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Chapter 1 

Introduction 

Painvise balanced designs are of fimdamentd importance in combinatorid theory. 

They are of interest in their own nght, and have rnany applications in the con- 

stnxtion of 0th- types of designs. Standard texts (e.g., [9], [24]) treat the role of 

pairwise balanced designs well. 

1.1 Definitions 

In this section we define the common terms that are used in the thesis. Terms 

s p e d c  to a proof or construction are defined as the need arises. 

Throughout the thesis, we use the notation El to denote the set of positive 

integers; [a, b] to denote the.set of integer v such.that a < v b; Z, to be the ring 

(or group) of residues modulo n; and Fq to be the Galois field on q elements. 

A painvise balanced design (or PBD) with index A is a pair (V,B) where 

1. V is a finite set of points, 
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2. B is a collection of subsets of V called blocks, 

3. every pair of distinct points of V occar in exactly X blocks. 

We use the notation (PBDA(v, K)) when /VI = v and IB 1 EK. When X = 1, we 

simply denote it by PBD(v,K). W e  denote B(K)={u : there exists a PBD(v, K)). 

A set K, a snbset of the positive integers, is said to be PBD-closed if B(K)=K. 

The notation PBD(v, K U k*) denotes a PBD containing a block of size k. If 

k % K, this indicates that there is exactly one block of size k in the PBD. On the 

0th- hand, if k E K, then thae is at least one block of sîze k in the PBD. 

In a sequence of three papas [Il?, 118, 1191, Wilson developed a theory con- 

cerning the structure of PBD-closed sets. We give a brief summary of his results. 

Let K be a snbset of the set of all positive integers; we d e h e  two integers: a ( K )  

= gcd{v - 1 :v~K)  and P(K) =gcd{v(v - 1 ) : v ~ K ) .  Wilson's main resdt is that 

there exists a constant N (depending on K) saeh that, for all v> N, VEB(K) if and 

only if v - 1 O (mod a ( K ) )  and v(v - 1) O (mod P(K)).  Although the proofs 

are constrnctive in a sense, this theory does not yield any reasonable upper bounds 

on N. 

A bdanced incomplete block design (BIBD) with index A is a (PBDA(v, K)) with 

K={k). We use the notation BIBD(v, k, A) where IBI = k for all B E B. 

If the blocks of the design, BIBD(v, k, A), caa be partitioned into classes Ci, Ca, 

. . . , Cm such that evesy point in V appears in exact1y one block in each Ci for 

i = 1,2,. . . , m, the design is d e d  nsolvable and is denoted by RBIBD(v, k, 1). 

ORen we denote B(K) = {v : there e&ts a PBD(v, K)), in the case when 

K = {k), we simply &te B(K) as B(k). Also, we use the notation RB@) = {v : 

there &sts a RBIBD(v, k, A)). 

A group divisible design (GDD) of index A is a triple (V,Ç,B) where 



1. V is a finite set of points, 

2. is a set of subsets of V, d e d  g r w p s ,  which partition V, 

3. B is a collection of subsets of V called blocks, 

4. every pair of distinct points of V not found togetha in a group, occur in 

exactly A bloelrs, 

5.[GnBI<l for all GEÇ and BEB. 

We do not requïre all gronps to have the same size. When it is important 

to consida the sizes of the groaps explicitly, we rd' to the grouptype of the 

GDD. The group-type, or more simply, type, of a (GDD*(KÇ, B)) is the mul- 

tiset H=(IGI:GEQ). For convenience, we use the notation H = (gy , ...., g:) 

where g? meam gronps of size gi. We use the notation GDDA(v, H, K) for 

a GDDA(V, Ç , B )  where IGJE H is defined as above and K={IBIEB). A K-GDD 

is a group divisible design with blodr sizes from the set K. 

A truwversal design TDA(h, n) is a GDD with kn points, k groaps of size n, 

and index A. Every group and every block of a transversal design intersect in a 

point. In the case of A = 1, we simply denote it by TD (k, n) . It is well-known 

that a TI)(k, n) is equivalent to k - 2 mntually orthogonal Latin squares (MOLS) 

of order n. For a list of Iowa bounds on the namber of MOLS of all orders np to 

10000, we r e k  the reader to [3]. 

A parallel clcss in a design is a set of blocks that partition the point set. If 

the blocks of a design can be paxtitioned into parallel classes, then it is said to be 

resolvabk. In the sequel ne write RTD and RCDD with the appropriate parameters 

to denote a resolvable TD aiid GDD respectively. The existence of a resolvable 

TD (lc, n) is equivaient to the existence of a TD(L + 1, n). 
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A K-modifed p u p  dvrPible design (K-MGDD) of type ab with index A is a set of 

a b  points, equipped with a parallel class of blocks of size a, a pardel class of blocks 

of size b, and dl other blocks having size in the set K, so that every unordered pair 

of points occurs together in exactly X block. Any two points appearing in a blodr 

of either pardel dass appeass in no other block. As with GDD, when K = {k), 

we simply denote the K-MGDD by kœMGDD- 

N d ,  we need definitions on incomplete objects. 

An incomplete group divisible design (IGDD) with block-sizes from K and in- 

dex X is a quadraple (v 8,71,B) where V is a finite set of cardinality v ,  Ç = 

(G1, G2, . . . , G.) is a partition of V, 'H = {(Hll, Hl,, . . . , Hi,), Hz2, . . - , H't), . - . , 
(H,i, Ha*, . . . , Hat) is a collection of subsets of V nith the p o p e  that Hij Ç G; 

for ail j = 1,2,. . . , t and ~~~n Hbj = 0 for dl a # b, (the G; are groups and Ràj are 

holes, and B is a f d y  of subsets of V cded  blocks which satisfies the properties: 

(1) Any pair of distinct elements of V which occurs in a goup does not occur in 

any block. 

(2) If a pair of distinct elements fiom V cornes fiom distinct groaps and each 

element occurs are not both in Rai and He for some a, b , j ,  then that pair 

occurs in exactly in X blocks. If there exists a, b and j so that a # b, then 

that pair appears in no block. 

An IGDD is of type 

(91; hl, hl29 y h1$='(!72; h21, h22, - - , h2t)02 - (gr; hl, hr2, - , hri)ar 

if thae are ai groaps of size.gi with hole sizes hil, &, . . . , I<it. 
Related to incomplete grmp divisible design is a holey group divisible design 

(HGDD). A K-HGDD of type ({y. : 1 5 i 5 r), h) is a structure (X, {~)lsi<r,  B, B) 
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with index X where X is a hm-set (of points), P = {G, G2, . . . , G k )  is a partition 

of X into h groups of m points each, {K, f i ,  . . . , Y,) is a partition of X into r holes, 

eadi hole Y;-(1 i 5 r )  is a set of h* points mch that 14 n Cil = y. for 1 5 j 5 k, 

and B is a collection of snbsks with gizes in K of X (called blocks), snch that no 

block contains two distinct points of any group or any hole, but any other pairs of 

points of X is contained in exactly X block of B.  

If we remove one or more snb-designs fiom a TDA(k, v), ne obtain a transversal 

design with holes. In the case of one hole, it is d e d  an incomplete transver- 

sal d e s i p  (ITD). More formally, an ITD, denoted by TDA(k, rn) -TDA(k, n), is a 

quadruple (X, Y, Ç, B) ,  whae X is a set of h points, Ç = {Gl, G2,. . . , Gk) is a 

partition of X into k groups of m points each, Y C X is a set of kn points such 

that IY n Gjl = n for 1 5 j 5 k, and B is a set of subsets (called blocks) of X, each 

of which intersects each group in exactly one point mch that every pair of points 

{x, y) from distinct groups is either in Y or o c m s  in a A block but not both. 

The set Y is referred to as a hole. If Y = 8, then the ITD is a TD. 

Related to incomplete transversal is a holey TD (HTD). A k-HTD of type {ui : 

1 < i t )  is a stmctnre (X, {~)lsisr, Ç, B )  with index A where X is a km-set (of 

points), Ç = CGl, Gz, . . . , Gk) is a partition of X into k p u p s  of m points esch, 

{K, y,, - . . , y,) is a partition of X into T holcs, each hole x ( l  5 i 5 r )  is a set of 

kw points such that n Gjl = for 1 5 j 5 k, and B is a d e c t i o n  of snbsets 

of X (called blocks), each meeting each gtoup in exactly one point, mch that no 

blodr contains tnro distinct points of any group or any hole, but any other pairs of 

points of X is contained in exactly X block of B. 

When X is not mentioned, we assume that A = 1. 

Let h be a positive integer and let v and a be positive integers. Let V be a set 
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of size v .  Let any mbset of size k of V be a block Then a (k, a)-partid resolution 

dass is a collection C of blo& sach that every dement of V occurs in either exady 

a or exactly zero blo& of C. The set of dements of V not occarring in the partid 

resolution clam is the complement of the elass. 

Let k, a and A be positive intega. A (A, a; k)-f~arne is a triple (V, Ç, B) whae 

V is a set of size v ,  P is a partition of V into parts ( p u p s ) ,  and B is a collection 

of (k, a)-partial resolution dass of V which satisfies the conditions: 

1. The complement of each (k,or)-partial resolution class B of B is a groap 

GEÇ; 

2. Each unordered pair {z, y) of V which does not lie in some group G of Ç lies 

in precisly A blocks of B; 

3. No unordered pair {z, y) of dements of V which lies in some g m p  G of 

also Iies in a block of B. 

The type of the (A, a; k)-hune is the multiset T = [ICI : G E 91. If Ç contains 

ai groaps of size gi for i = 1,2, . . . , r ,  then the exponential notation gy g? . . .* is 
&O used. By convention, factors of the type Oa can be indnded in the expoential 

form of the type to accommodate null groups when necessary. 

A k-fiame of type T is a (1,l; k)-6ame of type T. 

A fmite projective plane of order n, n 2 2, is a collection of n+ 1 subsets ( d e d  

lines) of a n2 + n + 1-set V points, such that every two points of V oc= together 

in exaetly one of the lines. An oval of a projective plane of order R is a set of n + 1 
points snch that no three are collineu. An hypemud of a projective plane of order 

n is a set of n + 2 points sach that no tluee are cobear. 



Let A be a set of non-negative integas, and let V be a PBD(v, K). Then 

an A-arc with w points in V is a set of w points S of 'D sndi that if B is a 

block, then IB fi SI E A The order of an arc is the ntimber of points in the arc. 

Suppose that a projective plane of orda  n contains a A-arc of order W .  Then it 

&O contains a complementa~ (n + 1 - A)-arc of orda n2 + n + 1 - w, where 

n + 1 - A = { n + l - a : a ~ A } .  

Let z be a nonnegative integer, and let Z={il, il, ..., i,) with O 5 il < i2 < 
... < i, < 2. M h e r  suppose that O < sl 5 s t  5 . . .S. 5 n. Let (X, Ç , B )  be a 

T D ( k + z ,  n) with O= {G1, 4, ..., Gt, Hl, Hz, ..., H,). Then an (zJ, sl, 82, - - . , sr)- 
thwart is a set S = u;=,Sj, whae Si Hi aith ISjl= sj for each 1 < j < X, =ch 

that for every B E 8, [ B  n SI E I. 

A (v, k, A) padMg design (bridy packing) is a pair (X, B) whtxe X is a v-set, B 

is a collection of some k-subsets ( d e d  blocks) of X such that every pair {z, y) c X 
is contained in at most A blocks of B. The padong number D(v, k, A) is dehed  to 

be the m&um number of blocks in a (v,  k, A) padrkig. A (v, k, A) padring with 

D(v,  k, A) blocks wil l  be calied a m k n m  packing and we called D(v, k, A) the 

packing number for v points, block sizes k and index A. 

Next, we introduce the concept of diflerence famdies. Let G be an additive 

abelian group. Let B = {bl, h, . . . , bk) be a subset of G. Define 

for g E G and define the development of B as 

The development of B ïs just of orbit of the set B under the action of the groap G. 

Since we are allowing repeating blocks in our designs, we wïsh to point out that the 
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definition of the devdopm&t of a block B excludes repeated blocks fiom occurring 

in dev B. I f  ldev BI < IG( then B is said to be in a short orbit under G. 

Let 3= {BI ,  Bzl . . . , Bt) be a family of subsets of G and define the deuelopment 

of 3 a s  

If dev 3 is a BIBD(v, k, A), we Say that 3 is a ( v ,  k ,  A) difference family, and denote 

it by DFA(v, k ) .  The sets Bi, B2, . . . , Bt are called base blocks. The gmup G will 

certainly be contained in the automorphism group of dev 3- If G is cyclic group 

Zn, the design is also eyclic. 

In some cases, we can determine whether or not an arbitrary collection of blocks 

F will be a difkence f d y  simply by exnmining 3. We do this as follows. Let 

the elements of block Bi be {bill ba, . . . , ha). If the list of differences D, 

contains every nonzero element of G eractly A time then dev 7 is a BIBD(v, k, A). 

It may be the urse that the list of diffaences does not contain every element exactly 

X times but dev 7 is still a BIBD(v, k, A). This occur only when short orbits are 

present . 

We remark that the Merence method is very u s a  in constrncting PBDs and 

GDDs. Li both cases, it is not necesssry that dl base blocks have the same size. 

IR the case of GDDs, oRen we construct the groups by taking certain short orbits. 

Constructions 

Theorem 1 [24] If q is a power of a prime number, there &ts a projective plane 
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The proof of the above theorem depends on the existence of a nnite field of size 

q. W e  denote the projective plane that Mses from this finite field by PG(2, q). 

Theorem 2 [&] Let T be a PG(2, q) where q is odd. Then n contains an oval. 

Theorem 3 [24] Let n be a PG(2, q) where q is euen. Then n contains a hyperovol. 

The existence of ovals (and hyperod) in PG(2, q) is very u s a  in construct- 

ing pairwise balanced designs. Here is a well known theorem about constnicting 

pairaise balanced designs asing ov& (and hyperovals). 

Theorem 5 [87] If q i s  a prime power and n îp o positive integer where 1 < n < 
q - 1 and t LP a non-negative integer such that O < q + 1 - f i  then nq + t E 

B({n, n + 1, n + 2, q)). 

Theorem 6 (Gnig, see [87]) Let q be an odd prime pouier. Then, 

(a) then k t s  a {(q - 1)/2, (q + 1)/2)-GDD of type ((q - 1)/2)P and 

(a) there eaists a { (q  + 1)/2, (q + 3)/2)-GDD of type ((q + 1)/2)0. 

A slight generalization of above is presented in [87]. 

Theorem 7 If q kz an odd pRme power, then for uny integer t such that O 5 t 
-1 * 9+9 q + l ,  we have 4(2L+t E B({< 2 9 2 '  2 1) - 
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Theorem 8 [97] (Dennikton) Then  & a { O ,  T l -arc  of order w = 22'L* - 
2"- + 2n in PG(2, 2m+.L). 

Theorem 9 [Br] If then is a TD(k + z,n) containing an ( z , l , s l ,  s2, - .. ,u,)- 

thwart) and if {s i ,  . . . , s,) C B ( ( k + a  u {n}), then nk + Cgl si E B((k +l) u {n)) 

where k + Z = { k + i : i ~ Z ) .  

Theorem 10 [49] For p a ptime, O 5 k ( p - 2, there à& a TD(k  + 3, p)  containing 

a (3, { O ,  1,2), a,  &, c)-thwart and its complementary (3, {1,2,3), p - a, p - b, p - c)- 

thwart, whenever a + b + c 5 p + 1. 

Let A and B be subsets of Z, Then define An B = {a  - b mod n : a E A, b E B). 

Now define m(n,a,  b) = min{lA -,, BI : A, B Ç Z,,, IAl= a, IBI = b).  

In [42], the fonowing is proved. 

Theorem 11 For q a prime or prime power, then ezists a TD(q+ 1, q)  containing 

the thwart (1 + 2, {O, l , 2 ,  ( 1  + a + P)*), a + a, b + P, 1,1, .  . . ,1) for al2 O 5 I 

q - 1 - m(q - 1,a, b))  and a ,p  E { O ,  1). 

Theorem 12 [97](%ncation of groups in a transversal design) Let k  be an inte- 

geî, k 2 2. &et K = {k,  k + 1, ..., k + 8 ) .  Suppose that the= ezists a T D(k + a, m ) .  

Let gl, R, ...g8 be integers satisfving O < gi 5 m, i = 1,2, ..., a. Then t h e n  ezists a 

K-GDD of type (rn, m, ..., m(k times), gl, g2, ..., g,). 

Theorem 13 [97](Spike-type construction) Let k ,  s, and n be integers with k 2 2, 

s 2 0, and n 2 1. Let K = {k, k+l, ..., k+s+l). Suppose there ai& a TD(k+s+ 

n, m) .  Let gl, 92, ...,g, be htegem satisfing 1 < gi 5 rn, i  = 1,2, ..., S. Then then 

ezists a KU {k + s +n)-GDD of type (m, m, ..., m(k times), gl, g2, ..., g,, 1, 1, ..., l ( n  

t imes)) .  
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Theorem 12 is similar to Theorem 13, except that certain points on a partidar 

block are ~etained. Some of these points remain as g~oaps of size one, hence the 

name 'spïke'. 

Theorem 12 is 

Since we are interested in PBDs with 3 consecutive block sizes, 

ofken used when a = 1. 

[97](Line jlipped spàke construction) Let k be an integer, k 2 3, and Theorem 14 1 

let K = {k-1,k, ..., k+s+l).  Suppose thatthere ezists aTD(k+a+n,m), where 

n LP <I positive integer. Let gl, gz, ...,gr be integers satisfying O 5 gi 5 m - 1, i = 

1 , 2 ,  Then there & a K-GDD of type ((m - 1), (m - l ) ,  ..., (m - l ) ( h  

t imes ) ,  g1,g2, *--, 9.9 4. 

Theorem 15 [97](Sin&ar Indireet Pmduct) Let K be a set of positive integers 

and k E K; Suppose there &ts a TD(k,m + n) - TD(k,m). If n + m + h E 

B(K U (m + h)*) and km + h E B(K)  then nk + k m  + h E B(K). 

Theorem 16 [97](Singular Direct P~oduct) Let K be a set of positive integers; 

Suppose there w*rts a TD(k ,  n). If n + h E B(K U h*) for al1 i = 1,2,. . . , k and 

h E B(K)  then nk + h E B(K) .  

Theorem 17 [97](FàlZing in Holes) Ifthen eZi9ts a K-GDD of type glgz.. . gn, and 

gi+h E B(Kuh*) for 12 i 5 n-1 andgm+h E B(K)  then xi=,ngi+h E B(K) .  

Theorem 18 [9v(Wilson>s findamental Comtmction) Let (V, Q,B) be a GDD 

(the master GRD) &th p u p s  Gl, 4, . . . , Ge. Suppose there ezists a jùnction 

w : V + Z+ u {O) (a weight fundion) which h m  the propeAy that for euch block 

B = {xl, 2 2 , .  . . , zr) E B t h e n  &ta a K-GDD of type (w(zl), w(z2), . . . , w(zk)) 

(such a GDD is an ingredient Cm). Then tnerv easts o K-GDD of type 



The existence of PBDs, especially BIBDs, has attracted amiderable attention. 

W e  recall some known results concerning PBDs. 

Theorem 19 1. [69] For alI positive integets v 1 o r  5 (mod 20), there a*rts 

a B(5,l;  v ) .  

2. [62] There esk& a (v, {5,9*})-PBD for any integer v E 9 or 17 (mod 20) 

and u > 37 with the possible ezception of v = 49. 

9- [62] Were h t s  o (v, {5,13f})-PBD for any integer v n 13 (mod 20) and 

v 3 53. 

4. [7, 211 Then  &ts a (v, (5 , lT)) -PBD for any integer v = 9,17 (mod 20) 

and v 2 69, unth the possible ezception of v E {77,89,137,209,249,269,289) 

5. [Y, 211 Then  ezàsts a ( v ,  {5,21*))-PBD for dl v = 1 or  5 (mod 20), v 2 85. 

6. [21] Theîe &ts a (v ,  {5,25*))-PBD for al1 v = 1 or  5 (mod 20), v 2 101, 

with the possible ezception of v = 141. 

In this thesis, we employ mainly TD(5, rn) and TD(6, m) (see [3] and references 

t herein) : 

Lemma 1 There ez*9ts a TD(5, n) for evev  integer n 2 4 and n # 6 o t  10. 

Lemma 2 The= ezists a TD(6, n) for evew integer n 2 5 and n # 6,10,14,18,22. 

The following is well known. 

Lemma 3 For every pRme power q, then ezists a RTD(q, q) .  



To create HTDs, we employ the following technique. 

Lemma 4 [91] Suppose that a TD(k + l,t), a TD(k,m) and a TD(k,m + 1) al1 

ezist- Then then is a k-HTD of type m'ul, where O 5 u 5 t - 1. 



Chapter 2 

Pairwise Balanced Designs 

In this chapter, ne stady pairwise bdanced designs. In particakr, the emphasis 

is on pairwise balanced designs with consecutive block sizes. Also, some other 

existence and non-existence resdts for paimise balanced designs are &O discassed. 

2.1 Deleting Lines in Projective Planes 

In this section, we present a constraction of pairwise balanced designs with various 

block sizes fkom projective planes. 

In particular, ne show that certain line configurations can be removed fiom the 

projective plane to obtain some interesthg PBDs. For example, we establish 



82,83,84,85,86,87,88, 89 E B({7,8,9)), and 

Numerous applications of PBDs with tluee but not four consecutive block sizes 

are given in next section. In deteimining existence of PBDs on v points wïth block 

sizes {k, k + 1, k + 21, ofken the most difiidt cases seem to arise whenu is greater 

than (k + 2)2, but not much greater. For example, when k = 7, deletions of points 

in arcs of a projective plane of order 8, and of an d i n e  plane of order 9, establish 

that if 63 5 z 5 81, then z E B({7,8,9)). However, the range fonowing this 

is not amenable to quite as simple a method (indeed, the next known memba 

of B({7,8,9)) was 91, kom the (91,7,1) design). It is in this range that we find 

deletions of various configurations fkom h i t e  projective planes to be most usefnl. 

Whüe we have not been able to settle all open cases in B({k, k + 1, k + 2)) for k = 

5,6,7,8 nsing the techniques desaibed hae, the extension of the initial sequence of 

values for which such PBDs are available both simplifies the determination of clostue 

for these sets, and provide simple direct constractions for PBDs. For more complete 

results on dosures of sets with three consecutive block sizes, see [87] and [46]. 

Naturaily, the idea of employing configurations in finite planes to produce PBDs 

is far from new; see [58] and [97] for related results. The r e d t s  here are gened; 

while we illustrate them primady with their consequences for B({k, b + 1, & + 2)) 

when k is small, the goal is really to develop general obsmtiobs  about- simple 

configurations in planes. 

One particular importance of the &ne deletion techniques explored here is in the 

construction of incomplete transversal designs. Letting P ( k )  be the namber of 

idempotent mutudy orthogonal latin squares of side k, it follows h m  u E B({k, k+ 

1, k+2, a*)) that a TD(t,u)-TD(L, a) exists with I = min(N*(k), N*(k+ï), Nlc(k+ 



2))+2. Talring k = 7, weobtain TD(7,v)-TD(7,a) wheneverv E B((7,8,9,a*}). 

Li providing motivation, ne have mncentrated on applications to the construc- 

tion of various designs. It is perhaps important to remark that deleting any set of 

points at all in a projective plane yielàs a PBD of some End- The only surprise, 

then, is that fairly simple considerations can be used to limit the block sizes to a 

small set. This goal of r&cting the blo& sises leads in some cases to interesthg 

new geometric questions; we s h d  see that OUI goal of fer block sizes Ieads to a 

notion of a scattering dud k-atc. 

2.1.1 The Mia Configuration 

Figure 2.1: The Mia Configuration 

A Mia confi~ration is a set of five lines Il, C, b, 4 and & so that 12 n h and l4 n L 
are hro distinct points on Il. Figue 2.1 shows the Mia configuration. 

Lemma 1 The Mia configuration ezZsts in any finite projective plane. 



Proof: Take a line h in the plane, and identify two distinct points A, B on the line. 

For each of the two points, identity h o  distinct lines intersecting Il at that point. 

The intersections of the four hes  d&e four more points in the b i t e  projective 

plane. The five chosen lines form the Mia configuration. CI 

Now, we ezamiae how each line htersects the Mia configuration. 

Lemma 2 Every line interseds l e  Mio confrpratioon in either q+l ,S ,4  or  5 points 

where q is the order of the projective plane. 

Proofr The proof uses the labels in Figure 2.1. lkivially, any one of the five 

lines intersects the Mia configaation at q + 1 points. If a line intersects the Mia 

configuration at point A, then it intersects line BE and line CD. Hence, the line 

intersects the Mia configuration at 3 points. The situation is similar if the line 

intersects point B. If the line intasects point C, then there are two possible cases. 

Either it iatersects point E so the h e  intersects the Mia configuration at 3 points 

or it does not intasect B so the Iine intersects the configuration at 4 points. The 

situation is exactly the same by symmetry for points D, E and F. If a line does 

not hit any of the five lines except in the configtuation, then it intasects'the Mia 

configuration at five points; hence the r d t  follows. O 

Lemma 3 If924 isaprimepower, t h e n d - 4 q + 4 ~ B ( { q - 4 , q - 3 , q - 2 ) ) .  

Proof: The 'Mia configuration has 5q - 3 points. The result follows by removing 

the Mia configuration fKmi a projective plane of orda q and Lemma 2. 13 

W e  can also add back some points from the M a  configuration to obtain some 

interesting PBDs. 



Proofi h m  the proof of Lesima 2, we can add any a points on the line AB as 

long as we do not indude the point of intenrection of lines AB and C E  or the point 

of intersection of lines AB and D F . O 

As a consequence, we have the following coroIIary. 

Corollary 1 50,54 E B({5,6,7)).  

Proof: Apply Lemma 4 with q = 9 and a = 1,5. 

Corollary 2 82,88,89 E B({7,8,9)). 

Proof: Apply Lemma 4 with q = 11 and a = 1,7,8. 

2.1.2 The Dual k-Arc 

A dual k-arc is a set of k lines in a finite projective plane with the property that 

no three points of intersection of any two lines are concurrent. We begin with 

the acistence of the dual k-arc in the finite projective plane. The dud plane of a 

projective plane T is the projective plane obtahed by interchanging the role of lines 

and points in r. 

Lemma 5 Fot q a prime power, and uny 1 5 k q + 1, the= ezists a projective 

plane of order q containàng a duai k-arc. 



Proofi Every desarguesian projective plane contailis k points such that no three 

of them are cohear. The r d t  follons by taLuig the hes  corresponding to the k 

points in the dud plane. O 

Fignre 2.2 shows a dual &arc. 

Figare 2.2: The Dnal Arc Configuration 

We c d  P a corner point if P is on tao of the k hes  and Q, a ray point if Q 

is on exactly one of the k lines. Let A be any dual k-arc, and L be any line of the 

plane not in A If a points on I are ray points and b points on I are corner points, 

we must have a + 2b = k. Ushg this observation, we have the folowing theorem. 

Theorem 20 I f q i s a p r i m e p o w e r o n d l ~ k ~ q + l ,  t h e ~ ~ ~ + q + l - k ( ~ + l ) +  
k(k-1) E ~ ( { ~ + l - k , ~ + i - ( k - q  ,... , q + l -  rtl)). 

Proofr Take a desarguesian projective plane of order q. By Lemma 5 ,  there exists 

Q z ~  points in the daal k-arc. If a points on a dual 1%-arc. There are k(q + 1) - 



1 are ray points and b points on I are corner points, since a + 2b = k, one has 

a + b E {rgl, [il + 1,. . . , k}. The result follows by removing the points in the dual 

k-arc. 0 

As in Lemma 4, it is possible to i d e n e  some points in the dnal k-arc whose 

retention does not increase the block sizes. 

Theorem 21 Let k 2 4. If q + 1 - k > ~k-1)(k-2)(k-3)(k-4) 8 and q is a prime power, 
k(k-1) then q2+q+1-k(q+l)+ * +1 E B({q+l-k,q+l-(k-1), . . ,q+l- [$])); 

in addition, if q + 1- k > (k-l)(h-2)(&-3)(k-41 k 2) k 3 
8 ++ t h e n q ' f q + l - k ( q +  

k k  1 1) +++2 E ~ ( { { ~ + l - k , ~ + l - ( k - l ) , . - .  , q + l -  rtl}). 

Proofr Choose a line L1 of the doal arc. There are corner points not on 

4, and 
(k-1) (k-2) (k-3)(k-4) 

8 pairs of corner points defined by disjoint pairs of lines of 

the dual arc other than li. Each such pair defines a line; the lïne so defined meets 

&, and we c d  the intersection point bad Under the stated requirement on q and 

k, one of the ray points, Say pl, is not bad. Adding pl therefore does not inaease 

the size of any line whose size was *eady at lead q + 1 - k + 2. 

Having chosen to add p l ,  ne next choose a Iine & # LI fiom the dud arc. As 

before, pairs of corners make up to ~L-1)(k-2)(k-3)(k4~ 8 of the ray points on La bad. 

In addition, in this case, a point is bad if it lies on a line dehed  by p l  and one 
lk-Z)(k-31 of the corners of the dnal a&. Having fixed pl and t2, there are ways 

to choose the corner, and hence at most this nnmba of points are, in addition, 

dassified as bad. Hence, under the stated condition, thae remains a ray point pz 

that is not bad. Adding pl and does not increase the size of any line to more 

t h a n q + l - k + 2 .  O 



Proofr Apply Theorems 20 and 21 with q = 9 and k = 5. 

Coroiiary 4 83,84,85 E 8({7 ,8 ,9 ) ) -  

Proofr Apply Theorems 20 and 21 wïth q = 11 and k = 5. 

Proof: Retain a points on one of the rays. 

Proofr Apply Theorems 20 and 21 with q = 11 and k = 4. 13 

If we only remove the ray points instead of all points in the dud k-mc, then we 

can also obtain some interesthg PBDs. 

Theorem 22 If q is a prime power, UIen 8 + q + 1 - k(q - k + 2) E B({k - 1, q + 
1- k , q + l - h + 2 ,  ... , q + l - a ) )  w h e r e a ~  {0,1) a n d a  andk have the same 

parity- 

Proofi If a line intersects i corner points, then it intersects acactly k - 2i ray 

points. So, by iemoving all the ray points, the r e d t  follows. 0 

Pioof: The corollary follows by talring q = 8 and k  = 5. O 

In Theorem 21 we have given a counting argument to ensure the presence of 

certain PBDs. However, it is possible that the bad points overlap to resdt in an 

overestimate of the number of bad points. We consider the cases when q = 9 and 

q = 11 to get a better r e d t  than Thecaem 21. 



Proof: A clifference set for a projective plane of order 9 is 

D = {O, 1,3,9,27,49,56,61,77,81). 

Let five luies be D + 0, D + 1, D + 3, D + 5 and D + 9. One can check that the 

five lines form a daal 5-arc. Removing al1 points on the five hes  except for 49 and 

65, aii lines have sizes 5,6 or 7. Hence, we obtain 53 E B({5,6,7)).  O 

Pruofi A diffaence set for projective plane of orda 11 is 

Let five lines in the plane be D + 0, D + 13, D + 104, D + 5 and D + 39. By 

removing aIl points in the five lines except 52,53,120 and 6, all lines have &es 7, 

8 or 9. This gives 87 E B({7,8,9)). In addition, if we also remove the point 6, ne 

&O obtain 86 E B({7,8,9)). O 

So far, we have no restriction on the intersection patteni of the corners. How- 

ever, if we restnct that no three corners in a dud k-arc axe eokear, ne can obtain 

some more PBDs with consecutive block &es. We cal1 a dad k-arc scattering if 

no three of the corner points obtained fiom six different lines are cohear.  i h m  

Lemma 9.1.1 in [68], one obtaias a necessary condition on scattering du$ k-arcs. 

Lemma 8 A scattering dud k-arc in a projedive plane of order q m w t  satisfy 

k(k - l)(k -2)(k -3) +8k 5 8(# + q +  1). 



However, the necessary condition is not dc ien t .  A complete search was at- 

tempted for scattering dual ?-arcs in desarguesian projective planes of order 11 and 

13. However, there is no scattering dual ?-arc in these projective planes. Also, 

t h a e  is no scattexhg dud &arc in the desarguesian projective plane of order 9. 

However, s c a t t h g  dnal Gara  exist in the desarguesian projective planes of orda 

11 and 13. 

Lemma 9 There ezists a scattering dual 6-arc in a projective plane of order 11. 

Proof: A difference set for projective plane of order 11 is 

Let the six lines be D + 0, D + 13, D + 104, D +39, D + 1 and D + 2. It is a 

straightforward matter to check that these 6 lines form a scattering dual &arc. O 

Lemma 10 The= eztsts a scattering dual 6-an: in a projective plane of order 13. 

Proof: A diffaence set for projective plane of order 13 is 

D = {O, 2,3,10,26,39,43,61,109,121,130,136,155,141). 

Let thesixlines be D+0,  D+1,  D + 4 ,  D + 5 ,  D + 6  a n d ~ + 9 .  Onecancheck 

that these six lines fkom a scatterhg dual Garc. O 

So f a ,  we have only considered the achtence of scattering dud  k-atcs. Non, 

we show how to use them to obtain PBDs. 

Theorem 23 If there ezists a scattering duul k-arc in à projective plane of order 
k k-1 

q t h e n d + q + l - k ( q + l ) + w  E B ( { q + l - k , q + l - ( k - l ) , q + l - ( k - 2 ) ) ) .  



Proof: The proof of this theorem is parallel to Theorem 20 aad thus omitted. 0 

Theorem 22 can &O be generalized for the scattering dual k-arc. 

Proof: Apply Theorem 23 with the scattering dud 6-arc in Lemma 9 to obtain a 

PBD(76, {6,7,8) U 8'). The r e d t  follows by removing seven or eight points in a 

block of size eight. O 

Prooft Apply Theorem 23 wïth the scattering dual 6-arc in Lemma 10 to obtai. 

114 E B({8,9,10)) .  n 

One general question is to deeide when scattering dual k-arcs exist, as they 

appear to be very u s a  in constructing PBDs. 

2.1.3 The Anti-Fano Configuration 

Let a be a projective plane. Let A, B, C and D be 4 points sach that no three are 

collinear. L e t G = A C n B D ,  E = A D n B C a n d F = A B n C D .  Thesixlines AB, 

AC, AD, BC, BD and C D  form an antGFano conjiguratton if the three points E,  

F and G are non-collinear. 

Lemma 11 If q is an odd prime power, then there &ts o projective plane of order 

q contaànàng an anti-Fano configuration. 



Figure 2.3: The AntitiFano Configuration 

Proof: It is known that the desarguesian projective plane of order q, q odd, does 

not contain a projective sab-plane of order 2 [24]. The r e d t  follows since if points 

E, F and G are cohear, then the seven points form a projective snb-plane of order 

2 (a Fano configuration). . 0 

Theorem 24 If there ezists a projective plane of order q containing an anti-Fano 

conjip~atton, then $ - 5q + 6 E B({q - 5, q - 4, q - 3)). 

Proofr In the proof, we o h  refer to Figure 2.3. Let 1 be any &ne. If I does not 

intersect any of the seven vertices, then 1 intersects the configuration at precisely 

sir points. If 1 intersects the configuration at any one of the A, B, C and D, 

then 1 does not hit any 0th- vertices in the configuration. Hence, 1 intersects the 

configuration at precisely four points. If 1 intersects one or t a o  of E,  F and G, 

then again by counthg, it intersects precisely four or five times. Also, the nnmber 

of points in the configuration is 6(q + 1) - 11. We obtain the result by removing 

the anti-Fano configuration fiom the plane. O 



Proof: Apply Theorem 24 aith q = 11. 

Proofi Apply Theorem 24 wïth q = 13. 

2.2 An Update 

In this section, we update some results on the d o m e  of B({4,5,6)), B({5,6,7)) 

B({% 7 , w .  

First of d, ae begin with pairwise balanced designs with block skes foar, five 

and six. 

The following is proved by Lenz [77]. 

Theorem 25 For any integer v 2 4, v E B({4,5,6)) ezcept when 

v E {7,8,9,10,11,12,14,15,18,19,23) 

and possibly when v E {43,47). 

We deaI with the last two possible exceptions. 

Proof: By Theorem 6 with q = 9, this gives a PBD(45, {5,6, F)) ; delethg two 

points fkom a block of size six gives a PBD(43, {4,5,6)). For u = 47, we start 

with the (66,6,1) design in Example 1.2.34 of (61. Delete the points 13 for z E 

{O, 1,3,4,7,8,9,10,11,12), andthe points y4fory E {O, 1,2,3,5,6,7,8,9,11). This 
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Nd, we study the dosure containing block &es five, sir and seven. The 

following is proved in [82]. Let QI = [8,20] U [22,24] U [27,29] U [32,34] and Q2 = 

(39) U [50,54] U [68,69] U [92,94] U [98,99] U (104) U [108,109] U (114) U [123,124]. 

We are able to obtain a slight improvement of the result. 

Proofi For 39 (due to Greig) , consider three non-concurrent lines in PG(2,7). 

Delete the three points of intersection, and five other points per h e ;  a block of 

size eight only remains if the three single points retained fkom the three lines are 

cohear  . 39 E B({5,6,7))  is also proved in [94]. For [50,54], see Corolhies 1, 

3 and Lemma 6. For v = 92, the BIBD(96,6,1) in [24] is a 6-GDD of type 616; 

add one infiaite point to the groaps to get 97 points. Now delete five points fiom a 

6-block to get 92 points. For v = 123, let V = Z l p  and BI = {O, 3,9,21,36,19,80), 

& = {O, 24,75,25, log), B3 = {O, 30,7,88,83), B4 {O, 45,13,67, 41) md B5 = 

{O, 57,49,112,20). Develop these five blocks over Z123 to obtain a PBD(123, {5,7)). 

O 

Let ESe7 = [Br 201 U [22,24] U [27,29] U [32,34] and X i  = [68,69] U [93,94] U 

[98,99] U {104) U [los, 1091 U {114,124}. 

Theorem 26 For any integer v 2 5 ,  v E B({5,6,7)) with the possible ezceptions 

in XsBT and the definite ezceptions in 



We now tum our attention to PBDs nith block sizes six, seven and eight . Again, 

the following r d t  is proved in [82]. 

Let Ml = [9,30] U [32,36] U [38,4ll and Al2 = (37) U [44,47] U (65) ff [68,75] U 

{77)~[93,95] ~[97,103]~{108)~[122,125]~[128,131]~{135)~[137,150]~ [ l52,155]~ 

[159,161]~[165,167]~ [WO, 180]~[184,185]~[233,240]~[242,246]~ [25O, 251]~{255). 

Theorem 27 For any integer v 2 9, v E PBD({G, 7,8)) ~ & h  the possible ezcep- 

tions in M2 and definite ezceptiow in Ml. 

We have made the following improvement. 

Lemma 14 37,44,45,47 6 B({6,?, 8)). 

Proof. The result follows fiom a theorem of Batten [l6]. 

Lemma 15 72,97,102,103,108,171,234,246,250,251,255 E B({6,7,8)). 

Proof: For v = 72, see Corollary 10. For v = 97, take a BGDD of type 616 [6] 

and add a point at infinity to each group to obtain a 97 E B({6,7)). [102,120] E 

B({6 ,7 ,8) )  can be seen as f o h :  the BIBD(120,8,1) appearing as a Denniston arc 

in PG(2,16) contains a hyperoval of the plane (in fact, Denniston arcs are nested). 

Deleting i of the hyperod points for O 5 i 5 18 gives 120 - i E B({6,7,8)). Also, 

171 E B(6) [2]. For u = 234, t h e  a TD(6,38) and fill in the group with si* infi- 

nite points and apply Singular Direct Product. The required PBD(44, {6,7,8, B)) 

is constrncted by removing six points in two groupa in a TD(8,7). For the re- 

maining value, we take a resolvable (288,8,1) design [2] on (Z7 x Zu) U {w ), whose 

starter blocks are {(O, 9t), (0,32t), (l,3t), (l,38t), (2, t), (2,40t), (4,14t), (4,27t)) for 



t = l?37,16, 187 10, =d (0% (0,0), (17 01, (2,0), (3, 01, (4, O), (5, O), (67 0))- E=w 

block meets the set ({O} x &) U (00) in O or in 2 points, and hence deleting any 

subset of i of these 42 points yields 288 - i E B({6,7,8)).  O 

This (288,8,1) design is remarkable, since deleting points ({O) x Z&) U {m) 

gives 246 E B({6, 8)), and deleting points {O, 1) x Za gives 206 E 8({4,6,8)) - 
Also, much research has been done on designs having a maitimaî arc [120,121]. 

Designs having structure s i m k  to the above BIBD are of interest. 

Let Em = [9,30] U [32,41] U 145,471 and = {46,65) U (68,711 U [73,75] U 

{77) U [93,95] U [98,101] U [122,125] U [128,131] U {135) U [137,150] U [152,155] U 

[159,161] U [165,167] U {170) U [172,180] U [184,185] U (233) U (235,2401 U [242,245]. 

Theorem 28 For any integer v 2 9,  v E B({6,7,8)) with the possible czceptions 

in and definite ezceptions in 

2.3 PBDs with Block Sizes Seven, Eight and Nine 

In this section, we dudy pairwke balanced designs with block sizes seven, eight 

and nine. We do not comment on the non-existence result as it is a special case of 

a theorem in [l6]. 

Proof: Remove six or seven points in a group in TD(8,7) to obtain 49,50 E 

8({7,8,9)). Remove se- or elght points in hro different gronps in TD(9,8) to 

obtain 56,57,58 E B({7,8,9)). CI 
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Lemma 17 90 E B({7,8,9)). 

Proofi A différence set for projective plane of order 1 is 

D = {O, 15,39,59,10,42,40,127,120,73,51,77}. 

Let three lines in the plane be D + 12, D + 15, D f 80 and an o d  be -D. By 

removing ail points in the thme lines and the o d ,  this gives 90 E B({7,8,9)). 

Lemma 18 [63,92] C B({7,8,9)). 

Prooft Apply Theorem 4 aith q = 8 and q = 9 to handle [63,8l]. For [82,90] C 

B({7,8,9)), see Section 2.1. Apply Theorem 6 with q = 13 to obtaia a {7,8)-GDD 

of type 713. This gives 91 E B({7, 8)). Adding an infinite point to the gronps gives 

92 E B({7,8)). n 

Lemma 19 Ifthere e*ts a RB(u, 8) and v 2 120, then [v -8, v-G]u[v-1, v+9] C 

B ({7,8,9)). Hence, [112,114] U [119,129] u [224,226] u [231,241] u [280,282] u 
[287,297] U [336,338] U [343,353] U [392,394] U [399,409] Ç B({7,8,9)) .  

Proofr Remove a block or seven points in a block in RB(u, 8) to obtain v - 8, v - 7 E 

8({7,8,9)). Remove seven points in a block and add a point at infinity to a pardel 

Jass not containhg that block to obtain v - 6 E 8({7,8,9)). Remove zero or one 

points fiom RB(u,8) to obtain u - l , v  E B({7,8,9)). Since v 1 120, thae are 

at least 15 pardel &ses. Remove seven points in a bloelt and add nine points 

forming a block at infinie to nine parallel classes not containing that block to 

obtain u + 2 E B({7,8,9)). TaLe any t a o  bloclrs in a paranel dass and remove tno 

points fiom two of the blocks. Thae are at most five pardel chses containhg at 
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least one blodt of size six. Then adjoining seven, eight or nine idmite points in a 

block at infinity to the pardel classes including ail those wîth a block of size six to 

get v + 3, v + 4, u + 5 E B({7, 8,9)). Remove a point fiom RB(v, 8) and add seven 

i&te points to obtain u + 6 E B({7,8,9)). Finally, if we add 7,8 or 9 infinite 

points to RB(v,8) ina blockat;nfin;ty, thenweget v+7,v+8,v+9 E B({7,8,9)). 

Employ 120,232,288,344,400 E RB@) [56]. 13 

Lemma 20 115,227 E B({7,8,9)). 

Proo f: Rom Theorem 8, there is a {O, 8)-arc A of order 120 in PG(2,16). Add 

two points z and y not in the are to A. Then A U {z, y) contauis a unique block of 

size ten. Remove seven points in a liae of size eight intersecting the block of size ten 

including the point of intersection to get 115 E B({7,8,9)). That 227 E B({7,8,9)) 

follows similady from the fact that there is a {O, 8)-arc of order 232 in PG(2,32). 

cl 

Proof: Theorem 6 with q = 17 gives a {8,9)-GDD of type 817. There are tkee 

points in the design such that any tao points induce a block of size nine. Hence, 

removing O, 1, 2, or 3 of the thtee points yields [133,136] E B({7,8,9)). Add 

a point at infinity to the groups of the GDD to get 137 E B({7,8,9)). Add 

a point at infinity and remove seven points îiom a block of size eight to obtain 

130 B({7,8,9)). Findy, the GDD is embedded in a projective plane of order 17 

and is obtained on the set of exterior points. Adding two oval points gives a unique 

block of size ten. Remove 7 points induding the point of intersection of a block of 

size eight with the block of size ten to obtain 131 E 8({7,8,9)). O 



Lemma 22 169,217,218,3(11,302 E B({7,8,9)). 

Proofi Observe that 169 E 8(7),  and that there exïst 7-GDDs of type 7=' and ?43 

[2]. Add zero or one M t e  point. 12 

Proof- Take a TD(9,43) and trancate two groups to zero or one points each; fill 

the groaps using 50 E B({7,8, Pl) and seven infinite points. O 

Lemma 24 [386,401] E B({7,8,9)). 

Proofi Take a projective plane of ordez 43 with 44 oval points. Remove an oval 

point to get a TD(44,43) wîth one oral point in 43 of the 44 groups. Remove all 

but nine gronps which all have an oval point. Remove any t o d  points where 

O < t 5 9. This pives a {7,8,9)-GDD of type 42t439-t. Add seven infinite points 

to obtain [385,394] E B({7,8,9)).  

Now start with a TD(9,49) with nine oval points. Choose four oval points and 

a group not containhg any of the four o d  points. These four ovd points d&e 

six distinct lines which interseet the gronp in at most six distinct points. h c a t e  

the groap to size 6,7 or 8 leaving those intersecting points. Now, remove any t 

of those f o u  o d  points to get a {7,8,9)-GDD of type 498-t48ta1 for O 5 t 5 4 

and a = 6,7,8. With these GDDs, apply Theorem 17 with h = 1 to obtain 

[395,401] E B({7,8,9)). O 



Proofr Take a TD(9,56) and mincate to nine points in two different gronps. 

This gives 410 E B({7,8,9)). A (433, {9))-PBD exists, obtained by developing 

the starter blocks 5' {O, 1,3,30,52,61,84,280,394), i = 0,36,72,108,144,180, 

over the cy& group of order 433 [2]. Choose a set P of four points, no three 

collinear. These define six blocks, each containhg seven points not in P; let C 

be the union of these six bloels. Then suppose that there are t ao  blocks BI 

and B2, so that BI, B2 and C are pairaise disjoint. Removing the points of all 

three sets would then establish the statement for 411, and removing all but one 

of the points would settle 412. It remains to exhibit the set P and the blocks Bi 

and B2. Take P = {O, 1,2,7), and BI = {BO, 108,127,151,271,338,344,412,426) 

B2 = {BI, 109,128,152,272,339,345,413,427). O 

Proofi Take a TD(9,57) and truncate to x and y points in two different groups 

where 7 5 z,y < 9. O 

Proof: A (433,{9))-PBD D exists [2]. Simple coanting ensures that Z) con- 

tains seven points, no three collinear. By deleting any subset of these, we obtain 

[426,433] E B({7,8,9)). In V, remove eight or nine points in a block of size nine 

to obtain 424,425 E B({7,8,9)). Remove a block and 1 or 2 points in pait of 

disjoint blocks fiom V to obtain 422,423 E B({7,8,9)). If we have removed a 

block and tao points fiom a pair of disjoint blocks, this induces 19 blodrs of size 

seven. There are at most 133 points lying in a block of size seven. Hence, it is 

possible to pick one more point to remove, so 421 E B({7,8,9)).  Continue in this 
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way to show 419,420 E B({?, 8,9)). FmaIly7 take tao intersecting blocks fkom 2) 

and remove eight points fiom each block including the point of intersection. This 

gives 418 E B ({7,8,9)). 0 

Lemma 28 [430,436] C B({7,8,9)). 

Proofi In a PG(2,8), there is a wb-plane PG(2,2).  Choose tkee coUinear points 

(Pi, 8, P3 on line 1) in the sub-plane; the remaining four points in the sub-plane 

form a {O, 1,2}-arc Q. The six points of 1 \{Pl, Pz, P3) together form a {O, 1,2,6*)- 

arc on 10 points. Remove tkee points fkom Q and remove any h points from 

l\{Pl, Pz, P3) to obtai .  61fh E B({7,8,9, h*)) for 3 5 h 5 9. Add h infinite points 

to the gronps of a TD(7,61), for 3 5 h 5 9. This gives [430,436] E B({7,8,9)) .  0 

Proofr By [2], 400 E RB(8). Take any two blocks in a pardel &S. Remove one 

block and two points hom the other block. This gives 17 blocks of size six and at 

most 102 points in a block of size six. Hence, it is possible to pi& a point so that 

its removal does not shorten any block by more than two. Now, there are 25 blocks 

of size six and at most 150 points in a block of size s i x .  So a fkther point can be 

removed so that every bloc& has size at least sir. This gives at most 37 bloclcs of 

size six. Adding 49 infinite points to 49 pardel classes including all patdlel dasses 

containing a block of size SU This gives 437 E B({7,8,9)). It is easy to establish 

that 438,439,440 E B({7,8,9)) in a similar way. O 

Lemma 30 [441,449] C B({7,8,9)). 



Proof: Take a projective plane of orda 49 with 50 oval points. Remove one 

oval point. This gives a TD(50,49). Remove 41 groups including the group that 

does not contain an oval point. This gives a TD(9,49) wïth one oval point in 

each group. Now, remove any t of the oval points for O < t 5 9. This gives a 

{7,8,9)-GDD of type 48t499-t. Add eight points at infinie and use the fact that 

56,57 E 8({7,8,9, â*}). 0 

Lemma 31 If q O a p r i m c  power and q E B({7,8,9)), then [7q, 89-61 E B({7,8,9)). 

Hence [343,386] U [448,642] U [791,1090] U [1183,1346] U [1589,1906] U [1967,2338] U 

[2359,2818] E B({7,8,9)). 

Proofi Apply Theorem 5 with n = 7. Then employ q = 49,64,71,79,81,113,121, 

128,137,169,227,233,239,281,293,337,341,353. O 

Lemma 32 If there easts a {9,10)-GDD of type mlo and for each O < ti < m 

O < i 2 10, then the* ezists o {7,8,9)-GDD of type (7m+t1)(7m+t~). - . (7m+t10). 

Proof: Assign weight 8 to ti elements in group i for O 5 i 5 10 and assign the 

remaining elements weight 7. AU we need to show is the existence of the ingredient 

GDDs: {7,8,9)-GDD of type Fe9-' for O < t 5 9 can be obtained by removing 

any t + 1 o d  points in a projedive plane of order 8. Remove a line disjoint fiom 

d oval points and an oval point fiom a projective p h e  of order 9. This gives a 

9-GDD of type 8'' with 9 ovd points. For each O t 5 9, deiete any t oval points 

to prodace {7,8,9)-GDDs of type PB1'-'; for t = 10, delete tao blocks, and one 

point in the same group as their point of intersection, fiom a TD(10,9). O 

Lemma 33 [643,790] E B({7,8,9)). 



Proofi Remove a line containing only one o d  point fiom the projective plane of 

order 9. This gives a TD (9,9) with one o d  point in each p p .  Remove any subset 

of the oval points to obtaùi a {7,8,9)-GDD of type 9'89-t whae O t 9. Take a 

TD(9, m), rn E {8,9) and assign weight 9 to points in group i ,  O 5 i < 9 and give 

weight 8 to all remaining points. By Theorem 18, this resuits in a {?, 8,9)-GDD of 

type (8m + ti)(8m + t2) . . . (8m + ts). This gives [576,729] E B ({7,8,9)). Apply 

Lemma 32 with a {9,10)-GDD of type 101° to obtain [700,800] C 8({7,8,9)). The 

{9,10)-GDD of type 10Lo can be obtained by removing a block fkom TD(10,ll). 0 

Proof: Any integer v E (112,2741 can be written as a SUIR of two integers a and b 

snch that a, b E B({7,8,9)) and a, b 5 137. Take a TD(9, m) and mincate 137 - a 

and 137 - b points from tao différent groups for m E {137,169,241,297). O 

Lemma 35 There &ts {7,8,9)-GDD of type ?'a, 7" and 79a fot O 5 a 5 7. 

Proof: 'Lhuicate one group of a TD(8,7) to obtain a {7,8,9)-GDD of type ?'a. 

Take a TD(8,8) and remove one point to produce an 8-GDD of type 79. Ihuicate 

points in one group to obtain {7,8,9)-GDDs of type 78a. Take a TD(8,9) and 

remove one point to give a {8,9)-GDD of type 7981. 'Ihncate the long group to 

obtain {7,8,9)-GDDs of type 7'a. a 

Proof. Take a TD(10,25) and remove one block. This gives a {9,10)-GDD of 

type 241°. Assign weight 7 to eight groups, weight O or 7 to the ninth group and 

assign arbitrarily weights from O to 7 to the last group. This gives a {7,8,9)-GDD 



of type 16S8(7u)'v where O < u 5 24 and O < v < 168. Adding a point at infinity 

to obtain a 168 - 8 + 7u + v + 1 E B({7,8,9)) if 7u + 1, v + 1 E B({7,8,9)). Choose 

7u E {49,63,77,91,112,126) and v E [62,8O] to obtain [1456,1551] \{1517,1518) E 

B({7,8,9)). Choose 7u E {49,63,77,91,112,126) and v E [US, 1301 IJ [132,136] to 

obtain [1512,1607] \ {1525,1539,1553,1567,1573,1574,1588,1602) E B({7,8,9)). 

Choose 7u E {133,168) and v E [62,80] to obtain [1540,1558] u [1575,1593] E 

B({7,8,9)). Take a TD(9,216) [3] and tntncate tao  p p s  to 6 and 48 and add a 

point at infinity. This gives 1567 E B({7,8,9)). Take a TD(17,224) [3] and take 

a 'stair '  of length of size 5 or 6 (see [41]) together with 7 of the gronps. This gives 

1573,1574 E B({7,8,9)). 0 

Proof: Take a TD(9, rn) and truncate one gronp to a points where v E [63,8l], 

m E {237,293). 0 

Combining the above lemmas, we have [343,2470] C B({7,8,9)). 

Lemma 38 If [343 7a, 343 7=+' + 691 C B({7,8,9)) when a is  any non-negatiue 

integer then [343 7'+ ', 343 7a+2 + 691 B({7,8,9)). 

Proof: For any v E [343 70+', 343 - 7"+' + 691, v can be cRBtten as 7u + v where 

u E [343 7",343 = 7"+' + 691 and v E {63,64,65,66,67,68,69). Since u 2 76, a 

TD (8, u) exists [3]; truncate a group to size v.  O 

Corollary 12 For any v 2 343, v E B({7,8,9)). 

Let En0 = [IO, 481 U [51,55] U [59,62] and Xn9 = [93,111] U [116,118] U {132) U 

[138,168] U [170,216] U [219,223] U [228,230] ü [242,279] U [283,286] U [298,300] U 

[303,307] U [311,335] U [339,342]. 



Theorem 29 For any integer v 2 10, v E B({?, 8,g)) un'& the possible ezceptions 

in X789 and definite ezceptions in Eno. 

2.4 PBDs with Block Sizes Eight, Nine and Ten 

In [82], it is shown that if v 2 1864, then v E 8({8,9,10)). W e  can make consid- 

erable progress on this. Due to the complication of stating the result in [82], we 

reproduce part of the proof here. We do not comment on the non-existence here, 

as it is included in [16]. 

Defme f (n) = n + n - 2m (8 - 2m + 1 - n) + (8 2m - 7 - a) 0 for positive integers 

m, n. The following theorem in [82] is a s a .  

Theorem 30 Let r n  le a positive integer. If there &ts a positive integer k such 

that f (l), f (2), . . . , f (k) are dl less th an 2=+" + 2- - 2- - 7, thm 2- - 
z3* + 8 + t E B({8? 9,lO)) for a21 integers t such that O 5 t 5 k + 1. 

The nnmber of bloclrs in a B(v, 8) with v = 2>0+6-2m+3+8 is 56(22m)+15(2m)+l 
u v-1 becanse the number of blocks is eqnd to So, in PG(2, Z3+"), there are 

26f + 2- + 1 - 56(Z2"') - 15(2m) - 1 = 2m(2m+3 - 7) lines missing the set u 

points of the {O, 8)-arc. 

W e  need the following r d t  from [82]. 

Corollary 13 Suppose there ezàsts a positive integer k such that f (1 ) ,  f (2), . . . , f (k- 
1) < Z6f + z4+ - 2- - 7 and k(2") < 2"(2"+' - 7 ) .  Let a be a positive in- 

k &-1 teger such that a + k(Zm) + -$J 5 2- + 1, then Fe -2in+r + k + a + 8  E 

B({& 9, 10, a')) 



Proofi By [2], we have 57,64 E B(8). Add a point to each gronp in TD(8,8) to 

obtain 65 E B({8, 9,lO)). Now 72 E B({8,9,10)) because TD(9,8) exists; add one 

point to each group of TD(9,8) to obtain 73 E B({8,9,10)). Take a TD(lO,9) and 

remove eight points in tao groups to obtain 74 E B({8,9,10)). F i ï y ,  remove one 

point fkom TD(9,9) to obtaiP 80 E B({8,9,10)). CI 

Proofr The existence of the projeetive plane of osdes 9 establishes that 91 E 

B({8,9,10)). Remove an oval point in the plane to prodnce a TD(10,9) with 9 

groups containhg an oval point. Deleting any t of the oval points gives 90 - t E 

B({8,9,10)) for O 5 t 5 9. O 

Proof: Talte a TD(IO,11) and remove nine points in two blocks so that no group 

of size 11 remains, 0 

Lemma 42 96,97,98,99,100 E B({8,9,10)). 

Proof: FVst of 9, if n = 10 and A- = {0,5) = B then A -, B = {0,5). 

Hence m(10,2,2) 5 2. If we take q = 11 and apply Theorem 11 with 1 = 8, 

a = p = 1 to produce a (10, {O, 1,2, IO*), 3,3,1,1,. . . , l)-thwart in TD(10,ll). By 

complementing the thwart, we obtain a (10, {8,9,10, (r), 8,8,10,10, . . . , 10)-thwart 

in TD(10,ll). Hence we obtain [96,100] C B({8,9,10)). O 



Lemma 43 94,95,110,114 E B({8,9,10)) .  

Proofi See Section 2.1. 

Theorem 31 [2] 120,232,288,344,400,456 E RB(8) .  

Lemma 44 120,121,122,123,124,125,128,129,130,131,132 E B({8,9 ,10)) -  

Proof: In Theorem 30, taking m = 1, we have f (1) = 33, f (2 )  = 69, f (3) = 105 

and f (4 )  = 138, thaefore we obtain (120,1251 C B({8,9 ,10)) .  Apply Corollary 13 

with a = 8,9,lO when k = 2 to get 130,131,132 E B({8,9 ,10)) .  Finally, by Lemma 

31, it is possible to add 8 or 9 infinite points to the resolvable design RB(120,8) 

and a block at infinity to obtain 128,129 E B({8,9 ,10)) .  D 

Lemma 45 [136,154] C B({8 ,9 ,10) ) .  

Prooft Taking q = 17, apply Lemma 7 .  

Proof: Apply Lemma 7 with q = 19. The set of exterior points induces a design 

with block siaes 9,10 (See [82]). AU block sizes of 10 are induced by the exterior 

lines; it is possible to choose tkee exterior lines so that th& pairaise intersection 

are distinct and the points of intasection are exterior points. B y removing the three 

points we obtain 168 E B({8,9 ,10)) .  Remove O, 1 or 2 points from the {9,10)-GDD 

of type gis to obtain 169,170,171 E B({8,9,10)) .  By adding a point at infinitr 

to each gmup, we get 172 E B({8,9,10)) .  Remove 9 or 10 points fiom a block of 

size 10 in the GDD to obtain 161,162 E B({8,9,10)) .  Remove eight points fkom 



a group to obtain 163 E 8({8,9,10)). Adding tao oval points 6Lom the {9,10)- 

GDD of type 9'' arising fiom the finite projective plane of order 19. This gives 

a PBD(173, {9,10) U Il*). Remove eight points or nine points kom a nine-blodr 

intersecting the unique block of size 11 to obtain 164,165 E B({8,9,10)). D 

Lemma 47 232,233,234,235,236,237,238,240,241,242,243,244,245,246 

E B(C8, 9 , W )  

Proofr Apply Theorem 30 wikh m = 2; we have f (1) = 129, f (2) = 273, f (3) = 

429, f(4) = 594 and f (5) = 765. They are all less than 812 which is number of 

exterior points. Hence [232,238] C B({8,9,10)). Apply Corollary 13 nith a = 10 

and k = 1,2,3,4 respectively to obtain [243,246] C B({8,9,10)). Finally, 232 E 

RB(8) has more than 10 resolution classes, and hence [240,242] C B({8,9,10)). 

Lemma 48 288,289,296,297,298 E B({8,9,10))- 

Proofi Add O, 1,8,9,10 idhite points to a RB(288,B) design. 

Proof: Add O ,  1,8,9,10 infinite points to a RB(344,8) design. 

Lemma 50  400,401,408,409,410,457 E B({8,9,10)). 

Proof: Add O, 1,8,9,10,57 W t e  points to a RB(400,8) design. 

Lemma 51 402,449,450,451,498 E B({8,9,10)). 



Prooff b c a t e  a grmp of. TD(k, 49) for k E {9,10) to O, 1, 2, or 49 points. Fill 

the groups asing eight infinite points and 57 E B(8). 0 

Proofi Remove O, 1,8 and 9 points from the B (433,9) design [2]. 

Lemma 53 434,440,441,442 E B({8,9))* 

Proof: Greig [59] gives a SGDD of type 94g, so ne obtain 441. Delete any point 

to obtain 440. Add an infinite point to the gronps to obtain 442, and delete eight 

points fiom a 9-block in this PBD to obtain 434. O 

Proof: Apply Theorem 30, taking m = 3; we have f (1) = 513, f (2) = 1065, f (3) = 

1653, f (4) = 2274, f (5) = 2925 and f (6) = 3603. They are all less than 3705 which 

is number of der ior  points. Hence [456,463] Ç B({879,10)) Apply Corollary 13 

with a = 10 and k = 1,2,3,4,5 respectively to obtaia [467,471] E B({8,9,10)). 

456 E RB(8) has mote than 10 tesolution ciasses, and hence [464,466] C B({8,9,10)). 

O 

Proof: Since 513 E RB(9), deleting eight or nine points from a block gives 505 or 

504. Instead adding en infinite point to one parallei dass and then deleting eight 

points fkom a 9-block gives 506. O 



Proofi By a simple counting argument, there is a TD(13,64) containhg a 

(5, {O, 1,2), 57,1,1,1,1)-thwart. This gives [569,573] C B({8,9,10)). Take a 

TD (10,64) and truncate two groups to 56, a where a E {7,8,9) and add a point 

at Wty to obtain [576,578] E 8({8,9,10)). Take a TD(10,64) and tmncate 

two gronps to 57 and 10 to obtain 579 E B({8,9,10)). Finally, take a RB(513,9) 

design. Remove tao points in a block and zero points or one point in another 

block in the same resolation class. This gives at most three blocks of size seven. 

574,575 E B({S, 9,lO)) can be obtained by adding 64 infinite points to the resulting 

design. O 

Lemma 57 583 E B({8,9,10)). 

Proof: Truncate two groups of TD(10,71) to seven points each, and fill the groups 

nsing one infinite point. 0 

Lemma 58 I f q  is a prime power and q E B({8,9,10)) then [8q, 9q-71 Ç B({8,9,10)). 

Proof: Apply Theorem 5 with n = 8. O 

Lemma 59 [512,569]~[584,866]~[968,1514]~[1864,2162]~[2312,2594~~[2824,3170] C 

B(C8, 9 , w  

Proof: Apply Lemma 58 with q = 64,73,81,89,97,121,128,137,151,169,233,24~, 

289,353. 0 



Proofi Take a TD(lO, a) and trancate tao groups to &es z and y. For [867,910], 

take a E {97, lOO), z E {O, 10) and y E [80,a] For 912, take a = 97, z = 64 and 

y = 72. For [913,945] take a = 97, z E {57,72) and y E [BO, 971. For [946,967] take 

a = 97 and z, y E [807 971. Fially, for 911 apply Theoreïn 30 to add 7 points to a 

Denniston arc. O 

Proofi Any integer in [160,.312] can be written as mm of two integers a, L whae 

a, b E B({8,9,10)). So taLe a TD(l0,169) and truncate two groups to a, b points. 

cl 

Lemma 62 There e&ts {8,9,10)-GDD of type g8a', g9a1 and 91°a1 when O 5 

a 2 9- 

Proofr Take a TD(9,9) and TD(10,9). Tmncate one group to obtain {8,9,10}- 

GDDs of types 9'u' and 9'0'. Take a TD(10, Il) ,  remove a block and mincate one 

goup. Use one deleted point to define groups to obtain {8,9,10)-GDDs of type 

groal. O 

Lemma 63 [1648,1864] E B({879,10)). 

Proof: Take a TD(11,19) and apply weight nine to ikst eight gronps, assign weight 

zero or aine in two goups and asaign arbitrary weights fiom {O, 1, . . . ,9) to the last 

group. All reqnited ingredients ePst by Lemma 62. Hence, we obtain a {8,9,10)- 

GDD of type (171)8(9a)1(9b)1e' where O 5 a,b < 19 and O 5 c 5 171. Choose 
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a, b E {O, 1,8,9,10,11,16,17,18,19) and c E [136,154]. Then 9a, 9b E 8({8, 9,lO)) 

and 

Let E8,qio = [Il, 561 U [58,63] U [66,71] U [75,79] and %,o,~o = [101,109] LJ 

[Ill, 1-13] u [115,119] ü [126,127] u [133,135] u [155,160] U (166,1671 U [173,231] U 

(239) LJ [247,287] U [290,295] U [299,343] U [346,351] U [355,399] U [403,407] U 

[411,423] U [426,431] U (435,4391 U [443,448] U [452,455] U [472,497] U [499,503] U 

[507,511] U [580,582]. 

Combining the above lemmas, ne obtain the following theorem. 

Theorem 32 For any integer v 2 11, v E B({8,9,10)) with the possible exceptions 

in Xe,s,lo and definite ezceptions in E8z,lo. 

2.5 Some Non-Existence Results 

In this section, we prove some non-existence results to supplement the results in 

[98] and [Ir]. 

An incidence structure is a triple D = (V, LI, 1) where V and B are any two 

disjoint sets and I is a binary relation between V and B. The elements of V are 

c d e d  points, those of B blocks and those of I jiags. 

Give an incidence structure, ne define the dual as foilows: Let V' = B and 

B'= V, we define Ir as (p', B') E I f  if and only if ( B ,  p) E 1. W e  call D' = (Vr, Br, Ir) 

a dual incidence structure of D. 



By taking the dual of any (v, k, 1)-padong design, ne can obtain another inci- 

dence structure which is ofken a lot easier to analy~e. 

We denote OQ>s - be the set of odd pRme power greater than or equal to five 

and Q>5 - be the set of prime.power greater than or eqnd to five. 

The following theotem is very nsehil. 

Theorem 33 [SI] Let K be a set of positive integers and let m denote the mallest 

integer in K .  Suppose that then e225ts a PBD(v, K )  which contains blocks Bh and 

Bk of sites h and k,  respectively. Then 

1. v 2 ( m - l ) k + h - m + 1 ;  hence 

2. v 2 (n - l)k + 1, uith equality if  and only if t h e n  e&ts a resoluable 

BIBD(k(m - 2) + l,n - 1,l); 

3. if Bh and Bk do not intersect, then v 2 (m - 1) k + h. 

Proof: Suppose to the contrary that a PBD(48, {4,9)) design d s .  Let z be 

a point of the design and ti be the number of blocts of size i that point z is on. 

Evidently, 47 = 3r4 + 8rs by considering the neighbours of a point. This gives 

r g  = 1 (mod 3). Hence, every point in on at least one block of size nine. Let b be 

the number of blocks of size nine. Since every point is on at least one blodt of size 

nine, we must have b 2 6. Let 4. be the number of points in the design so that it 

is on i blocks of size nine. We have shown that a31 = ujk+r = O for aIl k positive 

integer. Note that 4- = O for all i 2 7 since otheraise, there are more than 48 

points in the design. So, ne have the relation 48 = ai + 4. Also, we know that 



9b = al + 4a4. Solving yields a4 = 36 - 16. Now, we consida only blocks of size 

nine. In the dual, it forms a packing design wïth b points and 3b - 16 blocks of size 

4 with replication nnmber at  most 9. The packhg number for v points is at most 

1 f 1 9  J J . We know that 38 - 16 5 48. A simple check reveals that for snch range 

of b, it is alaays impossible to have a packing of the given size. O 

Lemma 65 39 $ B({5,7}). 

Proofr Snppose to the conLary that there exists a PBD(39, {5,7)). Let z be a 

point in the design. By considering the neighboars of z, z is on an odd number 

of blocks of size seven. Let 6; be the number of blocks of size i in the design. By 

counting pairs, we obtain 741 = lob5 + 21b. This means 1 (mod 10). The 

possibility of b7 = 1 is ruled out immediately because every point is on at least 

one block of size seven. Every point is either on one, three or five blocks of size 

seven. If a point is on at le& seven blocks of size seven, then the design must 

have at least 43 points. Let be the number of points on i blocks of size seven. If 

b7=11, then 77 = ai + 3a3 + 5a5 and al + a3 + as = 39 imply that 19 = as + 2as. 

Next, we consider the dual incidence structure; it is a packing with block sizes 

three or five. A block of size five can be replaced by tao  blocks of siae three. If 

we ignore the condition on replication, then we mu& be able to pack 19 triples on 

11 points and this is impossible since the packing namber is 17 [95]. If A = 21, 

then 147 = al + 3as + 5as and this means 54 = as + 2a5. Since, as + as < 39; this 

means as 2 15 and as = 54 - 20s. If the design exists, we must be able to pack as 

blocks of size five and 54 - 2aS blocks of size three in 21 points. However, there are 

exactly 210 unordered pairs on 21 points. On the other hand, a5 blocks of siae five 

give 10as pairs and 54 - 2as triples give 3(54 - 2a5) pairs. AS as 2 15? the numba 

of pairs is always greata than 210. Hence, = 21 is impossible. I f  2 31, the 



d a t h s  as +as 5 39 and 2 ~ 3  +4a5 = 7b - 39 do not have any solution in positive 

htegers. Cl 

Lemma 66 49 $! B({5,8}).  

Proof: Suppose to the contrary that a PBD(49, {5, 8)) d t s .  Let bi be the number 

of blocks of size i in the design. By counting pairs, we mast have 1176 = lob5 + 2 8 b  

This gives q E 2 (mod 5). Also, every point must on either zero blocks or four 

blocks of size eight by considering the neighbotu of a point. Let be the nomber 

of points on i blocks of size eight. We have a0 + a4 = 49. Also, 8b = 4a4 giving 

a4 = 2b8. This forces = 2,7,12,17 or 22. Since thae  is at lesat one point on four 

blocks of size eight, then there must be at least 29 points on at le& one block of 

size eight. By considehg another point of the 29 points, ne see that there must 

be at least 41 points on four blocks of size eight. Hence a4 2 41 and this eliminates 

L = 2,7,12,17. Suppose = 22, by considering the dual strucnre forms by the 

blocks of size eight, we must have 44 blodrs of size four packed in 22 points. This 

violates the packing bound (951. 0 

Proo f: Suppose to the contrary that a PBD(52, 15, 8)) exists. Let bi be the number 

of blocks of size i in the design. By counting pairs, we must have 1326 = lobs +28b8. 

Hence, b8 r 2 (mod 5). Also, every point is on one or five blocks of size eight. Let 

ai be the number of points on i block of size eight. We have al + as = 52. h o ,  

8 8  = al + Sa5. This gives a; = 2b8 - 13. It implies = 2,7,12,17,22,27 or 32. A 

upper bound for the packing nnmber is LtLYJJ [95]. If L = 7, then this means 

there are seven blocks of size eight and five of them iotexsect in one point. However, 
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the remaming 16 points are partitioned by two blocks of size eight. By considering 

the point on five blo& of size eight, it is impossible to have any block of size five 

passing through that point becuase the remaining 16 points are partitioned in two 

blocks of eight. If = 12, a8 = 11 and paelMg b o ~ d  is four. If b8 = 17, then 

a, = 21 and packing bound is 13. If = 22, then a8 = 31 and paekmg bound is 

22. If b8 = 27, then a8 = 41 and packhg bound is 26. Ifh = 32, then a* = 51 and 

padong bound is 31. Hence, no such design exists. O 

Lemma 68 39 6 B(OQ5) and in partidar 39 4 B({5,7,9)). 

Proof: We have shown that 39 $ B({5,7)) (Lemma 65). If 39 E B({5,7,9)),  

then it must contain a block of size nine. Using Theorem 33, there cannot be 

another block of size nine. Aiso, every block mnst intasect the biock of size nine. 

By removing the block of size nine, we obtain a PBD(30, {4,6)) with nine pardlel 

classes. Let the parallel types are: A : 65, B : 6343 and C : 6'4? Let a, b, c be the 

number of pardel classes of .type A, By C respectivdy. W e  m a t  have a + b + c = 8 

and 435 = 75a +63b+51c. However, this set of equations has no solution in positive 

integer. Eence, 39 fi! B({5,7,9)).  Non, if 39 E B(OQ5), then it must contain a 

block of sïze h 2 11. We obtain a contradiction by using Theorem 33. O 

Lemma 69 44 # B({5,8,9)). 

Proof: Suppose to the contrary that such a design exists. Consider the point type 

of a point z: 43 = 4rS + ïr8 +8ro where ri denotes number of blocks of size i thmugh 

point 2. This means that every point is on 1 (mod 4) of block of size eight. Since 

44 is not a multiple of eight, so there mast be a point on five blocks of sïze eight 

since if there exists a point on at le& niae blocks of size eight, then the design 
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has at least 50 points. By removing the point on five blocks of size eight, it is a 

{5,8,9)-GDD of type 7542. However,, every point on a block of size four must be 

on a block of size eight. This is impossible because there are only seven gronps. 

Lemma 70 38 B(Q>s) - and 38 g! B({S,?, 8,9)) 

Proofi Suppose to the contrary that snch a design d s .  By Theorem 33, it 

cannot have a block of size at lead eleven. If it has a block of siee nine, then by 

Theorem 33, we can condude that all other blocks m a t  have sïze five. But it is 

known that 38 6 8({5,9)) [19]. Hence, this shows that it can not have a block 

of size nine. We now show that 38 4 B({5,7,8)).  Every point is on odd namber 

of blocks of size eight by considering the degree of any point in the design. Let 

ba be the number of blocks of size eight. It is evident that b8 2 5. If a = 5, it 

must be the case that exactly one point lies on t h  blocks of size eight. But a 

pair containhg the point of intersection and a point in other two blocks of size 

eight cannot occur in a blocL. If q # 5, no point can be on five or more blocks of 

six eight , or otherwise, the design must have more than 38 points. Bence, e v q  

point must be on either one or three blocks of size eight. A simple connting reveals 

that the number of points on three bloelts of size eight is 4b8 - 19. By considering 

the dual incidence strncture of the block of size eight, we must be able to pack 

4b8 - 19 triples on points. It is impossible for 4 5 14. However, if b8 2 15, then 

46, - 19 2 39. O 

Lemma 71 37 6 B((5,7,8)). 

Proof: It has been shown in [58] that 37 6 B({5,7)). If 37 E B({5,7,8)), then it 

must has a block of size eight. Sime every point must be on even namber of blocks 



of size eight, it must have t least nine bloclrs of size eight. (In fact, if it exists, it 

mu& have exactly nine blodrs of sïze eight, othernise the design wodd have more 

than 37 points.) The stnictnre of the blocks of size eight must be the 'dud-&arc' 

as in Section 2.1. However, any point on hro blocks of size eight must &O be on a 

block of size s e m .  Now one can not have a hanverse block of size seven. 0 

2.6 Pairwise Balanced Designs with Holes 

In this section, we consider a problem of Hartman and Heinrich on pairwise balanced 

designs with holes. 

Let Z>3 - be the set of al l  integers that are at Ieast tkee. The problem of 

constructing designs PBD(v, Z>3 - U {k*)) was considered by Hartman and Heinrich 

in [64], where the folloaing result is established. 

Theorem 34 A PBD(v, - U {k*)) &ts if and ody ifv 2 2k + 1 ezcept when 

(i) v = 2k + 1 and k = O (mod 2); 

(ii) v = 2 k + 2  and k f  4 (mod6)) k > 1; 

(iii) v = 2k + 3 and k s O (mod 2)) k > 6; 

The possible exception (v ,  k) = (17,6) in Theorem 34 was snbseqaently removed 

' by Heathcote [66] who showed that thete cannot exist a PBD(17, - {P)). Since 



then, there rem& Meen pairs (v, k) E P for which the existence of a PBD (v ,  &U - 
{kW)) is nadetaniaed. We cons t~~c t  PBDs settling the problem for all of the pairs 

in P. 

The strategy we used in constmcting a PBD(v, - U {k*)) ( X ,  B )  is to corn- 

pletely specify the set of blocks A C B with &es p a t e r  than three, that is, 

A = {B E B 1 [BI 2 4). Following [61], we call the partial design (X,d) the 

prestructwe of the PBD. The remaining blocks of size three (triples) are then füled 

in by a variant of Stinson's hilldimbing algorithm [Il01 similar to the one desaibed 

in [Si]. 

The most difficult task in the construction of PBD(v, - U {k*)) is the deter- 

mination of suitable presmictures. The prestructnres ( X ,  A) used in this paper are 

constmcted mannally, taking into accomt the foDowing dementary conditions that 

must be satisfied: 

In Table 2.1 and 2.2, ne give prestructares of designs PBD(v, - U {k*)) for 

which the hilldimbing algorithm sncceeds in completing them to PBDs. In each 

case, the prestrncture consists of only one block of size k, and the remaining blocks 

have &es four and five. The point-set of s PBD of order v is taken to be the set 

consisting of the first u elements of P = {a, b, . . . , z, A,B, .  . . , Z, i ,2,3).  The block 

of size k in each preshcture is the set eonsisting of the fùst k elements of P, and 

we omit it from the listing in Table 2.1 and 2.2. . 

Given these prestructares, it is eagy to complete them with triples to PBDs nsing 

hilldimbing. OUI program, tanning on a DEC 2000 41200 Alpha system, took less 
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Table 2.1: Prestructures for PBD(u, Z>3 - U {k*)) (i) 

than two seconds on the largest design. For the actual blocks of the design, see 

[34I 

2.7 Direct Constructions for Pairwise Balanced 

Designs 

In this section, we present some direct constructions of painnse balanced designs. 

These constructions snpplement the r e d t  in [17]. 



Lemma 72 There ezists a {5,6}-GDD of type 528. 

Proof: Let V = Zlu and develop the following blocks over ZlS: 

The last three blocks generate 11 parallel classes of block size five. Add five infinite 

points to obtain a {5,6)-GDD of type 527. O 

Proof: Let V = Zios Develop the following blocks over zIo3: 

Lemma 74 The= ezists a PBD(123, {5,7)). 

Proof: Let V = Zris Develop the following blocks over Z1=: 
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Lemma 75 Them d a PBD(163, {5 ,7} ) .  

Proof: Let V = Zla3. Develop the following blocks over Zia: 

Proofi Let V = Zzzs Develop the following blocks over &: 

Proofi Let V = Zler. Develop the folloaing b l o h  over Ziw: 

{0,5,126,102,167,32,176,180}, {0,1,3,46,88). 



Multiply the second block by 104~ for i = 1,2,3,4,5,6 to obtain sir  more blocks. 

0 

Lemma 78 Then asts a PBD(133;{5,9)). 

Proof. Let V = Zls. Develop the following blocks over ZlW: 

Lemma 79 There ezists a PBD(193, {5,9)). 

Proof- Let V = Zlg3. Develop the following blocks over Zis3: 

{l,l08,84,5,l54,34,l2,l38,43), {O ,2,10,28,55), 

{0,23,115,129,150), {0,168,68,36,181), 

{O, l,6,77,136), {O ,lO8,69,17,2O}, 

{0,84,118,99,37}. 

Lemma 80 Then ezi& a PBD(129, {5, IF}). 

Proofr Let V = ZlI2 Develop the following blocks over Zllt: 



The blocks of size four generate 17 pardel classes. Attach 17 infinite points to 

obtain a PBD(129, (5, IF)). a 

Lemma 81 Ti i en  Qists a PBD( 125, {5,21*)) and a PBD(ll5, {4,5, Il*)). 

Proofr Let V = ZiW. Develop the folloaing blocks over Zi& 

{0,1,3,10), {0,5,11,38), 

{O, l3,3O ,551, {O, l5,46,65), 

{O, 18,41,75), (OJ6 ,52,78), 

{0,4,28,40,60), {0,8,53,69,90). 

The blocks of size four generate 21 parallel classes. Attach either 11 or 21 

infinite points to obtain the result. D 

Lemma 82 There ezists a PBD(149, (5, IF)) .  

Proofi Let V = Zia?. Develop the following blocks over Zla2: 

{0,4,1,9,22), {0,12,29,61,102), 

{0,16,52,76,50), {0,20,48,88,125), 

{0,6,25,87}, {0,10?53?67), 

{O, ll,46,85), {O, l5,38,69), 

{0,33,66,99). 

The blocks of size four generate 17 pardel elasses. Add 17 infinite points to 

obtain the result. O 

Lemma 83 There &ts a PBD(169, (5, IF)) .  
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Proofr Let V = &. Develop the folloring b10cks over Zist: 

The blocks of size four genaate 17 paralle1 classes. Add 17 infinite points to 

obtain the result. 0 
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Chapter 3 

Group Divisible Designs 

In this chapter, we study the existence of groap divisible designs and modified gronp 

divisible designs. 

Group divisible designs have been instrumental in the conshction of other 

types of designs' Many researchers have been involved in investigating the existence 

of group divisible designs. Our interest hae is in the existence of d o r m  GDDs 

with block size k. Simple cotmting arguments show that if there is a d o m  k-GDD 

of type gU with u > 1, then 

u l k  

(u-1)g z Omod(k-1) 

u(u - l)g2 r O mod k(k - 1). 
The necessary conditions for the existence of a d o r m  k-GDD of type gU have 

been proved to be sufficient for k = 3 and 4 [63,30], with the definite exception of 

4GDDs of type z4 and 6'. However, little was hown about the case k = 5 other 

than the following r e d t  due to Hanani [63]. 
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Theorem 35 If q 1 (mod 4) is a prime p w e r ,  then t h e n  ezists a 5-GDD of 

type 5% 

In kst  tao section of this chapter, we construct 5-GDDs of type gu. Rom (3.1) , 

the necessary conditions for the existence of mch a GDD wïth u > 1 are tabulated 

here: 

g (mod 20) Condition on u 

O u 2 5  

1,3,7,9,11,13,17,19 u = l , 5  (mod 20) 

2,6,14,18 u m  l,5 (mod 10) 

4,8,12,16 u = 0 , 1  (mod5) 

5,115 u 1 (mod 4) 

10 u ~ l  (mod2), 2425 

We establish a strong existence redt: 

Theorem 36 The necessary condition (3.2) is also suficient, ezcept when gU E 

{z5, 211, 35, 65), m d  possibly wherc 

2. g = 2,6,14,18 (mod 20) und 

(a) g = 2 and u E {15,35,71,75,85,95,111,115,135,195,215,335); 

(c) g = 18 and u E {11,15,35,71,111,115,135,195); 



(e) g =€?y, 7 f O (mod 5), 7 # 3 odd, and u = 15; 

3. g = 10 (mod 20) and 

(a) g = 10 and u E {5,7,15,23; 2?,33,35,39,47,63). 

(a) g = 30 and u E (9,151; 

(c) g = 90 and u E {?, 23,27,39,47}; 

(d) g = ~ O Q ,  a = 1,5 (mod 6), and u E {7,15,23,27,35,39,47). 

(e) g=307,  7 1 5  o d d , r f  O (mod3) o r 7 = 9 ,  u=15. 

Using this theorem as a starting point and employing quite different techniques, 

we show in Section 3 that, for a dciently large, 5-GDDs of type (2a)= exist 

whenever the basic necessary conditions are met. This leaves a hite (but large) 

number of possible exceptions for a o r m  5GDDs. 

In section 4, we study optimal packhg with block size five when v 2 (mod 4). 

In section 4, we stndy a problem of Assaf concerning modified group divisible 

designs with block size four. We are able to solve all but a very s m d  list of possible 

exceptions. 

3.1 Direct Constructions 

In this section, ne  present direct constractions for a large number of d o m  group 

divisible designs with block size five. 

Lemma 5 There k t  5-GDDs of type gu for 

1. g = 2 and u=41; 



2. g = 8 and u E {10,11,15,16,20); 

3. g = 10 and u E {9,13,17); 

4. g = 12 and u E {IO, 11,15,16,20); and 

5- g = 15 and u = 9. 

Proof- Let v = g u. For g = 8,12, u E {10,15,20) we take X = Z,, plus g 

infinite points; there is one group on the innnite points and other groups consist 

of points which ate equal moddo (v - g)/g. In these cases, all base blocks of size 

four have elements which are distinct moddo 4, and hence generate four pardel 

classes each on the non-Mte  points. For the others, X = Z, and groaps consist 

of points which are equal moddo vfg. 

8% {O,l,3,7,12), {O,8 ,l8,45,79), {O,l3,38,53,lOO), {O, M,35 ,?4,98), {O, l7,43,76,99), 

{0,19,50,70,92} 

g20: {0,16,39,48,88), {0,4,12,46,83), {0,13,20,67,137), {0,22,24,65,90), 

{O,33,6O,l35, lM), {O, l8,29,74,126), {O, l,6,59), {0,21,31,122) 



12% {0,1,3,7,15), {0,5,18,39,68), {0,9,36,61,92), {0,10,42,72,95), {0,16,51,75,94), 

{O, l?,45,65,9l} 

12~': {O, 4,59,92,131), {O, 5,12,86,184}, {O, 18,34,204,217), {O, 54,85,219} (mal- 

tipiy by 1, 49, and 121 (mod 228)) 

Lemma 6 [8] There ezists a 5-GDD of type 

Proof: TaLe as point set {O, 1) x Zl l ,  and as groups {O, 1) x {y) for y E Zll. 

Develop the following blocks mod (-,21): 



Lemma 7 If q = 25, 45, or  65, then there czists a 5-GDR of type P. 

Proofi In each case, the point set is X = ({O, 1) x ZWi) ~ { m ~ ,  ao2), and the gronps 

are {z) X {Y, Y + (q - 1)/2)? for z E {O, l)?O I y I (q - 1)/2 - 1, plus (-1, -2). 

Develop the foUowiag blocks mod (-, q - 1): 



In each case the la& blodr generates 2 parallel classes on the non-infinite points; 

add each intinite point to one parallel class. 0 

Lemma 8 (Mils; see [102]) Thcm is a 5-GRD of type 231. 

Lemma 9 There ezist 5-GDDs of types and 29'. 

Proof: Solutions are &en ove. Z, x {O, 1) for u E (5 1,911. 

u = 51: The groups are {(i, O), (i + 32,l)) for i E Zsl. Base blocks are: 

u = 91: The groups are {(i, O), (i, 1)) for i E Zei. Base blocks are: 



Lemma 10 A BGDD of type 2'' ezists. 

Proofr TaLe the point set as {O, 1) x Z5 x &; let tl(z, y, z )  = (z, y,z + 1), and 

t z ( x ,  y , r )  = (z, y + 1,4z). Apply the group of order 55 generated by tl and t2 to 

the 10 blocks 

Apply .the group of order 11 generated by tl to the blocks 



Groups are of the form {(O, y, z), (1, y + 3, z + 9 - (49)). 

Lemma 11 There is a 5-GDD of type 2", and a 5-GDD of type 2". 

where z is a primitive dement satisfying z4 = x3 + 1. Mdtiply by (1, dot) for 

O 5 t 5 3 to obtain four bbcks fiom each. O 

Lemma 12 There czLsts a BGDD of type 2l3I. 

Proof: On Zirr x {O, 11, {(i, O), (i, 1)) for i E Zltl form grmps. Base blocks are 

obtained as foIlows. Take 

Multiply these each by the fifth root of unie 53; the first five yield five blocks each, 

and the last is invariant under multiplication by 53. This gives 26 base blocks, 

which can be devdoped over Zisl to obtain the 5-GDD. 0 
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Lemma 13 There LP u 5-GDD of type 219'. 

Proofr On Zlal x {O, l), take {(i, O), (i, 1)) as groups for i E Zlpi. Consider the 

base blocks 

and the base blocks 

Multiply each by the Wkh root of unity 39; those in the fkst set prodnce five 

blocks each, while those in the la& produce one. The 38 blocks that result are 

developed under Zlai to produce the GDD. Q 

Lemma 14 Then is a 5-GDD of type 2*". 

Proof: On ZzIlx{O, 11, form base blocks fiom ((1, O), (2a, O), (P, O), (2126, O), (21681 0)) 

and {(O, O), (1, O), (2,l)  , (9,l)  , (57,l)) by multiplying by 2'. The f i s t  generates 

seven blocks and the second generates 35. Develop the 42 blocks so obtained under 

Zzli to obtain the GDD. a 

Lemma 15 If q = 21,41,61 o r  81, then there wists u bGDD of type 39 ouer 

Z3 x Xp, where X, = Z, for q E {21,41,61), and hl o t h e e e .  



Multiply Bz by (1, y) for y = 1,10,16,18,37. 

q = 61: 

Multiply each of these blocks by (1,13) and (1,47) to prodnce 6 farther base blocls. 

q = 81: Let x be a primitive dement of FB1 satisfying z4 = 2' + 1. 

Mnltiply Bi by (1, P)  , (1, z5), and Bz, B3 by (1, z8') for O < t 5 4. 12 

Lemma 16 Then ezists a 5-GDD of type 39 for q = 25. 

Proof: Take X = Z3 x FSr where z2 = z + 3, and multiply the foUowing 2 blocks 

by (1, x8') for t = 0,1,2. Then develop mod (3, 52). (Bi and its multiples each 

genaate 15 blocks; B2 and its multiples each generate 75 blocks). 



Lemma 17 If q = 11,31 or 71 then tire* Lzists a 5-GDD of type 6q. 

Pmofi Take the point set as X = (&UOO) x F, and the groups as (ZsUoo) x {y), y E 

lE' In IFq, let z be a primitive root of unïty and w a f&h root (for q = 11,31,71 

respedively, we take z = 2,3,11 and w = 4,4,5). Define antomorphisms Ti, Tz, T3 

by Tl(+, y) = (2, y + l), T&, y) = (z + 1,w y), ' a d  G(z, y) = ( 2 , ~ "  y). In each 

case, apply the groap of order q(q - 1) /lO genaated by Ti, Ti to the first base block 

(and its multiples) and the groap genaated by Ti,Tz,Ts to the other base blocks 

given- 

q = 11: Base blocks: 

q = 31: Base blocks: 

q = 71: Base blocks: 



Lemma 18 The= i9 a 5-GDD of type 10". 

Proof: Take the point set as {O, 1) x Z5 x Zli; then apply the antomorphism groap 

of order 55 genaated by tl, ta to the blocks below, where t l(z,  y, z) = (x, y, z + l), 
and t2(z, y, z) = (2, y + 1,4z). The base blocks are: 

Lemma 19 There LP a 5-GDD of type 10Q for q E {19,43,67,79). 

Proof: On Zs, x {O, 11, take as groups the translates of {O, q, 2q, 3q, 4q) x {O, 1). For 

blocks, start with a set of six blocks determined given by the rows of the matrices 
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to follow. The second coordinates of the elements are specified by the matrix 

The iitst coordinates of the elements are given by: 

Multiply each by the element 11, 41, 131, or 176 of order (q - 1)/6 for q = 19, 43, 

67, or 79, respectively, to obtain (q - 1)/6 bloclrs from e h .  The q - 1 base bloclrs 

resulting are developed over Zgq to obtain the GDD. 0 

Lemma 20 There LP a 5-GDD of type 109 for q E {29,37,53). 



Proof: On ZSq x {O, 11, groaps are formed as the translates of {O, q, 2q,3q, 4q) x 

{O, 1). For q = 29, start with blocks 

For q = 37, start with blocks 

For q = 53, start aith blocks 

In each case, we multiply by an element of order (q - 1)/4; for q = 29, 37, and 53, 

the multiplier elements are 36, 16, and 16, respectively. The resdting q - 1 blocks 

can be developed over ZsQ to obtain the 5-GDD. O 

Lemma 21 There is a 54DD of tgpe 15Q for q E {13,29). 

Proof: Points are taken to be Zisq, and soups are formed by the translates of the 

multiples of q. In both cases, three base blocks are given; these are mdtiplied by 

the element 16 for q = 13, or 181 for q = 29, which is an element of order (q - 1)/4. 

The 3(q - 1)/4 resdting blocks are developed under Ziso to form the 5-GDD. For 

q = 13, the blocks are (0,1,3,7,18), {O, 5,38,74,105), and {O, 10,44,94,152). For 

q = 29, the blocks are {0,173,7,21), {0,5,13,46,241), and {0,9,62,159,244}. a 
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Lemma 22 The= is a 5-GDD of type 30* for q E {?, 19,23). 

Proof: On %16q x {O, l), take as groaps the translates of X x {O, 1) where X = {q - i  : 

O 5 i < 15). The same technique as in Lemma 19 is nsed, choosing a multiplier of 

order (q - 1)/2 in this m e .  Again six bloclm are chosen with second coordinates 

as in Lemma 19, and kst coordinates as foUows: 

Multiply each by the element 16 (q = 7), 61 (q = 19), or 301 (q = 23) to obtain 

( q  - 1)/2 blocks fkom each. The 3(q - 1) base blocks resuiting are developed over 

ZlSq to obtain the GDD. O 

Lemma 23 There is a 5-GDD of type 3 0 ~ ~ .  

Proof: On F 2 ~  x Z15 x {O, 11, take as p p s  Far x { i )  x { j )  for i E ZI5 and j E {O, 1). 

Let a be a primitive element of FIr satisfying a3 = d + 2a + 2. For blocks, start 

with 



and mdtiply each in the first component by the element d of order 13 to obtain 

13 blocks. The 78 base blocks obtained are developed over FZ7 x Zis to produce 

the GDD- Q 

Lemma 24 Therc -afst 5-GDDs of type g' for g E {40,60). 

Ptoofr Let X = Zg14 x GF(2', a? = z + 1) x Z7. Groups consist of points that are 

equal mod 7. 

For 40', base blocks are 

For 607, base blocks are 



Multiply the base blocks by (1, zi, 2') for O 5 i 5 2 and devdop modulo (g/4, 22, 7). 

3.2 Recursive Constructions 

To obtain the reqnired designs we employ sevaal new constructions listed below. 

The first one provides a new way to obtain GDDs by using HTDs. 

Construction 1 Suppose that o k-HTD of type hr-'sl and o k-GRD of type hr-'(s+ 

w)' both ezist. Then a k-GDD of type (kh)'-'(ks + w)' &tt 

Proof: Let (X, {l$)la<,, - a Ç, B )  be a k-HTD of type hr-'8' with IY, n G/ = s, for 

each G E E. Add a set F of w extra points to all groups of the GDD. For each 

G E Ç, we then consmict a k-GDD of type hr-'(s + w)'(G U F, {l$ n G : 1 5 i 5 

r - 1) u {(y, n G) ü F),Bo).  Thus the reqaired GDD is obtained by taking point 

set X U F, block set B u (ueégBG) and group set {K, YI,. . . , Y,-i, Y, U F). O 

The following construction is simple but us&. 

Construction 2 Suppose thut there eIiirts a k-GDD of type {ai : 1 5 i i r} .  Let 

a 2 O Le an intege~.  If, for euch i satisfyng 1 < i 5 r, there czLPts a k-GDD of 

type  {s, : 1 5 j 5 k ( i ) )  U {a) when s i  = Clsjsko then thcn Ls a k-GDD of 

t y p e { s , : l <  j ~ k ( i ) , l ~ i ~ r ) ~ { a ) .  

Construction 3 [ I l l ]  Suppose that then ezists a TD(k + 1, kn) - TD(k + 1,n). 

Then there &ts a k-GDD of type ((k - l)n)&'. 



For conveaience, we now restrict ourselves to the case for block size 5. 

Construction 4 Suppose h t  there cmts a (v, {5, w*})-PBD. Then t h e ~ e  is  o 5- 

GDD of type 4(~-''')/'(w - 1)'. 

Proofr This follows from deleting one point h m  the distinguished block of the 

PBD. O 

Construction 5 Let d be a prime power and w a nonnegdive integer. Suppose 

that a 5-GDD of type 4dw1 exists. Then 

a 5-GDD of type 4od(w +4a + 12b)' i f d  2 10, and 

a 5-600 of type 6od(w+4a+12b)' i fd  2 15, where O a, b, and a+b 5 d-1. 

o 5-GDD of type 8od(w + 4a + 8b + 12c + 20f + 24e)l if d 2 20, where 

O s a , b , c , f , e  u n d o + b + c +  f + e < d - 1 .  

Proofr By Lemma 3, an RT(l0, d)  exists. Take as groups the blocks of one of the 

pardel classes fkom ail RT(10, d)  to obtain a (10, d)-RGDD of type lod, in which 

all groups of the RTD form a disthguished pardel class. Adjoin a + b + 1 infinite 

points to the RGDD, where one infinite point is adjoined to each of a+ b+ 1 parallel 

classes including the distingnished one. In the resulting design, give weight w to 

one idmite point whidi is adjoined to the distinguished parallel dass, and weight 

12 to b infinite points and give the remaining points weight 4. Then apply Theorem 

18 to obtain a 5GDD of type 4od(w + 4a + 12b)l. The input designs used are Ç 

GDDs of types 41°, 411, 41°12', 4dw1. The &st t k  deaigns are obtaiaed by wing 

Construction 4 with appropriate PBDs in Theorem 19(1) and (3). Similady, we 

can constnict a SGDD of type 6od(w + 40 + 12b)' beginning with an RTD(15, d); 

the last case is also similar using an RTD(20 ,d) . 13 
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3.2.1 Existence Results: g r  0,1,3(mod4) 

In this subsection, we apply previous constructions to establish our existence results 

on 5-GDDs. First, we treat cases wïth five and six groups. 

Lemma 25 Let g and u 2 5 be positive integers satisfving u 1 or 5 (mod 20) 

and g f 2,3,6,10. Then the= easts a 5-GDD of type gU. 

Proufi For each value of u, a B(5,l; u) d s  by Theorem 19(1). Regard the BIBD 

as a BGDD of type lu and give ewry point weight g. Applying Theorem 18 gives 

the result . 13 

Lemma 26 Suppose that g = O (mod 4) and g 2 4. Then there &ts a 5-GDD 

of type g6* 

PTOO~:  For g = 4, the result fonows fkom Theorem 19(1) by deleting a point of 

the BIBD. NOW take a 5GDD of type 4 and apply Theorem 18 with weight n 

where a TD(5,n) exists. By Lemma 1, this takes care of all values of g except 

for g E {8,12,24,40). Deleting one block fiom a TD(6,7) yields a {5,6)-GDD of 

type 6% We then give weight 4 to every point of the GDD and apply Theorem 

18 to get a SGDD of type 24'. Foi g = 8 and 12, the resdt follows fiom using 

Construction 3 with k = 5, and n = 2,3, since both a TD(6,lO)-TD(6,2) and a 

TD (6,15) -TD (6,3) exist (see Brouwer [27] and Colboum [37]). Finally, we take a 

5-GDD of type and idlate every point by 5 nsing Theorem 18. This covers the 

case for g = 40 and the proof is complete. CI 

The use of these two lemmas requires designs with block sizes five and six. 

Bennett, Colbourn and Miillin [17] prove two results on snch designs: 
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Theorem 37 There is a {5,6)-GDD of type 5" for dl n 2 5 ezcept possibly when 

n E Q = {7,8,10,16). 

Theorem 38 A (v, {5,6))-PBD 4 if and only i fv -  r O, 1 (mod 5) ezcept when 

v E {IO, 11,15,16,20,35) and possibly when v E {40,50,51,80). 

Now we can treat the cases when g E O (mod 20): 

Lemma 27 Let g and u be integets satisfjring u 2 5 ,  u 4 Q and g G O (rnod 20). 

Then thete &ts a 5-GDD of type gu. 

Proofi Apply Theorem 18 to those {5,6)-GDDs in Theorem 37 with the necessary 

input designs fiom Theorem 19(1) and Lemma 26. 0 

We &O require some 5GDDs obtained by deleting points in incomplete PBDs: 

Lemma 28 Let a, b, c and d be integers satisfying a 2 1, b 2 2, c 2 3, d 2 3 and 

d # 5 .  Then there exist 5-GDRs with follouing types.- 450, 4'"+', 45af *8l, 45b121, 

4lSc8 l ,  and 45d*241 . 

Proof: Applying Construction 4 with those PBDs in Theorem 19 produces the 

desired sesult . 0 

Lemma 29 Let g and u sutzsfi u E Q,  g r O (mod 20) und g 6 {40,60,120,200). 

Then thete easts a 5 4 D D  of type gU. 

Proof: Wnte g = 20n; then n 6 {2,3,6,10). So, we can use Theorem 18 with 

weight n to get a 5-GDD of type (2079% fkom a EGDD of type 20U. Thus we need 
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only consider g = 20. The construction of a ÇGDD of type 2OU is as foIlows. The 

case u = 7 is handled by the constmction of the (141,5,1) BIBD in [63]. 

For u E {IO, 16) ne have a 5-GDD of 4" hm Theorem 19(1). The result then 

cornes fiom using Theorem 18 with weight 5. 

For u = 8, we &st use Constmction 1 with k = 5 and 6 = 4 to field a 5-GDD 

of type 2oT-'(5s + w)', with r = 8, s = 3, w = 5, and thus 5s + w = 20. The 

ingredients in this constniction are a 5-GDD of type 4'-'(a + w)' and a SHTD 

of type Q-'s'. The fmt one cornes fiom Lemma 28 and the second can be eady 

constracted by Lemmas 4 and 2. We then break up the group of size 5s + w by an 

appropriate SGDD wïth p u p  size 20 already obtained and apply Construction 2 

to get the desired result. 0 

Lemma 30 If u E Q, then t h e n  &ts a 5-GDD of type 4OU and of type 200U. 

Proofr For u = 16, the constraction is as follows. We first use Construction 5 

to yield a 5GDD of type 4od(w + 40 + 12b)' with the parameters u = d = 16, 

a = b = w = O, Apply Construction 2 to get the desired resdts. 

For u = 10, we taLe a TD(9,g) and delete one point fiom one goup. The 

resulting design is a 9-GDD of type 8''. We then give weight 5 to the GDD and 

apply Theorem 18 to get the desked r e d t .  The input design is a EGDD of type 

5' which comes fiom Theorem 35. 

For u = 8, form a {7,8}-GDD of type 8761 by deleting two points of an affine 

plane of orda 8, and use this to produce a SHTD of type e76'. A SGDD of type 

8'16~ exists via a construction of Greig (see [17]). Apply Consmiction 1 with k = 5, 

h = 8, s = 6, and w = 10 to get a BGDD of type 408. For u = 7, see Lemma 24. 

Give weight 5 to 5-GDDs of type 4OU to get SGDDs of type 20OU. O 



CKAPTER 3. GROUP DMSLBLE DESIGNS 

Lemma 31 If u E Q\{8), then there d a 5-GDD of type 60". 

Proofr For u E {IO, 161, ne have a 5-GDD of type 4=. Give weight 15 to the GDD 

and apply Theorem 18. For u = 7, see Lemma 24. O 

Lemma 32 For 1 5 a 5 19, there is a 5GDD of type 607(4a)', and hence a 

5-GDD of type 60'. 

Proo f: First we forma 6-HTD of type 37 on ZIi  x {l ,2,3,4,5,6) as follows. Consider 

the matrix 

Multiply each column by 16' for O < i < 2, arithmetic moddo 21, to  produce 18 

columns. Then develop the columns over ZZi to prodnce 21 18 columns. Each 

cohnn (a, 4 c, 4 e, f )= then fo- a bled {(a,  l), (b, 21, (c, 3), (4 41, (e, 5), (f, 6)) 

of the 6-ETD. The mamer of construction ensures that the blocks of the HTD can 

be partitioned into 18 parallel classes of 21 blocks each (the action of Zai turns a 

base bloclt into a pardel dass). Hence t h a e  is a nsolvable k-HTD of type 3? for 

each k 5 6. We reqaire ody  the one with k = 5. 

A second main ingredient is a 5GDD of type 12'4~ produced as in Lemma 5. 

0ve1 Zw, consider the starter b l o h  {O, 1,10,27), {O, 2,5,20,50), {O, 4,12,23,55), 

{O, 6,22,46,59); developing these over Zsr gives blocks of size 5, and 4 parallel 

dasses of blocks of size 4, in a GDD of type 12'. Extendhg the four parallel classes 

gives the ÇGDD of type 12~4'. 



Now we proceed as f o k s .  Extend a- 1 pardel classes in the resolvable SETD 

of type 3'. Give the resulting &design" weight 4, usïng 5-GDDs of type 4', 4=, and 

1274'. The r e d t  is a CGDD of type 60'(4a)'. a 

Lemma 33 If u E Q, then there crrPts a 5-GDD of type 120%. 

Proof: First, we observe that when an RTD(6, rn) exists, we have a (6, m)-GDD of 

type 6m by taking as groups the blocks of one of the parailel class fkom the RTD. 

Furthmore, we &O have a {5,6, B - 1)-GDD of type 6-0' by deleting one gronp 

fiom the GDD . It is known [3] that either an RTD(6, u) or an RTD(6, u + 1) exists 

for all stated values of u, and hence a {5,6, u)-GDD of type 6" &ts. The result 

then is obtained by applying Theorem 18 with the necessary input designs fkom 

Lemmas 27 and 29. O 

S u m m e g  the r e d t s  of Lemmas 30-33, we have proved 

Theorem 39 Let g and u be integers satzsfing u 2 5 and g = O (mod 20). Then 

there ezists o 5-GRD of type gU. 

Theorem 39 may be applied to establish the following two existence r e d t s .  

Theorem 40 Let g E O (mod 4) and g # O (mod 20). Let u 2 5 and u E O or 1 

(mod 5). Then t h e n  ezists a kGDD of type gU. 

Proof: For each value of u O or 1 (mod 5), a EGDD of type 4" 4 s t s  by Lemma 

28. So, a BGDD of type gU can be constrncted by applying Theorem 18. But this 

construction does not work for g E {S, 12,24). To deal with them, ne  first apply 

Theorem 18 to the {5,6)-GDDs of type lu fkom Theorem 38. For all values of g O 

(mod 4), this handles all values of u except for u E {10,11,15,16,20,35,40,50,51,80}. 



Next, it has been proved in Lemmas 1 and 26 that 5-GDDs of type g5 and g6 exist 

when g E {8,12,24}. Take a SGDD of &pe (5g)m from Theorem 39 and break up 

each gronp by a TD(5,g) to obtain a SGDD of type gSm. Fnrthermore, we add 

g innnite pohts to a IGDD of type (5g)m and break up each grmp by a 5-GDD 

of type $ in sach a way that the g inânte points become a common g m p .  This 

gîves a (5)-GDD of type gSm+? In this way all cases are handled exeept when 

g E {8,12,24} and u E {IO, 11,15,16,20). 

When g = 24, since either an RTD(6, u) or an RTD(6, u + 1) d s t s  for aU 

remaining values of u (see [3]), ne have a {5,6, u)-GDD of type 6" as noted in 

the proof of Lemma 33. Therefore, the result can be obtained by Theorem 18 and 

Lemma 28. 

For g E (8,121, Lemma 5 gives direct constructions for the remaining cases. CI 

Theorem 41 Let g E 5 (mod IO), u E 1 (mod 4) and u 2 5. Then there &ts a 

5-GDD of type gU. 

Proofr Because of Theorem 18 and Lemma 1, it s&ces to give the proof for g = 5 

and 15. For g = 5, we apply Construction 2 as follows. Take a CGDD of type 20" 

fiom Theorem 39 and adjoin 5 infinite points to each group. We then break up 

each gronp by a TD(5,5) to obtain a 5-GDD of type gw+'. This takes eare of the 

case where u 2 21. When u < 21, the result f o h s  from Theorem 35. 

Similarly, Construction 2 with Theorem 39 can be used to get the result for 

g = 15 and all stated values of u except u E {9,13,17). Lemma 5 handles u = 9. 

Lemma 21 handles u = 13. For u = 17, employ a 4RGDD of type 316 [102], and 

extend all parallel classes to obtain a 5GDD of type 316151. Next form a 5-HTD 

of type 3" [18]. Now apply Construction 1 with k = 5, h = 3, r = 17, s = 0, and 

w = 15 to get a 5-GDD of type 1517. 0 



In the cases when g + 2 (mod 4), it remains only to treat the case when g = 3, 

in view of Theorem 25. Fin$ we treat the easier helf: 

Theorem 42 Let u r 1 (mod 20). Then a 5-GDD of type 3- d. 

Proofi Direct constractions when u E {21,41,61,81) are given in Lemma 15. In 

the remaining cases, write z = (u - 1)/20 and use Lemma 31 to form a 5GDD of 

type 6OZ. Add three infinite points and fül the holes using a 5-GDD of type 3*' to 

get a 5GDD of type 3=. O 

Theorem 43 Let u 5 (mod 20) und u 4 {5,45,65). Tnen o 5 4 D D  of type 3U 

ezists. 

Proof: In Lemma 16, a EGDD of type 3" is @en. Since 5-GDDs of type 72= ex is t  

whenever z = 0,1 (mod 5), adding three infinite points and füling with the 5-GDD 

of type 325 gives a BGDD of type 32a+1 whenever z a O, 1 (mod 5). Hence we 

obtain the aistence of a SGDD of type 3U whenevet u = 25 (mod 120). A second 

infinite c l a s  is obtained by using a TD(5,3u) when u a 1 (mod 20), and fiIling its 

groaps using a SGDD of type 3- fiom Theorem 42 to get a I G D D  of type 35U. 

This yields all u r 5 (mod 100) except for u = 5. A third dass is obtained by 

taking a 5-GDD of type 75&+' for dl positive z and filling its gronps with 5-GDDs 

of type 325 to get 5GDDs of type 3100f+25 for d 2 2 1. 

Now Consmiction 5 with d 2 16 a prime power, w E {O, 4,8,12) can be used to 

produce a EGDD of type 6od72', and hence a SGDD of type 32w+25. This handles 

cases when u E {345, 365, 565, 645, 665, 765, 845, 965). 

Next we take a RTD(6, m), and truncate a group to z points to obtain a 

{5,6, x,m}-GDD of type 6=5'"-*, and give weight 12 using 5-GDDs of type Us, 



12=, and 1zm. Then adding three W t e  points and filIing asing 5-GDDs of 

type 3" and 325, ne obtain a 6GDD of type 32""'*f1. Applications of this follow: 

20m + 42 + 1 m z Block Sizes 

445 21 6 {5,6,21} 

465 21 11 {5,6,11,21} 

ki a similar manner, extendhg six parallel classes of a (65,5,1)-RBlBD to get a 

{5,6}-GDD of type 51361 handes u = 285; and fmmcating a group of a TD(6,ll) 

to six points gives a {5,6,11)-GDD of type 51161, which handles u = 245. 

For u E {85,165), first fom a CGDD of type 316151 fiom a resolvable 4GDD 

of type 316 [102]. Then, whenever a 5-GDD of type 48" a s  (i.e., n 0 , l  

(mod 5)), fill n - 1 of its groups nsing 15 infinite points and the 5-GDD of type 

3l615=; füI the 1st group nsing the EGDD of type 3? When n E {5,10}, this 

handles u E (85,165). For u = 185, start with a 4RGDD of type 3' [102]; d a t e  

using RTD(4,4) to obtain a 4-RGDD of type 12* and extend all parallel classes to 

get a 5-GDD of type 12~28'. Using Wilson's transvexsal design constraction with 

the master design TD(9,8), applying weight 12 using TD(5,12 + x)-TD(5, x )  

for x = 0,1,2,3, produces 5-HTDs of type 12'y1 for O 5 y 5 21. In par t idar ,  

a 5-HTD of type 128111 exists. Now apply Construction 1 with k = 5, h = 12, 

s = 11, and w = 17 to get a ÇGDD of type 60872', and fill in groups using three 

infinite points to obtain a 5-GDD of type 3lU. 

In partidar; these dasses give 5-GDDs of type 3U for u = 145, 165, 85. Now 

under the stated conditions on u, if the desired valne of r is not in one of the 

classes aheady handled, let CE = 9. Note that a 1 (mod 5). Choose P so that 

a = 5P + 1 (mod 25) and @ E {7,8,4) (all cases with fl  0 , l  (mod 5) have been 



completed above). Then write n = T. It is easily checked that n > P. 

Fonn a TD(6,5n) (since n > 2 in each case, such a TD &s [3]). k c a t e  one 

group to leave 58 + 1 points in it, to produce a {5,6)-GDD of type (5n)5(5P + 1)'. 
Using 5-GDDs of type l Z 5  and 12=, give weight 5 to obtaia a 5-GDD of type 

(60n)5(60fl + 12)'. Add three infinite points and fül the holes using 5GDDs of 

type 32h+1 and 3"-' to get a BGDD of type 3100n+20@+5. O 

3.2.2 Existence Results: g = 10 (mod 20) 

In this subsedion, ne  e x d e  classes when g m 10 (mod 20). Write g = lOa 

throughout. Fitst we introduce some general observations. 

Lemma 34 A 5-GDD of type ( 1 0 ~ ) ~  ezists whenever a 2 5, a is odd, and u n 1 

(mod 4). 

Proofr In Lemma 5, SGDDs of type 10U are constnicted for u E {9,13,17); giving 

weight a yields 5-GDDs of type (10a)" in these cases. A TD(5,lOa) exists except 

possibly when a = 1, and hence the case when u = 5 is settled. Now write 

v = (u - 1)/4, so that v 2 5, and fonn a 5GDD of type (40a)u. Add lOa idh i te  

points, and fill the groups using the CGDD of type (loa)' to get the 5-GDD of 

type (lOa)U. O 

Lemma 35 A 5-GDD of type (lOa)u ezSSts when a 2 1, a # 3 is odd, u g! 

{7,15,23,27,35,39,47), wccpt  possibly when u E {S, 33,631 and a = 1. 

Proof: In Lemma 5, 5GDDs of types log, IO1' and 10" are given; ais0 given are 

5-GDDs of types for u E {21,25,45) to which weight 5 can be given to get 



5-GDDs of types 10U for thè same values. Lemma 18 gives a 5-GDD of type 10". 

Lemma 20 gives 5-GDDs of types 1029, 1037, and los. There is a 5-GDD of type 2% 

for u = 31 (Lemma 8), and for a = 51 (Lemma 9); give weight 5 a  to get 5GDDs 

for (lOa)U. T h a e  is a 5GDD of type 100 by Lemma 19 for q E {19,43,67,79). 

When there is a PBD with block sizes fkom {5,6,7,9) of order v ,  deleting a 

point gives a {5,6,7,9)-GDD with group sizes 4,5, 6, and 8. Giving weight 20a and 

filling the groups with 10a infinite points yields a ÇGDD of type (10a)"-'. Using 

the t e d t  in [19], this establishes the existence of 5GDDs of type ( 1 0 ~ ) ~  for u E 

{41,49,51,59,61) and all u 2 69 with the exception of u E {135,185,195,197,207 

,215,247). 

Forming an idempotent TD(6,m) and triuicating a group to z < m points gives 

a {5,6, rn, z}-GDD of type 5"L-f6f; when z 6 {2,3,4), weight 20a can be given 

and groups filled to producesa 5-GDD of type ( 1 0 ~ ) ~ ~ + ~ * + '  . A pply with (rn, 2) = 

(12,7), (17,7), (17,12), (17,13), (19,8), (l9,12), (23,8) to handle u = 135, 185, 195, 

197, 207, 215, 247, respectively. F&g groups of EGDDs of type 8OU asing the 5- 

GDD of type log and 10 infinite points gives 5-GDDs of types 1OU for u E {57,65). 

Fill groups of a 5-GDD of type 1105 using 5-GDDs of type 10" to handle u = 55. 

When CE > 1, 6ll a EGDD of type (90a)? (obtained later in Lemma 38) using 

a 5-GDD of type ( 1 0 ~ ) ~  to handle u = 63. Lemma 34 handles u E {5,33) when 

a! > 1. O 

It remains to k t  cases when a G O (mod 3). 

' , 

Lemma 36 If a 

type 64n+1. 

simple construction of 5-MGDDs follows: 

TD(6,5n + 1)-TD(6,n) Lzists, then there ezists O 5-MGDD of 
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Proofr Delete all points in the hole. 

Lemma 37 A 5GDD of type 30U ezXsts  whenever u P 1 (mod 4), u # 9. 

Proofr A TD(5,30) is a EGDD of type 3oS; since 5GDDs of type 120" exkt for all 

n 2 5, m g  groups using a CGDD of type 30' and 30 infinite points settles all 

cases when u 2 21. For n E {3,4}, a TD(6,5n+ 1)-TD(6, n) exists [39], so Lemma 

36 gives 5-MGDDs of types 613 and 617. Give weight 5 using 5-GDDs of type 

and 513 or 517 to get 5-GDDs of types 3013 and 301? O 

Again, it remains to treat the more Wcdt class: 

Lemma 38 Let 7 2 1 Be odd. A 5-GDD of type (3Cb~)~ &ts whenever u = 3 

(mod 4), u 4 (9, la, ezcept possibly when 7 = 3 and u E {?, 23,27,35,39,47,59,63,67). 

Proof: Give weight 57 to the 5GDDs of types 611 and 631 fkom Lemma 17 to obtain 

5-GDDs of types (3&y)11 and (307)31. Lemma 19 gives a 5-GDD of type 109 and 

hence of type (3û7)q for all7 2 3, and q E {19,43). Lemma 22 gives a EGDD of 

type 309 and hence of type ( 3 9 9 4  for allr # 3, and q E {7,19,23). Lemma 23 

gives a SGDD of type 3oZ7 and hence of type (307)" for all7 # 3. Filling groups 

of 5GDDs of type ( 3 0 & ~ ) ~  for n 2 5 using the 5-GDD of type (307)" handles all 

cases when u n 1 (mod IO), u 2 51. 

In general, we form a GDD on u = (u - 1)/2 points with block &es at least 

five, and goup sizes 5 or 15, and even sizes other than four. Then giving weight 

607 and filling holes using 3û7 infinite points yields the required GDD. When v can 

be written in the form v = 5n + h with n 2 5, n odd, and O < h < n, h # 4 if 

7 = 3, h even, we proceed as follows. Fom a TD(G,n), and truncate one gronp to 

h points. Use one of the deieted points to  define groups, to obtain a {5,6, n)-GDD 



of type 5"h1, which c m  be given weight 60.y. This general method treats ail values 

for u when u > 91 except for u E (99,119,139,159)- Employing an idempotent 

TD(G,n), we can instead permit h to be any valne other than 2, 3, or 4, and form 

a {5,6, n, h)-GDD of type 5n0h6h. Use this construction taking 69 = 5 12 + 9 to 

handle u = 139. 

FiIling g~oups of 5-GDDs of type (3307)" using the SGDD of type (30.r)" 

produces 5-GDDs of type (30.0'" when n s 1 (mod 4). This treats the cases 

when u E {55,99). The remaining cases when u E {75,79,83,87,119,159) are 

treated as follows. Wnte d = 9. Fonn a TD(7,d) or TD(7,d + l), and truncate 

a grmp to 15 points; if grmp size d + 1 is chosen, then ddete a block of size 6. 

In either case, a (5,6,7)-GDD of type 6d151 is obtained Give weight 2û7 to get 

a 5-GDD of type (12b)d(30@y)1. Then add 3û7 iirfinite points and fill the groups 

using 5-GDDs of type (307)" and (307)? 

Now start with a TD(10,9) and truncate five groups to 0, 6 or 9 points each; 

give weight 207 when 7 # 3 to obtain a BGDD of type (180$~(120.y)~ for a 2 5 

and a + b 5 10. Filling using 3 9  iafiaite points and 5GDDs of type (3077)' and 

( 3 ~ ) ~  handles u E {35,39,43,47,59). Instead filling groups of a 5GDD of type 

(21Ck~)~ or (18@y)11 using a 5-GDD of type (3&y),' handles u E (63,671. O 

Lemma 38 is made more complicated by the fact that no BGDD of type 3O9 

is known; however, when 7 2 3 is odd, a 5GDD of type (3û7)' is known. This 

permits us to treat some of the omissions when 7 = 3: 

Lemma 39 A CGDD of type 90U e t s  wheneuer u = 3 (mod 4), u 6 (8, 7, 23, 

Proof: We treat the required cases left by Lemma 38, first ushg the same main 

technique as does its proof. Wite 29 = 5 - 5  +4 to handle u = 59. Baker [15] found 



a FGDD of type 315; since there is a 5-GDD of type 307, give weight 30 to the 

points of the 7-GDD, resulting in a 5-GDD of fype 90". For a = 35, fill the grmps 

of a IGDD of type 540' using a 5-GDD of type 90'. For u = 63, fill the gronps of 

a 5-GDD of type 810' using a éGDD of type 90'. For u = 67, fill the groups of a 

5-GDD of type 9006 using a SGDD of type 90". 13 

Giving weight 7 to the 5-GDD of type 9015 produces a CGDD of type ( 9h ) l 5  

for all 7 # 3 odd. 

3.2.3 Existence Results: gn 2,6,14,18 (mod 20) 

The problem when g 2,6,14,18 (mod 20) falls naturally into taro cases, an easier 

one when u m 1,5 (mod 20) and a harder one when u r 11,15 (mod 20). W e  treat 

the easier case first. 

Lemma 40 Let g E 2,6,14,18 (mod 20) and u 1,5 (mod 20). Then a 5-GDD 

of type gu ezists ezcept when g E {2,6) and u = 5, and possibly when gU E {2", 6'5}. 

Proofi If g # 2,6, form a SGDD of type lu and give weight g to each point. When 

g = 2, we proceed as follows. In Lemmas 5, 6, 7, and 11, solutions are given for 

u E {2l725,4l,45,6l,65,8l). Using the 5GDD of type zZ1 to the groups of 

a SGDD of type 40n yidds a 5-GDD of type 220"+' for all n 2 5. Next ne treat 

u = 5 (mod 20). When possible, arite a = 4(5m + x) + 1 where rn O, 1 (mod 5), 

m 4 {5,6,10,15,26,30), z = 0 , l  (mod 5), O 5 z 5 m. Form an idempotent 

TD(6,m) and b c a t e  one group to z points; taking the paraliel dass of blocks 

that results from idempotence as groups gives a {5,6, z, m)-GDD of type 5mœ+6z. 

Give weight 8, and fil1 in the goups using 5-GDDs of type 2" and r5. This handes 

all u 5 (mod 20), u 2 225 except for u = 285,305. Extending six pardel classes 
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of a resolvable (65,5,1) design gives a {5,6)-GDD of type 5136'; similar inflation and 

filling handles u = 285. There is a (45,5,1) BIBD having two pardel classes which 

share precisely one bloelr (See appendix AA??). Extend one of the parallel classes 

and use the other to define grmps; th& gives a {5,6)-GDD of type 5'6', which can 

be inflated to settle u = 185. For u = Z h  + 1, n E {1,2,3), form a 5-GDD of type 

(40n + 2)= and 6l.l its g~oups with the 5GDD of type 2*''"+' to get 5GDDs for 

u E {105,205,305). Filhg groups of a BGDD of type 50' with a EGDD of type 

225 handleS u = 125. Fill the gronps of a EGDD of type 4S6 nsing the SGDD of 

type 226 to get a BGDD of type P. FinaJly, there is a 5GDD of type 8?l6' [17] 

and a 5-HTD of type 8'; apply Construction 1 with k = 5, h = s = w = T = 8 to 

get a 5-GDD of type 4o748I, and fill its holes using 5-GDDs of types 2" and z2' to 

get a BGDD of type 216'. 

When g = 6, we proceed as f o h s .  Apply Lemma 36 with n = 5,6,10,15, 

obtaining the fùst two incomplete TDs from [38] and [96], and the latter two fiom 

V(4, t ) vectors [W]. In each case a 5-MGDD of type 64n+1 results; Wing the blocks 

of size 4n + 1 with a EGDD of type 14"+' gives a 5-GDD of type 6'"+', settling 

the cases when u = 21, 25,41, and 61. Li a similar way, we apply Lemma 36 with 

3 5 n 5 9 where, in addition to those above, one fin& solutions for n = 3,4,7, 

and 9 in [39] and for n = 8 in [4]. Form a 5-HTD of type (4n + l)= (see [Ml), and 

its gmups using the SMGDD of type 64nc1 (alignïng the blocks of size 4n + 1 
on the holes of the HTD) to produce a 5MGDD of type 620"+5. FiU the blocks of 

size 20n + 5 using SGDDs of type l'O"+' to obtain 5-GDDs of type 62h.+5, hence 

settling u E (65, 85, 105, 125, 145, 165, 185). Now using a BGDD of type 6" to 

holes in a 5-GDD of type 120" for n 2 5 yields bGDDs of type 62h+1 for all 

n 2 5. When u 2 205 and u r 5 (mod 20), the proof parallels the case when g = 2 

closely. 
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Filling groups of a 5-GDD of type 608 using six infinite points and a LGDD of 

type 611 (Lemma 17) handles u = 81. O 

Theorem 44 [5] A nsolvable (v, 5 , l )  ezists for dl v r 5 (mod 20) ezcept possibly 

when u E (45, 105, 145, 185, 225, 345, 465, 585, 645, 665, 705, 785, 885, 925, 

945, 1045, 1065, 1145, 1165, 1185, 1305, 1385, y85, 1545, 1665, 1905, 2265, 

2385, 2505, 2745, 2865, 2985, 9105, 9225, 3345, $585, 3785, 3945, 4065, 4185, 

4425, 4665,49W* 

Lemma 41 If u = 11,15 (mod 20) and g = 6/ for 7 f O (mod 5)) 7 # 3 odd, 

then a 5-GDD of type gU aists ezcept possibly when u = 15, and in  addition when 

u E {35, 75, 95, 115, 135) and 7 = 1. 

Proofi Lemma 17 gives 5-GDDs of types 611 and 631, to which weight 7 can be 

given, settling a E {Il, 31). Then filling the groups of a BGDD of type (607)" 

with 5GDDs of type (67)" yields SGDDs of type (ôy)'"''+' for all n 2 5. Hence 

al l  cases with u G 11 (mod 20) are treated. 

Forming a 5-GDD of me ((20n + 11) 67)' for n 2 0, and wing the 5GDDs 

of type (67)2hf11 to 6ll its holes yields 5GDDs of type (67)100"+55 for all n 2 0. 

It remains to treat u = 15,35,75,95 (mod 100). Most cases are settled as follows. 

Fonn a GDD on (u- 1)/2 points with block sizes congruent to O or 1 moddo 5, and 

group sizes chosen fiom 5, 27 and integers conpent to 2 modulo 10 other than 2 

and 22. Giviag each point weight 127, one obtains a CGDD whose gronps can be 

filled using 61 infinite points and SGDDs of types (&I)" and for n = 2 

and n 1 4 to get a 5-GDD of type P. When possible, write (u - 1)/2 = 5m + z 
with m s 1 (mod IO), 2 5 z 5 rn-9, z 2 (mod 10) and z 4 (2,221. Form a 
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TD(6,m), and delete rn - z points from one groop; use one deleted point to define 

groups of type 5%' in a {5,6, m)-GDD. It is easily checked that suitable choices 

exist whenever u 2 635, and for the following values of u: 235, 335, 435, 475, 535, 

575, 595. Instead trnncating a groap of a TD(6,15) to 12 points gives a {5,6,15)- 

GDD of type 5"12', settling u = 175. Apply Construction 5 with d = 19 to obtain 

a 5-GDD of type 60191441; fill its holes using BGDDs of type 6" and 6'' to handle 

u = 215. Thincating a gronp of a TD(6,35) to 11 or 31 points, then appenduig an 

infinite points to its groups, and finallp using one of the deleted points to define 

groups gives {5,6,36)-GDDs of types 5''12' and 5"32l, se t thg u E (375,415). 

For u = 295, trnncate a group of TD(6,81) to 36 points and give weight 4 to get a 

5-GDD of type 32451441; fiu using 6 infinite points and 5GDDs of types 6" and 

625. 

A number of the remaining cases can be settled by extendhg z pardel classes 

of a resolvable (20n + 5,5,1) design fkom Theorem 44, to form a {5,6)-GDD of type 

54n*'2', when z r 2 (mod IO), 2 5 z 5 5n - 3 and z 4 {2,22). Then inflation 

and filling is as before. We simply give pairs (u, n) where u = 2 ( 2 b  + 5 + z) + 1 
satides the requirements of this construction: (195,4), (275,6), (395,8), (495,10), 

(515,12), (615,13). This completes all of the cases when 7 = 1. 

When 7 > 1, the construction is made more flexible by permitting z = 2,22 

(since 5-GDDs of types ( w ) ~  and (67)" exkt when 7 > 1 is odd. The resolvable 

BIBD construction settles in addition (135,3). k c a t i n g  a goup of a TD(6,ll) 

to 2 points pives a {5,6,11)-GDD of type 5I12l, settling u = 115. Now, filling 

groups of a SGDD of type (307)' or (30.()19 using a IGDD of type (67)' handles 

u E (35,951. Finally, form a 5-HTD of fype 47 (for example, by giving weight 

4 to a 5-HTD of type 17). There also exists a SGDD of type 4Q1, so applying 

Construction 1 with h = 4, s = O, w = 8, k = 5, t = 8 and the specified 



ingredients gives a CGDD of type 20%'; give it weight 37 to obtain a 5-GDD 

of type (60c()'(247)', and fill using g infinite points and 5-GDDs of types (6-()11 

and (67)' to settle u = 75. . O 

Next ne treat cases when g is not a multiple of 3. We start with the case when 

g = 2. 

Lemma 42 If u 11,15 (mod 20), a 5-GDD of type 2- ezîsts ezcept when u = 11 

and possibly when u E (15, 35, 71, 75, 95, 11 1, 115, 135, 195, 215, 935). 

Proof. A putative 5-GDD of type 2" would have 22 blocks, and thus wodd form 

a symxnetric GDD; however, the necessary condition in Theorem 5.1 of [75] f a .  

By Lemma 8, a 5GDD of type 2'l exists. By Lemma 10, a 5-GDD of type 2'' 

exists. First we complete a closure using this GDD, and then treat "srnaUn cases. 

For d 2 17 an odd prime power, use Construction 5 to produce a SGDD of type 

(60)~h' ,  where h = 0,8 (mod 40), h # {l28,l68), and 40 5 h 5 12d - 12. Fill 

its gronps using 2 inflliite points to get a 5-GDD of typé 250d+1+5. Sorne quite 

tedions cddations show that choosing d to be an odd prime power at most 67, 

this succeeds for dl u in the range 535 < u 1 2395 except for the values: 575, 635, 

655, 755, 1115, 1175, 1195. To obtain dosure, let 67 < d < 6571 be an odd prime 

powa, and let gbe the next odd prime power. One uui verify that 5(d=d) 5 d - 33 

in this range, and hence one can always choose an odd prime power q for which 

309 + 161 5 u < 369 - 35 when 2171 u < 236435. Forming a SGDD of type 

60q(2(u - 1 - 30q))' using Construction 5 then settles these cases. To complete the 

dosure, observe that it snffices to have 14 MOLS of otder d to apply Construction 5 

(i-e., d need not be a prime power). Since 14 MOLS exist when d 2 7875 [3], when 

u > 236435, write d = where z E {21,25,41,45,61,125); then an RTD(15,d) 

exists (since d 2 7877), and Construction 5 completes the dosure. 



Now we tum to smaller cases. Lemma 9 s e t t h  u E {51,91). Lemmas 12, 13, 

and 14 settle u E {131,191,211). Forming a SGDD of type 60" for n 2 5 odd, and 

fiIling wing the CGDD of type Z3' handes u E {151,271,331,391,451,511). Using 

Lemma 32 to form a 5-GDD of type 60748', and fining its groups using two infinite 

points and 5GDDs of type z2' and 231 handes u = 235. When d > 11 îs a prime 

power, Construction 5 can be applied to form a IGDD of type 40~60' and hence a 

5-GDD of type 220d+30+1; aP&ations handle u E {251,291,351,371,411,491,531). 

Construction 5 can be also applied to form a BGDD of type 40~108' and hence a 5 

GDD of type 220d+w1; applications handle u E {315,375,395,435,515). Forming 

a {5,6)-PBD on v + 1 points, with v = 9, and deleting a point to form a GDD on 

v points with bloclc sizes {5,6) and epnp sizes {4,5), Uat ing  by weight 12, and 

filling gcoups asing 22s and handles u E {175,355,415,655,1195). Similady, 

extend 15 parallel classes of a resolvable (65,5,1) design to form a GGDD of type 

5I315l; delete a point not in the long grmp to f o m  a {5,6,15)-GDD of type 5154'; 

give weight 12 as above and fill to obtain a 54DD of type z4?'. 'Ihncating a group 

of a TD(6,15) to 10 points gives a {5,6)-GDD of type 15~10', to which weight 4 

can be given; then fining groups settles u = 171. In a similar way, truncate a group 

of TD (6,ZO) to 15 points to settle u = 231. 'Ikuncating a group of a TD (6,25) to 

12 or 22 points handles u E {275,295). b c a t i n g  a grmp of a TD(6,45) to 10 or 

22 points handles u E {471,495). k c a t i n g  a group of a TD(6,52) to 27 points 

handles u = 575. 

F&g groups of a 5GDD of type 62' asing the IGDD of type Z3l handles u = 

155; sirnilarly, u u {255,455,755) are handled fiom u E {51,91,151). Constmction 

5 can be used to make 5-GDDs of types 40"1001 and 404?3481 to obtain u = 311, 

and 1115. Construction 5 can &O be used to make a 5-GDD of type 802s3481 to 

handle 1175. 



There is a 5GDD of type 2m421 obtained by nnuig four groups of a 5-GDD of 

type 405 asing tao infinite points and a BGDD of type 221. Fona a {5,6)-GDD of 

type 8'1' and give weight 20 to get a 5-GDD of type 1605201; add 42 infinite points 

and fill its groaps ushg the EGDD of type 2*42l to get a CGDD of type 2m621; 

then fill the grotip of size 62 using a 5-GDD of type z3' to settle u = 431. 0 

Lemma 43 A 5-GDD of type (24" uith a 2 5, a odd, a f O (mod 3) or a = 9, 

a $ O (mod 5) &ts whenevm u E 11,15 (mod 20) ezcept for u E (11, 15, 35, 

71, 75, 111, 115, 195, 195). 

Proofr Under the stated conditions on a, a 5-GDD of type 2" can be idated to form 

a 5-GDD of type (2a)-.  Thus one needs only consider the exceptions in Lemma 42. 

F&g a 5-GDD of type (10a)q nsing a &GDD of type (2a)' for q E {19,43,67) 

handles a E {95,215,335). O 

Lemma 44 A 5-GDD of type 18U &ts whenever u a 11,15 (mod 20) and 

u 6 {11,15,35,71,111,115,135,195). 

Proofr Starting with the list fiom Lemma 43, b a t  the case when u = 75 by forming 

a SGDD of type 90"15, and fdlhg its groaps using 5-GDDs of type 18'. 0 

3.3 More Constructions 

In this section, we prove that there exists a BGDD of type gU for all but a bite 

number of pairs of (g, u). W e  use the notation [a, b]c(4 to denote the set of integer 

v such that a 5 v < b and v c (mod d) .  We have the following constmction for 

gmup divisible designs. 
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6 If there ezists a M-GDD of type glg2..  .g,, so that for each k E 

M, t h e n  is a K-MGDD of type uk, then then  crrPts a K-IGDD of type (gl +g2 + 

Ptoofr Let V be the set of points of the M-GI)D of type glgz . . . g*. We con- 

strud the K-IGDD of type (gl + g2 + . . - + g,; gl , g*, . . . , g,Ju with point set 

V x {l, 2,. . . , u}. For every block B = {zl, 22,. . . , zm) of size m in the GDD, 

we put the MGDD of type u* on the set of mu points conesponding to the 

(21, z 2 ,  . . . , zm) x {1,2,. . . , u) so that the tao parallel classes of blocks align on 

{xl,x2,... ,zm} x {i} fori= 1,2 ,... ,u md x< x {1,2,... ,u}. 13 

We need one more construction for gronp divisible designs. 

Construction 7 Let ( X ,  Ç, 8)  be a TD(k+l,t) d e n  

For 1 < i 5 1, let  Hi = U Hi2 U . . . U Hipi be a partition of Hi. Let nonnegative 

numbers rn, m, be given such that for any block A E A intersecting Hij(i) ( 1  < i < 1)  

there ezLsts a K-ICDD of type (m + zLl mi(<) ; ma j(1), ma j (2) ,  . - . , mri(i))k Then a 

K-IGDD of type  

Proof (Sketch): The proof is a modification of Brouwer-Van Rees theorem for 

transversal design5 [3 11, replacing each snb-TD by a sub-GDD . O 
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Construction 8 Suppose we have a K-GDD of type glgz.. .gi and there ïs a 

TD(5,  gl + g2 f . . . , gi-1 + a) - T D(5, a) where O < a 5 gl. Then there ezists 

a (5) U K-GDD of type g::g,S . . . gtoi(a + 4 ~ ) ~ .  

Proof: This is just a simple vafiant of Singular Indirect Produet (See [97]). 0 

Construction 9 [Id The set of {r: there ezists a k-MGDD of type gr) ii PBD- 

closed, 

Fkst of all, ne establish that there exists a sequence of integers ai such that ai 

is odd, there exists a TD(32, or), and 151q 2 L20~+1 + 30. Snch a sequence can 

always be chosen with al = 31 when each q 5 1OOOO ([3]). Choose u,, = 31(317), 

k+i = 31(389), h + z  = 31(479), h + s  = 31(593), k w  = 31(739), h + s  = 31(919), 

s, = 31(1129), u,,+7 = 31(1409), %+a = 31(1753). Note that a,+e = 54343 and 

it is known [3] that if k 2 54343, then there eOsts a TD(32,k). 

Lemma 84 If g 2 3750 and g 2 (mod 4) then then QLsts a {5,31)-GDD with 

block &es a multiple of four or  o multiple of 30 but not equal to 90. 

Proofr Take a TD(32,n) where na is odd and give weight 4 to each point in 

fkst 30 groups. Give weights O or 4 to each point in the 31a group and weights 

O or 30 to each point in the last gronp. AU +GDDs of type 4=, 431 and {5,31)- 

GDD of type 430301 and 431301 exists. The la& tao  designs are obtained fiom a 

TD(5,30): add a point to each g~oup, and remove anotha point in the design to 

obtain 4=301; for 431301, remove a point fiom TD(5,31). This gives a {5,31)-GDD 

of type (4m)"(42)l(3Oy)l. Since m 2 31, if g E [120m + 30, 154m]2(,1, then there 

exists a {5,31)-GDD of type glg2.. .gk where gi r O (mod 4) or gi = O (mod 30) 
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and gc # 90. By the above temark, wheneves g 2 3750 and g 2 (mod 4), there 

esûsts a {5,31)-GDD with blodc &es a multiple of four or a multiple of 30 but not 

equd to 90. 0 

Next ne show that if g 10 (mod 20), we can obtain a similar resdt. 

Lemma 85 If g E 10 (mod 30) and g 2 3250 and if g = 50 (mod 60) and g 2 

4490, then there e&ts a {S, 31)-GDD mith group sites 202 or 30k where k # 3. 

Proof: By Lemma 84, there exists a {5,31)-GDD on v points with gronp sizes 4m 

and 3Ok where m 2 1 and k # 3. Give it weight five, we obtain a {5,31)-GDD 

on 5v points with block sizes 20m and 150k. This proves the daim for g > 18600. 

To ded with remaining cases, we start with a TD(21,31) and remove a point to 

obtain a {5,31)-GDD of type 203'301. Now take a TD(32,31) and truncate 27 

groups to gl,g2,. . . ,927 so that gi E {0,6,9,15,18,24,27,30) to obtain a GDD 

of type 3lSg1gz.. -927 with block sizes at least five. Mate the GDD by giving 

weight 20 and add 30 infinite points; replace each groap by either a {5,31)-GDD 

of type 2031301 or EGDD of type 30' for r = 5,7,11,13,17,19 to show that if 

g = 31(20)5 + 30 + 20(3k) and g = 10 (mod 20) where 2 k < 270 then there 

exists a {5,31)-GDD on g points with group sizes 202 and 30. This proves that 

if g z 10 (mod 60) and g E [3250, 19330]10(803, then there exists a {5,31)-GDD 

with group sizes 202 and 30k. To deal with the case when g 50 (mod 60), we 

essentially use the same technique except we retain seven gronps of size 31 and 

truncate the remaining 25 groups. This proves that if 9 E [4490, 19370]50(60), then 

there exists a {5,31)-GDD on g points 6 t h  gronp sizes 202 and 30k. O 

If there &ts a 5-GDD of type g7, then g O (mod 10). Also, there exists a 

5-GDD of type (20g)? for al1 g 2 1 and a èGDD of type 30' by Theorem 36. 

Before we proceed, ne need a modified group divisible design. 



Lemma 86 mere ezists a 5-MGDD of type 31'. 

Proof. Let V = Zf lT  and the two parallel classes are the development of {31i : 

i E {O, 1,. . . ,611 and {Ti  : i E {O, 1,. . . ,30)). The blocks are {O, 1,3,11,48), 

{O, 4,23,59,11) , {O, 6,72,88,101) and rnultiply each by 191' where 191 is a cube 

root of over Ztlr to obtain six fimther blocks. These nine blocks together with 

th& translates generate the MGDD. O 

Lemma 87 ffg n 10 (mod 30) and g 2 3250 and i f g  e 50 (mod 60) and g 2 

4490, then there ezists a 5-GDD of type g? 

Proof: Rom Lemma 85, if g G 10 (mod 30) and g 2 3250 and if g r 50 (mod 60) 
and g 2 4490, then there exists  a {5, 31)-GDD wîth groap sizes 202 or 30y whae 

y # 3. Use this GDD together with Construction 6 to obtain a 5-GDD of type g'. 

Lemma 86 constrncts a 5-MGDD of type 317 and both IGDD of type 202' and 

30y7 (y # 3) exist by Theorem 36. O 

Now we deal with the existence of CGDD of type gl'. Theorem 36 establishes 

that the necessary condition is g O (mod 2). Also, the necessary condition is &O 

suffiCient for g O (mod 4) and g O (mod 6) where g # 18. First of d, we have 

a new direct construction. 

Lemma 88 There ezists a 5-GDD of type 2211. 

Proof: Let V = Zui x {O, 1). The groups are {(lli, O), (lli, 1) : i E {O, 1,2, . . . ,IO)) 
and its translates. The blocks are 
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Mdtiply the last four bloclrs by 3' in the hs t  coordinates where 3 is a fifth root of 

unie over Z12r to obtain 16 more blocks. 0 

Lemma 89 Tlrere is o 5-MGDD of type 119. 

Prooft Let V = ZS9; the hro paranel classes of groups are {lli : i = O, 1,. . . ,8) 
and {9i : i = 0,1,. . . ,IO). The blocks are {O, 1,3,8,43), {O, 4,24,34,53}, 

{O, 6,21,68,82), {O, 12,25,51,83) and their translates. O 

Lemma 90 Tlicre is a 5-MGDD of type 11q for q = 11,13,1?, 19,23,31,43,67,79, 

103,127,139. 

Proofi Let V = Zii x Z, end the two pardel classes of blocks are {Ili : i = 

O, 1,. . . , q - 1) and {qi : i = 0,1,. . . ,IO). For each q, ne have a base block B and 

multiply by a mnltiplier of order (q - 1)/2 to obtain (q - 1)/2 - 1 fnrther blocks. 

Q B multiplier 
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Lemma 91 If g 2 3750 and g 2 (mod 4) then there crrsts a 5-GDD of type gI1. 

Proofi By Lemma 84, there exista a {5,31)-GDD on g points with group sizes 42 

and 30y where y # 3. Apply Construction 6 to the GDD to obtain the result. A 

5-MGDD of type 31" is constructed in Lemma 90 and 5-GDD of type (4%)" and 

(30~)" (y # 3) are constructed in Theorem 36. O 

Lemma 92 If g 10 (mod 12) and g E [2314,2746], fhen there k t s  a 5-GDD 

of type g". 

Proof: TakeaTD(5,22(5)) anda TD(5,22(4)(5)+a)-TD(5,a) whereO 5 a 22(5). 

Apply Construction 8 to obtain a SGDD of type (22(5))20(22(5) + 4a)? If we set 

a = 1 (mod 3), we have 22(5) + 4a r O (mod 6). By inflating fkom a QGDD of 

type 611 and 2211, we know that both éGDD of type (22(5) + 40)" and (22(5))11 

exist. Apply Construction 6 to obtai. a SGDD of type (2310 + 44". O 

Lemma 93 If g E [470, 542]2(12), then t h e n  ezists a 5-GDD of type g" . 

Proofr Take a TD(5,88+a)-TD(5,c) where O 5 a < 22 and apply Singular Indirect 

Product with 22-a infinite points to obtain a 5GDD of type 2220(22+4a). Choose 

a so that 22 + 4a is a multiple of 6. Apply Construction 6 to obtain the resnlt. O 

Lemma 94 Then is a 5-GDD of type 206". 

Proofr Remove a point fiom a TD(9,23) to obtain a {9,23)-GDD of type ~ ~ ~ 2 2 ~ .  



Proofr Take a TD(5,88) with 22 infinite points to obtain a 5GDD of type 22161101. 

Apply Sin* Indirect Product to obtain a SGDD of type 22M(110+4a)1. Choose 

a = 1 (mod 3) and apply CoPStrPction 6. 0 

Lemma 96 I f g  E [2750, 2882]1(111 U (2990, 3062],(,21, then there is a 5-GDD of type 

9". 

Pioofr Take a TD(5,4(12t + 8) + a)-TD(5,a) with 12t + 8 - a infinite points to 

ob tain a 5-GDD of type (12t + (12t + 8 + 44' .  Choose a so that 12t + 8 + 40 E 

[470, 542]2(12) whm t = 8,9. O 

Lemma 97 If g E [3242, 3842]2(12), then then às a 5-GDD of type gll. 

Proof: Mathg  a EGDD of type 2211 yields a SGDD of type (22(7)) ll. Take a 

TD (5,88(7)+a)-TD (5,a) where O a 5 22(7) and apply singnlar indirect prodact 

to obtain a SGDD of type 22(7)20(22(7) + 4 ~ ) ' .  Choose n so that 22(7) + 40 is a 

multiple of six. Apply Construction 6 to obtain a 5-GDD of type (22(7) (21) + 4 4  ll. 

O 

Lemma 98 Then d a 5-MGDD of type l112t'+19 for O 5 t 5 11. 

Proofr Rom Lemma 90, we ody need to deal with the cases when t = 3,7,9. 

In [14]. The set of r snch that there &ts a 5-MGDD of type gr is PBD-dosed 

(Construction 9). When t = 3, taJse a TD(5,ll) to obtain 55 E B({5,11)). When 

t = 7, take a TD(5,18) and add a point at infinity to obtain 91 E B({5,19)). When 

t = 9, talce a TD(5,23) to obtain 115 E B({5,23)). O 

Lemma 99 Then &ts a 5-GDD of type (114, 4)11. 



Proofi Take a TD(5,23) and remove a point to obtain a {5,23hGDD of type 

423(22)1. Apply Construction 6 to obtain the resalt. We have both BGDD of type 

4" and 22'l and 5-MGDD of type llz3. 0 

In the next lemma, we obtain a bonnd on the existence of 5-GDD of type gll. 

Let A = [1210, 1254]2(4) U [1430, 1482]2(4) U [1870, 1938]1(4) U [2090, 2166]2(4) U 

[2530, 2622]2(4) U [2750, 2850]2(4) U [2970, 3078]2(4) U [3190, 3306]2(4) U [3410, 3534]z(4). 

Lemma 100 If g E A, then then ezists a 5-GDD of type 9% 

Proofr Let t be an odd integer such that TD(12,t) exists. Give weight O or 4 to 

each point in one group and apply Construction 7 wïth m = 110. We have a 5-GDD 

of type 110" by simply idating a 5-GDI) of type 2211 by weight five. Also, we have 

constrncted a 5IGDD of type (114,4)". We obtain a 5-GDD of type (llOmf4y)" 

where O 5 y 5 m. We display the values in the following table. 



We only use a simple construction to obtain an asymptotic botmd on the &- 

tente of 5GDD of type g'? 

Lemma 101 Then is a 5-MGDD of type 31". 

Proofr Let V = Zlsi and the two gronps are {31i : i = 0,1,. . . ,141 and 

1 5  : i = O 1 ,  . , O }  The base blocks are {O, 1,17,5,51), {O, 61,32,6,53), 

{O, 76,347,141,204}, {O, 2,409,110,233), {O, 77,363,36,158), {O, 10?,321,187,25), 

{0,18,290,218,101}; multiply each by346 and 3462 to obtain 14 more blocks. 0 

Lemma 102 There is a 5-GDD of type g15 for ail g 2 6090 and g r 2 (mod 4). 

Proof: As in Lemma 84, there ensts  a {5,31)-GDD of type 4=, 4=', 430301 and 

43'301. Take a TD(31,m) where rn is odd. Give weight 4 to each point in &st 30 

gronps, give weight O or 4 to each point in the 31at gronps and give weight O or 

30 to each point in the last group. Apply Wilson's Fundamental Construction to 

obtain a {5,31)-GDD of type (4m)30(4s)1(30y)1 where O 5 z, y 5 m. If we insist 

on y r 3 (mod 6) and y # 9, then 30y n O (mod 90) and 30y # 270. Hence, n e  

can apply Construction 6 to obtain a 5-GDD of type (120m +42 + 30y)I5. A simple 

calculation fields that that if g 2 6090 and g r 2 (mod 4), then there exists a 

5-GDD of type g15. 0 

Many values less than 6090 can also be constructed. 

Lemma 103 men is a 5-MGDD of type 3 P .  

Proof: Let V = Zsi x ZN. Let the two paranel classes are {(O, i )  : i = O, 1,. . . ,22) 

and {(i ,  O) : i = 0,1, . . . ,301. The base blocks are {(O, O), (1, l ) ,  (3,2), (?,3), (15, a)), 



Lemma 104 There i s  o 5-MGDD of type 312? 

Proof: Let V = Zal x P27 where a be a primitive dement of FI? satisfying 

a3 = a2 + 2 0  + 2. For blocks, &art with {(O, a'), (1, a'), (3, a'), (7, a3), (15, a4)), 

((0, oro), (3, a'), (9, a'), (14, a3), (21, a")), {(O, a'), (4, a'), (5, a'), (13, a'), (15, as)) 

and multiply each in the second component by d of orda 13 to obtain 13 blocks. 

These base blocks obtained &re developed over Zal x &7 to produce the GDD. O 

Lemma 105 If g G 10 (mod 60) and g 2 3250 und if g a 50 (mod 60) und 

g 2 4490, then there exists a 5-GDD of type g2= and g27. 

Proofr In Lemma 85, we prove that if g r 10 (mod 30) and g 2 3250 and if g r 50 

(mod 60) and g 2 4490, then there exists a {5,31)-GDD on g points with block 

sizes 202 andfor 30. Use this GDD and apply Construction 6. Both 5-MGDDs of 

type 31" and 312' &t by Lemmas 103, 104. 0 

Now, we show that if g is large enough, the basic necessary condition of the 

existence of ÇGDD is &O safncient. First ne deal with the case when g r 10 

(mod 20). 

Lemma 106 If g = 10 (mod 60) and g 2 3250 and if g a 50 (mod 60) and 

g 2 4490, then there a i s t s  a 5-GDD of type gr for al2 r ezcept possibly for r = 15. 

Proof: Both 5GDD of type $ and g7 exists fkom [3] and Lemma 87. When the 

nmnber of groups is not in the set {7,11,15,23,27,35,39,47,55,59,63,71,75,83,87), 



the resdt has b e n  estabüshed in Theorem 36. The case when the number of groups 

is 7,11,23,27 has been established in Lemma 87 and 105. Take a TD(9,6k+3) 

(which exists for a11 6k+3 2 335 [3]) and truncate four groups to {O, 4(2k+l), 6(2k+ 

1)) points and give weight 20 to obtain a BGDD with group sizes 120k+60, 80k+40. 

Add 2Ok + 10 &te points and fill in eaéh groap by a 5-GDD of type (20k + 10)~ 

or (2Ok + 10)~ to obtain a 5-GDD of type (20k + 10)' for r = 35,39,43,47,59. 

When the niimber of the groups is 63 or 67, n e  iill in the groups of a SGDD of 

type and 69". Take a TD(9,10k+5) (which &sts for al1 10k + 5 2 335 [3]) 

and truncate four gnups to {O, 4(2k + l ) ,  6(2k + l), 8(2k + l), lO(2k + 1)) and give 

weight 20 to each point and fil1 in the groups with 2Ok + 10 infinite points. This 

solves the remahhg cases. O 

Next, we deal with the case when g # 10 (mod 20). 

Lemma 107 If g z 2 (mod 12) and g >_ 650 or i fg  10 (mod 12) and g 2 898, 

then t h e ~ e  &ts a 5-GDD of type 93', g115, gla5, g195. 

Proof: Break up the groaps of a 5-GDD of type (59)' where T = 7,23,27,39,87; 

such GDDs ex is t  by Lemma 106. 0 

Lemma 108 If g 2 3750 and g 2 (mod 4), then there e e t s  a 5-GDD of type 

gn und glll. 

Proofr W e  take a 5-GDD of type log7 and a 5GDD of type log" with g infinite 

points and fill each group by a SGDD of type gll to obtain a 5-GDD of type gn 

and g"? 0 

Finally, we note the following. Let K = {5,9,11,13,17,29,3 1). 
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Lemma 109 If then wiats a PBD(v,K), then there & a EGDD of type (v - 

Proof. Take a PBD(v, K )  and remove one point. Apply Construction 6 to obtain 

the result. All reqnired GDDs and MGDDs exkt by Lemma 90 and Theorem 36. 

3.4 Optimal Packings with Block Sise Five 

In this section, we stady optimal paeLings with block size five on v points with 

v = 2 (mod 4) and X = 1. 

The ftinction D(v,  k, 1) is of importance in coding theory since the blodr inci- 

dence vectors of a (v, k ,  1) packïng fkom the codewords of a binary code of length 

w with minimum distance 2(k - 1) and constant weight k. Thns D(v, k, 1) is the 

maximum number of codewords in such a code. 

Schonheim [105] has shoan that 

0th- upper bounds on the fiuiction D(v, k, 1) have been given by Johnson [ T l ]  

and Best et al. [23]. Lower bounds on the b c t i o n  D(v, k, A) are generally given 

by construction of ( v ,  k, A) packings. 

The values of D(v, 3, A)  for dl u and A have been detezmined by SchOnheim 

[105], and Hanani [63]. The vaiues of D(v, 4 , l )  have been determined for all v by 

Brouwer [28]. 
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3.4.1 v r 2,6,10 (mod 20) 

In this subseetion, we consider the case when v r 2,6,10 (mod 20). 

Lemma 110 If the= tzists a SGDD of type 2n, then D(274 5 , l )  = B(2n, 5, l ) .  

Pioofr Simple counting yields the nnmba of blocks in a 5-GDD of type 2" meets 

the Sch6nhei.m bonnd, O 

As a corollary, ne obtain the fouowing r e d t .  

CoroIIary 14 I fv  = 2,lO (mod ZO), v # 10,22,30,70,142,150,170,190,222,230, 

270,390,430,670, then D(v,  5 , l )  = B(v, 5 , l ) .  

ki the remaining of the section, we focus on the case when v 6 (mod 20). 

Lemma 111 If t h e n  e&ts a 5-GDD of type 2%6', then n a O (mod 10). 

Pîoofi The result f o k s  immediately by counting the pairs and the neighbours 

of a point. 0 

W e  need some direct constructions. 

Lemma 112 Then ezists a 5-GDD of type 2"6l. 

PTOO~;' Let v = x {O, 1). The gronps are {(i, j) , (20 +i, j) ) for i = O, 1,2, . . . ,19 

and j = O, 1. The blocks are. 
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The la& three blocks of size four generate six p d e l  dasses on V. Add an infinite 

point to each pardlel class and a groap of infinite points gives a 5-GDD of type 

24061. Q 

Lemma 113 [l] Then ezists a 5-GDD of type 2@6'. 

Proof: Let V = Zso x {O, 1); and the groups are {(i, i ) ,  (i + 30, j ) )  for i = 

O, 1,. . . ,29 and j = O, 1. The bloch are 

Each of the last three blocks generates two paranel classes on V. Add an infinite 

point to each pardel dass and a g m p  of infinite points to get a EGDD of type 

26061, 0 

Lemma 114 Ifthere e215ts a 5-GDD of type 2n, then there ezists o 5-GDD of type 

25(n-l) 61. 

Proof: This is a variant of singular indirect product with one iafinite point. O 

Corollary 15 There ezàsts a BGDD of type 21M61 for n = 4,6,10,12,15. 
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Proofi The case when n = 4,6 are constriicted in Lemmas 112 and 113. When 

n = 10,12,15, they are constrncted asing Lemma 114 by t k g  a SGDD of type 

2" for n = 21,25,31. 0 

Lemma 115 If the= d t s  a 5-GDD of type (20gi)(20g2). . . (20gk) and for each 

i = 1,2, . . . , k, there d t s  a 5-GDD of type 2lOu~6~, th, then ezists a 5-GDD of 

type 2lObi+n+--+#r&jl~ 

Proofr This is a variant of singular direct product by taking six infinite points. O 

Lemma 116 r fn  is even, then Uiere &ts a CGDD of type 21h61 for dl n 2 78. 

Proof: There &sts a CGDD of type 80" for aU n 2 5 by Theorem 36. Adding 

six infinite points and IlIl in each goup  by a éGDD of type 2*6l yields a 5- 

GDD of me 240"61. Take a TD(13,13) and remove a point to obtain a 13-GDD 

of type 1214. linncate eight groaps to &es zero, four,six, ten or twelve. Each 

block has size at least five. Give weight twenty and apply Wilson's Fundamental 

Construction to obtain a 5-GDD of type 24O6g1g2.. . ga where g; E {O, 80,200,240) 

for i = 1,2,. . . ,S. Apply Lemma 115 to obtain a ÇGDD of type 21h61 for ali 

78 < n 5 168 and n G O (mod 2). Take a TD(24,23) and truncate three blocks 

which intemect in one point. This gives a GDD with group type 202'221 wïth block 

sizes at least 21. Keep eight groaps of size twenty and truncate o t h a  groups to s k i  

{O, 4,lO, 12,20). Give weight 20 and apply Wilson's Fandamental Construction 

to obtain a 5-GDD. Apply Lemma 115 to obtain a 5-GDD of type 21°"6' for all 

170 < n 5 480 and n n O (mod 2). Similady, take a TD(25,25) and remove a point 

to obtain a 25-GDD of type 2426 and tnincate points in 20 groups and give weight 

20 to obtain a 5GDD of type 21461 for 154 5 n < 624. Findy,  take a TD(6,2n) 
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for n 2 54 and truncate in a groap and give weight 20 to obtain a IGDD of type 

(40n)~(20g)l for 94 5 g 5 120 to obtain a 5-GDD of type 210(1h*#)61. Hence, t h a e  

&sts a CGDD of type 21h61 fm all n 2 94 and n E O (mod 2). a 

Next, we deal with the case when n is odd. 

Lemma 117 If n is odd, &n then  e d  a 5-GDD of type 21°"61 for 011 n 1 105. 

Ptoofi Take a TD(16,16) and remove a point to obtain a 16-GDD of type 1517. 

Truncate ten groaps to sizes {O, 4,6,10,12,15) to obtaiil a GDD with block sizes at 

least five. Give weight 20 and apply Lemma 115 to obtain a EGDD of type 21h61 

for all 235 2 n 2 105 aad n E 1 (mod 2). In genaal, take a TD(4n + 1,4n + 1) 

for n 2 6 and 4n + 1 a prime power and remove a point and h c a t e  to all but six 

grmps to sizes {O, 4,10,12,15). Give weight 20 and apply Lemma 115 to obtain a 

5-GDD of type 21°k6' for (4n) (6) + 15 + 12(4n - 4) 2 k 2 (4n) (6) + 25 and k E 1 

(mod 2). Take n = 6,7,9,10,12,13,15 to obtain a 5-GDD of type ~ ' ~ ' 6 '  for d 

169 5 k 5 1047 and k 1 (mod 2). Take a TD(6,4n+l) for n 2 150 and tmncate 

a group to at le& 109 points and give weight 20. Apply Lemma 115 and induction 

simply yield that if k 2 109 and k 1 (mod 2), then there exists a 5-GDD of type 

2lok6l. O 

Lemma 118 There  ezists a 5-GDD of twe 21m6'. 

Proofi We fust construct a 5GDD of type IO9 with a paraiiel class. Let V = Zso 

and the groups are the translates of {O, 9,18, . . . ,811. The blocks are 

{O, 6,7,18,34), {O, 2,5, 15,441, 

{O, 4,23,37,68), {O, 8,17,38,58). 



The five points in the first stazter blodc are distinct (mod 5). Hence, the h s t  

s tar ta  block geneiates five pardel classes. By adding one infinite point, we obtain 

a {5,6)-GDD of type 10911. Give weight foar to obtain a 5-GDD of type 4094? 

Add two infinite points and fill in with a 5GDD of type 2" to obtain a 5-GDD of 

type 21m6'. CI 

Lemma 119 If n is euen and n 4 {2,8,14,16,26,38,54,58), then there ezists a 

5-GDD of type z1"6'. 

Proofr Take a 5GDD of type 120" (n = 5,7) and add six infinite points to obtain 

a 5-GDD of type 2-6l. Take a TD(6,30) and mincate a group to 20 points to 

obtain a {5,6)-GDD of type 30~20'. Give weight foar to obtain a 5-GDD of type 

120580'. Add six points to obtain a 5GDD of type 2=6'. Take a TD(7,7) and 

remove a point to obtain a 7-GDD of type 6'. h c a t e  a gronp to four points and 

give weight 20 to obtain a 5-GDD of type 120'80'. Add six infmite points to obtain 

a SGDD of type 24m61. Take a TD(l1, l l )  and remove a point to obtaîn a 11-GDD 

of type 10". Keep six gronps of size 10 and trnncate one gtoup to six points, one 

groap to zero or four points and the remaining groaps to zero points. Give weight 

20 and add six inflliite points to obtain a IGDD of type 21h6' for n = 66,74. a 

Lemma 120 If there ezbts a 5-GDD of type 21h61, then D(20n + 6,5,1) = 

B(20n + 6,5,1). 

Proofr In the group of size six, we put a fiuther block of size five. The result 

follows by a simple connting argument. 0 

Corollary 16 D(20n+6,5,1) = B(20n+6,5,1) for dl n but possibly n E {2,8,14, 

16,18,26,54,58) ifn is even and n < 101 ifn i i  odd. 



3.4.2 v 14,18 (mod 20) 

In this subsection, ne discass the asymptotic behavior of D(v, 5,l) when v r 14,18 

(rnod 20). 

Before we proceed, we need a result on 5GDD of type 2'<h141 and 2'"W1. 

Lemma 121 If then ezists a 5-GDD of type 2", a TD(6, v), then there ezists a 

LGDD of type 25(n-1)a1 for a = 14 und a = 18. 

Proof: Take a TD(6, F) and truncate a group to three or four points. Give 

weight four and apply Wilson's hndamental Construction to obtah a 5-GDD of 

type (2(n - 1))~l2 '  and (2(n - l))5161. Add tao W t e  points and fill in the group 

by a 54DD of type 2". O 

Lemma 122 The= ezists a 5-GDD of type 21"a1 for a = 14,18 and n 1 181 o r  

n = 137. 

Proof: Take a TD(26,25) and mincate 21 grmps to sizes {O, 12,15,20,22,25). 

Give weight 20 and fill in each group to obtain a 5-GDD of type 2=a1 where z E 

{120,150,200,220,250) and a E {14,18). This gives a 5-GDD of type 2'"a1 for 

a = 14,18 and 181 < n < 500. Similar 81:gnment can prove that thae exists a 

5-GDD of type 21°"a1 for ail a = 14,18 and n 2 181 by asing a larger TDs to 

obtain a larger interval, then apply induction. To handle the case n = 137, use a 

TD(6,25) and tmncate a group to 12; then give weight 20. 0 

Lemma 123 0(2574,5,1) = B(2574,5,1) and D(2078,5,1) = B(2078,5,1). 



Proofi In [107], a 4-RGDD of type 3' is given. By complethg all resolution 

classes, ne obtain a BGDD of type 67l. Give weight 67 to obtain a 5-GDD of me 
201'469~. Add a point at infinity and fia in the group by a 5-GDD of type 21°1 or a 

5-GDD of me ZW. Simple counting show that it is indeed an optimal packing on 

2078 points. Instead, we can give weight 83, to obtain a 5-GDD of type 249'581'. 

Add one point and fiU in the groups by a 54DD of type 212= or a 5-GDD of type 

5-GDD of type Zagl. This gives an optimal packhg on 2574 points. O 

Theorem 45 D(20n + 2574,5,1) = B(20n + 2574,5,1) and D(2On + 2078,5,1) = 

B(20n + 2078,5,1) for al1 n 2 751. 

Proof: Take a TD(138,137) and trtincate one gronp to size 128 or 103, and 132 

gcoaps to sizes {O, 12,15,20,22,25,30,40,50,60,70,80,90,100,110,120,130). Give 

weight 20 and fiIl in with 14 or 18 infinite points corresponds to the case when the 

one group has size 128 or 103. Fill in all other grmps by a 54DD of type 2"a1 for 

some n and a = 14,18. This gives a 5-GDD of type 21°"b1 for 751 5 n 5 10000 

and b E {2078,2574). A simple induction proves that there &sts a CGDD of type 

2l0"b' for all n 2 751. F i h g  in the group of size 2078 or 2574 by an optimal 

packhg on the same number of points; the result follows e d y  by simple counting. 

a 

In the case whea v 2 (mod 4), ne have proved that if v is large enongh, then 

D(v, 5 , l )  = B(v, 5,l). 

3.5 MGDDs with Block Size Four 

In t his section, we investigate the existence of modified group divisible designs wit h 

block size four. 
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The existence of the modined gronp divisible designs has been studied by Assaf 

[Il] and Assaf and Wei [14]. They have applications in constniding varioas type 

of combinatonal objects; see [IO] and Section 3.3. The existence of modified group 

divisible with block size three has been completely settled in [ll]. In [Ml, the 

following result is proved. Let E = {(10,8), (10,15), (10,18), (10,23), ( lg , l l ) ,  

(lg,lZ), (19,14), ( lg, l5),  (19,18)7 (19,23)}. 

Theorem 46 Ifm, n # 6, then a 4-MGDD of type mn &ts if and only if (m - 

i)(n - 1) O (mod 3) with the possible ezception of (m, n) E E .  

The case when one of the m or n takes on the value sir is completely open, 

mainly due to the nonexistence of a 4MGDD of type 64. We address the case 

of the existence of 4-MGDD of type 6". We develop some new consmictions for 

MGDDs to settle this problem with few possible exceptions. We then settle the 

existence of 4MGDDs with index greater than one completely. 

3.5.1 Some Direct Constructions 

Before we proceed, we need some direct constructions. 

Lemma 124 [Id] There is a 4-MGDD of type 6'. 

Proof: Let V = Zll x {O, 1). A parallel class is Gi = {(3i,j) : i = O, 1,. . . ,6) for 

j = 0,1 and their translates. The second pardel d a s s  is {(K, j )  : i = 0,1,2; j = 

0, l ) .  The base blocks are: 



Develop these under ZI1  to obtain the blocks of the PMGDD. a 

Lemma 125 [Id] Then is a 4-MGDD of type 61°. 

Proofr Let V = Z 5 x Z1o U Ela, where Hlo = {ho, hl, . . . , b}. The first parallel 

class is {(O, a) : a E Zlo} and its translates together with HIO. The second pardel 

dass is {(a, O) : a E Zs) U L and its translates. The base blodrs are: 

These base blocks under the group a : (2, y )  H (z+l, y )  and a : hi H generate 

the design. 0 

Lemma 126 There is a 4-MCDD of type 613. 



Proofr Let V = Zm. A pardel dass is {6i : i = 0,1, . . . ,121 and its translates. 

The second pasalle4 class is. {l3i : i = 0,1,. . . ,5) and its translates. The base 

blocks are {O, l,3 ,IO), {0,4,27,38), {0,5,25,33), {0,14,29,61), {O, l6,% ,571. Devdop 

these blocks over Zn- 0 

Proof: Let V = Zs7 x {O, 1). The h s t  parallel class is ((34 j )  : i = 0,1, . . . ,181 for 
j = 0,l and their translates. The second pardel dass is {(Ni, j )  : i = 0,1,2; j = 

0 , l )  and its translates. Base blocks are 

Develop the blocks under &. 

Lemma 128 The= is a 4-MGDD of type 631. 

Proof: Let V = Zoo x {O, 1). The first parallel dass consists of the translates of 

{ ( O , )  (3,0), (62,0),(0,1),(31,1),(62, 1 The second parallel dass is {(3i, j )  : 

i = 0,1,. . . ,301 for j = 0,1 and their translates- Base blodrs are 



Multiply the first coordinate of eaeh block by 16i for i = 1,2,3,4 to obtain 20 

fiuther blocks. Develop them over Zos. O 

Lemma 129 There is a 4-MGD1) of type 6". 

Prooft Let V = ZIn.  The hst pardel class is (37i : i = 0,1,. . . ,5) aad the 

second parallel dass is (6 i  : i = 0,1,. . . ,36). The base b10cks are {0,1,8,21), 

{0,25,56,117), {0,43,128,28), {0,49,182,196), {0,67,129,70). Mdtiply each of them 

by 211 and 121 to obtain 10 more bloeks. Develop these 15 blocks over Zn2. a 

Here is the fist recnrsive construction. 

Lemma 130 Suppose t h e n  ezists a 4-MGDD of type B and there &ts a 4-IGDD 

of type (6r; r,r, . . . , T ) ~ ,  U e n  there k a 4-MGDD of type vh. 

Proof: Align the h copies of 4MGDD of type V on the h groups of the IGDD so 

that the block of size r coincides with the hole. Use each hole to fom a new block 

of size th .  0 

Let 1, = {l, 2, . . . , n) be an index set on n dements. 

Lemma 131 Suppose there ezists a TD(7,m) und a 4-MGDD of type (3a + 1)' 
where O a 5 B - 1. Then the* aists a 4-MGDD of type (6rn + 3a + 1)=. 

Proof: rtwicate a gmup of a TD(7, rn) to a+l points, %,JI, . . . .sa. We constraet a 
3 

4MGDD of type (6m+3~+1)~ on the point set V x  16~so'x 16u{y : i = 1,2, . - . , a) x 

I3 x Is. Let 4, G2? - . . , Gs be the six other groups in the TD(7, m). The new groups 

block of size seven in the original design, if it hits the point so, we put a 4MGDD of 
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fqpe 6' on B x 4 so that the blocks ofsize six align on B x { i)  where i E In omitting 

the block of size six on $0 x I6 whae B is the set of all points in the block. For every 

other bloek of size seven, put a PIGDD of type (9,3)" on (B \ {si)) x Is u si x I3 x 4 

so that the hole digns on si x I3 x I6 and the groups align on x 16 U si x I3 x { i )  

where cs. is B n Gc, with Gr being the r?" groups in the original design. For every 

blodr of size six, put a 4-GDD of type 66 on the set B x Ig. Finally, put a 4-MGDD 

of type (30 + 1)= on the set so x I6 U {si : i = 1,2,. . . ,a) x I3 x 16. This gives a 

PMGDD of type (6m + 30 + l)? CI 

With the Wo recursions; we are now in a position to dose the spectrnm of 

PMGDDs of type 6'. 

Lemma 132 If g 1 (mod 6), g 2 43, there ezists a 4-MGDD of type 60. 

Proofi When m is odd and m 2 7, thae exists a TD(7, m) with the possible 

exceptions of m = 15,39 [3]. Apply Lemma 131 with a = 0,2,4,6 to obtain a 

CMGDD of type (6m + 1)' , (6m + 7)6, (6m + 13)6 and (6m + 19)=. O 

Combining Lemmas 124, 126, 127, 128, 129 and 132, we obtain: 

Lemma 133 If g i 1 (mod 6), g # 25, then ezists a 4-MGDD of type 60. 

Lemma 134 There arc 4-MGDDs of type 628 and 6'". 

Proof: There exists a 4HTD of type 76 and 106 [3]. Apply Lemma 130. O 

Lemma 135 If m 2 388 and m i 4 (mod 6), then ezists a 4-MGDD of type 

(6m + 10)'. 



Proofi A TD(7,m) exists for all rn 2 63 [3]. Apply Lemma 131 aith o = 3 to 

obtain a 4MGDD of type (6m + IO)=, using the 4-MGDD of type 6'' h m  Lemma 

Lemma 136 If g # {70, 94, 100, 118, 190, 1/22, 166, 190, 214, 238, 2.44, 286, 

334, 570, 582) and g 2 52, then t h e n  ezists a 4-MGDD of type  g6. 

Proofi Lemma 135 hanclles all cases when g > 382. Now apply Lemma 131 with 

a = 3 and values of m 5 62 for which a TD(7,m) exists [3]. O 

Lemma 137 If g 2 52 and g # 70,118, then thete is a 4-MGDD of type g6. 

Proof: First apply Lemma. 136. Then use Lemma 131 with a = 9 and values of 

m =Il,  12, 17, 19, 21, 27, 31, 35, 36, 43, 51, 57, aad 59. The 4MGDD of type 628 

exists by Lemma 134. a 

Lemma 138 There is a 4-MGDD of type 6'=. 

Proof: Give weight nine to all points in a block of a TD(6,7), and give weight 

six to all other points. Append a new column of six points. Take a parallel class 

of blocks of size six induding the block in which d points have weight nine. For 

every block in the parallel dass, put a 4MGDD of type (k + l I6  (k = 6,9) on the 

corresponding points togetha with the new adjoined points. For every 0th- block, 

put a CGDD of type 6 or 6'9l [gr]. This &es a 4MGDD of type 6'=. 0 

Lemma 139 T h e n  ezàsts a 4-MGDD of type  6? 



Pmofi Take a 4MGDD of type 76 (Lemma 124) and give every point weight 

10. For evexy block of size six, put a 4-MGDD of type 10% (Lemma 125) on the 

60 points. For everp block of size four, put a CGDD of type 10'. This gives a 

4MGDD of type 6? O 

Lemma 140 There aists a 4-MGDD of twe 6'". 

Proofi Take a 4-MGDD of type 1 3 ~  (Lemma 126). Give every point weight nine 

and append a new column of SU points. For evey blodc of size 6, employ a 4- 

MGDD of type IO6 (Lemma 125). For every other block of size four, employ with 

a CGDD of type g4 [97]. This gives a 4-MGDD of type 6l". O 

Combining Lemmas 134, 136, 137, 138, 139 and 140, we have the following 

result . 

Lemma 141 If g r 4 (mod 6), g # 16,22,34, then aists a 4-MGRR of type 6g. 

Fhally, we combine Lemmas 133 and 141 to yield: 

Theorem 47 Then is  a 4-MGDD of type gi for al1 n 4 {16,22,25,34), n = 1 

(mod 3) and n 2 7. 

In addition, we update the theorem of Assaf and Wei [14]. 

Lemma 142 T l r m  is a 4-MGDD of type IO*. 

Proofi Let V = Zlo x (Z7 U {m)). The first parallel dass is { { i )  x (ZT u {m)) : 

i E Zlo- The second pardel clam is {Zlo x { j )  : j E Z7 u {oo)). Base blo& are: 
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Lemma 143 T h e n  ii a 4-MGDD of type loW.  

Proofi Let V = Z5 x {O, 1) x Z23. The two pardel dasses are {(O, O, i ) ,  (O, 1, i )  : 

i E Z13) and {(i, O, O), (i, 1, O) : i E &. The base blocks are 

Multiply each block by (0, -, 2') for i = 1,2,. . . ,10 to obtain the remaining base 

blocks. O 

Lemma 144 There is u 4-MGDD of type 19". 

Proof: Let V = Zig x Zll. The two pardel classes are {(O, à) : i E Za) and 

{(i, O) : i E ZI1) together with th& translates ova Z19 x Zil. The base blocks are 

Multiply each block by (1,4)' for i = 1,2, . . . , 4  to obtain 12 mote blocks. Develop 

these blocks over Lis x Zil. O 

Lemma 145 There is a 4-MGDD of type 1912. 
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Proof: Take a 5-MGDD of type 613 [IO21 and remove a group of size six to obtain 

a {4,5)-MGDD of type 6". Give weight three to each point and append a new 

column of 12 points. Employ 4-GDDs of type 34 and 3' and a 4-MGDD of type 

412 0 O 

Lemma 146 Then is a 4-MGDD of type 1914. 

Proof: Let V = Z19 x (Z13 u {a)). The first pardel dass is {{i) x (Zia u {oo)) : 
i E Zig. The second pardel dass is {& x G) : j E Zw U {oo)). Take the blocks 

and multiply each by (11,l)' for i = 0,1,2 to obtain 21 base blocks. Develop these 

under the action of the group. O 

Lemma 147 Them is  a 4-MGDD of type 1915. 

Prou/: Let V = Zia x Zir. The two paralle1 dasses are {(i, O) : i E Zre) and 

{(O, i) : i E Zls) together with their translates over Zl9 x Zis. Take the bloelrs 

and multiply each by (11,l)' for i = 0,1,2 to obtain 21 base blocks. Develop these 

under the action of the group. O 
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Lemma 148 Then is a 4-MGDD of type 19". 

Proofi Let V = Zls x (&TU {oo)). The first paralle1 dass is {{i)  x (&u (00)) : 

i E Zig. The second pardel d a s s  is {& x G) : j E Zi7U {oo}). Take the blocLs 

and mnltiply each by (7,l)' for i = 0,1,2 to obtain 27 base blocks. Develop these 

under the action of the gronp. 13 

Lemma 149 The* is a 4-MGDD of type lg2'. 

Proof: Let V = Zls x Zzs. The tao pardel classes are { ( O , i )  : i E ZZ3) and 

{(i, O) : i E &) together with its translate over ZI9 x Zp. The base blocks are 

Multiply each block by (172)' for i = 1,2, . . . ,10 to obtain 30 more blocks. Develop 

these blocks over Zia x &. 0 

With these lemmas, we can restate the theorem. 

Let F = {{6,16), {6,22), {69 251, {6,34), {10,15)). 

Theorem 48 If {m, n) # (6,4), then there aists a 4-MGDD of type mn if and 

only if (m - l ) (n - 1) G O (mod 3) with the possible ezceptàotu of {m, n} E F. 



3.5.2 Higher Index 

Next, we examine the existence of 4MGDDs with index greater than one. Simple 

counting establishes that for a 4MGDD of type mm and index X to exkit, one 

requires that X(m - l)(n - 1) O (mod 3) and m, n 2 4. Hence when X O 

(mod 3), the basic necessary condition reduces to m, n 2 4. When X f O (mod 3), 

the basic necessary condition is the same as for index one. Now the union of taro 

4-MGDDs of type mn, one of index Al and the other of index Ag, is a 4-MGDD of 

type mn and index Al + X2. Hence it d c e s  to d e  cases with A E {2,3) when 

the 4MGDD of index one and type mn is nonexistent or Mknown althongh the 

basic necessary condition is met, and cases with A = 3 when rn, n m O, 2 (mod 3) 

and m,n > 4. 

First we treat the cases with X = 3. 

Lemma 150 If whenever n, m E S = {4,5,6,.7,8,9,10,11,12,14,15,18,19,23) 

there is a 4-MGDD of type nm and indez 9, then whenever n ,m 2 4, there is a 

4-MGDD of type nm and indez 9. 

Proof: There e P s t  PBDs with block sizes fkom S of order n and m [19]. Let (V, B )  

be such a PBD of order rn, and (W, V) be such a PBD of o rda  n. We form the 

required 4-MGDD on the point set Y x W. For B E B and D E V, piace a 4MGDD 

of index 3 on B x D, omitting the pardel classes on {b}  x D for b E B, and on 

B x {d) for d E D. 0 

Lemma 151 Let K {4,7,10,13,19). If a K-PBD of order m and indez 3 

ezists, and R E SI then o 4-MGDD of type nm and indez 3 ezàsts ezcept possibly 

when 4 E K and n = 6 ,  or when 10 E K and n = 15. 



Proofr Let (V, B) be the K-PBD of order m and index 3. Let W be an n-set. We 

form the reqaaed 4MGDD on the point set V x W. For B E 8, place a 4-MGDD 

of index 1 on B x W, omitting the paralle1 dasses on {b} x W for b E B, and on 

B x { w ) f o r w ~ W .  CI 

In view of Lemma 150, usefiil ingredients for Lemma 151 have m E S. 

Lemma 152 There ik a {dl-PBD of indez 9 and order m whenever m = O, 1 

(mod 4). There is a {'-/)-PBD of indez 3 and order 15. There îp a (4,lO)-PBD of 

indez 3 and order 11. Them- are {d, 7)-PBDs of i n d a  3 and o+de+s 14, 18, and 23. 

Proof: For the h t  tao statements, see [63]. For order 11, employ base blocks 

(O, 1,5,7) and {oo, O, 1,3) over Zlo U {oo), together with Zlo as a block of size 10. 

For order 14, on Z7 x {O, 11, take base bloclrs 

together with the single block Z7 x (1) of size 7. 

For order 18, on Ze x {O, 11, form the base blocks 

For orda 23, on Zle U {mi : O 5 i 5 61, fotm the starter blodts 
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with the short orbit {O, 4,8,12), and a block of size 7 on the idhite points included 

thsee times. O 

W e  must treat cases when n = 6 and m E {4,5,6,8,9,11,12,14,18,23) to 

complete the solution for index 3. 

Lemma 153 Whenever rn E {4,5,6,8,9,11,12,14,18,23), a 4-MGDD of indez 

three and type 6m ezists. 

Proof: For m = 4, the point set is (Zs U {oo)) x {O, 1,2,3). Base bloeks are: 

for i = 1,2,3, and three copies of the base block {(O, O), (4,l) , (3,2), (2,3)). 

For rn = 5, the point set is Zso, and base blocks are 

For m = 6, the point set is (Zs U {oo)) x (Zs U {m)) . Base blocks are: 

For m = 8, the point set is ( Z r  U {oo)) x (Zs U {a)). Base blodrs are: 
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For m = 9, the point set is Zs x (Zs U {m)) . Base blo& are: 

Multiply each by (8,l)' for i = 0 , l  to obtain 12 base blocks, and develop over the 

gr0UP 

For m = 11, the point set is Zil x (Zs U (00)) . Base blocks are: 

Multiply each by (441); for i = 0,1,2,3,4 to obtain 15 base blocks, and develop 

over the group. 

For m = 12, there is a 5-MGDD of type 613 [IO21 and hence a {4,5)-MGDD of type 

612. Triplicate each block of size 4, and replace each 5-block by a (4)-PBD of order 

5 and index 3. 

For m = 14, the point set is (& U (00)) x (Z5 U (00)) .  Base blocks are: 

For m = 18, the point set is (Zi7 U {m)) x (Zs u {a)). Base blocks are: 



For m = 23, the point set is Zw x (Zs U {oo)). Base blocks are: 

Multiply each by (2, l)i for i = 0,1,.  . . ,10 to obtain 33 base blocks, and develop 

over the gronp. O 

Theorem 49 A 4-MGDD of indez 9 and type nm exists whenever n,m > 4. 

Proof: If m, n 4 S, apply Lemma 150. If rn E S\{6}, apply Lemma 151 using the 

PBDs from Lemma 152. This handles al1 cases except when n = 6, or m E {IO, 11) 

and n = 15. The latter cases, and 615, are treated by using m = 15 in Lemma 

151. When rn = 6 and n E {7,10,19), tripliate a 4-MGDD of index one. The 

remaining cases arise when m = 6, and these are treated in Lemma 153. ~3 

Now we turn to index 2. The only cases to treat are those rnissing when X = 1. 

For type IOLS, employ a {4)-PBD of order 10 and index 2 together with a 4MGDD 

of type 415 to handle index 2 for type 1015. 

For 6', the point set is (Z5 U (00)) x {O, 1,2,3). Base blocks are: 



for i = 1,2, and two copies of the base blocks {(O, O), (4,l)  , (3,2), (2,3)) and 

{(O, O),  (3, l ) ,  (1,2), (4,3)). Since {4,7,10)-PBDs of order 16, 22, 25, and 34 al1 

exist, this settles the remaining cases for inder 2. 

Putting the pieces together, we obtaia: 

Theorem 50 A 4-MGDD of type n* and indez X &ts whenever X(m-l)(n-1) r 

O (mod 3) and m, n 2 4, ezcept when X = 1 and {m, n) = {6,4), and possibly when 

A = 1 und {m, n) E {{6,16), {6,22), {6,34}, (6,251, {IO, 15)). 



Chapter 4 

Related Codes 

In this chapter, n e  study codes that are related to combinatorid designs. 

4.1 Erasure Codes 

In this section, we stndy eragnre codes. First of all, n e  need to know what masure 

codes are. 

In order to enhance the performance of disk access in a cornputer system, records 

to be stored on disk are often partitioned into small padsets, and each packet is 

stored on a separate disk. This pennits the storage and sabseqnent retrieval(s) of 

the record to proceed by paralhl access to all disks apon which the padtets are 

stored. More pardelism in the readfwrite operation in the cost of disks promotes 

the use of large collections of physically independent disks. 

By itself, each disk may be quite reliable. However, as disk mays become large, 

failtxce of one or more disks becornes likely. Failure of a disk can take many difFerent 

forms; here we are concerned with failure resulting in unavailability of the disk (e-g., 

133 
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its total erapate, physical removal, or power loss). One's primary goal in the event 

of catastrophic faüare of one ore more disks is to reconstmct th& content; in most 

transaction-processing systems, a second major reqnirement is to remain "on the 

air" dtuing mch reconstruction. 

Rabin [IO01 proposed an efficient scheme. In his infornation dispersd dgoriffim 

(IDA), there are two parameters, m and n. Each record is partitioned into TZ packets 

of (approximately) equd length 1, and nom these a list of m images and each of 

length I are compnted. The critical featnre of the encoding is that fkom any n of 

the m images, one can recover the n padsets of the record (in IDA, this is done by 

solving a small linear system of equations). Rabin obsenres that one can make as 

dose to 1 as desired, so that the overhead in redundant storage is relatively small. 

Tkee basic operations m u t  be supported: read, unite, and reconstruction. Of 

course, reconstruction is a combination of read and write operations. Rabin's IDA 

is partidarly well-snited to applications in which loss data is frequent, since it has 

no preference for one set of n s\UViving disks over another set. A read operation 

must always be accompanied by a recovery of the packets ikom the images. 

In a typical d i t  systems, however, one expects that most read operations per- 

formed wi l l  not encounter a disk failure. Hence, it is benekïal to design schemes 

in which, in the absence of a failure, no recovery of padrets fiom images is needed, 

but rather packets are simply read nom disk. Hderstein et d. [67] consider this 

situation, and ont investigation follows on nom theirs. 

The essential featnres of the schemes considered are as follows. Disks are as- 

signed to be either infonnaton dUks which contain packets of data records in plain 

text, or check disis which contain redundant idormation to cope with disk loss. 

The check-dis& ouerhead is the ratio of check disks to idormation disks, and refiects 

the cost of redundant storage. 
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Each check disk is assoaated with a subset of the information disks, and its 

content is determined by parity encoding. To be precise, its content is the moddo 

2 sum of its information disks. The check group size of a check disk is one more 

than the number of information disks with which it is associated. Check gronp 

size indiates the number of disb to be accessed daring r e c o ~ c t i o n  of a faïied 

disk; for load balancing reasons, d o m  check g~oap  size is desicable, and cost of 

reconstruction makes smd check groap size desirable. 

Dndy, each information disk ha9 an associated set of check disks. An update 

on the information disk requires an update on each of its check disks. The update 

penalty for an information disk is the numba of associated check disks. Again, it 

is desirable for update penalties to be d o r m  and smd.  Since npdates of data 

are taken to be mnch more fiequent than reconstruction of lost disks, the update 

penalty is of more concem typically than the check g m p  sizes. 

Let 4, CI,. . . , Cc be the set of c check disks, and FI, FI,. . . , Ff be the set of 

f information disks. A scheme is a c x f binary matrix A = (aij) in which a, = 1 

if and only if Fi is in the check group Ci. Adjoining a c x c identity matrix to 

form [Al I ]  gives a e x (f + c) pcrrity check matriz of a binary linear code, in which 

the columns are indexed by the information and the check disks. Binary iinear 

codes have been very extensively studied in coxinection with error detection and 

correction when binary data is conmpted by bit inversions rather than data loss 

[89]; one essential difference i s  that the positions of the e r m t s  are Iniown in the case 

of erasure. 

Now let us consider the loss of k disks (both information and check disks can 

fail). If [Al I ]  has a set of k or fewer linearly independent colamns, loss of the 

correspondhg disks cannot be corrected; however, as observed in [67], when the 

failed disks induce a set of linear1y independent colamns, th& erasure -cari be 
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corrected. Thns a scheme A is d e d  k e m r e  comding whenever every set of 

k colnmns of [Al4 contains no nonernpty set of dependent columns. Precisely 

the same condition determines when the parie check matrù [AlIl gives a 1%-error 

detecting code [89], but the study of codes for enor detection ha9 not focassed on 

update penalties. 

The magnitude of the update penalties in a k-erasare conecting code are of 

paramount importance. Evidently, if k aasures are to be wrvived, every update 

must afEect the content of at least k+l  disks (one information disk and k check disks, 

in our setting). Hence the update penalties must all be at least t. Henceforth we 

consider only those codes in which all update penalties are equal to k, the minimum 

possible. 

It is convenient to recast some of the prior discussion in altemate language. A 

se t  system (V, B )  is a set V of elements (or points), and a collection B of subsets of 

V called blocks. Assouated with a scheme A is a set system 

In this language, the check-disk overhead is IVI/b where b = IBI, the update 

penalties are the block siees, and the check gronp &es are the replication nwnbers 

which speeify in how many b10cks each eIements is contained. 

A configuration in a set system (V, B) is a set system (W) C) with W C V and 

CÇ B. In a configuration, an element is evcn if it occurs on an even number of 

blocks, odd otherwise. When a acheme is k-erasure cmecting, this translates to a 

requirement that certain configurations not appear in the associated set system. 
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Lemma 154 A set systern i s  asso&ted with u k - e m r e  cowecting code i f  every 

configitration of t < k blocks in set s y s t m  has at least k + 1 - t odd elemmts. 

W e  have noted aLeady that a set system with a block of size k cannot be 

associated with a (k + l)-erasure correcting code. Indeed an uncorrectable (k + 1)- 

erasare conesponds to the single block of size k and its k check disks. Folowing 

[67], such a (k + 1)aasure is d e d  bad They observe that, with update penalty 

k, one can nonetheless hope to correct all (k + 1)-erasures exeept for bad ones. In 

fact, when all blocks have size k, it can happa that all t e r m e s  for t 5 2k + 2 are 

correctable except for bad (k + 1)-erasures. With this in mind, we call a scheme 

(code, or set system) (k, 1)-erasure comcting if all update penalties are k, it is k- 

masure correcting, and in addition corrects all t-erasures for k + 1 5 t 5 1 except 

for bad (k + 1)-erasures. 

In a (k, 1)-erasure correcting code, an erasare is unacceptable if it is a t-erasure 

for t 5 1 which cannot be corrected, and is not a bad (k + 1)-erasure. 

Lemma 155 A set system i& assocàated toith a (k ,  1)-erasure cotrecting code i f  every 

configuration of 2 5 t < 1 blocks has at lleast 1 + 1 - t odd elements. 

Proofi An anacceptable erastue corresponds precisely to snch a configuration, 

dong with the check disks for the odd elements. 0 

4.2 Anti-Pasch STSs 

A Steiner triple system S = (V, B )  of order v, brieay STS(v) , is a collection B of 

triples (3-elements sabsets) on a set V, IV1 = v ,  mch that each unordered pair of 
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elemexits of V is contained in exactly one tziple fkom B. It is weIl hown that an 

STS(v) d s  if and only i f v  m 1,3 (mod 6); sudi ordas are admrpsible. 

A (k, L)-configuration in an STS(V, B) is a subset of L triples of B whose union 

is a k-element sabset of V. Two pasticular configuratio~mu are of interest here. 

The Posch confpmtion or quadtilotetal, P, is the (6,4)-configuration on eIements 

(say) a,b,c,e,d, f with the triples {u,b,c}, {a,d,e},{f,b,d) and { f , c , e ) .  The 

mitre, M, is the (7,s)-configuration on 7 elements a, b, c, d, e, f, g with the 5 triples 

{a, b, e), {a, c, f ), {a, 4 g}, {b, c, d) and {e, f, g); a is the centre or central element 

of the mitre. An STS is anti-Pasch (or anti-mitre) if it does not contain P (or M, 

respectively). For instance, the unique STS of order 7 and one of the hro STS (the 

cydic system) of order 13 are anti-mitre but contain P, whereas the unique STS of 

order 9 is anti-Pasch but contains mitres. Of the eighty STS(l5), four (Nos. 1,2,3, 

and 16 in [QO]) are anti-mitre, while one (No, 80) is anti-Pasch. 

The pmblem of characterizing those v for which there d t s  an anti-Pasch STS 

of orda v and anti-mitre STS of order v appears to be difficult. For every v G 3 

(mod 6), an anti-Pasch STS(v) is known to exist [29]. There is no anti-Pasch STS 

of order 7 or 13; while it has been conjeetnred that an anti-Pasch STS(v) exists for 

all o t h a  v G 1 (mod 6). This remains far fiom settled. Nevertheless, substantial 

progress towatds settling this conjecture has been made [29,60,112]. Also, progress 

has been made on anti-mitre STS [47]. 

It has been long known that dl afnne spaees over F3 are anti-Pasch STS; mean- 

while all projective spaces over F2 contain a maximum number of Pas& codga- 

ration of a given otdei [112]. It is natural to ask for what ordas v there exists 

a anti-Pasch STS. In another context, Erdôs conjectures that for every positive 

integer 1, there exists a STS(v) such that it is free of any (1 + 2,l) configuration. In 

the case of 1 = 4, this coincides with anti-Pasch STS. 
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Before we continue, we give the following connection to erasure codes. 

Lemma 156 There &ts un antGPasch STS(u) if and only if there ezists a (3,5)- 

erasztre comcting code with v check di& und update penalty 9. 

Proof: 'Evial. 0 

Next, we present thtee recursive constructions of antitipasch STS. 

4.2.1 Stinson and Wei's Construction 

In this subsection, we extend the second reclusive construction of Stinson and Wei 

[112]. This is a singular direct product constniction. It employs latin squares with 

certain properties. A subsquare of a latin square is a square subarray that is itself 

a latin square. A latin square is an NI-lutin square if it contains no subsquare of 

order 2. An NI-latin Square of order n exists for all n 2 3 and n # 4 [73, 74, 931. 

We need NI-latin squares with additional propetties, similai to (but weaker 

than) the "special" latin squares in [112]. An oneroan square of orda 2w is an NI- 

latin square L of order 2w with rows, colamns and symbols indexed by {O, 1,. . . , n- 
i), and enjoying three properties: 

1. {L(2i, s), L(2i + 1, s)) # {2j ,  2 j  + 1) for O 5 i, j < w; 

2. {&Ji), &Ji+ 1)) # {2j,2j +1) for O si, j  < w; 

3. L(2i,2j), L(Zi,2j+l), &(2i+l,2j), and L(Zi+l,2j+l) are all distinct when 

O s i , j < w .  

Stinson and Wei used similar N2-latin squares to prove: 



C W T E R  4, RELATED CODES 140 

Theorem 51 [Il%!] If there-is a QFSTS(u) and u 1 (mod 4), und u - 1 has an 

odd divisor ezceeding thne, then there 6 a QFSTS(3(u - 1) + 1). 

We extend Theotem 51 to rekr  the condition that u r 1 (mod 4), and the 

condition on divisors. 

Lemma 157 Then is an oneman square of order 2w whenever w >_ 4 ezcept 

possibly when w = 6. 

Proofr Fûst we prove that whenever an oneroan square of order 2w exists, one of 

order 4w 

and 2i + 
ob t ained 

also &ts. Let n be the permutation of rows which interchanges rows 2i 

1 for O 5 à < W. For a latin square L, denote by L + a the latin square 

by adding o to eaeh entry. Then ahen N is an oneroan square of order 
r 'I 

2w (w > L), the square N' = 1 isan omman square of 

order 4w. That N' i s  latin and satisfies properties (1), (2), and (3) is immediate. 

To ve* that it is an Nrlatin square, observe that a putative snbsqnare of order 

two selects one entry fiom each quadrant in N', but the application of .n destroys 

each 2 x 2 subsqnare whieh wodd otherwise be formed. 

Next we treat cases when w 2 5 is odd, which is essentially the case treated in 

[112]. Form a 2w x 2ru array L by setting 

i +  j -21nodw if a = b = l  
L(%+a,2j+b) = 

( i+ jmodw) + w  if a = O , b = l  

for O < i ,  j < W .  That L is a latin square with propdes  (l), (2), and (3) 

is immediate. That L is an Na-latin square follows fiom a consideration of the 

possible positions of subsquares of order 2. 
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Now an oneroan square of order 8 is: 

A A + 8  A+16 

Letting A be the oneroan square of order 8,  the square A + 8 A + 16 A 1 
L 

is an oneroan square of order 24. 

Proofr Let u - 1 = 2w. Let .X, Y and Z be disjoint sets of cardinality 2w, and let 

w 6 X U YU 2. Denote the elements of X, Y and Z by X = {z; : O i < 2w), 

Y = { y i : O s i < 2 ~ )  a n d Z = { ~ : O < i < 2 w ) .  

Let (X U {oo), A), (Y U {m), 8 )  and (2 U {oo), C) be QFSTS(u). Withont loss 

of generality, we can stipulate that the STSs contain the blocks {oo , mii, for 

O 5 i < w, and m = t, y ,  or z as appropriate. 

Let L be an oneroan square of order 2w. Then define a set of blocks V = 

{ { ~ i , y j ,  z & ( ~ ~ ~ )  : O 5 i < zut, O 5 j < 2 ~ ) .  

Non ({a) U X U Y U 2, A U  B u C u D) is a STS(3(u - 1) + 1). We prove that 

it is qaadrilateral-fiee. 
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Let Q denote the four blocks in a hypothetical quadrilatd There are the 

folloaing possible distributions of the four blocks to consider: 

(i) Q E A, Q E B and Q E C. There are no quadrilaterals contained in A, B or 

C, since the STS(u)s are quadrilateral-fieee 

(ii) Q E 2). Such a quadrilateral must look like 

{G, Y j ,  zk)9 {zi, Yh, zg)i  { z f ,  Y j t  zg)t {zfr Yh, ~k)- 

Then L(i, j )  = L ( f ,  h) = k and L ( f , j )  = L(i,  h) = g, so L has a sabsquare 

of order two, a contradiction. 

( )  IQnAl =1, IQnBl=land lQnDl=2. ThenQ has theform 

so .th& { i ,  j )  = {2a, 2 ~ ~ 1 )  and {g, h) = {2b, 2b+1). Then {L( i ,  k), L(j,  k ) )  = 

{2b, 2b + 11, contradicting property (1). 
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so that {i, 3) = {2a, 2a+l) and {g ,  h} = {Zb, 2b-f-1). Then {L(ky i )  , L(k, j ) )  = 

{2b, 2b + 11, mntradicting property (2). 

No other possible distributions of Q need to be considered. Hence, the STS(3(u- 

1) + 1) is quachdateral-h. 0 

Theorem 53 If the= ezists a QPSTS(v) and QFSTS(u), and u > 3, then there 

ezists a QFSTS(u(u - 1) + 1). 

Proof: Suppose there &sts a QFSTS(v) on V. Let = { O ,  1 , .  .. ,u - 2). 

For every block {a, b, c}, put the TD(3, u - 1) on {a, b, c} x I,-i which arises 

fiom an oneroan square of order u - 1. For every v E V ,  put a QFSTS(u) on 

{m) U ( { v )  x We daim that this produces a QFSTS(v(u - 1) + 1). First 

of d, if there is a Pasch configuration in the STS which involves the point m, 

then the Pasch configuration mu& lie in one of the TD(3, u - 1)s together with 

ao, which is a contradiction. Suppose the Pasch configuration involves a block in 

the subsystem QFSTS(u); then the 0th- three points in the Pasch configuration 

must corne from distinct points in QFSTS(v). Projecting the Pasch configuration 

back to the QFSTS(v) yields a pair of points appearing in more than one block, a 

contradiction. So the points in the putative Pasch configaration mast arise fkom 

distinct points in the QFSTS(v). Projeeting the Pasch configuration back to the 

QFSTS(u) yields a Pasch configuration in the QFSTS(v), the h a 1  contradiction 

needed. O 

4.2.2 Lu's Construction 

We employ a construction of Lu [88] to obtai. a construction of anti-Pasch STS. 
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Theorem 54 Suppose the= ezuts a QFSTS(n + 2) and a QFSTS(m + 2). Then 

t h n  ezLPts a QFSTS(mn + 2). 

Pmofi Let ({a,b)U z,,B) be a QFSTS(2 +n), and let (Z,U {a,b),d) be a 

QFSTS(2+m) with {a, B, O) E A. Let Nd = {{si, z j )  : m € {a, b}  a d  {m, zi, z j )  E 

A}. Nd is a set of pairs on &,\{O} with every element appearing in two pairs. 

Each pair can then be ordered so that each element is the kst element of one pair, 

and the second element of another; call this set of ordered pairs Qd. Define a 

permutation x on &\{O} by setting n(i) = j whenever ( i , j )  E Qd. Subsequently, 

it is aac id  that since {a, b, O), {a, i, n( i ) )  and {b, z(i), r2(i)) appear in A (or the 

three blocks obtained by interchanging a and b appear in A), no block of the form 

{O, i, r2(i)) can appear in A since it is antitipasch. 

We construct a STS(2 + mn) on the point set (Z, x Z$ U {a, 1) wîth triples of 

the following forms where zl, ~ 2 ~ ~ 3  E Z ,  yl, y2, y3 E &. 

First of d, we prove that the construction gives a STS(2 + mn). The nnmber 

of type (i) blocks is (n + 2)(n + 1)/6. The number of type (ii) blodrs is (rn - 
l)n(n - 1)/2, the namber of type (fi) bloclrs is (m - 1)n. The number of type (iv) 
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is [((m +2)(m+ 1)/6) -m)]n2. So the total number of blocks is (mn+ 2)(mn+ l)/6 

as expected Thezefore, it suffices to show that every pair of S is contained in a 

triple. AU possibilities are d a u s t e d  as follows: 

(2) When z E &\{O), ((2, yi), (z, y,)} is contained in some type (ii) triple, since 

z is the fkst element of some pair in Q*. Since n mu& be odd, the equation 

y1 + y* r 2y3 (mod n) has a solution. 

(3) Pairs {a, (2, Y)) and {b ,  (z, y)) are contained in some type (iii) triple. 

(4) If {2,zf) E Nd, then {(z, yl), (z', y*)) for z # 2' is contained in a type (ii) or 

(fi) triple; if (2,s') Nd, then {(z, y,), (z', y*)) for z # x' is contained in 

some type (iv) triple. 

Next, we show that the STS(2 + mn) is anti-Pasch. Assnme to the contrary 

that there exists  a Pasch configuration in the STS. We treat all of the cases. 

(a) Suppose a block in the Pasch configuration contains the blodt {a,b, (0,O)). 

There m u t  be blocks of the form {a, (i, r ) ,  (~( i ) ,  r)) and {b, ( ~ ( i ) ,  r) ,  (~'(i), r ) ) .  

Since no blocks of the form {O, i, z2(i)) appear in A, this is a contradidion. 

(b) Suppose the Pasch configuration contains the block (p, (O, m), (O, n)) for p E 

{a, b). It must also contain a block of the form (p, (i, t )  , (r (i), r )). With- 

out loss of generality, the remaining blocks 'are {(O, m) , (i, r )  , (z, y)) and 

{(O, n) , ( ( i )  , r), (2, y)}. This implies that both {O, i ,  z} and {O, n(i), z) are 

blocks in A, a contradiction. 
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Suppose there &s a block of the form {(O, z), (O, y), ( O ,  2)). Then the other 

bloch m d  be of the fom {(O,z),( t~,rt) ,  ($lis2)), ( ( 0 , ~ ) ~  ( r i i~2)J t i , t r ) )  

and {(O, z)  , (sl, s2) , (tg, t3)). We obtain a contradiction by restricting to the 

fmt coordinates. 

Suppose there exists a block of the fonn {m, (i, r ) ,  ( ~ ( i ) ,  r ) )  where m E (a, b}. 

There mu& be another block of the form {m, ( j ,  a), ( r ( j ) ,  s)). If i = j ,  then 

the fkst coordinates of the third point containing the points (il r )  and ( j ,  s) is 

r ( i)  . Meanwhile, the f is t  coordinat es of the third point containing the points 

(a(i) ,  r )  and ( ~ ( j ) ,  a) is n2(i). This is impossible. The third point on the 

block joining (i, r) and ' ( ~ ( j ) ,  s )  is (i, 2s-r), while the third point on the block 

joining ( j ,  r )  and (n(i), s )  is (i, 2r -8). We must have 2s - t r 2 t  -s (mod n) , 
so 3r 3s (mod n), but n + 2 1,3 (mod 6) and thus r n s (mod n). So 

the case when i = j is impossible. N d ,  we consider the case when j = x2(i) .  

If the last point in the Pasch configuration doea not have first coordinate in 

{i, r (i) , nZ(i) , 7r3(i)), then pro jecting the design on its first coordinates gives 

us a Pasch configuration in the STS(2+n). So, the only possibility is that we 

have ( (n( i )  , r ) , (r2(i), s )  , (n(i)  ,2s - r ) )  and {(i ,  r ) ,  ( ~ ( i ) ,  2s - r ) , (n3 (i) , S )  )- 

But the last block is impossible, because {{m, i ,  ~ ( i ) ) ,  {il n(i),  r3( i ) ) )  C A. 

For the remaining cases, the sixth point in the Pasch configuration must have 

first coordinate difFkrent fiom {il n(i), j, n ( j ) ) ,  giviog a Pasch configuration 

in the STS(2 +m).  

Suppose there is a blodr of the form {( iYt) , ( i ,2s  - r),(r(i) ,s)) .  Suppose 

(i, T )  is also on a block {(i,  T )  , (i, 2t - r )  , (n(i), t)). We consider the possible 

first coordinates of the sixth point in the Pasch configuration. If (i, 2s - r )  

and (i .2t  - rl are ioined. then the f ist  coordinate mu& bv di). But no 
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block has all three points with e s t  coordinate n(i). If (à, 2s - r) is joined to 

(*(à) , s) , then the point must Le (i, 2t - 2s + r ) . Similady, the remaining pair 

of points force the ha1 point to be of the fonn (i, 2s - 2t + r). To form a 

Pasch configuration , we mast have 2t - 2s + r 2s - 2t + r (mod n), and 

so t = s and a contradiction. Next, if ( i , r )  is also on a block of the form 

{(i, r ) , ( j ,  U )  , (h, -+-a)), a block is needed containhg (i, 2s -r ) and (j, u) and 

hence the fi& coordinates must be k. The first coordinates in the last block 

must be k, k and rr(i). But k # i as we have a blo ck {(i, r ) ,  ( j ,  u), (k, -r -u)), 

a contradiction. Hence, in any Pasch, no block has t a o  h s t  coordinates the 

same. 

(f) Suppose there is a block of the fonn {(i, r), (j, a), (k, -s - r)). Suppose the 

0th- block tkough (i,r) is of the form {(i, r ) ,  (jl,sl), (kl, -SI - r ) )  where 

{il, k ~ )  # { j ,  k). Then the last m a t  mast have diffaent kst coordinates, 

and corresponds a Pasch configuration in STS(2 + m). So the block must be 

of the form {(i, r ) ,  (j, t ) ,  (k, -r - t)). To fonn a Pasch configuration, we must 

h a v e z + s - r - t  = O  (modn) a n d z + t - s - r  = O  (modn), so 8 = t ,  a 

contradiction. 

4.2.3 GDD Constructions 

A TD(3, n) without any-sub TD(3,2) is equivalent to a Nrlatin square of order n. 

We c d  such a TD(3, n) a N2-TD(3, n). 

Theorem 55 If there wUts a QFSTS(2v + 1) and o QFSTS(2n + l), and n > 4, 

then then &ts a QFSTS(2vn + 1). 
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Proofr Delete a point h m  the QFSTS(2v + 1) to fonn a 3-GDD of type 2V. Give 

weight n using an N m ( 3 ,  n) to produce a W D D  of type (2n)V. Add one infinite 

point oc, and on each group together with oo, place a wpy of the QFSTS(2n + 1) 

so that when {m, a, b )  is a triple, a and b arise fkom different points of the 3-GDD 

of type 2". Call the triples of the 3-GDD of type (2n)' ver t ic4  and the triples 

of the STS(2n + 1)s horizont& The r e d t  is an STS(2vn + l), which we prove is 

anti-Pasch. 

Suppose to the contrary that a Pasch configuration is present. If it contains 

oo , it contains tao horizontal and two vertical triples, since the STS (2n + 1) nsed 

is anti-Pasch. The placement of the blocks containing oc, and the fact that the 

STS(2v + 1) is anti-Pasch, ensures that the two vertical bloelrs are disjoint and 

hence not in a Pasch configuration. Hence any Pasch configuration must involve 

six points 0th- than oo. Then there cannot be two horizontal triples (since they 

are either disjoint or fkom the same QFSTS(2n + 1). If there is one horizontal 

triple, the three vertical triples cannot involve only three M h e r  points. So all 

triples are vertical. Howeva, at most one can arise fkom each Nz-TD(3, n) ased, 

and hence any Pas& configuration would correspond to a Pasch configuration in 

the QFSTS(2v + l), which is a contradiction. 0 

We have one more reearsive construction using GDDs. 

Theorem 56 Let t > 4, w, n > O, um > 8, and wn i O (mod 2). If there ezht 

QFSTS(2v + l), QFSTS(2wn + l), and QFSTS(wn(v - 1) + 1)) then t h e n  ezists a 

QFSTS(wn(3v - 1) + 1). 

Proof: Take an N3-TD(3, v ) ,  and delete a point to obtaia a {3, u)-GDD of type 

2" (v - 1)'. Give weight wn to each point, using an N2-TD(3, wn) for the blocks of 

size three. For blocks of siae v, star t  with the QFSTS(2v + 1) and delete a point 



CHAPTER 4. RELATED CODES 149 

to form a {3)-GDD of type P; then *te aaing an N m ( 3 , ( w n ) / 2 )  to obtain a 

(3)-GDD of type (wn)" to use in the nrtlation of blodts of size v. The r e d t  is a 

{3)-GDD of type (2un)" (um(u - 1))l. Add an iilfinite point oo, and fiIl groups using 

QFSTS(2wn + 1) and QFSTS(um(v - 1) + l ) ,  so that blocks containhg oo have 

points arisiog fiom two daferent points of the {3, v)-GDD of type %(v - 1)'. The 

proof of this theorem is a special case of a general construction in next snbsection 

and thus omitted u 

In snmmary, we state: 

Theorem 57 If a QFSTS(v) ezists wheneuer u > 100 and 

2. v = p and p 13,29 (mod 72) is a prime; 

3. v = 7p and p 25,43,61 (mod 72) is  a prime; 

4. v = 13p and p r 1,19,55 (mod 72) is  a prime; 

5. v = pq when p, q a 5 (mod 6) are primes and pq 13,31,67 (mod 72); 

6. v = 7pq where p, q 5 (mod 6) a n  primes and pq G 25,43,61 (mod 72); or 

7. v = 13pq when p, q r 5 (mod 6) are ptimes and pq G 1,19,55 (mod 72), 

and 
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2- u - 1 = 12p f o r p  1 (mod 6) a pRme, 

and 

2. u -2 = p and p a 11,29,65 (mod 72) is a prime, and the multiplicative order 

of -2 (mod p) LP not singly even; 

3. u - 2 = 5p and p 13,31,49 (mod 72) is a prime; or 

4. v - 2 = l l p  and p 1,19,55 (mod 72) is a prime, 

then a QFSTS(v) exids wheneuer v 1,3 (mod 6 )  ezcept when v E {7,13).  

P ~ o o f :  If u < 100, see [47] and references thaein. If u r 3 (mod 6), see [6O]. For 

the remaining cases, we proceed inductively. If u v 1,7 (mod 18), write u = F. 
Apply Theorem 52, observing that v = 3(u - 1) + 1. If v r 49 (mod 72), apply 

Theorem 55 with 2 -4+ 1 and 2 -  ?+ 1. It remains to treat v rn 13,31,67 (mod 7 2 ) .  

If v = qlqz with qi 1 (mod 6 )  and 19 qi for i = 1,2,  then direct product 

produces the QFSTS(v). If u =  TI^^-', the only case with u 13 (mod 18) 

is v = 7'13'. I f  v 67 (mod 72) and u is prime, the Netto triple system is a 

QFSTS (v) (see [47]). 

Now when v E 13 (mod 18), r 2 (mod 3); and since v f 49 (mod 7 2 ) ,  

v - 1 $ O (mod 8 ) -  So v - 1 = 6p1h =-pk or v - 1 = 12plm -pk, where each pi 

is a prime at least 5; in the first case, an odd number of these primes satisfy pi r 5 

(mod 6), and in the second case an even number do. If pk = 5 (mod 6), k 2 2, 

apply singular direct product to 2pip, -pk-i +l and 3-pk to obtain the QFSTS(v). 

We may suppose then that each fi  1 (mod 6 ) ,  and hence that u = 12p1p, -pc .  
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If k > 2, and pk 2 19, apply siaplat direct product with - -pk-i + 1 and pk. 

It rem& to treat cases with pi E {7, 13) for 1 5 i 5 k. If k 2 3, apply singular 

direct produet with 12pipi -.O 0pk-2 + 1 and pk-rpk. If k = 2, apply Theorem 55 

with 6pl + 1 and 2- + 1. 

Finally, write v - 2 = 5'11ipi - - -  -pk  where eaeh pi is a prime 0th- than 2, 

3, 5, and 11. Now if k 2 2, apply Theorem 54 with 5àl l ip1  - - -  pk-1 + 2 and 

pk +2. Ifi, j > 1, or i , j  2 1 and k = 1, apply Theorem 54 with 57 and % + 2 .  

K i  > 2, or i 2 2 and k = 1, apply Theorem54 with 27 and 2 + 2 .  If j > 2, 

or j 1 2 and k = 1, apply Theorem 54 with 123 and + 2. In the cases that 

remain, v - 2 P 5 (mod 6). Non if k = O, v - 2 = Slli for i + j < 3, but i + j 
is odd. If i + j = 1, these are the tao nonexistent cases (v = 7,13). If i + j = 3, 

the only case in which v = 13 (mod 18) is v - 2 = 605 = 5 l 11'. So suppose that 

k = 1, so that i + j 5 1. I fp l  f 1 (mod 6) then i + j = 1, and if pl r 5 (mod 6) 

then i = j = O. In the latter case, pl E I l ,  29,65 (mod 72). In the former, v - 2 is 

either 5p1 or I lp i .  I f5p1  G 11,29,65 (mod 72), then pl r 13,31,49 (mod 72). If 

l lpl 11,29,65 (mod 72), then pl 1,19,55 (mod 72) .  Some of the remaining 

cases are handled by a theorem of GranneIl, Griggs, and Phelan [57] that when, 

for every prime divisor p of v - 2, -2 ha9 singly even order modulo p, a QFSTS(v) 

exists. O 

Ant i-Pasch Packings 

Let (V, B )  be a PBD(v, K). We Say that ( X B )  is a QFPBD if for every four 

blocks, the six intersection points do not indace a Pasch configuration. I f  a certain 

set of blocks forms a parallel dass, we denote a QFPBD by a QFGDD with the 

corresponding group type. 
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A QFPBD(v, K U {k*}) is a PBD(u, K U {k*)) and a QFPBD(v, K U { l ) ) .  

QFPBDs are of s p e d  interest because of the following lemma. 

Lemma 158 If the= wists a K-QFPBD on u points, and for euery h E K t h e ~ e  

exists a QFSTS on k points, then then czisb o QELiTS(v). 

Proof: Fill in each block of size k by a QFSTS(H). This gives a QFSTS(v). O 

W e  present a singular indirect product type construction for QFPBDs. 

Let (Z,U {a, b), A) be a QFSTS(2+m) with {a, b, 0 )  € A. Let Nd = { { z i ,  z j )  : 

m E {a, b)  and {m, z;, zj) E A}. Nd is a set of pairs on &\{O) with e v q  

element appearing in two pairs. Each pair can then be ordaed so that each dement 

is the first element of one pair, and the second element of another; cal1 this set of 

ordered pairs Qd. Define a permutation ?r on &\{O) by setting r(i) = j whenever 

(i ,  j) E Qd. B y permuting the eiements, ne ean assume that T satides %(à) = i + 1 
or n ( i )  = i + 1 - d where d is the length of the cycle containhg i. 

Let D be the set of possible cycle lengths of a. Let z + y D  be the set {x + yd : 

d E D). If A and B are two sets, define ABœ1 = {ab-' : a E A and b E B).  

A QFSTS(v) udmits a set D if there exists tao points in the QFSTS so that the 

all cycle lengths of the induced permutation A is are the set D. 

Let D* = D u -Du D - lu 1 -Du (1  - D ) ( l -  D)-' U ( D  - 1) (1 -  D)-'. 

Theorem 58 If there ezrPt tluce elements, M = {a,P,r) for which MM-' às 

diijoint from D*, and each element in M is nlatàvely prime to m, then there &ts 

a QFPBD(3m + 2, {3,5*)). 
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Proof: Let V = Z, x {O, 1,2) U {a, b}. We mnstruct a QFPBD on V. Let 

a E Z, W e  define a fiuiction f, : V -+ V as f,(z) = z if z E {a$} and 

f,(z) = az if z E Z,. If (a,rn) = 1, then f, is a bijection. We construct a 

QFPBD (3m + 2, {3, P)) as foUows: 

(ii) For any a, b, c E Z,, construct a block {(a, O), (9 l), (c, 2)) if a + b + c E O 

(mod m). 

(üi) Construct a block of size five by talong {(O, O), (0, l), (0,2), a, b). 

We daim that this construction gives a QFPBD. 

(i) If none of four blocks in the Pasch configuration involves either a or b, then 

it is impossible for them to form a Pasch configaration as the blocks all corne 

kom a TD(3, n) which is &ee of the Pasch configuration. 

(ii) If a block in the Pasch configuration is of the form {a, b, (O, i ) )  for some i ,  then 

all three other points in the Pasch configuration have a second coordinate i. 

Hence, this corresponds to a Pasch configuration in S. 

(üi) It cannot involve a block of form {m, (O, i ) ,  ( O ,  j ) )  whae m E {a, b) by con- 

sidering the 0th- block containing the point m. 

(iv) Suppose it has a blo& in a Pasch configuration of the form {m, (tz, i), (tz(z), i)) 

and another block of fonn {m, (sy, j ) ,  ( s r ( y ) ,  j ) } .  Then i # j, since otherorise 

all four blocks are from a subsystem of order 2 + B. Hence s # t .  We either 

have sy + tz = s r ( y )  + t r ( z )  or sy + tn(z) = sa(y) + tz. In the former 
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case, three subcases arise. The first one has n(z) = z + 1 and *(y) = y + 1, 
so st-l = -1. The second one has r ( z )  = z + 1 and *(y) = y + 1 - dl 

where di E D, so ts-' = dl - 1. The third case has r(z) = z + 1 - dz and 

r ( y  ) = y + 1 - dl, so tag1 = (dl - 1)(1- d$l. In the remaining case, it 

is simikr to check that ta-' = 1 , l -  dl, (dl - 1)($ - 1)-' as appropriate. 

By oar condition on a, p, 7, we avoid ail possible Pasch configurations in the 

QFPBD. 

In fact, this is a 3-QFGDD of type 3'"-l5l because the TD used in the constnic- 

tion is resolvable as m is odd. 0 

We define an optimal anti-Pasch packing on v points to be an optimal packing 

on v points with block size three in which no four blocks form a Pasch configuration. 

Theorem 58 is of particular interest because of the following lemma The reason 

that anti-Pasch paJring is of interest because it gives erasure with v check disks, 

update penaity thne with the maximum number of information disks. 

Lemma 159 Ifthere ezàits a QFPBD(V, {3,5*}), then then &ts an optimal anti- 

Pasch packing on v points. 

P~oofr Replace the block of size five, {a, b, c, e, d), by two blocks of size three 

{a, b, c)  and {a, d, e). If there d s  a Pasch configation containhg both blocks, 

then all blocks mast be contained in {a,b,c,d,e).  O t h k e ,  any other Pasch 

configurations contradiet the d a t i o n  of QFPBD. O 

No construction is as& unless ne h d  an application. Hence, we want to h d  

certain dass of QFSTS with the corresponding permutation having only a small 

nnmber of cycle lengths. In the sequel, we discuss the possible cycle lengths fiom 

various existing construction for anti-Pasch STS. 
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Theorem 59 [57] If for every prime divisor p of v - 2, -2 has sin& euen orde+ 

modulo p, a QFSTS(v) ezists. 

For completeness, we restate the constmctioxi in [57]. 

Let V = {a, b)  U Z,-,. We constract the following t k e e  collections of blocks. 

Define a permutation x so that x( i )  = -2i where al1 elements are rednced modulo 

v - 2. Since -2 has singly even order modulo p for every prime divisor p of v - 2, 

then each cycle of r mu& have even length. 

(i) {z, y, z )  if z + y + t a O (mod v - 2) where z, y, z are distinct. 

(ii) A block of the form {a, 9 0). 

(fi) For every cycle in r, pi& a representative element z E Z.-,, and constroct 

blocks of type {a, rh'(z), rZi+l(z)) and {b,  di+'+'(=), n2i+2(r)) for all i. 

This give an anti-Pasch STS(2 + v )  if for every prime divisor p of v ,  -2 has 

singly even order modulo p. 

Corollary 17 Let D l e  the-set of ordcrs of -2 moddo p, a divlpor of v - 2.  If al1 

elements of D are singly even, then there ezists a QFSTS(v) admitting D .  

To illustrate how the construction works, consider the fouowing. If v is a prime, 

and -2 is of singly even order modulo p, then all cycles in r must have the same 

length. If v = 23, then the orda of -2 is 22 modulo 23. Hence D = (23). A 

simple computation shows that D* = {l, 2,3,22,23,24), so M = {l, 4,6) satisfies 

MM-'+' n D* = 0. This gives a QFPBD(71, {3,5*)). 

Next, we look at the Lu's construction in Theorem 54. 
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Corollary 18 If t h e n  ezrsts a QFSTS(2 + m) adrnittang M and a QFSTS(2 + n) 

admiaing N, then the= ezists a QFSTS(2 + mn) admitting M U N. 

Lemma 160 If there ezuts a QPSTS(v) admitting D und if p is a d i k o r  of v, 

then the= Czuts a QFSTS(3v) admitting D u (2~).  

Proofr W e  use a standard inflation const~~ction. Let the two points that induce 

D in the QFSTS(v), (q B ) ,  be a and b. Wnte the point set of the QFSTS(v) as Z., 

identifying a with 0, and identifying b with B = v / p .  We constract a QFSTS(3v) 

on Z, x {O, 1,2) as follows: 

(i) For evezy block {z, y, z) E B, construct t h  blodts {(z, i )  , (y, i) , (2, i)) for 

i = O, 1,2. 

W e  now look at the corresponding permutation induced by points (0,O) and 

(O, m). In Z. x {O), it gives a set of cycles whose lengths are in D. Now, for 

every path starting fiom (O, O), the cycle mut be of the form (2, l), (-z,2), (z - 
m, l), (-2 + m, 2), (2 - 2m, l), . . . , (2 - pm, 1) but pm G O (mod v) .  Hence, this 

&es a cyde of length 2p. O 

QFPBDs are interesting, not only for their importance in constnicting optimal 

anti-Pasch packïngs, but also as ingredients for mflation type techniques for anti- 

Pasch STS. 

Theorem 60 Let (V, Q, LI) be o QFGDD (the master QFGDD) with groups Gi, Gz, 

. . . , Ge. Suppose there ezists a jùnction w : V + Z+ U {O) (a weight fundion) 
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which has the property that for euch block B = {z1, z2 , .  . . , zk) E B there ezLas 

a K-QFGDD of type (w(zl), w ( q ) ,  . . . , w(zk)) (such a QFGDD is an ingredient 

QFGDD). Then there ezists O K-QFGDD of type 

Proof: The construction is a simple modification of Wilson's hndamentd Con- 

struction. An we have to prove is that t h  resdts in a QFGDD. Suppose there 

exist four blocks in the design which form a Pasch configuration. If any two blocks 

are ftom the same subdesign, then all four blocks must be fkom the same subdesign. 

Howeva, the subdesign is a QFGDD, and hence it is impossible. If al1 four blocks 

are fiom different subdesigns, then they cannot form a Pasch configuration since 

projecting ail blocks to the master GDD wodd give a Pasch configuration there. 

If the Pasch configuration involves some groaps, then it cannot involve more than 

one group. If the three subsets from a group do not corne from the same point, by 

projecting back to the original design, we have a Pasch in configuration the master 

GDD. If two points in a group correspond to the same point, then it contradicts 

the fact that X = 1. 0 

The construction in genaal form is of lllnited use as it is very difRcult to find 

designs which are QFGDD with block sizes at least font. Whenever there exists a 

block of size three, we can only d a t e  by a constant factor. 

The following provide the main ingredients for the construction. 

Lemma 161 Then  ezUts a SQFGDD of type m3 for dl m # 2,4. 

Proofi A Nz-latin squaxe of order rn gives a 3-QFGDD of type rn3. Such latin 

squares are hown to exist [73, 741. 0 
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Lemma 162 If t h m  eziits a 3-QFGDD of type 3r51 and a PQFGDD i f t y p e  3Yi1, 

then there ezists a QFSTS((3r + 5)(3s + 5)). 

Proofi Take a 3QFGDD of type P 5 l ,  give weight five and idate by a 3-QFGDD 

of type 53, to get a 3-QFGDD of type 15r251. Filling in the hole with a QFSTS(15) 

and a QFSTS(25), we obtain a QFSTS(15r + 25). Non, take a 3-QFGDD of type 

3.5' and infiate it by 3r + 5, to get a SQFGDD of type (gr + 15)'(15t + 25). Fiu 

in the holes wïth a QFSTS(9r + 15) or a QFSTS(15r + 25). ~3 

No corresponding analog for the product construction was known when u = pq 

where both p, q r 5 (mod 6). 

It is well known that deleting a point fiom a PBD gives a GDD. Using this 

simple observation, we cm obtain a further construction. 

Theorem 61 Suppose (V, B )  is a QFPBD on v + 1 points for which removal of 

a point x gives a K-QFGDD of type T. If, for euery hi E K, there &ts a M- 

QFGDD of type mk and there ezists o QFPBD(mt + l ,  M )  so that then exists a 

point in the QFPBD not on any block of size greuter than t ,  then there e*ts a 

QFPBD(mv + 1, M). 

Proofi Take a K-QFGDD of type T and give evay point weight m to get a M- 

QFGDD of type mT. Non, add a point oo to ead grmp, and for every group of 

size m, put a QFPBD(mt + 1, M) wïth an extra point y and identify y with the 

new point that we adjoin to the QFGDD. EIementg {a, b}  contained in a block 

with y in the QFPBD(mt + 1, M )  are identiiied with different points if we project 

the QFGDD of type mT to the QFGDD of type T. We daim that this gives a 

QFPBD(mv + 1, M). It is a PBD(mv + 1, M) as the construction b just a singular 

direct product. To show that it is a QFPBD(mv + 1, M), al1 we need to prove is 
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that there is no Pasch configuration involving the point oo. If there were a Pasch 

configuration involving m, project all points other than w to the points £iom the 

QFGDD of type T and project m to the ddeted point in the original QFPBD. 0 

The folloning is a generalixation of the above theorem. Since, this is of no use 

in this thesis. We just date this withoat proof. - 

We Say a QFPBD(v, K U {Pl) (m,l)-colomble if there &s a fnnetion sach 

that it maps each point not in the block of size 2 to {1,2,. . . , m) so that for any 

block b containing a point fkom the biock of size 1, allother points receive different 

fimction values. 

Theorem 62 If then ezàsts a (m,l)-colorable QFPBD(mt + 1, K U {Pl) and a K- 

QFGDD of type m', then there ezists a K-QFPBD(mrt + I, K U {P)) . 

4.4 Anti-Pasch KTSs 

In this section, we stady anti-Pasch Kirkman triple systems. As shown in the 

previms section, a n t i - P d  STS(v) corresponds to (3,5)-erasure codes with the 

m;urimum number of information disks subject to u check disks. 

Erasare codes coming frpm the affiae spaces of order 3" have a 1-balanced 

ordering ([67]). Chee [33] obseroed that the problem of constracting (3,s)-erasure 

codes with optimal check disk overhead having a 1-balanced ordering is eqnïvalent 

to the existence of the anti-Pasch KTS. A SGDD is 3-QFRGDD of the same type 

if the éGDD is a SQFGDD, and the QFGDD is tesolvable. 

In order to state the construction in this section, we need the following notion 

of resolvability. A set of blocks is called an a-parallel class if for every point z is 
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contained in exactly a bIocks. A GDD(X, Ç, B) is d e d  A-resdvaMe where A is a 

mdtiset of positive integers of r elements and if its block set B admits a partition 

into subsets Bi, B2,.. . , S, where for each i = 1,2,. . . , r,  thae is an a E A mch 

that Bi is an a - p d e l  &S. The case when A = [lT] corresponds to the case of 

the nsad notion of resolvabiliity. 

4.4.1 Direct Constructions 

In this subsection, we present some direct constructions of anti-Pasch KTS. 

The basic necessary condition for the d e n c e  of anti-Pasch KTS(v) is v t 3 

(mod 6). A first infinite dass of the anticpasch KTS(v) are of the form v = 3" 

which corne from the afhe  spces. There does not k s t  an anti-Pasch KTS(15) 

as the only anti-Pasch STS(15) is 110.80 of [go] which is not resolvable. Hence, 

the srnakt open case is when v = 21. In [91], 30 nonisomorphic KUkman triple 

systems of order 21 are foand. However, each of them contains a sub-system of 

order 7. Hence, none can be anti-Pasch. 

Lemma 163 There ezists an antà-Pusch KTS(33). 

Proof; Consider the following KTS(33) taken from [116]. Let V = Zss. 
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Let ~ ( x )  = z + 3. The design is generated by letting r act on the set of blocks. 

The first set of eleven blocks is a parallel dass, hence the action of R gives eleven 

pardel classes; each of the remaining base blocks generate a pardel &S. 0 

Proof: Let V = ZJ9- Consider 

These form the base blocks of an anti-Pasch STS(39) ova ZS- The 12 poiats in 

the first four starter blocks are distinct (mod 13). Adding 13 and 26 to each block 

and appending the block {2,15,28) gives a pardel dass. Develop to obtain 11 

pardel classes. Each of the two remaiaing starter blocks generates three pardel 

classes as the points in each blodc are distinct (mod 3). 0 

4.4.2 Cyclic Anti-Pasch STSs with Mutually Disjoint Base 

Blocks 

In this subsection, we present a simple construction for anti-Pasch KTS. 

Theorem 63 Suppose that v r 1 (mod 6), and there ezists o cyclic anti-Pasch 

STS(v) ouer V with mutudly disjoint base blocks. Then there ePPts an antà-Paseh 

KTS(3v). 

Proofi This construction is a simple modification of a construction in [56]. W e  

present it here for completeness. Let V f  = V x {O7 172). We coastnict the following 

set of blocks. 
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(9 {(Q), (i + 2j,  l), (i + 3j,2)) for i ,  j E V. 

This r d t s  in a KTS(3v) so we only have to prove that this is anti-Pasch. The 

TD(3, n) that is nsed in the construction is free of sabsquares of orda h o .  Hence, 

this is a 3-QFGDD of type i3. Also, if any Pasch configuration involves a block of 

type (ii), then all blocks in the Pasch configuration m u t  corne fiom the STS(v). 

This mast result in a QFKTS(3v). O 

By way of example, a cyclic anti-Pasch of order 19 is presented in [47] with base 

blocks {O, 1,8), {O, 2,5), {O, 4,131. By addiag 2 to the sewnd block and 5 to the 

third block, we obtain a cyclic anti-Pasch STS of orda 19 with mutady disjoint 

base blocks. By Theorem 63, we obtain a anti-Pasch KTS(57). 

It is therefore of great interest to determine when a cyclic anti-Pasch STS exists 

whose base blocks can be made mutudy disjoint. In fact, a well known conjecture 

of Novak (991 assats that for every v G 1 (mod 6), every cyciic STS(v) can be 

made to have disjoint base blocks. This is widely believed to be true but not much 

progress has been made toward settling this conjecture. 

The only hown infinite dass of cyclic anti-Pasch STS(v) when v a 1 (mod 6) is 

the Netto triple systems. Let q = p* whae p is a prime such that p 7 (mod 12). 

Take two primitive sixth roots of unity €1 and ea in Fu ; they both are non-squares 

and satisfy the equation 3 - z + 1 = O. It fohws that €1 + €2 = ale2 = 1, 4 = -Q 

and 4 = -5. For any tao distinct elements a, b E Fu define a 4 b if and only if 

b - a is a non-zero square in F,. This relation has the property that exactly one of 

a + b and b -t a is hue for a # b, since -1 is not a square in F'. NOW, on the set of 

all ordered pairs (a, b) such that a -t b. Define a fiuiction f by f (a, b) = aq + b ~ .  
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Now if c = f (a, b), then &O b -i c with f (b, c) = a and c + a with f (cl a) = b. 

The Netto system N(q) is the STS(V,B) where V = P, and B= {{a, b, c}; a -+ b 

and c = f (a, b)) .  

Theorem 64 [M4] If p 19 (mod 24), then N(q) is anti-Pusch. 

hdeed, when v = ps and p 19 (mod 24), then N(v)  is 5-sparse [47]. 

Lemma 165 N(q) LP cyciic over F,. 

P r ~ o f i  Let {a, Q, a q +  QQ) be a block. If a E F,, then we daim that {a + a, b + 
a, a e ~  + b a  + a) is a block. Note that b - a is a non-zao square if and only if 

b + or - (a + a) is a non-zero square. h o  aEl+ be2 + a = (a + a)q + (6 + a)q since 

1 = €1 + €2. a 

Lemma 166 If {a, b, c} à& a block in Netto tRple system, so Ls {u2a, w2b, d c }  for 

any w E F, 

Theorem 65 If q Ls a prime power congruent to 1 (mod 6 ) ,  w is a primitive mot 

over Fq, and A is c block of size three su that {wsA : i = O , & .  . . ,+) is the set 

of buse blocks for the cyclic STS(q), then the STS(q) can be made to have disjoint 

base blocks. 

Proof: If A is the base block then {w"A : i = 0,1,. . . , , - 1) is the set of 

base blocks for the cydic STS(q). Define a mapping from f : V + {oo} U & by 

f(0) = oo and f(wi) = i (mod 3) for ail i = 1,2,. . . , q - 1. Next, look at the 

set of translates of A under the mapping of f. It has q blocks, if there exists a 

block of the f o m  {O, l,2), then let B = A + a is the block that maps to it. Then 
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{ d i B  : i = O, 1,. . . ,+) is a set of mutually disjoint base blocks which generate 

the cyclic STS(v). Hence, we can assume that there is no block of the form {O, 1,2). 

The number of pairs involving 00 and i is 2. The namber of pairs involving i and 

i is 9 for each i = 0,1,2 skice the numba of pairs involving w"' and wn where 

m n (mod 3) are 9. The number of pairs involving i and j' when i # j is 
2 0-1 J$. Since thae exists no block of fonn {O, 1,2), d g - 3  blocks of size three not 

involving the point oo mut involve at le& one pair of the form i and i for some 

i. Hence, there are at lead q - 3 pairs of type i and i. However, we can only have 

q - 4 pairs of them which is impossible. Therefore, it can always be made to base 

block disjoint . O 

Combining Theorem 63 and 65 together with Netto triple systems, we obte 

Corollary 19 If v = 39, q = pu and p 19 (mod 24) a prime, then there &ts a 

Next, we present 

(mod 6). 

some base bloek disjoint anti-Pasch STS(v) where u 1 
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AU designs are taken from [47] and ate made base block disjoint. 
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4.4.3 Reesys Construction 

In this section,- we employ Rees's constraction [101] on resolvable group divisible 

designs to obtain some new anti-Pasch KTSs. 

A partial transversal desi" PITDA(k,n) is a triple (X, C, B) where X is a kn- 

set, B is a collection of k-subsets of X (blocks) so that any pair of distinct points 

fiom X is contained in at most X blocks, and C is a strong k-vertex-colouring of X 

(i-e., each block receives k diffkrent colours) so that ICI = n for each C E C. Any 

transvasa1 design is a PlTD (just take each gonp as a colour class). Similarly, a 

partial group ditvisible design K-PIGDA of.type T is a triple (X, C, 8 )  where X is a 

v-set, B is a collection of snbsets of C (blocks) each having same size from the set 

K so that any pair of distinct points from X is contained in at most A blocks, and 

C is a strong colonring of X. 

A group 7d of automorphism son a set V is acting shatply t ~ a ~ t i v e l y  on V if 

for every two elements 2, y E V, there exists h E 'H so that zh = y where the group 

action is written as l& multiplication. 

A bfock-partition of a transversal design (X, G, B )  is a partition P of its block 

set B; we refer to the members of P as aggregates. I f  each member of P is a Jear 

set (Le., composed of mutually disjoint blocks) then we refer to P by the usud term 

block-coloring9 

Theorem 66 [IO11 Let (X,  G, B )  be an A-resolvable K-PlGDX of type T in which 

for each E A, then are ri ai-padlel clusses of blocks. Suppose that then ïs 

a T'DA(u, h) adrnitting 3L as o poup of automorphima acting t~ansa*tiuely on the 

points of each group where u = IGI. Let Hi 6e a collection of subsets of 'H, there 

being Ti such subset of sue  cri for each E A, and suppose that the collection 
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{Hi * r : r E R, j  = 1,2,. . . , Ciri) ia r-nsoluttble o n  'H. Then then is a r- 
resolvable K-PIGDXl~z of type hT. 

Theorem 67 [IO11 Let (X, G, 8)  6e a K-PIGDA, of type T whose block set B f o m  

an a-parallel class, and let u = IGI . Suppose that t h e n  is a TDA2(u, h) euch of whose 

groups Ji, J2, . . . , Ju às witten on  the synbols of a group 3L, and let Hl, HZ, . . . , Hu 

be a sepence of subsets of 3C each of site a. Let C be a block-partition of the TD 

with the following property: for euch aggregate C E C and each i = 1,2,. . . , u, 
the set {F- ii r : : t JJi n (ObEC b)}  f o m  a 7-pardlel dass on Jr. Then there às a 

K-PIGDA,s of type hT whose bloc& set is 7-nsohrable. 

These two constructions are complicated and very p o w d .  h our case, if we 

begin with a anti-Pasch GDD, we can idlate to get anti-Pasch resolvable GDD . 
The proof of this theorem is involved, and we do not indade it here. However, 

this construction works as if we inflate the GDD is mch a way that for every block 

of size k, we put the TD(k, h) that corresponds to the groaps of of the k points. 

Hence, in the case of all blocks having size three, if the TD(u, h) has the extra 

property that any latin square induces by tkee rows is an anti-Pasch GDD, then 

we produce an anti-Pasch GDD. 

Therefore, it is important to know if sach TD(u, h) exista. 

Lemma 167 If h = p y p y  . .pzn, where pi urr. odd prime powers and ai a n  pos- 

itive integers, und m = miw@f'), then the= LZipts a TD(m - 1, h) udmitting 

3C= x P; x .. . x e; acting sharply transitively on the points of each group. 

In addition, the TD(3, h) that is  defied by any three groups is free of a suésquare 

of order two- 
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Proof: L e t V = q t x E g x  ... xq;.Theredsm-lelementstl,tz, . . . , t m - i ~  

V so that the difference befween any taro of them are invertible over the ring V. We 

can consmiet a TD(m - 1, h) over V x Im-l by taLing the blocks {(atl + 8, 1), (at2 + 
b , 2 ) ,  . .. , (atm-l+b,m-l))&a, b E V. Thisis aTD(m-1, h) nhichVaetsharply 

transitively on the points of each group. To see that the TD(3, h) that is defined 

by any thne groups is free of a snbsquare of order tao, if there ensts a subsquare 

of order h o ,  then by either a simple computation or by projecting into certain 

TD(3,p) where p is a odd prime power to obtain a mbsquare of order tao in the 

TD (3, P) . This implies that the desarguesian projective plane of order p contains a 

projective subplane of order hro [24]. O 

In order to apply Rees's technique, we begixi with an anti-Pasch GDD which 

admits a certain resolution. A large ckss of examples cornes h m  Bose's construc- 

tion. 

Theorem 68 [60] If u = 3n where n i it odd and (n, 7) = 1, then there ezist an 

anti- Pasch STS(3v). 

Proof: We state the construction; see [60] for a proof. The anti-Pasch STS(3n) is 

constructed over V = Z, x Zs. For every a, b, c E Z,, we construct a block of form 

{ (a , i ) , (b , i ) , (c , i  + 1)) if e + b = 2c and i E Zs. Also, we take n blocks of form 

((2, O), (2,1), (2,2)) for z E 5. O 

In the above construction, if {(a$), (b,i), (c,i + 1)) is a block then so does 

{(a + 1, i), ( b  + 1, i ) ,  (e + 1, i + 1)) and {(a, i + 1), (b, i + 1), (e, i + 2)). Hence, this 

design is transitive over & x Zs. In faet, the starter bloclrs are {(O, O), (2, O), (1, l)), 

{(O, O), (4, O), (2, l)), . . . , {(O, O), (n-1, O), ((n-1)/2,1)) togetha with a short orbit 

{(O, O), 0 1 ,  (O, 2 )  Each starter bloelrs form a 3-resoIution dass. Hence, Bose's 

construction gives a 3-resoI~bIe anti-Pasch GDD of type 3". 
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Before we present a general construction, ne first illustrate with an example. 

Take a STS(15) that is constructed by Bose's constrnetion. The starter blocks 

{(O? 0) 9 (2,0), (1, 1)), {(0,0)? (4,O)P (2,l)) and {(O, O), (0, l), (O, 2))- The starter 
block {(O, O), ( 4  O), (2,l)) generate a 3-paranel class when it is developed over Z5 x 

&. Let A = {@,O), @,O), (LI)) B = {@,O), (0,1), (0,2))- Now A+(O,O), A+ 

(O,% A+(& 21, B+(3, O), B+(4,0) A+(% O), A+@, l), A+@, 2), B+(O, O), B+ 
(1, O) give two 1-parallel classes. The remalùng bIocks form a 2-pardel class. W e  

can treat this as a [1,2,3]-reso1vabIe anti-Pas& 3-GDD of type 35. W e  take 'fl= Z, 

where p is a prime, @, 5) = 1 and apply Theorem 66. Let Hl = {O, l), K2 = {O, 1,2) 

and H3 = {O). We consider two cases. 

p r 5 (mod 6): Six pardel classes 

(Hl + k - 2 ) ~  {HZ + 3 i +  

{H, + 2 i + k + l : i = O , l , . . .  , $ p - 5 ) ) ~ { ~ ~ + k - 2 ) : k - 0 , 1 .  

and 

{H3 + i :  i = O , l  ,... ,pl. 

p E 1 (mod 6) @ 2 13): 'Six pardel classes 

and 
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and 

1 
{ & + + i + l l : i = O , I , . . .  , Z ( p - 5 ) ) ~ { H 2 + 8 ) .  

and 

Hence, Theorem 66 yid* a 3-QFRGDD of type ( 3 ~ ) '  for ail (p, 5) = 1  and p 

an odd prime. The general pattern is extracted fiom [101]. 

I f h = 2 5 ,  w e ~ s e a F ~ ~  = { a + b a : a , b ~ Z 5 } .  Take Hl ={O,l,2), H2 = (3,4) 

and H3 = {O). It is clearthat { E l + k + a a :  a =0,1, ... , 4 ) ~ { H 2 + k + a a )  : 

a = 0,1,. . . ,4}) for k E Z5 gives 5 pardel classes. Also, {H3 + i : i E FZs) gives 

the Iast pardel dass. Hence, by Theorem 66 gives a 3-QFRGDD of type (75)'. 

Fillïng holes in QFRGDD by anti-Pasch KTS yields anti-Pasch KTS of bigger 

order. For example, me fiil the holes of a a SQFRGDD of type 5r5 ushg an anti- 

Pasch KTS(57) to obtain an anti-Pasch KTS(285). Also, we can idlate a QFRGDD 

by a QFRTD(3, n) to obtain a QFRGDD of bigger order. 

The most natata1 way to extend this example is to find a A-resolvable QFGDD 

and use Rees's constniction. First of all, we need to understand more about the 

resolvability of the QFSTS given by Bose's constrnction. 

We h s t  look at the case of the QFSTS(3(6n + 1)) with n 2 2. In particular, 

we prove that it can aiways be resolved into ten pardel classes and the remaining 

blocks into 3-parailel classes. 
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Lemma 168 Let B= {{O, b, 2b} + a) : o E Zhiil, b E and (b, 6n + 1) = 1. 

Then B\{{O, b, 2b} + a} c m  k partitioned into t h n e  sets of sizc 2n so thot ony two 

blocks in each closs a n  block disjoint for any a E Zh+l. 

Proofr I f  b = 1, let B = {a, a + 1, a + 21, then we consider the following partition 

{{B+3 i+ j+a )  : i = O , l , . . .  ,2n-1)for j =  1,2,3. Since (b,6n+l)  = 1, we 

just multiply the partition by b  to obtain a solution for the generd case. I3 

Lemma 169 Then ezists a QFSTS(3(6n + 1)) (n 2 2) "th ut least ten parallel 

classes and the remaining blocks can be partitioned into 9-paralleel classes. 

Proofi Let Al = {0,1,2), Az = {3,5,?) and 4 = {4,8,12). Form the starter 

blocks {(O, O), (20, O), (a, 1 ) )  and develop them over (-, Z3). Rom Lemma 168, we 

know that each of the starter blocks, when developed o v a  Z6.+1 c m  be partitioned 

into three h o s t  pardel classes (missing one point with respect to first compo- 

nent). By t a h g  the starter blocks {(0,0),(2a,O),(a,l)) for o = 1,2,4, we can 

put the leftover block block in 4. For each atnost parallel class, we can add a 

block {(i, O), (i, 1), ( i , 2 ) }  to form a parallel d a s s .  Hence, {(O, O), (2a,O), (a, 1)) for 

a = 1 ,2 ,3  together with {(O, O), (0, l ) ,  (0,2)) geneates ten parallel classes when 

developed over the group. O 

Lemma 170 T h m  ezists a 9-QFRGDD of type ( 3 ~ ) ~ + l  for al2 prime p 2 6n + 1 
and (6n + l,7) = 1 and p = 1 (mod 6). 

Proofi Rom Lemma 169, there e t s  a 3-QFGDD of type 3-+' with nine parallel 

classes. We use Theorem 66 by taking Hi = {O, 1,2) for i = 1,2,. . . ,3n - 3 and 

Gi = {O) for i = 1,2,. . . ,9  since there are 3n - 3 %paraIlel classes a d  9 1-pardlel 
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classes. In order to apply Theorem 66, we have to partition {Hi + a) and {Ci + a) 

for i = 1,2,. . . ,3n - 3, j = 1,2,. . . ,9  and a E Zp into 1-parallel &ses on Z, 

Now for every {Hi+a),  one can obtain 3 almost parailel dass on Zp together with a 

leftover blodt {a, a+ 1, a + 2) for any a E 2&, (Lemma 168). For each almost parallel 

class, we complete it by adding an extra block Gj + k to obtaia a pardel dass on 

Z, Since a is arbitrary, we can force the leffover block in {Hl + b )  for b E Z, be 

{O, 1,2}, the leftover block in {Hz +b} for b E 3 be {3,4,5) and so on. So {Hi + 1) 
for b E 5 for i = 1,2,3, . . . ,2p  and Gl can together produce 6p+ 1 pardel classes; 

three fkom each Hi and the laot paralld is obtained by taking a11 lefkover blocks 

in each set of {Hi + b )  for i = 1,2,. . . ,2p together with the remaining block in 

{Gl + b) .  When we exhausted al l  {Hi + 6) for b E Z, and i = 1,2,. . . ,3n - 3, then 

everything else must be able to partition to 1-pardel classes since d {Gi + b )  for 

b E Z, are singleton. 0 

We just illustrate the technique by nsing the above example; however, we can 

obtain a mu& stronga result by using 0th- constructions in case of anti-Pasch 

KTS(3u) for (u, 3) = 1. 

In the case of anti-Pasch KTS(Su), we obtain an excdent solution asing Rees's 

construction. We need the following technical lemma. 

Lemma 171 Let V = &,, v 1 3 odd and B= {{O, 1,2} + a) : a E 23. I f u  # 5, 

then these ezists a strong vert- colouring on V with ut most 4 colour classes. 

Ptoof: If v = 3m, then let Cl = {3i : i = O, 1,. . . ,m - 1), C2 = Ci + 1 
and CS = C1+2. I f v  =6m+1, thenlet Cl = { 3 i :  i =0,1, ..., 2m01), 

C2 = Ci + 1, Cs = Cl + 2 and C4 = {6m). If v = 6m + 5, let Cl = (3 i  : i = 

0,1,2, ... ,2m- l )~{6m+l} ,  Ct =4+l, C3 = Ci+2 and CI= {6na,6m+4). 
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For any block {a, o + 1, a + 23, the thtee points are in three different colour dasses. 

O 

Lemma 372 Let V = Zh+l x Z3, A # 2 und B = {{(O, O), (au, O), (a, 1)) + b : b E 

V) for a = l,2,. . . , n. There esà& a strong vertez colouring on V with at most 4 
colour classes for every a = 1,2,. . . , R. 

Proofr Fkst of dl, use Lemma 171 by taking v = 2n+l to obtain Ci for i = 1,2,3,4. 

If (a, 2n + 1) = 1, then we can constmct Di = aCi x Z3 which is the appropriate 

vertex-colonring. If (a, 2n+ 1) = c, let ( ;, a w) = 1 and apply Lemma 171 by taking 

v = CI to obtain Ci for i = 1,2,. . . ,4. Then define = :Ci for i = 1,2,3,4. 

For every z = 0,1,. . . ,2n, define Ti. = {z : z = qc + r,q E n). Finally, define 

Di = T,' x Zo, which is a strong vertex colonring. 13 

We can now prove the folIowing theorem using Rees's Theorem. 

Theorem 69 If v = 9n where n is odd, v # 45 and (n,7) = 1, then t h e n  ezists 

an anti-Pusch KTS(v) . 

Proof: Rom the given condition, Bose's construction constrncts a 3-resolvable 

QFGDD of type 3". For every 3-parallei dass, there exists a sttong 4-vertex colont- 

hg. Hence, we can regard this as a PlGD with b l o J  size three and four groups. 

Apply Theorem 67 with a TD(4,3), taking each Hi = Z3 and C be the block set of 

the TD. This gives a SQFRGDD of type 9". Fill in the hole with the QFKTS(9) 

to get the desired result. * O 

4.4.4 Zhu, D u  and Zhang9s Construction 

In this subsection, we use a technique introduced by Zhu, Du and Zhang [123] and 

later extended by Rees and Stinson [102]. 
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A design V is said to be .s-Mo&-wlouraMe if its blocks can be coloured with s 

colours in sach a way that any h o  blocks of the same d o t u  do not interseet. Such 

an assignment of s coloors is said to be an a-wl02tring. If 2) is sdlock-wluurable 

but not (s - 1)-il&-wlmrable, we Say that the chromatic indez of V is s. In a 

sense, the chromatic index is a measnrement of how dose the design is to being 

resolvable. 

Theorem 70 [123] Suppose there ezLSts un RBIBD(u, k ,  l), a B(v, k, 1) which is 
v-1 s-block-colourable, and a RTD(k, v) . If s ru + r, where ru = and r, = E, 

then there ezists on R B I ' v ,  k,  1). 

Theorem 71 [IO21 Suppose there d a k-RGDD of type gU, a k-GDD of type 

(mg)" with the property that there is an s-colouring of its blocks such that each color 

class precisely covers some iubset of its groups, and a RTD(k, mu). If s 5 ru + r, 

when T~ = and r, = m, k-1 then then e225ts a k-RGDD of type (mg)UV. 

In both of these constructions, we just take a RGDD and inflate it by a RTD 

and fill in the hole with GDD and we obtain the resolution by nsing the colour 

dasses. If we can replace all ingredient by a QFKTS, QFGDD and QFRTD, then 

we can obtain a similar result for the constraction of QFRGDD. A QFRTD(3, n) 

&sts for all n odd. More resdts on QFRTD are proved in next subsection. We 

therefore need some QFGDD with s m d  number of colont classes. Again, we ean 

obtain some fkom Bose's construction. 

Again, we need a technical lemma 

Lemma173 L e t n  = 6 k + 5  andCi = { i , i + I , i + 2 )  f o r i  = O , l ,  ..., n- 1, 

arithrnetic ouer Zn. If C= {Ci : i = 0,1,. . . , n - 11, then for any a, b E Zn 
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C\ (Ca U Cs) cun le partitioned into three sets of 26 + 1 blocks so that any two blocks 

in the same set are disjoint. 

Proof: W e  sott the bloclts in increasing order of il then we put the 2* blocks in 

the i (mod 3) set. This gives the reqnired partition. 0 

Theorem 72 Thcre ezists a 3-QFGDD of type 32k+1 which is 3k + 6 colorable 

and each colour class misses a subset of the grorrps tohen k e 0,2 (mod 3). and 

(2k + 1,7) = 1. 

Proof: We use the QFGDD of type 32k+' from Bose's constraction where the gronps 

are formed by taking {(il O), (i, 1), (i, 2)) where i E &+l. We constrnct a graph 

G = (v E )  as fouows: V = ZZLLI1\ {O) and (a, b) E E if {a, 2a73a) fl {b, 2b, 3b) # 0. 

Each vertex has degree at most six so by Brooks's Theorem in vertex colouring 

[El, this graph is ô-colourable. If 2k + 1 r 1 (mod 6), for every colonr dass, we 

consider a subset of the vatex induce by the vertex {1,2, . . . , k). In each of the 

colour classes, we can obtain a partial pardel dass missing a subset of group as 

follows: for C a coloar dass, take {(c, i), (3c, i),  (25 i + 1)) for i E Zs and c E C. 

This gives a partial pardel dass missing a subset of groups. Hence, we obtain six 

partial paranel classes. For any starter blodrs {(O, O), (2a, O), (a, 1)) over ZZMl x Z3, 

we have used up the translates {(a, i ) ,  (3~4, i )  , (2a, i + 1)). The remaining blodrs can 

be partitioned into 3 partial pardel classes, each missing one g m p .  In the case 

when 2k + 1 r 5 (mod 6), we observe that the vatices for a and -a comespond 

to two distinct translates of the s t a r t a  block {O,a, 2a}, for every starter blodr 

{(O, O),  (2a, O), (a, 1)) in the QFSTS by Bose's Constmction, six blocks are used up 

to obtain 6 partial pardel classes. The remaining blocks for every starter block 

form 3 partial parallel classes. 0 
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Theorem 73 Suppose the= e&ts an anti-Pasch KTS(v) where v 2 15, and w 

3,15 (mod 18), then then &ts an anti-Pasch KT,(?). 

Proof;- Talre a IQFGDD of type 3f from Bose's Construction which is + 6 

colourable. Apply Theorem 71 to obtain the redt .  a 

Lemma 174 Then &ts a 14-colourable 3-QFGDD of type 3? so tlrot each colour 

class misses a subset of groups. 

Pro+ A QFSTS(21) e n s t s  by taking V = Z7 x Z3 with the starter blocks 

@A 0) 9 (0, 11, (07 2 ) h  {(O, 01, (lvl), (3, O)}, u52  01, (2,2), (4, 0)) =d {(O, 01, (4, l), (5,OD- 

The k t  starter block generates a paraIlel dass for the STS. The second and thkd 

starter blocks generates seven partial parallel classes when developed o v e  Z7 x Z3 

since each mod 7 component is distinct. The last block generates another seven 

partial parallel classes. 0 

Proofi If (v ,  7) = 1, then we obtain the conclusion of the coroilary by Theorem 

69. If v = 7w where (w, 7) = 1 aad w # 9,45, then take a 14-colourable 3- 

QFGDD of type 3' Lemmi 174, a QFRGDD of type 35  apply Theorem 71 to 

obtain a QFRGDD of type 3 y .  When w = 45, a QFKTS(105) is constructed in 

next subsection. Mate it by 3 to obtain a QFKTS(T(45)). If v = 7=w where 

(w, 7) = 1 and a 2 2, we can apply Theorem 69 by taking a QFRGDD 3 7  and a 

14-colonrable 3-QFGDD of type 3', the case when u = 72(9) can be obtained by 

taking a QFKTS(3(49)) and inflate by 3. O 
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4.4.5 A GDD Construction 

In this section, we present a GDD constraction for antitipareh KTS. 

Theorem 74 If then ezàsts a QFKTS(L+l), a QFKTS(2w+l) and a QFRTD(3, w ) ,  

then then czists a QFKTS(2uw + 1). 

Proofr The proof is similar to Theorem 55 and thus omitted. O 

In the remainder of the subsection, we prove some existence results concenllng 

QFRTD(3, n). 

Lemma 175 If n is odd, then tlrere ezists a QFRTD(3, n). 

Proof: Conshct  the TD(3, n) by taking V = Z, x {O, 1,.2). The block set is 

({ (a,  O)? (b? 11, (a + b, 2)) : a, b E Zn). O 

Corollary 21 There ezists a QFKTS(105). 

Proofr Apply Theorem 74 with v = 4 and w = 13. 

We only have to deal the case when n is even. 

Lemma 176 There U no QFRTD(3, n) for n = 2,4,6,8. 

Proof: When n = 2,6, there do not ePst two MOLS of orda n. When n = 4, there 

is no QFTD(3,4) (931. All QFTD(3,8) w a e  ennmerated in [50], none of which is 

resolvable. O 

Lemma 177 Then k t s  a QFRTD(3, n2) when n # 2,4. 
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Proof: This is a simple consequace fkom Lemma 2.1 in [IO11 by starting off with 

a QFTD(3,n). CI 

Lemma 178 If the- ezists a QPRTD(3, n) and a QFRTD(3, m), then there ezists 

a QFRTD(3, mnj. 

Proof: This is just a simple intktion and the proof is thns omitted. 0 

In order to apply Rees's techniques for constructing QFRTD, we need to con- 

struct QFTD(3, n) with some type of resolutions. We give one example here. 

Lemma 179 Ti tere  ezists a N2-square of order eight si& disjoint transversals. 

Proof- W e  consider the following latin sqnsre of order 8. 
i 2 3 4 5 6 7 6  

i 9 î 5 6 7 O 4  

3 G 4 7 i o 1 5  
4 ' 0 7 2 3 5 a i  

5 4 0 1 7 3 2 6  

S 7 5 ô l i 3 2  

f B 2 6 0 i 1 3  
o i s 3 4 2 5 7  

Each of the six different types of accents corresponds to a transversal. O 

Lemma 180 If n z 8 (mod 16) and n # 8, then there e&ts a QFRTD(3, n) . 

Proof: Since (n,3) = 1, then we can use Theorem 66 since a point regular 

QFTD(3, n) exists. If n = 3, take a transversal and a 2-tesolution d a s s  and apply 
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Theorem 67 wïth a RTD(3,3). For any 0th- pardel classes, we simply take a 

direct product with a RTD(3,3). O 

Next, we have a non-trivial application of Rees's theorem. 

Lemma 181 If m and n are odd number at least one, then there ezists a QFRTD(3,4nn). 

Proofi We recd a construction in [73]. E n  is odd, ne can constract a QFTD(3,2n) 
C - 

L 4 

Be = i + j - 1 (mod n) and CG = i + j - 2 (mod 1). We can treat this square 

with elements in Z2, Since n is odd, then all A, B and C are resolvable. For 

any transversal, 1, T E {A, B, C), we have {{O,n} + : (i, j )  E 1) formuig a 

1-pardel dass on Z,. Also, the TD(3,2n) that is constracted here is 2-resolvable. 

We apply Theorem 67 as follows: take a QFTD(3,2m) which is 2-resolvable and 

take a QFTD(3,2n) that is arisen from the above construction. Let H' = {O, n) 

for i = 1,2,3, apply Theorem 67 to obtain a QFRTD(3,4mn). O 

by taking the square N = 

Theorem 75 If 81u, then there &ts a QFRTD(3, v )  for al1 v # 2° for o = 

1,2,3,4,5. 

Proofr If n = 8m, rn 2 2 and m odd, then it is proved in Lemma 180 that 

we can obtain a QFRTD(8,n). If n = 16m where rn 2 2 and m odd, we take 

a [2,2,2,2]-resolvable QFTD(3,B) and apply the technique in Lemma 181 to ob- 

tain a QFRTD(16,n). If n = 32m where B 2 3 and m odd, we use a sim- 

A B + n  

C + n  A 

ilar technique by treating the QFTD(3,8) as a [4,4]-resolvable QFTD(3,8) and 

multipiy it by a QFTD(3,4m) coming nom a n o n - d o m  direct prodnct of N2- 

latin square [73]. We take the point set of the QFTD(3,4m) as Z4, and each 

where A, = i - j + 1 (mod n), 
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H' = {O,m,2rn,3m) for i = 1,2. Li general, when n = 2"m where a 2 6, 

rn 2 2 and m odd, if a E O (mod 2), then we take a QFTD(3,2a/2) to ob- 

tain a QFRTD(3,2=) by Lemma 177. This gives a QFRTD(3, n)  by a simple 

direct product wïth a QFRTD(3, n). If a 1 (mod Z), we can construct a 2- 

resolvable QFTD(3,T) b y doubling a QFRTD (3, 2a-1) (Lemma 1 57), multiplying 

by a QFTD(3,2m) as in Lemma 181. If n = 2", take a [4,4]-resoIvable QFTD(3,S) 

and doubling gives a [8,8]-resolvable QFTD(3,16). Apply Theorem 67 to obtain a 

QFRTD(3,128). Since a QFRTD(3, 22a) emsts for all a 2 3, a simple direct prod- 

. uct gives a QFRTD(3, 2b) for al l  b 2 13. We can also obtain a [16,16]-resol~able 

QFTD (3,32) and a [32,32]-resolvable QFTD (3,64) by talchg a n o n - d o r m  direct 

product. Multiplying it by a QFTD(3,32) and a QFTD (3,64) gives a QFRTD(3, Za) 

for a = 9 and a = 11. ~1 

It is of great interest to settle the problem QFRTD, both of its interest in 

QFKTS and it is also an extension of the N2-latin squares problem. 

4.5 5-sparse Triple Systems 

As mentioned in Section 4.2, the problem of detamining those v for which there 

exïsts an anti-Pasch STS of order v and anti-mitre STS of order u appears to be 

mci i j t .  

One might ask for the stronger property that an STS(u) be both anti-Pasch 

and anti-mitre. No such system exists for v 5 15. More generally, cal1 an STS(v) 

r-sparse if every set of + +2 elements d e s  fewer than r triples. Every STS(v) is 3- 

sparse, and every T-sparse STS(v) is &O (r - 1)-spanre. Erdh (see [76]) conjectures 

that for every T ,  there exists a hite r-sparse STS (v). An STS(v) is esparse if and 
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only ifit is anti-Pasch; and it is 5-spanre if and only if it is both anti-papch and anti- 

mitre. It appears that the only lmoan class of 5-sparse triple system is a speüal 

dass of Netto taple systems (see [76]), 

Let G be an abelian group. An STS(u) is transitive over G if V = G and for 

everya E Gand{a ,b ,c )  E B, { a + a , b + a , c + a }  E B. When Gis thecydic 

groap, the STS is &O called cyclic. 

4.5.1 Main Construction 

Let S = (l( i3) be a transitive Esparse triple system on Zv or F., where 1 VI = v . 
Let C = {{-a, -5 -c} : {a,  b,c} E B). Let S = (KC). S and S are isomorphic, 

and hence S is also a transitive 5-sparse triple systern. When v r 1 (mod 6 ) ,  one 

can verify that S and Sr 

Theorem 76 If v 1 

5-sparse STS(3v) ezists. 

Proof: We construct an 

are block-disjoint . 

(mod 6) and a t~atzsz~tive 5-sparse STS(v) ezists, then a 

STS(3v) on V x {O, 1,2): 

(1) For any block {a, b, c} E 8, constnict taro blocks { (a ,  à), (b, à), (c, i ) )  for i = 

O, 1. 

(2) For any block {a, b, c} E C, consmict a block {(a, 2), (9 2), (c, 2)). 

(3) Conshct the blocks {(i ,  O ) ,  ( j ,  1), (i  + j, 2 ) )  for i7 j E Zv or Fu. 

We show that this is enti-mitre. We call blocks of types 1 and 2 horizontal and 

blocks of type  3 vertical Suppose to the contrary that there exists a mitre in the 

STS(3v). Let a be the centre in the mitre. We distinguish two cases: 
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Cose 1: There d s  a block in the mitre t h g h  a which is horizontal. We 

assume the blodr is of the forxn {(a, i ) ,  (b, i), (k , i ) ) .  Nd, ne have to distinguish 

into three sub-cases according to the value of i. . 

Subcase 1.1: When i = O, ne have a blodt of the form {(a, O), (b, O), (c, O)). If 

there is one more block in the mitre through a in horizontal, then all blocks in the 

mitre are horizontal. Hence, this gives a mitre in S, a contradiction. Hence, ne can 

assume the other two blocks t h g h  a are vertical. We assume they are of the form 

{(a,  O), (e, 1), (a + e, 2)) and {(=,O), (f, 1), (a + f, 2)). We can force the remaining 

two blocks are of the form {(b, O), (e, l), (a + f ,  2)) and {(c, O), (f, l) ,  (a + e, 2)). W e  

must h a v e b + e = a +  f andc+ f = a + e .  Addhggkyes b + c = 2 a  whichis the 

same as b - a = a - c. But S is cyclic, a contradiction. 

Subcase 1.2: men i = 2, ne have a block of the form {(a, 2), (b, 2), (c, 2)). Again 

all other blocks through a must be vertical blocks. We can assume that they are of 

the form {(e, O), (a  - e, l ) ,  (a, 2)) and {(f, O), (a- f ,  l), (a, 2)). Hence the remaining 

blocks must be of the form {(e, O), (a - f, 1), (b,  2)) and {(f, O), (a - e, l), (c, 2)). 

This gives e + a = b + f and f + a = c+ e. Adding &es 2a = b + c, a contradiction. 

Subcase 1.9: When i = 1, it reduces to Subcase 1.1 by symmetry. 

Case 2: AU blocks through a are vertical. So the remaining tno blocks must be 

horizontal. W e  break d o m  in to three cases again. 

Subcase 2.1: When a is in level0, without loss of generality, the tao horizontal 

b l o h  are {@, l), (9, l), (r, 1)) and {(z, 2), (y, 2), ( ~ ~ 2 ) ) -  W e  mart have a + p = z, 

a+q = y  and a+r  = z. Since b , q , r )  E B, then {a+p,a+q,a+r} E B, that is, 

{z, y, z )  E B. But {z, y, r )  E C. This is a contradiction. 

Subcase 2.2: The case when a is in levell reduces by symmetry to Subcase 2.1. 
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{-p9 -q9 -r} E 8- But then b, q, r )  E C, which contradicts the observation that 

B and C are disjoint. 

That the STS(3v) is anti-Pasch follows fiorn- the argument in [60]. Hence, we 

obtain a bsparse triple system of order 3v. 

Coroliary 22 If v = 3m wheie m = pn where p i9 a prime and p 19 (mod 24), 

then there ezists o 5-sparse triple system of order 3m. 

Proofr The Netto tripIe system of order pn [104] is transitive over FPn and Çsparse 

1471 - O 

Corollary 23 If v 3 (mod 18) and 99 < v 2 291, then there ezists a 5-sparse 

triple system of order v. 

Proof: In [47], cydic 5-sparse triple systems are constructed for all 33 5 v 5 97 

and v = 1,3 (mod 6). 0 

4.5.2 An Extension 

In this section, we extend the constraction in previous construction to give a 

prodnct-type constniction of Ssparse triple systems. 

In the construction in the subsection 1, it is possible to permute the points so 

that we put the same copy of STS in V x (2) as in V x {l) and V x {O). In fact, all 
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we need to do is to replace the vertical blocks by {(i, O), (j, 1), (4 - j, 2)). Ushg 

this simple observation, we can obtain a product constrnction. 

Theorem 77 If there aLst a tmm'tive 5-sparse STS(v) S = (V, B )  over Fv or  Z,, 

v m 1 (mod 6) and o 5-qume STS(w) S = (W,C), then them czists a 5-qarse 

STS(vw). 

Proof: We construct a STS(vw) on V x W. For every block {a, b, c} E C, we 

construct v2 blocks of fotm {(i, a), ( j ,  b) , (4 - j, c) ). For every block of fom 

(a, b, c}  E 8, we consmict w bloelrs of the form {(a, w), (b, w ) ,  (c, w ) )  where w E W. 

These form a STS (vw ) . We show that it is anti-mitre. If the mitre involves a block 

of form {(a, w), (b, w), (c, w ) ) ,  then either all blodrs in the mitre has second coor- 

dinates w or aIl blocks form. the mitre are fiom a TD(3, TI) together with the blocks 

fiom the three STS(v). In this case, we have a contradiction by Theorem 76. Since 

none of the blocks involved can corne from a block of the folm {(a, w ) ,  (b, w ) ,  (c, w ) ) ,  

all points in the-mitre must have distinct second coordinates. (Consider the central 

element of the mitre and its neighbours.) Hence, if we project a l l  points to their 

second coordinate, we obtain a mitre in STS(w), a contradiction. 

Ne&, we show that the STS(vw) is anti-Pasch. Suppose there exïsts a Pasch in 

the STS (vw). If the Pasch involves a block of form {(a, w ) ,  (b, w ) ,  (c, w ) ) ,  then it 

is easy to check that the three remaining points in the Pasch must correspond to 

different points in STS(w). By projecting the points to STS(w), this gives a pair of 

point appearing in tao blocks in the STS(w), a contradiction. O t h d s e ,  it is easy 

to check that the six points of the Pasch must correspond to either 3 points or 6 

points in STS(w). In the foroler case, this reduces to a Paîch in the TD(3, v )  that 

we conshcted, a contradiction. In the latter case, this gives a Pasch in STS(w), a 

contradiction. O 
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This product collstntction is Merefit fkom those for anti-Pasch systems in [60] 

and [112]. In fact, using this product construction togetha with the techniques in 

[60], one can easily see th& t hae  exists a 3-res01vabIe anti-Pasch STS(6m + 3) for 

any m. 

The folowing construction is easily seen to be d e d d e d  &om the construction 

shown in this section. 

Theorem 78 If t h e n  &ts o transitive anti-mitre STS(v), v 1 (mod 6) and an 

anti-mitre STS(w), then t h e n  ezists an anti-mitre STS(vw). 

4.6 Update Penalty Four 

In this section, we examine codes in which each idormation disk has exactly four 

check disks. Let us remark at the outset that the full 4-code consisting of all distinct 

colnmns with four 1's fails to- correct d4-erasures. Indeed if any two columns have 

1 entnes in three common rows, an unacceptable 4eramre consists of the two 

correspondhg information disks, and the two check di& reqaired to obtain zero 

sum. 

Lemma 182 A &erasure comcting code with c check d a  and minimum update 
e(e-i)(e-21 penalty has ut most infornotion d i h .  

Proofr We remark earlier that any two rows cannot have 3 common entries. Hence, 

a simple compntation reveah the redt .  O 

If (v B) is a BIBD, ne cdl the design simple (super-simple) if IBi n B4 < k 

(IBl f î  B21 5 2, respectively), for ail choices of Bi, B2 E B. Thns 4-erasnre codes 
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arising from BIBDs corne from super-simple designs. In fsct, if the bound of Lemma 

182 is met, one can easily Che& that ewry triple occurs in exadly one block, and 

hence the set system is a Steiner quadruple system (see [65] for a comprehensive 

survey of these designs). 

However, not all super-simple designs yield k a s a r e  comecting codes. Snper- 

simple designs avoid the configurations 

A set system in which no union of t blocks contains another is called t-couer-fie; 

one in which unions of t blodrs are all distinct is t-union-fie. Under the constraint 

of super-simpIicity, the exclusion of the first configuration ensures that a 4er-e 

correcting code arises fiom a Zcover-kee set system; the exchsion of the second 

and third requires in addition a Znnion-free set system. Set systems that are 

simple, super-simple, 2-cover-fke or 2-union-fiee have all been studied to rarying 

degrees. However, set systems avoiding the six reqnired coofigurations have not 

been studied. Later (in Theorem 79), we establish a cubic lower boand on the 

number of blocks avoiding these six (and other) configurations. 

4.6.1 (4,s)-Erasure Correcthg Codes 

Here we address the more difl3cdt problem of hd ing  rl-erasare correcting codes 

with update penalty fou,  which correct all 5-erasu1es except for bad 5-erasures 

(1 information disk and its four check disks). Naturally, any set system giving 

such a code must avoid the six configurations shown in the previous subsection. A 

tedious cdda t ion  (best done by cornputer) demonstrates that there are precisely 
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nine 0th- configurations that must be avoided to easare that no unacceptable 

berasmes occur. These configurations are shown next. 

Theorem 79 Let q be an odd prime or  prime power, and let n be an integer satisfy- 

ing 1 5 n 5 9. Then thme a (4,5))-era~l~re mmcting code having 3q - 1 +n 
check di& and nq(q - 1) information diska. 

Proofr Let w be a primitive element of the finite field GF(q). W e  aiIL define a code 

[A  1 4 with rows indexed by 

Colnmns are defined as f o h s .  For z E GF(q), y E (GF(q)\{O)), and 1 < i 5 n, 
there is a colamn containing '1' entries in rows (2, r) ,  (y, c), (z + wiy , s) and 4. 
This defines nq(q - 1)  columns for A. We m u t  vaify that the code so defined 
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corrects all kxasures, and all 5-emmms except bad ones. Partition A into n 

matrices Al, .  . . , &, each (3q - 1 + n) x q(q - l), by placing all colnmns hav- 

ing 4 = 1 in &. Now suppose that t 5 columns are selected; we mut 

ensure that they do not fonn an unacceptable erasure. Let ti be the number 

of columns in the selected set that are kom A+ If & = 5 for any i, the s u  

in row t& is odd and hence the eragnre is correetable. If t; = 4, then all of 

{ t l ,  . . . , t,)\{ti} are zero. Moreover, within 4 there aré colnmns with '1' entries 

in positions { (r i ,  r) ,  (CI,  4, (s1 ,s )h  {(+l,+),  ( ~ 2 ,  c), (a, 41, {(?, 4,  (ci, 4, ($2,  ~ ) h  
and { (rz , t ) , (c2 ,c) ,  ( s l , s ) ) .  But then rl + wicl = SI = r 2  + w'q  and T I  + w'q = 

a = o + micl. It follows that sl = 8 2 ,  = r2 and cl = cz, and hence four distinct 

columns have not been chosen- 

If ti = t j  = i, i # j ,  then none of { t l , .  . . ,ti)\{&,tj) are nonzero (otherwise, 

t  2 3 but at least 3 rows have odd snm in the chosen colllm~l~, so the erasure is 

correctable). Now no column of agrees with a column of Ai in the position of 

three '1' entries, so at least four rows have odd snm, and the erastue is correctable. 

If ti = 1 and all of { t l ,  . . . , tn)\{ti ti) are zero, this is precisely a bad 5-erasure. If 

ti = 2, since no two columns of agree in the position of three '1' entries, these two 

columns have odd sum in at least four rows (eonsisting of zen, or tao each among the 

'r ' , 'c', and 's' gronps) . Now no column in A contains '1' entries in more thaa two of 

these rows, and hence the only case to consider is when tc = t j  = 2, i # j ,  then none 
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i f j (mod (q - 1)/2) since I 5 i, j (q - 1)/2. Hence cl = cz, fiom which it 

follows that al = a2 and rl = r z ,  whîch is impossible. 

If (a1,a2,as,a4) = (4 j,i, j ) ,  oneobtah  rl-sl=r2-s2 and rl-s2 =r*-s l ,  

which forces si  = 5 2  and r1 = r z  since q is odd. But then ci = cz as well, which is 

impossible. If (al, oz, as, 4 )  = (i, j, j, i ) ,  we have the equations tl + wici = r z  + wic2 

and rl + & = r* + 6; the argument proceeds as in the first case. 13 

Taking n as large as possible in Theorem 79, when e = 3q- 1+ 9 is the nnmber 

of check disks, the nnmba of information disks is (42 - 102 - 8c+ 24)/343. Hence 

the check disk o~erhead approaches 3 for large q. 

One drawback of the codes produced in Theorem 79 is that the row sams are 

large and not d o m .  Among the 39 - 1 + n rows, 29 have sum n(q - l), q - 1 
have sam nq, and the remainiag n have sam q(q - 1). When n = 9, all groups 

have size 8(#), but the largest group remains twice the size of the smdest. One 

could, however, split each of the rows dl, . . . , 4 into h o  rows, assigning arbitrarily 

haif the '1' entries to each. This yields a code with 4q - 2 rows, and all groups of 

size q2/2 or q(q - 1)/2. 

4.6.2 (4,6)- and (4,7)-Erasure Correcting Codes 

4 In order to correct 6-erasnres, me must avoid the configuration shoum next: 

Hence the correspondhg set system m u t  be a padeng with block size four. This 

obviates the need to consider many of the configurations treated earlier. Indeed, a 

packing with block size 4 is always 4-erasnre correcting; it is (4,s)-erasme correcting 
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if and only if it avoîds the ftst configuration (the dud arc or dam) shown next, 

and it is (4,6)-eragtue cortecthg if and only if it avoîds both configurations shown 

next: 

Finally, it is (4,7)-erasare correcting if and only if it avoids in addition the four 

configurations depided here: 

In a (4,6) or (4,7)-erasare correcting codes, the namber of information is at 
v u  1 most The eqaality occurs nhen the codes correspond to a BIBD(v,4,1). 

In the case of (4,7)szasnre c o r d i n g  umection codes, we have fooad some codes 

which correspond to BIBDs 

Lemma 183 There ezists a B180(13,4,1) acwiding al1 siz confguratiorrcr. 
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Proofi The unique BIBD(13,4,1) corresponds to a projective plane of ordet 3. 

Hence, any two lines intersect in exaetly one point. Therefore, it misses the last 

five configurations. If the first configation sits in the BIBD(13,4,1) , dualize the 

design to obtain a hypetoval in a projective plane of order tkee, a contradietion. 

cl 

Lemma 184 There ezists a BIBD(v, 4,1) avoiding al1 siz configurations for v = 

40,49,52,61,64. 

Proofr All of them are fonnd over the group Z,. 

40: {O, 10,20,30), {O, 1,4,13), {O, 2,17,24), {O, 5,26,34). 

49: {O, 1,3,9), {0,4,18,37), {O, 5,25,32), {O, 10,21,36). 

52: {O, 13,26,39), {O, 1,3,11), {0,4,16,37), {O, 5,14,32), {0,6,23,30). 

61: {O, 1,3,8), {O, 4,13,36), {O0, 6,28,49), {O, 10,27,47), {O, 11,30,46). 

In fact, there exists 1, 4, 4, 218 and 125 cyclic (v ,  4,l)-design over 2, avoidlig 

all six configurations for u = 40,49,52,6 1,64 respectively. O 

We have a recarsive conshction fot (4,7)-erasate code. 

Theorem 80 Suppose there czUts a (4,7)-efa~l~re code on b information di& and 

v check disks, then there ezists a (4,7)-erastcre code on 9b+v information dipks and 

3v + 1 check disks. In partiedur, if the (4,I)-erastlre code is a BIBD(v, 4, l), then 

there ezàsts a (4,7)-erosun code whàch is a BIBD(3v + 1,4,1). 
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Proofi We use the standard v + 3v + 1 comtmction. We can regard the (4,7)- 

eranw code as a 4PIGD of type lV on V. We construct a packhg design on 

V x {O, 1,2) u {oo). For every block of size 4, B, we put a TD(4,3) on B x {1,2,3). 

For every v E V, we add a block {oo, (u, 1), (v, 2), (v,  3)). 

We daim that this resalts in a (4,ir)-erasnre code. Suppose to the contrary, thrre 

exists a bad configuration in the packing. Ifit involves the point oo and m is on at 

Least tao blocks of size four, {oo, (v,  1), (u, 2), (v, 3)) and {oo, (w, 1), (w,  Z), (w, 3)), 

then all other blocks mu& be in the sub-TD(4,3) including the points ( v ,  1) and 

(w, 1), however this is impossible. If it involves the point oo, then oo can only on 

one block of size four, suppose the block is of the form {oo, (v,  1), (u, 2), (v, 3)). Let 

{w, 1) , (2,l) , (y, 1) , (v, 1)) be another block of size four, since (w ,1) is also on a 

block with (v ,  2), it is clear that all blocks are fiom the same sub-TD(4,3), it is 

impossible. 

Next, we daim that if snch a configuration exists ,  then all blocks must be 

fiom different TD(4,3). Suppose to the contrary, if { ( x ,  1), (y, l), (2, 1), (w, 1)) and 

{(x, i), (y, 2), (1, 2), (w ,2)) bk two such blocks where i E {l, 2). B y examinhg all 

six configurations, we see that for any pair of blodrs, there must be a third block 

intersects both blocks and the point of intersection is not the ponint (z, 1). Hence, 

all other bloclcs must be fiom the same subTD(4,3). Hence, the configuration 

mus t sit inside a TD(4, a), a contradiction. 

If all blocks are fiom dinerent sub-TD(4,3), then b y pro jecting the configuration 

on V, we can obtain a contridiction. We note that if ne  project the "near darcn 

configuration (the uniqne codiguration having exactly hro points of degree onen of 

(4,7)-erasare code, we may get a dam configuration. 

The remaining of the theorem follows fiom a simple counting argument. O 
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It cannot be (4,B)-erasnre correctiog d e s s  no tao blocks intersect (in which 

case the code is a SimpIe 1-dimensional parity code). 

4.7 

A GDD 

Weakly Union-Fkee Twofold Tkiple 

(X, Ç, 8)  with block size three is a weakly union-fipe GDD 

Systems 

(mf GDD) if 

1. whenever {{a, b, 21, {a, b9 y)) C B ,  the points z and y are in different groups; 

and 

2. whenever four distinct blodts BI, Bi, Ba, B4 are chosen 6rom 8, it does not 

happen that Bi U Bz = Bs U B4. 

The second condition can be made more expliut: there cannot ex is t  four blocks of 

any of the following four forms: 

These forms correspond, respectively, to the hypergraphs depict ed below . 

Our interest is in the construction of wuf tGDDs, and in particdar those of 

type 1" and index two. A d o m  GDD with grmp size 1 is a bdanced incomplete 
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block design; those with k = 3 and X = 2 are called twofold triple s y s t e w  of order 

n, or TTS(n). E h k I  and Fiiredi [55] began the study of w d  TTS(n) in the study 

of an old problem of &dos [54]. In 1938, Erdos [53] asked what the maximum 

number of edges a graph can have and have no 3&e, no Ccyde, and no repeated 

edges. In 1977, he [54] asked the more general question: Hoa many hyperedges can 

a k-rinifom hypergraph have, so that whenever four hyperedges A, B, C, D satisfy 

A U B = C U D, we find {A,  B )  = {O, D). Such a f d y  is union-fie. R d  and 

Füredi (551 settled this question when k = 3, showhg that a dass of designs, the 

S tellier triple systems, realize the macimum. 

They also addxessed the related question of enforcing the union-&ee condition 

only for sets of four distinct blocks A, B, C, D. This gives the notion of weakly 

union-fie, already defined. Fianlrl and Füredi [55] established an important bonnd, 

and showed that it is realized infinitely often: 

Theorem 81 (Ekankl and Fiiredi [55]) A weakly union-free 3-unifom hyper- 

graph on n vertices has at most hyperedges. Equality occurs when ail, or I-" '1 
al1 but one, pair of vertices occur in two hypendges each. 

They established that this bomd is met whenever n G 1 (mod 6), and either n 

is a prime power at least 13 or n is snfficiently large. h this section, ne establish 

that equdity is met for ail n 0 , l  (mod 3), with a s m d  numba of definite, and 

a small namba of possible, exceptions. Theorem 81 also admits the possibility 

that n f 2 (mod 3). While we have also found s m d  designs d c i e n t  to obtain a 

dosure in this &us, we concentrate on the twofold triple system case here. 

The danculty of this problem appears initidly to  be that, while catalogues of 

twofold triple systems for s m d  orders are adable  (see [40], for example), no 
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TTS(n) is w d y  union-free when n E {3,4,6,7,9,10). Moreover, when a wuf 

lGDD of type T can be decomposed into two 3-GDDs of index one and type T, 

condition (1) together with the exclusion of C4 ensare that these two index one 

3-GDDs are "orthogonal" (see (4). The existence of orthogonal d o m  3-GDDs 

with group size 1, the scxalled orthogonal Steiner triple systems, remained open 

for thirty years until its recent solution [el. The exclusion of further configurations 

adds to the difEdty of the problem for nnf TTS. 

4.7.1 Direct Constructions 

In this subsection, ne develop a direct construction technique that is used to con- 

struct both wuf TTS(n) and, more generally, wuf 3-GDDs of index h o .  The 

general framework follows. We aim to construct a 3-GDD of index two on point set 

Z, {cm1,. . . , cmk), whose type is gUkl. Naturally, we chose Z, for a potion of 

the point set to suggest the cyclic action of the cyclic group on these points. Indeed 

our goal is to constrnct 3-GDDs that have Z, as an automorphism group. 

Let X = Z, U {ml, . . . , mt), and let a be a permntation mapping i i + 
1 mod gu for i E Z,, and fixing {mi,. . . ,oct). Let B be the blocks of a +GDD of 

type gUkl on X that admits o as an automorphism. The action of u partitions B 

into orbits of size gu or, when gu O (mod 3), possibly y. A set of representatives 

of these orbits forms a set of starter btocks for the 3-GDD. Starter bloelrs of the 

form {O, a, b} C Z, may generate orbits of length gu unda u, in which case the 

starter block is said to couer the diffe~ences f a ,  f &, i ( b  - a) with arithmetic in 

Z, (if repetitions occur, such dinérences are covered the number of times that they 

OCCW). When gu G O (mod 3), a starter block of the form {O, J, 2 5 )  generates 

only 3 distinct blocks (a short orbit), and is said therefore to cover the Merences 
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I F  once each. Finally, a &art- block may have the form {mi, O, 4); again, gu 

blocks appear in the orbit genaated, but here only the diniences f 4 are covered, 

once each, 

A set D is a set of starter blocks for a 3-GDD of index tao and type gukl (under 

the action of a) if 

1. for 1 5 i 5 k, there is exactly one starter block containhg mi; and 

2. each d E Z, is covered twice as a difference, d e s s  d i O (mod u), in which 

case the diffaence is not covered. 

The reader can quickly verifjr that these conditions on starter blocks are equivalent 

to the existence of a +GDD of index t ao  and type gUkl admitting a. 

In order to be a wuf 3-GDD, fnrther conditions are imposed. Suppose that V 

is the set of starter blocks for a 3-GDD of index h o  and type gUkl. Partition 2) 

into the blocks A which contain one of the infinite points, and the blocks B which 

do not. Evidently, d contains exaetly k blocks, one for each of the idn i te  points. 

In addition, in order to meet the fist wuf condition, we have: 

C d  a difference ezternal if it is covered once in A and once in B,  and internai if it 

is covered twice in B. For each extanal Merence d, d&e a(d) = min(& 2 4 .  For 

each internal aerence d, when blo& {O, d, z) and {O, d, y) appear in the orbits 

of blodts of B, define a(d)  = min(& (z - y)). 

First we examine condraints resdting fiom prohibiting the appearance of one 

of the infinite pointa in one of the configurations Cl, C2, C3, or C4. In order to 

ensure that no infinite point occars in a Cl wnfignration, ne require that 
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(2) If gu O (mod 3) and y is an extemal difference, then B does not contain 

{O, y, 2 5 ) -  

In order to aumre that no infiPite point ocears in a C2 configuration, we require 

that 

(3) If d is an exterd diffaence, then 4d $ O (mod gu). 

In order to ensure that no infinite point occurs in a C3 configuration, we requke 

that 

(4) If d is an exteniai diffaence and {O, d, z) is a block in an orbit of a starter block 

of B, then 22 $ d (mod gu) and none of {O, d, 3 4 ,  {O, 2d, 3 4 ,  {O, 2 4  d + x), 
{O, 2d, z), or {O, d, F) when gu O (mod 2), appear in the orbits of the 

starter blocks in B. 

In order to ensure that no infinite point occars in a C4 configuration, we reqnire 

that 

(5) If d and d' are extemal diffmences, or if d is externa and d is intemal, then 

a (d )  = a(d' )  only if d = 6. 

Once conditions (1)-(5) are met, any violation of the wuf conditions occtus entirely 

among the blocks on Z,. - 

In ordet to check that none of the conditions are violated on the blocks involving 

no infinite points, we h s t  observe that the iirst d condition is equivalent to: 

(6) If d is an interna1 diffaence then a(d)  f O (mod u). 





C W T E R  4. RECATED CODES 199 

Lemma 45 (fiadcl and FÜredi [55]) A 3-GDD of i n d a  two and type 1P ezists 

wheneuer q r 1 (mod 6) is a prime power, ezcept when q = 7. 

It ïs essential that ingredients for 0th- congruence classes modulo 6 be found 

as w d .  We employed a combination of backtracking and hilldhbing techniques 

to produce a large number of aaf GDDs. 

Numerous 3-GDDs of type 1%' over Z, are given in order to establigh the 

s t  atement: 

Lemma 46 A wuf 3-GDD of type ln ezi& for n = 21, 24, 27, 28, 30, 33, 34, 36, 

39, 40, 42, 45, and 46. 

Proofr For each pair {a, b} presented in the table to follow, {O, a, b} is a starter 

block. In addition, if u O (mod 3) and z 1 (mod 3), then {O, f ,  3) is a starter 

block. FinaIly, each difFerence covesed only oncein the starter blocks so prodnced 

is &O in a starter block with an infinite point. 

GDD Internai Starter Blocks 
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GDD Intemal Starter Blocks 

Lemma 47 A unrf 3-GDD of type ln cz*9ts for h = 48, 51, 52, 54, 55, 57, 58, 60, 

63, 64, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 99, 100, 

102, 105, 108, 111, 112, 114,115, 117, 118, 120, 123, 124, 126, 129, 130, 132, 133, 

135, 136, 138, 141, 142, 144, 145, 148, 150, 154, 156, 159, 160, 161, 165J66, 171, 

177, 178, 184, 195, 201, 207, 213, 219, and 243. 

Proof: See Appendu B. 0 

The remaining srnaIl d u e s  do not appear to be able to be handled by this 
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general apptoach. However, we have succeeded in one more case: 

Lemma 48 A wuf 3-GDD of type 1" ezists. 

Proofi Let X = Zs x {O, 1). For succinctness, we &te (z, i )  E X as z;. Let 

a : X + X be the permutation mch that u : xi c, (z + 1 (mod 8));. Developing 

the foJlo~ing set of starter blocks by u gives a wuf 3-GDD of type 1'' on X: 

4.7.2 Recursive Constructions 

Theorem 82 (Wilson's Rindamental Construction [117]) Let (X, Ç, B )  be 

a GDD (the msster GDD) p u p s  Gi7 4 . . . Gt. Suppose then e&ts a f i n e  

tion w : X + Z+U{O) (a weight fiinction) which hm the property that for each block 

B = { z ~ ,  22, . . . , 4) E B then d a K-GDD of type [w(zl), w(z2) . . . , w ( x k ) ]  

(such a GDD h an "ingredientn GDD). Tlrcn t h e n  &ts a K-GDD of type 

We l a v e  as an easy exercise that when all of the ingredient GDDs are wuf, so 

also is the GDD constnieted. In general, our desire is to produce GDDs with group 

size 1, so n e  need to fill in the holes in some way. 
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Theorem 83 ( F i h g  in Holes, variant of [97]) If the* ezLgts a rouf GDD 

of type gigz . gi,, and for 2 i 5 n a wuf GDD of type P h à  czists, then thwe 

&ts a wuf GDD of type + h)l. 

In Theorem 83, both gl = O and h = O correspond to usenil special cases. 

Filling in holes presentes the wuf property primarily as a consequace of the first 

requirement, since none of the forbidden configurations ean have both a block from 

the wuf GDD of type glgz . . . g, d one fiom a wuf GDD of type lgih'. Normally, 

we do not comment on applications of Theorem 83, leaving this to the diligent 

reader. Typicdy, Theorem 82 is applied using snitable ingredients, and Theorem 

83 is then applied to extract u s a  consequences for grotap 8ize 1. 

Now we give some applications of Theorem 82. 

Lemma 49 If a TD(6, n)  ezists) then a wuf 3-GDD of type ( 3 ~ ~ ) ~ ( 6 n ) l  &ts. 

Moreover) then ezist wuf TTS of orders 106, 147, 168, 189, and 231. 

Proof: A wuf 3-GDD of type 3'6' exists with presentation {{1,12), {Z, 9)). Use 

the TD (6, n) as a master design and the 3-GDD of type 35 6l as an ingredient design 

in Theorem 82. Apply with n = 5,7,8, 9,11 and fiil in holes using wuf 3-GDDs 

of types 11511 and lSOll when n = 5, and of types 1'" and lg" for the remaining 

values of n. 0 

Lemma 50 If a TD(7, n) ezists, then a wuf 3-GDD of type (Zn)' ezists. Hence 

uruf TTS of orders 112, 183, and 225 d. 

Proof: A d 3-GDD of type 2' exists with presentation {{1,4}, {l ,  61, {2,6), {2,11)); 

Theorem 82 gives the aaf 3-GDD of type (h)? Applying with n = 8,13,16, and 
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fding holes with wuf 3-GDDs of types 116, 12'1', and lJ'l' gives the reqaàed 

consequences. O 

Lemma 5 1  If a TD(8,n) ezists, and O < z 5 n, then a mf 3-GDD of type 

(3n)'(3n+ 62)' &. Hence there ezist muf TTS of orders 174,180, 186,192, 198, 

204, 210, 216, 222, 228, and 187. 

Proof: A araf 3-GDD of type 3' = 3'3' exists over Zu nith presentation 

A wuf 3-GDD of type 3'9' exists with presentation {{l, 13)) {2, 51, {4,10}}. Apply 

Theorem 82 using weight 3 in seven groups and weights 3 or 9 in the eighth, 

to produce a wuf 3-GDD of type (3n)'(3n + 6%)'. Apply with n = 7,8 and 

fül in holes to obtain the stated consequences. For the final value, apply with 

n = 7 and employ a wuf 3-GDD of type 12'7' to iill holes. It has presentation 

C ( 1 7  4h {L 6)3{2,9), {2,13)). ci 

Lemma 52 If a TD(14, q) ensts, and O % z 5 6q satisfies x E O (mod 3)) then a 

wuf 3-GDD of type q13d ep9ts.  If, in addition, a wuf 3-GDD of type 1qh' ezists, 

so olso does o wuf GDD of type lla(x + h)' . 

Proof: Use as ingredient wuf 3-GDDs the ones of type l n O l  from Lemma 45, of 

type 11331 presented as {{l, 41, {3,4), {2, S)), and the one of type 1 136' presented 

as {{l, 41, {2,8)). Give all points in thirteen groups of the TD(14, q) weight one, 

and points in the final groap weights O, 3, or 6 so that the total weight in the ha1 

groap is x.  Theorem 82 then gives a wuf 3-GDD of type q13z1. F i g  in holes with 

a 3-GDD of type Ph1 (when one exists) gives a wuf GDD of type ll*(z + h)'. III 
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1. r o  = 19 and sa =23; 

3- 13ri+1 + 21 5 19ri and Usctl + 25 > - lgsi + 1; 

4. ri 1 (mod 3) a d  si 2 (mod 3); and 

A TD(14, n) exists whenever n is relatively prime to 2, 3, 5, 7, and 11 (by Mac- 

Neish's theorem; see [3]). Among the integers congruent to 1 moddo 3, considering 

the sequence of those relatively prime to 2, 3, 5, 7, and 11, ne find a largest dif- 

ference between consecutive values of 24. Choose the ris to be the sequence of 

numbers congruent to 1 modulo 3 and relatively prime to 2, 3,5, 7, and 11, begin- 

ning with 19, in addition to .the namber 25. It is now an easy verification that we 

have the specified properties. In the same way, the sis are the sequence of numbers 

congruent to 2 modulo 3 and relatively prime to 2,3, 5, 7, and 11, beginning with 

23, in addition to the number 32. 

To prove the theorem, we proceed inductively. In genad, we suppose that 

wuf TTS have been produced for all orders las than n, where n 0 , l  (mod 3), 

and we establish that a wuf TTS(n) exista. By assuraption, wuf TTS(n) exist 

whenever 24 5 n 5 304. Now if n r 1 (rnod 3), find the largest i for which 

13ri + 24 5 n 5 19ri; such a choice exists by the dennition of the sequence. Then 

a TD(14, ri) &ts. Wnf 3-GDDs of type 1'; and ln-'" e t  by the inductive hy- 

pothesis. Apply Theorem 52 to obtain the d TTS(n) . In the same way, if n r O 

(mod 3), find the largest si for which 13ai + 25 < n 5 1 9 ~ ~  + 1; such a choice exists 

by the definition of the seqtpce. Then a TD(14, r) exists. Wd SGDDs of type 

l a i 1 1  md ln-lasi exist by the inductive hypothesis. Apply Theorem 52 to obtain 
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the wuf TTS(n). 

Now ne can prove the main theorem. 

Theorem 85 A wuf TTS(n) ezists whenever n 0,1 (mod 3) a c e p t  when 

n E {3,4,6,7,9,10) and possibly when n E {12,15,18,22). 

Proof: The definite exceptions can dl be verified by an exhaustive search. Now if 

n is a prime or prime power, apply Lemma 45. Othawise, apply Lemmas 46, 47, 

and 48 to treat most s m d  ordenr, and Lemmas 49, 50, 51, 53 and Corohries 24 

and 25 to treat n = 21 and all remaining dues satisfyiag 24 < n 5 304. Then 

apply Theorem 84 to complete the proof. O 

4.7.3 An Application to Group Testing 

Let be a population of items, where each item is in exactly one of the states O, 1. 

Furthemore, at most r items are in state 1. The problem is to determine the state of 

each item (or equivalently, to determine the set of all items ia state 1) through some 

tests. A test can be performed on any subset P S I ,  d e d  a pool. The feedback 

to  a test on pool P, denoted f ( P ) ,  is d h e d  by f ( P )  = mm{state of w) .  This 
w f P  

problem, known as the g m p  testing pmblem, has nnnierous rd-wotld applications 

ranghg fiom multiple access comm1UUcations [22] to DNA done isolation [32], and 

its study constitutes an important part of combinatonal search theory [52]. In some 

applications, it is desirable to have each item involved in exactly k pools. We cal1 

the resulting problem k-restràded For simplïcity, we denote the k-restricted group 

testing problem, with at most r items in date 1, by GTPk(r). 
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An algorithm for the gronp testing problem is said to be an a-approzimation 

algorithm if it returns a set S of at  most ar items, so that S contains alI items of 

f2 that are in state 1. 

There are tao w~-Iniown classes of aigorithms for solving gronp testing prob- 

lems: sequential and nonadaptive algorithms. In a sequential algorithm, the decision 

of which pool to test next can depend on the feedbacks to previous tests. On the 

0th- hand, a nonadaptive algorithm must spe* aJl the pools to be tested at 

the very beginning, withouk receiving any feedbach. The complezity of a grmp 

testing algorithm is defined to be the nnmbet of tests mnducted (hence, also the 

number of pools). It is obvions that the best seqnentid aIgorithm has a complexity 

no higher than any nonadaptive algorithm. However, the advent of massively par- 

del  cornputers have prompted Hwang and S6s [?O] to make a case for the stady 

of nonadaptive algonthms. Fwther support of this case is given by Knill and 

Mnthnlaishnan [72] who observed that certain features in the sereening of done 

libraries wit h hybridization probes strongly encourage nonadap tive algorit hms . 

Our focus in this section is on nonadaptive i-approximation algorithms for 

GTP3 (2). Any nonadaptive algorithm A for GTP3(2) corresponds to a 3-dorm 

hypergraph R(A) = (X, B) as follows: 

1. X = {zp  : P is a pool of A). 

2. B = {Bw : w E Q). 

3. x p  E Bw if and only if o E P. 

We c d  N(d) the hypergraph of A. We make the following u s a  observation 

eoncerning X(A). Let 0 be the set of a l l  state 1 items in a. Then zp E U Bw if 
wE0 
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and only if P is a pool of A such that f (P) = 1. Herne, if n e  kaow that one of 

0 or 0' contains the set of all date 1 items in a, then a necessary and d a e n t  

condition which a b w s  us to distingnish them is 

Lemma 54 If A is a nonadoptive )-upprozimution algorithm for GTP3(2), then 

U(A) = (X, B )  L3 weakiy union-fie. 

Pmof: Assume on the contrary that there are four distinct hyperedges Bw E 8, 

1 5 i 5 4, such that B, u B, = B, u Bw,. Hence, if one of {wl, w*)  or {WS, w4) 

is the pair of state 1 items, then A cannot distingaish them. The best A can do is 

then to condude that {wl, wz, w3, wr) contains al1 the state 1 items of a. But this 

violates the condition that A is a  approximation algorithm. O 

Corollary 26 The complezity of tzny nonadaptive )-approa5mation algorithm for 

GTP3(2) with a population of n i t e m  is at Icast + al. 

Lemma 55 Any wuf TTS(n) is the hypergraph of a nonadaptive f -approzimation 

algorithm for GTP42). 

Proof: Let A be the nonadaptive algorithm speeified by a wuf TTS(n), R(d) = 

(X, B). Let wl, wz, ws E Q be any three distinct items. Then Bq # B, since 

H(d) contains no repeated hyperedges, and Bw # B, U B, since the union of 

two distinct hyperedges c o & n s  at least four vertices. Hence if 0 contains only 

one item in state 1, then A caa idente that item precisely. We are thus left with 

the task of considering the case wîth tao  items in state 1. 
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It s d c e s  to show that for any three distiiict hyperedges Bq, B,, B ,  E B such 

that B, U B, = By U Ba = P, we have {B,  8') E {B*, B,, B,) whenever 

BU B' = P. So let BU Br = F. Suppose that at lead one of B or Br is not B, , Bw, 

or B,, for otherwïse we are done. Therefore we mast have {B ,  B') = {B, , Bw,), 

for some w4 6 {wi, y, y) since (X, B )  is weakly union-fiee. We know that IBw, n 

B, 1 # O or 3 beeanse B contains no repeated hyperedges. If 1 Bw n B, 1 = 2, then 

1 FI = 4, implying that {B, , B,, B,, B , )  is the complete 3 - d o m  hypergraph 

on four vertices, which is not w e d y  union-fiee It follows that IB, B, 1 = 1. 

But then B, \ Bw is a Zsubset that must also be contained in the blocks B, and 

Bw,- This contradids the assnmption that (X, B) is a twofold triple system. D 

Corollary 27 For any n r O, 1 (mod 3), and n > 22, then  ezfsts a nonadoptive 

3-approzimotion 2 algorithm of (optimal) cornpledy n for GTP3(2) tmth a population 

ofn(n - 1)/3 items. 



Chapter 5 

Conclusion 

In. this thesis, we have studied pairaise balanced designs, gronp divisible designs 

and related codes. We conclnde with a short discussion of the main themes that 

have been explored, aad an ontline of the extensive collaborations reported here. 

5.1 Collaborations 

A large amount of the rese* reported here has been done in collaboration with 

others. In this section, these collaborations are made clear. Section 2.1 is joint 

work with Colboani, and appears in [84]. Sections 2.2 and 2.3 are in collaboration 

with Colbonrn, Miillin and Zhu and appests in [B?]. Section 2.4, with Colbonni, 

appear in [46]. Section 2.6 is with Chee, Colbo- and c allant and appears in [NI. 

For fnrther PBD clostue resdts of the author, not incladed in this thesis, see [98] 

reporting collaborative work of the author with Mnllin, Abel and Bennett. Some 

resdts on the generating sets of the aathor with Colboum, not inciuded in this 

t hesis , see [83]. 



Section 3.1 and 3.2 report joint work with Abel, Colboum, and Y i  which 

appears in [122]. Section 3.5 concerm tesearch with Colboum appearing in [85]. 

Some results on the existence of GDDs with block sizes 3 and n of the author with 

Chee, see [36]. 

Section 4.1 introduces research wîth Chee and Colbotun; see &O [33]. Section 

4.2 is a joint work with Colboum. Section 4.5 appears in [SI]. Section 4.7 is a joint 

work with Chee and Colboum [35]. 

5.2 Some Themes 

Finite projective planes are used extensively in this thesis in constructing new 

combinatorid designs. We are able to obtain some new pairaise bdanced designs 

by deleting varions line configurations from hite projective planes. We believe 

that there are many more interesting configurations in the h i t e  projective plane 

which lead to interesting combinatod ob jects. 

We have stndied the existence of 5-GDDs of d o r m  groap size. Many direct 

constructions are developed in order to obtain a strong existence result. Unlike 

most papers in the Iiteratare, we have obtained a strong resdt by a large set of 

direct constructions. In most of the direct constructions, certain automorphism 

groups and underlying structure are assumed in order to make the search feasible. 

Identifying a potential automorphism grmp and implementation are key factors 

to succeed in hding the design. In term of identifying a potential antomorphism 

group, there is a trade off betaeen the size of search space and the flexibility of 

the existence of the design under a given gronp. For example, many attempts were 

made to h d  a SGDD of type IO7. We cannot h d  it with a group of order 35, 

and cannot cornplete the search with a smaller automorphism grmp. Althongh, 
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this theme arises fkequently t h g h o u t  the cotuse of this research, due to space 

limitations, ne have not explicitly dated why and how we chose the automorphism 

group that we have used for constrncting the designs. 

Althongh we have a large namber of direct constructions, it is noteworthy that 

if g G 2 (mod 4) and u 11,15 (mod 20), we do not have a good set of techniques 

for constmcting 5-GDD of type gu. Such a design can not exid with a cydie group 

of order gu. Due to the limitation of the d w c t  construction method, n e  have 

circumvented it by applying a new remaive constmction using modified group 

divisible designs. The required modified groap divisible designs are ofken mach 

easier to construct. By combining both direct and new remsive constructions, we 

are able to show that 5-GDD of type gu exists for but possibly finite namber of 

P.;.. ( 9 , ~ ) .  

Finally, we have obtained some new connections between coding theory and 

design theory. The interaction between coding theory and design theory had been 

known for a long tirne. It is a pleasant surprise that designs with certain forbidden 

sub-configurations cari be used to obtain some practical codes arising fiom cornputer 

science. In patticalar, it relates a well known open problem in design theory is 

related in a asefd way to coding theory. Despite numerous effort, it is disappointing 

that we have not been able to settle the existence of di-Pasch STSs completely. 

However, several new constructions are presented and they can obtained new intinite 

classes of anti-Pasch STSs. 
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Appendix A 

In this appendix, we constrnct a {5,6}-GDD of type type S861. W e  take design no. 

33 from [92]. 

Block No. Block 
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Block No. Block 



Block No. Bloc. 
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Block No. Block 

We note that block no. 0,1,4,76,81, û4,88,92,72 form a parallel class. Further, 

block no. 0,2,3,78,79,86,90,94,95 form another pardel dass. The tao  parallel 

dasses have exactly one block in common. Add an infinte point to obtain a (5,6}- 

GDD of type 5'6'. 
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Appendix B . Computer Constructions of weakly 

union-fkee TTS(n) 



Block Block 



Block Block 

No. 

1 ~ ~ 2 7 ~  {1,40){2,10}{3,44){4,35){5,32){6,19){7,37){9,38){12,33} 



Block Block 

No. 



Block Block 

No. 



Block Block 

No. 



BIock Block 

No. 



Block Block 

No. 




