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Abstract
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Chapter 1

Introduction

Pairwise balanced designs are of ﬁmdat;lental importance in combinatorial theory.
They are of interest in their own right, and have many applications in the con-
struction of other types of designs. Standard texts (e.g., [9], [24]) treat the role of
pairwise balanced designs well.

1.1 Definitions

In this section we define the common terms that are used in the thesis. Terms

specific to a proof or construction are defined as the need arises.

Throughout the thesis, we use the notation N to denote the set of positive
integers; [a, b] to denote the set of integer v such that ¢ < v < b; Z, to be the ring
(or group) of residues modulo »; and F, to be the Galois field on g elements.

A pairwise balanced design (or PBD) with index A is a pair (V,B) where

1. V is a finite set of points,
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2. B is a collection of subsets of V called blocks,
3. every pair of distinct points of V" occur in exactly A blocks.

We use the notation (PBDi(v, K)) when [V| = v and [B|€eK. When A = 1, we
simply denote it by PBD(v,K). We denote B(K)={v : there exists a PBD(v,K)}.
A set K, a subset of the positive integers, is said to be PBD-closed if B(K)=K.

The notation PBD(v, K U k*) denotes a PBD containing a block of size k. If
k ¢ K, this indicates that there is exactly one block of size k in the PBD. On the
other hand, if k € K, then there is at least one block of size k in the PBD.

In a sequence of three papers [117, 118, 119}, Wilson developed a theory con-
cerning the structure of PBD-closed sets. We give a brief summary of his results.
Let K be a subset of the set of all positive integers; we define two integers: a(K)
= ged{v — 1:v€K} and B(K) =gcd{v(v — 1):v€K}. Wilson’s main result is that
there exists a constant N (depending on K') such that, for all v>N, veB(K) if and
only if v — 1 =0 (mod a(K)) and v(v — 1) = 0 (mod B(K)). Although the proofs
are constructive in a sense, this theory does not yield any reasonable upper bounds
on N.

A balanced incomplete block design (BIBD) with index A is a (PBD,(v, K)) with
K={k}. We use the notation BIBD(v,k,\) where |B| =k for all B € B.

If the blocks of the design, BIBD(v, k, A), can be partitioned into classes C,,C;,
... ,Cm such that every point in V appears in exactly one block in each C; for
i=1,2,... ,m, the design is called resolvable and is denoted by RBIBD(v, k, 1).

Often we denote B(K) = {v : there exists a PBD(v, K)}, in the case when
K = {k}, we simply write B(K) as B(k). Also, we use the notation RB(k) = {v :
there exists a RBIBD(v, k, A)}.

A group divisible design (GDD) of index A is a triple (V,G,B) where
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1. V is a finite set of points,
2. G is a set of subsets of V, called groups, which partition V,
3. B is a collection of subsets of V called blocks,

4. every pair of distinct points of V not found together in a group, occur in
exactly A blocks,

5.|GNB|<1 for all GEG and B€EB.

We do not require all groups to have the same size. When it is important
to consider the sizes of the groups explicitly, we refer to the group-type of the
GDD. The group-type, or more simply, type, of a (GDD,(V,G,B)) is the mul-
tiset H=(|G|:G€G). For convenience, we use the notation H = (g0, ...., )
where g means n; groups of size g;. We use the notation GDD)(v, H, K) for
a GDD,(V,G, B) where |G|€ H is defined as above and K={|B|€B}. A K-GDD
is a group divisible design with block sizes from the set K.

A transversal design TD,(k,n) is a GDD with kn points, & groups of size n,
and index A. Every group and every block of a transversal design intersect in a
point. In the case of A = 1, we simply denote it by TD(k,n). It is well-known
that a TD(k,n) is equivalent to & — 2 mutually orthogonal Latin squares (MOLS)
of order n. For a list of lower bounds on the number of MOLS of all orders up to
10000, we refer the reader ta (3]. '

A parallel class in a design is a set of blocks that partition the point set. If
the blocks of a design can be partitioned into parallel classes, then it is said to be
resolvable. In the sequel we write RTD and RGDD with the appropriate parameters
to denote a resolvable TD and GDD respectively. The existence of a resolvable
TD(k,n) is equivalent to the existence of a TD(k + 1,n).
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A K-modified group dvisible design (K-MGDD) of type a® with index A is a set of
ab points, equipped with a parallel class of blocks of size a, a parallel class of blocks
of size b, and all other blocks having size in the set K, so that every unordered pair
of points occurs together in exactly A block. Any two points appearing in a block
of either parallel class appears in no other block. As with GDD, when K = {k},
we simply denote the K-MGDD by k-MGDD.

Next, we need definitions on incomplete objects.

An incomplete group divisible design (IGDD) with block-sizes from K and in-
dex A is a quadruple (V,G,H,B) where V is a finite set of cardinality v, G =
(Gy,Ga,. .. ,G,) is a partition of V, H = {(Hy1, Haa, - - , Hie), (Hn, Haz, - .. , Hae), - -
(Ho,Hazy--. , He) is a collection of subsets of V' with the property that H;; C G;
forallj =1,2,...,tand H,;N H,; = 0 for all a # b, (the G; are groups and H;; are
holes, and B is a family of subsets of V called blocks which satisfies the properties:

(1) Any pair of distinct elements of ¥V which occurs in a group does not occur in
any block.

(2) If a pair of distinct elements from V' comes from distinct groups and each
element occurs are not both in H,; and Hp; for some g,b, j, then that pair
occurs in exactly in A blocks. If there exists a,b and j so that a # b, then
that pair appears in no block.

An IGDD is of type
(91 Bty Baz,y - - - s hae)™ (925 B2ty Baz,y - - <, h2e)™ o (e Rery Begy - oo Biee)™
if there are a; groups of size-g; with hole sizes h;;, hia, . .. , hy.

Related to incomplete group divisible design is a holey group divisible design
(HGDD). A K-HGDD of type ({u; : 1 < i < r}, h) is a structure (X, {Yi}1<i<r, G, B)
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with index A where X is a hm-set (of points), G = {G,,Ga, ... ,Ge} is a partition
of X into h groups of m points each, {Y;,Y3,...,Y.}is a partition of X into r holes,
each hole Y;(1 < ¢ < r) is a set of hu; points such that [Y;NG;| = u; for 1 < j <k,
and B is a collection of subsets with sizes in K of X (called blocks), such that no
block contains two distinct points of any group or any hole, but any other pairs of
points of X is contained in exactly A block of B.

If we remove one or more sub-designs from a TD,(k,v), we obtain a transversal
design with holes. In the case of one hole, it is called an incomplete transver-
sal design (ITD). More formally, an ITD, denoted by TD,(k, m)—TD,(k,n), is a
quadruple (X,Y,G, B), where X is a set of km points, G = {G1,Ga,... ,Gk} is a
partition of X into k groups of m points each, Y C X is a set of kn points such
that [Y NG;| =nfor 1 < j <k, and B is a set of subsets (called blocks) of X, each
of which intersects each group in exactly one point such that every pair of points
{z,y} from distinct groups is either in Y or occurs in a A block but not both.

The set Y is referred to as a hole. If Y = 0, then the ITD is a TD.

Related to incomplete transversal is a holey TD (HTD). A k-HTD of type {u; :
1 <i < r}is a structure (X, {Y:h<i<r, G, B) with index A where X is a km-set (of
points), G = {G1,Ga,...,Gi} is a partition of X into k groups of m points each,
{"1,Ys,...,Y;} is a partition of X into r holes, each hole Y;(1 < ¢ 5 r) is a set of
ku; points such that |[Y; N G;| =u; for 1 < 7 < k, and B is a collection of subsets
of X (called blocks), each meeting each group in exactly one point, such that no
block contains two distinct points of any group or any hole, but any other pairs of
points of X is contained in exactly A block of B.

When A is not mentioned, we assume that A =1.

Let k be a positive integer and let v and be positive integers. Let V be a set
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of size v. Let any subset of size k of V be a block. Then a (k, a)-partial resolution
class is a collection C of blocks such that every element of V' occurs in either exactly
a or exactly zero blocks of C. The set of elements of V" not occurring in the partial

resolution class is the complement of the class.

Let k, a and A be positive integer. A (A, a; k)-frame is a triple (V,G, B) where
V is a set of size v, G is a partition of V into parts (groups), and B is a collection
of (k,a)-partial resolution class of V' which satisfies the conditions:

1. The complement of each (k,a)-partial resolution class B of B is a group
Geg;

2. Each unordered pair {z,y} of V which does not lie in some group G of G lies
in precisly A blocks of B;

3. No unordered pair {z,y} of elements of V' which lies in some group G of G
also lies in a block of B.

The type of the (A, a; k)-frame is the multiset T = [|G] : G € G]. If G contains
a; groups of size g; for i = 1,2, ... ,r, then the exponential notation g;"g3*...g7" is
also used. By convention, factors of the type 0% can be included in the expoential

form of the type to accommodate null groups when necessary.
A k-frame of type T is a (1,1; k)-frame of type T'.

A finite projective plane of order n, n > 2, is a collection of n + 1 subsets (called
lines) of a n? +n + 1-set V points, such that every two points of V' occur together
in exactly one of the lines. An oval of a projective plane of order n is aset of n 41
points such that no three are collinear. An hyperoval of a projective plane of order

n is a set of n 4+ 2 points such that no three are collinear.
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Let A be a set of non-negative integers, and let D be a PBD(v, K). Then
an A-arc with w points in D is a set of w points S of D such that if B is a
block, then [B N S| € A. The order of an arc is the number of points in the arc.
Suppose that a projective plane of order » contains a A-arc of order w. Then it
also contains a complementary (n + 1 — A)-arc of order n? + n + 1 — w, where
n+l-A={n+1-a:ac A}

Let z be a nonnegative integer, and let Z={i,,1t,,...,3,} with 0 < 1; < i3 <
... < t, < z. Further suppose that 0 < s; < 3; < ...5;. < n. Let (X,G,B) be a
TD(k+z,n) with G= {G\1,G,, ..., G, Hy, H,, ..., H.}. Thenan (z,Z, 81,383, - .. , 8z)-
thwart is a set § = U3, S;, where S; C H; with [Sj|= s; for each 1 < j < z, such
that for every B € B, |[BN S| € I.

A (v, k, X) packing design (briefly packing) is a pair (X, B) where X is a v-set, B
is a collection of some k-subsets (called blocks) of X such that every pair {z,y} C X
is contained in at most A blocks of B. The packing number D(v, k, A) is defined to
be the maximum number of blocks in a (v, k, A) packing. A (v,%, A) packing with
D(v, k, ) blocks will be called a maximum packing and we called D(v,k, ) the
packing number for v points, block sizes k£ and index A.

Next, we introduce the concept of difference families. Let G be an additive
abelian group. Let B = {b;,b,,... ,b} be a subset of G. Define

B+g={bi+9,b2+9,...,be +g}
for g € G and define the development of B as
devB={B+g:9€G}

The development of B is just of orbit of the set B under the action of the group G.

Since we are allowing repeating blocks in our designs, we wish to point out that the
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definition of the development of a block B excludes repeated blocks from occurring
in dev B. If [dev B| < |G| then B is said to be in a short orbit under G.

Let F= {B:, B, ... , B:} be a family of subsets of G and define the development
of F as

dev F = 2:___,ldevB;.

If dev F is a BIBD(v, k, X), we say that F is a (v, k, A) difference family, and denote
it by DF)(v,k). The sets By, B,,... , B, are called base blocks. The group G will
certainly be contained in the automorphism group of dev F. If G is cyclic group
Z ., the design is also cyclic.

In some cases, we can determine whether or not an arbitrary collection of blocks
F will be a difference family simply by examining . We do this as follows. Let
the elements of block B; be {b, b2, - .. ,bi}. If the list of differences D,

D=(b;—bg:t=1,2,... ,;1=1,2,... ,k;5#1)

contains every nonzero element of G exactly A time then dev F is a BIBD(v, k, A).
It may be the case that the list of differences does not contain every element exactly
A times but dev F is still a BIBD(v, k&, A). This occur only when short orbits are

present.

We remark that the difference method is very useful in constructing PBDs and
GDDs. In both cases, it is not necessary that all base blocks have the same size.
In the case of GDDs, often we construct the groups by taking certain short orbits.

1.2 Constructions

Theorem 1 [2{] If q is a power of a prime number, there ezists & projective plane
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of order q.

The proof of the above theorem depends on the existence of a finite field of size
q- We denote the projective plane that arises from this finite field by PG(2, q)-

Theorem 2 [24] Let x be a PG(2,q) where q is odd. Then n contains an oval.
" Theorem 3 [2{] Let x be a PG(2, q) where q is even. Then m contains a hyperoval.

The existence of ovals (and hyperovals) in PG(2, g) is very useful in construct-
ing pairwise balanced designs. Here is a well known theorem about constructing
pairwise balanced designs using ovals (and hyperovals).

Theorem 4 [87] Let q be a prime power. Then for 0 < t < q+1, ¢ -t €
B({q—zsq-I’Q}) a'ndq’+Q+l-teB({q-LQaQ'{'l})'

Theorem 5 [87] If q is a prime power and n is a positive integer where 1 < n <
g — 1 and t is a non-negative integer such that 0 < q+ 1 —n thenng+t €
B({n,n +1,n +2,q}).

Theorem 6 (Greig, see [87]) Let q be an odd prime power. Then,

(a) there ezists a {(q—1)/2,(q + 1)/2}-GDD of type ((g— 1)/2)* and

(b) there ezists a {(q +1)/2,(g + 3)/2}-GDD of type ((q + 1)/2)2.
A slight generalization of above is presented in [87)].

Theorem 7 If q is an odd prime power, then for any integer t such that 0 < t <
q+1, we have ﬁ";—ll +te B({3, &1, 3},
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Theorem 8 [97] (Denniston) There exists a {0,2"}-arc of order w = 2¥+™ —
gnim 4 9n in PG(2,2).

Theorem 9 [87] If there is a TD(k + z,n) containing an (z,Z,31,3;,-..,3z)-
thwart, and if {s1,...,3:} C B((k+Z)U{n}), thennk+3 7, s; € B((k+TI)uU{n})
where k+I ={k+i:i€TI}.

Theorem 10 [{3] For p a prime, 0 < k < p—2, there is a TD(k+3, p) containing
e (3,{0,1,2},a,b, c)-thwart and its complementary (3,{1,2,3},p —a,p —b,p —c)-
thwart, whenever a+b+c<p+1.

Let A and B be subsets of Z,,. Then define A—,B={a—bmodn:ac A,bec B}.
Now define m(n,a,b) = min{|A —, B|: A,B C Z,, |A| =a, |B| = b}.

In [42], the following is proved.

Theorem 11 For q a prime or prime power, there ezists a TD(q+1, q) containing
the thwart (I +2,{0,1,2,(l + a + B)*},a + a,b+6,1,1,...,1) for all0 < I <
qg—1—-m(q-1,a,b), and a,B € {0,1}.

Theorem 12 [97](Truncation of groups in a transversal design) Let k be an inte-
ger, k> 2. Let K = {k,k+1,...,k+ s}. Suppose that there ezists a T D(k + s,m).
Let g1, g2, .- be integers satisfying 0 < g; < m,-i =1,2,...,8. Then there ezists a
K-GDD of type (m, m, ..., m(k times), g1, 92, ---, 9s)-

Theorem 13 [97](Spike-type construction) Let k, s, and n be integers with k > 2,
$>0,andn > 1. Let K = {k,k+1,...,k+s+1}. Suppose there ezists a TD(k+s+
n,m). Let g1,93,...,9, be integers satisfying1 < g; <m,i =1,2,....s. Then there
ezists a KU {k+ s+n}-GDD of type (m,m, ...,m(k times), g1, 92, ---, gs, 1,1, ..., 1(n

times)).
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Theorem 12 is similar to Theorem 13, except that certain points on a particular
block are retained. Some of these points remain as groups of size one, hence the
name ‘spike’. Since we are interested in PBDs with 3 consecutive block sizes,

Theorem 12 is often used when s = 1:

Theorem 14 [97](Line flipped spike construction) Let k be an integer, k > 3, and
let K ={k—1,k,...,k+s+1}. Suppose that there ezists a TD(k+s+n,m), where
n s a positive integer. Let gy, ga,...,g, be integers satisfying 0 < g; <m—-1,i =
1,2,...,s. Then there ezists a K-GDD of type ((m — 1),(m — 1),...,(m — 1)(k

times)igh 92y -1 G, n)'

Theorem 15 [97/(Singular Indirect Product) Let K be a set of positive integers
and k € K; Suppose there ezists a TD(k,m + n) — TD(k,m). Ifn+m +h €
B(K U (m + h)*) and km + h € B(K) then nk + km + h € B(K).

Theorem 16 [97](Singular Direct Product) Let K be a set of positive integers;
Suppose there ezists ¢ TD(k,n). Ifn+h € B(KUhR*) forallt =1,2,... ,k and
h € B(K) then nk + h € B(K).

Theorem 17 [97](Filling in Hoies) If there ezists a K-GDD of type g19; . . . gn, and
gi+h € B(KUR*) forl1<i<n—1andg.,+h € B(K) then Y ,_, ng:i+h € B(K).

Theorem 18 [97](Wilson’s Fundamental Construction) Let (V,G,B) be a GDD
(the master GDD) with groups G,,G;,... ,G:. Suppose there ezists a function
w : V = Z* U {0} (a weight function) which has the property that for each block
B = {z1,2;,... ,21} € B there ezists a K-GDD of type (w(z1), w(zz),... ,w(zi))
(such ¢ GDD is an ingredient GDD). Then there ezists a K-GDD of type

O w=), ) wi@),..., Y w(z)).

z€G, z€G; z€G:
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The existence of PBDs, especially BIBDs, has attracted considerable attention.

We recall some known results concerning PBDs.

Theorem 19 1. [63] For all positive integers v =1 or 5 (mod 20), there ezists
a B(5,1;v).

2. [62] There ezists a (v,{5,9*})-PBD for any integer v = 9 or 17 (mod 20)
and v > 37 with the possible exception of v = 49.

3. [62] There ezists a (v,{5,13*})-PBD for any integer v = 13 (mod 20) and
v > 33.

4. [7, 21] There ezists a (v, {5,17*})-PBD for any integer v = 9,17 (mod 20)
and v > 69, with the possible exception of v € {77, 89, 137,209, 249, 269, 289}

5. [7, 21] There ezists a (v,{5,21*})-PBD for allv =1 or 5 (mod 20), v > 85.

6. [21] There ezists a (v,{5,25*})-PBD for allv =1 or 5 (mod 20), v > 101,
with the possible ezception of v = 141.

In this thesis, we employ mainly TD(5,m) and TD(6,m) (see [3] and references

therein):
Lemma 1 There ezists a TD(5,n) for every integer n > 4 and n # 6 or 10.
Lemma 2 There ezists a TD(6,n) for every integer n > 5 and n # 6,10, 14, 18, 22.

The following is well known.

Lemma 3 For every prime power q, there ezists a RTD(q, q).
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To create HTDs, we employ the following technique.

Lemma 4 [81] Suppose that a TD(k + 1,t), a TD(k,m) and a TD(k,m + 1) all
ezist. Then there is a k-HTD of type m*u!, where 0 <u<t—1.



Chapter 2

Pairwise Balanced Designs

In this chapter, we study pairwise balanced designs. In particular, the emphasis
is on pairwise balanced designs with consecutive block sizes. Also, some other

existence and non-existence results for pairwise balanced designs are also discussed.

2.1 Deleting Lines in Projective Planes

In this section, we present a construction of pairwise balanced designs with various

block sizes from projective planes.

In particular, we show that certain line configurations can be removed from the

projective plane to obtain some interesting PBDs. For example, we establish

50,51,52,53,54 € B({5,6,7}),
72 € B({6,7,8)}),

68, 69 € B({57 6, 71 8})’

14
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82,83, 84, 85, 86, 87,88, 89 € B({7,8,9}), and

93,94, 95,110,114 € B({8,9,10}).

Numerous applications of PBDs with three but not four consecutive block sizes
are given in next section. In determining existence of PBDs on v points with block
sizes {k,k + 1,k + 2}, often the most difficult cases seem to arise when v is greater
than (k + 2)3, but not much greater. For example, when k = 7, deletions of points
in arcs of a projective plane of order 8, and of an affine plane of order 9, establish
that if 63 < z < 81, then z € B({7,8,9}). However, the range following this
is not amenable to quite as simple a method (indeed, the next known member
of B({7,8,9}) was 91, from the (91,7,1) design). It is in this range that we find
deletions of various configurations from finite projective planes to be most useful.
While we have not been able to settle all open cases in B({k,k+1,k+2}) for k=
5,6, 7,8 using the techniques described here, the extension of the initial sequence of
values for which such PBDs are available both simplifies the determination of closure
for these sets, and provide simple direct constructions for PBDs. For more complete
results on closures of sets with three consecutive block sizes, see [87] and [46].
Naturally, the idea of employing configurations in finite planes to produce PBDs
is far from new; see [58] and [97] for related results. The results here are general;
while we illustrate them primarily with their consequences for B({k, k + 1,k + 2})
when k is small, the goal is really to develop general observations about- simple

configurations in planes.

One particular importance of the line deletion techniques explored here is in the
construction of incomplete transversal designs. Letting N*(k) be the number of
idempotent mutually orthogonal latin squares of side k, it follows from v € B({k,k+
1,k+2,a"}) that a TD(Z,v)—T D({, a) exists with £ = min(N*(k), N*(k+1), N*(k+
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2)) +2. Taking k = 7, we obtain T D(7,v) —T D(7,a) whenever v € B({7,8,9,a*}).

In providing motivation, we have concentrated on applications to the construc-
tion of various designs. It is perhaps important to remark that deleting any set of
points at all in a projective plane yields a PBD of some kind. The only surprise,
then, is that fairly simple considerations can be used to limit the block sizes to a
small set. This goal of restﬁctmg the block sizes leads in some cases to interesting
new geometric questions; we shall see that our goal of few block sizes leads to a

notion of a scattering dual k-arc.

2.1.1 The Mia Configuration

Figure 2.1: The Mia Configuration

A Mia configuration is a set of five lines {;,1;,1l3,1l4 and I5s so that laNl3 and [N s
are two distinct points on ;. Figure 2.1 shows the Mia configuration.

Lemma 1 The Mia configuration ezists in any finite projective plane.
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Proof: Take a line [, in the plane, and identify two distinct points A, B on the line.
For each of the two points, identity two distinct lines intersecting I, at that point.
The intersections of the four lines define four more points in the finite projective
plane. The five chosen lines form the Mia configuration. a

Now, we examine how each line intersects the Mia configuration.

Lemma 2 Every line intersects the Mia configuration in either ¢+1,3,4 or 5 points
where q is the order of the projective plane.

Proof: The proof uses thé labels in Figure 2.1. Trivially, any one of the five
lines intersects the Mia configuration at g + 1 points. If a line intersects the Mia
configuration at point A, then it intersects line BE and line CD. Hence, the line
intersects the Mia configuration at 3 points. The situation is similar if the line
intersects point B. If the line intersects point C, then there are two possible cases.
Either it intersects point E so the line intersects the Mia configuration at 3 points
or it does not intersect E so the line intersects the configuration at 4 points. The
situation is exactly the same by symmetry for points D, E and F. If a line does
not hit any of the five lines except in the configuration, then it intersects the Mia
configuration at five points; hence the result follows. O

Lemma 3 If ¢ > 4 is a prime power, then ¢* ~4q+4 € B({g—4,9—3,9—2}).

Proof: The 'Mia configuration has 5q — 3 points. The result follows by removing
the Mia configuration from a projective plane of order ¢ and Lemma 2. =]

We can also add back some points from the Mia configuration to obtain some
interesting PBDs.
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Lemma 4 If0 < a < q—3 and ¢ > 4 is a prime pover, then ¢ —4g+4+a €
B({g—4,9-3,9—-2,a%}).

Proof: From the proof of Lemma 2, we can add any a points on the line AB as
long as we do not include the point of intersection of lines AB and CE or the point
of intersection of lines AB and DF. o

As a consequence, we have the following corollary.
Corollary 1 50,54 € B({5,6,7}).
Proof: Apply Lemma 4 with ¢ =9 and a =1,5. o
Corollary 2 82,88,89 € B({7,8,9}).

Proof: Apply Lemma 4 with ¢g=11and ¢ =1,7,8. O

2.1.2 The Dual k-Arc

A dual k-arcis a set of k lines in a finite projective plane with the property that
no three points of intersection of any two lines are concurrent. We begin with
the existence of the dual k-arc in the finite projective plane. The dual plane of a
projective plane = is the projective plane obtained by interchanging the role of lines

and points in 7.

Lemma 5 For q a prime power, and any 1 < k < g+ 1, there ezists a projective

plane of order q containing a dual k-arc.
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Proof: Every desarguesian projective plane contains k points such that no three
of them are collinear. The result follows by taking the lines corresponding to the k
points in the dual plane. a

Figure 2.2 shows a dual 6-arc.

occcék

Figure 2.2: The Dual Arc Configuration

We call P a corner point if P is on two of the k lines and @, a ray point if Q@
is on exactly one of the k lines. Let A be any dual k-arc, and £ be any line of the
plane not in A. If a points on £ are ray points and b points on £ are corner points,

we must have a + 2b = k. Using this observation, we have the following theorem.

Theorem 20 If q is a prime powerand 1 <k < q+1, theng* +q+1—k(qg+1) +
ﬂL‘Z:l)'eB({q"']>"k';q4"]~—(k"]‘)a'-- yq+1-—- f!ﬂ})’

Proof: Take a desarguesian projective plane of order q. By Lemma 5, there exists

a dual k-arc. There are k(q + 1) — @ points in the dual k-arc. If a points on
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| are ray points and b points on ! are corner points, since a + 2b = k, one has
a+be {[51,[£]1+1,... ,k}. The result follows by removing the points in the dual

k-arc. a

As in Lemma 4, it is possible to identify some points in the dual k-arc whose

retention does not increase the block sizes.

Theorem 21 Letk > 4. Ifq+1—k > ("'1)("'2),("'3)("'” and q i3 a prime power,
then g* +q+1—-k(g+1)+ 51 +1 € B({g+1-k,g+1-(k-1),...,a+1-[51});
in addition, ifq+1—k > (k-1)(k-—zl(k-3)(k-4) + (5-2)2("_9) then > +q+ 1 — k(g +
)+50 +2e B({{g+1-kq+1-(k~1),...,¢+1~[5]D.

Proof: Choose a line £; of the dual arc. There are (ﬂ%&ﬁ corner points not on
¢,, and ("'l)("'zls@'auk"‘) pairs of corner points defined by disjoint pairs of lines of
the dual arc other than £;. Each such pair defines a line; the line so defined meets

{,, and we call the intersection point bad. Under the stated requirement on q and

k, one of the ray points, say p,, is not bad. Adding p, therefore does not increase
the size of any line whose size was already at least g+ 1 — k + 2.

Having chosen to add p;, we next choose a line £; # {; from the dual arc. As

(""1)(""2)8("'3)(""‘) of the ray points on £; bad.

before, pairs of corners make up to
In addition, in this case, a point is bad if it lies on a line defined by p, and one
of the corners of the dual arc. Having fixed p; and £;, there are Q‘;z)i(k—'ﬁ ways
to choose the corner, and hence at most this number of points are, in addition,
classified as bad. Hence, under the stated condition, there remains a ray point p;
that is not bad. Adding p; and p; does not increase the size of any line to more
thanq+1—k +2. a

Corollary 3 51,52 € B({5,6,7}).
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Proof: Apply Theorems 20 and 21 with ¢ =9 and k& = 5. a
Corollary 4 83,84,85 € B({7,8,9}).

Proof: Apply Theorems 20 and 21 with ¢ = 11 and k& = 5. a
Corollary 5 83 +a,84 + a € B({7,8,9,a°}) for0 < a <6.

Proof: Retain a points on one of the rays. )
Corollary 6 93,94,95 € B({8,9,10}).

Proof: Apply Theorems 20 and 21 with ¢ = 11 and k = 4. a

If we only remove the ray points instead of all points in the dual k-arc, then we

can also obtain some interesting PBDs.

Theorem 22 If q is a prime power, then ¢ +q+1—k(q—k+2) € B({k—1,9+
1-k,g+1—-k+2,...,9+1—a}) where a € {0,1} and a and k have the same
parity.

Proof: If a line intersects ¢ corner points, then it intersects exactly k — 2i ray

points. So, by removing all the ray points, the result follows. m]
Corollary 7 48 € B({4,6,8,4°}).

Proof: The corollary follows by taking ¢ =8 and k = 5. a

In Theorem 21 we have given a counting argument to ensure the presence of
certain PBDs. However, it is possible that the bad points overlap to result in an
overestimate of the number of bad points. We consider the cases when ¢ = 9 and

g = 11 to get a better result than Theorem 21.
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Lemma 6 . 53 € B({5,6,7}).

Proof: A difference set for a projective plane of order 9 is
D ={0,1,3,9,27,49,56,61,77,81}.

Let five lines be D+0, D +1, D+3, D +95 and D 4+ 9. One can check that the
five lines form a dual 5-arc. Removing all points on the five lines except for 49 and
65, all lines have sizes 5,6 or 7. Hence, we obtain 53 € B({5,6,7}). m]

Lemma 7 86,87 € B({7,8,9}).

Proof: A difference set for projective plane of order 11 is
D ={1,11,16,40,41,43,52,60, 74, 78,121, 128}.

Let five lines in the plane be D + 0, D +13, D + 104, D + 5 and D + 39. By
removing all points in the five lines except 52,53,120 and 6, all lines have sizes 7,
8 or 9. This gives 87 € B({7,8,9}). In addition, if we also remove the point 6, we
also obtain 86 € B({7,8,9}). a

So far, we have no restriction on the intersection pattern of the corners. How-
ever, if we restrict that no three corners in a dual k-arc are collinear, we can obtain
some more PBDs with consecutive block sizes. We call a dual k-arc scattering if
no three of the corner points obtained from six different lines are collinear. ;From

Lemma 9.1.1 in [68], one obtains a necessary condition on scattering dual k-arcs.

Lemma 8 A scattering dual k-arc in a projective plane of order q must satisfy
k(k —1)(k—2)(k—3)+8k <8(¢* +q+1).
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However, the necessary condition is not sufficient. A complete search was at-
tempted for scattering dual 7-arcs in desarguesian projective planes of order 11 and
13. However, there is no scattering dual 7-arc in these projective planes. Also,
there is no scattering dual 6-arc in the desarguesian projective plane of order 9.
However, scattering dual 6-arcs exist in the desarguesian projective planes of order
11 and 13.

Lemma 9 There ezists a scattering dual 6-arc in a projective plane of order 11.

Proof: A difference set for projective plane of order 11 is
D = {1,11, 16, 40,41, 43,52, 60, 74, 78, 121,128}

Let the six linesbe D+ 0, D+13, D+104, D+39, D+1and D+ 2. Itisa
straightforward matter to check that these 6 lines form a scattering dual 6-arc. O

Lemma 10 There ezists a scattering dual 6-arc in a projective plane of order 13.

Proof: A difference set for projective plane of order 13 is
D = {0,2,3, 10,’26, 39,43,61,109, 121,130, 136, 155, 141}.

Let the six lines be D +0, D+1, D44, D+5, D+6 and D + 9. One can check
that these six lines from a scattering dual 6-arc. o

So far, we have only considered the existence of scattering dual k-arcs. Now,

we show how to use them to obtain PBDs.

Theorem 23 If there ezists a scattering dual k-arc in e projective plane of order

g then @ +q+1—k(g+1)+22 ¢ B({g+1-Fk,q+1-(k—1),¢+1—(k—2)}).
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Proof: The proof of this theorem is parallel to Theorem 20 and thus omitted. O

Theorem 22 can also be generalized for the scattering dual k-arc.
Corollary 8 68,69 € B({5,6,7,8}).

Proof: Apply Theorem 23 with the scattering dual 6-arc in Lemma 9 to obtain a
PBD(76,{6,7,8} U 8%). The result follows by removing seven or eight points in a
block of size eight. a

Corollary 9 114 € B({8,9,10}).

Proof: Apply Theorem 23 with the scattering dual 6-arc in Lemma 10 to obtain
114 € B({8,9,10}). a
One general question is to decide when scattering dual k-arcs exist, as they

appear to be very useful in constructing PBDs.

2.1.3 The Anti-Fano Configuration

Let m be a projective plane. Let A, B,C and D be 4 points such that no three are
collinear. Let G = ACNBD, E = ADNBC and F = ABNCD. Thessix lines AB,
AC, AD, BC, BD and CD form an anti-Fano configuration if the three points F,

F and G are non-collinear.

Lemma 11 If q is an odd prime power, then there exists a projective plane of order

q containing an anti-Fano configuration.
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Figure 2.3: The Anti-Fano Configuration

Proof: It is known that the desarguesian projective plane of order g, g odd, does
not contain a projective sub-plane of order 2 [24]. The result follows since if points
E, F and G are collinear, then the seven points form a projective sub-plane of order

2 (a Fano configuration). . 0O

Theorem 24 If there ezists a projective plane of order ¢ containing an anti-Fano

configuration, then ¢* —5q+6 € B({g—5,9—4,9—3}).

Proof: In the proof, we often refer to Figure 2.3. Let [ be any line. If [ does not
intersect any of the seven vertices, then [ intersects the configuration at precisely
six points. If [ intersects the configuration at any one of the A, B, C and D,
then ! does not hit any other vertices in the configuration. Hence, ! intersects the
configuration at precisely four points. If ! intersects one or two of E, F and G,
then again by counting, it intersects precisely four or five times. Also, the number
of points in the configuration is 6(q¢ + 1) — 11. We obtain the result by removing
the anti-Fano configuration from the plane. a

Corollary 10 72 € B({6,7,8}).
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Proof: Apply Theorem 24 with ¢ =11. o
Corollary 11 110 € B({8,9,10}).

Proof: Apply Theorem 24 vyith q=13. a

2.2 An Update

In this section, we update some results on the closure of B({4,5,6}), B({5,6,7})
and B({6,7,8}).

First of all, we begin with pairwise balanced designs with block sizes four, five

and six.
The following is proved by Lenz [77).
Theorem 25 For any integer v > 4, v € B({4,5,6}) ezcept when
v €{7,8,9,10,11,12, 14, 15, 18, 19, 23}

and possibly when v € {43,47}.
We deal with the last two possible exceptions.
Lemma 12 43,47 € B({4,5,6}).

Proof: By Theorem 6 with ¢ = 9, this gives a PBD(45, {5, 6,6*}); deleting two
points from a block of size six gives a PBD(43,{4,5,6}). For v = 47, we start
with the (66,6,1) design in Example 1.2.34 of {6]. Delete the points z3 for z €
{0,1,3,4,7,8,9,10,11,12}, and the points y, for y € {0,1,2,3,5,6,7,8,9,11}. This
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leaves a PBD(46, {4,5,6*}). There is a parallel class of blocks of sizes 4 and 5 con-
sisting of {00, To, 22,32}, {lo,110,01,51,25}, {20,50:41,91,63}, {30, 40,80, 12,104},
{60, 31, 52, 102, 44}, {90, 61, 02,82}, {100,2;, 81,112}, {120, 121,122,124, oo},
{1,,104,7;,9:} and {71,11;,4;,62,5s}. Add an infinite point to these blocks to get
a PBD(47,{4,5,6}). ]
Next, we study the closure containing block sizes five, six and seven. The
following is proved in [82]. Let @, = [8,20] U [22,24] U [27,29] U [32,34] and Q: =
{39} U [50,54] U [68, 69] U [92,94] U [98,99] U {104} U [108,109] U {114} U [123,124].

We are able to obtain a slight improvement of the result.
Lemma 13 39,50,51,52,53,54,92,123 € B({5,6,7}).

Proof: For 39 (due to Greig), consider three non-concurrent lines in PG(2, 7).
Delete the three points of intersection, and five other points per line; a block of
size eight only remains if the three single points retained from the three lines are
collinear. 39 € B({5,6,7}) is also proved in [94]. For [50,54], see Corollaries 1,
3 and Lemma 6. For v = 92, the BIBD(96,6,1) in [24] is a 6-GDD of type 6'¢;
add one infinite point to the groups to get 97 points. Now delete five points from a
6-block to get 92 points. For v = 123, let V = Z,,3 and B, = {0, 3,9, 21, 36, 19, 80},
B, = {0, 24,75,25,109}, B; = {0,30,7,88,83}, B, = {0,45,13,67,41} and Bs =
{0,57,49,112,20}. Develop these five blocks over Z,2; to obtain a PBD(123, {5,7}).
a

Let Eser = [8,20] U [22,24] U [27,29] U [32,34] and X:er = [68,69] U [93,94] U
[98,99] U {104} U [108,109] U {114, 124}.

Theorem 26 For any integer v > 5, v € B({5,6,7}) with the possible ezceptions

in Xser and the definite ezceptions in Eser.
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We now turn our attention to PBDs with block sizes six, seven and eight. Again,

the following result is proved in [82].

Let M; = [9,30] U [32,36] U (38,41} and M = {37} U [44,47] U {65} U [68, 75] U
{77}U[93,95]U[97, 103]U{108}U[122, 125]U([128, 131]U{135}U[137, 150]U[152, 155]U
(159, 161]U[165, 167]U[170, 180]U[184, 185]U[233, 240]U[242, 246]U[250, 251]U{255}.

Theorem 27 For any integer v > 9, v € PBD({6,7,8}) with the possible ezcep-

tions in M, and definite ezceptions in M.
We have made the following improvement.
Lemma 14 37,44,45,47 & B({6,7,8}).
Proof: The result follows from a theorem of Batten [16]. 0
Lemma 15 72,97,102,103,108,171, 234, 246, 250, 251,255 € B({6,7, 8}).

Proof: For v = 72, see Corollary 10. For v = 97, take a 6-GDD of type 6'° [6]
and add a point at infinity to each group to obtain a 97 € B({6,7}). [102,120] €
B({6,7,8}) can be seen as follow: the BIBD(120, 8, 1) appearing as a Denniston arc
in PG(2, 16) contains a hyperoval of the plane (in fact, Denniston arcs are nested).
Deleting i of the hyperoval points for 0 < ¢ < 18 gives 120 — ¢ € B({6, 7,8}). Also,
171 € B(6) [2]. For v = 234, take a TD(6,38) and fill in the group with six infi-
nite points and apply Singular Direct Product. The required PBD(44, {6, 7, 8,6*})
is constructed by removing six points in two groups in a TD(8,7). For the re-
maining value, we take a resolvable (288,8,1) design [2] on (Z7x Z4)U {00}, whose
starter blocks are {(0,9t), (0, 32¢), (1, 3t), (1, 38t), (2, ¢), (2, 40¢), (4, 14t), (4,27¢)} for
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t = 1,37,16,18,10, and {oo, (0,0),(1,0),(2,0),(3,0),(4,0), (5,0),(6,0)}. Every
block meets the set ({0} x Z4;) U {oo} in 0 or in 2 points, and hence deleting any
subset of ¢ of these 42 points yields 288 — ¢ € B({6, 7, 8}). 0

This (288,8,1) design is remarkable, since deleting points ({0} x Z4) U {oo}
gives 246 € B({6,8}), and deleting points {0, 1} x Z,, gives 206 € B({4,6,8}).

Also, much research has been done on designs having a maximal arc [120, 121].
Designs having structure similar to the above BIBD are of interest.

Let Eers = [9,30] U [32,41] U {45,47} and Xsrs = {46, 65} U [68, 71] U [73,75] U
{77} U [93,95] U [98, 101] U [122, 125] U [128, 131] U {135} U [137, 150] U [152, 155] U
[159, 161] U [165, 167] U {170} U [172, 180] U [184, 185] U {233} U [235, 240] U [242, 245].

Theorem 28 For any integer v > 9, v € B({6,7,8}) with the possible ezceptions

in Xg7s and definite ezceptions in Egrs.

2.3 PBDs with Block Sizes Seven, Eight and Nine

In this section, we study pairwise balanced designs with block sizes seven, eight
and nine. We do not comment on the non-existence result as it is a special case of

a theorem in [16].
Lemma 16 49,50, 56,57,58 € B({7,8,9}).

Proof: Remove six or seven points in a group in TD(8,7) to obtain 49,50 €
B({7,8,9}). Remove seven or eight points in two different groups in TD(9,8) to
obtain 56,57,58 € B({7,8,9}). | 0
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Lemma 17 90 € B({7,8,9}).

Proof: A difference set for projective plane of order 11 is
D = {0,15, 39,59, 10, 42, 40,127,120, 73,51, 77}.

Let three lines in the plane be D + 12, D + 15, D + 80 and an oval be —D. By
removing all points in the three lines and the oval, this gives 90 € B({7,8,9}). ©

Lemma 18 [63,92] C B({7,8,9}).

Proof: Apply Theorem 4 with ¢ = 8 and ¢ = 9 to handle [63,81]. For [82,90] C
B({7,8,9}), see Section 2.1. Apply Theorem 6 with ¢ = 13 to obtain a {7,8}-GDD
of type 73. This gives 91 € B({7,8}). Adding an infinite point to the groups gives
92 € B({7,8}). o

Lemma 19 If there ezists a RB(v, 8) and v > 120, then [v—8,v—6]U[v—1,v+9] C
B({7,8,9}). Hence, [112,114] U [119,129] U [224, 226] U [231,241] U [280,282] U
[287,297] U (336, 338] U [343, 353] U [392, 394] U [399, 409] C B({7,8,9}).

Proof: Remove a block or seven points in a block in RB(v, 8) to obtain v—8,v~7 ¢
B({7,8,9}). Remove sew;en points in a block and add a point at infinity to a parallel
class not containing that block to obtain v — 6 € B({7,8,9}). Remove zero or one
points from RB(v,8) to obtain v ~ 1,v € B({7,8,9}). Since v > 120, there are
at least 15 para.llel‘cla.sses. Remove seven points in a block and add nine points
forming a block at infinity to nine parallel classes not containing that block to
obtain v +2 € B({7,8,9}). Take any two blocks in a parallel class and remove two

points from two of the blocks. There are at most five parallel classes containing at
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least one block of size six. Then adjoining seven, eight or nine infinite points in a
block at infinity to the parallel classes including all those with a block of size six to
get v+ 3,v+4,v+5 € B({7,8,9}). Remove a point from RB(v, 8) and add seven
infinite points to obtain v + 6 € B({7,8,9}). Finally, if we add 7,8 or 9 infinite
points to RB(v, 8) in a block at infinity, then we get v+7,v+8,v+9 € B({7,8,9}).
Employ 120, 232, 288, 344,400 € RB(8) [56]. o

Lemma 20 115,227 € B({7,8,9}).

Proof: From Theorem 8, there is a {0,8}-arc A of order 120 in PG(2,16). Add
two points = and y not in the arc to A. Then AU {z,y} contains a unique block of
size ten. Remove seven points in a line of size eight intersecting the block of size ten
including the point of intersection to get 115 € B({7,8,9}). That 227 € B({7, 8,9})
follows similarly from the fact that there is a {0, 8}-arc of order 232 in PG(2, 32).
O

Lemma 21 130,131, 133,134,135,136,137 € B({7,8,9}).

Proof: Theorem 6 with ¢ = 17 gives a {8,9}-GDD of type 8'7. There are three
points in the design such that any two points induce a block of size nine. Hence,
removing 0, 1, 2, or 3 of the three points yields [133,136] € B({7,8,9}). Add
a point at infinity to the groups of the GDD to get 137 € B({7,8,9}). Add
a point at infinity and remove seven points from a block of size eight to obtain
130 € B({7,8,9}). Finally, the GDD is embedded in a projective plane of order 17
and is obtained on the set of exterior points. Adding two oval points gives a unique
block of size ten. Remove 7 points including the point of intersection of a block of
size eight with the block of size ten to obtain 131 € B({7,8,9}). O
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Lemma 22 169,217,218,301,302 € B({7,8,9}).

Proof: Observe that 169 € B(7), and that there exist 7-GDDs of type 7°! and 74
(2]. Add zero or one infinite point. o

Lemma 23 [308,310] € B({7,8,9}).

Proof: Take a TD(9,43) and truncate two groups to zero or one points each; fill
the groups using 50 € B({7,8, 7*}) and seven infinite points. o

Lemma 24 [386,401] € B({7,8,9}).

Proof: Take a projective plane of order 43 with 44 oval points. Remove an oval
point to get a TD(44,43) with one oval point in 43 of the 44 groups. Remove all
but nine groups which all Have an oval point. Remove any ¢ oval points where
0 <t < 9. This gives a {7,8,9}-GDD of type 42¢43°-¢. Add seven infinite points
to obtain [385,394] C B({7,8,9}).

Now start with a TD(9,49) with nine oval points. Choose four oval points and
a group not containing any of the four oval points. These four oval points define
six distinct lines which intersect the group in at most six distinct points. Truncate
the group to size 6,7 or 8 leaving those intersecting points. Now, remove any ¢
of those four oval points to get a {7,8,9}-GDD of type 49°~*48%a! for 0 < ¢ < 4
and @ = 6,7,8. With these GDDs, apply Theorem 17 with & = 1 to obtain
[395,401] € B({7,8,9}). : m!

Lemma 25 410,411,412 € B({7,8,9}).
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Proof: Take a TD(9,56) and truncate to nine points in two different groups.
This gives 410 € B({7,8,9}). A (433,{9})-PBD exists, obtained by developing
the starter blocks 5° - {0, 1, 3, 30, 52, 61, 84, 280,394}, ¢ = 0,36, 72, 108, 144, 180,
over the cyclic group of order 433 [2]. Choose a set P of four points, no three
collinear. These define six blocks, each containing seven points not in P; let C
be the union of these six blocks. Then suppose that there are two blocks B;
and B, so that B;, B; and C are pairwise disjoint. Removing the points of all
three sets would then establish the statement for 411, and removing all but one
of the points would settle 412. It remains to exhibit the set P and the blocks B,
and B,. Take P = {0,1,2,7}, and B, = {80,108, 127,151,271, 338, 344, 412, 426}
B, = {81, 109,128,152, 272, 339, 345, 413,427}. a

Lemma 26 [413,417] C B({7,8,9}).

Proof: Take a TD(9,57) and truncate to z and y points in two different groups
where 7 < z,y < 9. m]

Lemma 27 [418,433] C B({7,8,9}).

Proof: A (433,{9})-PBD D exists [2]. Simple counting ensures that D con-
tains seven points, no three collinear. By deleting any subset of these, we obtain
[426,433] € B({7,8,9}). In D, remove eight or nine points in a block of size nine
to obtain 424,425 € B({7,8,9}). Remove a block and 1 or 2 points in pair of
disjoint blocks from D to obtain 422,423 € B({7,8,9}). If we have removed a
block and two points from a pair of disjoint blocks, this induces 19 blocks of size
seven. There are at most 133 points lying in a block of size seven. Hence, it is

possible to pick one more point to remove, so 421 € B({7,8,9}). Continue in this
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way to show 419,420 € B({7,8,9}). Finally, take two intersecting blocks from D
and remove eight points from each block including the point of intersection. This
gives 418 € B({7,8,9}). _ a

Lemma 28 [430,436] C B({7,8,9}).

Proof: In a PG(2,8), there is a sub-plane PG(2,2). Choose three collinear points
(P1, P, P; on line 1) in the sub-plane; the remaining four points in the sub-plane
form a {0,1,2}-arc Q. The six points of [\ {P,, P;, P»} together form a {0, 1, 2,6*}-
arc on 10 points. Remove three points from @ and remove any h points from
I\{P, P;, P;} to obtain 61+h € B({7,8,9,k*}) for 3 < h < 9. Add A infinite points
to the groups of a TD(7,61), for 3 < h < 9. This gives [430,436] C B({7,8,9}). O

Lemma 29 [437,440] C B({7,8,9}).

Proof: By [2], 400 € RB(8). Take any two blocks in a parallel class. Remove one
block and two points from the other block. This gives 17 blocks of size six and at
most 102 points in a block of size six. Hence, it is possible to pick a point so that
its removal does not shorten any block by more than two. Now, there are 25 blocks
of size six and at most 150 points in a block of size six. So a further point can be
removed so that every block has size at least six. This gives at most 37 blocks of
size six. Adding 49 infinite points to 49 parallel classes including all parallel classes
containing a block of size six. This gives 437 € B({7,8,9}). It is easy to establish
that 438,439,440 € B({7,8,9}) in a similar way. o

Lemma 30 [441,449] C B({7,8,9}).
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Proof: Take a projective plane of order 49 with 50 oval points. Remove one
oval point. This gives a TD(50,49). Remove 41 groups including the group that
does not contain an oval point. This gives a TD(9,49) with one oval point in
each group. Now, remove any ¢ of the oval points for 0 < ¢ < 9. This gives a
{7,8,9}-GDD of type 48°49°t. Add eight points at infinity and use the fact that
56,57 € B({7,8,9,8}). ]

Lemma 31 Ifq is a prime power end q¢ € B({7,8,9}), then [7q,8q—6] € B({7,8,9}).
Hence [343, 386] U [448, 642] U [791, 1090] U [1183, 1346] U [1589, 1906] U [1967, 2338] U
[2359, 2818] € B({7,8,9}).

Proof: Apply Theorem 5 with » = 7. Then employ ¢ = 49,64, 71,79, 81,113,121,
128,137,169, 227, 233, 239, 281, 293, 337, 341, 353. o

Lemma 32 If there ezists a {9,10}-GDD of type m'® and for each 0 < t; < m
0 <1 < 10, then there ezists a {7, 8,9}-GDD of type (Tm+t,)(Tm+tz) ... (Tm+ti0).

Proof: Assign weight 8 to ¢; elements in group ¢ for 0 < ¢ < 10 and assign the
remaining elements weight 7. All we need to show is the existence of the ingredient
GDDs: {7,8,9}-GDD of type 7°8°~¢ for 0 <t < 9 can be obtained by removing
any ¢ + 1 oval points in a projective plane of order 8. Remove a line disjoint from
all oval points and an oval point from a projective plane of order 9. This gives a
9-GDD of type 8'° with 9 oval points. For each 0 < ¢ < 9, delete any ¢ oval points
to produce {7,8,9}-GDDs of type 7:8!%¢; for ¢ = 10, delete two blocks, and one

point in the same group as their point of intersection, from a TD(10,9). o

Lemma 33 [643,790] € B({7,8,9}).
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Proof: Remove a line containing only one oval point from the projective plane of
order 9. This gives a TD(9, 9) with one oval point in each group. Remove any subset
of the oval points to obtain a {7,8,9}-GDD of type 9°8°~t where 0 <t < 9. Take a
TD(9,m), m € {8,9} and assign weight 9 to t; points in group ¢, 0 < i < 9 and give
weight 8 to all remaining points. By Theorem 18, this results in a {7,8,9}-GDD of
type (8m + ¢;)(8m +t3)...(8m +tp). This gives [576,729] C B({7,8,9}). Apply
Lemma 32 with a {9, 10}-GDD of type 10'° to obtain {700, 800] C B({7,8,9}). The
{9,10}-GDD of type 10'° can be obtained by removing a block from TD(10,11). O

Lemma 34 [1091, 1182} U [1295, 1457] U [1799, 1961] U [2191,2353] C B({7,8,9})-

Proof: Any integer v € [112,274] can be written as a sum of two integers a and b
such that a,b € B({7,8,9}) and a,b < 137. Take a TD(9,m) and truncate 137 — a
and 137 — b points from two different groups for m € {137, 169, 241, 297}. i

Lemma 35 There ezists {7,8,9}-GDD of type T7a, 7®a and T°a for0 < a < 7.

Proof: Truncate one group of a TD(8,7) to obtain a {7,8,9}-GDD of type 77a.
Take a TD(8,8) and remove one point to produce an 8-GDD of type 7°. Truncate
points in one group to obtain {7,8,9}-GDDs of type 7%a. Take a TD(8,9) and
remove one point to give a {8,9}-GDD of type 7°8!. Truncate the long group to
obtain {7,8,9}-GDDs of type T°a. mi

Lemma 36 [1458,1588] C B({7,8,9}).

Proof: Take a TD(10,25) and remove one block. This gives a {9,10}-GDD of
type 24'°. Assign weight 7 to eight groups, weight 0 or 7 to the ninth group and
assign arbitrarily weights from 0 to 7 to the last group. This gives a {7,8,9}-GDD
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of type 168%(7u)'v where 0 < u < 24 and 0 < v < 168. Adding a point at infinity
to obtain a 168-8+Tu+v +1 € B({7,8,9})if Tu+1,v +1 € B({7,8,9}). Choose
Tu € {49,63,77,91,112,126} and v € [62, 80] to obtain [1456,1551]\ {1517,1518} €
B({7,8,9}). Choose Tu € {49,63,77,91,112,126} and v € [118, 130] U [132, 136] to
obtain {1512,1607] \ {1525, 1539, 1553, 1567, 1573, 1574, 1588, 1602} € B({7,8,9}).
Choose Tu € {133,168} and v € [62,80] to obtain [1540,1558] U [1575,1593] €
B({7,8,9}). Take a TD(9,216) [3] and truncate two groups to 6 and 48 and add a
point at infinity. This gives 1567 € B({7,8,9}). Take a TD(17,224) (3] and take
a ‘stair’ of length of size 5 or 6 (see [41]) together with 7 of the groups. This gives
1573,1574 € B({7,8,9}). o

Lemma 37 [1959,1977) U [2341,2358] C B({7,8,9}).

Proof: Take a TD(9,m) and truncate one group to a points where v € [63,81],
m € {237,293}. a

Combining the above lemmas, we have [343,2470] C B({7,8,9}).

Lemma 38 If[343-7%,343 -7+ + 69] C B({7,8,9}) where a is any non-negative
integer then [343 -7°%1, 343 -79+2 4 69] C B({7,8,9}).

Proof: For any v € {343 - 7%+1,343 - 7°*2 4 69, v can be written as Tu + v where
u € [343 -7°,343 . 71 + 69] and v € {63,64,65,66,67,68,60}. Since u > 76, a
TD(8, u) exists [3]; truncate a group to size v. O

Corollary 12 For any v > 343, v € B({7,8,9}).

Let Erso = [10,48] U [51,55] U [59, 62] and Xzso = [93, 111] U [116, 118] U {132} U
[138,168] U [170,216] U [219, 223] U [228, 230] U [242, 279] U [283, 286] U [298, 300] U
[303,307] U [311, 335] U [339, 342].
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Theorem 29 For any integer v > 10, v € B({7,8,9}) with the possible ezceptions

in X739 and definite ezceptions in Ergg-

2.4 PBDs with Block Sizes Eight, Nine and Ten

In [82], it is shown that if v > 1864, then v € B({8,9,10}). We can make consid-
erable progress on this. Due to the complication of stating the result in [82], we
reproduce part of the proof here. We do not comment on the non-existence here,

as it is included in [16].

Define f(n) =n+n-2™(8-2™ +1—n)+(8-2" —7—n)- (3) for positive integers
m,n. The following theorem in [82] is useful.

Theorem 30 Let m be a positive integer. If there ezists a positive integer k such
that £(1), f(2),.-. , f(k) are all less than 206¥2™  2¢tm _ 26+m _ 7 then 26+™ —
23+m L 8 +t € B({8,9,10}) for all integers t such that 0 <t <k +1.

The number of blocks in a B(v, 8) with v = 2™m+6_2m+318 js 56(22™)+15(2™)+1
because the number of blocks is equal to ﬂl's%l)-. So, in PG(2,2%*™), there are
go+am 4 93+m 4 ] _ 56(2m) — 15(2™) — 1 = 2™(2™+3 — 7) lines missing the set v
points of the {0, 8}-arc.

We need the following result from [82].

Corollary 13 Suppose there ezists a positive integer k such that (1), £(2),... , f(k—
1) < 26+2m 4 o4+m _ 964m _ 7 and k(2™) < 2™(2™+% — 7). Let a be a positive in-
teger such that a + k(2™) + 5_@2:_1)_ <23 L] then2™t8 23 Lk +a+8 €
B({8,9,10,a*}).
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Lemma 39 57,64,65,72,73, 74,80 € B({8,9,10}).

Proof: By [2], we have 57,64 € B(8). Add a point to each group in TD(8, 8) to
obtain 65 € B({8,9,10}). Now 72 € B({8,9,10}) because TD(9, 8) exists; add one
point to each group of TD(9, 8) to obtain 73 € B({8,9,10}). Take a TD(10,9) and
remove eight points in two groups to obtain 74 € B({8,9,10}). Finally, remove one
point from TD(9,9) to obtain 80 € B({8,9, 10}). a

Lemma 40 [81,91] C B({8,9,10}).

Proof: The existence of the projective plane of order 9 establishes that 91 €
B({8,9,10}). Remove an oval point in the plane to produce a TD(10,9) with 9
groups containing an oval point. Deleting any t of the oval points gives 90 — ¢t €
B({8,9,10}) for 0 <t < 9. a

Lemma 41 92,93 € B({8,9, 10}).

Proof: Take a TD(10,11) and remove nine points in two blocks so that no group

of size 11 remains. a
Lemma 42 96,97,98,99,100 € B({8,9, 10}).

Proof: First of all, if n = 10 and A = {0,5} = B then 4 —, B = {0,5}.
Hence m(10,2,2) < 2. If we take ¢ = 11 and apply Theorem 11 with / = 8,
a = f =1 to produce a (10, {0,1,2,10*},3,3,1,1,... ,1)-thwart in TD(10,11). By
complementing the thwart, we obtain a (10, {8,9,10,0*}, 8, 8,10, 10, ... ,10)-thwart
in TD(10,11). Hence we obtain [96,100] C B({8,9,10}). O
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Lemma 43 94,95,110,114 € B({8, 9, 10}).

Proof: See Section 2.1. - o
Theorem 31 [2] 120,232, 288, 344, 400,456 € RB(8).

Lemma 44 120,121,122, 123,124, 125, 128,129, 130, 131, 132 € B({8,9, 10}).

Proof: In Theorem 30, taking m = 1, we have f(1) = 33, f(2) = 69, f(3) = 105
and f(4) = 138, therefore we obtain [120,125] C B({8,9,10}). Apply Corollary 13
with @ = 8,9, 10 when k = 2 to get 130,131,132 € B({8,9,10}). Finally, by Lemma
31, it is possible to add 8 or 9 infinite points to the resolvable design RB(120,8)
and a block at infinity to obtain 128,129 € B({8,9, 10}). a

Lemma 45 [136,154] C B({8,9,10}).
Proof: Taking q = 17, apply Lemma 7. a
Lemma 46 161,162,163, 164,165, 168,169,170,171,172 € B({8,9,10}).

Proof: Apply Lemma 7 with ¢ = 19. The set of exterior points induces a design
with block sizes 9,10 '(See [82]). All block sizes of 10 are induced by the exterior
lines; it is possible to choose three exterior lines so that their pairwise intersection
are distinct and the points of intersection are exterior points. By removing the three
points we obtain 168 € B({8,9,10}). Remove 0, 1 or 2 points from the {9,10}-GDD
of type 9'° to obtain 169,170,171 € B({8,9,10}). By adding a point at infinity
to each group, we get 172 € B({8,9,10}). Remove 9 or 10 points from a block of
size 10 in the GDD to obtain 161,162 € B({8,9,10}). Remove eight points from
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a group to obtain 163 € B({8,9,10}). Adding two oval points from the {9, 10}-
GDD of type 9'° arising from the finite projective plane of order 19. This gives
a PBD(173, {9,10} U 11*). Remove eight points or nine points from a nine-block
intersecting the unique block of size 11 to obtain 164,165 € B({8,9,10}). o

Lemma 47 232,233, 234,235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246
€ B({8,9,10})..

Proof: Apply Theorem 30 with m = 2; we have f(1) = 129, f(2) = 273, f(3) =
429, f(4) = 594 and f(5) = 765. They are all less than 812 which is number of
exterior points. Hence [232,238] C B({8,9,10}). Apply Corollary 13 with a = 10
and k = 1,2,3,4 respectively to obtain [243,246] C B({8,9,10}). Fimally, 232 €
RB(8) has more than 10 resolution classes, and hence [240,242] C B({8,9,10}). O
Lemma 48 288,289,296,297,298 € B({8,9,10}).

Proof: Add 0,1,8,9,10 infinite points to a RB(288, 8) design. a
Lemma 49 344, 345, 352, 353,354 € B({8,9,10}).

Proof: Add 0,1,8,9,10 infinite points to a RB(344, 8) design. o
Lemma 50 400,401,408, 409,410,457 € B({8,9,10}).

Proof: Add 0,1,8,9,10,57 infinite points to a RB(400, 8) design. 0

Lemma 51 402,449,450,451,498 € B({8,9,10}).
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Proof: Truncate a group of TD(k, 49) for k € {9,10} to 0, 1, 2, or 49 points. Fill
the groups using eight infinite points and 57 € B(8). O

Lemma 52 424,425,432,433 € B({8,9}).
Proof: Remove 0,1,8 and 9 points from the B(433,9) design [2]. a
Lemma 53 434,440,441, 442 € B({8,9}).

Proof: Greig [59] gives a 9-GDD of type 9%9, so we obtain 441. Delete any point
to obtain 440. Add an infinite point to the groups to obtain 442, and delete eight
points from a 9-block in this PBD to obtain 434. a

Lemma 54 [456,471] C B({8,9,10}).

Proof: Apply Theorem 30, taking m = 3; we have f(1) = 513, f(2) = 1065, f(3) =
1653, f(4) = 2274, f(5) = 2925 and f(6) = 3603. They are all less than 3705 which
is number of exterior points. Hence [456,463] C B({8,9,10}). Apply Corollary 13
with @ = 10 and k = 1,2,3,4,5 respectively to obtain [467,471] C B({8,9,10}).
456 € RB(8) has more than 10 resolution classes, and hence [464,466] C B({8,9,10}).
]

Lemma 55 [504,506] C B({8,9, 10}).

Proof: Since 513 € RB(9), deleting eight or nine points from a block gives 505 or
504. Instead adding an infinite point to one parallel class and then deleting eight
points from a 9-block gives 506. o
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Lemma 56 569,570, 571,572,573,574,575, 576, 577,578,579 € B({8,9,10}).

Proof: By a simple counting argument, there is a TD(13,64) containing a

(5,{0,1,2},57,1,1,1,1)-thwart. This gives‘[569, 573] C B({8,9,10}). Take a
TD(10,64) and truncate two groups to 56,a where a € {7,8,9} and add a point
at infinity to obtain [576,578] C B({8,9,10}). Take a TD(10,64) and truncate
two groups to 57 and 10 to obtain 579 € B({8,9,10}). Finally, take a RB(513,9)
design. Remove two points in a block and zero points or one point in another
block in the same resolution class. This gives at most three blocks of size seven.
574,575 € B({8,9,10}) can be obtained by adding 64 infinite points to the resulting
design. a

Lemma 57 583 € B({8,9,10}).

Proof: Truncate two groups of TD(10, 71) to seven points each, and fill the groups
using one infinite point. o

Lemma 58 If q is a prime power and q € B({8,9, 10}) then [8¢,99-7] C B({8,9,10}).
Proof: Apply Theorem 5 with n = 8. o

Lemma 59 {512, 569]U[584, 866]U[968, 1514]U[1864, 2162]U[2312, 2594]U(2824, 3170] C
B({8,9,10})

Proof: Apply Lemma 58 with q = 64, 73, 81,89, 97, 121, 128, 137, 151, 169, 233, 241,
289, 353. Q

Lemma 60 [867,967] € B({8,9,10}).
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Proof: Take a TD(10, a) and truncate two groups to sizes z and y. For [867,910],
take @ € {97,100}, z € {0,10} and y € [80, a] For 912, take a = 97, z = 64 and
y = 72. For [913,945] take a = 97, z € {57, 72} and y € [80,97]. For [946,967] take
a =97 and z,y € [80,97]. Finally, for 911 apply Theoren 30 to add 7 points to a

Denniston arc. ]
Lemma 61 [1512,1664] C B({8,9,10}).

Proof: Any integer in [160,312] can be written as sum of two integers a,b where
a,b € B({8,9,10}). So take a TD(10,169) and truncate two groups to a, b points.
O

Lemma 62 There ezists {8,9,10}-GDD of type 9%at, 9%a' and 9'%°a where 0 <
a<9.

Proof: Take a TD(9,9) and TD(10,9). Truncate one group to obtain {8,9,10}-
GDDs of types 9°a! and 9%a!. Take a TD(10, 11), remove a block and truncate one
group. Use one deleted point to define groups to obtain {8,9,10}-GDDs of type

91041 a
Lemma 63 [1648, 1864] € B({S, 9, 10}).

Proof: Take a TD(11,19) and apply weight nine to first eight groups, assign weight
zero or nine in two groups and assign arbitrary weights from {0,1,... ,9} to the last
group. All required ingredients exist by Lemma 62. Hence, we obtain a {8,9,10}-
GDD of type (171)%(9a)*(9b)*c! where 0 < a,b < 19 and 0 < ¢ < 171. Choose
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a,b € {0,1,8,9,10,11,16,17, 18,19} and c € [136,154]. Then 9a,9% € B({8,9, 10})

and
a+be {16,17,18,19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38}.

Then [1368 + 280, 1368 + 496] C B({8,9,10}). 0

Let Eso10 = [11,56] U [58,63] U [66,71] U [75,79] and Xsp.0 = [101,109] U
[111,113] U [115, 119] U [126,127] U [133, 135] U [155, 160] U [166, 167] U [173,231] U
{239} U [247,287] U [290,295] U [299,343] U [346, 351] U [355,399] U [403,407] U
[411,423] U [426, 431] U [435, 439] U [443, 448] U [452, 455] U [472, 497] U [499,503] U
[507, 511] U [580, 582]. '

Combining the above lemmas, we obtain the following theorem.

Theorem 32 For any integer v > 11, v € B({8,9, 10}) with the possible ezceptions

in Xso,10 and definite ezceptions in Egg 0.

2.5 Some Non-Existence Results

In this section, we prove some non-existence results to supplement the results in

[98] and [17].

An incidence structure is a triple D = (V,B,I) where V and B are any two

disjoint sets and I is a binary relation between V' and B. The elements of V are
called points, those of B blocks and those of I flags.

Give an incidence structure, we define the dual as follows: Let V/ = B and
B'=V, we define I' as (p/, B') € I' if and only if (B,p) € I. We call D' = (V*,B’, I')

a dual incidence structure of D.
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By taking the dual of any (v, k, 1)-packing design, we can obtain another inci-
dence structure which is often a lot easier to analyze.

We denote OQ s be the set of odd prime power greater than or equal to five
and @>s be the set of prime power greater than or equal to five.

The following theorem is very useful.

Theorem 33 [51] Let K be a set of positive integers and let m denote the smallest
integer in K. Suppose that there ezists a PBD(v, K) which contains blocks By and
B, of sizes h and k, respectively. Then

Lv>(m—=1)k+h—-m+1; hence

2.v 2 (m — 1)k + 1, with equality if and only if there ezists a resolvable
BIBD(k(m —2) +1,m - 1,1);

3. if By and By do not intersect, then v > (m — 1)k + h.
Lemma 64 48 ¢ B({4,9}).-

Proof: Suppose to the contrary that a PBD(48,{4,9}) design exists. Let z be
a point of the design and r; be the number of blocks of size i that point z is on.
Evidently, 47 = 3r4 + 8ry by considering the neighbours of a point. This gives
rg =1 (mod 3). Hence, every point in on at least one block of size nine. Let b be
the number of blocks of size nine. Since every point is on at least one block of size
nine, we must have b > 6. Let a; be the number of points in the design so that it
is on 7 blocks of size nine. We have shown that as. = ase2 = 0 for all k positive
integer. Note that a; = 0 for all 1 > 7 since otherwise, there are more than 48

points in the design. So, we have the relation 48 = a, + a;. Also, we know that



CHAPTER 2. PAIRWISE BALANCED DESIGNS 47

9b = a; + 4a4. Solving yields a, = 3b — 16. Now, we consider only blocks of size
nine. In the dual, it forms a packing design with b points and 3b — 16 blocks of size
4 with replication number at most 9. The packing number for v points is at most
|2|%52]]. We know that 3b — 16 < 48. A simple check reveals that for such range
of b, it is always impossible to have a packing of the given size. o

Lemma 65 39 ¢ B({5,7}).

Proof: Suppose to the coni:raty that there exists a PBD(39, {5,7}). Let z be a
point in the design. By considering the neighbours of z, z is on an odd number
of blocks of size seven. Let b; be the number of blocks of size ¢ in the design. By
counting pairs, we obtain 741 = 10bs + 21b;. This means b; = 1 (mod 10). The
possibility of b; = 1 is ruled out immediately because every point is on at least
one block of size seven. Every point is either on one, three or five blocks of size
seven. If a point is on at least seven blocks of size seven, then the design must
have at least 43 points. Let a; be the number of points on ¢ blocks of size seven. If
b;=11, then 77 = a; + 3a3 + 5as and a; + a3 + as = 39 imply that 19 = a3 + 2as.
Next, we consider the dual incidence structure; it is a packing with block sizes
three or five. A block of size five can be replacéd by two blocks of size three. If
we ignore the condition on replication, then we must be able to pack 19 triples on
11 points and this is impossible since the packing number is 17 [95]. If b7 = 21,
then 147 = a; + 3a3 + 5as and this means 54 = a3 + 2as. Since, a3 + as < 39; this
means as > 15 and ag = 54 — 2as. If the design exists, we must be able to pack as
blocks of size five and 54 — 2as blocks of size three in 21 points. However, there are
exactly 210 unordered paifs on 21 points. On the other hand, as blocks of size five
give 10as pairs and 54 — 2a5 triples give 3(54 — 2a5) pairs. As a5 > 15, the number
of pairs is always greater than 210. Hence, b7y = 21 is impossible. If b7 > 31, the
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relations a3 +as < 39 and 2a3 +4as = Tbr — 39 do not have any solution in positive

integers. o
Lemma 66 49 ¢ B({5,8}).

Proof: Suppose to the contrary that a PBD(49, {5, 8}) exists. Let b; be the number
of blocks of size i in the design. By counting pairs, we must have 1176 = 10bs +28bs.
This gives bg = 2 (mod 5). Also, every point must on either zero blocks or four
blocks of size eight by considering the neighbour of a point. Let a; be the number
of points on 7 blocks of size eight. We have ag + a4 = 49. Also, 8bg = 4a, giving
aq = 2bg. This forces bg = 2,7,12, 17 or 22. Since there is at lesat one point on four
blocks of size eight, then there must be at least 29 points on at least one block of
size eight. By considering another point of the 29 points, we see that there must
be at least 41 points on four blocks of size eight. Hence a; > 41 and this eliminates
bs = 2,7,12,17. Suppose bs = 22, by considering the dual strucure forms by the
blocks of size eight, we must have 44 blocks of size four packed in 22 points. This
violates the packing bound [95]. 0

Lemma 67 52 ¢ B({5,8}).

Proof: Suppose to the contrary that a PBD(52, {5, 8}) exists. Let b; be the number
of blocks of size ¢ in the design. By counting pairs, we must have 1326 = 10bs +28bs.
Hence, bg = 2 (mod 5). Also, every point is on one or five blocks of size eight. Let
a: be the number of points on ¢ block of size eight. We have a; + as = 52. Also,
8bg = a; + 5as. This gives a5 = 2bg — 13. It implies bg = 2,7,12,17,22,27 or 32. A
upper bound for the packing number is || %" || [95]. If bs = 7, then this means

there are seven blocks of size eight and five of them intersect in one point. However,
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the remaining 16 points are partitioned by two blocks of size eight. By considering
the point on five blocks of size eight, it is impossible to have any block of size five
passing through that point becuase the remaining 16 points are partitioned in two
blocks of eight. If by = 12, ;13 = 11 and packing bound is four. If bg = 17, then
ag = 21 and packing bound is 13. If by = 22, then ag = 31 and packing bound is
22. If bg = 27, then as = 41 and packing bound is 26. If bg = 32, then ag = 51 and
packing bound is 31. Hence, no such design exists. a

Lemma 68 39 ¢ B(OQs) and in particular 39 & B({5,7,9}).

Proof: We have shown that 39 ¢ B({5,7}) (Lemma 65). If 39 € B({5,7,9}),
then it must contain a block of size nine. Using Theorem 33, there cannot be
another block of size nine. Also, every block must intersect the block of size nine.
By removing the block of size nine, we obtain a PBD(30, {4,6}) with nine parallel
classes. Let the parallel types are: A : 6%, B : 6343 and C : 6145, Let a, b, c be the
number of parallel classes of type A, B, C respectively. We must have a +b+c¢ =8
and 435 = 75a+63b+51c. However, this set of equations has no solution in positive
integer. Hence, 39 € B({5,7,9}). Now, if 39 € B(0Qs), then it must contain a
block of size h > 11. We obtain a contradiction by using Theorem 33. o

Lemma 69 44 ¢ B({5,8,9}).

Proof: Suppose to the contrary that such a design exists. Consider the point type
of a point z: 43 = 475+ Trg+8ry where r; denotes number of blocks of size ¢ through
point z. This means that every point is on 1 (mod 4) of block of size eight. Since
44 is not a multiple of eight, so there must be a point on five blocks of size eight

since if there exists a point on at least nine blocks of size eight, then the design
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has at least 50 points. By removing the point on five blocks of size eight, it is a
{5,8,9}-GDD of type 7°4%. However, every point on a block of size four must be

~on a block of size eight. This is impossible because there are only seven groups. O
Lemma 70 38 ¢ B(Q?_s) and 38 g B({5, 7, 8, 9})

Proof: Suppose to the contrary that such a design exists. By Theorem 33, it
cannot have a block of size at least eleven. If it has a block of size nine, then by
Theorem 33, we can conclude that all other blocks must have size five. But it is
known that 38 ¢ B({5,9}) [19). Hence, this shows that it can not have a block
of size nine. We now show that 38 ¢ B({5,7,8}). Every point is on odd number
of blocks of size eight by considering the degree of any point in the design. Let
bs be the number of blocks of size eight. It is evident that bg > 5. If s = 5, it
must be the case that exactly one point lies on three blocks of size eight. But a
pair containing the point of intersection and a point in other two blocks of size
eight cannot occur in a block. If bg # 5, no point can be on five or more blocks of
size eight, or otherwise, the design must have more than 38 points. ﬁence, every
point must be on either one or three blocks of size eight. A simple counting reveals
that the number of points on three blocks of size eight is 4bg — 19. By considering
the dual incidence stmcturé of the block of size eight, we must be able to pack
4bg — 19 triples on bg points. It is impossible for by < 14. However, if bg > 15, then
4bs — 19 > 39. 0

Lemma 71 37 € B({5,7,8}).

Proof: It has been shown in [58] that 37 € B({5,7}). If 37 € B({5,7,8}), then it

must has a block of size eight. Since every point must be on even number of blocks
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of size eight, it must have at least nine blocks of size eight. (In fact, if it exists, it
must have exactly nine blocks of size eight, otherwise the design would have more
than 37 points.) The structure of the blocks of size eight must be the ‘dual-8-arc’
as in Section 2.1. However, any point on two blocks of size eight must also be on a

block of size seven. Now one can not have a tranverse block of size seven. a

2.6 Pairwise Balanced Designs with Holes

In this section, we consider a problem of Hartman and Heinrich on pairwise balanced

designs with holes.

Let Zy3 be the set of all integers that are at least three. The problem of
constructing designs PBD(v, Z>3U {k*}) was considered by Hartman and Heinrich
in [64], where the following result is established.

Theorem 34 A PBD(v,Z53U {k*}) ezists if and only if v > 2k + 1 ezcept when

(i) v=2k+1 and k = 0 (mod 2);
(i) v=2k+2 and k # 4 (mod 6), k > 1;
(iit) v=2k +3 and k = 0 (mod 2), k > 6;

(tv) (v, k) € {(7,2),(8,2),(9,2),(10,2), (11,4), (12,2),(13,2)}, and possibly when
(v, k) € P={(17,6), (21,8), (26,9), (28, 11), (29, 10), (29, 12), (30, 11), (33, 14),
(35,12), (37, 14), (38,13), (39, 14), (42, 17), (47, 18), (49, 20), (55, 20)}.

The possible exception (v, k) = (17, 6) in Theorem 34 was subsequently removed
by Heathcote [66] who showed that there cannot exist a PBD(17,Z>3U {6*}). Since
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then, there remain fifteen pairs (v, k) € P for which the existence of a PBD (v, Z»3U
{k*}) is undetermined. We construct PBDs settling the problem for all of the pairs
in P.

The strategy we used in constructing a PBD(v,Z>3 U {k*}) (&, B) is to com-
pletely specify the set of blocks A C B with sizes greater than three, that is,
A = {B € B | |[B| > 4}. Following [61], we call the partial design (X,.A) the
prestructure of the PBD. The remaining blocks of size three (triples) are then filled
in by a variant of Stinson’s hillclimbing algorithm [110] similar to the one described
in [61].

The most difficult task in the construction of PBD(v, Z>3 U {k*}) is the deter-
mination of suitable prestructures. The prestructures (X, A) used in this paper are
constructed manually, taking into account the following elementary conditions that
must be satisfied:

(a) Tsea () = (3) (mod 3);

(b) for every z € X, 3 4 upeea(lAl — 1) =v —1 (mod 2).

In Table 2.1 and 2.2, we give prestructures of designs PBD(v, Z>3 U {k*}) for
which the hillclimbing algorithm succeeds in completing them to PBDs. In each
case, the prestructure consists of only one block of size k, and the remaining blocks
have sizes four and five. The point-set of a PBD of order v is taken to be the set
consisting of the first v elements of P = {a,b,...,2,A,B,...,Z,1,2,3}. The block
of size k in each prestructure is the set consisting of the first k elements of P, and
we omit it from the listing in Table 2.1 and 2.2. -

Given these prestructures, it is easy to complete them with triples to PBDs using
hillclimbing. Our program, running on a DEC 2000 4/200 Alpha system, took less
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(v, k) "(21,8) (26,9) | (28, 11)| (29, 10) | (29, 12) | (30, 11) | (33,14) | (35, 12)
aijkl (amouz |amxyz |alszC |erstv |anuvw |auvex |aopqr
bimno |ajkl |ilvAB |akpu |amqx (kimzA |DAEFG |amsy
ampq |bjmn |alot |bksv |bmry |alot [aotA |bmtA
anrs (cjop |blps |clpw |cmsz (blpu |bouC |cnmuC
aotu |dkqs |clqu |dlqu |dmtA |c¢lgv |[covE |dnvz
bjpr |emqt |dmpv |emrv |enqy {dmrw |dowG eowB
bkqt [fquv |emqs |fmsw |{fnrx |empx [epxB |foxD

Blocksin ||blsu (gkrw |fmrw |gngx |[gosB [fmqy [fpyD |[gpsA

prestructure ||cnpu |hmrx |gnpx |haty [hotC |gnrz |gpzF |hptC
dogqr |iryz |hnqy iory |ipvz |hnpA |hptE iquz
enst inrz |jotx |[jpwA |ingqB |iquG |jqvB
fkps Jora kuvB |jorC |jqvB |kzwD
giqu kosB luwC |kosD |[krwD lrxy
hlrt 1lrxF

msyA
nszC

Table 2.1: Prestructures for PBD(v, Z>5 U {k*}) (i)

53

than two seconds on the largest design. For the actual blocks of the design, see

[34].

2.7 Direct Constructions for Pairwise Balanced

Designs

In this section, we present some direct constructions of pairwise balanced designs.

These constructions supplement the result in [17].
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Lemma 72 There ezists a {5,6}-GDD of type 5%.

Proof: Let V = Z,35 and develop the following blocks over Z3s:

{0,10,25,70,66,102}, {0,5,55,6,128},
{0,30,21,61,112}, {0,20,37,72,34},
{0,11,127,68,39}, {0,16,42,18,64},

{0,27,54,81,108}.

The last three blocks generate 11 parallel classes of block size five. Add five infinite
points to obtain a {5,6}-GDD of type 5%". o

Lemma 73 There ezists a PBD(103,{5,7}).

Proof: Let V = Z,03. Develop the following blocks over Z;o3:

{0,1,46,56,6,70,27}, {0,2,18,67,80},
{0,92,4,95,75}, {0,9,81,44,51}.

Lemma 74 There ezists a PBD(123, {5,7}).

Proof: Let V = Z,33. Develop the following blocks over Z,,a:

{0,3,9,21,36,19,80}, {0,24,75,25,100},
{0,30,7,88,83}, {0,45,13,67,41},
- {0,57,49,112,20}.
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Lemma 75 There ezists ¢ PBD(163, {5,7}).

Proof: Let V = Z,g3. Develop the following blocks over Z¢3:

{0,1,58,104,5,127,31}, {0,2,8,18,21},
{0,116,138,66,77}, {0,45,17,79,65},
{0,7,49,81,119}, {0,80,71,134,56},

{0,76,43,111,151}.

Lemma 76 There ezists a PBD(223,{5,7}).

Proof: Let V = Zjs3. Develop the following blocks over Zjz3:

{0,1,183,39,3,103,117}, {0,4,9,16,24},
{0,63,86,29,155}, {0,156,128,178,44},
{0,6,37,93,119}, {0,206,81,71,146},
{0,11,105,59,181}, {0,13,32,62,83},
{0,149,58,196,25}, {0,61,133,188,115}.

Lemma 77 There ezists ¢ PBD(197, {5,8}).

Proof: Let V' = Zjg7. Develop the following blocks over Z;q7:

{0,5,126,102,167,32,176,180}, {0,1,3,46,88}.
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Multiply the second block by 104 for i = 1,2,3,4,5,6 to obtain six more blocks.

a
Lemma 78 There ezists a PBD(133,{5,9}).
Proof: Let V = Z,33. Develop the following blocks over Z,3s:

{1,11,121,5,55,73,44,85,4}, {0,2,28,37,75},
{0,22,42,8,27}, {0,109,63,88,31}.

Lemma 79 There ezists a PBD(193, {5,9}).

Proof: Let V = Z,93. Develop the following blocks over Zq3:

{1,108,84,5,154,34,12,138,43}, {0,2,10,28,55},
{0,23,115,129,150}, {0,168,68,36,181},
{0,1,6,77,136}, {0,108,69,17,20},
{0,84,118,99,37}.

Lemma 80 There ezists ¢ PBD(129,{5,17*}).

Proof: Let V = Z;;3. Develop the following blocks over Z,;,:

{0,1,3,10}, {0,5,11,34},
{0,14,49,67}, {0,19,41,74},
{0,28,56,84}, {0,4,24,36,66},
{0,8,48,73,99}, {0,16,60,97,43}.
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The blocks of size four generate 17 parallel classes. Attach 17 infinite points to
obtain a PBD(129, {5,17%}). a

Lemma 81 There ezists a PBD(125, {5,21*}) and ¢ PBD(115,{4,5,11*}).

Proof: Let V = Z,o4. Develop the following blocks over Zoq:

{0,1,3,10}, {0,5,11,38},
{0,13,30,55}, {0,15,46,65},
{0,18,41,75}, {0,26,52,78},

{0,4,28,40,60}, {0,8,53,69,90}.

The blocks of size four generate 21 parallel classes. Attach either 11 or 21
infinite points to obtain the result. O

Lemma 82 There ezists a PBD(149,{5,17*}).

Proof: Let V = Z,3;. Develop the following blocks over Z,3,:

{0,4,1,9,22}, {0,12,29,61,102},
{0,16,52,76,50}, {0,20,48,88,125},
{0,6,25,87}, {0,10,53,67},
{0,11,46,85}, {0,15,38,69},
{0,33,66,99}.

The blocks of size four generate 17 parallel classes. Add 17 infinite points to
obtain the result. m]

Lemma 83 There ezists a PBD(169, {5,17*}).
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Proof: Let V = Z;5,. Develop the following blocks over Z;s;:

{0,4,1,9,22}, {0,12,29,45,2},
{0,20,64,100,70}, {0,24,56,84,103},
{0,7,62,85}, {0,15,61,86},
{0,26,57,115}, {0,34,69,111},
{0,40,93,141,54}, {0,38,76,114}.

The blocks of size four generate 17 parallel classes. Add 17 infinite points to
obtain the result. a
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(v, k) (37, 14) [ (38, 13) | (39, 14) | (42, 17) | (47, 18) | (49, 20) | (55, 20)
auvex |2ABCD |auvwx |[rstuv |KLMNO |DEFGH }|DEFGH
bAEFG |anrz |bAEFG |LMNOP |asBK |STUVW |STUVW
aotA |bnshk |aotA |arwF |bsCM jauDN |[auDN
bouC |cntB |bouC |brxC |ctDO |buEP |buEP
covE |dorC jcovE |cryB |[dtEQ |cuFR |cuFR
dowG |eosD |dowG (dszC [euFS |duGT |[duGT
opxB I|fotE |epxB |esxB |fuGL |evHV |evHV
fpyD |gpuF |fpyD |fsyG |[gvHN [fvIO |2vIO
gpzF |hpsG |gpzF |gtBH |hvIP |gw]Q |[gwlQ
hptE |[iptH |hptE [htxI |[iwJR |hwKS |huKS

Blocks in iqué |jqvl [iquG |ityC |jwBM {ixLU |[ixLU

prestructure || jqvB  |kqwJ [jqvB [juzA |[kxcO |jxMw |jxMw
kruD |[1qxK |krwD |kuDJ |1xDQ |kyDP |kyDP
1lrxF |mryL |lrxF [1uEK (myES |1yER [lyER
msyA msyA |mvzL ([nyFL |[mzFT |m2FT
nszC nszC |nvAM |ozGN |[nzGV |n2GV

ovDN |pzHP |oAHO [oAHO
puwD0 [qAIR |pAIQ (pAIQ
qQwAP |rAJK (qBJS |[qBJS
rBKU |rBKU
sCLV |[sCLW
tCMN | tCMN

Table 2.2: Prestructures for PBD(v, Z >3 U {k*}) (ii)
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Chapter 3
Group Divisible Designs

In this chapter, we study the existence of group divisible designs and modified group
divisible designs. |

Group divisible designs have been instrumental in the construction of other
types of designs. Many researchers have been involved in investigating the existence
of group divisible designs. Our interest here is in the existence of uniform GDDs
with block size k. Simple counting arguments show that if there is a uniform k-GDD
of type g* with u > 1, then

u > k

(u—1)g = 0mod (k-1) (3.1)

u(u—1)g> = 0mod k(k —-1).
The necessary conditions for the existence of a uniform k-GDD of type g* have
been proved to be sufficient for kK = 3 and 4 [63, 30], with the definite exception of

4-GDDs of type 2% and 6*. However, little was known about the case k = 5 other
than the following result due to Hanani [63].

60
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Theorem 35 If ¢ = 1 (mod 4) is a prime power, then there erists a 5-GDD of
type 5%.

In first two section of this chapter, we construct 5-GDDs of type g*. From (3.1),
the necessary conditions for the existence of such a GDD with 4 > 1 are tabulated

here:
g (mod 20) Condition on u
0 ©u>5H
1,3,7,9,11,13,17,19 «=1,5 (mod 20)
2,6,14,18 u=1,5 (mod 10) (3.2)
4,8,12,16 v=0,1 (mod 5)
5,15 u=1 (mod 4)
10 u=1 (mod2), u>5

We establish a strong existence result:

Theorem 36 The necessary condition (8.2) is also sufficient, except when g* €
{28,2'1,35,6%}, and possibly where

1. gu - 345, 365;

2. ¢g=2,6,14,18 (mod 20) and
(a) g =2 and u € {15,35,71,75, 85,95, 111, 115, 135, 195, 215, 335} ;
(b) g =6 and u € {15,35,45,75,95, 115, 135} ;

(c) g =18 andu € {11,15,35,71,111,115,135, 195} ;

(d) g =2a fora > 1 and (a,30) =1, andu € {11,15, 35,71, 75,111,115, 135,
195};
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(e) g==6v,v#0 (mod 5), ¥ # 3 odd, and u = 15;
3. g =10 (mod 20) and

(a) g=10 andu € {5, 7, 15,23; 27,33, 35, 39,47,63}.
(b) g =30 and u € {9,15};
(c) g =90 and u € {7,23,27,39,47};
(d) g =10a, a=1,5 (mod 6), and u € {7,15,23,27,35,39,47}.
(e) g=30y,7v>50dd, y#0 (mod 3) ory =9, u=15.
Using this theorem as a starting point and employing quite different techniques,
we show in Section 3 that, for a sufficiently large, 5-GDDs of type (2a)* exist

whenever the basic necessary conditions are met. This leaves a finite (but large)

number of possible exceptions for uniform 5-GDDs.
In section 4, we study optimal packing with block size five when v = 2 (mod 4).

In section 4, we study a problem of Assaf concerning modified group divisible
designs with block size four. We are able to solve all but a very small list of possible

exceptions.

3.1 Direct Constructions

In this section, we present direct constructions for a large number of uniform group

divisible designs with block size five.

Lemma 5 There ezist 5-GDDs of type g* for

1. g=2andu=41;
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2. g =8 and u € {10,11,15,16,20};

3. g=10 and v € {9,13,17};

{. g =12 and u € {10,11,15,16,20}; and

5. g=15andu=09.

Proof: Let v = g -u. For g = 8,12, u € {10,15,20} we take X = Z,_, plus g

infinite points; there is one group on the infinite points and other groups consist

of points which are equal modulo (v — g)/g. In these cases, all base blocks of size

four have elements which are distinct modulo 4, and hence generate four parallel

classes each on the non-infinite points. For the others, X = Z, and groups consist

of points which are equal modulo v/g.

241

8to.

811.

815:

816

820,

10°:

. {0,1,3,7,34}, {0,5,16,30,70}, {0,8,23,43,61}, {0,9,19,45,69}

{0,1,3,13,35}, {0,4,20,28,43}, {0,5,19,26}, {0,6,17,47}
{0,1,3,7,59}, {0,5,23,51,68}, {0,8,21,35,47},{0,9,19,57,73}

{0,4,9,10,12}, {0,20,37,52,88}, {0,29,48,55,78}, {0,22,40,65,81}, {0,13,46,67},
{0,11,38,73}

: {0,1,3,7,12}, {0,8,18,45,79}, {0,13,38,53,100}, {0,14,35,74,98}, {0,17,43,76,99},

{0,19,50,70,92}

{0,16,39,48,88}, {0,4,12,46,83}, {0,13,20,67,137}, {0,22,24,65,90},
{0,33,60,135,149}, {0,18,29,74,126}, {0,1,6,59}, {0,21,31,122}

{0,1,3,8,58}, {0,4,21,51,70}, {0,6,16,29,44}, {0,11,25,37,59}
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1013:

107:

1210,

1211,

1215

1216.

1220.

15°:

{0,1,3,7,12}, {0,8,18,43,80}, {0,14,44,63,90}, {0,15,38,60,94}, {0,16,33,75,99},
{0,20,41,73,102}

{0,1,3,7,12}, {0,13,39,91,156}, {0,8,18,54,115}, {0,22,64,104,135},
{0,15,45,77,101}, {0,25,75,123,151}, {0,16,37,96,137}, {0,38,58,81,141}

{0,4,6,16,73}, {0,8,52,76,101}, {0,20,37,58,80}, {0,3,29,34}, {0,1,14,47},
{0,11,30,53}

{0,1,3,7,15}, {0,5,18,39,68}, {0,9,36,61,92}, {0,10,42,72,95}, {0,16,51,75,94},
{0,17,45,65,91}

{0,4,20,67,85}, {0,8,9,68,104}, {0,5,12,27,29}, {0,13,32,58,106},
{0,69,80,113,119}, {0,46,86,117,138}, {0,25,35,78}, {0,3,37,114}, {0,41,79,102}

{0,2,24,37,86}, {0,4,25,65,140}, {0,6,15,124,125}, {0,8,66,107,145},
{0,12,39,90,162}, {0,18,44,63,139}, {¢,20,23,54,111}, {0,28,87,98,187},
{0,29,36,46,178}

{0,4,59,92,131}, {0,5, 12, 86, 184}, {0, 18, 34, 204, 217}, {0, 54, 85, 219} (mul-
tiply by 1, 49, and 121 (mod 228))

{0,1,8,20,30}, {0,2,28,60,93}, {0,3,40,55,79}, {0,4,38,51,86}, {0,5,21,71,94},
{0,6,17,31,74}

Lemma 6 [8] There ezists ¢ 5-GDD of type 2**.

Proof: Take as point set {0,1} x Z;, and as groups {0,1} x {y} for y € Z,,.
Develop the following blocks mod (—, 21):
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{(0,0),(0,2),(0,5),(0,11), (1,4}, {(0,0), (1,1),(1,3),(1,7),(1,12)},
{(0,0),(0,1),(0,8), (1,16),(1,19)}, {(0,0),(0,4),(1,9), (1,10), (1,17)}

Lemma 7 If g =25, 45, or 65, then there ezists a 5-GDD of type 29.

Proof: In each case, the point set is X = ({0,1} xZ,_,}U {o0;, 002}, and the groups
are {z} x {y,y + (¢ —1)/2}, for z € {0,1}, 0 <y < (g - 1)/2 — 1, plus {00y, 002}
Develop the following blocks mod (—,q —1):

q = 25:

{(0,0),(0,1),(0,3),(0,7),(1,1)}, {(0,0),(1,3),(1,9),(1,10),(1,23)},
{(07 0)! (07 8)’ (1’ 14)? (17 16)1 (11 19)}’ {(0! 0)! (01 9)1 (0! 14)’ (1’ 5)! (1’ 21)}’
{(0,0),(0,11),(1,4),(1,13)}

q = 45:

{(0,0),(0,2),(0,3),(0,10), (1,3)}, {(0,0),(1,4), (1,5),(1,18),(1,42)},
{(0,0), (0,23),(1,7), (1,32), (1,40}, {(0,0), (0,11), (0, 16), (1,27), (1,30)},
{(0,0),(0,9),(0,13), (0, 38),(1,33)}, {(0,0), (1,8), (1,26), (1,31), (1,35)},
{(0,0),(0,20), (1,10), (1,12), (1,22)}, {(0,0), (0, 18), (0, 30), (1,15), (1,43)},
{(0,0),(0,17),(1,23),(1,38)}

q = 65:

{(0,0)(0,2)(0,22)(0,45)(1.8)}, {(0,0)(0,15)(0,26)(0,54)(1,9)},
{(0,0)(0,51)(0,58)(0,63)(1,51)}, {(0,0)(0,16)(0,24)(1,13)(1,14)},
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{(0,0)(0,18)(0,47)(1,43)(1,63)}, {(0,0)(0,30)(0,33)(1,2)(1,40)},
{(0,0)(0,9)(1,31)(1,39)(1,55)}, {(0,0)(0,14)(1,17)(1,35)(1,56)},
{(0,0)(0,60)(1,1)(1,24)(1,37)}, {(0,0)(1,4)(1,11)(1,26)(1,38)},
{(0,0)(1,15)(1,34)(1,44)(1,48)}, {(0,0)(1,18)(1,20)(1,23)(1,29)},
{(0,0)(0,37)(1,32)(1,49)}

In each case the last block generates 2 parallel classes on the non-infinite points;
add each infinite point to one parallel class. O

Lemma 8 (Mills; see [102]) There is a 5-GDD of type 2%!.
Lemma 9 There ezist 5-GDDs of types 25! and 2.

Proof: Solutions are given over Z, x {0, 1} for v € {51,91}.

u = 51: The groups are {(i,0), (¢ + 32,1)} for ¢ € Zs;. Base blocks are:

{(0,0), (3,0),(7,0),(12,0), (18,0)}, {(0,0),(1,0),(34,0),(22,0), (0, 1)},
{(0,1),(3,1),(7,1),(12,1),(2,0)}, {(0,0), (2,0),(19,0),(6,1), (27, 1)},
{(0,0), (10,0), (26,1),(28,1), (41,1)}, {(0,0), (16,0), (13,1), (33,1), (39,1)},
{(0,0), (20,0), (3, 1), (14, 1), (22, 1)}, {(0,0), (23,0), (12, 1), (30, 1), (47, 1)},
{(0,0), (24,0), (15, 1), (43,1), (44, 1)}, {(0,0), (25,0), (9, 1), (36,1), (46, 1)}

u = 91: The groups are {(z,0), (i,1)} for ¢ € Zy,. Base blocks are:

{(0,0), (3,0),(7,0), (12,0), (20, 0)}, {(0,0), (48,0), (21,0), (10,0), (47,0)},
{(0,0), (40,0),(63,0),(69,0), (24,0)}, {(0,0),(2,0),(1,1),(4,1), (5, 1)},
{(0,0), (32,0), (16,1),(64,1), (80,1)}, {(0,0), (57,0), (74,1), (23,1), (6,1)},
{(0,0), (14,0),(7,1),(9,1),(59, 1)}, {(0,0), (42,0), (21, 1), (53, 1), (34, 1)},
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{(0,0),(35,0), (63,1), (29, 1), (89, 1)}, {(0,0),(15,0),(33,1),(39,1),(77,1)},
{(0,0), (58,0),(73,1),(78,1), (49,1)}, {(0,0), (18,0),(76,1),(65,1),(56,1)},
{(0,0), (19,0), (27,1),(60,1), (88, 1)}, {(0,0), (31,0),(68,1),(50,1),(43,1)},
{(0,0), (41,0),(87,1), (72,1), (51, 1)}, {(0,0), (25,0),(13,1),(55,1),(67,1)},
{(0,0), (36,0), (26,1), (61,1), (71,1)}, {(0,0), (30,0), (52,1), (66,1),(44,1)}

Lemma 10 A 5-GDD of type 25° ezists.

Proof: Take the point set as {0,1} x Zs x Zy;; let t1(z,y,2) = (z,y,z + 1), and
ta(z,y,2) = (z,y + 1,4z). Apply the group of order 55 generated by ¢; and ¢, to
the 10 blocks

{(0,0,0),(1,0,0), (1,0,9),(1,2,1), (1,4,10)}
{(0,0,0),(1,0,8),(1,1,9),(1,2,7),(1,3,0)}
{(0,0,0),(0,1,5),(1,2,2), (1,2,4), (1,4,3)}
{(0,0,0),(0,2,9), (1,2,3), (1,3,4), (1,4,6)}
{(0,0,0),(0,1,9),(0,2,8), (1,0,4), (1,0,7)}
{(0,0,0),(0,0,3),(0,1,2), (1,0,5), (1,0,6)}
{(0,0,0), (0,0,5), (0,3, 4), (1,2,10), (1,3,6)}
{(0,0,0),(0,0,1),(0,2,7),(1,1,5), (1,1,7)}
{(0,0,0),(0,0,2), (0,4,1),(1,1,3), (1,2,0)}
{(0,0,0),(0,0,4), (0,2,3), (0, 4,8), (1,3,3)}

Apply the group of order 11 generated by ¢; to the blocks

{(0,0, 2),(0,1,42), (0,2, 52), (0,3,92), (0,4, 32)} for z=10,1, and
{(1,0,2),(1,1,42),(1,2,52),(1,3,9z2), (1,4, 32)} for z=10,2.
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Groups are of the form {(0,y,2),(1,y +3,z+9-(4¥))}. o
Lemma 11 There is a 5-GDD of type 2%, and a 5-GDD of type 2%!.

Proof: Over Z3 x Ze, form base blocks
{(0,0), (0, 1), (0,4),(0,25), (1,11)}, {(0,0), (0, 8), (0,23), (1, 25),(1, 27) }
Multiply by (1,%) for ¢t = 1, 13,47 to obtain three blocks from each.

Over Z, x Fg,;, form base blocks

{(0,0),(0,1),(0,2),(0,z° +1),(1,2° + 2* + 2z + 1)},
{(0,0),(0,z + 1), (0,22% + 1), (1,22 + z + 1), (1,223 + 22 + 2)}

where z is a primitive element satisfying z* = z® + 1. Multiply by (1, z'%) for
0 <t < 3 to obtain four blocks from each. a

Lemma 12 There ezists ¢ 5-GDD of type 213!,

Proof: On Z3; x {0,1}, {(i,0), (¢,1)} for i € Z,3, form groups. Base blocks are
obtained as follows. Take

{(0,0),(2,0), (6,0), (14,0), (16,1)}, {(0,1), (4, 1), (9, 1), (16,1),(1,0)},
{(0,0),(1,0),(22,0), (19,1),(77,1)}, {(0,0), (11,0),(91,0), (35, 1), (120, 1)},
{(0,1),(s,1),(66,1),(30,0),(73,0)},{(8,1),(31,1),(71,1),(95,1), (57,1)}.

Multiply these each by the fifth root of unity 53; the first five yield five blocks each,
and the last is invariant under multiplication by 53. This gives 26 base blocks,
which can be developed over Z;3, to obtain the 5-GDD. m]
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Lemma 13 There is a 5-GDD of type 21°L.

Proof: On Z;q; x {0,1}, take {(¢,0),(3,1)} as groups for ¢ € Z;9;- Consider the
base blocks

{(0,0),(3,0),(9,0),(20,0), (1,1)}, {(0,1),(2,1),(5,1),(11,1),(3,0)},
{(0,0), (2,0), (15,0), (6, 1), (18,1)}, {(0,0),(143,0), (9, 1), (28, 1), (66,1)},
{(0,0), (71,0), (84,1), (148,1), (173,1)}, {(0,0),(37,0), (17,1),(123,1), (141,1)},
{(0,0), (130,0), (85, 1), (92, 1), (168, 1)},

and the base blocks

{(41,0), (71,0), (95,0), (76,0), (99,0)}, {(5,0),(4,0), (156,0), (163,0), (54,0)},
{(32,0), (102,0), (158,0), (50,0), (40,0)}

Multiply each by the fifth root of unity 39; those in the first set produce five
blocks each, while those in the last produce one. The 38 blocks that result are
developed under Z;g; to produce the GDD. a

Lemma 14 There is a 5-GDD of type 2?11

Proof: On Z2y,x{0, 1}, form base blocks from {(1, 0), (22,0), (2%4,0), (2!%¢,0), (2'*%,0)}
and {(0,0),(1,0),(2,1),(9,1),(57,1)} by multiplying by 2°. The first generates
seven. blocks and the second generates 35. Develop the 42 blocks so obtained under
Z 2, to obtain the GDD. a

Lemma 15 If ¢ = 21,41,61 or 81, then there eztsts a 5-GDD of type 37 over
Z3 x X,, where X; = Z, for q € {21,41,61}, and Fy; otherwise.



CHAPTER 3. GROUP DIVISIBLE DESIGNS 70
Proof: ¢ = 21:

{(01 0)’ (01 1)! (0? 3)7 (1! 2)1 (11 g)}’ {(0’ 0)2 (0? 4)) (0’ 13)’ (11 7)) (11 17)}2
{(0,0), (0,5),(1,10),(1,16),(2,7)}

qg=41:

B. = {(0,1), (0,10), (0, 16), (0, 18), (0, 37)},
B, = {(0,0),(1,20), (1,21, (2, 17), (2, 24)}

Multiply B, by (1,y) for y =1, 10, 16, 18, 37.
q = 61:

{(0,0),(0,1),(0,28),(1,13), (1,45)}, {(0,0),(0,3),(0,57),(1,33),(1,53)},
{(0,0), (0,6), (1,10), (1,20), (2,39) }
Multiply each of these blocks by (1,13) and (1,47) to produce 6 further base blocks.

q = 81: Let z be a primitive element of Fg, satisfying z* = z® + 1.

B, = {(0,0), (0,2"),(0,2),(0,2*), (0,2},
B; = {(01 0): (la 1)) (11 -1)’ (2’ 313)7 (2! —313)}v
B3 = {(01 0): (1’ 36)7 (17 -36)7 (2') 37)a (21 —37)},

Multiply B, by (1,z%),(1,z°), and B, B; by (1,z%) for 0 <t < 4. o
Lemma 16 There ezists a 5-GDD of type 3? for ¢ = 25.

Proof: Take X = Zj x Fy5 where z? = z + 3, and multiply the following 2 blocks
by (1,z%) for t = 0,1,2. Then develop mod (3,5%). (B: and its multiples each
generate 15 blocks; Bz and its multiples each generate 75 blocks).
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B, = {(0,0),(0,2), (0, 2z), (0, 3z), (0, 4=)},
B, ={(0,0),(1,1),(1,4),(2,z +3), (2, 4z +2)}

Lemma 17 If ¢ = 11,31 or 71 then there ezists a 5-GDD of type 69.

Proof: Take the point set as X = (ZsUoo) xF, and the groups as (ZsUoo) x{y},y €
F,. In F,, let z be a primitive root of unity and w a fifth root (for ¢ = 11,31,71
respectively, we take z = 2,3,11 and w = 4,4, 5). Define automorphisms T, T3, T3
by Tiv(z,y) = (z,y +1), Ta(z,y) = (z + 1,w - y), and Ts(z,y) = (=, 2'°-y). In each
case, apply the group of order g(q—1)/10 generated by T1, T; to the first base block
(and its multiples) and the group generated by Ti,T:,Ts to the other base blocks

given.

g = 11: Base blocks:

{(0,t), (1, 4t), (2, 5¢), (3,9¢t), (4, 3¢t)} for t =2,4,10.
{(0,0),(0,1), (4,3), (o0, 2), (o0, 5)},
{(0,0), (0,4),(1,9). (3,6), (o0, 10)},
{(0,0),(0,2),(0,8), (1,4),(2,9)}

q = 31: Base blocks:

{(0,¢), (1,4¢),(2,16¢), (3,2t), (4, 8t)} for t = 1,9,20.
{(0,0),(0,1),(4,24), (o0, 3), (o0,6)},
{(o, 0), (0, 12), (1,20), (3, 3), (o0, 4)},
{(0,0),(0,3), (0,11),(1,2), (3,21)}

q = 71: Base blocks:
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{(0,£), (1,5¢), (2, 25¢), (3, 54t), (4, 57t)} for t = 14,40, 61.
{(0, O)v (0’ 1)7 (4a 57)1 (wa 2)a (ws 8)}:
{(0,0), (0,13), (1, 28), (3, 8), (0, 35)},
{(0,0), (0, 3), (0,21),{1,22),(3,54)}

Lemma 18 There is a 5-GDD of type 10!.

Proof: Take the point set as {0,1} x Zs x Z,,; then apply the automorphism group
of order 55 generated by t,, 2 to the blocks below, where ¢,(z,y, z) = (z,y,2+ 1),
and t;(z,y,z) = (z,y + 1,42). The base blocks are:

{(0,0,0),(1,0,6),(1,0,7),(1,1,8),(1,2,3)}, {(0,0,0),(1,1,7),(1,1,10),(1,2,6),(1,3,4)},
{(0,0,0),(1,1,1),(1,2,2),(1,2,4),(1,4,8)}, {(0,0,0),(0,1,6),(1,0,9),(1,2,7),(1,3,10)},
{(0,0,0),(0,1,10),(0,2,8),(1,0,1),(1,0,4)}, {(0,0,0),(0,0,3),(0,1,7),(1,0,2),(1,0,8)},
{(0,0,0),(0,0,2),(0,2,6),(1,2,10),(1,3,7)}, {(0,0,0),(0,0,1),(0,2,10),(1,1,5),(1,4,2)},
{(0,0,0),(0,0,5),(0,1,3),(0,2,7),(1,3,6)}, {(0,0,0),(0,0,7),(0,2,1),(0,4,5),(1,3,9)}

a
Lemma 19 There is a 5-GDD of type 107 for g € {19,43,67,79}.

Proof: On Zg, x {0, 1}, take as groups the translates of {0, g, 2q, 3¢, 4q} x {0,1}. For
blocks, start with a set of six blocks determined given by the rows of the matrices
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to follow. The second coordinates of the elements are specified by the matrix

(0000 0)
00111
00111
00111
00111
\00111)
The first coordinates of the elements are given by:
(01 3 7 28) (01 3 7 53)
05 1 2 4 05 1 2 4
=10 0 13 3 21 53 g=43: 0 8 3 26 13
0 14 12 63 68 0 9 7 38 108
0 20 14 30 67 0 35 124 100 197
\ 0 31 66 81 87 ) \0 36 66 181 127 )
(001 3 7 28) (0 1 8 32 93 )
010 1 2 4 01001 2 9
N 0 33 3 21 33 ;=19 0 13 3 31 53
0 9 7 63 68 0 4 37 128 163
0 20 94 65 207 0 20 59 75 242
\ 0 51 101 281 222 ) \ 0 66 76 261 372 |

Multiply each by the element 11, 41, 131, or 176 of order (¢ — 1)/6 for ¢ = 19, 43,
67, or 79, respectively, to obtain (g —1)/6 blocks from each. The g — 1 base blocks
resulting are developed over Zs, to obtain the GDD. m

Lemma 20 There is a 5-GDD of type 107 for q € {29, 37,53}.
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Prooﬁ On Zs, x {0,1}, groups are formed as the translates of {0,q,2q,3q,4q} x
{0,1}. For g = 29, start with blocks

{(0’ 0)7 (1’ 0)’ (3’ 0)7 (25! 0)7 (21 1).}7 {(0’ 0)7 (7’ 0)’ (21’ 0)’ (10’ 1)7 (351 1)}1
{(0,0),(10,0), (7,1), (40, 1), (56, 1)}, {(0,0), (6,1), (23,1),(54,1),(73, 1)}

For q = 37, start with blocks

{(0,0),(6,0), (13,0), (40,0), (7, 1)}, {(0,0),(17,0), (71,0), (5,1), (25, 1)},
{(0,0),(5,0), (92,1), (15,1), (36, 1)}, {(0,0), (6,1),(38,1),(84,1),(103,1)}

For ¢ = 53, start with blocks

{(0,0),(6,0), (18,0), (5,0), (7, 1)}, {(0,0), (42,0), (76, 0), (5,1). (10, 1)},
{(07 0)7 (101 0)1 (77’ 1)1 (351 1)’ (51’ 1)}7 {(0’ 0)’ (6! l)’ (38’ 1)’ (209’ 1)’ (198" 1)}

In each case, we multiply by an element of order (¢ — 1)/4; for ¢ = 29, 37, and 53,
the multiplier elements are 36, 16, and 16, respectively. The resulting g — 1 blocks
can be developed over Zs, to obtain the 5-GDD. a

Lemma 21 There is a 5-GDD of type 15 for q € {13,29}.

Proof: Points are taken to be Z;s,, and groups are formed by the translates of the
multiples of g. In both cases, three base blocks are given; these are multiplied by
the element 16 for ¢ = 13, or 181 for ¢ = 29, which is an element of order (¢ —1)/4.
The 3(q — 1)/4 resulting blocks are developed under Z,s, to form the 5-GDD. For
q = 13, the blocks are {0, 1, 3,7, 18}, {0, 5,38, 74,105}, and {0, 10, 44,94, 152}. For
q = 29, the blocks are {0,1,3,7,21}, {0,5,13,46,241}, and {0,9,62,159,244}. O
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Lemma 22 There is a 5-GDD of type 307 for q € {7,19,23}.

Proof: On Z15, % {0, 1}, take as groups the translates of X x {0, 1} where X = {g-7:
0 <t < 15}. The same technique as in Lemma 19 is used, choosing a multiplier of
order (g — 1)/2 in this case. Again six blocks are chosen with second coordinates
as in Lemma 19, and first coordinates as follows:

(01 3 11 69 ) (01 3 11 150 )

04 1 2 31 0 4 1 2 136

05 4 8 90 05 4 8 15
q=1 g=19:

0 12 17 30 67 0 12 17 180 97

0 15 54 81 101 015 9 36 101

\ 0 29 58 94 97 ) \ 0 44 103 94 7 |

(0 1 3 11 144 )
0 19 1 2 106
0 5 4 8 30
0 12 17 75 22
0 15 9 6 36
\ 0 29 88 199 82 )
Multiply each by the element 16 (g = 7), 61 (g = 19), or 301 (g = 23) to obtain
(g — 1)/2 blocks from each. The 3(g — 1) base blocks resulting are developed over
Z 5, to obtain the GDD. , ]

q=23:

Lemma 23 There is a 5-GDD of type 30%7.

Proof: On Fy7 X Zy5 x {0, 1}, take as groups Fyr x {i} x {j} for i € Z;5and j € {0, 1}.
Let a be a primitive element of Fy7 satisfying a® = a? + 2a + 2. For blocks, start
with
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{(a®,0,0),(a*,1,0),(a?,3,0),(a® 11,0),(a*,9,0)},
{(a®,0,0},(c*,4,0), (a?,1,1), (% 2,1),(a®,1,1)},
{(a®,0,0),(c,5,0), (a?,4,1), (a3, 8,1),(a?,0,1)},
{(a®,0,0),(a?,12,0), (a*,2,1),(a®0,1), (a'?,7,1)},
{(a%,0,0),(a*,0,0),(a*,9,1),(a? 6,1),(*,11,1)},
{(a®,0,0),(a*, 14,0), (a*,13,1), (a?,4,1), («**,7,1)}

and multiply each in the first component by the element a® of order 13 to obtain
13 blocks. The 78 base blocks obtained are developed over F;7 x Z;s to produce
the GDD. a

Lemma 24 There-ezist 5-GDDs of type g* for g € {40, 60}.

Proof: Let X = Z,;4 x GF(2%,2% = z + 1) x Z7. Groups consist of points that are
equal mod 7.

For 407, base blocks are

{(0,0,0),(0,0,6),(8,0,2),(1,1,1),(6,= +1,3)},
{(0,0,0),(6,0,4),(7,0,5),(2,1,2),(2,z,1)},
{(0,0,0),(5,0,1), (4,0,2),(2,1,3),(3,z + 1,4)},
{(0,0,0),(3,0,3),(3,1,4), (0, ,6), (4, z + 1,2)}.

For 607, base blocks are

{(0,0,0),(0,0,3), (1, 1,1), (3, z,6), (5, + 1,5)},
£(0,0,0),(2,0,5),(6,0,3),(0,1,1), (7,2 + 1,6)},
{(0,0,0),(5,0,5), (12,0,2), (0, 1,4), (4,2, 1)},
{(0,0,0), (7, 0,6), (6,0, 1), (0, 1,2), (2, ,3)},
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{(0,0,0),(1,0,2), (4,0,4), (10,1,1), (12, z + 1,3)},
{(0,0,0), (10,0,5),(1,1,3),(3,1,4), (4, 2,6)}-

Multiply the base blocks by (1,z*,2¢) for 0 < i < 2 and develop modulo (g/4,22,7).
a

3.2 Recursive Constructions

To obtain the required designs we employ several new constructions listed below.

The first one provides a new way to obtain GDDs by using HTDs.

Construction 1 Suppose that e k-HTD of type h™=1s! and a k-GDD of type k" (s+
w)! both ezist. Then a k-GDD of type (kh) (ks + w)! ezist.

Proof: Let (X, {Y:}1<i<r, G, B) be a k-HTD of type A" 1s! with |Y; NG| = s, for
each G € G. Add a set F of w extra points to all groups of the GDD. For each
G € G, we then construct a k-GDD of type A"} (s + w)'(GUF,{YinG:1<: <
r —~ 1} U {(¥> N G) U F},Bg). Thus the required GDD is obtained by taking point
set X U F, block set B U (UgegBg) and group set {¥1,Yz,... .Y, Y,UF}. O

The following construction is simple but useful.

Construction 2 Suppose that there ezists a k-GDD of type {s;: 1 <i < r}. Let
a > 0 be an integer. If, for each i satisfying 1 < i < r, there ezists ¢ k-GDD of
type {s;; : 1 < j < k(i)} U {a} where s; = 3, ;cu) Siis then there is ¢ k-GDD of
type {s:1 < 5 < ki), 1 <5< r}pufal

Construction 3 [111] Suppose that there ezists a TD(k + 1,kn) — TD(k + 1,n).
Then there ezists a k-GDD of type ((k — 1)n)*+1.
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For convenience, we now restrict ourselves to the case for block size 5.

Construction 4 Suppose that there ezists a (v, {5,w*})-PBD. Then there is a 5-
GDD of type 4=} 4(w — 1)*.

Proof: This follows from deleting one point from the distinguished block of the
PBD. m)

Construction 5 Let d be a prime power and w a nonnegative integer. Suppose

that a 5-GDD of type 4%w! ezists. Then

® a 5-GDD of type 40%(w + 4a + 12b)! if d > 10, and
o a 5-GDD of type 60%(w+4a+12b)* if d > 15, where 0 < a,b, and a+b < d—1.

® a 5-GDD of type 80%(w + 4a + 8b + 12c + 20f + 24e)! if d > 20, where
0<a,bec feanda+b+c+f+e<d~1.

Proof: By Lemma 3, an RT(10,d) exists. Take as groups the blocks of one of the
parallel classes from an RT(10,d) to obtain a {10, d}-RGDD of type 10%, in which
all groups of the RTD form a distinguished parallel class. Adjoin a + b + 1 infinite
points to the RGDD, where one infinite point is adjoined to each of a + b+ 1 parallel
classes including the distinguished one. In the resulting design, give weight w to
one infinite point which is adjoined to the distinguished parallel class, and weight
12 to b infinite points and give the remaining points weight 4. Then apply Theorem
18 to obtain a 5-GDD of type 40%(w + 4a + 12b)!. The input designs used are 5-
GDDs of types 419,411 41012t 49w'. The first three designs are obtained by using
Construction 4 with appropriate PBDs in Theorem 19(1) and (3). Similarly, we
can construct a 5-GDD of type 60%(w + 4a + 12b)! beginning with an RTD(15, d);
the last case is also similar using an RTD(20,d). W]
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3.2.1 Existence Results: g =0,1,3 (mod 4)

In this subsection, we apply previous constructions to establish our existence results
on 5-GDDs. First, we treat cases with five and six groups.

Lemma 25 Let g and u > 5 be positive integers satisfying u =1 or 5 (mod 20)
and g # 2,3,6,10. Then there exists a 5-GDD of type g“.

Proof: For each value of u, a B(5,1;u) exists by Theorem 19(1). Regard the BIBD
as a 5-GDD of type 1* and give every point weight g. Applying Theorem 18 gives
the result. a

Lemma 26 Suppose that g = 0 (mod 4) and g > 4. Then there ezists a 5-GDD
of type ¢°.

Proof: For g = 4, the result follows from Theorem 19(1) by deleting a point of
the BIBD. Now take a 5-GDD of type 4% and apply Theorem 18 with weight n
where a TD(5,n) exists. By Lemma 1, this takes care of all values of g except
for g € {8,12,24,40}. Deleting one block from a TD(6,7) yields a {5,6}-GDD of
type 6°. We then give weight 4 to every point of the GDD and apply Theorem
18 to get a 5-GDD of type 24%. For g = 8 and 12, the result follows from using
Construction 3 with & = 5, and n = 2,3, since both a TD(6,10)-TD(6,2) and a
TD(6,15)—~TD(6, 3) exist (see Brouwer [27] and Colbourn {37]). Finally, we take a
5-GDD of type 8% and inflate every point by 5 using Theorem 18. This covers the

case for g = 40 and the proof is complete. m]

The use of these two lemmas requires designs with block sizes five and six.

Bennett, Colbourn and Mullin [17] prove two results on such designs:
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Theorem 37 There is a {5,6}-GDD of type 5™ for alln > 5 ezcept possibly when
n € Q = {7,8,10,16}.

Theorem 38 A (v,{5,6})-PBD ezists if and only ifv-=0,1 (mod 5) ezcept when
v € {10,11,15,16,20,35} and possibly when v € {40,50, 51, 80}.

Now we can treat the cases when g =0 (mod 20):

Lemma 27 Let g and u be integers satisfyingu > 5, u € Q and g =0 (mod 20).
Then there ezists a 5-GDD of type g*.

Proof: Apply Theorem 18 to those {5,6}-GDDs in Theorem 37 with the necessary
input designs from Theorem 19(1) and Lemma 26. a

We also require some 5-GDDs obtained by deleting points in incomplete PBDs:

Lemma 28 Let a,b,c and d be integers satisfyinga > 1,0 > 2,¢ > 3,d > 3 and
d # 5. Then there ezist 5-GDDs with following types: 4°¢, 45341 45a+2gl 456121
45°81  and 454+424! .

Proof: Applying Construction 4 with those PBDs in Theorem 19 produces the
desired result. m]

Lemma 29 Let g and u satisfyu € Q, g =0 (mod 20) and g ¢ {40, 60,120,200}.
Then there ezists a 5-GDD of type g*.

Proof: Write g = 20n; then n & {2,3,6,10}. So, we can use Theorem 18 with
weight n to get a 5-GDD of type (20n)* from a 5-GDD of type 20“. Thus we need
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only consider g = 20. The construction of a 5-GDD of type 20 is as follows. The
case u = T is handled by the construction of the (141,5,1) BIBD in [63].

For u € {10,16} we have a 5-GDD of 4* from Theorem 19(1). The result then
comes from using Theorem 18 with weight 5.

For u = 8, we first use Construction 1 with k = 5 and k = 4 to yield a 5-GDD
of type 20""!(5s + w)!, with r = 8, s = 3, w = 5, and thus 5s + w = 20. The
ingredients in this construction are a 5-GDD of type 4 ~!(s + w)! and a 5-HTD
of type 4"~1s'. The first one comes from Lemma 28 and the second can be easily
constructed by Lemmas 4 and 2. We then break up the group of size 5s +w by an
appropriate 5-GDD with group size 20 already obtained and apply Construction 2
to get the desired result. a

Lemma 30 If u € Q, then there exists a 5-GDD of type 40% and of type 200%.

Proof: For u = 16, the construction is as follows. We first use Construction 5
to yield a 5-GDD of type 40%(w + 4a + 12b)* with the parameters u = d = 16,
a = b= w = 0, Apply Construction 2 to get the desired results.

For u = 10, we take a TD(9,9) and delete one point from one group. The
resulting design is a 9-GDD of type 8!°. We then give weight 5 to the GDD and
apply Theorem 18 to get the desired result. The input design is a 5-GDD of type
59 which comes from Theorem 35.

For u = 8, form a {7,8}-GDD of type 876" by deleting two points of an affine
plane of order 8, and use this to produce a 5-HTD of type 876'. A 5-GDD of type

8716 exists via a construction of Greig (see [17]). Apply Construction 1 with k = 5,
h =8, s =6, and w = 10 to get a 5-GDD of type 40%. For u = 7, see Lemma 24.

Give weight 5 to 5-GDDs of type 40* to get 5-GDDs of type 200%. o
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Lemma 31 Ifu € Q\{8}, then there ezists a 5-GDD of type 60“.

Proof: For u € {10, 16}, we have a 5-GDD of type 4*. Give weight 15 to the GDD
and apply Theorem 18. For u = 7, see Lemma 24. a

Lemma 32 For 1 < a < 19, there is a 5-GDD of type 607(4a)}, and hence a
5-GDD of type 60°.

Proof- First we form a 6-HTD of type 37 on Z2x{1,2, 3,4, 5,6} as follows. Consider
the matrix

(0 0 o
1 2 3
2 1 6
3 19 9 20 1 11
5 11 15 16 19 6
\ 6 20 11 18 10 16 }
Multiply each column by 16° for 0 < ¢ < 2, arithmetic modulo 21, to produce 18
columns. Then develop the columns over Z;, to produce 21 - 18 columns. Each
column (a,d,¢,d,e, f)T then forms a block {(a,1),(b,2),(c,3),(d,4),(e,5),(f,6)}
of the 6-HTD. The manner of construction ensures that the blocks of the HTD can
be partitioned into 18 parallel classes of 21 blocks each (the action of Z,, turns a
base block into a parallel class). Hence there is a resolvable k-HTD of type 37 for
each k < 6. We require only the one with k = 5.

A second main ingredient is a 5-GDD of type 1274! produced as in Lemma 5.
Over Zsgy, consider the starter blocks {0, 1, 10,27}, {0, 2, 5, 20, 50}, {0, 4, 12,23, 55},
{0,6,22,46,59}; developing these over Zg, gives blocks of size 5, and 4 parallel
classes of blocks of size 4, in a GDD of type 12. Extending the four parallel classes
gives the 5-GDD of type 1274%.
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Now we proceed as follows. Extend a—1 parallel classes in the resolvable 5-HTD
of type 37. Give the resulting “design” weight 4, using 5-GDDs of type 4°, 4%, and
1274*. The result is a 5-GDD of type 607(4a)!. m]

Lemma 33 Ifu € Q, then there ezists a 5-GDD of type 120%.

Proof: First, we observe that when an RTD(6, m) exists, we have a {6,m}-GDD of
type 6™ by taking as groups the blocks of one of the parallel class from the RTD.
Furthermore, we also have a {5,6,m — 1}-GDD of type 6™~ by deleting one group
from the GDD. It is known [3] that either an RTD(6, ) or an RTD(6, v + 1) exists
for all stated values of u, and hence a {5,6,u}-GDD of type 6* exists. The result
then is obtained by applying Theorem 18 with the necessary input designs from
Lemmas 27 and 29. 0O

Summarizing the results of Lemmas 30-33, we have proved

Theorem 39 Let g and u be integers satisfying u > 5 and g =0 (mod 20). Then
there ezists a 5-GDD of type g*.

Theorem 39 may be applied to establish the following two existence results.

Theorem 40 Let g =0 (mod 4) and g # 0 (mod 20). Letu >5andu=0or1l
(mod 5). Then there ezists a 5-GDD of type g“.

Proof: For each value of u =0 or 1 (mod 5), a 5-GDD of type 4* exists by Lemma
28. So, a 5-GDD of type g* can be constructed by applying Theorem 18. But this
construction does not work for g € {8,12,24}. To deal with them, we first apply
Theorem 18 to the {5,6}-GDDs of type 1* from Theorem 38. For all values of g =0
(mod 4), this handles all values of u except for u € {10, 11, 15, 16, 20, 35, 40, 50, 51, 80}.
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Next, it has been proved in Lemmas 1 and 26 that 5-GDDs of type g° and g° exist
when g € {8,12,24}. Take a 5-GDD of i;ype (59)™ from Theorem 39 and break up
each group by a TD(5,g) to obtain a 5-GDD of type g°". Furthermore, we add
g infinite points to a 5-GDD of type (5g)™ and break up each group by a 5-GDD
of type ¢g° in such a way that the g infinite points become a common group. This
gives a {5}-GDD of type g°™*!. In this way all cases are handled except when
g € {8,12,24} and v € {10,11, 15, 16, 20}.

When g = 24, since either an RTD(6,%) or an RTD(6,u + 1) exists for all
remaining values of u (see [3]), we have a {5,6,u}-GDD of type 6* as noted in
the proof of Lemma 33. Therefore, the result can be obtained by Theorem 18 and

Lemma 28.

For g € {8,12}, Lemma 5 gives direct constructions for the remaining cases. O

Theorem 41 Let g =5 (mod 10), u =1 (mod 4) end u > 5. Then there ezists a
5-GDD of type g“.

Proof: Because of Theorem 18 and Lemma 1, it suffices to give the proof for g = 5
and 15. For g = 5, we apply Construction 2 as follows. Take a 5-GDD of type 20™
from Theorem 39 and adjoin 5 infinite points to each group. We then break up
each group by a TD(5,5) to obtain a 5-GDD of type g*™+!. This takes care of the
case where v > 21. When u < 21, the result follows from Theorem 35.

Similarly, Construction 2 with Theorem 39 can be used to get the result for
g = 15 and all stated values of u except v € {9,13,17}. Lemma 5 handles » = 9.
Lemma 21 handles u = 13. For u = 17, employ a 4RGDD of type 3'¢ [102], and
extend all parallel classes to obtain a 5-GDD of type 3'615'. Next form a 5-HTD
of type 3! [18]. Now apply Construction 1 with k=5, k=3, =17, s =0, and
w = 15 to get a 5-GDD of type 15'7. 0
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In the cases when g Z 2 (mod 4), it remains only to treat the case when g = 3,

in view of Theorem 25. First we treat the easier half:
Theorem 42 Let u =1 (mod 20). Then a 5-GDD of type 3* ezists.

Proof: Direct constructions when u € {21,41,61,81} are given in Lemma 15. In
the remaining cases, write z = (v — 1)/20 and use Lemma 31 to form a 5-GDD of
type 60*. Add three infinite points and fill the holes using a 5-GDD of type 3! to
get a 5-GDD of type 3“. 0

Theorem 43 Let u =5 (mod 20) and u & {5,45,65}. Then a 5-GDD of type 3*
ezists.

Proof: In Lemma 16, a 5-GDD of type 3% is given. Since 5-GDDs of type 72° exist
whenever z = 0,1 (mod 5), adding three infinite points and filling with the 5-GDD
of type 3% gives a 5-GDD of type 324! whenever z = 0,1 (mod 5). Hence we
obtain the existence of a 5-GDD of type 3* whenever v = 25 (mod 120). A second
infinite class is obtained by using a TD(5,3u) when « =1 (mod 20), and filling its
groups using a 5-GDD of type 3% from Theorem 42 to get a 5-GDD of type 3°“.
This yields all » = 5 (mod 100) except for v = 5. A third class is obtained by
taking a 5-GDD of type 754+ for all positive z and filling its groups with 5-GDDs
of type 325 to get 5-GDDs of type 3'%=+25 for all z > 1.

Now Construction 5 with d > 16 a prime power, w € {0,4, 8, 12} can be used to
produce a 5-GDD of type 60972!, and hence a 5-GDD of type 32%4+25, This handles
cases when u € {345, 365, 565, 645, 665, 765, 845, 965}.

Next we take a RTD(6,m), and truncate a group to z points to obtain a
{5,6,z,m}-GDD of type 65™~=, and give weight 12 using 5-GDDs of type 12°,
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125, 12%, and 12™. Then adding three infinite points and filling using 5-GDDs of
type 3% and 32°, we obtain a 5-GDD of type 320™+4=+1_ Applications of this follow:

20m +4z+1 m z Block Sizes
445 21 6 {5621}
465 21 11 {5,6,11,21}
545 25 11 {5,6,11,25}

In a similar manner, extending six parallel classes of a (65,5,1)-RBIBD to get a
{5,6}-GDD of type 5'%6' handles u = 285; and truncating a group of a TD(6,11)
to six points gives a {5,6,11}-GDD of type 5'!6', which handles u = 245.

For u € {85,165}, first form a 5-GDD of type 315! from a resolvable 4-GDD
of type 3¢ [102]. Then, whenever a 5-GDD of type 48" exists (i.e., n = 0,1
(mod 5)), fill n — 1 of its groups using 15 infinite points and the 5-GDD of type
31815%; fill the last group using the 5-GDD of type 3**. When n € {5, 10}, this
handles u € {85,165}. For u = 185, start with a 4-RGDD of type 3 [102]; inflate
using RTD(4,4) to obtain a 4-RGDD of type 12° and extend all parallel classes to
get a 5-GDD of type 12828!. Using Wilson’s transversal design construction with
the master design TD(9,8), and applying weight 12 using TD(5,12 + z)—TD(5, z)
for z = 0,1,2,3, produces 5-HTDs of type 12%y! for 0 < y < 21. In particular,
a 5-HTD of type 12%11! exists. Now apply Construction 1 with £ = 5, A = 12,
s =11, and w = 17 to get a 5-GDD of type 60%72!, and fill in groups using three
infinite points to obtain a 5-GDD of type 3!%5.

In particular, these classes give 5-GDDs of type 3* for u = 145, 165, 85. Now
under the stated conditions on u, if the desired value of % is not in one of the
classes already handled, let a = !‘;—1 Note that @ =1 (mod 5). Choose S so that
a =56+ 1 (mod 25) and 8 € {7,8,4} (all cases with 8 = 0,1 (mod 5) have been
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completed above). Then write n = “—‘2%’-1- It is easily checked that n > .

Form a TD(6, 5n) (since » > 2 in each case, such a TD exists [3]). Truncate one
group to leave 58 + 1 points in it, to produce a {5,6}-GDD of type (52)°(506 +1).
Using 5-GDDs of type 12° and 129, give weight 5 to obtain a 5-GDD of type
(60n)°(608 + 12)!. Add three infinite points and fill the holes using 5-GDDs of
type 3%"+! and 3209+4+1 o get a 5-GDD of type 3100n+208+5 o

3.2.2 Existence Results: ¢ =10 (mod 20)

In this subsection, we examine classes when g = 10 (mod 20). Write g = 10a

throughout. First we introduce some general observations.

Lemma 34 A 5-GDD of type (10a)* ezists whenever @ > 5, a is odd, and u = 1
(mod 4).

Proof: In Lemma 5, 5-GDDs of type 10® are constructed for v € {9,13,17}; giving
weight a yields 5-GDDs of type (10a)* in these cases. A TD(5,10a) exists except
possibly when @ = 1, and hence the case when u = 5 is settled. Now write
v = (u — 1)/4, so that v > 5, and form a 5-GDD of type (40a)’. Add 10« infinite
points, and fill the groups using the 5-GDD of type (10a)® to get the 5-GDD of
type (10a). a

Lemma 35 A 5-GDD of type (10a)* ezists when a > 1, a # 3 is odd, u &
{7,15,23,27,35,39,47}, ezcept possibly when u € {5,33,63} and a = 1.

Proof: In Lemma 5, 5-GDDs of types 10%, 10'® and 10'7 are given; also given are
5-GDDs of types 2% for v € {21,25,45} to which weight 5 can be given to get
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5-GDDs of types 10* for the same values. Lemma 18 gives a 5-GDD of type 10'!.
Lemma 20 gives 5-GDDs of types 10??, 1037, and 10%3. There is a 5-GDD of type 2*
for z = 31 (Lemma 8), and for u = 51 (Lemma 9); give weight 5a to get 5-GDDs
for (10a)®. There is a 5-GDD of type 10? by Lemma 19 for q € {19,43,67,79}.

When there is a PBD with block sizes from {5,6,7,9} of order v, deleting a
point gives a {5,6,7,9}-GDD with group sizes 4, 5, 6, and 8. Giving weight 20a and
filling the groups with 10« infinite points yields a 5-GDD of type (10a)?”~!. Using
the result in [19], this establishes the existence of 5-GDDs of type (10a)* for u €
{41,49,51,59,61} and all u > 69 with the exception of u € {135, 185, 195, 197,207
,215, 247}

Forming an idempotent TD(6,m) and truncating a group to z < m points gives
a {5,6,m,z}-GDD of type 5™~%6*%; when z ¢ {2, 3,4}, weight 20a can be given
and groups filled to produce a 5-GDD of type (10a)!™+2=+!  Apply with (m,z) =
(12,7), (17,7), (17,12), (17,13), (19,8), (19,12), (23,8) to handle u = 135, 185, 195,
197, 207, 215, 247, respectively. Filling groups of 5-GDDs of type 80* using the 5-
GDD of type 10° and 10 infinite points gives 5-GDDs of types 10® for u € {57,65}.
Fill groups of a 5-GDD of type 110° using 5-GDDs of type 10! to handle u = 55.

When a > 1, fill a 5-GDD of type (90a)” (obtained later in Lemma 38) using
a 5-GDD of type (10a)® to handle v = 63. Lemma 34 handles « € {5,33} when
a>1. =]

It remains to treat cases when a =0 (mod 3).

A remarkably simple construction of 5-MGDDs follows:

Lemma 36 If a TD(6,5n +1)-TD(, n) ezists, then there ezists a 5-MGDD of
type 6int1,
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Proof- Delete all points in the hole. 0
Lemma 37 A 5-GDD of type 30% ezists whenever u =1 (mod 4), u # 9.

Proof: A TD(5,30) is a 5-GDD of type 30°; since 5-GDDs of type 120™ exist for all
n > 5, filling groups using a 5-GDD of type 30° and 30 infinite points settles all
cases when u > 21. For n € {3,4}, a TD(6,5n+1)—TD(6, n) exists [39], so Lemma
36 gives 5-MGDDs of types 6! and 6'7. Give weight 5 using 5-GDDs of type 5°
and 5' or 5!7 to get 5-GDDs of types 30'° and 30'7. ]

Again, it remains to treat the more difficult class:

Lemma 38 Let v > 1 be odd. A 5-GDD of type (30y)* ezists whenever v = 3
(mod 4), u & {3, 15}, ezcept possibly when v = 3 and u € {7,23,27, 35, 39,47,59,63,67}.

Proof: Give weight 57 to the 5-GDDs of types 6!! and 6°! from Lemma 17 to obtain
5-GDDs of types (30v)'* and (307)*'. Lemma 19 gives a 5-GDD of type 10? and
hence of type (30y)? for all ¥ > 3, and ¢q € {19,43}. Lemma 22 gives a 5-GDD of
type 307 and hence of type (304)? for all 4 # 3, and ¢ € {7,19,23}. Lemma 23
gives a 5-GDD of type 30%” and hence of type (307)*" for all v # 3. Filling groups
of 5-GDDs of type (300y)" for n > 5 using the 5-GDD of type (30-y)!! handles all

cases when # =1 (mod 10), u > 51.

In general, we form a GDD on v = (x — 1)/2 points with block sizes at least
five, and group sizes 5 or 15, and even sizes other than four. Then giving weight
60~ and filling holes using 30 infinite points yields the required GDD. When v can
be written in the form v =5n + h withn > 5, nodd,and 0 < h < n, h # 4 if
7 = 3, h even, we proceed as follows. Form a TD(6,r), and truncate one group to

h points. Use one of the deleted points to define groups, to obtain a {5,6,n}-GDD
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of type 5™h*, which can be given weight 60v. This general method treats all values
for u when u > 91 except for » € {99,119,139,159}. Employing an idempotent
TD(6,n), we can instead permit h to be any value other than 2, 3, or 4, and form
a {5,6,n,h}-GDD of type 5" *6". Use this construction taking 69 =5-12 +9 to
handle » = 139.

Filling groups of 5-GDDs of type (3307)" using the 5-GDD of type (30y)!
produces 5-GDDs of type (307)!'™ when n = 1 (mod 4). This treats the cases
when u € {55,99}. The remaining cases when v € {75,79,83,87,119,159} are
treated as follows. Write d = 3. Form a TD(7,d) or TD(7,d +1), and truncate
a group to 15 points; if group size d + 1 is chosen, then delete a block of size 6.
In either case, a {5,6,7}-GDD of type 6415' is obtained. Give weight 20y to get
a 5-GDD of type (120)¢(3007). Then add 30« infinite points and fill the groups
using 5-GDDs of type (30v)!! and (307)°.

Now start with a TD(10,9) and truncate five groups to 0, 6 or 9 points each;
give weight 20y when 4 # 3 to obtain a 5-GDD of type (180v)%(120y)® fora > 5
and a + b < 10. Filling using 30+ infinite points and 5-GDDs of type (30v)® and
(30+)7 handles u € {35, 39, 43,47,59}. Instead filling groups of a 5-GDD of type
(210)? or (1807)!! using a 5-GDD of type (30)? handles u € {63,67}. a

Lemma 38 is made more complicated by the fact that no 5-GDD of type 30°
is known; however, when 4 > 3 is odd, a 5-GDD of type (30v)? is known. This

permits us to treat some of the omissions when v = 3:

Lemma 39 A 5-GDD of type 90% ezists whenever u =3 (mod 4), u & {8, 7, 25,
27, 89, 47}.

Proof: We treat the required cases left by Lemma 38, first using the same main
technique as does its proof. Write 29 = 5-5+ 4 to handle u = 59. Baker [15] found
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a 7-GDD of type 3!5; since Vthete is a 5-GDD of type 307, give weight 30 to the
points of the 7-GDD, resulting in a 5-GDD of type 90'. For u = 35, fill the groups
of a 5-GDD of type 5407 using a 5-GDD of type 90°. For u = 63, fill the groups of
a 5-GDD of type 8107 using a 5-GDD of type 90°. For u = 67, fill the groups of a
5-GDD of type 900° using a 5-GDD of type 90!*. 0

Giving weight v to the 5-GDD of type 90! produces a 5-GDD of type (90v)'*
for all 4 # 3 odd.

3.2.3 Existence Results: g = 2,6,14,18 (mod 20)

The problem when g = 2,6, 14,18 (mod 20) falls naturally into two cases, an easier
one when v = 1,5 (mod 20) and a harder one when u = 11,15 (mod 20). We treat

the easier case first.

Lemma 40 Let g = 2,6,14,18 (mod 20) and v = 1,5 (mod 20). Then e 5-GDD
of type g* ezists ezcept when g € {2,6} and u = 5, and possibly when g* € {2%°,64}.

Proof: If g # 2,6, form a 5-GDD of type 1* and give weight g to each point. When
g = 2, we proceed as follows. In Lemmas 5, 6, 7, and 11, solutions are given for
u € {21,25,41,45,61,65,81}. Using the 5-GDD of type 2! to fill the groups of
a 5-GDD of type 40" yields a 5-GDD of type 22**+! for all n > 5. Next we treat
v =5 (mod 20). When possible, write ¥ = 4(5m + z) + 1 where m = 0,1 (mod 5),
m ¢ {5,6,10,15,26,30}, z = 0,1 (mod 5), 0 < z < m. Form an idempotent
TD(6,m) and truncate one group to z points; taking the parallel class of blocks
that results from idempotence as groups gives a {5,6,z,m}-GDD of type 5™~ 6.
Give weight 8, and fill in the groups using 5-GDDs of type 2?! and 22°. This handles
all v =5 (mod 20), u > 225 except for u = 285,305. Extending six parallel claszes



CHAPTER 3. GROUP DIVISIBLE DESIGNS 92

of a resolvable (65,5,1) design gives a {5,6}-GDD of type 5'%6"; similar inflation and
filling handles u = 285. There is a (45,5,1) BIBD having two parallel classes which
share precisely one block (See appendix AA??). Extend one of the parallel classes
and use the other to define groups; this gives a {5,6}-GDD of type 5°6', which can
be inflated to settle u = 185. For u = 20n + 1, n € {1, 2,3}, form a 5-GDD of type
(40n + 2)° and fill its groups with the 5-GDD of type 22***! to get 5-GDDs for
u € {105,205, 305}. Filling groups of a 5-GDD of type 50° with a 5-GDD of type
2% handles v = 125. Fill the groups of a 5-GDD of type 48° using the 5-GDD of
type 2%° to get a 5-GDD of type 2!4°. Finally, there is a 5-GDD of type 8716 [17]
and a 5-HTD of type 8°%; apply Construction 1 with k=5, h=s=w=r =38 to
get a 5-GDD of type 40748!, and fill its holes using 5-GDDs of types 2! and 2% to
get a 5-GDD of type 265,

When g = 6, we proceed as follows. Apply Lemma 36 with n = 5,6, 10,15,
obtaining the first two incomplete TDs from [38] and [96], and the latter two from
V'(4,t) vectors [39]. In each case a 5-MGDD of type 64"+! results; filling the blocks
of size 4n + 1 with a 5-GDD of type 1***! gives a 5-GDD of type 64!, settling
the cases when u =21, 25, 41, and 61. In a similar way, we apply Lemma 36 with
3 < n < 9 where, in addition to those above, one finds solutions for n = 3,4,7,
and 9 in [39] and for n = 8 in [4]. Form a 5-HTD of type (4n + 1)® (see [18]), and
fill its groups using the 5-MGDD of type 6***! (aligning the blocks of size 4n + 1
on the holes of the HTD) to produce a 5-MGDD of type 62°"*+%. Fill the blocks of
size 20n + 5 using 5-GDDs of type 12*"*5 to obtain 5-GDDs of type 62°°*5, hence
settling » € {65, 85, 105, 125, 145, 165, 185}. Now using a 5-GDD of type 6?! to
fill holes in a 5-GDD of type 120" for n > 5 yields 5-GDDs of type 62°*+! for all
n > 5. When u > 205 and » =5 (mod 20), the proof parallels the case when g = 2
closely.
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Filling groups of a 5-GDD of type 60® using six infinite points and a 5-GDD of
type 6! (Lemma 17) handles » = 81. a

We recall a known result:

Theorem 44 [5] A resolvable (v,5,1) exists for allv =5 (mod 20) ezcept possibly
when v € {45, 105, 145, 185, 225, 345, 465, 585, 645, 665, 705, 185, 885, 925,
945, 1045, 1065, 1145, 1165, 1185, 1305, 1985, 1485, 1545, 1665, 1905, 2265,
9985, 2505, 2745, 2865, 2985, 3105, 3225, 9945, 9585, 3785, 3945, 4065, {185,
4425, 4665, 4905}. |

Lemma 41 Ifu = 11,15 (mod 20) and g = 6y for v # 0 (mod 5), v # 3 odd,
then a 5-GDD of type g* erists ezcept possibly when u = 15, and in addition when
u € {35, 75, 95, 115, 185} and v = 1.

Proof: Lemma 17 gives 5-GDDs of types 6! and 6%, to which weight v can be
given, settling v € {11,31}. Then filling the groups of a 5-GDD of type (60y)"
with 5-GDDs of type (67)!! yields 5-GDDs of type (67)'°"*! for all n > 5. Hence
all cases with u = 11 (mod 20) are treated.

Forming a 5-GDD of type ((20n + 11) -67)® for = > 0, and using the 5-GDDs
of type (67)?°"+!! to fill its holes yields 5-GDDs of type (67)'%"+5° for all n > 0.
It remains to treat » = 15,35,75,95 (mod 100). Most cases are settled as follows.
Form a GDD on (u—1)/2 points with block sizes congruent to 0 or 1 modulo 5, and
group sizes chosen from 5, 27 and integers congruent to 2 modulo 10 other than 2
and 22. Giving each point weight 127, one obtains a 5-GDD whose groups can be
filled using 6 infinite points and 5-GDDs of types (67)! and (67)****® for n = 2
and n > 4 to get a 5-GDD of type 6*. When possible, write (u —1)/2 =5m + z
with m =1 (mod 10),2 < z<m -9,z =2 (mod 10) and z ¢ {2,22}. Form a
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TD(6,m), and delete m — z points from one group; use one deleted point to define
groups of type 5™z! in a {5,6,m}-GDD. It is easily checked that suitable choices
exist whenever u > 635, and for the following values of u: 235, 335, 435, 475, 535,
575, 595. Instead truncating a group of a TD(6,15) to 12 points gives a {5,6,15}-
GDD of type 5'°12!, settling u = 175. Apply Construction 5 with d = 19 to obtain
a 5-GDD of type 60'°144*; fill its holes using 5-GDDs of type 6!! and 62° to handle
u = 215. Truncating a group of a TD(6,35) to 11 or 31 points, then appending an
infinite points to its groups, and finally using one of the deleted points to define
groups gives {5,6,36}-GDDs of types 5%°12! and 5%32!, settling « € {375,415}.
For u = 295, truncate a group of TD(6,81) to 36 points and give weight 4 to get a
5-GDD of type 324°144!; fill using 6 infinite points and 5-GDDs of types 6°° and
625, ’

A number of the remaining cases can be settled by extending z parallel classes
of a resolvable (20n+5, 5, 1) design from Theorem 44, to form a {5,6}-GDD of type
54°+1z! when z = 2 (mod 10), 2 < z < 52 — 3 and z ¢ {2,22}. Then inflation
and filling is as before. We simply give pairs (u,n) where v = 2(20n +5 +z) +1
satisfies the requirements of this construction: (195,4), (275,6), (395,8), (495,10),
(515,12), (615,13). This completes all of the cases when vy = 1.

When 4 > 1, the construction is made more flexible by permitting z = 2,22
(since 5-GDDs of types (6v)° and (6v)*° exist when 7 > 1 is odd. The resolvable
BIBD construction settles in addition (135,3). Truncating a group of a TD(6,11)
to 2 points gives a {5,6,11}-GDD of type 5!'2!, settling « = 115. Now, filling
groups of a 5-GDD of type (307)" or (307)!? using a 5-GDD of type (6+)® handles
u € {35,95}. Finally, form a 5-HTD of type 4”7 (for example, by giving weight
4 to a 5-HTD of type 17). There also exists a 5-GDD of type 478!, so applying
Construction 1 with h = 4, s = '0, w =8, k=5 r = 8 and the specified
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ingredients gives a 5-GDD of type 2078%; give it weight 3y to obtain a 5-GDD
of type (60)7(247)!, and fill using 67 infinite points and 5-GDDs of types (6v)!
and (67)° to settle w = 75. O

Next we treat cases when g is not a multiple of 3. We start with the case when
g=2.

Lemma 42 Ifu =11,15 (mod 20), a 5-GDD of type 2* ezists ezcept when u = 11
and possibly when u € {15, 85, 71, 15, 95, 111, 115, 1385, 195, 215, 335}.

Proof: A putative 5-GDD of type 2!! would have 22 blocks, and thus would form
a symmetric GDD; however, the necessary condition in Theorem 5.1 of [75] fails.
By Lemma 8, a 5-GDD of type 2% exists. By Lemma 10, a 5-GDD of type 2°°
exists. First we complete a closure using this GDD, and then treat “small” cases.
For d > 17 an odd prime power, use Constructién 5 to produce a 5-GDD of type
(60)2h*, where h = 0,8 (mod 40), h ¢ {128,168}, and 40 < h < 12d — 12. Fil
its groups using 2 infinite points to get a 5-GDD of type 23°4+1+2. Some quite
tedious calculations show that choosing d to be an odd prime power at most 67,
this succeeds for all u in the range 535 < u < 2395 except for the values: 575, 635,
655, 755, 1115, 1175, 1195. To obtain closure, let 67 < d < 6571 be an odd prime
power, and let d be the next odd prime power. One can verify that 5(2 —-d) <d-33
in this range, and hence one can always choose an odd prime power ¢ for which
30g + 161 < u < 369 — 35 when 2171 < u < 236435. Forming a 5-GDD of type
60%(2(u — 1 — 30q))! using Construction 5 then settles these cases. To complete the
closure, observe that it suffices to have 14 MOLS of order d to apply Construction 5
(i-e., d need not be a prime power). Since 14 MOLS exist when d > 7875 [3], when
u > 236435, write d = 3% where z € {21,25,41,45,61,125}; then an RTD(15,d)
exists (since d > 7877), and Construction 5 completes the closure.
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Now we turn to smaller cases. Lemma 9 settles « € {51,91}. Lemmas 12, 13,
and 14 settle u € {131,191,211}. Forming a 5-GDD of type 60" for » > 5 odd, and
filling using the 5-GDD of type 2°* handles » € {151,271, 331,391,451,511}. Using
Lemma 32 to form a 5-GDD of type 60748!, and filling its groups using two infinite
points and 5-GDDs of type 22° and 23 handles u = 235. When d > 11 is a prime
power, Construction 5 can be applied to form a 5-GDD of type 40960" and hence a
5-GDD of type 22943041 apnlications handle u € {251, 201, 351,371, 411,491, 531}
Construction 5 can be also applied to form a 5-GDD of type 40¢108' and hence a 5-
GDD of type 2204+54+1. applications handle u € {315, 375, 395,435, 515}. Forming
a {5,6}-PBD on v+ 1 points, with v = “Z%, and deleting a point to form a GDD on
v points with block sizes {5,6} and group sizes {4,5}, inflating by weight 12, and
filling groups using 2°* and 2%, handles » € {175, 355,415,655,1195}. Similarly,
extend 15 parallel classes of a resolvable (65,5,1) design to form a 6-GDD of type
51315?; delete a point not in the long group to form a {5,6,15}-GDD of type 5!54!;
give weight 12 as above and fill to obtain a 5-GDD of type 24™. Truncating a group
of a TD(6,15) to 10 points gives a {5,6}-GDD of type 15°10%, to which weight 4
can be given; then filling groups settles v = 171. In a similar way, truncate a group
of TD(6,20) to 15 points to settle v = 231. Truncating a group of a TD(6,25) to
12 or 22 points handles u € {275,295}. Truncating a group of a TD(6,45) to 10 or
22 points handles u € {471,495}. Truncating a group of a TD(6,52) to 27 points
handles u = 575.

Filling groups of a 5-GDD of type 62° using the 5-GDD of type 23! handles u =
155; similarly, u € {255,455, 755} are handled from « € {51,91,151}. Construction
5 can be used to make 5-GDDs of types 401°100* and 4047348! to obtain u = 311,
and 1115. Construction $ can also be used to make a 5-GDD of type 80*348! to
handle 1175.
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There is a 5-GDD of type 28%42! obtained by filling four groups of a 5-GDD of
type 40° using two infinite points and a 5-GDD of type 23'. Form a {5,6}-GDD of
type 8°1! and give weight 20 to get a 5-GDD of type 160°20"; add 42 infinite points
and fill its groups using the 5-GDD of type 28°42! to get a 5-GDD of type 24%°62!;
then fill the group of size 62 using a 5-GDD of type 2°! to settle u = 431. ]

Lemma 43 A 5-GDD of type (2a)* witha > 5, a 0dd, a #0 (mod 3) ora =9,
a # 0 (mod 5) ezists whenever v = 11,15 (mod 20) ezcept for u € {11, 15, 35,
71, 75, 111, 115, 195, 195}.

Proof: Under the stated conditions on a, a 5-GDD of type 2* can be inflated to form
a 5-GDD of type (2a)*. Thus one needs only consider the exceptions in Lemma 42.
Filling a 5-GDD of type (10a)? using a 5-GDD of type (2a)® for q € {19,43,67}
handles v € {95,215, 335}. o

Lemma 44 A 5-GDD of type 18" ezists whenever v = 11,15 (mod 20) end
v & {11,15,35, 71,111, 115, 135, 195}.

Proof: Starting with the list from Lemma 43, treat the case when u = 75 by forming
a 5-GDD of type 90*/%, and filling its groups using 5-GDDs of type 18°. =

3.3 More Constructions

In this section, we prove that there exists a 5-GDD of type g* for all but a finite
number of pairs of (g,u). We use the notation [a, b).(q) to denote the set of integer
v such that ¢ < v < b and v = ¢ (mod d). We have the following construction for
group divisible designs.
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Construction 6 If there erists ¢ M-GDD of type g1g2 . . - gn, s0 that for each k €
M, there is a K-MGDD of type u*, then there ezists a K-IGDD of type (g, + g2 +
oo+ Gnig1,92;- - - > n)"-

Proof: Let V be the set of points of the M-GDD of type ¢19;...9,- We con-
struct the K-IGDD of type (g1 + g2 + --- + 9n; 91,92,--- ,9n)* With point set
V x {1,2,... ,u}. For every block B = {z;,%3,... ,Zm} of size m in the GDD,
we put the MGDD of type v™ on the set of mu points corresponding to the
{z1,Z2,..- ,Zm} X {1,2,... ,u} so that the two parallel classes of blocks align on

{z1,%2,..- ,2m} x {i} fori=1,2,... ,u and z; x {1,2,... ,u}. a

We need one more construction for group divisible designs.

Construction 7 Let (X,G,B) be a TD(k+lt) where
g={G17G2,"' 7G’=’H11323--- ;m}'

For1 <i<l,let H;=H;y UHpU...UH;, be a partition of H;. Let nonnegative
numbers m, m;; be given such that for any block A € A intersecting Hji;) (1 <1 < 1)
there ezists ¢ K-IGDD of type (m + Ei:x Mij(5); M1j1), Maj(2)s - - - » i) * Then a
K-IGDD of type

1 p f 4 P2 03
(mt + Z 2 mijhij; Z my;hyj, z majhsj, ..., z my;hy;)*

=1 j=1 i=1 =t J=1

ezists.

Proof (Sketch): The proof is a modification of Brouwer-Van Rees theorem for
transversal designs [31], replacing each sub-TD by a sub-GDD. 0



CHAPTER 3. GROUP DIVISIBLE DESIGNS 99

Construction 8 Suppose we have a K-GDD of type gi1g2.--gi and there is a
TD(5, 91 +g2+---,91-1 +a) ~TD(5,a) where 0 < a < gi- Then there ezists
a {5} U K-GDD of type 4393 - - - i, (91 + 4a)*.

" Proof: This is just a simple variant of Singular Indirect Product (See [97]). O

Construction 9 [14] The set of {r: there ezists ¢ k-MGDD of type g*} is PBD-
closed.

First of all, we establish that there exists a sequence of integers a; such that a;
is odd, there exists a TD(32, a;), and 151a; > 120a;4; + 30. Such a sequence can
always be chosen with @; = 31 when each a; < 10000 ([3]). Choose a, = 31(317),
@1 = 31(389), Gnyz = 31(479), Gnss = 31(593), Gnss = 31(739), anys = 31(919),
anss = 31(1129), anir = 31(1409), anys = 31(1753). Note that a,is = 54343 and
it is known [3] that if £ > 54343, then there exists a TD(32,k).

Lemma 84 Ifg > 3750 and g =2 (mod 4) then there ezists a {5,31}-GDD with
block sizes a multiple of four or a multiple of 30 but not equal to 90.

Proof: Take a TD(32,,m) where m is odd and give weight 4 to each point in
first 30 groups. Give weights 0 or 4 to each point in the 31* group and weights
0 or 30 to each point in the last group. All 5-GDDs of type 4%, 4% and {5,31}-
GDD of type 4°°30* and 4°'30! exists. The last two designs are obtained from a
TD(5,30): add a point to each group, and remove another point in the design to
obtain 4%30!; for 43!30!, remove a point from TD(5,31). This gives a {5,31}-GDD
of type (4m)*(4z)!(30y)!. Since m > 31, if g € [120m + 30, 154m]yy), then there
exists a {5,31}-GDD of type g192...gx where g; = 0 (mod 4) or g; =0 (mod 30)
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and g; # 90. By the above remark, whenever g > 3750 and g = 2 (mod 4), there
exists a {5,31}-GDD with block sizes a multiple of four or a multiple of 30 but not
equal to 90. a

Next we show that if g = 10 (mod 20), we can obtain a similar result.

Lemma 85 If g = 10 (mod 30) and g > 3250 and if g = 50 (mod 60) and g >
4490, then there ezists a {5,31}-GDD with group sizes 20z or 30k where k # 3.

Proof: By Lemma 84, there exists a {5,31}-GDD on v points with group sizes 4m
and 30k where m > 1 and k # 3. Give it weight five, we obtain a {5,31}-GDD
on 5v points with block sizes 20m and 150k. This proves the claim for g > 18600.
To deal with remaining cases, we start with a TD(21,31) and remove a point to
obtain a {5,31}-GDD of type 20°30'. Now take a TD(32,31) and truncate 27
groups to gy, 92,--- ,g27 so that g; € {0,6,9,15,18,24,27,30} to obtain a GDD
of type 31°g1g; .. . g7 with block sizes at least five. Inflate the GDD by giving
weight 20 and add 30 infinite points; replace each group by either a {5,31}-GDD
of type 20%'30! or 5-GDD of type 30" for r = 5,7,11,13,17,19 to show that if
g = 31(20)5 + 30 + 20(3k) and g = 10 (mod 20) where 2 < k < 270 then there
exists a {5,31}-GDD on g points with group sizes 20z and 30. This proves that
if ¢ = 10 (mod 60) and g € [3250,19330];0060), then there exists a {5,31}-GDD
with group sizes 20z and 30k. To deal with the case when g = 50 (meod 60), we
essentially use the same technique except we retain seven groups of size 31 and
truncate the remaining 25 groups. This proves that if g € [4490,19370]50(e0), then
there exists a {5,31}-GDD on g points with group sizes 20z and 30k. a

If there exists a 5-GDD of type g7, then g = 0 (mod 10). Also, there exists a
5-GDD of type (20g)7 for all g > 1 and a 5-GDD of type 307 by Theorem 36.

Before we proceed, we need a modified group divisible design.
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Lemma 86 There ezists a 5-MGDD of type 317.

Proof: Let V = Z3;17 and the two parallel classes are the development of {31: :
t € {0,1,...,6}} and {73 : ¢ € {0,1,...,30}}. The blocks are {0,1,3,11,48},
{0, 4,23,59,11} , {0,6,72,88,101} and multiply each by 191° where 191 is a cube
root of unity over Zj;7 to obtain six further blocks. These nine blocks together with
their translates generate the MGDD. ]

Lemma 87 If g = 10 (mod 30) and g > 3250 and if g = 50 (mod 60) and g >
4490, then there ezists a 5-GDD of type g.

Proof: From Lemma 85, if g = 10 (mod 30) and g > 3250 and if g = 50 (mod 60)
and g > 4490, then there exists a {5,31}-GDD with group sizes 20z or 30y where
y # 3. Use this GDD together with Construction 6 to obtain a 5-GDD of type g7.
Lemma 86 constructs a 5-MGDD of type 317 and both 5-GDD of type 20z7 and
30y” (y # 3) exist by Theorem 36. |

Now we deal with the existence of 5-GDD of type g''. Theorem 36 establishes
that the necessary condition is g = 0 (mod 2). Also, the necessary condition is also
sufficient for g =0 (mod 4) and g =0 (mod 6) where g # 18. First of all, we have
a new direct construction.

Lemma 88 There ezists a 5-GDD of type 22'*.

Proof: LetV = Z,3,x{0,1}. The groups are {(11¢,0),(11,1) : ¢ € {0,1,2,... ,10}}
and its translates. The blocks are

{(1’ O)’ (37 0)1 (9$ 0)7 (27, 0), (81’ 0)}1 {(167 1)1 (481 1), (231 1)7 (69’ 1)1 (86’ 1)}!
{(0,0),(1,0), (5,0, (21,0), (2, 1)}, {(0,0), (10,0), (4,1), (5, 1), (53, 1)},
{(0,0), (19,0), (75, 1), (87, 1), (105, 1)}, {(0,0), (17,0), (30, 1), (49,1), (91, 1)}-
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Multiply the last four blocks by 3* in the first coordinates where 3 is a fifth root of

unity over Z;3; to obtain 16 more blocks. ]
Lemma 89 There is a 5-MGDD of type 11°.

Proof: Let V = Zgg; the two parallel classes of groups are {11i : ¢ = 0,1,... ,8}
and {9¢:i=0,1,...,10}. The blocks are {0,1,3,8,43}, {0,4,24, 34,53},
{0,6,21,68,82}, {0,12,25,51,83} and their translates. o

Lemma 90 There is a 5-MGDD of type 117 for ¢ = 11,13,17,19, 23, 31,43,67, 79,
103,127, 139.

Proof: Let V = Z;, x Z, and the two parallel classes of blocks are {117 : ¢ =
0,1,...,9~1}and {gi: ¢ =0,1,...,10}. For each g, we have a base block B and
multiply by a multiplier of order (¢ — 1)/2 to obtain (g — 1)/2 ~ 1 further blocks.
q B maultiplier
11 {(1,0),(3,1),(4,2),(5,8),(9,6)} (1,4)
13 {(1,0),(3,1),(4.2),(57),(%93)} (L4
17 {(1,0),(3,1),(4,2),(5,7),(9,9)} 1,9)
1 {(1,0),(3,1),(4,2),(5,4), (9, 14)} (1,6)
23 {(1,90),(3,1),(4,2),(5,12),(9,3)} (1,2)
29 {(1,0),(3,1),(4,2),(5,4),(9,22)} (1,4)
31 {(1,0),(3,1),(4,2),(5,13),(9,10)} 1,7
43 {(1,0),(3,1),(4,2),(5,4),(9,12)} (1,9)
67 {(1,0),(3,1),(4,2),(5,4),(9,11)} (1,56)
79 {(@1,0),(3,1),(4,2),(5,8),(9,11)}  (1,40)
103 {(1,0),(3,1),(4,2),(5,7),(9,13)} (1,63)
127 {(1,0),(3,1),(4,2),(5,7),(9,8)} (1,98)
139 {(1,0),(3,1),(4,2),(5,4),(9,19)} (1,35)

[7=]
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Lemma 91 Ifg > 3750 and g = 2 (mod 4) then there ezists a 5-GDD of type g**.

Proof: By Lemma 84, there exists a {5,31}—GDD on g points with group sizes 4z
and 30y where y # 3. Apply Construction 6 to the GDD to obtain the result. A
5-MGDD of type 31! is constructed in Lemnma 90 and 5-GDD of type (4z)!! and
(30y)*! (y # 3) are constructed in Theorem 36. a

Lemma 92 If g = 10 (mod 12) and g € [2314,2746), then there ezists ¢ 5-GDD
of type g't.

Proof: Take a TD(5,22(5)) and a TD(5,22(4)(5)+a)-TD(5,a) where 0 < a < 22(5).
Apply Construction 8 to obtain a 5-GDD of type (22(5))°(22(5) + 4a). If we set
a =1 (mod 3), we have 22(5) + 4a = 0 (mod 6). By inflating from a 5-GDD of
type 6! and 22!!, we know that both 5-GDD of type (22(5) + 4a)'* and (22(5))**
exist. Apply Construction 6 to obtain a 5-GDD of type (2310 + 4a)*!. a

Lemma 93 If g € [470,542](15), then there ezists a 5-GDD of type g'*.

Proof: Take a TD(5,88+a)-TD(5,a) where 0 < a < 22 and apply Singular Indirect
Product with 22 — ¢ infinite points to obtain a 5-GDD of type 222°(22+4a). Choose
a so that 22 4 4a is a multiple of 6. Apply Construction 6 to obtain the result. O

Lemma 94 There is a 5-GDD of type 206'*.

Proof: Remove a point from a TD(9,23) to obtain a {9,23}-GDD of type 82322!.
a

Lemma 95 If g € [1874,2306]3(12), then there is a 5-GDD of type g'1.
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Proof: Take a TD(5,88) with 22 infinite points to obtain a 5-GDD of type 22!5110%.
Apply Singular Indirect Product to obtain a 5-GDD of type 228°(110+44)*. Choose
e =1 (mod 3) and apply Construction 6. a

Lemma 96 If g € [2750,2882]5(;2) U[2990,3062]3(12), then there is a 5-GDD of type

gl
Proof: Take a TD(5,4(12t + 8) + a)-TD(5,a) with 12t 4+ 8 — a infinite points to
obtain a 5-GDD of type (12t + 8)2°(12t + 8 + 4a)'. Choose a so that 12t +8 +4a €
[470,542],(,2) when ¢t = 8,9. o

Lemma 97 If g € [3242,3842]5(;5), then there is a 5-GDD of type g**.

Proof: Inflating a 5-GDD of type 22!! yields a 5-GDD of type (22(7))'!. Take a
TD(5,88(7)+a)-TD(5,a) where 0 < a < 22(7) and apply singular indirect product
to obtain a 5-GDD of type 22(7)°(22(7) + 4a)!. Choose a so that 22(7) +4a is a
multiple of six. Apply Construction 6 to obtain a 5-GDD of type (22(7)(21) +4a)*!.
o

Lemma 98 There ezists a 5-MGDD of type 11'+1° for 0 <t < 11.

Proof: From Lemma 90, we only need to deal with the cases when ¢t = 3,7,9.
In [14]. The set of r such that there exists a 5-MGDD of type g" is PBD-closed
(Construction 9). When ¢ = 3, take a TD(5,11) to obtain 55 € B({5,11}). When
t =7, take a TD(5,18) and add a point at infinity to obtain 91 € B({5,19}). When
t = 9, take a TD(5,23) to obtain 115 € B({5,23}). a

Lemma 99 There ezists a 5-GDD of type (114,4).
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Proof: Take a TD(5,23) and remove a point to obtain a {5,23}-GDD of type
4%3(22)*. Apply Construction 6 to obtain the result. We have both 5-GDD of type
4! and 22! and 5-MGDD of type 1123. 0

In the next lemma, we obtain a bound on the existence of 5-GDD of type g'!.

Let A = [1210, 1254]2(4) U [1430, 148212(4) U [1870, 1938]3(4) U [2090, 2166]2(4) U
(2530, 2622]3(4) U [2750, 2850]5(4) U [2970, 3078]2(4) U [3190, 3306]2(4) U [3410, 3534]2(4).

Lemma 100 If g € A, then there erists a 5-GDD of type g'*.

Proof: Let t be an odd integer such that TD(12,t) exists. Give weight 0 or 4 to
each point in one group and apply Construction 7 with m = 110. We have a 5-GDD
of type 110! by simply inflating a 5-GDD of type 22!! by weight five. Also, we have
constructed a 5-IGDD of type (114, 4)!!. We obtain a 5-GDD of type (110m +4y)*!
where 0 < y < m. We display the values in the following table.

m| Interval

11([1210, 1254]y4)
13|[1430, 1482],)
17/[1870,1938],4)
19|[2090, 2166]34)
23|[2530, 2622](q)
25[2750, 2850](4)
27(2970, 3078]5¢4)
29| {3190, 3306]4(q)
31|[3410, 3534](4
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We only use a simple construction to obtain an asymptotic bound on the exis-
tence of 5-GDD of type g'°.

Lemma 101 There is a 5-MGDD of type 31'°.

Proof: Let V = Zs and the two groups are {31t : i = 0,1,... ,14} and
{15i : i = 0,1,...,30}. The base blocks are {0,1,17,5,51}, {0,61,32,6,53},
{0, 76, 347, 141, 204}, {0,2, 409, 110, 233}, {0, 77, 363, 36, 158}, {0, 107, 321, 187, 25},
{0, 18,290, 218, 101}; multiply each by 346 and 346 to obtain 14 more blocks. O

Lemma 102 There is a 5-GDD of type g'* for all g > 6090 and g =2 (mod 4).

Proof: As in Lemma 84, there exists a {5,31}-GDD of type 4%, 43!, 4%°30! and
431301. Take a TD(31,m) where m is odd. Give weight 4 to each point in first 30
groups, give weight 0 or 4 to each point in the 31* groups and give weight 0 or
30 to each point in the last group. Apply Wilson’s Fundamental Construction to
obtain a {5,31}-GDD of type (4m)*°(4z)'(30y)! where 0 < z,y < m. If we insist
on y =3 (mod 6) and y # 9, then 30y = 0 (mod 90) and 30y # 270. Hence, we
can apply Construction 6 to obtain a 5-GDD of type (120m +4z + 30y)'°. A simple
calculation yields that that 'if g 2 6090 and g = 2 (mod 4), then there exists a
5-GDD of type g'5. m]

Many values less than 6090 can also be constructed.
Lemma 103 There is ¢ 5-MGDD of type 313.

Proof: Let V = Zg; X Zy3. Let the two parallel classes are {(0,7) : ¢ =0,1,...,22}
and {(¢,0) : ¢ = 0,1,... ,30}. The base blocks are {(0,0), (1,1), (3,2),(7,3),(15,4)},
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{(0,0),(3,5),(9,1),(14,7),(21,6)} and {(0,0), (4,5), (5, 10),(13,1), (15,22)}. Mul-
tiply the three blocks by (1,25)* for i = 1,2,...,10 to obtain 30 further blocks.
(]

Lemma 104 There is a 5-MGDD of type 31%".

Proof: Let V = Za; x Fy7 where a be a primitive element of F,; satisfying
o® = a? + 2a + 2. For blocks, start with {(0,a°),(1,a'),(3,a?),(7,a%), (15,a%)},
{(0,2°),(3,"),(9,0),(14,2%), (21, ')}, {(0, a°), (4, 2%), (5, &), (13, %), (15, 0®) }
and multiply each in the second component by a? of order 13 to obtain 13 blocks.
These base blocks obtained are developed over Z3; x Fy7 to produce the GDD. O

Lemma 105 If g = 10 (mod 60) and g > 3250 and if ¢ = 50 (mod 60) and
g > 4490, then there ezists a 5-GDD of type g*® and g*".

Proof: In Lemma 85, we prove that if g = 10 (mod 30) and g > 3250 and if g = 50
(mod 60) and g > 4490, then there exists a {5,31}-GDD on g points with block
sizes 20z and/or 30. Use this GDD and apply Construction 6. Both 5-MGDDs of
type 312 and 31%7 exist by Lemmas 103, 104. ]

Now, we show that if g is large enough, the basic necessary condition of the
existence of 5-GDD is also sufficient. First we deal with the case when ¢ = 10
(mod 20).

Lemma 106 If ¢ = 10 (mod 60) and g > 3250 and if ¢ = 50 (mod 60) and
g > 4490, then there ezists a 5-GDD of type g™ for all v ezcept possibly for r = 15.

Proof: Both 5-GDD of type ¢°* and g7 exists from [3] and Lemma 87. When the
number of groups is not in the set {7, 11, 15, 23, 27, 35, 39, 47, 55, 59, 63, 71, 75, 83, 87},
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the result has been established in Theorem 36. The case when the number of groups
is 7,11,23,27 has been established in Lemma 87 and 105. Take a TD(9,6k+3)
(which exists for all 6k+3 > 335 [3]) and truncate four groups to {0, 4(2k+1), 6(2k+
1)} points and give weight 20 to obtain a 5-GDD with group sizes 120k+60, 80k+40.
Add 20k + 10 infinite points and fill in each group by a 5-GDD of type (20k + 10)°
or (20k + 10)7 to obtain a 5-GDD of type (20k + 10)" for r = 35,39, 43,47,59.
When the number of the groups is 63 or 67, we fill in the groups of a 5-GDD of
type (7g)° and 6g'!. Take a TD(9,10k+5) (which exists for all 10k + 5 > 335 [3])
and truncate four groups to {0,4(2k +1),6(2k +1),8(2k +1),10(2k + 1)} and give
weight 20 to each point and fill in the groups with 20k + 10 infinite points. This

solves the remaining cases. m]

Next, we deal with the case when g # 10 (mod 20).

Lemma 107 If g =2 (mod 12) and g > 650 or if g = 10 (mod 12) and g > 898,
then there exzists a 5-GDD of type g°°, g*'%, g'%%, g'*.

Proof: Break up the groups of a 5-GDD of type (5g)" where r = 7,23,27,39,87;
such GDDs exist by Lemma 106. 0

Lemma 108 If g > 3750 and g = 2 (mod 4), then there ezists a 5-GDD of type
1

gtandg
Proof: We take a 5-GDD of type 10g” and a 5-GDD of type 10g** with g infinite
points and fill each group by a 5-GDD of type g!! to obtain a 5-GDD of type g™

and g%, a

Finally, we note the following. Let K = {5,9,11,13,17,29, 31}.
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Lemma 109 If there ezists ¢ PBD(v,K), then there ezists ¢ 5-GDD of type (v —
1)1,

Proof: Take a PBD(v, K') and remove one point. Apply Construction 6 to obtain
the result. All required GDDs and MGDDs exist by Lemma 90 and Theorem 36.

3.4 Optimal Packings with Block Size Five

In this section, we study optimal packings with block size five on v points with
v=2 (mod 4) and A =1.

The fanction D(v,k,1) is of importance in coding theory since the block inci-
dence vectors of a (v, k, 1) packing from the codewords of a binary code of length
v with minimum distance 2(k — 1) and constant weight k. Thus D(v,k,1) is the

maximum number of codewords in such a code.

Schonheim [105] has shown that

D(w, k¥ < (312D

JJ = B(‘D., k, z\)

Other upper bounds on the function D(v,k, 1) have been given by Johnson [71]
and Best et al. [23]. Lower bounds on the function D(v,k,)) are generally given
by construction of (v, k, A) packings.

The values of D(v,3,]) for all v and A have been determined by Schonheim
[105], and Hanani [63]. The values of D(v,4,1) have been determined for all v by
Brouwer [28].
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3.4.1 v=2,6,10 (mod 20)

In this subsection, we consider the case when v = 2,6,10 (mod 20).

Lemma 110 If there ezists a 5-GDD of type 2, then D(2n,5,1) = B(2n,5,1).

Proof: Simple counting yields the number of blocks in a 5-GDD of type 2" meets
the Schonheim bound. ' o

As a corollary, we obtain the following result.

Corollary 14 Ifv = 2,10 (mod 20), v # 10, 22,30, 70, 142, 150, 170, 190, 222, 230,
270, 390, 430, 670, then D(v,5,1) = B(v,5,1).

In the remaining of the section, we focus on the case when v =6 (mod 20).
Lemma 111 If there ezists a 5-GDD of type 26!, then n = 0 (mod 10).
Proof: The result follows immediately by counting the pairs and the neighbours

of a point. a

We need some direct constructions.
Lemma 112 There ezists a 5-GDD of type 2*°6*.

Proof; Let V = Z4x{0,1}. The groups are {(z,5), (20+4,7)} fori =0,1,2,... ,19
and 7 = 0,1. The blocks are

{(0,0),(2,0),(3,0), (2, 1), (7, )}, {(0,1),(2,1), (3,1), (6,0), (27,0)},
{(0,0), (4,0), (12,0), (30,0), (23, 1)}, {(0, 0),(16,0), (23,0), (29,0), (14,1)},
{(0,1), (4,1),(10,1), (28,1), (18,0)}, {(0,1),(8,1),(15,1), (29, 1),(20,0)},
{(0’ 0)1 (5’ 0)’ (6’ 1)’ (29! 1)}’ {(01 0)7 (91 0)’ (30’ 1)! (17! 1)}:

{(0,0), (15,0), (18,1), (27,1)}. '
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The last three blocks of size four generate six parallel classes on V. Add an infinite

point to each parallel class and a group of infinite points gives a 5-GDD of type
24061, .

Lemma 113 [1] There ezists a 5-GDD of type 25°61.

Proof: Let V = Zg x {0,1}; and the groups are {(i,%),(i + 30,5)} for i =
0,1,...,29 and j = 0,1. The blocks are

{(0,0),(0,1),(0,20),(0,27), (1,13)}, {(0,0),(0,8),(0,39), (0,43), (1,23)},
{(0,0), (0,13), (0, 22), (0,50), (1,29)}, {(0,0),(0,12),(0,18),(1,1),(1,36)},
{(0,0), (0,44),(0,55), (1,5),(1,17)}, {(0,0),(0,3),(1,3),(1,9), (1,45)},
{(0,0), (0,24),(1,2),(1,55),(1,59)}, {(0,0),(1,25),(1,27),(1,41),(1,58)},
{(0,0),(1,37),(1,48),(1,56), (1,57)}, {(0,0),(1,4),(1,14),(1,19),(1,51)},
{(0,0), (0,15),(1,26), (1,47)}, {(0,0),(0,2), (1,30), (1,52)},
{(0,0),(0,14), (1,8),(1,34)}.

Each of the last three blocks generates two parallel classes on V. Add an infinite
point to each parallel class and a group of infinite points to get a 5-GDD of type
26061 w]

Lemma 114 If there ezists a 5-GDD of type 2™, then there ezists a 5-GDD of type
25(n-1)61 .

Proof: This is a variant of singular indirect product with one infinite point. O

Corollary 15 There ezists a 5-GDD of type 2!°6! for n = 4,6,10,12,15.
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Proof: The case when n = 4,6 are constructed in Lemmas 112 and 113. When
n = 10,12,15, they are constructed using Lemma 114 by tiking a 5-GDD of type
2" for n =21, 25, 31. : o

Lemma 115 If there ezists a 5-GDD of type (20g:)(20gz) . . . (20gx) and for each
it =1,2,... ,k, there ezists a 5-GDD of type 2996, then there erists a 5-GDD of

type 210(‘1+ﬂ+---‘|‘ﬂl)61.
Proof: This is a variant of singular direct product by taking six infinite points. O
Lemma 116 Ifn is even, then there ezists a 5-GDD of type 21°°6! for alln > 78.

Proof: There exists a 5-GDD of type 80" for all n > 5 by Theorem 36. Adding
six infinite points and fill in each group by a S-GDD of type 246! yields a 5-
GDD of type 24"6!. Take a TD(13,13) and remove a point to obtain a 13-GDD
of type 12!*. Truncate eight groups to sizes zero, four,six, ten or twelve. Each
block has size at least five. Give weight twenty and apply Wilson’s Fundamental
Construction to obtain a 5-GDD of type 240%g,g, . .. gs where g; € {0, 80, 200, 240}
for £ = 1,2,... ,8. Apply Lemma 115 to obtain a 5-GDD of type 2!°*6! for all
78 <n <168 and » = 0 (mod 2). Take a TD(24,23) and truncate three blocks
which intersect in one point. This gives a GDD with group type 202322! with block
sizes at least 21. Keep eight groups of size twenty and truncate other groups to sizes
{0,4,10,12,20}. Give weight 20 and apply Wilson’s Fundamental Construction
to obtain a 5-GDD. Apply Lemma 115 to obtain a 5-GDD of type 2!°"6! for all
170 < n <480 and n =0 (mod 2). Similarly, take a TD(25, 25) and remove a point
to obtain a 25-GDD of type 24*° and truncate points in 20 groups and give weight
20 to obtain a 5-GDD of type 21°"6! for 154 < n < 624. Finally, take a TD(6, 2n)
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for n > 54 and truncate in a gronp and give weight 20 to obtain a 5-GDD of type
(40n)(20g)* for 94 < g < 120 to obtain a 5-GDD of type 21°10n+9)g! Hence, there
exists a 5-GDD of type 21%°6! for all n > 94 and » =0 (mod 2). o

Next, we deal with the case when n is odd.
Lemma 117 Ifn is odd, then there ezists a 5-GDD of type 2'°6! for all n > 105.

Proof: Take a TD(16,16) and remove a point to obtain a 16-GDD of type 15'7.
Truncate ten groups to sizes {0, 4, 6,10, 12, 15} to obtain a GDD with block sizes at
least five. Give weight 20 and apply Lemma 115 to obtain a 5-GDD of type 2!%"6!
for all 235 > n > 105 and n =1 (mod 2). In general, take a TD(4n + 1,4n + 1)
for n > 6 and 4n + 1 a prime power and remove a point and truncate to all but six
groups to sizes {0, 4, 10,12,15}. Give weight 20 and apply Lemma 115 to obtain a
5-GDD of type 2!%6! for (4n)(6) + 15+ 12(4n —4) > k > (4n)(6) + 25 and k=1
(mod 2). Take n = 6,7,9,10,12,13,15 to obtain a 5-GDD of type 2!%¢6! for all
169 < k <1047 and k = 1 (mod 2). Take a TD(6,4n+1) for n > 150 and truncate
a group to at least 109 points and give weight 20. Apply Lemma 115 and induction
simply yield that if £ > 109 and ¥ =1 (mod 2), then there exists a 5-GDD of type
210’:61. : ]

Lemma 118 There ezists a 5-GDD of type 2'%°6.

Proof: We first construct a 5-GDD of type 10° with a parallel class. Let V = Zg,
and the groups are the translates of {0,9,18,... ,81}. The blocks are

{0,6,7,18,34}, {0,2,5,15, 44},
{0,4,23,37,68}, {0,8,17,38,58}.
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The five points in the first starter block are distinct (mod 5). Hence, the first
starter block generates five parallel classes. By adding one infinite point, we obtain
a {5,6}-GDD of type 10°1. Give weight four to obtain a 5-GDD of type 4094!.
Add two infinite points and fill in with a 5-GDD of type 2%! to obtain a 5-GDD of
type 212061, g

Lemma 119 Ifn is even and n € {2,8, 14, 16,26, 38,54, 58}, then there ezists a
5-GDD of type 21761,

Proof: Take a 5-GDD of type 120" (rn = 5,7) and add six infinite points to obtain
a 5-GDD of type 26*"6!. Take a TD(6,30) and truncate a group to 20 points to
obtain a {5,6}-GDD of type 30°20'. Give weight four to obtain a 5-GDD of type
120°80*. Add six points to obtain a 5-GDD of type 234%6!. Take a TD(7,7) and
remove a point to obtain a 7-GDD of type 6. Truncate a group to four points and
give weight 20 to obtain a 5-GDD of type 120780'. Add six infinite points to obtain
a 5-GDD of type 2%°6'. Take a TD(11, 11) and remove a point to obtain a 11-GDD
of type 10!2. Keep six groups of size 10 and truncate one group to six points, one
group to zero or four points and the remaining groups to zero points. Give weight

20 and add six infinite points to obtain a 5-GDD of type 2'*"6! for n = 66,74. O

Lemma 120 If there erists a 5-GDD of type 2'°*6', then D(20n + 6,5,1) =
B(20n +6,5,1).

Proof: In the group of size six, we put a further block of size five. The result
follows by a simple counting argument. o

Corollary 16 D(20n+6,5,1) = B(20n+6,5,1) for all n but possibly n € {2,8, 14,
16, 18,26,54,58) if n is even and n < 101 if n is odd.
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3.4.2 v=14,18 (mod 20)

In this subsection, we discuss the asymptotic behavior of D(v, 5,1) when v = 14,18
(mod 20).

Before we proceed, we need a result on 5-GDD of type 2!"14! and 21°"18!.

Lemma 121 If there ezists a 5-GDD of type 2", a TD(6,%52), then there ezists a
5-GDD of type 25(*Vq! for a = 14 and a = 18.

Proof: Take a TD(6,25) and truncate a group to three or four points. Give
weight four and apply Wilson’s Fundamental Construction to obtain a 5-GDD of
type (2(n—1))*12! and (2(n —1))°16. Add two infinite points and fill in the group
by a 5-GDD of type 2™. 0O

Lemma 122 There ezists a 5-GDD of type 2'°"a! for a = 14,18 and n > 181 or
n = 137.

Proof: Take a TD(26,25) and truncate 21 groups to sizes {0,12,15,20,22, 25}.
Give weight 20 and fill in each group to obtain a 5-GDD of type 2*a! where z €
{120, 150, 200,220,250} and a € {14,18}. This gives a 5-GDD of type 2!*a* for
a = 14,18 and 181 < n < 500. Similar argument can prove that there exists a
5-GDD of type 2!°a! for all ¢ = 14,18 and n > 181 by using a larger TDs to
obtain a larger interval, then apply induction. To handle the case n = 137, use a
TD(6,25) and truncate a group to 12; then give weight 20. 0

Lemma 123 D(2574,5,1) = B(2574,5,1) and D(2078,5,1) = B(2078,5,1).
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Proof: In [107], a 4RGDD of type 3* is given. By completing all resolution
classes, we obtain a 5-GDD of type 3*7!. Give weight 67 to obtain a 5-GDD of type
201%469'. Add a point at infinity and fill in the group by a 5-GDD of type 2! or a
5-GDD of type 2?3, Simple counting show that it is indeed an optimal packing on
2078 points. Instead, we can give weight 83, to obtain a 5-GDD of type 249%581.
Add one point and fill in the groups by a 5-GDD of type 2!* or a 5-GDD of type
5-GDD of type 2?°!. This gives an optimal packing on 2574 points. w

Theorem 45 D(20n +2574,5,1) = B(20n + 2574,5,1) end D(20n +2078,5,1) =
B(20n + 2078,5,1) for all n > 751.

Proof: Take a TD(138,137) and truncate one group to size 128 or 103, and 132
groups to sizes {0, 12, 15, 20, 22, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}. Give
weight 20 and fill in with 14 or 18 infinite points corresponds to the case when the
one group has size 128 or 103. Fill in all other groups by a 5-GDD of type 2"a! for
some n and a = 14,18. This gives a 5-GDD of type 2!°*p! for 751 < n < 10000
and b € {2078,2574}. A simple induction proves that there exists a 5-GDD of type
219y for all n > 751. Filling in the group of size 2078 or 2574 by an optimal
packing on the same number of points; the result follows easily by simple counting.
a

In the case when v =2 (mod 4), we have proved that if v is large enough, then
D(v,5,1) = B(v,5,1).

3.5 MGDDs with Block Size Four

In this section, we investigate the existence of modified group divisible designs with

block size four.
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The existence of the modified group divisible designs has been studied by Assaf
[11] and Assaf and Wei [14]. They have applications in constructing various type
of combinatorial objects; see [10] and Section 3.3. The existence of modified group
divisible with block size three has been completely settled in [11]. In [14], the
following result is proved. Let E = {(10,8), (10,15), (10,18), (10,23), (19,11),
(19,12), (19,14), (19,15), (19,18), (19,23)}.

Theorem 46 If m,n # 6, then a 4-MGDD of type m™ ezists if and only if (m —
1)(n — 1) =0 (mod 3) with the possible ezception of (m,n) € E.

The case when one of the m or n takes on the value six is completely open,
mainly due to the nonexistence of a 4MGDD of type 6*. We address the case
of the existence of 4~-MGDD of type 6". We develop some new constructions for
MGDDs to settle this problem with few possible exceptions. We then settle the
existence of 4-MGDDs with index greater than one completely.

3.5.1 Some Direct Constructions

Before we proceed, we need some direct constructions.
Lemma 124 [14] There is a 4-MGDD of type 6.

Proof: Let V =73 x {0,1}. A parallel class is G; = {(3¢,7)::=0,1,...,6} for
j = 0,1 and their translates. The second parallel class is {(7¢,7) : ¢ = 0,1,2;5 =
0,1}. The base blocks are:

{(0’0)’(110)’(5’0)’(2’1)}’ {(0’0)7(6’1)’(1771) ’(19’1)}’ {(0’0)’(2’0)’(10’1) 1(1571)}’
{(0,0),(8,0),(11,1),(12,1)}, {(0,0),(10,0),(5,1),(9,1)}.
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Develop these under Z,; to obtain the blocks of the 4-MGDD. O
Lemma 125 [14] There is a -MGDD of type 6*°.

PTOOf.’ Let V = Zs X Zm U HIO, where H]_o = {ho, hl, .o ,hg}. The first parallel
class is {(0,a) : @ € Zyo} and its translates together with Hyo. The second parallel
class is {(a,0) : @ € Zs} U hq and its translates. The base blocks are:

{(3,0),(4,1),(6,2),(7,3)}, {(4,0),(5,1),(7,3), (8,2)}, {(5,0), (6, 1), (8,2),(9,3)},
{(0,0),(6,1),(7,3),(9,2)}, {(0,0), (1,1),(7,2),(8,3)}, {(1,0),(2,1),(8,4),(9,2)},
{(0,0),(2,1),(3,2), (3,4}, {(1,0),(4,2), (6,4),(9,3)}, {(0,0),(3,1),(5,3),(8,2)},
{(2,0),(4,2),(7,1),(9,9)}, {(1,0),(3,3), (6,2), 8, 1)}, {(0,0), 2,2), (5, 1), (7,4)},
{(0,0),(1,3),(3,4), (4, 1)}, {(2,0), (3,3), (5,2), (6, 1)}, {(1,0),(2,3), (4,4), (5, 1)},
{(0,4),(3,6), (1,8), h}, {(0,5), (4,7),(1,9), hs}, {(0,0),(4,6),(1,8), hs},
{(0,1),(3,7),(4,9), ho}, {(0,0), (3,2), (4,8), ~1}, {(0,1),(2,3),(1,9), b2},
{(0,3),(4,8),(1,9), hs}, {(0,2), (4, 7),(2,8), he}, {(0,0),(4,4),(3,9), he},
{(0,3),(3,4),(2,8), o}, {(0,4), (4,5), (3,9), A1} {(0,5),(3,9),(2,5), hs},
{(0,0),(3,6),(1,9), }, {(0,1),(4,2), (3,8), e}, {(0,2),(4,3),(2,9), h7},
{(0,4),(3,7),(1,8), ha}, {(0,3), (1,5), (2, 7), he}, {(0,1),(3,6),(2,7), hs},
{(0,2),(2,3),(3,7), ha}, {(0,0),(2,1), (1, 7), hs}, {(0,3),(1,6), (4, 7), b1},
{(0,0),(4,2),(3,4), hs}, {(0,1), (4, 3),(2,5), ha}, {(0,0), (4,5), (2, 6), b},
{(0,2),(3,4),(2,6), hs}, {(0,0), (4,1),(2,5), hr}, {(0,1),(2,2),(1,6), ha},
{(0,0),(3,3),(2,4), hs}, {(0,1), (1,4), (4,5), ho}, {(0,2),(L,5), (3,6), ho}-

These base blocks under the group a : (z,y) — (z+1,y) and a : h; — h;,; generate
the design. a

Lemma 126 There is a 4-MGDD of type 6'3.
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Proof: Let V = Zqg. A parallel class is {6i : ¢ = 0,1,...,12} and its translates.
The second parallel class is.{13i : ¢ = 0,1,... ,5} and its translates. The base
blocks are {0,1,3,10}, {0,4,27,38}, {0,5,25,33}, {0,14,29,61}, {0,16,35,57}. Develop
these blocks over Zqg. m]

Lemma 127 There is a 4-MGDD of type 6.

Proof: Let V = Zs7x{0,1}. The first parallel class is {(3¢,5) : ¢ =0,1,...,18} for
j = 0,1 and their translates. The second parallel class is {(19¢,7) :¢=0,1,2;5 =
0,1} and its translates. Base blocks are

{(0,0),(8,0).(28,0),(2,1)}, {(0,0),(10,0),(26,0),(6.1)}, {(0,0),(1,1),(9,1),(35,1)},
{(0,0),(10,1),(15,1),(32,1)}, {(0,0)(11,0),(25,0),(4,1)}, {(0,0),(3,1),(5,1),(16,1)},
{(0,0),(1,0),(13,1),(56,1)}, {(0,0),(2.0),(22,1),(42,1)}, {(0.0),(4,0),(28,1),(29,1)},
{(0,0),(5,0),(44,1),(54,1)}, {(0,0),(7,0),(18,1),(34,1)}, {(0,0),(13,0),(21,1),(46,1)},
{(0,0),(17,0),(43,1),(47,1)}, {(0,0),(22,0),(17,1),(45,1)}, {(0,0),(23,0),(7,1),(14,1)}.

Develop the blocks under Zs;. a
Lemma 128 There is a 4-MGDD of type 6.

Proof: Let V = Zgs x {0,1}. The first parallel class consists of the translates of
{(0,0), (31,0), (62,0), (0,1),(31,1),(62,1)}. The second parallel class is {(3¢,7) :
t=0,1,...,30} for j = 0,1 and their translates. Base blocks are

{(0,0),(1,0),(8,0),(87,1)}, {(0,1),(1,1),(8,1),(3,0)}, {(0,0),(5.0),(14,1),(27,1)},
{(0,0),(10,0),(17,1),(67,1)}, {(0,0),(14,0),(43,1),(53,1)}.
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Multiply the first coordinate of each block by 16* for i = 1,2,3,4 to obtain 20
further blocks. Develop them over Zg;. m]

Lemma 129 There is a 4-MGDD of type 6%7.

Proof: Let V = Zj3. The first parallel class is {37: : ¢ = 0,1,... ,5} and the
second parallel class is {62 : ¢ = 0,1,...,36}. The base blocks are {0,1,8,21},
{0,25,56,117}, {0,43,128,28}, {0,49,182,196}, {0,67,129,70}. Multiply each of them
by 211 and 121 to obtain 10 more blocks. Develop these 15 blocks over Zj,. O

Here is the first recursive construction.

Lemma 130 Suppose there ezists a 4-MGDD of type 6" and there ezists a 4-IGDD
of type (67;7,7,... ,7)*, then there is a 4-MGDD of type 6™*.

Proof: Align the h copies of 4MGDD of type 6" on the & groups of the IGDD so
that the block of size r coincides with the hole. Use each hole to form a new block

of size rh. ]

Let I, = {1,2,... ,n} be an index set on n elements.

Lemma 131 Suppose there ezists ¢ TD(7,m) and a 4-MGDD of type (3a + 1)°
where 0 < a < m — 1. Then there ezists a 4-MGDD of type (6m + 3a + 1)°.

Proof: Truncate a group of a TD(7,m) to a+1 points, sq,3;,... .5,. We construct a
4-MGDD of type (6m+3a+1)% on tl:e point set VxIgUsoxIgU{s; : 1 =1,2,... ,a}x
Iy x Is. Let Gy, Ga,. .. ,Gg be the six other groups in the TD(7,m). The new groups
on the 4MGDD are G; x [gU{so} x {i}U{s; : 1 =1,2,... ,a} x I3 x {t}. For every
block of size seven in the original design, if it hits the point so, we put a 4-MGDD of
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type 67 on B x I so that the blocks of size six align on B x {¢} where i € I, omitting
the block of size six on sg x Is where B is the set of all points in the block. For every
other block of size seven, put a 4-IGDD of type (9,3)¢ on (B\ {s:}) x IsUs; x I3 x Is
so that the hole aligns on s; x Is x Is and the groups align on a; x IsU s; x I3 x {t}
where a; is B N G;, with G; being the i** groups in the original design. For every
block of size six, put a 4-GDD of type 6° on the set B x I5. Finally, put a 4 MGDD
of type (3a +1)® on the set 5o x IgU {s; : i = 1;2,... ,a} X I3 x Is. This gives a
4-MGDD of type (6m + 3a + 1)°. [

With the two recursions, we are now in a position to close the spectrum of

4-MGDDs of type 6".
Lemma 132 Ifg=1 (mod 6), g > 43, there ezists a 4-MGDD of type 69.

Proof: When m is odd and m > 7, there exists a TD(7,m) with the possible
exceptions of m = 15,39 [3]. Apply Lemma 131 with ¢ = 0,2,4,6 to obtain a
4-MGDD of type (6m + 1), (6m + 7)¢, (6m + 13)° and (6m + 19)C. a

Combining Lemmas 124, 126, 127, 128, 129 and 132, we obtain:
Lemma 133 Ifg =1 (mod 6), g # 25, there ezists a 4-MGDD of type 69.
Lemma 134 There are 4-MGDDs of type 6 and 6*C.
Proof: There exists a 4HTD of type 7° and 10° [3]. Apply Lemma 130. ]

Lemma 135 If m > 388 and m = 4 (mod 6), there ezists a 4-MGDD of type
(6m + 10)°.
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Proof: A TD(7,m) exists for all m > 63 [3]. Apply Lemma 131 with a = 3 to
obtain a 4-MGDD of type (6m + 10)°, using the 4-MGDD of type 6!° from Lemma
125. - .|

Lemma 136 If g & {70, 94, 100, 118, 130, 142, 166, 190, 214, 238, 244, 286,
384, 370, 382} and g > 52, then there ezists a 4-MGDD of type g°.

Proof: Lemma 135 handles all cases when g > 382. Now apply Lemma 131 with
a = 3 and values of m < 62 for which a TD(7,m) exists [3]. a

Lemma 137 If g > 52 and g # 70,118, then there is ¢ 4-MGDD of type g°.

Proof: First apply Lemma 136. Then use Lemma 131 with a = 9 and values of
m =11, 12, 17, 19, 21, 27, 31, 35, 36, 43, 51, 57, and 59. The 4-MGDD of type 678

exists by Lemma 134. o
Lemma 138 There is a 4-MGDD of type 6.

Proof: Give weight nine to all points in a block of a TD(6,7), and give weight
six to all other points. Append a new column of six points. Take a parallel class
of blocks of size six including the block in which all points have weight nine. For
every block in the parallel class, put a 4-MGDD of type (k + 1)® (k = 6,9) on the
corresponding points together with the new adjoined points. For every other block,
put a 4-GDD of type 6° or 6°9! [97]. This gives a 4-MGDD of type 64¢. m|

Lemma 139 There erists a 4-MGDD of type 6™.
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Proof: Take a 4MGDD of type 7° (Lemma 124) and give every point weight
10. For every block of size six, put a 4-MGDD of type 10° (Lemma 125) on the
60 points. For every block of size four, put a 4-GDD of type 10*. This gives a
4-MGDD of type 6™. : o

Lemma 140 There ezists a 4-MGDD of type 618,

Proof: Take a 4MGDD of type 13° (Lemma 126). Give every point weight nine
and append a new column of six points. For every block of size 6, employ a 4-
MGDD of type 10° (Lemma 125). For every other block of size four, employ with
a 4-GDD of type 9* [97]. This gives a 4-MGDD of type 612. o

Combining Lemmas 134, 136, 137, 138, 139 and 140, we have the following
result.

Lemma 141 If g =4 (mod 6), g # 16,22, 34, there ezists e 4-MGDD of type 69.
Finally, we combine Lemmas 133 and 141 to yield:

Theorem 47 There is a 4-MGDD of type 6™ for all n ¢ {16,22,25,34}, n =1
(mod 3) andn > 7.

In addition, we update the theorem of Assaf and Wei [14].
Lemma 142 There is a {-MGDD of type 10°.

Proof: Let V = Z19 x (Z7U {o0}). The first parallel class is {{i} x (Z7U {o0}):
i € Zyo- The second parallel class is {Z,0 X {j} : 7 € Z7U {co}}. Base blocks are:
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{0,0),(1,1),(3,3),(9,2}, {0,0),(4,4),(5,1),(8,6}, {0,0),(5,5),(7,3).(1,6},
{0,0),(1,1),(7,3),(8,6}, {0,00),(2,2),(5,1),(3,4}, {0,00),(4,4),(9,1),(6,0}.

Lemma 143 There is a 4-MGDD of type 103,

Proof: Let V = Zgs x {0,1} x Z33. The two parallel classes are {(0,0,%),(0,1,7) :
i € Zas} and {(4,0,0), (,1,0) : i € Zs. The base blocks are

{(0’ 0’ 0)7 (1’ 0’ 1)’ (4’ 0’ 2)’ (07 1’ 3)}’ {(O’ 070)’ (07 1, 5), (2’ 1’ 1)1 (31 1’ 2)}7
{(1,0,0), (4,0,5),(2,1,7),(3,1,22)}.

Multiply each block by (—,—,2) for ¢ = 1,2,...,10 to obtain the remaining base
blocks. m]

Lemma 144 There is a 4-MGDD of type 19:.

Proof: Let V = Zy9 x Zy;- The two parallel classes are {(0,7) : i € Z;9} and
{(#,0) : t € Z,,} together with their translates over Z;9 X Z,;. The base blocks are

{(0,1),(1,1),(3,2),(12,3)}, {(0,0),(1,2),(5,1),(13,8)}, {(0,0),(4,1),(6,7),(9,8)}-

Multiply each block by (1,4)° for i = 1,2,... ,4 to obtain 12 more blocks. Develop
these blocks over Z;g9 X Zq;. m]

Lemma 145 There is a 4-MGDD of type 192,
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Proof: Take a 5-MGDD of type 6 [102] and remove a group of size six to obtain
a {4,5}-MGDD of type 6'2. Give weight three to each point and append a new

column of 12 points. Employ 4-GDDs of type 3* and 3° and a 4MGDD of type
412 a

Lemma 146 There is a 4-MGDD of type 19'4.

Proof: Let V = Z9 x (Z13U {co0}). The first parallel class is {{i} x (Z13U {o0}) :
i € Zy9. The second parallel class is {Z1s x {j} : j € Z13U {o0}}. Take the blocks

{(0,0),(1,1),(3,3),(7,1)}, {(0,0),(5,5),(14,1),(11,4)}, {(0,0),(8,8),(18,5),(16,9)},
{(0,0),(11,11),(15,8),(7,10)}, {(0,0),(15,2),(9,7),(3,5)},
{(0,&),(1,1),(15,8) 7(12110)}’ {(0,@),(2,2) ,(16,8) ) (411)}

and multiply each by (11,1)* for i = 0, 1,2 to obtain 21 base blocks. Develop these

under the action of the group. 0
Lemma 147 There is ¢ 4-MGDD of type 19'5.

Proof: Let V = Zig x Z;s. The two parallel classes are {(3,0) : : € Z;5} and
{(0,%) : © € Z,5} together with their translates over Z;9 x Z;5. Take the blocks

{(0,0),(1,1),(3,3),(7,1)}, {(0,0),(5,5),(14,14),(6,10)}, {(0,0),(10,10),(3,7),(1,9)},
{(0,0),(13,13),(12,1),(16,9)}, {(0,0),(9,13),(8,9),(11,2)},
{(0,0),(15,4),(3,12),(18,5)}, {(0,0),(17,6),(15,1),(4.3)}

and multiply each by (11,1)* for i = 0,1, 2 to obtain 21 base blocks. Develop these
under the action of the group. o
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Lemma 148 There is a 4-MGDD of type 19'%.

Proof: Let V =Z,9 x (Z17U {o0}). The first parallel class is {{i} x (Z,7U {o0}) :
i € Zys. The second parallel class is {Zo X {j} : j € Z17U {o0}}. Take the blocks

{(0,0),(1,1),(3,3),(7.7)}, {(0,0),(5,5),(14,14),(6,8)}, {(0,0),(8,8),(18,1),(11,13)},
{(0,0),(15,15),(17,2),(13,4)}, {(0,0),(16,16),(2,6),(4,14)},
{(0,0),(9,11),(12,7),(15,16)}, {(0,0),(14,16),(18,9),(7,12)},

{(0,00),(1,1),(4,8),(8,7)}, {(0,00),(2,2),(13,4),(17,16)}

and multiply each by (7,1)* for ¢ = 0,1,2 to obtain 27 base blocks. Develop these
under the action of the group. | 0

Lemma 149 There is a 4-MGDD of type 19%3.

Proof: Let V = Zj9 X Zj3. The two parallel classes are {(0,z) : i € Zy3} and
{(3,0) : i € Zyo} together with its translate over Z;9 x Z3s. The base blocks are

{(0,1),(1,1),(3,2),(12,3)}, {(0,0),(1,5),(5,1),(13,2)}, {(0,0),(4,1),(6,6),(9,11)}.

Multiply each block by (1,2) for i = 1,2,...,10 to obtain 30 more blocks. Develop
these blocks over Zig X Za3. 0O

With these lemmas, we can restate the theorem.

Let F = {{6, 16}, {6, 22}, {6, 25}, {6, 34}, {10, 15}}.

Theorem 48 If {m,n} # {6,4}, then there ezists a 4-MGDD of type m" if and
only if (m — 1)(n —1) =0 (mod 3) with the possible ezceptions of {m,n} € F.
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3.5.2 Higher Index

Next, we examine the existence of $-MGDDs with index greater than one. Simple
counting establishes that for a 4MGDD of type m™ and index A to exist, one
requires that A(m — 1)(n ~ 1) = 0 (mod 3) and m,n > 4. Hence when A =0
(mod 3), the basic necessary condition reduces to m,n > 4. When A # 0 (mod 3),
the basic necessary condition is the same as for index one. Now the union of two
4-MGDDs of type m", one of index A; and the other of index A3, is a 4-MGDD of
type m™ and index A; + A;. Hence it suffices to examine cases with A € {2,3} when
the 4MGDD of index one and type m" is nonexistent or unknown although the
basic necessary condition is met, and cases with A = 3 when m,n = 0,2 (mod 3)

and m,n > 4.

First we treat the cases with A = 3.

Lemma 150 If whenever n,m € S = {4,5,6,7,8,9,10,11,12, 14,15,18,19,23}
there 1s a 4~-MGDD of type n™ and indez 3, then whenever n,m > 4, there is a
4-MGDD of type n™ and indez 3.

Proof: There exist PBDs with block sizes from S of order n and m [19]. Let (V, B)
be such a PBD of order m, and (W, D) be such a PBD of order n. We form the
required 4-MGDD on the point set VxW. For B € B and D € D, place a 4-MGDD
of index 3 on B x D, omitting the parallel classes on {} x D for b € B, and on
B x {d} for d € D. m]

Lemma 151 Let K C {4,7,10,13,19}. If a K-PBD of order m and indez 3
ezists, and n € S, then a {-MGDD of type n™ and indez 3 ezists ezcept possibly
when 4 € K andn =6, or when 10 € K and n = 15.
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Proof: Let (V,B) be the K-PBD of order m and index 3. Let W be an n-set. We
form the required 4-MGDD on the point set V x W. For B € B, place a +MGDD
of index 1 on B x W, omitting the parallel classes on {6} x W for b € B, and on
Bx{w}forweW. a

In view of Lemma 150, useful ingredients for Lemma 151 have m € S.

Lemma 152 There is a {{}-PBD of indez 8 and order m whenever m = 0,1
(mod 4). There is a {7}-PBD of indez 3 and order 15. There is a {4,10}-PBD of
indez 8 and order 11. There are {4,7}-PBDs of indez § and orders 14, 18, and 23.

Proof: For the first two statements, see [63]. For order 11, employ base blocks
{0,1,5,7} and {0,0,1, 3} over Z;,U {0}, together with Z; as a block of size 10.
For order 14, on Z7 x {0, 1}, take base blocks

{00: 10: 011 31}1 {001 20: 011 61}1 {00$ 401 011 51}1 {001 111 217 41}1 {011 101 201 40}1
{011 309 50: 60}1

together with the single block Z7 x {1} of size 7.

For order 18, on Zg x {0,1}, form the base blocks

{(0,0),(1,0),(2,0),(4,0),(0,1),(1,1),(3,1)} {(0,0),(1,0),(4,0),(4,1)}
{(0,0),(2,0),(5,0),(7,1)} {(0,0),(1,1),(4,1),(5,1)} {(0,0),(2,1),(4,1),(6,1)}
{(0,0),(3,1),(6,1),(7.1)}

For order 23, on Z,gU {o0; : 0 < i < 6}, form the starter blocks

{°°0: 0,1, 3}v {°°11 0,1, 5}; {002, 0,1, 8}, {mh 0,2, 7}, {wh 0,2, 5}7 {wh 0,3, 9}’
{we, 0, 4, 10}
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with the short orbit {0, 4, 8,12}, and a block of size 7 on the infinite points included
three times. a

We must treat cases when n = 6 and m € {4,5,6,8,9,11,12,14,18,23} to

complete the solution for index 3.

Lemma 153 Whenever m € {4,5,6,8,9,11,12,14,18,23}, a 4-MGDD of indez
three and type 6™ ezists.

Proof: For m = 4, the point set is (ZsU {oo}) x {0,1,2,3}. Base blocks are:

{(00,0),(2,1),(24,2),(3¢,3) }, {(0,0),(00,1),(24,2),(37,3) }, {(0,0),(3,1),(0,2),(34,3)},
{(0,0),(:,1),(2:,2),(0,3)}

for i =1,2,3, and three copies of the base block {(0,0), (4,1),(3,2),(2,3)}.
For m = 5, the point set is Z3,, and base blocks are
{0,1,2,3}, {0,2,9,16}, {0,3,7,16}, {0,3,11,22}, {0,4,8,17}.

For m = 6, the point set is (ZsU {oo}) x (Zs U {cc}). Base blocks are:

{(0,0),(1,1),(2,3),(3,2)}, {(3,0),(4,1),(1,3),(0,00)}, {(2,0),(3,1),(4:3),(0,00)},
{(0,3),(1,1),(2,4),(W,0)}, {(0’4)1(2:3)’(4a2)1(w10)}v {(111)1(2:4)1(07“)),(@10)}’
{(2,1),(4,2),(0,00),(=0,0)}, {(1,3),(3,2),(0,00),(=0,0)}, {(0,0),(1,4),(3,1),(ec,0)}

For m = 8, the point set is (Z7U {o0}) x (Zs U {oo}). Base blocks are:

{(0,0),(1,1),(3:3),(5,2)}, {(0,0),(4:4),(6,3),(1,2) } {(00,00),(0,0),(6,1),(5,2)},
{(0,00),(00,0),(1,1),(2,2)}, {(8,00),(0,0),(3,2),(5,4)}, {(0,00),(00,0),(4,3),(1,4)},
{(0,00),(4,0),(5,3),(6,1)}, {(0,20),(1,0),(4,3),(6,4)}, {(0,00),(2,2),(3:4),(6,0) },
{(0,00),(2,4),(3,2),(5,0)}, {(0,0),(0,1),(6,2),(3,3)}, {(00,0),(0,3),(1,4),(3,1)}
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For m =9, the point set is Zg x (Zs U {o0}). Base blocks are:

{(0’0)!(1,1)?(272),(3’3)} {(0’0) ’(2’2),(6‘1)’(514)} {(0,&),(1,1) ’(4’4)'(3'2)}
{(O’M)’(ITI)7(5’0)’(6’3)} {(O’w)’(1’1)’(7’2)’(310)} {(0,&),(2,2),(4,3),(7,4)}

Multiply each by (8,1)* for i = 0,1 to obtain 12 base blocks, and develop over the
group.

For m = 11, the point set is Z1; x (Zs U {oo}). Base blocks are:

{(0,0),(1,1),(2:2),(3.3)} {(0,00),(1,1),(5,0),(9,4)} {(0,00),(2,2),(8,0),(6,4)}

Multiply each by (4,1) for i = 0,1,2,3,4 to obtain 15 base blocks, and develop
over the group.

For m = 12, there is a 5-MGDD of type 6! [102] and hence a {4,5}-MGDD of type
6'2. Triplicate each block of size 4, and replace each 5-block by a {4}-PBD of order

5 and index 3.

For m = 14, the point set is (Z;3U {oo}) x (ZsU {o0}). Base blocks are:

{(0,0),(6,1),(1,4),(10,3)}, {(0,0),(7.2),(6,4),(10,1)}, {(0,0),(11,1),(5,3),(6,2)},
{(0,0),(3,3),(6,4),(1,2)}, {(0,0),(9,2),(2,3),(5,1)}, {(00,0),(0,0),(2,2),(11,1)},
{(0,00),(00,0),(3,1),(11,4)}, {(0,00),(c0,0),(5,3),(9:2)} {(0,00),(20,0),(4:1),(8,3)},
{(00,0),(0,2),(1,3),(2:4)}, {(=0,0),(0:4),(12,1),(2,2)}, {(0,00),(1,0),(12,1),(7,2)},
{(0,00),(1,0),(2,4),(7,2) 1, {(0,00),(1,0),(4,1),(9:4)}, {(0,00),(3,0),(2:2),(11,4)},
{(0,00),(2,0),(6,2),(12,1)}, {(0,50),(8,0),(5.3),(6:4)}, {(0,00),(10,0),(4,2),(12,3)},
{(0,00),(6,0),(10,4),(7,2)}, {(0,00),(11,0),(8,2),(10,3)}, {(0,00),(3,0),(5,2)(9,1)}

For m = 18, the point set is (Z,7U {o0}) x (Zs U {o0}). Base blocks are:
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{(0,0),(1,1),(2:2),(3,3)} {(0,0),(4,4),(13,3),(10,2)} {(0,0),(6,1),(12,4),(4,3)}
{(0,0),(7,2),(1,3),(14,1)} {(0,0),(8,3),(2,4),(7.1)} {(0,0),(9,4),(4,1),(3,2)}
{(0,0),(6,3),(2,1),(8,2)} {(00,00),(0,0),(7,4),(5,1)} {(0,00),(0,0),(5,4),(10,1)}
{(0,00),(00,0),(1,2),(8,1)} {(0,00),(c0,0),(7,2),(2,3)} {(0,0),(0,1),(12,3),(14,4)}
{(0,0),(0,4),(1,2),(15,3)} {(0,00),(1,0),(3,2),(13,1)} {(0,20),(6,0),(9.3).(8,4)}
{(0,00),(2,0),(5,3),(9:1)} {(0,00),(10,0),(14,4),(11,2)} {(0,00),(12,0),(8,1),(15,4)}
{(0,00),(1,0),(7,1),(11,2)} {(0,00),(16,0),(2,1),(6,2)} {(0,00),(4,0),(11,2),(16,3)}
{(0,00),(4,0),(12,3),(16,1)} {(0,00),(14,0),(5,3),(13,2)} {(0,00),(13,0),(7,1),(15,3)}
{(0,00),(15,0),(9,1),(12,3)} {(0,00),(3,0),(12,1),(4,2)} {(0,0),(6,0),(14,2),(3,4)}

For m = 23, the point set is Z33 x (Zs U {o0}). Base blocks are:

{(0,0),(1,1),(2,2),(3,3)} {(O’M)=(1a1)7(3a3):(1010)} {(O:w) +(1,1),(5,0),(14,4) }

Multiply each by (2,1)* for ¢ = 0,1,...,10 to obtain 33 base blocks, and develop

over the group. a
Theorem 49 A {-MGDD of indez 3 and type n™ ezists whenever n,m > 4.

Proof: f m,n ¢ S, apply Lemma 150. If m € S\{6}, apply Lemma 151 using the
PBDs from Lemma 152. This handles all cases except when n = 6, or m € {10, 11}
and n = 15. The latter cases, and 6'°, are treated by using m = 15 in Lemma
151. When m = 6 and n € {7,10,19}, triplicate a 4-MGDD of index one. The

remaining cases arise when m = 6, and these are treated in Lemma 153. a

Now we turn to index 2. The only cases to treat are those missing when A = 1.
For type 10'S, employ a {4}-PBD of order 10 and index 2 together with a 4-MGDD
of type 4!° to handle index 2 for type 10%S.

For 64, the point set is (ZsU {o0}) x {0,1,2,3}. Base blocks are:



CHAPTER 3. GROUP DIVISIBLE DESIGNS 132

{(00,0),(3,1),(24,2),(3:,3)}, {(0,0),(o0,1),(21,2),(32,3)}, {(0,0),(3,1),(o0,2),(37,3) },
{(0,0),(3,1),(2,2),(c0,3)}

for i = 1,2, and two copies of the base blocks {(0,0),(4,1),(3,2),(2,3)} and
{(0,0),(3,1),(1,2),(4,3)}. Since {4,7,10}-PBDs of order 16, 22, 25, and 34 all

exist, this settles the remaining cases for index 2.

Putting the pieces together, we obtain:

Theorem 50 A 4-MGDD of type n™ and indez X ezists whenever A(m—1)(n—1) =
0 (mod 3) and m,n > 4, ezcept when A =1 and {m,n} = {6,4}, and possibly when
A = 1 and {m,n} € {{6,16}, {6, 22}, {6, 34}, {6,25}, {10, 15} }.



Chapter 4

Related Codes

In this chapter, we study codes that are related to combinatorial designs.

4.1 Erasure Codes

In this section, we study erasure codes. First of all, we need to know what erasure

codes are.

In order to enhance the performance of disk access in a computer system, records
to be stored on disk are often partitioned into small packets, and each packet is
stored on a separate disk. This permits the storage and subsequent retrieval(s) of
the record to proceed by parallel access to all disks upon which the packets are
stored. More parallelism in the read/write operation in the cost of disks promotes
the use of large collections of physically independent disks.

By itself, each disk may be quite reliable. However, as disk arrays become large,
failure of one or more disks becomes likely. Failure of a disk can take many different
forms; here we are concerned with failure resulting in unavailability of the disk (e.g.,

133
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its total erasure, physical removal, or power loss). One’s primary goal in the event
of catastrophic failure of one ore more disks is to reconstruct their content; in most
transaction-processing systems, a second major requirement is to remain “on the

air” during such reconstruction.

Rabin [100] proposed an efficient scheme. In his information dispersal algorithm
(IDA), there are two parameters, m and n. Each record is partitioned into n packets
of (approximately) equal length [, and from these a list of m images and each of
length ! are computed. The critical feature of the encoding is that from any n of
the m images, one can recover the n packets of the record (in IDA, this is done by
solving a small linear system of equations). Rabin observes that one can make = as
close to 1 as desired, so that the overhead in redundant storage is relatively small.
Three basic operations must be supported: read, write, and reconstruction. Of
course, reconstruction is a combination of read and write operations. Rabin’s IDA
is particularly well-suited to applications in which loss data is frequent, since it has
no preference for one set of n surviving disks over another set. A read operation

must always be accompanied by a recovery of the packets from the images.

In a typical disk systems, however, one expects that most read operations per-
formed will not encounter a disk failure. Hence, it is beneficial to design schemes
in which, in the absence of a failure, no recovery of packets from images is needed,
but rather packets are simply read from disk. Hellerstein et al. [67] consider this

situation, and our investigation follows on from theirs.

The essential features of the schemes considered are as follows. Disks are as-
signed to be either information disks which contain packets of data records in plain
text, or check disks which contain redundant information to cope with disk loss.
The check-disk overhead is the ratio of check disks to information disks, and reflects

the cost of redundant storage.
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Each check disk is associated with a subset of the information disks, and its
content is determined by parity encoding. To be precise, its content is the modulo
2 sum of its information disks. The check group size of a check disk is one more
than the number of information disks with which it is associated- Check group
size indicates the number of disks to be accessed during reconstruction of a failed
disk; for load balancing reasons, uniform check group size is desirable, and cost of
reconstruction makes small check group size desirable.

Dually, each information disk has an associated set of check disks. An update
on the information disk requires an update on each of its check disks. The update
penalty for an information disk is the number of associated check disks. Again, it
is desirable for update penalties to be uniform and small. Since updates of data
are taken to be much more frequent than reconstruction of lost disks, the update
penalty is of more concern typically than the check group sizes.

Let C},C;, ... ,C. be the set of ¢ check disks, and F, F3,... , Fy be the set of
f information disks. A scheme is a ¢ x f binary matrix A = (a;;) in which a;; =1
if and only if Fj is in the check group C;. Adjoining a ¢ x ¢ identity matrix to
form [A|I] gives a ¢ x (f + ¢) parity check matriz of a binary linear code, in which
the columns are indexed by the information and the check disks. Binary linear
codes have been very extensively studied in connection with error detection and
correction when binary data is corrupted by bit inversions rather than data loss
[89]; one essential difference is that the positions of the errors are known in the case

of erasure.

Now let us consider the loss of k disks (both information and check disks can
fail). If [A|I] has a set of k or fewer linearly independent columns, loss of the
corresponding disks cannot be corrected; however, as observed in [67], when the

failed disks induce a set of linearly independent columns, their erasure can be
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corrected. Thus a scheme A is called k-erasure correcting whenever every set of
k columns of [A|l] contains no nonempty set of dependent columns. Precisely
the same condition determines when the parity check matrix [A|I] gives a k-error
detecting code [89], but the study of codes for error detection has not focussed on
update penalties.

The magnitude of the update penalties in a k-erasure correcting code are of
paramount importance. Evidently, if k erasures are to be survived, every update
must affect the content of at least k+1 disks (one information disk and k check disks,
in our setting). Hence the update penalties must all be at least k. Henceforth we
consider only those codes in which all update penalties are equal to k, the minimum
possible.

It is convenient to recast some of the prior discussion in alternate language. A
set system (V, B) is a set V of elements (or points), and a collection B of subsets of
V called blocks. Associated with a scheme A is a set system

({C;,Cz,... 1Ce}7{{Cl’:a‘i= l}lst.f})

In this language, the check-disk overhead is |V'|/b where b = |B|, the update
penalties are the block sizes, and the check group sizes are the replication numbers
which specify in how many blocks each elements is contained.

A configuration in a set system (V, B) is a set system (W,C) with W C V and
CC B. In a configuration, an element is even if it occurs on an even number of
blocks, odd otherwise. When a scheme is k-erasure correcting, this translates to a

requirement that certain configurations not appear in the associated set system.
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Lemma 154 A set system is associated with a k-erasure correcting code if every

configuration of t < k blocks in set system has at least k + 1 — t odd elements.

We have noted already that a set system with a block of size k cannot be
associated with a (k + 1)-erasure correcting code. Indeed an uncorrectable (k + 1)-
erasure corresponds to the single block of size k and its k check disks. Following
[67], such a (k + 1)-erasure is called bad. They observe that, with update penalty
k, one can nonetheless hope to correct all (k + 1)-erasures except for bad ones. In
fact, when all blocks have size k, it can happen that all ¢-erasures for ¢ < 2k + 2 are
correctable except for bad (k + 1)-erasures. With this in mind, we call a scheme
(code, or set system) (k,l)-erasure correcting if all update penalties are k, it is k-
erasure correcting, and in addition corrects all t-erasures for k +1 < ¢ < [ except

for bad (k + 1)—erasures.

In a (k,!)-erasure correcting code, an erasure is unacceptable if it is a t-erasure

for t < I which cannot be corrected, and is not a bad (k + 1)-erasure.

Lemma 155 A set system is associated with a (k,l)-erasure correcting code if every

configuration of 2 < t <l blocks has at least | + 1 — t odd elements.

Proof: An unacceptable erasure corresponds precisely to such a configuration,
along with the check disks for the odd elements. a

4.2 Anti-Pasch STSs

A Steiner triple system S = (V, B) of order v, briefly STS(v), is a collection B of
triples (3-elements subsets) on a set V, |V| = v,'such that each unordered pair of
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elements of V is contained in exactly one triple from B. It is well known that an
STS(v) exists if and only if v = 1,3 (mod 6); such orders are admissible.

A (k, £)-configuration in an STS(V, B) is a subset of £ triples of B whose union
is a k-element subset of V. Two particular configurations are of interest here.
The Pasch configuration or quadrilateral, P, is the (6, 4)-configuration on elements
(say) a,b,c,e,d, f with the triples {a,b,c}, {a,d,e},{f,b,d} and {f,c,e}. The
mitre, M, is the (7,5)-configaration on 7 elements a, b, ¢, d, e, f, g with the 5 triples
{a,b,e}, {a,c, f}, {a,d, g}, {b,c,d} and {e, f, g}; a is the centre or central element
of the mitre. An STS is anti-Pasch (or anti-mitre) if it does not contain P (or M,
respectively). For instance, the unique STS of order 7 and one of the two STS (the
cyclic system) of order 13 are anti-mitre but contain P, whereas the unique STS of
order 9 is anti-Pasch but contains mitres. Of the eighty STS(15), four (Nos. 1,2,3,
and 16 in [90]) are anti-mitre, while one (No, 80) is anti-Pasch.

The problem of characterizing those v for which there exists an anti-Pasch STS
of order v and anti-mitre STS of order v appears to be difficult. For every v = 3
(mod 6), an anti-Pasch STS(v) is known to exist [29]. There is no anti-Pasch STS
of order 7 or 13; while it has been conjectured that an anti-Pasch STS(v) exists for
all other v =1 (mod 6). This remains far from settled. Nevertheless, substantial
progress towards settling this conjecture has been made (29, 60, 112]. Also, progress
has been made on anti-mitre STS [47].

It has been long known that all affine spaces over F; are anti-Pasch STS; mean-
while all projective spaces over F, contain a maximum number of Pasch configu-
ration of a given order [112]. It is natural to ask for what orders v there exists
a anti-Pasch STS. In another context, Erdos conjectures that for every positive
integer l, there exists a STS(v) such that it is free of any (I +2,!) configuration. In
the case of | = 4, this coincides with anti-Pasch STS.
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Before we continue, we give the following connection to erasure codes.

Lemma 156 There ezists an anti-Pasch STS(v) if and only if there ezists a (3,5)-
erasure correcting code with v check disks and update penalty 3.

Proof: Trivial. 0

Next, we present three recursive constructions of anti-Pasch STS.

4.2.1 Stinson and Wei’s Construction

In this subsection, we extend the second recursive construction of Stinson and Wei
[112]. This is a singular direct product construction. It employs latin squares with
certain properties. A subsquare of a latin square is a square subarray that is itself
a latin square. A latin square is an N,-latin square if it contains no subsquare of

order 2. An N,-latin Square of order n exists for all » > 3 and n # 4 [73, 74, 93].

We need N,-latin squares with additional properties, similar to (but weaker
than) the “special” latin squares in [112]. An oneroan square of order 2w is an N,-
latin square L of order 2w with rows, columns and symbols indexed by {0,1,...,n—
1}, and enjoying three properties:

1. {L(2i,s), [(2i +1, )} # {2§,2] + 1} for 0 < i,j < w;

2. {L(s,2i),L(s,2¢ +1)} # {27,2j +1} for 0 < 1,5 < w;

3. L(21,25), L(2¢,25+1), L(2¢+1,25), and L(2i+1,25+1) are all distinct when

0<t,j <w.

Stinson and Wei used similar N;-latin squares to prove:
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Theorem 51 [112] If there'is a QFSTS(u) and u =1 (mod 4), and u — 1 has an
odd divisor ezceeding three, then there is a QFSTS(3(v — 1) +1).

We extend Theorem 51 to relax the condition that u = 1 (mod 4), and the

condition on divisors.

Lemma 157 There is an oneroan square of order 2w whenever w > 4 ezcept

possibly when w = 6.

Proof: First we prove that whenever an oneroan sqﬁare of order 2w exists, one of
order 4w also exists. Let © be the permutation of rows which interchanges rows 2:
and 2i + 1 for 0 < ¢ < w. For a latin square L, denote by L + a the latin square

obtained by adding a to each entry. Then when N is an oneroan square of order

N N +2w
2w (w > 1), the square N’ = is an omeroan square of

#(N)+2w N
order 4w. That N’ is latin and satisfies properties (1), (2), and (3) is immediate.

To verify that it is an N,-latin square, observe that a putative subsquare of order
two selects one entry from each quadrant in N’, but the application of 7 destroys
each 2 x 2 subsquare which would otherwise be formed.

Next we treat cases when w > 5 is odd, which is essentially the case treated in
[112]. Form a 2w x 2w array L by setting

[ i+ jmodw if a=b=0
; + 5 — 2 mod if a=b=1
L@2i+a2j+b) =4 T7Temoc¥ e

(+jmod w) +w if a=0,b=1

| (i+j+2modui)+w if a=1,b=0

for 0 < i, < w. That L is a latin square with properties (1), (2), and (3)
is immediate. That L is an Nj-latin square follows from a consideration of the

possible positions of subsquares of order 2.
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Now an oneroan square of order 8 is:

02134657
57462031
13570462
46023715
24357106
71605324
35716240
60241573

A A+8 A+16
Letting A be the oneroan square of order 8, thesquare | A+8 A+ 16 A

A+16 A A+8
is an oneroan square of order 24. m]

Theorem 52 If there is a QFSTS(u), then there ezists ¢ QFSTS(3(v — 1) + 1).

Proof: Letu—1=2w. Let X, Y and Z be disjoint sets of cardinality 2w, and let
oo € XUY U Z. Denote the elements of X, Y and Z by X = {z;: 0 <t < 2w},
Y={y;:0<i<2w}and Z ={z:0 <1< 2uw}.

Let (X U{oo}, A), (Y U{oo},B) and (Z U {o0},C) be QFSTS(u). Without loss
of generality, we can stipulate that the STSs contain the blocks {0, ms;, maiy1 } for
0 <1< w,and m = z, y, or z as appropriate.

Let L be an oneroan square of order 2w. Then define a set of blocks D =
{{zs,¥ir 2163} 0 < < 2w,0 < 5 < 2w}

Now ({0}UXUY UZ,AUBUCUD) is a STS(3(u — 1) +1). We prove that
it is quadrilateral-free.
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Let Q denote the four blocks in a hypothetical quadrilateral. There are the
following possible distributions of the four blocks to consider:

(i) @ € A, Q € B and Q € C. There are no quadrilaterals contained in A, B or
C, since the STS(u)s are quadrilateral-free.

(i) @ € D. Such a quadrilateral must look like

{zi’ Uiy zk}a {:Bi: Yk, zﬂ}v {z.fa Y5, zﬂ}) {zf'l Yn, Zk}-

Then L(i,j) = L(f,h) = k and L(f,j) = L(i,k) = g, so L has a subsquare
of order two, a contradiction.

(i) |QNA| =1, |QNB|=1and [QND|=2. Then Q has the form

{00, z:, 25}, {00,y yn}, {i,vg, 2} and {z;,yn, 2}

so that {f,j} = {2a,2a + 1} and {g,h} = {2b,2b + 1}. But L(z, g) = L(j, k),
contradicting property (3).

(iv) [QO A =1,|QNC|=1and |QND| =2 Then Q has the form
{m: i, Zj}, {m1 zy, zh}: {zia Yk, z,} and {3:': Yk, zh}

so that {i, j} = {2a,2a+1} and {g, h} = {2b,2b+1}. Then {L(i, k), L(j,k)} =
{2b,2b + 1}, contradicting property (1).

(v) |Q@NnB|=1,|@QNC|=1and [QND|=2. Then Q has the form

{ma Y, yJ’}’ {m7 Zgy zh}’ {2],, Y, zn} and {zk: Yis zh}
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so that {i, 5} = {2a,2a+1} and {g, h} = {2b,2b+1}. Then {L(%,3), L(k,j)} =
{2b,2b + 1}, contradicting property (2).

No other possible distributions of Q need to be considered. Hence, the STS(3(u—
1) + 1) is quadrilateral-free. o

Our next construction generalizes this.

Theorem 53 If there ezists a QFSTS(v) and QFSTS(u), and v > 3, then there
ezists @ QFSTS(v(v — 1) +1).

Proof: Suppose there exists a QFSTS(v) on V. Let I,., = {0,1,...,u — 2}.
For every block {a,b,c}, put the TD(3,2 — 1) on {a,b,c} x I,-; which arises
from an oneroan square of order u — 1. For every v € V, put a QFSTS(u) on
{00} U ({v} x I4-1). We claim that this produces a QFSTS(v(u — 1) + 1). First
of all, if there is a Pasch configuration in the STS which involves the point oo,
then the Pasch configuration must lie in one of the TD(3,2 — 1)s together with
oo, which is a contradiction. Suppose the Pasch configuration involves a block in
the subsystem QFSTS(u); then the other three points in the Pasch configuration
must come from distinct points in QFSTS(v). Projecting the Pasch configuration
back to the QFSTS(v) yields a pair of points appearing in more than one block, a
contradiction. So the points in the putative Pasch configuration must arise from
distinct points in the QFSTS(v). Projecting the Pasch configuration back to the
QFSTS(v) yields a Pasch configuration in the QFSTS(v), the final contradiction
needed. 0

4.2.2 Lu’s Construction

We employ a construction of Lu [88] to obtain a construction of anti-Pasch STS.
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Theorem 54 Suppose there erists ¢ QFSTS(n +2) and ¢ QFSTS(m + 2). Then
there ezists @ QFSTS(mn + 2).

Proof: Let ({a,b} UZn,B) be a QFSTS(2 + n), and let (Z,, U {a,b}, ) be a
QFSTS(2+m) with {a,b,0} € A. Let N = {{z:, z;} : m € {qa,b} and {m, z;,z;} €
A}. N, is a set of pairs on Z,,\{0} with every element appearing in two pairs.
Each pair can then be ordered so that each element is the first element of one pair,
and the second element of another; call this set of ordered pairs Q.- Define a
permutation 7 on Z,,\{0} by setting #(z) = j whenever (¢, j) € Qas. Subsequently,
it is crucial that since {a,b,0}, {a,i,%(¢)} and {b,x(¢),#*(i)} appear in A (or the
three blocks obtained by interchanging @ and b appear in .A), no block of the form

{0,7,#%(¢)} can appear in A since it is anti-Pasch.

We construct a STS(2 + mn) on the point set (Z,, x Z,) U {a, b} with triples of

the following forms where z,,z3,z3 € Zs, ¥1,Y2,Ys € Zg.
(i) {(0,31),(0,y2),(0,ys)} whenever {y1,y2,ys} € B, and {£, (0, 2), (0, y3)} when-
ever {{,y2,ys} € B and £ € {a, b}, and {a,b,(0,y5)} when {a,b,ys} € B;
(i) {(z1,%1),(=1,¥2), (z2,y3)} where (z1,Z;) € Qop and y; + y2 = 2ys (mod n).
(iii) {m,(z1,91),(z2,11)} where m =a or b, {m,z,,22} € A
(iv) {(z1,%), (z2,y2),(Z3,y3)} where {z1,23,23} € A, z1 <z3 <z3and y; +y2 +

ya =0 (mod n).

First of all, we prove that the construction gives a STS(2 + mn). The number
of type (i) blocks is (n + 2)(n + 1)/6. The number of type (ii) blocks is (m ~
1)n(n — 1)/2, the number of type (iii) blocks is (m — 1)n. The number of type (iv)
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is [((m+2)(m+1)/6)—m)]n?. So the total number of blocks is (mn+2)(mn+1)/6
as expected. Therefore, it suffices to show that every pair of S is contained in a
triple. All possibilities are exhausted as follows:

(1) Pairs {a, b}, {a,(0,1)}, {6,(0,¥2)} and {(0, 1), (0,y2)} are contained in some
type (i) triple.

(2) When z € Z,,\{0}, {(z,v1), (z,y2)} is contained in some type (ii) triple, since
z is the first element of some pair in Q5. Since n must be odd, the equation

Y1 + y2 = 2ys (mod n) has a solution.
(3) Pairs {a,(z,y)} and {b, (z,y)} are contained in some type (iii) triple.

(4) If {z,z'} € Ng, then {(z,11),(z’,y2)} for z # £’ is contained in a type (ii) or
(iii) triple; if {z,2'} € Nas, then {(z,v1),(z',y2)} for z # z’ is contained in
some type (iv) triple.

Next, we show that the STS(2 + mn) is anti-Pasch. Assume to the contrary
that there exists a Pasch configuration in the STS. We treat all of the cases.

(a) Suppose a block in the Pasch configuration contains the block {a, b, (0,0)}.
There must be blocks of the form {a, (3, r), (x(i),7)} and {b, (x(3),r), (x%(s),r)}.
Since no blocks of the form {0, ¢, 7#%(i)} appear in A, this is a contradiction.

(b) Suppose the Pasch configuration contains the block {p, (0,m), (0,n)} for p €
{a,b}. It must also contain a block of the form {p, (¢,r), (7(¢),r)}. With-
out loss of generality, the remaining blocks are {(0,m),(s,7),(z,y)} and
{(0,n), (x(3),7), (z,y)}. This implies that both {0,i,z} and {0,n(i),z} are
blocks in A, a contradiction.
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(c) Suppose there exists a block of the form {(0, ), (0,y), (0, z)}. Then the other
blocks must be of the form {(0,), (r1,72), (s1,52)}, {(0,¥), (*1,72), (t1,2)}
and {(0, 2), (s1, 32), (t1,t2)}. We obtain a contradiction by restricting to the
first coordinates.

(d) Suppose there exists a block of the form {m, (i, 7), (x(¢), )} where m € {a, b}.
There must be another block of the form {m, (7, s), (x(7),s)}. fi = j, then
the first coordinates of the third point containing the points (¢,7) and (j, ) is
7(z). Meanwhile, the first coordinates of the third point containing the points
(w(i),r) and (=(j),s) is x2(:). This is impossible. The third point on the
block joining (Z,r) and (#(5), s) is (¢, 25 —r), while the third point on the block
joining (7,r) and (x(z), 8) is (i, 2r —s). We must have 2s—r = 2r—s (mod n),
so 3r = 3s (mod n), but n+2 = 1,3 (mod 6) and thus r = s (mod n). So
the case when i = j is impossible. Next, we consider the case when j = 73(z).
If the last point in the Pasch configuration does not have first coordinate in
{i,n(:), ®3(2), #*(:)}, then projecting the design on its first coordinates gives
us a Pasch configuration in the STS(2+m). So, the only possibility is that we
have {(x(2),r), (%%(?), s), (x(£),2s — r)} and {(3,7), (7 (3),2s — r),(%x3(3), s)}-
But the last block is impossible, because {{m,i,x(#)}, {¢,=(i),n*(#)}} C A.
For the remaining cases, the sixth point in the Pasch configuration must have
first coordinate different from {z,x(i), 5, v (5)}, giving a Pasch configuration
in the STS(2 + m).

(e) Suppose there is a block of the form {(i,r), (¢,2s — r), (x(i),s)}. Suppose
(z,7) is also on a block {(,r), (,2t — r), (x(¢),t)}. We consider the possible
first coordinates of the sixth point in the Pasch configuration. If (¢,2s —r)
and (3,2t — r) are joined, then the first coordinate must by #(i). But no
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block has all three points with first coordinate = (i). If (¢,2s — ) is joined to
(7 (%), 8), then the point must be (3,2t —2s +r). Similarly, the remaining pair
of points force the final point to be of the form (i,2s — 2t + r). To form a
Pasch configuration , we must have 2t — 2s +r = 2s — 2t + r (mod n), and
so t = s and a contradiction. Next, if (i,r) is also on a block of the form
{G,r), (5, u),(k,—r—u)}, a block is needed containing (¢, 2s—r) and (j, ) and
hence the first coordinates must be k. The first coordinates in the last block
must be k, k and #(i). But k # 1 as we have a block {(i, 1), (, %), (k, -t —u)},
a contradiction. Hence, in any Pasch, no block has two first coordinates the

same.

(f) Suppose there is a block of the form {(z, 7), (7, 9), (k, —s — r)}. Suppose the
other block through (z,r) is of the form {(i,r), (j1,$1), (k1, —81 — )} where
{71,k1} # {j,k}. Then the last must must have different first coordinates,
and corresponds a Pasch configuration in STS(2 + m). So the block must be
of the form {(i,7), (5,¢), (k, —r ~ t)}. To form a Pasch configuration, we must
havez+38—r—-t=0 (modn) and z+¢t—s—r =0 (mod n),so s =¢, a

contradiction.

4.2.3 GDD Constructions

A TD(3,n) without any-sub TD(3,2) is equivalent to a N,-latin square of order n.
We call such a TD(3,n) a N;-TD(3,n).

Theorem 55 If there ezists ¢ QFSTS(2v + 1) and a QFSTS(2n + 1), and n > 4,
then there ezists a QFSTS(2vn +1).
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Proof: Delete a point from the QFSTS(2v + 1) to form a 3-GDD of type 2°. Give
weight n using an N,-TD(3, ) to produce a 3-GDD of type (2r)". Add one infinite
point oo, and on each group together with co, place a copy of the QFSTS(2n + 1)
so that when {00, a, b} is a triple, a and b arise from different points of the 3-GDD
of type 2°. Call the triples of the 3-GDD of type (2r)” vertical, and the triples
of the STS(2n + 1)s horizontal The result is an STS(2vn + 1), which we prove is
anti-Pasch.

Suppose to the contrary that a Pasch configuration is present. If it contains
00, it contains two horizontal and two vertical triples, since the STS(2n + 1) used
is anti-Pasch. The placement of the blocks containing oo, and the fact that the
STS(2v + 1) is anti-Pasch, ensures that the two vertical blocks are disjoint and
hence not in a Pasch configuration. Hence any Pasch configuration must involve
six points other than co. Then there cannot be two horizontal triples (since they
are either disjoint or from the same QFSTS(2r + 1). If there is one horizontal
triple, the three vertical triples cannot involve only three further points. So all
triples are vertical. However, at most one can arise from each N,-TD(3,n) used,
and hence any Pasch configuration would correspond to a Pasch configuration in
the QFSTS(2v + 1), which is a contradiction. a

We have one more recursive construction using GDDs.

Theorem 56 Lett > 4, w,n > 0, wn > 8, end wn = 0 (mod 2). If there ezist
QFSTS(2v +1), QFSTS(2wn + 1), and QFSTS(wn(v — 1) + 1), then there ezists a
QFSTS(wn(3v — 1) +1).

Proof: Take an N;-TD(3,v), and delete a point to obtain a {3,v}-GDD of type
2¢(v — 1)}, Give weight wn to each point, using an N,-TD(3,wn) for the blocks of
size three. For blocks of size v, start with the QFSTS(2v + 1) and delete a point
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to form a {3}-GDD of type 2"; then inflate using an N,-TD(3,(wn)/2) to obtain a
{3}-GDD of type (wn)® to use in the inflation of blocks of size v. The result is a
{3}-GDD of type (2wn)”(wn(v—1)). Add an infinite point oo, and fill groups using
QFSTS(2wn + 1) and QFSTS(wn(v — 1) + 1), so that blocks containing co have
points arising from two different points of the {3,v}-GDD of type 2°(v — 1)*. The
proof of this theorem is a special case of a general construction in next subsection

and thus omitted |

4.2.4 Summary

In summary, we state:

Theorem 57 If a QFSTS(v) ezists whenever v > 100 and
1. v = T'133%;
2. v=p and p = 13,29 (mod 72) is a prime;
3. v ="Tp and p = 25,43,61 (mod 72) is a prime;
4. v=13p and p =1,19,55 (mod 72) is a prime;
5. v = pq where p,q =5 (mod 6) are primes and pq = 13,31,67 (mod 72);
6. v="Tpq wherep,q = 5. (mod 6) are primes and pq = 25,43,61 (mod 72); or

7. v = 13pq where p,q =5 (mod 6) are primes and pg =1,19,55 (mod 72),
and

1. v—1=6p forp=>5 (mod 6) a prime; or
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2. v—1=12p for p=1 (mod 6) a prime,
and

1. v-2=511%

2. v—2=pandp=11,29,65 (mod 72) is a prime, and the multiplicative order

of —2 (mod p) i3 not singly even;
3. v—2="5p and p =13,31,49 (mod 72) is a prime; or

4. v—2=11p and p =1,19,55 (mod 72) is a prime,
then @ QFSTS(v) ezists whenever v=1,3 (mod 6) ezcept when v € {7,13}.

Proof: If v < 100, see [47) and references there;n. Ifv =3 (mod 6), see [60]. For
the remaining cases, we proceed inductively. If v = 1,7 (mod 18), write u = £2.
Apply Theorem 52, observing that v = 3(u — 1) + 1. If v = 49 (mod 72), apply
Theorem 55 with 2-4+1 and 2- %32 +1. It remains to treat v = 13,31,67 (mod 72).

v =qq with ¢ =1 (mod 6) and 19 < ¢ for ¢ = 1,2, then direct product
produces the QFSTS(v). If v = T°13%~*, the only case with v = 13 (mod 18)
is v = 7'132. If v = 67 (mod 72) and v is prime, the Netto triple system is a
QFSTS(v) (see [47])-

Now when v = 13 (mod 18), 23! = 2 (mod 3); and since v # 49 (mod 72),
v~1%#0 (mod 8). Sov—1=6pps---pr or v—1=12p;py - - - pr, where each p;
is a prime at least 5; in the first case, an odd number of these primes satisfy p; = 5
(mod 6), and in the second case an even number do. If pp =5 (mod 6), k& > 2,
apply singular direct product to 2p,p; - - - pr—1 +1 and 3-p; to obtain the QFSTS(v).
We may suppose then that each p; =1 (mod 6), and _hence that v = 12p;p; - - - p&..-
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If £ > 2, and p; > 19, apply singular direct product with 12p;p; ~- - pr—1 + 1 and p.
It remains to treat cases with p; € {7,13} for 1 <i < k. If k > 3, apply singular
direct product with 12p;p;---pr_2 + 1 and pe_1pe. If k = 2, apply Theorem 55
with 6p; + 1 and 2p; + 1. ‘

Finally, write v — 2 = 5'119p; ---- - p where each p; is a prime other than 2,
3, 5, and 11. Now if £ > 2, apply Theorem 54 with 5°117p; ~--+ ~pe_; + 2 and
pr+2 Ifi,7>1,0ri,j>1and k =1, apply Theorem 54 with 57 and %32 + 2.
Ifi > 2 0ort>2and k =1, apply Theorem 54 with 27 and %-{-2. fj>2
or j > 2 and k = 1, apply Theorem 54 with 123 and 332 + 2. In the cases that
remain, v —2 =5 (mod 6). Nowif k=0, v—2=5117fori+j < 3, but i + j
is odd. If ¢ + j = 1, these are the two nonexistent cases (v = 7,13). If i +j = 3,
the only case in which v = 13 (mod 18) is v — 2 = 605 = 5 - 112. So suppose that
k=1,sothati+j <1 Ifp, =1 (mod 6) theni+j =1, and if p; =5 (mod 6)
then ¢ = j = 0. In the latter case, p; =11,29,65 (mod 72). In the former, v —2 is
either 5p, or 11p;. If 5p; = 11,29,65 (mod 72), then p; = 13,31,49 (mod 72). If
11p; = 11,29,65 (mod 72), then p; = 1,19,55 (mod 72). Some of the remaining
cases are handled by a theorem of Grannell, Griggs, and Phelan [57] that when,
for every prime divisor p of v — 2, —2 has singly even order modulo p, a QFSTS(v)

exists. o

4.3 Anti-Pasch Packings

Let (V,B) be a PBD(v,K). We say that (V,B) is a QFPBD if for every four
blocks, the six intersection points do not induce a Pasch configuration. If a certain
set of blocks forms a parallel class, we denote a QFPBD by a QFGDD with the
corresponding group type.
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A QFPBD(v, K U {k*}) is a PBD(v, K U {¥*}) and a QFPBD(v, K U {I}).

QFPBDs are of special interest because of the following lemma.

Lemma 158 If there exists a K-QFPBD on v points, and for every k € K there
ezists a QFSTS on k points, then there ezists a QFSTS(v).

Proof: Fill in each block of size k by a QFSTS(k). This gives a QFSTS(v). O
We present a singular indirect product type construction for QFPBDs.
Let (Z,,U{a, b}, A) be a QFSTS(2+m) with {a,b,0} € A. Let Noy = {{z;, z;} :
m € {a,b} and {m,z;,z;} € A}. N is a set of pairs on Z,\{0} with every
element appearing in two pairs. Each pair can then be ordered so that each element
is the first element of one pair, and the second element of another; call this set of
ordered pairs Q,;. Define a permutation 7 on Z,,\{0} by setting 7 () = j whenever

(¢,7) € Qqs. By permuting the elements, we can assume that 7 satisfies (1) =i +1

or n(i) = ¢+ 1 — d where d is the length of the cycle containing 1.

Let D be the set of possible cycle lengths of 7. Let z + yD be the set {z+yd :
d € D}. If A and B are two sets, define AB~! = {ab~!:a € A and b € B}.

A QFSTS(v) admits a set D if there exists two points in the QFSTS so that the
all cycle lengths of the induced permutation = is are the set D.

Le¢e >=DU-DuUuD-1U1-DU(1-D)1-D)y'tu(D-1)1-D).

Theorem 58 If there ezist three elements, M = {a,B,7} for which MM™ is
disjoint from D*, and each element in M is relatively prime to m, then there ezists

a QFPBD(3m + 2, {3,5*}).
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Proof: Let V = Zn x {0,1,2} U {a,b}. We construct a QFPBD on V. Let
a € Z,.. We define a function f, : V = V as fo(z) = z if z € {a,b} and
fa(z) = az if z € Z. I (a,m) = 1, then f, is a bijection. We construct a
QFPBD(3m + 2, {3,5*}) as follows:

(i) For any block {z,y,z} € A and {z,y,z} # {a,),0}, we have. three blocks
{(f,,.,.(z),i), (frmi(y),2), (fm:(2),%)} where (m,1) € {(a,0),(8,1),(7, 2)}.

(ii) For any a,b,c € Z,a, construct a block {(a,0),(5,1),(c,2)} fa+b+c =0

(mod m).

(iii) Construct a block of size five by taking {(0,0), (0,1),(0,2),a,b}.
We claim that this construction gives a QFPBD.

(i) If none of four blocks in the Pasch configuration involves either a or b, then
it is impossible for them to form a Pasch configuration as the blocks all come
from a TD(3,n) which is free of the Pasch configuration.

(ii) If a block in the Pasch configuration is of the form {a, b, (0,%)} for some 7, then
all three other points in the Pasch configuration have a second coordinate 1i.
Hence, this corresponds to a Pasch configuration in S.

(iii) It cannot involve a block of form {m,(0,3),(0,5)} where m € {a, b} by con-

sidering the other block containing the point m.

(iv) Suppose it has a block in a Pasch configuration of the form {m, (tz,1), (¢tx(z),?)}
and another block of form {m, (sy, j), (s7(y),7)}. Then ¢ # j, since otherwise
all four blocks are from a subsystem of order 2 + m. Hence s # t. We either
have sy + tz = sn(y) + tn(z) or sy + tn(z) = sw(y) + tz. In the former
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case, three subcases arise. The first one has #(z) =z 4+ 1 and n(y) =y + 1,
so st} = —1. The second one has n(z) = z+land n(y) =y +1-—4d;
where d; € D, so ts~! = dy — 1. The third case has n(z) =z + 1 —d; and
n(y) = y +1—d, so ts™! = (dy —1)(1 — d3)~*. In the remaining case, it
is similar to check that ts~* = 1,1 — dy,(d; — 1)(dz — 1)~! as appropriate.
By our condition on a, 3,7, we avoid all possible Pasch configurations in the
QFPBD.

In fact, this is a 3-QFGDD of type 3™~5! because the TD used in the construc-

tion is resolvable as m is odd. )

We define an optimal anti-Pasch packing on v points to be an optimal packing
on v points with block size three in which no four blocks form a Pasch configuration.
Theorem 58 is of particular interest because of the following lemma. The reason
that anti-Pasch packing is of interest because it gives erasure with v check disks,
update penalty three with the maximum number of information disks.

Lemma 159 If there ezists a QFPBD(v, {3,5*}), then there ezists an optimal anti-
Pasch packing on v points.

Proof: Replace the block of size five, {a,b,c,e,d}, by two blocks of size three
{a,b,c} and {a,d,e}. If there exists a Pasch configuration containing both blocks,
then all blocks must be contained in {a,b,c,d,e}. Otherwise, any other Pasch
configurations contradict the definition of QFPBD. o

No construction is useful unless we find an application. Hence, we want to find
certain class of QFSTS with the corresponding permutation having only a small
number of cycle lengths. In the sequel, we discuss the possible cycle lengths from

various existing construction for anti-Pasch STS.
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Theorem 59 [57] If for every prime divisor p of v — 2, —2 has singly even order
modulo p, ¢ QFSTS(v) exists.

For completeness, we restate the construction in [57].

Let V = {a,b} U Z,—;. We construct the following three collections of blocks.
Define a permutation = so that 7 (i) = —2i where all elements are reduced modulo
v — 2. Since —2 has singly even order modulo p for every prime divisor p of v — 2,

then each cycle of © must have even length.

(i) {z,y,z2}if z+y+ 2=0 (mod v — 2) where z,y, z are distinct.
(i) A block of the form {a, b, 0}.

(iii) For every cycle in =, pick a representative element z € Z,_3, and construct
blocks of type {a, 7%(z), #%+(z)} and {b, 7%+1(z), n?+2(z)} for all i.

This give an anti-Pasch STS(2 + v) if for every prime divisor p of v, -2 has

singly even order modulo p.

Corollary 17 Let D be the set of orders of —2 modulo p, a divisor of v—2. If all
elements of D are singly even, then there ezists a QFSTS(v) admitting D.

To illustrate how the construction works, consider the following. If v is a prime,
and —2 is of singly even order modulo p, then all cycles in # must have the same
length. If v = 23, then the order of —2 is 22 modulo 23. Hence D = {23}. A
simple computation shows that D* = {1, 2,3, 22, 23,24}, so M = {1, 4,6} satisfies
MM~ n D* = 0. This gives a QFPBD(71, {3,5*}).

Next, we look at the Lu’s construction in Theorem 54.
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Corollary 18 If there ezists a QFSTS(2 + m) admitting M and ¢ QFSTS(2 + n)
admitting N, then there ezists a QFSTS(2 + mn) admitting M UN.

Lemma 160 If there ezists a QFSTS(v) edmitting D and if p is a divisor of v,
then there ezists ¢ QFSTS(3v) admitting D U {2p}.

Proof: We use a standard inflation comstruction. Let the two points that induce
D in the QFSTS(v), (V, B), be a and b. Write the point set of the QFSTS(v) as Z,,
identifying a with 0, and identifying b with m = v/p. We construct a QFSTS(3v)
on Z, x {0,1,2} as follows:

(i) For every block {z,y,2} € B, construct three blocks {(=, ), (y,1), (,%)} for
1=0,1,2.

(i) For every distinct z,y,z € Z, with z + y + z =0 (mod v), construct a block
{(z’ 0)’ (y’ 1)’ (z, 2)}'

We now look at the corresponding permutation induced by points (0,0) and
(0,m). In Z, x {0}, it gives a set of cycles whose lengths are in D. Now, for
every path starting from (0,0), the cycle must be of the form (z,1), (-=z,2),(z -
m,1), (=2 +m,2),(z — 2m,1),... ,(z — pm,1) but pm = 0 (mod v). Hence, this
gives a cycle of length 2p. 0

QFPBD:s are interesting, not only for their importance in constructing optimal

anti-Pasch packings, but als;) as ingredients for inflation type techniques for anti-
Pasch STS.

Theorem 60 Let (V,G,B) be a QFGDD (the master QFGDD) with groups G,,G3,
..., Ge. Suppose there ezists a function w : V = Z* U {0} (a weight function)
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which has the property that for each block B = {z,,z,,... ,zi} € B there ezists
¢ K-QFGDD of type (w(z1), w(zz), ... ,w(ze)) (such ¢ QFGDD is an ingredient
QFGDD). Then there ezists a K-QFGDD of type

(3 w(z), Y w@),- ., 3 ().

z€Gy z€EG, z€G;

Proof: The construction is a simple modification of Wilson’s Fuandamental Con-
struction. All we have to prove is that this results in a QFGDD. Suppose there
exist four blocks in the design which form a Pasch configuration. If any two blocks
are from the same subdesign, then all four blocks must be from the same subdesign.
However, the subdesign is a QFGDD, and hence it is impossible. If all four blocks
are from different subdesigns, then they cannot form a Pasch configuration since
projecting all blocks to the master GDD would give a Pasch configuration there.
If the Pasch configuration involves some groups, then it cannot involve more than
one group. If the three subséts from a group do not come from the same point, by
projecting back to the original design, we have a Pasch in configuration the master
GDD. IKf two points in a group correspond to the same point, then it contradicts
the fact that A =1. o

The construction in general form is of limited use as it is very difficult to find
designs which are QFGDD with block sizes at least four. Whenever there exists a
block of size three, we can only inflate by a constant factor.

The following provide the main ingredients for the construction.
Lemma 161 There ezists a 3-QFGDD of type m® for all m # 2,4.

Proof: A Nj-latin square of order m gives a 3-QFGDD of type m3. Such latin

squares are known to exist [73, 74]. a
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Lemma 162 If there ezists a 3-QFGDD of type 375! and a 3-QFGDD if type 3°5*,
then there ezists a QFSTS((3r + 5)(3s + 5)).

Proof: Take a 3-QFGDD of type 375, give weight five and inflate by a 3-QFGDD
of type 5°, to get a 3-QFGDD of type 15725!. Filling in the hole with a QFSTS(15)
and a QFSTS(25), we obtain a QFSTS(15r + 25). Now, take a 3-QFGDD of type
3*5! and inflate it by 3r + 5, to get a 3-QFGDD of type (9r + 15)*(15r + 25). Fill
in the holes with a QFSTS(9r + 15) or a QFSTS(15r + 25). a

No corresponding analog for the product construction was known when v = pq

where both p,¢ =5 (mod 6).
It is well known that deleting a point from a PBD gives a GDD. Using this

simple observation, we can obtain a further construction.

Theorem 61 Suppose (V,B) is ¢ QFPBD on v + 1 points for which removal of
a point = gives ¢ K-QFGDD of type T. If, for every k € K, there ezists a M-
QFGDD of type m* and there ezists a QFPBD(mt + 1, M) so that there ezists a
point in the QFPBD not on any block of size greater than t, then there ezists a
QFPBD(mv +1,M).

Proof: Take a K-QFGDD of type T and give every point weight m to get a M-
QFGDD of type mT. Now, add a point oo to each group, and for every group of
size m, put a QFPBD(mt + 1, M) with an extra point y and identify y with the
new point that we adjoin to the QFGDD. Elements {a,b} contained in a block
with y in the QFPBD(mt + 1, M) are identified with different points if we project
the QFGDD of type mT to the QFGDD of type T. We claim that this gives a
QFPBD(mv + 1, M). It is a PBD(mv + 1, M) as the construction is just a singular
direct product. To show that it is a QFPBD(mv + 1, M), all we need to prove is
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that there is no Pasch configuration involving the point co. If there were a Pasch
configuration involving oo, project all points other than oo to the points from the
QFGDD of type T and project co to the deleted point in the original QFPBD. O

The following is a generalization of the above theorem. Since, this is of no use

in this thesis. We just state this without proof.

We say a QFPBD(v, K U {I*}) (m,l)-colorable if there exists a fanction such
that it maps each point not in the block of size lto {1,2,... ,m} so that for any
block b containing a point from the block of size [, all other points receive different
function values.

Theorem 62 If there ezists a (m,l)-colorable QFPBD(mt + 1, K U {I*}) and a K-
QFGDD of type m", then there ezists a K-QFPBD(mrt + 1, K U {I*}).

4.4 Anti-Pasch KTSs

In this section, we study anti-Pasch Kirkman triple systems. As shown in the
previous section, anti-Pasch STS(v) corresponds to (3,5)-erasure codes with the

maximum number of information disks subject to v check disks.

Erasure codes coming from the affine spaces of order 3" have a 1-balanced
ordering ([67]). Chee [33] observed that the problem of constructing (3,5)-erasure
codes with optimal check disk overhead having a 1-balanced ordering is equivalent
to the existence of the anti-Pasch KTS. A 3-GDD is 3-QFRGDD of the same type
if the 3-GDD is a 3-QFGDD, and the QFGDD is resolvable.

In order to state the construction in this section, we need the following notion
of resolvability. A set of blocks is called an a-parallel class if for every point z is
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contained in exactly a blocks. A GDD(X, G, B) is called A-resolvable where A is a
multiset of positive integers of r elements and if its block set B admits a partition
into subsets By, B,,... , B, where for each £ = 1,2, ... ,r, there is an a € A such
that B; is an a-parallel class. The case when A = [1"] corresponds to the case of

the usual notion of resolvability.

4.4.1 Direct Constructions

In this subsection, we present some direct constructions of anti-Pasch KTS.

The basic necessary condition for the existence of anti-Pasch KTS(v) is v =3
(mod 6). A first infinite class of the anti-Pasch KTS(v) are of the form v = 3"
which come from the affine spaces. There does not exist an anti-Pasch KTS(15)
as the only anti-Pasch STS(15) is no.80 of [90] which is not resolvable. Hence,
the smallest open case is when v = 21. In [91], 30 nonisomorphic Kirkman triple
systems of order 21 are found. However, each of them contains a sub-system of

order 7. Hence, none can be anti-Pasch.
Lemma 163 There ezists an anti-Pasch KTS(33).

Proof: Consider the following KTS(33) taken from [116]. Let V' = Zss.

{1,3,6}, {17,19,32}, {9,11,24}, {22,25,13},
{5,8,29}, {27, 30,18}, {31,4,23}, {14,20,6},
{15,21,7}, {28,2,12}, {26,0,10}.
{3,10,20}, {1,2,6}, {2.3,7},
{3,4,8}, {1,12,23}.
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Let n(z) = z + 3. The design is generated by letting = act on the set of blocks.
The first set of eleven blocks is a parallel class, hence the action of = gives eleven
parallel classes; each of the remaining base blocks generate a parallel class. a

Lemma 164 There ezists an anti-Pasch KTS(39).

Proof: Let V = Zjs. Consider

{0,7,16}, {4,10,25}, {1,6,18}, {8,9,11}
{0,8,19}, {0, 4,14}, {2,15,28}.

These form the base blocks of an anti-Pasch STS(39) over Z3s. The 12 points in
the first four starter blocks are distinct (mod 13). Adding 13 and 26 to each block
and appending the block {2,15,28} gives a parallel class. Develop to obtain 11
parallel classes. Each of the two remaining starter blocks generates three parallel
classes as the points in each block are distinct (mod 3). i

4.4.2 Cyclic Anti-Pasch STSs with Mutually Disjoint Base
Blocks

In this subsection, we present a simple construction for anti-Pasch KTS.

Theorem 63 Suppose that v = 1 (mod 6), and there ezists a cyclic anti-Pasch
STS(v) over V with mutually disjoint base blocks. Then there ezists an anti-Pasch

KTS(3v).

Proof: This construction is a simple modification of a construction in [56]. We
present it here for completeness. Let V' = V' x {0, 1,2}. We construct the following
set of blocks.
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(i) Forevery block {a, b, c} in the STS(v), we construct blocks {(e,0), (b,0),(c,0)},
{(2a,1),(25,1), (2¢,1)} and {(3s,2), (35,2}, (3¢,2)} .

(i) {(0),(E+25,1),(i+35,2)} forijeV.

This results in a KTS(3v) so we only have to prove that this is anti-Pasch. The
TD(3, n) that is ﬁsed in the construction is free of subsquares of order two. Hence,
this is a 3-QFGDD of type v3. Also, if any Pasch configuration involves a block of
type (ii), then all blocks in the Pasch configuration must come from the STS(v).
This must result in a QFKTS(3v). o

By way of example, a cyclic anti-Pasch of order 19 is presented in [47] with base
blocks {0,1,8}, {0,2,5}, {0,4,13}. By adding 2 to the second block and 5 to the
third block, we obtain a cyclic anti-Pasch STS of order 19 with mutually disjoint
base blocks. By Theorem 63, we obtain a anti-Pasch KTS(57).

It is therefore of great interest to determine when a cyclic anti-Pasch STS exists
whose base blocks can be made mutually disjoint. In fact, a well known conjecture
of Novak [99] asserts that for every v = 1 (mod 6), every cyclic STS(v) can be
made to have disjoint base blocks. This is widely believed to be true but not much
progress has been made toward settling this conjecture.

The only known infinite class of cyclic anti-Pasch STS(v) when v =1 (mod 6) is
the Netto triple systems. Let ¢ = p™ where p is a prime such that p =7 (mod 12).
Take two primitive sixth roots of unity €; and ¢; in Fy; they both are non-squares
and satisfy the equation 2z —z +1 =0. It follows that e, + & = €162 = 1, € = —¢,
and € = —¢. For any two distinct elements a,b € F, define a — b if and only if
b — a is a non-zero square in Fy. This relation has the property that exactly one of
a — band b — ais true for a # b, since —1 is not a square in F;. Now, on the set of
all ordered pairs (a, b) such that a — b. Define a function f by f(a,bd) = ae; + bea.
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Now if ¢ = f(a,b), then also b — ¢ with f(b,c¢) = a and ¢ — a with f(c,a) = b.
The Netto system N(q) is the STS(V, B) where V = F, and B= {{a,b,c};a —+ b
and ¢ = f(a,b)}-

Theorem 64 [104] If p =19 (mod 24), then N(q) is anti-Pasch.
Indeed, when v = p™ and p = 19 (mod 24), then N(v) is 5-sparse [47].
Lemma 165 N(q) is cyclic over F,.

Proof: Let {a,b,ae, + be;} be a block. If @ € F,, then we claim that {a + a,b +
a, a€; + bea + a} is a block. Note that b — @ is a non-zero square if and only if
b+ a — (@ + a) is a non-zero square. Also ae; +be; + a = (a + a)ey + (b + a)e; since

1=E|_+€2. a

Lemma 166 If {a,b,c} is a block in Netto triple system, so is {w?a,w?b, w?c} for
anyw € Fy

Theorem 65 If q is a prime power congruent to 1 (mod 6), w s a primitive root
over F,, and A is a block of size three so that {w®A:i=0,1,..., 3—;-1-} is the set
of base blocks for the cyclic STS(q), then the STS(q) can be made to have disjoint
base blocks.

Proof: If A is the base block then {w¥A4 : i = 0,1,..., ’—;l — 1} is the set of
base blocks for the cyclic STS(q). Define a mapping from f : V — {o0} UZ; by
f(0) = o0 and f(w') =i (mod 3) for all { = 1,2,...,q — 1. Next, look at the
set of translates of A under the mapping of f. It has g blocks, if there exists a
block of the form {0,1,2}, then let B = A + a is the block that maps to it. Then
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{w*B :i=0,1,...,%} is a set of mutually disjoint base blocks which generate
the cyclic STS(v). Hence, we can assume that there is no block of the form {0, 1,2}.
The number of pairs involving co and i is 2. The number of pairs involving ¢ and
i is 252 for each i = 0,1,2 since the number of pairs involving w™ and w™ where
m = n (mod 3) are 3. The number of pairs involving ¢ and j when © # j is
1@.;.’:1_ Since there exists no block c;f form {0, 1,2}, all ¢— 3 blocks of size three not
involving the point oo must involve at least one pair of the form 7 and ¢ for some
i. Hence, there are at least ¢ — 3 pairs of type ¢ and i. However, we can only have
q — 4 pairs of them which is impossible. Therefore, it can always be made to base
block disjoint. m]

Combining Theorem 63 and 65 together with Netto triple systems, we obtain:

Corollary 19 Ifv = 3q, ¢ = p* and p =19 (mod 24) a prime, then there ezists a
anti-Pasch KTS(v).

Next, we present some base block disjoint anti-Pasch STS(v) where v = 1
(mod 6).

19: {1,2,9}, {3.5.8}, {0,6,10}

2

o

: {1,2,4}, {3,7,14}, {6,12,21}

3

-t

. {1,2,4}, {3,7,14}, {5,10,18}, {6,12,24}, {8,16,25}
37: {1,2,4}, {3,7,29}, {5,10,19}, {6,12,31}, {8,15,25}, {9,17,30}

4

(7

. {1,2,4}, {3,7,12}, {5,11,33}, {6,13,29}, {8,16,41}, {9,20,39}, {10,22,36}

49: {1,2,4}, {3,7,12}, {5,11,22}, {6,13,29}, {8,16,38}, {9,19,40}, {10,23,35},
{14,38,48}
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55:

61:

67:

73:

79:

85:

91:

97:

{1,2,4}, {3,7,12}, {5,11,21}, {6,13,38}, {8,16,37}, {9,20,51}, {14,26,41},
{10,24,46}, {15,32,52}

{1,2,4}, {3,7,12}, {5,11,18}, {6,14,31}, {9,19,42}, {10,21,40},
{13,25,45}, {8,22,48}, {15,30,52}, {16,32,50}

{1,2,4}, {3.7,12}, {5,11,18}, {6,14,29}, {9,19,47}, {10,21,43}, {8,20,50},
{13,27,45}, {15,31,58}, {16,33,52}, {17,37,63}

{3,713}, {5,10,40}, {9,16,41}, {6,14,30}, {8,17,63}, {11,22,64}, {15,27,67},
{18, 32,47}, {0,19,36}, {20,42,65}, {1,2,4}

{9,15,31}, {12,19,64}, {11,20,66}, {14,24,67}, {16,28,75}, {17.32,71},
{25,43,73}, {0,23,44}, {1,2,30}, {3,522}, {4,7,18}, {6,10,48}, {8,13,21}

{1,2,60}, {3,5,52}, {4,7,50}, {6,10,67}, {8,13,27}, {9,15,77}, {11,18,29},
{12,20,68}, {14,23,83}, {16,26,48}, {19,31,64}, {17,30,61}, {21,36,56},
{24,45,79} |

{1,2,4}, {22,4362}, {23,46,72}, {3,7.14}, {5,10,39}, {6,12,65}, {8,16,44},
{9,18,36}, {11,21,82}, {13,25,71}, {15,28,63}, {17,31,56}, {19,34,88},
{24,40,84}, {20,37,87}

{1,2,4}, {10,21,82}, {14,26,56}, {17,30,74}, {15,29,62}, {18,33,50}, {3,7,12},
{5,11,31}, {6,13,72}, {8,16,43}, {9,19,67}, {25,48, 77}, {20,36,57}, {22,40,91},
{23,42,96}, {24,46,80}

All designs are taken from [47] and are made base block disjoint.
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4.4.3 Rees’s Construction

In this section, we employ Rees’s construction [101] on resolvable group divisible

designs to obtain some new anti-Pasch KTSs.

A partial transversal design PITD,(k,n) is a triple (X,C, B) where X is a kn-
set, B is a collection of k-subsets of X (blocks) so that any pair of distinct points
from X is contained in at most A blocks, and C is a strong k-vertex-colouring of X
(i-e., each block receives k different colours) so that [C| = n for each C € C. Any
transversal design is a PITD (just take each group as a colour class). Similarly, a
partial group divisible design K-PIGD, of type T is a triple (X,C, B) where X is a
v-set, B is a collection of subsets of C (blocks) each having same size from the set
K so that any pair of distinct points from X is contained in at most A blocks, and

C is a strong colouring of X.

A group H of automorphism son a set V is acting sharply transitively on V if
for every two elements z,y € V, there exists k € H so that zh = y where the group

action is written as left multiplication.

A block-partition of a transversal design (X, G, B) is a partition P of its block
set B; we refer to the members of P as aggregates. If each member of P is a clear
set (i.e., composed of mutually disjoint blocks) then we refer to P by the usual term

block-coloring.

Theorem 66 [101] Let (X, G,B) be an A-resolvable K-PIGD, of type T in which
for each a; € A, there are r; a;-parallel classes of blocks. Suppose that there is
a TDy(u,R) admitting H as a group of automorphism acting transitively on the
points of each group where u = |G|. Let H; be a collection of subsets of H, there
being r; such subset of size a; for each a; € A, and suppose that the collection
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{Hi*r:r € H,j = 1,2,...,3 7} is T-resolvable on H. Then there is a I'-
resolvable K-PIGD\,», of type hT.

Theorem 67 [101] Let (X, G, B) be a K-PIGD,, of type T whose block set B forms
an a-parallel class, and let w = |G|. Suppose that there is a TD,(u, h) each of whose
groups Jy, Ja,. .. , J, i3 written on the symbols of a group H, and let H* ,H?,... , H"
be a sequence of subsets of H each of size a. Let C be a block-partition of the TD
with the following property: for each aggregate C € C and each i = 1,2,... ,u,
the set {H* 1 : 1 € J; N (Uyec b)} form a v-parallel class on J;. Then there is a
K-PIGD;,, of type hT whose block set is y-resolvable.

These two constructions are complicated and very powerful. In our case, if we
begin with a anti-Pasch GDD, we can inflate to get anti-Pasch resolvable GDD.
The proof of this theorem is involved, and we do not include it here. However,
this construction works as if we inflate the GDD is such a way that for every block
of size k, we put the TD(k, k) that corresponds to the groups of of the k points.
Hence, in the case of all blocks having size three, if the TD(u, k) has the extra
property that any latin square induces by three rows is an anti-Pasch GDD, then
we produce an anti-Pasch GDD.

Therefore, it is important to know if such TD(u, &) exists.

Lemma 167 If h = p'p3? .. .p3", where p; are odd prime powers and a; are pos-
itive integers, and m = min;(p{’), then there ezists a TD{m — 1,h) admitting
H=F;} x Fj? x ... x Fgr acting sharply transitively on the points of each group.
In addition, the TD(3,h) that is defined by any three groups is free of a subsquare

of order two.
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Proof: LetV = F;;' xE‘;: x...x!:’:. There exists m —1 elements ¢,,¢3,... , {1 €
V so that the difference between any two of them are invertible over the ring V.. We
can construct a TD(m —1, k) over V x I,,_; by taking the blocks {(at, +b,1), (at2 +
5,2),... ,(tm-1+b,m—1)}for a,b € V. This is a TD(m—1, h) which V" act sharply
transitively on the points of each group. To see that the TD(3, k) that is defined
by any three groups is free of a subsquare of order two, if there exists a subsquare
of order two, then by either a simple computation or by projecting into certain
TD(3,p) where p is a odd prime power to obtain a subsquare of order two in the
TD(3,p). This implies that the desarguesian projective plane of order p contains a
projective subplane of order two [24]. o

In order to apply Rees’s technique, we begin with an anti-Pasch GDD which
admits a certain resolution. A large class of examples comes from Bose’s construc-

tion.

Theorem 68 [60] If v = 3n where n is odd and (n,7) = 1, then there ezist an
anti-Pasch STS(3v).

Proof: We state the construction; see [60] for a proof. The anti-Pasch STS(3n) is
constructed over V = Z,, x Z3. For every a, b, ¢ € Z,,, we construct a block of form
{(a,1),(b,),(c,i + 1)} if e + b = 2c and i € Z;. Also, we take n blocks of form
{(z,0),(z,1),(z,2)} for z € Z,. ]

In the above construction, if {(a,1),(b,%),(c,z + 1)} is a block then so does
{(a +1,1),(b+1,i),(c+ 1,7 + 1)} and {(a,i + 1), (], + 1), (c,% + 2)}. Hence, this
design is transitive over Z,, x Z3. In fact, the starter blocks are {(0,0),(2,0), (1,1)},
{(0,0), (4,0),(2,1)},-..,{(0,0), (r—-1,0),((r—1)/2,1)} together with a short orbit
{(0,0),(0,1),(0,2)}. Each starter blocks form a 3-resolution class. Hence, Bose’s
construction gives a 3-resolvable anti-Pasch GDD of type 3™.
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Before we present a general construction, we first illustrate with an example.

Take a STS(15) that is constructed by Bose’s construction. The starter blocks
are {(0,0),(2,0),(1,1)}, {(0,0),(4,0),(2,1)} and {(0,0), (0,1),(0,2)}. The starter
block {(0,0),(4,0),(2,1)} generate a 3-parallel class when it is developed over Z; x
Zs. Let A ={(0,0),(2,0),(1,1)} and B = {(0,0),(0,1),(0,2)}. Now A+(0,0), A+
(0,1), A+(0,2), B+(3,0), B+(4,0) and A+(2,0), A+(2,1), A+(2,2), B+(0,0), B+
(1,0) give two l-parallel classes. The remaining blocks form a 2-parallel class. We
can treat this as a [1, 2, 3]-resolvable anti-Pasch 3-GDD of type 3°. We take H=Z,
where p is a prime, (p,5) = 1 and apply Theorem 66. Let H; = {0,1}, H, = {0,1,2}
and H; = {0}. We consider two cases.

p =5 (mod 6): Six parallel classes

{H1+k—2}U{Hg+3i+k:i=0,1,...,%(p-—S)}:k:O,l,z,

{H +2+k+1:i=0,1,... ,-;»(p—5)}U{Hz+k-—2}:k=0,1.

and
{Hs+i:i=0,1,... ,p}.

p =1 (mod 6) (p > 13): Six parallel classes

{Hi+k+3,H +k+8,Hy+kHy +k+5}U{H, +3i+k+10:
1=0,1,... ,%—@—13)}:k=0,2,4;

and

(Hy+9,H, +3,H, + 6, H; + I} U{H, + 2% +14:i=0,1,... ,%(p-l?.)};
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and

(Hi+2%+11:i=0,1,... ,%@—5)}U{Hz+8}.

and

{H3+i:i=0117“' ’p}'

When h = 7, we simply take {H, + ¢, Hy +3 +1,H; +6 + i} fori = 0,1,2,
{H,+6,Hy+2,H, +4}, {H;,H, +5,H; + 3,Hs + 2} and {H, + 1, H: + 6, Hs +
3,H; +4, H; + 5}.

Hence, Theorem 66 yields a 3-QFRGDD of type (3p)® for all (p,5) =1 and p
an odd prime. The general pattern is extracted from [101].

If h =25, we use a Fy5 = {a+ ba: a,b € Zs}. Take H, = {0,1,2}, H, = {3,4}
and Hy = {0}. It is clear that {H; + k+aa:a =0,1,... ,4}U {H, + k + aa} :
a=0,1,...,4}} for k € Zs gives 5 parallel classes. Also, {Hs +1i : i € Fys} gives
the last parallel class. Hence, by Theorem 66 gives a 3-QFRGDD of type (75)°.

Filling holes in QFRGDD by anti-Pasch KTS yields anti-Pasch KTS of bigger
order. For example, we fill the holes of a a 3-QFRGDD of type 57° using an anti-
Pasch KTS(57) to obtain an anti-Pasch KTS(285). Also, we can inflate a QFRGDD
by a QFRTD(3,n) to obtain a QFRGDD of bigger order.

The most natural way to extend this examplé 18 to find a A-resolvable QFGDD
and use Rees’s construction. First of all, we need to understand more about the
resolvability of the QFSTS given by Bose’s construction.

We first look at the case of the QFSTS(3(6n + 1)) with n > 2. In particular,
we prove that it can always be resolved into ten parallel classes and the remaining

blocks into 3-parallel classes.
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Lemma 168 Let B= {{0,b,2b} + a} : ¢ € Zgn41, b € Zens1} and (b,6n +1) = 1.
Then B\{{0,b,2b} +a} can be partitioned into three sets of size 2n so that eny two

blocks in each class are block disjoint for any a € Zgp4r.

Proof: fb=1,let B={a,a+1,a+ 2}, then we consider the following partition
{{B+3+j+a}:i=0,1,...,2n — 1} for j = 1,2,3. Since (b,6n+ 1) =1, we
just multiply the partition by b to obtain a solution for the general case. m}

Lemma 169 There ezists a QFSTS(3(6n + 1)) (n > 2) with at least ten parallel

classes and the remaining blocks can be partitioned into S-parallel classes.

Proof: Let A, = {0,1,2}, A, = {3,5,7} and A, = {4,8,12}. Form the starter
blocks {(0,0), (2a,0),(a,1)} and develop them over (—,Z3). From Lemma 168, we
know that each of the starter blocks, when developed over Zgn41 can be partitioned
into three almost parallel classes (missing one point with respect to first compo-
nent). By taking the starter blocks {(0,0),(2a,0),(a,1)} for ¢ = 1,2,4, we can
put the leftover block block in A,. For each almost parallel class, we can add a
block {(z,0),(,1),(%,2)} to form a parallel class. Hence, {(0,0), (2a,0),(a,1)} for
a = 1,2,3 together with {(0,0),(0,1),(0,2)} generates ten parallel classes when
developed over the group. O

Lemma 170 There ezists a $-QFRGDD of type (3p)***! for all primep > 6n+1
and (6n +1,7) =1 endp =1 (mod 6).

Proof: From Lemma 169, there exists a 3-QFG15D of type 3°**! with nine parallel
classes. We use Theorem 66 by taking H; = {0,1,2} for¢ = 1,2,... ,3n - 3 and
G; = {0} fori=1,2,...,9 since there are 3n — 3 3-parallel classes and 9 1-parallel
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classes. In order to apply Theorém 66, we have to partition {H; +a} and {G; + a}
fori=12,...,3n-3,j =1,2,...,9 and a € Z, into 1-parallel classes on Z,.
Now for every { H; +a}, one can obtain 3 almost parallel class on Z, together with a
leftover block {a,a+1,a+2} for any a € Z, (Lemma 168). For each almost parallel
class, we complete it by add.ing an extra block G; + k to obtain a parallel class on
Z,. Since a is arbitrary, we can force the leftover block in {H; + b} for b € Z, be
{0, 1,2}, the leftover block in {H, +b} for b € Z, be {3,4,5} and so on. So { H;+b}
forbe Z,fori=1,2,3,...,2p and G, can together produce 6p+1 parallel classes;
three from each H; and the last parallel is obtained by taking all leftover blocks
in each set of {H; + b} for i = 1,2,...,2p together with the remaining block in
{G: +b}. When we exhausted all {H;+b} for b€ Z,and ¢ = 1,2,...,3n—3, then
everything else must be able to partition to 1-parallel classes since all {G; + b} for

b € Z, are singleton. o

We just illustrate the technique by using the above example; however, we can
obtain a much stronger result by using other constructions in case of anti-Pasch

KTS(3u) for (u,3) =1.

In the case of anti-Pasch KTS(9u), we obtain an excellent solution using Rees’s
construction. We need the following technical lemma.

Lemma 171 Let V = Z,, v > 3 odd and B= {{0,1,2} + a}:a € Z,}. Ifv # 5,

then there ezists a strong vertez colouring on V with at most 4 colour classes.

Prooff IKfv =3m, thenlet C; = {3t : i = 0,1,..., m—1}, C; = C, +1
and C3 = C;+2 fv=6m+1,thenlet C; = {3t : i =0,1,... ,2m — 1},
C=C,+1,C3=Ci+2and C = {6m}. Fv=6m+5,let C;, = {3i: i =
0,1,2,...,2m—-1}U {6m+1},C; =C; +1, C3 = C; + 2 and C; = {6m, 6m + 4}.
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For any block {a,a+1,a + 2}, the three points are in three different colour classes.
]

Lemma 172 Let V =Zjnyy X Z3, n # 2 and B = {{(0,0), (2a,0),(a,1)} +b:be
V} fora=1,2,... ,n. There ezists a strong vertez colouring on V with at most 4

colour classes for everya=1,2,... ,n.

Proof: First of all, use Lemma 171 by taking v = 2r+1 to obtain C; for¢ =1, 2,3, 4.
If (a,2n + 1) = 1, then we can construct D; = aC; x Z3 which is the appropriate
vertex-colouring. If (a,2n+1) = c, let (2, 22%) = 1 and apply Lemma 171 by taking
v = 281 ¢ obtain C; for i = 1,2,...,4. Then define T; = 2C; for i = 1,2,3,4.
For every z = 0,1,... ,2n, define T = {z : z = qc +r,q € T;}. Finally, define
D; = T! x Zs, which is a strong vertex colouring. ]

We can now prove the following theorem using Rees’s Theorem.

Theorem 69 If v = 9n where n is odd, v # 45 and (n,7) = 1, then there ezists
an anti-Pasch KTS(v).

Proof: From the given condition, Bose's construction constructs a 3-resolvable
QFGDD of type 3". For every 3-parallel class, there exists a strong 4-vertex colour-
ing. Hence, we can regard this as a PIGD with block size three and four groups.
Apply Theorem 67 with a TD(4, 3), taking each H* = Z3 and C be the block set of
the TD. This gives a 3-QFRGDD of type 9”. Fill in the hole with the QFKTS(9)
to get the desired result. - o

4.4.4 Zhu, Du and Zhang’s Construction

In this subsection, we use a technique introduced by Zhu, Du and Zhang [123] and
later extended by Rees and Stinson [102].
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A design D is said to be s-block-colourable if its blocks can be coloured with s
colours in such a way that any two blocks of the same colour do not intersect. Such
an assignment of s colours is said to be an s-colouring. If D is s-block-colourable
but not (s — 1)-block-colourable, we say that the chromatic indez of D is s. In a
sense, the chromatic index is a measurement of how close the design is to being

resolvable.

Theorem 70 [123] Suppose there ezists an RBIBD(u,k,1), a B(v,k,1) which is
s-block-colourable, and @ RTD(k,v). If s < vy + 7, where v, = =2 and r, = =4,

then there ezists an RBIBD(uv,k,1).

Theorem 71 [102] Suppose there ezists a k-RGDD of type g*, a k-GDD of type
(mg)? with the property that there is an s-colouring of its blocks such that each color
class precisely covers some subset of its groups, and ¢ RTD(k,mv). Ifs <ry + 1,

where T, = 9-(,:‘—_-'111 andr, = ﬂ‘%};—l)-, then there ezists a k-RGDD of type (mg)™’.

In both of these constructions, we just take a RGDD and inflate it by a RTD
and fill in the hole with GDD and we obtain the resolution by using the colour
classes. i'fwe can replace all ingredient by a QFKTS, QFGDD and QFRTD, then
we can obtain a similar result for the construction of QFRGDD. A QFRTD(3, n)
exists for all n odd. More results on QFRTD are proved in next subsection. We
therefore need some QFGDD with small number of colour classes. Again, we can

obtain some from Bose’s construction.

Again, we need a technical lemma.

Lemma 173 Letn = 6k +5 and C; = {i,i + 1,: + 2} fori = 0,1,... ,n — 1,
arithmetic over Z,. IfC= {C; : i = 0,1,... ,n — 1}, then for any a,b € Z,
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C\(C2UC}) can le partitioned into three sets of 2k+1 blocks so that any two blocks

in the same set are disjoint.

Proof: We sort the blocks in ina:eas'ing order of i, then we put the i** blocks in
the ¢ (mod 3) set. This gives the required partition. a

Theorem 72 There ezists a 3-QFGDD of type 3**' which is 3k + 6 colorable
and each colour class misses a subset of the groups when k = 0,2 (mod 3). and

(k+1,7) =1.

Proof: We use the QFGDD of type 32*+! from Bose’s construction where the groups
are formed by taking {(¢,0),(3,1),(3,2)} where i € Z2 ;. We construct a graph
G = (V, E) as follows: V = Zy,\ {0} and (a,d) € E if {a,2a,3a} N {b,2b, 3b} # 0.
Each vertex has degree at most six so by Brooks’s Theorem in vertex colouring
[25], this graph is 6-colourable. If 2k + 1 = 1 (mod 6), for every colour class, we
consider a subset of the vertex induce by the vertex {1,2,... ,k}. In each of the
colour classes, we can obtain a partial parallel class missing a subset of group as
follows: for C a colour class, take {(c,%),(3c,%),(2¢c,t +1)} fort € Zs and c € C.
This gives a partial parallel class missing a subset of groups. Hence, we obtain six
partial parallel classes. For any starter blocks {(0,0), (2a,0), (a,1)} over Zzz41 X Zs,
we have used up the translates {(a,1), (3a,%), (2a,i+1)}. The remaining blocks can
be partitioned into 3 partial parallel classes, each missing one group. In the case
when 2k +1 = 5 (mod 6), we observe that the vertices for @ and —a correspond
to two distinct translates of the starter block {0,a,2a}, for every starter block
{(0,0), (2a,0), (a,1)} in the QFSTS by Bose’s Construction, six blocks are used up
to obtain 6 partial parallel classes. The remaining blocks for every starter block
form 3 partial parallel classes. : o
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Theorem 73 Suppose there ezists an anti-Pasch KTS(v) where v > 15, and w =
3,15 (mod 18), then there ezists an enti-Pasch KTS(%).

Proof; Take a 3-QFGDD of type 3% from Bose’s Construction which is 232 + 6
colourable. Apply Theorem 71 to obtain the result. a

Lemma 174 There ezists a 14-colourable 3-QFGDD of type 37 so that each colour

class misses a subset of groups.

Proof: A QFSTS(21) exists by taking V = Z7 x Z; with the starter blocks
{(0,0),(0,1),(0,2)}, {(0,0),(1,1),(3,0)}, {(5,0),(2,2), (4,0)} and {(0,0), (4, 1), (5,0)}
The first starter block generates a parallel class for the STS. The second and third
starter blocks generates seven partial parallel classes when developed over Z7 x Z3
since each mod 7 component is distinct. The last block generates another seven

partial parallel classes. m]
Corollary 20 Ifv =9n, v # 45,63, then there ezists a QFKTS(v).

Proof: If (v,7) = 1, then we obtain the conclusion of the corollary by Theorem
69. If v = Tw where (w,7) = 1 and w # 9,45, then take a 14-colourable 3-
QFGDD of type 37 Lemma 174, a QFRGDD of type 35 apply Theorem 71 to
obtain a QFRGDD of type 3. When w = 45, a QFKTS(105) is constructed in
next subsection. Inflate it by 3 to obtain a QFKTS(7(45)). If v = 7°w where
(w,7) =1 and a > 2, we can apply Theorem 69 by taking a QFRGDD 3% and a
14-colourable 3-QFGDD of type 37, the case when v = 7?(9) can be obtained by
taking a QFKTS(3(49)) and inflate by 3. a
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4.4.5 A GDD Construction

In this section, we present a GDD construction for anti-Pasch KTS.

Theorem 74 If there ezists ¢ QFKTS(2v+1), a QFKTS(2w+1) end a QFRTD(3,w),
then there ezists a QFKTS(2vw + 1).

Proof: The proof is similar to Theorem 55 and thus omitted. o

In the remainder of the subsection, we prove some existence results concerning

QFRTD(3,n).
Lemma 175 If n is odd, then there ezists ¢ QFRTD(3,n).

Proof: Construct the TD(3,n) by taking V = Z, x {0,1,2}. The block set is
{{(a1 0)1 (b: 1)! (a + ba 2)} - a, be Zn}- a

Corollary 21 There ezists ¢ QFKTS(105).

Proof: Apply Theorem 74 with v =4 and w = 13. o

We only have to deal the case when = is even.
Lemma 176 There is no QFRTD(3,n) for n = 2,4,6,8.

Proof: When n = 2,6, there do not exist two MOLS of order n. When n = 4, there
is no QFTD(3,4) [93]. All QFTD(3,8) were enumerated in [50], none of which is

resolvable. |

Lemma 177 There ezists a QFRTD(3,n3) when n # 2,4.
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Proof: This is a simple consequence from Lemma 2.1 in [101] by starting off with
a QFTD(3,n). a

Lemma 178 If there ezists a QFRTD(3,n) and a QFRTD(3,m), then there ezists
a QFRTD(3,mn).

Proof: This is just a simple inflation and the proof is thus omitted. a

In order to apply Rees’s techniques for constructing QFRTD, we need to con-
struct QFTD(3, n) with some type of resolutions. We give one example here.

Lemma 179 There ezists a N;-square of order eight with siz disjoint transversals.

Proof: We consider the following latin square of order 8.

456

=i

[ &1

-3
- O

o“ U‘ hl wv M!
= N =3 W
L N O O
gu O =y
N O» = (=1

Ou =3 & O O Wi
[}

o == -3¢

W N O = v

o -J?

(=]
DIl e i G
L o G

4 7

(1]

(i
S-o;mm-ou-.n.m.-»m;

Ea

Loy}

of the six different types of accents corresponds to a transversal. 0O

Lemma 180 Ifn =8 (mod 16) and n # 8, then there ezists a QFRTD(3,n).

Proof:  Since (n,3) = 1, then we can use Theorem 66 since a point regular

QFTD(3,n) exists. If n = 3, take a transversal and a 2-resolution class and apply
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Theorem 67 with a RTD(3,3). For any other parallel classes, we simply take a
direct product with a RTD(3, 3). a

Next, we have a non-trivial application of Rees’s theorem.
Lemma 181 Ifm andn are odd number at least one, then there ezists a QFRTD(3,4mn).

Proof: We recall a construction in [73]. If n is odd, we can construct a QFTD(3, 2r)

. A B+n .
by taking the square N = where A;; = i — j + 1 (mod n),
' C+n A

B;;j =i1+4+j—1 (mod n) and C;; =i+ j — 2 (mod n). We can treat this square
with elements in Z,. Since n is odd, then all A, B and C are resolvable. For
any transversal, I, T € {A, B,C}, we have {{0,n} + T;; : (i,j) € I} forming a
1-parallel class on Z,. Also, the TD(3,2n) that is constructed here is 2-resolvable.
We apply Theorem 67 as follows: take a QFTD(3,2m) which is 2-resolvable and
take a QFTD(3,2n) that is arisen from the above construction. Let H* = {0,n}
for 1 = 1,2, 3, apply Theorem 67 to obtain a QFRTD(3,4mn). (]

Theorem 75 If 8|v, then there ezists @ QFRTD(3,v) for all v # 2° for a =
1,2,3,4,5.

Proof: Ifn = 8m, m > 2 and m odd, then it is proved in Lemma 180 that
we can obtain a QFRTD(8,n). If » = 16m where m > 2 and m odd, we take
a [2,2,2,2]-resolvable QFTD(3,8) and apply the technique in Lemma 181 to ob-
tain a QFRTD(16,n). If » = 32m where m > 3 and m odd, we use a sim-
lar technique by treating the QFTD(3,8) as a [4,4)-resolvable QFTD(3,8) and
multiply it by a QFTD(3,4m) coming from a non-uniform direct product of N>-
latin square [73]. We take the point set of the QFTD(3,4m) as Z,, and each
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H* = {0,m,2m,3m} for i = 1,2. In general, when n = 2°m where a > 6,
m > 2 and m odd, if ¢ = 0 (mod 2), then we take a QFTD(3,2%/2) to ob-
tain a QFRTD(3,2*) by Lemma 177. This gives a QFRTD(3,n) by a simple
direct product with a QFRTD(3,n). If a = 1 (mod 2), we can construct a 2-
resolvable QFTD(3,2°%) by doubling a QFRTD(3,2°"!) (Lemmma 157), multiplying
by a QFTD(3,2m) as in Lemma 181. If n = 2°, take a [4, 4]-resolvable QFTD(3, 8)
and doubling gives a [8,8]-resolvable QFTD(3,16). Apply Theorem 67 to obtain a
QFRTD(3,128). Since a QFRTD(3,22*) exists for all a > 3, a simple direct prod-
. uct gives a QFRTD(3,2%) for all b > 13. We can also obtain a [16,16]-resolvable
QFTD(3,32) and a [32,32]-resolvable QFTD(3,64) by taking a non-uniform direct
product. Multiplying it by a QFTD(3, 32) and a QFTD(3, 64) gives a QFRTD(3, 2°)
fora=9and a =11. 0o

It is of great interest to settle the problem QFRTD, both of its interest in
QFKTS and it is also an extension of the N,-latin squares problem.

4.5 5-sparse Triple Systems

As mentioned in Section 4.2, the problem of determining those v for which there
exists an anti-Pasch STS of order v and anti-mitre STS of order v appears to be

difficult.

One might ask for the stronger property that an STS(v) be both anti-Pasch
and anti-mitre. No such system exists for v < 15. More generally, call an STS(v)
r-sparse if every set of r+2 elements carries fewer than r triples. Every STS(v) is 3-
sparse, and every r-sparse STS(v) is also (r —1)-sparse. Erdés (see [76]) conjectures
that for every r, there exists a finite r-sparse STS(v). An STS(v) is 4-sparse if and
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only if it is anti-Pasch; and it is 5-sparse if and only if it is both anti-Pasch and anti-
mitre. It appears that the only known class of 5-sparse triple system is a special
class of Netto triple systems (see [76]).

Let G be an abelian group. An STS(v) is transitive over G if V = G and for
every a € G and {a,b,c} € B, {a + a,b+ a,c + a} € B. When G is the cyclic
group, the STS is also called cyclic.

4.5.1 Main Construction

Let S = (V,B) be a transitive 5-sparse triple system on Z, or F,, where [V| = v.
Let C = {{~a,—b,—c} : {a,b,c} € B}. Let S’ = (V,C). §' and S are isomorphic,
and hence §’ is also a transitive 5-sparse triple system. When v =1 (mod 6), one

can verify that S and S’ are block-disjoint.

Theorem 76 If v = 1 (mod 6) and a transitive 5-sparse STS(v) ezists, then a
5-sparse STS(3v) ezists.

Proof: We construct an STS(3v) on V x {0,1,2}:

(1) For any block {a,b,c} € B, construct two blocks {(a,%),(b,%),(c,%)} for i =
0,1.
(2) For any block {a,b, c} € C, construct a block {(a, 2), (b,2),(c,2)}.
(3) Construct the blocks {(¢,0),(4,1),(i + 5,2)} for i,5 € Z, or F,.
We show that this is anti-mitre. We call blocks of types 1 and 2 horizontal and

blocks of type 3 vertical. Suppose to the contrary that there exists a mitre in the
STS(3v). Let a be the centre in the mitre. We distinguish two cases:
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Case 1: There exists a block in the mitre through a which is horizontal. We
assume the block is of the form {(a,3), (b,%),(k,%)}. Next, we have to distinguish
into three sub-cases according to the value of <.

Subcase 1.1: When ¢ = 0, we have a block of the form {(a,0),(5,0),(c,0)}. If
there is one more block in the mitre through a in horizontal, then all blocks in the
mitre are horizontal. Hence, this gives a mitre in S, a contradiction. Hence, we can
assume the other two blocks through a are vertical. We assume they are of the form
{(a,0),(e,1),(a +¢,2)} and {(a,0),(f,1),(a+ f,2)}. We can force the remaining
two blocks are of the form {(b,0), (e, 1), (a+ £,2)} and {(c,0),(f,1), (a+e,2)}. We
must have b+ e =a+ f and c+ f = a + e. Adding gives b + ¢ = 2a which is the

same as b — @ = a — ¢. But S is cyclic, a contradiction.

Subcase 1.2: When ¢ = 2, we have a block of the form {(a,2), (b,2), (c,2)}. Again
all other blocks through a must be vertical blocks. We can assume that they are of
the form {(e,0), (a—e, 1), (a, 2)} and {(f,0), (a— f,1),(a,2)}. Hence the remaining
blocks must be of the form {(e,0),(a — f,1),(b,2)} and {(f,0),(a — €,1),(c,2)}.
This gives e+a = b+ f and f+a = c+e. Adding gives 2a = b+c, a contradiction.

Subcase 1.8: When i = 1, it reduces to Subcase 1.1 by symmetry.

Case 2: All blocks through a are vertical. So the remaining two blocks must be

horizontal. We break down in to three cases again.

Subcase 2.1: When a is in level 0, without loss of generality, the two horizontal
blocks are {(p,1),(g,1),(r,1)} and {(=,2),(y,2),(2,2)}. We must havea +p =z,
a+g=yand a+r =z Since {p,q,r} € B, then {a+p,a +¢,a+r} € B, that is,
{z,y,z} € B. But {z,y, 2} € C. This is a contradiction.

Subcase 2.2: The case when a is in level 1 reduces by symmetry to Subcase 2.1.
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Subcase 2.3: When a is in level 2. Assume the two horizontal blocks are
{(7,0),(2,0), (r,0)} and {(2,1), (v, 1), (=, 1)}. This gives p+z=gq+y=r+z=
a. We know {p,q,7},{z,y,2} = {a — p,a — q,q— 7} € B. Since S is cyclic,
{-p,—q,—r} € B. But then {p,q,7} € C, which contradicts the observation that
B and C are disjoint.

That the STS(3v) is anti-Pasch follows from the argument in [60]. Hence, we
obtain a 5-sparse triple system of order 3v.

Corollary 22 Ifv = 3m where m = p" where p is a prime and p =19 (mod 24),
then there ezists a 5-sparse triple system of order 3m.

Proof: The Netto triple system of order p™ [104] is transitive over Fp» and 5-sparse
[47]. |

Corollary 23 Ifv = 3 (mod 18) and 99 < v < 291, then there exists a 5-sparse

triple system of order v.

Proof: In [47), cyclic 5-sparse triple systems are constructed for all 33 < v < 97
and v =1,3 (mod 6). m)

4.5.2 An Extension

In this section, we extend the construction in previous comstruction to give a

product-type construction of §-sparse triple systems.

In the construction in the subsection 1, it is possible to permute the points so

that we put the same copy of STS in V x {2} asin V x {1} and V' x {0}. In fact, all
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we need to do is to replace the vertical blocks by {(z,0),(7,1),(— — 7,2)}. Using

this simple observation, we can obtain a product construction.

Theorem 77 If there ezist a transitive 5-sparse STS(v) S = (V,B) over F, or Z,,
v = 1 (mod 6) and a 5-sparse STS(w) S' = (W,C), then there ezists a 5-sparse
STS(vw).

Proof: We construct a STS(vw) on V x W. For every block {a,b,c} € C, we
construct v blocks of form {(i,a), (j,8), (—% — j,c)}. For every block of form
{a,b,c} € B, we construct w blocks of the form {(a, w), (b, w), (¢,w)} wherew € W.
These form a STS(vw). We show that it is anti-mitre. If the mitre involves a block
of form {(a,w), (b, w), (c,w)}, then either all blocks in the mitre has second coor-
dinates w or all blocks form the mitre are from a TD(3,v) together with the blocks
from the three STS(v). In this case, we have a contradiction by Theorem 76. Since
none of the blocks involved can come from a block of the form {(a, w), (b, w), (¢, w)},
all points in the mitre must have distinct second-coordinates. (Consider the central
element of the mitre and its neighbours.) Hence, if we project all points to their

second coordinate, we obtain a mitre in STS(w), a contradiction.

Next, we show that the STS(vw) is anti-Pasch. Suppose there exists a Pasch in
the STS(vw). If the Pasch involves a block of form {(a,w), (b, w),(c,w)}, then it
is easy to check that the three remaining points in the Pasch must correspond to
different points in STS(w). By projecting the points to STS(w), this gives a pair of
point dppearing in two blocks in the STS(w), a contradiction. Otherwise, it is easy
to check that the six points of the Pasch must correspond to either 3 points or 6
points in STS(w). In the former case, this reduces to a Pasch in the TD(3,v) that
we constructed, a contradiction. In the latter case, this gives a Pasch in STS(w), a
contradiction. a
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This product construction is different from those for anti-Pasch systems in [60]
and [112]. In fact, using this product construction together with the techniques in
[60], one can easily see that there exists a 3-resolvable anti-Pasch STS(6m + 3) for
any m.

The following construction is easily seen to be embedded from the construction

shown in this section.

Theorem 78 If there ezists a transitive anti-mitre STS(v), v =1 (mod 6) and an
anti-mitre STS(w), then there ezists an anti-mitre STS(vw).

4.6 Update Penalty Four

In this section, we examine codes in which each information disk has exactly four
check disks. Let us remark at the outset that the full 4-code consisting of all distinct
columns with four 1’s fails to correct all 4-erasures. Indeed if any two columns have
1 entries in three common rows, an unacceptable 4-erasure consists of the two
corresponding information disks, and the two check disks required to obtain zero

sum.

Lemma 182 A {-erasure correcting code with ¢ check disks and minimum update

penalty has at most E&%@l information disks.

Proof: We remark earlier that any two rows cannot have 3 common entries. Hence,

a simple computation reveals the result. a

If (V,B) is a BIBD, we call the design simple (super-simple) if |B; N B;| < k
(I1B1 N B;| < 2, respectively), for all choices of B,, B, € B. Thus 4-erasure codes
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arising from BIBDs come from super-simple designs. In fact, if the bound of Lemma
182 is met, one can easily check that every triple occurs in exactly one block, and
hence the set system is a Steiner quadruple system (see [65] for a comprehensive

survey of these designs).

However, not all super-simple designs yield 4-erasure correcting codes. Super-
simple designs avoid the configurations

cm@:g:g;g

A set system in which no union of ¢ blocks contains another is called t-cover-free;
one in which unions of ¢ blocks are all distinct is £-union-free. Under the constraint
of super-simplicity, the exclusion of the first configuration ensures that a 4-erasure
correcting code arises from a 2-cover-free set system; the exclusion of the second
and third requires in addition a 2-union-free set system. Set systems that are
simple, super-simple, 2-cover-free or 2-union-free have all been studied to varying
degrees. However, set systems avoiding the six required configurations have not
been studied. Later (in Theorem 79), we establish a cubic lower bound on the

number of blocks avoiding these six (and other) configurations.

4.6.1 (4,5)-Erasure Correcting Codes

Here we address the more difficult problem of finding 4-erasure correcting codes
with update penalty four, which correct all 5-erasures except for bad 5-erasures
(1 information disk and its four check disks). Naturally, any set system giving
such a code must avoid the six configurations shown in the previous subsection. A

tedious calculation (best done by computer) demonstrates that there are precisely
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nine other configurations that must be avoided to ensure that no unacceptable

@ (£
‘3 7R By

Theorem 79 Let q be an odd prime or prime power, and let n be an integer satisfy-

ingl<n< 9;—1 Then there ezists a (4,5)-erasure correcting code having 3¢—1+n
check disks and nq(q — 1) information disks.

Proof: Let w be a primitive element of the finite field GF(q). We will define a code
[A | I] with rows indexed by

(GF(q) x {r}) U (GF(@\{0}) x {c}) U (GF(g) x {s}) U {1, ds, ..., dn}.

Columns are defined as follows. For z € GF(q), y € (GF(g)\{0}), and 1 <i < n,
there is a column containing ‘1’ entries in rows (z,r), (y,¢), (z + «'y, s) and d;.

This defines ng(q — 1) columns for A. We must verify that the code so defined
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corrects all 4-erasures, and all 5-erasures except bad ones. Partition A into n
matrices Ay,...,As, each (3¢ — 1 + n) x g(g — 1), by placing all columns hav-
ing & = 1 in A;. Now suppose that ¢ < § columns are selected; we must
ensure that they do not form an unacceptable erasure. Let ¢; be the number
of columns in the selected set that are from A4;. If t{; = 5 for any ¢, the sum
in row d; is odd and hence the erasure is correctable. If {; = 4, then all of
{t1,-..,ta}\{t:} are zero. Moreover, within A; there are columns with ‘1’ entries
in positions {(ry,7),(c1,¢),(s1,8)}, {(r1,7), (c2,¢),(52,8)}, {(r2,7),(e1,¢),(52,3)},
and {(rs,7), (c2,¢), (s1,5)}. But then ry + w'e; = s, = 73 + w'c; and 7y + wic; =
83 = 13 +w'c;. It follows that s; = 35, 7y = r; and ¢; = ¢z, and hence four distinct

columns have not been chosen.

Ift; =t; = 1, i # j, then none of {t;,...,t,}\{t:,¢;} are nonzero (otherwise,
t > 3 but at least 3 rows have odd sum in the chosen columns, so the erasure is
correctable). Now no column of A; agrees with a column of A; in the position of
three ‘1’ entries, so at least four rows have odd sum, and the erasure is correctable.
If t; = 1 and all of {t;,...,t.}\{t:} are zero, this is precisely a bad 5-erasure. If
t; = 2, since no two columns of A; agree in the position of three ‘1’ entries, these two
columns have odd sum in at least four rows (consisting of zero or two each among the
‘r’, ‘c’, and ‘s’ groups). Now no column in A contains ‘1’ entries in more than two of
these rows, and hence the only case to consider is when ¢; = t; = 2, i # j, then none
of {t1,...,ta}\{t:, ¢;}. In this case, an unacceptable erasure must consist of columns
with ‘1’ entries in positions {(r1,7),(c1,¢), (81, 8),da,}, {(r1,7), (c2,¢), (52, 8),ds, },
{(r2,7), (c1,¢), (33, 8),das }, and {(r2,7),(c2,¢),(81,3),ds,}. Without loss of gener-
ality, (a,,az,as,a4) is one of (i,1,7,7), (i,4,4,7), or (,4,7,1). it is (i,1,7,7), we
have the equations ry + w'c; = r; + wic; and r, + w'c; = 72 + wc;. These are

satisfied only when w* = —w’ or ¢; = c;. But —w’ = w#+(@-1)/2 gince q is odd, and
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it #j (mod (¢ — 1)/2) since 1 < i,j < (¢ —1)/2. Hence ¢; = c3, from which it

follows that s; = s; and r; = r3, which is impossible.

If (a4, a3, as, as) = (8,5,%,7), one obtains ry —s; =rz — 32 and r; —s3 =r; —3y,
which forces s; = s; and r; = r;, since q is odd. But then ¢; = ¢ as well, which is
impossible. If (a3, az, a3, a4) = (, J, j, i), we have the equations r; +w'c; = r2 +w'c,

and 1, + wicp =15 + wiey; the argument proceeds as in the first case. a

Taking n as large as possible in Theorem 79, when ¢ = 3¢—1+ ’;—1 is the number
of check disks, the number of information disks is (4c® —10c* —8c+24)/343. Hence
the check disk overhead approaches 33 for large g.

One drawback of the codes produced in Theorem 79 is that the row sums are
large and not uniform. Among the 3¢ — 1 + n rows, 2q have sum (g —1), ¢-1
have sum nq, and the remaining n have sum ¢g(q — 1). When n = 9—;—‘-, all groups
have size ©(g?), but the largest group remains twice the size of the smallest. One
could, however, split each of the rows d, ..., d, into two rows, assigning arbitrarily
half the ‘1’ entries to each. This yields a code with 4g — 2 rows, and all groups of
size ¢°/2 or q(g —1)/2.

4.6.2 (4,6)- and (4,7)-Erasure Correcting Codes

In order to correct 6-erasures, one must avoid the configuration shown next:

o o0

Hence the corresponding set system must be a packing with block size four. This
obviates the need to consider many of the configurations treated earlier. Indeed, a
packing with block size 4 is always 4-erasure correcting; it is (4,5)-erasure correcting
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if and only if it avoids the first configuration (the dual arc or darc) shown next,
and it is (4,6)-erasure correcting if and only if it avoids both configurations shown
next:

Finally, it is (4,7)-erasure correcting if and only if it avoids in addition the four
configurations depicted here:

D G-
SO o-&
O-00 OO

In a (4,6) or (4,7)-erasure correcting codes, the number of information is at
most 3("7"11. The equality occurs when the codes correspond to a BIBD(v,4,1).
In the case of (4, 7)-erasure correcting correction codes, we have found some codes

which correspond to BIBDs

Lemma 183 There ezists a BIBD(13,4,1) avoiding all siz configurations.
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Proof: The unique BIBD(13,4, 1) corresponds to a projective plane of order 3.
Hence, any two lines intersect in exactly one point. Therefore, it misses the last
five configurations. If the first configuration sits in the BIBD(13,4, 1), dualize the
design to obtain a hyperoval in a projective plane of order three, a contradiction.
a

Lemma 184 There ezists a BIBD(v,4,1) avoiding all siz configurations for v =
40,49, 52,61, 64.

Proof: All of them are found over the group Z,,.

40: {0,10, 20,30}, {0,1,4,13}, {0,2,17, 24}, {0,5,26,34}.

4

o

: {0,1,3,9}, {0,4,18,37}, {0,5,25,32}, {0,10,21,36}.

5

N

: {0,13, 26,39}, {0,1,3,11}, {0,4,16,37}, {0,5,14,32}, {0,6,23,30}.

6

-t

: {0,1,3,8}, {0,4,13,36}, {0,6,28,49}, {0, 10, 27,47}, {0, 11, 30, 46}.

6

g

: {0,16, 32,48}, {0,1,3,9}, {0,4, 18, 39}, {0,5, 15,41}, {0, 7, 20,47}, {0, 11, 30, 42}.

In fact, there exists 1, 4, 4, 218 and 125 cyclic (v, 4, 1)-design over Z, avoiding
all six configurations for v = 40,49, 52,61, 64 respectively. a

We have a recursive construction for (4, 7)-erasure code.

Theorem 80 Suppose there ezists a (4, 7)-erasure code on b information disks and
v check disks, then there ezists a (4,7)-erasure code on 9b+v information disks and
3v + 1 check disks. In particular, if the (4,7)-erasure code is a BIBD(v,4,1), then
there ezists a (4, T)-erasure code which is a BIBD(3v + 1,4,1).
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Proof: We use the standard v —+ 3v + 1 construction. We can regard the (4,7)-
erasure code as a 4-PIGD of type 1" on V. We construct a packing design on
V x {0,1,2}U{oo}. For every block of size 4, B, we put a TD(4,3) on B x{1,2,3}.
For every v € V, we add a block {00, (v,1),(»,2),(v,3)}.

We claim that this results in a (4, 7)-erasure code. Suppose to the contrary, there
exists a bad configuration in the packing. If it involves the point oo and co is on at
least two blocks of size four, {oo, (v, 1), (v, 2),(v,3)} and {oo, (w, 1), (w,2), (w,3)},
then all other blocks must be in the sub-TD(4,3) including the points (v,1) and
(w, 1), however this is impossible. If it involves the point oo, then oo can only on
one block of size four, suppose the block is of the form {oo, (v,1), (v,2), (v,3)}. Let
{w,1),(=,1),(y,1),(v,1)} be another block of size four, since (w,1) is also on a
block with (v,2), it is clear that all blocks are from the same sub-TD(4,3), it is

impossible.

Next, we claim that if such a configuration exists, then all blocks must be
from different TD(4, 3). Suppose to the contrary, if {(z, 1), (¥, 1), (2,1}, (w,1)} and
{(z,7), (v,2), (2,2), (w, 2)} be two such blocks where ¢ € {1,2}. By examining all
six configurations, we see that for any pair of blocks, there must be a third block
intersects both blocks and the point of intersection is not the ponint (z,1). Hence,
all other blocks must be from the same sub-TD(4,3). Hence, the configuration
must sit inside a TD(4, 3), a contradiction.

If all blocks are from different sub-TD(4, 3), then by projecting the configuration
on V, we can obtain a contridiction. We note that if we project the “near darc”
configuration (the unique configuration having exactly two points of degree one” of

(4, 7)-erasure code, we may get a darc configuration.

The remaining of the theorem follows from a simple counting argument. o
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It cannot be (4,8)-erasure correcting unless no two blocks intersect (in which
case the code is a simple 1-dimensional parity code).

4.7 Weakly Union-Free Twofold Triple Systems
A GDD (X, -Q,B) with block size three is a weakly union-free GDD (wuf GDD) if

1. whenever {{a,b,z},{a,b,y}} C B, the points z and y are in different groups;

and

2. whenever four distinct blocks B, Ba, B3, B, are chosen from B, it does not
happen that B, U B; = B3 U By.

The second condition can be made more explicit: there cannot exist four blocks of

any of the following four forms:

Cl : {{a,b,c},{a,b,d},{a,c,d},{b,c,d}},

C2 : {{z,a,b},{z,q,c},{z,b,d},{=z,c d}},
C3 : {{z,a,b},{z,qa,c} {=,b,d},{a,cd}},
C4 : {{z,a,b},{z,c,d},{y,a,b},{y,c,d}}.

These forms correspond, respectively, to the hypergraphs depicted below.

NP P

Our interest is in the construction of wuf 3-GDDs, and in particular those of
type 1™ and index two. A uniform GDD with group size 1 is a balanced incomplete
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block design; those with k = 3 and A = 2 are called twofold triple systems of order
n, or TTS(n). Frankl and Firedi {55] began the study of wuf TTS(n) in the study
of an old problem of Erdos [54]. In 1938, Erd6s [53] asked what the maximum
number of edges a graph can have and have no 3-cycle, no 4-cycle, and no repeated
edges. In 1977, he [54] asked the more general question: How many hyperedges can
a k-uniform hypergraph have, so that whenever four hyperedges A, B, C, D satisfy
AUB =CU D, we find {A, B} = {C, D}. Such a family is union-free. Frankl and
Firedi [55] settled this question when k = 3, showing that a class of designs, the

Steiner triple systems, realize the maximum.

They also addressed the related question of enforcing the union-free condition
only for sets of four distinct blocks A, B,C,D. This gives the notion of weakly
union-free, already defined. Frankl and Firedi [55] established an important bound,
and showed that it is realized infinitely often:

Theorem 81 (Frankl and Fiiredi [55]) A weakly union-free 3-uniform hyper-
graph on n vertices has at most I‘@J hyperedges. Equality occurs when all, or

all but one, pair of vertices occur in two hyperedges each.

They established that this bound is met whenever n =1 (mod 6), and either n
is a prime power at least 13 or n is sufficiently large. In this section, we establish
that equality is met for all n = 0,1 (mod 3), with a small number of definite, and
a small number of possible, exceptions. Theorem 81 also admits the possibility
that » =2 (mod 3). While we have also found small designs sufficient to obtain a

closure in this class, we concentrate on the twofold triple system case here.

The difficulty of this problem appears initially to be that, while catalogues of
twofold triple systems for small orders are available (see [40], for example), no
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TTS(n) is weakly union-free when n € {3,4,6,7,9,10}. Moreover, when a wuf
3-GDD of type T can be decomposed into two 3-GDDs of index one and type T,
condition (1) together with the exclusion of C4 ensure that these two index one
3-GDDs are “orthogonal” (see [44]). The existence of orthogonal uniform 3-GDDs
with group size 1, the so-called orthogonal Steiner triplé systems, remained open
for thirty years until its recent solution [45]. The exclusion of further configurations
adds to the difficulty of the problem for wuf TTS.

4.7.1 Direct Constructions

In this subsection, we develop a direct construction technique that is used to con-
struct both wuf TTS(n) and, more generally, wuf 3-GDDs of index two. The
general framework follows. We aim to construct a 3-GDD of index two on point set
Zg, U {001,-..,00}, whose type is g¢k!. Naturally, we chose Z, for a portion of
the point set to suggest the c-yc].ic action of the cyclic group on these points. Indeed
our goal is to construct 3-GDDs that have Z,, as an automorphism group.

Let X = Z,, U {00;,...,00t}, and let o be a permutation mapping ¢ — i +
1 mod gu for i € Z,, and fixing {c0,,...,00,}. Let B be the blocks of a 3-GDD of
type g*k! on X that admits o as an automorphism. The action of o partitions B
into orbits of size gu or, when gu = 0 (mod 3), possibly Z*. A set of representatives
of these orbits forms a set of starter blocks for the 3-GDD. Starter blocks of the
form {0, a,bd} C Z,, may generate orbits of length gu under o, in which case the
starter block is said to cover the differences +a, +b, £(b — a) with arithmetic in
Z g (if repetitions occur, such differences are covered the number of times that they
occur). When gu = 0 (mod 3), a starter block of the form {0, £,2%} generates
only £* distinct blocks (a short orbit), and is said therefore to cover the differences
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+%Z once each. Finally, a starter block may have the form {oo;,0, d;}; again, gu
blocks appear in the orbit generated, but here only the differences +d; are covered,

once each.

A set D is a set of starter blocks for a 3-GDD of index two and type g“k! (under
the action of o) if

1. for 1 <t <k, there is exactly one starter block containing co;; and

2. each d € Z,, is covered twice as a difference, unless d = 0 (mod u), in which

case the difference is not covered.

The reader can quickly verify that these conditions on starter blocks are equivalent
to the existence of a 3-GDD of index two and type g“k! admitting o.

In order to be a wuf 3-GDD, further conditions are imposed. Suppose that D
is the set of starter blocks for a 3-GDD of index two and type g“k!. Partition D
into the blocks .A which contain one of the infinite points, and the blocks B which
do not. Evidently, A contains exactly k blocks, one for each of the infinite points.
In addition, in order to meet the first wuf condition, we have:

(1) ¥ {o0s;,0,a}, {o0;,0, b}» € A, then a # +b (mod gu).

Call a difference ezternal if it is covered once in A and once in B, and internal if it
is covered twice in B. For each external difference d, define a(d) = min(+2d). For
each internal difference d, when blocks {0,d, z} and {0,d,y} appear in the orbits
of blocks of B, define a(d) = min{+(z — y)).

First we examine constraints resulting from prohibiting the appearance of one
of the infinite points in one of the configurations Cl, C2, C3, or C4. In order to

ensure that no infinite point occurs in a Cl configuration, we require that



CHAPTER 4. RELATED CODES 197

(2) If gu = 0 (mod 3) and £ is an external difference, then B does not contain
{0, 2,22}

In order to ensure that no infinite point occurs in a C2 configuration, we require

that
(3) If d is an external difference, then 4d # 0 (mod gu).

In order to ensure that no infinite point occurs in a C3 configuration, we require

that

(4) If dis an external difference and {0, d, z} is a block in an orbit of a starter block
of B, then 2z # d (mod gu) and none of {0,d, 3d}, {0, 2d, 3d}, {0, 2d,d + z},
{0,2d,z}, or {0,d,Z'} when gu = 0 (mod 2), appear in the orbits of the
starter blocks in B.

In order to ensure that no infinite point occurs in a C4 configuration, we require

that

(5) If d and d' are external differences, or if d is external and d' is internal, then
a(d) = a(d') only if d=4d'.

Once conditions (1)~(5) are met, any violation of the wuf conditions occurs entirely

among the blocks on Z4,.

In order to check that none of the conditions are violated on the blocks involving
no infinite points, we first observe that the first wuf condition is equivalent to: '

(6) If d is an internal difference then a(d) # 0 (mod u).
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Lemma 45 (Frankl and Fiiredi [55]) A 3-GDD of indez two and type 19 ezists

whenever ¢ = 1 (mod 6) is a prime power, ezcept when g=1T7.

It is essential that ingredients for.othet congruence classes modulo 6 be found
as well. We employed a combination of backtracking and hillclimbing techniques
to produce a large number of wuf GDDs.

Numerous 3-GDDs of type 1%z! over Z, are given in order to establish the

statement:

Lemma 46 A wuf 3-GDD of type 1™ ezists for n = 21, 24, 27, 28, 30, 33, 34, 36,
39, 40, 42, 45, and 46.

Proof: For each pair {a,b} presented in the table to follow, {0,a,b} is a starter
block. In addition, if v = 0 (mod 3) and z = 1 (mod 3), then {0, ¥, %} is a starter
block. Finally, each difference covered only once in the starter blocks so produced
is also in a starter block with an infinite point.

GDD Internal Starter Blocks

12011 {1,7} {1,9} {2,4} {3.8} {3,13} {4,9}

12311 {1,6} {2,13} {2,16} {3,12} {3,18} {4,8} {6,16}

17611 {1,6} {2,12} {2,23} {3,19} {4,13} {4,18} {6,17} {7.18}
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GDD Internal Starter Blocks

12850t {1,2)} {2,13} {3,7} {3,12} {412} {5,11} {5,19} {6,13} {8,18}

12911 {1,7} {2,15} {2,18} {3,8} {3,12} {4,22} {4,23} {5,19} {8,17}

13211 {1,3} {1,8} {3,10} {4,19} {4,20} {5,18} (5,26} {6,23} {8,18} {9,21}
1831 {1,4) {2,8} {2,21} {3,16) {4,26} {5,15} {5,24} {6,24} {7,238} {8,21}
131! {1,4} {2,6} {2.19} {38,20} {5,12} {5,29} {7,18} {8,16} {9,22} {9,23}

{10,20}

1381 {14} {2,7} {2,17} {3,15} {4,18} (5,13} {6,12} {7,27} {8,22} {9,22}
{9,28} {10,27}

149! {1,2} {2,5} {3,7} {4,27} {5,15} {6,24} {7,29} {8,21} {8,28} {9,21} {9,26}
{11,26}

1410 {14} {2,6} {2,14} {3,30} {524} {531} {6,21} {7,18} {7,32} {8,20}
{8,25} {9,28} {10,28}

111 {12} {25} {3,7} {5,13} {6,20} {6,33} {7,23} (8,24} {9,26} {9,19}
{10,34} {11,31} {12,30} {13,28}

1511 {1,4} {2,6} {2,7} {3,29} {5,35} {6,34} {7,25} {8,22} {8,29} {9,20} {9,31}

{10,27} {12,24} {13,26}
a

Lemma 47 A wuf 3-GDD of type 1" ezists for n = 48, 51, 52, 54, 55, 57, 58, 60,
63, 64, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 99, 100,
102, 105, 108, 111, 112, 114, 115, 117, 118, 120, 123, 124, 126, 129, 130, 132, 133,
135, 136, 138, 141, 142, 144, 145, 148, 150, 154, 156, 159, 160, 161, 165, 166, 171,
177, 178, 184, 195, 201, 207, 213, 219, and 243.

Proof: See Appendix B. : a

The remaining small values do not appear to be able to be handled by this
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general approach. However, we have succeeded in one more case:
Lemma 48 A wuf 3-GDD of type 1'° ezists.

Proof: Let X = Zg x {0,1}. For succinctness, we write (z,7) € X as z;. Let
o : X = X be the permutation such that & : z; — (z + 1 (mod 8));. Developing
the following set of starter blocks by o gives a wuf 3-GDD of type 1!¢ on X:

{00,10,31} {00,40,0:} {00,20,50} {00,20,11} {30,01,1:}
{00,1;,31} {00,10,5:} {01,21,51} {00,2;,61} {00,01,71}

4.7.2 Recursive Constructions

We employ two well known constructions.

Theorem 82 (Wilson’s Fundamental Construction [117]) Let (X,G,B) be
e GDD (the master GDD) with groups Gy, G: ... G:. Suppose there ezists a func-
tion w : X — Z*U{0} (a weight fanction) which has the property that for each block
B = {z1,%3,... ,z} € B there ezists a K-GDD of type [w(z,), w(z2)... ,w(zw)]
(such ¢ GDD is an “ingredient® GDD). Then there ezists a K-GDD of type

[Z w(z), 3 w(a),..., 3 w(a)|.

€Gh 8663 2€G;

We leave as an easy exercise that when all of the ingredient GDDs are wuf, so
also is the GDD constructed. In general, our desire is to produce GDDs with group

size 1, so we need to fill in the holes in some way.
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Theorem 83 (Filling in Holes, variant of [97]) If there ezists ¢ wuf GDD
of type gi1g2-.-gn, and for 2 < i < n a wuf GDD of type 19h* ezists, then there
ezists @ wuf GDD of type 1Xi=2%(gy + h)*.

In Theorem 83, both g; = 0 and A = 0 correspond to useful special cases.
Filling in holes preserves the wuf property primarily as a consequence of the first
requirement, since none of the forbidden configurations can have both a block from
the wuf GDD of type ¢:9; . . - g» and one from a wuf GDD of type 1%A*. Normally,
we do not comment on applications of Theorem 83, leaving this to the diligent
reader. Typically, Theorem 82 is applied using suitable ingredients, and Theorem
83 is then applied to extract useful consequences for group size 1.

Now we give some applications of Theorem 82.

Lemma 49 If a TD(6,n) ezists, then a wuf 3-GDD of type (3n)°(6n)' ezists.
Moreover, there ezist wuf TTS of orders 106, 147, 168, 189, and 231.

Proof: A wuf 3-GDD of type 3°6" exists with presemntation {{1,12},{2,9}}. Use
the TD(6,n) as a master design and the 3-GDD of type 3°6! as an ingredient design
in Theorem 82. Apply with n = 5,7,8,9,11 and fill in holes using wuf 3-GDDs
of types 1'°1! and 1%°1' when n = 5, and of types 1°* and 1°" for the remaining

values of n. m]

Lemma 50 If ¢ TD(7,n) ezists, then a wuf 3-GDD of type (2n)" ezists. Hence
wuf TTS of orders 112, 183, and 225 ezist.

Proof: A wuf 3-GDD of type 27 exists with presentation {{1, 4}, {1, 6}, {2,6}, {2, 11}};
Theorem 82 gives the wuf 3-GDD of type (2rn)?. Applying with » = 8,13,16, and
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filling holes with wuf 3-GDDs of types 1'®, 121!, and 1%21! gives the required

consequences. a

Lemma 51 If ¢ TD(8,n) ezists, and 0 < z < n, then a wuf 3-GDD of type
(3n)7(3n +6z)! ezists. Hence there exzist wuf TTS of orders 174, 180, 186, 192, 198,
204, 210, 216, 222, 228, and 187.

Proof: A wuf 3-GDD of type 3% = 373! exists over Z; with presentation

{{1,3}.{1,20}, {2,12}, {3,10}, {4, 11}, {5, 18}, {6,15}}.

A wuf 3-GDD of type 379! exists with presentation {{1, 13}, {2,5}, {4,10}}. Apply
Theorem 82 using weight 3 in seven groups and weights 3 or 9 in the eighth,
to produce a wuf 3-GDD of type (3n)7(3n + 6z)'. Apply with » = 7,8 and
fill in holes to obtain the stated consequences. For the final value, apply with
n = 7 and employ a wuf 3-GDD of type 12!7* to fill holes. It has presentation

{{L,4},{1,6},{2,9},{2,13}}. o

Lemma 52 If a TD(14,q) ezists, and 0 < z < 6q satisfies z =0 (mod 3), then o
wuf 3-GDD of type q'3z! ezists. If, in addition, a wuf 3-GDD of type 12h! ezists,
so also does a wuf GDD of type 1'%(z + h)*.

Proof: Use as ingredient wuf 3-GDDs the ones of type 130! from Lemma 45, of
type 1'33! presented as {{1, 4}, {3,4}, {2,8}}, and the one of type 1136' presented
as {{1,4},{2,8}}. Give all points in thirteen groups of the TD(14, q) weight one,
and points in the final group weights 0, 3, or 6 so that the total weight in the final
group is . Theorem 82 then gives a wuf 3-GDD of type ¢'3z!. Filling in holes with
a 3-GDD of type 19h! (when one exists) gives a wuf GDD of type 1!39(z + k). O
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[

. To =19 and 80=23;
2. Ti41 > T and $i41 > 8;;

. 13rips + 21 < 197; and 13554y + 25 > 195; + 1;

w

4. r; =1 (mod 3) and s; =2 (mod 3); and

()]

. TD(14, 1'.') and TD(14, 3,') exist.

A TD(14,n) exists whenever n is relatively prime to 2, 3, 5, 7, and 11 (by Mac-
Neish’s theorem; see [3]). Among the integers congruent to 1 modulo 3, considering
the sequence of those relatively prime to 2, 3, 5, 7, and 11, we find a largest dif-
ference between consecutive values of 24. Choose the r;s to be the sequence of
numbers congruent to 1 modulo 3 and relatively prime to 2, 3, 5, 7, and 11, begin-
ning with 19, in addition to the number 25. It is now an easy verification that we
have the specified properties. In the same way, the s;s are the sequence of numbers
congruent to 2 modulo 3 and relatively prime to 2, 3, 5, 7, and 11, beginning with
23, in addition to the number 32.

To prove the theorem, we proceed inductively. In general, we suppose that
wuf TTS have been produced for all orders less than n, where n = 0,1 (mod 3),
and we establish that a wuf TTS(n) exists. By assumption, wuf TTS(n) exist
whenever 24 < n < 304. Now if n = 1 (mod 3), find the largest ¢ for which
13r; + 24 < n < 197;; such a choice exists by the definition of the sequence. Then
a TD(14, ;) exists. Wuf 3-GDDs of type 1 and 1"~13" exist by the inductive hy-
pothesis. Apply Theorem 52 to obtain the wuf TTS(n). In the same way, if n =0
(mod 3), find the largest s; for which 13s; +25 < n < 19s; + 1; such a choice exists
by the definition of the sequence. Then a TD(14, s;) exists. Wuf 3-GDDs of type
1%1! and 1™ 13% exist by the inductive hypothesis. Apply Theorem 52 to obtain
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the wuf TTS(n). o

Now we can prove the main theorem.

Theorem 85 A wuf TTS(r) ezists whenever n =0,1 (mod 3) ezcept when
n € {3,4,6,7,9,10} and possibly when n € {12,15,18,22}.

Proof: The definite exceptions can all be verified by an exhaustive search. Now if
n is a prime or prime power, apply Lemma 45. Otherwise, apply Lemmas 46, 47,
and 48 to treat most small orders, and Lemmas 49, 50, 51, 53 and Corollaries 24
and 25 to treat n = 21 and all remaining values satisfying 24 < n < 304. Then
apply Theorem 84 to complete the proof. a

4.7.3 An Application to Group Testing

Let Q be a population of items, where each item is in exactly one of the states 0, 1.
Furthermore, at most r items are in state 1. The problem is to determine the state of
each item (or equivalently, to determine the set of all items in state 1) through some
tests. A test can be performed on any subset P C {2, called a pool. The feedback
to a test on pool P, denoted f(P), is defined by f(P) = ?g{state of w}. This
problem, known as the group testing problem, has numerous real-world applications
ranging from multiple access communications [22] to DNA clone isolation [32], and
its study constitutes an important part of combinatorial search theory [52]. In some
applications, it is desirable to have each item involved in exactly k& pools. We call
the resulting problem k-restricted. For simplicity, we denote the k-restricted group
testing problem, with at most r items in state 1, by GTP(r).
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An algorithm for the group testing problem is said to be an a-approzimation
algorithm if it returns a set S of at most ar items, so that S contains all items of
2 that are in state 1.

There are two well-known classes of algorithms for solving group testing prob-
lems: sequential and nonadaptive aigorithms. In a sequential .algorithm, the decision
of which pool to test next can depend on the feedbacks to previous tests. On the
other hand, a nonadaptive algorithm must specify all the pools to be tested at
the very beginning, without receiving any feedbacks. The complezity of a group
testing algorithm is defined to be the number of tests conducted (hence, also the
number of pools). It is obvious that the best sequential algorithm has a complexity
no higher than any nonadaptive algorithm. However, the advent of massively par-
allel computers have prompted Hwang and Sés [70] to make a case for the study
of nonadaptive algorithms. Further support of this case is given by Knill and
Muthukrishnan [72] who observed that certain features in the screening of clone
libraries with hybridization probes strongly encourage nonadaptive algorithms.

Our focus in this section is on nonadaptive 3-approximation algorithms for
GTP3(2). Any nonadaptive algorithm A for GTP;3(2) corresponds to a 3-uniform
hypergraph #H(A) = (X, B) as follows: '

1. X ={zp: P is a pool of A}.
2. B={B,:weN}

3. zpe B, ifand only if w € P.

We call H(A) the hypergraph of A. We make the following useful observation

concerning H(A). Let @ be the set of all state 1 items in Q. Then zp € U B, if
wED
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and only if P is a pool of A such that f(P) = 1. Hence, if we know that one of
@ or @ contains the set of all state 1 items in Q, then a necessary and sufficient
condition which allows us to distinguish them is

U B.# U B.-

wED weD’

Lemma 54 If A is a nonadaptive 3-approzimation algorithm for GTP3(2), then
H(A) = (X, B) is weakly union-free.

Proof: Assume on the contrary that there are fémr distinct hyperedges B,; € B,
1 <1 < 4, such that B,, U B,, = B,, U B,,. Hence, if one of {w,w:} or {ws,ws}
is the pair of state 1 items, then A cannot distinguish them. The best A can do is
then to conclude that {w;,ws,ws,ws} contains all the state 1 items of . But this

violates the condition that A is a 3-approximation algorithm. o

Corollary 26 The complezity of any nonadaptive 3-epprozimation algorithm for
GTP;(2) with a population of n items is at least [V3n + {I .

Lemma 55 Any wuf TTS(n) is the hypergraph of a nonadaptive 3-approzimation
algorithm for GTPs(2).

Proof: Let A be the nonadaptive algorithm specified by a wuf TTS(n), H(A) =
(X,B). Let w,ws,ws € Q be any three distinct items. Then B.,, # B., since
H(A) contains no repeated hyperedges, and B,, # B,, U B, since the union of
two distinct hyperedges contains at least four vertices. Hence if Q contains only
one item in state 1, then A can identify that item precisely. We are thus left with

the task of considering the case with two items in state 1.
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It suffices to show that for any three distinct hyperedges B,,, B.,, B., € B such
that B,, U B,, = B,, U B,, = F, we have {B, B’} C {B.,, B.,, B.,} whenever
BUB'=F. Solet BUB' = F. Suppose that at least one of B or B’ is not B,,, B.,,
or B,,, for otherwise we are done. Therefore we must have {B, B’} = {B,,, B.,},
for some wy & {w1,ws,ws} since (X, B) is weakly union-free. We know that |B,, N
B.,| # 0 or 3 because B contains no repeated hyperedges. If |B,, N B,,| = 2, then
|F| = 4, implying that {B,,, B.,, B.,, B.,} is the complete 3-uniform hypergraph
on four vertices, which is not weakly union-free. It follows that |B,, N B,,| = 1.
But then B,, \ B,, is a 2-subset that must also be contained in the blocks B,, and
B,,. This contradicts the assumption that (X, B) is a twofold triple system. O

Corollary 27 For any n = 0,1 (mod 3), and n > 22, there ezists a nonadaptive
2-approzimation algorithm of (optimal) complezity n for GTPs(2) with a population
of n(n —1)/3 items.



Chapter 5

Conclusion

In this thesis, we have studied pairwise balanced designs, group divisible designs
and related codes. We conclude with a short discussion of the main themes that

have been explored, and an outline of the extensive collaborations reported here.

5.1 Collaborations

A large amount of the research reported here has been done in collaboration with
others. In this section, these collaborations are made clear. Section 2.1 is joint
work with Colbourn, and appears in [84]. Sections 2.2 and 2.3 are in collaboration
with Colbourn, Mullin and Zhu and appears in [87]. Section 2.4, with Colbourn,
appear in [46). Section 2.6 is with Chee, Colbourn and Gallant and appears in [34].
For further PBD closure results of the author, not included in this thesis, see [98]
reporting collaborative work of the author with Mullin, Abel and Bennett. Some
results on the generating sets of the author with Colbourn, not included in this

thesis, see [83].

210
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Section 3.1 and 3.2 report joint work with Abel, Colbourn, and Yin which
appears in [122]. Section 3.5 concerns research with Colbourn appearing in [85].
Some results on the existence of GDDs with block sizes 3 and n of the author with
Chee, see [36].

Section 4.1 introduces research with Chee and Colbourn; see also [33]. Section
4.2 is a joint work with Colbourn. Section 4.5 appears in [81]. Section 4.7 is a joint
work with Chee and Colbourn [35].

5.2 Some Themes

Finite projective planes are used extensively in this thesis in constructing new
combinatorial designs. We are able to obtain some new pairwise balanced designs
by deleting various line configurations from finite projective planes. We believe
that there are many more interesting configurations in the finite projective plane

which lead to interesting combinatorial objects.

We have studied the existence of 5-GDDs of uniform group size. Many direct
constructions are developed in order to obtain a strong existence result. Unlike
most papers in the literature, we have obtained a strong result by a large set of
direct constructions. In most of the direct constructions, certain automorphism
groups and underlying structure are assumed in order to make the search feasible.
Identifying a potential automorphism group and implementation are key factors
to succeed in finding the deéign. In term of identifying a potential antomorphism
group, there is a trade off between the size of search space and the flexibility of
the existence of the design under a given group. For example, many attempts were
made to find a 5-GDD of type 107. We cannot find it with a group of order 35,
and cannot complete the search with a smaller automorphism group. Although,
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this theme arises frequently throughout the course of this research, due to space
limitations, we have not explicitly stated why and how we chose the automorphism
group that we have used for constructing the designs.

Although we have a large number of direct constructions, it is noteworthy that
if g =2 (mod 4) and u = 11,15 (mod 20), we do not have a good set of techniques
for constructing 5-GDD of type g*. Such a design can not exist with a cyclic group
of order gu. Due to the limitation of the direct construction method, we have
circumvented it by applying a new recursive construction using modified group
divisible designs. The required modified group divisible designs are often much
easier to construct. By combining both direct and new recursive constructions, we
are able to show that 5-GDD of type g* exists for but possibly finite number of
pairs (g, u).

Finally, we have obtained some new connections between coding theory and
design theory. The interaction between coding theory and design theory had been
known for a long time. It is a pleasant surprise that designs with certain forbidden
sub-configurations can be used to obtain some practical codes arising from computer
science. In particular, it relates a well known open problem in design theory is
related in a useful way to coding theory. Despite numerous effort, it is disappointing
that we have not been able to settle the existence of anti-Pasch STSs completely.

However, several new constructions are presented and they can obtained new infinite

classes of anti-Pasch STSs.
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Appendix A

In this appendix, we construct a {5,6}-GDD of type type 5%6'. We take design no.
33 from [92)].

Block No. Block
0 {(8,1),(8,2),(8,3),(8,4),(8,5)}
1 {(0,1),(0,2),(0,3),(0,4),(0,5)}
2 {(1,1),(1,2),(1,3),(1,4), (1,5)}
3 {(2,1),(2,2),(2,3),(2,4),(2,5)}
4 {(3,1),(3,2),(3,3),(3,4), 3,5}
5 {(3,1),(0,2),(2,2),(0,7),(2,7)}
6 {(81),(1,2),(3,2),(1,7),(3, 71}
7 {(8,2),(0,3),(2,3),(0,8),(2,8)}
8 {(82),(1,3),(3,3),(1,8),(3,8)}
9 {(83),(0,4),(2,4),(0,9),(2,9}
10 {(8,3),(1,4),(3,4),(1,9),(3,9)}
11 {(8,4),(0,5),(2,5),(0,0),(2,0)}
12 {(84),(1,5),(3,5),(1,0),(3,0)}
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{8e)(e'D‘(wa(c'0) (1'8)}  ¢¢
{(o‘0)(6‘2)‘(8'e)‘(s'e)‘(g'8)}  #¢
{(o‘e)(6‘T)'(82)"(g‘e)(5'8)}  e¢
{(0'2)‘(6‘0)(8'T)(s'T)*(s'8)}  2¢
{(o‘1)‘(6'e)(8'0)‘(s'0) (s‘8)}  1¢
{(6‘0)‘(8°2)‘(1'e)'(>'e)‘(¥'8)} ot
{(6'9)'(8' DL’ ®2)'(+8)} 62
{620 DEFD'®FR} s8¢
{6'D(8e)L'D'GFO‘(®F'®)} L2
{(80)(2@)(9'e)(e'e)(¢'8)} 92
{(8¢)' (‘1) (92) (e2)*(e'8)} st
{8220 (D (e (e'8)} %2
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{(o‘1)‘(6a)(9‘e) (1°2)(1*9)}y 21
{(0‘0(6‘D)(9'a) (1) (1'8)} o1
{(o'e)‘(6‘0) (o) ‘(1°D)(1'8)} &1
{(oe)* (') ‘(1*e) (1 *(g'8)}  #1
{(9'a)(9‘0)‘(1D(1'0)(s'®)} ¢e1
Tolg "oN Yooidg

438 AHdVYDOII1dIld
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Block No. Block
36 {(81),(1,3),(3,4),(2,5),(0,8)}
37 {(8,1),(2,3),(0,4),(3,5),(1,8)}
38 {(8,1),(3,3).(1,4),(0,5),(2,8)}
39 {(8,2),(0,1),(3,4),(1,5),(2,9)}
0 {(82),(1,1),(0,4),(2,5),(3,9)}
a1 {(82),(21),(1,4),(3,5),(0,9)}
2 {(82),(3,1),(24),(0,5),(1,9)}
43 {(8,3),(0,1),(3,2),(2,5),(1,0)}
4 {(8,3),(1,1),(0,2),(3,5), (2,00}
5 {(8,3),(2,1),(1,2),(0,5),(3,0)}
6 {(8,3),(3,1),(2,2),(1,5),(0,0)}
47 {(8,4),(0,1),(2,2),(1,3),(3,6)}
8 {(8,4),(1,1),(3,2),(23),(0,6)}
49 {(8,4),(2,1),(0,2),(3,3),(1, 6)}
50  {(8,4),(3,1),(L2),(0,3),(2,6)}
51 {(8,5),(0,2),(2,3),(L,4),(3,7)}
52 {(8,5),(1,2),(3,3),(2.4),(0,7)}
53 {(8,5),(2,2),(0,3),(3,4), (1,7}
94 {(8,5),(3,2),(1,3),(0,4), (2, 7}
55 {(0,1),(1,1),(2.4),(1,7),(28)}
56 {(1,1),(2,1), (3,4),(2,7),(3,8)}
57 {(2,1),(3,1),(0,4),(3,7),(0,8)}
58 {(3,1),(0,1),(L,4),(0,7),(1,8)}
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Block No. Block

59 {(0,2),(1,2),(2,5),(1,8),(2,9}
60 {(1,2),(2,2),(3,5),(2,8),(3,9)}
61 {(2,2),(3,2),(0,5),(3,8),(0,9)}
62 {(3,2),(0,2),(1,5),(0,8),(1,9)}
63 {(0,1),(2,3),(3,3),(3,9),(0,0)}
64 {(1,1),(3,3),(0,3),(0,9),(1,0)}
65 {(2,1),(0,3),(1,3),(1,9),(2,0)}
66 {3,1),(1,3),(2,3),(2,9),(3,0)}
67 {(0,2),(2,4),(3,4),(0,6),(3,0)}
68 {(1,2),(3,4),(0,4),(1,6),(0,0)}
69 {(2,2),(0,4),(1,4),(2,6),(1,0)}
70 {(3,2),(1,4),(2,4),(3,6),(2,0)}
71 {(0,3),(2,5),(3,5),(3,6),(0,7)}
72 {(1,3),(3,5),(0,5),(0,6),(1,7)}
73 {(2,3),(0,5),(1,5),(1,6),(2,7)}
74 {@3,3),(1,5),(2,5),(2,6),(3,7)}
75 {(0,4),(1,5),(0,6),(3,6),(2,8)}
76 {(1,4),(2,5),(1,6),(0,6),(3,8)}
7 {(2,4),(3,5),(2,6),(1,6),(0,8)}
78 {(3,4),(0,5),(3,6),(2,6),(1,8)}
79 {(0,1),(3,5),(2,7),(3,7),(1,9)}
80 {(@1,1),(0,5),(3,7),(0,7),(2,9)}
81

{(2,1),(1,5),(0,7),(1,7),(3,9)}
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Block No. Block
82 {(3,1),(2,5),(1,7),(2,7),(0,9)}
83 {(0,1),(1,2),(0,8),(3,8),(2,0)}
84 {(1,1),(2,2),(1,8),(0,8),(3,0)}
85 {(2,1),(3,2),(2,8),(1,8),(0,0)}
86 {(3,1),(0,2),(3,8),(2,8),(1,0)}
87 {(0,2),(1,3),(2,6),(0,9),(3,9)}
88 {(1,2),(2,3),(3,6),(1,9),(0,9)}
89 {(2,2),(3,3),(0,6),(2,9),(1,9)}
90 {@3,2),(0,3),(1,6),(3,9),(2,9)}
91 {(0,3),(1,4),(2,7),(0,0),(3,0)}
92 {(1,3),(2,4),(3,7),(1,0),(0,0)}
93 {(2,3), (3,4),(0,7),(2,0),(1,0)}
94 {@3,3), (0,4),(1,7),(3,0),(2,0)}
95 {(0,6),(0,7),(0,8),(0,9),(0,0)}
96  {(1,6),(1,7),(1,8),(1,9),(1,0)}
97 {(2,6),(2,7),(2,8),(2,9),(2,0)}
98 {(3,6),(3,7),(3,8),(3,9),(3,0)}

We note that block no. 0,1, 4, 76, 81,84, 88,92, 72 form a parallel class. Further,
block no. 0,2,3,78,79,86,90,94,95 form another parallel class. The two parallel
classes have exactly one block in common. Add an infinite point to obtain a {5,6}-
GDD of type 5%6*.




BIBLIOGRAPHY 231

Appendix B . Computer Constructions of weakly
union-free TTS(n)
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Block Block

No.

135130 {1,3} {1,7} {2,26} {3,30} {4,21} {4,19} {10,22}

1%516'  {1,8} {1,10} {2,16} {3,15} {4,17} {5,11}

1313t {1,34} {1,32} {2,30} {2,23} (3,13} {3,17} {4,27} {4,19}

141131 {1,2} {2,7} (3,21} {3,25} {4,33} {4,31} {5,30} {6,19} {9,26}

1316  {1,4) {1,6} {2,13} {2,17} {7,19} {8,18} {9,23}

141160 {1,3} {1,11} {2,38} {4,22} {4,16} {6,33} {7,20} {9,26}

113 {1,2} {2,5} {3,10} {4,9} {4,23} {6,20} {6,30} {7,34} {8,32} {12,28}

1119 (1,4} {1,6} {2,19} {7,15} {9,29} {10,23} {11,25}

17161 {1,2} {2,5} {3,37} {4,23} {4,29} {5,12} {6,22} {6,20} {8,17} {11,32}

143211 {1,6} {2,32} {3,18} {4,26} {7,34} {8,20} {10,24}

14719t {1,3} {1,5} {5,7} {3,11} {6,26} {9,25} {10,33} {12,29} {13,28}

13316 {1,2} {2,5} {3.7} {4.13} {5,12} {6,22} {6,28} {8,35} {8,33} {10,24}
{11,30} {15,32}

1921 (1,3} {1,9} {3,5} {4,15} {6,30} {7,23} {10,28} {12,29} {13,27}

13319t (1,3} {1,5} {5,7} {3,11} {9,13} {17,25} {7,21} {6,29} {10,37} {12,34}
{15,33}

15916 {1,2} {2,5)} {3,7} {4,9} {6,34} {6,18} {7,23} (8,44} (8,34} {9,22} {10,42}
{10,29} {11,31} {14,35}

155211 {1,2} {2,5} {3.47} {4,18} {4,26} {5,12} {6,26} {9,34} {10,38} {13,36}
{15,31}

18325 {14} {1,6} {2,11} {7,36} {8,27} {10,31} {12,40} {14,30} {15,35}

15516 {1,2} {2,5} {3,7} {4.9} {6,12} {7,31} {8,42} {8,53} {9,26} {10,28}

(10,38} {11,25} {11,33} {13,27} {15,44} {16,35}
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Block
No.

Block

155271
159251

161241

159281
161271

165251

161301
165281

167271

165311

171281

1673 31

171311

{1,40} {2,10} {3,44} {4,35} {5,32} {6,19} {7,37} {9,38} {12,33}

{1,3} {3.5} {1,9} {4,14} {4,22} {6,30} {7,39} {11,26} {12,28} {13,34}
{17,36}

{1,3} {1,9} {3,5} {6,18} {6,48} {18,30} {4,41} {7,29} {10,25} {11,34}
{14,40} {16,44}

{1,4} {1,6} {2,16} {7,41} {8,28} {9,47} {10,36} {11,30} {13,35} {15,32}
{1,3} {1,9} (3,5} {4,20} {6,46} {7,33} {10,39} {11,38} {12,25} {14,31}
{18,37}

{1,2} {2,5} (3,55} {4,18} {4,20} {5,12} {6,37} {6,31} {8,44} {9,33}
{11,30} {15,38} {17,39}

{1,6} {2,31} {3,17} {4,26} {7,19} {8,48} {9,24} {10,43} {11,34} {16,36}
{1,3} {3,5} {1,9} {4,14} {4,22} {6,46} {7,38} {11,44} {12,35} {13,29}
{15,39} {17,37}.

{1,3} {1,9} {3,5} {6,18} {6,48} {18,30} {4,20} {7,43} {10,45} {11,34}
{13,28} {14,40} {17,38}

{1,4} {1,6} {2,21} {7,49} {8,36} {9,34} {10,22} {11,50} {13,45} {14,41}
(17,47}

{1,3} {1,5} {5.7} (3,11} {9,13} {17,25} {7,21} {6,36} {1043} {12,51}
{15,42} {16,47} {18,37} {2245}

{1,12} {2,49} {3,16} {4,14} {5,39} {6,37} {7.24} {8,46} {9,44} {15,42}
{19,41}

{1,3} {3,5} {1,9} {4,14} {4,22} {6,40} {7,30} {11,47} {12,28} {13,32}
{15,44} {17,50} {20,45}
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Block Block
No.
171341 {1,4} {1,6} {2,54} {7,51} {8,33} {9,56} {10,39} {11,45} {12,35} {13,31}

17731}

1773 41

179331

1 77371

17361

183341

17939!

183371

183401

185391

189374

{14,55} {21,43}

{13} {1,5} {5,7} {3,11} {9,13} {17.25} {7.21} {6,47} {10,34} {12,40}
{15,44} {16,55} {18,45} {19,42} {20,46}

{1,3} {3,5} {19} {4.14} {4,22} {6,46)} {7.,57} {11,28} {12,48} {1343}
{15,38} {16,42} {19,44} {21,45}

{1,3} {1,9} {35} {6,18} {6,48} {18,30} {4,24} {7,34} {10,68} {13,51}
{14,33)} {15,44) {16,39} {17,43} {22,47}

{1,4} {1,6} {2,62} {7,18} {8,28} {9,50} {10,33} {12,42} {13,38} {14,45}
{16,37} {19,53} {22,51}

{1,3} {1,9} {3,5} {4.25} {6,49} {7.64} {10,37} {11,24} {12,41} {14,46}
{16,56} {17,35} {19,53} {20,48}

{1,7} {7,13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,51} {12,40}
{16,45} {17,44} {20,50} {21,57} {22,46} {23.48}

{1,42} {2,25} {3,32} {4,11} {5,14} {6,64} {8,60} {10,46} {12,51} {13,62}
{16,34} {20,55} {22,48}

{1,3} {3.5} {1,9} {414} {422} {643} {7,189} {11,56} {13,44} {15,35}
{16,49} {17,42} {21,53} {23,59} (26,55}

{1,4} {1,6} {2,31} {7.,17} {8,56} {9,32} {11,26} {12,53} {13,47} {14,39}
{16,37} {18,38} {19,43} {22,55}

{1,3} {1,9} {3,5} {4,45} {6,13} {10,34} {11,71} {12,42} {15,63} {16,47}
{17,35) {19,39} {21,49} {23,52} {26,53}

{1,7} {7,13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,45} {12,52}
{16,59} {17,42} {20,41} {22,51} {23,62} {24,56} {26,61}
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Block
No.

Block

189 40 1

191391

18943t

191 421

195 401

193431

195431

195 461

199431

1101431

197481

1105431

{1,3} {3,5} {1,9} {4,14} {4,22} {6,32} {7,56} {11,35} {12,60} {13,55}
(15,66} {16,46) {17,44) {19,39} {21,52} {25,61}

{1,3} {1,9} {3,5} {6,18} {6,48} {18,30} {4,56} {7,64} {10,72} {11,37}
{13,46} {14,31} {15,40} {16,36} {21,59} {22,63} {23,47}

{14} {1,6} {213} {7,62} {8,36} {9,75} {10,64} {12,58} {15,56} {16,42}
{17,57} {18,70} {20,59} {21,65} {22,51}

{1,3} {1.9} {3,5} {4,81} {6,46} {7,73} {11,60} {12,39} {13,32} {15,62}
{16,37} {17,53} {20,43} {22,56} {24,50} {28,58}

{1,7} {7,13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,53} {12,57}
{16,36) {17,52} {21,54} {22,48} {23,55} {24,49} {2766} {28,58}

{1,4} {1,6} {2,29} {2,33} {778} {825} {9,70} {10,69} {11,39} {12,55}
(13,57} {14,51} {16,46} {18,53} {19,45} {20,41}

{13} {3.5} {1.9} {4,14} {4,22} {6,58} {7.61} {1157} {12,25} {15,31}
{17,44) {19,47} {20,50} {21,60} {23,55} {24,53} {26,59}

(1,4} {1,6} {2,24} {7,42) {8,63} {9,50} {10,28} {11,27} {12,61} {13,70}
{14,80} {17,48} {19,58} {20,43} {21,51} {26,59}

(1,2} {2,7} (3,31} {3,33} {4,55} {4,51} {6,14} {9,62} {10,36} {11,81}
{12,25} {15,64} {16,40} {17,60} {19,42} {20,41} {22,54} {27,65}

{1,7} {7.13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,38} {12,52}
(16,55} {17,47) (20,73} {21,56} {22,58} {23,60} {24,51} {25,69} {26,59}
{1,83} {2,24} (3,60} {4,43} {5,84} {651} {7.87} {8,74} {9,28} {11,47}
{12,41} {16,42} {20,64} {21,48} {25,59} {30,65}

{1,2} {2,5)} {310} {445} {439} {512} {6,57} {6.65} (8,51} {9,77}
{11,42} {13,84) {14,89) {15,32} {18,38} {19,72} {22,78} {23,81} {25,61}
{26,76}
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Block
No.

Block

1101491

1103511

1107491

1107521

1109511

1113491

1113521

1115511

1119521

{1,4} {1,6} {2,38} {7,88} {8,78} {9,48} {10,57} {11,25} {12,86} {16,46}
(17,41} {18,58} {19,64} {21,49} {22,51} {26,59} {32,66}

{1,73} (2,54} {3,10} {4,50} {5,89} {6.69} {8,35} {9,37} {11,85} {12,60}
{13,83} {15,77} {16,39} {17,42} {21,65} {22,58} {24,71}

{13} {35} {1,9} {4,14} {4,22} {6,94} {7,56} {11,84} {12,42} {1568}
(16,79} {17,69} {20,47} {21,57} {24,64} {25,62} {26,59} {29,75} {31,72}
{1,4} {1,6} {2,22} {7,66} {8,36} {9,19} {11,53} {12,50} {13,37} {14,72}
{15,75} {16,55} {17,40} {18,80} {21,46} {26,77} {29,63} {31,64}

{1,3} {1,9} {3,5} {4,65} {6,32} {7,74} {10,40} {11,23} {13,41} {14,78}
{15,58} {16,71} {17,39} {18,52} {19,46} {20,53} {21,50} {24,73} {25,62}
{1,7} {7.13} {2,10} {10,18} {1,5} {15,19} {3,14} {38.34} {9,78} {12,65}
{16,77} {17,55} {20,47} {21,84} {22,62} {23,64} {24,54} {25,57} {26,71}
{28,74} {33,70}

{1,3} {3,5} {1,9} {4,14} {4,22} {6,94} {7,45} {11,39} {12,59} {13,57}
{15,63} {16,33} {20,90} {21,72} {24,76} {26,58} {27,67} {29,82} {30,64}
(35,77}

{1,3} {1,9} {3,5} {6,18} {6,48} {18,30} {4,45} {7.27} {10,32} {11,77}
{13,75} {14,82)} {15,84} {16,81} {17,61} {19,91} {21,58} {23,59} {25,76}
{26,86} {28,80}

{1,7} {7.13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,77} {12,65}
{16,40} {17,62} {20,81} {21,80} {22,48} {23,70} {25,52} {28,69} {29,84}
{30,63} {32,75} {36,73)




BIBLIOGRAPHY 237

Block
No.

Block

1119581

1121571

1127571

1131641

1 1376 41

1143641

1143701

1149701

{1,4} {1,6} {2,19} {7.76} {8,47} {9,25} {10,66} {11,107} {13,40} {14,34}
{15,64} {18,59} {21,51} {22,54} {24,82} {26,71} {28,90} {31,67} {33,77}
(35,73}

{1,3} {1,9} {3,5} {4,73} {6,111} {7,40} {11,32} {12,43} {13,57} {14,76}
{15,80} {17,63} {18,102} {20,49} {22,47} {23,94} {24,66} {26,61}
(28,67} {30,68) {34,70}

{1,3} {1,9} {3,5} {6,18} {6,48} {18,30} {4,84} {7,20} {10,103} {11,68}
{14,53} {1591} {16,106} {17,78} {19,75} {22,50} {23,87} {25,94}
{26,72} {27,92} {29,96} {32,73} {38,82}

{1,4} {1,6} {2,107} {7,64} (8,68} {9,45} {10,51} {11,32} {12,46} {13,79}
{14,58} {15,103} {16,47} {17,39} {18,93} {19,78} {20,50} {23,106}
{27,82} {29,69} (33,70} {35,77}

{1,3} {35} {1.9} {4.14} {4,22} {6,52} {7,73} {11,49} {12,122} {13,83}
{16,111} {17,36} {20,44} {21,61} {23,82} {2562} {28,69} {29,77}
{30,81} {31,74} {32,90} {33,98} {34,84} {35,80}

{1,7} {7.13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,52} {12,65}
{16,96} {17,72} {20,68} {21,57} {22,51} {23,81} {24,61} {25,104}
{26,59} {27,77} {28,97} {30,70} {32,67} {38,94} {41,101} {44,98}

{1,4} {1,6} {2,61} {7,55} {8,117} {9,31} {10,93} {11,47} {12,44} {13,62}
{14,290} {16,69} {17,106} {18,43} {19,58} {20,87} {21,92} {2391}
{24,66} (27,65} {28,63} {30,103} {33,79} {41,86}

{1,3} {35} {1,9} {4,14} {4,22} {6,75} {7.48} {11,111} {12,42} {13,37}
{15,130} {16,77} {17,93} {20,124} {21,81} {23,78} {26.79} {27.92}
{28,64} {29,62} {31,114} {32,90} {39,82} {40,86} {44,95} {47,97}
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Block  Block

No.

1167761  {1,7} {7.13} {2,10} {10,18} {1,5} {15,19} {3,14} {3,34} {9,98} {12,54}
{16,45} {17,39} {20,91} {21,93} {23,85} {24,97} {25,132} {26,58}
{27,88} {28,120} {30,130} {33,116} {36,102} {38,115} {40,81} {43,87}
{46,110} {48,104} {49,99} {53,108}






