. The figures on the left
correspond to the full cavity without mirrors, the light dotted vertical bars
indicating the border of the regions chosen to study localization into two
(top) or three (bottom) spatial regions. The right figures show the decom-
position in terms of local modes at ¢t = 0 for both settings. . . . . ... ..

The logarithmic negativity E between local modes u,, and u, on the left
and right sides of the cavity, respectively. The cavity is divided in two equal
regions r = 0.5R . Left: a field mass of u = 0. Right: a field mass of
w=10/R. . .

The logarithmic negativity Ey between local, diagonalizing modes v, and
v, on the left and right sides of the cavity, respectively. The cavity is split
into two equal sides, r = 0.5R, and N = 200 for both the left and right
sides. Left: a field mass of u = 0. Right: a field mass of p = 15/R.. . . . .

The function |vy(x)| in the left-side of the cavity, representing the spatial
distribution of entanglement with the opposite side. The parameters are
given by r = 0.5R, and N = 200, with different field masses p considered:
0 (blue), 10/R (light blue) and 50/R (green). As can be seen: the larger
the mass of the field, the closer the entanglement straddles the boundary
between the two sides of the cavity, as expected. . . . . . ... ... ...

Evolution of the entanglement spatial distribution for the massive case y =
50/ R after an elapsed time ¢t = r/2. We can see a peak for the correlations
at exactly the position of the particle-burst front as originated from the
slamming. The cavity parameters are the same as in Fig. 13.5 . . . . . ..
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13.7 Two mirror case: logarithmic negativity Ey between local, diagonalizing
modes v and v¢ on the left and right-most sides of the cavity, respectively,
in the case that the field is massless 1 = 0. The cavity is in this case split into
three regions, Ay = [0,0.5R— B/2|, Ap =[0.5R—B/2,0.5R+ B/2|, Ac =
[0.5R + B/2, R]. We have taken N = 200. Left: Size of the middle section
B = 0.1R. Right: Size of the middle section B =02R. . .. .. ... ...

13.8 The number expectation value of local modes u,, for the case of a massless
field p = 0 and a cavity split in half r/R=05. . .. ... ... ... ...

C.1 The mutual information between detectors as a function of ¢t and r, where
the field was initiated in a thermal state of temperature T'=2.. . . . . . .
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Chapter 1

Introduction

1.1 What’s this all about?

This thesis represents a collection of work dedicated to better understanding a range of
physical phenomena that lie at the intersection of what have historically been, and still
largely are, isolated fields of theoretical physics. The first of these is the broad area of rela-
tivistic quantum field theory, primarily used to describe high-energy particle physics. The
other is that which encompasses quantum information and quantum computation. Interest
in this topic has exploded in the past fifteen years and work is primarily geared towards
isolating information-theoretic approaches to (and consequences of) quantum theory, with
the hope of developing methods of utilizing the nature of quantum physics for improved,
real-world information processing. In recent years there has also been a great deal of work
in applying notions from quantum information theory to the context of quantum fields.
This research has led to a great number of realizations regarding the structure and con-
sequences of field theory, as well as its connection with gravitation [12, 13]. Here we will
be investigating, from an operational perspective, questions regarding the workings and
interpretation of several information-theoretic phenomena that arise within field theory.
This will largely consist of theoretical studies, but will also include various proposals for
real-world implementation and application. Approaching relativistic quantum physics from
an informational perspective appears to be a vital endeavor for elucidating the nature of
our universe’s fundamental constituents, and may furthermore be a crucial element in the
future development of quantum technologies.

Quantum field theory (QFT) [14, 15] has, historically, been primarily developed with
the goal in mind of constructing a unified framework for describing the elementary particles



that exist in nature and the interaction between them. The result of this endeavor is the
famous standard model of particle physics which, while not complete nor entirely unified
(the antagonist being the gravitational interaction), has had irrefutable and stunning suc-
cess in predicting the outcomes of high-energy particle experiments. This is exemplified by
the recent confirmation of the existence of the Higgs boson [16, 17]. From this perspective
it is difficult to argue that QFT, at least within the energy regimes that we have exper-
imentally explored, does not at least partially describe the fundamental workings of our
world.

Nevertheless, even without delving into the problems of combining quantum mechanics
and gravity, QFT has some severe (but also deeply intriguing) interpretational issues that
are relatively untouched within the context of particle physics. The most obvious of these
is that what we actually identify as a particle within field theory is a definite-momentum
excitation of the free (non-interacting) vacuum state, and is therefore entirely delocalized
in space! This certainly goes against one’s intuitive notion of a “particle” as being a
localized entity. One can of course consider coherent superpositions of such particle states
in order to construct localized wavepackets, but even this procedure has limits and in fact
such a packet can never be strictly localized within a finite region of space [18, 19, 20].
Furthermore, the very question of whether or not a particle ezists is not as definite as one
would assume. As first realized in [21], a uniformly accelerating observer traveling through
the vacuum state of a quantum field, that state defined to be void of excitations, will in
fact observe the presence of particles, in disagreement with his or her inertial counterparts.
Specifically, this observer will see themselves immersed in a thermal bath of a temperature
proportional to their acceleration. This is the famous Unruh effect which, while physically
reasonable (as we will discuss in the main body), is nevertheless conceptually striking
and now understood to represent an exemplary case of what is a much more general and
universal class of phenomena, which here we will simply refer to as particle creation. The
vacuum state of a quantum field (or, really, any many-body system with local interaction)
has the puzzling property that the reduced state supported on any finite region of space is
not in its local vacuum state. Within many-body or condensed matter systems this poses
no real interpretational issues. In field theory, however, where excitations are identified
with the real, physical particles that compose the matter in our universe, such a realization
is rather disturbing. It implies for example that, at least in some mathematical sense, half
of an empty box is not empty but rather contains a frothing sea of high-energy quanta. This
property of the vacuum state, as is now understood, goes hand in hand with the presence of
quantum entanglement between spatially disparate regions, a concept of central importance
within quantum information theory. Both of these properties of the vacuum state arise,
mathematically unsurprisingly, from the fact that the free Hamiltonian of the field is an



entirely global operator.

Quantum entanglement [22] refers to a type of correlation that can be present be-
tween constituent parts of a quantum system. In particular, such correlations are of a
purely quantum nature and are strictly stronger than any correlation structure that can be
achieved within classical probability theory. Entanglement physically manifests between
the statistics of local measurements made on the individual constituents that comprise
one’s system of interest, and a state displaying this property is called entangled. In addi-
tion to being enormously interesting theoretically, as entanglement arguably represents the
most quantum of quantum behavior (i.e. furthest from classical intuition), it is also of cen-
tral importance to quantum information and computation and to information-processing
procedures therein [23]. It has been realized that by utilizing the quantum mechanical
properties of matter it is possible to perform certain computational tasks more efficiently
than by any known classical algorithm. This property is often referred to as the quantum
advantage. Indeed the field of quantum cryptography [24], which provides unconditionally
secure cryptographic exchanges (at least in theory), has already achieved commercial real-
ization. More generally, the existence of this quantum advantage motivates research aimed
towards the realization of scalable quantum computers. While this goal has not yet been
achieved by any reasonable definition of achievement, the potential of incredible real-world
application has led to the development of a plethora of potential architectures [23].

Indeed a large majority of the primary protocols and algorithms developed within quan-
tum information science critically rely on entanglement. This has led to the perspective of
entanglement as being a resource that can be consumed in order to perform useful quan-
tum tasks. The reliable generation and distribution of entanglement is therefore a topic
of central importance. In recent years it has also become clear that the simple dichotomy
of entangled or not entangled (also called separable) is not nearly sufficient for classifying
the degrees of quantum correlation that a state can possess. Within the set of entangled
states there is a subset of those that are quantum steerable [25, 26, 27], meaning that one
may prepare into certain states a local part of a system to which one does not have access
by means of measuring and post-selecting that part to which one does have access. Within
this set there is another subset of so called non-local states, which are the states known
to break Bell-type inequalities [28]. Even the set of entangled states is now known to be
a subset itself of states that display what is called quantum discord (or related measures)
[29, 30]; these are states which, while not necessarily entangled, nevertheless display corre-
lations between local measurement statistics that are not reproducible by classical systems
or classical probability theory. There is also evidence that, while perhaps limited, discor-
dant but non-entangled state may still be considered as a resource for certain quantum
computational protocols, for example [31, 32, 33, 34].



In addition to studying the ways in which quantum information can help us to un-
derstand field theory, the past decade has also seen the emergence of interest in studying
how field theory can help us in our quantum information and computational goals. For
example, what restrictions does relativity place on our ability to quantum compute? From
the other perspective, in what ways may relativity aid us in quantum computation beyond
what could be achieved otherwise? Such question fall within the broad category of what
many call relativistic quantum information (RQI). This thesis includes aspects of both
directions within this cross-collaborative communication. We perform multiple studies as-
certaining the structure of vacuum entanglement and particle creation phenomena, as well
as developing novel interpretations for such concepts. In the final chapter, for example, we
precisely answer in physically concrete terms (in the opinion of the author) exactly what
it means for half of an empty box to be full. We also develop several protocols, by the
use of relativistic fields, of interest and importance for quantum information processing
as well as quantum metrology [35, 30, 37]. This includes a novel and sustainable method
for the generation and distribution of entanglement, and a proposal for the development
of an extremely sensitive quantum seismograph, with potential (albeit highly tentative)
applicability to gravitational wave astronomy. We also introduce the notion of utilizing
environmental noise to actually assist in the generation of quantum correlations, rather
than viewing it as an obstacle to be overcome. While we will not be discussing much in the
way of gravity within this thesis, it is largely believed that gaining a better understanding
of the relationship between information theory and relativistic quantum mechanics will
play an essential role in uncovering the fundamental nature of quantum gravity.

The majority of this thesis will be focused on studying the vacuum state of a real scalar
field. In this sense, what we study here is “nothing”, or at least as close to nothing as one
can get. As was discussed above, however, there are some deeply interesting (and perhaps
concerning) mathematical properties of this state and field theory in general that, if taken
at face value, appear somewhat nonsensical. Primarily, we refer here to the questions of
what exactly a particle is, if any exist, and (if so) where they exist. What does it mean
for different observers to disagree on the particle content of the universe? Is this even a
problem? Perhaps not; Robert Wald wrote [38]:

“Indeed, I view the lack of an algorithm for defining a preferred notion of ‘particles” in
QFT in curved spacetime to be closely analogous to the lack of an algorithm for defining a
preferred system of coordinates in classical general relativity. (Readers familiar only with
presentations of special relativity based on the use of global coordinates might well find this
fact to be alarming.) In both cases, the lack of an algorithm does not, by itself, pose any
difficulty for the formulation of the theory.” - R. Wald



Here we will opt to circumvent conventional interpretational problems by following an
alternative approach to understanding these issues: that of operationalism, which is very
much the unifying theme behind this entire thesis. In this context, to work operationally
means to focus less on the mathematical facts that are derivable from a given theory
(e.g. the presence of vacuum entanglement) and make efforts to answer what the actual
physical consequences of this fact are (e.g. can we measure and perhaps utilize vacuum
entanglement?). Our primary focus will therefore be on developing and using models of
measurement and detection, in addition to proposing physical procedures by which the
nature of these issues can be physically concreted. More than providing a straightforward
and informative manner to do physics, such an approach also lends itself more naturally
to discovering ways of experimenting on the given phenomena of interest.

In particular, a large portion of this thesis will be based on introducing a particle de-
tector model and subsequently using it for a variety of studies. In this context, a “particle
detector” is the generic name used to describe some quantum system(s) that we let interact
in some manner with a field [21, 39, 40]. This represents a basic model of measurement,
since in practice any measurement procedure must be performed by interacting one’s mea-
surement device with the system of interest. For example such a model can include the
electronic levels of an atom, which interact with the electromagnetic field. The particular
response of a detector, resulting from its interaction with the field, then gives us informa-
tion on the properties of the field. If the detector becomes excited then this would indicate
the absorption of a quanta from the field. This therefore tells us that, at least from the
perspective of the detector, a particle was present in whatever field state is under con-
sideration. Such an approach therefore allows us to relegate questions of particle content
or location to simply asking what a detector model actually sees. As Bill Unruh likes to
put it (paraphrasing): “A particle is that which a particle detector detects”. Using parti-
cle detectors can furthermore give us operational insight into vacuum entanglement. It is
known that two detectors locally interacting with a field for a short time, where they are far
enough apart that they never come into causal contact, can become entangled through this
procedure [11, 42, 43, 44, 4]. This is possible because the detectors are simply swapping
some of the pre-existing vacuum entanglement out of the field, and many refer to such a
procedure as vacuum entanglement harvesting. We will study multiple such protocols in
this thesis.

Before continuing to the thesis outline, we should also mention the formalism of Gaus-
sian quantum mechanics (GQM) [15]. This represents a restriction of continuous-variable
quantum mechanics to a special class of states (namely, Gaussian states) and interactions
(namely, quadratic). While limited in this respect, when applicable, it can be an extremely
powerful computational tool that allows one to near-trivially solve otherwise intensive or



intractable problems. Fortunately, most of the questions of interest in this thesis fall within
the realm of applicability of GQM, and because of this it is the primary computational
formalism with which we perform our work.

1.2 Thesis outline

We will start in Part. I by providing much of the needed background and preliminary
material that will be assumed knowledge throughout the rest of the thesis. This is split
into the following three chapters:

e To begin, in Ch. 2 we outline the definitions, importance, and methods of computing
various measured of quantum correlations. Being the primary construct that will
concern us, it will be of vital importance in understanding what quantum correlations
are and how to compute how correlated a given quantum state is. In this chapter we
will discuss both entanglement, in its various forms, as well as quantum discord: a
measure of quantum correlations that goes beyond entanglement.

e In Ch. 3 we will give an overview of the formalism and computational techniques of
Gaussian quantum mechanics (GQM). When applicable, GQM can vastly simplify
otherwise intensive quantum mechanical calculations. It is the principal computa-
tional framework that we will utilize throughout this thesis and, as we will see, allows
us to perform tasks that are otherwise intractable.

e To finish the preliminaries, we will discuss in Ch. 4 the basics of scalar quantum field
theory with an emphasis on the concepts and phenomena that will be of interest to
us. In this chapter and the previous a working knowledge of quantum mechanics and
relativity is assumed.

In short: scalar quantum fields constitute the systems of interest with which we will
work, quantum entanglement and more general measures of quantum correlations represent
the primary aspects of these systems that we wish to investigate, and Gaussian quantum
mechanics is the computational tool with which we will perform this investigation.

We will begin the main content of this thesis with Part. II, which represents a large and
primary portion of it. In this Part we develop and utilize a model particle-detector that has,
within a range of circumstances, considerable advantages over the standard methods that
are in wide use. In short, the difference between our model and the canonical one is that



we couple a harmonic oscillator to the field in question, rather than a two-level system.
The key to this model is that by using an oscillator we are able to move to the realm
of Gaussian quantum mechanics, a framework that allows us to perform computations
otherwise impossible. In particular, with this formalism we need not use perturbation
theory and may instead solve for the detector-field evolution exactly. This is markedly
different from the standard, perturbative approach. With this, we are able to examine
explicitly non-perturbative, relativistic quantum phenomena.

e We will start with Ch. 5, in which we introduce the setting within which the
oscillator-detector formalism operates, derive the evolution equation that will be the
primary tool for the remainder of Part. II, and describe its computational workings.

e In Ch. 6 we will present our first application of the oscillator-detector model, in
which we study the Unruh effect within a cavity setting. Indeed we find that the de-
tector experiences a thermal response of temperature proportional to the detector’s
acceleration. This work is important for several reasons. First, the Unruh effect is
typically considered a free space phenomenon, and so observing that it similarly oc-
curs in a cavity setting is a step towards understanding the phenomenon in generality,
in addition to providing higher hope of experimental verification in the laboratory.
Second, using the oscillator model we are able to not just compute the instantaneous
response of the detector but also the non-perturbative thermalization behavior it-
self! Third, we demonstrate that the results are largely independent of the cavity
specifics; namely with regards to its boundary conditions. All three of these points
place the Unruh effect on considerably stronger footing, and suggest that it is in fact
an extremely general and universal part of nature.

e In Ch. 7 we go on to consider the harvesting of vacuum entanglement by a set of
oscillator detectors. In particular, in this study we consider three oscillators simul-
taneously interacting with the field, and we observe that they are able to become
genuinely tripartitely entangled without ever coming into causal contact with one
another. This demonstrates that, perhaps initially surprisingly, the vacuum state
contains spatial tripartite entanglement that can be extracted. We go on to discuss
the implications of our work.

e We then move on to consider the harvesting of more general quantum correlations in
Ch. 8. That is, here we examine the extraction of both bipartite entanglement and
discord from a field and, importantly, we generalize to the case that the field is in a
thermal state rather than solely considering the vacuum. Surprisingly, we discover
that the extractable entanglement and discord display very different behaviors as a
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function of the field temperature. As would be expected, the entanglement rapidly
decays as the temperature is increased. The quantum discord, conversely, can actu-
ally be increased very significantly by heating up the field. We go on to give various
explanations of this phenomenon. This result makes one question the validity of
discord as a reasonable measure of quantum correlations. On the other hand, it also
suggests that within certain scenarios environmental noise may actually be helpful
for the generation and utilization of quantum resources.

In Ch. 9 we study the generation of entanglement via a quantum field from a some-
what different perspective. We consider a protocol in which detector pairs are con-
tinuously send through a cavity field, each time injecting a fresh pair. Each cycle
the interaction with the detectors causes a perturbation on the field state and, inter-
estingly, we find that this evolution will eventually reach a fixed point that appears
independent of the field’s initial state. Furthermore, if in each cycle the detectors are
allowed to have causal contact, this steady state is such that each pair exits the cavity
having become entangled. Such a protocol therefore represents a means of continu-
ously and sustainably generating entanglement by use of a cavity field, allowing for
the aggregation of a computationally significant amount. Rather than entanglement
harvesting, we refer to this process as entanglement farming.

Finally, in Ch. 10 we extend the farming scenario to consider the case that there
is a time delay in between cycles of detector-field interaction. We discover by doing
this that there are regions of parameter space that are highly sensitive to system
perturbations, such as a change in the length of the cavity. We propose to use
this sensitivity for metrological purposes: by preparing one’s system within such a
parameter regime, then even a minute system disturbance results in a significant
alteration of the protocol output. We demonstrate that this can be used a type of
ultra-sensitive quantum seismograph. We go on to discuss potential applications.

We will then move on in Part. III with another, previously introduced model of mea-
surement in field theory. This model consists of assuming that an observer may perform a
projective measurement onto some positive-frequency field mode (presumably a localized
mode); a change of reference frame is then given as a change of coordinates with respect
to which one represents this mode. With this we will discuss two studies into the nature
of quantum correlations and particle creation.

e In Ch. 11 we utilize the projective measurement formalism to study the case of
a single uniformly accelerating observer and compute their Unruh response due to



acceleration. However, unlike the canonical scenario in which the field is prepared in
the inertial vacuum state, here we consider the case that the field is in a thermal state
of some temperature. The observer will then experience a response from the field
thermality in addition to a thermal Unruh response. One of the primary questions
we wish to answer in this work is: can the observer distinguish between these two
contributions? Previous work, based on faulty methodology, claimed that he or she
could not do so. Our work demonstrates this to be false, and that such an observer can
in fact distinguish between what are, in a sense, thermal and quantum fluctuations.
Given our results, we question the use of acceleration as a metrological tool for the
measurement of ultra-cold temperatures.

e In Ch. 12 we will study the degradation of quantum correlations (both entangle-
ment and discord) that occurs between two observers when one of those observers
is uniformly accelerating. This is a prototypical and fairly seminal scenario within
RQI. Unfortunately, most of the initial works on the topic made (among other er-
roneous assumptions) the mistake of considering entanglement between field modes
that are globally spread throughout space. Clearly this is not physically realistic
in any real-world measurement scenario, but it was hoped that the obtained results
would qualitatively hold when considering local modes instead. As we demonstrate
in Ch. 12, this is not the case. In fact, when using local modes the degradation of
correlations is qualitatively worse than when using global modes.

Continuing, we finish in Part. IV with a single chapter. This chapter is, in the opinion
of the author, the most important and conceptually satisfying of this thesis.

e In Ch. 13, we will return to the interpretationally challenging fact that, in some
mathematical sense, half of an empty box is full. In this chapter we will use a local
quantization scheme to explicitly compute the reduces states of two sides of a cavity
vacuum field, and the correlations between them. We will then consider the scenario
in which a mirror is very rapidly placed between these two regions. By doing so, we
reveal that the “particles” present in the vacuum state are mathematically equivalent
to the real particles dynamically generated by the act of introducing the mirror. In
this way we physically concrete what it means for half of an empty box to be full:
this is just a mathematical statement that introducing a mirror creates particles,
a phenomenon which is physically unsurprising and not at all mysterious. We fur-
thermore promote such a procedure as a way of, for the first time, experimentally
demonstrating the existence of vacuum entanglement in the laboratory.

We end in Ch. 14 with a summary of our work and some concluding remarks.



Part 1

Preliminaries
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If put into one sentence, this thesis uses the tools of Gaussian quantum mechanics
(GQM) to study the nature of quantum correlations within the framework of scalar quan-
tum field theory. As such, before continuing to the main body, we will devote this Part to
outlining the necessary concepts from each of these three topics.

First, in Ch. 2 we discuss the notion of quantum correlations; their importance to
physics, how they are defined, and how they are quantified. This will principally include
quantum entanglement. We will introduce entanglement in both bipartite and tripartite
quantum systems, and in both pure and mixed states. We will additionally present what
is called the quantum discord, which is a purported type of quantum correlation that may
be present even in the absence of entanglement. As an aside we will discuss in what way
entanglement and discord are related to each other, by using material from [9].

Second, in Ch. 3 we introduce the formalism of GQM and study in detail its aspects
most important to our exposition, including the evaluation of quantum correlation mea-
sures for Gaussian states. When applicable, the computational ease of GQM can vastly
simplify otherwise challenging calculations. Fortunately, throughout this thesis we work in
regimes in which GQM applies, and it will therefore represent our instrument of choice.

Third, in Ch. 4 we give a comprehensive overview of scalar field theory as it applies to
this thesis. This includes a discussions of Bogoliubov transformation (and their formulation
within a Gaussian framework), as well as detailed overviews of particle-detectors, the Unruh
effect, and vacuum entanglement (not the topics you find in a standard QFT textbook).
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Chapter 2

Quantum correlations

In this chapter we give an introductory description of quantum correlations, including
the well known quantum entanglement as well as the relatively newer quantum discord,
purported to be a more general form of quantum correlation.

2.1 Entanglement

We first discuss quantum entanglement [22], a concept that is central to nearly all of this
thesis. Put simply, entanglement is a property of composite quantum systems and refers
to a specific type of correlation between their constituents. By correlation, I am referring
to correlation displayed in the statistics of local measurement outcomes. The presence of
entanglement, however, implies the presence of purely quantum mechanical correlations
that, critically, are quantitatively stronger than any correlation possible within classical
probability theory. In particular, entangled states include those for which measurement
statistics violate Bell’s inequality [16, 47]. This result leads to Bell’s theorem [18], which
takes seriously the original EPR argument [19] and demonstrates that if quantum me-
chanics functions via classical hidden variables then these variables must necessarily be
nonlocal. Entanglement is, therefore, of extreme fundamental importance. Its existence
demonstrates that we must discard of one of two basic beliefs about nature: we must either
give up the notion that there exists an objective, ontological reality or we must accept that
there are physical processes that act in an unboundedly nonlocal manner.

In addition to our fundamental understanding of nature, entanglement has furthermore
become of central importance to quantum information and computation science. In the past
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two decades it has become understood as a resource, one that must be produced and which
can then be used to perform tasks. Critically, in order to create entanglement between
two systems it is required that those systems interact either directly with each other or
indirectly via transmission of a quantum carrier. Put another way, entanglement cannot be
created or increased through local operations and classical communication (LOCC). This
means that it is generally difficult to distribute between parties, and novel approaches to
entanglement distribution will be a common theme throughout this thesis. If two parties
share an entangled state, however, it can be utilized for a plethora of quantum computation
and communication tasks, and indeed is the primary quantum ingredient in many of the
better-than-classical computational algorithms that have made quantum information and
computation the booming field that it is today. Examples of well-known protocols that
utilize entanglement include quantum key distribution [50, 51, 52], dense coding [53], and
quantum teleportation [54].

2.1.1 Pure state entanglement

We will first describe bipartite entanglement in the case that the global quantum state
is pure. That is, we are given some pure state on a joint Hilbert space |¢)) € Ha @ Hp,
representing the state of quantum system consisting of two distinct subsystems or sets of
degrees of freedom. A typical scenario to consider is one in which two agents, Alice and
Bob, possess each one of these subsystems (e.g. each may possess a qubit, in which case
|1b) would be some two-qubit state). The joint state |¢)) may display correlations between
the two subsystems, in the sense that the outcomes of single-shot measurements performed
by Alice and Bob on their individual systems will be be correlated. If a joint state contains
no correlations, this means that it can be represented as a tensor product state of the
two reduced states on Hilbert spaces H4 and Hp. In the case of global pure states this
condition is equivalent to the state being separable, defined to mean without entanglement.
That is, a pure, separable state |¢)) can be written in the form

V) = |¢) , ® |¥)g,  separable. (2.1)

This is the case in which Alice simply possesses state |1)) , and Bob the statistically inde-
pendent state 1) 5. If a pure state cannot be written in this form, then it is entangled. A
simple example of an entangled state is the two-qubit Bell state |®*) = (|00) + |11))/v/2,
where we make use of the notation |00) = |0) , ® |0) 5 and |11) = [1) , ® |1) 5. There is no
local change of basis that will bring |®*) to a product state of the form Eq. (2.1), and it
is therefore an entangled state.
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At times, however, especially when dealing with higher dimensional systems, it is not
always obvious from observation whether or not a bipartite state is entangled. Given local
bases {|7) 5} and {|j) 5} of local Hilbert spaces H 4 and H  respectively, each of some given
dimension, a general pure state on the joint system H 4 ® Hp takes the form

0 =Y eulis). 22

This state is therefore separable iff the coefficient matrix is decomposable into an outer
product ¢;; = c;c;. To find a simple, consistent method for checking this condition let us
take advantage of the fact that for any such state there exists a pair of bases {|i),} and
{|7) 5} such that the state takes the form

[v) =3 Vi i) 2.3

This is known as the Schmidt decomposition of the state |¢), and the number of non-zero
probabilities p; is referred to as its Schmidt rank. We see therefore that |t) is separable
iff its Schmidt rank is 1. Critically, this criterion also implies that it is separable iff
the reduced states on H4 and Hp are pure, meaning that their density matrices are of
rank-1. To see this, recall that the reduced state on H, is given by the partial trace
pa = Trp([v) (W) = >, UslY) (¥]ip), where the trace is taken over any chosen basis of
Hp. The reduced state pg is computed similarly. Taking the partial trace of Eq. (2.3) we
see immediately that

pa = Zpi [3) (il (2.4)

Thus, as claimed, the state [¢) is separable iff p4 is rank-1. A density matrix of rank
greater than one represents what is referred to as a mixed state, meaning that there is
classical uncertainty regarding in what quantum state one’s system actually resides. A
state that is not mixed is called pure. Thus, the pure state |1) is entangled iff the reduced
state p4 is mixed. Note that the spectrum {p;} of pp will be equivalent to that of p, and
thus it does not matter which reduced state is considered. This therefore provides a simple
criterion for checking whether or not a pure, bipartite state is entangled or not, because
mixedness is easily checked independent of basis, and one does not need to perform a
Schmidt decomposition. For example both the criteria p% # pa and Tr(p%) < 1 are
necessary and sufficient for mixedness, and thus for |¢)) to be entangled.

We now have a criterion for determining the existence of bipartite entanglement in a
pure state. We would like, however, to also have quantitative measure with which we can
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answer the question of “how much” entanglement we have. For pure states this is equivalent
to how mixed the reduced states are, for which we use the von Neumann entropy

S(A) = S(B) = —Tr(palogpa) = — Zpi log p;, (2.5)

where, unless otherwise specified, we use log = log,. Here and throughout this thesis we
will be making use of the notation S(A) = S(p4) and S(B) = S(pp). The reduced entropy
is a natural measure of entanglement for pure states. Note that it is zero iff |¢)) is separable.
On the other hand, we note that S(A) is maximized when the spectrum of p4 is uniform
pi = 1/d4, where d4 is the dimension of H,4. Equivalently, the reduced state takes the
form pa = I/d4, and in this case py4 is called maximally mixed. Its entropy in this case
is S(A) = logda. A bipartite state |¢)) contains the most entanglement possible, and is
referred to as maximally entangled, if its reduced states are maximally mixed. The Bell
state |®T) = (|00) +|11))/+/2, for example, is a maximally entangled two-qubit state with
S(A) =1.

2.1.2 Mixed state entanglement

Let us now generalize to the case of global mixed states, i.e. where the bipartite state shared
by Alice and Bob is generally represented by some density operator pap. In this case, how
does one define separability? As discussed previously, a critical aspect of entanglement is
that it cannot be created or increased via LOCC. A natural definition of separability is
thus provided by stating that a separable state is one that can be created purely through
LOCC. 1Tt is straightforward to see that this is equivalent to the set of states in which,
with probability py, Alice and Bob locally prepare some states pi and pP, respectively.
That is, a general separable state is one that can be represented as a convex combination
of product states

PAB = Zpkﬁ? & ﬁf, separable. (2.6)
k

We see that in case of pure states this definition reduces to that of Eq. (2.1). Before
continuing to discuss more general measures of entanglement, it is important to note that
for globally mixed states the reduced entropies are not measures of entanglement, and will
generally be non-zero even for separable states. This is unsurprising, since for example
the mixed product state pap = pa ® pp clearly has mixed reduced states and yet displays
no correlations. This leads to another important point, however, in that globally mixed
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states can be separable yet still contain correlations. To this end we introduce the mutual
information:

I(A,B) = S(A) + S(B) — S(A, B), (2.7)

where S(A, B) = S(pap). This represents an entropic measure of the total correlation
between the two systems. For globally pure states this clearly reduces to I(A, B) =
I(|¥) (¢]) = 2S(A), and thus vanishes iff the state is separable. That is, a pure state
is correlated iff it is entangled. For globally mixed states, however, this is not the case.
The mutual information vanishes, I(A, B) = 0, iff we have a product state pap = pa ® ppg.
A convex combination of product states, i.e. separable states in general, will have non-zero
mutual information and will display correlations between measurement outcomes.

Returning now to mixed state entanglement itself, we must discuss how one can de-
termine if a general state is entangled (it is not always easy from observation alone to
determine if a state can be put into the form of Eq. (2.6)) and, as much as possible, how to
quantify this entanglement. We will begin with the simplest criterion for determining the
existence of entanglement. This is known as the Peres-Horodecki or the positive partial

transpose (PPT) criterion [55, 56]. To introduce it, let us first recall the definition of the
partial transpose. If we have a general bipartite states of the form
pap =Y cijre i) (7] @ k) (€], (2.8)
ijke

then the partial transpose acting on this state (where here we will choose to apply the
transpose to the second system) is defined as

Pl = D cune ) Gl ([B) ()" = cqne i) (] @ 16) (k] (2.9)

ijkl ikl

Given this, the PPT Criterion states that if pp is separable then Y is positive semi-
definite. That is, if p has at least one negative eigenvalue, then psp is entangled.
Importantly, in the case that the dimension of H 4 ® Hp is less than or equal to 6 (e.g. two
qubits) then the reverse implication also holds. Namely, for 2 x 2 and 2 x 3 dimensional
systems p4p is separable iff ,65‘% is positive semi-definite. For higher dimensional systems,
unfortunately, a positive semi-definite partially transposed state is not necessarily separa-
ble. In this case, any entanglement not witnessed by this criterion is referred to as bound
entanglement [57].

This criterion also leads to a measure of mixed-state entanglement which, while of
questionable quantitative meaning, is useful in that it is very easily computable (unlike
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more rigorously defined measures that we discuss below). This measure is referred to as
the negativity of the state in question, N'(A4, B), and is defined as the absolute value of
the sum of the negative eigenvalues of g% [78]:

N(AB)= Y IN®l, A" € spec(pyf). (2.10)
A

I'e
;B <0

Importantly, this measure has the property that it is non-increasing under LOCC, an
essential characteristic of any reasonable measure of entanglement. In general, a quantity
that satisfies this can be referred to as an entanglement monotone. A secondary monotone
that derives from the PPT criterion is referred to as the logarithmic negativity Ey(A, B),
and can be defined in terms of the negativity as [58, 59]

En(A, B) = log(2N'(A, B) + 1). (2.11)

The advantage of the logarithmic negativity is that satisfies the condition of being additive
under tensor products. That is, if we consider four subsystems A, B, C', and D, where
the joint state of these systems is a product state of the form pap ® pop (i.e. there are no
correlations between AB and C'D) then the total logarithmic negativity in the system is
just the addition of that in AB and in CD: En(pap ® pop) = En(A, B) + Ex(C, D).

Although the negativity and logarithmic negativity are entanglement monotones, they
unfortunately do not represent in any operational manner “how much” entanglement there
is in a system. Given their ease of computation they will constitute the primary measure
by which we quantify entanglement in this thesis, but it is important to keep in mind this
limitation. Although we will not be directly using them, it is worth pointing out two other
more operationally defined measures of entanglement. Unfortunately, for anything beyond
two qubits they are generally extremely difficult to actually compute. These two mea-
sures are the entanglement of formation Er(A, B) [00, 61] and the distillable entanglement
Ep(A, B) [62]. The entanglement of formation quantifies how many maximally entangled,
pure state Bell pairs must be utilized in order to convert them into psp through LOCC.
On the other hand, the distillable entanglement quantifies how many such Bell pairs can
be obtained through LOCC starting with the state p4p. Both of these measures reduce to
the reduced entropy S(A) in the case of pure states. Importantly, the two measures are not
generally equivalent, rather they satisfy Ep < Er. That is, in general less Bell pairs can be
distilled from a state than the number of pairs that went into making it. The entanglement
that cannot be distilled is, as mentioned above, referred to as bound entanglement and is
not registered by the PPT criterion.
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2.1.3 Multipartite entanglement

To finish our introduction to entanglement we will briefly discuss the notion of multipartite
entanglement, the structure of which is generally much more complex then that of bipartite
entanglement. Let is consider an n-partite system, meaning that we have split the Hilbert
space of our system in question into a product of n constituent parts, H = H1®- - -QH,,. We
begin with the definition of a fully separable state across this ensemble, meaning a state in
which no bipartition between any two subsets of the n constituents contains entanglement.
Extending the definition of separability in Eq. (2.6), such a state can always be locally put
into the form of a convex combination of product states

p=> iy @@ (2.12)
k

This represents the set of states that can be constructed via LOCC among n parties.

On the opposite end of the spectrum is a state which exhibits full, n-partite entan-
glement. By definition, such a state is entanglement across all bipartite partitions of the
whole system. In the case of global pure states this corresponds to obtaining a mixed state
upon taking any possible partial trace. In this thesis we will consider tripartitely entangled
states, but no higher. Importantly, there are known to be two inequivalent classifications
of genuinely, tripartitely entangled states. Restricting ourselves to three qubits, these two
states are known as the GHZ state [63]

1
(GHZ) = —=(1000) + 1), (2.13)
and the W state
) = ——(J001) + 010) + |100)). (2.14)

V3

These states are representatives to two inequivalent classes of tripartite entanglement, in
the sense that it is impossible to transform one such state to the other by LOCC [64].
The key difference that can be observed between these two states is that in the GHZ state
no two pairs of qubits are entangled upon tracing out the third (i.e. the entanglement
present is fully a property of the three qubits combined), whereas in the W state every
pair of qubits among the three do display bipartite entanglement with each other (i.e. the
entanglement is concentrated in the bipartite links).

There are in addition states which are partially separable, and partially entangled, in
the sense that there is entanglement present in the system but is not of a multipartite
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nature. A trivial three-qubit example of such a state is |0) |®T), where |®T) is a two-
qubit bell state. Clearly there is no entanglement across the bipartition isolating the first
qubit, and thus this state is not tripartitely entangled. Although concrete measures of
multipartite entanglement have been developed, we will not require such measures in this
thesis and will therefore not discuss them; the interested reader is referred to [65, 22].

2.2 Quantum discord

In this section we discuss the quantum discord, which is a measure proposed to quantify
quantum correlations that in general extend beyond entanglement [29, 30]. While in the
case of a pure state the entanglement does provides a complete enumeration of quantum
correlations (indeed for pure states the discord reduces to the entanglement entropy), it is
now understood that in a mixed quantum state there can exist quantum correlations, in
the sense that its joint-measurement statistics cannot be described by classical probability
theory, even if the state in question is separable. The quantum discord [29], along with
several other proposed measures [30], purport to quantify these generalized quantum corre-
lations. In addition to being of theoretical interest [06, 67, 9, 65|, discord has also received
considerable attention regarding its potential as a quantum computational resource in the
absence of entanglement [31, 32, 69, 70, 71, 72]. While the full utility of discord is still
far from certain, and many of the protocols discovered have been criticised as being either
highly construed and not very useful or in reality utilizing entanglement in an unobvious
way, there are inarguably several examples of discord being a genuinely useful quantum
resource. A prime example of this is the realization in [33, 31], and the recent experimental
demonstration in [73], that quantum discord quantifies the amount of distillable entangle-
ment generated between a system and a measurement apparatus upon performing a local
measurement.

The discord D(A, B) is an entropic measure of the quantumness of correlations between
A and B, given state pap, where such quantumness is characterized by the impossibility
to both locally access information about A by measurement on B and to obtain it without
modifying the state of the system. We start by recalling the definition of the mutual
information Eq. (2.7). I(A, B) is a measure of the total correlations between the bipartition
A and B, both quantum and classical. We can also give an alternative definition of the
mutual information that takes the form

J(A,B) = S(A) — S(A|B), (2.15)
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where S(A|B) is the conditional entropy of system A given a determination (i.e. a mea-
surement) on system B. In classical probability theory the conditional (Shannon) entropy
H(X|Y) of two random variables X and Y is defined as the average entropy of X given a
determination of Y: H(X[Y) =3 p,H(X|Y = y) where p, is the probability of Y taking
the value y. Classically, Bayes’ rule implies that the two definitions of mutual information
are equivalent.

The quantum discord is defined to be the difference between these classically equivalent
quantities, D(A, B) = I(A, B) — J(A, B). The fact that this can be nonzero in the quan-
tum regime comes from the way that we define the quantum conditional entropy, which
involves a measurement over B. As is well known, measurement in quantum mechanics is
operationally very different from the classical notion of measurement as merely an update
of knowledge. The definition of quantum mutual information should follow similarly to its
classical counterpart, and to this end we define a quantity

S(A[B) ;) = ijs(ﬁmnj)a (2.16)

J

where {II;} is a positive operator valued measure (POVM) performed on system B and
p; = Tr(ILjpp) is the probability of outcome j. S(pam,) is the entropy of the post-
measured state pam; on A given that outcome j was achieved. This state is given by

the reduction pam; = TrB(ﬁAB|Hj) to A of the global post-measured, post-selected state
paB, = pj_l(]AA ® Mj)ﬁAB(fA ® M]T), where the set {Mj} consists of the measurement
operators that define the POVM II; = M jTMj.

It is this definition of S(A|B)m,; that we we will use in Eq. (2.15). The quantity
J(A, B) is thus to be thought of as a measure of classical correlation, telling us how much
we are able to learn about system A from a measurement on system B. The discord
D(A,B) = I(A,B) — J(A, B) therefore is what one is left with upon subtracting the
classical correlation away from the total correlations. The remainder is interpreted as
being of a purely quantum nature.

Critically, however, the conditional entropy as given by Eq. (2.16) depends on our
choice of measurement. To ensure that the discord only picks up correlations that are
quantum we should choose the measurement that minimizes this quantity; thereby giving
us the definition of quantum discord

D(A, B) = I(A, B) — J(A, B)
= S(B) ~ S(A, B) + inf S(AIB)qn,) (2.17)
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The measurement on B that achieves this minimization is the one for which we learn the
most we possibly can about A. Whatever uncertainty is left in A must therefore be due to
the quantumness of the correlations, as opposed to simply a bad choice of measurement.
Without this minimization we risk including classical correlations in our measure.

For pure states the entanglement entropy S(A) = S(B) provides a complete measure
of quantum correlations, and fortunately the discord is straightforwardly shown to reduce
to D(A, B) = S(B) for pure states. Another property worth noting is that in general the
discord is not symmetric, D(A, B) # D(B,A). One consequence of this is that a state
with zero discord in the one case may not be zero in the other. A state has zero discord in
the sense that D(A, B) = 0 iff the state takes the form

pan =Y ol ® k) (Kl (2.18)
k

where {|k);} form an orthonormal basis on B, {pj'} are a set of density operators (not
necessarily rank-one or orthogonal) on A and ), pr = 1. Such a state is referred to as being
quantum-classical, and has zero quantum correlations from the perspective of measurement
on B. Notice that the condition necessary for D(A, B) = 0 is more restrictive than the
condition for psp to be separable, Eq. (2.6). We can therefore have mixed states that
are void of entanglement but nevertheless contain quantum correlations as witnessed by
nonzero discord. A state that is completely devoid of quantum correlations, D(A, B) =
D(B,A) = 0 can be locally put into the form pap = >, pi |k) 4 (k|4 ® |k) 5 (k| 5, Where
on each system the set {|k)} are orthogonal. This gives us a good intuitive idea of how it
is possible for a state to have quantum correlations despite being separable; a completely
classical state is one for which the correlations can be described by classical probability. In
general, non-orthogonality within a mixture still allows correlation structures not captures
by classical probabilities, even if they do not imply entanglement.

Unfortunately the minimization over measurements necessary to compute the discord
can be very difficult or impossible to actually perform the minimization for even moderately
sized systems [74]. Often authors have limited themselves to minimizing over projective
valued measurements (PVMs) rather than over all possible POVMs, but even so it can
often not be done. Of particular interest to us is the notion of Gaussian quantum discord
[75], which we will discuss in the next chapter.
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2.3 Aside: Discord as a bipartite manifestation of tri-
partite entanglement

Note: this section derives from the work [9], in collaboration with Eric J. Webster, Eduardo
Martin-Martinez, and Achim Kempf.

Here we will take the opportunity to discuss some connections between the presence
of discord in a separable state pap and the structure of both bipartite and tripartite
entanglement within this state’s purification [¢) 5~ . We propose to regard bipartite
discord not as, in some sense, a competitor to entanglement. Instead, we propose to view
discord as being a manifestation of entanglement, namely multipartite entanglement in the
purified system. We also conjecture, although we do not pursue it here, that there similarly
may exist natural and potentially useful notions of n-partite discord for n > 2, which in
turn can be expressed in terms of n and n + 1 partite entanglement of a larger system.
This may even help elucidate the structure of multipartitie entanglement in general.

Our primary results are as follows: we show that the presence of discord in any separable
bipartite state of any system AB requires the presence of both bipartite and tripartite
entanglement in the purification ABC. Indeed, we show that tripartite entanglement is
required for any correlations in AB, quantum or classical. Then for the correlations in
AB to be quantum we show that, in addition to the tripartite entanglement, bipartite
entanglement in AC' and/or BC' is required. More precisely, AC entanglement creates
D(A, B) discord and BC' entanglement creates D(B, A) discord.

We first give a simple and general proof of our primary result. We will start by showing
the requirement of bipartite entanglement in AC' or BC', and in particular we will see that
the presence of a quantum-classical or classical-quantum state is directly related to where
such bipartite entanglement is located. That is, if the subsystem AC' is separable, then
D(A,B) = 0 and if BC is separable, then D(B, A) = 0. To show this, we make use of a
powerful formula for D(A, B) given by [70]:

D(A, B) = Ex(A,C) — Ep(AB, C) + Er(AC, B), (2.19)

'We refer here to the fact that any mixed state may be represented as the reduction of a pure state on
a larger Hilbert space. That is, for some p acting on Hilbert space H 4 there always exists another Hilbert
space Hp and a pure state |¢)) € Ha ® Hp such that p = Trp(|¢) (¢]). This is easily seen since any pure
state can be represented as a Schmidt decomposition, and thus any p = >, \; |i) (| will have a purification
[¥) = >, VA i) ®]i). Notice that the dimension of the ancilla system H p must be at least as large as the
rank of p. Also note that the purification of a given state is not unique, since applying any local unitary
on the ancilla system will produce another purification. In this section, we take the two-qubit space H ap
to be the system acted on by our density operator, and Hc we take to be the purifying ancilla system
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where Er is the entanglement of formation and, for example, Er(AB,C) is the entangle-
ment between system C' and the combined system AB. Similarly, we have

D(A,C) = Er(A,B) — Er(AC, B) + Er(AB, C).
Together these yield
D(A7 B) +D(A7 C) = EF(Avg) _'_EF(A? B>7

however in our case we are considering systems AB that are separable, and so Er(A, B) =
0. Thus, if AC' is also separable this implies D(A, B) + D(A,C) =0 — D(A,B) =0,
since discord is always non-negative. An analogous argument can be made for the BC'
separable case.

Secondly, we can show that lack of genuine tripartite entanglement in the pure state
|¥) 4 pc implies that there are no correlations between A and B 2. In order for [¢) 45 to
be genuinely tripartitely entangled it is necessary and sufficient that all three bipartitions
(AB)C, (AC)B, and A(BC') be entangled. Since the state on AB is assumed mixed we
have that there is entanglement in the bipartition (AB)C. Thus in order for tripartite
entanglement to not be present it must be that at least one of the other bipartitions is
separable. With out loss of generality let us assume that A(BC) is separable, meaning
that the purified state can always be put in the form

) ape = 04 ® Z Vpili)p @ li)c - (2.20)
The reduced state on AB is thus trivially

pap = [V) 4 (Y], ® Zpi 1) (il g (2:21)

which is clearly uncorrelated, neither quantumly nor classically.

We thus have a simple proof of a quite general result: the presence of any correlation
in the separable, mixed system pap requires its purification |¢),z- to be tripartitely
entangled, and if one wishes those correlations to have any quantum nature this further
requires that the purification also contains bipartite entanglement.

It should be noted that this implication does not in general occur in the opposite
direction. Namely, if a state on AB is uncorrelated this does not imply that the state’s

2This proof was pointed out to us by Nicolai Friis and Marcus Huber
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purification will be without either tripartite or bipartite entanglement. A simple example
of this is any product state in which both A and B are mixed: pap = pa ® pg. Clearly
this state has neither classical nor quantum correlations. Purifying this state is trivially
achieved by purifying p4 and pp individually such that the purifying addition C' has the
same dimension as AB. This pure state is trivially seen to contain both bipartite and
tripartite entanglement.

We will also discuss our findings in simple systems and examine the relationships be-
tween discord and purified entanglement in more detail. To this end, we will examine
states of three qubits and states of three-mode Gaussian states. In these simple scenarios
all calculations can be done explicitly and this allows us to show, among other interesting
insights, that the property just proven above is not only sufficient but also necessary. That
is, not only does the lack of bipartite or tripartite entanglement imply vanishing discord in
the reduced state, but vanishing discord in the reduced state also implies that there is ei-
ther no bipartite or no tripartite entanglement in the purification. The case of three-mode
Gaussian states will be discussed in the next chapter.

Here, however, we will specialize to the case of two qubits that are in a rank-2 state
pap, such that its purification |¢) , 5~ will consist of only one extra qubit C. As above,
we further require the state pap to be separable because we want to understand how the
presence of discord between A and B is to be understood in terms of the entanglement
structure of the purified system. If we were to allow entanglement between between A and
B then this would trivially imply nonzero discord. There would therefore be no necessary
conditions on the purified system to ensure the presence of discord. In this scenario we will
see that the requirement of both tripartite and bipartite entanglement in [¢) , 5. is both
necessary and sufficient for the presence of discord in pag.

To this end we can write the most general (up to relative phases) two-qubit, rank-2,
separable state as

pas = q|0) (0] |0) (O] + (1 = q) o) (| ® | B) (B, (2.22)
where 0 < ¢ < 1 and

lay = cos(ma/2) |0) + sin(ma/2) |1) (2.23)
|B) = cos(m3/2) |0) + sin(m3/2) |1) (2.24)

are real combinations of the basis states |0) and |[1). We don’t consider the cases when
q = {0,1} because then pap will be a (pure) product state and thus will trivially have
zero discord. Note that we don’t lose any generality by choosing the first projector to be

24



|0) (0] ®]0) (0]. Also note however that we have lost generality by not including a relative
phase between the two terms and by assuming that |a) and |3) are real combinations of
the basis vectors. This exclusion will not affect the primary result presented here, as will
be explained below.

We now ask under what circumstances pap contains discord. Recall that the discord
D(A, B) when B performs the required measurement is not generally equivalent to the
discord D(B, A) when A performs the measurement. Indeed one can be zero while the
other is nonzero. Clearly in our state of interest both of the discords will be trivially zero
if |a) = £|0) or |B) = £|0) because in this case pap is a product state. Aside from this
we know that D(A, B) = 0 identically if (5]0) = 0, i.e. if |5) = £]1) (as can be seen
directly from the definition of a zero-discord state Eq. (2.18)). A similar condition holds
for D(B, A) = 0. Concisely we can state

D(A,B)=0
iff {|B) ==%[1) or |a)==%[0) or [B)==£]0)}, (2.25)
and
D(B,A)=0
iff {|Ja) ==4|1) or |a)==%]0) or |B)==%|0)}. (2.26)

The goal is now to compare these possibilities with those of the entanglement structure
of the purification [¢) , 5. Without loss of generality the purification is

[¥)ape = v10)10) [0) + /1 = qla) |8} [1) (2.27)

Let us now consider from this the reduced state psc. Tracing over B and labeling ¢, =
cos(ma/2) ete, we have

q V(1 —q)eseq 0
| Val=@esea A—q)2 0 (1 —q)casa
0

V q(1 — q)cpsa (1 - q)casa

The partially transposed eigenvalues of psc can then be readily computed and it is found
that only one of the four, which we will call A\, can ever be negative. Recall that since
pac has dimension 2 x 2 the PPT criterion is both a necessary and sufficient condition
for separability. Thus pac is entangled iff A is negative. From this it is easy to show that
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|ov) +10) #£10) £10) £1) #+{0),1D} | #+{0), 1)} +[1)

13) +10) +10) # +10) # £{[0), 1)} 1) #+{10), 1)} £
ntanglemen ¢ C)
Esttruﬁure ' ¢ % ,Av
A. .B .B A. .B A. .B
D(A, B) 0 0 0 >0 0 >0 0
D(B, A) 0 0 0 0 >0 >0 0

Figure 2.1: The relationship between the entanglement structure of |¢) , 5 and the discord
in pap. For given conditions on |a) and |3) we display the resulting entanglement structure
and the results for the discords D(A, B) and D(B, A). In the structure diagrams an ellipse
represents the presence of bipartite entanglement while a triangle represents the presence
of tripartite entanglement.

pac is almost always entangled, being separable iff a = {0,2} or § = {1,—1}, i.e. iff
|a) = £0) or |8) = £1). Additionally it becomes trivially separable if ¢ is equal to 0 or
1, but we will not consider this case. The separability of pgc follows similar conditions.
Concisely:

pac is separable iff {|a) = £10) or |B) ==%]1)}, (2.29)
ppc is separable iff {|8) =+|0) or |a) =+£|1)}. (2.30)

Let us further consider the separability of p4¢, because the two different conditions for
separability mean two very different things. We see that the first condition, |a) = +£|0),
coincides with the A system being a product onto the BC' system; under this condition
the 3-qubit state takes the product form [|¢) 5. = |0) ® |¢) 5. Of course in this case
pap is separable, as we've seen, but it also clearly has zero discord and we see that this
is compatible with Egs. (2.25, 2.26). The second condition, |5) = 4]1), is much more
interesting. In this case the reduced state of A is mixed rather than pure, meaning that
despite A not being entangled with B nor with C' it is entangled with the BC' system as a
whole. In fact, in this case we have genuine tripartite entanglement occurring in the state
V) 4pc that is of the GHZ type discussed in Subsect. 2.1.3.

We can take the conditions for zero discord and separability in Egs. (2.25, 2.26) and
(2.29, 2.30) respectively and find that they match up very nicely; we display the resulting
pattern in Fig. 2.1. There are two interesting things to notice from this pattern. Firstly, at
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least in the simple setting we are considering here, it appears that the presence of discord
in pap is equivalent, in the sense of necessity and sufficiency, to there being both bipartite
and tripartite entanglement in the purified system (notice that when there is no bipartite
entanglement, i.e. a GHZ type state |000) + |111), there is no discord). Secondly we very
clearly see the asymmetry of discord D(A, B) # D(B, A) represented in the entanglement
structure.

As an important note, recall that we neglected to include relative phases in our state
(2.22). In the analysis we’ve done here this is not a problem and the structure in Fig. 2.1
will continue to hold if phases are included. The reasons for this are that 1) the nullity
of discord depends only on the orthogonality the projectors in Eq. (2.22), which for us
will not be affected by phases and 2) the partially transposed eigenvalues do not depend
on any relative phases and thus the entanglement structure of |¢) , 53 will be independent
of them as well. Thus we are justified in using the simplifying assumption of no phases,
reducing our phase space from six dimensions (¢, a and § plus three phases) down to three
dimensions.
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Chapter 3

Gaussian quantum mechanics

The formalism of Gaussian quantum mechanics (GQM) is of central importance to this
entire thesis, as it constitutes the computational framework that is utilized throughout.
GQM deals with a special class of continuous-variable states referred to as Gaussian states.
These in fact account for a wide range of states that are of interest in quantum information,
quantum optics, and relativistic field theory; they include vacuum, thermal, squeezed, and
coherent states [77, 78]. Indeed the formalism turns out to perfect for answering all of the
problems presented in this thesis.

In this chapter we will give a brief and functionality-based overview of GQM, includ-
ing what Gaussian states are, their properties, and how they evolve. A more complete
introduction can be found in [15], among many other resources available in the literature.
Unless otherwise stated or cited, full derivations of the content presented in this chapter
can be found in [15].

3.1 Basics

Consider a set of continuous-variable bosonic modes. These can describe, for example, a
set of N quantum harmonics oscillators or the modes of a field (or both, as we will in
this thesis). We label the quadrature operators for each mode (g;, p;) for each i =1... N,
where these operators satisfy the canonical commutation relations [¢;, p;] = id;;. We can
package these degrees of freedom into a phase-space vector of the form:

)A(:(dlaﬁlag%ﬁ%'"7qAN7ﬁN)T' (31)
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These quadrature operators are related to the creation and annihilation operators of each
mode by

1 N
=7

In this notation the canonical commutation relations [¢;, p;] = id;; take the form

(af — aj). (32)

[T, ;] = 1€, (3.3)

where €;; are the entries of a matrix called the symplectic form, which is given by

Q- QZN? (_01 (1)) . (3.4)

A Gaussian state p of such a system is by definition one that can be completely described
by its first and second moments, (#;) = Tr(pz;) and (2;2;) = Tr(p2;2;). Equivalently, its
Wigner function (see [78] for an example) takes the form of a Gaussian. We will here use
Gaussian states that have zero mean (z;) = 0. The utility of a Gaussian state is that it
can be fully described by its 2N x 2N covariance matrix o, the entries of which are!

0ij = (B3l + 2;T4). (3.5)

This matrix contains all of the information about a Gaussian state. It is this fact, that
we can describe such a state by a finite dimensional matrix o rather than by an infinite
dimensional operator p, that accounts for the great utility and power of GQM. It is im-
portant to note that this formalism can also extend to Gaussian states of non-zero mean
(indeed this is what coherent states are), but we will not need that generalization for the
purposes of this thesis.

The covariance matrix of our system can be decomposed into 2 x 2 blocks:

0'7} Y12 Y13
Y21 02 o3
Yh Y o3 (3.6)

g =

INote that this definition differs by a factor of two from what is usually called the covariance matrix.
Our definition offers the advantage that the vacuum state is represented by the identity matrix, as will be
explained.
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Given this, specifying the reduced state of a subset of modes is entirely trivial when working
with Gaussian states. One must simply use the rows and columns of the total covariance
matrix that corresponds to the modes one wishes to isolate. For example the reduced state
of the first two modes of our ensemble, which we will represent by the covariance matrix
o192, is simply given by the first 4 x 4 block of o

o1y = (‘77{ '712) : (3.7)

Y12 02

where the 2 x 2 covariance matrices o1 and o, represent the reduced states of the first and
second modes on their own, respectively. The 2 x 2 matrix 4,5, encodes the correlations
between the two modes; they are in a product state with respect to each other iff v, = 0.

Let our ensemble of oscillators/modes have fundamental frequencies w;, i = 1--- N.
The free Hamiltonian associated with our system is then given by

N N

~ PN Wi, R
Hfree = Zwia;‘rai = Z E(p? + Qz2)7 (38)

i=1 i=1

where we have ignored any constant addition to I:Ifree since this will have no impact on
the states or evolution considered. Note, for example, that the expected energy of any free
Gaussian state can be computed via

% (Tro; — 2), (3.9)

Mz

H free

=1

where o; are the covariance matrices of the individual modes, and we have subtracted
off the ground state contribution such that the energy of a ground/vacuum state is by
definition zero. The value of (Tro; — 2)/2 is easily seen to be the expected excitation
number (ala;) of mode-i (i.e. the particle number if interpreted as a field mode); this will
be discussed further in Ch. 4. The total expected excitation of the system is therefore
given by (Tro — 2N)/2.

Of critical importance is the fact that any unitary evolution generated by a quadratic
Hamiltonian will preserve the Gaussianity of a state [77]. Any such unitary operation U on
the Hilbert space of states corresponds to a symplectic transformation on the phase space
that, in the Heisenberg picture, transforms the quadrature operators into new quadrature
operators that are linear combinations of the old: X — UTxU = Sk. Here S is required to
be a symplectic matrix, meaning that it satisfies

SQS” =STQS = Q. (3.10)
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The condition (3.10) is equivalent to the requirement that the canonical commutation
relations [¢;, p;] = id;; are preserved throughout the change of basis. On the level of the
covariance matrix it is easy to see that this transformation acts as

o — o =Sas’. (3.11)

The method of computing the symplectic matrix corresponding to a quadratically generated
U is straightforward, and involves using the Baker-Campbell-Hausdorff (BCH) formula
exp(X)Y exp(—X) = ¥V + [X, Y] + [X,[X,Y]]/2!--- to determine how the unitary acts
on quadrature operators. If X is quadratic in the quadratures then the result will be
a symplectic linear combination of quadratures, which can then be used to read off the
symplectic transformation S.

Local operations are especially easy to handle when working in GQM. Imagine that we
split our N mode Gaussian system into two sets A and B, with m < N modes and N —m
modes respectively. We can then structure our phase space basis such that the state of the
total system is decomposed as

o= ("TA ”‘B) , (3.12)

Yap OB

where o 4 is the 2m x 2m dimensional covariance matrix describing the reduced state of
ensemble A, etc. If we then apply a local Gaussian operation Us @ Ug to this state,
the symplectic representation of this transformation is given not by a tensor product but
rather a direct sum: Sy @ Sp, where S, and Sp are the local symplectic transformations
corresponding to Uy and Ug, respectively. Acting on o this gives the transformation

SAO'ASZ SA7ABS£>
- . 3.13
7 (SB’YEBS:'Z SBO'BS;‘Q ( )

Symplectic transformations come in two important categories, characterized by whether
or not they change the total excitation number (Tre — 2N)/2 of the system. These are
referred to as passive transformations, which leave this number unchanged, and active
transformations, which modify it. Mathematically, a passive symplectic matrix S is one
that is orthogonal in addition to being symplectic (thus preserving the trace of o). An
active transformation is one that is not orthogonal. We will see important examples of
both of these categories in the next section.
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3.2 Important states

Extremely important to this thesis is the easily shown fact that the ground/vacuum state
|0),10), - - -]0) 5 of the Hamiltonian Eq. (3.8) is a Gaussian state, and in fact its covariance
matrix simply takes the form of the 2N x 2N identity matrix:

O vac = Loy (3.14)

This indeed can be seen as a simple version of Wick’s theorem. We note for example that
this state has vanishing excitation number (Troy,. — 2N)/2 = 0, as should be the case.
Notice also that because the free Hamiltonian is devoid of coupling between modes this
state is equivalent to a product of single modes, each of which are in their ground state.
In the language of GQM this is trivially seen from the fact that o, has no off-diagonal
terms, implying that there are no correlations between modes. From this ground state
any other pure state which can be reached from it by a quadratically generated unitary
is also Gaussian. What’s more, any pure Gaussian state (of the same number of modes)
can be reached by this method. It is also important to note that the ground state is a
state of minimal uncertainty, and thus any pure Gaussian state is as well. We will discuss
further the connections between uncertainty and purity in the next section. As for mixed
states, any state obtained from partial tracing a Gaussian state will also be Gaussian, and
all mixed Gaussian states can be obtained by first obtaining a pure Gaussian state on an
extended system and then partial tracing.

An important example of a set of pure, Gaussian states is the class of squeezed states.
We will first focus on single-mode states. A single-mode squeezed state is one obtained

from a single-mode ground state by the unitary transformation Usg(r) = exp(%(aAT2 —a?)),
where r is called the squeezing parameter. In the phase space picture this transformation
takes the symplectic form Sy = diag(e™/?,e7/?). Acting this matrix on the ground state
(i.e. the 2 x 2 identity), we obtain the single-mode squeezed state

e 0
Ouy = (0 e’") . (3.15)

This state is called squeezed because its Gaussian distribution in phase space has been
squeezed in one dimension (in this case the p dimension) and elongated in the other as
compared to the ground state. Put another way, we have obtained more certainty in p
at the cost of less certainty in ¢. It is still, however, a minimal uncertainty state, as
is easily confirmed. Note also that the squeezing operation is an example of an active
transformation.
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Another important symplectic transformation is a phase space rotation. Again just
considering a single-mode system for the moment, a rotation is produced by a unitary of
the form U,y = exp(ita’a). The symplectic matrix corresponding to this transformation is
simply a rotation matrix:

S, — ( cost smt) ‘ (3.16)

—sint cost

This is an example of a passive transformation. Note, importantly, that this is exactly the
way that free evolution is represented on the phase space level. Such a transformation leaves
the ground/vacuum state invariant, as does any passive transformation since SIST =1
if S is orthogonal. This makes sense, of course, since a passive transformation leaves
unchanged the energy of a state. Since the ground state is that of minimal energy, no
passive transformation can possibly bring it to any other as this would imply an increase
of energy.

There also exist generalizations of the above two transformations to higher-mode sys-
tems. An example worth looking at here is the two-mode squeezed state, which is produced
from the two-mode ground state |0), |0), by the unitary operator Uy(r) = exp(5(a1a2 —

dldg)). The symplectic transformation corresponding to this unitary is given by

coshr 0 sinh r 0
0 coshr 0 —sinhr
Ssa = sinh r 0 coshr 0 (3.17)
0 —sinhr 0 coshr

Applying this to the ground state, Usq |0), |0),, we obtain the two-mode squeezed state
cosh 2r 0 sinh 2r 0

0 cosh 2r 0 — sinh 2r
Tsa = | ginh 2r 0 cosh 2r 0 (3.18)
0 — sinh 2r 0 cosh 2r

We present this exemplary state as it displays several characteristics that are of importance.
First, note that the two modes are correlated with each other, as the off-diagonal blocks
are nonzero. Given that the state is pure, this therefore implies that the two modes are
entangled. Let us compare Eq. (3.18) with the form of the state vector in the Hilbert
space. Applying Usq(r) to the two-mode ground state it is straightforward to show that
this two-mode squeezed state is

i) = ! > tanh™r|n) |n) . (3.19)

coshr
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Indeed this state is clearly entangled, and the reduced state of one of the two modes will
be mixed. Importantly, a two-mode squeezed state is of exactly the correct form such that
the reduced state of a single mode is in a thermal state (i.e. the density matrix is diagonal
in the energy basis with probability entries that follow a Boltzmann distribution):

~ 1 - 2n 1 - —nw/T
pa =Trp |¥) (Y| = P ;tanh rin) (nl = = ;6 n) (nl, (3.20)

where w is the frequency (energy spacing) of the mode in question, 7" is its temperature,
and Z =) exp(—nw/T) is the partition function. Here we have made the identification
exp(—w/T) = tanh® 7, but of course in general a thermal state need not be considered as
having been derived from a two-mode squeezed state. Given that the partial trace of any
Gaussian state is also Gaussian, we have realized the very important result that thermal
states are also Gaussian. We also immediately see the form of the covariance matrix of a
thermal state, which we obtain by performing the partial trace (i.e. taking the first block)
of Eq. (3.18): o4 = diag(cosh 2r, cosh 2r) = diag(v,v). That is, the covariance matrix of
a single-mode thermal state is proportional to the identity. The proportionality constant
we label as v and, as is easily shown from the above example (i.e. taking v = cosh 2r and
exp(—w/T) = tanh®r), is related to the thermal statistics via

v—1 1
2 (n) = exp(w/T) -1’

(3.21)

where (n) is the expectation value of which energy level the state is in (in field theory
language, this is the expected particle content of the mode in question).

In a general ensemble of N modes with Hamiltonian Eq. (3.8) a thermal state of
temperature T" will be a product state of single-mode thermal states, each of temperature
T. This follows from the fact that the Hamiltonian contains no coupling term between
modes. Given what we have just learned about single-mode thermal states, this implies
that an N-mode thermal state takes the covariance matrix

" v; 0
O therm — @ (OZ I/') ) (322)
i=1 '
where

_expwf+1

~rog-1 = 1T. (3.23)
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3.3 The symplectic spectrum, purity, and mixedness.

The values v; defined above are referred to as the symplectic eigenvalues of the state.
We gave their values above in the case of a thermal state, but in general the symplectic
spectrum of any Gaussian state o is a very important characterization of the state. Every
N-mode Gaussian state has IV symplectic eigenvalues v;, which are so called because they
are invariant under symplectic transformations. They are not generally the same as the
regular eigenvalues. Any covariance matrix o is symplectically diagonalizable, meaning
that there exists a symplectic matrix S which brings the state to a diagonal form given
by SoS” = D = diag(vy,v1, Vs, 10, -+ ,vn, vy). This diagonalized form is also known as
the Williamson normal form of the state. We note, for example, that both the vacuum
and thermal states are already in their Williamson normal forms. The vacuum state
has all symplectic eigenvalues equal to unity, ; = 1. As we have discussed, any pure
Gaussian state can be obtained by symplectically transforming the vacuum. Seeing as v;
are invariant under symplectic transformations, we can immediately conclude that all pure
Gaussian states have symplectic eigenvalues all equal to unity. The symplectic spectrum
therefore gives us information on the purity or mixedness of a state. Indeed, the result can
be strengthened to the statement that a Gaussian state is pure iff all symplectic eigenvalues
are equal to unity. A thermal state, for example, is mixed and accordingly has symplectic
eigenvalues greater than unity, as we have seen.

The symplectic eigenvalues of a state must always be larger than or equal to unity:
Vpm > 1V m. This is in fact simply a statement of the uncertainty principle, which
is saturated iff all symplectic eigenvalues are equal to unity. That is, a pure Gaussian
state saturates the uncertainty principle, as we have already pointed out. Any uncertainty
in the state beyond this must be caused by classical uncertainty, i.e. mixedness. An
informationally rigorous measure of mixedness is the von Neumann entropy S(o) = S(p)
of the state, the Hilbert space form of which is given in Eq. (2.5). In GQM this can be
shown to take a form that depends solely on the symplectic eigenvalues:

S(@) =D fw), (3.24)

where

f(x)zw—;_llog(x;l)—x_llog(x_l). (3.25)

The entropy is zero for a pure state, when v; = 1 for all i.
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Furthermore, one can easily obtain information about the purity of mixedness of a state
without even needing to compute the symplectic eigenvalues. This is based on the fact
that det o is a symplectic invariant (which follows from the fact that detS = 1 for any
symplectic matrix, as is easily deduced from Eq. (3.10)). This means that deto = [, 17,
independent of in what quadrature basis o is represented. We can actually use this to
define a quantitative measure of state purity P that will be used in this thesis:

1
P= =[[v" (3.26)

vdet o

For pure and mixed states we obtain P =1 and P < 1, respectively.

The easiest way to compute the symplectic eigenvalues of a state (if one does not care
about the diagonalizing transformation) is to compute the regular eigenvalues of the matrix
iQo, which come in pairs of {£1;}. There are situations, however, in which one would
also like to compute the diagonalizing symplectic transformation itself. The method for
doing this is provided in Appendix. A. An operation that will be important in Ch. 13, for
example, is the local diagonalization of a bipartite, pure state. Imagine that we split our
set of modes into two groups, A and B. The joint state o can then be decomposed as in
Eq. (3.12). Let us assume that this state is pure. That is, we assume that the symplectic
eigenvalues v; of o are all equal to unity. This does not mean, however, that the symplectic
eigenvalues of the reduced covariance matrices 4 and o are all equal to unity; indeed
they will not be if the bipartitions are entangled (i.e. if 7,45 is nonzero). Let us label the
“local” symplectic eigenvalues of these reduced states as Vi(A) and Vi(B). Because o is pure
these two spectra will in fact be equivalent (with the larger of the two systems having extra
symplectic eigenvalues equal to unity); this is equivalent to the fact that the standard local
spectra of the reduced density operators in a pure bipartition are equal to each other. Let
S 4 be the local symplectic transformation that diagonalizes o 4, and similarly we have Sg.
Let us then apply these local transformations to our state by acting on o with the joint
transformation Sy @ Sp:

(SA @ Sp)o(Ss®Sp)” = <qu‘ 'VD) . (3.27)
7o Ds

The reduced states have now been put into their Williamson normal forms. Because this
is a purely local operation the entanglement between the two sides has not been modified.
Importantly, +f the global state is pure then this transformation produces a correlation
matrix v, that is diagonal as well [15]. This is analogous to the Hilbert space Schmidt
decomposition of a pure, bipartite state. In the literature on Gaussian quantum mechanics
such a covariance matrix is said to be in standard form. The fact that v is diagonal means
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that in this locally transformed basis we obtain a product of pure, two-mode states. That
is, each pair is uncorrelated with any others. Generally each such pair of modes will be
entangled (in particular, they will be in a two-mode squeezed state). Performing this local
symplectic diagonalization is therefore a method of isolating the entanglement between A
and B into simple pairs of modes (rather than the entanglement between a given mode in
A and the rest of the system being spread across multiple modes in both A and B).

In the case that o is mixed we unfortunately cannot perform the same feat. We can,
of course, still locally diagonalize the reduced systems. This removes any mode-mode
correlation within A and B themselves. However in this case the resulting correlation
matrix v p will not generally be diagonal, meaning that we can still have a given mode in
A being correlated with multiple modes in B, and vice versa.

3.4 Quantum correlations in Gaussian states

Here we will discuss how to extend the concepts of Ch. 2 to the case of Gaussian states.
In the case of pure Gaussian states, for example, the entanglement across a bipartition
of modes is quantified by the entropy of one of the reduced states. Let us take a two-
mode squeezed state as an example, Eq. (3.18). This state is pure (the two symplectic
eigenvalues of the covariance matrix are both equal to unity). The symplectic eigenvalue of
its single-mode reduced state, however, is ¥ = cosh 2r > 1 for » > 0 and thus has reduced
entropy S = f(cosh2r), as given by Eq. (3.24).

In the case of mixed states, on the other hand, we would like to obtain a Gaussian
version of the PPT criterion presented in Sect. 2.1. As was discussed, a separable state
will be such that its partially transposed version is still a valid density matrix (i.e. it is
positive definite). In the case of Gaussian states the story follows very similarly. The act
of transposing a density matrix corresponds in phase space to a reflection across the ¢ axis
[79], i.e. applying the operation p — —p. Applying a partial trace over the subset of modes
in system B is therefore given by reflecting all those momentum operators of the modes
in B. Let there be m modes in system A and N —m modes in system B. On the level of
the covariance matrix the partial transpose acts to transform a state partitioned as in Eq.
(3.12) into a new matrix o' that is given by

o—a'" = (1,0 Ap)a(Iy® Ap), (3.28)

where I4 is the m x m identity matrix and Ag is an (N —m) X (N —m) matrix of the form
Ap =diag(1l,—1,1,—1,--- ,1,—1). Similar to the way in which the eigenvalues of a density
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matrix give information about its mixedness whereas the eigenvalues of its partial trans-
pose give information about its entanglement, the same is true of covariance matrices and
their symplectic eigenvalues. By computing the symplectic eigenvalues 7; of the partially
transposed covariance matrix o' ® we obtain information about the entanglement between
A and B given state o. Similar to a density matrix, which if separable will continue to
be a valid density matrix after partial transposition, a separable Gaussian state will be
such that o'# is still a valid covariance matrix, meaning that the partially transposed
symplectic eigenvalues satisfy

o separable — 7; > 1 Vi. (3.29)

That is, if any of the 7; are less than unity then the state is entangled.

As discussed in Ch. 2, the PPT criterion will in general be both a necessary and
sufficient criterion for separability only when dim(A ® B) < 6. In the case of Gaussian
states it can be demonstrated that the PPT criterion as just described is necessary and
sufficient for 1+ N mode systems [30, 81]. That is, if one side of a bipartition contains only
a single mode then any Gaussian state state will be separable across this bipartition iff
it satisfies the PPT criterion. More generally there can exist bound entanglement, which
will not be witnessed by this procedure. Similar to our previous discussion on the PPT
criterion, we can define an easily computed measure of entanglement. In particular, we will
present the form of the logarithmic negativity Eq. (2.11) in the case of Gaussian states,
which can be shown to take the form [58]

En(A,B) == logi. (3.30)

;<1

That is, we take those partially transposed symplectic eigenvalues that are less than unity
(which there will only be is the state is entangled), and sum over the logarithms of those
values.

The quantum discord can also be defined for Gaussian states. Unfortunately the op-
timization procedure makes the discord very difficult to evaluate in general, and closed
formulas are not known for general Gaussian states. Only in the case of two-mode states
can a closed formula be obtained, and even in this case optimization is performed over
a limited set of measurements. We will therefore save the discussion of discord for the
following subsection, which focuses on two-mode Gaussian states.
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3.4.1 The case of two-modes

Of particular importance to us in this thesis will be the case of two modes, one on either
side of the partition. In this case Fy > 0 iff the state is entangled. We will take a two-mode
state of the form Eq. (3.7). In this case it is straightforward to demonstrate that the two
symplectic eigenvalues, which we will label v, satisfy

22 = A+ /A2 — ddet oy, (3.31)

where A = det o1 +det 9 + 2 det ,,. Similarly, it is immediate to see that the symplectic
eigenvalues 71 obtained from the partially transposed covariance matrix must satisfy the
same relation except that partial transposition acts to change the sign of det v,,. We thus
have that

202 = A+ \/A2 — 4det oy, (3.32)

where A = det o1 4 det o5 — 2det 7,,. We thus see that the PPT criterion takes the form
of the following inequality:

A <1+ detos. (3.33)

The larger of the two partially transposed symplectic eigenvalues, 7, , will always be greater
than or equal to unity. The logarithmic negativity for two-mode state is therefore given by

En = max(0, —log 7). (3.34)

In addition, it will be useful to note that by combining Eq. (3.33) with the uncertainty rela-
tion v > 1 it is possible to derive the following simple criterion for two-mode separability

[79]:

dety;o >0 = o separable. (3.35)

Let us now move on to introduce quantum discord in Gaussian states. As discussed
above, the discord is generally very difficult to compute due to the required optimization
over measurements. When working with Gaussian states, the best that has been achieved
in this regard is to optimize over the restricted set of Gaussian measurements (namely,
measurements that preserve Gaussianity) [75]. This gives the quantity known as Gaussian
discord. For notational convenience let us momentarily define o = det oy, f = det oo,
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v = det,,, and 0 = det o12. The Gaussian quantum discord for a two-mode state then
permits the analytic solution

D(1,2) = f(\/B) — f(vs) — f(v_) + F(VE), (3.36)

where v1 are the symplectic eigenvalues as given by Eq. (3.31), the function f is given by
Eq. (3.25), and

29+ (= 146) (= at8) 421y /42 (= 1+5) (~a+)
(—1+p)?

for (6 —aB)?<(1+8)9*(a+9d),

aB—72+5—/v*+(—aB+5)>—27%(ap+9)

5 otherwise.

Note that this is the case in which the optimized measurement has been performed on
system-2. Recall that in general the discord will depend one which system is being mea-
sured: D(1,2) # D(2,1).

It should be noted that although there is circumstantial evidence that Gaussian mea-
surements are actually optimal for Gaussian states [32], there is as of yet no proof of this,
and so it is possible that the Gaussian discord may slightly overestimate the true value of
discord in general.

There is a rather curious property of discord in Gaussian states that is worth discussing.
As was first suggested in [75] and later proven in [83], a Gaussian state has zero quantum
discord if and only if it is in a product state, i.e. iff it has no correlations whatsoever. This
property is not just true of the Gaussian discord, in which solely Gaussian measurements are
considered, but rather the full quantum discord in which all measurements are considered
within the optimization.

The presence or absence of quantum discord in two-mode Gaussian states is rather
curious in that there is zero discord if and only if the two modes are in a product state.
This property was first suggested in [75] and later proven in [$3]. It is somewhat surprising
that this is the case because Gaussian states are often considered to be the “most classical”
of quantum states, and yet it is impossible for a two-mode Gaussian state to possess classical
correlations without also possessing quantum correlations. As part of our exposition we
will now discuss one concrete way of understanding why this is the case, an argument that
is based on the work presented in Sect. 2.3.
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3.5 Aside: Why Gaussian states require quantum cor-
relation to have classical correlation

Note: this section derives from the work [9], in collaboration with Eric J. Webster, Eduardo
Martin-Martinez, and Achim Kempf.

Here we will be considering two-mode Gaussian states that can be purified with a single
extra mode. Our goal is twofold. First, we find that by coupling the result presented in
Sect. 2.3 with several known properties of pure, three-mode Gaussian states we obtain
a very simple explanation as to why a Gaussian state requires quantum correlations in
order to also have classical correlations. This gives a clean example of how the result
proven in Sect. 2.3 can be used to understand otherwise puzzling properties. Second,
we are able to easily prove that for this set of Gaussian states, similar to the qubits
presented previously, the identification of non-zero discord D(A, B) with the presence of
both bipartite and tripartite entanglement in the purification is a two-way implication, in
the sense of necessity and sufficiency.

As in Sect. 2.3, in order for AB to be mixed we assume that the bipartition (AB)C
is entangled. Thus the genuine tripartite entanglement in the system ABC' vanishes iff
either A(BC) is separable or (AC)B is separable (or both). Since the total system is pure,
separability between a bipartition is equivalent to it taking a product form. We will now
state the results of this section and then discuss before going on to prove them. In a pure
Gaussian state over the three-mode system ABC, if we assume that the subsystem AB is
separable then the three following equivalencies hold:

AC' separable <= A(BC) separable (3.37)
BC' separable <= (AC)B separable (3.38)
AB product <= A(BC) or (AC)B separable. (3.39)

From these result we can make take two immediate observations. First, since now
D(A,B)=0 <= D(B,A) =0 <= pap = pa ® pp it follows trivially that the general
result presented in Sect. 2.3 is here a two-way implication. Namely, D(A, B) = 0 iff there
is no bipartite or tripartite entanglement in the purification.

Secondly, we now observe a very clear picture as to why zero discord in a Gaussian state
implies that it is a product state. Recall from Sect. 2.3 that tripartite entanglement in
the purification is required for any correlations to be present in AB, classical or quantum,
and the further addition of bipartite entanglement in the purification is what allows these
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correlations to have a quantum nature. In the case at hand however we see that it is impos-
sible to allow classical correlations without automatically allowing quantum correlations
as well. Namely, if AB is separable then it is impossible to have tripartite entanglement in
the purification ABC without also having bipartite entanglement in both the AC' and BC
subsystems. This is very much unlike the set of qubits or more general quantum systems;
here there is no GHZ type state in the sense of all two-party subsystems being separable
while the system as a whole is tripartitely entangled. This severe restriction on the set
of Gaussian states is what constrains the set of zero discord Gaussian states to product
states. There can be no classical correlation without quantum correlation.

To prove that when AB is separable the three equivalencies hold, consider the covariance
matrix of a (not generally pure) three-mode Gaussian state:

A “YaB 7ac
O ABC = 7£B OB 7BC | > (3-40)
’750 ’ch o¢c

A 4 x4, two-mode reduced state o; is a product state iff «;; = 0, where 4, j = {A, B,C}.
A general two-mode Gaussian state o;; can be shown to satisfy the inequality A;; <
det o;; + 1, where Aj; = det o; +det o +2det ~y,;, [15]. This is in fact a representation of
the partial uncertainty relation applied to the given reduced state.

However, we will be considering the case in which this three-mode state is pure (i.e.
assuming that o 4p can be purified with a single extra mode). This is easily seen to be
equivalent to the condition that every two-mode reduced state has at least one symplectic
eigenvalue equal to unity (this is also the assumption that we must initially make about
o 4p). In this case it is also easily shown that the above inequality saturates [15]. That is,
we will have

Furthermore, since the mixedness of the two sides of any pure-state bipartition are equal,
we have trivially

det o;; = det 0. (3.42)

The fact that the uncertainty relation saturates in our case, Eq. (3.41), acts to boost
the condition Eq. (3.35) to a necessary and sufficient one:

detvy,; >0 <= o separable. (3.43)
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Lastly, we will find it useful to consider what is known as the standard form [15] of
our general, pure, three-mode Gaussian state. Standard form can always be reached by
local symplectic transformations, and therefore putting it into this form has no bearing
on the correlation structure between modes. Amazingly, the correlation structure is fully
determined by just three numbers, namely the local symplectic eigenvalues of each mode
v; = y/deto;. The standard form covariance matrix takes the form of Eq. (3.40) with

o; = diag(v;, ;) and ~v;; = diag(e;], e;;), where

+ _ 1 2 2 2 21\ %
€ij= WWJ,[([(%—VJ-) — (W= 1)7][(vi—15)" = (e +1)7])
+ ([ + )% = (v = D[+ )* = (v + 1)) 2], (3.44)

With Egs. (3.41-3.44) we can now easily prove Eqgs. (3.37-3.39), assuming that o 45 is
separable. By Eq. (3.43) this assumption is equivalent to det~y 5 > 0.

Trivially, we have A(BC) separable — A(BC) product — AC product —
AC' separable, where the first implication is due to the total state being pure. To show
the other direction, we can combine Eqgs. (3.41,3.42) to obtain

1 —detoy =dety,p + dety ¢ (3.45)

The left side of this equation must be less than or equal to zero, since deto 4 > 1 with
equality only when o4 is pure. Since o 45 is assumed separable we have det~y,5 > 0.
Similarly, if o 4¢ is separable it will be that dety,~ > 0. If this is the case then the
right hand side of the above equation must be greater than or equal to zero, implying
that the only solution is for both sides to be zero. This implies that det ¢4 = 1, meaning
that o4 is pure and thus that the bipartition A(BC') is separable. Thus we find that
AC' separable —> A(BC) separable. Combining with the trivial other direction we
have therefore proven Eq. (3.37). Similarly, Eq. (3.38) is proven by the same method.

Lastly, to prove Eq. (3.39) we note that one direction is trivial: A(BC) or (AC)B separable —
AB product. To prove the other direction we use the fact that AB is a product state
iff v45 = 0. In standard form this is equivalent to e}y = e,z = 0. From Eq. (3.44)
we find that these conditions are both satisfied only if v4 = 1 or vg = 1, equivalently
detoy = 1 or detep = 1. This is exactly the statement that AB product =—
A(BC) or (AC)B separable. This completes the proof of Eq. (3.39).
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Chapter 4

Quantum scalar field theory

We now wish to discuss the primary quantum construct that will be considered in this
thesis: that of a scalar quantum field. Quantum field theory (QFT) is of course immensely
important in theoretical physics, and is the mathematical basis behind our current under-
standing of particle physics. It is an immense topic, as can be discerned from any of the
texts on the subjects (e.g. [14, 15]). Here we will not be concerned with particle interactions
(although we will be considering similar physics) nor with problems of renormalization. In
fact we will only be considering the simplest case of quantum field theory, that of a scalar
field QAS This does, however, provide a good model for describing the quantum nature of the
electromagnetic field (the primary difference being that a scalar field lacks polarization).

The physics discussed in this thesis is rather more similar to that typically associated
with quantum fields in curved spacetimes [39]. We will not, however, at any point be
considering anything other than Minkowski spacetime, and so we will not need the full
machinery of QFT in curved spacetime. Indeed we will be further simplifying matters by
only considering scalar fields in 1 + 1-dimensional Minkowski space, often in the context
of cavities (i.e. fields bounded to some finite, flat region of space). We will first discuss
the required concepts within free space (i.e. without a cavity), including quantization in
Rindler coordinates, the Unruh effect, and vacuum entanglement. We will conclude this
chapter with a summary of how things change when considering a cavity field.

4.1 Field quantization

In this section we will describe the basics of field quantization, outlining the critical char-
acteristics of a scalar field. We will work in 1 + 1-dimensional Minkowski space, with
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coordinates (¢, z) and metric signature n,s = diag(l, —1). A scalar quantum field q@(aj, t)
is then a quantized, single-component field, the evolution of which is determined by the
Poincaré invariant action

5= [ s (067 - @0 - i267). (4.1)

where y is the mass that we associate with the field in question. Identifying the canon-
ical momentum operator © = 0;¢ and performing a Legendre transform we obtain the
corresponding field Hamiltonian

= [ do (007 + @07 +1237). (42)

We will often refer to this as the free Hamiltonian of the field. More generally there may
be interaction terms between the field and other quantum systems, or between the field
and itself.

The field evolution generated by this Hamiltonian is such that gg satisfies the Klein-
Gordon equation

(O+ i)z, t) =0, (4.3)

where [0 = 97 — 9%2. Being an observable, we demand that gE be Hermitian. We may
then expand the field into a linear combination of Hermitian solutions to this equation
of motion. Being in the continuum, there is a continuous set of such solutions (this will
change when considering a cavity field) and thus we may represent gg in the general form

oz, t) = /dk: <uk(x, t)ay + uZ(m,t)dL) , (4.4)

where (O + p?)ur, = 0 and as of yet the {a;} are some unspecified set of operators. Note
that we are implicitly working in the Heisenberg picture, as it is the operator qz@(x) that
is evolving with time. As such, any state of our quantum field will be time independent.
Importantly, we will demand that the solutions {uy} form a complete orthonormal mode
basis with respect to the Klein-Gordon inner product, evaluated at some fixed time

(f.g) =1 / de(f*5— f*9), (4.5)

where the over-dot represents differentiation with respect to time ¢. This is the unique
inner product to be preserved under Klein-Gordon evolution. With respect to this inner
product we demand

(up,up) = 0(k — k'), (uj,up) = =8k —k), (ug,uj)=0. (4.6)
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Consolidating the Klein-Gordon inner product with Eq. (4.4), we find that ay = (u, QAS)

~

and d,i = —(uj, ¢). Plugging these back into the field decomposition and expanding out
the inner products we find the completeness relations associated with the solution space
to be

0= [ dh i@’ (. 0) ~ (e’ i 2.1
oz —1) = i/dk; (g (2!, O)uf (z, t) — @ (2, t)ug(x, 1)) . (4.7)

Note that we are not, at this point, choosing any particular mode basis. As will be
very important, making such a choice also corresponds to a particular choice of operators

{ag,al}.

The canonical momentum field associated with (5 is given by the time derivative 7 = 8@.
We then demand that these pairs satisfy the canonical commutation relations at a given
time ¢

[b(z, 1), 7(2', )] = i6(z — ). (4.8)

Using Eqgs. (4.4) and (4.7) it is straightforward to see that these commutation relations
are equivalent to the following set:

[ag, ar| =

0
[dl];a &L] 0
5(k — k). (4.9)

[ka, &Jlrc’]

We immediately recognize that the set {ay, d,t} satisfy the standard canonical commutation
relations associated with the annihilation and creation operators of a Fock basis. As such,
we may define a vacuum state (which, critically, depends on the mode basis that we have
chosen) that satisfies

ar |0) =0 Vk. (4.10)
A state containing excitations (i.e. particles) with respect to this chosen basis is then

obtained by applying creation operators to the vacuum state. A one-particle state in
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mode-k, for example, is |1;) = dz |0). In general, a particle state containing n(* in mode-
k1, n® particles in mode-k,, etc, is given by

(2 12/ A1 \nM At \n®
M 0y = @@ )26 @l o). (4.11)
The particle-number of a given mode-k is associated with the observable N, = &Ldk,

the number operator, with respect to which a particle state |ng) is an eigenvector with
eigenvalue ny: N |ny) = ny, [ng) 6(k — k'), where the delta-function is a necessary artifact
of working in a continuous basis. If we we apply an infrared cutoff to the field (as we will
when working in a cavity) then this is regularized §(k — k) — 0. The total particle
number, across all modes, is then given by the total number operator N = i dkNy,. Even
for general states [1)) of non-definite particle content, the expected particle number will be
computed as (1| N[¢)).

4.2 Choice and change of mode basis

In the previous section we maintained that the solutions {ug,u}} can be composed of
any orthonormally complete basis of solutions to the Klein-Gordon equation, and that
the choice of a particular basis corresponds to a choice set of ladder operators {ay, &L}.
Critically, this also implies that different choices of mode basis are associated with different
choices of Fock bases, and in particular the vacuum state of one choice may not coincide
with that of another. There should, however, be a particular choice of mode basis such
that the corresponding vacuum state minimizes the energy of the system, with respect to
the Hamiltonian Eq. (4.2). As it turns out, in the case of curved spacetime backgrounds
this is not always the case [39]. Here, however, we will only be considering Minkowski
spacetime, in which case there is indeed a well defined, stationary state of minimum energy.
It should also be pointed out that, given we are dealing with an infinite number of degrees
of freedom, there may exist two choices of basis that are technically unitarily inequivalent
[38]. This is the case when the particle content is finite or zero in one basis but infinite
in the other. Indeed we will see an example of this in Part. IV. This fact brings up a
fundamental problem, however, regarding which basis we should choose. In this thesis we
will not be overly concerned with these issues, and the approaches taken here are sufficiently
operational that these considerations will never impact the results we obtain.

To continue, let us consider again the solution set {ug,uj} to the Klein-Gordon Eq.
(4.3). The most obvious choice of solutions consist of the entirely delocalized plane waves

ug(z,t) = expi(kx — wyt), (4.12)

4wy,
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where the dispersion relation following from Eq. (4.3) is w? = k* + 2. The normalization
factor follows from Eqs. (4.5) and (4.6). This mode basis takes a special place among
the others, as it happens to be the one that diagonalizes the free field Hamiltonian, in the
following sense. It is straightforward to see that when using the mode functions Eq. (4.12)
in the expansion Eq. (4.4) of ¢, that the Hamiltonian Eq. (4.2) takes the form (up to a
constant value that does not impact the physics)

H= / dkwyal ay, = / dkwy Ny, (4.13)

where we recognize N, = &,dek to be the number operator of mode-k. This shows us very
clearly that particle states with respect to this mode basis are states of definite energy,
and thus are stationary states:

a 1 2 1 2 1 2
Hin nl). ) = (nl) +wgni) +..) Ing a0 (4.14)

We see that each level of excitation of a given mode-k adds energy wjy to the system.
That is, each mode is mathematically equivalent to a quantum harmonic oscillator with
energy spacing wg. It can similarly be demonstrated that each excitation of mode-k carries
a momentum k such that particle states are also states of definite momentum (as seen
by computing the field momentum operator from the standard stress-energy tensor [39]).
Because of this, it is this Fock basis that is often ascribed as being the one of physical
relevance, and what is commonly referred to as a “particle” is exactly an excitation with
respect to this basis. That is, a “particle” is an excitation of definite energy w; and
momentum k£, associated with a stationary mode basis. From this point onwards we will
reserve the notation uy, ax to be used exclusively for the stationary-mode basis (with respect
to the free Hamiltonian) of whatever system is being considered (be it in free space or in
a cavity). The vacuum state of this basis, |0) such that a |0) = 0 V k, is therefore the
unique state that we take as being devoid of particles. It is the state of lowest possible
energy, H|0) = 0 (note that in Eq. (4.13) we have already subtracted off the diverging
vacuum energy contribution).

A defining characteristic of such a stationary-mode basis is that the free Heisenberg
evolution of the ladder operators satisfy UT(t)a,U(t) = e “*ay, and UT(t)alU(t) = e“stal
where U(t) = exp(iHt) is the free evolution operator. The evolution of the ladder operators
then translates into the Heisenberg evolution of the field, and is commonly represented as
a time evolution of the mode functions themselves, Eq. (4.12). This is exactly how the
time dependence of the modes uy(x,t) = uy(z)e ™ is to be understood, as representing
the quantum Heisenberg evolution of the field. As an aside, note that in the phase-space
representation this corresponds exactly to a rotation of the form Eq. (3.16).
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While the choice of mode functions uy as given by Eq. (4.12) certainly enjoys a special
post of physical significance, ultimately there is no reason why we cannot quantize our
field with respect to any other orthonormally complete mode basis. Indeed the description
of certain phenomena of interest require us to do exactly this and, critically, to be able
to transform from one basis to another. The most common example of where such an
operation is useful is in the description of particle-creation phenomena. There may be a
disturbance to the system for example (as described by some additional, time-dependent
Hamiltonian terms) which evolves the mode basis such that what was previously a station-
ary basis before the disturbance is no longer so afterwards. In such a case the vacuum state
of the original basis may not correspond with the final vacuum state. Since we are working
in the Heisenberg picture (although this is not required), meaning that the state vector
does not evolve, the state afterwards may not be the physical vacuum even if it was so
originally. Another scenario is that of transforming one’s spacetime coordinates to match
those of some other observer. Such a transformation translates into a transformation of
mode basis. We will see an important example of this in the next section.

Being a linear vector space, we can transform any basis wu of solutions to the Klein-
Gordon to any other basis v, by means of a linear transformation of the form

vl 1) = / dk (i (2,1) + Bt (2, 1)) (4.15)
where the transformation coefficients are given by

ag = (ve,ug), B = —(ve, uy). (4.16)

This is generically referred to as a Bogoliubov transformation, the coefficients ay, and Sy
of which are time independent (resulting from the time independence of the Klein-Gordon
inner product with respect to Klein-Gordon evolution). The inverse transformation is
easily shown to be

ug(x,t) = /dé(azkvg(x,t) — Buxv;(x,1)). (4.17)

Such a transformation does not modify physical observables, rather it is simply a way
of expanding the field operator ¢ in a different basis of mode functions. The field itself,
however, is entirely equivalent in either case:

¢ = / dk(upiy + ujal) = / db(veby + vjbh), (4.18)
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where b, and IA)E are the ladder operators corresponding to the new mode basis. From this
equality we can find that the transformations Eqgs. (4.15, 4.17) take the following form on
the ladder operators:

be = [ dvlan — al), (4.19)
iy, = / dl(cube + B3,0h). (4.20)

Importantly, in order for this transformation to be unitary it is straightforward to show
that the coefficients of any Bogoliubov transformation must satisfy the conditions

[ i = ) = 3m =), (4.21)

Of particular relevance to this thesis is the fact that the transformation in Eq. (4.19) is
a linear transformation between sets of ladder operators, meaning that it is also a linear
transformation between sets of quadrature operators defined as in Eq. (3.2). Thus, as
explained in Ch. 3, it is a transformation that preserves the Gaussianity of a state. The
conditions in Eqs. (4.21), in fact, ensure that such a Gaussian transformation is symplectic.
We will not pursue this connection further now, as it is more applicable to this thesis (and
is simpler) in the case of a countable set of modes (e.g. as in a cavity). We will therefore
return to this in Sect. 4.7.

Consider a general Bogoliubov transformation as it acts on the ladder operators, Eq.
(4.19). One immediate observation is that, as was alluded to earlier, the vacuum state of
one mode basis does not in general coincide with that of another. Only in the case that
all of the S-coefficients vanish will the two bases share a common vacuum state, as in that
case the annihilation operators b, are linear combinations of just annihilation operators a.
More generally, if we label |0) as being the vacuum state corresponding to {é, )}, then
we will have

bel0) = [ dkajean ~ 5ial)0) =~ [ diksje 1) 20 (422

where [1;) are single-particle states of the {ay, @)} basis. There will, rather, be a different
state |0) that acts as the vacuum state of the {by, b}} basis, that state defined to satisfy
be|0) = 0V £. The S-coefficients can be used to garner information on the particle content
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of the vacuum state within a different basis. For example if we work with the vacuum
state [0) and ask what the particle content of this state is in mode-¢ of the {by,b}} basis,

as given by the number operator N, Z(b) =/ dEZA)ZlA)g, the answer is easily seen to be
OF10) = [ dkla? (1.23)

Before continuing we will give a simple example of a Bogoliubov transformation fol-
lowing a change of spacetime coordinates. In particular, let us consider a simple Lorentz
transformation. We imagine an inertial observer O; who attaches coordinates (¢, z) to the
1 + 1 Minkowski space in which he lives. Namely, his worldline is described by z = 0 for
all times t. From the perspective of Oy, the plane wave modes of the field (i.e. those that
diagonalize the Hamiltonian) are given by Eq. (4.12). Now consider a second inertial ob-
server Oy that is traveling relative to O; with velocity v (to be clear, here as everywhere we
set the speed of light to unity, ¢ = 1). Observer O, labels spacetime points using another
set of coordinates (¢, 2') that are given by the Lorentz transformation ¢ = (¢t — vz) and
2" = y(z — vt), where v = (1 — v?)~%/2. This means that O, decomposes the field using a
different set of plane wave modes u; given by

1
N Amw
We can now compute the Bogoliubov transformation uy = [ dk(awyug + Brruf) between

these two sets of modes, evaluating the coefficients via Eq. (4.16). This is straightforward
to carry out, and the result is seen to be

Up (ZE, t) = exp i(kll’, — wk/t'). (424)

w /
Qg = W—Z(S(k —v(k — vwy)), (4.25)

B = 0. (4.26)

Importantly (and unsurprisingly), we see that Sy = 0 and therefore that no particle
production occurs when changing between inertial frames. If O; observes the vacuum
state, for example, then Oy will as well. We will see an example in the next section of a
coordinate transformation which is not passive in this sense. Furthermore, we see from
the ay, coefficients that plane wave modes of momentum k as seen by O; are observed by
Oy as plane wave modes of momentum k" = v(k — vwy), from which it is easily also seen
that wy = y(wr — vk). That is, the two observers experience red/blue shifts with respect
to each other. Indeed the form of the result is exactly as should have been expected, as it
simply represents the Lorentz transformation applied to the four-momentum k% = (wy, k).
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4.3 Rindler quantization

At the end of the last section we saw a simple example of a passive Bogoliubov transfor-
mation, in which the vacuum state is not changed under the transformation. Here, we will
explore another Bogoliubov transformation for which this is not the case, i.e. it is an active
transformation in which the -coefficients are non-zero. Aside from being a good example,
this transformation is the starting point for many of the phenomena that we will explore
throughout this thesis, most notably in Part. III. Even beyond this, the material in this
section is an excellent starting ground to understanding both the Unruh effect as well as
vacuum entanglement, phenomena that most of Part. II is devoted to exploring. We will
provide proper introductions to these effects in Sects. 4.5 and 4.6.

In the last section we saw the Bogoliubov transformation corresponding to a Lorentz
transformation between one inertial set of coordinates and another. Here, we will instead
consider a change of coordinates from those of an inertial observer to those a non-inertial
observer. We will observe that in this case the transformation is no longer passive. Specif-
ically, we will consider a non-inertial coordinate system corresponding to an ensemble of
uniformly accelerating observers. Let 7 be the proper time of such an observer. By defi-
nition, the worldline 2#(7) = (¢(7),x(7)) of a uniformly accelerated observer has constant
proper acceleration a = /|n,,a*a’|, where 7, is the Minkowski metric (only because we
are working in Minkowski space) and a** = §%z* is the observer’s 4-acceleration. It is trivial
to confirm that such a worldline is given by

t=a'sinhar, x=a"'coshar. (4.27)

In other words, in the inertial (¢,2) coordinates this trajectory is the hyperbola x =
Vt2 +a=2. This is displayed in Fig. 4.1, where the distance to the origin at closest
approach is 1/a. Note that this observer, assuming that they uniformly accelerate for all
time, is causally disconnected from the left-hand wedge. We will refer to these two wedges
as Rindler wedges. That is, the observer sees a horizon (here called a Rindler horizon),
which is always a proper distance 1/a away. The trajectory of a more highly accelerated
observer would be represented by a tighter hyperbola, hugging more closely to the horizon.

The world line in Eq. 4.27 suggests introducing a new set of spacetime coordinates
(7,€) suited for uniformly accelerating observers. These are known as Rindler coordinates
[34, 39], and are given implicitly by

1

t=a'e“sinhar, x=a'e"coshar. (4.28)
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Figure 4.1: The trajectory of a uniformly accelerating observer. Note that this observer is
causally disconnected from the left-hand Rindler wedge.

These coordinates define an ensemble of uniformly accelerating observers, of different ac-
celerations, which together cover the right Rindler wedge. Each such observer lays at a
constant value of £, the one at £ = 0 being that of proper acceleration a. More generally,
an observer laying at constant ¢ has proper acceleration ae~®. The proper time of such
an observer is given by e*7. These coordinates only cover the right Rindler wedge seen in
Fig. 4.1, the area of = > |t|. A second coordinate patch can similarly be used to define the
left wedge by changing * — —z in Eq. 4.28.

Importantly, the metric in these coordinates is easily seen to be conformally equivalent
to the Minkowski metric: ds? = e3¢ (dr?—d¢?). This implies that, assuming we are working
with a massless field in 1 + 1 dimensions (which we will for the purposes of this section),
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the Klein-Gordon equation is invariant under this coordinate transformation *
0} —2)p=0 = (02— 92)¢p=0. (4.29)

This fact will greatly simplify the analysis in this section. More generally, in higher di-
mension and with massive fields this will not be the case, and more work is required.
Qualitatively, however, the results will be unchanged in more general scenarios [25], at
least in regards to the phenomena that will be discussed in Sects. 4.5 and 4.6.

Given Eq. (4.29), we know that plane-waves with respect to the Rindler coordinates
are solutions to the Klein-Gordon equation. These solutions are exactly the plane-wave
solutions that the set of Rindler observers see as being stationary modes, excitations of
which they interpret as being particles. These are referred to as Rindler modes:

wf({, T) = expi(l€ — wyr), (4.30)

1
VAaATwy
where here w, = |¢| since we are working with a massless field, and the R represents that
these are the Rindler modes corresponding to the right Rindler wedge. There will be a
similarly defined set of left Rindler modes w}. Combined, these two sets of modes represent
a complete mode basis with respect to which the field operator can be expanded:

6= [ de(uit 4wl 4 wlbl 4 wf b, (4.31)

where here Bf and 1323 are the annihilation operators corresponding to the right and left
Rindler modes, respectively. We can, for example, define the state |0g) to be that which
is annihilated by these operators:

bl 0g) = DL [0g) =0 V£ (4.32)

'We will not be explicitly dealing with quantum fields in curved spacetimes in this thesis, and thus have
not devoted time discussing the theory. For this point, however, it is worth mentioning some brief details.
As a generalization to what was just stated in the main text, the wave equation (¢ = 0 is invariant under
conformal transformations, i.e. those that transform the metric as g, — Qg,,, where € is an arbitrary
scalar function over the spacetime. This is seen from the fact that, in general spacetimes with some given
coordinate system, the d’Alembertian operator is given by 0 = ¢**V,V,, where V, is the covariant
derivative. In flat spacetime this reduces to the usual wave operator O = n*¥9,,0,. The general form
evaluates to the expression O = (y/=¢)~'9,(v/—gg""d,), where g is the determinant of the metric tensor
Guv, and gM” is its metric inverse. Under a conformal transformation we have g — Q2g and g** — Q= 1g*,
and thus the d’Alembertian transforms as 00 — Q~!00, leaving the wave equation invariant. See [39] for a
full treatment of quantum fields in curved spacetimes.
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This state is referred to as the Rindler vacuum, and is the vacuum as would be observed
by Rindler observer (either on the right or left wedge). Unlike the example in the previous
section, however, this state is not equivalent to the Minkowski vacuum (the vacuum state as
seen by inertial observers). That is, the coefficients B = —(wf,uz) and 85 = —(wk, uy)
are nonzero. This implies that if the field is in the Minkowski vacuum, then uniformly
accelerating observes will nevertheless see particles!

To see this we can explicitly compute the Bogoliubov coefficients between the Minkowski
and Rindler plane-wave modes. This is rather labor-intensive, however. There is instead a
more elegant and enlightening approach that we will sketch here [21, 39], though without
going into detail. The trick is to consider a third set of modes, corresponding to annihilation
operators czgl) and CZEI) that we call the Unruh modes. These modes are defined such that
we obtain the Rindler modes from the Unruh modes via a set of two-mode squeezing
operations (see Sect. 3.2) for each frequency ¢:

bt = cosh(rg)czgl) + sinh(rg)cifﬁ, (4.33)
bk = cosh(rg)czf) + Sinh(?’[)ciglﬁ,
where the squeezing parameters are given by r, = tanh™'(e~™*/%). The mode functions

corresponding to these Unruh modes, which for the sake of this section we will just label
vél) and véz), are then seen to be

vél) = cosh(ry)wf + sinh(r,)wf, (4.34)
véQ) = cosh(rg)w + sinh(ry)w; .
We will not go into details here, but it can be demonstrated (see [21, 39]) that these

Unruh modes are purely positive frequency in the Minkowski mode basis, meaning that
the overla (D) gy (2) gy ishi i i
ps (v, /,u;) and (v,”,uj) are vanishing. This means that the transformation
from the Minkowki plane-wave mode basis to the Unruh mode basis is passive. That
is, the Unruh vacuum defined by dﬁ,l) |0y) = df) |0y) = 0 is equivalent to the standard
Minkowski vacuum, [0y) = |0). From this, the form of the Minkowski vacuum in the
Rindler basis follows trivially, as it is simply a collection of two-mode squeezed states
between Rindler modes. Recalling the form of a two-mode squeezed state, Eq. (3.19), we

immediately obtain

0) = R —— 3 tanh ry [n2) |07, (4.35)

cosh 1y

where |nl) and |nft) are the particle-number states with respect to the Rindler basis. We
will use the form of this state as a starting point for our discussions in Sects. 4.5 and 4.6.
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4.4 Particle detectors

Here we will discuss a concept of central importance to this thesis, as well as lay out some
bread and butter methods that Ch. 5 is devoted to superseding. In the material presented
above we have broadly and very formally discussed the notion of a particle as being an
excitation with respect to the stationary mode basis as seen by some observer. While the
use of this definition of a particle makes sense within the context of particle physics, where
in practice the excitations of a non-interacting theory need only be discussed at infinity,
there are nevertheless several severe issues with this interpretation. The most obvious is
that under this definition a particle is a completely delocalized entity. There is furthermore
the strange fact that, as we have discussed and will soon see in more detail, the particle
content of a given quantum state is observer-dependent.

The point of this section is to introduce a theoretical tool that lets one play with the
same physics, but from a far more operational and physically concrete perspective, a central
theme in this thesis. The idea is to ask what properties of the state of a quantum field may
actually be physically measured. To this end we utilize a model of measurement in which
we have some other quantum system, which we call the detector, and which we let interact
in some way with the quantum field. The response of the detector due to this interaction
then provides us with information on the properties of the field. An obvious real world
example of such a setup would, for example, be an atom in an electromagnetic field. An
electronic excitation of the atom would be caused by the absorption of a photon, and this
would tell us that a photon was previously present in the field; a detection. Obviously
there are an infinite number of ways in which this general setup can be mathematically
constructed, but the idea is the same: more energy in a field (i.e. more particles) will
generically lead to a more energetic response from the detector. This allows us to avoid
the difficult interpretational issues inherent in a formal construction by simply asking what
one actually sees when looking at a field. As Bill Unruh likes to put it, a particle is that
which a particle detector detects.

Here we will introduce one concrete model, the so called Unruh-DeWitt detector [21, 39].
The reader is referred to [10] for an overview of this model within the context of relativistic
quantum information, as well as related models and literature. The model that we will
present in Ch. 5, and which will be used throughout Part II, will represent a minor (but
significant) modification of this. In the Unruh-DeWitt model, we consider a two-level
quantum system (i.e. a qubit), of energy gap €, that is locally coupled to a field ¢ via an
interaction Hamiltonian of the form H; = )\ﬂq?)(xd). Here, X\ is a number that represents
the strength of the interaction, i = &, + 6_ is referred to as the monopole operator of
the qubit, where o, and o_ are its raising and lowering operators (i.e. [ is the just the
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Pauli-X operator), and gE(azd) is the quantum field evaluated at the (classical) position z4
of the detector. It will be most advantageous to work in the interaction picture, in which
case the interaction Hamiltonian is

Hi(7) = A()il7) (xa(r) (7)), (4.36)

where ¢(x,t) takes the generic form of Eq. (4.4), and where typically the mode basis used
will be the the plane wave modes, Eq. (4.12). Here we are parameterizing the evolution
with respect to the proper time 7 of the detector, which if in motion will not generally be
equivalent to ¢. In the interaction picture monopole operator (i.e. its freely evolved form)
is given by (1) = €6, + e ¥76_. Lastly, by generally including time dependence in
A(T) we able to tune the interaction strength as a function of time. In particular, this is
used for turning on and off one’s detector. For this reason, A(7) is also to be called the
window function or the switching function.

Here we will not worry about the specific world line (x(7),¢(7)) taken by the qubit
detector. In general we are interested in its response due to its interaction with the field.
To derive the evolution the detector we will work perturbatively in powers of the coupling
strength A, meaning that we require A < 1. Working perturbatively also means, however,
that we are restricted to short-time and small-energy phenomena. As we will see, the great
advantage of the model to be introduced in Ch. 5 is that it may be solved without the use
of perturbation theory. Let us consider the case where A\(7) is nonzero over a time interval

€ [0,7]. The unitary evolution generated by Eq. (4.36) can be formally represented
as the time-ordered exponential U(T) = T exp|—i fOT drH;(7)]. Expanding this to second

order in \ gives U(T) = I + Uy(7) + Us(7) + O(N3), where
T
0y (r) = —i / dr ;7). / dr / dr' By (1) E (). (4.37)
0

Suppose that our initial state is the ground state for the detector and the vacuum state
for the field, namely: py = |0) (0] ® |0) (0|, where we will take the operator to the left of
the tensor product to be that of the detector. It is easily seen that the evolution of this
state by the above unitary is, up to second order in A, given by p(T) = po + p1(7) + pa(7)
where

pr = Uipo + poU], (4.38)
po = UrpoU] + Uz + poU3. (4.39)

Here we are interested in the reduced state of the detector, obtained by tracing out
the field from p(7T"). We therefore consider taking the partial trace of each of the pieces.
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Of course, we have that Trrpy = |0) (0] is the zeroth order term for the detector state.
Considering now the partial trace of p1, note that we have

0o = —i /0 drA(T)e T (1) (0] @ (7) |0) (0] . (4.40)

Here, qﬁ\O) is going to be a linear combination of one-particle states, and thus taking
the partial trace over U1p0 will give zero. This similarly occurs for poU1 Thus, p; does
not contribute to the reduced state of the detector, meaning that there is no first-order
contribution.

For the second order contribution, let’s first consider the term Ul,éOUIT and its partial
trace. It is straightforward to see that

T T N N
01 pol = / / drd \(T)M(#)e 90 [1) (1] @ (') 0) (0] (7). (4.41)

where here we are using the notation ¢(7) = @(zq(7),t(7)). As will be explained in a
moment, the rest of the py terms do not contribute to the excitation probability of the
detector, and thus we can read off the second-order excitation probability, which we will
label p,, to be

Py = / / drdr A(r)A()e ) (0] §(7)d(r') [0) (4.42)

where the two-point (Wightman) function (0] ¢(7)¢(') |0) must be computed given what-
ever trajectory has been chosen for the detector. The form and properties of the Wightman
function in scalar field theory are well known [11, 39]. We will see an explicit example of
how to use this result in the following section.

Let us now mention the UQ[')O and ,50(72 terms. Without going into detail, it is easy to
see that upon partial tracing they each give to the detector density matrix a contribution
proportional to |0) (0| (from the 6_&, terms) and that all other contribution vanish. The
|0) (0] term is actually equal to the negative of Eq. (4.42), and so acts to normalize the
state.

To finish this section it is worth noting that in much of the literature utilizing this model
(particularly those works detailing the Unruh effect and similar phenomena) it is not the
probability of excitation that is computed, but rather the the probability of excitation per
unit time R, = dp, /dT. This is usually referred to as the transition rate. It is used in the
case where we have constant interaction strength, A = const, which has been switched on
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for all time. Introducing the variable A = 7 — 7/, it is easy to see that in such a case the

transition rate reduces to

R, = N / AT (0] (A)4(0)[0)

o0

= \? / dAe ATV (A) (4.43)
where we have used the fact that the vacuum Wightman function, which we also denote
W, depends only on the difference A. The reason that the transition rate is used is
because, this being in the large-time regime, perturbation theory breaks down. That is,
the second order probability p, diverges as T" goes to infinity. The rate, however, remains
well behaved. As we will see an example of in the next section, one is still able to make
great use of the transition rate alone.

4.5 The Unruh effect

In this section we will introduce the so called Unruh effect [21], a standard example of
particle creation phenomena. Simply put, the Unruh effect is a phenomenon by which an
observer accelerating through the vacuum state of a quantum field will not observe the
field to be in the vacuum state (devoid of particles), but rather will observe themselves to
be immersed in a thermal bath of a temperature proportional to their proper acceleration,
a. In the canonical example this temperature takes the value T' = a/27 (in natural units).

An extensive description and overview of the Unruh effect and related literature can be
found in [385]. This effect represents an important prototype of particle creation in general,
and indeed is mathematically equivalent to the near-horizon Hawking effect of an eternal,
Schwarzschild black hole [39, 86]. Unfortunately, the extreme accelerations required to
obtain a measurable thermal response make direct experimental validation of the Unruh
effect unachievable with current technology. Indirect experimental proposals, however, and
highly related phenomena that have been observed in the laboratory are discussed in detail
in [85]. Given the large body of literature pointing to the same qualitative phenomenon
from many varied approaches and perspectives, there is little doubt that the Unruh effect
is a true property of nature. Indeed, as can be seen using particle detector models, the
effect in all of its generalities can simply be understood as the result of having a time-
dependent interaction Hamiltonian; the resulting excitations of one’s system thus being
entirely expected. Here we will only briefly discuss the mathematical means by which the
Unruh effect can be understood. We will be exploring its novel aspects in Ch. 11 and 6.
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To begin, the Unruh effect can (at least in an idealized approach) be immediately
garnered from the discussion in Sect. 4.3 and by Eq. (4.35). As we saw, the Minkowski
vacuum state can be represented in the Rindler modes basis (i.e. the plane-wave mode
basis as described by uniformly accelerated observers) as a collection of two-mode squeezed
states between the right-wedge and left-wedge Rindler modes. As can be seen in Fig. 4.1,
however, a uniformly accelerating observer is causally disconnected from one of the two
wedges (i.e. the observer sees a horizon). In order to describe the state that such a person
would measure we therefore need to trace over the region to which they don’t have access.
Say that our observer is isolated to the right-wedge, as in Fig. 4.1, such that we must
trace over the left-wedge Rindler modes from the Eq. (4.35). As was seen in Sect. 3.2,
the reduced state of a two-mode squeezed is exactly a thermal state. From the specific
collection that we have in Eq. (4.35), with squeezing parameters r, = tanh™' (e™™*/%), we
find that a uniformly accelerating observer of acceleration a will see the vacuum field to
instead be in the state

pr = Trp|0) (0] = @ Cosh2 Z tanh?" r, |nt) (nf|
. - —2mnwg/a |, R R
—(%)nge 7 ) (n" (4.44)

where Z, = > e~2mwe/a  This exactly a thermal state of temperature T = a/2m. Each
Rindler mode of energy gap w, (which are the stationary modes of our observer) is in it’s
own thermal state of temperature 7', and the ensemble is given by a product state of each
such thermal state, resulting in a many-mode thermal state.

This derivation is that which was first demonstrated by Unruh [21] and shows that,
at least within the highly idealized scenario we are considering, a uniformly accelerated
observer of acceleration a sees themselves in a thermal bath of temperature a/2m, despite
the fact that the state under consideration is the Minkowski vacuum state. There is,
however, one very strong criticism (among others) that motivates us to investigate further.
This is that, in the current construction, we require previous knowledge that our observer is
to be uniformly accelerating for all of time, in order that the partial trace procedure makes
operational sense. If sometime in the future the observer stops accelerating then they
will immediately have informational access to the opposing Rindler wedge. Of course, the
response of the observer should not depend on what he or she will be doing in the future,
and this motivates us to take a somewhat different approach.

Indeed the idea of using a particle detector, Sect. 4.4, provides such an alternative. The
response of a detector model, and it’s transition rate, are quantities that can be evaluated
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locally in time and thus do not suffer from the same criticism. We can imagine sending
an Unruh-DeWitt detector on an accelerating trajectory, that given by Eq. (4.27). The
transition rate, as given by Eq. (4.43), is given for a general trajectory (x(7),¢(7)). The
specific world line one wishes to use simply goes into the Wightman function W (1) =
(¢(7)p(0)), where we use the notation ¢(r) = ¢(x(r),#(r)). The Unruh effect in this
context is validated by realizing that the vacuum state Wightman function evaluated along
the accelerated trajectory Eq. (4.27) is equivalent to the T' = a/27 thermal state Wightman
function evaluated along an inertial trajectory. This means that the accelerating detector
will respond exactly as would an inertial detector traveling in a thermal state.

It is actually very straightforward to see this. All we need to know is that the vacuum
Wightman function for a massless scalar field decays like the inverse square of the proper
distance between the two points being evaluated [39, 11]. Thus, in our case we have

1

|(z(7),t(7)) — (x(0),(0))]2 ~ 2 cosh(ar) — 1’ (4.45)

where in the second equality we have input the trajectory of Eq. (4.27). From here, it
can be immediately seen that this Wightman function satisfies the famous KMS condition

[87, 88, 89]
W(r) =W(-7+ip), (4.46)

where 5 = 27 /a is the inverse Unruh temperature. This is exactly the condition needed in
order to be a thermal state of said temperature 2.

This condition can be directly understood in terms of the transition rate of an Unruh-
DeWitt detector, Eq. (4.43). From this equation, notice that the transition rate is pro-
portional to the Fourier transform W of the Wightman function, evaluated at the detector
energy gap {2: R, = \/%VW(Q), where the prefactor is unimportant for the current
argument. Following the derivation of Sect. 4.4 is it straightforward to show that the
probability per unit time for the detector to decay from its excited state to its ground
state, which we will label R_, is given by the same formula but with 2 — —Q. This result
is easily deduced from symmetry arguments as well. Thus, the decay rate is similarly given
by R_ = \/%/\QW(—Q). Now, in Fourier space it is easy to see that the KMS condition,

°In general a thermal state p = exp(@fl )/ 2 WiAH have this property. Consider two observables A and

B, which evolve according to A(t) = ¢#*A(0)e . Tt is then a straightforward calculation to see that
(A(t)B(0)), = (B(0)A(t +18)),, where (-), = Tr(p-) takes the expectation value with respect to the
thermal state p.
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Eq. (4.46), is given by W () = e #2W (). We therefore find that the transition rates
of our detector undergoing acceleration satisfy the condition

R

R e P9, (4.47)

This is an example of a detailed balance equation, generally used to characterize systems
in equilibrium. In our case this is exactly the condition expected of a system of energy gap
Q in thermal equilibrium at inverse temperature 3 3.

This demonstrates that an accelerating particle detector measures a thermal response,
at exactly the temperature 7" = a/27 that is suggested by Unruh’s original argument.

4.6 Vacuum entanglement

In this section we will introduce a notion that is of central importance to this thesis: that
of vacuum entanglement. The vacuum state |0) has the peculiar property that, despite in
some sense it describing the state of there being “nothing”, it nevertheless displays quantum
correlations between spatially separated regions. The existence of vacuum entanglement is
immediately discernible from the material in Sects. 4.3 and 4.5. Namely, Eq. (4.35) says
that the Minkowski vacuum is a collection of two-mode squeezed state between Rindler
modes having support only in the right wedge and those with support in the left. That
is, the two Rindler wedges (i.e. the right and left halves of the space) are entangled with
each other. As we saw in the previous section, when we trace over one side of space we
obtain a mixed state, Eq. (4.44). Since globally the vacuum state is pure, this implies
entanglement.

Mathematically, vacuum entanglement is not at all surprising; it follows directly as a
result of the fact that the vacuum is defined with respect to global operators. An interest-
ing property of the entanglement between complementary regions in space (as measured
by the entanglement entropy) is that it is generally proportional to the area of the bound-
ary between said regions [00, 91]. This is referred to as the area law, and it has led to
considerable interest in relating this entanglement entropy to the Bekenstein-Hawking en-
tropy of black holes [92]. More generally much work has been performed, using a variety

3Let us label the population (i.e. probability of occupation) of the ground and excited states as Py
and Py, respectively. The rates of change of these populations are then given by Py=R_P — R, Py and
P1 = Ry Py — R_P;. In equilibrium we will have PO = P1 =0, giving R_P; — R{ Py = 0 and therefore
Ry/R_ =P /P = e P2 where in the last equality we have taken the specific case of a thermal state in
which the populations are thermally distributed.
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of mathematical approaches and models, to understand and characterize the properties of
this entanglement [93]. The existence of spatial entanglement is similarly present in con-
densed matter and lattice systems [94, 95], being a generic property of extended systems
with local interactions, of which a quantum field is simply a continuum limit. Indeed long
range entanglement and the area law within this context have become an integral part
of the study of many-body systems [96]. While in such systems experimental proposals
have been put forth for the verification of vacuum entanglement (e.g. a pair of trapped
ions [97]), to the author’s knowledge no feasible, concrete proposal has previously been
suggested for its verification in a true, relativistic, quantum field (e.g. the photon field).
In Ch. 13 we will propose such an experiment.

In addition, it has been demonstrated that this entanglement may be “harvested” (i.e.
swapped) to auxiliary quantum systems (e.g. particle detectors) without the need for those
systems to causally interact [11, 12, 43 44 1]. Such entanglement may then (in princi-
ple) be used for quantum informational procedures. This notion of vacuum entanglement
harvesting provides a satisfying operational demonstration of this phenomenon. Each de-
tector individually experiences vacuum fluctuations resulting from the act of interacting
them with the field. The fluctuations that each experience, however, are quantum corre-
lated. This correlation may then be transferred to the states of the detectors such that
they may become dicordant or even entangled.

Harvesting will in fact be a paradigm that we return to more than once in this thesis,
and constitutes a large portion of Part. II. Given this, it is worth outlining the basic
working of the protocol within the context of Unruh-DeWitt detectors, as first computed
in [11]. Let us consider two such detectors, a and b, both of energy gap €2 and that
have worldlines (z,(7),7) and (z(7),7), where for simplicity we will assume that both
their proper times 7 coincide. We will also assume that they have the same switching
functions A(7). Neither of these assumptions are necessary, but they will simplify this
brief discussion. Important to assume, however, is that we have small coupling A < 1. In
this way we are able to utilize perturbation theory. We imagine that both detectors are
switched on for localized or semi-localized time period (e.g. taking A\(7) to be a Gaussian)
such that this time period is shorter than the distance |z, — 3| between them. In this way
we rule out the possibility of communication between the two detectors (put concretely,
the reduced state of each detector will be equivalent to what it would have been had the
other detector not been present). We then simply follow the same perturbative procedure
that was outlined in Sect. 4.4, where now when we trace out the field we will be left with a
two-qubit density matrix for our two detectors. It is a straightforward calculation to show
that to leading order (i.e. second order in \) this state after allowing the detectors to run
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through their evolution (over all time) is given by

_p9 0 o o X

(a)
A 0 Yy O
Pact = il (4.48)
O Y;Ja p+ 0
X 0 0 0

Here we are taking the basis ordering {|00),]01),[10),|11)}, where detector-a takes the

first position. The quantities pgf) and pf) are the individual transition probabilities of the
two detectors, as computed in Sect. 4.4. For example we have

W= [ drara oA W ), (449

where we are using the notation W (7, 7.") = (0] ¢(z4(7), 7)d(xa(7'),7')0). The other
entries of the density matrix are computed to be

Yo = / / deT')\(T))\(T')e*iQ(T*TI)W(Ta, '), (4.50)
and similarly for Y;,, and

X = - / ir / AN XTI W (0 7))+ W) (451)

Given this, one can then determine if the two qubits are entangled or not by, for
example, computing the negativity N between them. As explained in Ch. 2, this is done
by taking the partial transpose of Eq. (4.48) and computing the eigenvalues of the resulting
matrix. If one or more of these eigenvalues is negative then the two detectors are entangled.
The negativity, Eq. (2.10), is the sum of all such eigenvalues. For simplicity let us take
pgf) = p(f) = p, (i.e. both detectors are undergoing the same local evolution). Then it is
easy to see that the negativity is given by

N = max(0, | X| — py). (4.52)

Namely, the detectors become entangled if | X| > p,. This makes sense once one recognizes
that X corresponds to the amplitude of virtual particle exchange between the detectors,
and this contribution must fight against the local noise p, that each detector experiences.
While it will clearly be easier to entangle the detectors if they are allowed within each
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other’s lightcones, since the Wightman function W (r,, /) is larger inside the lightcone
than out, there are nevertheless parameter regions in which the two can become entangled
even being entirely causally disconnected from each other [11, 42, 43 44 4], and this
exactly corresponds to swapping some of the preexisting vacuum entanglement out of the
field. Unfortunately we also see that the negativity obtained is of order \?, which will
be extremely small. In terms of any practical use, therefore, such a procedure is highly
questionable. We will discuss in Ch. 9 one possibly protocol for overcoming this weakness.

Before finishing this section it is worth mentioning some potentially confusing points
regarding the two-detector density matrix, Eq. (4.48). First is the fact that there appears
to be zero probability for both detectors to become excited. This is simply because here
we work to order A? only, which is the leading order. Such an event has probability of
order \*, and is therefore not included at leading order. Similarly, it is confusing that
the reduced states of the individual detectors are unchanged by the presence of the other,
despite the fact that in Eq. (4.48) we have made no assumptions about whether or not the
two detectors have causal overlap. This is again because we are only working to second
order. Mutual influence between the detectors would involve the emission of a quanta
by one detector and subsequent re-absorption by the other, which is again a A* process.
Note, however, that this is not necessarily the case were we to initialize the detectors in
non-energy-eigenstates [93, 99].

4.7 Field theory in a cavity

Throughout the majority of this thesis we will be considering cavity scenarios, in which the
field is bound to a finite region of space and subject to some chosen boundary condition.
The primary difference in such a case, as compared to the physics described above, is that
now the mode solutions are discretely parameterized, rather than continuously. We will
very quickly outline the form of these differences.

The form of the mode functions must satisfy whatever boundary conditions one applies
to the boundary edges of one’s cavity. We will give the form of the stationary mode
functions for three cases: those of periodic, Dirichlet, and Neumann boundary conditions.
In all cases we will take the cavity to be of length L, and we will take the coordinate
values x = 0 and x = L to be the left and right boundaries, respectively. In the case of
a periodic cavity of length L (which would correspond to physical settings such as closed
optical fibres or microwave guides or any other setting with a torus topology), the modes
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are the set of right and left-moving waves similar to what we had in the continuum case:

up(z,t) = expi(k,r — wpt), periodic, (4.53)

1
v 2w, L
where n is an integer, k, = 2nm/L (negative (positive) n corresponds to left-moving (right-
moving) modes) and w? = k2 + u?.

If instead we impose the Dirichlet boundary conditions ¢(L,t) = ¢(0,¢) = 0 (the two
walls of the cavity are ideal mirrors) we find that the mode functions are the stationary
waves

1 .
Uy (z,t) = e “ntsin(k,x), Dirichlet, 4.54
(1) NG (Fn) (4.54)
where now we have k, = nw/L and the index n only runs over the natural numbers,

n € Z*. This is because now the two solutions #+n are no longer linearly independent
(they are in fact the same solution).

In the case of a Neumann cavity (this is to say, &té(lj,t) = &ﬂ?((),t) = 0), the modes
become

up(z,t) = et cos(k,), Neumann, (4.55)

1
vwnL
where as in the Dirichlet case we have k, = nw/L and the index is positive: n € Z™.

In all of these cases, the normalization factors are such that the modes form an or-
thonormal basis with respect to the Klein-Gordon inner product

(uk, uk/) = (Skk’a (uz, uz/) = _5kk’> (uk, UZ/) = 0, (456)
where the inner product is still of the form Eq. (4.5) except that now the integration is
performed only over the region of the cavity.

Given one of these boundary conditions, the field operator can then be expanded as a
sum of solutions

Sa,t) = (un(w, )i, + (2, 1)af) . (4.57)

n

Given this, we are able to show (by the same means as that described for Eq. (4.7)) that
the mode functions will satisfy the completeness relations

0= 3" (i (o, pun(w, ) = wn (&, ) ()

n

d(r—1) = iz (U (2, )ur (2, t) — @5 (2 ) ug (2, 1)) . (4.58)

n
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As before, we can take the canonical commutation relations of the field and its conjugate
momentum to deduce that the raising and lowering operators of the modes must satisfy
the commutation relations

[&TM dn’] -
[diw &ILI] =0
(G, 6] = G- (4.59)

Similar to the continuum case, the free Hamiltonian of the field take the form H =
> wnﬁn, where Nn = &L&n is the number operator for mode-n. We define the cavity
vacuum state |0) to be the state that satisfies a,, |0) = 0 for all n, and particle states can
similarly be defined following the prescription of Sect. 4.1.

We can also perform a Bogoliubov transformation to a non-stationary mode basis de-
scribed by mode functions v,,:

(2, 8) = > (Qmntn (2, 1) + Bty (2,1)) | (4.60)
Un(2,8) = Y (A Uml(,) = Bt (2, 1)), (4.61)

where the coefficients are given by the mode function overlaps with respect to the Klein-
Gordon inner product, of the same form as in Eq. (4.16). Acting on the raising and
lowering operators, where we define {Em, IA)I,L} to be the operators corresponding to the v,
basis, this transformation takes the form

an

> (Cmnbm + Bnbhy). (4.63)

Lastly, the unitary conditions for this transformation (equivalently, those that make it
symplectic) are

Z(amja:;j - ijB:Lj) = 6mn7 (464)
J
Z(amjﬁnj — Bmj0m;) = 0.

J
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4.8 Symplectic Bogoliubov transformations

A Bogoliubov transformation, as defined in the sections above, is simply a linear transfor-
mation on the quadrature operators of field modes, and is therefore a Gaussian operation.
Furthermore, the unitarity conditions Eqs. (4.21,4.64) equivalently guarantee that such a
transformation is symplectic (i.e. that the canonical commutation relations are preserved).
In this short section we will very quickly discuss Bogoliubov transformations within this
context. For convenience we will work in a cavity setting such that we have a countable
spectrum of modes.

Given a set of ladder operators {a,,al} corresponding to some field mode basis, we
can associate with this set of harmonic oscillators the collection of conjugate position and
momentum operators {G,, p, } defined as in Eq. (3.2), which can be collected into the phase
space vector of operators X = (q1, p1, Ga, Do, - - - )7, as was done in Ch. 3. The Bogoliubov
transformation to a new set of modes, as given by the first of Eq. (4.62), then takes the
linear form x — Sx, where the matrix S is easily seen to take the block form

Sll SlZ
S=1|Sa Sy -], (4.65)
with
o Re<04mn - an) Im(amn + 5mn)
S = (—Immm — Bun) Rl + o)) (4.66)

It is straightforward to work out, given the form of this matrix, that the conditions in
Eq. (4.64) guarantee it to be symplectic, SQST = STQS = Q, where £ is the symplectic
form as given by Eq. (3.4).

Recall from Ch. 3 that a passive transformation is one in which the average particle
content does not change, and is represented by a symplectic matrix that is also orthogonal.
In terms of a Bogoliubov transformation, we have learned that this property is exactly
represented by the condition that all S-coefficients are zero. It is easy to show that these
two conditions are equivalent, and we will do so explicitly here. The proof relies first on
S being symplectic, meaning that Eq. (4.64) is satisfied. Assuming this, and taking all 3
coefficients to be zero, we have Zj Uy, = dmn- Let us denote ay,j = gmj + ihs,j. This
condition then reads Zj(gmjgnj+hmjhnj) = Opmn and Zj(gnjhmj—gmjhnj) = 0. Now, given
that 8 = 0 we see that the blocks in Eq. (13.30) take the form S,,, = gmnla + hmn$e,
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where I, is the 2 x 2 identity and €2, is the single mode (2 x 2) symplectic form. We
must check that SS” = I. To this end, we note that the mn’th block of SS” is given by
[SST]mn = Zj Smjsqigj = Zj [(9mjgnj + hmjhin)T — ((gnjhm; — Gmjling) ] = dmnla, Where
we have used Q5 = —I,. This demonstrates that the transformation is symplectic if 5 = 0,
and the opposite direction is trivially seen to hold as well.
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Part 11

The Nonperturbative Oscillator
Detector

70



For many years, the well-known Unruh-Dewitt model [100], as discussed in Sect. 4.4,
has been used to explore phenomenological aspects of quantum field theory. The great
success of this model, which couples a qubit to a quantum field using a simple monopole
interaction, has been its use in analyzing the observer dependence of relativistic quantum
phenomena; most notably the Unruh effect [21]. This result does not require the use of Bo-
goliubov transformations between inequivalent field expansions and the subsequent tracing
over degrees of freedom beyond a horizon. It is instead a consequence of a direct calcu-
lation of the response of the detector when traversing a timelike hyperbolic trajectory in
spacetime. Additionally, the Unruh-Dewitt model is actually a very good basic description
of the light-matter interaction and reproduces quite well the interaction between atoms
and light when no exchange of angular momentum is involved [101]. The main shortcom-
ing of this model, however, is that its evaluation is limited to perturbation theory. One is
therefore barred from using it to study problems in which a perturbative expansion is not
a good approximation. These include strong coupling, long times and high-average-energy
exchange processes.

In this part of the thesis we will introduce and utilize another particle-detector model
consisting of a quantum harmonic oscillator rather than a qubit, an idea that has been
proposed before in other contexts [102, , , , , , ]. In other words, we
simply replace two energy levels with infinitely many evenly-spaced levels. Nevertheless,
qubits are, in many cases, just approximations to systems with many more levels, so in
some ways our description for a particle detector is more natural. Given that most sym-
metric potentials in nature can be approximated by a harmonic potential for low energies, a
harmonic-oscillator detector can model a wide range of detectors, from atomic electromag-
netic levels to molecular vibrational spectra. In particular, we will consider such detectors
in the context of cavity fields (i.e. the fields they interact with will present an IR cutoff),
meaning that the field modes are discrete.

Using an oscillator detector has significant advantages over the standard Unruh-DeWitt
(qubit-based) detector. First, the quantum evolution can be solved nonperturbatively. As
we will see, this results from being able to utilize Gaussian quantum mechanics, as described
in Ch. 3. Many of the scenarios of interest in relativistic quantum theory involve quadratic
Hamiltonians, thus making this formalism widely applicable.

Second, the evolution can be evaluated by simply solving (in general numerically) a
set of coupled, ordinary, first-order, linear differential equations. Furthermore, the form of
this ODE is universal, meaning that one can solve a large range of problems with minimal
effort. In particular, this approach can be used to solve (a) arbitrary time-dependent tra-
jectories, (b) arbitrary quadratic, time-dependent interaction Hamiltonians and boundary
conditions, (c) arbitrary Gaussian initial states of the field and detectors, (d) any number
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of cavity modes, and (e) any number of detectors. As we will see, a wide range of different
scenarios can therefore be solved non-perturbatively by the same simple differential equa-
tion, which implies considerable explanatory power and computational gain. For example,
as we will see, there is no need to repeat the numeric calculation whenever we want to
change a given initial state if the time-dependent Hamiltonian mediating the interaction
is the same. This is rather unlike the perturbative Unruh-DeWitt model in which consid-
erably more effort is required. This universality, plus the ability to sidestep perturbation
theory, is the true power of this approach to detector models.

One obvious limitation of this approach is that to solve the equations in practice one
is forced to apply an infrared cutoff to the field. However, an infrared cutoff naturally
appears when studying quantum field theories in finite volumes (e.g., optical cavities,
periodic waveguides, etc.), and so this formalism enables us to non-perturbatively solve
problems of quantum field theories in curved spacetimes inside cavities, a matter of great
interest that has not been thoroughly explored to date. If a tabletop experiment in which
relativistic quantum phenomena is to appear, discrete systems [109] or superconducting
circuits [110, : , 113] have an edge in terms of experimental feasibility.

Although in practice one is also forced to use a UV cutoff (namely, computing with
only a finite number of modes), in all results presented here we have been careful to find
a convergent solution with respect to the number of field modes. Specifically, we run the
simulation with more and more modes until the results do not change anymore. As such,
this is not a practical limitation.

The idea of using harmonic oscillators in relativistic quantum field theory as particle
detectors to obtain non-perturbative results was explored by other authors who reported
interesting analytical results in [105, |. The practical scope of their approach, however,
remains to be seen—thus far it has been limited to very concrete problems due to complex-
ities and the number of assumptions and approximations required to obtain quantitative
results. In performing our analysis we shall employ an arguably more powerful Gaussian
formalism, which provides a more efficient way to address problems of time evolution when
considering quadratic Hamiltonian and Gaussian states. In this sense our approach is sim-
ilar to that of Dragan and Fuentes [107], who made use of the Gaussian formalism to study
a time-independent, quadratic Hamiltonian of two coupled harmonic oscillators. This ap-
proach had some advantages insofar as it did not require any perturbative approximations.
However, their analysis was limited to 1) a single field mode and 2) time-independent
Hamiltonian. Under that proviso, only stationary scenarios and very simple trajectories of
detectors can be considered. To study a particular non-inertial scenario (namely eternal
uniform acceleration) they relied on the existence of Bogoliubov transformations between
inertial modes and Rindler modes, rendering thermality an a-priori assumption instead of
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a consequence. Furthermore, by applying free Bogoliubov transformations to a single field
mode, they were unable to see border effects when analyzing the Unruh effect in cavities.
Indeed, the applicability /validity of continuum Bogolibov transformations for eternally ac-
celerating observers in cavity settings in any regime is a rather obscure topic that has not
been thoroughly understood to date.

In this Part of the thesis we will begin in Ch. 5 by introducing the general setting
behind this model and describing the mechanics of its use. Once we know how to use the
model we move on to apply it to a variety of scenarios of interest. First, we consider in Ch.
6 the case of an oscillator-detector undergoing uniform acceleration through a cavity in
order to elucidate the nature (if any) of the Unruh effect in a cavity. We find that indeed
the Unruh effect still occurs inside a cavity, and that there is a surprising universality to
the obtained results, being largely independent of the boundary conditions applied to the
cavity. Next, in Ch. 7 we use the model to examine the phenomenon of entanglement
harvesting, demonstrating both bipartite and tripartite harvesting. In Ch. 8 we continue
to consider the harvesting of correlations but rather than entanglement focus on quantum
discord. What we find is that, surprisingly, the harvested discord increases as we increase
the temperature of the cavity field, in exact opposition to the behavior of entanglement.
In Ch. 9 we move to another paradigm in which many pairs of detectors are allowed to
sequentially interact with a cavity field. What we discover is that such a procedure can
actually be used as a preparation technique for the field state that allows for the sustainable
production and distribution of entanglement. We refer to this protocol as entanglement
farming. Lastly, in Ch. 10 we take the farming setup and discuss how such a system
may be useful for metrological purposes. In particular we show that such a system can be
engineered to be extremely sensitive to external influence and we demonstrate this via the
detection of periodic motion of the cavity walls. That is, the setup can act as a quantum
mechanical seismograph.
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Chapter 5

The oscillator detector model

Note: this chapter derives from the work [I], in collaboration with Eduardo Martin-
Martinez, Nicolas C. Menicucci, and Robert B. Mann.

In this chapter we will introduce the model that will be used for the rest of this Part of
the thesis. We will begin by reviewing the general scenario under consideration and discuss
some important subtleties regarding evolution with respect to different time parameters,
before moving on to outline the workings of the model itself.

As an important note, it must be stressed that this method carries far more general
applicability than simply to field-detector models. The evolution equation that we will
derive can be applied to any arbitrary collection of coupled oscillators or modes, for example
within condensed matter systems. While in this thesis we do not stray from its use as a
field-detector model, what we have is in fact a far more general tool.

5.1 The setup

One might suspect that replacing a qubit (two energy levels) with an oscillator (infinite
energy levels) in our detector model would complicate the problem, but it in fact becomes
significantly simplified. The essential feature that makes this possible is that all states in the
problem are Gaussian with no displacement, and all evolutions are generated by quadratic
Hamiltonians. As discussed in Ch. 3, such evolution preserves the Gaussian nature of the
states. This means that we can fully describe the evolving state by a covariance matrix
rather than a density operator.
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Figure 5.1: Harmonic-oscillator detector (red dot) moving through a fixed cavity. This
is to illustrate the difference between our setup and those in which the cavity itself is in
motion [I1]. Note that any number of detectors may be present.

For calculational purposes, we assume that an IR cutoff of some length L has been
imposed on the field.! As such, our physical model is that of a detector or detectors
generally moving around in a cavity. There is an important distinction to be made here
with other models that consider the cavity itself as being in motion [11]. In our work, by
contrast, the cavity is large and fixed, and the detector moves within it (if it moves at all).
See Fig. 5.1.

5.1.1 Hamiltonians generating evolution with respect to different
time parameters

In relativistic scenarios it is important to keep in mind that Hamiltonians generate evo-
lution with respect to a given time parameter that does not necessarily coincide with the
proper time of some (or any) of the proper times of the physical subsystems that are in
interaction. When we consider the global Hamiltonian of multipartite systems we would
need to express it in terms of a common time parametrization. Due to this, we also wish
to provide a discussion of how to generate evolution with respect to an arbitrary time
parameter. While in this thesis we will take the evolution time parameter to be that of
the proper time 7 of our detector, in more general settings it may be useful to evolve in
a global time coordinate ¢, particularly in the case where there are multiple detectors in
which each detector j has a different proper time coordinate 7; associated with it. The

!This is necessary because we want to use matrix algebra to (generally numerically) solve the resulting
differential equations, although a formal generalization of our method to the continuum limit may be
possible in the form of integro-differential equations. This is the focus of current work.

75



calculation is most straightforward in the Heisenberg picture, although applies equally well
in the Schrodinger or interaction pictures. In this way we provide a “dictionary” by which
we can transform to any other time coordinate. In Sec. 5.1.2 we continue by introducing
the general form of the Hamiltonian that we will utilize with our model.

Let us proceed, then, by considering a general time-dependent Hamiltonian H (t), which
generates evolution of the entire system in the global time coordinate t. This Hamiltonian
includes the free Hamiltonian for each system, as well as interactions. With respect to ¢,
the Heisenberg equation of motion for a general operator A(t), possibly having explicit
dependence on t, is

d - ira ~ GA(t)
—A@) = =[H@®), AD)] + —=2.
A different choice of time coordinate can be taken into account by applying the chain rule.
For the moment, let us choose the new time variable to be the local proper time 7; that
parametrizes the worldline (x(7;),t(7;)) traversed by detector j. Applying the chain rule
gives

(5.1)

d . dt d -
—Alt(r;)| = ——A(t
dr; [ <TJ)} dr; dt ) t=t(r;)
dt i dt DA(t)
= ——[H®),A)] + ——=—2
a1 A0+ =5, "

- % {(;—;jﬁ[t(ﬁ)]) ,A[t(q)]] + Mg—;:j)}. (5.2)

Thus, we can start with the Hamiltonian H (t), which generates translations in the global
time coordinate ¢, and then define

Hi(r)) = d—iH[t(Tj)] (5.3)
as the Hamiltonian (for the entire system) as seen by detector j, which generates evolution
for the entire system with respect to the proper time coordinate 7;. The derivative dt/dr;
is the redshift factor for an observer in the detector’s reference frame, which provides an
overall scaling of all energies in the combined system (because this is what such an observer
would experience). Notice that although the notion of proper time is local, we need to be
able to evolve the entire system with respect to this coordinate because we are working
in the Heisenberg picture. This is not a problem as long as ¢(7;) is an invertible function
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over the range of times of interest. The equivalence of the two pictures is made explicit by
defining Heisenberg operators that are more natural to the detector’s frame:

Aj(r)) = Alt(m;)] . (5.4)
We can now use Egs. (5.3) and (5.4) to rewrite Eq. (5.2) as

d P DA, ()
%AJ(TJ‘) = ;.L[Hj(Tj%Aj(Tj)] + ajTjj :

J

(5.5)

For example, if A(t) were to represent the position of the second hand on a wristwatch worn
by an observer traveling with detector j, then it would make more sense to consider A]- (15)
because this operator would have a simpler evolution with respect to 7; than A(t) would
with respect to ¢ (since the wristwatch evolves more simply with respect to 7; than with
respect to t). Similarly, it will be easier to start with the simple version of the wristwatch’s
Hamiltonian H,(7;) and then invert Eq. (5.3) to obtain

~ . de

H(t) = 2 H[r(t)] (5.6)

(which will be more complicated) for use in the global Hamiltonian.

The upshot of all of this is that we can define a single Hamiltonian H (t) for the whole
system with respect to some global time coordinate ¢ and then use Eq. (5.3) to transform it
to any other time coordinate we wish to use for the evolution. Furthermore, when building
up this Hamiltonian, it will sometimes be easier to start by defining a piece of it with
respect to local proper time and then use Eq. (5.6) to figure out what this piece looks like
in the global time coordinate.

5.1.2 The Unruh-DeWitt Hamiltonian in general scenarios

We have to be careful when we want to deal with Hamiltonians generating translations with
respect to different time parameters, above all when we want to describe the interaction
of systems that have different proper times.

Indeed, in general scenarios it is not trivial to define either the interaction nor the
free Hamiltonian in different pictures. In this section, we will help guide the reader by
introducing the following notation: We will call HS H! HH respectively the complete
Hamiltonian in the Schrodinger, interaction, and Heisenberg pictures. In later sections we
will remove this as it will be clear from context which picture we are working in. Also for
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the purposes of this section we will include a superindex ¢ or 7 denoting with respect to
which time the Hamiltonian is a generator of translations. Lastly, we will denote with the
subscript F' the free part of the Hamiltonian and I the interaction part (this will continue
to be used through the following chapters).

We will consider the interaction of a number of particle detectors with a quantum field.
To model this interaction we will consider an X-X coupling of the form of the Unruh-
DeWitt Hamiltonian, Eq. (4.36). Note, however, that the formalism we present is much
more general than this, and we can in fact use any quadratic Hamiltonian that we like.
For our immediate purposes we choose to use the X-X coupling in order to compare with
previous works. For the sake of clarity, let us start our reasoning with a very simple
scenario: let us consider a single detector of level spacing {2 undergoing general motion in
flat spacetime with an associated proper time 7 and a scalar quantum field that we will
choose to expand in terms of plane-wave solutions in terms of a global Minkowskian time
t.

The coupling given in Eq. (4.36) was presented already in the interaction picture. For
our purposes, however, we will find it more convenient to work in either the Schrodinger or
Heisenberg pictures. In the Schrodinger picture, the Unruh-DeWitt interaction is described
by the following Hamiltonian

Hio = N7)i*¢°[(7)], (5.7)
where A(7) is the switching (or window) function, £i° is the monopole moment of the
detector and ¢5[x(7)] is the field operator evaluated along the worldline of the detector
parametrized in terms of the proper time 7:

) = Y (unle(®lan + i fo(r)al), (5.8)

n

i = (aa+ ), (5.9)
where u,,(z) are the (t = 0) stationary mode functions determined by whichever boundary
conditions are applied to the cavity; one of Eqs. (4.53,4.54,4.55). Notice that the time
dependence of the switching function A(7) allows us to control the interaction by, for
example, turning on and off the detector at desired times.

Let us start from a very well known result from first principles: we can write the free
Hamiltonian for the field, and the free Hamiltonian of the detector in their respective times
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in the Schrodinger picture:

rrS,t At oA
Hfree,ﬁeld = Z wna]:zan ) (510)
n
HYT = Qala (5.11)
free,det datd - .

Now, to write the complete free Hamiltonian we cannot just naively sum these two terms
together because they generate translations with respect to different time parameters. We
would need first to transform them to a common time parameterization. We will see that
in order to recover the correct form of the well-known Unruh-Dewitt Hamiltonian in the
interaction picture, we must transform the field Hamiltonian to generate translations in
the proper time of the detectors. In this way, using (5.6) we have that

- d
S, At oA
Hfree,ﬁeld = Et@—) Z wnajqan ) (512)

where ¢(7) is determined by the worldline taken by the detector. We can thus write the
complete Hamiltonian in the Schrodinger picture generating translations in 7 as

ﬁS’T — HA'S,T + HS,T

free int »

where
- d
S, At A At A
Hfree = %t(,r) ; wnalban + Qailad (513)
ST = A7) (aa+ ) 3 (unfe ()i + ujfe(r)]al). (5.14)

n

Note that the free Hamiltonian is not time independent as it was in the case where the
detector is inertial.

In most textbooks [39], calculations involving non-inertial detectors coupled to the field
are dealt with in the interaction picture. We will see that we recover the well-known form
of the interaction Unruh-DeWitt Hamiltonian by changing from the Schrodinger to the
interaction picture. Recall the transformation between the Schrodinger and the interaction
pictures:

A1 = O (1) B D) (5.15)

free
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where Ufree(T) is the free evolution operator, i.e. the solution to the Schrodinger equation
in 7 using just the free Hamiltonian Hy:

. d
1_
dr
Notice that in this case the transformation is non-trivial due to the non-trivial dependence
on 7 of the global time parameter ¢(7). This yields an explicit time dependence of the

field’s free Hamiltonian. Since Hy" commutes with itself at different times, we can solve
Eq. (5.16) explicitly without needing to worry about time ordering:

Ufree(T) - [A{SJ Ufree(T) ) (516>

free

Ufree(T) = exp _1/ dr f{f?ree:|
0

—exp | —i /O ' dT(—d[’;(:)] Xn: nithin + Qi ) |

= exp - i< 3 wna,ﬁ&n) t(r) — iQajladT] , (5.17)

This operator leaves invariant the free parts of the Hamiltonian, and its action on the a,,
and a, operators is

UfTree(T)&nUfree(T) = e_iwnt(T)dn ) (518)
Uftee(7—>dd0free(7—) = e_iQTddv (519)

allowing us to write the Unruh-Dewitt Hamiltonian in the interaction picture with respect
to the parameter 7 as

i )

i — > wndlan + Qalag + (Gae” + ale' )
n

% AT Y (antale (7). 40)] + b la(), (7)) (5:20)

n

where _
uplz(7),t(7)] = e_l“’"t(T)un[x(T)] ) (5.21)

Thus we recover the standard form of the Unruh-Dewitt Hamiltonian [39] in the interaction
picture that generates translations with respect to time 7 starting from the well known
free Hamiltonians (in the Schrodinger pictures, with respect to their respective natural
time parameters) after transforming to a common time 7 and changing to the interaction
picture.
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We will find it convenient for use in the next section to work in the Heisenberg picture.
We will use the fact that the form of the complete Hamiltonian in the Heisenberg picture
coincides with the form of the complete Hamiltonian in the Schrédinger picture, assuming
we take any given operator to be in the corresponding picture. To see this, note that the
transformation between the two pictures is by the full time-evolution operator U (1), which
satisfies the full Schrodinger equation

d - e

i—U(r) = H>U(T). (5.22)
dr

The Hamiltonian in the Heisenberg picture is obtained from its Schrodinger-picture coun-
terpart by the usual transformation between the two pictures for any operator:

HY = UN () HY U (7). (5.23)

This means that we do not have to do any work to modify the Schrédinger-picture Hamil-
tonian in order to use it in the Heisenberg picture. All we have to do is reinterpret all
operators within it as being Heisenberg-picture operators instead of Schrodinger-picture
ones.

While we will not be needing this in the current thesis, it is straightforward and useful
to write the most general X-X type Hamiltonian for an arbitrary number of detectors
undergoing general trajectories with different proper times 7; and with time dependent
couplings. However, if multiple detectors have different proper times then we again need
to be careful. One must always make a choice of time, and in this more general case it
makes sense to use the global Minkowski time ¢. Transforming the Hamiltonian to time ¢
and reinterpreting all operators in the Heisenberg picture yields

i _ anATA Zd% [ o, da
FS g0, + i) sl Dl + (t)al))] (5.24)

where z;(t) is the trajectory of the j-th detector parametrized in terms of the global
Minkowskian time ¢, and all operators are now understood to be in their Heisenberg rep-
resentation. We will see in the next section how working in this representation allows us
to derive a simple, number-valued equation of motion that describes the full evolution of
the detectors+field state.
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To recapitulate, the Hamiltonian above represents a set of N 4+ M time-dependent cou-
pled harmonic oscillators. M of them are oscillator-based Unruh-DeWitt detector modes
(labeled with the index d;), and the other N are modes of the quantum field inside a cav-
ity (labeled with an integer index n). Notice that the there is no direct detector-detector
coupling, and the field is a free field, meaning there is no coupling directly between field
modes either.

We emphasize that Eq. (5.24) is not the most general form of the Hamiltonian that
could be imagined in this scenario. It is simply the same as the original Unruh-DeWitt

detector model. The connection is made by choosing no relative phase between a4, and

&:;j in the interaction term, which makes their sum proportional to the position (monopole

moment) of the oscillator. In general, our formalism, to be presented now, is capable of
solving far more general interaction models, provided they are quadratic.

Our general problem is now this: given detector worldlines [¢(7;), z(7;)] and an initial
(Gaussian) state for the detectors and field, evolve the detectors and the field using the
Hamiltonian in Eq. (5.24), and consider the reduced state of the detectors after the evo-
lution. In order to make use of the simplification afforded by the use of Gaussian states
and quadratic Hamiltonians, in the next section we will derive a differential equation using
the symplectic formalism of Gaussian quantum mechanics. This will let us compute the
covariance matrix for the field and detectors throughout the evolution, and since the state
remains Gaussian the whole time, this is equivalent to tracking the evolution of the full
state itself.

It is also important to note that while Eq. (5.24) will in general be very useful when
considering some ensemble of detectors, in the work presented in this thesis we will find it
more convenient to parameterize the evolution via the proper time rather than the global
time t. This is because in the applications discussed here we either have only a single
non-stationary detector (in which case we use proper time 7) or we have multiple detectors
that are stationary, the proper times of which are therefore equivalent to the global time ¢.
The Hamiltonian that we will actually use here is thus of the form given by the addition
of Egs. (5.13,5.14), equally well interpreted in the Heisenberg picture, as just explained.

While the derivation of our method requires the use the Schrodinger or Heisenberg
picture (they work out exactly the same since the covariance matrix is just a collection
of expectation values), it does not work directly from the interaction picture. Once the
method is presented, however, and we let ourselves work entirely within the phase space
formulation, then an interaction-like picture can be defined that works in the same manner
as the interaction picture does in the Hilbert space. We will describe this at the end of the
next section.
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5.2 Mechanics of the model

In the case of an oscillator detector the great advantage is that one is able to utilize
the Gaussian formalism. The reader should review the material in Ch. 3, especially
with regards to symplectic evolution. As a reminder, the symplectic evolution of a given
Gaussian state (under which Gaussianity is preserved) will generically be generated by
a quadratic Hamiltonian (thus acting linearly on the collection of quadrature operators).
The whole idea behind the oscillator-detector model is that the dynamics of this process
can be fully described within a phase-space formulation, without needing to refer directly
to any operators in a given Hilbert space.

We describe here the way in which this is carried out. For completeness we also include
in Appendix. B an alternative, but more complicated and less elegant method of solving
for the system evolution. While we will not utilize the alternative in this thesis, we did
use it to verify several of the preliminary calculations obtained using the primary solution
method, to be now presented.

5.2.1 The symplectic evolution equation

The derivation of the key equation is actually incredibly simple. Indeed it can also be
derived purely within classical Liouville theory [38]. This brings up an important point
regarding why this approach is significantly easier and more powerful than the standard
Unruh-DeWitt two-level model. By working within a Gaussian regime we ensure that all
transformations are linear, and thus can be completely represented classically. Of course
the interpretation of the results is different, as it is understood that underneath it all we are
working with a quantum Wigner function as opposed to a classical Liouville distribution.
It is therefore meaningful to talk about things like entanglement, for example. But the
mechanics of the system, in particular time evolution (as is our interest here), can be
described fully classically.

Let us now derive the primary equation of motion that will be used throughout this
part of the thesis. We take a general system of M detectors and N fields modes, described
by some (generally time-dependent) quadratic Hamiltonian H (t). Let us consider the set of
Heisenberg-picture quadrature operators {dq, (t), pa, (t)} for each detector and {G,,(t), p.(t)}
for each field mode, where for the moment let us take ¢ to be the global time parameter with
respect to which the field evolves, although this need not be the case. These quadrature
operators are related to the creation and annihilation operators of each mode by Eq. (3.2).
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We can combine these operators into the following vector:

X(t) = (Gay (), Pay (1), -+ s Gy (1) Pty (1) G0 (), D1 (1), -+, G (£), P ()T (5.25)

Note that the transpose operation merely transposes the shape of an operator-valued vec-
tor; it does nothing to the operators themselves.

~

To compute the evolution of x(¢) we recall from Ch. 3 that as long as H(t) is quadratic
in the quadrature operators (equivalently, quadratic in the ladder operators) then the
unitary evolution U(t) that it generated will act linearly on the quadratures

x(t) = Ut (t)%,U(t) = S(t)%o, (5.26)

where %o = x(0) is the initial vector and the time-dependent transformation S(t) is sym-
plectic, Eq. (3.10). Correspondingly, the evolution of the state as given by the evolution
of the covariance matrix (either in the Schrodinger or the Heisenberg picture), takes the
form

o(t) = S(t)aoS(t)’, (5.27)

where o is the initial state. Our goal is to find a differential equation for S(¢) that
represents the evolution generated by a quadratic Hamiltonian. Note that in general there
would also be a phase-space displacement term, x — Sx + y, generated by linear terms
in H (t). While making such a generalization would be simple, in our work we have only
utilized purely quadratic Hamiltonians and thus will not need to consider this extension.

A general time-dependent, quadratic Hamiltonian H (t) can be written as
H=x"F(t)x, (5.28)

where F(t) is a Hermitian matrix of c-numbers containing any explicit time-dependence
of the Hamiltonian. This matrix is very important, as it represents the phase-space con-
struction of whatever Hamiltonian we choose to use. We can now write the Heisenberg
equation for the time evolution of the quadratures:

d. .z -
%= i[H%] (5.29)
Writing this out in components and using Eq. (3.3) we obtain
d. 4. : A
Pt 1[H, x]} = 12 Fon(t) [a:ma:n, a:j}
=3 Fult) (:emﬂjn + Qjm@n) , (5.30)
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where €2, is the j, n’th component of the symplectic form, Eq. (3.4). This expression can
be collected back into a vector as
d

X = QF (0%, (5.31)

where F¥™ = F + FT. We now plug in Eq. (5.26), giving

%[S(t)]fio = QF™(1)S(1)%o, (5-32)

where we used the fact that X is time independent. Let us now take the commutator with
%, on both sides:

[(%S(t)) fco,chT} = [oF v ()S(t)%0,x]

d S 3 sym S 3

ES(zs)[xo,xg] = QFY™(1)S(t)[%0, Xq ] - (5.33)
Since [Xo, fig] = 12, which is an invertible matrix of c-numbers, we can cancel it, yielding
the following first-order, linear, ordinary differential equation for the symplectic matrix:

%S(t) = QFY™(1)S(1). (5.34)
While simple, this equation is the primary result of this chapter, and is the equation to
be used in the following five chapters. Solving this equation with the initial condition
S(0) =T (such that xg = S(0)X) is completely equivalent to solving the standard Hilbert
space evolution with the Hamiltonian-unitary formalism. It represents a Schrodinger-type
equation in phase space, the difference now being that it is a matrix differential equation
rather than an operator differential equation. Indeed, Eq. (5.34) can actually be utilized
with any arbitrary collection of coupled oscillators or modes, for example within condensed
matter systems. While in this thesis we do not stray from its use as a field-detector model,
what we have above is a far more general tool.

Note, importantly, that in order to actually solve this equation (e.g. numerically) we
need to work with finite dimensional matrices. This means only considering a finite number
of field modes within the evolution. That is, what we must do is to take a UV cutoff,
ignoring modes of sufficiently high energy. This is actually not a concern with regards to
the results we will present, because in every case we have ensured that our results are not
affected by this cutoff. We do this by increasing the number of modes included in the
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simulation until our result in question no longer notably changes with respect to further
increasing the cutoff. That is, we ensure that our results converge and we make sure to
include enough modes so as not to have the cutoff introduce artifacts into the results.

Of critical importance is the observation that, because we are not working in the inter-
action picture, any time-dependence in the Hamiltonian (and thus in the matrix F(¢)) is
due to explicit time-dependence imposed on the system. Examples of this include smoothly
switching on one’s detector through modulation of the window function A(¢) [I] and the
time-dependence induced by acceleration (a scenario that we will consider in the next
chapter). Throughout the majority of the applications presented in this thesis, however,
we will not actually have any such time-dependence. This is because, aside from Ch. 6,
we will be considering stationary detectors with sharp switching profiles (i.e. A(¢) will be
piecewise constant). In such cases solving Eq. (5.34) becomes significantly easier. If F is
time-independent then it will (obviously) commute with itself at different times, meaning
that we need not worry about time-ordering and the solution is given by the simple matrix
exponential:

S(t) = exp (QF¥™¢) . (5.35)

This solution method can also be applied in the case that one’s system is piecewise time-
independent. In such a scenario the evolution over each piece may be separately solved
via Eq. (5.35). The full evolution may then be garnered by multiplying together each
evolution matrix.

5.2.2 Free evolution and examples of phase-space Hamiltonians

Above we have fully described the mechanical workings of our solution method. One need
simply identify the phase-space matrix F(¢) corresponding to one’s multimode Hamilto-
nian (be this in regards to a detector-field interaction or otherwise) via Eq. (5.28), take
F¥™(t) = F(t) + F(¢t)", and then solve the matrix differential equation Eq. (5.34).

If F is time-independent then we may simply identify the solution via Eq. (5.35). One
such trivial instance is when there is no interaction, and the Hamiltonian consists solely
of the free part H = ﬁfree. This translates into F = Fge having only a free evolution
contribution as well. For a generic collection of bosonic modes the free Hamiltonian will be
of the form given by Eq. (3.8), in which case it is clear that F{" = diag(wy, wy, wa, wa, - - - ).
Multiplying by the symplectic form, Eq. (3.4), we see immediately that QFF" is exactly
the generator of single mode rotations. Thus, following Eq. (5.35), the symplectic free
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evolution is simply

coswypt  sinwyt
Stree(t) = @ <— sin wnnt cos th> ' (5.36)
n

That is, free evolution consists of single-mode rotations. It follows from this, for example,
that the vacuum and thermal states are stationary. In Hilbert space we know this to be
true because the density matrices of these states are diagonal in the energy eigenbasis with
respect to Heo. In phase space we know this because vacuum and thermal states, the
covariance matrices of which are given by Eqgs. (3.14) and (8.2) respectively, are zero-mean
and single-mode rotationally symmetric.

As an important example, we may consider the case of a single detector undergoing
motion in a field. As discussed in Sect. 5.1.2, in such a case we must take account of the
fact that the proper time 7 of the detector will be different from the global time ¢ with
respect to which the field evolves. In such a case we can evolve with respect to 7, and the
free Hamiltonian generating translations in this time parameter will be

Hieo = Qilag + %:) > wnil i, (5.37)

n

where (2 is the energy gap of the detector. This corresponds to a phase space Hamiltonian

matrix
Q0 dt w, 0
sym v n
Ffree - (0 Q) b dr [@ ( 0 wﬂ)] ’ (538)

This matrix is not actually time-independent, because of the dt/dr term. However, the
solution to Eq. (5.34) can be represented as the (generally time ordered) exponential of the
time integral of QF*™. Here, QF" commutes with itself at different times and the total
derivative dt/dr is eliminated upon integrating over 7 such that the solution is immediately
seen to be

cos 2t sin 7 coswy,t  sinwyt
Stree(T) = (— sinQr  cos Qr) @ [@ (— sinw,t cos wnt)] ' (5.39)

That is, the detector freely evolves with respect to its time 7 and the field freely evolves
with respect to its time ¢. Note that this exactly fits with how we know that free evolution
acts on the annihilation and creation operators of a given system, Eq. (5.18).
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Of course here we will be more concerned with scenarios in which there is an interaction
Hamiltonian that couples a detector (or a number of detectors) to some cavity field in
question. That is, we would have H (1) = Hpoo + ﬁint(r). In phase space this corresponds
to F(7) = Fpee + Fine(7). Let us continue with our example of a single, generally non-
stationary detector following the worldline x(7). Working in the Schrédinger picture and
taking the Unruh-DeWitt coupling, we have

Hi = \(7)(aa+ )y (un[x(T)]an + u;[x<7>]a;) , (5.40)

n

where the mode functions u, (x) are given by the ¢ = 0 case of one of Eqs. (4.53,4.54,4.55)
depending on what boundary conditions are imposed on the cavity, or something more
complicated if you want to be fancy, which we won’t be. For example let us consider our
moving detector inside a periodic cavity of length L. This means that we have a collection
of field modes with both positive and negative wavenumbers k, = 27n/L, corresponding
to right-moving and left-moving modes respectively. As explained just after Eq. (5.34),
in any calculation using this method we must, in practice, take only a finite number of
field modes into consideration. The reader should note, however, that we have ensured
that all results are independent of this exclusion (meaning that we always include enough
modes). Thus, let us take N right-moving modes and N left-moving modes, meaning that
n={-N,—N+1,---,N}. Given this, it is straightforward to see that the Hamiltonian
of Eq. (5.40) corresponds to the phase space matrix

F () — 22 (7) <X02 XP(T)) | (5.41)

int £(T) 04N

where 0,, is the n X n matrix of zeros and

cos(k_nz(r)) —sin(k_nz(r)) cos(k_nti1z(7)) —sin(k_n412(T)) cos(kyz(r)) —sin(kyz(7))
XP<T> _ VarN 47N \/47.-(]\/,1) \/471-(1\],1) e V4rN VarN
0 0 0 0 0 0

We use the subscript P to denote that this the case for a periodic cavity. The block form of
this matrix makes sense, as the interaction term contains no self-interactions (i.e. detector-
detector or field-field), rather only between the detector and field. Also note that in the
case of a periodic cavity we will, throughout this thesis, simply neglect the zero mode,
n =0, as is common practice. The legitimacy of this omission is discussed in [11].

If instead we are using a Dirichlet or Neumann cavity then the form of X will be
modified. In both of these cases, for example, the field modes are labeled only by positive
n. This because the n’th mode function in Eq. (4.54) or (4.55) is not linearly independent
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from the same mode function with —n. In other words, we do not need negative values
of n in order to have a complete mode basis, unlike in the periodic case. Thus in these
cases we will take the first N modes, such that n = {1,--- , N}. For both Dirichlet and
Neumann boundary conditions, the mode wavenumbers take the values k,, = 7n/L, and it
is straightforward to see that we have

™ (r) = 20(7) (X%?; " X%/SV(T)) , (5.43)

where the X matrix for the Dirichlet and Neumann cases is, respectively,

sin(k12(7)) 0 sin(koz (7)) 0 sin(kny (7)) 0
Xp(r) = T V2r VaN , (5.44)
0 0 0 0 ... 0 0
and
cos(ki1z(7)) 0 cos(koz(7)) 0 cos(knz(T)) 0
Xy (7) = N V2r VaN : (5.45)
0 0 0 0 ... 0 0

Throughout much of this thesis we will be considering scenarios in which we have more
than one detector interacting with the field. In such a case, one simply needs to add
corresponding rows to the matrix X. We will see this explicitly in later chapters.

5.2.3 The phase space interaction picture

In standard (Hilbert space) quantum mechanics, the interaction picture is a useful way
of taking account of the free evolution of a system when studying the physics of some
given interaction, at least in the case that the interaction Hamiltonian H 1(t) is explicitly
time-dependent. If this is not so then it can in some cases be more useful to not move to
the interaction picture, as it may be easier to deal with a full (free plus interaction), time-
independent Hamiltonian than it is to deal with solely an interaction, but time-dependent,
Hamiltonian. A precise example of this is presented above, where in the case of a (piece-
wise) time-independent system we can solve the evolution simply by evaluating Eq. (5.35).
In the case that we begin with an explicitly time-dependent interaction Hamiltonian, how-
ever, adding “more” time dependence my moving to the interaction picture is more than
compensated for by not having to worry about the free Hamiltonian in one’s evaluation of
the evolution equation.
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While in the derivation above we have explicitly not worked in the interaction picture,
we are now able to take the result and consider what is, in a sense, a “phase space in-
teraction picture”. We will use this practice in Ch. 6 when we consider an accelerating
oscillator detector. In this section we will therefore continue to consider the evolution with
respect to proper time 7, rather than ¢. We use the fact that the free symplectic evolution
of our system is trivially solvable, for example as given by Eq. (5.39) in the case of a single
detector. Let us introduce the notation K(7) = QF*" (7). From Eq. (5.34), the evolution
matrix solves the equation of motion S(7) = K(7)S(7), where here the overdot represents

differentiation with respect to 7. This matrix can be split into the free and interaction
parts: K(7) = Kee + Kint, where Kpeo = QF2 and Ky (7) = QF Y7 (7).

free int

As just discussed, the free evolution is trivially solved from the equation Sgee =
KieeSteo. Let us then apply the same procedure as is usually done when moving to
an interaction picture. We will define an interaction picture symplectic evolution matrix

S’(7) and an interaction picture interaction generator K. (7), defined as

S
Kilnt<7-) = Sil (T)Kint<7-)sfree(7_>- (546)
It is then easily seen that the evolution equation S(7) = K(7)S(7) is equivalent to

d“‘ZT(T) = KL (1)S'(r). (5.47)

The evaluation of S?(7) can then be accomplished by standard numerical techniques.
The full Heisenberg evolution matrix is then simply S(7) = So(7)S’(7), and the evolved
state of the detector-field system is given by o (1) = S(7)o,S(7)".

5.3 Discussion

By applying the Gaussian formalism, we have addressed the problem of time evolution of a
particle detector undergoing relativistic movement inside of a cavity. With this, we are able
to tackle arbitrary multimode time-dependent problems and solve them nonperturbatively.
This is markedly different from the standard Unruh-DeWitt model, as discusses in Sect.
4.4, that can generally only be solved perturbatively. Remarkably, the only fundamental
change between the standard approach and our work is that we use a harmonic oscillator
to describe a detector, rather than a qubit.
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In addition to being nonperturbative, the methods we have presented lead to a compu-
tationally efficient way of solving a great range of problems involving an arbitrary number
of particle detectors coupled to quantum fields inside a cavity. The flexibility of the model
extends to the following: (1) the detectors can undergo arbitrary relativistic motion; (2)
they can have arbitrary quadratic interaction with the field; (3) the field and detectors
can begin in any Gaussian initial state; and (4) our description of the field can include
any number of modes. The vast range of scenarios that this can encompass are all solved
by the same number-valued, linear, first-order ordinary differential equation. We have the
additional advantage that for a given evolution, we do not need to solve the equation again
if we decide to change the initial state. As a demonstration of this applicability, we will in
the following chapters apply this approach to study a wide variety of relativistic quantum
phenomena.

The advantage of working nonperturbatively, in general, is that it allows us to access
phenomena that are inherently nonperturbative. This means phenomena involving (one
or several of) high coupling, high energy, and large evolution time scales. Several of the
studies to be presented in the following chapters are of exactly this nature, particularly
as regards long-time phenomena. The question of thermalization, for example, is one that
cannot be addressed properly using perturbation theory. This will come into play in our
next chapter, in which we demonstrate that the state of a uniformly accelerating oscillator
detector in fact becomes thermal, which is a stronger statement than saying it has a thermal
response, as is derived using the perturbative methods of Sect. 4.4.

We conclude this chapter by noting that there are many other problems of interest not
studied in this thesis, but which can now be easily addressed using our formalism. Appli-
cations to cavity settings in curved spacetimes are an obvious example. Another would be
the non-perturbative study of the dynamical Casimir effect and similar phenomena [115].
Indeed, there are in fact many potential applications of this model to further the study
that will be presented in Part. IV of this thesis, as will be discussed there.
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Chapter 6

The Unruh effect in a cavity;
thermalization and universality

Note: this chapter derives from the work [2], in collaboration with Wilson G. Brenna,
Robert B. Mann, and Eduardo Martin-Martinez.

One of the chief predictions of quantum field theory in curved spacetimes is the well-
known Unruh effect [21, 85]. It dictates that a detector with constant acceleration a in free
space, in which the field is in the Minkowski vacuum, will experience a response equivalent
to its submersion into a heat bath with a temperature proportional to its acceleration.
This phenomenon is intrinsically related to the Hawking effect [1 16], and understanding it
is essential in order to investigate more complex phenomena such as black hole dynamics
and possible quantum corrections to relativistic gravity.

As was discussed in Sect. 4.5, the first derivations of the Unruh effect was based on the
characterization of the Minkowski vacuum in a unitarily inequivalent Rindler quantization.
This approach, however, is not above criticism. A number of very strong assumptions have
to be made in order to justify the observation of a thermal bath by an accelerated observer
in the Minkowski vacuum. For example, the infinite amount of energy required to sustain
the eternal Rindler trajectory. It has also been argued that difficulties arise in defining
a Minkowski vacuum when boundary conditions are specified on the scalar field on a
manifold [117]. Despite these criticisms, we also saw in Sect. 4.5 that the same predictions
can be obtained by using an accelerated particle detector model. It is this same method
of studying the Unruh effect that we will utilize in this chapter, the difference being now
we will make use of the non-perturbative approach discussed in the previous chapter and,
furthermore, consider the Unruh effect within a cavity.
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We saw that it is relatively easy to perturbatively show that the response of an ac-
celerated detector to the vacuum state is Planckian. However, perturbation theory is not
the most appropriate approach to study the thermalization properties of the detector. In
practice this is mainly because higher orders of perturbation theory would be required,
increasing the calculational complexity even beyond those of non-perturbative methods.
More fundamentally, thermalization is an equilibrium result that is often only achieved
over the course of long time scales. In general, such time scales will not be accessible to
perturbation theory since the perturbative parameter |A\(H)AT| becomes larger as time
increases. Reasonable criticism may therefore be raised about a perturbative claim of ther-
malization. While in this chapter we will not consider energy or time scales that would
break perturbation theory, we are able to use the non-perturbative oscillator approach
to check whether or not an accelerating detector evolves to thermal state, a significantly
stronger statement than the thermal statistics obtainable within a perturbative treatment.
That is, one should not only check that the probability of excitation of the detector has a
Planckian response, one should also check to what extent the state of the detector becomes
thermal if the detector is carefully switched on and if the interaction lasts for long enough
times. This requires a complete calculation of the detector’s density matrix; it is a common
misconception that a detector’s Planckian response implies that the detector thermalizes,
because of the possibility of off-diagonal coherence terms in the density matrix. By the use
of non-perturbative methods of Ch. 5 we can make sure that thermalization is achieved
and that it is not an artifact of the use of perturbation theory applied in regimes beyond
its applicability.

We consider in this current chapter the thermality of accelerated detectors in cavities
with different boundary conditions. We will indeed demonstrate non-perturbatively that an
accelerated oscillator detector coupled to the vacuum state of a cavity scalar field thermal-
izes to a temperature proportional to its acceleration. Furthermore, we demonstrate that
this occurs independent of the boundary conditions imposed on the cavity. Surprisingly, in
fact, the numerical results vary very little with respect to different boundary conditions.

We do note that there has previously been an effort to understand how imposing dif-
ferent boundary conditions modifies the response of detectors in non-inertial scenarios in
free space. For example work has been done in a very different context to examine the
continuum Rindler case [118], and a number of boundary conditions in Hartle-Hawking
vacua have been studied [1 19]. However, these studies do not tell us if the boundary effects
of a cavity will prevent a uniformly accelerating particle detector from thermalizing due to
the Unruh effect.

Our findings indicate that in all of the scenarios under consideration, the Unruh effect
occurs. We observe that the detector achieves thermalization with temperature propor-
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tional to acceleration. Thus, not only does the Unruh effect occur inside a cavity (which
imposes an IR-cutoff on the field and, furthermore, isolates the field in the cavity from the
rest of the spacetime), it appears to occur independently of the details of this IR cutoff
and of the spatial distribution of the cavity modes. This demonstrates that the Unruh
effect, which many have argued relies on idealized details and thus cannot lead to ther-
malization [120, , |, is in fact a very general and universal phenomenon and that
thermalization of particle detectors can be computed non-perturbatively. Not only is this
a remarkable result from a fundamental point of view, it also gives hope to the possibility
of an experimental realization of the Unruh effect in quantum optical settings, where it
has been shown that general relativistic scenarios can already be simulated [123].

6.1 The setting

We will consider a uniformly accelerated oscillator detector, prepared in its ground state,
going through a cavity prepared in the vacuum state. The acceleration will be labeled
a and the length of the cavity will be L. The trajectory will be such that the detector
starts moving inside the cavity with a given initial speed, with a constant acceleration in
a direction opposite to its initial motion. Hence the detector will be decelerated while
crossing the cavity. It reaches the center of the cavity exactly when it reaches zero speed,
and then travels back to the initial point with increasing speed until it reaches the position
in which it started, having the same speed as when it entered the cavity but in the opposite
direction. Parameterized by the proper time 7 of the detector, this uniformly accelerated
worldline takes the form

N b

t(r) = %sinh(aT), (1) = = + % [cosh(aT) — 1] (6.1)
This trajectory within the cavity, as a function of the detector’s proper time, is shown
in Fig. 6.1. For larger values of the acceleration the detector will exit the cavity. In
principle this is an issue as computationally we must mirror the field modes outside of the
cavity. However, over the range of accelerations that we will consider the coupling decays
so quickly past the edges that these tails will have negligible contribution to the observed
final state.

To have a clean signature one must be careful with the way in which the detector is
switched on [124, 1] since a sudden switching stimulates strong quantum fluctuations that
may overcome the Unruh effect. In order to reduce switching noise we ensure that the
interaction is sufficiently smoothly switched on, following a Gaussian time profile, such
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Trajectory of the Detector within the Cavity
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Figure 6.1: The detector’s (green, dashed) trajectory through the cavity (red, solid) with
acceleration a = 1.6. The Gaussian switching function is plotted on the right axis with a

that switching noise effects are negligible. In particular, the switching function that we
use has the form

A7) = Ao exp(—72/25%).

(6.2)
We prepare the ground state of the detector and the vacuum of the field at a time 7 = —T
where the interaction is switched on following the Gaussian profile above, the atom has
some initial speed and starts decelerating until it reaches the centre of the cavity at time
7 = 0. The detector continues accelerating until the time 7 = T when it reaches the initial
point again. In the settings that we shall analyze, we will consider as parameters 1" = 4,
0 = 8/7 and \g = 0.01. With these parameters we find that the switching is more than
smooth enough for our purpose; namely the detector’s response from the switching noise
is negligible compared with the response from acceleration. Furthermore, we will take the
length of the cavity to be L = 144w. We take this rather large value in order to ensure that
the detector stays within the cavity throughout its evolution. We could have simply taken
a more compact window function A(7) in order to avoid this, but then we would introduce
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non-negligible switching noise. Lastly, we will take the energy gap of the detector to be
2 = 3. This means that, inertially, the detector would be resonant with quite a high field
mode (specifically, mode n = 432 for the Dirichlet and Neumann cavities, and n = 216 for
the periodic cavity). From the perspective of the detector, the field modes will undergo
a large degree of redshift and blueshift over the course of its accelerating trajectory. The
large choice of {2 was made in order to ensure that the detector does not see the frequency
of the fundamental cavity mode blueshifted above €2, at which point the detector would
not be near resonance with any mode, and would thus effectively stop interacting with the
field.

Computationally, we will utilize the phase space interaction picture as described in Sect.
5.2.3, where the matrix F;" is as given in Eq. (5.41) or (5.43) with the matrix X given by
one of Eqgs. (5.42,5.44,5.45), depending on which boundary conditions are imposed on the
cavity. As discussed above, in this chapter we will consider all three conditions. For each
case we transform to the phase space interaction picture, such that we are left with Eq.
5.47, which we numerically integrate from —7T = —4 to T' = 4 and with the parameters
as quoted above. Upon solving for the symplectic evolution matrix, we apply it to the
detector+field initial covariance matrix (in this case, the identity matrix) to obtain the
evolved covariance matrix, as in Eq. (5.27). We then isolate the 2 x 2 covariance matrix
of the detector o4, which fully characterizes the reduced state of the detector after it has

undergone its evolution through cavity.

6.2 Thermality

In order to conclude that the detector has experienced a thermal Unruh bath during its
acceleration, we look for two things: first, that the detector has evolved to a thermal
state and, second, that the corresponding temperature grows linearly with the acceleration
experienced by the detector. We will now explain the means by which we check the first
condition: whether or not the detector has evolved to a state that is actually thermal. The
non-perturbative approach introduced in the previous chapter is in fact very well suited
for this purpose. Not only is thermality easily tested, but because we have the exact
(non-perturbative) state of the detector we are able to make a definitive statement about
thermalization. In order to make conclusions about thermalization using perturbation
theory, one would at the least need to expand to higher orders, and at the worst it would
be impossible due to the long time scales typically required for thermalization to occur,
where perturbation theory may break down.

Gaussian states that are zero mean in phase space, as we are dealing with here, can be
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fully characterized by their mixedness, squeezing, and rotation. Thus, once the detector
has completed its evolution it will be, up to single-mode rotation (i.e. free evolution), in a
squeezed thermal state of the form

ve" 0

where v is the covariance matrix’s symplectic eigenvalue and r is its squeezing parameter.
These diagonal entries are just the eigenvalues of o4, A. = ve*”, from which the symplectic
eigenvalue and squeezing parameter follow as v = \/A;A_ and " = A\, /A_. We must now
determine whether the amount of thermality introduced by v is a much greater contributor
to the energy of the detector’s state compared to the amount of squeezing. If so, then the
state can be said to be nearly thermal. If they are comparable, or if squeezing has the
greater contribution, then we can not claim that the detector thermalizes.

To compare these two effects we study how they contribute to the free energy of the
detector, as given by Eq. (3.9) for our single detector mode. Applying this equation to our
detector of energy gap 2 and with covariance matrix Eq. (6.3) we see that the energy is
E = Q(vcoshr—1). For small squeezing (which is satisfied in our scenario) we can expand
this to leading order in r, yielding

E:QBV—D+%W1. (6.4)

Since v is of order unity (and is in fact remains very close to unity for our situation) a
good test for thermality is thus
v—1>7r° (6.5)

If this inequality is satisfied then the detector can be said to be very nearly thermal.

Equivalently, if

7"2

J

v—1
is very small, the detector is said to be thermal.

We find that the detector thermalizes very well in all of the three boundary conditions
considered: periodic, Dirichlet, and Neumann. We find numerically that for the parameters
given in Sect. 6.1, § is on the order of 107¢ in all three cases. That is, the squeezing
experienced by the oscillator is extremely minute compared to its thermality, and thus the
detector can be said to be very nearly thermal.

The first of our two conditions to verifying the Unruh effect (thermality and temperature
proportional to acceleration) is satisfied for all three boundary conditions.

97



6.3 Unruh temperature

We are now in a position to compute the temperature of the evolved detector 4. For a
single oscillator of frequency € the form of an exactly thermal state is o™ = diag(v, v),

for which the temperature is (see Sect. 3.2)

T:Q[ln (Zi)}l (6.6)

Since in our scenario we have already confirmed that our detector thermalizes to an ex-
cellent approximation we are able to use this equation to compute the temperature of our

detector with negligible error, where v = /A, A_ as above.

Given all of this, we will additionally find it convenient to make partial use of a per-
turbative treatment, as presented in Sect. 4.4. This is because, as discussed above, over
the course of its evolution the detector will observe massive red and blue shifts in the field
modes. This means that we are required to include a very large number of field modes in
our integration of Eq. (5.47), because even very high energy modes will, for a short time in
the detector’s evolution, be redshifted enough that they becomes non-negligibly resonant
with the detector. Indeed, for the higher accelerations that were considered we found that
we needed 9000 modes in order to achieve convergence. This goes beyond a reasonable
numerical integration in the non-perturbative approach. However, for lower accelerations,
in which we were able to properly apply the oscillator detector formalism, we found good
agreement between the temperature obtained from Eq. (6.6) and the temperature com-
puted using the standard perturbative approach, as indeed it should since any difference
will be of order O(A*). That is, we may perturbatively compute the probability of tran-
sition to the first energy level, assume that it takes the form of a Boltzmann distribution
(which we only know it does because we have non-perturbatively confirmed that the state
is thermal), and compute the temperature from this. For the low-acceleration regime, in
which we used 240 field modes, we have confirmed that both approaches agree. Extending
to higher accelerations, and thus requiring more modes (specifically, we included 9000), we
solely used the perturbative approach in order to compute the temperature of the detector
as a function of acceleration. The result of this is plotted in Fig. 6.2 for all three boundary
conditions. We emphasize, however, that the non-perturbative approach was essential to
this exercise in order to confirm thermality, without which deriving a temperature from
the perturbative excitation probability would be nonsensical.

Remarkably we find that for all three boundary conditions the temperature of the
detector upon exiting the cavity grows linearly with acceleration, demonstrating that the
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Comparing Boundary Conditions
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Figure 6.2: Comparison of different boundary conditions on the detector’s temperature
as a function of temperature. Not only do we see that it is linear, but that it is nearly
numerically identical for all three boundary conditions.

qualitative features expected of the Unruh effect are very much independent of the details
of the cavity. This settles any doubt regarding whether or not there exists at least some
form of the Unruh effect when an IR-cutoff for the field is introduced (i.e. when inside a
cavity). There has been some skepticism [120, 121, 122] stemming from the large number of
technical assumptions that go into the canonical derivation of the Unruh effect [21] and how
the presence of a cavity might alter or even eliminate its existence. We have demonstrated
not only thermality and the existence of the effect in a cavity, but furthermore that the
boundary conditions ascribed to this cavity are all but irrelevant. Indeed the numerical
similarity between the different cases is striking.

We note that the slope of the detector temperature with respect to acceleration is
not equal to the value of 1/27 predicted by the canonical free-space derivation. This is
not overly surprising since we are working in a cavity setting rather than free space; sig-
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nificant border effects should be expected when studying such phenomena. Our results
demonstrate, however, that the inclusion of an IR cutoff does not destroy the Unruh effect
understood as the thermal response of a particle detector with a temperature proportional
to the acceleration, and what is more, that the detector actually thermalizes to that par-
ticular temperature. If we were to take our cavity to the continuum limit we would expect
the slope to converge to the usual value of 1/27. We leave such a study for future work.

Lastly, while we have not included it in this chapter, we note that in [2] we additionally
considered the case in which the coupling between the detector and field was of an X P
nature, rather than X X. That is, we took the detector to couple instead to the conjugate
momentum field 7. Interestingly, in such a case we found that the results were all but
identical to those presented above. This lends further credence to the notion that the
Unruh effect is in fact a very general and universal phenomenon.

6.4 Discussion

In this chapter we have used the non-perturbative methods introduced in Ch. 5 to solve
for the evolution of an oscillator detector undergoing uniform acceleration through a cav-
ity field. We demonstrated that the Unruh effect does indeed occur inside a cavity, and
additionally that this result is independent of the boundary conditions applied to the field,
implying that the Unruh effect is in fact a very universal phenomenon. Specifically, we
have considered vacuum cavity fields with periodic, Dirichlet, and Neumann boundary con-
ditions. In all three cases we have observed that an accelerating oscillator detector evolves
to a thermal state and that the temperature obtained by the detector increases linearly
with its acceleration. Furthermore the results between the three cases are numerically very
similar. This indicates that not only is the phenomenon qualitatively universal but, with
respect to the case of boundary conditions, also quantitatively universal.

Moreover, our use of the non-perturbative oscillator model has allowed us to make
significantly stronger claims regarding the thermality experienced by the detector than can
be made using the standard perturbative framework typically employed in the literature.
That is, we have concluded that in our scenario an accelerating detector in fact evolves to
a thermal state, rather than merely exhibiting a thermal response function. Questions of
thermalization cannot be made in perturbation theory without resorting to higher order
expansions, and in some scenarios may actually be impossible due to the large time scales
often required for thermalization, where perturbation theory breaks down.

More generally, the results of this chapter suggest that the Unruh effect and similar
phenomena such as Hawking radiation may be largely independent of the details of the
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system [$5]. In addition to theoretical interest, such universality bodes well for an eventual
experiment where the Unruh effect could be measured.

101



Chapter 7

Tripartite vacuum entanglement
harvesting

Note: this chapter derives from the work [3], in collaboration with Krzysztof Lorek, Daniel
Pecak, and Andrzej Dragan.

One of the central concepts of interest in this thesis is that of vacuum entanglement. As
discussed in Sect. 4.6, the vacuum state of a quantum field displays quantum correlations
between spatially separated points. That is, the quantum vacuum fluctuations at point
x4 and point xp are correlated. As a result, disjoint regions of space will generically be
entangled with each other. This is especially interesting because it is the vacuum state
that we are dealing with, the state that we perceive as being empty. This does bring up,
however, the challenge of answering in what sense this entanglement physically manifests
itself. The primary paradigm we use in this thesis to understand physical phenomena is
operationalism. We are attempting to answer in what real, observable ways something
presents itself. With regards to vacuum entanglement there are several ways of going
about this. We present a new operational interpretation in Ch. 13, for example. Here,
however, we will return to a topic that has been studied by several other authors, that of
entanglement harvesting [11, 42, 43, 44]. We will examine this phenomenon using the non-
perturbative approach introduced in Ch. 5, and furthermore extend the study by looking
at the harvesting of tripartite entanglement.

The standard scenario of vacuum entanglement harvesting is that of two particle de-
tectors locally interacting with a field at different points. By doing this, the detectors
may become entangled with each other, even if they remain spacelike separated over the
course of their evolution! Of course, it is well known that no local operations can increase
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entanglement between two quantum systems [23]. In the case at hand however there is
already entanglement present in the vacuum state of the field between spatially separated
degrees of freedom, and so by interacting with the field locally, multiple detectors can swap
this entanglement out of the field to become entangled themselves. This is true even if
the detectors remain spacelike separated throughout their evolution, meaning that they
can become entangled without any direct causal mutual influence. They both experience
vacuum noise (i.e. excitations due to switching), but the noise that they experience is
correlated, and so their excitation statistics become correlated as well. While in practice
the amount of entanglement extracted is typically minute, and therefore unlikely to be
useful in any way for quantum informational tasks, it is interesting that we are in principle
harvesting a usable computational resource out of “nothing”.

So far the studies have largely been limited to the case of bipartite entanglement har-
vesting. Perturbative calculations involving more than two detectors can be quite intensive
and, in general, computing tripartite entanglement measures for mixed states can be ex-
ceedingly difficult. In this chapter we demonstrate the existence of tripartite entanglement
in a vacuum field and characterize its extraction by a trio of oscillator detectors. One may
find this surprising given the fact that all three-point correlation functions vanish in the
vacuum. However while it is true that GHZ-type tripartite entanglement is witnessed by
the three-point function, tripartitely entangled states also include those of W-type entan-
glement, which may be non-zero even when the three-point function is vanishing (see Sect.
2.1.3 to recall how we define GHZ and W-type tripartite entanglement). Indeed we demon-
strate that the tripartite entanglement is in fact more easily accessible than bipartite. We
observe a rich and interesting structure of the vacuum entanglement that has yet to be
fully understood.

We employ the non-perturbative oscillator-detector method for the case when three
point-like detectors, initially all uncorrelated and in their ground states, interact with
the vacuum state of a massless scalar field. We only consider the case when the time of
interaction is shorter than the light crossing time between the detectors. This rules out
the possibility of creation of entanglement via signaling (exchange of quanta). All of the
entanglement generated between the detectors must therefore have been harvested from
the pre-existing entanglement present in the vacuum. In particular we consider the case of
a periodic cavity field in which the three detectors are placed equidistantly. Although the
final state of the detectors alone is mixed, this symmetry allows for the easy verification of
genuine tripartite entanglement between them that has been swapped from the field. We
compare the regime of parameters for which the tripartite entanglement is harvested with
the parameters for which bipartite entanglement is achieved between two detectors alone,
and we find that in fact tripartite entanglement is more easily harvested.
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It should be noted that a previous paper, [125], has also demonstrated the extraction
of W-type tripartite entanglement from a quantum field. The differences between this
work and our own are significant however, in that here our computations are entirely non-
perturbative and we provide detailed data on the regions in parameter space in which the
detectors obtain tripartite entanglement. Furthermore in our study we consider a cavity
field rather than one in free space. This is important because any verification and utilization
of such harvested entanglement is very likely to come about through a cavity-type scenario
similar to the case of [112].

7.1 Setting and computation

Here we describe the the scenario in which we are going to be working, as well as describe
some of the specifics regarding computation. To begin, it should be noted that standard,
bipartite entanglement harvesting can be achieved using the non-perturbative oscillator
approach, unsurprisingly. For example in the next chapter we will see an explicit example
of this, in Fig. 8.1. Bipartite harvesting is not our focus in this chapter, as the phenomenon
has been previously well-studied using the standard perturbative framework. Rather, in
this chapter we will focus on the harvesting of tripartite entanglement, and will directly
compare this with the bipartite case.

We consider three stationary detectors in a one-dimensional, periodically identified
cavity of length L with a massless scalar field. Both the field and the detectors are initially
in their ground states and are thus not entangled with each other. At time t = 0 the
detectors are sharply switched on to start interacting with the field and the system is
allowed to evolve until time t = T. After this interaction the entanglement between
the detectors is examined. Sharply switching on the detectors means that at t = 0 we
discontinuously change the coupling from zero to a constant, non-zero value \. This,
along with the fact that the detectors are unmoving, means that our Hamiltonian is time-
independent over the period of evolution in which we are interested, t € (0,7'). We are
thus able to easily solve for the system evolution by utilizing the exact solution Eq. (5.35).
What is more, the fact that the detectors are stationary means that their proper time
is equivalent to the global time parameter ¢, and we need not worry about dealing with
different time parameters. In fact this type of setting (stationary detectors with sharp
switching) will also be used in the following two chapters, in which we similarly will use
Eq. (5.35). One may be concerned that sharply switching on the detectors will cause
divergences of some sort, and indeed in more than one spatial dimension sharp switching
is problematic [124]. In 14 1 dimensions, however, the response of the field and detectors

104



to this operation is perfectly finite (of course they will respond to some degree, as they
must in order to become entangled).

We will take our three detectors to be stationary at locations xq, z9, and z3, each
of frequency 2. Following the prescription of Sect. 5.2, the system (detector+field)
evolution is given on the level of the covariance matrix by performing the operation
o(t) = S(t)aeS(t)T = S(t)S(t)T, where the second equality follows from the fact that
our initial state is the ground state for the detectors plus the vacuum state for the field,
meaning that oy = I. Following Eq. (5.35), the symplectic evolution matrix is given by
S(t) = exp(QF¥™¢), where Q is the symplectic form and the matrix F¥™ = F2" + Fi7™
is as specified in Sect. 5.2.2. Namely, since we are working with a periodic cavity the free
part we will be F2' = (Q,Q,Q, wy, wn-_1, -+ ,wn_1,wn), Where w,, = |k,| = 27|n|/L.

The interaction part will then be given by Eq. (5.41), where now the coupling constant A
is time-independent and the X matrices will be given by

cos(k_nyz1) —sin(k_nyz1) cos(k_nyii1z1) —sin(k_nii1) cos(knz1) —sin(kyz1)
Var N Var N \/47|—(N_1) \/471—(]\[_1) Var N Var N
0 0 0 0 e 0 0
cos(k_nz2) —sin(k_nyz2) cos(k_nyii1x2) —sin(k_nyiixz2) cos(knza) —sin(kyz2)
XP — 4T N VarN \/47r(N—1) \/47r(N—1) VarN VarN (71)
0 0 0 0 0 0
cos(k_nz3) —sin(k_nz3) cos(k_nyii123) —sin(k_nyii23) cos(knzs) —sin(kyzs)
47N Var N \/47|—(N_1) \/471—(]\/'_1) 47N 4N
0 0 0 0 0 0

Note that in this study we take N = 50, which we found to be more than sufficient to
obtain convergence of our results.

After performing this evolution up to time t = T we will have the covariance matrix

o (T). From this we then isolate the 6 x 6 reduced covariance matrix of the three detectors,

which we will label o153. This matrix can generically be decomposed into 2 x 2 blocks as
follows:

o1 72 M3

0123 = | Y12 02 723

Y13 Y23 O3

The diagonal blocks are the covariance matrices of corresponding detectors alone, and the
off-diagonal blocks contain information about the correlations between the different detec-
tors. It is this matrix from which we will extract information regarding the entanglement
among the detectors.

(7.2)

The detectors have been chosen to be aligned as (xy, zo,x3) = (%L, %L, %L), where 0
and L are the coordinates of the walls of the cavity. For periodic boundary conditions this
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alignment is symmetric in the sense that each detector is placed at the distance % away
from either of the remaining two, and hence the state of the system is invariant under the
exchange of any two detectors. This will in fact make it easier to determine whether or

not the trio are tripartitely entangled.

To compute the bipartite logarithmic negativity between a given pair 77 of detectors we
must first obtain their reduced state by isolating the appropriate blocks of o123 to obtain

the 4 x 4 covariance matrix
g, Yij
= (3w 73)
The logarithmic negativity between these two modes is then computed via Eq. (3.34).

Now, how do we determine if there is tripartite entanglement present among our three
detectors? By definition, a tripartite system contains genuine tripartite entanglement if
and only if the state is inseparable across all three of the possible bipartitions i|jk [15].
Here what we truly care about is the existence or absence of tripartite entanglement, and
less so its actual value. Thus we estimate the amount of tripartite entanglement using the
geometrical average of the logarithmic negativities across all the bipartitions:

En(ijk) = ¥/ En(ilik) En(jlik) En (k|ij). (7.4)

This quantity does not constitute a proper entanglement measure, but certainly it provides
a yes-or-no answer to whether or not there is tripartite entanglement in the system. Since
we are using a the periodic cavity, the fact that the three detector state is symmetric under
detector permutation means that to determine the presence of tripartite entanglement
we need only consider a single bipartition, since the other two will be equivalent. This
symmetry furthermore allows for a convenient trick that facilitates the easy calculation of
the logarithmic negativity across a given bipartition. The fully symmetric state in this
case will be of the form

o, v
O periodic = Y o1 9 . (75)
YO o1

The entanglement across, say, the bipartition 12|3 can be easily computed by using an
example of what has been called unitary localization [120, ]. To this end, we con-
sider applying a beam-splitter operation to the 12 mode subsystem, which over the three

detectors is given by
I/vV2 —1/vV2 0

Ses=|I/vV2 I/vV2 0]. (7.6)
0 0o I
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Being a unitary operation solely acting on the 12 subsystem, this does not affect the
entanglement across the 12|3 bipartition. Furthermore, with mode symmetry this operation
is seen to isolate all correlations solely between modes 2 and 3:

oL —° 0 0
SBSUperiodicS]gS = 0 oL+ \/5'7 . (77)
0 \/5’7 (o]

From here, we can apply Eq. (3.34) to compute the logarithmic negativity between modes
2 and 3 of this transformed state. This will be equivalent to the bipartite entanglement
across the 12|3 partition which, as stated above for this symmetric case, is a necessary and
sufficient indicator of genuine multipartite entanglement among all three detectors.

7.2 Results

In this section we present the results that have been obtained for the detector alignment
described above. We compute the entanglement among the three detectors for a range of
parameter values. We demonstrate that indeed tripartite entanglement can be spacelike
harvested (i.e. without causal contact between detectors) from the vacuum field, and we
observe a rich structure in this regard. We furthermore show that the tripartite entangle-
ment is in fact easier to harvest than is bipartite. All the results have been evaluated at a
fixed value of the coupling constant A = 0.01. The time of interaction 7" will be presented
here in the units of r, where r = % is the light-crossing time between neighbouring detec-
tors. Hence for times T" > r neighbouring detectors are within a timelike regime, and for
T < r within a spacelike one, meaning that in the latter case they could not have been in
causal contact and all the entanglement generated in the system must be due to extraction

from the field.

Due to the symmetry that we have imposed among the detectors, we will now denote
all the detectors by s, so Ex(ss) is the bipartite entanglement between a pair, which is
identical for each pair, and Ey(sss) is the measure we use for tripartite entanglement,
which via Eq. (7.4) and symmetry is equal to En(s|ss). For simplicity the former will be
referred to simply as “bipartite entanglement” and the latter - as “tripartite entanglement”.

We have produced plots of the amount of entanglement as a function of 7" and Q (the
frequency of the detectors), at a fixed value of L = 10. This is given in Fig. 7.1, where we
plot both Ey(ss) and Ex(sss). In agreement with intuition, most entanglement is being
produced after the light-crossing time of the neighbouring detectors, which is r. There
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Figure 7.2: Entanglements Ex(ss) and Ex(sss) as a function of cavity length L and and detector
frequency 2, where we have set T'= 0.4r and A = 0.01. On the right: regions of existence of Eg,
and F,4s plotted together.
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are however regions in the T,€) plane along which both types of entanglement persist
deeply into the spacelike regime. This entanglement does not diminish under increasing
the number of field modes N and hence it is not an artifact of the imposed UV cutoff,
but is rather a true physical effect. Moreover the regions where tripartite entanglement
is produced are certainly broader than for those of bipartite, meaning that the tripartite
entanglement emerges earlier and is therefore easier to be harvested. This however is not
surprising if we recall that Ey(sss) = Ex(s|ss) and we obtain Ey(ss) from Ex(s|ss) by
tracing out one of the detectors. This is a local operation and so can only decrease the
amount of entanglement, which implies that Ey(ss) always has to be less than or equal to
Ex(sss), as can be seen from our results.

To examine the dependence of the results on L we have produced in Fig. 7.2 a plot
of entanglement versus L and €2, having been produced at fixed 7" = 0.4r. In the L,
plane we find a hyperbolic curve along which both bipartite and tripartite entanglement
have been extracted by this time. Again, as must generally be the case, the region of
non-zero tripartite entanglement is larger than that of bipartite. We also note that, within
this scenario, the longer the cavity is and the smaller the detector frequency is the more
entanglement can be spacelike extracted.

7.3 Discussion

We have used the non-perturbative oscillator-detector approach to examine the harvesting
of both bipartite and of genuine tripartite entanglement from the vacuum field of a cavity.
That is, a set of detectors interacting with a common quantum field can become entangled
without causal contact by means of swapping the spatial entanglement present in the field.
We have demonstrated that from the vacuum state of a periodically-identified cavity field
genuine tripartite entanglement can be harvested. This tripartite entanglement is expected
to be of the W-type, due to the fact that the three-point functions of the vacuum field are
vanishing. In fact, it is considerably easier to obtain tripartite entanglement than bipartite
between any two of the three detectors. Indeed, we have been able to obtain tripartite
entanglement after a time of interaction considerably smaller than the light-crossing time
between pairs of detector. Specifically we see that a time as small as t = 0.21r, where
r is the distance between detectors, can be sufficient. We have provided detailed maps
of the regions in parameter space in which bipartite and tripartite entanglement can be
harvested.

Although we have not included it here, it is further demonstrated in [3] that entangle-
ment harvesting out of a periodic cavity field is considerably easier than from a Dirichlet
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cavity field. This result along with those presented here have considerable applicability
towards the eventual experimental confirmation, as well as possible utilization, of entangle-
ment harvesting scenarios. They furthermore may be applicable to more general system-
bath setups than what we have considered here, helping to point the way towards optimal
strategies for generating quantum correlation utilizing such systems.
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Chapter 8

Thermal amplification of discord
harvesting

Note: this chapter derives from the single-author work [4].

Entanglement, a form of quantum correlation without classical analogue, has long been
understood to be a key resource in many of the procedures developed in quantum compu-
tation and information [22]. While the mutual information generically quantifies the total
amount of correlation between subsystems that can potentially be useful for computational
tasks, entanglement has proven to have the purely quantum nature that gives an advan-
tage over classical computation. As discussed in Sect. 2.2, in the past decade there has
been an explosion of interest in the so called quantum discord [29, ], as well as similar
measures [30], that purport to quantify quantum correlations that entanglement generally
overlooks. That is, a separable (non-entangled) state may still possess quantum corre-
lations in the sense that its joint-measurement statistics cannot be described by classical
probability theory. In addition to being of theoretical interest [30, 66, 67, 9, 68], discord has
also received considerable attention regarding its potential as a quantum computational
resource [32, 69, 70, 71, 72, 33, 34, 73].

We have also discussed in Sect. 4.6 and the previous chapter the notion of vacuum
entanglement harvesting, in which the spatial entanglement present in the vacuum state
of a quantum field may be swapped to a pair detectors, even if these detectors have no
causal contact. In this chapter we will again use the Gaussian formalism to consider the
harvesting of entanglement into a pair of oscillator detectors, but here will furthermore
study the harvesting of mutual entanglement and of quantum discord. Excepting [129],
such studies have not previously been undertaken in the literature. For the discord, we
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will specifically use the measure known as the Gaussian discord, [75], introduced in Sect.
3.4.1. The primary contribution of this chapter is that we will study the extraction of
such correlations while simultaneously generalizing the initial state of the cavity field to
consider not only the vacuum but also thermal states of varying temperature. As we will
see, the results obtained by doing this are very surprising and, arguable, exciting both
from a theoretical point of view as well as from a practical one.

Before continuing, we wish to point out that the ability to locally extract discord
does not follow from the same physics that allows the well-known creation of discord
through local channels [130]. Such creation generally comes at the cost of reduced mutual
information, and discord cannot be locally created from a product state. In the correlation
harvesting scenario we consider two detectors that are initially uncorrelated, and both their
discord and mutual information are increased from zero due to their local interactions with

the field.

Studying the effects of thermal fluctuations on our ability to harvest correlations is
clearly an important part of understanding how to actually perform such a procedure in
a laboratory setting, since at least some level of noise will always be present in realistic
setups. Generally, it is understood that noise experienced by one’s system has a detrimental
effect on the correlations present in that system due to the decoherence that such noise
typically induces. One should similarly expect that thermality in a field will reduce the
ability of detectors to harvest correlations from the field; the increased thermal fluctuations
will cause the detectors to become more mixed and furthermore it is known that the
spatial entanglement present in a field reduces with temperature [131, |. However,
there have also been several studies demonstrating that discord is typically more robust
than entanglement against the detrimental effects of noise [133, , , 10, 7], and we
might therefore hope that in a harvesting scenario discord will hold out better.

Our findings are in fact much better than this hope would warrant. While we find that,
as expected, the harvested entanglement decays rapidly to zero as the field temperature
is increased, we simultaneously find that both the mutual information and the Gaussian
quantum discord between the detectors actually increase with field temperature. This
increase is in fact quite drastic, with an improvement of multiple orders of magnitude
being achievable. This increased extraction of both classical and quantum correlations is
what we will refer to as “thermal amplification”.

After presenting our results, we go on to discuss multiple ways in which this surprising
result can be explained and understood. Of particular importance is a detailed analysis that
takes advantage of the translational invariance of the periodic cavity field that we will be
using in this study. We illustrate that our system can be decomposed into two dynamically
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decoupled systems, each with only a single detector, and for which the evolution behavior
is easily understood. By this we are able to explain both the thermal amplification of
mutual information and discord, as well as the decay of entanglement, in terms of the
correlating properties of passive Gaussian transformations. Using this, we find that we can
also make accurate predictions for the strength of thermal amplification as a function of
the system parameters. The new perspective on correlation-harvesting that we introduce
in this explanation is something that we feel is interesting and worthy of study in its own
right.

The thermal amplification of discord is especially surprising, as discord is purported to
measure purely quantum correlations. This finding introduces the exciting possibility of
using a cavity field to locally generate what is an appreciable amount of discord, which can
then be used in discord-based quantum computing. This is especially so since, apparently,
experimentalists need not be concerned with keeping their cavity very cold. For example,
it is known that the discord and related measures quantify the amount of distillable en-
tanglement that can be activated by local interaction with an ancilla system [33, 34, 73].
Thus it seems that while thermal fluctuations are indeed detrimental to entanglement di-
rectly, they may indirectly be of great benefit to its generation. We let ourselves ponder
the possibility that this type of thermal amplification will lead to the development of what
may be called “noise-assisted quantum computation”.

After the initial preprint of the manuscript that led to this chapter we became aware
that similar results to ours had been observed in [136]. This paper, however, considers a
very different scenario (in their case the oscillator detectors are directly coupled), uses very
different techniques, and contains very different interpretations from what we present here.
Furthermore, in addition to presenting some interesting and counterintuitive results, it is
our goal here to explain the phenomenon of thermal amplification from several independent
points of view. In this way, we hope to aid in the possibility of utilizing this effect in
experiment and in practical application.

8.1 Setting and computation

The setting that we will consider is essentially the same as that used in Ch. 7, except that
we will just consider two detector rather than three, and we will generalize the initial state
of the field to include thermal states. We will continue to work with a periodic cavity field,
in which our two detectors are stationary at positions x; and x5, and are sharply switching
on at time ¢ = 0. We consider a sufficiently large number N of field modes of positive
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wavenumber k, and N modes of negative wavenumber, such that further increasing this
number no longer modifies the results of the computation.

The method of computing the symplectic evolution matrix S(¢) of the system is exactly
as explained in Sect. 7.1, except now with only two detectors (e.g. the matrix Xp will be
given by the first four rows of Eq. 7.1). Upon obtaining S(¢), the state of the system (detec-
tors+field) as a function of time from initial state oy is described by o (t) = S(t)oS(t)”.
It is important to stress that the computation of S(¢) in no way depends on the initial
state. This is therefore very convenient when applied to studies of different initial states,
such as in this chapter, because the dependence on the initial state can be studied without
recomputing the evolution.

Here, as previously, we will consider the detectors and the field to be initially uncor-
related, although this is not necessary for the formalism. Further, we will initialize the
detectors in their ground states and initialize the field in a thermal Gibbs state of temper-
ature T'. This includes the T' = 0 limit, which is the vacuum state. The covariance matrix
of the ground/vacuum state of system of oscillators/modes is simply given by the identity
matrix. Specifically, for the pair of detectors and the field:

O'(d) = 147 O'\(/]32 = I4N- (81)

ground ~
More generally, a thermal state of the field is given by the covariance matrix
al v, 0
o _ n
O therm — @ (0 v ) ’ (82)
n=—N "
where

_expwp,fB+1

= e B=1T (83)

are the symplectic eigenvalues of a thermal state (see Sect. 3.3). This means that the
initial state we use is of the form

oo=0" ol (8.4)

ground therm*

After evolution by some time ¢, the state of our system will take the generic form

o@d ~
o= (,7T a.(f)) , (8.5)



where o(? is the covariance matrix representing the reduced state of the detectors. From
o@ we may compute the logarithmic negativity Ex between the detector by Eq. 3.34,
the Gaussian quantum discord D(1,2) by Eq. 3.36, and the mutual information by

[=S(a1) + 8(cs) — S(a@), (8.6)

where o1 and o4 are the reduced, 2 x 2 covariance matrices of the individual oscillators,
and the von Neumann entropy S of a Gaussian state is given by Eq. (3.24). Recall from
Sect. 2.2 that, in general, the discord is not symmetric with respect to which oscillator
the measurement is performed on: D(1,2) # D(2,1). However, in our our scenario we
will find that the two detectors are symmetric under exchange, and thus here we will
have D = D(1,2) = D(2,1). It should also be noted that although there is circumstantial
evidence that Gaussian measurements are optimal for Gaussian states [32], there is as of yet
no proof of this, and so it is possible that the Gaussian discord may slightly overestimate
the true value of discord in general.

In the following section, all data presented will be using the following parameter values:
the length of the cavity is L = 100, the coupling strength for both detectors is A = 0.05,
the detector frequencies are both Q@ = 407w /L ~ 1.26 (meaning that they are resonant with
the 20*® field modes, both right and left-moving), and the number of right and left-moving
field modes is N = 80 (this number was chosen such that further increasing N does not
perceivably alter the results).

8.2 Results

We can now present the primary results of this chapter, which were obtained using the
formalism above. We consider what occurs when two detectors, initially in their ground
states, are injected into a cavity field that is either in its vaccum state or in a thermal
state. We then track the evolution of correlation measures between the detectors, including
logarithmic negativity Fy, mutual information I, and Gaussian quantum discord D. The
results obtained for logarithmic negativity follow exactly as would be intuitively expected,
and thus it will not be our primary focus here. Rather it is the mutual information and
discord that display unexpected behavior and will take up the majority of this chapter. In
this section we will merely present our results, and in the following section we will go on
to give several explanations for them and discuss.

In short, our primary result is as follows: thermality of the field can be used to in-
crease the amount of non-entanglement correlation that is extracted from the field by the
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detectors. That is, both the mutual information and the quantum discord that are ex-
tracted increase as a function of field temperature 7. On the other hand, the harvested
entanglement rapidly vanishes as T' is increased, agreeing with intuition.

In the following, we use r = |z1 — x3| to indicate the distance between the detectors.
The results of our calculations are independent of the absolute positions x; and xo, rather
only on their difference r, because a periodically identified vacuum or thermal field is
translationally invariant.

Although entanglement will not be our primary focus here, since its behavior follows
as expected, for completeness we will include some data regarding its extraction in our
scenario. This will also be used as a comparison with the other measures discussed below.
We begin by presenting some data for the case that the field starts in the vacuum. In Fig.
8.1 we plot the logarithmic negativity between the detectors as a function of the distance
r between them and the time t of evolution in the case that the field is initially in its
vacuum state. If we compute the same information when the field is instead started in a
thermal state, we find that the magnitude of this plot rapidly decays with temperature.
This behavior is as expected, and follows one’s intuition regarding thermal fluctuations as
being a source of decohering noise. As an example, we plot in Fig. 8.2 the logarithmic
negativity as a function of time for several different field temperatures. At a distance of
r = 3, we find that any extractable entanglement is completely extinguished by the time
the temperature reaches the small value of T'= 0.2.

Moving on, we plot in Fig. 8.2 the mutual information between the detectors, Eq.
(8.6), in the same scenario (i.e. with the field initially in its vacuum state). This clearly
displays very different behavior as compared to the logarithmic negativity. We don’t bother
displaying the Gaussian discord here, Eq. (3.36), because in this case the discord is only
very slightly less than the mutual information (see Fig. 8.4) and thus follows the same
behavior. This on its own is an interesting finding: the harvested mutual information
consists almost entirely of quantum correlations (at least as quantified by the Gaussian
discord). We will see that when considering a thermal field of high temperature this is no
longer the case.

Another obvious point to make is that, unlike entanglement, the detectors begin to gain
some mutual information (as well as discord) immediately after the interaction is turned on
(see Fig. 8.4), and this statement is independent of the distance r between them. Indeed
the amount of correlation becomes appreciable far before the light crossing time ¢t = r
between the detectors, the time at which they come into causal contact. Such immediate
generation of correlations was also seen in [129] using a perturbative framework and in the
context of the Fermi problem (i.e. when one of the detectors starts in an excited state).
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0.003

Figure 8.1: The logarithmic negativity between the detectors Ey, as a function of the
distance r between them and the time ¢ of evolution in the case that the field is initially
in its vacuum state.

It is not overly surprising to find these results. Physically, the field at spatially separated
positions is known to be correlated, and so the response of detectors at these positions
should be expected to be correlated as well. While entanglement is clearly a different story,
there is no reason to suspect that more general correlations should not begin accumulating
immediately after initializing the interaction. Mathematically, it is straightforward to show
for small ¢, by expanding the symplectic evolution Eq. (5.35) in powers of ¢, that the off-
diagonal block -, of the detector-detector covariance matrix generically grows as order
t2. This implies that the detectors must necessarily have non-zero correlation for any finite
time.

We remind the reader that the local harvesting of discord that we observe is not the
same as the known ability to create discord through local operations [130]. Local oper-
ations cannot increase the mutual information, and often an increase in discord through
local operations comes at the cost of an overall reduction in mutual information. Local
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Figure 8.2: The logarithmic negativity between the detectors as a function of time ¢,
where r = 3. We display the data for the cases that the field is initially in its vacuum
state T' = 0 (solid blue line), and in thermal states of temperatures 7' = 0.1 (red dashed
line) and 7" = 0.15 (black dotted line). At a temperature of 7' = 0.2 the entanglement

remains nonexistent. We observe that the extracted entanglement rapidly decays with field
temperature.

operations cannot introduce discord into a product state. Here we are clearly seeing a
different phenomenon, since both the discord and the mutual information are increasing
from zero.

We now go on to present our primary results. Plotted in Fig. 8.4 is the mutual
information and Gaussian discord between the detectors as a function of time, where
the detectors have been placed at a distance r = 4 away from each other. We display
three plots: the first for the case that the field is initialized in its vacuum state (i.e. at
temperature 7' = 0), the second for the case that the field is initialized in a thermal state
at temperature 7" = 1, and the third for a temperature of T'= 10. What we observe is that
as the field temperature is increased both the obtained mutual information and discord are
increased as well, and by orders of magnitude at that. Note that all plots in Fig. 8.4 were
made using the same symplectic evolution matrix S(¢) (i.e. it only needed to be solved for
once); for each of the three different plots the same S(t) was simply applied to a different
initial covariance matrix.

To examine the limits of this behavior, we plot in Fig. 8.5 the mutual information
and discord as a function of field temperature T up to very high temperatures, where the
detectors were placed at a distance r = 4 away from each other and left to evolve for a
time t = 2. We can see that, although slowing down, the mutual information continues
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Figure 8.3: The mutual information between the detectors I, Eq. (8.6), as a function of
the distance r between them and the time ¢ of evolution in the case that the field is initially
in its vacuum state.

to increase even at a temperature of 7' = 60. The discord, on the other hand, reaches its
maximum at approximately T = 6 before slowly decaying. Even though the amplification
of discord (a measure of quantum correlations) does eventually cease, this field temperature
is relatively very high and well into what one would call a purely classical regime. Nev-
ertheless, it is reassuring to see that thermal decoherence does eventually start to hinder
the harvested discord. Indeed it must, as for high temperatures the two-point correlation
function is known to have a purely classical limit.

How do our results change with other parameters of the system, such as the coupling
strength and distance? Also, what is the behavior in the long-time limit? In terms of the
coupling strength A the harvesting changes as expected: increasing A generically increases
the amount of harvested correlations as given by each of our measures. Unfortunately
we cannot consider indefinitely large A in our model because the UV modes will become
significant in the evolution and one would need to work without a UV cutoff. In the long
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Figure 8.4: The mutual information I (solid blue line) and the Gaussian discord D (dashed
red line) between the detectors as a function of time ¢, where r = 4. The temperature
of the field varies in the three plots from (a) 7= 0 (i.e. the vacuum), (b) 7" = 1, and
(¢) T'= 10. We observe that as temperature increases both I and D very substantially
increase.

time limit the mutual information and discord of the detectors do not approach zero, as
may have been expected. Rather they continue to oscillate with a characteristic period of
27/ = 5, and with their mean values generically maintained near the values seen in Figs.
8.4 and 8.5 for a given temperature. Regarding the dependence on distance r, we defer
the discussion of this to Sect. 8.3.1 and the Appendix. C, but the short story is that the
mutual information and discord follow the same qualitative behavior with time as well as
with temperature (i.e. thermal amplification still occurs) for different distances.

There are several further points to make on these results. We see that as temperature
increases the difference between the mutual information and the discord grows greater. In
the vacuum case, as we noted above, I and D are nearly equivalent. This implies that
the correlations obtained by the detectors are mostly of a quantum nature, with little con-
tribution coming from classical correlations. As the field temperature increases, however,
we find that classical correlations begin to take on the dominant role. Nevertheless, for
temperatures up to about 7' = 6 the harvested discord does increase by almost two orders
of magnitude from the vacuum case. This is very surprising considering how quickly any

120



Figure 8.5: The mutual information I (solid blue line) and the Gaussian discord D (dashed
red line) between the detectors as a function of field temperature, where r = 4 and ¢t = 2.

extractable entanglement vanishes with increasing temperature. It is known that discord
tends to be more robust to decoherence than entanglement [133, , , 10, 7], but what
we have found in this scenario is instead a complete reversal of behavior between the two
measures.

This result can be looked at in one of two ways: either one takes this to mean that
the Gaussian quantum discord is clearly not an appropriate measure of purely quantum
correlations, or we count this as an excellent indication of how quantum computing may
still be performed in noisy environments (as the case appears to be, even being enhanced
in certain ways). Being optimistic, we will adhere to the latter. Recall that, as discussed in
the introduction, it is known that discord can be used to locally activate distillable entan-
glement between the discordant system and an ancilla [33, 34, 73]. Our results therefore
indicate that while thermal fluctuations are indeed detrimental to entanglement directly, it
may be that they can actually greatly improve its rate of production in an indirect manner.

Before continuing to our discussion, we should briefly relate our scenario and results
with that of [136]. The authors of that paper used a master equation approach and also
discovered that the discord between detectors can increase with the temperature of a
common environment. However, there is a key difference between their scenario and ours.
That is, in [130] they considered their detectors to be directly coupled to each other in
addition to being coupled to a common bath. This is unlike in our scenario, where each
detector is only interacting locally with the field. In particular, their study can not be
considered an example of harvesting. Interestingly, in their case they discovered that the
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discord increased monotonically with temperature, asymptoting to a finite value. This is
unlike our finding, as in Fig. 8.5, in which the discord eventually starts to decrease for high
enough temperatures. This difference may exactly be due to the additional direct coupling
considered in the other paper.

8.3 Explanations

In this section we wish to give some further physical and mathematical insight into the
surprising results presented above. We do this by first giving a brief discussion of the spatial
correlation function of the field and point out that its form is in fact completely consistent
with the result of thermal amplification of extracted correlations. We also give some
speculation on how our results may also be understood in terms of system-environment
entanglement. We then go on to give a large discussion on how this behavior can be
understood in terms of the translational invariance of the periodically-identified cavity
field. Not only will this allow us to readily predict for what choices of parameters the
thermal amplification will be strongest and weakest, it will also reveal an interesting new
perspective on the procedure of correlation harvesting in general that we feel is worthy of
consideration in its own right. We briefly point out that with this new perspective we can
also immediately explain the result of entanglement degradation, as seen in Fig. (8.2), via
the known entangling properties of passive Gaussian transformations.

8.3.1 Correlation function

It is commonly said that thermal states contain no correlations, or at least the amount of
correlations present decreases with temperature. This is a rather vague statement, however,
and depending on what exactly one means it can be demonstrably false. The statement
that a thermal state contains no correlations is simply in reference to the different energy
modes, which of course are in a product state with respect to each other (as they are also
in the vacuum). This does not say anything about spatial correlations however, which are
what we are interested in here. While it is certainly true that the entanglement between
spatially separated regions decays with temperature [131, |, this does not imply that
the same is true for correlations in general.

Our detectors are placed at positions x; and x5 in the cavity. These detectors become
correlated due to the fact that the field fluctuations (both quantum and classical) at these
two points are correlated. That is, the detectors are “measuring” the field at these points.
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A standard way of determining the degree to which the measurement statistics of two
quantum observables A and B on separate Hilbert spaces are correlated given some joint
state is to compute the correlation function C(A, B) = (AB) — (A) (B), where the expec-
tation value is taken with respect to whatever state the joint system is in. To clarify, in
this definition we are using the simplified notation AB = A@ B, A= A®] and B = [ ® B.

If we wish to ask how much the field qb is correlated at points z; and x5, the sim-
plest measure to compute is the correlation function: C(z1,22) = C(d(21), dp(as)) =
(d(z1)p(x3)) — (d(21)) (¢(x2)). Of course, in both the vacuum and any thermal state
the first moment of the field will vanish (i.e. the Wigner function has zero mean). The cor-

relation function thus takes the form of the equal-time Wightman function [39], which due
to the translational invariance of the field will only depend on the distance r = |z — z4]:
C(r) = Clar,22) = @(%)QE(%)) - (8.7)

Note that the condition C(r) = 0 does not necessarily imply the lack of any correlations,
however the condition C(r) > 0 does imply the existence of correlations.

We now ask the question of how this quantity changes with field temperature. The
answer is that it indeed grows with temperature in qualitative agreement with our results.
For example it is known that in free space and in three spatial dimensions the equal-time
Wightman function of a massless scalar field in a thermal state of temperature 7" is [137]

T
Chree(r) = - coth(wT'r). (8.8)
This correlation function grows monotonically with 7', and indeed linearly so for large T'. Of
course this is not the correct correlation function in our situation of a cavity field (period-
ically identified) in one spatial dimension. For us, the correct function is straightforwardly
shown to be given by

=7 Z — cos(wyT) (8.9)

n>0

where the sum is only over positive n and the values v, are the symplectic eigenvalues of
the thermal state as given by Eq. (8.3). The magnitude of this function also grows mono-
tonically with temperature, and thus from this perspective it is not at all surprising that
the correlations transfered to the detectors (corresponding to the correlated measurement
statistics of the field) should grow with temperature. Nevertheless this does not give any
real explanation as to why the discord experiences such a growth, as in the high temper-
ature regime the correlation function has a purely classical limit. While we indeed see a
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larger (and sustained) increase in mutual information, as expected, it is still surprising
that we receive such a strong amplification of discord even up to quite large temperatures.

The function in Eq. (8.9) actually gives excellent predictions for how the harvested
correlations that we compute directly behave with the distance between detectors. For
example we note that for the cavity length of L = 100 that was used in our results the
magnitude of C'(r) for high temperatures reaches a minimum (a zero in fact) at a distance of
approximately r /=~ 21. This minimum can be directly seen as a minimum in the extracted
correlation when plotted as a function r; see Appendix. C. For larger r beyond this the
harvest increases until hitting a local maximum at L/2 = 50 (as predicted by Eq. (8.9)).
From here any further increase in distance actually corresponds to a decrease in distance,
due to the periodicity of the cavity. We note that generally the phenomenon of thermal
amplification appears to occur independent of the distance between the detectors, in the
sense of a greatly increased discord harvest as compared to the vacuum state value.

8.3.2 Relation to system-environment entanglement

Here we wish to give a more physically insightful interpretation of our results by pointing
out the possible connection between thermal amplification and the results presented in the
papers [76, 68] and [9] (also given in Sect. 2.3), regarding the link between discord within
a system and the entanglement between that system and its purifying environment.

In [76] and Sect. 2.3 it was demonstrated that the discord present in a general bipar-
tite state is deeply related to the entanglement structure in the system’s purification. In
particular, the discord typically grows with the entanglement between the system and its
purifying ancilla, and furthermore the presence of discord requires the presence of both
bipartite and genuine tripartite entanglement in the purification. In [68] the authors con-
sidered a coupled, pure N-qubit system and then studied a 2-qubit subsystem from this
ensemble. They observed that the discord between these two qubits is completely mono-
tonic with the entanglement entropy between them and the other N — 2 qubits; this is
to be expected from the other two studies. The authors of [68] also discovered that there
is an inverse relation between the 2-qubit entanglement (using the concurrence) and the
2-qubit discord, and furthermore [138] the former decreases while the latter increases upon
increasing the total number of qubits N (i.e. enlarging the environment).

This last result sounds very similar to the findings presented here, and propose that
both can be understood in terms of the system-environment entanglement. In the system
of [68], we conjecture that the increase of N results in an increased system-environment
entanglement which, despite the increased level of decohering noise, boosts the discord in
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the system. Similarly in our situation, increasing the temperature of the field results in
detectors that are more mixed and are thus more entangled with the environment . This
translates into an increased amount of discord between the detectors.

As a final word on this, we suggest that the evolution of discord in such systems can
be understood as a competition between the decohering effect of the environment and
the system-environment entanglement that such decoherence also tends to create. As we
have seen, oftentimes the latter can win the day. The entanglement within the system,
on the other hand, is not bolstered by the system-environment entanglement. Indeed it is
will generally be further impaired due to monogamy, and will therefore be far more easily
destroyed.

8.3.3 Translational invariance

In this section we will attempt to give some further mathematical intuition towards the
behavior discussed in Sect. 8.2 by exploiting the translational invariance of the field. In
doing so we will uncover a new and interesting perspective on correlation harvesting that
we feel is worthy of consideration in its own right. We will also be able to accurately
predict for what choices of parameters the thermal amplification phenomenon is strongest,
and for which it is weakest.

First let us note that although we use the translational invariance of the field as a con-
venient means of explanation, this does not imply that translational invariance is necessary
for thermal amplification to occur. Indeed it is not, and we have also observed the same
effect using a cavity field with mirror boundary conditions instead of periodic.

To begin our argument, we will make a simple observation. This is that the mutual
information harvested by the detectors appears to be extremely monotonic with the dif-
ference |v1 — vs| of the symplectic eigenvalues of the detector-detector subsystem, given by
the covariance matrix (@ in Eq. (3.7). For example we can plot |y — 15| as a function of
time of evolution and compare with the extracted mutual information. This is plotted in
Fig. (8.6), where the field is initially in the vacuum state and all parameters are equivalent
to those used in Fig. (8.4). We see that in comparison to the correlation measures plotted
in Fig. (8.4-a), the qualitative behaviors are identical. For large temperatures the mutual

Tn order to use the findings of [76, 9] in our argument we must consider an environment that is initially
pure. The field is of course not pure when it is thermal. However, we can always consider the field plus
its purifying ancilla, and the entanglement between the detectors and this larger environment is quantified
simply by the two-detector entropy.
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Figure 8.6: The difference |1 — 15| of the symplectic eigenvalues of the detector-detector
system as a function of time. The field was initially in its vacuum state and the detectors
were placed a distance r = 4 away from each other. These are the same parameters that

were used to plot the mutual information and discord in Fig. (8.4-a), and we note that the
qualitative behavior in that figure is exactly the same as we see here.

information continues to evolve monotonically with |v; — 14|, however this becomes no
longer true for discord.

Given this knowledge, we should wonder how |y — 15| changes with field temperature.
Clearly if the field is initially in a high temperature state we should expect the response
of the detectors to be more energetic and for them to become more mixed through their
evolution. The symplectic eigenvalues of o(? should therefore increase with larger temper-
ature. This is indeed what occurs, as can be seen in Fig. (8.7) where we plot both 14 and
vy as a function of temperature T'. However, we also observe that one increases faster than
the other, meaning that their difference also grows with 7. This is therefore consistent
with the increase of mutual information I with 7". Clearly, as can be seen in Fig. (8.5),
the discord is no longer monotonic for high enough excitation.

The explanation of our results now requires two tasks: first, to explain why the mutual
information and (for small temperatures) the discord are monotonic with |v; — 15| and,
second, to explain why this difference grows with 7. We will attempt to perform both of
these. We will focus on the latter of these to begin, and later give some insight into the
former. Being tasked with explaining the behavior seen in Fig. (8.7), we will take this
as an excuse to introduce an interesting new perspective on the evolution of our system
that results from the translational invariance of the field. By this approach we are also
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Figure 8.7: The two symplectic eigenvalues v, and v, of the detector-detector system as a
function of initial field temperature 7. The detectors were placed a distance r = 4 away
from each other and left to evolve for a time ¢ = 2. We see that the difference |11 — vy
grows with temperature.

very easily, and in a unique manner, able to explain the decay of entanglement seen in Fig.
(8.2).

An immediate result of the translational invariance of the field is that both of the
detectors will individually feel the exact same response. The detector-detector state is
therefore invariant under exchange 1 <+ 2 of the detectors. This implies both that the
reduced states of each detector are equivalent o1 = 5 (we will therefore refer to both as
o1 henceforth) and that the off-diagonal correlation matrix is symmetric: 4,5 = v%,. The
covariance matrix of the detectors is therefore of the form

@ — ("1 712) . (8.10)

Y2 01

This is an example of what is called a symmetric Gaussian state [15]. From this, it is easily
seen that there is a simple symplectic transformation that transforms o(® to a product
state, void of any correlation. Of course this is true of any Gaussian state, but in general the
correct transformation would depend on the details of the state and, in such a scenario as
we have here, would depend on time ¢ and on the chosen parameters. Here, the symmetric
form of (¥ means that this is not the case, and there is a transformation that will always
do the job irrespective of time or parameters. We will call this symplectic transformation
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S, and it takes the form

~_~T_~71_ 1 —12 ]:2
S=§ =§ _ﬁ(b Iz), (8.11)

where Iy is the 2 x 2 identity matrix. When applied to the detector-detector state we
indeed find that this transformation returns a product state:

So@§" = <"‘ 02) , (8.12)

02 0'+
where the single-mode covariance matrices o4 are given by
oL =01+, (8.13)

We wish again to emphasize that as long as the detectors are initialized in the same states
(their ground states in our case) then this single transformation will always bring our two-
detector state to one devoid of correlations, independent of the time of interaction or the
distance between them or any other parameters of our system.

Before continuing we wish to point out, as it will be useful later, that the transfor-
mation S is passive, due to its orthogonality (recall the discussion of active and passive
symplectic transformations given in Ch. 3). Specifically, S is a 50 : 50 beam splitter
[45, |, an operation that is easily implemented in laboratory settings. The fact that the
transformation takes this form will be useful in gaining insights towards the extractable
entanglement, and we will discuss this shortly.

First, we wish to point out that while Eq. (8.12) is easily seen by the detector-exchange
symmetry, this result can also be viewed in what is perhaps a more enlightening manner.
Recall that the interaction Hamiltonian between the detectors and field, Eq. (5.40), is
given in our current scenario by

Hine = V22X [ﬁdl@g(%) + Gaad(2) | (8.14)

where ¢41 and ¢4o are the position quadrature operators of the two detectors. This rep-
resents a local coupling between detector-1 and ¢(z;), and between detector-2 and ¢(x»).
Of course because the observables q@(azl) and qg(xQ) are correlated, as witnessed by the
non-vanishing correlation function C(x1,z2) # 0, the two detectors are able to become
correlated despite their individual interactions being local.
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On the other hand, we can consider the system under the transformation S, which
when applied to the detector-detector phase space results in

a1 q-

S|P =P, (8.15)
qa2 q+
Dd2 P+

where the new set of quadrature operators are given by

. 1 . R R 1 .
4+ = E(Cm +qm), Dr= E(pﬂ + Par ). (8.16)

We will refer to the corresponding modes as the (+)- and (—)-modes. It is with respect
to these quadratures that the covariance matrices o+ are defined via Eq. (3.5). If we now
express the interaction Hamiltonian in this new basis, we see immediately that it is

Hiy = V2 [@+¢3+ +4-¢_|, (8.17)

where

~

b = —(d(a1) + dlan). (8.18)

V2

Again, this represents a pair of local interaction between the (+)-mode with 95+, and be-
tween the (—)-mode with ¢_. However, unlike between ¢(z1) and ¢(z5), the measurement
statistics of the observables q§+ and ngS_ are completely uncorrelated in the vacuum and in
thermal states. This can be seen as a direct consequence of translational invariance: for
any pair of observables A and B that satisfy the 1 <> 2 exchange symmetry, it is trivially
seen that C(A,, B_) = 0, where A, = A(xy) + A(z,) and B_ = B(xy) — B(x,). This
includes of course C'(¢, ¢_) = 0. Thus the (4)-modes necessarily can never become cor-
related through the evolution, and are entirely dynamically decoupled, as we have seen. If
they are initialized in a correlated state then the mutual information between them can
never increase above its initial value (we have confirmed this by direct computation).

What we have found is that the process of correlation extraction (including entangle-
ment) can be fully described by two dynamically decoupled interactions (each between a
field and a single detector), followed by the beam splitter operation Eq. (8.11). We are
thus able to gain a lot of insight by examining the form of these independent interactions
along with the correlating capacity of the beam splitter operation. To proceed, let us first
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examine the interactions that ¢, and ¢_ experience. They are coupled to the operators q3+
and ¢_, respectively, which both take the standard form of a mode-decomposed field:

~ 1
_ By 4 pEHat
= — (v + v, ay, ), 8.19
b= ) (819
where a,, and af are the same, standard ladder operators corresponding to plane-wave field

modes (we are not performing a Bogoliubov transformation) and the “mode functions” are

o) = (exp(iknry) % exp(iknr1))/V/2, or equivalently:

o) = V2 cos (%(aﬁg - x1)> elfntwatan)/2, (8:20)
v = V/2isin <%($2 — x1)> elkn(@to)/2 (8.21)

Thus, the interactions that the (£)-modes individually experience can be considered as a
standard monopole-monopole coupling to a regular field, except that the effective coupling
strengths are frequency- and position-dependent (via the cos and sin in the above equa-
tions). These interactions will then determine the evolution of the (£)-modes, and their
states as a function of time will be represented by the covariance matrices o .

This realization can in fact be used to understand the growth of |1, — 15| seen in
Fig. (8.7), and therefore indirectly the thermal amplification behavior. Furthermore, by
examining o) we are accurately able to predict for which parameter choices thermal
amplification will be strongest, and for which it will be weakest. To see this, recall that the
symplectic eigenvalues of a Gaussian state are symplectically invariant. It therefore follows
that the symplectic eigenvalues v, and v_ of the states o and o _ are identified with the
original symplectic eigenvalues v, and v, of the detector-detector system. The differences
are therefore also equivalent: |1, — 15| = |vy — v_|. Fortunately, the qualitative behavior
of vy — v_| is easily predicted by the forms of o5 given above. Clearly, if the field state
is thermal then we expect the mixedness of the (4)-modes, and thus both v, and v_, to
increase with temperature 7'. However, we should also generally expect to find a difference
between the two, and this is due to the difference in the magnitudes of cos(k,r/2) and
sin(k,r/2) that appear in the effective coupling strengths. The mode that is coupled more
strongly to the field will feel a stronger response, and will be affected more by an increase
in temperature, than will the more weakly coupled mode.

For example let us consider the window in time ¢ and distance r that we have examined
in the above figures. This is well outside the regime at which a single-mode approximation
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would be valid; we would need to go to much larger values of t. Therefore, roughly speaking,
both of the (£)-modes couple equally to a wide range of modes, not taking account of the
cos and sin factors. Taking these into account, however, the region of relatively small
r that we have examined means that the magnitude of sin(k,r/2) is quite small for the
many modes of small frequency k,, that are relevant in the evolution. For the same reason,
cos(ky,r/2) for these modes is quite close to unity. We thus find a significant difference
in the values of v, and v_, with typically v, > v_ for the reasons just stated. If the
field is hot, this difference in effective coupling is seen more clearly and thus the thermal
amplification of correlations follows. Note that for small ¢ and large r the contribution
to the + and — should become roughly equivalent, and thus we expect the strength of
thermal amplification to generally fall off with distance. If we allow ourselves to look at
larger values of t it turns out that with this framework we are able to accurately predict
for which values of r the thermal amplification is strongest, and for which it is weakest.
So as not to get too off-track, we present this in Appendix. C.

Given that we now understand why the difference vy — 15| = |V, —v_| grows with field
temperature, we are left with the task of understanding better why the mutual information
I, and to a lesser extent the Gaussian discord D, are monotonic with this difference.
Fortunately we can use the framework just presented to gain some insight on the matter.
The behavior of correlations present in @ of course stem from the correlating properties
of the 50 : 50 beam splitter S. For example we can use this fact, along with the well-known
entangling properties of beam splitters, to easily explain the entanglement degradation with
temperature; this is explained further in the following section. Aside from entanglement,
however, there appears to be fairly little information in the literature on the beam splitter’s
ability to generate mutual information and discord in Gaussian states.

Notice that by inverting Eq. (8.13) we obtain
1 1
i=0i= (oit o). A= ilo o) (8.22)

Clearly if the states of the (4)-modes are the same, o, = o_, then the difference in
symplectic eigenvalues is zero and the detector-detector state is completely uncorrelated
since 7,5, = 0. That is, S takes an uncorrelated pair of identical Gaussian states and
outputs exactly the same thing. On the other hand, the larger the difference between
o, and o_, the larger the correlation matrix ~v;, will be. Of course an increase in this
difference does not necessarily correspond to an increase in |vy — v_|. However, in our
particular scenario the forms that we obtain for o, and o_ tend to be approximately
thermal, oL ~ diag(vy,vy), at least for relatively small temperatures of the field. For
exactly thermal states, one has exactly v,, = diag(vy —v_,vy —v_)/2, and thus in this

131



case the magnitude of the correlation matrix does directly correspond with the magnitude
|vy —v_| = |1 —»]. This provides the qualitative explanation that we were searching for.

Of course the mutual information and discord do not depend purely on «,,, and they
will both decrease as the overall mixedness of the system is increased. In fact, if we
continue with the above approximation of the states o+ both being exactly thermal, one
finds that both I and D are monotonically increasing with |y —v_|, but also monotonically
decreasing with v, + v_. The extraction of correlations therefore represents a competition
between these two quantities. For the Gaussian discord it is seen that the sum v, + v_
plays a stronger role than in the mutual information. The discord is thus more sensitive to
noise (as we have observed) but for small enough field temperatures 7' (yet still very large)
this sensitivity is not enough to overcome the increase in |v; — v_| achieved by increasing
T.

We can display this in a more quantitative manner by plotting I as a function of the
symplectic eigenvalues. Given Eq. (8.22), we see that the mutual information, Eq. (8.6)
takes the form

1= of (% det<a++a_>) — ) — f), (5.23)

where f is the function given by Eq. (3.25). In the case that o1 are exactly thermal, and
taking into account the identification of {v,,v_} with {v, 1n}, this simplifies to

1= of (%( ¥ w)) — )~ (). (5.24)

We plot this in Fig. 8.8. We see clearly in this figure the increase in I as the difference
|vy — v_| increases. The corresponding plot for Gaussian discord looks nearly identical to
this, except that the functional decrease with 1, + 15 is more dominant over the increase
with [ — 1.

8.3.4 Entanglement degradation

It is worth noting that with the framework presented above we can immediately explain
the degradation of extracted entanglement with temperature, as seen in Fig. (8.2), via
the known entangling properties of passive operations, which the 50 : 50 beam splitter
represented by Sis an example of. This transformation happens to be its own inverse, and
thus applying it to the product state o_ & o returns back the detector-detector state,
o@. It is known that for passive operations to create entanglement the original state
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Figure 8.8: The mutual information, Eq. (8.24), as a function of v, and v,. We see clearly
the increase with |1y — vy].

must be “nonclassical”, [139]. What this actually means generically and quantitatively
is that an entangling passive operation exists iff the two smallest eigenvalues \; and Ao
(not the symplectic eigenvalues) of the original covariance matrix satisfy A\jAy < 1 [110],
and furthermore this product is used to provide a maximal amount of entanglement that
can be achieved. Thus, if we can understand from the evolution of the (+)-modes how
the eigenvalues of o_ & o, change with field temperature, then we are able to garner
information on the entanglement that can be present in the state @,

Due to o_ @ o being a product state, the eigenvalues of this matrix will just be the
combination of the eigenvalues of the two individual (+)-modes. These are generically of
the form v_e™, v_e™ ", v e, and v, e ™. Here v_ and v, are the symplectic eigenvalues
presented above, and the values r_ and r, are the single-mode squeezing parameters for
each of the two modes [15]. Note that with large enough squeezing it becomes very easy
to entangle via passive operations because the two smallest eigenvalues will be v_e™" and
viye " and they will become very small as r, and r_ become large. In our scenario the
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evolution does provide some amount of squeezing (it must, in order to get any entanglement
at all). However, the symplectic eigenvalues v, are what generically increase when the field
temperature is increased (being directly related to the mixedness of the modes) and thus as
this occurs the values of vy will quickly overtake the squeezing such that the two smallest
eigenvalues no longer satisfy A\jA\s < 1. Once this inequality is broken, it is no longer
possible to obtain any entanglement in o(®.

It is interesting to note, however, that for the case of a product state (as we have)
in which one of the modes is thermal (as we approximately have) then the mazimally
entangling passive operation is in fact a 50 : 50 beam splitter [110]. In a way then, the
field is actually doing the best it possibly can to entangle the detectors. Unfortunately,
despite this great effort, thermal fluctuations quickly win the day.

8.4 Discussion

We have used the non-perturbative, oscillator-detector formalism presented in Ch. 5 to
exactly solve for the local harvesting of classical and quantum correlations (entanglement,
Gaussian discord, and mutual information) from a periodic cavity field. We have further-
more explored the effect that thermal fluctuations in the field will have on the harvesting of
these correlations. As expected, the harvested entanglement rapidly decays with the field
temperature. Surprisingly, however, both the mutual information as well as the Gaussian
discord (a measure of purely quantum correlations) can be greatly increased by heating
up the cavity. Indeed, an improvement of multiple orders of magnitude is possible in this
regard.

Although initially surprising, we go on to discuss that this result can be physically
understood in several different ways. We have included an explanation of thermal amplifi-
cation in terms of the field correlation function, as well as speculated on its possible relation
to system-environment entanglement. Our primary explanation of the phenomenon relies
on the translational invariance inherent in the periodic field. By this we are able to explain
both the results of thermal degradation of entanglement as well as the thermal amplifica-
tion of mutual information and discord purely in terms of the correlating capability of the
50 : 50 beam splitting operation. We can furthermore use this to accurately predict for
what system parameters thermal amplification will be weakest, and for which it will be
strongest, as seen in Appendix. C. We feel that, independent of its explanatory power that
has been demonstrated here, the new perspective that we present on correlation extraction
is interesting and worthy of consideration in its own right. This is because in general the
evolution of a single detector with a field is much more easily understood intuitively than
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is the collective behavior of two detectors. The ability to decompose our two-detector sce-
nario into two dynamically decoupled, single-detector systems represents a tool for gaining
intuition into harvesting and similar phenomena.

We note that the phenomenon of thermal amplification does not require translational
invariance in order to occur. Indeed, we have also observed thermal amplification using a
cavity field with Dirichlet boundary conditions, as would be the case in an actual optical
cavity. In fact, we propose that thermal amplification may be a rather general phenomenon
that can occur in a variety of quantum many body systems (for example other physical
realizations of a collection of harmonic oscillators). The particular scenario that we have
considered here may be just one instance of a much broader phenomenon.

The thermal amplification of discord appears to imply the possibility of locally gener-
ating what is an appreciable amount of quantum correlations. This is exciting both from
the experimental perspective as well as, perhaps, practical discord-based quantum compu-
tation. For example, it is known that discord allows the local activation of entanglement
with an ancilla system [33, 34, 73]. Interestingly then, even though thermal fluctuations
are directly detrimental to entanglement, they may nevertheless be used as an indirect
tool for its generation. This may moreover prove useful due to the fact that many of the
significant technological hurdles facing quantum computation stem from the necessity to
keep one’s system very cold. Our results suggest that in a specific scenario one may need
not worry about thermal noise in their system, and indeed may even welcome it. Assum-
ing that we are able to fully understand thermal amplification more generally (in all its
possible physical realizations) and how to properly utilize the resources that it produces,
this may very well give way to a type of “noise-assisted quantum computation”.
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Chapter 9

Entanglement farming

Note: this chapter derives from the work [5], in collaboration with Eduardo Martin-
Martinez, William Donnelly, and Achim Kempf.

We have discussed at length in this thesis the phenomenon of entanglement harvesting.
This is of course interesting from a theoretical point of view, but one may also wonder
about its practical application. Entanglement is understood as an important resource that
provides the quantum advantage over classical computation that quantum information and
computation has long promised. Studying the generation, transfer, and distribution of en-
tanglement is therefore of extreme importance in this regard. The process of entanglement
harvesting, as we have seen it, is unfortunately unlikely to be useful in practice. This
is largely due to the fact that the amount of extracted entanglement is typically minute,
resulting from the typically small coupling strengths between system and field.

Of course, while perhaps less theoretically interesting, one can also consider the case in
which the detectors interact with the field long enough that they come into causal contact
with one another (i.e. they are not entirely spacelike separated). In addition to becom-
ing entangled by swapping spatial entanglement from the field, in this case they can also
become entangled though the quantum communication mediated by real quanta in the
field. The necessary energy for the existence of these quanta can come from two sources.
Namely, the switching on of their interaction will make van der Waals-Casimir-Polder en-
ergy available [111, 112]. Also, and generally more dominantly, the process of switching on
and off the interaction breaks the time-translation invariance of the Hamiltonian, which
via Noether’s theorem can provide energy to the system by parametric forcing. Unsurpris-
ingly, one generally finds more entanglement generation between detectors in this regime
(e.g. as seen in Fig. 8.1), but still not necessarily enough to make it practically useful. In
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this chapter we will examine a scenario within this regime with which we find a method of
continuously and (to a large degree) sustainably generating entanglement between pairs of
detectors, which when taken as a total provides a very large amount.

As in previous chapters, we will consider two detectors initially in their unentangled
ground states that interact for a brief time with a cavity field at fixed points in space.
This can be taken to be a model of what happens to two atoms transversely traversing
the cavity, in a matter similar to the experiments described in [113]. Here, however, we
will consider a large number of pairs of detectors. Each pair interacts with the field for a
given time and then exits the cavity, either having become entangled or not. A new, fresh
pair of detectors is then made to do the same thing, where they interact with the same
cavity field as the previous pair. Each pair has an effect on the field during their evolution
cycle, and this will in turn affect how the field impacts the following pair. The periodic
entering and exiting of the detectors will parametrically drive the cavity modes. In the
long term (i.e., when continuing to send a large number of pairs of detectors through the
cavity) will this excite and possibly heat up the cavity? Fresh detectors always arrive in
their ground state, however. Does this lead to a cooling of the cavity? What is the impact
of entanglement monogamy on continued entanglement extraction? In the long term, will
the cavity modes be driven towards or away from a thermal state? Will the cavity modes
be driven towards a stable or at least a metastable state? Finally, is the harvesting of
entanglement by successive pairs of detectors pairs sustainable, i.e., do we have merely
temporary harvesting of some total (perhaps small) amount of entanglement, or do we
obtain a sustainable process from which we can gain large amounts of entanglement? We
will answer these question in this chapter. In particular, we indeed find that we obtain
an efficient and sustainable process by which to generate entanglement utilizing a single
cavity field. We will refer to this process as entanglement farming.

We will continue to utilize the computational framework as in the previous chapters;
namely that of Ch. 5. The work in this chapter actually represent an excellent example
of the power of the oscillator-detector formalism. Not only are the calculations in this
chapter near-trivial using this tool, but the scenario and the effects observed are very
much non-perturbative in nature, and so could not be studied using the standard Unruh-
DeWitt approach. Using our Gaussian approach we find that the dynamics of the detectors
plus field system can be expressed as a linear dynamical system, allowing us to study the
system’s dynamics for arbitrarily long times, i.e., for a large number of detector pairs
passing through the cavity.

Our results will show that keeping the interaction of the detectors in the cavity short
enough to be spacelike separated is not efficient: it is not sustainable to extract entangle-
ment over many cycles and the total amount that can be extracted is small. As one might
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expect, allowing the interaction of the detectors in the cavity to be long enough to become
non-spacelike (i.e., allowing the detectors to interact via the cavity field) makes the detec-
tors’ entanglement harvesting more efficient. What is surprising is the magnitude of the
amount of entanglement that can be harvested by repeated detector insertions. Namely,
we will first find that over repeated cycles of detector pair insertions, a cavity field that
is initially in the vacuum state is driven towards a metastable, highly non-thermal state.
Even a cavity field that is initially in a thermal state, from which no entanglement can be
harvested, is driven towards that metastable state.

Second, we will find that this metastable state allows each new pair of detectors to
become entangled. Therefore, by repeating this protocol, one would obtain a stream of
significantly but not maximally entangled detectors, whose entanglement could then, for
example, be distilled into maximally entangled EPR pairs. The metastable state is very
long-lived under repeated entanglement harvesting by detector pairs, although this state
eventually does turn into a non-entangling state. This happens when higher, off-resonant
modes start to become significantly excited, and hence it is beyond the single-mode ap-
proximation. In practice, if the excitations of those higher modes slightly leak from the
cavity, fully sustainable entanglement farming should be possible.

9.1 The model and evolution

The scenario and computational framework will be the same as that of the last few chapters,
and we will therefore not repeat the information already contained above. The scenario is
that of two oscillator detectors, each of frequency {2, each coupled to the field with strength
A (sharply switched) at locations x; and x5, in a cavity of length L. Unlike the previous
chapters, we will consider a cavity field with Dirichlet boundary conditions, as would be
found with an actual optical cavity. As before, we require only a finite number of field
modes in our calculation, and we have made sure to include enough such that the results
presented are not impacted by this cutoff. In this chapter we will also use a slight change
of notation in that we take this number of field modes to be N — 2, such that the total
number of oscillator degrees of freedom (field plus two detectors) is N. With all of this,
the X matrix used to specify the phase space interaction part of the Hamiltonian,

sym 4 D )
U = 2)\ )0: Xp ) 9.1
int ( Tl) 02(N—2) ( )
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will be

sin k1x1 0 sin kox1 0 0 sinky_ox1
VT V2m N
0 0 0 0 0 0
XD = sin klxg O Sinkgzg 0 0 sin k:N,2$2 (92)
VT Var V(N—2)r
0 0 0 0 0 0

Once the symplectic evolution matrix S(¢) has been obtained via Eq. (5.35), the process
of cycling pairs of detectors in and out of the cavity is trivially performed. Note critically
that S(¢) is independent of the initial state of the system. We thus need only compute the
evolution once and can then use the same matrix for every cycle. The process is as follows.

We begin with a cavity field in a state of our choosing, 0';0 and a pair of detectors in a state

of our choosing, af_{’). Assuming that the field and detectors are initially uncorrelated (this
need not be assumed if one were interested in such a scenario) then the total system state
is initially o©@ = 0'((10) &) 0';0). We then inject the detectors into the cavity at time-zero;
this sharply couples the detectors with the field by turning on the interaction Hamiltonian.
The system is then left to evolve for a given time ;. This evolution is governed by S(¢y),

and so after this time the system is in a state of the form

(1) (0) T 0'511) ’YEll)
Yi Oy

Here 0'((11) and 0';1

matrix 'ygl}) encodes the correlations generated between the detectors and field during the

evolution. The state of the detectors can now be examined and, for example, be tested for
entanglement via Eq. (3.34).

) are the reduced states of the detectors and field, respectively. The

After this first stage of evolution we immediately remove the detectors from the cavity.
They can then be sent elsewhere to be utilized, and for the current protocol we ignore
any correlations between the pair and the field. As soon as the first pair is removed
we inject into the cavity a fresh new pair of detectors which have been prepared in the
same way as the first pair (although this need not be the case). The state of the new
detectors+field thus becomes afio) D 0';1). We then allow this system to evolve for time
t; (we could of course choose a different time if we wanted), after which we have the

state 0?) = S(tf)[a'&o) @ U&l)]S(tf)T. As before, the detectors-block of this matrix can be
examined and/or utilized. We then remove these detectors and immediately replace them
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with a new pair, etc. After k iterations of this process the detectors-field system can be
defined recursively as

e® =8(ty)e @ oIS ()" (9.4)

Each cycle we lose the information about the detectors-field correlation, and we consider
each produced pair of detectors to be their own entity and resource. If desired, it is
straightforward to store this correlation information in the 'yg;)’s, to possibly utilize it in
other protocols.

9.2 Results

Here we present our primary findings. First, in Sect. 9.2.1 we characterize the evolution
of the field in terms of a Gaussian superoperator: a linear map on the space of covariance
matrices of the cavity field. As a first step, we will initially ignore the contribution of highly
off-resonant modes, i.e., we only include modes with frequencies within some resonant
window centered on ). Up to a very large number of cycles this produces a very good
approximation for the evolution of the injected detectors. We find that over successive
cycles, the cavity field rapidly converges toward a fixed point which is independent of the
initial state of the field. Asymptotically approaching the fixed point, significant detector-
detector entanglement is obtained every cycle. The cavity then effectively acts as a stable
medium through which pairs of detectors can acquire entanglement.

However, when the highly off-resonant modes are also considered, we find that this fixed
point becomes unstable after a very large number of cycles. Namely, after many iterations
of the protocol, the off-resonant field modes diverge towards increasingly energetic and
mixed states. Even though these modes are effectively very weakly coupled to the detectors
because they are highly off-resonant, they eventually become sufficiently excited to have
enough of a decohering effect that the generation of entanglement between the detectors
is impeded. While the detectors will be interacting with the near resonant modes in the
same way as they have previously, they will also now experience a highly energetic and
highly populated photon gas. The detectors’ interactions with this high-mode photon
gas evidently introduces enough decoherence into their evolution that any entanglement
garnered per cycle will be lost.

Interestingly, the timescale associated with this instability is long enough to allow an
extremely large quantity of entanglement to be extracted. For example, depending on the
chosen parameters this could easily be on the order of 10° total amount of logarithmic
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negativity, when added up over all detector pairs (recall that the logarithmic negativity is
additive on product states, En(p1 @ p2) = En(p1) + En(p2)). Notice that the instability
is an effect which is beyond the single-mode approximation that is commonly used in
quantum optics, and it occurs independently of how long each cycle is. We will discuss
this effect in more detail in Sect. 9.2.4.

Unless otherwise stated, all data presented in this section was obtained using the fol-
lowing parameters: A = 0.01, L = 8, Q2 = 7/8 (resonant with the fundamental mode),
x1 = L/3, and x5 = 2L /3 (such that the distance between the detectors is 7 = 8/3). There
is nothing special about this choice and similar (correspondingly scaled) results would be
obtained for different values of the parameters.

9.2.1 Fixed point analysis

A key question that we aim to answer in this chapter is how many times a cavity may
be reused for entanglement extraction. The field evolution is expressed as a Gaussian
superoperator, i.e. a linear map acting on the field covariance matrix. This allows us
to treat the field evolution as a linear discrete dynamical system, and to characterize the
evolution. In particular we will find regimes in which there is an evolution toward a long-
lived metastable state from which entanglement can be extracted.

As described above, one interaction cycle consists of three steps: introducing two new
detectors in their ground states, evolving for a fixed amount of time under a quadratic
Hamiltonian, and tracing over the detector Hilbert space. Let U;k) denote the state of
the field after k iterations of the cycle have already occurred, and let S be the symplectic
transformation describing the system evolution over a single cycle, as computed by Eq.
(5.35). We can express this transformation in block form as

sz[ég}, (9.5)

where A is a 4-dimensional matrix and D is 2(N — 2)-dimensional, corresponding to the
detectors and field respectively. After an interaction cycle, it is trivially seen that the field
will be left in the state

o =DeD” + CC”. (9.6)

We call the map described by Eq. (9.6) the Gaussian superoperator.

(k) k)

We can cast this into a more familiar form if we view the matrix o'’ as a vector v{

in the symmetric subspace of the tensor product R2V-2 @ R*N-2) where N — 2 is the
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number of field modes. Equation (9.6) then takes the form
v — (D @ D)v® +c (9.7)

where c is the vector corresponding to the matrix CC?.

Eq. (9.7) is an affine discrete dynamical system, and its dynamics is characterized by
the eigenvalues of the matrix D ® D. These are completely determined by the eigenvalues
of D, dy,...,dan. Let us order these according to |di| > |d2| > ---. The eigenvalues of
D ®D are just given by the products d;d;. Thus we can determine aspects of the dynamics
of the dynamical system (9.7) from the eigenvalues of the matrix D.

If the eigenvalues of D (and therefore those of D ® D) are all within the unit circle,
then the field is driven toward a unique fixed point, given by

Vied = (I =D ® D) 'c. (9.8)

By converting this vector back into a matrix we then obtain the fixed point covariance
matrix o fyxed-

The rate at which such a fixed point is approached is determined by the largest mod-
ulus eigenvalue d; of D. The eigenvector corresponding to eigenvalue d; will converge
exponentially to the fixed point in a number of cycles on the order of

n=—1/log|dy|. (9.9)

A generic initial state will have a nonzero projection in this direction, and therefore its
approach to the fixed point is determined by eigenvalue with the largest modulus.

In the case where I — D ® D is not invertible, there is a subspace of fixed points. This
occurs when there are modes that are completely uncoupled with the detectors, such as in
the case where both detectors sit at nodes of the corresponding mode functions. There can
also be approximate fixed points for modes that are weakly coupled to the detectors, as in
the case of modes that are far from resonance. Since there are many off-resonant modes,
our system has a large space of approximate fixed points.

If |dy| > 1 the system has no absolutely stable fixed point. The initial covariance matrix
can be expanded in the eigenbasis of the superoperator, and generically the projection onto
the eigenspace with eigenvalue d; will be nonzero. If this is the case, the covariance matrix
will grow exponentially in some direction in the space of symmetric matrices, and the time
scale of this growth (in number of iterations) is

n=1/log|d;|. (9.10)
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Although the growth of the covariance matrix depends on the initial state, this dependence
is linear while the dependence on d; is exponential in the number of iterations. Thus in
practice we find that Eq. (9.10) yields a good indication of the timescale for instability.

This instability has a strong effect on the process of entanglement extraction. After
interaction with the field, the covariance matrix of the detectors is linear in the initial
state of the field. Even though the growing modes of the field interact only weakly with
the detectors, the field is growing exponentially, and will eventually overcome the weakness
of the coupling. The highly mixed state of the field therefore leads to a highly mixed state
of the detectors. Beyond the number of iterations set by Eq. (9.10), we expect that the
state of the detectors will become sufficiently mixed that no further entanglement can be
extracted. However, if |d;| is sufficiently close to 1, the number of iterations is large and
much entanglement can be extracted before the instability interferes with entanglement
extraction.

We will see that if a cutoff is introduced on the field modes so that only the few modes
closest to resonance are included, the system approaches a stable fixed point. These modes
are the most relevant to the entanglement extraction process, so this fixed point captures
well the dynamics of the system up to a very large number of iterations.

The dynamics of the system is therefore roughly characterized by three phases. In
the first phase, the field converges rapidly toward the approximate fixed point. In this
phase the energetic cost and extracted entanglement depend strongly on the initial state
of the cavity field (we will be exploring this physics in the sections below). In the second
phase, the field has reached an approximate fixed point, and the modes most relevant for
entanglement extraction have lost their memory of the initial state. The state of the field
in this resonant window no longer changes between cycles, and it is only the highly off-
resonant modes that are being very slightly modified every cycle (specifically, becoming
more energetic and mixed). In the third phase, after many iterations, the off-resonant
modes become highly excited enough that they begin to have a significant effect on the
field’s ability to entangle pairs of detectors. Once this happens the extracted entanglement
per cycle correspondingly drops off, eventually reaching zero. The time scale for this
instability is only weakly dependent on the initial state, and can be estimated from the
dynamics alone.

9.2.2 Sustainable entanglement extraction

One might expect intuitively as we proceed through detector-field interaction cycles that
the field’s ability to impart entanglement to the detectors would decrease. This is because
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Figure 9.1: We plot the logarithmic negativity attained per cycle by detector pairs, as a
function of cycle number. On the left this is plotted for a small number of cycles, and on
the right for a large number. The three lines correspond to different initial states of the
field. The solid (blue) line corresponds to the vacuum state, whereas the dashed (red) line
corresponds to a thermal state of temperature 7" = 0.5 and the dotted (black) line to a
temperature of 7' = 1. The time of evolution per cycle was set to t; = 20.

of noise generated by switching on and off the interaction during each cycle; since the
cavity is of a finite volume these excitations reflect off of the walls of the cavity rather than
propagating away. Furthermore, any correlations produced between the detectors and the
field each cycle would be expected to induce additional noise in the field as we remove
each pair. Both of these effects are expected to increase the mixedness of the state and
therefore to extinguish the entanglement that can be acquired by putting two detectors
into interaction with it. Thus, if a fixed point of the field exists one might expect it to be
unable to impart entanglement to the detectors via additional interaction cycles.

However, we have found this intuition to be incorrect. Under a suitable mode trunca-
tion, the field does indeed approach a fixed point, and this fixed point does in fact entangle
fresh detectors every cycle, even though the field itself is unchanged between the beginning
and end of each such cycle. This can be confirmed by directly computing the fixed point
via Eq. (9.8). We must question, however, attractiveness and stability of this state. We
find that the fixed point is in fact very stable and attractive, and indeed independent of the
initial state of the field. Remarkably, this means that even if the initial state of the field
is such that entanglement cannot be extracted during a single cycle, the repetition of the
process drives the field to a state for which it can. To quantify the amount of entanglement
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extracted we use the logarithmic negativity, which is additive under tensor products.

Plotted in Fig. 9.1 is the logarithmic negativity imparted per cycle onto the detector
pairs, as a function of cycle number. This is for the case that the time of evolution is larger
that the light-crossing time between the detectors, specifically with ¢y = 20. This was
performed using the algorithm laid out in Sec. 9.1. We include two plots, one examining
the short term behavior (i.e. small number of cycles) as well as that of the long term
(large number of cycles, but not large enough to observe the decohering effect of the
highly off-resonant modes). In each plot we display the results for several different initial
states of the field, specifically the vacuum state and two thermal states. In the short
term regime we observe that, as expected, thermal fluctuations in the field prohibit the
extraction of entanglement. After several cycles, however, the field has been driven to a
non-thermal state (see Sect. 9.2.3) such that extraction becomes possible. In the long
term behavior we observe two important points. First, after many cycles the amount of
entanglement obtained per cycle becomes constant and non-zero. At this point we have
effectively reached the fixed point, and the state of the field is then observed to match
the state obtained directly via Eq. (9.8). As claimed, the entanglement obtained every
cycle is non-zero, even though the field is no longer changing. Second, it is clearly seen
that the fixed point behavior is independent of what state the field was initially in. It can
be confirmed that the field state in all three cases reaches the same fixed point. In Sect.
9.2.3 we will further discuss several important aspects of this evolution in regards to initial
thermality of the field.

Summarizing this result: a cavity with an arbitrary state of the field can, in theory,
be used as a source of entanglement for an extremely large number of detector pairs,
independently of the initial state of the cavity. This knowledge can be useful in order
to devise experimental implementations where the quantum field is used as a renewable
entangling resource.

Of course, there is an energy cost to this process. This cost is easily computed by
taking the difference of the expected energies of our system (detectors and field) at the
end and beginning of each cycle, where the energy is computed via Eq. (3.9). This would
then be the energy per cycle that must be input. For example one can compute the energy
cost of the procedure once the fixed point has already been reached and find that it is of
course finite and positive. Since the field is not changing, this is simply the internal energy
gained by the pair of detectors over the course of a cycle. Physically, work must be done
in order to inject the atoms into the cavity (the changing coupling strength as they enter
the field will cause a repulsive force). When the atoms leave the cavity they exit with less
kinetic energy than that with which they were input, the extra energy having gone into
the internal degrees of freedom of the atoms.
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Figure 9.2: The energy input per cycle as a function of cycle number. The solid (blue)
line corresponds to the case in which the field is initially in its vacuum state, whereas the
dashed (red) line corresponds to a thermal state of temperature 7' = 0.5 and the dotted
(black) line to a temperature of 7" = 1. The time of evolution per cycle was set to t; = 20.

As an interesting aside, we have computed the energy input per cycle in the short time
regime described above. The results are displayed in Fig. 9.2. We see that, interestingly,
thermality of the field greatly increases the energy required to drive the field to a non-
thermal state that allows entanglement extraction.

9.2.3 Initial thermal field

In the previous subsection, as well as in this section, the number of cycles that we have
considered is small enough that only the near-resonant modes of the field are relevant for
the behavior of the detectors. The instability associated with off-resonant modes (which
will be discussed further in the next subsection) occurs only after many more cycles have
occurred. In this subsection we will be examining certain properties of the field during the
first few cycles. In doing so we only include in this analysis the modes that are relevant
for the detectors, such that we can easily identify the important aspects of the field’s
evolution over several cycles with the evolution of the detector-detector entanglement seen
in the previous subsection.
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When allowing long interaction times per cycle we have seen that we can harvest en-
tanglement from a cavity field without modifying the state of the field, thus proving its
sustainability. A question that arises, however, is how easy it would be to prepare the field
in this specific fixed point. As we have seen in the right-hand plot of Fig. 9.1 this turns out
to not be a problem. The fixed point is stable and attractive, and is reached independently
of the initial state of the field. We also see in the left plot of this figure that, as expected,
thermality in the initial field state interferes with our ability to extract entanglement from
it or to acquire entanglement via effective interaction of the detectors through the field.
With increasing temperature, the field quickly becomes incapable of providing any entan-
glement at all. If, however, we start cycling detectors through the field, a regime will be
reached at which the state of the field has been modified enough that we can begin to
obtain entanglement, before it continues on to eventually converge to the fixed point. We
have also observed that this driving of the field towards an entanglement-enabling state
requires significant amounts of energy as compared to the energy expense once the fixed
point is reached. Here we study further this initial transition that is observed when the
field is initialized in a thermal state.

During this transition period the field is being driven to a more pure state. This can
easily be seen using the measure of purity Eq. (3.26). Plotted in Fig. 9.3 is the purity
of the field under the same evolution. Thermality of the field obviously means that the
state’s purity is initially quite low, but we observe that over the course of several cycles
the detectors are acting to purify the field during their time in the cavity. A initial inter-
pretation of this phenomenon would be based on the observation that we are continually
inserting cold oscillators (they are in their ground state) into a hot cavity. This would
seem to indicate that the freshly injected oscillators are acting to cool down the field until
the temperature is low enough to allow entanglement extraction.

However, we have found that that this interpretation is not entirely correct, or at least
not complete. This is because during the period of decreasing mixedness the field is also
becoming very non-thermal. This can be seen using the relative entropy as a measure of the
distance from thermality [111]. We discuss the relative entropy between Gaussian states,
and in particular when dealing with thermal states, in Appendix. D. With respect to this
measure the closest thermal state to a given state p is that which has the same energy F,
as p. The relative entropy between p and this closest thermal state is then the difference
of their entropies: Sy, — S(p), where Sy, is the entropy of the closest thermal state. We
must be careful when using this however because for low energies (corresponding to low
temperatures) the smallness of Sy, may lead us to believe that p is very nearly thermal,
even if it is as far from thermality as can be achieved while staying on the energy shell F,.
To counter this we instead use a relative distance measure by dividing by Si,. Lastly, since
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Figure 9.3: The field purity as a function of cycle number. The solid (blue) line corresponds
to the case in which the field is initially in its vacuum state, whereas the dashed (red) line
corresponds to a thermal state of temperature 7' = 0.5 and the dotted (black) line to a
temperature of 7' = 1. The time of evolution per cycle was set to ¢ty = 20.

we would like a “thermality estimator”, we will impose that it equates to unity in the case
that p is exactly thermal. With this, we define our thermality estimator D as
S _y_ Sa=5() _5()
D(p)=1- == . 9.11
(n) S S, (9.11)
This measure is bounded from above by one, which is saturated when p is exactly thermal,
and is bounded from below by zero, which is achieved in the case that p is pure.

We are now able to plot D(p), applied to the field, as a function of the cycle number
and observe that, as stated, the field becomes very non-thermal during the time that it
is becoming less mixed. This is plotted in Fig. 9.4. Note that the odd initial value of
D(p) observed when p is the vacuum state is due to the fact that D(p) is ill-defined in the
unique case of the vacuum state. In the plot the initial point actually represents the field
after one cycle has been performed, in order to avoid this problem.

This shows that we are not trivially cooling down the field. Rather, the field is being
driven far off the thermal manifold into a non-thermal, entanglement providing state. In
fact, for the parameters being used here it is easy to check for the case of initial temperature
T = 1 that when considering the field state after 500 cycles (i.e. at the ends of the
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Figure 9.4: The thermality estimator D as a function of cycle number. The solid (blue)
line corresponds to the case in which the field is initially in its vacuum state, whereas the
dashed (red) line corresponds to a thermal state of temperature 7' = 0.5 and the dotted
(black) line to a temperature of 7' = 1. The time of evolution per cycle was set to ¢ty = 20.

figures) the closest thermal state (the one with the same energy as the field) does not
provide any entanglement to the detectors. Even more surprising, if we instead consider
the thermal state that has the same mixedness as the field, but is less energetic, this state
also provides no entanglement. This is despite the fact that the actual state itself does
provides entanglement, as seen in Fig. 9.1. Remarkably, the field appears to be non-
thermally driven to a state that is very well designed for providing entanglement, and this
is far from a simple cooling process.

As an aside, it is interesting to note that if we increase the time of evolution per
cycle then the field is actually driven to an even less thermal state. This is contrary to
the intuition that a longer interaction-time might mean that the field thermalizes with
the detectors, and thus that it would remain or become relatively thermal as we cycle
through detector pairs. This reinforces the idea that the process of cyclicly repeating the
entanglement extraction protocol cannot be understood as a cooling process.
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9.2.4 Onset of the instability

We discussed above that we can find a fixed point in the evolution provided that we truncate
the mode expansion of the quantum field. This truncation accurately captures the relevant
dynamics of the protocol even for a very large numbers of iterations. However, when all the
higher, off-resonant modes are included we generically find that the cavity state eventually
becomes unstable (although only after an extremely large number of cycles), and therefore
that the mode truncation is not reliable past a given number of iterations of the protocol.

What occurs when highly off-resonant modes are included is as follows. In each indi-
vidual cycle, the effect that the oscillators have on these off-resonant modes is minute, as
it must be, and similarly the effect that these modes have on the detectors is insignificant
(assuming the modes are not yet extremely energetic). Over many cycles however, the tiny
effects appear to accumulate such that eventually the off-resonant modes become highly
excited and mixed enough that they begin to have an observable effect on the detectors. At
some point, the detectors become sufficiently entangled with the off-resonant modes that
tracing over these modes when the detectors exit the cavity has a sufficiently decohering
effect that the entanglement generated between the detectors in each cycle drops off to
zZero.

We demonstrate this effect in Fig. 9.5, where we plot the logarithmic negativity as
a function of the number of cycles on a logarithmic scale. The field was initially in its
vacuum state, and all parameters in this plot are the same as those in Fig. 9.1. Note that
we can see the same plateau of about Ey ~ 2.3 x 1073 as observed in Fig. 9.1, but we also
discover now that over the course of many more cycles the generated entanglement begins
to slowly degrade as the off-resonant modes become more highly excited before eventually
dropping off to zero. It should be noted that even though the total amount of extractable
entanglement is limited when the highly off-resonant modes are included, the total amount
of logarithmic negativity (added over all detector pairs) that could be obtained from the
scenario in Fig. 9.5 is still on the order of 10, which is enough distillable entanglement to
produce a large number of Bell pairs via entanglement distillation. Note that the sharpness
of the drop in this plot is due to a lack of resolution, since it was generated by evaluating
the extracted entanglement at every 2"’th cycle.

As we showed in Sect. 9.2.1, the stability of the system is governed by the maximal
eigenvalue of the field superoperator. The maximum eigenvalues are expected to derive
from the off-resonant modes, and thus by Eq. (9.10) we are able to estimate the number
of cycles n needed for the off-resonant modes to make significant contributions to the
detectors, and thus to interfere with entanglement generation. We have observed that
indeed this method gives a good estimate of after how many cycles the entanglement begins
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Figure 9.5: The logarithmic negativity obtained by the detectors as a function of
log,o(number of cycles). The field was initially in its vacuum state. We see that after
a large number of cycles, approximately 107, the entanglement decays to zero as a result of
the increasingly excited off-resonant modes. Note that the sharpness of the drop is due to
a lack of resolution, since this plot was generated by evaluating the extracted entanglement
at every 2"’th cycle.

to wane, and we can thus use this eigenvalue approach to easily explore the behavior of
this critical number of cycles n.

For example, we plot in Fig. 9.6 the critical number of cycles (on a logarithmic scale)
as a function of the coupling constant A\. Here the evolution time per cycle was set to
ty = 21. We see that increasing the coupling reduces the critical number of cycles. This
makes sense physically as a larger coupling results in a larger impact per cycle on the off-
resonant modes, meaning that they don’t need as many cycles to become excited enough
to the point of relevance. This behaviour can also be understood mathematically as a
consequence of the weakness of the coupling between the detector and quantum field. To
zeroth order in A, the eigenvalues of the matrix D are pure phases, so have unit absolute
value. The first perturbative corrections to D occur at second order in A, so we expect the
maximal eigenvalue to be approximately 1+ O(\?). Translating this into n via Eq. (9.10),
it is consistent with the numerical results.

We also plot in Fig. 9.7 the critical number of cycles (on a logarithmic scale) as a
function of the time per cycle t;. We would like to stress this result because, when the
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Figure 9.6: The order of magnitude of the number of cycles needed for the highly off-
resonant modes to start having impact on the detector evolution, leading to entanglement
extinction, as a function of coupling constant .

time evolution per cycle is large enough, it is commonplace in the field of cavity quantum
optics to resort to the so-called single mode approximation [115]. This approximation
consists of neglecting the dynamics coming from the coupling of the off-resonant modes
with the particle detectors. It is easily seen that the effect of the off-resonant modes in
the quantum state of a particle detector at leading order in perturbation theory becomes
negligible for times much larger than the light-crossing time of the cavity (see for instance

[95])-

Importantly for our scheme of cyclic entanglement extraction, the critical number of
cycles as a function of the cycle duration is not monotonically increasing with ¢ as might
naively be expected from the single mode approximation. In this case it is important to
remember that the single mode approximation is effective because one can neglect the
contribution of the off-resonant modes relative to the resonant modes. However, it is not
the case that the contribution of the off-resonant mode decays with the time per cycle;
rather, it is the contribution of the resonant modes that is growing. The relevant coupling
of the off-resonant modes is oscillatory in time rather than decaying, as is captured in Fig.
9.7. Thus, while we may be well within the domain of applicability of the single-mode
approximation for describing a single iteration of our protocol, this approximation is not
appropriate for describing the dynamics after a very large number of iterations.
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Figure 9.7: The order of magnitude of the number of cycles needed for the off-resonant

modes to impact the detectors, as a function of the cycle time ¢;. This magnitude is
periodic with a period of 16, which is twice the cavity length.

Since the instability is an effect of the off-resonant modes, it is sensitive to the switching
function of the detectors. Here we have assumed sudden switching, for which the strength
of the interaction with a given mode decays quadratically with the mode’s frequency. For
smoother switching functions the decay may be of a higher power, exponential, or even
Gaussian. If the switching is done in a smoother way one would therefore expect the time
scale of the instability to increase. The role of the switching function is deserving of further
study, but this is left as an area for future work.

We conclude this section with an intuitive way to understand how the off-resonant
modes are destabilizing the fixed point: The system has a parameter that describes the
coupling strength, namely the parameter that we use to switch the interactions on and
off. This means that we are dealing with a system that is parametrically driven, with
the possibility of parametric resonance. All the field modes are parametrically driven by
the rhythm of switching on and off the interaction, i.e., by the entering and exiting of
the detector pairs. The cycle length (and the form of the switching function) is impor-
tant because it determines which frequencies the switching will parametrically excite. The
Fourier transform of the switching function (and thus the cycle length and smoothness of
the switching) determines which modes are by how much parametrically excited. We pos-
tulate that as the off-resonant modes become parametrically driven they are exponentially
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fast excited, as is common for parametric resonance, up until at some point where their
population is so large that non-perturbative effects destabilize the fixed point. For the
destabilization to happen faster, some off-resonant modes’ frequencies should therefore be
represented strongly in the Fourier transform of the switching function. This may account
for the nontrivial dependence of the destabilization time as a function of the cycle length,
as shown in Fig. 9.7. This perspective will also be explored in later work.

9.2.5 Is a fixed point possible for short cycle times?

We discussed above that there is always a metastable fixed point provided that the duration
of every cycle is large enough, meaning that up until a great many cycles have occurred
only a small number of modes are relevant to the dynamics of the detectors. However,
we have found that there are some regimes where the application of the cycle repetition
protocol does not lead to a fixed point. In other words, when the duration of the cycle
ts is below some threshold the system does not reach a fixed point. While this minimum
duration does depend on the particular parameters of our setting, the cycle time scales
where there is not a fixed point are of the order of the light-crossing time between the two
detectors (and therefore in the zone where spacelike entanglement harvesting occurs).

An interesting question to ask now is what happens with our ability to entangle the
two detectors in the ground state by coupling them to the field in these regimes where
a fixed point does not exist. In other words, can we harvest a considerable amount of
entanglement from the field in the regime where the detectors remain spacelike separated
with the technique presented here? We can answer that question by evaluating the amount
of entanglement extracted per cycle when the cycle time is below the fixed point threshold.
Note that in doing this, due to the smaller time of evolution, there are many more modes
that are relevant to the dynamics of the detectors and therefore must be included in the
numerical analysis of the problem. We plot in Fig. 9.8 the logarithmic negativity obtained
per cycle using much shorter interaction cycles than that considered above (although still
slightly greater than the light-crossing time). We see that in this regime we cannot reliably
extract entanglement over many cycles, and in fact over the course of many cycles the field
is driven towards a less-entangling state (as initial intuition would suggest) rather than the
opposite behaviour observed above for the long cycle duration regime.

This provides a convenient opportunity to give some further discussion on whether or
not a fixed-point field is possible in the ¢; < r regime (spacelike separation), and whether
or not such a fixed point endows entanglement onto the detectors. Numerically, and at
least in the current scenario, the answer appears to be that a fixed point is not reached.
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Figure 9.8: The logarithmic negativity obtained per cycle in some regimes where there is no
fixed point. The field was initially in its vacuum state. The three lines correspond to three
different interaction times per cycle, ty. We represent this in terms of the light-crossing
time between the detectors, which since the speed of light is set to unity is just the distance
r = 8/3 between them. The solid (blue), dashed (red), and dotted (black) lines correspond
toty = 1.44r, ty = 1.48r, and t; = 1.52r, respectively.

We will discuss that while there are some obvious arguments to make towards why this
must necessarily be the case based on intuition coming from information theory, we will
argue that such an argument is flawed in the case of quantum fields and there is actually
no reason to think a priori that such a fixed point is necessarily impossible.

The naive argument for why it must be impossible goes as follows. Assume there exists
a fixed point in the spacelike regime (¢ < r) which provides entanglement to the detec-
tor pairs. The pair of detectors never come into causal contact, so that they only interact
locally with the field. But entanglement cannot be increased under local operations. There-
fore, the total entanglement of the detectors plus that of the spacelike separated regions of
the field at their locations can not be increased, and thus if the detectors become entangled
this entanglement should have previously resided in the field. Therefore, the appearance of
entanglement in the detectors should impact the state of the field and make the existence
of a fixed-point impossible.

Even if the detectors do not become entangled one can make a similar argument using
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any correlations in general (for example as quantified by the mutual information). A
detector-field interaction of the type considered, giving an evolution of the form in Eq.
(5.35), will generically generate correlations between the detectors starting immediately at
time ¢t = 0. To see this, one can Taylor expand the exponential in Eq. (5.35) with respect to
t and easily show that the off-diagonal block ~,, of the detector-detector covariance matrix
generically grows as t? for small t. However, correlations in general cannot be increased
solely by local interactions, and thus if the detectors never come into causal contact the
same argument as above still applies: the correlations must be extracted from the field
state and therefore the field state must necessarily change. This is because, even if a fixed-
point field does not provide entanglement to the detectors, it will in general provide other
correlations. Thus, we come to the conclusion that a fixed-point is impossible to obtain in
the ty < r regime.

The problem with this argument is that it omits important aspects of our protocol. In
particular, each detector can locally generate correlations between either itself and a field
quanta or between multiple quanta, and the free evolution of the field can transport these
correlations to different parts of the cavity. For ¢y < r these correlated quanta of course
cannot transport their newly produced correlation to both detectors over the course of a
single cycle, but they can do so over multiple cycles. For example imagine that we have
obtained a fixed point, such that the state of the field is the same at times t = 0 and
t = ty, and an aspect of this state may be that it contains a travelling pair of correlated
quanta that were produced during the previous cycle and will be absorbed by the detectors
(one quanta for each) during the next cycle. That is, local field correlations generated in
a previous cycle may then be transferred to the detectors at a later cycle. Another way to
state this type of scenario is that the detectors indeed drain the field of correlations, but
that their local interaction plus the free evolution of the field is then allowed to regenerate
this loss.

Thus while we have described previous protocols as “harvesting” entanglement from
a quantum field, here the protocol is analogous to farming entanglement: in addition to
extracting entanglement from the quantum field, the interaction with the detectors is also
“sowing” the seeds of entanglement to be extracted in subsequent cycles. However we know
that harvesting entanglement at spacelike separation is a more difficult process. While we
see no reason in principle that it cannot be done, we have not yet found detector settings
that allow for entanglement farming in the spacelike regime.
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9.3 Discussion

We have studied a protocol for harvesting and even sustainably farming quantum entan-
glement from a quantum field in a cavity. The protocol consists of placing temporarily two
detectors, that are in their ground states, into an optical cavity. They interact with the
cavity field for some cycle time, 7. The now entangled detectors exit the cavity and a new
pair of detectors in their ground state enters the cavity for a new cycle to begin.

The entanglement that the detectors acquire in each cycle has two distinct sources: On
the one hand, the detectors can swap entanglement from the cavity field, a process that
can take place even when the detectors remain spacelike separated while in the cavity. We
have found this type of entanglement harvesting to be transient, however, i.e., we have
not found a regime in which this entanglement extraction could be sustained over many
cycles. It should be interesting in this context to study if there exists a fundamental limit
to entanglement extraction in this case, perhaps similar to the fundamental limit to work
extraction in a Carnot cycle.

On the other hand, the detectors can become entangled by interacting via the cavity
field if the cycle time is long enough to allow the causal exchange of quanta between the
detectors. To this end, we first studied the case where the highly off-resonant modes of
the cavity can be neglected and where the cycle times are long enough to enable causal
detector interactions via the cavity field. In this case, after some number of cycles the
cavity field reaches a fixed point state that is highly non-thermal and independent of the
field’s initial state. Perhaps surprisingly, this fixed point state of the cavity allows for
sustainable significant entanglement harvesting by the successive pairs of detectors. We
determined the considerable amount of entanglement that can be harvested in this way,
and computed the associated energy cost per cycle.

Due to the sustainability of the method, we call this entanglement farming rather
than mere entanglement harvesting. We also found that the field reaches a fixed point
regardless of the initial field state in the cavity. This is of interest with regards to possible
experimental realizations because it means that this useful fixed point state will be reached
independently of any noise or imperfections in the preparation of the initial state of the
cavity. The cycling of detector pairs in and out of the cavity drives the field to a steady-
state that can be used to entangle detectors, even if the initial state of the field did
not yield any entanglement. For example, we have shown that it is possible to apply
the protocol even to thermal states. Our methods have also allowed us to calculate the
behaviour of the off-resonant modes for large cycle numbers. We found that there is a
third stage of evolution after a very large number of iterations. In this final stage, off-
resonant modes of the cavity become sufficiently excited as to make further entanglement
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harvesting from the cavity impossible. In practice, if the excitations of these off-resonant
modes are sufficiently leaking, the third stage need not occur, so that the entanglement
farming is sustainable indefinitely. In regards to intuition, our results indicate that the
protocol of repeatedly inserting pairs of cold detectors in the cavity does not constitute
an efficient cooling process, because the result is not a thermal state. Instead, our results
indicate that the detector insertion and removals may be better understood as a periodic
parametric driving, a perspective that will be pursued further in forthcoming work.

Additionally, we can view our setup as an entangling quantum gate which has the
advantage that it is stably produceable and controllable by iterating a process that yields
a fixed point. This combined with 1-qubit universal gates over atoms using relativistic
motion (as in the scheme proposed in [116]) would give a complete set of universal gates
based on atomic motion in optical cavities that would allow for quantum computing via
relativistic effects. The main disadvantage of a scheme based on the setting presented
in this chapter would be that the two-qubit gates are also depurifying. It is expectable
that variations in the interaction Hamiltoinan could lead to a fixed point with a smaller
depurifying effect over the atoms. I.e. We would like entanglement to be generated between
the two atoms without increasing the entropy of the field so that it does not get entangled
with the two atoms system but merely act as a carrier of their interaction. This path will
be explored in future work.

Let us also discuss scenarios in which the setting presented here could be implemented
experimentally. The most straightforward experimental implementation appears in the
context of quantum optics. Namely, the theoretical scenario analyzed here could be imple-
mented with optical cavities [115] being traversed by successive pairs of atoms along the
transverse direction of the cavity. The transverse profile of the modes effectively couples
and decouples the interaction in a way similar to that suggested in this chapter. Any such
implementation requires of course a careful analysis of the cavity losses. But as discussed
above, in a realistic experimental setup the higher frequency modes of the cavity have the
lowest quality factor, and an enhanced leakage of higher frequency modes could be benefi-
cial. This is because any such leakage would suppress the accumulation of field excitations
in the off-resonant modes, which would in turn further stabilize the fixed point.

Additionally, experimental implementations in other systems such as trapped ions or
superconducting circuits appear to be within reach. Indeed, the kind of interaction Hamil-
tonians that we consider in this work can be implemented straightforwardly and with a
high degree of control in both superconducting circuits and trapped ion settings (see, e.g.,

[123]).

We conclude with the observation that reliable mass production of entanglement, or
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entanglement farming, on the basis of a fixed point state should be possible also in many
other experimental settings. Namely, instead of successively temporarily coupling pairs of
particles to a cavity field, one may successively temporarily couple pairs or triplets, etc.
of qudits to a suitable reservoir system. The qudits and the reservoir system could have
any arbitrary physical realization, even outside quantum optics. In each cycle, N fresh
qudits in their ground states are coupled to the reservoir system, then removed. The key
requirement for the farming of N-partite entanglement by this method would be that the
coupling between the qudits and the reservoir is such that the iterated coupling of fresh
qudits drives the reservoir system to a fixed point state that is entangling the qudits. As
we saw here, such a fixed point does exist in the case where the qudits and the reservoir
system are composed of harmonic oscillators, and we also found that the fixed point is
completely stable if the number of harmonic oscillators in the reservoir is small enough. It
should be very interesting to find the sufficient and necessary conditions on qudit-reservoir
systems for such a useful fixed point state of the reservoir to exist.
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Chapter 10

Quantum seismology

Note: this chapter derives from the work [0], in collaboration with William Donnelly,
Achim Kempf, Robert C. Mann, Eduardo Martin-Martinez, and Nicolas C. Menicucci.

This chapter is somewhat a continuation of the previous, in that we will modify the
entanglement farming scenario in such a way that it becomes potentially useful for quantum
metrological purposes, in addition to the generation of entanglement. As we have seen,
entanglement farming involves successively sending pairs of ‘particle detectors’ (such as
atoms, ions, molecules, etc.) transversely through an optical cavity, all initialized in their
ground states. As each pair of atoms' traverses the cavity, the state of the cavity field
is slightly modified. As pair after pair traverses the cavity, the field approaches a fixed-
point state through a non-perturbative and non-thermal process. When the fixed point is
reached, every pair of atoms emerges from the cavity in the same state, which is generically
entangled. Due to the stability of the fixed-point state, this protocol provides a potentially
useful method for producing a stream of reliably entangled pairs. Additionally, this protocol
was proven to be robust to variation of the parameters and, most importantly, almost
entirely independent of what the initial state of the field—in particular, not requiring it to
be the vacuum state for the fixed point to be quickly reached.

Entanglement farming depends on the (meta-)stable fixed point of the cavity that is
produced by successively passing pairs of atoms through the cavity. This fixed point can
be calculated using non-perturbatively and is was found to be generally stable to small
changes in the parameters of the setup (e.g., positions, time of flight, energy gap, cavity
length, etc.). Here we will show that this robustness breaks down dramatically when the
frequency at which atoms traverse the cavity is at resonance with a multiple of the cavity’s

'Henceforth, we use the term ‘atom’ for the generic system interacting with the cavity field.
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fundamental frequency. Concretely, we can tune the parameters (including the waiting
time between pairs of atoms) so that the steady state is highly sensitive to changes in
these other parameters. This finding opens up opportunities to use this setup to detect
small parameter changes with very high sensitivity, and we will be looking at one such
application in this chapter. In particular, we choose this free parameter to be the cavity
length—i.e., we study the sensitivity of entanglement farming to small deviations in the
length of the cavity, which makes our setup sensitive to vibrations. A technical aspect of our
approach relates to the fact that time-dependent boundary conditions introduce nontrivial
effects on quantum fields, such as particle creation by moving mirrors (the dynamical
Casimir effect [111]). We will restrict our analysis to settings in which these effects are
negligible; that is, regimes in which the cavity vibration is slow compared to the speed of
light. It will turn out that the sensitivity of our setup to the parameters of interest remains
significant even in this adiabatic regime. The sensitivity furthermore remains even when
the frequency of vibration is several orders of magnitude below the fundamental optical
frequency of the cavity, making this potentially a very sensitive apparatus for detecting
mechanical perturbations of optical cavities—a kind of quantum seismograph.

10.1 Setup

The setup of the quantum seismograph will be essentially the same as that of the entan-
glement farming scheme, discussed in Ch. 9. There will, however, be crucial differences.
We continue to analyze the dynamics of two atoms of equal energy gap (1, initialized in
their ground state and which only interact with the field for a finite amount of time 7'
After this time, the two original atoms are removed, and a fresh pair is set to interact
with the field in the cavity, again for a time 7. We repeat the whole process iteratively,
eventually reaching a fixed point and recovering pairs of entangled atoms. As before, the
physical implementation of such setting consists of beams of atoms traversing the cavity
in a direction perpendicular to the quantization direction x, in a similar way as in [113].

Given the Dirichlet boundary conditions linking length and frequency scales, only time
(or alternatively length) units are free to be chosen: We let the fundamental frequency of
the cavity w = 7/ L carry the relevant units for the physical system in question. Hence, all
the other quantities of the simulation should now be interpreted relative to this fundamental
frequency. For instance, a cavity whose fundamental frequency is 10 GHz (microwave
cavity) corresponds to a length of roughly L ~ 3 cm. If the frequency is 500 THz then L
would be roughly ~ 600 nm.

There will be two differences between the protocol in this chapter and that of the last.
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The first is rather unimportant, only providing slight quantitative differences to our results.
This is that we will no longer use a sudden switching function. Rather, we will take the
coupling to be time dependent, of the form A(t) = Ax(t), where the constant A is still used
to determine the overall strength of the interaction, and x(¢) will be a function on the
order of unity that contains the chosen time dependence. In particular, we will ramp up
the strength of the interaction between the atoms and the cavity modes with the following
smooth (C*°), compactly supported switching function:

S [rt/d] 0<t<y,
1 te 6, T —9),
\(t) = o0 (10,1
Sr(T—1t)/6] T—0<t<T,
0 elsewhere,

where S(z) = [1 — tanh(cotx)]/2. This function smoothly switches from 0 to the full
coupling strength A\ and back to 0, where 0 is the switching time-scale. In Fig. 10.1 we plot
an example of this function that we will use in our scenario, with 6 = 0.27 and T = 20.
We chose to use a smooth switching function in order to avoid any spurious switching
excitations from degrading the potential of our seismograph. As we found, whether or not
one uses a sharp function or that of Eq. (10.1) makes only quantitative differences that
are not of great significance.

Note that, since we are using a time dependent coupling A(¢), we are no longer able
to use the solution in Eq. (5.35) to compute the evolution during each cycle. Rather,
we must integrate the equation of motion Eq. (5.34). This is trivially done numerically
and, as before, we only need to solve for the evolution S(¢) once and then apply the same
transformation each cycle.

Unless otherwise stated, we will employ the following system parameters. The coupling
constant is A = 0.01. The boundaries of the cavity are located at x = 0 and x = Ly and the
two atoms are located at x1 = Ly/3 and xos = 2Ly /3 (such that the distance between them
is Lo/3). We choose the frequency of the atoms to be resonant with the fundamental mode
of the cavity: Q = m/Ly. The time of interaction for each cycle (i.e., how long each pair of
atoms spend in the cavity) is T' = 2.5Ly. Note that this is well beyond the light-crossing
time Lo/3 between the atoms, as required for the farming procedure to work. Lastly, we
will take the parameter ¢ contained in the switching function to be § = 0.27". The choice
that we have made here for L is entirely arbitrary. As will be discussed later, we can scale
down the cavity length to that of an optical cavity or cavity QED setup and, by similarly
scaling the other dimensionful quantities, we can obtain exactly the same results. Indeed,
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Figure 10.1: The function x(¢) with 7' = 20 with § = 0.27".

we will discuss how the results we obtain here with the above parameters are equivalent
to what can currently be achieved within cavity QED systems.

10.2 Sensitivity of the fixed point to time delays

The second change from the setup in Ch. 9, and the one that is critical to our quantum
seismograph proposal, is to introduce a delay of some duration At between the exit of one
pair of atoms and the entry of the next pair. During this delay, the field will undergo free
evolution. A natural question arises: To what extent does the fixed-point state depend
on At? We find that the introduction of such a delay typically does not strongly affect the
steady state. However, we show below that for delays in the vicinity of particular isolated
critical values of At, the steady state can vary greatly with very small changes in this delay.

We plot in Fig. 10.2 the logarithmic negativity of the state of a pair of atoms once the
fixed-point state is reached, as a function of the time between successive pairs of atoms
traversing the cavity, in units of the light crossing time of the cavity, f = (T + At)/Lo.
As Fig. 10.2 shows, there are remarkably sharp valleys at integer values of f. Note that
we have assumed a lossless cavity. It is possible that a more detailed analysis, including
losses, would reduce the sharpness of this effect. We leave this to future work.
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Figure 10.2: The steady-state logarithmic negativity as a function of f = (T + At)/ Ly,
where At is the varied parameter. The other parameters are Q) = 7/ Ly (resonant with the
fundamental mode), T" = 2.5L¢, and with the switching parameter 6 = 0.27". On the left
we see that the steady state entanglement is nearly constant as the delay time is changed,
except for very well-defined points in which it drops drastically. On the right we zoom in
on one of the valleys, and we see that in fact the steady-state entanglement is zero within
a small window.

The presence of these valleys suggests an interpretation as a resonance effect. By iterat-
ing our protocol, we introduce a periodic time-dependent perturbation to the Hamiltonian
of strength A whose frequency is at resonance with the modes of the cavity precisely when f
is an integer. When f is close to an integer, this perturbation induces transitions between
levels of the system, which in our setup corresponds to emission and absorption of field
quanta by the atoms. The width of such a resonance in frequency space scales as A\? with
the coupling constant A, which explains the sharpness of the valleys. Note that although
our perturbation is not harmonic in time (its shape is given by the switching function in
Fig. 10.1), our results suggests it is only the periodic nature of the perturbation that is
important. Indeed, we have investigated how the valleys depend on the switching func-
tion, and we found almost identical valleys even for completely sharp switching. While
this suggests that the simplifying assumption of sharp switching could be used instead of
smooth (as in Ch. 9) without creating artifacts, we nevertheless continue to use the smooth
function, Eq. (10.1), to ensure maximum confidence in our results.

The sharpness of these valleys—i.e., the extremely strong sensitivity of the fixed-point
state—suggests applications to metrology. The idea is to prepare an entanglement farming

164



system with initial parameters such that the steady state is within one of these valleys,
preferably at the steepest point of one of the valley’s walls. Then, even a weak disturbance
(for example, a tiny change in the length of the optical cavity) may displace the system out
of this sharp valley and cause a significant change to our readout, yielding a strong signal.
As we will show, this does occur. Importantly, not only do we receive a remarkably strong
signal in the entanglement between atoms but also directly in more measurable quantities
such as the quadrature correlation functions.

10.3 Cavities with time dependent length

Let us now suppose that the cavity is disturbed, say by a mechanical wave of some kind, so
that the cavity’s proper length becomes time-dependent. When a mechanical wave deforms
the cavity we will make the assumption that the atoms keep their positions constant relative
to the instantaneous cavity length, e.g. z; = L(t)/3 and xo = 2L(t)/3. We acknowledge
that engineering this condition might be challenging and that this might not be the most
natural model for a practical implementation. Nevertheless, we choose it for this analysis
because it yields a lower bound on the sensitivity and is therefore a conservative approach
to estimating the strength of the signal. If the atoms were instead to move relative to
the cavity (in the longitudinal direction), they would likely feel an even larger disturbance
given the variation of their effective coupling strength due to the inhomogeneous spatial
profile of the field modes. Keeping the relative positions constant, any change we see in
the farming output must result solely from a change of field state rather than just a direct
change in the coupling strength of the atoms to the field modes, which of course also
induces a detectable change in the atoms’ dynamics.

Intuitively, as long as the time-dependence of the cavity length is slow enough, the
modes in that cavity should be approximately the same as those for a stationary cavity,
except that each mode’s frequency now varies in time. We call this assumption (specifically,
\L| < 1) the adiabatic approximation, because it is equivalent to the usual adiabatic
approximation w < w? in terms of the mode frequencies w ~ 1/L. We know that when the
cavity walls’ speed is comparable to that of light (L ~ 1), relativistic effects render this
naive description inaccurate due to the dynamical Casimir effect [111]. Fortunately, there
exists a wide range of wall motion parameters that (a) are consistent with the adiabatic
approximation and (b) produce an observable disturbance of the entanglement farming
process.

In other words, the system of uncoupled harmonic oscillators that are the field modes
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becomes a system of uncoupled oscillators with time-dependent frequencies w,(t) given by
wp(t) =ku(t) = — (10.2)

which in turn means that the free-field Hamiltonian is

H =Y wy(t)ala, + O[L(t)). (10.3)

In Appendix. E, we justify the form of this Hamiltonian and our use of the adiabatic
approximation for a cavity comprised of one fixed mirror and another undergoing forced
oscillations. As a possible extension of this work, Appendix. F provides preliminary calcu-
lations for a cavity deformed by the passage of a gravitational wave, producing a similar
distortion. In the rest of this chapter we assume the adiabatic approximation.

10.4 Quantum seismograph

10.4.1 Two-stage evolution

The idea behind the quantum seismograph is to prepare an entanglement-farming setup in
a steady-state configuration with initially fixed cavity length, such that small changes in
the length of the cavity, due to temporary vibrations, produce a detectable change in the
extracted entanglement and other measurable quantities.

Modelling the evolution of this system involves two stages. The first is to calculate
the steady-state response of the system to a variety of (fixed) parameters, including cavity
length Lg, interaction time 7', and delay between interactions At, in order to determine
which ones should be used as the unperturbed cavity parameters. These parameters are
assumed to be constant during this first stage. The system is allowed to reach a steady
state, which is assumed to be the unwavering behavior of the system before any vibrations
have affected it.

For the second stage of the evolution, we imagine that the system is happily continuing
in its steady state (as above) when suddenly the cavity experiences a vibration, resulting
in a sinusoidal variation in cavity length,

L(t) = Lo + Asin(yt) (t>0), (10.4)
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with amplitude A and angular frequency +. To keep within the adiabatic approximation
(see Sec. 10.3), we require
7A < 1, (10.5)

which ensures that the cavity walls’ motion is nonrelativistic (|L| < 1).2 We do not
calculate the steady state of the system during this (time-dependent) evolution, since we
want to consider the case where the system does not have time to reach the steady state
(if such a state exists). Instead, we numerically integrate the full dynamics with Eq. 5.34
for this stage of the evolution, using the time-dependent free-field Hamiltonian given in
Eq. (10.3), along with interaction between field and atoms as done throughout the rest
of this Part of the thesis, and delay At between cycles as described above. The initial
state for the evolution is taken to be the steady-state solution resulting from the previous
stage of the evolution. From our simulations, we extract information about observables
associated with each pair of atoms after it exits the cavity.

10.4.2 Choice of unperturbed cavity parameters

In order to maximize the response we get from a change in L, we should optimize our
choice of unperturbed cavity parameters. We do this by preparing the system initially such
that its steady state corresponds to a point on a very steep part of one of the “valleys”
seen in Fig. 10.2. The idea behind this choice is that small periodic changes in L should
result in movement along this steep “wall” of the valley, producing a large change in the
extracted entanglement with detectable time dependence. This intuition relies on the tacit
assumption that the steady-state plot shown in Fig. 10.2 is still relevant in stage two of
the evolution (i.e., full dynamics, including vibrations in L, Eq. (10.4)). We expect this
intuition to be valid when a single period of the vibration lasts over many interaction cycles
(including both the interaction time 7" and the time of free evolution At)—in other words,
if we choose

(T + At) < 1. (10.6)

We must stress, however, that this assumption is not required for numerical stability of
the simulation or for validity of the results we calculate. This is because the steady-state
calculations (which use fixed Lj) are used only to determine the initial state of the cavity
field. The simulation calculates the full evolution of the system starting from this state, as
discussed in the previous subsection.

2Notice that this allows A to be large as long as + is sufficiently small. In practice, however, if we want
to detect weak vibrations, then we expect A < Lg, as well.

167



) 1
1 ] 1
1 ) \
] ) 1
] 19! L el I

1 i A [N
1] 50 1000 1500 2000 2500 3000
cycles

o™

Figure 10.3: The logarithmic negativity received per cycle during the period of vibration.
Here the vibrational period is set to 1000 times the cycle time (interaction plus rest period
totaling a time of T' 4 dt = 2T") and we track three periods of the vibration. Before the
vibration the steady-state entanglement was zero, and the entanglement shown in this plot
is due solely to the vibration, despite the frequency being such that v/w; = 4 x 107*. The
two lines correspond to different vibration magnitudes. The solid (blue) line is such that
A= (1x%x107?)Ly and the dashed (green) line corresponds to A = (2 x 107%) L.

10.4.3 Detecting vibrations

We choose the time of interaction to be T' = 2.5Lg and the rest time of the field to be the
same At = T, which puts us into the valley at f = 5 as seen in Fig. 10.2. We allow the
system to reach its steady state. Then, as seen in the figure, we receive no entanglement
from each pair of atoms that emerges from the cavity. Thus, if nothing disturbs the system
a steady stream of unentangled pairs emerges from the cavity.

We now let a vibration occur that is weak in magnitude and of low frequency (as
compared with the optical frequency of the cavity). As stated above, by setting f =5 we
have prepared our system within a precariously thin “valley”. Does this indeed mean that
the fixed point is extremely sensitive to even such a non-invasive disturbance? Consider an
example where the frequencies of the atoms are 2 = /Ly (resonant with the first mode).
Considering the logarithmic negativity per cycle of each successive pair of atoms, which
is initially zero, we see in Fig. 10.3 that a very significant response is obtained due to the
presence of a wave. In this example the frequency of the wave is v = (4 x 107%)w;, where
wy is the fundamental frequency of the cavity, and the amplitudes corresponding to the
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two responses shown are A = (1 x 1073)Ly and A = (2 x 107*)L,. While the value of
the logarithmic negativity obtained is small, recall that to leading order the logarithmic
negativity generated between two atoms interacting with a field goes as A2 = 104, Here,
we are finding that a very weak and low-frequency disturbance can cause the generated
entanglement to jump from a zero value to even an order of magnitude higher than what is
generally expected from the harvesting scenario. In this sense, we have found an extremely
strong signal.

Whereas this variation in the per-pair entanglement could be amplified through en-
tanglement distillation, it is not very convenient experimentally to rely on the amount
of produced entanglement to encode the information about the perturbation. While it is
interesting to see how the generated entanglement is affected by a mechanical a vibration
of the cavity, we should also consider the impact on other, more directly measurable, quan-
tities. To this end we will consider the quadrature correlators as well. In particular, let
us look at the observables 2 (¢;G2) and 2 (G1p2), where ¢; and py are the internal position
quadrature of atom 1 and momentum of atom 2, respectively. First, we will look at how
the steady-state values of these quantities change with the delay time At, as we did with
the logarithmic negativity in Fig. 10.2. These are displayed in Figs. 10.4 and 10.5. As
expected, we find peaks at the same positions that were observed in the Fig. 10.2, except
that the peaks are antisymmetric in the case of the 2 (G1ps) correlator. To see why this is
not surprising recall that, for our interaction, the Heisenberg equation for ¢, tells us that
ps is just the time derivative of ¢, so we have that

- d . d, . . d .\ .
(Q1p2) = <CI1%Q2> = E(Qlfm - <(EQI) QQ> : (10.7)

d

(G1p2 + D1G2) = £<@1ﬁ2>- (10.8)

Given that the detectors are identical and the setup is symmetric, the whole setting is
invariant under the swap of the labels of the atoms, (G1ps) = (Gop1), thus

d

2(qip2) = 5@1@% (10.9)

which explains why Fig. 10.5 looks like the derivative of Fig. 10.4.

Therefore

From these figures it appears that our seismograph would have more sensitivity if we
measure 2 (¢1G2), since the variation in this parameter from the inside to outside of the
peaks is greater than for the 2 (§;p2) measure. Indeed this is the case if the quadrature
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Figure 10.4: The steady-state value of 2 (¢;42) as a function of f = (T'+At)/Lg, where At is
the varied parameter. The other parameters are 2 = 7/Lq (resonant with the fundamental
mode), T" = 2.5L¢, and with the switching parameter § = 0.27

measurements are performed immediately after the atoms exit the cavity. We will take this
opportunity, however, to discuss how the act of free evolution after exiting the cavity can
allow us to choose which quadrature correlator to measure, without sacrificing sensitivity.
This is because free evolution is simply a rotation of the ¢ and p operators in phase space.
In terms of the entanglement signal that we receive, this is of course unaffected by this
evolution. The quadrature correlation functions, however, do change with time. The
rotation in phase space means that the large signal we can get in 2(g;g2) directly after
exiting the cavity transitions into a large signal for the other correlators as the atoms
freely evolve, only for the signal later to be concentrated again in 2(¢;g2). Since it is
reasonable to assume that in any laboratory setup a small period of free evolution will
be needed upon exiting the cavity before a quadrature measurement can be performed, it
makes sense to take this extra parameter into account. Indeed if one correlator is easier
to measure than another, then by controlling the extra time of free evolution of the atoms
we may optimize the signal that we obtain from our correlator of choice. Conversely, if the
amount of extra time of evolution is fixed, we can optimize what correlator to measure in
order to maximize the signal. In other words, if the free evolution time is fixed, we can
optimize for the values of a4 2, 812 in ((a1G1+ B1p1) (a2G2 + B2p2)) to pick a correlator whose
sensitivity to perturbations of the cavity length is maximal.

To demonstrate this point, we will consider the signal that we obtain from 2 (G;ps),
where we allow exactly a delay time At = T of free evolution for the atoms before looking
at their state. We will see that by allowing this time, the signal we can get from this
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Figure 10.5: The steady-state value of 2 (§1p2) as a function of f = (T'+At)/Lg, where At is
the varied parameter. The other parameters are 2 = 7/Lq (resonant with the fundamental
mode), T" = 2.5L¢, and with the switching parameter § = 0.27

parameter is of the same strength as what would be expected from 2 (g;4o), given Fig.
10.4. Let us consider the exact same scenario and parameters as those used in Fig. 10.3.
The result is displayed in Fig. 10.6. Note that we achieve an order-of-magnitude variation
from the steady-state value of 2 (¢;p») (approximately —0.25 x 1073, as given by the initial
value) due to the presence of the wave.

10.4.4 Frequency response

An important question that must be answered is to what degree our proposed system
is sensitive to a range of vibrational frequencies . To this end, we take a vibrational
magnitude of A = (1 x 1073)Ly and consider the response due to a range of v spanning
over several orders of magnitude. For each frequency the wave will last for 10 periods,
over however many atom-field interaction cycles are required for this time period. For each
we will then take the maximum magnitude of 2 (¢;ps) achieved over all cycles that occur
during the wave. Figure 10.7 plots this quantity as a function of log,,~ for two different
sets of parameters, showing that our proposal can be tuned to be sensitive to a wide range
of different frequencies.

We observe that for a given set of parameters we obtain a well-defined region of sensitiv-
ity, and furthermore by rescaling the parameters of our setup we can tune this to a region
of our choosing. This rescaling involves modifying the initial length Ly of the cavity (thus
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Figure 10.6: The correlation function 2 (g;p2) per cycle during the period of vibration.
The specific scenario and parameters are the same as in Fig. 10.3. The solid (blue) line
corresponds to a vibrational amplitude of A = (1 x 107%) Ly and the dashed (green) line to
A = (2 x 107%)Ly. Note that we achieve an order-of-magnitude increase in this quantity
due to the presence of the wave, as compared to the steady state value (approximately
—0.25 x 1073, as given by the initial value in this plot).

changing the fundamental frequency) and also scaling the other dimensionful quantities
accordingly, such that ALq, QLg, T/ Lo, At/T, and A/Ly remain the same. Such a scaling
leaves invariant the dynamics of the system, and the exact same results are obtained from
the calculation. This is, of course, assuming that the vibrational frequency has also been
scaled accordingly. Thus, as we see an example of in Fig. 10.7, we can use this scaling
to obtain sensitivity to different vibrational frequencies. If we have several such systems
running concurrently, for example, then we would have achieved sensitivity over a large
frequency range, as well as the capacity to distinguish and filter specific desired frequency
regions.

10.4.5 Experimental prospects
Here we briefly consider how the above results translate to what can actually be achieved

using current superconducting circuit technology. As discussed above, the results that
have been presented are invariant under a change of cavity length (fundamental frequency)
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Figure 10.7: The maximum value of 2 (g;ps) achieved over the course of 10 vibrational
periods as a function of the log of the vibrational frequency . The parameters for the
solid line (blue) are the same as for Fig. 10.6: Ly =8, Q = 7/Lo, A = 0.01, and 7' = 20
with At = T. The dashed line (red) represents the case that all parameters have been
scaled by an order of magnitude: Ly = 0.8, Q@ = 7/Ly, A = 0.1, and T' = 2 with At =T.
In both cases the amplitude of vibration is assumed to scale with the initial length, such
that A = (1 x 107%) Ly always. We see that by scaling our system in such a way we can
achieve sensitivity coverage over a range of vibrational frequencies.

as long as the other parameters are scaled accordingly. This means, in fact, that the
magnitude of signal achieved above is exactly what can be achieved with current technology;,
since a coupling constant within the neighborhood of A ~ 0.01w; is achievable in the strong
and ultra-strong coupling regimes [117]. With circuit QED systems one typically has a
fundamental frequency of the order of the GHz’s. On the other hand, given Figs. 10.6
and 10.7 we see that (somewhat surprisingly) the peak sensitivity of our proposal occurs
at v ~ 107*w;. Thus within a cavity QED setup we can expect to be most sensitive to
frequencies in the range v ~ 10°Hz. Remarkably, this is, for example, on the edge of the
frequency range expected from gravitational radiation.

Given the current state of the art in superconductor technology one can in fact obtain
significantly higher coupling constants than what we have considered above. Interestingly,
however, we find that this does not significantly increase the seismograph sensitivity as
compared with Fig. 10.6. This is because while the steady state entanglement indeed
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increases (scaling as A?), the valleys seen in Fig. 10.2 (which are fundamental to our
proposed sensitivity) also become significantly wider and less sharp, meaning that a larger
perturbation is required to displace the system out of the valley that it was prepared in.
These two changes work against each other in such a way that they largely cancel out.
Still, some improvement can be achieved with increased A, approaching a signal magnitude
near to 2 (G p2) ~ 6 x 1073.

This realization may actually be employed to further tune one’s apparatus based on
experimental restrictions and the strength of vibration one is searching for, such that
even typical optical couplings as small as A = (107%w;—1075w;) may still be useful. By
turning A down, the valleys shown in Fig. 10.2 get sharper and thinner (increasing the
sensitivity to very weak vibrations), while at the same time reducing the steady state
(out of valley) height of the plot (decreasing the maximum response we can obtain). For
stronger vibrations having a larger A is preferable since the maximum response (achieved
by exiting the valley) is increased. However for very weak vibrations it would actually
be preferable to have a weaker coupling; a larger response would be observed in this case
(assuming that A is not so low as to make the maximum response unmeasurable).

10.5 Discussion

The quantum seismograph scheme consists of successively sending pairs of atoms in their
ground state transversely through an optical cavity. As expected, this drives the cavity
field to a metastable fixed point. Here we find that, surprisingly, the parameters of the
farming protocol can be tailored so that the resulting metastable fixed point is highly
sensitive to variations of external parameters, such as the cavity length. This in turn
affects the correlations acquired by the pairs of atoms, which constitutes a detectable
signal even for relatively small perturbations. We are proposing to exploit this sensitivity
by utilizing the entanglement farming protocol for high precision measurements of small,
length modulating vibrations: a quantum seismograph.

The proposed sensor has high sensitivity and a sharp spectral response, which should
allow one to tune the seismograph to the detection of particular frequencies while screening
out noise. The peak frequency in the spectral response of the seismograph can be tuned
by adjusting the parameters of the setup.

This quantum seismograph proposal could be used to detect any kind of vibrational
perturbation. In particular, if the cavity walls are coupled through some elastic force, the
passage of a gravitational wave would induce vibrations on the positions of the walls [115],
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opening the door to potentially using this construction as a novel approach to gravitational
wave detection. Although our current work is still far from making a concrete proposal,
we sketch how this scheme may be adapted to detect the passage of a gravitational wave
in Appendix. F.

In addition to a seismograph, our sensor’s settings can be easily adapted to carry
out measurements of different parameters of the entanglement farming setup, such as the
coupling strength, the atomic gap or the travel time of the pairs of atoms. In this sense,
our proposal may have many further metrological applications outside of seismology. In
addition, the extreme sensitivity that we have uncovered in the entanglement farming
scenario is likely characteristic of any number of other quantum mechanical systems that
are capable of displaying the resonant behavior we have used here. This approach may
thus be far more general, and an extended study of the fundamental physics at play is
warranted.

Finally, it should also be very interesting to study the quantum seismograph’s behavior
when the measured parameters behave quantum mechanically. This could potentially yield
a new method for measuring mechanical quantum fluctuations, such as those of positions
or distances. For example, the length of the cavity may be uncertain due predominantly to
quantum fluctuations—e.g., if the cavity mirrors are harmonically bound, ultracold, and
put into a state that is nearly pure. We leave such questions to future work.
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Part 111

Localized Projective Measurements
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In this part of the thesis we will turn to another model of measurement that is very
different from the particle-detector setup we have so far worked with. Here, we will take
as inspiration the usual projective measurement postulate of quantum mechanics and con-
sider projective measurements onto single field modes. As a model for measurement this
represents a relativistic generalization of the Glauber model [119], in which we assume we
may construct quadratic quadrature expectation values (i.e. covariance matrix elements)
of a given field mode based on the results of projective measurements on that mode. The
derivation and exposition of this formalism as it applies here are given in [150, ]. Note
that in this Part we will move away from cavity field physics and considering instead free
space fields. We will also be making direct use of the Rindler quantization scheme as
explained in Sect. 4.3.

Typically, as we have seen, the mode basis that one expands a field in is a global basis,
meaning that those modes cover the whole space being considered (or, in the case of a
cavity, the whole cavity). Given that the free Hamiltonian of the theory is a globally
defined operator, typically it makes computational sense to define one’s working basis as
such. Operationally, however, in a world where a laboratory is confined to some localized
region, it would really make more sense to consider a basis consisting of local modes (or
at least semi-localized). Given this, we imagine a scenario in which an observer, perhaps
undergoing non-inertial motion, carries a measurement device designed to filter out all but
some localized mode function v and then perform projective Fock state measurements on
this mode. Assuming we are working with a Gaussian field state, the reduced covariance
matrix of this mode will provide all of the measurement statistics that such an observer
is expected to obtain. In particular, we consider localized modes 1 (x,t) that are positive
frequency, meaning that they share a vacuum state with the standard Minkowski plane-
wave modes. This implies that an inertial observer in the vacuum state will, by definition,
measure zero particles under this prescription. As explained in [150], while certainly an
idealization as we consider it here, such a procedure can be experimentally implemented by
use of a light lens fabricated to capture the specific mode of interest (which will be of the
size of the lens). This lens will then focus the mode into a single-mode optical fiber, thus
filtering out all other field modes, which transmits the light to a photon detector [152, 153].

Here we use such a model to study the effects of non-inertial motion. For example if
an observer carrying such a measurement device is undergoing uniform acceleration then,
assuming the integrity of the device isn’t compromised by the acceleration, the local mode
that is filtered will be that mode defined with respect to the Rindler coordinate system,
as defined in Eq. (4.28). That is, while an inertial observer with coordinates (z,t) will
projectively measure mode function ¢ (z,t), a uniformly accelerating observer will instead
measure that mode given by (£, 7). Given that the transformation from Minkowski to
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Rindler modes is non-passive, ¥ (&, 7) will not be positive frequency with respect to the
Minkowski mode basis, even though 1 (z,t) is so by definition. Such an observer will
therefore measure particle content in the Minkowski vacuum, as should be expected from
the Unruh effect.

We will perform two studies in this Part of the thesis, using this measurement model.
In Ch. 11 we will consider the response of a uniformly accelerating observer. Unlike
the typical case in which one assumes the field state is the Minkowski vacuum, we will
instead take it to be a Minkowski thermal state (i.e. the field is thermal as see by a given
inertial observer). To the author’s knowledge such a scenario has not been (properly)
studied previously, as the calculational difficulties are very intensive. We find, however,
that this setting can be analyzed using the technology of the local projective measurement
formalism. We find that the response of such an observer has two contributions, one
from acceleration and one from field thermality. Interestingly, these two contributions
are distinguishable. Next, in Ch. 12, we will take on a historically seminal scenario of
interest in the relativistic quantum information community: the degradation of quantum
correlations due to acceleration. That is, if two observers share some entangled field state,
how does the acceleration of one or both observers affect the amount of entanglement they
may access from this state? Our work is different from the large collection of work on this
setting in that, while the others have considered entangled states of global field modes, we
use the more physically realistic case of local modes. With this change, we find that the
degradation of both entanglement and quantum discord is in fact qualitatively worse than
that claimed in the previous works.
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Chapter 11

Accelerating in a thermal bath

Note: this chapter represents a work in progress, in collaboration with Andrzej Dragan.

Here we consider applying the technique introduced in [150, | to describe what a
uniformly accelerating observer would detect if, rather than the scalar field being in the
global (Minkowski) vacuum state, it is instead in a thermal state of some temperature 7. As
we saw in Sect. 4.5, if the field is in the vacuum state then a uniformly accelerating observer
with acceleration a will think themselves in a thermal bath of temperature Ty = a/27, and
that they will be unable (at least according to their field-detection mechanism) to determine
whether this thermality originates from the field or from their acceleration. This raises a
question: is an observer of this type even in principle able to measure their acceleration?
In addition to purely theoretical interest, such a question is of critical importance for any
future experimental proposal aimed at detecting the Unruh effect. To be successful, such a
proposal must be capable of distinguishing between a genuine Unruh response and standard
thermal noise from the environment.

This leads to the primary question that we would like to answer in this chapter: is
the response of a measurement device with acceleration temperature 77 = a/27 in a ther-
mal bath of temperature T, the same as that of an equivalent device with acceleration
temperature 75 in a thermal bath of temperature 77, or different? Put informally, can we
distinguish between quantum and thermal fluctuations? Unfortunately, the scenario of uni-
form acceleration within a Minkowski thermal state has been studied very little, due to the
calculational difficulties involved. Those works that have examined the issue, [154, ],
focus on detector response rates or spectra. Here, we will use the projective measure-
ment formalism to obtain the complete state of a localized, accelerated mode, this being
necessary to make a complete statement about distinguishability or indistinguishability of
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quantum and thermal fluctuations.

The answer to this question was attempted in [156], and their result was that the two
are indistinguishable. However, in this work the actual field state that was considered was
not a Minkowski thermal state but rather a thermal state with respect to the Unruh mode
basis (recall the Unruh modes from Sect. 4.3). While it is true the Unruh basis shares a
vacuum state with the Minkowski mode basis, this does not mean that a thermal state with
respect to the Unruh basis (the physicality of which is extremely suspect since the Unruh
modes are not of definite-energy) may at all be used as an approximation for a Minkwoski
thermal state (i.e. the thermal state defined with respect to the free Hamiltonian that
actually describes the field theory). Indeed in such a setup it is not at all surprising that
they find indistinguishability between the two responses, as this follows directly from the
Gaussian mechanics of applying a two-mode squeezing operation (from the Unruh basis to
the Rindler basis) on a thermal state.

Here, we will instead consider Minkowski thermal states. In this case we find, unlike
the previously mentioned work, that indeed our measurement device can distinguish be-
tween the Unruh and thermal responses. Concretely, the localized, accelerated mode being
measured is in a thermal state with symplectic eigenvalue equal to the product of two
individual symplectic eigenvalues, v = vy (a)vy (T, a), where vy (a) represents the standard
Unruh response and 14,(7, a) is due to the field thermality. We find that this second con-
tribution depends non-trivially on the acceleration a, and indeed in such a way that brings
into question the validity of Rindler quantization. The result will also, however, suggest
at the possibility of using acceleration as a means of very low-temperature thermometry.

11.1 Calculations

We take our detector mechanism to be a projective measurement on some given (semi-
localized) mode of the field. To make the measurement meaningful we demand that this
mode be a purely positive-frequency linear combination of whatever mode-basis the ob-
server uses to describe the field. If the observer is stationary, their detection mode would be
a linear combination of positive-frequency Minkowski modes. If the observer is uniformly
accelerating, however, his or her mode will consist of positive-frequency Rindler modes,
which will generally have negative-frequency contribution in the Minkowski basis. It is
this latter case that we will consider, and we will label the annihilation operator of the
accelerating detector-mode by d, and the corresponding spatial function by 1. We take
the observer to be confined to the right-hand Rindler wedge, as in Fig. 4.1, so this mode
will consist of right-hand Rindler modes only. In terms of the Minkowski ladder operator
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{ag,al} (with corresponding mode functions uy) and the (right-hand) Rindler operators
{bg,b}} (with corresponding mode functions wy) we have in general

i= [ arltv, )+ @pal) = [ atw,wnb, (11.1)

where here (-, ) is the Klein-Gordon inner product as defined in Eq. (4.5).

In order to take the field state to be in a global (Minkowski) thermal state, it will be
easiest to consider a pure state of two orthogonal fields (only one of which is the actual
field that our detector projects onto) consisting of two-mode squeezed states between the
modes of the two fields (i.e. the mode k of one field to be squeezed with the mode k of the
other by some amount, for all k), such that upon tracing out one of the fields we are left
in a thermal state. The pure state of the two fields is thus given by S5 |0) |0), where Sy; is
the appropriate squeezing operation. Specifically, in order to put each individual field into
a thermal state of temperature T' the two-mode squeezing parameter for mode k must be
s = tanh™*(e7*/2T) " Given this, the squeezing operation is fully specified by its action
on the annihilation operators of the fields. This is given by

SlyarS1s = cosh(sy)ay + sinh(s,)al", (11.2)
where df) are the annihilation operators of the secondary field. The corresponding action
on dz follows immediately from this.

We can use this technology to very easily obtain expressions for the response of a
detector that performs a projective measurement of mode . We simply evaluate what the
state of this specific mode is. Since the field that we consider is in a Gaussian state, we
can fully characterize the state of mode 1 by its 2 x 2 covariance matrix o. Following the
definition of Eq. (3.5), in terms of the mode ladder operators the entries of this matrix are

011 = ((d"‘ CZT>2> y (11.3)
o = —((d—d")?, (11.4)
712 = o = — ((d+ d1)(d — ) + (d— (A + ), (11.5)

where here the expectation value is taken with respect to the pure state Siy[0)|0). Be-
cause the mode v only has support over one of the fields these expectation values will be
equivalent to those taken with respect to a thermal state of that specific field only.
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From Eqgs. (11.1,11.2) it is straightforward to evaluate these entries of the covariance
matrix in terms of the overlaps between ¢ and the Minkowski modes. This gives the result

— cosh(s.)? + sinh(s.)? |(¢7uk)*+(wvu;;)|2 QIm(Wauk)(l/},UZ))
= s ot sinnton) (G0 L Ty o) 019

At times, we will use the notation &y = (¢, ux)* and B = — (4, uj)*, in the usual sense of
a Bogolyubov transformation from the Minkowski basis to the detector mode. We can put
this covariance matrix into another form by taking cosh(sg)? = 1 + sinh(s;)? and using

/QMWJM“+WwDV=/ﬁMWJM*—WN@VZ1+2/@M&ﬁ (1L.7)

To obtain these we used the Wronskian condition [ dk(aya; — BrBr) = 1 and the fact

that [ Ak = 0 (this follows from defining 1 as positive frequency in the Rindler basis,
which will be straightforward to see once we define the Rindler and Unruh modes). With
this we see that the covariance matrix takes the form

B (10 () () 2Tm(( ) (4, )
‘“”/ dk|i >(0 1)”/ dksinh(s1) <2Im<<w,uk><w,uz>> |, we)* — (4] |2)'

)
(11.8)

Now, let us consider expressing this state using overlaps of ¢ with (right-hand) Rindler
modes. Let ay and (£, be the Bogolyubov coefficients associated with the right Rindler
wedge, such that uy = f dk (o we — Bayw; + left wedge). Since v is assumed to have
support only on the right-hand wedge and to be purely positive frequency in the Rindler
basis (i.e. (¢, w;) = 0) we have

WWH:/M%WW& wﬂpza/maw@n (11.9)

From here we see for example that

[ = [ [t wi.wer [ s

- /CMM (11.10)

e2rltl/fa _ 1’

where in the second line we have used well-known properties of the Rindler modes [39].
This is exactly the standard particle content (ny) expected from the Unruh response, the
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contribution from each Rindler mode being weighted by that mode’s contribution to our
detector mode . We see from Eq. (11.8) that in the case of zero field temperature (s, = 0)
the detector measures exactly the Unruh response that should be expected. I.e. the state
of the detector mode is a thermal state (in the sense that o o I) with symplectic eigenvalue
v =1+ 2(ny) (recall Eq. (3.21)). This of course is previously well-known, and what we
are interested in here is the case where the field state is thermal.

To continue, let’s actually specify the form of the Rindler Bogolyubov coefficients ayy
and fBp. The process of deriving these is quite intensive, and we will not reproduce the
derivation here. The calculation can be found in [85] which, upon using the identity
|l'(iy)| = v/7/ysinh(my) and the freedom to use the Bogoliubov coefficients up to overall
phases, we find that

[

1 1 alel/a ,—ild (el ; i
- :{ (}/zmm/ew/a_le WeeTta )i £ and k same sign (11.11)

if otherwise
and
Bue = —age ™V, (11.12)

where here a is the acceleration. For convenience we will actually consider using another
function (which happens to be equivalent to an Unruh Bogolyubov coefficient, but that
doesn’t even need to come into play here) which we define as

1el 1Lkl
1 — Lo () if ¢ and k£ same sign
Ay, = Qg = 4 /2malA] & (11.13)
coshry 0 if otherwise

where r, = tanh ™' (e 7™/,

With this, let us continue on to try to calculate the elements of Eq. (11.6). Consider
for example the factor |(¢, ug)* + (¥, u})|? in o1;. To make things simpler, we will define
1 to be such that its overlap with the Rindler modes (¢, wy) are all real-valued. With this
we have

(o ug)” + ()P = / / QUL (1, w00) (1, we ) o — Bl )y — Pe) (11.14)

= //dﬁdf’(zﬁ, we) (1, we ) cosh(ry) cosh(re ) (Ag + Ale ™) (A%, + Apre ™12
(11.15)

= //dfdél(w, UM)(’QD, wg/) [COSh(’I"g + Té)Re(AgkAz/k) + sinh(rg + ’I“Z)RQ(AMAE%)] s
(11.16)
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where in the last line we have done several things: we have used the fact that e~™4/@ cosh(r,)

sinh(ry), that cosh(x+y) = cosh(z) cosh(y)+sinh(z) sinh(y) and sinh(z+y) = cosh(x) sinh(y)+
sinh(z) cosh(y), and then noted that the imaginary parts of the integrand vanish upon inte-
gration due to antisymmetry under ¢ <> ¢’ (as of course they must since we are computing

a squared magnitude). It is similarly shown that

(0, )" — (0, up) (11.17)
= //dﬁd@’(z/}, we) (Y, wer) [cosh(ry + ry)Re(AwAj,) — sinh(ry + 7)) Re(Ag Apy)]
(11.18)

and
2 Im((wa uk’)("lja UZ)) = — / / dgdél(i/}, U}g)(’gb, 'wg/) Sinh(’l"g + TZ)Im(AgkAg/k). (1119)

Then, to actually compute the elements of the covariance matrix in Eq. (11.6) we need to
integrate these over k and with the appropriate factor (cosh(sy)? + sinh(sy)?), which we
will label v}, since this is exactly the thermal symplectic eigenvalue of Minkowski mode k.
Expressing this in terms of exponentials gives

—|k|/T
e +1

Then, the entries of the covariance matrix are given, for example, by

ou = /dkuk|(z/;, ) + () (11.21)
1 o Ik ) I ot (%) . I i=t=t (%)
= Re Ty L dldl' (v, we) (W, we) |cosh(ry 4+ ry)e' ™ o) 4+ sinh(ry 4+ ry)e' e a
ma J,
(11.22)

where the k integration is only over half the line because the Rindler modes are zero when &
and ¢ are different signs; since the only dependence is on |k| we can just take the integration
over the positive half. We can do the change of variable to y = éln(f) to get

1 . , ) ,
o011 = Re 7 dyv(y) / / dldl’ (v, we) (W, wer) [COSh(T’g + r})el(’uf W4 sinh(r, + 7"2)61(4’@ Wl
(11.23)
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where
(11.24)

We similarly have

1 o) . , . ,
092 = Re %/ dyv(y) / / dldl' (1, we) (W, wy) [cosh(rg + r})e’(_“Z W sinh(r, + Té)el(_e_z W
(11.25)

and

o123 = 091 = —Im i/ dyv(y) / / d0dl’ (1, we) (1, we) sinh(ry + )Y (11.26)

2 J_

From here we will make some approximations. Let us define our detector mode to be a
Gaussian of positive frequency, such that in k-space it is peaked at some defined frequency
Qg4, with thickness L such that

B S A Gt U0
(w,wo—( =AW p( —F > (11.27)

Recalling that (¢, w,) are just the « coefficients of an (approximately) purely positive fre-
quency Bogoliubov transformation, the normalization constant is such that this overlap sat-
isfies the Wronskian condition [ d¢|(¢, wy)|* = 1. Now, in obtaining Eqgs. (11.23,11.25,11.26)
we have made no assumptions about what the overlap (¢, wy) is aside from that it be real.
What we want, however, is a purely positive frequency mode (in the Rindler basis) such
that (¢, we) = 0 for £ < 0. Our choice, Eq. (11.27), while mathematically convenient,
does not strictly satisfy this. We can, however, make it approximately so by dictating
that the peak frequency is large compared to the width of the Gaussian: Qg > L. Given
this assumption we can significantly simplify our expressions for the elements of o. It is
straightforward to demonstrate that o5 and 091, as well as the second terms in oy; and
092 (i.e. those with sinh(r, + 7)), will vanish for purely positive frequency (i, wy) upon
integration. For our choice of mode, these terms can be shown to goes as ~ exp(—Q3/ L?).
Thus we can drop these term by assuming g > L, giving us 011 = 099 (just retaining
the first term in each) and 015 = 09; = 0. Namely, our projective detector mode is in a
thermal state.

Considering the remaining factor in oy; = 099, we see that we can factor the two /¢
integrations (by expanding cosh(r,+ 7)) into a product again) and then we get integrals of
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the form
/df(@b,wg)eiwy cosh(ry), /df(@b,wg)eiwy sinh(ry). (11.28)

We will now take another approximation by assuming that the acceleration scale is small
compared to the energy scale of our detector, 2y > a. lL.e. we assume a small Unruh
response. Given this, the functions cosh(ry) and sinh(r,) vary so little over the integration
of the Gaussian that it can be well approximated as a constant, evaluated at ¢ = .
The integrals then reduce to Fourier transforms of (¢, w,) which, given our choice in Eq.
(11.27), evaluate to

. - L242
/déw,wg)eilfy = (2y/7L)Y? exp (— 2y :l:iQdy> : (11.29)
Given these approximations, it is then easy to work out that

L e2mafa 4 1 o 72,2
011 = 092 R ﬁ <€27er/—a_1) /_Oo dyv(y)e Ly (11.30)

where, again,

a gay

1
vy) = S (11.31)
er®” — 1

Notice that if the field is in its vacuum state, 7' = 0, then v(y) = 1 and we obtain exactly
the Unruh response that we would expect. In the case of nonzero temperature what we
find is that o is a thermal state with a symplectic eigenvalue that is the product of two
symplectic eigenvalues, one corresponding to the standard Unruh response and the other
being a thermal contribution from the field that depends nontrivially on the acceleration
of our observer. Importantly, we note that this state is not symmetric between exchange of
the Unruh temperature Ty = a/27 and the temperature of the field, T'. This disproves the
claim made in [150]. Indeed, interestingly, while the Unruh response appears unaffected by
the Minkowski field temperature, the response from the field thermality depends strongly
on the acceleration of the observer.

This result is, however, troublesome from several different perspectives. First, we see
that the response from the field thermality is independent of the peak detector frequency
Q4 (it does, however, depend on the bandwidth [:) Mathematically this occurs because
(24 only comes in as a phase in Eq. (11.29). These phases cancel with each other when
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performing the double integration over ¢ and ¢ in the first (non-vanishing) terms of Egs.
(11.23,11.25). This only occurs given our approximation {23 > a and, given this, the result
is not overly surprising since a single Rindler frequency has non-vanishing contributions
from all Minkowski frequencies, and this becomes more so the case as a becomes smaller.
Within the parameter range valid for the approximations made this result should hold.
Clearly there is a first order correction to these approximations that, presumable, would
indeed depend on §2;. Second, it appears that in place of the detector energy gap determin-
ing how strongly the field temperature is felt, it is instead the acceleration that determines
this! That is, as a decreases the detector feels the field thermality more strongly. Very

roughly, we have
eQﬂ'Qd/a _|_1 ea/T +1
o~ (e%ﬂd/“—l) (ea/T_1>I. (11.32)

What is troubling about this behavior is that as a — 0 the response diverges. Clearly this is
unphysical, as we know that at exactly a = 0 the detector will simply observe the standard
thermal fluctuations of the field. While it is possible that one or more of the assumptions
we have made is obscuring a more correct result in the small a limit, ultimately this
behavior comes from the variable transformation y = %ln(f) that was made right before
Eq. (11.23), which was before any approximations were made. It is known that the Rindler
transformation is ill-defined in the a — 0 limit, and this appears to be what we are seeing
here. As already said, as a becomes smaller a single Rindler frequency becomes more spread
out in Minkowski k-space, including in the ultra-low frequency regime. As a decreases,
the mode 1 has a larger and larger overlap with lower and lower Minkowski frequencies,
thus inducing a larger and larger thermal response from the finite field temperature. The
divergence derives from the fact that the Minkowski zero-mode is infinitely excited from
any finite temperature. Fortunately, as such, this problem is alleviated if we apply a
Minkowski IR cutoff to the thermal field. Applying such a cutoff at k,;, = A corresponds
to applying a lower limit of yyin = In(A/a)/a to the integral in Eq. (11.30). Critically, we
have ypin — 00 as a — 0. As this limit is taken, therefore, the integration window falls
well outside the Gaussian present in Eq. (11.30) and thus we have an exponential falloff
that halts the divergence in this limit.

11.2 Discussion

In this chapter we have used a basic model of measurement in field theory, [150, ], to
examine what occurs when an observer uniformly accelerates not in the Minkowski vacuum
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but rather in a Minkowski thermal state. Under a set of approximations we have arrived
at the result that such an observer measures their detection mode to be in a thermal state
of symplectic eigenvalue equal to Eq. (11.30), which is the product of two symplectic
eigenvalues, one being the standard Unruh response and the other being an acceleration-
dependent thermal contribution from the field temperature. We see, among other things,
that these two contributions are distinguishable. That is, an observer is able to distinguish
the case in which he or she is accelerating at rate a = 277} through a Minkowski bath
of temperature T, from the case that they accelerate with a = 277, through a bath of
temperature T;. This is in contrast to the claim made in [150].

Our result, however, has troubling behavior in the small a limit that does not appear to
be the result of any approximation. Namely, in the small a regime the response resulting
from the field temperature becomes stronger with decreasing acceleration. In the a — 0
limit the response diverges, which is clearly not physical. The Rindler transformation is
known to be ill-defined in this limit, and we will therefore not concern ourselves with this
limit specifically, especially since the problem would probably be alleviated if we were
to apply an IR cutoff to the thermal field. Rather, let us take the result at face value
and consider the implications of amplifying thermal fluctuations through the use of small
acceleration.

This result has two consequences of potential experimental interest. First is in regards
to actually detecting the Unruh effect in the laboratory, the primary problem with this
being the enormous accelerations necessary to obtain a measurable thermal response. If,
on the other hand, in the “low” acceleration regime there is a strong amplification induced
of existing thermal fluctuations in one’s system then this may very well be more easily
measured. While this is not the Unruh effect per say, a successful experiment of this kind
would certainly lend credence to its existence in nature. Alternatively, one may instead
consider using small accelerations as a means of ultra-cold temperature thermometry. If a
small acceleration is able to amplify in a predictable way otherwise undetectable thermal
fluctuations, then this would be a means of not only detecting them but of computing their
associated ultra-cold temperature. Before attempting this leap, of course, we should better
understand the nature of this effect and it’s limitations, which are clearly not depicted in
our formulation here. We leave a better understanding of our results to future work.
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Chapter 12

Quantum correlations in accelerated
frames: local versus global modes

Note: this chapter derives from the work [7], in collaboration with Jason Doukas, Andrzej
Dragan, and Robert B. Mann.

In this chapter we will use the local projective measurement formalism to study, from
a different perspective, a seminal scenario of interest within the relativistic quantum in-
formation community. In this setting one considers the entanglement shared between
two observers, Alice and Rob, in the case that Alice is inertial whereas Rob is uniformly
accelerating. The Unruh radiation experienced by Rob is expected to degrade the en-
tanglement between the two parties, and characterizing this degradation (as well as that
of quantum discord) was for years a primary line of research within the community, e.g.
[157, , , , , , , 10, 163] among, frankly, many others (see [7] for a more
comprehensive list). Such a program is of interest, for example, in determining the ca-
pacity of non-inertial observers to perform quantum teleportation protocols. As expected,
these works found that quantum correlations decay due to acceleration, limiting their use
in non-inertial settings. In particular, the qualitative trend among these studies is that the
entanglement shared between the observers reaches zero only in the infinite-acceleration
limit, and the discord (known to generally be more robust to decohering noise) remains
finite even in this limit.

It was eventually realized, however, that there were some serious problems with the
standard way that researchers were going about examining this scenario [164]. Namely,
the field state that was commonly considered was an entangled state of Unruh mode
Fock states (recall the Unruh modes from Sect. 4.3). This has been referred to as the

189



single mode approximation (not to be confused with the single mode approximation in
quantum optics). A fundamental problem with this setup is that, by the definition of the
Unruh modes, by varying the acceleration of Rob one was not simply seeing the effect of
acceleration on the accessible entanglement of a given state but was rather changing the
state under consideration itself.

Another problem with the old approach in general, and the one we will be focusing
on here, is that the field states previously under consideration were entangled between
Fock states of global field modes, spread over all space. While mathematically convenient,
this clearly represents an unphysical situation. A laboratory is a local setup, and the
entanglement that we may experimentally probe and utilize will therefore be between
localized modes. Attempts to move past this problem within the old framework have

proven very challenging [165]. Here we will tackle the problem of using localized modes
in this scenario from the perspective of local projective measurement, utilizing previous
calculations obtained in [151]. We will take the field state to be the vacuum but for a two

mode squeezed state between localized wavepackets, one of which is measured by inertial
Alice and the other by accelerating Rob.

As with previous research in this subject, we find that both entanglement and discord
are damaged by the acceleration of Rob. However, the transition from global to local modes
appears to produce a qualitatively different decay pattern than those results obtained in
the papers listed above. In particular, here we find that the entanglement shared decays to
zero at finite acceleration, and that the discord decays to zero in the infinite-acceleration
limit. That is, the degradation due to acceleration in any realistic setup will be qualitatively
worse than previously thought.

12.1 Setting

First let us define the sort of field states that we will consider in this chapter. Consider
two arbitrary field modes with annihilation operators a and b, with associated (possibly
unlocalized) wave-packets ¢4 and ¢p, respectively. We will assume that ¢4 and ¢p are
superpositions of positive frequency Minkowski plane waves only. These modes correspond
to two inertial observers, Alice and Bob, whom we assume each have full access to their
respective modes. Our intention is to view this state from the perspective of two observers:
Alice who is inertial and has access to mode ¢4, and Rob, who has uniform acceleration
a and thus only has possibly partial access to Bob’s mode ¢p, due to the Rindler horizon
experienced by Rob. This setup is illustrated Fig. 12.1.
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) Local Oscillator

Alice Nonlinear crystal

Figure 12.1: A schematic of the type of setup we consider. A two-mode squeezed state is
produced from a non-linear crystal in two Gaussian modes ¢4 (Alice) and ¢p (Bob). An
observer Rob accelerating with constant proper acceleration a in the z-direction carries a
detector that makes measurments of the field in a mode ¥ at time ¢ = 0 when his velocity,
v, IS zZero.

For the Bell-type entangled Fock state commonly used in previous analyses (see cita-
tions above) the considered state is given by (1+a'®b")|0). However here we are primarily

interested in the two-mode squeezed state of the form exp [s(dTl;T + di))} |0), with squeez-

ing parameter s. We suppose Alice (Rob) is in the possession of an inertial (accelerating)
detector that projectively measures the mode of the field ¥4 (z,t) (Yr(&, 7)), where (&, 7)
are the Rindler coordinates as defined by Eq. (4.28), such that Rob is located at £ = 0
and his proper time is 7. In the same manner that we obtained Eq. (11.8) in the previous

chapter, the joint covariance matrix of the state exp [s(dﬁﬂ + d@)] |0) as observed by Alice
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and Rob is straightforwardly computed to be [151]

000 0 a2 0 0 0
2

o = I+2(ny) 8 8 (1) 8 + 2sinh? s 8 |%| E +05,*’2 2Im(gﬁﬁ’) (12.1)

0001 0 0 2Im(3p) |8-p"*]
ey
_ 0 0 —Imla(B + B8 Rela(s — 5™
+ sinh 2s “Re[a(8 + 87%)] —Im[a(8 + 5™)] 0 0 )

—Imfa(8 - 8™)]  Re[a(8 — )] 0 0

where o = (Y4, 04), B = (Yr, ¢B), B = (¥r, ¢}), these being mode overlaps with respect
to the usual Klein-Gordon inner product, Eq. (4.5). Here (ny) is the average particle
number Rob would measure if he were accelerating through the Minkowski vacuum,

(ny) = /CMM (12.2)

o2nlllja _ 1’

as in Eq. (11.10), where w, are the (right-wedge) Rindler modes.

Here is where our approach diverges somewhat from that of the last chapter, and where
we will rely on the lengthy calculations already performed in [151]. We assume that Alice’s
detector 14 perfectly detects the mode ¢4, i.e., Y4 = ¢4. We therefore have that o = 1.
Unlike in the last chapter, however, we will assume that for each acceleration Rob may
choose a detector that maximizes the entanglement extracted from the considered state.
In this formalism, the degradation of quantum correlations comes ultimately from two
factors. The first, and obvious, is that Rob will experience decohering Unruh noise on his
part of the state. The second is the fact that an accelerating Rob can not perfectly match
his detector mode g to the mode ¢g. This occurs because a portion of ¢p will generally
be beyond the Rindler horizon experienced by Rob. As Rob’s acceleration increases he
gets closer to this horizon, and thus the mode mismatch becomes worse and the decay of
quantum correlations along with it. We assume that, given an acceleration a, Rob may
optimally tune his detection mode to obtain the best measurement possible. It has been
shown in [151] that Rob’s optimal choice is given by

P = ffodg(we,%)we
VIR dtl(we, o)

W (12.3)
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where A is a cut-off frequency of the detector !.

Once we have chosen a mode ¢pg, found the corresponding optimal detection mode
Y for Rob, and computed the resulting quantities 5, ', and (ny), then we have the
covariance matrix Eq. (12.1). Again, we assume that Alice is capable of perfectly tuning
her detector to her part of the two-mode squeezed state, & = 1. From here it is an
easy matter to compute the logarithmic negativity and the Gaussian quantum discord,
Eqgs. (3.34) and (3.36) respectively, and observe how they behave as a function of Rob’s
acceleration. For example from the formula for the logarithmic negativity we know that the
state will becomes separable when the smallest partially transposed symplectic eigenvalue,
7_, becomes unity. This occurs when A = 1 + deto, where A = deto 4 + deto g — 2dety
and where o 4, o g, and « are the upper left (Alice) block, lower right (Rob) block, and
the upper right off-diagonal block of Eq. (12.1) respectively. For our covariance matrix,
this is equivalent to the condition

91 = o) (1- 120, (12.4)

1+ ()

Roughly, we see that entanglement vanishes as the Unruh noise (ny) becomes comparable
to the overlap [ between ¢p and g, as makes intuitive sense.

We will now go on to consider two different scenarios: one in which the field state is put
into a two-mode squeezed state using global Unruh modes, so as to compare our formalism
with previous work, and one in which we take a two-mode squeezed state of local modes.

12.2 Global analysis

As we will see in the next section, by using local modes we obtain qualitatively different
results from those obtained in previous literature using global Unruh modes [157, , ,

, , , , 10, |. In these papers the field state under consideration was taken to
be (1+a'® CZS )T) |0), where CZS )'is an Unruh mode annihilation operator (recall Sect. 4.3)
and here we label the modes by the dimensionless parameter 2 = |¢|/a. This parameter

'We are compelled to introduce an IR cutoff because of divergences in the low Rindler frequency limit
of the integrand. However, this cutoff is also required on physical grounds since no detector can resolve
arbitrary low frequencies. Indeed, the wavelength of the IR cutoff is naturally related to the physical
dimension L of the detector. One might also have expected a UV cutoff. However, for the Gaussian
mode considered the integrand vanishes for large k, and therefore the integrals are independent of any
(sufficiently) large UV cutoff.
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is that which the previous literature varied over in order to see the effects of acceleration
on quantum correlations. As is clear, however, such an approach does not correspond to
seeing how observers of different acceleration see the same state, but rather corresponds
to changing the field state itself!

Given this, before going on to a (correct) local mode analysis in Sect. 12.3, it is
important to ensure that the differences we will see there are due to the fact that we use
local modes in place of global ones, rather than being due to the different overall approach
being taken (i.e. two-mode squeezed states rather than Fock states). To this end, let
us first perform an analysis using our method where we consider the field state to be in

an Unruh two-mode squeezed state of the form exp [s(&TJS s dcfg ))] |0). If, given this

setting, we obtain the same qualitative results as those achieved in previous studies, then
we can be assured that our differing results in the local analysis of Sect. 12.3 are in fact
due to the local nature of its setup.

In the present case of the Unruh two-mode squeezed state, i.e. in which ¢z is an Unruh
mode of parameter €2, the analysis becomes very simple. It is easy to see that the optimal
mode g that Rob can use, Eq. (12.3), is exactly the right-wedge Rindler mode g = wy
of frequency ¢ = af) (clearly, delocalized). From here, the parameters that go into our
covariance matrix, Eq. (12.1), are computed to be

f = coshrg, (12.5)
(ny) = sinh? rq, (12.6)
g =0, (12.7)

where rq = tanh ™' (e7™).

Given all of this, in Fig. 12.2 we choose s = 1 and plot the logarithmic negativity and
the Gaussian quantum discord (both D(A, B) and D(B, A), which recall are not necessarily
equivalent) as a function of z = e=2™! = (ny) /((ny) + 1), where the function z has been
chosen to rescale the entire frequency domain down to the unit interval. As expected, we see
a degradation of all quantities. In particular we see that the entanglement decays to zero,
but only in the 2 — 0 (z = 1) limit. This qualitatively matches the results obtained in the
previous literature. We also see that in this limit the discord D(B, A) asymptotes to a finite
value. Similarly, this result matches the behavior previously observed using the Unruh-
mode Fock states [135]. Tt is also possible to find an analytic expression for this residual
discord as a function of the squeezing parameter: limg_,o D(B, A) = 2log(coth s) sinh?s.
Curiously, this function quickly asymptotes to a value of 1/In2 for large squeezing values
s. This means that even though the correlations could be arbitrarily large in the inertial
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Figure 12.2: A plot of logarithmic negativity Ey (blue, solid), discord D(A, B) (green,
dashed) and discord D(B, A) (red, dotted) as functions of z = e~?™? where the state in
consideration is a two-mode squeezed state using Unruh modes with squeezing parameter
s = 1. We see that Ey and D(A, B) decay to zero as 2 — 0 whereas D(B, A) asymptotes
to a finite value.

frame (arbitrarily large squeezing), in the accelerating frame they will always be bounded
by this amount. On the other hand, we observe that when the optimized measurement is
over Rob’s subsystem, the discord D(A, B) decays to zero in the 2 — 0 limit. It is worth
pointing out that this novel result is computationally intractable in the analogous Fock
state scenario.

We have confirmed what we set out to confirm in this section: that by using Unruh
modes within our formalism we obtain the same qualitative behavior as that seen in the
previous literature. We are now able to continue on to a local-mode analysis and, presum-
ably finding different results, be assured that these differences are due to the local versus
global nature of the modes in question rather than the difference in taking a Fock state
versus a squeezed state.
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12.3 Local analysis

Here, we will take the mode ¢p to be semi-localized to some length L. Specifically, we will
let it be a Gaussian in frequency space with some positive peak frequency, meaning that
in position space it takes the form

1 2 N
¢B($a0) = N—\/%GXP {—%+zfx}
09s(r,0) = ~i76(x0), (125)

where L characterizes the width of the mode and N/L is the characteristic frequency of
the mode. We assume that the accelerated observer, Rob, passes through the centre of this
mode at ¢t = 0 and we choose the origin of the Rindler frame accordingly. Equivalently, we
can keep the accelerated frame fixed and translate the mode ¢p(x) — ¢p(x — 1/a).

Unlike in the previous section, the computation of Rob’s optimized mode 1z and of the
parameters 3, ', and (ny) is quite intensive and must be performed numerically. In the
interest of brevity and relevance we will not delve into these details here, but the reader
may find an expanded discussion of this procedure in [151]. Here, we will simply use the
numerics developed in that paper to explore the questions of interest here.

Before continuing, it is worth noting that in [150, | an explicit detector model was
used which was assumed to have finite extent L and perform measurements of the field at
t = 0. The detector cut-off wavelength, 1/A, was therefore naturally related to the size of
the detector, since wavelengths larger than this would be difficult to resolve. It was further
assumed that the whole detector was approximately accelerating at a constant proper
acceleration throughout the whole of the device, which placed the constraint al. < 1 on
the magnitude of accelerations that could be explored for a given size of the mode. Here we
go beyond this limit, and in particular investigate large accelerations. To do so we assume
that the detector can focus Bob’s mode, ¢p, down to a size small enough so that it is
measured in a small neighbourhood about the centre of the detector, £ = 0. This position
corresponds to the path followed by the hypothetical point-like accelerated observer Rob.
Thus, while the focusing lens and other detector components are assumed to be rigid (and
thus must accelerate at different rates), the measurement itself takes place in a region
where the acceleration and proper-time have an approximately unique value.

As mentioned in Sect. 12.1, the degradation of quantum correlations in this formalism
comes both from the standard Unruh noise experienced by Rob but also from the fact that
an accelerating Rob is not able to perfectly tune his detector to measure the Gaussian ¢p.
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In the large acceleration limit, the center of ¢p asymptotes to the position z = 0 and the
penetration of the mode through the horizon stabilizes to an approximately constant value
(i.e. half of the mode is located outside Rob’s horizon). This means that the parameter
asymptotes to a finite value for large accelerations. On the other hand the average Unruh
particle content continues to grow with acceleration. In the infinite acceleration limit, (ny)
will also diverge. The interplay of these two behaviors leads to an interesting conclusion not
previously realized in global mode studies of the entanglement degradation in non-inertial
frames: the entanglement extractable by Alice and Rob for large enough acceleration
will always lead to an entanglement sudden death. To see this we recall that the state
transitions from entangled to separable when the condition in Eq. (12.4) is satisfied. In
the considered range of parameters |3'|? is typically small and so the entanglement sudden
death occurs, for all values of initial squeezing, when the average vacuum particle number
is approximately as large as |3|%.

Indeed, we plot in Fig. 12.3 the entanglement and discords as a function of acceleration
up to al = 70, in the case that the squeezing parameter is s = 1. The results of this
calculation confirm that the entanglement in this state experiences sudden death at a
finite acceleration. This is in contrast to the entanglement behavior seen when considering
Unruh modes, as claimed in previous literature and shown in Fig. 12.2. Furthermore, in
the large acceleration limit it is straightforward to demonstrate that, given the behavior
of 8 and (ny) just discussed, both the discords D(A, B) and D(B, A) as computed by Eq.
(3.36) will vanish in the aL — oo limit. This, similarly, is markedly different from the
previously obtained result in [135].

This realization, that there is a qualitative difference between the localized and delo-
calized settings, is important because of the considerable amount of work in the literature
that uses delocalized Unruh modes in order to study acceleration-induced entanglement
degradation. The use of these modes was for computational ease and it has been argued
that they should produce qualitatively the same behavior as would more realistic, localized
setups. We have demonstrated here that this is in fact not the case. Indeed the origin
of this difference is easily discernible within our formalism. As discussed, in the local-
ized setting the entanglement experiences sudden death because the overlap parameter (8
asymptotes to a finite value whereas the noise (ny) continues to rise with acceleration. In
the global scenario, on the other hand, the § parameter in Eq. (12.6) does not cease in-
creasing as ) — 0 (equivalent to the infinite acceleration limit). Indeed we see that in this
limit the relationship becomes 5 ~ /(ny). Thus the off-block-diagonal terms (i.e. those
that represent correlations) in the covariance matrix of Eq. (12.1) increase comparably
with the diagonal terms, and some presence of quantum correlations can therefore exist
even in this limit.
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Figure 12.3: A plot of logarithmic negativity Ey (blue, solid), discord D(A, B) (green,
dashed) and discord D(B, A) (red, dotted) as functions of acceleration, where the state
being considered is the two-mode squeezed state, with squeezing parameter s = 1, and with
Bob’s mode in the localized Gaussian, ¢p(x —1/a) with N = 6 and cut-off value chosen to
AL = % We see that, unlike when Unruh modes are used, the entanglement experiences
sudden death at a finite acceleration. The quantum discord remains even beyond this point
of entanglement extinction. Both of the discords, however, decay to zero in the al. — oo
limit.

12.4 Discussion

We have used the formalism developed and explored in [150, | to study the Unruh-
degradation of quantum correlations in two-mode squeezed states, and in particular to
understand the difference between the cases of localized Gaussian modes and the delocalized
Unruh modes so often used in the literature, [157, , , , , , , 10, ]
among others. Although most past studies that used Unruh modes did so with Fock states,
rather than squeezed states, we have shown that the degradation of quantum correlations
are qualitatively equivalent between the two cases. In regards to this we have found that
the non-vanishing quantum discord previously observed in the case of a zero frequency
Unruh mode appears only to be true when the optimized measurement is over Alice’s
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subsystem but not so when it is over Rob’s.

Comparing the cases of localized and delocalized modes reveals qualitatively different
results, indicating that many of the conclusions presented in previous literature may have
to be reconsidered. In particular we have found in the localized modes that the entan-
glement reaches a point of sudden death at a finite acceleration, and that the quantum
discord vanishes in the infinite acceleration limit (both D(A, B) and D(B, A)). That is, the
acceleration induced degradation of quantum correlations appears to be significantly worse
than previously thought, when considering more physically realistic setups. This realiza-
tion may be of central importance in the development of relativistic quantum information
in and out of the laboratory. While we have previously discussed in this thesis ways in
which relativistic effects may aid us in quantum informational tasks, the present scenario
certainly appears to be one in which they harm us. Understanding the limitations imposed
by acceleration-induced decoherence, and perhaps ways of overcoming these limitations,
has and still is a topic of concern within this field. Further studies that use localized
scenarios, but which utilize different formalisms from ours, will represent important next
steps in scrutinizing the generality of our results.
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Part 1V

What does it mean for half of an
empty cavity to be full?
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In the last Part of thesis (not including the conclusion) we will take a single chapter to
discuss a very different, but arguably more powerful and general operational view of vacuum
fluctuations and entanglement. We have seen much with regards to vacuum entanglement
in this thesis. Ultimately, both it and the vacuum fluctuations with which it goes hand
in hand are a result of the fact that the vacuum state is defined with respect to global
operators. The elementary excitations of quantum field theory are countable, a crucial
feature for making it able to deal with the physics of elementary particles. These are
described by operators which carry information about the energy momentum that these
excitations take or give to the field. The vacuum state of the field is then that from which
no quanta can be removed. Excitations of this state then describe the states with one or
more particles with well defined momenta. This positive energy Fock quantization provides
simple global operators for the field as a whole. However, it is important to recognize that
what we call a particle under this definition is an entirely delocalized excitation (i.e. of
definite momentum). This clearly goes against our intuitive notion of what a particle is
supposed to be, as a localized entity. Theoretically, the total number of particles carried
by any specified configuration is easy to address, but it is clear that this construction lacks
appropriate tools to inquire on the local properties of the field. A question as simple as
“where is this particle?” is difficult to address if not by indirect means due to the lack of
a local particle number operator. The problem is that this construction does not admit
states that assign zero probabilities outside bounded regions of space. In short, powerful as
it is, the standard Fock basis associated with stationary modes of the global Hamiltonian
provide only a feeble scaffolding for digging into issues pertaining to the localization of
quanta. Here we will use an alternative local Fock space representation [166] that enables
us to address these questions.

The indefiniteness of local particle content means that the reduced state of a field lo-
calized to some given region will generally be mixed, and therefore excited! It follows,
since globally the vacuum is a pure state, that this region must be entangled with other
regions of space, as we well know. Relativistic quantum phenomena involving the observer-
dependence of particle number, such as the Unruh and Hawking effects, are often attributed
to this, as we saw in Sect. 4.3. Moreover, vacuum entanglement occurs also in enclosed
systems, such as an optical cavity or a superconducting circuit. This introduces a con-
ceptually challenging fact: at least formally, half of an empty box is not empty. This is
a mathematical result which alone gives us little intuition towards actual physical conse-
quences. Under what operational conditions does this phenomenon present itself; what
physically sensible measurements (in general) can be made to give this mathematical fact
experimental significance? In the following chapter we shall give a precise answer to this
question.
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Chapter 13

Slamming a mirror

Note: this chapter derives from the work [3], in collaboration with Marco del Rey, Hans
Westman, Juan Leén, and Andrzej Dragan.

If an experimentalist has an empty (vacuum state) optical cavity in their laboratory
then, as just discussed, in some sense the left-side of cavity contains photons (indeed,
many), as does the right-side. What can the experimentalist do to detect these particle
in, say, the left-hand side? The answer, as will be explained, is to very quickly introduce
a physical boundary (in this case a mirror) between the two sides of the cavity, thus
blocking off any influence from the right-hand side while the experimentalist measures
the left-hand side. Of course, quickly introducing a boundary (i.e. quickly modifying the
Hamiltonian) produces particles similar to what occurs in the dynamical Casimir effect
(DCE) [115], which has recently been experimentally observed [112]. The key observation
of this chapter is that these real excitations, created by slamming down the mirror, are
mathematically equivalent to the local particles attributed to the subregions prior to the
introduction of the mirror. This is what it operationally means for half of an empty box
to be non-empty. In addition to giving a satisfying interpretation to the question of local
particle content, this realization also suggests a simple experimental setup that can be used
to reveal, measure, and perhaps even utilize vacuum entanglement.

In this chapter we consider both massive and massless scalar fields in a one-dimensional
cavity with Dirichlet boundary conditions (i.e. mirrors on the ends). We perform several
tasks. We begin by discussing the difficulties that appear when we intend to measure local
vacuum excitations and the different scenarios that could allow us to circumvent them. We
will be using the formalism of local quantization introduced in [166], which allows us to
characterize the reduced state of a sub-region in the cavity and study its local properties
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formally. We will utilize Gaussian quantum mechanics in order to easily compute and
characterize the reduced states of sub-cavity regions and the correlations between them,
explaining how this equivalently describes the physics of slamming mirror(s) into the cavity.
We will discuss and analyse the spatial structure of entanglement between regions, similar
to what has been done in [167] for lattice systems.

We will move on to consider what occurs if a mirror is very quickly introduced into
the cavity, discussing the time-evolution of the system after this occurs and observe what
one would expect: a burst of particles propagating away from it. These excitations, how-
ever, are mathematically one and the same with those previously attributed to vacuum
entanglement in the local analysis (the only difference is that now they evolve according
to a different Hamiltonian). Equivalently, the real excitations produced in the left and
right-hand sides are quantum entangled. We later consider the case in which two mirrors
are simultaneously introduced, some distance apart. In this case the particles produced in
the left and right-hand sides (but ignoring the middle section) can similarly be entangled,
despite no common mirror between them. This is possible because, as follows from the
main point of our work, the entanglement is simply that which was already present in the
vacuum prior to the introduction of the mirror. The energy introduced into the system, in
the form of real quanta, provides the necessary resource with which the previously present
vacuum entanglement manifests itself.

Lastly, we discuss the experimental feasibility of simulating this scenario to verify vac-
uum entanglement using current technologies. We note that introducing a mirror in fact
represents a very efficient means of harvesting the vacuum entanglement, since afterwards
you have two new cavities that contain all of the entanglement (up to a UV cut-off deter-
mined by how fast the mirror is introduced). This entanglement could then be a resource
for quantum computational tasks. This method of harvesting could potentially be much
more promising than the usual proposed method of locally interacting a pair of other quan-
tum systems (e.g. artificial atoms) with the field [16%, 44, 5], since this is severely limited
by the interaction strength.

13.1 How does one measure the vacuum excitations
in a subregion?

To begin, we need to ask ourselves in a general sense what one must do in order to
measure localized vacuum fluctuations. What operational procedures can be implemented
to do this? Mathematically these fluctuations can arise when tracing out a spatial region
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of a vacuum field. That is, because there is entanglement between spatial regions, the
reduced state of such a region must necessarily be mixed (and therefore excited). This
thus motivates the idea that at least one possible way of measuring these excitations is to
isolate oneself to only the subregion of interest. But this means more than simply staying
at a fixed location. As we will show later in more detail, a stationary detector interacting
with a vacuum field only at a given point or region will still register zero particle detection
if it is allowed to measure for a long enough time. Rather, isolating oneself to only a
subregion means losing causal contact with the outside; information cannot be allowed to
reach our observer from outside the region of interest. Uniform acceleration, for example,
is one way of achieving this [21, 39]. Another way is for one to turn their detection device
on for only a short time At; doing this ensures that the detector is causally isolated from
any part of space more than a distance cAt away from it. Indeed switching one’s detector
on fast enough does cause spurious detection events [I, | , however it is questionable if
this can be fully attributed to vacuum excitations (i.e. to entanglement) inside a cavity
since formally the probability of detection limits to zero only as At — oo, which is clearly
larger than the cavity length.

Are there any other ways to isolate oneself from outside influence? Indeed, another
option that gets the job done is simply to erect a physical boundary. In the cavity scenario
this corresponds to placing a perfect mirror at the bipartition boundary. Certainly once
such a mirror is installed then an observer in the left-side of the cavity will receive no
information from the right-side. Would such an observer then be free to measure local
vacuum excitations? How could it be that such a setup suddenly allows the observer to
measure what they could not have beforehand? Furthermore, one should be concerned
about the fact that quickly placing a mirror in the middle of the cavity is expected to
create real particle excitations, similar to what occurs in the dynamical Casimir effect
(DCE) [115, |. That is, by rapidly changing (in this case, introducing) a boundary
condition we are rapidly modifying the Hamiltonian of the system. This will create real
excitations in the field that will propagate away from the mirror upon being introduced,
and an observer located on one side of this mirror will detect these excitations. Will these
particles interfere with the observer’s ability of detect the local vacuum excitations that
are associated with entanglement between regions?

The answer, as we will elaborate, is that a detection of the mirror-created particles is
exactly a detection of the local entanglement excitations.
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Figure 13.1: Sketch of the one dimensional cavity setting. We start (¢ < 0) considering a
cavity in its vacuum state |0)g. At some instant (¢ = 0) we slam a mirror separating the
cavity into two regions. As explained in the text, the normal modes in these separated
subcavities correspond to the localized modes of the cavity without mirror, which we will
show suffice to analize states, correlations and particle production after slamming the
mirror. The horizontal line corresponds to ¢ = 0, the diagonal lines represent the light
cone starting at the slamming event.

13.2 Formulation and setting

The first purpose of this section is to present a mathematical framework for the computa-
tion and analysis of global cavity states using a local formalism. We will start describing
the quantum states in the cavity by introducing a bipartition of it into two subregions,
precisely those in which the cavity will eventually be separated by the introduction of a
slamming mirror at some instant of time. Later on, in the second part of this section, we
will use this formalism to study the physical scenario where a mirror is abruptly introduced
in the middle of the cavity.

We will find it convenient to do a change of notation from that used throughout the
rest of this thesis. This is because, as we will see, a defined set of local modes will be
the primary basis with respect to which we represent the cavity field, as opposed to the
global modes of the cavity. Thus, throughout this chapter we will ascribe mode functions
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Um(z,t) of frequencies w,, and corresponding annihilation operators a,, to a set of local
modes (the definition of which we will see below). On the other hand, we will use the
notation U, (x,t), ,, and A, to respectively denote the mode functions, frequencies, and
annihilation operators of the global modes.

13.2.1 Local mathematical analysis: local vs. global modes

Here we will briefly introduce the field-theoretic formalism required for our analysis [39,
].
The aim is to spell out what can be ascertained about the physics of a non-localized
state spanning the whole cavity, as is the case of the quantum vacuum and generic cavity
states, by using localizing mathematical tools. We do not yet introduce a mirror in the

middle of the cavity. We will postpone this to the next subsection, once the present goal
is achieved.

We will consider a scalar field gg(x, t) of mass p within a Dirichlet cavity of length R,
such that z € [0, R] and qB(O, t) = (ﬁ(R, t) = 0. The standard, stationary set of modes with
respect to which we expand <5 are what we will refer to here as the global modes U, as
given by Eq. (4.54). In the notation of this chapter, these mode functions are

1 . .
Un(w,t) = oo sin (WZ&:) e Mt = U, (x)e (13.1)
where Q2 = % + u? is the frequency of mode n. As explained in Ch. 4, this choice is

convenient because the corresponding Fock states are energy eigenstates of the free-field
regularised Hamiltonian (which we will also call the global Hamiltonian)

Hy = Z 0, AT A, (13.2)

n=1

where here {An, /1,2} are the ladder operators corresponding to the global modes. As has
often been the case throughout this thesis, we will be primarily interested in the vacuum
state of the field, which here we specify as being the global vacuum state |0g), defined to
satisfy A, |0¢) = 0 for all n. This is the state of lowest energy with respect to Flg, and is
said to be the state of zero particles, because no A quanta can be removed from it, i.e. a
cavity in this state is empty (although not from a local point of view as we discuss later).

While the field decomposition into the global modes is often the most convenient and
physically relevant choice, we can also consider a decomposition into a mode basis better
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suited to study the local physics of a subregion inside the cavity. Say that we decompose
our cavity into two regions, one that runs within = € [0,7] (the left side) and the other
within = € [r, R] (the right side). The lengths of these two sides are thus r and 7 = R —r,
and we can define a new set of modes {u,,(x,t)} and {a,,(z,t)} for the left and right sides,
respectively. The obvious way of doing this is to define these modes to have support at
a certain time ¢ = 0 only over their corresponding subregions. As pointed out in [160],
however, one must be careful that the new basis modes still satisfy the correct boundary
conditions of the cavity (and in particular, not extra ones). This requirement immediately
implies that, if say the set {u,,} are supported only in the left region at t = 0, then their
support will necessarily exceed this region for later times (u,, satisfies the wave equation
and we have not placed an extra boundary condition between the two regions). This does
not turn out to be a hindrance in exploring local physics, however.

Since the global vacuum |0g) is a stationary state it does not matter at what time we
examine its properties; we will choose time t = 0. The solution is then to simply define
our local modes to be appropriately compactly supported at this instant. To this end, we
will define our local modes u,,(z,t) to have initial conditions

U (2,0) = MSirl (me> ;

/TWn, r
Um(2,0) = —iwpumn(z,0),
O(x — -
U (2,0) = %sm 7Tm(:1; T)) ,
U (2,0) = =i (z,0), (13.3)
where w?, = ”iTQ + p? and @2, = ”277?2 + w2, Given the above initial conditions, the local

modes will evolve throughout the cavity according to the Klein-Gordon equation. These
modes satisfy the proper boundary conditions and constitute a complete and orthonormal
basis for the whole cavity [166], and thus form a proper expansion of the field. For our
purposes in this section, however, we need only consider the instant ¢ = 0 at which they
are localized to their respective sides of the cavity. Examining the global vacuum in this
basis, at this instant, allows us to fully characterize the reduced state of the subregions

and the quantum correlations between them. The decomposition in terms of local modes
is depicted in Fig. 13.2.2.

Let us denote the local ladder operators associated with the above modes as {a,,, al }
for the left side, and {a,,,a } for the right. The reduced state at time ¢t = 0 of, say, the
left side of the cavity can then be represented with respect to the Fock basis corresponding
to {am,al }. As extensively discussed in [166], this provides a well-defined notion of the
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reduced state within a localized region. Indeed it is equivalent, up to a change of basis,
to any other well-formulated notion of spatial reduced state (for example by taking the
continuum limit of a discretized lattice).

As per usual, solutions sets to the Klein-Gordon equation are related by a linear Bo-
goliubov transformation, meaning that our local modes are related to the global modes via
some transformation of the form

o0

U (2, 1) = Z(Oéann($a t) + BmnU, (7, 1)),

n=1
)

U (2,8) = Y (CnUn(2,) + BnUs (2, 1)). (13.4)

n=1

Equivalently, in terms of the annihilation operators (from which the creation operators are
trivially obtained) we have

m = Z(CY:,mAn - ﬁ;nAIL)’
n=1

i = 3 (@ — By L) (1.5)
n=1

The Bogoliubov coefficients, which are time-independent, are computed via the Klein-
Gordon inner products between local and global modes. In our case, they evaluate to

[160]

where

v /Rdxu (2)um(z, 0) el sin (13.10)
mn — n m\L, = 1 ’ :
0 V RrQnwn, (922 — w?) R

sin 2 (13.11)

VR0, (922 — @2) R

R
Vo :/ dz U, (z)ty,(z,0) =
0
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U, (z,0)

{um(x7 0)}m:1N

Figure 13.2: The cavity for the cases studied in this chapter. The figures on the left
correspond to the full cavity without mirrors, the light dotted vertical bars indicating the
border of the regions chosen to study localization into two (top) or three (bottom) spatial
regions. The right figures show the decomposition in terms of local modes at ¢ = 0 for
both settings.

The fact that the § coefficients are non-vanishing implies that the global vacuum [0¢g)
is, in the local basis, an excited state in the sense that a,, |0g) # 0 and @, [0g) # 0, i.e.
local quanta can be removed from it, so in this picture the vacuum cannot be considered
to be empty. Indeed, the reduced state of, say, the left side of the cavity, is a mixed state.
These local excitations, and the local mixedness, are associated with the entanglement
present between the two sides of the cavity.

Lastly, as with any Bogoliubov transformation, the above coefficients satisfy the neces-
sary conditions [39]

> (k@i — Bk Bir) = O (13.12)
k

Z(amkﬁnk - Bmkank) - 0; (1313)
k
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and similarly for the barred coefficients.

13.2.2 Slamming down a mirror

If we compute the vacuum expectation value of the local number operators f,, = al, a,, and
Ny = @l a, we find that these are non-zero for the global vacuum state |0g), indicating
the presence of a bath of ‘local particles’. While this observation is mathematically correct
we must nevertheless ask ourselves if any operational significance can be attached to this
theoretical notion of “local quanta”. Can we somehow detect the presence of such local
quanta in the lab?

Taking as inspiration the discussion in Sect. 13.1, we claim that a generic (but perhaps
not exhaustive) method of achieving this is to informationally block the local region of
interest from the rest of the system. In a cavity-field system this can be achieved by
introducing a mirror, separating the cavity into two new smaller ones. Indeed, as we will
discuss, such an operation does allow the detection and characterization of local excitations.
This is fundamentally due to the fact that we identify a “real” (i.e. measurable) particle
to be an elementary excitation of a stationary field mode. By the act of introducing the
mirror, what were nonstationary local modes of the full cavity translate into stationary
modes of the new small cavity, thus facilitating the measurement of their excitations.

One may be concerned with the unique identification of “a real particle” with “an
elementary excitation of a stationary mode”. In this work, however, we attempt to be op-
erationally unambiguous and connect as closely as possible with the kinds of measurements
that can actually be achieved in the laboratory, necessitating long measurement times as
compared to the fundamental time-scale of the cavity. As a detection model we can con-
sider a particle detector (as presented in Sect. 4.4 or in Ch. 5; the details are irrelevant)
that remains at some specific location zy. Let the initial state of the system is taken to be
the |0g) ® |g) where |g) is the ground state of the detector. We will present two cases:

First, without slamming a mirror, we imagine adiabatically switching on the coupling
between field and detector. The adiabatic theorem guarantees that if the system was
originally in the ground state of the non-interacting theory, then the system at much later
times will be found in the interacting ground state.! When we then adiabatically switch
off the interaction the combined system will then be found in the non-interacting vacuum
and thus will fail to detect the presence of local quanta. This then immediately shows that

IThe adiabatic theorem requires a gap between the vacuum energy eigenvalue and other eigenvalues.
This is guaranteed since we are dealing with a cavity with a naturally infrared cut-off defined by the size
of the cavity R.
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such a detector will not get excited. Such a procedure does not detect particles when the
global system is in its ground state (thus allowing us to use the adiabatic theorem). It is
for this reason that we relate the particle notion with the free stationary modes, which are
the ones corresponding to the free eigenstates.

If, on the other hand, we slam down a mirror and then follow the same adiabatic detec-
tion procedure within one of the sub-cavities then we will detect the presence of particles.
This is because the local modes, which are stationary after the mirror is introduced, are
excited. Critical to the message of this chapter is that the measurement statistics that will
be obtained from this procedure are equivalent to the local virtual particle statistics (i.e.
those corresponding to one half of the box) obtained from the transformation presented in
Sect. 13.2.1, which simply describes the local physics of the cavity and does not assume
the introduction of a mirror.

Concretely, we consider what happens when we instantaneously introduce a mirror at
x =r and t = 0, i.e. we impose the Dirichlet boundary condition ¢(r,t) = 0 for ¢t > 0.
Clearly the instantaneous assumption is not physically realistic, however this turns out not
to be a hindrance in elucidating the most realistic, finite-time case. This will be further
discussed in Sect. 13.4.2. Given this scenario, it is clear that the set of local modes with
initial conditions (13.3), which were non-stationary for ¢ < 0 prior to the introduction of
the mirror, will have a different evolution than before, u], (z,t) and u),(x,t), which for
t > 0 will correspond to stationary modes , i.e.

U (2, 1) when ¢ <0
u, (z,t) = ot (13.14)
U (2,0)e” ™" when t > 0
, U (2, 1) when ¢ <0
u,(x,t) =< ot (13.15)
U (z,0)e”™"  when t > 0

Please note that after this section we will only need to consider the times ¢t > 0, and thus
will abuse notation by dropping the primes from the mode functions, meaning that for
t > 0 we will define u,,(z,t) = wu,,(z,0)e “n?.

Furthermore and analogously, the corresponding global modes U/ (z,t) would only be
stationary modes for ¢t < 0; for £ > 0 these modes would be non-stationary.

Equivalently, the sudden introduction of the mirror translates mathematically into a
time-dependent Hamiltonian, i.e. we have

2 Q,,Af A t<0
H: Zm m m m/\ . ] 1 1
{ S, Wi+ @@l Gy >0 (13.16)
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Physically, the time dependence of the Hamiltonian will cause particle creation similar to
the Dynamical Casimir Effect [1 15, 112].

To determine exactly the amount of particle creation we need to calculate the Bo-
goliubov coefficients between the modes U], and wu], and u,. These are nothing but
the Klein-Gordon inner products t,, = (ul,|U}), Bmn = (u,,|U), amn = (u),|U}), and
Bum = (@,,|U), which we can conveniently evaluate at time ¢ = 0. Importantly, due to
the specific choice of initial data at ¢ = 0 these Bogoliubov coefficients necessarily coincides
with those of the previous section, i.e. Eq. (13.6). This means that the particle content
generated by the mirror is exactly equivalent to the local particle content (al da,,al an)
before the mirror is introduced, i.e. the particle content that is associated with entangle-
ment between the two sides of the cavity. Thus, although the sudden introduction of a
mirror is usually understood as causing particle creation, it is at the same time an opera-
tion that does not change the local particle number of the state. The difference now being
that these particle contents are associated with stationary modes, meaning that they can
be measured using standard techniques of quantum optics.

Moreover, it is not just the particle content, but the state in general that does not
change. That is, all particle statistics and correlations (including entanglement) are un-
changed by the action of slamming the mirror. Slamming the mirror does of course change
the time evolution of the system. For ¢t < 0 the system is time-independent, the global
vacuum state being stationary with respect to the global Hamiltonian, whereas for ¢ > 0
the change of Hamiltonian will cause time evolution (e.g. particles propagating away from
the mirror). The key observation, however, is that this difference in evolution is fully en-
compassed by the difference in spatial evolution of the mode functions themselves and not
by any changes in particle content or correlations between them. The energy we are adding
to the system, in the form of real particles, allows observation of the local-basis excitations
that are mathematically attributed to the their corresponding reduced regions. This action
furthermore allows us to measure their cross-cavity correlations, including entanglement.

13.2.3 Three spatial regions

Before continuing we would also like to describe the case in which the cavity is split into
three spatial regions, rather than only two. This will prove useful later when we discuss
the operational implications of slamming down mirrors and the possible experimental veri-
fication of vacuum entanglement. Note that the extension to any number of regions follows
analogously.

Let us proceed by considering a division of our cavity into three sections Ay = [Ag, By], Ap =
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[Bo, Col, and A = [Cy, R] with sizes A, B and C' respectively. Let us define:

1 2z €A
o) = { § TTER7

and set

We can build the local modes for these three regions u? (z,t) by demanding that:
Hy(x) . In(z— Zy)

z
uj (z,0) = sin , (13.18)
V Zwf Z
uf (r,0) = —iwfuf (z,0). (13.19)
With:
2
wf = (%) + 12, Z=AB,C.
The new Bogoliubov transformation, analogous to Eq. (13.4), is:
ul => ol Un+ 85U, Z=ABC, (13.20)
where
A = (Unlum) = (Q +win) Vi, (13.21)
o = —(Unlum) = (R — win) Vi, (13.22)
and
A mr(—1)m nrA
ya. :/ dz Uy, (x)u (x,0) = A sin : 13.23
[ U@ (0) = i (13.23)
2 [ (=1 sin (242 ) —sin (22|
VB :/ dz Uy, (x)ul (x,0) = : 13.24
s (it 2:0) VRBR,E (% — ) e

c f c - _nr(A+ B)
Vo /A+B dz Uy, (2)u,,(x,0) JROOLC (2 — o) sin 7 : (13.25)
Transforming to this mode basis allows us to describe the local physics of, and the
correlations between, these three regions. Similar to the scenario discussed in Sect. 13.2.2,
the mode basis described here can be used to describe the process of slamming down two
mirrors simultaneously, thereby splitting the cavity into three regions. Exactly the same
physics applies in this case, and we will thus not reiterate the material of Sect. 13.2.2.
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13.3 Computing the state

In this section we will discuss how to obtain a local description of the global vacuum state?.
This includes the evaluation of the reduced field state of a subregion of a cavity, and a
description of the of vacuum entanglement between regions of the cavity. A key point to
keep in mind, as discussed in the previous section, is that the Bogoliubov transformation
(and thus the resulting state) is the same whether we consider this to be with or without
the introduction of the mirror. As discussed further in Sect. 13.4.1, the covariance matrix
that we compute (i.e. the state) equally well describes both cases.

13.3.1 The state of two regions

We will start by computing the form of the global vacuum upon transforming to the
local-mode basis, in the case that we split the cavity into two regions. Let us define
the canonically conjugate quadrature operators for the field modes, both global and local.
Letting {An, AL} be the ladder operators for the global modes, we define the corresponding
quadrature operators to be

(AT — A,). (13.26)

. 1 R . 1. .
dm = \/§(a’m + a/;rn)u Pm = \/i(ain - a’m)7
Om = ﬁ(am +al), pm= E(ain — Q). (13.27)

For notational convenience let us define the phase-space vectors X = (Ql, ]51, Qg, Pg, )T
X = ((jhﬁh qA27 (an e )T7 and X = (617]317 (1271327 e )T'

In Sect. 4.8 we how to represent a Bogoliubov transformation symplectically. We now
do this here. Within the representation we have presented it is straightforward to see that

the Bogoliubov transformation from global to local modes, as given in Eq. (13.5), is given
by the matrix transformations

A~

£ =8X, %=8X, (13.28)

2Tt must be pointed out that the mathematical toolbox presented here allow us to work with any
Gaussian state, not just the global vacuum. We could, for example, start with with a global thermal state.
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where the matrix S takes the block form

Si1 S
sl R (13.29)
with
~( Re(mn — Bmn)  Im(cunn + Bon)
S = (—Im(amn — Bum) Re(tmn + Bm) ) (13.30)

and similarly for S using the barred Bogoliubov coefficients. It is straightforward to show

that such a transformation preserves the canonical commutation relations iff the Bogoliubov
conditions Eq. (13.12,13.13) are satisfied.

Using the specific transformation for our scenario, Eq. (13.6), we find the 2 x 2 blocks
of matrices S and S to be

Wm0 S8  _ of Wm0
Sin = 2Vn < 0 Qn)’ Soin = 2Vn < 0 Qn> (13.31)

We note that the off-diagonal entries of these blocks are zero, resulting from the fact that
our Bogoliubov coefficients are purely real. This means that the transformation does not
mix canonical position and momentum operators, rather the § operators of the local basis
are combinations of the global Q’s only, and similarly for the momentum operators.

It is important to note and to keep in mind that individually the matrices S and S are
not symplectic. This is because individually they only map onto a subspace of the total
Hilbert space of the field ®. This is easily concluded from the fact that the reduced field
states of the subregions of the cavity are mixed states, despite the global state being pure
(the vacuum). A proper symplectic transformation in phase space can always be associated
with a unitary operation acting in the Hilbert space, which will always bring a pure state
to another pure state.

Rather, it is the combined transformation

SBogo = (g) (13.32)

3The definition of a symplectic matrix S requires that it be square. However if a linear phase space
transformation is not square it is still required to preserve the canonical commutation relations. That is, if
we have an m x n transformation matrix S on phase space then it must still satisfy $9,,S” = Q,,,, where
Q,, is the n-mode symplectic form. If n > m then such a transformation corresponds to a symplectic
transformation followed by a partial trace, which can of course bring a pure state to a mixed one.

215



that is formally symplectic (see the discussion in Sect. 13.5.2). This matrix transforms the
global mode basis to the local mode basis, including both sides of the cavity:

(;) = SpogoX. (13.33)

Given all of this, we are ready to transform the state itself. As we well know, the global
vacuum |0Og) is an example of a Gaussian state. It’s covariance matrix, which we will label
o, represented in the global-mode basis, is simply given by the identity: oo = I. To
Bogoliubov transform this state to the local basis, o, we apply the above symplectic
transformation to og:

T _[O vy
Oloc — SBogoaGSBogo = <,7T 6’)

SocST So.S”
_ <§0GST Sos” | (13.34)

Here the covariance matrix o = So¢S? = SS” represents the reduced field state for the
left side of the cavity. Similarly, & = S§” fully characterizes the reduced state of the
right side. The off-diagonal matrix v = SST, on the other hand, contains the correlation
structure between the two sides of the cavity.

These matrices are easily computed. We see that each can be split into 2 x 2 blocks,
for example the reduced state of the left side takes the form

011 012
o= |02 02 - |. (13.35)

Here the 2 x 2 block o,,,, is the covariance matrix (i.e. it is the reduced state) of the
m’th local (left side) mode. The off-diagonal block &,,, where m # n, contains the
correlations between left local modes m and n. Using the fact that the S,,,, are symmetric
we see that these blocks are given by @, = >, SmeS,,. Similarly, the state & and the
correlation matrix 4 can be split into 2 x 2 blocks that are given by &, = ), S,..S,.c and
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Yo = ¢ SmeSne, respectively. These are given by

Wmwy, 0
_ S Wy, 0
= (W, 0

Together, these blocks constitute a full characterization of the global vacuum in the
local-mode basis, and in particular o fully characterizes the reduced state of the left side of
the cavity. Although we have derived the full analytical expressions it should be noted that
in the remainder of this chapter, when we present quantitative results, we have done so by
computing the above matrix elements numerically, by performing the sums to convergence.

There are several observations that we can make from this result. The first is that the
reduced states o and & are clearly excited states, meaning in this language that they are not
equal to the identity (the vacuum). Mathematically, this is what is meant by the statement
“half of an empty box is non-empty”. Equivalently, this is a mathematical description of
the particle creation due to instantaneously slamming down a mirror. Another observation
is that the correlation structure of the global vacuum in this basis is extremely connected,
meaning that every local mode is correlated (if perhaps not entangled) with every other
local mode. That is, since the blocks «,,,, are nonzero this means that every local mode of
the left side is correlated with every local mode of the right, and vice versa. Similarly, every
local mode is correlated with every other local mode of the same side, as demonstrated by
the fact that the blocks o,,, and &,,, are nonzero.

13.3.2 The state of three regions

We will now outline exactly the same procedure for the case of three regions in the cavity
(equivalently, the case where two mirrors are simultaneously introduced). This will allow
us to consider the entanglement between spatially-separated regions (i.e. the leftmost and
rightmost regions). As we will see, this is crucial for demonstrating that the entanglement
obtained by slamming mirrors is derived from the previously existing vacuum entanglement,
rather than having been created by the slamming process.

The procedure follows from the Bogoliubov transformation described in Sect. 13.2.3.
We will also describe how to obtain the reduced state of two out of the three regions (in fact
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this is trivial in the language of covariance matrices). In the phase space representation
we have equivalent matrix equations as those in Eq. (13.28,13.29,13.30), i. e.:

%% = 87X, Z =A,B,C (13.39)

where SZ has the block form as given in Eq. (13.29):

z [ Re(aZ, —B%,) Im(aZ, + BZ)
Sin = (—Im(afm — B%2) Re(aZ, +pZ) (13.40)
wi 0
=2V7% ( 0 Qn) ' (13.41)

The combined transformation, that which is formally symplectic, is given in analogy to
Eq. (13.32):
SA
SBogo = SB s (1342)
SC
and transforms the global mode basis to the local mode basis of the three regions:

A

Bl = SpegX. (13.43)

My > M
Q

Again, to Bogoliubov transform the global state o = I to the local basis we apply this
transformation to og:

Oa YaB Yac

Oloc = SBogoaGSgogo = (i OB Y BC
750 ’)’gc oc
S10:SY  S%esSPT StoeSC

= | SPesSY SPoeSPT SPoesY | (13.44)

SCoqS"  S%eSPT %St
The blocks again represent the reduced state of, and the correlations between, the three

regions. For example o 4 is the reduced state of the left-most region and 4~ contains the
correlations between the left-most and right-most regions. As before, each matrix can be
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further split into 2x2 blocks given by o2, = ,87,8%, +¥Z = %" ,8Y SZ, These are
given by

YA
o2, = 4i V7 (wmow" S%Q) (13.45)
l
Y 7
P2 =5V (“’ 0“"" ;2]12) . (13.46)
l

From here, one may easily study the reduced state of two of the three regions by simply
taking the appropriate blocks of Eq. (13.44). For example the reduced state of system
AC (the left-most and right-most regions) is obtained by tracing out B, which here simply
results in the covariance matrix

oAC = ( T4 ’YAC)
Yhac gc
_ [S%oeSt ShoesC

_ . 13.47
(SCGGSAT SCaGSCT) ( )

13.4 With vs. without a mirror

Before we proceed to analyse other local features like the entanglement between left and
right regions of the cavity, we would like to make a stop to discuss a little bit more
conceptually the differences between the analysis of the two possible scenarios, with and
without introducing the mirror. Again, what does it mean for half of an empty box to
be non-empty? We know that in some sense the reduced state of a subregion of the
global vacuum is excited; certainly the state o in Eq. (13.36) is an excited state (that is,
excited with respect to the local-mode basis, which is the whole point). However, what
does this mathematical fact have to do with reality? As discussed earlier, the answer, in
fact, is that the real excitations produced by the mirror are mathematically equivalent
to the virtual local excitations attributed to vacuum entanglement. Their measurement,
therefore, constitutes an achievement of our goal.

13.4.1 Time evolution

Both of the scenarios, with and without a mirror, are equivalent at time ¢ = 0. This implies
that the Bogoliubov transformation will be exactly the same for both sets (primed and
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unprimed modes as discussed in the previous sections) as the transformation coefficients are
computed using the Klein-Gordon inner product, which contains only the mode functions
and their first time-derivatives [39]). Thus, the field state of the left-cavity immediately
following the introduction of the mirror will, in fact, be given exactly by the covariance
matrix o as given by Eqgs. (13.35,13.36). The only difference now is that the mode-basis
that o is associated with is different, in the sense that it evolves differently for ¢t > 0.
Similarly the reduced state of the right-cavity will be given by & and the correlations
between the two (separated) cavities will be contained in =, the blocks of each being given
by Egs. (13.36). Importantly, this means that the entanglement structure contained in the
state is exactly the same in both cases. That is, the real particles created in the left-side
by slamming down a mirror are entangled with the created particles in the right-side, and
this entanglement has exactly the same structure that the original vacuum entanglement
present before the mirror was introduced. We will fully discuss this entanglement in Sect.
13.5.

But surely the state of the field has been changed due to the introduction of the mirror.
Clearly in some sense it has. We have created real particles. We have added energy to the
system by changing the Hamiltonian. The state of the new left-side cavity (for example)
is certainly time-dependent. This is not surprising, as we would expect a burst of particles
to be propagating away from the newly introduced mirror (shortly we will discuss this
further). The reduced state of the left-side of the larger cavity (without a mirror), on the
other hand, is by construction time-independent. The global vacuum |0g) is a stationary
state with respect to the global Hamiltonian He, and thus the reduced state will be time-
independent as well. In this sense the two states are certainly different.

Nevertheless the state at ¢ = 0 is described by exactly the same covariance matrix.
We will now elucidate the nature of time evolution in the case that a mirror has been
slammed; indeed we will take advantage of a subtlety in the time evolution that is particu-
larly apparent when working with covariance matrices. First consider, for example, work-
ing in the Schrodinger picture. In this case the field in the left-cavity is time-independent:
Ha,t) = d(x,t = 0) = 3, (U (x,0)am+us, (x,0)al,), where a w,,(z,0) = —Lsin ™2 The
state p(t) is what evolves, and this gives a corresponding time evolution to the covariance
matrix elements via 0., (t) = Tr(p(t)(Zpm@n + TnTm)). As we have seen, this free evolu-
tion can be represented symplectically: o(t) = Sp(t)oSr(t)?, where the transformation

consists of single-mode rotations:

cosSwp,t  sinwy,t
Sr(t) = GB (— sin wy,t coswmt> ’ (13.48)

Alternatively we can work in the Heisenberg picture, in which the field is the time-
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dependent operator

(Zg(xg t) = Z(um(x’ 0)&m€*iwmt + 'U/;kn(l', O)d;[neiwmt>

= (i + uf, (. 1)al,). (13.49)

m

A subtle issue, however, is that the Heisenberg evolution of the field can be viewed in
two ways, as given by the two lines above. In the first line it is the operators themselves
that evolve: a,,(t) = a,,e “mt. This corresponds to an evolution of the quadrature opera-
tors Z,,(t) that leads to a symplectic evolution Sg(t) of the covariance matrix, equivalent
to what was obtained in the Schrodinger picture. A key observation is that in both of
these pictures it is the time-independent mode-functions u,(x,0) that the time-dependent
covariance matriz o(t) is associated with. The other way of viewing the evolution, as
indicated by the second line in Eq. (13.49), is to keep the ladder operators themselves
time-independent (thus giving a time-independent o) and to rather let the mode-functions
u(z,t) contain the time evolution. In this case the covariance matrix does not change, but
it is understood that the mode-functions with which it is associated do evolve.

This last picture is the one that we will adopt here, in all work below. In this way we do
not need to actually consider any evolution in the covariance matrix directly; our state will
always be described by the matrix o, the same one used to describe the spatial reduced
state in the case without a mirror. The time-evolution induced by slamming a mirror is
then trivial: it is simply given by the time-dependence already present in the ¢ > 0 mode
functions defined within the left cavity as w,,(z,t) = u,,(z,0)e " and within the right
cavity as iy, (z,t) = Uy (z,0)e “m

13.4.2 Finite-time mirror

In the calculations of the next section we will continue to assume an instantaneous intro-
duction of the mirror(s) in the cavity. Before devoting ourselves to this, however, we should
briefly discuss how the physics changes if the introduction of the mirror takes place within
a finite time window At, as of course will always be the case in any physical realization.
Let us continue to assume that the introduction happens very fast as compared to the
fundamental time scales of the reduced cavities: At <« 1/w; and At < 1/@;. In this case
the low-energy local modes will still see the mirror appear very quickly (i.e. as compared
to their free evolution time scale), and so their reduced states and correlations amongst
themselves will be well approximated by the covariance matrices of Eq. (13.36). That is,
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within a low energy sector (the limit of which is determined by how fast the mirror can
be introduced) the results that we will present will hold to a good approximation. On the
other hand for the very high-energy modes (that see the introduction of the mirror occur
very slowly) we can make an adiabatic approximation to conclude that they will evolve to
their local ground states. That is, if m is large enough such that At > 1/w,, then after
the mirror is introduced the reduced state of this mode will approximately be |0),,,, defined
to satisfy a,,|0),, = 0, and will have vanishing correlation with the rest of the system.
Clearly there will be a smooth transition between these two regimes, which our work does
not capture. Nevertheless by considering only a finite number of modes N, as we will
numerically be doing, our description of this set will be accurate as long as At < 1/wy.

Note also that, in terms of application, the amount of entanglement that one obtains
between cavities after slamming a mirror (which we will discuss in the next section) depends
on how fast one’s mirror is slammed. The faster it can be achieved, the more entanglement
will remain in the two cavities afterwards. This is because the high-energy modes contain
entanglement, and thus the more of these modes whose states are not significantly altered
by introducing the mirror, the more entanglement we will retained. For modes of too-high
energy, At > 1/w,,, the act of slamming the mirror will destroy the correlations that they
have with the opposite side of the cavity.

13.5 Entanglement

We will now enter the results section of this chapter. We will discuss various aspects of
entanglement between the two sides of the cavity (equivalent in both the cases of with and
without a cavity, as discussed above). As part of our exposition we will propose a spatial
distribution of entanglement between the two sides of the cavity, and see how this naturally
leads to the physical picture of bursts of (entangled) particles being produced by slamming
down a mirror. We will begin by just discussing a single mirror, and later will move on to
the two-mirror case. We will show that with two mirrors, slammed simultaneously some
distance apart, there is still entanglement retained between separated regions (i.e. left-
most and right-most). We will also discuss how the act of slamming down a mirror can be
interpreted as an efficient method of vacuum entanglement harvesting.

Our result are computed numerically from the covariance matrices presented Sect. 13.3.
To do so, however, we must restrict ourselves to finite matrices. This means taking only
a finite number of local modes N, both on the left and right sides. That is, what we
actually consider is the reduced state of the first N local modes on each side. This is
actually not physically unrealistic since, as discussed in Sect. 13.4.2, our analysis will
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only be valid for some low-energy regime anyway, depending on how fast the mirror is
slammed. Numerically, unless otherwise stated we will take N = 200. Note, however, that
the reduced state of these first IV local modes is exact up to numerically negligible addends.
That is, in performing the Bogoliubov transform we made sure to include enough global
modes in the sum of Eq. (13.36), such that our results converge.

13.5.1 Mode-mode entanglement

With the state of the global vacuum represented in the local-mode basis, as given by Eq.
(13.36), we can characterize the entanglement between the two sides of the cavity. We
can, for example, consider the two-mode entanglement between each pair of local modes
on the left and right side. The correlations between each pair (as given by the two-point
correlators of the number operators) have already been computed in [166]. However, for
each two-mode pair the fact that they are correlated does not imply that they are entangled
because the two-mode state of this pair is mixed. Thus, to extend upon the results of [160]
we compute the logarithmic negativity Ey [59] of each pair between the two sides.

To this end, we take the 4 x 4, two-mode covariance matrix (i.e. the reduced state) of
mode m on the left and mode n on the right of the cavity. This is simply

T o mode = (‘,’y’i: g:;) . (13.50)
From here, we can apply Eq. (3.34) to compute Ey between the two modes. The result
is displayed in Fig. 13.3, where we consider field masses 4 = 0 and p = 15/R . The
cavity is split in two equal regions as r = 0.5R. We observe that, perhaps remarkably,
nearly every mode is entangled with almost every other. Eventually as m and n become
sufficiently different the two-mode entanglement tends to vanish (although they will always
have nonzero correlation), but we can see that the decay is very slow. It should be noted
that we can similarly compute the entanglement between different local modes from the
same side, and in fact doing so produces a qualitatively equivalent plot. A particularly
striking feature of the mode-mode entanglement is that the peak entanglement moves to
higher mode numbers as the mass of the field is increased 4. This figure clearly demonstrates
that the two sides of the cavity are entangled. Even a single pair with nonzero entanglement

4This behavior is actually expected from the fact that the correlation length in a field goes as the
Compton wavelength [170], meaning that correlations become more spatially confined with higher mass p.
It follows that what correlations are present between the two sides should be more supported within the
modes of smaller wavelength, i.e. those of higher frequency.
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Figure 13.3: The logarithmic negativity En between local modes w,, and u, on the left and
right sides of the cavity, respectively. The cavity is divided in two equal regions » = 0.5R
. Left: a field mass of = 0. Right: a field mass of u = 15/R.

demonstrates this. However even if every pair were separable this would not constitute a
proof that the two sides as a whole are separable.

This leads to the question of the full, many-mode entanglement between the two sides.
We can certainly compute this, given some set of N local modes on either side [15] (specif-
ically we would compute the negativity, not the reduced entropy, as we explain in a mo-
ment). This of course gives a non-zero answer. However it is questionable how useful the
numerical answer actually is because it will always depend on the number of local modes
N considered. The entanglement increases with N, and we expect that it diverges in the
N — oo limit (check footnote 5), given that the vacuum entanglement is typically known
to be UV-divergent. We will thus not concern ourselves with this calculation explicitly.

Nevertheless there is a related issue that should be discussed before moving on, which we
will now focus on.

13.5.2 The mixedness problem

One would assume that in order to compute the entanglement one should simply compute
the reduced entropy of one side of the cavity, since the global state is pure. Formally
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this is true of course, but interestingly the reduced entropy will never be an entanglement
measure if one only considers a finite number of local modes N, and in fact this can never
be remedied by simply increasing N.

This occurs because, as we have just seen, there is quite a lot of correlation between
local modes of different number. This means that the left-side state o (with finite number
of modes) will not just be entangled with the opposite side of the cavity but also with
the higher-number modes on the same side. That is, the entropy S(o) is not a measure
of entanglement with the other side, but rather with the other side plus all of the higher
modes that we have traced away. Put another way: if we compute the full state of both
sides ooc, but with the understanding that this corresponds to the reduced state of the
first V local modes on the left with the first N on the right (and their correlations), then
this state will be mixed despite the fact that the global vacuum is pure. Equivalently, the
transformation of Eq. (13.32) will never in practice be sympletic. What’s more (and rather
interestingly) this problem does not get better as N is increased °.

Importantly, such an issue will never arise in any real scenario of a slamming mirror;
a finite slamming time At fixes this mixedness problem. The introduction of a mirror is
just represented by a time-dependent Hamiltonian, and so of course the evolution of the
field under this action must be unitary. The system of the two new cavities combined,
therefore, must be in a pure state. As discussed in Sect. 13.4.2, a finite At will mean
that local modes of high enough frequency will not actually be in the state nor share the

®In fact, as we increase the number N of local modes considered (on both sides of the cavity) the global
state we obtain becomes more mixed, with a higher entropy. We suspect that the entropy diverges in the
N — oo limit, despite the fact that in a formal sense the result should be a pure state. After a moment of
thought this is actually not overly surprising. Consider for a moment the very different system of a spatial
volume in free Minkowski space with a field in the Minkowski vacuum. It is well known that the entropy of
the reduced state inside the volume scales as its area, meaning that as this region is expanded it becomes
more mixed. Thus, despite the field over all of space being in a pure state, one can never approach this
by taking the limit of larger and larger regions (the entropy will diverge as the region expands to infinity).
In this example the area-law can be physically understood by taking a spatial discretization of the field.
A given spatial degree of freedom will largely only be entangled with its nearest neighbors, and thus the
area law can be understood considering that the area is proportional to the number of nearest-neighbor
connections that the entangling surface crosses. In our scenario we have seen that the global vacuum has a
very densely connected entanglement structure in the local-mode basis. Every local mode is entangled with
many others, including many others of higher frequency. Thus, by increasing the number of local modes
N that we consider we are increasing the number of “entanglement connections” between low and high
modes that are separated by the cutoff. Given this intuition it makes sense that the entropy of our global
state should increase with increasing IV; it arises as a consequence of the system being highly connected.
Even so, it is interesting (and perhaps disconcerting) that in the local-mode basis one can never approach
purity by considering more and more modes. We suspect that this is deeply connected to the note made
in [166] regarding the unitary inequivalence between the global and local mode bases.

225



correlations as predicted from the covariance matrices in Sect. 13.3, which were computed
assuming instantaneous slamming. For a real situation, high-frequency local modes will be
nearly in their ground states, and importantly have vanishing correlations with anything
else, thus remedying the origin of the mixedness problem. The global state in the local
basis will indeed be pure beyond a given energy scale, as it must be.

13.5.3 Symplectic diagonalization

Here we will describe the process of symplectically diagonalizing the local states o and &.
This is a method by which we can greatly simplify the entanglement structure between the
two sides which, given the complexity seen in Fig. 13.3, will be a considerable advantage.
We will see in later sections how this process also allows us to make conclusions about the
spatial distribution of entanglement as well as see very clearly the propagating “burst” of
particles that is produced by slamming down a mirror.

The specifics of local, symplectic diagonalization and the method for finding the correct
transformations matrices are described in Sect. 3.3 and Appendix. A, respectively. We
(numerically) find symplectic matrices Sp and Sp that diagonalize o and &, respectively:

SpoSE =D and SDaéf) = D where

D=P (”6” V?n) ., D=Ep (”6" V?n) . (13.51)
Here v, and 7,, are the symplectic eigenvalues of o and &, respectively. Let’s just consider
the left side for a moment: o — D. This is simply a change of mode-basis, and we can
compute the mode functions associated with this new basis by reading off the Bogoliubov
coefficients from Sp via reversing Eqs. (13.29,13.30) . Here we will label these coefficients
Com and ngy, (in place of the usual o and f notation, respectively). These new mode
functions, which we will label v,(x,t), are thus given by

W(xa t) = Z(Qmum(w’ t) + Wmuin(x’ t))

m

1 . .
= %: o sin (m:m> (Geme ™" + 1gme™™). (13.52)

We can similarly define a new set of local modes v,(x) on the right side of the cavity.

We remind the reader that (as discussed in Sect. 13.4.1) we are working in the “Heisen-
berg picture”, but not such that the ¢ and p operators evolve (i.e. our covariance matrix
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is time-independent) but rather such that the mode functions with respect to which we
represent the state themselves evolve. In this picture the diagonalizing transformations are
of course time-independent (since the covariance matrix is time-independent). We could,
however, arrive at the same set of v-modes working directly in the Schrodinger picture, in
which the diagonalizing transformation would be time-dependent ©.

This is a change of mode basis which results in all left-side modes v,(x,t) being in a
product state with respect to each other, and similarly with the right-side modes v(x,t).
I.e. the transformation Sp removes all correlations between modes on the left side. In this
way we are isolating exactly the local spatial modes that contain the entanglement between
o and the rest of the system. Furthermore, it turns out that in our system the first mode in
this new basis, the one associated with symplectic eigenvalue v; and spatial mode vy (z, t),
is the mode that contains the large majority of the mixedness in . That is, almost all of
the symplectic eigenvalues have values very near to unity, meaning that the corresponding
modes are very nearly pure. The first value, 14, is by far the largest. For example with
the parameters r = 0.5R, = 0, and N = 200 (the number of local modes considered) the
first several symplectic eigenvalues take the values {v,} = (1.840,1.051,1.004, 1.000,-- ).
Note that as NN is increased these values (and thus the entropy of o) increase as well. All
of this applies equally well to the right-side transformation & — D via Sp.

As elaborated on in Sect. 3.3, if the state o, of both sides were pure then applying the
local transformation Sp @ Sp to o). would also diagonalize the off-diagonal (correlation)
block . Were this the case then the local mode vy(x,t) on the left side would be solely
correlated with the corresponding mode vy (z,t) on the right side, and similarly for the
higher v-modes. Unfortunately, as discussed above, when taking a finite N we necessarily
find that o), is a mixed state. This means that a local symplectic diagonalization does
not produce this one-to-one correspondence between the two sides. Despite this, however,
we have found that in fact we very nearly do obtain this correspondence upon local diago-
nalization. This can be seen in Fig. 13.4 where we plot the logarithmic negativity between
modes vy(z,t) and vy(z,t) similarly to what is plotted in Fig. 13.3 for the u-modes. Here
we have taken N = 200 for both the left and right sides. We see that indeed, despite

6This can also be done in either of the pictures in which it is the covariance matrix that evolves,
o(t) = Sp(t)oSr(t)T, and in which the spatial modes are time independent, u,,(x,0). In this case the
diagonalizing transformation will be time-dependent: Sp(t). However the symplectic spectrum of o (¢) will
be time-independent, being symplectically invariant. Thus we have D = SpeSE = Sp(t)o(t)Sp(t)T =
Sp(t)Sr(t)oSr(t)TSp(t)T, from which we can represent the time-dependent diagonalizing transforma-
tion as Sp(t) = SpSr(—t). We can use this to compute the corresponding time-dependent Bogoliubov
coefficients g, () and ngy(t). Using Eq. (13.48) and the relation between a symplectic transformation
and its corresponding Bogoliubov coefficients, as given by Eqgs. (13.29,13.30), it is straightforward to find
that Yo (t) = Yeme ™t and npy, (t) = Neme®™t, in agreement with Eq. (13.52).
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Figure 13.4: The logarithmic negativity En between local, diagonalizing modes v,, and o,
on the left and right sides of the cavity, respectively. The cavity is split into two equal
sides, r = 0.5R, and N = 200 for both the left and right sides. Left: a field mass of u = 0.
Right: a field mass of u = 15/R.

O being mixed, the majority of the entanglement between the two sides is contained in
v1(z,t) and vy (z,t) (we could also plot the mutual information between modes, in order
to get a better idea of the correlations in general, but the result looks nearly identical
qualitatively).

13.5.4 Spatial structure of entanglement

One immediate application of finding the locally, symplectically diagonalizing basis is that
we are able to discuss and make observations about the spatial structure of entanglement
between the two sides of the cavity. For this section we will take t = 0, by which we are
discussing the local physics of the cavity before the mirror has been introduced. That is,
in this section we are simply asking about the local properties of a vacuum field, and not
considering yet the time evolution caused by introducing a mirror.

We know that there is spatial vacuum entanglement; the two sides of the cavity are
entangled. This fact alone, however, gives no information on how entanglement is spatially
distributed. From what is known about vacuum entanglement we expect it to be spatially
focused near the boundary between the two regions, since the correlation in a field decays
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Figure 13.5: The function |vi(x)| in the left-side of the cavity, representing the spatial
distribution of entanglement with the opposite side. The parameters are given by r = 0.5R,
and N = 200, with different field masses p considered: 0 (blue), 10/R (light blue) and
50/R (green). As can be seen: the larger the mass of the field, the closer the entanglement
straddles the boundary between the two sides of the cavity, as expected.

with distance [93, 94, 95]. It is this that leads, for example, to the well-known area-law
for the entanglement entropy. There is also evidence that the entanglement characteristic
distance goes as the Compton wavelength of the field [170], thus we should also expect
the entanglement spatial distribution to hug the boundary more closely as we increase the
mass p of the field.

To obtain information on the spatial structure of entanglement we use a technique very
similar to that in [167], which there was used within the context of lattice systems. Since
the mode function v;(x) contains the majority of the entanglement (right now working at
t = 0), what we propose is that the function |v;(z)| gives information about the spatial
structure of entanglement. The larger |v;(z)| is at a given z, the more entanglement is
localized at that point. Operationally this proposal makes sense; if one were to try to
swap this entanglement into an Unruh-deWitt type detector model then it makes sense to
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place the detector where |vy(z)| is largest, since this directly translates into the coupling
strength between this mode and the detector. Of course there is also entanglement in the
higher v-modes, and these would form corrections to our |v;| estimate. Seen another way,
we can consider measuring the entanglement between regions by means of local projective
measurements onto a pair of spatial modes [150, 7]. Since most of the entanglement is
isolated between vy (z) and v1(x), it is these modes that we would want to measure in
order to obtain the greatest amount of entanglement.

In Fig. 13.5 we plot the function |v;(z)| at time ¢ = 0 using the parameters r = 0.5R,
N = 200, and for three mass values u of 0, 10/R, and 50/R. As can be seen, both of
the conditions discussed above are satisfied. Namely, the distribution indeed straddles
the boundary between the two sides of the cavity (in this case the boundary is to the
right because we are looking at the left side). Furthermore, as the mass p of the field is
increased we see that the distribution becomes more localized at the boundary, representing
a decreasing correlation length.

Note that the small vibrations that can be seen in Fig. 13.5 are due solely to taking
a finite number N of local modes. As N is increased these vibrations become smaller.
However the overall shape of the function does not change upon increasing NV; a fact that
further indicates that the function |vi(z)|, as plotted, well represents the entanglement
structure despite the mixedness problem.

All that we have done here is show the shape of the left-side mode function that
contains most of the entanglement with the right side, and how much this can truly be
considered a distribution of entanglement is questionable. A more thorough approach to
discuss the entanglement spatial structure could be to consider the local reduced states for
infinitesimally small regions and see how much these regions are entangled with the right
side of the box.

13.5.5 Entangled bursts of particles

In the previous section we have looked at the form of |vi(x,t = 0)| and claimed it to be a
good representation of the spatial distribution of entanglement. A next obvious questions
is: in the case that we slam down a mirror at t = 0, how does |v;(z,t)| evolve for ¢ > 0
and what significance does this have? The time evolution is simply given by Eq. (13.52),
i.e. v1(z,t) evolves according to the Klein Gordon equation with initial conditions given
by v1(z,0),v1(x,0), as shown in Fig. 13.5. As can be expected, the evolution is that of a
wavepacket propagating away from the newly slammed mirror. For example in Fig. 13.6
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Figure 13.6: Evolution of the entanglement spatial distribution for the massive case p =
50/ R after an elapsed time t = r/2. We can see a peak for the correlations at exactly the
position of the particle-burst front as originated from the slamming. The cavity parameters
are the same as in Fig. 13.5

we plot |vq(z,t)| at time ¢t = r/2 for parameters r = 0.5R, N = 200, and with a field mass
of p=50/R.

By construction, however, the state of this evolving mode and the correlations between
it and the right-hand cavity are exactly the same as at ¢ = 0 (i.e. highly excited and highly
entangled with right-hand mode v;), when these correlations could be interpreted solely as
vacuum entanglement. That is, the state of the propagating wavepacket seen in Fig. 13.6 is
highly excited, and is highly entangled with the symmetrically evolving wavepacket in the
right-hand cavity. That is, we see exactly the physics we expect, namely that slamming
down a mirror produces bursts of particles that propagate away from it! Similarly in
the right-hand cavity the function v;(x,t) represents a burst of particles propagating to
the right. A detector placed within one of these cavities will then be able to measure
these particles once they hit it 7. Additionally we see that the bursts on the two sides

"One may be concerned that in Fig. 13.6 there appears to be an amount of acausal signaling. Of course,
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are entangled, and that they are entangled exactly in the same manner that the vacuum
was entangled prior to the introduction of the mirror! In fact, their entanglement directly
results from (or rather, it simply is) the vacuum entanglement prior to the mirror being
slammed.

This emphasizes and illustrates nicely our primary message: that the real excitations
created by slamming down a mirror are identical to the “virtual” excitations attributed to
the original vacuum entanglement. Furthermore, this perspective motivates an experimen-
tal approach to verifying, and perhaps even harvesting and using, vacuum entanglement.
That is, if we were able to slam a mirror and measure the real particles, in such a way
that we could confirm quantum correlation statistics on the two sides, then this would
constitute a verification of vacuum entanglement. We discuss this further in Sect. 13.6.

We wish to point out that the correlations between the bursts on either side of the
mirror have nothing to do with the symmetry introduced by the fact that we are slamming
the mirror at the r = 0.5R point. Entanglement and similar correlations have to do with
correlation between single-shot measurements performed locally on the two systems in
question, and not on whether the two reduced states are the same or similar. The bursts
of particles would continue to be entangled independent of where in the cavity the mirror
is introduced.

The reader should also know that what we have presented is an approximate picture in
regards to visualizing the burst of particles, as we are just using a single delocalized mode
vi(z,t). Tt is a good approximate picture, given that this mode contains the majority of
excitations. However, in order to gain the full structure of the burst one could instead
monitor the change at different times of the expectation values of local number operators
attached to small (perhaps infinitesimal) regions. As the burst reaches these small regions
we expect these number expectation values to jump, and they will be different from the
vacuum expectation values only inside the future light cone of the spacetime point at which
we slam the mirror.

13.5.6 Two mirrors

We have just stated that the entanglement between the bursts of particles produced by the
slammed mirror, in the left and right-hand sides, comes from the vacuum entanglement that
was previously there to begin with. One may, however, be concerned that this is simply one

for a delocalized mode, it makes no sense to strictly talk about causality [1]. In any relevant calculation
all modes would be considered and no acausal behavior would be seen.
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perspective on the situation. One may argue that what really physically occurs is that the
act of slamming the mirror locally creates entangled quanta which then propagate away,
rather than this entanglement having been previously present.

To debunk this view we need simply consider a slightly different scenario: that of
slamming two mirrors down simultaneously, some distance apart from each other. It is
known (and we will confirm) that there is entanglement between regions of space even
when they are separated. This means that when we slam two mirrors the resulting field
states in the left-most and right-most cavities will be entangled, as would be measurable
from the real particle statistics. In this case one cannot claim that this entanglement was
simply created by the mirror, because now there is no common mirror connecting the two
regions. In this case it is clear that the entanglement between the two cavities comes
directly from the vacuum entanglement that was already present beforehand as no causal
signal can connect them.

The mathematics of this scenario is exactly the same as before except that now we
must consider splitting the cavity into three regions, as we have already discussed in Sect.
13.3.2. We choose some size for the three regions (here we will take regions A and C' to
be the same size, and separated by some distance B). We can then take the reduced state
of the left-most and right-most regions, as given by Eq. (13.47) and perform exactly the
same entanglement analysis as we have done above. The result in short is that they are
entangled. This validates our above argument since, by construction, this entanglement is
present between real, stationary mode excitations after the mirrors have been introduced.

In particular, it is interesting to again perform the local, symplectic diagonalization
such that we go to the local mode basis {v2 v}, As discussed in Sect. 13.5.3, this
procedure fails to produce a nice one-to-one entanglement structure when one’s state is
mixed. As we saw, the mixedness problem above only causes slight deviations from this
structure. Now, however, the extra mixedness in the AC system caused by tracing out
B really ruins this structure. We plot in Fig. 13.7 the mode-mode logarithmic negativity
between the v and v“-modes for the cases in which the distance B between the two regions
is 0.1R and 0.2R, where we have taken N = 200 for each region and we use a massless
field p = 0. As we can see, the entanglement rapidly decays with the distance between the
regions, as should be expected. We also note that in this case the higher v-modes become
the dominant entanglement carriers, meaning that to actually measure such entanglement
one should try to change the wavepacket form that one is measuring to conform with the
shape of |ve(z,t)| or |vsz(x,t)| or whichever mode carries the most entanglement. It is not
overly surprising that v;(z,t) becomes superseded for a large enough distance B once one
realizes that vy (x,t) largely contains the entanglement localized on the boundary between
regions. Once there is no common boundary we therefore rapidly lose this entanglement
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Figure 13.7: Two mirror case: logarithmic negativity Ey between local, diagonalizing
modes v2 and v on the left and right-most sides of the cavity, respectively, in the case
that the field is massless u = 0. The cavity is in this case split into three regions, Ay =
[0,0.5R — B/2], Ap =[0.5R — B/2,0.5R + B/2|, Ac = [0.5R+ B/2, R|]. We have taken
N = 200. Left: Size of the middle section B = 0.1R. Right: Size of the middle section B
= 0.2R.

contribution.

13.6 Experimental motivations and prospects

We would like to devote this section to discuss possible experimental platforms with which
to observe the phenomena described above. The primary motivation for such an experiment
would be the verification of vacuum entanglement and, possibly in the future, an effective
method of entanglement harvesting. We must point out that the description of our model
so far has considered an idealized theoretical scenario and has not been adapted to any
particular experiment. Moreover, a first analysis shows that such an experiment would
be highly challenging and some of the requirements needed (mirror slamming times, high
sensitivities...) may require considerable effort before becoming feasible.

First of all, let us focus on the essential elements of the theoretical scheme, which
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should be imperatively implemented in any experiment of this sort. We require a quantum
field in a cavity, which should be taken into its lowest energy state (the vacuum), and a
boundary condition (here, a mirror) which will quickly appear somewhere inside the cavity
and produce particles similar to the dynamical Casimir effect. For most platforms to be
considered the field would be massless, as we will be dealing with electromagnetic fields. In
addition, after these particles have been produced they must be detected and, if possible,
their entanglement measured.
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Figure 13.8: The number expectation value of local modes u,, for the case of a massless
field p = 0 and a cavity split in half /R = 0.5.

Before anything else, we should check the amount of particles created. Based on pre-
vious results [166], Fig. 13.8 shows the average number of local particles created after
slamming the mirror, dividing the cavity in two equal sides. We can see that the maxi-
mum amount of particle creation is achieved by the first local mode, but that even this
is quite small (0.052). The expected value is independent of the cavity size or the speed
of the mirror, which sets only the adiabatic UV-cutoff. Any detector that aims to extract
those particles would therefore be highly sensitive (and the experiment would need to be
run many times). The relative positioning of the mirror could be modified in order to
improve those numbers, but that improvement is only slight and, from our point of view,
not relevant enough to be discussed at this point.

The most natural set-up for such an experiment, given the theoretical set-up, would
involve the use of an optical cavity [I71]. In practice, however, this setup would be very
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difficult to implement. In order to obtain reasonable particle production we require a
slamming time that satisfies tg.m < 2L/c. For optical cavity setups this would require
a slamming on the order of picoseconds. Certainly this is mechanically impossible with
current technology if we are imagining physically inserting a mirror into an optical cavity. A
more feasible approach would be to use a sheet of material that allows for rapid variation of
reflectivity. Indeed a fractional variation of reflectivity has been achieved on the picosecond
time scale [172]. Although not yet suitable for our purposes, such technology may in the
future be sufficient to verify vacuum entanglement.

Another promising candidate would be Circuit Quantum Electrodynamics [110), ].
Several experiments concerned with the peculiar properties of the quantum vacuum (sim-
ilar to the one here discussed) have been carried on this platform, in particular the first
observation of the Dynamical Casimir effect [I12]. The kinds of techniques used in that
experiment could be very useful in a future proposal. The build up of a mirror inside the
cavity, is however, a very different matter, as it implies the “activation” of a boundary that
previously was not there. In the case of circuit QED, meandering resonators of lengths ~
20 mm have been built [173, | but longer lengths could be achieved, say of 100 mm.
For that size a mirror slamming time of 0.7 ns may be enough to show the effects that we
want.

Along these lines, recent work in Circuit QED [175, 176] has shown that a superconduct-
ing qubit coupled to a waveguide can fully reflect single photons, while it being possible
to modulate the coupling to the natural mode of the cavity in the ns timescale. That
could be the first candidate for the slamming mirror. However for a mirror to reflect all
photons the qubit would not be enough; rather the possibility of replacing the qubit with
a frequency-tunable cavity which couples to the middle of the line could be studied. Very
fast tuning of cavities has been proven before (~ 3 ns) and it is expected to be achievable
in the subnanosecond regime [177].

Finally, another experimental platform worthy of consideration would be cold atoms in
optical lattices. Although we would be dealing in that case with a discrete quantum field
theory (e.g. Bose-Hubbard model), the possibilities for creating “mirror-like” conditions by
raising and lowering potential barriers using holographic techniques in the subnanosecond-
picosecond regime [1758] might very well fit our needs.

13.7 Discussion

We have given an answer to the question of “what does it mean for half of an empty
cavity to be full?” by considering a physical scenario in which this statement actually has
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operational meaning. The procedure that we considered is that of very quickly introducing
one or more mirrors into a cavity scalar field prepared in its vacuum state and observing
the consequences. Unsurprisingly such an action induced particle creation in the field. The
key observation, however, is that these real excitations are mathematically equivalent to
the local vacuum excitations related to spatial entanglement in the field. As a result, the
real particles that one obtains on either side of the newly introduced mirror are entangled
with each other. Furthermore we have proven that this entanglement can not simply have
been created by slamming down a mirror, and rather derives directly from the previously
present vacuum entanglement. We proved this by also studying the case in which two
mirrors, rather than one, are slammed down simultaneously and some distance apart. In
this scenario the excitations in the left-most and right-most regions created from this cavity
splitting are also entangled with each other, despite there being no common mirror and no
possible communication between them. This entanglement is exactly the spatial vacuum
entanglement that was already present, now manifest in the real (and measurable) quanta
that we pump into the system by introducing a mirror.

As part of our exposition we utilized Gaussian quantum mechanics to easily derive the
reduced states and correlations of the vacuum field in different subregions of the cavity.
We have used this technology to discuss the entanglement structure between regions of
the cavity and the time evolution that follows upon slamming down a mirror, including
directly relating the entanglement between regions with the burst of particles created by
the mirror. This work provides a solid operational interpretation for vacuum entanglement
and the local excitations that derive from it; these “virtual” excitations are simply the
real excitations that one gets when slamming down a mirror. In addition, this realization
motivates a simple experimental proposal for the verification of vacuum entanglement in
a cavity system. Indeed we discuss how the act of slamming down a mirror may represent
a very effective method of harvesting the vacuum entanglement. We finished by briefly
discussing some preliminary experimental prospects for the laboratory realization of this
proposal.

In addition to working towards an experimental realization there are many shorer term,
theoretical questions in regards to this scenario that can be the subject of future projects.
Such projects could include properly taking into account a finite-time introduction of the
mirror, computing the response of a detector due to the burst of the particles (and the
subsequent entanglement harvesting), and extending the analysis into free space or higher
dimensions. Furthermore, the notion of quickly introducing a mirror and the resulting
excitations may in fact have strong connections to quantum black hole physics, such as
holography [179] and firewalls [180]. An extended study of how our work relates to these
areas may be the subject of future research.
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Chapter 14

Conclusions

In this thesis we have examined, from several operational perspectives, the phenomena of
quantum correlations and particle creation in relativistic quantum fields. Such effects lie
at the interface between two historically disparate realms of physics: quantum field theory
and quantum information. In the past decade there has been an explosion of interest in
exploring the overlap between these two. The results have led, principally, to enlightening
new perspectives on field theory itself as well as the connections between field theory and
gravitation. This merging has also generated interest in elucidating the ways in which
the nature of quantum fields may aid us in our quantum information and computational
efforts.

We have devoted effort to both of these endeavors in this thesis. On the one hand, we
examined questions regarding the nature of quantum correlations within scalar fields, their
connection to particle creation phenomena such as the Unruh effect, and have made signif-
icant progress in deconstructing the interpretational hurdles associated with these aspects
of nature. On the other hand, we have made novel proposals regarding the ways in which
these phenomena may aid us or be useful as a resource in the quest to develop reliable and
scalable quantum technologies. In both of these efforts we have used the general framework
of operationalism. That is, we have approached problems by proposing and utilizing phys-
ical models aimed at emulating what may, at least in principle, be performed and observed
within experimental setups. Rather than focusing on mathematical facts derivable from a
given theory, we instead question what physical and observable consequences these facts
imply. As we have seen, this allows us to entirely sidestep otherwise unsightly interpreta-
tional conundrums, and even provide solid and satisfying solutions to such issues. Working
operationally, by its very nature, also facilitates a clean transition to questioning in what
ways a theoretical prediction may be tested in the laboratory and, in many cases, making
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promising proposals in this respect. In this thesis we have used three primary operational
frameworks, each of which takes advantage of Gaussian quantum mechanics.

First, in Part. II we developed and made great use of a non-perturbative particle detec-
tor model, in which we took the detector to be a harmonic oscillator rather than a qubit.
This model allows us to probe inherently non-perturbative features of relativistic quantum
physics which cannot be studied using the canonical particle-detector approach. Examples
of this include long-time effects such as thermalization and equilibration. After deriving
the model itself, we used it in a variety of studies. We started by examining the Unruh
effect within a cavity field, markedly different from the usual free-space scenario. Not only
were we able to demonstrate that an accelerating detector thermalizes (a stronger result
than the instantaneous transition rate) with temperature proportional to acceleration, but
also that this result is largely independent of the boundary conditions placed on the cavity
field. We went on to demonstrate the spacelike harvesting of genuine tripartite entangle-
ment from the vacuum, as well as study the difference between entanglement harvesting
and discord harvesting when the temperature of the field is increased. Surprisingly, we
found that while entanglement rapidly decays with temperature (as expected) the discord
can undergo remarkable growth from doing this. This seems to imply that either the quan-
tum discord is simply an inappropriate measure of quantum correlation, or that in certain
situations we may be able to actually use environmental noise (correlated noise) to aid
us in quantum computational protocols. Next, we developed a scheme by which we may
reliably and sustainably generate entanglement out of a cavity field, a protocol that we
call entanglement farming. This consists of sending many pairs of detectors sequentially
through a cavity, each time modifying slightly the state of field in the cavity. Eventually a
fixed point state is reached, and is one that (somewhat remarkably) consistently produces
detectors that emerge entangled. Finally, we modified the farming proposal by adding a
time delay between sequential detector pairs. We discovered that this allows preparation of
one’s system in a manner very sensitive to perturbations on the system. We used this fact
to propose a type of quantum seismograph, where minute vibrations of the cavity walls
may produce significant changes to the system behavior. We pondered, very tentatively,
what possible application such a system may have to gravitational wave astronomy.

Second, in Part. III we considered performing projective measurements onto localized
field modes (as opposed to global modes, which would clearly not be physically feasible) by
isolating the reduced Gaussian states of those modes. We performed two studies following
this approach. In the first, we examined the response of an observer uniformly accelerating
through a thermal bath, meaning that he or she will measure a response both from the
Unruh radiation they experience as well as from the thermality already present in the field.
In particular, we demonstrated that such an observer is capable of distinguishing between
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these two contributions, and identify which is which, contrary to previous claims. In the
next chapter, we considered the degradation of entanglement and quantum discord between
two observers that occurs due to acceleration by one of those observers. This represents
a seminal scenario of interest for relativistic quantum information, and our focus on local
modes demonstrated that most previous works examining this setting make qualitatively
incorrect claims.

Third, in Part. IV we returned to the question of what exactly it means for half of an
empty box to be full. We discussed how the act of very quickly introducing a mirror within
a vacuum cavity field (an operationally well-posed procedure) dynamically generates real
particles out of the vacuum, unsurprisingly. The key interpretational insight, however, is
that these real quanta are exactly those excitations that one mathematically associates
with a reduced spatial region, with or without the mirror. The statement “half of an
empty box is full” is therefore simply saying that placing a dynamical boundary condition
produces excitations, which is not at all mysterious. Furthermore, the real particles on
one side of the mirror are entangled with those on the other, this entanglement deriving
from the previously present vacuum entanglement. We note that the use of Gaussian
quantum mechanics was crucial for the computations performed in this work. In addition
to providing a satisfying resolution to an otherwise troubling interpretational issue, this
protocol also suggests an, in principle, straightforward experimental method of detecting
vacuum entanglement for the first time.

We have made strides in this thesis towards both fundamental questions in relativistic
quantum information, as well as questions of importance for its applicability to real-world
quantum technologies. This represents, however, a very tiny fraction of what may be
investigated and understood. While it is clear that, at least in principle, the nature of
relativistic fields may prove useful for quantum computation and metrology, it is still
far from clear whether or not in practice such procedures will ever be able to supersede
more straightforward approaches in efficiency and impact. A push towards real-world
implementation is therefore crucial for the continuation of such a program, so that the limits
of applicability may actually be tested in the laboratory. An experimental fulfillment of the
proposal made in Part. IV, for example, may well become possible within the next decade.
Bringing the detection of vacuum entanglement to the point of experimental feasibility
will be the first step in moving towards possible utilization. On the other side of the coin,
there are yet many issues of fundamental concern that have been but barely explored.
The nature of measurement in quantum field theory is still far from understood, as the
standard measurement postulates applied in standard quantum mechanics break down
when it comes to field theory [181]. As another example, standard concepts in quantum
thermodynamics may become ill-defined when working relativistically. By applying ideas
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from quantum information theory to the realm of quantum fields we have learned a great
deal about the finer structure of that theory which describes the fundamental constituents
of light and matter. Although we have not touched on gravitation in this thesis, it is
also widely suspected that quantum information will play a crucial role in uncovering the
quantum nature of gravity (or the gravitational nature of the quantum, if you prefer). It
suffices to say that this journey has only just begun.
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Appendix A

Symplectic diagonalization

Here we describe the method of symplectically diagonalizing a covariance matrix, i.e.
putting into its Williamson normal form. We will, however, only consider the simpli-
fying case in which there are no correlations between ¢ operators and p operators, i.e.
(gip;) = 0. States of this form are in fact the only ones that we will need to symplectically
diagonalize in this thesis. Given this, let us work in a re-ordered phase space basis in which
the ¢’s are packaged together and similarly for the p’s: x = (¢1, 4o, - ,P1,D2, -+ ). Given
our simplifying assumption, in this basis a covariance matrix takes the form

o@ 0
7= ( 0 O'(P)) ) (A1)

Note also that in the new basis ordering the symplectic form is given by

Q- (_OI (I)) , (A.2)

and that the Williamson normal (symplectically diagonalized) form of a covariance matrix
is given by D = v @ v, where v = diag(vy, s, - - - ) contains the symplectic eigenvalues.
We would like to find the symplectic transformation S that achieves this transformation.

Specifically we will let gT(u ® v)S = o. To this end, we will make an Ansatz and then
prove that it is the correct choice. Let us define a matrix A = Vo@+Va®). We claim
that the symplectic eigenvalues {v;} of o are given by the singular values of A. That is,
there are orthogonal matrices O; and O, such that

A =07v0,. (A.3)
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Let us take these and form another orthogonal matrix given by their direct sum O =
O; @& Oy. We now claim that the symplectic matrix S that diagonalizes o is given by

S=wav) Y2002 (A.4)

Clearly from this definition it is true that gT(VEBI/)S = o, since O is orthogonal. However,
~ =T

is it symplectic: SQ2S = Q2?7 By expanding the left-hand side of this equation it is

straightforward to see that the transformation will be symplectic iff O;AOZ = v, which

is equivalent to Eq. (A.3).

Thus, finding the symplectic diagonalization is equivalent to finding the singular value
decomposition of the matrix A, which is easily done numerically. Note that to go from
the matrix o to v @ v in the sense of SpoST, = v @ v, the correct transformation will be

Sp=(§")" = (wav)/200 /2.
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Appendix B

Hilbert space view of the detector
symplectic evolution

This appendix presents an alternative method of computing the oscillator-detector evo-
lution equation, presented in Sect. 5.2. While this alternative is much more laborious
to derive and to use than the primary method used above, it nevertheless represents a
mathematically interesting approach and one that we used to confirm several of the initial
numerical calculations obtained using the main method.

Without invoking the full machinery of symplectic transformations, we can still take
advantage of the quadratic nature of the interaction to derive the same results by numer-
ically calculating the unitary time evolution operator directly in the interaction picture,
an approach that is more standard within quantum field theory, but without relying on
perturbation theory.

To start, let us consider the same situation as that described in Sect. 5.2, in which
we have M oscillator detectors coupled to N field modes. In that section we constructed
a phase-space vector consisting of the quadrature operators for each oscillator and mode,
Eq. (5.25). Here we will find it more convenient to work directly with the creation and an-
nihilation operators, rather than the quadratures. To this end, we will define the following
two vectors of operators:

a=(Gg,,.--,04,,01,...an)",
al = (af,,....ah .al,...al)". (B.1)

For a quadratic Hamiltonian, time evolution can be expressed in terms of displacements,
squeezing, and rotation unitary operations [182]. In particular, the unitary evolution we
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are looking to solve for can then be put into the form

U(r) = e"95(2(t)) D(B(1) R(¢(1)) , (B.2)

where v is number valued and the squeezing, rotation and displacement operators are
respectively defined as

S(z) — 2 [(éT)TzéT—éTzHé}’ (B.3)
R(¢) = /)42, (B.4)
D(B) = 47", (B.5)

where z and ¢ are matrices, and 3 is a column vector. The notation z! is used to represent

the conjugate transpose of z, the elements of which are number valued. Note that without
loss of generality we can consider z to be symmetric because it is only the symmetric part
that contributes to S (z). Also note that ¢ must be a Hermitian matrix (¢p = ¢') to ensure
unitarity of R(¢).

The exact form of these transformations can be obtained nonperturbatively by em-
ploying a technique introduced by Heffner and Louisell [183]. We will utilize the polar
decomposition of z into a product of a hermitian and a unitary matrix, which can always
be achieved. This takes the form

. .AT
z:reze :eze I'T

, (B.6)

where r and 6 are hermitian matrices, and the second equality results from the assumed
symmetry of z. From here we wish to evaluate how such operators evolve the ladder
operators of our system so that we can determine their corresponding symplectic trans-
formations on the phase space and therefore the covariance matrix ascribed to, for ex-
ample, a multimode squeezed state. Using the BCH’s Hadamard lemma, e?Be ™4 =
B +[A, Bl + [A,[A, B]]/2! + ..., it is straightforward to obtain

S1(z)aS(z) = cosh(r)a + sinh(r)e®a’ B.7)
R (¢)aR(¢) = ¢'®a, B.8
Di(B)aD(B) = a+ B, B.9
and similarly
51(z)a’S(z) = cosh(r™)al + sinh(r")e " a, (B.10)
Ri(¢)a' R(¢) = e " aT, (B.11)
Di(B)a'D(B) = & + 8, (B.12)
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It is important to keep in mind that for our purposed we actually need not consider the
displacement operator within this framework. This is because phase-space displacements
are generated by linear terms in one’s Hamiltonian, which for everything we have considered
in this thesis are absent. From this point on we will therefore take the displacement operator
to be unity, as we will have no such displacements in our work.

From a given generating Hamiltonian our goal is to solve for the resulting squeezing and
rotation operators, in the sense that we solve for z(t) and ¢(t). Once we have done this
then finding the evolved covariance matrix of the detector+field system is straightforward.
For this it will be easier, however, to work in a phase-space basis in which all of the ¢
operators are packaged together, and similarly for the p operators. That is, we define the
covariance matrix as in Eq. (3.5), but where we now define the phase-space vector to be
ordered as X = (Gay, - »Gdy,» Q15"+ > AN+ Ddys "+ > Pdyss P15+ » D) T . In this basis, a generic
covariance matrix splits into the block form

o= ("%q ”qp) , (B.13)

erp Upp

where, for example, o, is the (M + N) x (M + N) matrix containing all of the gq correla-
tions. The form of these blocks is then straightforward to determine from the collection of
identities Egs. (B.7) and (B.10). For example if our detector+field state starts in the vac-
uum state then the evolved state is simply given by a multi-mode squeezed state S (z) |0),
since the vacuum is invariant under rotations. In this case, the blocks of the evolved
covariance matrix take the form

1 . .
Oy zé(cosh(Qr) + sinh(2r)e® + cosh(2r™) + sinh(2r")e "), (B.14)
1 . .
Opp :g(cosh(Qr) — sinh(2r)e® + cosh(2r") — sinh(?rT)e_“gT), (B.15)
Lo :%(cosh(Qr) — sinh(2r)e®® — cosh(2r™) + sinh(QrT)e_ieT). (B.16)

Once this is obtained then computing the covariance matrix for the detector(s) alone is
trivial: one must simply isolate the rows and columns of o corresponding to the detector
modes.

Before we can apply this, however, we still need to compute the squeezing and rotation
matrices z(t) and ¢(t) resulting from the evolution generated by some Hamiltonian. In
regards to our Hamiltonian of choice, let us define coefficient matrices w(t) and g(t), in
the same way that we did with F(¢) in Eq. (5.28), that represent a generic quadratic
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Hamiltonian:
H(t) = (a""w(t)a + (a")Tg(t)a + a"g(t)"a, (B.17)

where M = M*T = M™ denotes the conjugate transpose of any matrix M. We differ-
entiate this from dagger notation so as not to cause confusion when mixing matrices and
operators. Note also that, unlike the formalism presented Sect. 5.2, here we we can work
directly in the interaction picture. In the case of a detector-field interaction model, there-
fore, we may take H () to be solely made up of the interaction Hamiltonian, represented
in the interaction picture.

Given this Hamiltonian, how do we compute z(t) and ¢(t)? We will give the technical
details below, but the answer is that (following the formalism presented in [183]) we must
solve the following pair of coupled, matrix differential equations:

iC(t) = 4C,(1)g™ (t)C,(t) + 2w (t)Cy(t) + g(t), (B.18)
iD(t) = (4C,(t)g" (1) + w(t))(D(t) + 1), (B.19)
where w(t) and g(t) are the Hamiltonian coefficient matrices as defined in Eq. (B.17).

We have defined C, = (C + C")/2, where the matrices C, and D are identified with the
squeezing and rotation by

1 .
C, = §tanh(r)e’9, (B.20)

D + I = sech(r)e™. (B.21)
® — ¢ T By numerically solving Eqs. (B.18,B.19) with the initial condi-
tions C(0) = D(0) = 0 we can non-perturbatively solve the time evolution.

where z = re

To see how this comes about, consider the unitary evolution operator U (éT, a,t) that is
generated by H (). Let us denote its normal-ordered form om (a',a,t), where for example,
(agal)™ = alag + 1. As explained in [183], we can equally well represent this using a
number-valued function corresponding to U™ of the form U (”)(éT,é, t) = U™ (a*, a,t),
where a and a* are taken to be column vectors consisting of real, independent variables.
That is, we put U into normal form and replace a4 and a' by vectors of number-valued
entries o and a*. In this representation, Schrodinger’s equation i9,U (t) = H(a', a,t)U(t)
becomes

9 _ _
i— U™ (o, t)=H™ (afa +

7(n) (o*
Py t)U (o}, t), (B.22)

oa*’
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where H™ (a*, a+09/da* 1) is obtained by putting H into normal-ordered form (which in
our case it generally already is) and replacing a and al by a+ 0/0a* and a* respectively.
What we now have is a set of coupled, ordinary differential equations. An ansatz for the
solution that we will use is U™ = e¢@"a turning the equation into one for G. Once
the solution has been found, we can then obtain the normal ordered unitary by replacing
back o and @* by a and a4 and applying the normal ordering operator U™ = :eG@"at).
where, for example, :dddgz = Q,0q.

Following the prescription of [153], we now want to find the evolution equation of the
number-valued function U™. From Eq. (B.22), we have

aU(n) *\T 8 *\T *
- —[(a)w( 8a*)—}—(cx)gcx

R

and making the ansatz U™ = e, we have the equation for G:
(9G 8G
T H T H H
‘+ta g at+tag ex +8(a)Tg «
oG 4 0G 0 g 0G
B.24
* a(a*)Tg da* * J(a*)T 804 ( )
Additionally, we can make the educated ansatz
G=(a")"Dt)a+ (a*)'CHt)a* + a'F(t)a + A(t), (B.25)

where D, C and F are matrices. In general, we should also include terms linear in a and

*

a*, corresponding to phase space displacements, but in our case they will be absent due
to the lack of linear terms in the relevant Hamiltonians and so we will not consider them.
From here it is easy to show that

oG
da*

where C, = (C+C")/2 is the symmetric part of C. The transposed version of this relation
follows trivially. Lastly, it is easily shown that

d 4 0G
8(a*)Tg Ja*

= Da + 2C,a* (B.26)

= 2Tr(g"C,). (B.27)
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Given these relations it is now a simple matter of comparing coefficients between the
right and left sides of Eq. (B.24). Doing so, we find the coupled set of differential equations

iA =2Tr(gC,), (B.28)
iC =4C.g"C, + 2wC, + g, (B.29)
iD = (4C,g" +w)(D +1), (B.30)
iF = (D" +D)g"(D + 1), (B.31)

where I is the identity matrix, and we have initial conditions A(0) = 0 and C(0) = D(0)
F(0)=0.

Though these equations can already be numerically solved, some simplifications are
possible. For example the matrix C fully determines the squeezing matrix z = re’®, which,
if our system is initially in the vacuum state, is all that we need (since the vacuum is
invariant under rotations). For a more general initial state, one also needs to solve for D
in order to compute ¢p. We will also see that there is no need to solve Eq. (B.31) for
F because it can be expressed purely in terms of C and D and is therefore a redundant
variable. Lastly, the variable A will represent only an overall phase in the evolution, and
therefore bears no importance.

Note that the form of these equations are entirely independent of the specific coupling
matrices w and g that we choose. We are therefore free to choose an entirely different
interaction Hamiltonian, and the evolution will still be represented by these equations.
Once solutions have been found, we can return the (normal ordered) unitary to its operator

form via U™ = :¢6@"8);  which from Eq. (B.25) gives us

{7 (t) = A @HTC(pal :e(é*)TD(t)é: A F(a (B.32)

Our problem is thus essentially solved; the last task required is to overcome the normal
ordering and to put this unitary into a form that we are familiar with. We know that U
should be a product of rotation and squeezing operators, along with possible phases:

A . oA A

U=¢e"5(z)R(¢), (B.33)

where S and R are given by Eqs. (B.3,B.4). We know that the solutions (B.32) and (B.33)
must be equivalent, and the task is now to find the relation between v, z, and ¢ and
the results obtained for A, C, D and F. Trivially we see that 7y = A, meaning that A
represents an overall phase.
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In order to find z = re® = ¢ rT and ¢ we recall the action that Eq. (B.33) will have
on the ladder operator:

Utal = cosh(r)e®a + sinh(r)ewe_id’TéT, (B.34)
Utalt = cosh(rT)e_i‘i’TélT + sinh(rT)e_wTeid’é. (B.35)
We now need to compute Utall and Uta'U from the unitary in Eq. (B.32) in order to
compare. To this end, we use the identities [4,U] = U /0a' and [a',U] = —oU /04, or
equivalently
i 2 OU At at - OU
TAl] = [JT A Tatyr = 7t 2= o 4t
au aéT—l—a, Uv'a'llU = -U 8é+a (B.36)

To evaluate the right-hand sides, we use the straightforwardly shown identities:

9 @h™Pa. _ pTaf..(a)"Da,

—: B.37

aé e Y ( )
O ity T

oA e(8)TDa, — . @)TDa. s (B.38)
a

(I+D%)al:e@)Pa; — @) Da, 5 (B.39)

afe?’ Fa — c2"Fa 3t _ oFa), (B.40)

along with the fact that F is symmetric, as can be seen from Eq. (B.31). With these, Eq.
(B.36) gives us

Utal = (D +1) — 4C, (D" +I)~'Fla + 2C, (D" +1)~'a', (B.41)
Uta'l = (DT + 1)} (—2Fa +a). (B.42)

Since these equations are just the adjoints of each other, we are able to compare the two
and determine the additional relations

F=-D'+I)'Ci(D+1I), (B.43)

I-4C,C:=(D+I)(D'+1). (B.44)

Given all of this, we find indeed that UalU and UTa'U are of the form given in Eqs.
(B.34,B.35), where we identify

1 )
C, = §tanh(r)e’9, (B.45)

D + I = sech(r)e™. (B.46)
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Thus, once we have integrated Eqgs. (B.29,B.30) for C and D we can use this result to
solve for the corresponding squeezing and rotation matrices r, 6, and ¢, from which we
can obtain the covariance matrix in which all properties of the final state are encoded.

This concludes the derivation of this method. As can be seen, it is significantly more
involved than that given in Sect. 5.2. Nevertheless, it provided an important check on
several of the initial results derived from the primary method and itself represents an
interesting piece of physics and mathematics.
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Appendix C

Predicting the specifics of thermal
amplification

Here we wish to briefly point out how the specific behavior of thermal amplification, as
discussed in Ch. 8, can be accurately predicted using the explanations given in Sects. 8.3.1
and 8.3.3. That is, we can predict how strongly or weakly we expect to observe the thermal
amplification of discord and mutual information for varying parameters. Displayed in Fig.
C.1 is the extracted mutual information as a function of ¢ and r in the case that the field
temperature was initiated to be T' = 2; all other parameters are as they were in Sect. 8.2.
Note that a similar plot of the Gaussian discord looks qualitatively almost identical, but
with a somewhat reduced magnitude.

Notice that there is a clear transition at the light cone ¢ = r. In the spacelike region,
t < r, we see that there is a minimum at roughly r ~ 21. This value of r coincides with a
local minimum (a zero, in fact) of the magnitude of the correlation function C(r) discussed
in Sect. 8.3.1. Inside the light cone, however, when ¢ > r, we see that this no longer
plays a strong role. This is simply because for ¢ > r the detectors have come into causal
contact, and thus the generation of correlations can also follow from the direct exchange of
quanta rather than the harvesting of correlations from the field. Interestingly, the behavior
of I and D in the ¢t < r region is qualitatively very similar to the behavior found in the
vacuum, but for ¢ > r the behavior is very different (in the case of the vacuum, there is no
significant change in behavior across the light cone aside from a visible amplification near
t = r due the exchange of real quanta).

In the region of causal contact, ¢ > r, the behavior of I and D is very different from
the spacelike region, and it is here that we observe the intensity of thermal amplification
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0.06

Figure C.1: The mutual information between detectors as a function of ¢ and r, where the
field was initiated in a thermal state of temperature T = 2.

following directly from the couplings of the (4)-modes to the field, Egs. (8.20, 8.21). In
this region we are starting to see resonant effects. This means that we expect to see the
strongest contribution to the evolution of the detectors coming from the field modes near
the resonance frequency |k,| = Q = 40w/L, with L = 100. For example we notice the
bands of strong amplification at distances of » = 0,5,10.... From what we have learned
in Sect. 8.3.3, these should correspond to large differences in the values of the symplectic
eigenvalues v, and v_. Recalling that the (£)-modes are coupled to different field modes
with strengths that go as cos(k,r/2) and sin(k,r/2), we note that » = 0,5, 10. .. are exactly
the values that satisfy Q2r/2 = mm for integer values of m, meaning that the coupling of
the (4)-modes to the resonant frequency are |cos(Q2r/2)| = 1 and |sin(€Q2r/2)| = 0. This
maximum difference then leads to a large difference in the symplectic eigenvalues, and thus
to a local maximum in the thermal amplification.

We also notice in Fig. C.1 that there are local maxima at values of r = 2.5,7.5,12.5...;
these of course are the values that satisfy Qr/2 = mn/2 and thus give | cos(Qr/2)| = 0 and
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|sin(Qr/2)| = 1. This again translates into a maximum in the difference |vy —v_| and thus
in thermal amplification. However, why are these maxima much weaker than the others
discussed above? This follows from the same reasoning that was discussed in the main text:
given the timescale we are observing, we are still far from the single-mode approximation
being accurate. There are thus significant contributions coming from the field modes k,
of small frequency, and for relatively small r this translates into sin(k,r/2) being very
small for most of these modes and cos(k,r/2) being close to unity. Thus in this regime the
value of v_ is not able to become appreciably larger than v, even when the couplings to
the resonant mode suggest that it would. As r increases (still within the ¢ > r regime),
we see that that this no longer becomes the case and the two classes of maxima become
equivalent. Similarly, as t increases, the response deriving from the resonant mode becomes
more dominant, and the » = 2.5,7.5,12.5 ... maxima thus become more substantial, as we
see in Fig. C.1. For large ¢, when the single-mode approximation becomes accurate, the
maxima at r = 2.5,7.5,12.5... should be comparable to those at » =0,5,10....
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Appendix D

Relative entropy between (Gaussian
states

We find it useful in Ch. 9 to consider the relative entropy between two Gaussian states.
As the derivation of this is not common in the literature we will include a full derivation
here.

The relative entropy of two density matrices p4 and pp is defined as
S(pallpp) = Tr pa(log pa —log p). (D.1)
The relative entropy provides a measure of distinguishability of quantum states [114].

An important property of the relative entropy is monotonicity. Under any trace-
preserving completely positive map ® we have

S(®(pa)||®(pB)) < S(pallpB)- (D.2)

In particular, if we choose pp to be a fixed point of the evolution (®(pp) = pp) then we
have

S(®(pa)llps) < S(pallps) (D.3)

so that we have a measure of the distance between p4 and the equilibrium state that is
monotonic along the evolution. It therefore provides a measure of the degree to which the
system has equilibrated.

Let us consider the case where p4 and pp are Gaussian states of N modes, with covari-
ance matrices o4 and o respectively:

O’Z’-L} = (zx; + xjxi>pA , O'g = (wx; + acja:i)pB ) (D.4)
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To compute the relative entropy, we express it as

S(pallps) = —S(pa) — {log ps)p,. (D.5)

The entropy term is easily computed from the symplectic eigenvalues of 4, as given by
Eq. (3.24). Since pp is a Gaussian state, log pp is a quadratic operator, and its expectation
value is easily expressed in terms of the covariance matrix.

To find log pg, we first symplectically diagonalize o?. That is, we put it into its

Williamson normal form. This is done by some symplectic transformation S, the entries
of which are S;;. We transform to a new quadrature basis z; = ) | ; S;j2; such that

(T.T5 + T4), Z SipSjop = (D.6)

where D = diag(vy, v, v, 1, .. .), with symplectic eigenvalues vy,...,vy. As can be gar-
nered from Sect. 3.2 (or as explained in [15]), the density matrix pp in this basis takes the

form
p3®yk+1z(j’;j) Wt 0.7

Here |n); are the eigenstates of the number operator

~ 1,. N 1
Ny = 5 (T + o) — 5 (D-8)

Taking the logarithm of Eq. (D.7), we find that

N
2 Vi — 1 -
log pp = 1 1 N, D.9
0g i ;<Ogyk+l+0g%+1 k) (D.9)
2N ~
3,5=1

where ffij are the entries of a matrix H, and

1 4

=) Zlog—— D.11

c 2};2 08 77 (D.11)

H = diag(Hy, Hy, Hy, H,, .. .), (D.12)
1 l/k—l

H,= =1 . D.13

L (D-13)
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Changing from the x basis back to the  basis, log pg then takes the form

2N
lOg ﬁB =c+ Z Hijxixj; Hy = Siijlf{ij- (D14)

3,j=1

The relative entropy is therefore given by

2N
FUR . 1
S(pAH,OB) = _S(pA) —C— 5 Z O';';l'Hij, (D.15)

4,j=1

with ¢ and H given by Egs. (D.11) and (D.14). The quantity S(p4) can be found by Eq.

(3.24) in terms of the symplectic eigenvalues of the matrix o

When the state pp is a Gibbs thermal state
pp = Z e PH (D.16)

of inverse temperature § with respect to some given Hamiltonian H , the relative entropy
reduces to the free energy difference

S$(pallin) = BF(5a) - F(pp)) (D.17)
where the free energy is defined as
F(pa) = (H)p, — B71S(pa)- (D.18)

In Ch. 9 we will be interested in knowing, for a given Gaussian state p4, what thermal
state pp is closest to p4. For this task we will use the relative entropy as our distance
measure. To find the thermal state that minimizes the relative entropy (D.17), we simply
extremize with respect to the inverse temperature 3:

258(allpa) = (), — (H)yy =0 (.19)

Thus the thermal state pp closest to the given state is that which has the same energy.
Recall that the energy of a Gaussian state is easily computed via Eq. (3.9). When the
temperature of the state pg is chosen in this way, the relative entropy is straightforwardly
shown to be simply the entropy difference

S(pallos) = S(pp) = S(pa)- (D.20)
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The fact that the relative entropy is non-negative reflects the fact that the thermal state
is the unique state of maximal entropy among states of a given energy.

Thus we establish an “effective temperature” 57! of our state, obtained by solving for
as a function of the energy !, and a measure of distance to the manifold of thermal states.

'While we cannot find 3 analytically, it can be easily found numerically because the energy is mono-
tonically increasing with temperature.
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Appendix E

Adiabaticity for a moving cavity
mirror

Here we will discuss the adiabatic approximation used in Ch. 10 in regards to a slowly
vibrating cavity. We will do this by discussing the dynamics in general, and then observing
how the adiabatic regime arises. Let us first consider the case of a cavity with one moving
wall. It is clear that the adiabatic approximation does not hold in general; shaking the
cavity walls produces field excitations [39]. To rigorously see this we must solve the equa-
tions of motion subject to time-dependent boundary conditions, and derive an appropriate
Hamiltonian that takes such conditions into account. We introduce a mode expansion
that satisfies Dirichlet boundary conditions (that the field is zero at the moving boundary

¢(L(t),t) = 0):
o(z,t) Z\/;gon ) sinlk,, (t)x]. (E.1)

We can now quantize the field system by expressing the Klein-Gordon action in the vari-
ables ¢, (t) and deriving the Hamiltonian. Alternatively, we could derive the form of the
dynamics by inserting this ansatz into the Klein-Gordon equation and obtaining the form
of the expansion coefficients. Either way the result is that the field Hamiltonian can be
written in terms of the usual stationary solutions plus corrections that are proportional to
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the time derivative of the boundary condition:

H=3 O (720) + 62(0)) — 1) Y s (1) (E2)

LA(¢
+ L2 Z (Z Qe Qi (t ) ©n () pm(t) + (®) t)pm(t)
where the canonical conjugate momentum to ¢, is
_ Qpn(t) 7

The constants «y,,, and f,,, are defined by the coefficients of the Fourier sine series of the
coefficients of the action after including all relevant time dependent terms. In particular,
we have:

AT m g, Ly
Omn = 1 m(m?=n?) . ?é (E4)
o= ifm=n
_1\m+n mn m2 n2 .
ot m ifm=n

Now notice that the first term in Eq. E.2 is the usual Hamiltonian for the free Klein-
Gordon field, but with time-dependent mode frequencies. That is exactly what we would
get by making the assumption that the field admits the same mode expansion as in the
stationary case. However, there are other time dependent terms present that allow for
particle creation. Those terms are responsible for mechanisms such as the dynamical
Casimir effect.

The remaining terms come with additional factors of L, and hence will be small as long
as the motion is sufficiently slow. In particular, the second term is parametrically smaller
by a factor L, and hence will be small if the speed of the wall is small compared to the
speed of light. The third and fourth terms are parametrically smaller still by a factor L,
and hence will be even smaller. Hence the adiabatic approximation obtains whenever the
motion of the cavity walls is nonrelativistic.

Under the assumption that the cavity walls” motion is non-relativistic, we will have no
particle creation. Hence, we can approximate the field dynamics in the cavity by the time
dependent mode expansion described by the first term above, thus treating the field under
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the wall oscillations just like a free field in which we make the frequencies and wave numbers
time dependent through L(¢). We call this the ‘adiabatic approximation’, which will be
fulfilled in most realistic cases of cavity wall vibration (seismic waves, sound, motion, etc.).

262



Appendix F

Adiabaticity for gravitational waves

In regards to our approach to quantum seismology presented in Ch. 10, we now present
some preliminary calculations for the case where changes in cavity length are due to a
passing gravitational wave. We show that the dynamics in this case are similar to those
of the physical model presented in Appendix E (which was used in our calculations) while
acknowledging that further work would be required to refine this into a practical proposal
for gravitational wave detection.

It has recently been claimed that relativistic effects in a Bose-Einstein condensate can
be used for detection of gravitational waves [181]. Here we do not make any claims about
the achievable sensitivity of our proposal in Ch. 10 to gravitational waves or the ability to
distinguish between gravitational radiation and conventional vibrations; we merely point
out the possibility that the technique could apply to the case of a gravitational wave. We
leave more detailed questions of sensitivity and isolation from external noise as a possible
avenue for future work.

We assume transverse-traceless gauge in which the metric is of the form
d52 = —dt2 + (6U + h1j<t))dl'ldl'j (Fl)

where h is a symmetric matrix with entries |h;;| < 1; the particular form of h;;(t) will
depend on the wave profile, and the polarization of the wave. Now suppose that the cavity
is oriented along the x axis. The induced metric on the t — x plane will be

ds® = —dt* + (1 + h(t))dz? (F.2)

where h(t) = hy.(t). The gravitational wave causes the masses to transversely oscillate and
to accelerate toward each other due to the gravitational attraction of the wave between
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the test masses. Note, however, that any transverse motion of the masses does not affect
the cavity length to first order in A(t).

Suppose the walls of the cavity are coupled by a spring. We will assume that the spring
couples the two walls instantaneously. Although this is not compatible with causality, it
should be a reasonable approximation as long as the time scale for forces to propagate from
one end of the cavity to another is shorter than the typical time scale of the gravitational
wave signal. This condition is determined by the frequency of the gravitational wave wg,,
the speed of sound in the spring v, and the cavity length L, and will hold as long as
Wy < s/ L.

For simplicity, let us describe the walls of the cavity as a pair of masses m (whose
separation vector is along the z-axis) coupled by an oscillator of quality factor () and spring
constant k (see [118]). We will take the coordinate difference to be z1 — xg = Lo + dz(t),
where Ly is the rest length of each cavity (the initial proper separation of the pair of test
masses) and dz is assumed to be small. The potential of the spring is

1
V = KL+ Sh(1))(ar — z0) — Lol (F.3)
The equation of motion can be expanded to linear order in h(t) and dz(t), yielding

. W oo
moi(t) = —@51 — kbx(t) — h(t)kLy. (F.4)
We see that the gravitational wave results in a time-dependent external force applied to
the spring. This results in a time-dependent proper length separations of

L(t) = Lo (1 + $h(t)) + dx(2) (F.5)

and so by solving the equation of motion for dz(¢) we find the proper length L(t) as a
function of time.

Just as in the case of the moving mirror, we can solve the Klein-Gordon field theory
in a mode expansion with moving boundary conditions, the only difference is the time-
dependent metric (F.1). The resulting time-dependent Hamiltonian takes precisely the
same form as Eq. (E.2), but with w,(t) = nw/L(t) with L the time-dependent proper
length of the cavity (F.5), and additional factors of (14 1h(t)) multiplying the matrices
Qmn and B, defined in Appendix. E.

The cavity here is described is a linear detector and so cannot distinguish gravitational
radiation from tidal forces and other sources of noise. This could be overcome by consider-
ing two (or even three) cavities at right angles and looking for coincident signals. Even with
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such a system, it will be a major challenge to see if our approach could be engineered to
achieve levels of a sensitivity equivalent to or exceeding those of present-day gravitational
wave detectors.
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