## Service System Design with

## Immobile Servers, Stochastic

## Demand and Economies of Scale

by<br>Yan Wang<br>A thesis<br>presented to the University of Waterloo<br>in fulfillment of the<br>thesis requirement for the degree of<br>Master of Applied Science<br>in<br>Management Sciences<br>Waterloo, Ontario, Canada, 2015<br>(C) Yan Wang 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.


#### Abstract

The service system design problem seeks to locate facilities, determine their capacity, and assign customers to them in order to improve the service quality and the customers' experience while minimizing the capacity acquisition cost, the customer access cost, and the average waiting cost. While the centralization of facilities will lead to economies of scale, decentralizing them will lead to faster response times. Traditionally, the capacity acquisition costs were assumed linear with a fixed setup cost. In this work, we explicitly account for economies of scale by modeling the cost as a concave function of capacity.

In this thesis, we model and provide solution methodologies for the service system design problem with immobile servers, stochastic demand and economies of scale. We start by reformulating the problem, and then provide solution approaches based on piecewise linearization, Second Order Cone Programming (SOCP), and Lagrangian Relaxation. Extensive numerical testing on a standard data set is provided and the results analyzed.


## Acknowledgements

I would like to thank my supervisor, Dr. Samir Elhedhli, for his continuous support, funding, resources, and insights. The Waterloo Optimization Lab (WatOpt), cofounded by Dr. Samir Elhedhli and Dr. Fatma Gzara, provided me with an excellent research and study environment.

I would also like to thank my thesis' committee members, Dr. Fatma Gzara and Dr. Benny Mantin, for their kind patience and valuable feedback.

I would also like to acknowledge my dearest parents, Geng Zhang and Maoting Wang, and my grandparents, Shu Zhang, Jingwen Xian, Jinmiao Wang, and Xinwen Zhang, who have been supported me strongly and unconditionally for years. In particular, I would like to thank my fiancee, Pang Xiao, for the love and support she gave me.

Finally, I would like to thank the faculty and staff of the Department of Management Sciences at the University of Waterloo for creating an excellent research environment.

## Dedication

This is dedicated to my beloved Qianyao Tan.

## Table of Contents

List of Tables ..... viii
List of Figures ..... xi
1 Introduction ..... 1
2 Literature Review ..... 3
2.1 The Facility Location Problem ..... 3
2.1.1 The Uncapacitated Facility Location Problem ..... 4
2.2 Capacity Costs ..... 5
2.3 Customer Waiting Time ..... 6
3 Problem Formulation ..... 7
3.1 Mathematical Model ..... 7
3.2 Problem Reformulation ..... 9
3.3 A Combinatorial Benders Approach ..... 16
3.3.1 An Illustrative Example ..... 17
4 Solution Approaches ..... 21
4.1 A Linearization Based on SOS2 Constraints ..... 21
4.1.1 The Linearized Formulation ..... 28
4.2 A SOCP Approach ..... 31
4.2.1 The SOCP Approach Reformulation ..... 31
4.2.2 The SOCP Approach with a Fixed Facility Utilization Factor, $\alpha$ ..... 33
4.2.3 A SOCP Based Lagrangian Relaxation ..... 34
5 Numerical Results and Comparison ..... 39
5.1 Test Instances ..... 39
5.2 Comparison Between the Two Approaches ..... 40
6 Conclusion ..... 42
APPENDICES ..... 44
A The Numerical Results ..... 45
B The Numerical Results ..... 54
References ..... 61

## List of Tables

3.1 The optimal solution and objective for different $(C, t)$ combinations ..... 13
3.2 The optimal solution and objective for different $(C, t)$ combinations ..... 13
3.3 The unit costs and mean demand rates for the illustrative example ..... 17
3.4 Solutions of the illustrative example ..... 18
3.5 Detailed results for the Combinatorial Benders methodology on the illustra- tive example ..... 20
4.1 Approximation parameters for the $P^{2}$ case with $\epsilon=0.01, t=25$ and total demand 105 units. ..... 23
4.2 Approximation parameters for the $P^{2}$ case with $\epsilon=0.001, t=25$ and total demand 105 units. ..... 23
4.3 Approximation parameters for the $P^{3}+P^{4}$ case with $\epsilon=0.01, t=25$ and total demand 105 units. ..... 25
4.4 Approximation parameters for the $P^{3}+P^{4}$ case with $\epsilon=0.001, t=25$ and total demand 105 units. ..... 25
4.5 Number of SOS2 cuts with different $\epsilon$ for the $P^{2}$ and, $P^{4}+P^{3}$ cases. ..... 25
4.6 Complete enumeration results ..... 29
4.7 SOS2 results with $\epsilon=0.001$ ..... 30
4.8 SOS2 results with $\epsilon=0.0001$ ..... 30
4.9 SCOP results with $\alpha$ and epsilon $=0.1$ ..... 34
4.10 Lagrangian Relaxation for the illustrative example. $\alpha=0.1,0.2, \ldots, 0.9$ ..... 38
5.1 Test Instances ..... 40
5.2 Comparison: SOS2 vs SOCP ..... 41
A. 1 SOS2 Test results with $t=100, \epsilon=0.01$ ..... 46
A. 2 SOS2 Test results with $t=100, \epsilon=0.008$ ..... 47
A. 3 SOS2 Test results with $t=50, \epsilon=0.05$ ..... 48
A. 4 SOS2 Test results with $t=50, \epsilon=0.04$ ..... 49
A. 5 SOS2 Test results with $t=50, \epsilon=0.03$ ..... 50
A. 6 SOS2 Test results with $t=25, \epsilon=0.2$ ..... 51
A. 7 SOS2 Test results with $t=25, \epsilon=0.1$ ..... 52
A. 8 SOS2 Test results with $t=25, \epsilon=0.08$ ..... 53
B. 1 SOCP Test results with $t=100, \epsilon=0.25$, runtime $=2000$ ..... 55
B. 2 SOCP Test results with $t=100, \epsilon=0.2$, runtime $=2000$ ..... 56
B. 3 SOCP Test results with $t=50, \epsilon=0.25$, runtime $=2000$ ..... 57
B. 4 SOCP Test results with $t=50, \epsilon=0.2$, runtime $=2000$ ..... 58
B. 5 SOCP Test results with $t=25, \epsilon=0.25$, runtime $=2000$ ..... 59
B. 6 SOCP Test results with $t=25, \epsilon=0.2$, runtime $=2000$ ..... 60

## List of Figures

3.1 The objective function $\sqrt{C(R+1)}+\frac{t}{R}$ for $C=1, t=1$ ..... 11
3.2 The effect of the scaling parameter, $C$, on the objective function ..... 12
3.3 The effect of the scaling parameter, $t$, on the objective function ..... 14
3.4 Solutions of the illustrative example ..... 19
4.1 Piecewise approximations for $P^{4}+P^{3}$ case with $\epsilon=0.001$ ..... 26
4.2 Piecewise approximations for $P^{4}+P^{3}$ case with $\epsilon=0.001$ ..... 27

## Chapter 1

## Introduction

In the service system design problem, the costs minimized include linear capacity costs, transportation costs, and customer waiting costs. Capacity costs include the costs to open service facilities and to assign enough service capacity to them. The customer waiting costs are often measured by the average time per customer, the number of customers that can be served within a time limit, or the probability to serve all customers within a desired time period. For large service facilities, economies of scale can be achieved, which pushes for the establishment of fewer and larger facilities. This, on the other hand, will force access cost and waiting times to increase. Thus, it is important for the decision makers to accurately monitor all the costs, and to balance the trade off between the capacity costs and customer waiting costs to minimize the total cost.

In this thesis, we consider a service system design problem with immobile servers, stochastic demand, and economies of scale. We will tackle the problem with different
approaches. First, we will provide a new formulation based on a Benders-type idea and propose a piecewise linear approximation based on Special Order Set of Type 2 (SOS2) constraints.

Next, we focus on the special case with a square root capacity function, and propose a Second Order Cone Programming (SOCP) approach. New auxiliary variables and a facility utilization factor variable are introduced to reformulate the problem. A SOCP based Lagrangian Relaxation is proposed where the subproblems are SOCP problems. The Lagrangian bounds along with feasible solutions are generated and compared with the other method.

A small example with 3 facilities and 6 customers is used to illustrate the different models and solution approaches introduced. In the beginning, a complete enumeration is used to get the optimal solution. As new approaches are being introduced, this small example is used again to give a better illustration of the algorithms.

This thesis is organized as follows: Chapter 2 presents the literature review for the facility location and the service system design problems. Chapter 3 describes the problem formulations. Chapter 4 presents different solution methodologies, including the SOS2 and SOCP approaches. Chapter 5 provides the numerical testing on a standard data set. Chapter 6 concludes the thesis.

## Chapter 2

## Literature Review

The service system design problem with immobile servers, stochastic demand and congestion has been activity studied in recent decades. Amiri [3, 4] was among the first to consider the objective. He assumed an infinite buffer capacity, Poisson arrival and exponential service time. Their assumptions became standard assumption in most subsequent work. Elhedhli [11] considered a service system design problem modelled as a network of M/M/1 queues. He transformed the nonlinear model to a linear mixed integer problem with a large set of constraints and solved it using a cutting plane method.

### 2.1 The Facility Location Problem

Facility location problems seek to locate facilities to serve customer demand with the objective of minimizing facility opening and operating costs as well as transportation costs. Hamacher and Nickel [15] provided a classification scheme for facility location problems.

Klose and Drexl [18] studied the distribution system design problem, and provide a summary of continuous facility location and network design problems. Revelle et al. [19] reviewed the p-median plant location problem as well as the p-center and the covering problems.

### 2.1.1 The Uncapacitated Facility Location Problem

Let's consider a problem with $J$ potential facilities and $I$ customers. The demand for customer $i$ is $\lambda_{i}, i \in I$. The fixed cost to open a facility $j$ is $f_{j}, j \in J$, and the unit cost of serving from facility $j$ to customer $i$ is $c_{i j}$. Let $x_{i j}$ take value of 1 if customer $i$ is served by facility $j$ and 0 otherwise. Let $y_{i}$ take value of 1 if facility $j$ is open. The UFLP model is:

$$
\begin{align*}
\text { [UFLP]: } \quad \min & \sum_{j=1}^{J} f_{j} y_{j}+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j} \\
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{1}\\
& \sum_{i=1}^{I} x_{i j} \leq y_{j} \quad j=1, \ldots, J  \tag{2}\\
& x_{i j}, y_{j} \in\{0,1\} \quad i=1, \ldots, I ; j=1, \ldots, J \tag{3}
\end{align*}
$$

The objective function minimizes the total costs, which include the facility opening costs and the variable transportation costs. Constraints (1) ensure that every customer's demand is being met whereas constraints (2) guarantee that customers are assigned to the open facilities.

In the following sections, we will review some of the literature that modelled the two
cost components we model in this work: concave capacity costs due to economies of scale and convex cost due to waiting time.

### 2.2 Capacity Costs

Capacity costs are often assumed to have a fixed set up cost and linear acquisition cost. In the real world, however, the capacity cost may be nonlinear due to economies of scale. The facilities will thus have a cost advantage as the size increases. The cost per unit of output usually decreases as volume increases because fixed cost per unit diminishes. Therefore, a concave capacity cost function is a more reasonable assumption than a linear one. Based on this, Florian and Klein [13] provided a mathematical model to solve a multi-period single commodity production planning problem with concave production and storage cost and capacity. They considered both the backlog and the no backlog cases. A dynamic programming method was employed with the assumption of constant capacities over periods.

Zangwill [22] worked on the minimum concave cost solution for acyclic single source multiple destination networks, acyclic single source single destination networks, as well as acyclic multiple source single destination networks. The author presented theories to describe the extreme point solutions, but did not provide any numerical testing. Cohen and Moon [6] considered a model to deal with the integrated plant loading problem with the consideration of economies of scale. The authors presented a mathematical formulation with concave production costs and fixed operating costs. They adopted the Benders decomposition method to solve the piecewise linear concave cost function. Dasci and Verter
[8] dealt with the concave capacity cost function using a progressive piecewise linear underestimation technique. Hajiaghayi et al. [14] modelled an uncapacitated facility location problem with a concave facility cost function, which was a function of the number of clients assigned to it. They used a greedy algorithm to achieve an approximation ratio of 1.861. Following their research, Romeijn et al. [20] considered an uncapacitated facility location problem with a concave facility cost function, which was a function in proportion to the amount of demand assigned to the facility. They tackled the problem with a greedy algorithm along with the idea of cost-scaling and reached an approximation factor of 1.52. Dupont [9] derived heuristic algorithms and a branch and bound method to solve the facility location problem with the limitation of a pre-determined service distance.

### 2.3 Customer Waiting Time

Customer waiting time or cost is an important component of service system design problems. Amiri [3, 4] presented a combined model of the problem, established an integer programming formulation of the problem, and proposed two heuristic solution methods based on Lagrangian Relaxation. Eskigun et al. [12] included lead time into the supply chain network design problem and proposed a Lagrangian heuristic to solve it. Aboolian et al. [1] accounted for the elasticity of customer demand, taking transportation and congestion delay costs into consideration. Vidyarthi et al. [21] presented models for make-to-order and assemble-to-order supply chains under Poisson demand.

## Chapter 3

## Problem Formulation

In this chapter, we present the formulation for the service system design problem with immobile servers, stochastic demand and economies of scale. We then provide a reformulation of the problem and provide a small numerical example.

### 3.1 Mathematical Model

First of all, let us define the following indices and parameters:
$i \quad$ : index for customers, $i=1,2, \ldots, I$;
$j$ : index for potential facility locations, $j=1,2, \ldots, J$;
$c_{i j}$ : unit cost of serving customers $i$ from facility $j$ (\$/unit);
$t$ : response time cost per unit time per customer (\$/period/customer);

$$
\lambda_{i}: \text { mean demand rate for customer } i \text { (units/period), } i=1,2, \ldots, I
$$

and the following decision variables:

$$
x_{i j}= \begin{cases}1 & \text { if customer } i \text { is assigned to facility } j, j=1, \ldots, J \\ 0 & \text { otherwise }\end{cases}
$$

$\mu_{j} \quad$ : the mean service rate at facility $j$ (units/period).

The problem can be formulated as:

$$
\begin{align*}
& \text { [FLM]: } \quad \min \sum_{j=1}^{J} f_{j}\left(\mu_{j}\right)+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+t \sum_{j=1}^{J} \frac{\sum_{i=1}^{I} \lambda_{i} x_{i j}}{\mu_{j}-\sum_{i=1}^{I} \lambda_{i} x_{i j}} \\
& \text { s.t. } \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{1}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}-\mu_{j} \leq 0 \quad i=1, \ldots, I  \tag{2}\\
& x_{i j} \in\{0,1\} ; \mu_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{3}
\end{align*}
$$

The first term in the objective function captures the capacity cost $\mu_{j}$ at facility $j, j=$ $1, \ldots, J$. The function $f_{j}\left(\mu_{j}\right)$ is assumed to be concave, increasing to capture the economies of scale. For example, $f_{j}\left(\mu_{j}\right)$ could take the form $a \mu^{b}$ where $a>0$ and $0<b<1$. The second term accounts for the variable access cost for customers at facilities. The third term is the expected total response time at facility $j$ assuming an ( $\mathrm{M} / \mathrm{M} / 1$ ) queuing system. Constraints (1) guarantee each customer is assigned to exactly one of the facilities. Constraints (2) ensure the assigned capacity of a facility will not exceed its service rate, and
only open facilities will be assigned to customers. Constraints (3) restrict the assignment variable $x_{i j}$ to be binary, and the facility's service rate to be greater or equal to 0 .

### 3.2 Problem Reformulation

The above problem is nonlinear with concave and convex terms. In this section, we provide a transformation to help solve it. Let us define a new auxiliary variable, $R_{j}=$ $\frac{\mu_{j}-\sum_{i=1}^{I} \lambda_{i} x_{i j}}{\sum_{i=1}^{I} \lambda_{i} x_{i j}}, \quad j=1, \ldots, J$. By rearranging the terms, we get $\mu_{j}=\left(R_{j}+1\right) \sum_{i=1}^{I} \lambda_{i} x_{i j}, \quad j=$ $1, \ldots, J$.

We can rewrite the formulation [FLM] as:

$$
\begin{align*}
& \text { [FLM2]: } \quad \min \sum_{j=1}^{J} f_{j}\left(\sum_{i=1}^{I} \lambda_{i} x_{i j}\left(R_{j}+1\right)\right)+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} \frac{t}{R_{j}} \\
& \text { s.t. } \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{4}\\
& \quad \mu_{j}=\left(R_{j}+1\right) \sum_{i=1}^{I} \lambda_{i} x_{i j} \quad j=1, \ldots, J  \tag{5}\\
&  \tag{6}\\
& \quad x_{i j} \in\{0,1\} ; R_{j} \geqslant 0 ; \mu_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J
\end{align*}
$$

Note that constraints $\sum_{i=1}^{I} \lambda_{i} x_{i j}-\mu_{j} \leq 0$ are redundant in the presence of constraints (5).

Given the difficulty in solving [FLM2] directly, we first try to explore its structure. By fixing variables $x$ to $\bar{x}$, the problem reduces to:

$$
\min \sum_{j=1}^{J} f_{j}\left(\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}\left(R_{j}+1\right)\right)+\sum_{j=1}^{J} \frac{t}{R_{j}}
$$

$$
\begin{aligned}
& \text { s.t. } \mu_{j}=\left(R_{j}+1\right) \sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j} \quad j=1, \ldots, J \\
& \quad \mu_{j}, R_{j} \geqslant 0 ; \quad j=1, \ldots, J
\end{aligned}
$$

which decomposes to $j$ smaller problems:

$$
\begin{array}{ll}
\min & f_{j}\left(\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}\left(R_{j}+1\right)\right)+\frac{t}{R_{j}} \\
\text { s.t. } & \mu_{j}=\left(R_{j}+1\right) \sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j} \\
& \mu_{j}, R_{j} \geqslant 0
\end{array}
$$

Note that the constraint linking $\mu_{j}$ to $R_{j}$ can be safely eliminated. So the problem reduces to:

$$
\begin{array}{ll}
\min & f_{j}\left(\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}\left(R_{j}+1\right)\right)+\frac{t}{R_{j}} \\
\text { s.t. } & R_{j} \geqslant 0
\end{array}
$$

We will next explore the solution of this problem. The analysis will focus on the square root function for $f_{j}$. However, the model is able to deal with any form of functions in the form $a \mu^{b}$ where $a>0 ; 0<b<1$. For brevity, let us write the previous model as $\min _{R \geqslant 0} \sqrt{C(R+1)}+\frac{t}{R}$. The concave term, $f(C(R+1))$, represents a concave function with scaling parameter $C$. The convex term, $\frac{t}{R}$, represents a convex function with a scaling parameter of $t$.

Figure 3.1 displays the objective function $\sqrt{C(R+1)}+\frac{t}{R}$ for $C=1$ and $t=1$. As seen, the graph is first convex then concave. The global minimum is reached at $R=1.8351$ and the objective is 2.2287 . As the function is unimodular, the global minimum is found by taking the derivative and setting it to 0 .


Figure 3.1: The objective function $\sqrt{C(R+1)}+\frac{t}{R}$ for $C=1, t=1$

Next, we analyze the function as the scaling parameters, $C$ and $t$, change.

## Case 1: Changing the concave scaling factor

As we can see from Figure 3.2 and Table 3.1, as $C$ increases, the optimum decreases and the optimal objective increases. This relationship explains the effect of diseconomies of scales whereby, as the cost of variable input increases while holding other factors constant, the optimal production level decreases and the total production cost increases. As $R$ increases further, the difference between the total costs under different scenarios will be magnified.


Figure 3.2: The effect of the scaling parameter, $C$, on the objective function

## Case 2: Changing the convex scaling factor

|  |  | Global Minimum |  |
| :---: | :---: | :---: | :---: |
| C | t | R value at minimum | Objective value |
| 1 | 1 | 1.8351 | 2.2287 |
| 2 | 1 | 1.4945 | 2.9027 |
| 5 | 1 | 1.1445 | 4.1483 |
| 10 | 1 | 0.9384 | 5.4684 |

Table 3.1: The optimal solution and objective for different $(C, t)$ combinations

Figure 3.3 and Table 3.2 show the effect of varying $t$ values while fixing the rest. As $t$ increases, both the optimum $R$ and the optimal objective function increase. The intuition behind this is that as the fixed cost increases while holding others constant, the optimal production level increases and the total production cost increases. However, as $R$ increases even more, the increased fixed cost effect will diminish. As $R$ approaches infinity, the total cost tends to reach a common value.

|  |  | Global Minimum |  |
| :---: | :---: | :---: | :---: |
| C | t | R value at minimum | Objective value |
| 1 | 1 | 1.8351 | 2.2287 |
| 1 | 2 | 2.7907 | 2.6636 |
| 1 | 5 | 4.9360 | 3.4494 |
| 1 | 10 | 7.6751 | 4.2483 |

Table 3.2: The optimal solution and objective for different $(C, t)$ combinations

As the function $\sqrt{C(R+1)}+\frac{t}{R}$ is first convex and then concave with the minimum achieved at the convex part, it is safe to take the derivative and set it to zero to find the global minimum. For that, we get:

$$
\frac{\partial\left(\sqrt{\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}(R+1)}+\frac{t}{R}\right)}{\partial R}=0
$$

which implies


Figure 3.3: The effect of the scaling parameter, $t$, on the objective function

$$
\begin{aligned}
& \frac{\sqrt{\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}}}{2 \sqrt{\left(R_{j}+1\right)}}=\frac{t}{R_{j}^{2}} \\
& \sqrt{\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}}=\frac{2 t \sqrt{\left(R_{j}+1\right)}}{R_{j}^{2}} \\
& \sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}=\frac{4 t^{2}\left(R_{j}+1\right)}{R_{j}^{4}}
\end{aligned}
$$

$$
\begin{equation*}
\sum_{i=1}^{I} \frac{\lambda_{i}}{4 t^{2}} \bar{x}_{i j}=\frac{1}{R_{j}^{3}}+\frac{1}{R_{j}^{4}} \tag{*}
\end{equation*}
$$

By substituting $\left(^{*}\right)$ into the original problem, we can rewrite [FLM2] as:

$$
\min \sum_{j=1}^{J} \frac{2 t\left(1+R_{j}\right)}{R_{j}^{2}}+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} \frac{t}{R_{j}}
$$

Rearranging the terms leads to:
[FLM3]: $\quad \min \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} \frac{2 t}{R_{j}^{2}}+\sum_{j=1}^{J} \frac{3 t}{R_{j}}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I \\
& \sum_{i=1}^{I} \frac{\lambda_{i}}{4 t^{2}} x_{i j}=\frac{1}{R_{j}^{3}}+\frac{1}{R_{j}^{4}} \quad j=1, \ldots, J \\
& x_{i j} \in\{0,1\} ; R_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{9}
\end{array}
$$

Defining a new variable, $P_{j}=\frac{1}{R_{j}}$; then [FLM3] can be written as:
[FLM4]: $\quad \min \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} 2 t P_{j}^{2}+\sum_{j=1}^{J} 3 t P_{j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I \\
& \sum_{i=1}^{I} \frac{\lambda_{i}}{4 t^{2}} x_{i j}=P_{j}^{3}+P_{j}^{4} \quad j=1, \ldots, J \\
& x_{i j} \in\{0,1\} ; P_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{12}
\end{array}
$$

We have successfully transformed our mathematical model to [FLM4], which is one of the contributions of this thesis. In the following chapter, we will show how to solve [FLM4] using piecewise linearization with Special Order Set Type 2 (SOS2) constraints.

### 3.3 A Combinatorial Benders Approach

Based on the idea of fixing $x_{i j}$, a Combinatorial Benders approach is derived. The idea is to start with a certain realization $\bar{x}_{i j}$, find the corresponding $R_{j}$ and $\mu_{j}$ values by solving:

$$
\begin{aligned}
& {[\mathrm{SP}]: \quad \min \sum_{j=1}^{J} f_{j}\left(\sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j}\left(R_{j}+1\right)\right)+\sum_{j=1}^{J} \frac{t}{R_{j}}} \\
& \text { s.t. } \mu_{j}=\left(R_{j}+1\right) \sum_{i=1}^{I} \lambda_{i} \bar{x}_{i j} \quad j=1, \ldots, J \\
& \mu_{j}, R_{j} \geqslant 0 ; \quad j=1, \ldots, J
\end{aligned}
$$

A feasible solution is then obtained.
To generate a different $x_{i j}$ realization, the following cut is added: $\sum_{\bar{x}^{h}=0} x_{i j}^{h}+\sum_{\bar{x}^{h}=1}(1-$ $\left.x_{i j}^{h}\right) \geqslant 1 \quad h=1, \ldots, H$

The Combinatorial Benders Master problem is:

$$
\begin{align*}
\text { [MP]: } \quad \min & \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j} \\
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{13}\\
& \sum_{\bar{x}^{h}=0} x_{i j}^{h}+\sum_{\bar{x}^{h}=1}\left(1-x_{i j}^{h}\right) \geqslant 1 \quad h=1, \ldots, H  \tag{14}\\
& x_{i j} \in\{0,1\} ; \theta_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{15}
\end{align*}
$$

### 3.3.1 An Illustrative Example

We build a small example assuming that there are 3 facilities serving 6 Customers. The response time cost per unit time per customer, $t$, is set to 25 . The unit cost of serving customers $i$ from facility $j$ and the mean demand rate for the product from customer $i$ are shown in Table 3.3.

|  |  | $c_{i j}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Facility |  |  |  |  |  |
| Customer | 1 | 2 | 3 | $\lambda$ |  |
|  | 1 | 5 | 15 | 25 | 10 |
|  | 2 | 30 | 20 | 10 | 20 |
|  | 3 | 5 | 35 | 15 | 30 |
|  | 4 | 10 | 10 | 8 | 25 |
|  | 5 | 20 | 5 | 25 | 15 |
|  | 6 | 8 | 12 | 20 | 5 |

Table 3.3: The unit costs and mean demand rates for the illustrative example

The results are shown in Table 3.4.

By looking at Table 3.5, we observe that the Combinatorial Benders method will find the lowest cost solution within two iterations. It has to go through 729 iterations to prove optimality. This shows the inefficiency of the method as it will typically go through a complete enumeration. To fix this, a better cut set should be devised.


Table 3.4: Solutions of the illustrative example


Figure 3.4: Solutions of the illustrative example

| Iteration | Objective |  |  | Cost on Facility |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Subproblem | Master problem | Total | Facility 1 | Facility 2 | Facility 3 |
| 1 | 28.81 | 1575.00 | 1603.81 |  |  |  |
| 2 | 56.90 | 715.00 | 771.90 | 33.84\% | 11.58\% | 54.57\% |
| 3 | 57.56 | 735.00 | 792.56 | 27.81\% | 19.04\% | 53.15\% |
| 4 | 55.24 | 765.00 | 820.24 | 62.77\% | 10.90\% | 26.33\% |
| 5 | 57.56 | 765.00 | 822.56 | 31.76\% | 41.99\% | 26.25\% |
| 6 | 56.84 | 775.00 | 831.84 | 26.49\% | 10.75\% | 62.76\% |
| 7 | 56.12 | 785.00 | 841.12 | 56.38\% | 17.95\% | 25.67\% |
| 8 | 57.56 | 785.00 | 842.56 | 26.16\% | 48.22\% | 25.63\% |
| 9 | 57.92 | 815.00 | 872.92 | 23.99\% | 27.75\% | 48.26\% |
| 10 | 55.89 | 825.00 | 880.89 | 53.84\% | 10.15\% | 36.01\% |
| 11 | 57.99 | 825.00 | 882.99 | 24.96\% | 39.11\% | 35.93\% |
| 12 | 58.04 | 835.00 | 893.04 | 18.86\% | 33.97\% | 47.17\% |
| 13 | 56.74 | 865.00 | 921.74 | 50.29\% | 26.28\% | 23.43\% |
| 14 | 57.43 | 865.00 | 922.43 | 22.70\% | 53.89\% | 23.41\% |
| 15 | 57.70 | 875.00 | 932.70 | 18.05\% | 25.97\% | 55.97\% |
| 16 | 57.16 | 885.00 | 942.16 | 44.88\% | 32.20\% | 22.92\% |
| 17 | 57.16 | 885.00 | 942.16 | 17.87\% | 59.21\% | 22.92\% |
| 18 | 57.92 | 915.00 | 972.92 | 26.85\% | 50.82\% | 22.33\% |
| 19 | 56.67 | 915.00 | 971.67 | 21.55\% | 9.20\% | 69.24\% |
| 20 | 57.32 | 925.00 | 982.32 | 43.04\% | $24.66 \%$ | 32.30\% |
| 350 | 57.70 | 1565.00 | 1622.70 | 56.21\% | 14.93\% | 28.87\% |
| 351 | 53.03 | 1565.00 | 1618.03 | 65.89\% | 10.04\% | 24.07\% |
| 352 | 43.91 | 1565.00 | 1608.91 | 19.17\% | 0.00\% | 80.83\% |
| 353 | 57.70 | 1565.00 | 1622.70 | 40.50\% | 30.63\% | 28.87\% |
| 354 | 52.59 | 1565.00 | 1617.59 | 3.08\% | 16.52\% | 80.40\% |
| 355 | 53.96 | 1575.00 | 1628.96 | $3.84 \%$ | 25.53\% | 70.63\% |
| 356 | 56.74 | 1575.00 | 1631.74 | 37.75\% | 14.85\% | 47.41\% |
| 357 | 55.81 | 1575.00 | 1630.81 | 47.34\% | 9.96\% | 42.69\% |
| 358 | 57.16 | 1585.00 | 1642.16 | 37.51\% | 33.97\% | 28.52\% |
| 359 | 58.04 | 1585.00 | 1643.04 | 53.03\% | 18.47\% | 28.51\% |
| 360 | 56.84 | 1585.00 | 1641.84 | 47.02\% | 29.26\% | 23.72\% |
| 720 | 57.43 | 2535.00 | 2592.43 | 23.76\% | 43.57\% | 32.67\% |
| 721 | 56.67 | 2550.00 | 2606.67 | 35.27\% | 50.75\% | 13.98\% |
| 722 | 56.35 | 2550.00 | 2606.35 | 45.03\% | 40.99\% | 13.98\% |
| 723 | 57.70 | 2565.00 | 2622.70 | 34.78\% | 40.74\% | 24.49\% |
| 724 | 57.32 | 2565.00 | 2622.32 | 25.06\% | 50.44\% | 24.49\% |
| 725 | 57.16 | 2575.00 | 2632.16 | 23.40\% | 40.59\% | 36.01\% |
| 726 | 56.74 | 2585.00 | 2641.74 | 23.32\% | 52.37\% | 24.31\% |
| 727 | 57.92 | 2585.00 | 2642.92 | 32.97\% | 42.73\% | 24.30\% |
| 728 | 57.16 | 2625.00 | 2682.16 | 22.96\% | 49.32\% | 27.72\% |
| 729 | 58.04 | 2625.00 | 2683.04 | 32.47\% | 39.82\% | 27.71\% |

Table 3.5: Detailed results for the Combinatorial Benders methodology on the illustrative example

## Chapter 4

## Solution Approaches

In this chapter, we propose two solution methodologies to solve [FLM4]. The first is a linearization based on SOS2 constraints andthe second is based on Second Order Cone Programming (SOCP) approach.

### 4.1 A Linearization Based on SOS2 Constraints

Let us recall the model [FLM4]:

$$
\begin{align*}
\min & \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} 2 t P_{j}^{2}+\sum_{j=1}^{J} 3 t P_{j} \\
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{10}\\
& \sum_{i=1}^{I} \frac{\lambda_{i}}{4 t^{2}} x_{i j}=P_{j}^{3}+P_{j}^{4} \quad j=1, \ldots, J \tag{11}
\end{align*}
$$

$$
\begin{equation*}
x_{i j} \in\{0,1\} ; P_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{12}
\end{equation*}
$$

In order to estimate $P^{2}, P^{3}$, or $P^{4}$, we generate a set of cuts for the function $f(P)$ where the generated piecewise linear approximation $\hat{f}$ satisfies $0 \leqslant f(P)-\hat{f}(P) \leqslant \epsilon$ on every point(Elhedhli [10]).

To illustrate this, let us assume that the approximation $\hat{f}$ has $n+1$ breakpoints located at $P_{0}, P_{1}, \ldots, P_{n}$, and each line segment is tangent to the origin function $f$ at the $n+1$ points $p_{0}, p_{1}, \ldots, p_{n}$ where $P_{k-1} \leqslant p_{k} \leqslant P_{k}$. We can recursively determine the $P_{k}$ and $p_{k}$ values, given the fact that $\hat{f}$ is linear between $P_{k-1} \leqslant p_{k} \leqslant P_{k}$. The slopes of $\hat{f}$ can be also determined, which are $f^{\prime}\left(p_{k}\right)$. Thus, given the values of $\hat{f}\left(P_{k-1}\right)$ and $P_{k-1}$ as well as using the fact that $f\left(P_{k}\right)=P^{2}, P^{3}$, or $P^{4}$, we can find $p_{k}$ by using:

$$
\hat{f}\left(P_{k-1}\right)=f\left(p_{k}\right)+f^{\prime}\left(p_{k}\right)\left(P_{k-1}-p_{k}\right)
$$

Then using the fact that $p_{k}$ and $\hat{f}\left(P_{k}\right)=f\left(P_{k}\right)+\epsilon=f\left(P_{k}\right)+\epsilon$, we can find $P_{k}$ by using:

$$
\hat{f}\left(P_{k}\right)=f\left(p_{k}\right)+f^{\prime}\left(p_{k}\right)\left(P_{k}-p_{k}\right)
$$

Then, $P_{k}$ can be used as the start point, which is $P_{k-1}$ of the next piecewise linear segment. For $P^{2}$, the procedure is:

Step 1: We initialize $P_{k-1}=0$.

Step 2: The line equation to solve for $p_{k}$ is:

$$
\hat{f}\left(P_{k-1}\right)=p_{k}^{2}+2 p_{k}\left(P_{k-1}-p_{k}\right)
$$

Since the maximum error is limited to $\epsilon$, we have:

$$
\hat{f}\left(P_{k-1}\right)=P_{k-1}^{2}-\epsilon
$$

Solve the following to find $p_{k}$ :

$$
p_{k}^{2}-2 P_{k-1} p_{k}+P_{k-1}^{2}-\epsilon=0
$$

Step 3: $\quad$ The line equation to solve for $P_{k}$ is:

$$
\hat{f}\left(P_{k}\right)=p_{k}^{2}+2 p_{k}\left(P_{k}-p_{k}\right)
$$

Since the maximum error is limited to $\epsilon$, we have:

$$
\hat{f}\left(P_{k}\right)=P_{k}^{2}-\epsilon
$$

To find $P_{k}$, solve:
$P_{k}^{2}-2 p_{k} P_{k}+p_{k}^{2}-\epsilon=0$
We repeat steps 2 and 3 until $P_{k} \geqslant \sqrt[2]{\frac{\sum_{i=1}^{I} \lambda_{i}}{8 t^{2}}}$, which is the highest value possible for $P$.

The number of linear segments will depend on the error term $\epsilon$. As we can see from Table 4.1 and Table 4.2, the number of SOS2 constraints increases as $\epsilon$ decreases.

|  | Iter 1 | Iter 2 |
| :---: | :---: | :---: |
| $P_{k-1}$ | 0.0000 | 0.2000 |
| $p_{k}$ | 0.1000 | 0.3000 |
| $P_{k}$ | 0.2000 | 0.4000 |

Table 4.1: Approximation parameters for the $P^{2}$ case with $\epsilon=0.01, t=25$ and total demand 105 units.

|  | Iter 1 | Iter 2 | Iter 3 | Iter 4 | Iter 5 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $P_{k-1}$ | 0.0000 | 0.0632 | 0.1265 | 0.1897 | 0.2530 |
| $p_{k}$ | 0.0316 | 0.0949 | 0.1581 | 0.2214 | 0.2846 |
| $P_{k}$ | 0.0632 | 0.1265 | 0.1897 | 0.2530 | 0.3162 |

Table 4.2: Approximation parameters for the $P^{2}$ case with $\epsilon=0.001, t=25$ and total demand 105 units.

Similarly for $P^{3}+P^{4}$, the linearization parameters are determined as follows:

Step 1: We initialize $P_{k-1}=0$.

Step 2: $\quad$ The line equation to solve for $p_{k}$ is:

$$
\hat{f}\left(P_{k-1}\right)=p_{k}^{4}+p_{k}^{3}+\left(4 p_{k}^{3}+3 p_{k}^{2}\right)\left(P_{k-1}-p_{k}\right)
$$

Since the maximum error is limited to $\epsilon$, we have:

$$
\hat{f}\left(P_{k-1}\right)=P_{k-1}^{4}+P_{k-1}^{3}-\epsilon
$$

To find $p_{k}$, solve:

$$
3 p_{k}^{4}+\left(2-4 P_{k-1}\right) p_{k}^{3}-3 P_{k-1} p_{k}^{2}+P_{k-1}^{4}+P_{k-1}^{3}-\epsilon=0
$$

Step 3: $\quad$ The line equation to solve for $P_{k}$ is:

$$
\hat{f}\left(P_{k}\right)=p_{k}^{4}+p_{k}^{3}+\left(4 p_{k}^{3}+3 p_{k}^{2}\right)\left(P_{k}-p_{k}\right)
$$

Since the maximum error is limited to $\epsilon$, we have:

$$
\hat{f}\left(P_{k}\right)=P_{k}^{4}+P_{k}^{3}-\epsilon
$$

To find $P_{k}$, solve:

$$
P_{k}^{4}+P_{k}^{3}+\left(-4 p_{k}^{3}-3 p_{k}^{2}\right) P_{k}+3 p_{k}^{4}+2 p_{k}^{3}-\epsilon=0
$$

We repeat steps 2 and 3 until $P_{k} \geqslant \sqrt[3]{\frac{\sum_{i=1}^{I} \lambda_{i}}{8 t^{2}}}$.

In a similar way, the number of SOS2 constraints being generated will depend on the error term $\epsilon$. As seen in Table 4.3 and Table 4.4, the number of SOS2 constraints increases as $\epsilon$ decreases.

|  | Iter 1 | Iter 2 | Iter 3 | Iter 4 |
| :---: | :--- | :--- | :--- | :--- |
| $P_{k-1}$ | 0.0000 | 0.2695 | 0.4203 | 0.5393 |
| $p_{k}$ | 0.1592 | 0.3487 | 0.4816 | 0.5913 |
| $P_{k}$ | 0.2695 | 0.4203 | 0.5393 | 0.6410 |

Table 4.3: Approximation parameters for the $P^{3}+P^{4}$ case with $\epsilon=0.01, t=25$ and total demand 105 units.

|  | Iter 1 | Iter 2 | Iter 3 | Iter 4 | Iter 5 | Iter 6 | Iter 7 | Iter 8 | Iter 9 | Iter 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{k-1}$ | 0.0000 | 0.1309 | 0.2075 | 0.2690 | 0.3222 | 0.3699 | 0.4136 | 0.4541 | 0.4922 | 0.5281 |
| $p_{k}$ | 0.0765 | 0.1710 | 0.2391 | 0.2961 | 0.3464 | 0.3920 | 0.4341 | 0.4733 | 0.5103 | 0.5454 |
| $P_{k}$ | 0.1309 | 0.2075 | 0.2690 | 0.3222 | 0.3699 | 0.4136 | 0.4541 | 0.4922 | 0.5281 | 0.5623 |

Table 4.4: Approximation parameters for the $P^{3}+P^{4}$ case with $\epsilon=0.001, t=25$ and total demand 105 units.

From Table 4.5, we can see that the number of SOS2 constraints increase, as $\epsilon$ decrease. However, as $\epsilon$ decreases, the concave and convex terms are more accurately estimated. Thus, we need to find a trade-off between accuracy and efficiency. We have completed different tests in the numerical results section to illustrate this effect.

| $\epsilon$ | SOS2 Constraints |  |
| :---: | :---: | :---: |
|  | $P^{2}$ | $P^{4}+P^{3}$ |
| 0.01 | 2 | 4 |
| 0.001 | 5 | 10 |
| 0.0001 | 15 | 31 |
| 0.00001 | 46 | 97 |
| 0.000001 | 145 | 304 |
| 0.0000001 | 1450 | 962 |
| 0.00000001 | 4583 | 3039 |
| 0.000000001 | 14492 | 9610 |

Table 4.5: Number of SOS2 cuts with different $\epsilon$ for the $P^{2}$ and, $P^{4}+P^{3}$ cases.

The piecewise approximations are displayed in Figure 4.1 and Figure 4.2.


Figure 4.1: Piecewise approximations for $P^{4}+P^{3}$ case with $\epsilon=0.001$


Figure 4.2: Piecewise approximations for $P^{4}+P^{3}$ case with $\epsilon=0.001$

### 4.1. 1 The Linearized Formulation

The linearization of [FLM4] using the previous procedure is:

$$
\begin{align*}
& \text { [FLM5]: } \quad \min \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} 2 t \theta_{j}+\sum_{j=1}^{J} 3 t P_{j} \\
& \text { s.t. } \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{16}\\
& P_{j}=\sum_{k=1}^{K} \beta_{k}^{(j)} \hat{p}_{k} \quad j=1, \ldots, J  \tag{17}\\
& \theta_{j}=\sum_{k=1}^{K} \beta_{k}^{(j)} \hat{y}_{k} \quad j=1, \ldots, J  \tag{18}\\
& \sum_{k=1}^{K} \beta_{k}=1  \tag{19}\\
& P_{j}=\sum_{l=1}^{L} \delta_{l}^{(j)} \hat{p}_{l} \quad j=1, \ldots, J  \tag{20}\\
& \sum_{i=1}^{I} \frac{\lambda_{i}}{4 t^{2}} x_{i j}=\sum_{k=1}^{L} \delta_{l}^{(j)} \hat{y}_{l} \quad j=1, \ldots, J  \tag{21}\\
& \sum_{l=1}^{L} \delta_{l}=1  \tag{22}\\
& x_{i j} \in\{0,1\} ; \theta_{j}, P_{j} \geqslant 0, \quad i=1, \ldots, I ; j=1, \ldots, J  \tag{23}\\
& 0 \leqslant \beta_{k}, \delta_{l} \leqslant 1 \quad k=1, \ldots, K ; l=1, \ldots, L \tag{24}
\end{align*}
$$

Constraints (16), (17), and (18) are the SOS2 constraints used to estimate $P^{2}$ term in the objective function of [FLM4]. Constraints (20), (21), and (22) are the SOS2 constraints used to estimate $P^{4}+P^{3}$ terms in the constraints in [FLM4]. The variables $\beta_{k}$ and $\delta_{l}$ are
the ordered sets of binary SOS2 variables, of which at most two consecutive ones can be non-zero.

The results of the SOS2 approximation tested on the illustrative example are displayed in Table 4.7 and Table 4.8 for $\epsilon=0.001$ and $\epsilon=0.0001$ respectively. For comparison, we display the optimal solution in Table 4.6.

It is clear that the approximation is very efficient in finding the optimal solution in very competitive times.

|  |  | Facilities |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 |
| Customers | 1 | 10 |  |  |
|  | 2 |  |  | 20 |
|  | 3 | 30 |  |  |
|  | 4 |  |  | 25 |
|  | 5 |  | 15 |  |
|  | 6 | 5 |  |  |
| Rj |  | 4.1034 | 5.8027 | 4.1034 |
| $\mu_{j}$ |  | 229.6546 | 102.0411 | 229.6546 |
| Objective value (SPj) |  | 21.2468 | 14.4098 | 21.2468 |
| Objective value (Total) |  |  | 771.9035 |  |
| Number of iterations |  |  | 729 |  |
| Total runtime |  |  | 74.2773 |  |

Table 4.6: Complete enumeration results

| $\epsilon=0.001$ |  | Facilities |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 |
| Customers | 1 | 10 |  |  |
|  | 2 |  |  | 20 |
|  | 3 | 30 |  |  |
|  | 4 |  |  | 25 |
|  | 5 |  | 15 |  |
|  | 6 | 5 |  |  |
| $P_{j}$ |  | 0.2438 | 0.1723 | 0.2438 |
| $R_{j}\left(=1 / P_{j}\right)$ |  | 4.1017 | 5.8023 | 4.1017 |
| Objective value (Total) |  | 771.8641 |  |  |
| Total runtime |  | 0.0362 |  |  |
| Total cost |  | 771.9246 |  |  |
| Gap |  | 0.0078\% |  |  |

Table 4.7: SOS2 results with $\epsilon=0.001$

| $\epsilon=0.0001$ |  | Facilities |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 |
|  | 1 | 10 |  |  |
|  | 2 |  |  | 20 |
|  | 3 | 30 |  |  |
| Customers | 4 |  |  | 25 |
|  | 5 |  | 15 |  |
|  | 6 | 5 |  |  |
| $P_{j}$ |  | 0.2441 | 0.1724 | 0.2441 |
| $R_{j}\left(=1 / P_{j}\right)$ |  | 4.0968 | 5.8011 | 4.0968 |
| Objective value (Total) |  |  | 771.9896 |  |
| Total runtime |  |  | 0.0409 |  |
| Total cost |  |  | 771.9863 |  |
| Gap |  |  | 0.0005\% |  |

Table 4.8: SOS2 results with $\epsilon=0.0001$

The SOS2 linearization approach is able to provide very accurate results for smaller error $(\epsilon)$. However, as $\epsilon$ decreases, the number of SOS2 constraints increases dramatically, and the total solution time may be very long. Thus, there is a trade off between accuracy and speed. We will demonstrate this trade off in the numerical testing chapter.

### 4.2 A SOCP Approach

In this section, we tackle [FLM4] using a Second Order Cone Programming (SOCP) approach. Commercial software such as Cplex can solve reasonable size SOCP problems efficiently.

A Second Order Cone Program is an optimization problem of the form:

$$
\begin{aligned}
& \min f^{T} x \\
& \text { s.t. }\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i} \quad i=1, \ldots, m
\end{aligned}
$$

### 4.2.1 The SOCP Approach Reformulation

We tackled the Second Order Cone Programming Approach from our [FLM]:
[FLM]: $\quad \min \sum_{j=1}^{J} f_{j}\left(\mu_{j}\right)+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+t \sum_{j=1}^{J} \frac{\sum_{i=1}^{I} \lambda_{i} x_{i j}}{\mu_{j}-\sum_{i=1}^{I} \lambda_{i} x_{i j}}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I \\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}-\mu_{j} \leq 0 \quad i=1, \ldots, I \tag{2}
\end{array}
$$

$$
\begin{equation*}
x_{i j} \in\{0,1\} ; \mu_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{3}
\end{equation*}
$$

We define two new variables, $P_{j}=\sum_{j=1}^{J} \frac{\sum_{i=1}^{I} \lambda_{i} x_{i j}}{\mu_{j}-\sum_{i=1}^{I} \lambda_{i} x_{i j}}, v_{j}=\sqrt{u_{j}}$, and substitute it into the objective function and constraints of [FLM], we get:

$$
\begin{align*}
\text { [FLM6]: } \quad \min & \sum_{j=1}^{J} v_{j}+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+t \sum_{j=1}^{J} P_{j} \\
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{25}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2} \leq v_{j}^{2} \quad j=1, \ldots, J  \tag{26}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}=\frac{P_{j}}{1+P_{j}} v_{j}^{2} \quad j=1, \ldots, J  \tag{27}\\
& x_{i j} \in\{0,1\} ; P_{j} \geqslant 0 ; v_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{28}
\end{align*}
$$

Since $x_{i j}$ is binary, we can rewrite $x_{i j}=x_{i j}^{2}$. In order to simplify our model, we introduce a new auxiliary variable, $\alpha_{j}=\frac{P_{j}}{1+P_{j}}$, which is indeed the facility utilization factor. Our model becomes:

$$
\text { [FLM7]: } \begin{align*}
\min & \sum_{j=1}^{J} v_{j}+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+\sum_{j=1}^{J} t \frac{\alpha_{j}}{1-\alpha_{j}} \\
\text { s.t. } & \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{29}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2} \leq v_{j}^{2} \quad j=1, \ldots, J  \tag{30}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2}=\alpha_{j} v_{j}^{2} \quad j=1, \ldots, J \tag{31}
\end{align*}
$$

$$
\begin{equation*}
x_{i j} \in\{0,1\} ; 0 \leqslant \alpha_{j}<1 ; v_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{32}
\end{equation*}
$$

Constraints (30) are redundant given the existence of constraints (31).
Two different approaches are derived to solve [FLM7]. First, we solve it with a fixed facility utilization factor, $\alpha$. Next, a Lagrangian Relaxation approach is used to find $\alpha_{j}$ for each facility.

### 4.2.2 The SOCP Approach with a Fixed Facility Utilization Factor, $\alpha$

In this section, we solve [FLM7] by using a fixed facility utilization factor, $\alpha$. We try different values of $\bar{\alpha}=0.1,0.2,0.3, \ldots, 0.9$. Then, $P_{j}=\frac{\bar{\alpha}}{1-\bar{\alpha}}=\frac{0.1}{1-0.1}=0.11,0.25,0.43, \ldots, 9$ correspondingly. Next, we solve the following model with IBM Cplex function cplexqcp.

$$
\begin{align*}
& \text { [FLM } 8 \text { ]: } \quad \min \\
& \sum_{j=1}^{J} v_{j}+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}  \tag{33}\\
& \text { s.t. } \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{34}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2} \leqslant \alpha v_{j}^{2} \quad j=1, \ldots, J  \tag{35}\\
& x_{i j} \in\{0,1\} ; 0 \leqslant \alpha<1 ; v_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J
\end{align*}
$$

Once a list of results is generated, we add $t P_{j}$ back to the objective value and select the one with the smallest total cost.

This approach, is tested on the illustrative example. The results are displayed in Table 4.9 where $v_{j}$ are the capacity costs. We can see that $\alpha=0.9$ corresponding to a total cost
of 736.00 is the minimum. The corresponding $x_{i j}$ match the optimal solution.

| Variable | Alpha |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
| x11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\times 21$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x31 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\times 41$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 51$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 61$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| x12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 22$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 42$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\times 62$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x23 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| x33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x43 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| x53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 63$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $v_{1}$ | 21.2132 | 15 | 12.24745 | 10.6066 | 9.486833 | 8.660254 | 8.017837 | 7.5 | 7.071068 | 6.708205 |
| $v_{2}$ | 12.24745 | 8.660254 | 7.071068 | 6.123725 | 5.477226 | 5 | 4.629101 | 4.330127 | 4.082483 | 3.872985 |
| $v_{3}$ | 21.2132 | 15 | 12.24745 | 10.6066 | 9.486833 | 8.660254 | 8.017837 | 7.5 | 7.071068 | 6.708204 |
| Obj Value w/o t*1/R | 769.6739 | 753.6603 | 746.566 | 742.3369 | 739.4509 | 737.3205 | 735.6648 | 734.3301 | 733.2246 | 732.2894 |
| Obj Value with $\mathrm{t}^{*} 1 / \mathrm{R}$ | 994.6739 | 853.6603 | 804.8993 | 779.8369 | 764.4509 | 753.9872 | 746.3791 | 740.5801 | 736.0024 | - |

Table 4.9: SCOP results with $\alpha$ and epsilon $=0.1$

However, the three $\alpha$ for all facilities are constant in this case. In reality, facilities are often operating in different utilization levels. In the next section, we use a heuristic approach to find the different utilization factors, $\alpha_{j}$, for each facility.

### 4.2.3 A SOCP Based Lagrangian Relaxation

In this section, we devise a Lagrangian approach in order to explore different utilization levels $\alpha_{j}$. Let us start from [FLM6]:

$$
\begin{align*}
& \text { [FLM6]: } \quad \min \sum_{j=1}^{J} v_{j}+\sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} \lambda_{i} x_{i j}+t \sum_{j=1}^{J} P_{j} \\
& \text { s.t. } \sum_{j=1}^{J} x_{i j}=1 \quad i=1, \ldots, I  \tag{25}\\
&  \tag{27}\\
& \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2}=\frac{P_{j}}{1+P_{j}} v_{j}^{2} \quad j=1, \ldots, J
\end{align*}
$$

$$
\begin{equation*}
x_{i j} \in\{0,1\} ; P_{j} \geqslant 0 ; v_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{28}
\end{equation*}
$$

We relax constraints (25) using Lagrangian multipliers, $\beta_{i}$. It leads to the following subproblems:

$$
\begin{align*}
{[\mathrm{SP}]: \quad \min } & \sum_{j=1}^{J} v_{j}+\sum_{i=1}^{I} \sum_{j=1}^{J}\left(c_{i j} \lambda_{i}-\beta_{i}\right) x_{i j}+t \sum_{j=1}^{J} P_{j} \\
\text { s.t. } & \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2}=\frac{P_{j}}{1+P_{j}} v_{j}^{2} \quad j=1, \ldots, J  \tag{36}\\
& x_{i j} \in\{0,1\} ; P_{j} \geqslant 0 ; v_{j} \geqslant 0 \quad i=1, \ldots, I ; j=1, \ldots, J \tag{37}
\end{align*}
$$

which can be further decomposed to $j$ subproblems, $[\mathrm{SPj}]$ :

$$
\begin{align*}
& {[\mathrm{SPj}]: \quad \min v_{j}+\sum_{i=1}^{I}\left(c_{i j} \lambda_{i}-\beta_{i}\right) x_{i j}+t P_{j}} \\
& \text { s.t. } \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2}=\frac{P_{j}}{1+P_{j}} v_{j}^{2}  \tag{36}\\
& \quad x_{i j} \in\{0,1\} ; P_{j} \geqslant 0 ; v_{j} \geqslant 0 \quad i=1, \ldots, I \tag{37}
\end{align*}
$$

The subproblems can be solved by going through all possible values of $P_{j}$ and solving the resulting SOCP. We do this approximately for $\alpha_{j}=0.1,0.2,0.3, \ldots, 0.9$ which correspond to $P_{j}=\frac{\alpha_{j}}{1-\alpha_{j}}=\frac{0.1}{1-0.1}=0.11,0.25,0.43, \ldots, 9$ respectively. Next, we solve the remaining SOCP:

$$
\begin{align*}
{[\mathrm{SPj}]: \quad } & \min v_{j}+\sum_{i=1}^{I}\left(c_{i j} \lambda_{i}-\beta_{i}\right) x_{i j}+t P_{j} \\
& \text { s.t. } \sum_{i=1}^{I} \lambda_{i} x_{i j}^{2} \leqslant \alpha_{j} v_{j}^{2} \tag{36}
\end{align*}
$$

$$
\begin{equation*}
x_{i j} \in\{0,1\} ; v_{j} \geqslant 0 \quad i=1, \ldots, I \tag{37}
\end{equation*}
$$

Next, we update the objective values by adding $t P_{j}$, and update the best solution found so far up to this iteration. The solutions to the subproblems yield the following lower bound:

$$
L B=\sum_{j=1}^{J} z_{S P j}+\sum_{i=1}^{I} \beta_{i}
$$

and the best Lagrangian lower bound is updated for each iteration:

$$
L B^{*}=\max _{\beta_{i}}\left\{\sum_{j=1}^{J} z_{S P j}+\sum_{i=1}^{I} \beta_{i}\right\}
$$

In order to update the Lagrangian multipliers, we take the Lagrangian dual of the subproblems:

$$
\max _{\beta_{i}}\left\{\sum_{j=1}^{J} z_{S P j}+\sum_{i=1}^{I} \beta_{i}\right\}
$$

The master problem is:

$$
\begin{aligned}
& \text { [LMP]: } \max \sum_{j=1}^{J} \theta_{j}+\sum_{i=1}^{I} \beta_{i} \\
& \text { s.t. } \theta_{j}+\sum_{i=1}^{I} x_{i j}^{h} \beta_{i} \leqslant v_{j}^{h}+\sum_{i=1}^{I} c_{i j} \lambda_{i} x_{i j}^{h}+t r_{j}^{h} \quad j=1, \ldots, J ; h=1, \ldots, H \\
& \\
& \quad \theta_{j}, \beta_{i} \text { free } \quad i=1, \ldots, I ; j=1, \ldots, J
\end{aligned}
$$

The solution to the master problem will generate an upper bound, $U B$, as well as a new set of multipliers $\beta_{i}, i=1, \ldots, I$. The new set of $\beta_{i}$ are used for the next iteration and the subproblems will generate another set of solutions. The solutions generated by the subproblems will add an additional set of cuts to the master problem.

While the Lagrangian Relaxation method generates the Lagrangian bounds, it does not consider the customer assignment problem. Thus, we need to use a heuristic to generate a feasible solution.

The set covering formulation derived from the master problem is:

$$
\begin{align*}
\text { [HP]: } \quad \min & \sum_{j=1}^{J} \sum_{h=1}^{H}\left(v_{j}^{h}+\sum_{i=1}^{I} c_{i j} \lambda_{i} x_{i j}^{h}+t r_{j}^{h}\right) \alpha_{j h} \\
\text { s.t. } & \sum_{j=1}^{J} \sum_{h=1}^{H} x_{i j}^{h} \alpha_{j h} \geqslant 1 \quad i=1, \ldots, I  \tag{40}\\
& \sum_{h=1}^{H} \alpha_{j h} \geqslant 1 \quad j=1, \ldots, J  \tag{41}\\
& \alpha_{j h} \in\{0,1\} \quad j=1, \ldots, J ; h=1, \ldots, H \tag{42}
\end{align*}
$$

Solving this will lead to a feasible solution.

## Numerical Example



Table 4.10: Lagrangian Relaxation for the illustrative example. $\alpha=0.1,0.2, \ldots, 0.9$

## Chapter 5

## Numerical Results and Comparison

In this chapter, we evaluate our proposed solution methodologies and present our computational results. The proposed solution procedures are coded in Matlab and solved using IBM ILOG Cplex 12.6. The tests are done on a Dell Optiplex 9020 with Intel Core i7-4770 3.2 GHz CPU with 8GB RAM. The data sets used are due to Holmberg [16]. We have tested 55 instances with 10 to 30 facilities and 30 to 150 customers.

### 5.1 Test Instances

The test instances we use are the benchmark Holmberg [16] instances, which has five categories as seen in Table 5.1. Test instances p1-12 are considered as small, and their $\frac{K}{D}$ (total capacity to demand) ratios are also relatively small. Test instances p13-24 have a medium size, and their $\frac{K}{D}$ ratios range from 2.77 to 3.50 . Test instances p25-40 are the
largest with 30 facilities and 150 customers. Test instances p41-49 contain extremely low or high $\frac{K}{D}$ ratios. The last instances p50-55 are used to explore the $\frac{K}{D}$ ratios' impact.

|  | Instances |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | p1-12 | p13-24 | p25-40 | p41-49 | p50-55 |  |
| Number of Facilities (n) | 10 | 20 | 30 | $10-30$ | $10-20$ |  |
| Number of customers(m) | 50 | 50 | 150 | $70-90$ | 100 |  |

Table 5.1: Test Instances

### 5.2 Comparison Between the Two Approaches

Table 5.2 provides a comparison between the SOS2 linearization and the SOCP based Lagrangian. It is clear that the SOS2 algorithm is able to give decent results with much shorter runtime, while the SOCP algorithm generate almost perfect Lagrangian bounds for smaller instances.

For test instances p1-12 with 10 facilities and 30 customers, both methods are able to generate results with less than $1 \%$ gaps. However, the average runtime of the SOS2 method is significantly less. For the test instances p13-24 with 20 facilities and 50 customers, the average gap between the SOS2 method increases to around $3 \%$ while the SOCP method is still able to solve to optimality. The runtimes for the SOS2 method are still notably less. For the large instances p25-40 with 30 facilities and 150 customers, the SOS2 method provides smaller gaps with shorter runtimes. We run few instances from p25-40 with the SOCP method and allowed the runtime to reach 20,000 seconds. The average gap generated was around $14 \%$.

|  | Instance feature |  |  |  | $t=100, \epsilon=0.008$ |  | $\begin{gathered} \text { SOS2 } \\ t=50, \epsilon=0.03 \\ \hline \end{gathered}$ |  | $t=25, \epsilon=0.1$ |  | $t=100, \epsilon=0.25$ |  | $\begin{gathered} \mathbf{S O C P} \\ t=50, \epsilon=0.25 \end{gathered}$ |  | $t=25, \epsilon=0.25$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# | n | m | K/D | Runtime | Gap |
|  | p1 | 10 | 50 | 1.74 | 0.02 | 0.53\% | 0.02 | 0.30\% | 0.23 | 0.15\% | 129.99 | 0.00\% | 109.87 | 0.00\% | 118.02 | 0.00\% |
|  | p2 |  |  | 1.74 | 0.01 | 0.53\% | 0.02 | 0.30\% | 0.05 | 0.15\% | 128.36 | 0.00\% | 108.93 | 0.00\% | 115.54 | 0.00\% |
|  | p3 |  |  | 1.74 | 0.02 | 0.53\% | 0.02 | 0.30\% | 0.45 | 0.15\% | 127.47 | 0.00\% | 109.43 | 0.00\% | 118.75 | 0.00\% |
|  | p4 |  |  | 1.74 | 0.02 | 0.53\% | 0.02 | 0.30\% | 0.25 | 0.15\% | 127.09 | 0.00\% | 110.43 | 0.00\% | 115.34 | 0.00\% |
|  | p5 |  |  | 1.37 | 0.02 | 0.51\% | 0.02 | 0.27\% | 0.08 | 0.12\% | 123.59 | 0.00\% | 110.89 | 0.00\% | 115.60 | 0.00\% |
|  | p6 |  |  | 1.37 | 0.02 | 0.51\% | 0.02 | 0.27\% | 0.08 | 0.12\% | 131.20 | 0.00\% | 110.68 | 0.00\% | 115.96 | 0.00\% |
|  | p7 |  |  | 1.37 | 0.02 | 0.51\% | 0.02 | 0.27\% | 0.15 | 0.12\% | 133.78 | 0.00\% | 110.63 | 0.00\% | 115.46 | 0.00\% |
|  | p8 |  |  | 1.37 | 0.02 | 0.51\% | 0.02 | 0.27\% | 0.14 | 0.12\% | 121.22 | 0.00\% | 109.64 | 0.00\% | 119.32 | 0.00\% |
|  | p9 |  |  | 2.06 | 0.01 | 0.53\% | 0.01 | 0.30\% | 0.02 | 0.15\% | 132.25 | 0.00\% | 111.52 | 0.00\% | 116.80 | 0.00\% |
|  | p10 |  |  | 2.06 | 0.01 | 0.53\% | 0.02 | 0.30\% | 0.02 | 0.15\% | 126.31 | 0.00\% | 109.94 | 0.00\% | 117.02 | 0.00\% |
|  | p11 |  |  | 2.06 | 0.01 | 0.53\% | 0.01 | 0.30\% | 0.02 | 0.15\% | 124.85 | 0.00\% | 111.33 | 0.00\% | 116.54 | 0.00\% |
|  | p12 |  |  | 2.06 | 0.01 | 0.53\% | 0.01 | 0.30\% | 0.02 | 0.15\% | 123.06 | 0.00\% | 108.24 | 0.00\% | 116.36 | 0.00\% |
|  | p13 | 20 | 50 | 2.77 | 0.65 | 0.62\% | 0.37 | 0.57\% | 0.47 | 0.50\% | 91.43 | 0.00\% | 76.87 | 0.00\% | 78.92 | 0.00\% |
|  | p14 |  |  | 2.77 | 0.37 | 0.62\% | 0.45 | 0.57\% | 0.45 | 0.50\% | 93.50 | 0.00\% | 74.70 | 0.00\% | 78.36 | 0.00\% |
|  | p15 |  |  | 2.77 | 0.42 | 0.62\% | 0.30 | 0.57\% | 0.48 | 0.50\% | 103.19 | 0.00\% | 75.92 | 0.00\% | 77.54 | 0.00\% |
|  | p16 |  |  | 2.77 | 0.53 | 0.62\% | 0.44 | 0.57\% | 0.42 | 0.50\% | 99.25 | 0.00\% | 75.73 | 0.00\% | 78.42 | 0.00\% |
|  | p17 |  |  | 2.80 | 0.55 | 0.62\% | 0.34 | 0.57\% | 0.55 | 0.52\% | 94.59 | 0.00\% | 76.14 | 0.00\% | 77.47 | 0.00\% |
|  | p18 |  |  | 2.80 | 0.43 | 0.62\% | 0.37 | 0.57\% | 0.55 | 0.52\% | 94.13 | 0.00\% | 76.15 | 0.00\% | 77.84 | 0.00\% |
|  | p19 |  |  | 2.80 | 0.40 | 0.62\% | 0.38 | 0.57\% | 0.55 | 0.52\% | 92.67 | 0.00\% | 75.57 | 0.00\% | 78.79 | 0.00\% |
|  | p20 |  |  | 2.80 | 0.42 | 0.62\% | 0.44 | 0.57\% | 0.53 | 0.52\% | 97.29 | 0.00\% | 75.06 | 0.00\% | 81.45 | 0.00\% |
|  | p21 |  |  | 3.50 | 0.43 | 0.62\% | 0.39 | 0.57\% | 0.50 | 0.52\% | 93.02 | 0.00\% | 75.20 | 0.00\% | 79.93 | 0.00\% |
|  | p22 |  |  | 3.50 | 0.61 | $0.62 \%$ | 0.45 | 0.57\% | 0.63 | 0.52\% | 94.12 | 0.00\% | 74.93 | 0.00\% | 77.40 | 0.00\% |
|  | p23 |  |  | 3.50 | 0.47 | 0.62\% | 0.55 | 0.57\% | 0.53 | 0.52\% | 94.92 | 0.00\% | 75.96 | 0.00\% | 77.33 | 0.00\% |
|  | p24 |  |  | 3.50 | 0.50 | 0.62\% | 0.50 | 0.57\% | 0.53 | 0.52\% | 101.94 | 0.00\% | 76.25 | 0.00\% | 77.76 | 0.00\% |
|  | p25 | 30 | 150 | 4.12 | 1.00 | 0.71\% | 1.39 | 0.46\% | 2.68 | 0.89\% | 2057.13 | 13.77\% | 2827.82 | 23.34\% | 2987.44 | 46.70\% |
|  | p26 |  |  | 4.12 | 1.07 | 0.71\% | 1.38 | 0.46\% | 2.85 | 0.89\% | 2124.29 | 13.77\% | 2910.27 | $23.34 \%$ | 2997.72 | 46.70\% |
|  | p27 |  |  | 4.12 | 1.21 | 0.71\% | 1.44 | 0.46\% | 2.96 | 0.89\% | 2040.27 | 13.77\% | 2846.69 | 23.34\% | 2996.72 | 46.70\% |
| $\stackrel{ }{\square}$ | p28 |  |  | 4.12 | 1.02 | 0.71\% | 1.41 | 0.46\% | 2.56 | 0.89\% | 2101.49 | 13.77\% | 2843.54 | 23.34\% | 2993.39 | 46.70\% |
|  | p29 |  |  | 3.03 | 1.19 | 0.73\% | 1.52 | 0.55\% | 1.52 | 0.66\% | 2106.78 | 13.77\% | 2840.87 | 23.34\% | 2998.12 | 46.70\% |
|  | p30 |  |  | 3.03 | 1.12 | 0.73\% | 1.41 | 0.55\% | 1.44 | 0.66\% | 2107.98 | 13.77\% | 2885.84 | 23.34\% | 2990.18 | 46.70\% |
|  | p31 |  |  | 3.03 | 1.15 | 0.73\% | 1.57 | 0.55\% | 1.49 | 0.66\% | 2112.01 | 13.77\% | 2873.44 | 23.34\% | 2984.04 | 46.70\% |
|  | p32 |  |  | 3.03 | 1.14 | 0.73\% | 1.52 | 0.55\% | 1.46 | 0.66\% | 2111.91 | 13.77\% | 2848.32 | 23.34\% | 2977.91 | 46.70\% |
|  | p33 |  |  | 4.04 | 0.98 | 0.71\% | 1.35 | 0.64\% | 14.88 | 0.85\% | 2110.65 | 13.77\% | 2846.83 | 23.34\% | 2980.82 | 46.70\% |
|  | p34 |  |  | 4.04 | 0.93 | 0.71\% | 1.31 | 0.64\% | 16.17 | 0.85\% | 2105.46 | 13.77\% | 3058.83 | 23.34\% | 2990.24 | 46.70\% |
|  | p35 |  |  | 4.04 | 1.03 | 0.71\% | 1.30 | 0.64\% | 15.23 | 0.85\% | 2114.35 | 13.77\% | 2908.14 | $23.34 \%$ | 2986.74 | 46.70\% |
|  | p36 |  |  | 4.04 | 0.98 | 0.71\% | 1.34 | 0.64\% | 15.47 | 0.85\% | 2104.20 | 13.77\% | 2843.41 | $23.34 \%$ | 2979.21 | 46.70\% |
|  | p37 |  |  | 6.06 | 3.12 | 0.71\% | 7.74 | 0.48\% | 11.57 | 1.05\% | 2107.68 | 13.77\% | 2830.42 | 23.34\% | 2981.76 | 46.70\% |
|  | p38 |  |  | 6.06 | 3.22 | 0.71\% | 6.99 | 0.48\% | 11.84 | 1.05\% | 2103.74 | 13.77\% | 2835.61 | 23.34\% | 2973.91 | 46.70\% |
|  | p39 |  |  | 6.06 | 3.24 | 0.71\% | 7.22 | 0.48\% | 12.05 | 1.05\% | 2016.88 | 13.77\% | 2825.85 | 23.34\% | 2978.76 | 46.70\% |
|  | p40 |  |  | 6.06 | 3.46 | 0.71\% | 7.18 | 0.48\% | 12.69 | 1.05\% | 2096.77 | 13.77\% | 2838.40 | $23.34 \%$ | 2997.29 | 46.70\% |
|  | p41 | 10 | 90 | 2.12 | 0.07 | 0.71\% | 0.13 | 0.36\% | 0.42 | 0.15\% | 2291.58 | 14.51\% | 2013.09 | 12.76\% | 2044.70 | - |
|  | p42 | 20 | 80 | 4.99 | 0.04 | 0.41\% | 0.04 | 0.09\% | 0.53 | 0.37\% | 1267.72 | 0.84\% | 1387.22 | 1.56\% | 1166.52 | 2.11\% |
|  |  | 30 | 70 | 8.28 | 0.07 | 0.29\% | 0.07 | 0.05\% | 0.59 | 0.79\% | 423.25 | 1.38\% | 453.77 | 1.86\% | 485.82 | 2.69\% |
|  | p44 | 10 | 90 | 1.76 | 0.10 | 0.68\% | 0.10 | 0.44\% | 0.66 | 0.33\% | 3520.86 |  | 2826.53 | 4.05\% | 2130.53 | 20.23\% |
|  | p45 | 20 | 80 | 4.14 | 0.04 | 0.45\% | 0.05 | 0.17\% | 0.56 | 0.28\% | 2428.02 | 1.98\% | 2179.24 | - | 2195.38 | - |
|  | p46 | 30 | 70 | 7.10 | 0.06 | 0.31\% | 0.07 | 0.07\% | 0.58 | 0.60\% | 553.14 | 0.01\% | 2018.91 | 0.03\% | 2049.01 | 0.06\% |
|  | p47 | 10 | 90 | 1.76 | 0.03 | 0.59\% | 0.03 | 0.42\% | 0.44 | 0.31\% | 3070.19 | 34.13\% | 2130.43 | - | 2097.35 | - |
|  | p48 | 20 | 80 | 4.06 | 0.06 | 0.44\% | 0.07 | 0.21\% | 0.59 | 0.37\% | 2145.54 | 6.65\% | 2038.66 | 12.89\% | 3230.95 | , |
|  | p49 | 30 | 70 | 7.08 | 0.27 | 0.32\% | 0.22 | 0.10\% | 0.65 | 0.65\% | 2208.67 | - | 3736.84 | 1.91\% | 2473.64 | 2.12\% |
|  | p50 | 10 | 100 | 1.89 | 0.08 | 0.87\% | 0.07 | 0.57\% | 0.67 | 0.43\% | 2844.96 | - | 2011.51 | 10.18\% | 2600.98 | 11.82\% |
|  | p51 | 20 | 100 | 3.98 | 0.09 | 0.57\% | 0.08 | 0.26\% | 0.64 | 0.44\% | 2269.25 | 4.13\% | 2639.45 | 1.78\% | 2070.02 | 0.65\% |
|  | p52 | 10 | 100 | 1.60 | 0.17 | 0.63\% | 0.05 | 0.40\% | 0.46 | 0.24\% | 2811.21 | 5.41\% | 2005.40 | - | 2086.32 | 6.12\% |
|  | p53 | 20 | 100 | 3.37 | 0.07 | 0.52\% | 0.06 | 0.27\% | 0.56 | 0.32\% | 2058.60 | - | 2228.15 | 2.75\% | 2178.28 | 8.99\% |
|  | p54 | 10 | 100 | 1.52 | 0.16 | 0.68\% | 0.13 | 0.59\% | 0.39 | 0.49\% | 2025.91 | 3.71\% | 2165.38 | 25.24\% | 2067.41 | 7.56\% |
|  | p55 | 20 | 100 | 3.21 | 0.10 | 0.58\% | 0.05 | 0.52\% | 0.59 | 0.68\% | 2008.99 | 27.88\% | 2459.85 | 32.61\% | 2693.14 | - |

Table 5.2: Comparison: SOS2 vs SOCP

## Chapter 6

## Conclusion

This thesis considers a service system design problem with capacity economies of scale and customer waiting costs. The problem minimizes the capacity cost associated with the facilities, the access costs, and the customer waiting time in an $\mathrm{M} / \mathrm{M} / 1$ queuing network. A formulation composed of both concave and convex terms in the objective function is developed. Due to the non-linearity nature of the model, we tackled the problem with different approaches.

The first approach was a piecewise linearization based on SOS2 constraints. We first reformulated the problem using Benders-type decomposition idea.

The second approach was based on SOCP reformulation that was tackled through Lagrangian Relaxation. A Lagrangian bound was generated and was shown to be pretty sharp. Larger instances were tested and the results were compared with the other SOS2 approach. In general, the SOS2 algorithm was able to give decent results with shorter
runtimes, while the SOCP algorithm could generate almost high quality solutions and bounds for smaller instances.

There are a number of future research directions that can be explored. The first is the solution of the new formulation provided. The second is the enhancement of the SOCPbased Lagrangian approach to handle large problems.

## APPENDICES

## Appendix A

## The Numerical Results for the SOS2

Approach

| $\mathrm{t}=$ | 100 | $\epsilon=$ | 0.01 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \# | n | ${ }_{5}$ | K/D |  |  |  |  | max\% | min\% | avg\% |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 24.26\% | 64.80\% | 10.94\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1359.56 | 1364.57 | 0.37\% |
| p2 |  |  | 1.74 | 24.26\% | 64.80\% | 10.94\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1359.56 | 1364.57 | 0.37\% |
| p3 |  |  | 1.74 | 24.26\% | 64.80\% | 10.94\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.01 | 1359.56 | 1364.57 | 0.37\% |
| p4 |  |  | 1.74 | 24.26\% | 64.80\% | 10.94\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.01 | 1359.56 | 1364.57 | 0.37\% |
| p5 |  |  | 1.37 | 24.28\% | 64.85\% | 10.86\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1366.49 | 1371.36 | 0.36\% |
| p6 |  |  | 1.37 | 24.28\% | 64.85\% | 10.86\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1366.49 | 1371.36 | 0.36\% |
| p7 |  |  | 1.37 | 24.28\% | 64.85\% | 10.86\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1366.49 | 1371.36 | 0.36\% |
| p8 |  |  | 1.37 | 24.28\% | 64.85\% | 10.86\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1366.49 | 1371.36 | 0.36\% |
| p9 |  |  | 2.06 | 24.26\% | 64.80\% | 10.94\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1359.56 | 1364.57 | 0.37\% |
| p10 |  |  | 2.06 | 24.26\% | 64.80\% | 10.94\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1359.56 | 1364.57 | 0.37\% |
| p11 |  |  | 2.06 | 24.26\% | 64.80\% | 10.94\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1359.56 | 1364.57 | 0.37\% |
| p12 |  |  | 2.06 | 24.26\% | 64.80\% | 10.94\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1359.56 | 1364.57 | 0.37\% |
| p13 | 20 | 50 | 2.77 | 29.90\% | 55.30\% | 14.80\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p14 |  |  | 2.77 | 29.90\% | $55.30 \%$ | 14.80\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p15 |  |  | 2.77 | 29.90\% | 55.30\% | 14.80\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p16 |  |  | 2.77 | 29.90\% | 55.30\% | 14.80\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p17 |  |  | 2.80 | 29.90\% | 55.30\% | 14.80\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p18 |  |  | 2.80 | 29.90\% | 55.30\% | 14.80\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p19 |  |  | 2.80 | 29.90\% | 55.30\% | 14.80\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p20 |  |  | 2.80 | 29.90\% | $55.30 \%$ | 14.80\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p21 |  |  | 3.50 | 29.90\% | $55.30 \%$ | 14.80\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p22 |  |  | 3.50 | 29.90\% | 55.30\% | 14.80\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p23 |  |  | 3.50 | 29.90\% | 55.30\% | 14.80\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p24 |  |  | 3.50 | 29.90\% | 55.30\% | 14.80\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 2060.97 | 2072.68 | 0.57\% |
| p25 | 30 | 150 | 4.12 | 39.49\% | 37.75\% | 22.76\% | 25 | 97.61\% | 0.00\% | 25.64\% | 0.23 | 1993.59 | 2004.88 | 0.57\% |
| p26 |  |  | 4.12 | 39.49\% | 37.75\% | 22.76\% | 25 | 97.61\% | 0.00\% | 25.64\% | 0.22 | 1993.59 | 2004.88 | 0.57\% |
| p27 |  |  | 4.12 | 39.49\% | 37.75\% | 22.76\% | 25 | 97.61\% | 0.00\% | 25.64\% | 0.21 | 1993.59 | 2004.88 | 0.57\% |
| p28 |  |  | 4.12 | 39.49\% | 37.75\% | 22.76\% | 25 | 97.61\% | 0.00\% | 25.64\% | 0.22 | 1993.59 | 2004.88 | 0.57\% |
| p29 |  |  | 3.03 | 39.87\% | 37.53\% | 22.61\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.35 | 1994.04 | 2005.23 | 0.56\% |
| p30 |  |  | 3.03 | 39.87\% | 37.53\% | 22.61\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.29 | 1994.04 | 2005.23 | 0.56\% |
| p31 |  |  | 3.03 | 39.87\% | 37.53\% | 22.61\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.22 | 1994.04 | 2005.23 | 0.56\% |
| p32 |  |  | 3.03 | 39.87\% | 37.53\% | 22.61\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.24 | 1994.04 | 2005.23 | 0.56\% |
| p33 |  |  | 4.04 | 39.18\% | 37.93\% | 22.90\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.23 | 1992.59 | 2004.34 | 0.59\% |
| p34 |  |  | 4.04 | 39.18\% | 37.93\% | 22.90\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.20 | 1992.59 | 2004.34 | 0.59\% |
| p35 |  |  | 4.04 | 39.18\% | 37.93\% | 22.90\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.21 | 1992.59 | 2004.34 | 0.59\% |
| p36 |  |  | 4.04 | 39.18\% | 37.93\% | 22.90\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.19 | 1992.59 | 2004.34 | 0.59\% |
| p37 |  |  | 6.06 | 39.18\% | 37.93\% | 22.90\% | 25 | 56.17\% | 0.00\% | 16.50\% | 0.21 | 1992.59 | 2004.34 | 0.59\% |
| p38 |  |  | 6.06 | 39.18\% | 37.93\% | 22.90\% | 25 | 56.17\% | 0.00\% | 16.50\% | 0.20 | 1992.59 | 2004.34 | 0.59\% |
| p39 |  |  | 6.06 | 39.18\% | 37.93\% | 22.90\% | 25 | 56.17\% | 0.00\% | 16.50\% | 0.20 | 1992.59 | 2004.34 | 0.59\% |
| p40 |  |  | 6.06 | 39.18\% | 37.93\% | 22.90\% | 25 | 56.17\% | 0.00\% | 16.50\% | 0.21 | 1992.59 | 2004.34 | 0.59\% |
| p41 | 10 | 90 | 2.12 | 38.32\% | 44.24\% | 17.44\% | 10 | 99.47\% | 12.45\% | 62.73\% | 0.25 | 833.01 | 837.11 | 0.49\% |
| p42 | 20 | 80 | 4.99 | 49.30\% | 22.65\% | 28.05\% | 20 | 79.82\% | 1.83\% | 26.72\% | 0.05 | 1005.44 | 1008.07 | 0.26\% |
| p43 | 30 | 70 | 8.28 | 50.56\% | 13.92\% | 35.52\% | 29 | 55.12\% | 0.00\% | 14.00\% | 0.06 | 1283.67 | 1285.92 | 0.17\% |
| p44 | 10 | 90 | 1.76 | 29.26\% | 57.70\% | 13.04\% | 10 | 100.00\% | 28.76\% | 68.39\% | 0.05 | 1161.23 | 1166.99 | 0.50\% |
| p45 | 20 | 80 | 4.14 | 40.42\% | 37.37\% | 22.20\% | 20 | 85.64\% | 2.11\% | 30.35\% | 0.04 | 1255.90 | 1259.56 | 0.29\% |
| p46 | 30 | 70 | 7.10 | 45.42\% | 23.72\% | 30.87\% | 28 | 76.70\% | 0.00\% | 17.62\% | 0.06 | 1437.26 | 1440.04 | 0.19\% |
| p47 | 10 | 90 | 1.76 | 23.96\% | 65.07\% | 10.97\% | 10 | 99.17\% | 4.22\% | 68.26\% | 0.16 | 1386.57 | 1392.59 | 0.43\% |
| p48 | 20 | 80 | 4.06 | 32.11\% | 47.90\% | 19.99\% | 16 | 97.09\% | 0.00\% | 32.09\% | 0.06 | 1442.27 | 1446.53 | 0.30\% |
| p49 | 30 | 70 | 7.08 | 39.23\% | 31.61\% | 29.16\% | 24 | 95.74\% | 0.00\% | 20.33\% | 0.07 | 1551.06 | 1554.18 | 0.20\% |
| p50 | 10 | 100 | 1.89 | 35.64\% | 47.45\% | 16.91\% | 10 | 99.16\% | 1.27\% | 67.49\% | 0.05 | 898.42 | 903.92 | 0.61\% |
| p51 | 20 | 100 | 3.98 | 45.91\% | 27.28\% | 26.82\% | 18 | 99.12\% | 0.00\% | $34.20 \%$ | 0.06 | 1092.86 | 1097.02 | 0.38\% |
| p52 | 10 | 100 | 1.60 | 24.22\% | 65.13\% | 10.66\% | 10 | 99.17\% | 32.70\% | 72.37\% | 0.09 | 1456.44 | 1462.99 | 0.45\% |
| p53 | 20 | 100 | 3.37 | 34.94\% | 46.03\% | 19.03\% | 18 | 98.35\% | 0.00\% | 36.53\% | 0.06 | 1494.40 | 1499.75 | 0.36\% |
| p54 | 10 | 100 | 1.52 | 23.06\% | 66.38\% | 10.56\% | 10 | 99.17\% | 6.94\% | 73.52\% | 0.06 | 1506.17 | 1514.25 | 0.54\% |
| p55 | 20 | 100 | 3.21 | 31.14\% | 49.89\% | 18.97\% | 16 | 99.17\% | 0.00\% | 32.51\% | 0.05 | 1564.11 | 1571.27 | 0.46\% |

Table A.1: SOS2 Test results with $t=100, \epsilon=0.01$

| t= | 100 | $\epsilon=$ | 0.008 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  | max\% | min\% | avg\% |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 24.32\% | 64.81\% | 10.87\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1354.03 | 1361.20 | 0.53\% |
| p2 |  |  | 1.74 | 24.32\% | 64.81\% | 10.87\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.01 | 1354.03 | 1361.20 | 0.53\% |
| p3 |  |  | 1.74 | 24.32\% | 64.81\% | 10.87\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1354.03 | 1361.20 | 0.53\% |
| p4 |  |  | 1.74 | 24.32\% | 64.81\% | 10.87\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1354.03 | 1361.20 | 0.53\% |
| p5 |  |  | 1.37 | 24.35\% | 64.86\% | 10.79\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.02 | 1360.96 | 1367.94 | 0.51\% |
| p6 |  |  | 1.37 | 24.35\% | 64.86\% | 10.79\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1360.96 | 1367.94 | 0.51\% |
| p7 |  |  | 1.37 | 24.35\% | 64.86\% | 10.79\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1360.96 | 1367.94 | 0.51\% |
| p8 |  |  | 1.37 | 24.35\% | 64.86\% | 10.79\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1360.96 | 1367.94 | 0.51\% |
| p9 |  |  | 2.06 | 24.32\% | 64.81\% | 10.87\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1354.03 | 1361.20 | 0.53\% |
| p10 |  |  | 2.06 | 24.32\% | 64.81\% | 10.87\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1354.03 | 1361.20 | 0.53\% |
| p11 |  |  | 2.06 | 24.32\% | 64.81\% | 10.87\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1354.03 | 1361.20 | 0.53\% |
| p12 |  |  | 2.06 | 24.32\% | 64.81\% | 10.87\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1354.03 | 1361.20 | 0.53\% |
| p13 | 20 | 50 | 2.77 | 30.05\% | 55.29\% | 14.66\% | 20 | 91.28\% | 0.00\% | 38.15\% | 0.65 | 2054.07 | 2066.87 | 0.62\% |
| p14 |  |  | 2.77 | 30.05\% | $55.29 \%$ | 14.66\% | 20 | 91.28\% | 0.00\% | 38.15\% | 0.37 | 2054.07 | 2066.87 | 0.62\% |
| p15 |  |  | 2.77 | 30.05\% | 55.29\% | 14.66\% | 20 | 91.28\% | 0.00\% | 38.15\% | 0.42 | 2054.07 | 2066.87 | 0.62\% |
| p16 |  |  | 2.77 | 30.05\% | 55.29\% | 14.66\% | 20 | 91.28\% | 0.00\% | 38.15\% | 0.53 | 2054.07 | 2066.87 | 0.62\% |
| p17 |  |  | 2.80 | 30.05\% | 55.29\% | 14.66\% | 20 | 81.00\% | 0.00\% | 35.69\% | 0.55 | 2054.07 | 2066.87 | 0.62\% |
| p18 |  |  | 2.80 | 30.05\% | 55.29\% | 14.66\% | 20 | 81.00\% | 0.00\% | 35.69\% | 0.43 | 2054.07 | 2066.87 | 0.62\% |
| p19 |  |  | 2.80 | 30.05\% | 55.29\% | 14.66\% | 20 | 81.00\% | 0.00\% | 35.69\% | 0.40 | 2054.07 | 2066.87 | 0.62\% |
| p20 |  |  | 2.80 | 30.05\% | 55.29\% | 14.66\% | 20 | 81.00\% | 0.00\% | 35.69\% | 0.42 | 2054.07 | 2066.87 | 0.62\% |
| p21 |  |  | 3.50 | 30.05\% | 55.29\% | 14.66\% | 20 | 64.80\% | 0.00\% | 28.55\% | 0.43 | 2054.07 | 2066.87 | 0.62\% |
| p22 |  |  | 3.50 | 30.05\% | 55.29\% | 14.66\% | 20 | 64.80\% | 0.00\% | 28.55\% | 0.61 | 2054.07 | 2066.87 | 0.62\% |
| p23 |  |  | 3.50 | 30.05\% | 55.29\% | 14.66\% | 20 | 64.80\% | 0.00\% | 28.55\% | 0.47 | 2054.07 | 2066.87 | 0.62\% |
| p24 |  |  | 3.50 | 30.05\% | 55.29\% | 14.66\% | 20 | 64.80\% | 0.00\% | 28.55\% | 0.50 | 2054.07 | 2066.87 | 0.62\% |
| p25 | 30 | 150 | 4.12 | 39.92\% | 37.81\% | 22.27\% | 25 | 97.61\% | 0.00\% | 25.80\% | 1.00 | 1959.97 | 1973.81 | 0.71\% |
| p26 |  |  | 4.12 | 39.92\% | 37.81\% | 22.27\% | 25 | 97.61\% | 0.00\% | 25.80\% | 1.07 | 1959.97 | 1973.81 | 0.71\% |
| p27 |  |  | 4.12 | 39.92\% | 37.81\% | 22.27\% | 25 | 97.61\% | 0.00\% | 25.80\% | 1.21 | 1959.97 | 1973.81 | 0.71\% |
| p28 |  |  | 4.12 | 39.92\% | 37.81\% | 22.27\% | 25 | 97.61\% | 0.00\% | 25.80\% | 1.02 | 1959.97 | 1973.81 | 0.71\% |
| p29 |  |  | 3.03 | 40.29\% | 37.60\% | 22.12\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.19 | 1960.00 | 1974.36 | 0.73\% |
| p30 |  |  | 3.03 | 40.29\% | 37.60\% | 22.12\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.12 | 1960.00 | 1974.36 | 0.73\% |
| p31 |  |  | 3.03 | 40.29\% | 37.60\% | 22.12\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.15 | 1960.00 | 1974.36 | 0.73\% |
| p32 |  |  | 3.03 | 40.29\% | 37.60\% | 22.12\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.14 | 1960.00 | 1974.36 | 0.73\% |
| p33 |  |  | 4.04 | 39.87\% | 37.83\% | 22.30\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.98 | 1959.55 | 1973.53 | 0.71\% |
| p34 |  |  | 4.04 | 39.87\% | 37.83\% | 22.30\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.93 | 1959.55 | 1973.53 | 0.71\% |
| p35 |  |  | 4.04 | 39.87\% | 37.83\% | 22.30\% | 25 | 84.25\% | 0.00\% | 24.75\% | 1.03 | 1959.55 | 1973.53 | 0.71\% |
| p36 |  |  | 4.04 | 39.87\% | 37.83\% | 22.30\% | 25 | 84.25\% | 0.00\% | 24.75\% | 0.98 | 1959.55 | 1973.53 | 0.71\% |
| p37 |  |  | 6.06 | 39.86\% | 37.83\% | 22.30\% | 25 | 56.17\% | 0.00\% | 16.50\% | 3.12 | 1959.56 | 1973.50 | 0.71\% |
| p38 |  |  | 6.06 | 39.86\% | 37.83\% | 22.30\% | 25 | 56.17\% | 0.00\% | 16.50\% | 3.22 | 1959.56 | 1973.50 | 0.71\% |
| p39 |  |  | 6.06 | 39.86\% | 37.83\% | 22.30\% | 25 | 56.17\% | 0.00\% | 16.50\% | 3.24 | 1959.56 | 1973.50 | 0.71\% |
| p40 |  |  | 6.06 | 39.86\% | 37.83\% | 22.30\% | 25 | 56.17\% | 0.00\% | 16.50\% | 3.46 | 1959.56 | 1973.50 | 0.71\% |
| p41 | 10 | 90 | 2.12 | 38.56\% | 44.21\% | 17.23\% | 10 | 99.47\% | 12.45\% | 62.30\% | 0.07 | 825.32 | 831.17 | 0.71\% |
| p42 | 20 | 80 | 4.99 | 50.02\% | 22.82\% | 27.16\% | 20 | 79.82\% | 1.83\% | 26.50\% | 0.04 | 970.25 | 974.25 | 0.41\% |
| p43 | 30 | 70 | 8.28 | 52.00\% | 14.01\% | 33.99\% | 29 | $55.12 \%$ | 0.00\% | 14.00\% | 0.07 | 1221.56 | 1225.05 | 0.29\% |
| p44 | 10 | 90 | 1.76 | 29.48\% | 57.56\% | 12.96\% | 10 | 100.00\% | 33.97\% | 68.99\% | 0.10 | 1157.65 | 1165.49 | 0.68\% |
| p45 | 20 | 80 | 4.14 | 41.04\% | 37.46\% | 21.50\% | 20 | 85.64\% | 2.11\% | 30.99\% | 0.04 | 1223.99 | 1229.45 | 0.45\% |
| p46 | 30 | 70 | 7.10 | 46.94\% | 23.68\% | 29.38\% | 29 | 76.70\% | 0.00\% | 17.43\% | 0.06 | 1377.59 | 1381.85 | 0.31\% |
| p47 | 10 | 90 | 1.76 | 24.03\% | 65.08\% | 10.90\% | 10 | 99.17\% | 4.22\% | 69.27\% | 0.03 | 1385.97 | 1394.21 | 0.59\% |
| p48 | 20 | 80 | 4.06 | 31.96\% | 48.49\% | 19.55\% | 15 | 97.09\% | 0.00\% | 32.20\% | 0.06 | 1410.76 | 1417.00 | 0.44\% |
| p49 | 30 | 70 | 7.08 | 39.73\% | 32.07\% | 28.20\% | 23 | 95.74\% | 0.00\% | 19.62\% | 0.27 | 1491.46 | 1496.19 | 0.32\% |
| p50 | 10 | 100 | 1.89 | 35.79\% | 47.43\% | 16.78\% | 10 | 100.00\% | 1.27\% | 67.84\% | 0.08 | 893.33 | ${ }^{901.12}$ | 0.87\% |
| p51 | 20 | 100 | 3.98 | 46.60\% | 27.37\% | 26.03\% | 18 | 99.12\% | 0.00\% | 34.20\% | 0.09 | 1061.74 | 1067.83 | 0.57\% |
| p52 | 10 | 100 | 1.60 | 24.20\% | 65.16\% | 10.64\% | 10 | 99.17\% | 32.70\% | 72.43\% | 0.17 | 1457.67 | 1466.81 | 0.63\% |
| p53 | 20 | 100 | 3.37 | 35.40\% | 46.09\% | 18.51\% | 18 | 98.35\% | 0.00\% | 37.18\% | 0.07 | 1467.55 | 1475.19 | 0.52\% |
| p54 | 10 | 100 | 1.52 | 23.52\% | 66.03\% | 10.44\% | 10 | 99.17\% | 20.83\% | 75.71\% | 0.16 | 1515.02 | 1525.24 | 0.68\% |
| p55 | 20 | 100 | 3.21 | 32.20\% | 49.73\% | 18.07\% | 17 | 99.17\% | 0.00\% | 33.40\% | 0.10 | 1551.39 | 1560.41 | 0.58\% |

Table A.2: SOS2 Test results with $t=100, \epsilon=0.008$

| $\mathrm{t}=$ | 50 | $\epsilon=$ | 0.05 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| p1 p2 | 10 | 50 | 1.74 1.74 | $21.46 \%$ $21.46 \%$ | $69.33 \%$ $69.33 \%$ | $9.20 \%$ $9.20 \%$ | 10 10 | $99.56 \%$ $99.56 \%$ | $29.35 \%$ $29.35 \%$ | $61.25 \%$ $61.25 \%$ | 0.23 0.06 | 1279.60 1279.60 | 1280.04 1280.04 | 0.03\% |
| p3 |  |  | 1.74 | 21.46\% | 69.33\% | $9.20 \%$ | 10 | 99.56\% | 29.35\% | 61.25\% | 0.06 | 1279.60 | 1280.04 | 0.03\% |
| p4 |  |  | 1.74 | 21.46\% | 69.33\% | 9.20\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.08 | 1279.60 | 1280.04 | 0.03\% |
| p5 |  |  | 1.37 | 21.48\% | 69.38\% | 9.14\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.17 | 1286.53 | 1286.85 | 0.02\% |
| p6 |  |  | 1.37 | 21.48\% | 69.38\% | 9.14\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.09 | 1286.53 | 1286.85 | 0.02\% |
| p7 |  |  | 1.37 | 21.48\% | 69.38\% | 9.14\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.10 | 1286.53 | 1286.85 | 0.02\% |
| p8 |  |  | 1.37 | 21.48\% | 69.38\% | 9.14\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.09 | 1286.53 | 1286.85 | 0.02\% |
| p9 |  |  | 2.06 | 21.46\% | 69.33\% | 9.20\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1279.60 | 1280.04 | 0.03\% |
| p10 |  |  | 2.06 | 21.46\% | 69.33\% | 9.20\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.09 | 1279.60 | 1280.04 | 0.03\% |
| p11 |  |  | 2.06 | 21.46\% | 69.33\% | 9.20\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.09 | 1279.60 | 1280.04 | 0.03\% |
| p12 |  |  | 2.06 | 21.46\% | 69.33\% | 9.20\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1279.60 | 1280.04 | 0.03\% |
| p13 | 20 | 50 | 2.77 | 27.02\% | 60.28\% | 12.69\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.08 | 1902.30 | 1904.91 | 0.14\% |
| p14 |  |  | 2.77 | 27.02\% | 60.28\% | 12.69\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.07 | 1902.30 | 1904.91 | 0.14\% |
| p15 |  |  | 2.77 | 27.02\% | 60.28\% | 12.69\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.08 | 1902.30 | 1904.91 | 0.14\% |
| p16 |  |  | 2.77 | 27.02\% | 60.28\% | 12.69\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.23 | 1902.30 | 1904.91 | 0.14\% |
| p17 |  |  | 2.80 | 27.02\% | 60.28\% | 12.69\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.06 | 1902.30 | 1904.91 | 0.14\% |
| p18 |  |  | 2.80 | 27.02\% | 60.28\% | 12.69\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.06 | 1902.30 | 1904.91 | 0.14\% |
| p19 |  |  | 2.80 | 27.02\% | 60.28\% | 12.69\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.06 | 1902.30 | 1904.91 | 0.14\% |
| p20 |  |  | 2.80 | 27.02\% | 60.28\% | 12.69\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.06 | 1902.30 | 1904.91 | 0.14\% |
| p21 |  |  | 3.50 | 27.02\% | 60.28\% | 12.69\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.27 | 1902.30 | 1904.91 | 0.14\% |
| p22 |  |  | 3.50 | 27.02\% | 60.28\% | 12.69\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.06 | 1902.30 | 1904.91 | 0.14\% |
| p23 |  |  | 3.50 | 27.02\% | 60.28\% | 12.69\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.06 | 1902.30 | 1904.91 | 0.14\% |
| p24 |  |  | 3.50 | 27.02\% | 60.28\% | 12.69\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.11 | 1902.30 | 1904.91 | 0.14\% |
| p25 | 30 | 150 | 4.12 | 36.56\% | 42.83\% | 20.61\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.25 | 1783.88 | 1787.99 | 0.23\% |
| p26 |  |  | 4.12 | 36.56\% | 42.83\% | 20.61\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.23 | 1783.88 | 1787.99 | 0.23\% |
| p27 |  |  | 4.12 | 36.56\% | 42.83\% | 20.61\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.38 | 1783.88 | 1787.99 | 0.23\% |
| p28 |  |  | 4.12 | 36.56\% | 42.83\% | 20.61\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.44 | 1783.88 | 1787.99 | 0.23\% |
| p29 |  |  | 3.03 | 37.14\% | 42.46\% | 20.40\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.36 | 1784.94 | 1788.42 | 0.20\% |
| p30 |  |  | 3.03 | 37.14\% | 42.46\% | 20.40\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.43 | 1784.94 | 1788.42 | 0.20\% |
| p31 |  |  | 3.03 | 37.14\% | 42.46\% | 20.40\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.38 | 1784.94 | 1788.42 | 0.20\% |
| p32 |  |  | 3.03 | 37.14\% | 42.46\% | 20.40\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.38 | 1784.94 | 1788.42 | 0.20\% |
| p33 |  |  | 4.04 | 36.11\% | 43.11\% | 20.78\% | 24 | 91.75\% | 0.00\% | 24.75\% | 0.37 | 1783.03 | 1787.20 | 0.23\% |
| p34 |  |  | 4.04 | 36.11\% | 43.11\% | 20.78\% | 24 | 91.75\% | 0.00\% | 24.75\% | 0.48 | 1783.03 | 1787.20 | 0.23\% |
| p35 |  |  | 4.04 | 36.11\% | 43.11\% | 20.78\% | 24 | 91.75\% | 0.00\% | 24.75\% | 0.47 | 1783.03 | 1787.20 | 0.23\% |
| p36 |  |  | 4.04 | 36.11\% | 43.11\% | 20.78\% | 24 | 91.75\% | 0.00\% | 24.75\% | 0.43 | 1783.03 | 1787.20 | 0.23\% |
| p37 |  |  | 6.06 | 36.11\% | 43.11\% | 20.78\% | 24 | 61.17\% | 0.00\% | 16.50\% | 0.52 | 1783.03 | 1787.20 | 0.23\% |
| p38 |  |  | 6.06 | 36.11\% | 43.11\% | 20.78\% | 24 | 61.17\% | 0.00\% | 16.50\% | 0.37 | 1783.03 | 1787.20 | 0.23\% |
| p39 |  |  | 6.06 | 36.11\% | 43.11\% | 20.78\% | 24 | 61.17\% | 0.00\% | 16.50\% | 0.48 | 1783.03 | 1787.20 | 0.23\% |
| p40 |  |  | 6.06 | 36.11\% | 43.11\% | 20.78\% | 24 | 61.17\% | 0.00\% | 16.50\% | 0.59 | 1783.03 | 1787.20 | 0.23\% |
| p41 | 10 | 90 | 2.12 | 35.26\% | 49.36\% | 15.37\% | 10 | 99.47\% | 12.45\% | 62.73\% | 0.53 | 756.51 | 756.77 | 0.03\% |
| p42 | 20 | 80 | 4.99 | 46.67\% | 26.63\% | 26.70\% | 20 | 94.74\% | 1.83\% | 26.57\% | 0.45 | 884.04 | 885.33 | 0.15\% |
| p43 | 30 | 70 | 8.28 | 48.59\% | 16.66\% | 34.75\% | 29 | 59.06\% | 0.00\% | 14.09\% | 0.22 | 1116.46 | 1119.52 | 0.27\% |
| p44 | 10 | 90 | 1.76 | 26.29\% | 62.61\% | 11.10\% | 10 | 100.00\% | 28.76\% | 68.39\% | 0.44 | 1078.81 | 1079.48 | 0.06\% |
| p45 | 20 | 80 | 4.14 | 37.47\% | 42.29\% | 20.24\% | 20 | 85.64\% | 2.11\% | 30.71\% | 0.11 | 1129.25 | 1130.45 | 0.11\% |
| p46 | 30 | 70 | 7.10 | 43.50\% | 27.42\% | 29.08\% | 29 | 76.70\% | 0.00\% | 17.41\% | 0.18 | 1266.12 | 1268.91 | 0.22\% |
| p47 | 10 | 90 | 1.76 | 20.87\% | 69.88\% | 9.25\% | 10 | 99.17\% | 2.11\% | 67.34\% | 0.36 | 1303.52 | 1304.76 | 0.10\% |
| p48 | 20 | 80 | 4.06 | 28.99\% | 53.15\% | 17.86\% | 16 | 97.09\% | 0.00\% | 32.33\% | 0.16 | 1314.98 | 1316.67 | 0.13\% |
| p49 | 30 | 70 | 7.08 | 35.80\% | 36.64\% | 27.55\% | 23 | 95.74\% | 0.00\% | 19.93\% | 0.31 | 1379.84 | 1383.01 | 0.23\% |
| p50 | 10 | 100 | 1.89 | 32.70\% | 52.57\% | 14.73\% | 10 | 99.16\% | 1.27\% | 67.59\% | 0.55 | 818.41 | 819.30 | 0.11\% |
| p51 | 20 | 100 | 3.98 | 43.46\% | 31.56\% | 24.98\% | 18 | 99.12\% | 0.00\% | 34.29\% | 0.76 | 964.91 | 966.36 | 0.15\% |
| p52 | 10 | 100 | 1.60 | 21.49\% | 69.62\% | 8.89\% | 10 | 99.17\% | 32.70\% | 72.37\% | 0.61 | 1370.58 | 1371.33 | 0.06\% |
| p53 | 20 | 100 | 3.37 | 31.86\% | 51.19\% | 16.95\% | 18 | 98.35\% | 0.00\% | 36.19\% | 0.50 | 1360.64 | 1362.09 | 0.11\% |
| p54 | 10 | 100 | 1.52 | 20.18\% | 71.02\% | 8.80\% | 10 | 99.17\% | 2.31\% | 73.31\% | 0.31 | 1418.11 | 1420.09 | 0.14\% |
| p55 | 20 | 100 | 3.21 | 28.13\% | 55.08\% | 16.79\% | 16 | 99.46\% | 0.00\% | $33.55 \%$ | 0.35 | 1426.95 | 1430.06 | 0.22\% |

Table A.3: SOS2 Test results with $t=50, \epsilon=0.05$

| $\mathrm{t}=$ | 50 | $\epsilon=$ | 0.04 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| p1 p2 | 10 | 50 | 1.74 1.74 | $21.59 \%$ $21.59 \%$ | $69.34 \%$ $69.34 \%$ | $9.07 \%$ $9.07 \%$ | 10 10 | $99.56 \%$ $99.56 \%$ | $29.35 \%$ $29.35 \%$ | $61.25 \%$ $61.25 \%$ | 0.02 0.02 | 1272.10 1272.10 | 1273.45 1273.45 | 0.11\% $0.11 \%$ |
| p3 |  |  | 1.74 | 21.59\% | $69.34 \%$ | 9.07\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1272.10 | 1273.45 | 0.11\% |
| p4 |  |  | 1.74 | 21.59\% | 69.34\% | 9.07\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1272.10 | 1273.45 | 0.11\% |
| p5 |  |  | 1.37 | 21.61\% | 69.39\% | 9.00\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1279.04 | 1280.21 | 0.09\% |
| p6 |  |  | 1.37 | 21.61\% | 69.39\% | 9.00\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.02 | 1279.04 | 1280.21 | 0.09\% |
| p7 |  |  | 1.37 | 21.61\% | 69.39\% | 9.00\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1279.04 | 1280.21 | 0.09\% |
| p8 |  |  | 1.37 | 21.61\% | 69.39\% | 9.00\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1279.04 | 1280.21 | 0.09\% |
| p9 |  |  | 2.06 | 21.59\% | 69.34\% | 9.07\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1272.10 | 1273.45 | 0.11\% |
| p10 |  |  | 2.06 | 21.59\% | 69.34\% | 9.07\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1272.10 | 1273.45 | 0.11\% |
| p11 |  |  | 2.06 | 21.59\% | 69.34\% | 9.07\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1272.10 | 1273.45 | 0.11\% |
| p12 |  |  | 2.06 | 21.59\% | 69.34\% | 9.07\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1272.10 | 1273.45 | 0.11\% |
| p13 | 20 | 50 | 2.77 | 27.16\% | 60.33\% | 12.51\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p14 |  |  | 2.77 | 27.16\% | 60.33\% | 12.51\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p15 |  |  | 2.77 | 27.16\% | 60.33\% | 12.51\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p16 |  |  | 2.77 | 27.16\% | 60.33\% | 12.51\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p17 |  |  | 2.80 | 27.16\% | 60.33\% | 12.51\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p18 |  |  | 2.80 | 27.16\% | 60.33\% | 12.51\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p19 |  |  | 2.80 | 27.16\% | 60.33\% | 12.51\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p20 |  |  | 2.80 | 27.16\% | 60.33\% | 12.51\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p21 |  |  | 3.50 | 27.16\% | 60.33\% | 12.51\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p22 |  |  | 3.50 | 27.16\% | 60.33\% | 12.51\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p23 |  |  | 3.50 | 27.16\% | 60.33\% | 12.51\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p24 |  |  | 3.50 | 27.16\% | 60.33\% | 12.51\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.03 | 1886.76 | 1891.70 | 0.26\% |
| p25 | 30 | 150 | 4.12 | 36.97\% | 42.95\% | 20.08\% | 25 | 97.61\% | 0.00\% | 25.50\% | 0.34 | 1747.89 | 1753.50 | 0.32\% |
| p26 |  |  | 4.12 | 36.97\% | 42.95\% | 20.08\% | 25 | 97.61\% | 0.00\% | 25.50\% | 0.22 | 1747.89 | 1753.50 | 0.32\% |
| p27 |  |  | 4.12 | 36.97\% | 42.95\% | 20.08\% | 25 | 97.61\% | 0.00\% | 25.50\% | 0.44 | 1747.89 | 1753.50 | 0.32\% |
| p28 |  |  | 4.12 | 36.97\% | 42.95\% | 20.08\% | 25 | 97.61\% | 0.00\% | 25.50\% | 0.21 | 1747.89 | 1753.50 | 0.32\% |
| p29 |  |  | 3.03 | 37.58\% | 42.56\% | 19.86\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.25 | 1748.95 | 1753.69 | 0.27\% |
| p30 |  |  | 3.03 | 37.58\% | 42.56\% | 19.86\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.23 | 1748.95 | 1753.69 | 0.27\% |
| p31 |  |  | 3.03 | 37.58\% | 42.56\% | 19.86\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.32 | 1748.95 | 1753.69 | 0.27\% |
| p32 |  |  | 3.03 | 37.58\% | 42.56\% | 19.86\% | 26 | 99.33\% | 0.00\% | 33.00\% | 0.22 | 1748.95 | 1753.69 | 0.27\% |
| p33 |  |  | 4.04 | 36.46\% | 43.28\% | 20.26\% | 24 | 98.50\% | 0.00\% | 24.75\% | 0.19 | 1747.04 | 1752.91 | 0.34\% |
| p34 |  |  | 4.04 | 36.46\% | 43.28\% | 20.26\% | 24 | 98.50\% | 0.00\% | 24.75\% | 0.19 | 1747.04 | 1752.91 | 0.34\% |
| p35 |  |  | 4.04 | 36.46\% | 43.28\% | 20.26\% | 24 | 98.50\% | 0.00\% | 24.75\% | 0.19 | 1747.04 | 1752.91 | 0.34\% |
| p36 |  |  | 4.04 | 36.46\% | 43.28\% | 20.26\% | 24 | 98.50\% | 0.00\% | 24.75\% | 0.20 | 1747.04 | 1752.91 | 0.34\% |
| p37 |  |  | 6.06 | 36.46\% | 43.28\% | 20.26\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.20 | 1747.04 | 1752.91 | 0.34\% |
| p38 |  |  | 6.06 | 36.46\% | 43.28\% | 20.26\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.20 | 1747.04 | 1752.91 | 0.34\% |
| p39 |  |  | 6.06 | 36.46\% | 43.28\% | 20.26\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.20 | 1747.04 | 1752.91 | 0.34\% |
| p40 |  |  | 6.06 | 36.46\% | 43.28\% | 20.26\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.21 | 1747.04 | 1752.91 | 0.34\% |
| p41 | 10 | 90 | 2.12 | 35.54\% | 49.38\% | 15.08\% | 10 | 99.47\% | 12.45\% | 62.73\% | 0.16 | 747.50 | 748.34 | 0.11\% |
| p42 | 20 | 80 | 4.99 | 47.90\% | 26.59\% | 25.51\% | 20 | 79.82\% | 1.83\% | 26.72\% | 0.04 | 852.15 | 852.60 | 0.05\% |
| p43 | 30 | 70 | 8.28 | 50.08\% | 16.77\% | 33.15\% | 29 | 55.12\% | 0.00\% | 13.91\% | 0.06 | 1062.10 | 1063.30 | 0.11\% |
| p44 | 10 | 90 | 1.76 | 26.53\% | 62.52\% | 10.95\% | 10 | 100.00\% | 28.76\% | 68.76\% | 0.05 | 1072.39 | 1073.99 | 0.15\% |
| p45 | 20 | 80 | 4.14 | 38.09\% | 42.40\% | 19.51\% | 20 | 85.64\% | 2.11\% | 30.40\% | 0.04 | 1099.66 | 1100.45 | 0.07\% |
| p46 | 30 | 70 | 7.10 | 44.58\% | 27.60\% | 27.83\% | 29 | 76.70\% | 0.00\% | 17.92\% | 0.06 | 1213.48 | 1214.61 | 0.09\% |
| p47 | 10 | 90 | 1.76 | 20.94\% | 69.92\% | 9.14\% | 10 | 99.17\% | 2.11\% | 67.30\% | 0.03 | 1297.02 | 1299.93 | 0.22\% |
| p48 | 20 | 80 | 4.06 | 29.47\% | 53.30\% | 17.23\% | 16 | 97.09\% | 0.00\% | 32.52\% | 0.26 | 1285.68 | 1287.03 | 0.10\% |
| p49 | 30 | 70 | 7.08 | 38.03\% | 36.14\% | 25.83\% | 25 | 95.74\% | 0.00\% | 19.55\% | 0.08 | 1327.24 | 1328.74 | 0.11\% |
| p50 | 10 | 100 | 1.89 | 32.88\% | 52.59\% | 14.52\% | 10 | 99.16\% | 1.27\% | 67.49\% | 0.06 | 810.94 | 812.86 | 0.24\% |
| p51 | 20 | 100 | 3.98 | 44.19\% | 31.68\% | 24.13\% | 18 | 99.12\% | 0.00\% | 34.29\% | 0.07 | 935.87 | 937.05 | 0.13\% |
| p52 | 10 | 100 | 1.60 | 21.56\% | 69.62\% | 8.82\% | 10 | 99.17\% | 32.70\% | 72.37\% | 0.04 | 1365.67 | 1367.86 | 0.16\% |
| p53 | 20 | 100 | 3.37 | 32.29\% | 51.28\% | 16.42\% | 18 | 98.35\% | 0.00\% | 36.19\% | 0.05 | 1334.17 | 1335.77 | 0.12\% |
| p54 | 10 | 100 | 1.52 | 20.20\% | 71.04\% | 8.76\% | 10 | 99.17\% | 2.31\% | 73.31\% | 0.12 | 1414.03 | 1418.02 | 0.28\% |
| p55 | 20 | 100 | 3.21 | 28.88\% | 54.91\% | 16.21\% | 17 | 99.46\% | 0.00\% | 32.29\% | 0.05 | 1401.32 | 1405.27 | 0.28\% |

Table A.4: SOS2 Test results with $t=50, \epsilon=0.04$

| $\mathrm{t}=$ | 50 | $\epsilon=$ | 0.03 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| p1 p2 | 10 | 50 | 1.74 1.74 | $21.63 \%$ $21.63 \%$ | $69.35 \%$ $69.35 \%$ | $9.02 \%$ $9.02 \%$ | 10 10 | $99.56 \%$ $99.56 \%$ | $29.35 \%$ $29.35 \%$ | $61.25 \%$ $61.25 \%$ | 0.02 0.02 | 1267.72 1267.72 | 1271.46 1271.46 | 0.30\% $0.30 \%$ |
| p3 |  |  | 1.74 | 21.63\% | 69.35\% | 9.02\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1267.72 | 1271.46 | 0.30\% |
| p4 |  |  | 1.74 | 21.63\% | 69.35\% | 9.02\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.02 | 1267.72 | 1271.46 | 0.30\% |
| p5 |  |  | 1.37 | 21.65\% | 69.39\% | 8.96\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.02 | 1274.65 | 1278.14 | 0.27\% |
| p6 |  |  | 1.37 | 21.65\% | 69.39\% | 8.96\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.02 | 1274.65 | 1278.14 | 0.27\% |
| p7 |  |  | 1.37 | 21.65\% | 69.39\% | 8.96\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1274.65 | 1278.14 | 0.27\% |
| p8 |  |  | 1.37 | 21.65\% | 69.39\% | 8.96\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.02 | 1274.65 | 1278.14 | 0.27\% |
| p9 |  |  | 2.06 | 21.63\% | 69.35\% | 9.02\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1267.72 | 1271.46 | 0.30\% |
| p10 |  |  | 2.06 | 21.63\% | 69.35\% | 9.02\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1267.72 | 1271.46 | 0.30\% |
| p11 |  |  | 2.06 | 21.63\% | 69.35\% | 9.02\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1267.72 | 1271.46 | 0.30\% |
| p12 |  |  | 2.06 | 21.63\% | 69.35\% | 9.02\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.01 | 1267.72 | 1271.46 | 0.30\% |
| p13 | 20 | 50 | 2.77 | 27.18\% | 60.38\% | 12.44\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.37 | 1877.15 | 1887.86 | 0.57\% |
| p14 |  |  | 2.77 | 27.18\% | 60.38\% | 12.44\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.45 | 1877.15 | 1887.86 | 0.57\% |
| p15 |  |  | 2.77 | 27.18\% | 60.38\% | 12.44\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.30 | 1877.15 | 1887.86 | 0.57\% |
| p16 |  |  | 2.77 | 27.18\% | 60.38\% | 12.44\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.44 | 1877.15 | 1887.86 | 0.57\% |
| p17 |  |  | 2.80 | 27.18\% | 60.38\% | 12.44\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.34 | 1877.15 | 1887.86 | 0.57\% |
| p18 |  |  | 2.80 | 27.18\% | 60.38\% | 12.44\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.37 | 1877.15 | 1887.86 | 0.57\% |
| p19 |  |  | 2.80 | 27.18\% | 60.38\% | 12.44\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.38 | 1877.15 | 1887.86 | 0.57\% |
| p20 |  |  | 2.80 | 27.18\% | 60.38\% | 12.44\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.44 | 1877.15 | 1887.86 | 0.57\% |
| p21 |  |  | 3.50 | 27.18\% | 60.38\% | 12.44\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.39 | 1877.15 | 1887.86 | 0.57\% |
| p22 |  |  | 3.50 | 27.18\% | 60.38\% | 12.44\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.45 | 1877.15 | 1887.86 | 0.57\% |
| p23 |  |  | 3.50 | 27.18\% | 60.38\% | 12.44\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.55 | 1877.15 | 1887.86 | 0.57\% |
| p24 |  |  | 3.50 | 27.18\% | 60.38\% | 12.44\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.50 | 1877.15 | 1887.86 | 0.57\% |
| p25 | 30 | 150 | 4.12 | 36.81\% | 43.70\% | 19.48\% | 25 | 98.98\% | 0.00\% | 25.20\% | 1.39 | 1712.94 | 1720.83 | 0.46\% |
| p26 |  |  | 4.12 | 36.81\% | 43.70\% | 19.48\% | 25 | 98.98\% | 0.00\% | 25.20\% | 1.38 | 1712.94 | 1720.83 | 0.46\% |
| p27 |  |  | 4.12 | 36.81\% | 43.70\% | 19.48\% | 25 | 98.98\% | 0.00\% | 25.20\% | 1.44 | 1712.94 | 1720.83 | 0.46\% |
| p28 |  |  | 4.12 | 36.81\% | 43.70\% | 19.48\% | 25 | 98.98\% | 0.00\% | 25.20\% | 1.41 | 1712.94 | 1720.83 | 0.46\% |
| p29 |  |  | 3.03 | 37.91\% | 42.68\% | 19.41\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.52 | 1715.26 | 1724.77 | 0.55\% |
| p30 |  |  | 3.03 | 37.91\% | 42.68\% | 19.41\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.41 | 1715.26 | 1724.77 | 0.55\% |
| p31 |  |  | 3.03 | 37.91\% | 42.68\% | 19.41\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.57 | 1715.26 | 1724.77 | 0.55\% |
| p32 |  |  | 3.03 | 37.91\% | 42.68\% | 19.41\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.52 | 1715.26 | 1724.77 | 0.55\% |
| p33 |  |  | 4.04 | 36.81\% | 43.40\% | 19.79\% | 24 | 91.75\% | 0.00\% | 24.75\% | 1.35 | 1713.35 | 1724.25 | 0.64\% |
| p34 |  |  | 4.04 | 36.81\% | 43.40\% | 19.79\% | 24 | 91.75\% | 0.00\% | 24.75\% | 1.31 | 1713.35 | 1724.25 | 0.64\% |
| p35 |  |  | 4.04 | 36.81\% | 43.40\% | 19.79\% | 24 | 91.75\% | 0.00\% | 24.75\% | 1.30 | 1713.35 | 1724.25 | 0.64\% |
| p36 |  |  | 4.04 | 36.81\% | 43.40\% | 19.79\% | 24 | 91.75\% | 0.00\% | 24.75\% | 1.34 | 1713.35 | 1724.25 | 0.64\% |
| p37 |  |  | 6.06 | 36.21\% | 44.15\% | 19.64\% | 24 | 100.00\% | 0.00\% | 16.50\% | 7.74 | 1712.41 | 1720.66 | 0.48\% |
| p38 |  |  | 6.06 | $36.21 \%$ | 44.15\% | 19.64\% | 24 | 100.00\% | 0.00\% | 16.50\% | 6.99 | 1712.41 | 1720.66 | 0.48\% |
| p39 |  |  | 6.06 | 36.21\% | 44.15\% | 19.64\% | 24 | 100.00\% | 0.00\% | 16.50\% | 7.22 | 1712.41 | 1720.66 | 0.48\% |
| p40 |  |  | 6.06 | 36.21\% | 44.15\% | 19.64\% | 24 | 100.00\% | 0.00\% | 16.50\% | 7.18 | 1712.41 | 1720.66 | 0.48\% |
| p41 | 10 | 90 | 2.12 | 35.71\% | 49.38\% | 14.91\% | 10 | 99.47\% | 12.45\% | 62.73\% | 0.13 | 740.81 | 743.49 | 0.36\% |
| p42 | 20 | 80 | 4.99 | 48.97\% | 26.67\% | 24.37\% | 20 | 79.82\% | 1.83\% | 26.72\% | 0.04 | 817.69 | 818.39 | 0.09\% |
| p43 | 30 | 70 | 8.28 | 51.88\% | 16.85\% | 31.27\% | 29 | 55.12\% | 0.00\% | 14.00\% | 0.07 | 1000.48 | 1000.97 | 0.05\% |
| p44 | 10 | 90 | 1.76 | 26.43\% | 62.61\% | 10.96\% | 10 | 100.00\% | 28.76\% | 68.39\% | 0.10 | 1069.65 | 1074.33 | 0.44\% |
| p45 | 20 | 80 | 4.14 | 38.63\% | 42.57\% | 18.79\% | 20 | 85.64\% | 2.11\% | 30.42\% | 0.05 | 1068.70 | 1070.49 | 0.17\% |
| p46 | 30 | 70 | 7.10 | 45.72\% | 27.83\% | 26.44\% | 29 | 76.70\% | 0.00\% | 17.37\% | 0.07 | 1154.47 | 1155.27 | 0.07\% |
| p47 | 10 | 90 | 1.76 | 21.49\% | 69.44\% | 9.07\% | 10 | 99.17\% | 10.55\% | 67.83\% | 0.03 | 1294.42 | 1299.81 | 0.42\% |
| p48 | 20 | 80 | 4.06 | 30.02\% | 53.41\% | 16.57\% | 16 | 97.09\% | 0.00\% | 32.09\% | 0.07 | 1255.14 | 1257.78 | 0.21\% |
| p49 | 30 | 70 | 7.08 | 39.09\% | 36.39\% | 24.52\% | 25 | 95.74\% | 0.00\% | 19.55\% | 0.22 | 1268.29 | 1269.59 | 0.10\% |
| p50 | 10 | 100 | 1.89 | 32.90\% | 52.63\% | 14.46\% | 10 | 99.16\% | 1.27\% | 67.49\% | 0.07 | 806.58 | 811.19 | 0.57\% |
| p51 | 20 | 100 | 3.98 | 44.92\% | 31.80\% | 23.28\% | 18 | 99.12\% | 0.00\% | 34.29\% | 0.08 | 905.75 | 908.11 | 0.26\% |
| p52 | 10 | 100 | 1.60 | 21.51\% | 69.61\% | 8.87\% | 10 | 99.17\% | 32.70\% | 72.37\% | 0.05 | 1365.22 | 1370.75 | 0.40\% |
| p53 | 20 | 100 | 3.37 | 32.70\% | 51.38\% | 15.92\% | 18 | 98.35\% | 0.00\% | 36.53\% | 0.06 | 1307.95 | 1311.46 | 0.27\% |
| p54 | 10 | 100 | 1.52 | 20.12\% | 71.05\% | 8.83\% | 10 | 99.17\% | 2.31\% | 73.31\% | 0.13 | 1414.85 | 1423.21 | 0.59\% |
| p55 | 20 | 100 | 3.21 | 29.13\% | 55.10\% | 15.78\% | 17 | 99.46\% | 0.00\% | 32.36\% | 0.05 | 1376.36 | 1383.58 | 0.52\% |

Table A.5: SOS2 Test results with $t=50, \epsilon=0.03$

| $\mathrm{t}=$ | 25 | $\epsilon=$ | 0.2 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| p1 p2 | 10 | 50 | 1.74 1.74 | $19.24 \%$ $19.24 \%$ | 73.31\% $73.31 \%$ | $7.46 \%$ $7.46 \%$ | 10 10 | $99.56 \%$ $99.56 \%$ | $29.35 \%$ $29.35 \%$ | $61.25 \%$ $61.25 \%$ | 0.17 0.06 | 1203.58 1203.58 | 1208.11 1208.11 | $0.38 \%$ $0.38 \%$ |
| p3 |  |  | 1.74 | 19.24\% | 73.31\% | 7.46\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.06 | 1203.58 | 1208.11 | 0.38\% |
| p4 |  |  | 1.74 | 19.24\% | 73.31\% | 7.46\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.07 | 1203.58 | 1208.11 | 0.38\% |
| p5 |  |  | 1.37 | 19.25\% | 73.35\% | 7.40\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.08 | 1210.52 | 1214.89 | 0.36\% |
| p6 |  |  | 1.37 | 19.25\% | 73.35\% | 7.40\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.13 | 1210.52 | 1214.89 | 0.36\% |
| p7 |  |  | 1.37 | 19.25\% | 73.35\% | 7.40\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.08 | 1210.52 | 1214.89 | 0.36\% |
| p8 |  |  | 1.37 | 19.25\% | 73.35\% | 7.40\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.08 | 1210.52 | 1214.89 | 0.36\% |
| p9 |  |  | 2.06 | 19.24\% | 73.31\% | 7.46\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.58 | 1208.11 | 0.38\% |
| p10 |  |  | 2.06 | 19.24\% | 73.31\% | 7.46\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.58 | 1208.11 | 0.38\% |
| p11 |  |  | 2.06 | 19.24\% | 73.31\% | 7.46\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.58 | 1208.11 | 0.38\% |
| p12 |  |  | 2.06 | 19.24\% | 73.31\% | 7.46\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.58 | 1208.11 | 0.38\% |
| p13 | 20 | 50 | 2.77 | 24.68\% | 64.86\% | 10.47\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.13 | 1750.50 | 1761.89 | 0.65\% |
| p14 |  |  | 2.77 | 24.68\% | 64.86\% | 10.47\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.07 | 1750.50 | 1761.89 | 0.65\% |
| p15 |  |  | 2.77 | 24.68\% | 64.86\% | 10.47\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.25 | 1750.50 | 1761.89 | 0.65\% |
| p16 |  |  | 2.77 | 24.68\% | 64.86\% | 10.47\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.17 | 1750.50 | 1761.89 | 0.65\% |
| p17 |  |  | 2.80 | 24.68\% | 64.86\% | 10.47\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.05 | 1750.50 | 1761.89 | 0.65\% |
| p18 |  |  | 2.80 | 24.68\% | 64.86\% | 10.47\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.05 | 1750.50 | 1761.89 | 0.65\% |
| p19 |  |  | 2.80 | 24.68\% | 64.86\% | 10.47\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.06 | 1750.50 | 1761.89 | 0.65\% |
| p20 |  |  | 2.80 | 24.68\% | 64.86\% | 10.47\% | 18 | 81.00\% | 0.00\% | 35.69\% | 0.07 | 1750.50 | 1761.89 | 0.65\% |
| p21 |  |  | 3.50 | 24.68\% | 64.86\% | 10.47\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.24 | 1750.50 | 1761.89 | 0.65\% |
| p22 |  |  | 3.50 | 24.68\% | 64.86\% | 10.47\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.05 | 1750.50 | 1761.89 | 0.65\% |
| p23 |  |  | 3.50 | 24.68\% | 64.86\% | 10.47\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.05 | 1750.50 | 1761.89 | 0.65\% |
| p24 |  |  | 3.50 | 24.68\% | 64.86\% | 10.47\% | 18 | 64.80\% | 0.00\% | 28.55\% | 0.05 | 1750.50 | 1761.89 | 0.65\% |
| p25 | 30 | 150 | 4.12 | 34.58\% | 47.79\% | 17.63\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.30 | 1561.46 | 1586.36 | 1.59\% |
| p26 |  |  | 4.12 | 34.58\% | 47.79\% | 17.63\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.27 | 1561.46 | 1586.36 | 1.59\% |
| p27 |  |  | 4.12 | 34.58\% | 47.79\% | 17.63\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.36 | 1561.46 | 1586.36 | 1.59\% |
| p28 |  |  | 4.12 | 34.58\% | 47.79\% | 17.63\% | 25 | 97.61\% | 0.00\% | 25.50\% | 1.46 | 1561.46 | 1586.36 | 1.59\% |
| p29 |  |  | 3.03 | 35.13\% | 47.40\% | 17.46\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.44 | 1562.53 | 1586.68 | 1.55\% |
| p30 |  |  | 3.03 | 35.13\% | 47.40\% | 17.46\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.44 | 1562.53 | 1586.68 | 1.55\% |
| p31 |  |  | 3.03 | 35.13\% | 47.40\% | 17.46\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.60 | 1562.53 | 1586.68 | 1.55\% |
| p32 |  |  | 3.03 | 35.13\% | 47.40\% | 17.46\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.63 | 1562.53 | 1586.68 | 1.55\% |
| p33 |  |  | 4.04 | 34.12\% | 48.11\% | 17.77\% | 24 | 98.50\% | 0.00\% | 24.75\% | 1.18 | 1560.61 | 1585.72 | 1.61\% |
| p34 |  |  | 4.04 | 34.12\% | 48.11\% | 17.77\% | 24 | 98.50\% | 0.00\% | 24.75\% | 1.35 | 1560.61 | 1585.72 | 1.61\% |
| p35 |  |  | 4.04 | 34.12\% | 48.11\% | 17.77\% | 24 | 98.50\% | 0.00\% | 24.75\% | 1.23 | 1560.61 | 1585.72 | 1.61\% |
| p36 |  |  | 4.04 | 34.12\% | 48.11\% | 17.77\% | 24 | 98.50\% | 0.00\% | 24.75\% | 1.23 | 1560.61 | 1585.72 | 1.61\% |
| p37 |  |  | 6.06 | 34.12\% | 48.11\% | 17.77\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.48 | 1560.61 | 1585.72 | 1.61\% |
| p38 |  |  | 6.06 | 34.12\% | 48.11\% | 17.77\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.48 | 1560.61 | 1585.72 | 1.61\% |
| p39 |  |  | 6.06 | 34.12\% | 48.11\% | 17.77\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.38 | 1560.61 | 1585.72 | 1.61\% |
| p40 |  |  | 6.06 | 34.12\% | 48.11\% | 17.77\% | 24 | 65.67\% | 0.00\% | 16.50\% | 0.38 | 1560.61 | 1585.72 | 1.61\% |
| p41 | 10 | 90 | 2.12 | 32.81\% | $54.24 \%$ | 12.95\% | 10 | 99.47\% | 12.45\% | 62.73\% | 0.44 | 681.13 | 686.33 | 0.76\% |
| p42 | 20 | 80 | 4.99 | 45.52\% | 30.80\% | 23.67\% | 20 | 94.74\% | 1.83\% | 26.57\% | 0.19 | 739.05 | 758.66 | 2.65\% |
| p43 | 30 | 70 | 8.28 | 48.59\% | 19.78\% | 31.62\% | 29 | 59.06\% | 0.00\% | 14.09\% | 0.24 | 901.71 | 936.35 | 3.84\% |
| p44 | 10 | 90 | 1.76 | 23.87\% | 67.02\% | 9.10\% | 10 | 100.00\% | 28.76\% | 68.39\% | 0.45 | 1002.34 | 1006.48 | 0.41\% |
| p45 | 20 | 80 | 4.14 | 35.37\% | 47.28\% | 17.35\% | 20 | 85.64\% | 2.11\% | 30.71\% | 0.09 | 983.31 | 1001.44 | 1.84\% |
| p46 | 30 | 70 | 7.10 | 42.45\% | 31.75\% | 25.81\% | 29 | 76.70\% | 0.00\% | 17.41\% | 0.12 | 1050.65 | 1083.94 | 3.17\% |
| p47 | 10 | 90 | 1.76 | 18.69\% | 73.82\% | 7.49\% | 10 | 99.17\% | 2.11\% | 67.30\% | 0.55 | 1227.08 | 1232.21 | 0.42\% |
| p48 | 20 | 80 | 4.06 | 26.83\% | 58.18\% | 14.99\% | 16 | 97.09\% | 0.00\% | 32.33\% | 0.29 | 1168.92 | 1187.46 | 1.59\% |
| p49 | 30 | 70 | 7.08 | 34.33\% | 41.66\% | 24.01\% | 23 | 95.74\% | 0.00\% | 19.93\% | 0.19 | 1164.36 | 1198.06 | 2.89\% |
| p50 | 10 | 100 | 1.89 | 30.29\% | 57.38\% | 12.33\% | 10 | 99.16\% | 1.27\% | 67.59\% | 0.46 | 742.39 | 747.42 | 0.68\% |
| p51 | 20 | 100 | 3.98 | 42.00\% | 36.09\% | 21.90\% | 18 | 99.12\% | 0.00\% | 34.29\% | 0.70 | 818.74 | 836.82 | 2.21\% |
| p52 | 10 | 100 | 1.60 | 19.27\% | 73.53\% | 7.20\% | 10 | 99.17\% | 32.70\% | 72.37\% | 0.57 | 1293.48 | 1296.82 | 0.26\% |
| p53 | 20 | 100 | 3.37 | 29.56\% | 56.18\% | 14.26\% | 18 | 98.35\% | 0.00\% | 36.19\% | 0.61 | 1213.39 | 1229.95 | 1.36\% |
| p54 | 10 | 100 | 1.52 | 18.07\% | 74.82\% | 7.11\% | 10 | 99.17\% | 2.31\% | 73.31\% | 0.25 | 1340.67 | 1344.97 | 0.32\% |
| p55 | 20 | 100 | 3.21 | 26.01\% | 59.98\% | 14.01\% | 16 | 99.46\% | 0.00\% | 32.32\% | 0.96 | 1279.36 | 1297.38 | 1.41\% |

Table A.6: SOS2 Test results with $t=25, \epsilon=0.2$

| $\mathrm{t}=$ | 25 | $\epsilon=$ | 0.1 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  | max\% | $\min \%$ | avg\% |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 19.29\% | 73.32\% | 7.39\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.23 | 1203.45 | 1205.27 | 0.15\% |
| p2 |  |  | 1.74 | 19.29\% | 73.32\% | 7.39\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.05 | 1203.45 | 1205.27 | 0.15\% |
| p3 |  |  | 1.74 | 19.29\% | 73.32\% | 7.39\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.45 | 1203.45 | 1205.27 | 0.15\% |
| p4 |  |  | 1.74 | 19.29\% | $73.32 \%$ | 7.39\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.25 | 1203.45 | 1205.27 | 0.15\% |
| p5 |  |  | 1.37 | 19.30\% | 73.36\% | 7.34\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.08 | 1210.39 | 1211.81 | 0.12\% |
| p6 |  |  | 1.37 | 19.30\% | 73.36\% | 7.34\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.08 | 1210.39 | 1211.81 | 0.12\% |
| p7 |  |  | 1.37 | 19.30\% | 73.36\% | 7.34\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.15 | 1210.39 | 1211.81 | 0.12\% |
| p8 |  |  | 1.37 | 19.30\% | $73.36 \%$ | 7.34\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.14 | 1210.39 | 1211.81 | 0.12\% |
| p9 |  |  | 2.06 | 19.29\% | $73.32 \%$ | 7.39\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.45 | 1205.27 | 0.15\% |
| p10 |  |  | 2.06 | 19.29\% | 73.32\% | 7.39\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.45 | 1205.27 | 0.15\% |
| p11 |  |  | 2.06 | 19.29\% | 73.32\% | 7.39\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.45 | 1205.27 | 0.15\% |
| p12 |  |  | 2.06 | 19.29\% | 73.32\% | 7.39\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.02 | 1203.45 | 1205.27 | 0.15\% |
| p13 | 20 | 50 | 2.77 | 24.69\% | 64.95\% | 10.36\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.47 | 1748.58 | 1757.41 | 0.50\% |
| p14 |  |  | 2.77 | 24.69\% | 64.95\% | 10.36\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.45 | 1748.58 | 1757.41 | 0.50\% |
| p15 |  |  | 2.77 | 24.69\% | 64.95\% | 10.36\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.48 | 1748.58 | 1757.41 | 0.50\% |
| p16 |  |  | 2.77 | 24.69\% | 64.95\% | 10.36\% | 18 | 91.28\% | 0.00\% | 38.09\% | 0.42 | 1748.58 | 1757.41 | 0.50\% |
| p17 |  |  | 2.80 | 24.64\% | 65.04\% | 10.32\% | 18 | 97.00\% | 0.00\% | 35.69\% | 0.55 | 1747.68 | 1756.71 | 0.52\% |
| p18 |  |  | 2.80 | 24.64\% | 65.04\% | 10.32\% | 18 | 97.00\% | 0.00\% | 35.69\% | 0.55 | 1747.68 | 1756.71 | 0.52\% |
| p19 |  |  | 2.80 | 24.64\% | 65.04\% | 10.32\% | 18 | 97.00\% | 0.00\% | 35.69\% | 0.55 | 1747.68 | 1756.71 | 0.52\% |
| p20 |  |  | 2.80 | 24.64\% | 65.04\% | 10.32\% | 18 | 97.00\% | 0.00\% | 35.69\% | 0.53 | 1747.68 | 1756.71 | 0.52\% |
| p21 |  |  | 3.50 | 24.64\% | 65.04\% | 10.32\% | 18 | 77.60\% | 0.00\% | 28.55\% | 0.50 | 1747.68 | 1756.71 | 0.52\% |
| p22 |  |  | 3.50 | 24.64\% | 65.04\% | 10.32\% | 18 | 77.60\% | 0.00\% | 28.55\% | 0.63 | 1747.68 | 1756.71 | 0.52\% |
| p23 |  |  | 3.50 | 24.64\% | 65.04\% | 10.32\% | 18 | 77.60\% | 0.00\% | 28.55\% | 0.53 | 1747.68 | 1756.71 | 0.52\% |
| p24 |  |  | 3.50 | 24.64\% | 65.04\% | 10.32\% | 18 | 77.60\% | 0.00\% | 28.55\% | 0.53 | 1747.68 | 1756.71 | 0.52\% |
| p25 | 30 | 150 | 4.12 | 32.93\% | 50.39\% | 16.69\% | 22 | 98.36\% | 0.00\% | 24.77\% | 2.68 | 1506.49 | 1519.86 | 0.89\% |
| p26 |  |  | 4.12 | 32.93\% | 50.39\% | 16.69\% | 22 | 98.36\% | 0.00\% | 24.77\% | 2.85 | 1506.49 | 1519.86 | 0.89\% |
| p27 |  |  | 4.12 | 32.93\% | 50.39\% | 16.69\% | 22 | 98.36\% | 0.00\% | 24.77\% | 2.96 | 1506.49 | 1519.86 | 0.89\% |
| p28 |  |  | 4.12 | 32.93\% | 50.39\% | 16.69\% | 22 | 98.36\% | 0.00\% | 24.77\% | 2.56 | 1506.49 | 1519.86 | 0.89\% |
| p29 |  |  | 3.03 | 35.78\% | 47.67\% | 16.55\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.52 | 1521.41 | 1531.52 | 0.66\% |
| p30 |  |  | 3.03 | 35.78\% | 47.67\% | 16.55\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.44 | 1521.41 | 1531.52 | 0.66\% |
| p31 |  |  | 3.03 | $35.78 \%$ | 47.67\% | 16.55\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.49 | 1521.41 | 1531.52 | 0.66\% |
| p32 |  |  | 3.03 | 35.78\% | 47.67\% | 16.55\% | 26 | 99.33\% | 0.00\% | 33.00\% | 1.46 | 1521.41 | 1531.52 | 0.66\% |
| p33 |  |  | 4.04 | 34.43\% | 48.77\% | 16.80\% | 24 | 99.75\% | 0.00\% | 24.75\% | 14.88 | 1514.61 | 1527.49 | 0.85\% |
| p34 |  |  | 4.04 | 34.43\% | 48.77\% | 16.80\% | 24 | 99.75\% | 0.00\% | 24.75\% | 16.17 | 1514.61 | 1527.49 | 0.85\% |
| p35 |  |  | 4.04 | 34.43\% | 48.77\% | 16.80\% | 24 | 99.75\% | 0.00\% | 24.75\% | 15.23 | 1514.61 | 1527.49 | 0.85\% |
| p36 |  |  | 4.04 | 34.43\% | 48.77\% | 16.80\% | 24 | 99.75\% | 0.00\% | 24.75\% | 15.47 | 1514.61 | 1527.49 | 0.85\% |
| p37 |  |  | 6.06 | 31.54\% | 51.77\% | 16.70\% | 21 | 92.83\% | 0.00\% | 16.50\% | 11.57 | 1505.79 | 1521.59 | 1.05\% |
| p38 |  |  | 6.06 | $31.54 \%$ | 51.77\% | 16.70\% | 21 | 92.83\% | 0.00\% | 16.50\% | 11.84 | 1505.79 | 1521.59 | 1.05\% |
| p39 |  |  | 6.06 | $31.54 \%$ | 51.77\% | 16.70\% | 21 | 92.83\% | 0.00\% | 16.50\% | 12.05 | 1505.79 | 1521.59 | 1.05\% |
| p40 |  |  | 6.06 | 31.54\% | 51.77\% | 16.70\% | 21 | 92.83\% | 0.00\% | 16.50\% | 12.69 | 1505.79 | 1521.59 | 1.05\% |
| p41 | 10 | 90 | 2.12 | 33.11\% | 54.25\% | 12.63\% | 10 | 99.47\% | 12.45\% | 62.73\% | 0.42 | 676.42 | 677.44 | 0.15\% |
| p42 | 20 | 80 | 4.99 | 47.70\% | 31.02\% | 21.28\% | 20 | 94.74\% | 1.83\% | 26.57\% | 0.53 | 687.84 | 690.39 | 0.37\% |
| p43 | 30 | 70 | 8.28 | $52.12 \%$ | 20.13\% | 27.75\% | 29 | $59.06 \%$ | 0.00\% | 14.09\% | 0.59 | 805.19 | 811.57 | 0.79\% |
| p44 | 10 | 90 | 1.76 | 23.58\% | 67.41\% | 9.00\% | 10 | 99.17\% | 24.68\% | 67.40\% | 0.66 | 1002.45 | 1005.77 | 0.33\% |
| p45 | 20 | 80 | 4.14 | 36.71\% | 47.47\% | 15.82\% | 20 | 85.64\% | 2.11\% | 30.71\% | 0.56 | 939.03 | 941.62 | 0.28\% |
| p46 | 30 | 70 | 7.10 | 45.12\% | $32.14 \%$ | 22.75\% | 29 | 76.70\% | 0.00\% | 17.41\% | 0.58 | 959.32 | 965.09 | 0.60\% |
| p47 | 10 | 90 | 1.76 | 18.65\% | 73.96\% | 7.39\% | 10 | 99.54\% | 2.11\% | 66.74\% | 0.44 | 1224.18 | 1227.98 | 0.31\% |
| p48 | 20 | 80 | 4.06 | 27.64\% | $58.62 \%$ | 13.74\% | 16 | 97.09\% | 0.00\% | 32.33\% | 0.59 | 1125.49 | 1129.61 | 0.37\% |
| p49 | 30 | 70 | 7.08 | 36.37\% | 42.37\% | 21.27\% | 23 | 95.74\% | 0.00\% | 19.93\% | 0.65 | 1073.14 | 1080.07 | 0.65\% |
| p50 | 10 | 100 | 1.89 | 30.30\% | 57.46\% | 12.24\% | 10 | 99.16\% | 1.27\% | 67.62\% | 0.67 | 742.32 | 745.48 | 0.43\% |
| p51 | 20 | 100 | 3.98 | 43.48\% | 36.39\% | 20.13\% | 18 | 99.12\% | 0.00\% | 34.29\% | 0.64 | 776.12 | 779.53 | 0.44\% |
| p52 | 10 | 100 | 1.60 | 19.16\% | 73.52\% | 7.31\% | 10 | 99.17\% | 32.70\% | 72.37\% | 0.46 | 1301.16 | 1304.28 | 0.24\% |
| p53 | 20 | 100 | 3.37 | 30.34\% | 56.38\% | 13.28\% | 18 | 98.35\% | 0.00\% | 36.19\% | 0.56 | 1178.52 | 1182.30 | $0.32 \%$ |
| p54 | 10 | 100 | 1.52 | 17.81\% | 75.08\% | 7.10\% | 10 | 99.46\% | 2.31\% | 72.10\% | 0.39 | 1341.59 | 1348.22 | 0.49\% |
| p55 | 20 | 100 | 3.21 | 26.50\% | 60.44\% | 13.07\% | 16 | 99.46\% | 0.00\% | 31.98\% | 0.59 | 1242.12 | 1250.60 | 0.68\% |

Table A.7: SOS2 Test results with $t=25, \epsilon=0.1$

| $\mathrm{t}=$ | 25 | $\epsilon=$ | 0.08 | capacity\% | Cost structure transportation\% | waiting\% | Facility open | Capacity Utilization |  |  |  |  | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Feature |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \# | n 10 | m 50 | K/D |  |  |  |  | max\% | min\% | avg\% | $\frac{\text { Runtime (s) }}{0.27}$ | LB 1208.69 |  |  |
| p1 | 10 | 50 | 1.74 1.74 | $19.16 \%$ $19.16 \%$ | 73.31\% $73.31 \%$ | $7.53 \%$ $7.53 \%$ | 10 10 | $99.56 \%$ $99.56 \%$ | $29.35 \%$ $29.35 \%$ | $61.25 \%$ $61.25 \%$ | 0.27 0.19 | 1208.69 1208.69 | 1213.22 1213.22 | $0.37 \%$ $0.37 \%$ |
| p3 |  |  | 1.74 | 19.16\% | 73.31\% | 7.53\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.19 | 1208.69 | 1213.22 | 0.37\% |
| p4 |  |  | 1.74 | 19.16\% | 73.31\% | 7.53\% | 10 | 99.56\% | 29.35\% | 61.25\% | 0.19 | 1208.69 | 1213.22 | 0.37\% |
| p5 |  |  | 1.37 | 19.17\% | 73.35\% | 7.48\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.05 | 1215.63 | 1219.62 | 0.33\% |
| p6 |  |  | 1.37 | 19.17\% | 73.35\% | 7.48\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.11 | 1215.63 | 1219.62 | 0.33\% |
| p7 |  |  | 1.37 | 19.17\% | 73.35\% | 7.48\% | 10 | 95.50\% | $32.50 \%$ | 72.80\% | 0.04 | 1215.63 | 1219.62 | 0.33\% |
| p8 |  |  | 1.37 | 19.17\% | 73.35\% | 7.48\% | 10 | 95.50\% | 32.50\% | 72.80\% | 0.05 | 1215.63 | 1219.62 | 0.33\% |
| p9 |  |  | 2.06 | 19.16\% | 73.31\% | 7.53\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.54 | 1208.69 | 1213.22 | 0.37\% |
| p10 |  |  | 2.06 | 19.16\% | 73.31\% | 7.53\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.26 | 1208.69 | 1213.22 | 0.37\% |
| p11 |  |  | 2.06 | 19.16\% | 73.31\% | 7.53\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.21 | 1208.69 | 1213.22 | 0.37\% |
| p12 |  |  | 2.06 | 19.16\% | 73.31\% | 7.53\% | 10 | 74.67\% | 17.33\% | 48.53\% | 0.35 | 1208.69 | 1213.22 | 0.37\% |
| p13 | 20 | 50 | 2.77 | 24.32\% | 65.41\% | 10.27\% | 18 | 97.28\% | 0.00\% | 38.13\% | 0.85 | 1746.64 | 1760.48 | 0.79\% |
| p14 |  |  | 2.77 | 24.32\% | 65.41\% | 10.27\% | 18 | 97.28\% | 0.00\% | 38.13\% | 0.84 | 1746.64 | 1760.48 | 0.79\% |
| p15 |  |  | 2.77 | 24.32\% | 65.41\% | 10.27\% | 18 | 97.28\% | 0.00\% | 38.13\% | 0.96 | 1746.64 | 1760.48 | 0.79\% |
| p16 |  |  | 2.77 | 24.32\% | 65.41\% | 10.27\% | 18 | 97.28\% | 0.00\% | 38.13\% | 0.86 | 1746.64 | 1760.48 | 0.79\% |
| p17 |  |  | 2.80 | 24.33\% | 65.51\% | 10.17\% | 18 | 98.25\% | 0.00\% | 35.69\% | 0.87 | 1741.83 | 1754.85 | 0.75\% |
| p18 |  |  | 2.80 | 24.33\% | 65.51\% | 10.17\% | 18 | 98.25\% | 0.00\% | 35.69\% | 0.87 | 1741.83 | 1754.85 | 0.75\% |
| p19 |  |  | 2.80 | 24.33\% | 65.51\% | 10.17\% | 18 | 98.25\% | 0.00\% | 35.69\% | 0.84 | 1741.83 | 1754.85 | 0.75\% |
| p20 |  |  | 2.80 | 24.33\% | 65.51\% | 10.17\% | 18 | 98.25\% | 0.00\% | 35.69\% | 0.81 | 1741.83 | 1754.85 | 0.75\% |
| p21 |  |  | 3.50 | 24.33\% | 65.51\% | 10.17\% | 18 | 78.60\% | 0.00\% | 28.55\% | 0.94 | 1741.83 | 1754.85 | 0.75\% |
| p22 |  |  | 3.50 | 24.33\% | 65.51\% | 10.17\% | 18 | 78.60\% | 0.00\% | 28.55\% | 1.04 | 1741.83 | 1754.85 | 0.75\% |
| p23 |  |  | 3.50 | 24.33\% | 65.51\% | 10.17\% | 18 | 78.60\% | 0.00\% | 28.55\% | 0.94 | 1741.83 | 1754.85 | 0.75\% |
| p24 |  |  | 3.50 | 24.33\% | 65.51\% | 10.17\% | 18 | 78.60\% | 0.00\% | 28.55\% | 0.83 | 1741.83 | 1754.85 | 0.75\% |
| p25 | 30 | 150 | 4.12 | 33.01\% | 50.59\% | 16.40\% | 22 | 99.66\% | 0.00\% | 24.74\% | 15.51 | 1488.83 | 1503.74 | 1.00\% |
| p26 |  |  | 4.12 | 33.01\% | 50.59\% | 16.40\% | 22 | 99.66\% | 0.00\% | $24.74 \%$ | 14.66 | 1488.83 | 1503.74 | 1.00\% |
| p27 |  |  | 4.12 | 33.01\% | 50.59\% | 16.40\% | 22 | 99.66\% | 0.00\% | 24.74\% | 14.26 | 1488.83 | 1503.74 | 1.00\% |
| p28 |  |  | 4.12 | 33.01\% | 50.59\% | 16.40\% | 22 | 99.66\% | 0.00\% | 24.74\% | 14.18 | 1488.83 | 1503.74 | 1.00\% |
| p29 |  |  | 3.03 | 35.52\% | 47.94\% | 16.54\% | 26 | 100.00\% | 0.00\% | 33.00\% | 173.26 | 1516.78 | 1531.94 | 1.00\% |
| p30 |  |  | 3.03 | 35.52\% | 47.94\% | 16.54\% | 26 | 100.00\% | 0.00\% | 33.00\% | 177.91 | 1516.78 | 1531.94 | 1.00\% |
| p31 |  |  | 3.03 | 35.52\% | 47.94\% | 16.54\% | 26 | 100.00\% | 0.00\% | 33.00\% | 178.19 | 1516.78 | 1531.94 | 1.00\% |
| p32 |  |  | 3.03 | 35.52\% | 47.94\% | 16.54\% | 26 | 100.00\% | 0.00\% | 33.00\% | 170.98 | 1516.78 | 1531.94 | 1.00\% |
| p33 |  |  | 4.04 | 32.76\% | 50.65\% | 16.59\% | 22 | 99.75\% | 0.00\% | 24.75\% | 81.94 | 1491.11 | 1508.27 | 1.15\% |
| p34 |  |  | 4.04 | 32.76\% | 50.65\% | 16.59\% | 22 | 99.75\% | 0.00\% | 24.75\% | 81.23 | 1491.11 | 1508.27 | 1.15\% |
| p35 |  |  | 4.04 | 32.76\% | 50.65\% | 16.59\% | 22 | 99.75\% | 0.00\% | 24.75\% | 81.74 | 1491.11 | 1508.27 | 1.15\% |
| p36 |  |  | 4.04 | 32.76\% | 50.65\% | 16.59\% | 22 | 99.75\% | 0.00\% | 24.75\% | 81.39 | 1491.11 | 1508.27 | 1.15\% |
| p37 |  |  | 6.06 | 30.92\% | 52.82\% | 16.26\% | 20 | 100.00\% | 0.00\% | 16.50\% | 62.47 | 1480.22 | 1496.55 | 1.10\% |
| p38 |  |  | 6.06 | 30.92\% | 52.82\% | 16.26\% | 20 | 100.00\% | 0.00\% | 16.50\% | 61.68 | 1480.22 | 1496.55 | 1.10\% |
| p39 |  |  | 6.06 | 30.92\% | 52.82\% | 16.26\% | 20 | 100.00\% | 0.00\% | 16.50\% | 61.83 | 1480.22 | 1496.55 | 1.10\% |
| p40 |  |  | 6.06 | 30.92\% | $52.82 \%$ | 16.26\% | 20 | 100.00\% | 0.00\% | 16.50\% | 62.04 | 1480.22 | 1496.55 | 1.10\% |
| p41 | 10 | 90 | 2.12 | 32.98\% | 54.23\% | 12.79\% | 10 | 99.47\% | 12.45\% | 62.58\% | 0.45 | 679.72 | 682.52 | 0.41\% |
| p42 | 20 | 80 | 4.99 | 48.12\% | 31.05\% | 20.83\% | 20 | 94.74\% | 1.83\% | 26.57\% | 0.56 | 676.62 | 678.01 | 0.20\% |
| p43 | 30 | 70 | 8.28 | 52.99\% | 20.20\% | 26.81\% | 29 | 59.06\% | 0.00\% | 14.09\% | 0.68 | 779.97 | 783.13 | 0.41\% |
| p44 | 10 | 90 | 1.76 | 23.54\% | 67.42\% | 9.04\% | 10 | 99.17\% | 24.68\% | 67.40\% | 0.69 | 1002.13 | 1007.23 | 0.51\% |
| p45 | 20 | 80 | 4.14 | 36.92\% | 47.50\% | 15.58\% | 20 | 85.64\% | 2.11\% | 30.71\% | 0.58 | 930.76 | 933.05 | 0.25\% |
| p46 | 30 | 70 | 7.10 | 45.75\% | 32.21\% | 22.04\% | 29 | 76.70\% | 0.00\% | 17.41\% | 0.71 | 936.31 | 939.27 | 0.32\% |
| p47 | 10 | 90 | 1.76 | 17.98\% | 74.72\% | 7.30\% | 10 | 99.54\% | 2.11\% | 65.83\% | 0.47 | 1221.18 | 1228.61 | 0.61\% |
| p48 | 20 | 80 | 4.06 | 25.69\% | 60.65\% | 13.66\% | 14 | 99.46\% | 0.00\% | 31.62\% | 0.67 | 1117.22 | 1123.38 | 0.55\% |
| p49 | 30 | 70 | 7.08 | 36.82\% | 42.54\% | 20.64\% | 23 | 95.74\% | 0.00\% | 19.93\% | 0.48 | 1050.18 | 1054.66 | 0.43\% |
| p50 | 10 | 100 | 1.89 | 30.07\% | 57.46\% | 12.47\% | 10 | 99.16\% | 1.27\% | 67.59\% | 0.59 | 747.58 | 753.89 | 0.84\% |
| p51 | 20 | 100 | 3.98 | 43.66\% | 36.45\% | 19.88\% | 18 | 99.12\% | 0.00\% | 34.29\% | 0.66 | 768.56 | 772.17 | 0.47\% |
| p52 | 10 | 100 | 1.60 | 18.95\% | 73.66\% | 7.39\% | 10 | 100.00\% | 29.54\% | 72.16\% | 0.99 | 1305.66 | 1312.21 | 0.50\% |
| p53 | 20 | 100 | 3.37 | 29.38\% | 57.52\% | 13.10\% | 18 | 98.35\% | 0.00\% | 35.02\% | 0.57 | 1173.73 | 1179.97 | 0.53\% |
| p54 | 10 | 100 | 1.52 | 16.90\% | 76.09\% | 7.01\% | 9 | 99.46\% | 0.00\% | 71.13\% | 0.59 | 1335.03 | 1345.10 | 0.75\% |
| p55 | 20 | 100 | 3.21 | 25.93\% | 61.23\% | 12.84\% | 16 | 99.46\% | 0.00\% | 32.68\% | 0.73 | 1225.66 | 1236.02 | 0.85\% |

Table A.8: SOS2 Test results with $t=25, \epsilon=0.08$

## Appendix B

## The Numerical Results for the SOCP

Approach

| $\mathrm{t}=$ | 100 | $\mathrm{e}=$ | 0.25 | runtime $=$ | 2000 | waiting\% | Facility status open | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance feature |  |  |  | capacity\% | Cost structure transportation\% |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 16.37\% | 60.59\% | 23.04\% | 10 | 129.99 | 1446.691 | 1446.691 | 0.00\% |
| p2 |  |  | 1.74 | 16.37\% | 60.59\% | 23.04\% | 10 | 128.36 | 1446.691 | 1446.691 | 0.00\% |
| p3 |  |  | 1.74 | 16.37\% | 60.59\% | 23.04\% | 10 | 127.47 | 1446.691 | 1446.691 | 0.00\% |
| p4 |  |  | 1.74 | 16.37\% | 60.59\% | 23.04\% | 10 | 127.09 | 1446.691 | 1446.691 | 0.00\% |
| p5 |  |  | 1.37 | 16.37\% | 60.59\% | 23.04\% | 10 | 123.59 | 1446.691 | 1446.691 | 0.00\% |
| p6 |  |  | 1.37 | 16.37\% | 60.59\% | 23.04\% | 10 | 131.20 | 1446.691 | 1446.691 | 0.00\% |
| p7 |  |  | 1.37 | 16.37\% | 60.59\% | 23.04\% | 10 | 133.78 | 1446.691 | 1446.691 | 0.00\% |
| p8 |  |  | 1.37 | 16.37\% | 60.59\% | 23.04\% | 10 | 121.22 | 1446.691 | 1446.691 | 0.00\% |
| p9 |  |  | 2.06 | 16.37\% | 60.59\% | 23.04\% | 10 | 132.25 | 1446.691 | 1446.691 | 0.00\% |
| p10 |  |  | 2.06 | 16.37\% | 60.59\% | 23.04\% | 10 | 126.31 | 1446.691 | 1446.691 | 0.00\% |
| p11 |  |  | 2.06 | 16.37\% | 60.59\% | 23.04\% | 10 | 124.85 | 1446.691 | 1446.691 | 0.00\% |
| p12 |  |  | 2.06 | 16.37\% | 60.59\% | 23.04\% | 10 | 123.06 | 1446.691 | 1446.691 | 0.00\% |
| p13 | 20 | 50 | 2.77 | 18.72\% | 50.85\% | 30.43\% | 16 | 91.43 | 2190.769 | 2190.769 | 0.00\% |
| p14 |  |  | 2.77 | 18.72\% | 50.85\% | 30.43\% | 16 | 93.50 | 2190.769 | 2190.769 | 0.00\% |
| p15 |  |  | 2.77 | 18.72\% | 50.85\% | 30.43\% | 16 | 103.19 | 2190.769 | 2190.769 | 0.00\% |
| p16 |  |  | 2.77 | 18.72\% | 50.85\% | 30.43\% | 16 | 99.25 | 2190.769 | 2190.769 | 0.00\% |
| p17 |  |  | 2.80 | 18.72\% | 50.85\% | 30.43\% | 16 | 94.59 | 2190.769 | 2190.769 | 0.00\% |
| p18 |  |  | 2.80 | 18.72\% | 50.85\% | 30.43\% | 16 | 94.13 | 2190.769 | 2190.769 | 0.00\% |
| p19 |  |  | 2.80 | 18.72\% | 50.85\% | 30.43\% | 16 | 92.67 | 2190.769 | 2190.769 | 0.00\% |
| p20 |  |  | 2.80 | 18.72\% | 50.85\% | 30.43\% | 16 | 97.29 | 2190.769 | 2190.769 | 0.00\% |
| p21 |  |  | 3.50 | 18.72\% | 50.85\% | 30.43\% | 16 | 93.02 | 2190.769 | 2190.769 | 0.00\% |
| p22 |  |  | 3.50 | 18.72\% | 50.85\% | 30.43\% | 16 | 94.12 | 2190.769 | 2190.769 | 0.00\% |
| p23 |  |  | 3.50 | 18.72\% | 50.85\% | 30.43\% | 16 | 94.92 | 2190.769 | 2190.769 | 0.00\% |
| p24 |  |  | 3.50 | 18.72\% | 50.85\% | 30.43\% | 16 | 101.94 | 2190.769 | 2190.769 | 0.00\% |
| p25 | 30 | 150 | 4.12 | 16.41\% | 38.54\% | 45.05\% | 13 | 2057.13 | 1951.155 | 2219.773 | 13.77\% |
| p26 |  |  | 4.12 | 16.41\% | 38.54\% | 45.05\% | 13 | 2124.29 | 1951.155 | 2219.773 | 13.77\% |
| p27 |  |  | 4.12 | 16.41\% | 38.54\% | 45.05\% | 13 | 2040.27 | 1951.155 | 2219.773 | 13.77\% |
| p28 |  |  | 4.12 | 16.41\% | 38.54\% | 45.05\% | 13 | 2101.49 | 1951.155 | 2219.773 | 13.77\% |
| p29 |  |  | 3.03 | 16.41\% | 38.54\% | 45.05\% | 13 | 2106.78 | 1951.155 | 2219.773 | 13.77\% |
| p30 |  |  | 3.03 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2107.98 | 1951.155 | 2219.773 | 13.77\% |
| p31 |  |  | 3.03 | 16.41\% | 38.54\% | 45.05\% | 13 | 2112.01 | 1951.155 | 2219.773 | 13.77\% |
| p32 |  |  | 3.03 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2111.91 | 1951.155 | 2219.773 | 13.77\% |
| p33 |  |  | 4.04 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2110.65 | 1951.155 | 2219.773 | 13.77\% |
| p34 |  |  | 4.04 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2105.46 | 1951.155 | 2219.773 | 13.77\% |
| p35 |  |  | 4.04 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2114.35 | 1951.155 | 2219.773 | 13.77\% |
| p36 |  |  | 4.04 | 16.41\% | 38.54\% | 45.05\% | 13 | 2104.20 | 1951.155 | 2219.773 | 13.77\% |
| p37 |  |  | 6.06 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2107.68 | 1951.155 | 2219.773 | 13.77\% |
| p38 |  |  | 6.06 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2103.74 | 1951.155 | 2219.773 | 13.77\% |
| p39 |  |  | 6.06 | 16.41\% | 38.54\% | 45.05\% | 13 | 2016.88 | 1951.155 | 2219.773 | 13.77\% |
| p40 |  |  | 6.06 | 16.41\% | $38.54 \%$ | 45.05\% | 13 | 2096.77 | 1951.155 | 2219.773 | 13.77\% |
| p41 | 10 | 90 | 2.12 | 20.62\% | 45.88\% | 33.50\% | 9 | 2291.58 | 868.8346 | 994.8947 | 14.51\% |
| p42 | 20 | 80 | 4.99 | 18.56\% | 21.68\% | 59.76\% | 10 | 1267.72 | 1106.345 | 1115.593 | 0.84\% |
| p43 | 30 | 70 | 8.28 | 15.29\% | 13.68\% | 71.03\% | 11 | 423.25 | 1388.605 | 1407.825 | 1.38\% |
| p44 | 10 | 90 | 1.76 | - | - | - | - | 3520.86 | 1189.287 | - | - |
| p45 | 20 | 80 | 4.14 | 16.56\% | 34.72\% | 48.71\% | 10 | 2428.02 | 1342.017 | 1368.526 | 1.98\% |
| p46 | 30 | 70 | 7.10 | 13.51\% | 21.67\% | 64.82\% | 9 | 553.14 | 1542.551 | 1542.639 | 0.01\% |
| p47 | 10 | 90 | 1.76 | 4.94\% | 74.21\% | 20.85\% | 1 | 3070.19 | 1191.869 | 1598.677 | 34.13\% |
| p48 | 20 | 80 | 4.06 | 12.84\% | 43.60\% | 43.56\% | 9 | 2145.54 | 1435.08 | 1530.565 | 6.65\% |
| p49 | 30 | 70 | 7.08 | - | - | - | - | 2208.67 | 1609.938 | - | - |
| p50 | 10 | 100 | 1.89 | - | - | - | - | 2844.96 | 906.0866 | - | - |
| p51 | 20 | 100 | 3.98 | 15.98\% | 27.38\% | 56.64\% | 7 | 2269.25 | 1130.314 | 1177.038 | 4.13\% |
| p52 | 10 | 100 | 1.60 | 14.59\% | 63.22\% | 22.19\% | 8 | 2811.21 | 1425.063 | 1502.094 | 5.41\% |
| p53 | 20 | 100 | 3.37 | - | - | - | - | 2058.60 | 1567.42 | - | - |
| p54 | 10 | 100 | 1.52 | 13.57\% | 64.45\% | 21.98\% | 6 | 2025.91 | 1315.877 | 1364.683 | 3.71\% |
| p55 | 20 | 100 | 3.21 | 13.91\% | 47.62\% | 38.47\% | 12 | 2008.99 | 1355.142 | 1732.993 | 27.88\% |

Table B.1: SOCP Test results with $t=100, \epsilon=0.25$, runtime $=2000$

| $\mathrm{t}=$ | 100 | $\mathrm{e}=$ | 0.2 | runtime $=$ | 2000 | waiting\% | Facility status open | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance feature |  |  |  | capacity\% | Cost structure transportation\% |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 18.94\% | 63.09\% | 17.97\% | 10 | 166.01 | 1391.28 | 1391.28 | 0.00\% |
| p2 |  |  | 1.74 | 18.94\% | 63.09\% | 17.97\% | 10 | 165.64 | 1391.28 | 1391.28 | 0.00\% |
| p3 |  |  | 1.74 | 18.94\% | 63.09\% | 17.97\% | 10 | 164.68 | 1391.28 | 1391.28 | 0.00\% |
| p4 |  |  | 1.74 | 18.94\% | 63.09\% | 17.97\% | 10 | 167.37 | 1391.28 | 1391.28 | 0.00\% |
| p5 |  |  | 1.37 | 18.94\% | 63.09\% | 17.97\% | 10 | 166.46 | 1391.28 | 1391.28 | 0.00\% |
| p6 |  |  | 1.37 | 18.94\% | 63.09\% | 17.97\% | 10 | 163.87 | 1391.28 | 1391.28 | 0.00\% |
| p7 |  |  | 1.37 | 18.94\% | 63.09\% | 17.97\% | 10 | 164.25 | 1391.28 | 1391.28 | 0.00\% |
| p8 |  |  | 1.37 | 18.94\% | 63.09\% | 17.97\% | 10 | 164.24 | 1391.28 | 1391.28 | 0.00\% |
| p9 |  |  | 2.06 | 18.94\% | 63.09\% | 17.97\% | 10 | 166.48 | 1391.28 | 1391.28 | 0.00\% |
| p10 |  |  | 2.06 | 18.94\% | 63.09\% | 17.97\% | 10 | 164.91 | 1391.28 | 1391.28 | 0.00\% |
| p11 |  |  | 2.06 | 18.94\% | 63.09\% | 17.97\% | 10 | 163.52 | 1391.28 | 1391.28 | 0.00\% |
| p12 |  |  | 2.06 | 18.94\% | 63.09\% | 17.97\% | 10 | 163.68 | 1391.28 | 1391.28 | 0.00\% |
| p13 | 20 | 50 | 2.77 | 22.12\% | 53.75\% | 24.13\% | 16 | 89.22 | 2072.51 | 2072.51 | 0.00\% |
| p14 |  |  | 2.77 | 22.12\% | 53.75\% | 24.13\% | 16 | 87.61 | 2072.51 | 2072.51 | 0.00\% |
| p15 |  |  | 2.77 | 22.12\% | $53.75 \%$ | 24.13\% | 16 | 87.16 | 2072.51 | 2072.51 | 0.00\% |
| p16 |  |  | 2.77 | 22.12\% | $53.75 \%$ | 24.13\% | 16 | 87.60 | 2072.51 | 2072.51 | 0.00\% |
| p17 |  |  | 2.80 | 22.12\% | 53.75\% | 24.13\% | 16 | 87.41 | 2072.51 | 2072.51 | 0.00\% |
| p18 |  |  | 2.80 | 22.12\% | 53.75\% | 24.13\% | 16 | 87.23 | 2072.51 | 2072.51 | 0.00\% |
| p19 |  |  | 2.80 | 22.12\% | 53.75\% | 24.13\% | 16 | 89.32 | 2072.51 | 2072.51 | 0.00\% |
| p20 |  |  | 2.80 | 22.12\% | 53.75\% | 24.13\% | 16 | 87.44 | 2072.51 | 2072.51 | 0.00\% |
| p21 |  |  | 3.50 | 22.12\% | $53.75 \%$ | 24.13\% | 16 | 87.42 | 2072.51 | 2072.51 | 0.00\% |
| p22 |  |  | 3.50 | 22.12\% | 53.75\% | 24.13\% | 16 | 87.58 | 2072.51 | 2072.51 | 0.00\% |
| p23 |  |  | 3.50 | 22.12\% | 53.75\% | 24.13\% | 16 | 88.81 | 2072.51 | 2072.51 | 0.00\% |
| p24 |  |  | 3.50 | 22.12\% | 53.75\% | 24.13\% | 16 | 87.11 | 2072.51 | 2072.51 | 0.00\% |
| p25 | 30 | 150 | 4.12 | - | - | - | - | 2185.19 | 1717.25 | - | - |
| p26 |  |  | 4.12 | - | - | - | - | 2188.21 | 1717.25 | - | - |
| p27 |  |  | 4.12 | - | - | - | - | 2169.17 | 1717.25 | - | - |
| p28 |  |  | 4.12 | - | - | - | - | 2171.41 | 1717.25 | - | - |
| p29 |  |  | 3.03 | - | - | - | - | 2191.66 | 1717.25 | - | - |
| p30 |  |  | 3.03 | - | - | - | - | 2184.59 | 1717.25 | - | - |
| p31 |  |  | 3.03 | - | - | - | - | 2179.58 | 1717.25 | - | - |
| p32 |  |  | 3.03 | - | - | - | - | 2182.09 | 1717.25 | - | - |
| p33 |  |  | 4.04 | - | - | - | - | 2185.15 | 1717.25 | - | - |
| p34 |  |  | 4.04 | - | - | - | - | 2181.61 | 1717.25 | - | - |
| p35 |  |  | 4.04 | - | - | - | - | 2182.13 | 1717.25 | - | - |
| p36 |  |  | 4.04 | - | - | - | - | 2181.17 | 1717.25 | - | - |
| p37 |  |  | 6.06 | - | - | - | - | 2173.69 | 1717.25 | - | - |
| p38 |  |  | 6.06 | - | - | - | - | 2179.78 | 1717.25 | - | - |
| p39 |  |  | 6.06 | - | - | - | - | 2170.68 | 1717.25 | - | - |
| p40 |  |  | 6.06 |  |  |  | - | 2183.76 | 1717.25 | - | - |
| p41 | 10 | 90 | 2.12 | 22.38\% | 51.47\% | 26.15\% | 8 | 3260.64 | 762.11 | 956.07 | 25.45\% |
| p42 | 20 | 80 | 4.99 | - | - | - | - | 2013.42 | 959.36 | - | - |
| p43 | 30 | 70 | 8.28 | 17.81\% | 19.13\% | 63.06\% | 9 | 672.32 | 1160.38 | 1189.39 | $2.50 \%$ |
| p44 | 10 | 90 | 1.76 | 20.22\% | 61.33\% | 18.45\% | 9 | 2069.66 | 1100.65 | 1355.05 | 23.11\% |
| p45 | 20 | 80 | 4.14 | 18.31\% | 41.04\% | 40.65\% | 8 | 2080.79 | 1194.08 | 1229.98 | 3.01\% |
| p46 | 30 | 70 | 7.10 | 16.81\% | 26.23\% | 56.96\% | 8 | 881.82 | 1316.69 | 1316.77 | 0.01\% |
| p47 | 10 | 90 | 1.76 | - | - | - | - | 2019.63 | 972.82 | - | - |
| p48 | 20 | 80 | 4.06 | 14.49\% | 50.61\% | 34.90\% | 7 | 2709.74 | 1256.59 | 1432.62 | 14.01\% |
| p49 | 30 | 70 | 7.08 | 14.63\% | 32.91\% | 52.46\% | 8 | 2024.25 | 1371.65 | 1429.75 | 4.24\% |
| p50 | 10 | 100 | 1.89 | - | - | - | - | 3124.52 | 821.79 | - | - |
| p51 | 20 | 100 | 3.98 | 21.69\% | $32.49 \%$ | 45.82\% | 8 | 5548.73 | 967.86 | 1091.30 | 12.75\% |
| p52 | 10 | 100 | 1.60 | 16.73\% | 67.17\% | 16.10\% | 7 | 9178.36 | 1338.63 | 1552.37 | 15.97\% |
| p53 | 20 | 100 | 3.37 | 18.92\% | 47.73\% | 33.35\% | 11 | 2009.69 | 1404.78 | 1499.36 | 6.73\% |
| p54 | 10 | 100 | 1.52 | 16.22\% | 67.19\% | 16.58\% | 8 | 2115.25 | 1231.06 | 1356.84 | 10.22\% |
| p55 | 20 | 100 | 3.21 | 5.90\% | 63.09\% | $31.01 \%$ | 1 | 2020.24 | 1133.67 | 1612.23 | 42.21\% |

Table B.2: SOCP Test results with $t=100, \epsilon=0.2$, runtime $=2000$

| $\mathrm{t}=$ | 50 | $\mathrm{e}=$ | 0.25 | time $=$ | 2000 | waiting\% | Facility status open | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance feature |  |  |  | capacity\% | Cost structure transportation\% |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 18.50\% | 68.48\% | 13.02\% | 10 | 109.87 | 1279.96 | 1280.02 | 0.00\% |
| p2 |  |  | 1.74 | 18.50\% | 68.48\% | 13.02\% | 10 | 108.93 | 1279.96 | 1280.02 | 0.00\% |
| p3 |  |  | 1.74 | 18.50\% | 68.48\% | 13.02\% | 10 | 109.43 | 1279.96 | 1280.02 | 0.00\% |
| p4 |  |  | 1.74 | 18.50\% | 68.48\% | 13.02\% | 10 | 110.43 | 1279.96 | 1280.02 | 0.00\% |
| p5 |  |  | 1.37 | 18.50\% | 68.48\% | 13.02\% | 10 | 110.89 | 1279.96 | 1280.02 | 0.00\% |
| p6 |  |  | 1.37 | 18.50\% | 68.48\% | 13.02\% | 10 | 110.68 | 1279.96 | 1280.02 | 0.00\% |
| p7 |  |  | 1.37 | 18.50\% | 68.48\% | 13.02\% | 10 | 110.63 | 1279.96 | 1280.02 | 0.00\% |
| p8 |  |  | 1.37 | 18.50\% | 68.48\% | 13.02\% | 10 | 109.64 | 1279.96 | 1280.02 | 0.00\% |
| p9 |  |  | 2.06 | 18.50\% | 68.48\% | 13.02\% | 10 | 111.52 | 1279.96 | 1280.02 | 0.00\% |
| p10 |  |  | 2.06 | 18.50\% | 68.48\% | 13.02\% | 10 | 109.94 | 1279.96 | 1280.02 | 0.00\% |
| p11 |  |  | 2.06 | 18.50\% | 68.48\% | 13.02\% | 10 | 111.33 | 1279.96 | 1280.02 | 0.00\% |
| p12 |  |  | 2.06 | 18.50\% | 68.48\% | 13.02\% | 10 | 108.24 | 1279.96 | 1280.02 | 0.00\% |
| p13 | 20 | 50 | 2.77 | 22.08\% | 59.98\% | 17.95\% | 16 | 76.87 | 1857.44 | 1857.44 | 0.00\% |
| p14 |  |  | 2.77 | 22.08\% | 59.98\% | 17.95\% | 16 | 74.70 | 1857.44 | 1857.44 | 0.00\% |
| p15 |  |  | 2.77 | 22.08\% | 59.98\% | 17.95\% | 16 | 75.92 | 1857.44 | 1857.44 | 0.00\% |
| p16 |  |  | 2.77 | 22.08\% | 59.98\% | 17.95\% | 16 | 75.73 | 1857.44 | 1857.44 | 0.00\% |
| p17 |  |  | 2.80 | 22.08\% | 59.98\% | 17.95\% | 16 | 76.14 | 1857.44 | 1857.44 | 0.00\% |
| p18 |  |  | 2.80 | 22.08\% | 59.98\% | 17.95\% | 16 | 76.15 | 1857.44 | 1857.44 | 0.00\% |
| p19 |  |  | 2.80 | 22.08\% | 59.98\% | 17.95\% | 16 | 75.57 | 1857.44 | 1857.44 | 0.00\% |
| p20 |  |  | 2.80 | 22.08\% | 59.98\% | 17.95\% | 16 | 75.06 | 1857.44 | 1857.44 | 0.00\% |
| p21 |  |  | 3.50 | 22.08\% | 59.98\% | 17.95\% | 16 | 75.20 | 1857.44 | 1857.44 | 0.00\% |
| p22 |  |  | 3.50 | 22.08\% | 59.98\% | 17.95\% | 16 | 74.93 | 1857.44 | 1857.44 | 0.00\% |
| p23 |  |  | 3.50 | 22.08\% | 59.98\% | 17.95\% | 16 | 75.96 | 1857.44 | 1857.44 | 0.00\% |
| p24 |  |  | 3.50 | 22.08\% | 59.98\% | 17.95\% | 16 | 76.25 | 1857.44 | 1857.44 | 0.00\% |
| p25 | 30 | 150 | 4.12 | 21.90\% | 49.30\% | 28.80\% | 15 | 2827.82 | 1407.78 | 1736.32 | 23.34\% |
| p26 |  |  | 4.12 | 21.90\% | 49.30\% | 28.80\% | 15 | 2910.27 | 1407.78 | 1736.32 | $23.34 \%$ |
| p27 |  |  | 4.12 | 21.90\% | 49.30\% | 28.80\% | 15 | 2846.69 | 1407.78 | 1736.32 | $23.34 \%$ |
| p28 |  |  | 4.12 | 21.90\% | 49.30\% | 28.80\% | 15 | 2843.54 | 1407.78 | 1736.32 | $23.34 \%$ |
| p29 |  |  | 3.03 | 21.90\% | 49.30\% | 28.80\% | 15 | 2840.87 | 1407.78 | 1736.32 | 23.34\% |
| p30 |  |  | 3.03 | 21.90\% | 49.30\% | 28.80\% | 15 | 2885.84 | 1407.78 | 1736.32 | 23.34\% |
| p31 |  |  | 3.03 | 21.90\% | 49.30\% | 28.80\% | 15 | 2873.44 | 1407.78 | 1736.32 | 23.34\% |
| p32 |  |  | 3.03 | 21.90\% | 49.30\% | 28.80\% | 15 | 2848.32 | 1407.78 | 1736.32 | $23.34 \%$ |
| p33 |  |  | 4.04 | 21.90\% | 49.30\% | 28.80\% | 15 | 2846.83 | 1407.78 | 1736.32 | 23.34\% |
| p34 |  |  | 4.04 | 21.90\% | 49.30\% | 28.80\% | 15 | 3058.83 | 1407.78 | 1736.32 | $23.34 \%$ |
| p35 |  |  | 4.04 | 21.90\% | 49.30\% | 28.80\% | 15 | 2908.14 | 1407.78 | 1736.32 | 23.34\% |
| p36 |  |  | 4.04 | 21.90\% | 49.30\% | 28.80\% | 15 | 2843.41 | 1407.78 | 1736.32 | 23.34\% |
| p37 |  |  | 6.06 | 21.90\% | 49.30\% | 28.80\% | 15 | 2830.42 | 1407.78 | 1736.32 | 23.34\% |
| p38 |  |  | 6.06 | 21.90\% | $49.30 \%$ | 28.80\% | 15 | 2835.61 | 1407.78 | 1736.32 | $23.34 \%$ |
| p39 |  |  | 6.06 | 21.90\% | 49.30\% | 28.80\% | 15 | 2825.85 | 1407.78 | 1736.32 | 23.34\% |
| p40 |  |  | 6.06 | 21.90\% | 49.30\% | 28.80\% | 15 | 2838.40 | 1407.78 | 1736.32 | 23.34\% |
| p41 | 10 | 90 | 2.12 | 24.70\% | 54.63\% | 20.67\% | 9 | 2013.09 | 715.11 | 806.33 | 12.76\% |
| p42 | 20 | 80 | 4.99 | 25.70\% | 31.84\% | 42.46\% | 9 | 1387.22 | 773.01 | 785.06 | 1.56\% |
| p43 | 30 | 70 | 8.28 | 22.82\% | 21.93\% | 55.24\% | 10 | 453.77 | 888.56 | 905.07 | 1.86\% |
| p44 | 10 | 90 | 1.76 | 20.04\% | 65.57\% | 14.38\% | 8 | 2826.53 | 1002.20 | 1042.76 | 4.05\% |
| p45 | 20 | 80 | 4.14 | - | - | - | - | 2179.24 | 1008.56 | - | - |
| p46 | 30 | 70 | 7.10 | 19.99\% | $32.06 \%$ | 47.96\% | 9 | 2018.91 | 1042.30 | 1042.64 | 0.03\% |
| p47 | 10 | 90 | 1.76 | - | - | - | - | 2130.43 | 985.93 | - | - |
| p48 | 20 | 80 | 4.06 | 15.69\% | 57.13\% | 27.17\% | 7 | 2038.66 | 1086.64 | 1226.66 | 12.89\% |
| p49 | 30 | 70 | 7.08 | 17.34\% | 38.54\% | 44.12\% | 8 | 3736.84 | 1112.18 | 1133.37 | 1.91\% |
| p50 | 10 | 100 | 1.89 | 27.10\% | 52.63\% | 20.27\% | 9 | 2011.51 | 746.40 | 822.39 | 10.18\% |
| p51 | 20 | 100 | 3.98 | 24.73\% | 35.88\% | $39.39 \%$ | 9 | 2639.45 | 789.89 | 803.95 | 1.78\% |
| p52 | 10 | 100 | 1.60 | - | - | - | - | 2005.40 | 1265.81 | - | - |
| p53 | 20 | 100 | 3.37 | 19.98\% | 53.72\% | 26.30\% | 10 | 2228.15 | 1233.79 | 1267.66 | 2.75\% |
| p54 | 10 | 100 | 1.52 | 14.61\% | 73.70\% | 11.69\% | 6 | 2165.38 | 1138.07 | 1425.36 | 25.24\% |
| p55 | 20 | 100 | 3.21 | 16.51\% | 59.88\% | $23.61 \%$ | 9 | 2459.85 | 1064.66 | 1411.87 | 32.61\% |

Table B.3: SOCP Test results with $t=50, \epsilon=0.25$, runtime $=2000$

| $\mathrm{t}=$ | 50 | $\mathrm{e}=$ | 0.2 | runtime= | 2000 | waiting\% | Facility status open | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance feature |  |  |  | capacity\% | transportation\% |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 20.81\% | 69.32\% | 9.87\% | 10 | 143.01 | 1266.28 | 1266.28 | 0.00\% |
| p2 |  |  | 1.74 | 20.81\% | 69.32\% | 9.87\% | 10 | 144.14 | 1266.28 | 1266.28 | 0.00\% |
| p3 |  |  | 1.74 | 20.81\% | 69.32\% | 9.87\% | 10 | 142.46 | 1266.28 | 1266.28 | 0.00\% |
| p4 |  |  | 1.74 | 20.81\% | 69.32\% | 9.87\% | 10 | 144.28 | 1266.28 | 1266.28 | 0.00\% |
| p5 |  |  | 1.37 | 20.81\% | 69.32\% | 9.87\% | 10 | 140.97 | 1266.28 | 1266.28 | 0.00\% |
| p6 |  |  | 1.37 | 20.81\% | 69.32\% | 9.87\% | 10 | 142.58 | 1266.28 | 1266.28 | 0.00\% |
| p7 |  |  | 1.37 | 20.81\% | 69.32\% | 9.87\% | 10 | 141.86 | 1266.28 | 1266.28 | 0.00\% |
| p8 |  |  | 1.37 | 20.81\% | 69.32\% | 9.87\% | 10 | 143.20 | 1266.28 | 1266.28 | 0.00\% |
| p9 |  |  | 2.06 | 20.81\% | 69.32\% | 9.87\% | 10 | 142.50 | 1266.28 | 1266.28 | 0.00\% |
| p10 |  |  | 2.06 | 20.81\% | 69.32\% | 9.87\% | 10 | 141.93 | 1266.28 | 1266.28 | 0.00\% |
| p11 |  |  | 2.06 | 20.81\% | 69.32\% | 9.87\% | 10 | 142.23 | 1266.28 | 1266.28 | 0.00\% |
| p12 |  |  | 2.06 | 20.81\% | 69.32\% | 9.87\% | 10 | 142.55 | 1266.28 | 1266.28 | 0.00\% |
| p13 | 20 | 50 | 2.77 | 25.16\% | 61.13\% | 13.72\% | 16 | 108.28 | 1822.51 | 1822.51 | 0.00\% |
| p14 |  |  | 2.77 | 25.16\% | 61.13\% | 13.72\% | 16 | 106.18 | 1822.51 | 1822.51 | 0.00\% |
| p15 |  |  | 2.77 | 25.16\% | 61.13\% | 13.72\% | 16 | 109.30 | 1822.51 | 1822.51 | 0.00\% |
| p16 |  |  | 2.77 | 25.16\% | 61.13\% | 13.72\% | 16 | 106.49 | 1822.51 | 1822.51 | 0.00\% |
| p17 |  |  | 2.80 | 25.16\% | 61.13\% | 13.72\% | 16 | 106.90 | 1822.51 | 1822.51 | 0.00\% |
| p18 |  |  | 2.80 | 25.16\% | 61.13\% | 13.72\% | 16 | 105.59 | 1822.51 | 1822.51 | 0.00\% |
| p19 |  |  | 2.80 | 25.16\% | 61.13\% | 13.72\% | 16 | 105.48 | 1822.51 | 1822.51 | 0.00\% |
| p20 |  |  | 2.80 | 25.16\% | 61.13\% | 13.72\% | 16 | 105.20 | 1822.51 | 1822.51 | 0.00\% |
| p21 |  |  | 3.50 | 25.16\% | 61.13\% | 13.72\% | 16 | 106.43 | 1822.51 | 1822.51 | 0.00\% |
| p22 |  |  | 3.50 | 25.16\% | 61.13\% | 13.72\% | 16 | 107.07 | 1822.51 | 1822.51 | 0.00\% |
| p23 |  |  | 3.50 | 25.16\% | 61.13\% | 13.72\% | 16 | 106.63 | 1822.51 | 1822.51 | 0.00\% |
| p24 |  |  | 3.50 | 25.16\% | 61.13\% | 13.72\% | 16 | 106.78 | 1822.51 | 1822.51 | 0.00\% |
| p25 | 30 | 150 | 4.12 | - | - | - | - | 2045.22 | 1310.12 | - | - |
| p26 |  |  | 4.12 | 25.96\% | 49.77\% | 24.28\% | 17 | 2083.08 | 1310.12 | 1441.73 | 10.05\% |
| p27 |  |  | 4.12 | 25.96\% | 49.77\% | 24.28\% | 17 | 2119.91 | 1310.12 | 1441.73 | 10.05\% |
| p28 |  |  | 4.12 | 25.96\% | 49.77\% | 24.28\% | 17 | 2103.89 | 1310.12 | 1441.73 | 10.05\% |
| p29 |  |  | 3.03 | - | - | - | - | 2045.87 | 1310.12 | - | - |
| p30 |  |  | 3.03 | - | - | - | - | 2053.46 | 1310.12 | - | - |
| p31 |  |  | 3.03 | 25.96\% | 49.77\% | 24.28\% | 17 | 2042.97 | 1310.12 | 1441.73 | 10.05\% |
| p32 |  |  | 3.03 | - | - | - | - | 2038.23 | 1310.12 | - | - |
| p33 |  |  | 4.04 | - | - | - | - | 2031.69 | 1310.12 | - | - |
| p34 |  |  | 4.04 | 25.96\% | 49.77\% | 24.28\% | 17 | 2047.22 | 1310.12 | 1441.73 | 10.05\% |
| p35 |  |  | 4.04 | 25.96\% | 49.77\% | 24.28\% | 17 | 2074.29 | 1310.12 | 1441.73 | 10.05\% |
| p36 |  |  | 4.04 | - | - | - | - | 2040.79 | 1310.12 | - | - |
| p37 |  |  | 6.06 | - | - | - | - | 2053.30 | 1310.12 | - | - |
| p38 |  |  | 6.06 | 25.96\% | 49.77\% | 24.28\% | 17 | 2038.56 | 1310.12 | 1441.73 | 10.05\% |
| p39 |  |  | 6.06 | - | - | - | - | 2050.21 | 1310.12 | - | - |
| p40 |  |  | 6.06 | - | - | - | - | 2041.64 | 1310.12 | - | - |
| p41 | 10 | 90 | 2.12 | 26.21\% | 58.03\% | 15.75\% | 7 | 4064.67 | 664.16 | 714.15 | 7.53\% |
| p42 | 20 | 80 | 4.99 | - | - | - | - | 2102.29 | 710.45 | - | - |
| p43 | 30 | 70 | 8.28 | - | - | - | - | 682.07 | 785.39 | - | - |
| p44 | 10 | 90 | 1.76 | 21.66\% | 68.23\% | 10.11\% | 8 | 2290.38 | 979.42 | 1236.66 | 26.26\% |
| p45 | 20 | 80 | 4.14 | - | - | - | - | 2041.84 | 944.95 | - | - |
| p46 | 30 | 70 | 7.10 | $23.51 \%$ | $36.67 \%$ | 39.82\% | 8 | 2006.82 | 940.02 | 941.77 | 0.19\% |
| p47 | 10 | 90 | 1.76 | 4.48\% | 85.07\% | 10.46\% | 1 | 2093.62 | 965.27 | 1394.63 | 44.48\% |
| p48 | 20 | 80 | 4.06 | 19.08\% | 59.75\% | 21.17\% | 7 | 2012.72 | 983.19 | 1180.67 | 20.09\% |
| p49 | 30 | 70 | 7.08 | 19.64\% | 43.60\% | 36.76\% | 7 | 2526.11 | 1006.80 | 1020.26 | 1.34\% |
| p50 | 10 | 100 | 1.89 | 26.97\% | 58.07\% | 14.96\% | 7 | 2097.31 | 710.77 | 835.35 | 17.53\% |
| p51 | 20 | 100 | 3.98 | - | - | - | - | 2081.27 | 726.24 | - | - |
| p52 | 10 | 100 | 1.60 | - | - | - | - | 2014.19 | 1230.26 | - | - |
| p53 | 20 | 100 | 3.37 | 22.30\% | 58.28\% | 19.42\% | 10 | 2327.46 | 1160.97 | 1223.09 | 5.35\% |
| p54 | 10 | 100 | 1.52 | 19.06\% | 72.52\% | 8.43\% | 9 | 2063.21 | 1094.62 | 1483.11 | 35.49\% |
| p55 | 20 | 100 | 3.21 | 4.96\% | 75.05\% | 19.98\% | 1 | 2356.95 | 833.11 | 1355.20 | 62.67\% |

Table B.4: SOCP Test results with $t=50, \epsilon=0.2$, runtime $=2000$

| $\mathrm{t}=$ | 25 | $\mathrm{e}=$ | 0.25 | $\begin{gathered} \text { runtime= } \\ \text { capacity } \% \end{gathered}$ | 2000 | waiting\% | Facility status open | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance feature |  |  |  |  | Cost structure <br> transportation\% |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 19.79\% | 73.25\% | 6.96\% | 10 | 118.02 | 1196.69 | 1196.69 | 0.00\% |
| p2 |  |  | 1.74 | 19.79\% | 73.25\% | 6.96\% | 10 | 115.54 | 1196.69 | 1196.69 | 0.00\% |
| p3 |  |  | 1.74 | 19.79\% | 73.25\% | 6.96\% | 10 | 118.75 | 1196.69 | 1196.69 | 0.00\% |
| p4 |  |  | 1.74 | 19.79\% | 73.25\% | 6.96\% | 10 | 115.34 | 1196.69 | 1196.69 | 0.00\% |
| p5 |  |  | 1.37 | 19.79\% | 73.25\% | 6.96\% | 10 | 115.60 | 1196.69 | 1196.69 | 0.00\% |
| p6 |  |  | 1.37 | 19.79\% | $73.25 \%$ | 6.96\% | 10 | 115.96 | 1196.69 | 1196.69 | 0.00\% |
| p7 |  |  | 1.37 | 19.79\% | 73.25\% | 6.96\% | 10 | 115.46 | 1196.69 | 1196.69 | 0.00\% |
| p8 |  |  | 1.37 | 19.79\% | $73.25 \%$ | 6.96\% | 10 | 119.32 | 1196.69 | 1196.69 | 0.00\% |
| p9 |  |  | 2.06 | 19.79\% | 73.25\% | 6.96\% | 10 | 116.80 | 1196.69 | 1196.69 | 0.00\% |
| p10 |  |  | 2.06 | 19.79\% | 73.25\% | 6.96\% | 10 | 117.02 | 1196.69 | 1196.69 | 0.00\% |
| p11 |  |  | 2.06 | 19.79\% | 73.25\% | 6.96\% | 10 | 116.54 | 1196.69 | 1196.69 | 0.00\% |
| p12 |  |  | 2.06 | 19.79\% | 73.25\% | 6.96\% | 10 | 116.36 | 1196.69 | 1196.69 | 0.00\% |
| p13 | 20 | 50 | 2.77 | 24.25\% | 65.89\% | 9.86\% | 16 | 78.92 | 1690.77 | 1690.77 | 0.00\% |
| p14 |  |  | 2.77 | 24.25\% | 65.89\% | 9.86\% | 16 | 78.36 | 1690.77 | 1690.77 | 0.00\% |
| p15 |  |  | 2.77 | 24.25\% | 65.89\% | 9.86\% | 16 | 77.54 | 1690.77 | 1690.77 | 0.00\% |
| p16 |  |  | 2.77 | 24.25\% | 65.89\% | 9.86\% | 16 | 78.42 | 1690.77 | 1690.77 | 0.00\% |
| p17 |  |  | 2.80 | 24.25\% | 65.89\% | 9.86\% | 16 | 77.47 | 1690.77 | 1690.77 | 0.00\% |
| p18 |  |  | 2.80 | 24.25\% | 65.89\% | 9.86\% | 16 | 77.84 | 1690.77 | 1690.77 | 0.00\% |
| p19 |  |  | 2.80 | 24.25\% | 65.89\% | 9.86\% | 16 | 78.79 | 1690.77 | 1690.77 | 0.00\% |
| p20 |  |  | 2.80 | 24.25\% | 65.89\% | 9.86\% | 16 | 81.45 | 1690.77 | 1690.77 | 0.00\% |
| p21 |  |  | 3.50 | 24.25\% | 65.89\% | 9.86\% | 16 | 79.93 | 1690.77 | 1690.77 | 0.00\% |
| p22 |  |  | 3.50 | 24.25\% | 65.89\% | 9.86\% | 16 | 77.40 | 1690.77 | 1690.77 | 0.00\% |
| p23 |  |  | 3.50 | 24.25\% | 65.89\% | 9.86\% | 16 | 77.33 | 1690.77 | 1690.77 | 0.00\% |
| p24 |  |  | 3.50 | 24.25\% | 65.89\% | 9.86\% | 16 | 77.76 | 1690.77 | 1690.77 | 0.00\% |
| p25 | 30 | 150 | 4.12 | 26.16\% | 57.93\% | 15.90\% | 20 | 2987.44 | 1071.58 | 1571.98 | 46.70\% |
| p26 |  |  | 4.12 | 26.16\% | 57.93\% | 15.90\% | 20 | 2997.72 | 1071.58 | 1571.98 | 46.70\% |
| p27 |  |  | 4.12 | 26.16\% | 57.93\% | 15.90\% | 20 | 2996.72 | 1071.58 | 1571.98 | 46.70\% |
| p28 |  |  | 4.12 | 26.16\% | 57.93\% | 15.90\% | 20 | 2993.39 | 1071.58 | 1571.98 | 46.70\% |
| p29 |  |  | 3.03 | 26.16\% | 57.93\% | 15.90\% | 20 | 2998.12 | 1071.58 | 1571.98 | 46.70\% |
| p30 |  |  | 3.03 | 26.16\% | 57.93\% | 15.90\% | 20 | 2990.18 | 1071.58 | 1571.98 | 46.70\% |
| p31 |  |  | 3.03 | 26.16\% | 57.93\% | 15.90\% | 20 | 2984.04 | 1071.58 | 1571.98 | 46.70\% |
| p32 |  |  | 3.03 | 26.16\% | 57.93\% | 15.90\% | 20 | 2977.91 | 1071.58 | 1571.98 | 46.70\% |
| p33 |  |  | 4.04 | 26.16\% | 57.93\% | 15.90\% | 20 | 2980.82 | 1071.58 | 1571.98 | 46.70\% |
| p34 |  |  | 4.04 | 26.16\% | 57.93\% | 15.90\% | 20 | 2990.24 | 1071.58 | 1571.98 | 46.70\% |
| p35 |  |  | 4.04 | 26.16\% | 57.93\% | 15.90\% | 20 | 2986.74 | 1071.58 | 1571.98 | 46.70\% |
| p36 |  |  | 4.04 | 26.16\% | 57.93\% | 15.90\% | 20 | 2979.21 | 1071.58 | 1571.98 | 46.70\% |
| p37 |  |  | 6.06 | 26.16\% | 57.93\% | 15.90\% | 20 | 2981.76 | 1071.58 | 1571.98 | 46.70\% |
| p38 |  |  | 6.06 | 26.16\% | 57.93\% | 15.90\% | 20 | 2973.91 | 1071.58 | 1571.98 | 46.70\% |
| p39 |  |  | 6.06 | 26.16\% | 57.93\% | 15.90\% | 20 | 2978.76 | 1071.58 | 1571.98 | 46.70\% |
| p40 |  |  | 6.06 | 26.16\% | 57.93\% | 15.90\% | 20 | 2997.29 | 1071.58 | 1571.98 | 46.70\% |
| p41 | 10 | 90 | 2.12 | - | - | - | - | 2044.70 | 627.54 | - | - |
| p42 | 20 | 80 | 4.99 | $31.31 \%$ | 41.77\% | 26.92\% | 8 | 1166.52 | 606.35 | 619.14 | 2.11\% |
| p43 | 30 | 70 | 8.28 | 31.97\% | 29.91\% | 38.12\% | 11 | 485.82 | 638.59 | 655.76 | 2.69\% |
| p44 | 10 | 90 | 1.76 | 20.85\% | 71.67\% | 7.48\% | 9 | 2130.53 | 926.75 | 1114.21 | 20.23\% |
| p45 | 20 | 80 | 4.14 |  |  | - | - | 2195.38 | 839.18 | - | - |
| p46 | 30 | 70 | 7.10 | 26.29\% | 42.17\% | $31.54 \%$ | 9 | 2049.01 | 792.18 | 792.64 | 0.06\% |
| p47 | 10 | 90 | 1.76 | - | - | - | - | 2097.35 | 971.91 | - | - |
| p48 | 20 | 80 | 4.06 | - | - | - | - | 3230.95 | 940.74 | - | - |
| p49 | 30 | 70 | 7.08 | 22.42\% | 49.09\% | 28.49\% | 8 | 2473.64 | 859.31 | 877.49 | 2.12\% |
| p50 | 10 | 100 | 1.89 | 27.27\% | 61.22\% | 11.51\% | 8 | 2600.98 | 647.55 | 724.10 | 11.82\% |
| p51 | 20 | 100 | 3.98 | 29.69\% | 45.26\% | 25.06\% | 7 | 2070.02 | 627.81 | 631.91 | 0.65\% |
| p52 | 10 | 100 | 1.60 | 16.83\% | 76.50\% | 6.67\% | 7 | 2086.32 | 1176.45 | 1248.49 | 6.12\% |
| p53 | 20 | 100 | 3.37 | 21.66\% | 63.82\% | 14.52\% | 9 | 2178.28 | 1053.13 | 1147.78 | 8.99\% |
| p54 | 10 | 100 | 1.52 | 15.39\% | 78.19\% | 6.42\% | 5 | 2067.41 | 1086.32 | 1168.50 | 7.56\% |
| p55 | 20 | 100 | 3.21 | - | - | - | - | 2693.14 | 829.07 | - | - |

Table B.5: SOCP Test results with $t=25, \epsilon=0.25$, runtime $=2000$

| $\mathrm{t}=$ | 25 | $\mathrm{e}=$ | 0.2 | time $=$ | 2000 | waiting\% | Facility status open | Runtime (s) | LB | UB | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance feature |  |  |  | capacity\% | Cost structure transportation\% |  |  |  |  |  |  |
| \# | n | m | K/D |  |  |  |  |  |  |  |  |
| p1 | 10 | 50 | 1.74 | 20.94\% | 73.00\% | 6.06\% | 10 | 174.48 | 1203.69 | 1203.69 | 0.00\% |
| p2 |  |  | 1.74 | 20.94\% | 73.00\% | 6.06\% | 10 | 162.87 | 1203.69 | 1203.69 | 0.00\% |
| p3 |  |  | 1.74 | 20.94\% | 73.00\% | 6.06\% | 10 | 161.91 | 1203.69 | 1203.69 | 0.00\% |
| p4 |  |  | 1.74 | 20.94\% | 73.00\% | 6.06\% | 10 | 163.70 | 1203.69 | 1203.69 | 0.00\% |
| p5 |  |  | 1.37 | 20.94\% | 73.00\% | 6.06\% | 10 | 161.70 | 1203.69 | 1203.69 | 0.00\% |
| p6 |  |  | 1.37 | 20.94\% | 73.00\% | 6.06\% | 10 | 161.82 | 1203.69 | 1203.69 | 0.00\% |
| p7 |  |  | 1.37 | 20.94\% | 73.00\% | 6.06\% | 10 | 169.62 | 1203.69 | 1203.69 | 0.00\% |
| p8 |  |  | 1.37 | 20.94\% | 73.00\% | 6.06\% | 10 | 165.47 | 1203.69 | 1203.69 | 0.00\% |
| p9 |  |  | 2.06 | 20.94\% | 73.00\% | 6.06\% | 10 | 161.24 | 1203.69 | 1203.69 | 0.00\% |
| p10 |  |  | 2.06 | 20.94\% | 73.00\% | 6.06\% | 10 | 159.69 | 1203.69 | 1203.69 | 0.00\% |
| p11 |  |  | 2.06 | 20.94\% | 73.00\% | 6.06\% | 10 | 162.28 | 1203.69 | 1203.69 | 0.00\% |
| p12 |  |  | 2.06 | 20.94\% | 73.00\% | 6.06\% | 10 | 161.18 | 1203.69 | 1203.69 | 0.00\% |
| p13 | 20 | 50 | 2.77 | 24.62\% | 66.14\% | 9.24\% | 16 | 88.77 | 1690.98 | 1690.98 | 0.00\% |
| p14 |  |  | 2.77 | 24.62\% | 66.14\% | 9.24\% | 16 | 93.06 | 1690.98 | 1690.98 | 0.00\% |
| p15 |  |  | 2.77 | 24.62\% | 66.14\% | 9.24\% | 16 | 88.21 | 1690.98 | 1690.98 | 0.00\% |
| p16 |  |  | 2.77 | 24.62\% | 66.14\% | 9.24\% | 16 | 87.89 | 1690.98 | 1690.98 | 0.00\% |
| p17 |  |  | 2.80 | 24.62\% | 66.14\% | 9.24\% | 16 | 91.31 | 1690.98 | 1690.98 | 0.00\% |
| p18 |  |  | 2.80 | 24.62\% | 66.14\% | 9.24\% | 16 | 88.12 | 1690.98 | 1690.98 | 0.00\% |
| p19 |  |  | 2.80 | 24.62\% | 66.14\% | 9.24\% | 16 | 182.05 | 1690.98 | 1690.98 | 0.00\% |
| p20 |  |  | 2.80 | 24.62\% | 66.14\% | 9.24\% | 16 | 376.42 | 1690.98 | 1690.98 | 0.00\% |
| p21 |  |  | 3.50 | 24.62\% | 66.14\% | 9.24\% | 16 | 88.97 | 1690.98 | 1690.98 | 0.00\% |
| p22 |  |  | 3.50 | 24.62\% | 66.14\% | 9.24\% | 16 | 82.66 | 1690.98 | 1690.98 | 0.00\% |
| p23 |  |  | 3.50 | 24.62\% | 66.14\% | 9.24\% | 16 | 84.21 | 1690.98 | 1690.98 | 0.00\% |
| p24 |  |  | 3.50 | 24.62\% | $66.14 \%$ | 9.24\% | 16 | 86.36 | 1690.98 | 1690.98 | 0.00\% |
| p25 | 30 | 150 | 4.12 | - | - | - | - | 2906.22 | 1126.02 | - | - |
| p26 |  |  | 4.12 | 23.60\% | $59.24 \%$ | 17.16\% | 17 | 2110.01 | 1107.15 | 1456.78 | 31.58\% |
| p27 |  |  | 4.12 | - | - | - | - | 2864.30 | 1126.02 |  | . |
| p28 |  |  | 4.12 | - | - | - | - | 2869.42 | 1126.02 | - | - |
| p29 |  |  | 3.03 | - | - | - | - | 2869.64 | 1126.02 | - | - |
| p30 |  |  | 3.03 | - | - | - | - | 2868.17 | 1126.02 | - | - |
| p31 |  |  | 3.03 | - | - | - | - | 2873.82 | 1126.02 | - | - |
| p32 |  |  | 3.03 | - | - | - | - | 2862.50 | 1126.02 | - | - |
| p33 |  |  | 4.04 | - | - | - | - | 2891.67 | 1126.02 | - | - |
| p34 |  |  | 4.04 | - | - | - | - | 2880.13 | 1126.02 | - | - |
| p35 |  |  | 4.04 | - | - | - | - | 2878.99 | 1126.02 | - | - |
| p36 |  |  | 4.04 | - | - | - | - | 2874.26 | 1126.02 | - | - |
| p37 |  |  | 6.06 | - | - | - | - | 2879.16 | 1126.02 | - | - |
| p38 |  |  | 6.06 | - | - | - | - | 2871.57 | 1126.02 | - | - |
| p39 |  |  | 6.06 | 23.60\% | $59.24 \%$ | 17.16\% | 17 | 2130.96 | 1107.15 | 1456.78 | 31.58\% |
| p40 |  |  | 6.06 | 23.60\% | 59.24\% | 17.16\% | 17 | 2198.14 | 1107.15 | 1456.78 | 31.58\% |
| p41 | 10 | 90 | 2.12 | 21.17\% | 65.46\% | 13.37\% | 6 | 2691.14 | 603.96 | 779.24 | 29.02\% |
| p42 | 20 | 80 | 4.99 | - | - | - | - | 2046.28 | 585.74 | - | - |
| p43 | 30 | 70 | 8.28 | 37.46\% | $32.48 \%$ | 30.06\% | 10 | 714.67 | 597.90 | 623.82 | 4.33\% |
| p44 | 10 | 90 | 1.76 | 16.96\% | 74.41\% | 8.63\% | 7 | 3023.25 | 908.73 | 1206.96 | 32.82\% |
| p45 | 20 | 80 | 4.14 | 24.67\% | 58.40\% | 16.93\% | 8 | 2115.25 | 816.94 | 861.59 | 5.47\% |
| p46 | 30 | 70 | 7.10 | 29.38\% | 45.77\% | 24.86\% | 8 | 2067.37 | 753.27 | 754.31 | 0.14\% |
| p47 | 10 | 90 | 1.76 |  | - | - | - | 2060.50 | 864.55 | - | - |
| p48 | 20 | 80 | 4.06 | 17.26\% | 67.70\% | 15.04\% | 7 | 2129.96 | 868.53 | 1038.56 | 19.58\% |
| p49 | 30 | 70 | 7.08 | 22.51\% | 53.91\% | 23.58\% | 8 | 2216.51 | 815.64 | 839.41 | 2.91\% |
| p50 | 10 | 100 | 1.89 | - | - | - | - | 2066.52 | 644.10 | - | - |
| p51 | 20 | 100 | 3.98 | 28.65\% | 50.71\% | 20.64\% | 8 | 2036.93 | 591.91 | 706.62 | 19.38\% |
| p52 | 10 | 100 | 1.60 | 15.61\% | 76.54\% | 7.85\% | 8 | 3279.09 | 1155.37 | 1326.29 | 14.79\% |
| p53 | 20 | 100 | 3.37 | 20.00\% | 66.34\% | 13.66\% | 9 | 2346.49 | 1013.70 | 1143.46 | 12.80\% |
| p54 | 10 | 100 | 1.52 | 15.85\% | 77.12\% | 7.03\% | 6 | 2056.18 | 994.82 | 1096.95 | 10.27\% |
| p55 | 20 | 100 | 3.21 | 5.51\% | 83.38\% | 11.10\% | 1 | 2029.28 | 688.77 | 1219.78 | 77.10\% |

Table B.6: SOCP Test results with $t=25, \epsilon=0.2$, runtime $=2000$

## References

[1] R. Aboolian, O. Berman, and D. Krass. Profit maximizing distributed service system design with congestion and elastic demand. Transportation Science, 46(2):247-261, 2012.
[2] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming, 95(1):3-51, 2003.
[3] A. Amiri. Solution procedures for the service system design problem. Computers \& operations research, 24(1):49-60, 1997.
[4] A. Amiri. The multi-hour service system design problem. European Journal of Operational Research, 128(3):625-638, 2001.
[5] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische mathematik, 4(1):238-252, 1962.
[6] M. A. Cohen and S. Moon. An integrated plant loading model with economies of scale and scope. European Journal of Operational Research, 50(3):266-279, 1991.
[7] I. Correia and M. E. Captivo. A lagrangean heuristic for a modular capacitated location problem. Annals of operations research, 122(1-4):141-161, 2003.
[8] A. Dasci and V. Verter. The plant location and technology acquisition problem. IIE transactions, 33(11):963-974, 2001.
[9] L. Dupont. Branch and bound algorithm for a facility location problem with concave site dependent costs. International journal of production economics, 112(1):245-254, 2008.
[10] S. Elhedhli. Exact solution of a class of nonlinear knapsack problems. Operations research letters, 33(6):615-624, 2005.
[11] S. Elhedhli. Service system design with immobile servers, stochastic demand, and congestion. Manufacturing $\mathcal{E}$ Service Operations Management, 8(1):92-97, 2006.
[12] E. Eskigun, R. Uzsoy, P. V. Preckel, Krishnan S. Beaujon, G., and J. D. Tew. Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers. European Journal of Operational Research, 165(1):182206, 2005.
[13] M. Florian and M. Klein. Deterministic production planning with concave costs and capacity constraints. Management Science, 18(1):12-20, 1971.
[14] M. T. Hajiaghayi, M. Mahdian, and V. S. Mirrokni. The facility location problem with general cost functions. Networks, 42(1):42-47, 2003.
[15] H. W. Hamacher and S. Nickel. Classification of location models. Location Science, 6 (1):229-242, 1998.
[16] K. Holmberg. Solving the staircase cost facility location problem with decomposition and piecewise linearization. European Journal of Operational Research, 75(1):41-61, 1994.
[17] K. Holmberg and H. Tuy. A production-transportation problem with stochastic demand and concave production costs. Mathematical programming, 85(1):157-179, 1999.
[18] A. Klose and A. Drexl. Facility location models for distribution system design. European Journal of Operational Research, 162(1):4-29, 2005.
[19] C. S. Revelle, H. A. Eiselt, and M. S. Daskin. A bibliography for some fundamental problem categories in discrete location science. European Journal of Operational Research, 184(3):817-848, 2008.
[20] H. E. Romeijn, T. C. Sharkey, Z. J. M. Shen, and J. Zhang. Integrating facility location and production planning decisions. Networks, 55(2):78-89, 2010.
[21] N. Vidyarthi, S. Elhedhli, and E. Jewkes. Response time reduction in make-to-order and assemble-to-order supply chain design. IIE Transactions, 41(5):448-466, 2009.
[22] W. I. Zangwill. Minimum concave cost flows in certain networks. Management Science, 14(7):429-450, 1968.

