
FormlSlicer: A Model Slicing Tool for
Feature-rich State-machine Models

by

Xiaoni Lai

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015
© Xiaoni Lai 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A model of the feature-oriented requirements of a software system usually contains a
large number of non-trivial features; each feature may have unintended interactions with
other features. It may be difficult to comprehend or verify such a model. Model slicing is
a useful approach to overcome such a challenge by enabling views of models of individual
features that preserve feature interactions. Model slicing evolves from traditional program
slicing; it is a technique to extract a sub-model from the original model with respect
to a slicing criterion. In this thesis we focus on one type of model: state-based models
(SBMs). Because of the difference in granularity between programs and SBMs, as well
as the difficulty of maintaining well-formedness of a sliced SBM, SBM slicing is much
more challenging than program slicing. Among a diverse range of slicing approaches,
dependence-based slicing is the most popular; it relies on the computation of dependence
relations among states and transitions in order to determine which model elements of the
original model must be in the slice and which can be omitted.

We present a workflow and tool for automatically constructing a feature-based slice
from a feature-oriented state-machine model of the requirements of a software system. Each
feature in the model is modeled as a complete state-transition machine called a feature-
oriented state machine (FOSM). The workflow consists of two tasks—a preprocessing task
and a slicing task. The preprocessing task mainly computes three types of dependences:
hierarchy dependence (HD), which represents the state hierarchy relation among states
in the original model; data dependence (DD), which captures the define-use relationship
among transitions with respect to a variable; and control dependence (CD), which captures
the notion of whether one state can affect the execution of another state or transition. The
slicing task forks off multiple slicing processes; each process considers one of the FOSMs as
the feature of interest (FOI)—which is the slicing criterion—and the rest of FOSMs as the
rest of the system (ROS)—which is to be sliced. Each slicing process constructs a sliced
model to preserve the portion of the ROS that interacts with the FOI. The construction
process is multi-staged; it firstly identifies an initial set of transitions in the ROS that
directly affect the FOI; it then finds more states and transitions in the transitive closure
of dependences; and it eventually restructures the model to further reduce the model size
and maintain its well-formedness property.

We provide a correctness proof that shows that the resulting sliced models simulate the
original model, by proving that an execution step of a given execution trace in the original
model can always be projected to an execution step of at least one execution trace in the
sliced model.

iii

Our proposed slicing workflow has been implemented in a tool called FormlSlicer. We
conducted an empirical evaluation that demonstrates that, on average, the ROS of a sliced
model has 23.0% of states, 15.7% of transitions, 32.8% of regions and 19.3% of variables
of the ROS of the original model.

iv

Acknowledgments

I would like to thank my supervisor, Joanne Atlee, who has given me the opportunity
to work on this interesting thesis project and has provided me a lot of guidance along the
way. I would also like to thank my colleagues, Sandy Beidu and Hadi Zibaeenejad, for
giving me enlightenment over some challenges in the project. Lastly I would like to thank
my husband, Qiang, for his encouragement and support.

v

Table of Contents

List of Tables x

List of Figures xi

List of Algorithms xiv

Glossary xv

1 Introduction 1

1.1 Model Slicing . 1

1.1.1 What Is Model Slicing . 1

1.1.2 Properties of a Useful Sliced Model 2

1.2 Feature-oriented Model Slicing . 3

1.2.1 Feature Interactions in Feature-rich System Requirements 4

1.2.2 Model Slicing used in Feature-oriented Requirements in Software
Systems . 5

1.3 Thesis Overview . 5

1.3.1 Thesis Statement . 7

1.4 Chapter Summary . 8

vi

2 Related Work 9

2.1 Program Slicing . 9

2.1.1 Dependence-based Slicing . 10

2.2 Slicing on State-based Models (SBMs) . 11

2.2.1 What Is an SBM . 11

2.2.2 Challenges of SBM Slicing . 13

2.2.3 Relevant SBM Slicing Techniques 14

2.2.4 Dependences in SBM Slicing . 14

2.3 Correctness of Slices . 19

2.3.1 Simulation in Programs . 19

2.3.2 Simulation in SBMs . 20

2.4 Cone of Influence Reduction . 21

3 Preliminaries 23

3.1 Terminology . 23

3.2 What Is FORML . 24

3.3 Scope of FormlSlicer . 26

4 FormlSlicer 30

4.1 Overview of FormlSlicer’s Workflow . 30

4.2 Preprocessing: Model Parsing and Conversion from FORML to CFGs . . . 31

4.2.1 Transformation of Transition Labels 32

4.2.2 Control Flow Graph (CFG) . 34

4.3 Preprocessing: Dependence Analyses . 35

4.3.1 Hierarchy Dependence . 35

4.3.2 Data Dependence . 36

4.3.3 Control Dependence . 39

4.4 Multi-Stage Model Slicing Process . 49

vii

4.4.1 Initiation Stage . 51

4.4.1.1 Variable Extraction Step 51

4.4.1.2 Initial Transition Selection Step 51

4.4.2 General Iterative Slicing Stage . 52

4.4.2.1 DD Step . 53

4.4.2.2 Cross-Hierarchy Transition Step 55

4.4.2.3 Transition-to-State Step 57

4.4.2.4 CD-HD Step . 57

4.4.3 Model Restructuring Stage . 59

4.4.3.1 State Merging Step . 60

4.4.3.2 State Connecting Step . 61

4.4.4 More Examples . 64

4.4.5 Summary . 66

5 Correctness of FormlSlicer 68

5.1 Overview . 68

5.2 Terminology . 69

5.2.1 Variable, State, Region, Transition and Model 69

5.2.2 State Configuration and Interpretation 71

5.2.3 Dependences . 72

5.2.4 Execution Step . 72

5.3 State Transition Rule . 74

5.4 FormlSlicer’s Multi-Stage Model Slicing Process 75

5.4.1 Definitions . 76

5.4.2 Multi-Stage Model Slicing Process 76

5.5 Proof . 78

5.5.1 Projection of Snapshot in the Original Model to Snapshot in the
Sliced Model . 79

viii

5.5.2 Projection of One Transition in the Original Model to Epsilon or
One Transition in the Sliced Model 80

5.5.3 Projection of One Execution Step in the Original Model to One Ex-
ecution Step in the Sliced Model . 88

5.5.4 Simulation . 89

6 Empirical Evaluations of FormlSlicer 92

6.1 Choosing a Model for Empirical Evaluation 92

6.2 Reduction of Model Size . 94

6.3 Properties of a Useful Sliced Model . 96

7 Conclusion 97

7.1 Summary of Thesis and Contributions . 97

7.1.1 Contributions . 98

7.2 Future Work . 100

7.2.1 Extending to Slicing on Software-Product-Line Model 100

7.2.2 Bridging the Gap between FormlSlicer’s Input Model and FORML
model . 100

7.2.3 Improving the Workflow . 101

7.2.4 Customization of Slicing in FormlSlicer 102

7.2.5 Making the Correctness Proof More Rigorous 102

Appendix A Automotive: A Slicing Example 104

Appendix B Supporting Functions for Control Dependency Algorithm 119

References 122

ix

List of Tables

4.1 Format of an Input/Output File to Specify one FOSM 31

4.2 How FormlSlicer extracts Monitored Variables from WCEs 33

4.3 How FormlSlicer extracts Monitored/Controlled Variables from WCAs . . . 33

4.4 How FormlSlicer extracts Monitored Variables from Transition Guard Con-
ditions . 34

4.5 List of Supporting Functions for Main Algorithm in Algorithm 4.2 47

4.6 The Monitored and Controlled Variables of Transitions in the Running Ex-
ample . 50

4.7 The Monitored and Controlled Variables of More Transitions in the Example 65

6.1 Empirical Results of FormlSlicer on the Automotive Case Study 95

x

List of Figures

1.1 A comparison of the model before and after slicing by FormlSlicer 6

2.1 An example program . 10

2.2 A simple CFG with a single end-node e . 16

3.1 The structure of a state machine in FORML’s behavior model 25

3.2 An example model . 27

3.3 Two types of transitions (shown in blue) not allowed in FormlSlicer 28

3.4 Restrictions and solution on the arrow from a pseudo state to default initial
state . 28

4.1 Overview of FormlSlicer’s workflow: the preprocessing task and the slicing
task . 31

4.2 A simple input example . 32

4.3 The class hierarchy of Node, TNode and SNode in CFG 34

4.4 Several CFGs for the FORML model in Figure 4.2b. Yellow nodes are SNodes. 35

4.5 Hierarchy dependence . 35

4.6 Data dependence between tk and t1 w.r.t. v 36

4.7 The “inState()” expression as a variation of data dependence 37

4.8 An illustration of non-termination sensitive control dependence: nj is control
dependent on ni . 40

4.9 A CFG example to illustrate the paths from Node 1 to Node 5: Node 8
has two outgoing nodes (9 and 10), highlighted in orange color; Node 1 has
three outgoing nodes (2, 7 and 11), highlighted in green color. 41

xi

4.10 The paths representation from Node 1 to Node 5 in the CFG in Figure 4.9 42

4.11 Two cases in propagating the paths representation from currNode to its
neighbor in Algorithm 4.2 . 46

4.12 A comparison between the original model and the sliced model 49

4.13 The model used as the running example 50

4.14 The control flow graph of the model used as the running example 51

4.15 The sliced ROS after performing the initial transition selection step 52

4.16 Four steps in general iterative slicing stage 53

4.17 The sliced ROS after performing the DD step 55

4.18 Examples of cross-hierarchy transitions . 56

4.19 The Example FOSM in the ROS after Transition-to-State Step 58

4.20 The sliced ROS after performing the CD-HD step 59

4.21 Illustration of state merging rules . 60

4.22 The sliced ROS after performing the stage merging step 62

4.23 The sliced ROS after the state connecting step 63

4.24 The example model with more contents . 64

4.25 The sliced example model w.r.t. E1 . 65

5.1 The FORML example from Figure 3.1 with its current states highlighted in
pink . 71

5.2 Concurrency in orthogonal regions as an execution step (only blue colored
components are relevant in the execution) 73

5.3 Projection of a transition from the original model to the sliced model . . . 80

5.4 The decision tree for case-based analysis in projection of transitions 82

5.5 The simulation relation between the execution traces of M and ML 91

6.1 A feature model that constraints the relationships between features in Autosoft 93

A.1 The original automotive model . 105

A.2 Original adaptive cruise control (ACC) feature of the automotive model . . 106

xii

A.3 Original forward collision alert (FCA) feature of the automotive model . . 107

A.4 Original lane change alert (LCA) feature of the automotive model 108

A.5 Original lane centring control (LCC) feature of the automotive model . . . 109

A.6 Original speed limit control (SLC) feature of the automotive model 110

A.7 Original air quality system (AQS) feature of the automotive model 111

A.8 Original air conditioning (AC) feature of the automotive model 112

A.9 The sliced model w.r.t. LCA . 113

A.10 Sliced ACC feature w.r.t. LCA . 113

A.11 Sliced FCA feature w.r.t. LCA . 114

A.12 Sliced LCC feature w.r.t. LCA . 114

A.13 Sliced LCC feature w.r.t. LCA . 114

A.14 The Sliced Model w.r.t. ACC . 115

A.15 Sliced FCA feature w.r.t. ACC . 116

A.16 Sliced LCA feature w.r.t. ACC . 116

A.17 Sliced LCC feature w.r.t. ACC . 117

A.18 Sliced SLC feature w.r.t. ACC . 118

xiii

List of Algorithms

4.1 Algorithm of Data Dependence Computation used in FormlSlicer 38

4.2 Main Algorithm of Control Dependence Computation 45

4.3 DD step in general iterative slicing stage . 54

4.4 CD-HD step in general iterative slicing stage 59

B.1 HasNonEmptyPathsFromNode1 . 119

B.2 IsControlDependentOn1 . 119

B.3 ReducePaths . 120

B.4 UnionPath . 121

B.5 ExtendPath . 121

xiv

Glossary

AC air conditioning. xiii, 90, 92, 101, 109

ACC adaptive cruise control. xii, xiii, 89, 92, 101, 103, 110, 112–115

AQS air quality system. xiii, 90, 92, 101, 108

BDS basic driving service. 24, 89, 90

CC cruise control. 24, 89, 90

CD control dependence. iii, 10, 13, 14, 36, 71, 98

CFG control flow graph. 9, 14, 16, 17, 31–33, 36–38, 41, 45, 47, 94, 96

DD data dependence. iii, 10, 13, 33, 71, 96

EFSM extended finite-state machine. 2, 10, 13, 16, 18

FCA forward collision alert. xiii, 89, 92, 101, 104, 111, 113

FOI feature of interest. iii, 5, 6, 27, 33, 46–48, 62, 63, 65, 73, 91, 92, 94, 101

FORML Feature-Oriented Requirements Modeling Language. 6, 7, 11, 20–24, 29, 30, 32,
34, 36, 88–90, 94, 96, 97

FOSD feature-oriented software development. 3, 4, 21

FOSM feature-oriented state machine. iii, 5, 6, 24, 28, 31, 33, 46–48, 62, 63, 65, 68, 89,
90, 92, 97, 99, 101

xv

HC headway control. 4, 89

HD hierarchy dependence. iii, 33, 71, 95

LCA lane change alert. xiii, 89, 92, 101, 105, 110, 111, 113

LCC lane centring control. xiii, 89, 92, 101, 106, 111, 114

NTSCD non-termination sensitive control dependence. 16, 36, 37, 40, 41, 96

ROS rest of the system. iii, iv, 5, 6, 27, 46–49, 61–63, 65, 91, 92, 101

SBM state-based model. iii, 2, 3, 5, 6, 10, 11, 13, 23, 29, 36, 65, 94, 97

SLC speed limit control. xiii, 4, 90, 92, 101, 107, 115

SNode A Node in CFG representing a state in FORML model. 31, 46, 54

TNode A Node in CFG representing a transition in FORML model. 31, 34, 46, 54

WCA world change action. 23, 29, 30, 96

WCE world change event. 22, 23, 29, 30, 96

xvi

Chapter 1

Introduction

1.1 Model Slicing

1.1.1 What Is Model Slicing

In English, “slicing” usually refers to the act of cutting a portion from something larger
using a sharp implement. In the software engineering research community, the word was
first adopted to refer to a reduction of a software program to its minimal set of variables
and program statements that preserves a subset of the program’s behavior [1]. Since
then, program slicing has become a well-investigated topic; multiple notions of program
slices have been proposed, as well as different methods to compute them [2]. In general,
all of these methods try to extract all parts of an original program that may influence
a particular variable of interest. After more than thirty years of development, program
slicing has gradually become a mature source-code analysis and manipulation technique
and is used in software debugging, software maintenance, optimization, program analysis
and information control flow.

As software production nowadays becomes more sophisticated, models used in software
specification and design are becoming unwieldy in scale. In recent years, researchers have
begun to consider adapting program slicing to apply to models. Similar to program slicing,
model slicing extracts a sub-model from an original model while preserving some properties
or some behaviors of interest. Because of the graphical nature and other features of models
that are different from software programs, model slicing needs to be considered as a distinct
research area.

1

Among a diverse range of software modeling languages, state-based model (SBM) re-
ceives an abundant amount of attention from researchers. SBM is an umbrella term for a
wide-range of related languages (e.g., extended finite-state machines (EFSMs), statecharts,
UML state machines, etc.) [3]. These models are based on finite-state machine formalisms;
they depict a set of execution sequences. There are many variants; but in general, an SBM
consists of a finite set of states, a set of transitions that move from one state to another
state triggered by an event. Many languages have defined additional features, such as
global variables, hierarchical constructs, or concurrency constructs.

This thesis concerns model slicing of state-based models. In general, it is a procedure
to reduce an original model to a smaller one, called the sliced model, so that the
sliced model contains fewer transitions, states, or other model elements than the original
model. At the same time, the sliced model preserves all behaviors of the original model
with respect to a slicing criterion but may omit other behaviors and details. Usually,
the slicing criterion refers to a set of relevant variables. The resulting sliced model, despite
being smaller and missing details, produces the same outputs for the relevant variables as
the original model does.

1.1.2 Properties of a Useful Sliced Model

We believe that a useful sliced model should possess the following properties1:

correctness
The sliced model simulates the original model with respect to the slicing criteria;

precision
The sliced model is supposed to retain the information in the original model as much
as possible;

reduction
The sliced model is supposed to be as smaller as possible than the original model.

The property of correctness is non-negotiable. The slicer is incorrect if it produces a
sliced model which cannot simulate the original model with respect to the slicing criteria.
Simulation is a relation proposed by Milner [26] that relates a structure (e.g., the original
program, the original model) to an abstraction of the structure (e.g., the sliced program, the

1We summarize these based on information learnt from various literature on model slicing. See Section 2.3.2 for the
literature survey.

2

sliced model). Simulation guarantees that every behavior of a structure is also a behavior of
its abstraction; but the abstraction may have behaviors that are not possible in the original
structure [26, 4]. In other words, if the original model has a certain execution trace with
respect to the slicing criteria, then the sliced model must have a matching execution trace
if it is correct2.

Precision is different from correctness. Consider all the execution traces of an original
model as Set A and all the execution traces of its sliced model as Set B. This sliced model
is correct when Set A is a subset of Set B. The less difference Set A and Set B have, the
more precise the sliced model is.

Sometimes, the properties of precision and reduction oppose each other. If a model
slicer reduces the original model aggressively in order to make it as small as possible, it
risks sacrificing precision. If a model slicer retains too many details of the original model,
it risks sacrificing reduction.

For slicing on an SBM, if we maximize the degree of reduction and minimize the degree
of precision, we may obtain a single “super” state in the sliced model such that all relevant
transitions become self-looping transitions of the “super” state [6]. If, on the other hand,
we minimize the degree of reduction and maximize the degree of precision, we may obtain
a sliced model that is exactly the same as the original model. Either of these two sliced
models are correct3, but engineers would gain no useful information from either of these
two sliced models.

Therefore, a sliced model is useful when it has appropriate trade-off between the prop-
erties of precision and reduction, while it maintains the correctness property. Depending
on the situation (that whether one favors reduction over precision in the sliced model or
vice versa), a good model slicer is supposed to strike a balance between the two properties.
In this thesis, we favors reduction over precision; but we still adopts some existing slicing
techniques to preserve a certain degree of precision in the slices.

1.2 Feature-oriented Model Slicing

In this thesis, we apply the SBM slicing techniques on feature-rich state-machine models.
These models represent the requirements for feature-rich software systems.

2Some may define correctness in a stronger sense such that not only must the sliced model simulate the original model,
but also the original model must simulate all observable actions of the sliced model [5]. In this thesis, we will only enforce
the basic correctness property.

3The sliced model with a “super” state is correct because the set of all its possible execution traces is a superset of the
set of all possible execution traces in the original model.

3

This section will present some background about feature-oriented requirements of soft-
ware systems, as well as feature interactions that exist in most feature-rich systems. Then
it will discuss the importance and challenges of detecting unintended feature interactions
and how model slicing is useful in overcoming the challenges.

1.2.1 Feature Interactions in Feature-rich System Requirements

In feature-oriented software development (FOSD), a system’s functionality is decomposed
into features, where each feature is an identifiable unit of functionality or variation. By
applying the FOSD paradigm in the requirements of feature-rich software systems, each
feature can be represented as a grouping or modularization of individual requirements
within the system specification [7]. The requirements model of a feature-rich system can
be modeled as a finite set of feature modules, each representing one feature’s requirements.

However, features tend not to be completely separate concerns—they operate in a
shared context, read and write to the same variables, and affect each other’s behavior.
One well-known challenge of applying the FOSD paradigm is managing feature interactions.
When many features are added to a system, different features can influence one another in
determining the overall properties and behaviors of the overall system [8].

Certain feature interactions are intended. For example, the call waiting feature of
a telephone service is designed to override the basic call service feature’s treatment of
incoming calls when the subscriber is busy; the engineers who model the call waiting
feature understand this intention and handle the feature interaction with care.

On the other hand, certain feature interactions are unintended. These unintended fea-
ture interactions can cause unexpected behavior of the system and pose potential hazards
to the system’s users. Consider the headway control (HC) feature and the speed limit
control (SLC) feature: if the vehicle approaches an obstacle at a speed faster than the
speed limit, both features will simultaneously send messages to the actuators responsible
for controlling vehicle acceleration. If their messages are different and not coordinated, the
behavior of the vehicle is undefined and the acceleration may be set to an unpredictable
value [9].

Features are usually modeled in isolation by different groups of software engineers; as
a result, it is likely that there are unintended feature interactions. It is much better to
detect and resolve these unintended feature interactions at a requirements stage, rather
than at an implementation stage, when the cost for finding the interactions is substantially
higher. However, in the industrial setting, there can be hundreds of non-trivial features in a
system; thus, complete models of feature-rich software systems can be too large. Engineers

4

will be overwhelmed if they try to comprehend the whole model, as there is a fundamental
limitation of human capacity to deal with such a highly complex model because there are
far too many details for a single person to keep track of at once [10].

1.2.2 Model Slicing used in Feature-oriented Requirements in
Software Systems

Model slicing is a useful technique to simplify the model to be analyzed for feature inter-
actions. In feature-oriented analysis, we want to examine one feature and its correctness
properties with its environment; model slicing can extract the portion of a model repre-
senting one feature’s environment.

Specifically, slicing can be performed on a model with respect to a single feature, called
the feature of interest (FOI), so that the rest of the huge model can be reduced to a
feasible size while still preserving the behavior of the FOI. The slicing criterion is the set
of variables related to the FOI. All the other features in the model form the rest of the
system (ROS) in the model; only a relevant portion of the ROS will be kept after slicing.

Feature-oriented model slicing can improve model comprehension or make model-analyses
more feasible. Because it removes irrelevant details of other features in the ROS and only
keeps the portions that may (potentially) interact with the FOI, engineers can focus on
understanding the FOI together with a smaller ROS, making it easier to identify any unin-
tended feature interactions between the FOI and other features. Similarly, model-analyses
can be performed on many smaller model slices in parallel instead of a huge original model;
they can produce complete analyses results because feature interactions are taken into ac-
count.

Thus, with the help from model slicing, the complex task of detecting unintended
feature interactions in a huge model is decomposed into many smaller tasks, where each
task focuses on detecting unintended feature interactions between one feature and the
others.

1.3 Thesis Overview

We are interested in creating feature-based slices of software models, in particular state-
based models (SBMs), to facilitate human understanding of the models and to support
feature-based analyses of the models. To be specific, we assume the existence of a feature-
oriented state-machine model of a software system, in which each feature is modeled as a

5

distinct sub-machine (called a feature-oriented state machine (FOSM)) running in parallel
with other features’ sub-machines. We create feature-based model slices (one per feature)
that each use a particular feature (called the feature of interest (FOI)) as the slicing
criterion, and construct slices of the other features’ sub-machines (called the rest of the
system (ROS)) omitting details that are irrelevant to the behavior of the FOI. Some features
in the ROS are entirely absent in the sliced model, and others are partially absent (see
Figure 1.1).

Figure 1.1: A comparison of the model before and after slicing by FormlSlicer

Among different standard software-engineering modeling languages, we choose Feature-
Oriented Requirements Modeling Language (FORML) [11] to perform slicing. It is a
language that can specify feature-oriented requirements of a software system. Because the
syntax of its feature modules is based on UML state machines, and therefore we can adapt
many existing slicing techniques on state-based model (SBM) to apply on it. The slicer
we have designed and implemented, called FormlSlicer, operates on models written in the
FORML, but other than the parser there is nothing that is FORML-specific about our
slicing workflow or algorithms.

The workflow consists of two tasks: a preprocessing task and a slicing task. The prepro-
cessing task parses an original model, computes three types of dependences and stores the
generated results in different tables. The slicing task forks off multiple slicing processes;
each process considers one of the FOSMs as the FOI—which is the slicing criterion—and
the rest of FOSMs as the ROS—which is to be sliced. Each slicing process constructs a
sliced model to preserve the portion of the ROS that interacts with the FOI. The construc-
tion process is multi-staged; it firstly identifies an initial set of transitions in the ROS that
directly affect the FOI; it then finds more states and transitions in the transitive closure
of dependences; and it eventually restructures the model to further reduce the model size
and maintain its well-formedness property.

The main contributions (Chapter 7 will discuss the contributions in details) of this
thesis are as follows:

6

� We adapt traditional definitions and algorithms of program data dependences and
state-machine data dependences to apply to SBMs that are hierarchical, have transi-
tions that cross state-hierarchy boundaries, and that have rich transition expressions
(including “inState()” expressions).

� We designed and implemented a novel slicing algorithm that employs both data
and control dependences, and that constructs a model slice from the relevant model
elements and then enriches the model slice until its states preserve the reachability
properties of the original model.

� Our approach employs a novel decomposition of dependence analyses and slicing
tasks that enables parallel construction of multiple model slices.

� Our slicer works on a hierarchical, concurrent and non-terminating state-machine
models that have cross-hierarchy transitions, whilst existing slicers only tackle with
these modeling constructs partially.

� We prove (by simulation) that all behaviors in the original model are preserved in the
sliced model. To our knowledge, this is the first proof of correctness of a construction-
based slicer (vs. a slicer that forms a model slice by simply removing model elements
from the original model).

� We report the results of a small empirical study in which the slicer was applied to a
FORML model comprising seven features.

1.3.1 Thesis Statement

We can slice a feature-oriented requirements model, which consists of many FOSMs, with
respect to one FOSM (i.e., the FOI), by performing the following two tasks:

� A preprocessing task, that parses the model and computes dependences,

� A slicing task, that gradually adds model elements from the original model into the
sliced model and restructures it in the end;

In order to produce a well-formed sliced model that

� Simulates the original model with respect to the FOI,

7

� Achieves a satisfactory4 degree of reduction and precision.

1.4 Chapter Summary

The thesis explains all of the work in creating FormlSlicer. Chapter 2 shows the literature
survey on the concepts and techniques related to model slicing. Chapter 3 explains the
semantics of FORML, as well as some preliminary knowledge about FormlSlicer. Chapter 4
describes the design and implementation of FormlSlicer. Chapter 5 presents a theoretical
evaluation of FormlSlicer, in which we prove the correctness of FormlSlicer by showing how
a sliced model produced by FormlSlicer can simulate its original model. Chapter 6 presents
an empirical evaluation of FormlSlicer to show that the sliced models are smaller than the
original model. Chapter 7 concludes the thesis and shows the contributions, challenges
and possible extensions of this research work.

4As mentioned in Section 1.1.2, a good model slicer is supposed to strike a balance between the two properties of reduction
and precision; in this thesis, we favors reduction over precision but we will use some existing techniques that preserve a certain
degree of precision in the slices to prevent producing a over-minimized sliced model.

8

Chapter 2

Related Work

This chapter presents the related work. Section 2.1 presents a brief account of program
slicing, from which model slicing evolves. Section 2.2 presents the related work of model
slicing; Subsection 2.2.1 presents the history and different variants of state-based models
(SBMs); Subsection 2.2.2 explains the challenges faced by SBM slicing and how the existing
techniques tackle them; Subsection 2.2.3 summarizes two general slicing approaches that
are in the literature; Subsection 2.2.4 elaborates different types of dependences used in
SBM slicing. Section 2.3 discusses how correctness is defined in slicing. Section 2.4 adds
some extra discussions about cone of influence reduction, which has a similar idea of
dependence-based model slicing.

2.1 Program Slicing

To understand model slicing, it is best to understand first the notion of program slicing
from which model slicing evolves.

The notion of a program slice was introduced by Weiser [1]. He defined a program slice
S as a reduced, executable program obtained from a program P, such that S replicates
part of the behavior of P. Later, many slightly different notions of program slices have
been proposed. The general notion of program slice has been summarized in a survey
paper by Tip [2]: the program slice consists of the parts of a program that (potentially)
affect the values computed at some point of interest. Such a point of interest is called
a slicing criterion, and is typically specified by a pair (program point, set of variables).
The sub-program that has direct or indirect influence on a slicing criterion C is called a

9

program slice with respect to criterion C. The task of computing program slices is called
program slicing.

1 read (n) ;
2 i := 1 ;
3 sum := 0 ;
4 product := 1 ;
5 while i <= n do

begin
6 sum := sum + i ;
7 product := product * i ;
8 i := i + 1

end ;
9 write (sum) ;

10 write (product) ;

(a) The original program

read (n) ;
i := 1 ;

product := 1 ;
while i <= n do
begin

product := product * i ;
i := i + 1

end ;

write (product) ;

(b) Program slice w.r.t. (10,product)

Figure 2.1: An example program

Figure 2.1 is an example adapted from Tip’s survey paper on program slicing [2]. The
original program (Figure 2.1a computes both the sum and the product of the first n positive
numbers. Its program slice with respect to a slicing criterion of (10,product) is shown in
Figure 2.1b. We can see that all computations that are irrelevant to the value of variable
product at Line 10 have been “sliced away”.

Program slicing has been further divided into different categories. There is a distinction
between static slicing and dynamic slicing. The former is computed without making as-
sumptions regarding a program’s input, whereas the latter relies on some selected variables
and inputs [12]. Another distinction is made between forward slicing and backward slicing.
Informally, a forward slice consists of all statements and control predicates dependent on
the slicing criterion, i.e., the program subset that is influenced by the slicing criterion; a
backward slice is the program subset that may affect the slicing criterion. In this thesis,
we are only interested in static slicing and backward slicing.

2.1.1 Dependence-based Slicing

Slices are computed by finding consecutive sets of transitively relevant statements, accord-
ing to data flow and control flow dependences. This is generally referred to as dependence-

10

based slicing [13], because it involves the computation of dependence relations between the
program statements. Using dependence relations information, slicing can be reduced to a
simple reachability problem.

There are different computation approaches based on different graph representations of
a program. Control flow graph (CFG) is a graph representation to capture the reachability
of program statements in a program. It is a directed graph, usually seen in compiler
analysis to represent all execution paths through a program during its execution [14]. A
CFG contains a node for each statement and control predicate in the program; an edge
from node i to node j indicates the possible flow of control from the former to the latter.
Dependences are defined in terms of the CFG of a program.

Dependences arise as the result of two separate effects [15]:

1. First, a dependence exists between two statements whenever a variable appearing in
one statement may have an incorrect value if the two statements are reversed. In
the example program in Figure 2.1a, if Line 10 appears before Line 4, the value of
product written will be incorrect at Line 10. Therefore we know that the statement
at Line 10 is dependent on the statement at Line 4. This is data dependence (DD).

2. Second, a dependence exists between a statement and the predicate whose value
immediately controls the execution of the statement. In the example program in
Figure 2.1a, the statement at Line 7 is dependent on the predicate at Line 5 since
the condition in the while loop at Line 5 determines whether the statement at Line 7
is executed. This is control dependence (CD).

2.2 Slicing on State-based Models (SBMs)

As software production nowadays becomes more sophisticated, models used in software
specification and design are becoming unwieldy in scale. In recent years, researchers have
begun to consider adapting program slicing to apply to models [3]. Similar to program
slicing, model slicing extracts a sub-model from an original model while preserving some
properties or some behaviors of interest.

2.2.1 What Is an SBM

Among a diverse range of software modeling languages, state-based model (SBM) receives
an abundant amount of attention from researchers. SBM is an umbrella term for a wide-

11

range of related languages (e.g., extended finite-state machines (EFSMs), statecharts, UML
state machines, etc.) [3]. These models are based on finite-state machine formalisms;
they depict a set of execution sequences. There are many variants; many languages have
defined additional features, such as global variables, hierarchical constructs, or concurrency
constructs [16].

The basic definition of an SBM comes from Mealy machine [17]. In general, an SBM
consists of a finite set of states (including default initial states), a set of events (or “inputs”)
and a transition function that determines the next state based on the current state and
event. Each transition has a source state, a destination state and a label. The label
is of the form e[g]/a, where each part is optional: e is the event necessary to trigger a
possible change of state; g is the guard (i.e., a boolean expression) that further constraints
a possible change of state; and a is a sequence of actions (mostly updates to variables in
the environment or generations of events) to be executed when the transition occurs.

The notion of an SBM with hierarchy and concurrency constructs has been introduced
long time ago [16]. In a hierarchical state machine, a state may be further refined into
another sub-machine; this is a composite state. The hierarchy can be arbitrarily deep.
If the state machine incorporates concurrency construct into its semantics, a state can
consist of multiple orthogonal regions, each containing a sub-machine; the sub-machines are
executing concurrently. Researchers have defined that the states in a sub-machine follow
an XOR relationship (i.e., it can be in exactly one state at a time) and the orthogonal
regions in a state follow an AND relationship (i.e., when the system is in the state, it must
be in all of its containing regions) [16]. Communication between concurrent SBMs can be
synchronous (i.e., the SBM blocks until the receivers consume the event) or asynchronous
(non-blocking).

More advanced constructs have been added to basic SBM languages to augment their
expressive power. These include:

� Global variables: a set of variables in the environment that can be read or written
by the SBM;

� Parameterized events: triggering events that come with parameters, like functions in
a program;

� Event generation: event can be generated by a transition’s action to trigger another
transition.

12

2.2.2 Challenges of SBM Slicing

One major challenge of SBM slicing is ensuring that the resulting slice is a well-formed
state machine. This is very different from a program slicing. In program slicing, after
removing some lines of code from the original program, the resultant program slice is still
an executable, standalone program. We say that the program slice is a well-formed pro-
gram. However, such a well-formedness property is not easy to maintain in SBM slicing,
as the omission of transitions may cause the slice-relevant states to become unreachable.
Due to this problem, many model slicing approaches are very conservative about removing
transitions or states that can break the graph connectivity. Ojala’s approach [18] com-
pletely avoids removing transitions in an SBM and only replace the triggers, guards and
actions with dummy values. Korel et al.’s approach [6] is slightly more aggressive because
it merges states; but it deletes only self-looping or unreachable transitions in the end. Only
Kamischke et al. [19] mentions a post-processing step after slicing to ensure that all states
remaining in the slice are reachable from the initial state. Slices constructed by FormlSlicer
are guaranteed to be well-formed through the state connecting step, which ensures that for
any two states in a slice, all paths between the corresponding states in the original model
have a corresponding path (possibly an abstract “true” transition) in the slice.

Some challenges faced by SBM slicing come from the difficulty of computing depen-
dences among model elements due to many complex modeling constructs: (1) hierarchy
(including cross-hierarchy transitions), (2) concurrency, and (3) no final state. Korel et al.
[6] present a slicing algorithm that is similar to traditional program slicing; their defini-
tions of data dependence and control dependence are similar to those in a program control
graph [15]; this slicing approach only works on a flat state machine that has a final state.
Wang et al. [20] present a wide range of dependences for slicing on a hierarchical and con-
current SBM; but because the units of their slicing algorithm are sub-machines (i.e, the
whole sub-machine needs to be added to the slice if any transition or state is in the slice),
the degree of reduction of model size might be minor. Kamischke et al. [19] use some
of Wang et al.’s dependences on a hierarchical and concurrent SBM, but they improve
the slicing algorithm so that all irrelevant model elements are sliced away. Neither Wang
et al.’s and Kamischke et al.’s slicing approaches consider cross-hierarchy transitions and
both use the traditional definition of CD that assumes a final state. Ranganath et al. [21]
propose a new definition of CD for reactive software programs—called non-termination
sensitive control dependence (NTSCD)—that Ojala [18] and Androutsopoulos et al. [22]
adopt to non-terminating SBMs. However, neither slicer considers hierarchy constructs
in the model. Unlike the existing techniques that overcome the challenges only partially,
our slicing approach works on hierarchical, concurrent and non-terminating state-machine

13

models that have cross-hierarchy transitions.

There are many other challenges of SBM slicing compared to program slicing: (1) most
state-based modeling languages allow non-determinism, which does not exist in programs;
(2) if the SBM has hierarchy or concurrency constructs, the SBM can be in multiple states
at a time during an execution; (3) the control flow in an SBM is arbitrary compared to
that in a program. As what Androutsopoulos et al. [3] describe, by considering all these
difficulties together, the SBM slicing task resembles the task of “slicing a non-deterministic
set of concurrently executed procedures with arbitrary control flow”. SBM slicing is still
in the early stages and there are still many challenges yet to be tackled.

2.2.3 Relevant SBM Slicing Techniques

In general, there are two slicing approaches:

1. incrementally removing irrelevant model elements form the original model,

2. constructing a new model by incrementally adding relevant elements.

Almost all existing slicing techniques are a combination of both. One of Korel et al.’s
slicing algorithms [6] starts with an initial slice that consists of states from the original
model and incrementally adds transitions based on pre-computed dependencies. But the
algorithm then repeatedly merges states and deletes self-looping transitions. Kamischke
et al.’s slicing algorithm [19] starts with the model elements of the slicing criterion and
adds more model elements incrementally based on pre-computed dependencies. FormlSlicer
adopts the incremental addition approach as it is more aggressive in reducing the model
size.

A technique to ease the slicing process is to transform a complex state machine to a
simple graph structure. Ojala’s a slicer of UML State Machine [18] constructs a CFG to
capture all the possible executions of the UML state machines. In this CFG, there are
different types of CFG nodes: BRANCH node, each represents the a state and the triggers
and guards of the state’s outgoing transitions: and SIMPLE/SEND node, each represents
an action effect of a transition.

2.2.4 Dependences in SBM Slicing

As described in Subsection 2.1.1, program slices are computed according to data flow and
control flow dependences. Similarly, most model slicing approaches use different depen-

14

dences to compute slices.

DD in an EFSM (one type of SBM languages) has been defined by Korel et al. [6]
as a notion that one transition defines a value to a variable and another transition may
potentially use this value. More formally, transition Tk is dependent on Ti with respect
to variable v if (1) v is defined by Ti, (2) v is used by Tk, and (3) there exists a path
(transition sequence) in the EFSM model from Ti to Tk along which v is not re-defined;
such a path is referred to as the definition-clear path [6]. We will use this definition in this
thesis.

CD in an SBM is a lot more complicated. Subsection 2.2.4.1 elaborates it separately.

Besides DD and CD, researchers have used different types of dependences in their model
slicers [20, 18, 19]. Most of these dependences arise due to more advanced constructs added
onto a basic SBM. We present some of them here:

� Parallel dependence: two states have parallel dependence if they are concurrent ele-
ments;

� Synchronization dependence: two transitions have synchronization dependence when
one generates an event that the other consumes;

� Refinement control dependence: this dependence exists between a state and the initial
states of all its descendants;

� Decisive order dependence: two nodes m and p are decisively order dependent on n
when all maximal control flow paths from n contain m and p, one of them passing
m before p and another of them passing p before m;

� Interference dependence: an dependence induced by concurrent reads and writes of
shared variables.

Unlike DD and CD which serve for more general purposes in SBM slicing, the above-
mentioned dependences are only restricted to a few SBMs with special semantics. In spite
of this, they are useful in showing that one of the best ways to cope with an SBM with more
complex semantics is to use more types of dependences in the dependence-based slicing
technique.

15

2.2.4.1 Control Dependence

In program slicing, control dependence is traditionally defined in terms of a postdominance
relation in a CFG [15, 23]. Intuitively, a node ni is postdominated by a node nj in a CFG if
all paths to the exit node of the CFG starting at ni must go through nj. Having calculated
the postdominance relation in a CFG, the control dependence relation can be obtained
according to this: a statement nj is said to be control dependent on a statement ni if
there exists a nontrivial path p from ni to nj such that every statement nk 6= ni in p is
postdominated by nj and ni is not postdominated by nj.

Figure 2.2: A simple CFG
with a single end-node e

Figure 2.2 shows a simple CFG from Ranganath et al.’s paper
[21]. Based on the traditional definition of CD, we know that f is
dependent on a and g is dependent on f, but g is not dependent
on a because g does not postdominate f.

Although this definition of control dependence is widely used in
program slicing, there are some other slightly different definitions
as well. Podgurski and Clarke [24] have distinguished two different
notions on control dependence—strong control dependence and
weak control dependence:

1. nj is strongly control dependent on ni if there is a path from
ni to nj that does not contain the immediate postdominator
of ni

1;

2. nj is weakly control dependent on ni if nj strongly postdom-
inates nk, a successor of ni, but does not strongly postdom-
inate nl, another successor of ni.

The notion of strong control dependence is similar to the tra-
ditional notion, except that it captures both direct and indirect
control dependences. In Figure 2.2, g is strongly control dependent on a because the path
afg does not contain e, which is the immediate postdominator of a.

Weak control dependence shows a dependence relationship between the predicate con-
dition of a loop (i.e. the branching node in a CFG) and a statement outside the loop that
may be executed after the loop is exited; this dependence is not shown in strong control

1The immediate postdominator of ni is the postdominator of ni that does not postdominate any other postdominators of
ni.

16

dependence [24]. In Figure 2.2, d is weakly control dependent on c but not strongly control
dependent on c.

As we can see, both the traditional control dependence and strong control dependence
ignores the possibility of an infinite loop. They determine that a node outside the loop
(e.g. node d in Figure 2.2) must always be executed after the predicate condition (e.g.
node c), and therefore the latter is postdominated by the former. In other words, they are
non-termination insensitive [21]. In spite of this, they are still widely used in most pro-
gram slicing tasks which focus on debugging and program visualization and understanding;
these slicing tasks do not consider preserving non-termination properties as an important
requirement.

Because the postdominance relation assumes a single end-node in a CFG, all of these
definitions of control dependence assume that the CFG has a single end-node.

The traditional definition on control dependence has been applied in model slicing.
Korel et al. [6] presents the definition for control dependence between transitions in terms
of the concept of postdominance:

Definition (Control dependence [6]). Transition Ti has control dependence on transition
Tk (transition Tk is control dependent on transition Ti) if (1) Tk’s source state does not
postdominate Ti’s source state, and (2) Tk’s source state postdominates transition Ti.

Similar to the traditional control dependence in program slicing, Korel et al.’s definition
is limited to SBMs with a single end state.

Later, some researchers in program slicing community have recognized that these tra-
ditional notions on control dependence are no longer applicable to most modern programs.
Ranganath et al. [21] have identified two trends in modern program structures:

1. Many methods in modern programs raise exceptions or include multiple returns. This
means that their corresponding program CFGs have multiple end nodes.

2. There is an increasing number of reactive programs with control loops that are de-
signed to run indefinitely. This means that their corresponding CFGs have no end-
node.

Therefore, most modern programs’ corresponding CFGs do not satisfy the single end-
node property. Ranganath et al. [21] proposed a new definition on control dependence:

Definition (NTSCD [21]). In a CFG, nj is (directly) non-termination sensitive control
dependent on node ni if ni has at least two successors, nk and nl, such that

17

1. all maximal paths from nk eventually reach nj and do so before (possibly) reaching
ni;

2. there exists a maximal path from nl on which either (1) nj is not reached, or (2) nj

is reached but only after reaching ni.

The key observation on NTSCD is that reaching again a start node in a loop is analogous
to reaching an end-node. This intuition is similar to weak control dependence [24] which
considers that an infinite loop is important in determining control dependence. This implies
that NTSCD is non-termination sensitive [21], like weak control dependence. In addition,
NTSCD gets rid of the concept of postdominance and uses the concept of a maximal path.
A maximal path is any path that terminates in a final transition, or is infinite [25]. The
consideration of maximal paths imply that NTSCD is applicable to CFGs that do not
satisfy the single end-node property.

There are more definitions that extend the definition of NTSCD. In summary, these
definitions replace the “maximal paths” in NTSCD to other types of paths [25].

� By replacing “maximal paths” with “sink-bounded paths”, we obtain the definition
on non-termination insensitive control dependence (NTICD). This definition does
not calculate control dependences within control sinks2 [21].

� By replacing “maximal paths” with “unfair sink-bounded paths”, we obtain the
definition on unfair non-termination insensitive control dependence (UNTICD). This
definition is in essence a version of NTICD modified to EFSMs rather than CFGs
[22].

As a summary, we can see that the definition of control dependence has been improved
by researchers in several generations, because of a change in modern program structures and
a need to apply control dependence from program slicing to model slicing. Nevertheless,
they all aim to capture the dependence that one node determines the execution of another
node. Among a diverse range of definitions, the NTSCD has been chosen as a guideline in
implementing the control dependence computation in this thesis. We will adapt Ranganath
et al.’s algorithm of computing NTSCD [21] to fit our own needs.

2A control sink is a set of nodes that form a strongly connected component such that for each node n in the control sink
each successor of n is also in the control sink [21].

18

2.3 Correctness of Slices

As stated in Section 1.1.2, a sliced structure (e.g., a program slice, a model slice) is correct
when it simulates the original structure (e.g., the original program, the original model)
with respect to the slicing criterion. Simulation has been defined as a relation between the
original structure and a sliced structure in various literature.

2.3.1 Simulation in Programs

Simulation is a relation (i.e., the original) that relates a structure to an abstraction of the
structure (i.e., the sliced). Simulation guarantees that every behavior of a structure is also
a behavior of its abstraction; but the abstraction may have behaviors that are not possible
in the original structure [26, 4].

Milner [26] proposed a technique to formally prove simulation between two programs
in order to make precise the notion in which two programs are realizations of the same
algorithm. The proof requires a precise definition of the program which enables simulation
properties to be stated and proved succinctly:

Definition. A program a is a quadruple (Din, Dcomp, Dout, F) where Din, Dcomp, Dout are
disjoint domains and F : D → D is a total function (D = Din ∪ Dcomp ∪ Dout) with
restrictions:

� F (Din ∪Dcomp) ⊆ Dcomp ∪Dout;

� The restriction of F to Dout is the identity IDout.

Din, Dcomp, Dout are called the input, computation and output domains of a, respectively.

Milner [26] explained that this definition ensures that starting with a member of Din

and applying F repeatedly we get either an infinite sequence in Dcomp, or a finite sequence
in Dcomp followed by a single member of Dout. Formally, he defined a computation sequence
of program a to be a sequence {di | i ≥ 0} where d0 ∈ Din, di+1 = F (di), i ≥ 0, and either
di ∈ Dcomp, i > 0 or for some k, di ∈ Dcomp, 0 < i < k and di = dk ∈ Dout, i ≥ k. In
addition, he defines the associated partial function of program a as â : Din → Dout.

Based on these explicit definitions, Milner defines simulation as a relation:

Definition. Let R ⊆ D ×D′. Then R is a weak simulation of a by a′ if:

19

1. R ⊆ Din ×D′in ∪Dcomp ×D′comp ∪Dout ×D′out;

2. R F ′ ⊆ F R.

The condition 2 can be restated as ∀d, d′, (d, d′) ∈ R⇒ (F (d), F ′(d′)) ∈ R.

Milner shows a proof example on pairs of simple flowchart programs. Basically, to
prove condition 1 he needs to list all the possible input, computation and output domains
of all programs. To prove condition 2, he needs to show for all d, d′ that (d, d′) ∈ R ⇒
(F (d), F ′(d′)) ∈ R and this can be done using an inductive proof, in which the inductive
step needs to be analyzed by cases. He did not give the details of the case-based analysis
for condition 2.

2.3.2 Simulation in SBMs

In general, there are two conditions of the correctness property:

1. The sliced model simulates the original model;

2. The original model simulates the sliced model.

Korel et al. [6] formalizes the first condition by considering an input x to the execution
of both the original and the sliced models:

“Let M be an EFSM model. Let v be a variable at transition TI in M . An
EFSM sub-model M ′ is a non-deterministic slice of M with respect to variable
v at transition TI if for every input x the value of v at TI during execution of
M is equal to the value of v at TI during at least one possible execution of M ′

on x.”

Amtoft et al.’s research note [5] phrased the first condition slightly differently:

“If the original program can do some observable action then also the sliced
program can do that action; here an observable action may be defined either
as one that is part of the slicing criterion, or as one that is part of the slice.”

20

Milner’s definition on weak simulation also has a similar idea to the first condition.

A sliced model that satisfies only the first condition is a slice that satisfies the basic
correctness property. In this thesis, we enforce only the basic correctness property. Chap-
ter 5 will prove this basic correctness property on model slices constructed by our model
slicer.

Some researchers believe that the basic correctness property is not sufficient and they
have defined the second condition of correctness. As an example, Korel et al. [6] present an
“over-minimized” sliced model that satisfies the first condition only: the SBM becomes a
single state such that all relevant transitions become self-looping transitions on this state.
This sliced model is not useful for comprehension purpose. In light of this, Korel et al.
impose the second condition of correctness and refer to it as the traversability property of
a slice. They then proposed two state merging rules that produce slices that satisfy the
traversability property.

A sliced model that satisfies both conditions of correctness is a slice that satisfies
the stronger correctness property. Although we do not enforce the stronger correctness
property in this thesis, we still attempt to make the slices constructed by our slicer as
precise as possible. For example, we use Korel et al.’s state merging rules so as to avoid
producing an “over-minimized” slice.

2.4 Cone of Influence Reduction

We notice that the idea of model slicing is a bit similar to the technique of cone of influ-
ence reduction in model checking. Cone of influence reduction is one of the abstraction
techniques that applies on a high level description of the system, before a model for the
system is constructed. It decreases the size of the constructed model by eliminating those
variables that do not influence the variables that are referred to in the specification; in this
way, the properties to be checked are preserved but the size of the model that needs to be
verified is smaller [4].

Biere et al. [27] discussed the classical definition of cone of influence reduction. They
defined the model as follows:

Definition. Let X = {x1, . . . , xn, xn+1, . . . , xm} be a set of m boolean variables and let
F = {f1, . . . , fn} be a set of n ≤ m boolean transition functions where fj is a function for
xj for all 1 ≤ j ≤ n. Finally, let R = {r1, . . . , rn} be a set of initialization functions where
rj is a function for xj for all 1 ≤ j ≤ n. Then M = (X,F,R) is called a model.

21

To perform cone of influence reduction on such a model, firstly a dependency graph
of the state variables needs to be constructed. The immediate dependency set, dep(xj),
of a state variable xj is defined as dep(xj) = {xl | xl occurs in fj} where fj is the tran-
sition function for xj. The cone of influence of a state variable xj, denoted as coi(xj),
is the least set of variables that contains xj and includes dep(xl) for all xl ∈ coi(xj). In
other words, coi(xj) is the solution of a least fixed-point equation; its computation is it-
erative. With respect to an LTL formula f , the reduced model is defined as coi(M, f) =
(coi(x), coi(t), coi(r)) where coi(x) = ∪{coi(xj) | xj ∈ var(f)} in which var(f) is the set
of variables that occur in f , coi(t) and coi(r) include the corresponding transition and
initialization functions over coi(x) [27].

We can see that the cone of influence reduction shares some similarities with dependence-
based model slicing. The computation of coi(xj) resembles the computation of a transitive
closure of dependencies in model slicing. The LTL formula f has a similar role as the
slicing criterion in model slicing. However, the difference between cone of influence reduc-
tion and model slicing is also evident: the model used in cone of influence reduction is a
highly abstract system that is quite different from the SBMs on which our model slicing
techniques apply.

22

Chapter 3

Preliminaries

This chapter presents some background and terminology that is related to understanding
the design of FormlSlicer. Section 3.2 introduces the semantics of FORML [28]. Section 3.3
discusses the scope of FormlSlicer and explains how FormlSlicer treats feature modules in
FORML.

3.1 Terminology

Feature-oriented Software Development (FOSD) This paradigm advocates the use
of features as the primary criterion to identify separate concerns. Usually, it is applied to
the requirements and development of feature-rich software systems.

System and Environment In this thesis, we use “system” to refer to the collection of
features in a software system and “environment” to refer to any external factors that can
influence the system. This divides the variables in the requirements model of a software
system into two groups. The first group is the set of environment-controlled variables (i.e.,
their values cannot be directly modified by the system). As an example, consider the actual
speed of a car, which value can only be a result of a combination of external and internal
factors; no equipped features of the car can directly modify the actual speed; instead,
the system can only monitor its value. The second group is the set of system-controlled
variables (i.e., their values can be modified by one or more features in the system). For
example, the acceleration of a car is a system-controlled variable.

23

3.2 What Is FORML

FORML is a modeling language that can be used to specify feature-oriented models of
requirements of software systems. It is based on the paradigm of feature-oriented software
development (FOSD) and accompanied by modeling-language constructs for explicitly ex-
pressing intended feature interactions [11]. A model expressed in this language consists of
two views [28]:

� A world model is a description of the environment in which the software system will
operate. The concepts in the world model are expressed in the UML class-diagram
notation.

� A behavior model is a state-machine model that describes the requirements for a
software system. The syntax for the behavior model is based on UML state machines.
It is structured in terms of many feature modules, each specifying the behavior of one
feature. If a feature is independent of existing features, then the module is expressed
as a fully executable state machine. If a feature enhances (i.e., extends or modifies)
existing features, the enhancements are expressed as a set of state-machine fragments
that extend existing feature modules.

A state machine in a FORML behavior model mainly consists of [28]:

� finite sets of states and orthogonal regions, organized into a state hierarchy defined
by a containment relation over states and regions;

� a set of transitions between states, each carrying a label that specifies the transition’s
name, trigger, guard and actions;

� a set of macro definitions which are abbreviations of FORML expressions that are
used to simplify transition labels.

A state of a FORML state machine can be either a composite state, which contains
other states, or a basic state, which contains no other states. A state that is contained
in a composite state is called the child state of the composite state; the composite state
is called the parent state of the child state. A black solid circle, called a pseudo initial
state, points to the default initial state of a sub-machine. The first state immediately after
the initial pseudo-state in the region is called the default initial child state of its parent
state. A composite state contains one or more orthogonal regions (regions for short), where

24

each region holds a sub-machine that executes concurrently with sub-machines in sibling
regions. The structure of a state machine is shown in Figure 3.1. It contains two states,
S1 and S2. S1 is a basic state. S2 is a composite state which consists of two orthogonal
regions, C1 and C2. S2 is S3 ’s parent state and S3 is S2 ’s default initial child state. S1,
S3 and S5 are default initial states in their respective machines.

Figure 3.1: The structure of a state machine in FORML’s
behavior model

Throughout the thesis, we use the fol-
lowing definitions adapted from Shaker’s
PhD thesis [28] to access information about
state hierarchy in a state machine:

“The ancestors of a state x are
all of the nodes along the path
in the tree of state hierarchy
from the root node to x. The
descendants of a state x are all
of the states in the subtrees of
x. The rank of a state x in
the state hierarchy is the length
of the path from the root to x.
The least common ancestor of a
state x1 and a state x2 is the
maximum-rank state that has
both x1 and x2 as descendants.”

A “flat” state machine (i.e., a non-hierarchical and non-concurrent state machine) can
be in only one state at a time; the state it is in at any given time is called the current
state. Because a FORML state machine has hierarchy and concurrency constructs, it can
be in multiple states at a time. The set of current states in the FORML state machine is
the state configuration.

A transition label has the following format:

id : te[gc]/al1...aln

where id is the name of the transition, te is an optional trigger expression, gc is an
optional guard condition, and al1...aln are labels that specify a set of concurrent actions.

The trigger expression of a transition is a world change event (WCE): an event generated
by the external environment (e.g., user pressing a button to generate a message) or by the
system (e.g., a transition’s action generating a message) to change the world model. There

25

are three types of WCEs: (1) a new message object generated in the world model, (2)
an existing message object removed from the world model, and (3) a change in value of a
message object’s attribute.

The guard of a transition is a boolean condition which is evaluated together with the
transition’s trigger expression. Usually, the guard checks the properties of the object
associated with the WCE, using the object variable “o”; for example, if a transition is
expressed as “t1: SetHeadway+(o) [o.to=myproduct] /a1: HC.headway := o.dist”, the
guard is checking whether the message object SetHeadway is sent to myproduct. The
guard can also check whether a global variable or a function’s output is equal to a certain
value.

The action of a transition is a world change action (WCA) that specifies a change to
the world model. There are three types of WCAs: (1) generating a new message object; (2)
destroying a set of existing objects; and (3) setting an object’s attribute or a global variable
to a new value. Again, the object variable “o” is used in an WCA to refer to the current
object associated with the transition’s WCE; for example, if a transition is expressed as
“t1: SetHeadway+(o) [o.to=myproduct] /a1: HC.headway := o.dist”, the value of dist of
the message object SetHeadway is assigned to the global variable HC.headway.

There are many reasons why we choose FORML. The most important ones are:

� FORML is a UML-like language. Its feature modules are based on UML state ma-
chines, which is one type of state-based model (SBM). This makes the design of
our slicing tool much easier, because we can utilize some existing literature on SBM
slicing.

� It is good practice for the software engineering research community to adopt and
extend state-of-the-art analysis tools [29]. FORML is designed as a precise modeling
language and there have been a few tools developed to manipulate the language,
including the FORML Feature Composer and a collection of transformation tools
from FORML to SMV [29]—a modeling language used by the NuSMV model checker
[30]. It is beneficial to the community in further extending this tool set by creating
a model slicer on FORML.

3.3 Scope of FormlSlicer

FormlSlicer faces many challenges, because of the difficulty of slicing on SBMs (Sec-
tion 2.2.2) and the fact that FORML state machine is a highly complex type of SBM

26

(Section 3.2). We have solved some of the challenges in this thesis project; but there
are still a few limitations. In this section, we describe what kind of input model that
FormlSlicer can handle.

FormlSlicer focuses on slicing the feature modules in the behavior model of a FORML
model. It does not perform slicing on the world model. However, it is very easy to perform
slicing on the world model by using the set of relevant variables in FormlSlicer’s slicing
output. This is left to future work.

Figure 3.2: An example model

FormlSlicer treats each feature module in
FORML as a state machine. If a feature is an in-
dependent feature, the feature module is treated as
a complete state machine. If a feature is an en-
hancement or modification of another feature (e.g.,
the cruise control (CC) feature which extends and
overrides the basic driving service (BDS) feature),
the feature module is represented as a fragment in
FORML. Because it is very difficult to perform slic-
ing on a state-machine fragment, we compose the
fragment with its base feature modules to create
one complete state machine. We call such a com-
plete state machine a feature-oriented state machine
(FOSM) to indicate that it is a composed feature in
the form of a state machine.

FormlSlicer treats the whole model as one big
state machine. This big state machine comprises a
composite state containing many orthogonal regions.
Each orthogonal region contains one sub-machine,

which is an FOSM. Figure 3.2 shows an example of such a big state machine. We can see
that the model is a composition of all features.

The input to FormlSlicer is a model of all features currently making up a software
system. If new features are added to the software system, then slicing needs to be performed
from scratch. We discuss slicing of an evolving software system in future work.

FormlSlicer imposes a few restrictions on the input model. The first restriction is
that a transition cannot cross from one orthogonal region into another orthogonal region
belonging to the same parent. An example of such a transition is shown in Figure 3.3a.
The ultimate reason of having concurrent regions in a model is to simulate multiple threads
in a program. Although different threads can interact with one another by generating and

27

reacting to shared events or by accessing shared memory, it is illogical that a running
thread suddenly reaches into the execution of another thread.

(a) A transition crossing from a region to its sibling
region

(b) A transition emanating from a descendant state of a
composite state containing multiple regions and exiting
the composite state

Figure 3.3: Two types of transitions (shown in blue) not allowed in FormlSlicer

The second restriction is that no transition enters or exits the boundary of the parent
state of an orthogonal region that has a sibling orthogonal region. This kind of transition is
illustrated in Figure 3.3b. Because FormlSlicer has many other more important challenges
to solve, we do not further complicate FormlSlicer by considering this special case which
occurs very rarely in real-life models. This will be left for future work.

(a) Labeling on arrow from a pseudo state to a default
initial state is not allowed; more than one arrow from a
pseudo state is also not allowed.

(b) If user needs to use guard condition on the arrow
from a pseudo state, user can redefine the original pseudo
state as a new default initial state.

Figure 3.4: Restrictions and solution on the arrow from a pseudo state to default initial state

Another minor restriction is that the arrow from a pseudo state to the default initial
state cannot be labeled. Furthermore, a state machine has exactly one default initial state;
in other words, we do not allow a pseudo state to have multiple outgoing arrows pointing
to different states. Figure 3.4a illustrates an example of multiple labeled arrows that exit
from a pseudo state. If user wants to use guard conditions on the arrow from a pseudo

28

state, in order to specify different default initial states under different conditions, user can
redefine the original pseudo state as a new default initial state and create a new pseudo
state to point to it (Figure 3.4b).

29

Chapter 4

FormlSlicer

4.1 Overview of FormlSlicer’s Workflow

Given a feature-rich state-machine model that consists of n features, FormlSlicer creates a
sliced model with respect to each feature. Figure 4.1 shows the big picture of FormlSlicer’s
workflow. It consists of two major tasks: a preprocessing task and a slicing task1.

The preprocessing task parses an original model, computes three types of dependences
and stores the generated results in different tables. The preprocessing task is described in
detail in Section 4.2 and Section 4.3.

In the slicing task, FormlSlicer forks off multiple slicing processes; each process operates
independently but reads the same resources generated from the preprocessing task. Each
process considers a different feature as the FOI and treats the rest of FOSMs as the ROS;
then it goes through a multi-stage model-slicing procedure to slice the FOSMs in ROS with
respect to the selected FOI; eventually, it outputs a sliced model. The use of concurrent
threads in FormlSlicer can save the time of the slicing task. The slicing task is described
in detail in Section 4.4.

1We use five different words—“workflow”, “task”, “process”, “stage” and “step”—to indicate the granularity of a proce-
dure. FormlSlicer’s “workflow” consists of two “tasks”. One of the “task” has many “processes”. The slicing “process” goes
through many “stages”. Each “stage” is further divided into many “steps”.

30

Figure 4.1: Overview of FormlSlicer’s workflow: the preprocessing task and the slicing task

4.2 Preprocessing: Model Parsing and Conversion from

FORML to CFGs

FormlSlicer includes a simple parser to read a feature-oriented state-machine model in
which each feature is modeled as a distinct sub-machine running in parallel with other
features’ sub-machines. The input model is expressed in textual format. The input format
is shown in Table 4.1.

Model Element to be Declared Declaration Format

Feature feature <name>

Macro macro <input sequence><replacement output sequence>

State state <name><parent region’s full name><default initial state?><composite state?>

Transition transition <label><source state’s full name><destination state’s full name>

Region region <name><parent state’s full name>

Table 4.1: Format of an Input/Output File to Specify one FOSM

A simple input example that corresponds to the FOSM in Figure 4.2b is shown in
Figure 4.2a.

31

feature F

region main F

state S1 F.main true false

state S2 F.main false true

transition t1:E1+(o)/a1:x:=1; F.main.S1 F.main.S2

transition t5:E1-(o)/a1:x:=0; F.main.S2 F.main.S1

region C1 F.main.S2

region C2 F.main.S2

state S3 F.main.S2.C1 true false

state S4 F.main.S2.C1 false false

transition t2:[inState(F.main.S2.C2.S6)]/ ...

state S5 F.main.S2.C2 true false

...

(a) Input text (b) The corresponding FOSM

Figure 4.2: A simple input example

4.2.1 Transformation of Transition Labels

As described in Section 2.2.4, data dependence in an SBM captures the notion that one
transition assigns a value to a variable and another transition may potentially use this
value. Similarly, between the transitions in FORML state machines, there can be data
dependence. However, a FORML transition label can contain a WCE, a guard and some
WCAs and it is very inconvenient to compute data dependencies by directly using these
complex labels. Instead, FormlSlicer transforms the transition labels into simple expres-
sions, preserving only the information needed to detect data dependence.

In general, a WCA performed by one transition can directly affects the WCE or guard
of another transition. For example, a message object that is generated by a transition t1
may trigger another transition t2; in this case, the type of message C appears in the WCE
of t2 (i.e., C+(o)) and in the WCA of t1 (i.e., +C(list(param = e))). For our purposes, it is
sufficient to be able to match actions and trigger events involving the same message type
or the same variable. FormlSlicer simplifies a transition label into two groups of variables:

� Monitored variables, which represent phenomena that are sensed by or are inputs to
the system;

� Controlled variables, which represent phenomena that are controlled or affected by
system outputs [31].

In the previous example, FormlSlicer will identify “+C ” as a controlled variable of tran-
sition t1 and as a monitored variable of transition t2, so that it is easy to detect the data
dependency between t1 and t2 automatically.

32

Table 4.2 shows how FORML will transform different types of WCE expressions. The
first two columns show the types and formats of WCE: creation of a message object,
deletion of a message object, and changing the value of an attribute of a message object.
The third column shows the corresponding string value (representing a monitored variable)
that FormlSlicer transforms each WCE type into.

WCE Type WCE Format Monitored Variable

Message Object C Appears C+(o) +C

Message Object C Disappears C-(o) -C

Attribute in Message Object C Changes Value C.a∼(o) C.a

Table 4.2: How FormlSlicer extracts Monitored Variables from WCEs

Table 4.3 shows how FormlSlicer transforms different types of WCAs. The first two
columns show the three types and formats of WCA in FORML, including generation of
a message object, deletion of a message object2, and assignment. The fourth column
specifies the corresponding string value (representing a controlled variable) that FormlSlicer
transforms each WCA type into. Note that in an assignment action, the arguments of the
function are monitored variables and this is depicted in the third column.

WCA Type WCA Format Monitored Variable Controlled Variable

Generate Message Object C +C(list(param = e)) +C

Destroy Message Object C C-(O) -C

Assignment Action v :=function(v1,v2,...) v1,v2,... v

Table 4.3: How FormlSlicer extracts Monitored/Controlled Variables from WCAs

The guard of a transition may refer to variables whose values are defined in an as-
signment action of another transition. For example, if a transition t1’s WCA is “a1:
status=‘failed’;” and another transition t2’s guard is “[status==‘failed’]”, there exists a
data dependency between t1 and t2 with respect to the variable status. To detect data
dependence, FormlSlicer just needs to know which variables are involved in the guard ex-
pression (e.g., the variable status); it is not concerned with the guard expression itself.
Based on this idea, FormlSlicer simplifies a guard expression to its constituent monitored
variables.

2In FORML, when an action destroys a message object, it needs to specify exactly what set of objects are destroyed; but
in FormlSlicer we over-approximate the influence of this action by assuming that all the objects belonging to that category
of message are destroyed.

33

A guard expression can be one of the three different types, as shown in the first two
columns in Table 4.4. The third column shows how FormlSlicer transforms each of the
different types of guard expression into a set of monitored variables. In particular, the
guard condition of inState(DummyState) is an interesting construct. It means that this
guard condition is true only when the model’s current state configuration contains the
state DummyState.

Guard Type Guard Format Monitored Variable

Comparison var1 >var2 var1, var2

InState inState(DummyState) DummyState

Function function1(var1) == 5 var1

Table 4.4: How FormlSlicer extracts Monitored Variables from Transition Guard Conditions

4.2.2 Control Flow Graph (CFG)

Figure 4.3: The class hierar-
chy of Node, TNode and SNode
in CFG

FormlSlicer converts the input model into a set of CFGs to sim-
plify the representation of the model to ease dependence analysis.
A CFG consists of only nodes and edges. As shown in Figure 4.3,
there are two types of nodes—TNode and SNode—which are sub-
types of the generic type—Node. Each Node has an ID, a set of
outgoing nodes, and a set of incoming nodes.

FormlSlicer creates a TNode for each transition. Each TNode
contains the set of monitored variables and controlled variables
that appear in the label of the corresponding transition. It also
contains a singleton set of incoming nodes containing the ID of
the transition’s source state and a singleton set of outgoing nodes
containing the ID of the transition’s destination state.

FormlSlicer creates an SNode for each state in the input model. An SNode is simpler
than a TNode. It contains only the generic information (i.e., its own ID and sets of outgoing
and incoming nodes’ IDs) that are inherited from the generic type Node.

The result is one CFG for each distinct sub-machine in an FOSM. But if there is a
transition that crosses a hierarchy border, it will be converted into a TNode that connects
two distinct CFGs together. The CFGs created from the FOSM example in Figure 4.2b
are shown in Figure 4.4.

34

Figure 4.4: Several CFGs for the FORML model in Figure 4.2b. Yellow nodes are SNodes.

4.3 Preprocessing: Dependence Analyses

CFGs are lightweight graph structures suitable for dependence analyses, because the anal-
yses concern only the connectivity relationship among nodes. This section introduces three
types of dependence that are computed by FormlSlicer.

4.3.1 Hierarchy Dependence

Figure 4.5: Hierarchy dependence

As explained in Section 3.2, the states in a FORML state machine are organized in
a hierarchy. Hierarchy dependence (HD) reflects the state hierarchy relationship among
nodes. We say that a child state n1 is hierarchy dependent on its parent state n2,

denoted as n1
hd−−−−−→ n2. Figure 4.5 illustrates such a dependence.

FormlSlicer computes the hierarchy dependencies for all states in the model while cre-
ating the CFGs. As it scans through all states once, the computation complexity is O(|S|)
where |S| is the number of states. The computation results are kept in the tables:

35

HDtable1 a 1D-table mapping each SNode to its parent SNode;

HDtable2 a 1D-table mapping each SNode to a set of its default initial child states3.

Note that we have two tables that have opposite mapping directions in state hierarchy.
The HDtable1 keeps records for all states except the root state. The HDtable2 keeps
records for the composite states only; it is similar to Wang et al.’s refinement control
dependence [20].

4.3.2 Data Dependence

As introduced in Chapter 2, data dependence (DD) usually depicts a “define-use” rela-
tionship among different instructions in a program. The relationship is also applicable in
models.

We use mv(t) and cv(t) to represent monitored and controlled variables of transition t,
respectively. We say that transition tk is data dependent on transition t1 with respect

to a variable v, denoted as tk
dd−−−−−→v t1, iff tk monitors (i.e., reads from) v and t1 controls

(i.e., writes to) v (v ∈ mv(tk) ∩ cv(t1)) and there exists a path from t1 to tk along which
no other transition controls v (i.e., ∃[t1 · · · tk](k ≥ 1).v /∈ cv(tj) for all 1 < j < k). The
path of [t1 · · · tk](k ≥ 1) such that v /∈ cv(tj) for all 1 < j < k is called a definition-clear
path. Figure 4.6 illustrates this concept.

Figure 4.6: Data dependence between tk and t1 w.r.t. v

DD is the most important dependence among the three. In general, FormlSlicer is
looking for relevant parts in the other FOSMs on which the FOI is (directly or indirectly)
data dependent.

3A composite state can contain multiple regions and therefore can have multiple default initial child states.

36

The “inState()” Expression In a FORML transition label, there is a special type of
guard condition called “inState()” that holds when the model is in a specific state. In
the example shown in Figure 4.7, transition t2 has a guard condition “inState(A)”, which
means that t2 will be triggered when the current state configuration of the model includes
the state of A. For consistency, FormlSlicer treats “inState()” expression as a sub-type of
data dependence4. In this example, FormlSlicer considers t2 to be data dependent on all
of the incoming transitions to A (i.e., t1).

Figure 4.7: The “inState()” expression as a variation of data dependence

Algorithm 4.1 shows how FormlSlicer computes data dependence. Compared to existing
algorithms, ours deals with a more complex model with respect to the original model’s
state-hierarchy structure. The algorithm takes an input of all the nodes and HDtable2.
It traces from each TNode with a controlled variable v to other reachable TNodes that
monitor v, thereby establishing a data dependency between pairs of TNodes. In each
iteration of the foreach statement at Line 1, the algorithm checks whether node1 (a
TNode) has controlled variables. If so, it iterates for each such controlled variable at
Line 4 to search for other TNodes that are data dependent with respect to this particular
variable. In the beginning, the algorithm initializes a queue qt with the destination node of
node1 at Line 7; then, at each iteration of the while loop at Line 8, it dequeues one node
from qt and checks whether that node monitors the variable. If so, a data dependency is
established between node1 and the dequeued node, as shown at Line 20. The statement at
Line 23 checks whether currNode controls the variable v. If so, it means there is no longer
a definition-clear path between node1 and nodes reachable from currNode, and so there is
no need to continue the search beyond currNode.

4In this thesis, we do not explore some quirky cases of “inState()” expression (e.g., A does not have incoming transitions
at all).

37

Algorithm 4.1: Algorithm of Data Dependence Computation used in FormlSlicer
Input: allNodes, HDtable2
Output: DDtable

1 foreach node1 in allNodes do
2 if node1 instanceof SNode OR node1.controlledVar = null then continue;
3 set controlleds := node1.controlledVars // node1’s controlled variables

4 foreach v in controlleds do
5 set visitedSNodes := {} // Empty visitedSNodes

6 set qt := empty unique queue
7 set qt.enqueue(node1.outgoingNode) // Initialize qt

8 while qt is not empty do
9 set currNode := qt.dequeue();

10 if currNode instanceof SNode then
11 if visitedSNodes contains currNode then continue;
12 if HDtable2[currNode] is not null then
13 qt.enqueue(HDtable2[currNode]) // add currNode’s default initial child SNodes

14 end
15 qt.enqueue(currNode.outgoingNodes) // currNode (an SNode) may have many outgoing node

16 ADD currNode to visitedSNodes

17 else
18 if currNode == node1 then continue;
19 if currNode.monitoredVars contains v then
20 DDtable[v,currNode].add(node1);
21 end
22 set isContVRset := false
23 if currNode.controlledVars contains v then set isContVRset := true
24 if isContVRset := false then
25 qt.enqueue(currNode.outgoingNode) // currNode (a TNode) has 1 outgoing node

26 end

27 end

28 end

29 end

30 end

38

The computation results are stored in a table:

DDtable a 2D-table mapping a pair (a variable v and a TNode tj) to a set of TNodes, to
indicate that tj is data dependent on a TNode ti in the set with respect to v.

Analysis of Algorithm The worst-case time complexity of Algorithm 4.1 is (|S|+ |T |) ·
|T | · |CV | where |S| is the number of SNodes, |T | is the number of TNodes and |CV | is the
largest number of controlled variables for any TNode. The algorithm terminates because
the set visitedSNodes at Line 11 prevents repeated visits to the same SNode in the CFG
traversal.

4.3.3 Control Dependence

4.3.3.1 Non-termination Sensitive Control Dependence

As introduced in Chapter 2, control dependence (CD) captures the notion of whether one
node can decide the execution of another node. In a CFG, a branching node has more
than one outgoing paths, i.e., its outdegree is greater than 1. A branching node is always
an SNode, which is equivalent to a state in FORML with multiple outgoing transitions.
Generally, a branching node is a decision point that determines whether an execution
proceeds along one possible execution branch or another.

If control dependence is not preserved, the sliced model will omit useful information
about how an execution reaches an important node, and therefore becomes more imprecise.
When control dependence is preserved, then whenever an important node is included in
the sliced model, all earlier nodes that act as decision points that lead the execution to the
important node will be included in the sliced model too.

As elaborated in Section 2.2.4.1, researchers have proposed many different definitions
of control dependence in both program slicing and model slicing. At present, there is no
standard algorithm to compute control dependence for slicing an SBM. We use Ranganath
et al.’s non-termination sensitive control dependence (NTSCD) [21] because we believe
that this definition captures the notion of control dependence with a sufficient degree of
precision.

We have explained NTSCD in Section 2.2.4.1. The consideration of maximal paths5

in the definition implies that NTSCD is applicable to CFGs that do not satisfy the single

5A maximal path is any path that terminates in a final transition, or is infinite [25].

39

end-node property. The precise definition of NTSCD is presented as below (with slight
wording changes):

Definition. In a CFG, nj is (directly) non-termination sensitive control dependent
on node ni if ni has at least two successors, nk and nl, such that

1. all maximal paths from nk eventually reach nj and do so before (possibly) reaching
ni;

2. there exists a maximal path from nl on which either (1) nj is not reached, or (2) nj

is reached but only after reaching ni.

In other words, a node nj is control dependent on a predecessor ni if ni has some
outgoing paths that always lead to nj and also has some outgoing paths that are not
guaranteed to lead to nj. This is illustrated in Figure 4.8. In the definition, an execution
returning to the start node is analogous to reaching the end of the execution path.

Figure 4.8: An illustration of non-termination sensitive control dependence: nj is control dependent on ni

4.3.3.2 CD Algorithm: Paths Representation for a Node

Ranganath et al. [21] presents a dynamic algorithm for computing NTSCD. Its main idea
is to search from each branching node in a CFG for any other nodes that can be control de-
pendent on that branching node. The algorithm represents sets of CFG paths symbolically
and propagates these symbolic values in a CFG traversal to collect the effects of control-
flow choices at each program point in the CFG. Based on the main idea, we adapted the
algorithm to our CFGs and designed a dynamic algorithm to fit our own needs. There
are a few reasons why we do not directly use Ranganath et al.’s algorithm: (1) The paper

40

shows only the skeleton of their algorithm and does not explain certain details, such as why
the cardinality of sets of paths and a branching node’s outdegree can be used to determine
control dependence; (2) the CFG used in their algorithm is slightly different from ours6.
However, the main idea remains the same.

FormlSlicer computes control dependence by first finding CFG paths from each branch-
ing node to all reachable nodes, and then for all possible paths from a branching node ni

to a reachable node nj, performs a special operation called reduction and then determines
whether nj is control dependent on ni.

Figure 4.9: A CFG example to illustrate the paths from Node 1 to Node 5:
Node 8 has two outgoing nodes (9 and 10), highlighted in orange color;

Node 1 has three outgoing nodes (2, 7 and 11), highlighted in green color.

FormlSlicer needs an efficient representation of all possible paths from a branching node
ni to a reachable node nj. At any point in time, the CD algorithm is traversing paths in
the CFG from one of its branching nodes, which we denote node1. The algorithm keeps
track, for each node reachable from node1, of all paths from node1 to that node. The
representation of each path contains only information of branch decisions made along the
path.

Consider the CFG in Figure 4.9 and all of the paths from Node 1 to Node 5:

Path 1: “1→11→5”;

6The CFG in their algorithm represents the structure of the statements in a software program and therefore the loops
in their CFG are more predictable. The CFG in our algorithm has a more unpredictable graph structure; but it is not a
completely random graph either, because a TNode in our CFG has exactly one source SNode and one destination SNode
(which is a useful information in complexity analysis).

41

Path 2: “1→7→8→9→5”;

Path 3: “1→7→8→10→3→4→5”;

Path 4: “1→2→3→4→5”;

We represent Path 1 as “1:11”. Along Path 1, there is only one decision point at Node
1, and the path follows the branch of Node 11 from Node 1.

We represent Path 2 as “1:7,8:9”, which comprises two sub-paths “1:7” and “8:9”. This
means that along Path 2, there are two branching nodes. The first branching node is Node
1, from which the path follows the branch of Node 7. The second branching node is Node
8, from which the path follows the branch of Node 9.

We represent Path 3 as “1:7,8:10”. The only difference between Path 3 and Path 2 is
that at the second branching node (Node 8), Path 3 follows the branch of Node 10. After
these two branching decisions, Path 3 visits Nodes 3 and 4 on its way to Node 5. Because
these nodes do not contribute to the determination of Path 3, they are omitted from the
path representation.

We represent Path 4 as “1:2”. At Node 1, Path 4 follows the branch of Node 2.

Altogether, the paths representation from Node 1 to Node 5 is shown in Figure 4.10.
Paths are separated by semicolons. The length of a paths representation is the number of
paths. Each path consists of one or more sub-paths, separated by commas. Each sub-path
consists of two node indices: the first index (called source index) is the ID of a branching
node and the second index (called branch index) is the ID of the branching node’s successor
node followed in the sub-path.

Figure 4.10: The paths representation from Node 1 to Node 5 in the CFG in Figure 4.9

Note that all paths from Node 1 lead to Node 5. Therefore, Node 5 is not control
dependent on Node 1.

42

4.3.3.3 CD Algorithm: Reduction of the Paths Representation

Consider the paths representation in Figure 4.10. FormlSlicer can automatically detect
that Node 5 is not control dependent on Node 1 by reducing the representation. Because
Node 8 has only two outgoing neighbors (Node 9 and Node 10), the two paths “1:7,8:9” and
“1:7,8:10” can be reduced to “1:7”. Now the paths representation becomes “1:11;1:2;1:7”.
Because Node 1 has three outgoing nodes (2, 7 and 11), the paths representation is reduced
to “”.

We can generalize the rule for paths reduction. Consider a branching node i that has
k outgoing branches to nodes 1, 2, . . . , k. If a paths representation from Node a to Node b
contains at least k paths such that:

� All k paths have a common prefix X, which indicates the same sub-paths from Node
a up to Node i;

� Each of the k paths is in the format of “Xi : j” for 1 ≤ j ≤ k;

� The different suffix of i : j refers to a unique branch of Node i.

Then each sub-path i : j (where 1 ≤ j ≤ k) can be reduced to an empty sub-path. Note
that the prefix X can be an empty String, in which case Node a is Node i.

After all paths representations from a branching node a are computed, we interpret
the corresponding paths representation from Node a to Node b and come up with either of
these two conclusions:

1. Node b is control dependent on Node a. For example, the paths representation
from Node 1 to Node 3 is “1:2;1:7,8:10”; it cannot be reduced to empty in the end.
The presence of path “1:2” implies that all paths from Node 2 (which is one of the
three outgoing nodes of Node 1) eventually reach Node 3. The absence of other
single-length paths7 implies that the execution can avoid Node 3 by following other
branches from Node 1. Based on the definition of NTSCD, we deduce that Node 3
is control dependent on Node 1.

2. Node b is not control dependent on Node a. It can be the case when they do not satisfy
the first condition of the NTSCD definition (i.e., there does not exist a branch from a
that is guaranteed to lead to b). For example, consider that the paths representation

7A single-length path does not contain comma in its representation.

43

from Node 1 to Node 10 is “1:7,8:10”; this implies that there is no execution path
from Node 1 that is guaranteed to lead to Node 10. Another case is that Node a
and Node b do not satisfy the second condition of the NTSCD definition (i.e., there
does not exist a branch from a that can possibly avoid leading to b). For example,
consider that the paths representation from Node 1 to Node 5 is reduced to empty;
this implies that all paths from Node 1 lead to Node 5. In both cases, we determine
that Node b is not control dependent on Node a.

4.3.3.4 CD Algorithm: Pseudo-code and Explanations

This section presents FormlSlicer’s algorithm to compute control dependence. The main
algorithm is shown in Algorithm 4.2.

Algorithm 4.2 examines all the nodes in the CFG in the foreach statement at Line 2 and
checks whether the node is a branching node at Line 3. For each branching node, node1, the
algorithm computes an array p with each element i storing the paths representation from
node1 to the node whose ID is i. For each of node1’s branches to a successor node node2,
the element of p corresponding to node2 is initialized with the subpath “node1:node2”
(Line 6 to Line 9). These successor nodes are added to the uniqueQ. Next, in each iteration
of the while loop at Line 10, a currNode is dequeued from the uniqueQ and is processed
based on one of the three cases discussed below. Here we use the same CFG from Figure 4.9
to explain.

1. If currNode is a branching node, as determined at Line 13, then the paths represen-
tation of each outgoing node (n3) of currNode extends each of the paths of currNode
with a new subpath “currNode:n3”. Consider currNode=Node 8 and n3=Node 10
in Figure 4.11a. The paths representation of Node 10 is computed by appending
a sub-path “8:10” to every path in Node 8’s paths representation (i.e., “1:7”), to
show that the paths have branched at Node 8. The function ExtendPath, listed in
Algorithm B.5, performs this operation.

2. If currNode is not a branching node, as determined at Line 19, then the paths
representation of the only outgoing node (n3) of currNode is computed by union-ing
pre-existing paths of n3 with the paths of currNode. Union-ing is a necessary step
to propagate currNode’s paths representation to its successor n3 without erasing the
pre-existing contents of n3’s paths representation that are computed from n3’s other
incoming paths8. Consider currNode=Node 10 and n3=Node 3 in Figure 4.11b. The

8Union-ing is performed in this case and not in Case 1. In Case 1, the successor node of a branching node in our CFG
must be a TNode and it does not have another incoming path other than the current one.

44

Algorithm 4.2: Main Algorithm of Control Dependence Computation
Input: allNodes
Output: CDtable

1 set p := array[String]
2 foreach node1 (with ID n1idx) in allNodes do
3 if node1 has 1 outgoing node then continue;
4 set uniqueQ := empty queue // uniqueQ is a queue that ensures uniqueness of elements

5 reset all fields in p to be null
6 foreach node2 (with ID n2idx) in node1.outgoingNodes do
7 p[n2idx] := “n1idx:n2idx”
8 uniqueQ.enqueue(node2)

9 end
10 while uniqueQ is not empty do
11 set currNode := uniqueQ.dequeue();
12 set currIndex := currNode.ID;
13 if currNode.outgoingNodes.size > 1 then

// currNode has many outgoing nodes

14 foreach n3 (with ID n3idx) in the currNode.outgoingNodes do
15 ExtendPath(currIndex, n3idx);
16 ReducePaths(n3idx);
17 if HasNonEmptyPathsFromNode1 (n3idx) then uniqueQ.enqueue(n3)

18 end

19 else if currNode.outgoingNodes.size == 1 then
20 set n3 (with ID n3idx) := currNode.outgoingNode // currNode has 1 outgoing node

21 if n3 == node1 then continue;
22 set unionPathHappens = UnionPath (currIndex, n3idx)
23 if NOT unionPathHappens then continue;
24 ReducePaths(n3idx);
25 if HasNonEmptyPathsFromNode1 (n3idx) then uniqueQ.enqueue(n3)

26 end

27 end
28 for j from 0 to last index in p do
29 ReducePaths(j);
30 if IsControlDependentOn1 (j) then ADD n1idx to CDtable[j];

31 end

32 end

paths representation of Node 3 was initially “1:2” because of Path 4 as shown in
Section 4.3.3.2. After union-ing with the paths representation of Node 10, it now
becomes “1:2;1:7,8:10”. The function UnionPath, listed in Algorithm B.4, performs
this operation and returns true when there is a change in the paths representation of
n3.

3. If currNode does not have any outgoing nodes, nothing is performed because currNode
is a terminating node.

At Line 17 and Line 25, the function HasNonEmptyPathsFromNode1(n3idx) determines
whether n3 may be a potential node that is control dependent on node1, by checking
whether the paths representation of n3 contains non-empty paths after reduction.

45

(a) When currNode (Node 8) is a branching node, the paths
representation of currNode’s outgoing node (Node 10) is com-
puted by extending the paths of currNode.

(b) When currNode (Node 10) is a non-branching node, add
the paths of currNode to the paths of currNode’s outgoing node
(Node 3).

Figure 4.11: Two cases in propagating the paths representation from currNode to its neighbor in Algorithm 4.2

As mentioned in Section 4.3.3.3, when all nodes’ paths representations from node1 are
computed, the algorithm looks at the final result of p to determine whether a node is
control dependent on node1. This is shown in the for loop at Line 28. The function
IsControlDependentOn1 checks whether the paths representation from node1 to Node
j contains a single-length path from node1; if so, the function returns true because the
representation implies that node1 has multiple outgoing paths such that one path always
leads to Node j and others are not guaranteed to lead to Node j.

The algorithm is long and thus it is modularized into several functions. There are in
total six supporting functions for the main algorithm in Algorithm 4.2. Table 4.5 lists all
the supporting functions’ signatures and their goals.

Function Signature Goal of Function Algorithm

HasNonEmptyPathsFromNode1

(branchIndex)

It determines whether p[branchIndex] has
non-empty contents; if so, it is worth to
propagate this paths representation to other
nodes reachable from Node branchIndex.

B.1

IsControlDependentOn1

(index)

It interprets p[index] to determine whether
Node index is control dependent on the
branching node node1.

B.2

46

ReducePaths (index) It performs reduction on the paths represen-
tation in p[index]. This function utilizes
SortPaths(paths) function.

B.3

SortPaths (paths) It performs an insertion sort on paths, firstly
based on length of paths, secondly based on
length of sub-paths. Insertion Sort is more
efficient because the paths are likely to be in
ascending order.

Omitted

UnionPath (prevIdx,

nextIdx)

It adds each path in p[prevIdx] as a new
distinct path in p[nextIdx] (only when the
added path is not a prefix of any path al-
ready in p[nextIdx]) so that p[nextIdx]

becomes a union of paths from its old value
and p[prevIdx]; it returns true when there
is a change in the paths representation of
nextIdx.

B.4

ExtendPath (srcIndex,

branchIndex)

It creates a new paths representation for
p[branchIndex] by appending the new sub-
path “srcIndex:branchIndex” to each path in
p[srcIndex].

B.5

Table 4.5: List of Supporting Functions for Main Algorithm in Algorithm 4.2

The computation results are stored in a table:

CDtable a 1-D table mapping a node n1 to a set of nodes on which n1 is control dependent.

Analysis of Algorithm The worst-case time complexity of Algorithm 4.2 is (|S|+ |T |) ·
|S| · (|T |)2 where |T | is the number of TNodes and |S| is the number of SNodes (assuming
that all SNodes are branching nodes in the worst case). The foreach loop at Line 2 and
the while loop at Line 10 account for time complexities of |S| and (|S|+ |T |), respectively.
Among all the helper functions performed in one iteration of the while loop, SortPaths
within ReducePaths has a maximum time complexity9 of n2, where n is the maximum

9Although insertion sort does not have the best time complexity among all sorting algorithms, in practice it is fast in our
algorithm because the paths are likely to be in ascending order.

47

length of a paths representation. Since the length of a paths representation is number of
branching nodes times the maximum outdegree of a branching node, and a TNode has
only one source SNode, we determine that n is total number of TNodes in worst case.
Therefore the complexity at each iteration of the while loop is (|T |)2. The algorithm can
be terminated because it stops adding more nodes to uniqueQ: (1) when there is a loop in
the CFG back to the branching node node1, shown at Line 21; and (2) when there is a loop
back to another branching node other than node1 along the traversal, shown at Line 23,
because it detects that the paths of n3 are duplicate to the paths of currNode.

4.3.4 Summary

In summary, FormlSlicer computes three dependences from the CFGs of an input model
and produces the following tables of dependencies:

HDtable1 a 1D-table mapping each SNode to its parent SNode;

HDtable2 a 1D-table mapping each SNode to a set of its default initial child states;

DDtable a 2D-table mapping a pair (a variable v and a TNode tj) to a set of TNodes, to
indicate that tj is data dependent on a TNode ti in the set with respect to v;

CDtable a 1-D table mapping a node n1 to a set of nodes on which n1 is control dependent.

These tables serve as dictionaries of dependencies that are used by the slicing processes.
They are not modified after the preprocessing task.

48

4.4 Multi-Stage Model Slicing Process

We are now ready to describe the slicing task. FormlSlicer forks off n processes, one for
each feature, where each process considers one feature as the FOI, and the other FOSMs
as the ROS to be sliced. Each slicing process is divided into multiple stages. FormlSlicer’s
slicing strategy starts with an empty sliced model of the ROS; at each step in the multi-
stage model slicing process, certain model elements (either an SNode or a TNode) from the
original model are added to the sliced model. Thus, as slicing progresses, the FOI remains
unchanged and the ROS in the sliced model grows gradually.

Figure 4.12 shows the relationship between an original model and a corresponding
sliced model. Some FOSMs in the ROS are entirely absent in the sliced model and some
are partially absent.

Figure 4.12: A comparison between the original model and the sliced model

We have a multi-stage model slicing process:

Initiation Stage
This stage adds to the sliced model the initial set of TNodes that perform actions on
variables that the FOI directly monitors.

General Iterative Slicing Stage
This stage adds the SNodes and TNodes needed to preserve the dependencies that
were computed from the preprocessing task.

Model Restructuring Stage
This stage performs additional transformations to ensure that the sliced model is a
well-formed state machine.

In the following, we use a running example to illustrate each step of our multi-stage
model slicing process, as shown in Figure 4.13. For simplicity, the example model we use

49

from Section 4.4.1 to Section 4.4.3 consists of two FOSMs—E1 and E2, where E1 is the
FOI and E2 is an FOSM in the ROS; but the process generalizes to multiple FOSMs in
the ROS. Table 4.6 shows the monitored and controlled variables of all transitions in the
model.

Figure 4.13: The model used as the running example

Transition Monitored Variables Controlled Variables

imptT v1 v2

t1 v3 v2

t2 +WCE1

t3 +WCE3, WCE3.att

t4 +WCE3, WCE3.att

t5 v4 v4

t6 v4 v4

t7 +WCE1 v3

t8 +WCE1

t9 v5 +WCE4

t10 E2.main.n2.C2.n11 +WCE4

t11 v2 v1, E2.main.n2.C2.n11

t12 +WCE1

Table 4.6: The Monitored and Controlled Variables of Transitions in the Running Example

Slicing is performed on the CFG structure (Figure 4.14), but we also show the resulting

50

FOSM side-by-side to show the effects of slicing at each step. From Section 4.4.1 to
Section 4.4.3, elements that are newly added to the sliced model are highlighted in red;
existing elements in the sliced model are shown in black; elements that are not in the sliced
model are colored in grey. For brevity, if an element is in the sliced model, we say that it
is part-of-slice; we say that an element is out-of-slice if it is not in the sliced model.

Figure 4.14: The control flow graph of the model used as the running example

4.4.1 Initiation Stage

This stage adds the initial set of TNodes to the sliced model in ROS, based on what
variables the FOI monitors.

4.4.1.1 Variable Extraction Step

The monitored variables of the FOI are the only slicing criteria used to select the initial
set of transitions in the ROS. These variables are used to identify which actions (i.e.,
transitions) in the ROS can potentially influence the behavior of the FOI.

FormlSlicer includes a Variable Extractor that inputs the CFGs of the FOI and extracts
all of the TNodes’ monitored variables. In the end, it outputs a set of variables that
are relevant to the FOI. We denote this set of variables as VRv and call them relevant
variables. In our running example (Figure 4.13), VRv = [v1].

4.4.1.2 Initial Transition Selection Step

This step adds any transitions (TNodes) in the ROS that (potentially) directly affects
execution of the FOI by acting on one of the FOI’s monitored variables.

51

Initially, the sliced ROS is empty. During the initial transition selection step, Forml-
Slicer adds to the sliced ROS all of the TNodes in the ROS that control any relevant
variable. From Table 4.6, we know that transition t11 controls relevant variable v1, and
thus is added to the sliced model. The monitored variables of t11 (i.e., v2) are added to the
set of relevant variables to ensure proper execution of transition t11. Now, VRv = [v1, v2].

(a) The control flow graph of the ROS of the running example (b) The FOSM representation of the sliced ROS

Figure 4.15: The sliced ROS after performing the initial transition selection step

4.4.2 General Iterative Slicing Stage

This stage adds to the sliced model any TNodes or SNodes that indirectly affects the
execution of the FOI by directly or indirectly affecting the execution of a part-of-slice
transition (TNode) in the ROS. This stage preserves the dependencies identified in the
preprocessing task.

The general iterative slicing stage consists of four steps (Figure 4.16):

DD Step
Add more TNodes that any part-of-slice TNode is (possibly transitively) data de-
pendent on with respect to any relevant variable;

Cross-Hierarchy Transition Step
Add all cross-hierarchy transitions that are still out-of-slice to the sliced model but
replace their labels;

52

Transition-to-State Step
Add SNodes that correspond to the source and destination states of part-of-slice
TNodes;

CD-HD Step
Add more SNodes that any part-of-slice SNodes and TNodes are control dependent
or hierarchy dependent on.

Figure 4.16: Four steps in general iterative slicing stage

Both the DD step and CD-HD step add nodes to the slice iteratively, in order to add
nodes that any part-of-slice nodes are transitively dependent on.

4.4.2.1 DD Step

The DD step ensures that the values of important variables in executions of the sliced
model match their values in corresponding executions of the original model. It does so by
adding to the slice all transitions that act on important variables, and all transitions that
act on variables used in important variables’ assignment expressions, and all transitions
that act on variables used in these variables’ assignment expression, and so on.

The DD step starts with VRv and the partial sliced model with a few TNodes from the
previous step. Then it iterates repeatedly to (potentially) add more TNodes into the sliced
model, and (potentially) enlarge the size of VRv . It terminates when no more changes to
VRv are possible.

53

Algorithm 4.3: DD step in general iterative slicing stage
Input: sliceSet, inputRelVars, DDtable
Output: sliceSet, outputRelVars

1 set outputRelVars := empty set
2 repeat
3 outputRelVars.add(inputRelVars)
4 set tempRV := empty set
5 foreach v in inputRelVars do
6 foreach tnode in sliceSet do
7 if DDtable[(v,tnode)] is null then continue;
8 foreach anotherTNode in DDtable[(v,tnode)] do
9 if sliceSet contains anotherTNode then continue;

10 sliceSet.add(anotherTNode);
11 foreach m in anotherTNode.monitoredVars do
12 if outputRelVars does not contain m then tempRV.add(m);
13 end

14 end

15 end

16 end
17 set inputRelVars := tempRV

18 until inputRelVars is empty

Algorithm 4.3 shows how the DD step works. Its inputs include the inputRelVars

and the sliceSet, which represent VRv and the partial sliced model, respectively. At
the end of each iteration of the repeat loop (Line 2), the outputRelVars contains the
cumulative set of relevant variables that are found so far, whilst the inputRelVars contains
the relevant variables that are newly found in the current iteration and ready to be used in
the next iteration. For each v in the inputRelVars and for each tnode in the sliceSet,
the algorithm consults DDtable to determine if tnode is data dependent on some other
TNodes with respect to v (Line 7); if so, each of those other TNodes, anotherTNode, is
added to the sliced model (Line 10) provided that it is not in the sliced model; in addition,
each of the monitored variables of anotherTNode, m, is added to tempRV provided that m

is not already in outputRelVars (Line 12). At the end of each iteration (Line 18), the
algorithm checks whether any new variables have been added to inputRelVars, because
tempRV may grow from an empty set to a non-empty set in that iteration before being
assigned to inputRelVars; if so, the algorithm continues to search for more TNodes.

Analysis of Algorithm The worst-case time complexity of Algorithm 4.3 is |V | · |T |2
where |V | is the number of variables and |T | is the number of TNodes. The two outer-
most loops (repeat loop at Line 2 and foreach loop at Line 5) account for only a total
complexity of |V | because there is only a finite number of variables; once a variable is
added to inputRelVars in a particular iteration, it can never be added again. The two
foreach loops at Line 6 and at Line 8 account for a complexity of |T |2. The statements

54

within the foreach loop from Line 10 to Line 13 execute a maximum of |T | times in the
overall algorithm, because once a TNode is added to sliceSet (Line 10), it can never be
added again because of the check (Line 9); therefore, it does not increase the overall time
complexity. Also, the statement at Line 9 is constant because we use a boolean array to
flag whether a TNode is part-of-slice.

(a) The control flow graph of the ROS in the running example (b) The FOSM representation of the sliced ROS

Figure 4.17: The sliced ROS after performing the DD step

Reconsider the example in Figure 4.15. We know that VRv = [v1, v2] and t11 is in
the sliced model from the previous step. In Table 4.6, we can see that transition t1 has
a controlled variable v2 and a monitored variable v3. Then, t11 is data dependent on t1
with respect to v2; and thus t1 is added to the sliced model as well. However, the DD step
cannot simply terminate here: because v3 is monitored by t1, this variable is important
to the sliced model. If there is another transition (e.g., t7) that controls v3, then that
transition affects t1 and indirectly affects t11, which indirectly affects the FOI. Therefore,
we add v3 to VRv and continue searching for more TNodes that any part-of-slice TNode
are data dependent on.

At the end of the DD step, the sliced model contains TNodes t1 and t7, as shown in
Figure 4.17.

4.4.2.2 Cross-Hierarchy Transition Step

A cross-hierarchy transition is a transition that crosses a hierarchy boundary, such that its
source state and destination state do not have a common parent state. A cross-hierarchy

55

transition may transit from a source state outside of a composite state to a destination state
inside the composite state (Figure 4.18a); or it may transit from a source state within a
composite state to a destination state that is outside of the composite state (Figure 4.18b);
or it may transit from a source state within one composite state to a destination state that
lies inside another composite state (Figure 4.18c). In the last case, the destination state’s
rank may be higher than, lower than, or the same as the source state’s rank.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 4.18: Examples of cross-hierarchy transitions

The sliced model needs to include these cross-hierarchy transitions in order to correctly
simulate the original model and be as precise as possible. Consider such a composite state
ncps (e.g., n3 or n4 in Figure 4.18) and cross-hierarchy transition tch; note that ncps is
neither the source state nor the destination state of tch, but it is an ancestor state of one
of them.

In the first case, tch crosses into the inside of ncps; if ncps is in the sliced model due to
some other reason (e.g., some other node is control dependent on it) and FormlSlicer does
not include tch in the slice, then ncps will not be entered in the same manner as the original
model, and as a consequence the execution of any transitions from ncps becomes impossible.
This causes the sliced model to become incorrect. For example, in Figure 4.18a, if n3 and
tx are in the slice and the cross-hierarchy transition is not, then tx cannot be executed
correctly in the sliced model after the cross-hierarchy transition.

In the second case, tch exits from the inside of ncps to reach another state ndsch; if ncps

and ndsch are in the sliced model due to some other reason and tch is not, then ndsch will not
be entered in the same manner as the original model, and as a consequence the execution
of any transitions from ndsch becomes impossible. As an example, in Figure 4.18b, if n2,
n3 and tx are in the slice but the cross-hierarchy transition is not, then tx cannot be
executed correctly in the sliced model after the cross-hierarchy transition. Note that the
assumptions in this case is asymmetric to the first case. Although it seems that there
are possible ways to fix a cross-hierarchy transition exiting from the inside of a composite

56

state (e.g., creating a transition from ncps to ndsch), all of them bring more complexities
to the later slicing steps that can change the model structure; since we cannot provide a
solution of which we can prove the correctness, we decide to adopt a conservative approach
by preserving the cross-hierarchy transition and leave this for future investigation.

FormlSlicer performs this step after the DD step, by looking for any out-of-slice cross-
hierarchy transitions in the original model, and for each one adds the transition to the slice
but labels the added transition with only a “true” guard condition. The added transition
is called a “true” transition.

We use a “true” transition because this transition is guaranteed not to control any
relevant variables. The previous step—DD step—has already identified all the transitions
which transitively control the relevant variables, thus any out-of-slice transitions at this
step do not affect the relevant variables. Thus, We can safely ignore their monitored or
controlled values. However, we note that ignoring monitored variables introduces impreci-
sion because transitions in the slice can be executed under conditions that transitions in
the original model will not execute.

4.4.2.3 Transition-to-State Step

So far, all the model elements that have been added to the sliced model are TNodes
(equivalent to transitions). The transition-to-state step adds associated SNodes (equivalent
to states). Specifically, for each part-of-slice transition, this step adds its source state and
destination state to the slice. Figure 4.19 shows the effect of this step on the running
example.

Although this step is simple, it is very important. Firstly, it enriches the fragmented
sliced model so that it moves one step closer to being a well-formed model. Secondly, it
introduces an initial set of SNodes into the sliced model, providing a starting point for the
CD-HD step.

4.4.2.4 CD-HD Step

The CD-HD step adds more SNodes to the sliced model to ensure that (1) any state that
a part-of-slice state is control dependent on is also in the sliced model, and (2) all ancestor
states of a part-of-slice state are also in the sliced model.

Algorithm 4.4 shows how the CD-HD step works. Similar to the algorithm for the
DD step, it is a fixed point computation that terminates only when an iteration makes

57

(a) The Control Flow Graph of the Example FOSM in the
ROS (b) The Example FOSM in the ROS

Figure 4.19: The Example FOSM in the ROS after Transition-to-State Step

no more changes to the sliced model. In each iteration of the repeat loop, there are two
dependency lookups: at Line 5, the algorithm consults HDtable1 and adds an SNode to
changedSliceSet if one of its child SNodes are part-of-slice; at Line 8, the algorithm
consults CDtable and adds any SNodes that control the execution of another part-of-slice
node to changedSliceSet. If there are no more new nodes added to changedSliceSet,
the algorithm terminates (Line 11).

Analysis of Algorithm The worst-case time complexity of Algorithm 4.4 is |S| where
|S| is the number of SNodes. The repeat loop has maximum |S| iterations, because there
is a finite number of SNodes and once an SNode is added to changedSliceSet, it can
never be added again. In addition, because we use a boolean array to flag whether an
SNode is part-of-slice, the checks performed at Line 5 and at Line 8 have a constant time
complexity.

Figure 4.20 shows the sliced ROS of our running example after performing the CD-HD
step. The state n3 has been added to the sliced model because n5 is control dependent
on it.

58

Algorithm 4.4: CD-HD step in general iterative slicing stage
Input: sliceSet, HDtable1, CDtable
Output: SliceSet

1 set changedSliceSet := empty set
2 repeat
3 sliceSet.add(changedSliceSet)
4 set changedSliceSet := empty set
5 if HDtable1[node] is not null AND sliceSet contains node then
6 changedSliceSet.add(HDtable1[node]);
7 end
8 if CDtable[node] is not null AND sliceSet contains node then
9 changedSliceSet.addAll(CDtable[node]);

10 end

11 until changedSliceSet is empty

(a) The control flow graph of the ROS of the running example (b) The FOSM representation of the sliced ROS

Figure 4.20: The sliced ROS after performing the CD-HD step

4.4.3 Model Restructuring Stage

The purpose of this stage is to rewire the sliced model so that its structure may become
different from the original model.

There are two steps in this stage:

State Merging Step that merges two neighbor states if their distinction is not important

59

to slicing criteria or dependences;

State Connecting Step that connects any two part-of-slice states with a missing path
in the sliced model using a “true” transition.

4.4.3.1 State Merging Step

The state merging step merges two states if there is no reason to keep them distinct. Forml-
Slicer uses Korel et al.’s two state merging rules that satisfy the traversability property10

[6] (Figure 4.21):

Rule 1 If all transitions from state n to n′ and also from state n′ to n are out-of-slice,
these two states are merged into one state “n,n′”.

Rule 2 States n and n′ can be merged into one state “n,n′” if:

1. There exists an out-of-slice transition from n to n′,

2. There does not exist a part-of-slice transition from n to n′, and

3. There is no outgoing transition from n to n′′ where n′′ 6= n′.

(a) State merging rule 1 (b) State merging rule 2

Figure 4.21: Illustration of state merging rules

Intuitively, in Rule 1, the distinction between two states is not important if all transi-
tions between the two states are out-of-slice and thus they are not important. In Rule 2,
the machine in state n cannot move anywhere except to n′; therefore, it is safe to merge n
and n′.

FormlSlicer adjusts the two rules in two minor ways:

10See Section 2.3.2 about the traversability property on a slice.

60

1. It will perform state merging only when at least one of the two states is part-of-slice.
Otherwise, it is a waste of effort because in the end the states will not appear in the
sliced model.

2. It will perform state merging only when these two states have the same parent state,
to preserve the model’s state hierarchy.

In our implementation, the main algorithm scans through all SNodes and for each
part-of-slice SNode n that has not yet participated in state merging, it calls a function
MergeNeighborSNodes. This function scans through all n’s outgoing TNodes to look for a
destination SNode n′ that is eligible for state merging with n. If the function finds that
n′ and n satisfy either one of the two rules and have the same parent, it creates a new
state nmerged such that (1) all of n’s and n′’s outgoing TNodes become nmerged’s outgoing
TNodes, (2) all of n’s and n′’s incoming TNodes become nmerged’s incoming TNodes, (3)
all of n’s (or n′’s) child nodes become nmerged’s child nodes if n (or n′) is a composite state,
(4) nmerged becomes the default initial state in the region if n or n′ is the original default
initial state, and (5) nmerged has a state name that combines the names of n and n′. After
state merging, MergeNeighborSNodes continues to look for another successor SNode n′′ that
satisfy the merging criteria with nmerged; if it can find such an SNode, the merging process
continues; otherwise, it stops checking and returns the function. The main algorithm then
continues the SNode scanning to restarts the whole process on another part-of-slice SNode
that has not yet participated in state merging.

The worst-case time complexity is kept within |S|·|T | where |S| is the number of SNodes
and |T | is the number of TNodes. Because there is a finite number of states, the algorithm
can only perform a maximum number of |S| state merging operation. The complexity
of each state merging operation depends on the number of outgoing transitions; here we
over-estimate it to be |T |.

Figure 4.22 shows sliced ROS of our running example after performing the state merging
step. State n11 has only one out-of-slice transition to n10 and therefore these two states
satisfy Rule 2. They are merged together to become a new state “[merged] n10 n11 ”.

4.4.3.2 State Connecting Step

This is the last step of the entire multi-stage model slicing process. The goal of this step
is to add transitions between disconnected states in the sliced model, such that the sliced
model preserves the reachability among states in the original model.

61

(a) The control flow graph of the ROS of the running example (b) The FOSM representation of the sliced ROS

Figure 4.22: The sliced ROS after performing the stage merging step

This step uses the concept of next part-of-slice state: let n be a part-of-slice state, and
n′ be another part-of-slice state that is reachable from n via a path such that all the states
and transitions along this path are missing in the slice and all the states are at the same
rank of state hierarchy, then n′ is called the next part-of-slice state of n through a path
missing in the slice.

There are two sub-steps:

Sub-step 1: Search for New Default Initial States Recall that each sub-machine
has exactly one default initial state (Section 3.3). If the default initial state is out-of-slice,
this sub-step searches for a new default initial state for the sub-machine.

This sub-step benefits greatly from the use of control dependence. Sometimes, a default
initial state has more than one outgoing transitions and when it is out-of-slice, FormlSlicer
may run into the trouble of determining a new default initial state. Consider a default
initial state ni that has two successor states nx and ny (i.e., there is a transition from ni to
nx and another transition from ni to ny). If nx and ny are selected into the sliced model,
but ni is not, then both nx and ny are eligible to be the new default initial state. However,
the use of control dependence prevents this trouble from happening, because ni must be
added to the sliced model during the CD-HD step.

In our implementation, this step scans through all part-of-slice composite states and
for each composite state ncps, checks whether the default initial state of each of ncps’s

62

containing sub-machines is part-of-slice; if not so, it performs a breadth-first search to find
the nearest part-of-slice state and appoint it to be the new default initial state in the sliced
model. As a result of this step, for each sub-machine in the original model, its default
initial state in the sliced model is:

1. Either the same state in the original model,

2. Or the next-part-of-slice state of the original default initial state;

3. Or absent, because the whole sub-machine is out-of-slice.

The worst-case time complexity of this sub-step is |S + T | where |S| is the number of
SNodes and |T | is the number of TNodes. The two previous steps—the cross-hierarchy
transition step and the transition-to-state step—prevent the breadth-first search in this
sub-step from leaving the inside of a composite state, because an out-of-slice path cannot
extend beyond the hierarchy boundary, and thus constrain the time complexity to be linear.

(a) The control flow graph of the ROS of the running example (b) The FOSM representation of the sliced ROS

Figure 4.23: The sliced ROS after the state connecting step

Sub-step 2: Search for Next Part-of-slice State This sub-step performs a depth-
first-search from any part-of-slice state and finds all its next-part-of-slice states. It creates
a “true” transition between the part-of-slice state and each of its next-part-of-slice states
and adds the “true” transition to the sliced ROS.

63

The worst-case time complexity of this sub-step is |S| · |S+T | where |S| is the number
of SNodes and |T | is the number of TNodes. The sub-step can terminate because during
the depth-first-search from an SNode, we use a flag to indicate whether a node has been
visited in current round in order to prevent repeated visits.

Figure 4.23 shows the slicing example after this step. We can see that there is a “true”
transition from n3 to each of its next part-of-slice states, n1 and n5. In fact, the path
between a part-of-slice state and its next part-of-slice state can be as short as one transition.
For example, n2 has an out-of-slice path to n3 and it consists of only one transition, t2 ;
it is replaced by a “true” transition.

4.4.4 More Examples

Figure 4.24: The example model with more contents

From Section 4.4.1 to Section 4.4.3, we have explained the majority of steps in the multi-
stage model slicing process using a running example. However, there are a few corner cases
that are not covered in the running example; so we add two more FOSMs to the ROS of

64

our example—E3 and E4 —and one more transition to the FOI of our example—E1, as
shown in Figure 4.24. Table 4.7 shows the monitored and controlled variables of the added
transitions. Figure 4.25 shows the sliced model with respect to E1.

FOSM Transition Monitored Variables Controlled Variables

E1 imptT2 E4.main.failed

E3 t1 v1 v1

t2 v1 v1

t3 +WCE1

t4 +WCE6

E4 t1 failedAtt E4.main.failed

t2 failedAtt

t3 x

t4 y

t5 +UnknownEvent

cross1 z

cross2 z

Table 4.7: The Monitored and Controlled Variables of More Transitions in the Example

Figure 4.25: The sliced example model w.r.t. E1

Here are the steps in the multi-stage model slicing process that are not covered in our
running example:

65

Cross-Hierarchy Transition Step
This is a step in the general iterative slicing stage. As explained in Section 4.4.2.2, any
cross-hierarchy transitions will be retained in the sliced model. There are two cross-
hierarchy transitions in the FOSM E4 : cross1 transits from the state nx within the
state inactive to the state active; cross2 transits from the state ny within inactive
to the state nk within active. Both cross1 and cross2 are preserved in the sliced
FOSM.

Hierarchy Dependence in CD-HD Step
Section 4.4.2.4 shows the slicing effect of using control dependence only. In Fig-
ure 4.25 we can see the effect of using hierarchy dependence: state inactive is added
to the sliced model because it is a parent state of nx and ny.

State Transition Rule 1
Section 4.4.3.1 presents two state merging rules. In Rule 1, if all transitions from
state n to n′ and also from state n′ to n are out-of-slice, these two states are merged
into one state “n,n′”. This is shown in the FOSM E3. All transitions between n2
and n3 (i.e., t3 and t4) are out-of-slice; therefore n2 and n3 are merged.

Sub-step 1: Search for New Default Initial States
Section 4.4.3.2 presents the state connecting step in the model restructuring stage.
There are two sub-steps. The first sub-step is to search for the new default initial
state for the sub-machine. In the FOSM E4, the state nz and the transition t4 are
not part-of-slice, making the state nk eligible to become the new default initial state
in the region.

4.4.5 Summary

Eventually, FormlSlicer converts the resultant CFGs into an FOSM, as shown in Fig-
ure 4.23b and writes the sliced model to a text file in the same format as Table 4.1. The
resultant ROS and the FOI (which remains unchanged throughout the slicing
process) form the sliced model.

In summary, this is a list of all the steps performed by FormlSlicer:

1. Preprocessing Task

(a) Parse and Convert the input model to CFGs

66

(b) Compute Hierarchy Dependence

(c) Compute Data Dependence

(d) Compute Control Dependence

2. Slicing Task

(a) Initiation Stage

i. Variable Extraction Step

ii. Initial Transition Selection Step

(b) General Iterative Slicing Stage

i. DD Step

ii. Cross-Hierarchy Transition Step

iii. Transition-to-State Step

iv. CD-HD Step

(c) Model Restructuring Stage

i. State Merging Step

ii. State Connecting Step

A. Sub-step 1: Search for New Default Initial States

B. Sub-step 2: Search for Next Part-of-slice State

67

Chapter 5

Correctness of FormlSlicer

This chapter presents a correctness proof for the sliced model produced by the multi-stage
model slicing process.

5.1 Overview

As the sliced model is used to replace the original model for safety property checking, the
sliced model must guarantee that

MROSL+FOI |= ϕ ⇒ MROS+FOI |= ϕ

whereby MROS+FOI is the original model comprising the feature of interest (FOI) and the
rest of the system (ROS) (i.e., all the feature-oriented state machines except the FOI state
machine), MROSL+FOI is the sliced model comprising the FOI and the sliced ROS, and ϕ
is the safety property for the FOI. In other words, if a safety property is maintained in all
execution traces in the sliced model, we can confidently claim that the safety property is
maintained in all execution traces in the original model. This is equivalent to saying that
the execution traces of an FOI in the original model is a subset of the execution
traces of the FOI in the sliced model. It is acceptable if there are some execution
traces in the sliced model that are impossible to occur in the original model1.

In order to show this, we want to prove that any given execution trace in the original
model can be simulated by an execution trace in the sliced model. As an execution trace

1This is the basic correctness property of a sliced model. See Section 2.3 on discussions in the literature about correctness
of SBM slicing.

68

is a sequence of execution steps, this means that for each execution trace in the original
model there exists a simulating trace in the sliced model, such that one step in the original
model’s execution trace can be projected to one step in the sliced model’s execution trace.

The rest of this chapter is organized as follows. Section 5.2 defines terminology that
will be used in the proof; this section introduces some important concepts, such as state
configuration and interpretation. Section 5.3 describes the state transition rule that is
standard to a hierarchical and concurrent state machine. In Section 5.4, we formalize the
steps in the multi-stage model slicing process using the terminology defined in Section 5.2.
Section 5.5 describes the projection of snapshot, transition and execution step from the
original model to the sliced model before showing the inductive proof of simulation.

5.2 Terminology

5.2.1 Variable, State, Region, Transition and Model

This section introduces terminology that will be used in the proof.

Variable

A single variable is denoted as v; a set of variables is usually denoted as V with appropriate
subscripts. We use Venv to refer to the set of environment-controlled variables and Vsys to
refer to the set of system-controlled variables2.

State

A state is denoted as either n or m; sometimes p is used to denote a parent state. A set
of states is denoted as N when it refers to a state configuration; otherwise, it is denoted
as S. Among them, Spseudo is the set of all pseudo states and npseudo denotes one of
them. A composite state p can have many child states n1, . . . , nk, denoted as the set
ChildStates(p) = {n1, . . . , nk}. A state’s parent state is denoted as ParentState(n1) = p.

2See Section 3.1 on definitions of environment-controlled variables and system-controlled variables.

69

Region

We use r to denote an orthogonal region. If r is inside a composite state n, then n =
ParentStateOfRegion(r) and r ∈ ChildRegions(n). A composite state may have multiple
child regions, which are sibling regions:

Definition 1. Two orthogonal regions r and r′ are said to be sibling regions, denoted as
r ‖ r′, when ParentStateOfRegion(r) = ParentStateOfRegion(r′) and r 6= r′.

If region r contains a sub-machine such that n is a state in this sub-machine, then
ParentRegion(n) = r.

Transition

A transition is a progression in a model’s execution from one state (called the transition’s
source state) to another state (called the transition’s destination state).

Definition 2. We write n
t−→ n′ to denote a transition t from state n to state n′. The

source state of t, n, is denoted as ss(t); the destination state of t, n′, is denoted as ds(t).

The source state and destination state of t do not need to be at the same rank of the
machine’s state hierarchy. For simplicity, we do not consider models that have a transition
that enters or exits the boundary of an orthogonal region that has a sibling orthogonal
region3.

Monitored and Controlled Variables The set of monitored variables and controlled
variables of a transition t are denoted as mv(t) and cv(t), respectively.

Model

As introduced in Section 3.3, FormlSlicer’s input model is a big state machine in which
many FOSMs are executing in parallel, each modeling the behavior of a distinct feature.
We use M to denote a model. As M contains k FOSMs, {F1, . . . , Fk}, we write it as:

M =

F1

...

Fk

3See Section 3.3 for more details on this restriction.

70

5.2.2 State Configuration and Interpretation

An FOSM F is a well-formed state machine. It consists of a finite set of states, SF , and a
finite set of orthogonal regions, RF . The states and regions form a containment hierarchy:
each composite state n ∈ SF contains one or more regions; each region contains a sub-
machine. SI

F is the set of default initial states in F and SI
F ⊆ SF . F also consists of a

finite set of transitions, TF , each starting from a source state ss(t) ∈ SF and ending at a
destination state ds(t) ∈ SF . It also contains a set of variables, VF .

Since a model M is a big state machine, it also consists of a finite set of states (SM),
a finite set of regions (RM), a finite set of transitions (TM) and a finite set of variables
(VM). Its set of default initial states is SI

M ⊆ SM . For any FOSM F contained within one
orthogonal region of M , SF ⊂ SM ∧RF ⊂ RM ∧ TF ⊂ TM ∧ VF ⊂ VM .

In this thesis, we can only provide an informal description of the syntax of model M .
Due to the complex nature of our model, it is not a trivial task to precisely define the
semantics of M .

Figure 5.1: The FORML example from Figure 3.1 with its current states highlighted in pink

The set of current states in the execution of a state machine F is its state configura-
tion, denoted by NF (See Section 3.2). The state configuration cannot be any arbitrary
combination of states. Rather, N is the set of current states N ⊆ SF such that if any state
n is in N , then so are all of n’s ancestors; and if any composite state n is in N , then for
each r in ChildRegions(n), one of r’s child states must be in N [32]. Figure 5.1 shows an
example of an FOSM whose current states are colored pink: S2, S3, and S6. The state
configuration is N = {S2, S3, S6}.

We use σ to denote an interpretation which maps variables to their values; thus,
σM(v) represents the current value of the variable v in the model M .

71

5.2.3 Dependences

As introduced in Section 4.3, there are three types of dependences used by FormlSlicer:
hierarchy dependence (HD), data dependence (DD), and control dependence (CD).

Definition 3. We say n ∈ SM is hierarchy dependent on n′ ∈ SM , denoted as n
hd−−−−−→

n′, iff n is a child state of n′’s containing region.

Definition 4. We say t ∈ TM is data dependent on t′ ∈ TM with respect to v, denoted

as t
dd−−−−−→v t′, iff there exists a variable v ∈ mv(t) ∩ cv(t′) and there exists a path

[t1 · · · tk](k ≥ 1) such that t1 = t′, tk = t and tj ∈ TM ∧ v /∈ cv(tj) for all 1 < j < k.

Definition 5. We say n ∈ SM (or t ∈ TM) is control dependent on n′ ∈ SM , denoted

as n
cd−−−−→ n′ (or t

cd−−−−→ n′), iff n′ has at least two outgoing transitions, tk and tl,

1. all maximal paths from tk eventually reach n (or t) and do so before (possibly) reaching
n′;

2. there exists a maximal path from tl on which either (1) n (or t) is not reached, or
(2) n (or t) is reached but only after reaching n′.

Transitivity on hierarchy dependencies is considered: n1
hd

====⇒ nk iff there is a set

of states {n1, . . . , nk} such that ni
hd−−−−−→ ni+1 for 1 ≤ i < k. Transitivity on data and

control dependencies is similarly defined.

5.2.4 Execution Step

Informally, a snapshot is an observable point in a model’s execution [33]; it refers to the
status of a model between execution steps.

Definition 6. A snapshot of a model M is defined as s̄M = (NM , σM) where NM is the
state configuration in the execution of M and σM is the interpretation of variables at that
particular point in the execution.

When the context is clear, we will use (N, σ), or s̄, without subscripts to denote the
snapshot of an original FORML model.

A model starts executing from an initial snapshot, (N I , σI). An execution step changes
the snapshot of a model. Through an execution step, a model effectively exits a subset of

72

current states (related to the source states of the executing transitions) and enters the set
of destination states of the executing transitions; meanwhile, the values of some variables
may be changed.

Definition 7. We write M ` e : (N, σ)⇒ (N ′, σ′) when we refer to an execution step, e,
that occurs in a model, M , such that its snapshot (N, σ) evolves to (N ′, σ′) due to state
transitions and changes to variable values.

Each execution step involves a set of transitions which occur concurrently, denoted as:

e =

t1
...

tk

For any ti, 1 ≤ i ≤ k, we write ti ⊂ e to denote that ti is one of the concurrent transitions
in the execution step e. When the execution step e involves only one transition t (i.e.,
k = 1), we write e = t. This is a non-concurrent execution step.

Figure 5.2: Concurrency in orthogonal regions as an execution step (only blue colored components are relevant in the
execution)

Figure 5.2 illustrates an example of an execution step that consists of three concurrent
transitions tm, tn and tl. In general, we want to describe precisely what combination of
transitions can occur concurrently in a single execution step:

Definition 8. The set of concurrent transitions that are triggered simultaneously in an
execution step e in M ` e : (N, σ)⇒ (N ′, σ′) must satisfy:

73

� There are k transitions {t1, . . . , tk} ⊆ T that are triggered simultaneously, such that
ss(tj) ∈ N and ds(tj) ∈ N ′ for all 1 ≤ j ≤ k;

� ParentRegion(ss(ti)) ‖ ParentRegion(ss(tj)), or there exists another state p such

that ss(ti)
hd

=====⇒ p and ParentRegion(ss(tj)) ‖ ParentRegion(p), or there exists

another state p′ such that ss(tj)
hd

=====⇒ p′ and ParentRegion(p) ‖ ParentRegion(p′),
for any 1 ≤ i ≤ k ∧ 1 ≤ j ≤ k ∧ i 6= j;

5.3 State Transition Rule

The state transition rule defines how the current state configuration N evolves to the next
state configuration N ′ through a transition t. Intuitively, we know that the current state
configuration exits the source state(s) of t and enters the destination state(s) [34]. We use
two accessor functions for a transition t:

exited(t): states exited when ss(t) is exited, including ss(t)’s ancestors and descendants;

entered(t): states entered when ds(t) is entered, including ds(t)’s ancestors and relevant
descendants’ default initial states.

Now, we can define a state transition rule for one transition t as:

N ′ = (N − exited(t)) ∪ entered(t)

where:

� N ⊆ SM and N ′ ⊆ SM are the current and next state configuration of the model.

� exited(t) consists of the following:

– The source state itself (ss(t)).

– The ancestor states of ss(t) up to the least common ancestor4 with ds(t). Let
this set be AncT ill(ss(t), LCA(ss(t), ds(t))).

– The descendant states of ss(t) and any ancestor states of ss(t) being exited.
Let this set be Desc(ss(t) ∪ AncT ill(ss(t), LCA(ss(t), ds(t)))).

4The least common ancestor between two states is the state of highest rank that is an ancestor state of both states.

74

� entered(t) is the set of all states including:

– The destination state itself (ds(t)).

– The ancestor states of ds(t) to the least common ancestor with ss(t), denoted
as AncT ill(ds(t), LCA(ds(t), ss(t))).

– The recursively identified default initial states of ds(t) and its entered descen-
dant states5 (InitDesc(ds(t))).

Thus, a more detailed version of the state transition rule is:

N ′ =(N − ss(t)− AncT ill(ss(t), LCA(ss(t), ds(t)))

−Desc(ss(t) ∪ AncT ill(ss(t), LCA(ss(t), ds(t)))))

∪ ds(t) ∪ AncT ill(ds(t), LCA(ds(t), ss(t))) ∪ InitDesc(ds(t))

The state transition rule can be generalized to an execution step e comprising multiple
concurrent transitions:

N ′ = (N −
⋃
t∈e

exited(t)) ∪
⋃
t∈e

entered(t)

5.4 FormlSlicer’s Multi-Stage Model Slicing Process

Section 4.4 describes in detail FormlSlicer’s multi-stage model slicing algorithm. This
section formalizes some terminology related to the process.

Slice Set This symbol L is used as a subscript to annotate a model component in the
sliced model. The set of states in the sliced model is denoted as SL. The set of transitions in
the sliced model is denoted as TL. A sliced model is denoted as ML. A state configuration
in the sliced model is denoted as NL. An interpretation of variables in the sliced model is
denoted as σL. In addition, an original FOSM F becomes FL after slicing.

5If ds(t) is a composite state, then the default initial state within ds(t) is entered; if the default initial state is also a
composite state, then its default initial child state is also entered; and so on until an entered default initial state is a basic
state.

75

5.4.1 Definitions

The concept of relevant variable is used during the initiation stage and the DD step in
the general iterative slicing stage (Section 4.4.1 and Section 4.4.2.1). Here we define it
formally:

Definition 9. We define v to be a relevant variable, written v ∈ Rv, iff there exists

t ∈ TFOI such that either v ∈ mv(t) or there exists t′ ∈ TL such that t
dd

====⇒ t′ and
v ∈ mv(t′).

In other words, a variable is a relevant variable if it directly or indirectly controls the
execution of the FOI.

The state connecting step in the model restructuring stage uses the concept of the
next part-of-slice state that is reachable from a state n via a path that is missing the slice
(Section 4.4.3.2). Since the state connecting step occurs after the state merging step, it
treats any merged state as a part-of-slice state; thus, in Definition 10 we use n in SL to
represent the situation where state n is in the sliced model or the situation where state n
is represented by a merged state in the slice.

Definition 10. The next part-of-slice state set of state n, denoted as ñpos(n), is the
set of states such that:

� n′ in SL;

� ∃ sequence of transitions [t1 · · · tk] such that ss(t1) = n ∧ ds(tk) = n′ ∧ (∀i.1 ≤ i ≤
k.ti /∈ TL∧ParentState(ss(ti)) = ParentState(ds(ti)))∧(∀j.1 ≤ j < k.ds(tj) /∈ SL).

Note that k can be 1 in Definition 10; in this case, there is exactly one out-of-slice
transition between the state n and its next-part-of-slice state n′.

5.4.2 Multi-Stage Model Slicing Process

We denote TROS to represent
⋃

F∈ROS TF and SROS to represent
⋃

F∈ROS SF .

At each step of the slicing process, certain model elements from the original model are
added to the sliced model.

1. Initiation Stage

76

(a) Variable Extraction Step

Rv =
⋃

t∈TFOI

mv(t)

(b) Initial Transition Selection Step

TL = {t ∈ TROS | ∃v ∈ Rv .v ∈ cv(t)}
Rv ′ = Rv ∪ {mv(t) | t ∈ TL}

2. General Iterative Slicing Stage

(a) DD Step

T ′L = TL ∪ {t ∈ TROS | ∃t′ ∈ TL.t′ 6= t ∧ t′ dd
====⇒ t}

Rv ′ = Rv ∪ {mv(t) | t ∈ T ′L}

(b) Cross-Hierarchy Transition Step

T ′L = TL∪{ss(t)
ttrue−−→ ds(t) | t ∈ TROS∧t /∈ TL∧ParentState(ss(t)) 6= ParentState(ds(t))}

(c) Transition-to-State Step

SL = {n ∈ SROS | ∃t ∈ TL.n = ss(t) ∨ n = ds(t)}

(d) CD-HD Step

S ′L = SL ∪ {n ∈ SROS | ∃n′ ∈ SL.n′ 6= n ∧ n′ hd
====⇒ cd

====⇒ n}

3. Model Restructuring Stage

(a) State Merging Step

i. Rule 1
Consider two states n, n′. Let Tn,n′ to be the set of all transitions t such
that ss(t) = n and ds(t) = n′, and Tn′,n to be the set of all transitions t
such that ss(t) = n′ and ds(t) = n. Let merged(n, n′) be a merged state of
n and n′.

S ′L =(SL − {n, n′ | n, n′ ∈ SROS ∧ n ∈ SL ∧ Tn,n′ 6= ∅ ∧ Tn′,n 6= ∅
∧ (∀t ∈ Tn,n′ ∪ Tn′,n ⇒ t /∈ TL)}) ∪merged(n, n′)

77

ii. Rule 2
Consider two states n, n′. Let Tn,n′ to be the set of all transitions t such
that ss(t) = n and ds(t) = n′. Let Tn be the set of all transitions t such
that ss(t) = n. Let merged(n, n′) be a merged state of n and n′.

S ′L =(SL − {n, n′ | n, n′ ∈ SROS ∧ (n ∈ SL ∨ n′ ∈ SL) ∧ Tn,n′ ∩ TL = ∅
∧ Tn,n′ = Tn}) ∪merged(n, n′)

(b) State Connecting Step

T ′L = TL ∪ {n
ttrue−−→ n′ | n ∈ SROS ∧ n in SL ∧ n′ ∈ ñpos(n)}

5.5 Proof

We perform an inductive proof: we show that the original model’s initial snapshot is pro-
jected to the sliced model’s initial snapshot; and that assuming after any prefix execution
the original model’s snapshot can be projected onto the sliced model’s snapshot, then the
sliced model can simulate the next step in the original model, such that the original model’s
resulting snapshot can be projected onto the sliced model’s resulting snapshot.

Ideally, we want to formally prove the simulation relation between the original model
and the sliced model based on the semantics of the model. As discussed in Section 2.3.1,
Milner [26] proposed the technique to prove simulation between two programs; this tech-
nique requires a precise definition of the program which enables simulation properties to
be stated and proved succinctly. However, we are unable to provide a precise definition of
the semantics of our model due to its complexity. This results in a gap between what we
have proved (Theorem 1) and what we ideally want to prove (i.e., a semantically simulation
relation between M and ML); this will be explained in Subsection 5.5.4.

Our correctness claim is that each step in a given execution trace in the original model
can be projected to a step in some execution trace in the sliced model. To prove this, we
need to:

1. Define projection of snapshots (Section 5.5.1);

2. Prove that if after any prefix execution the original model’s snapshot can be projected
onto the sliced model’s snapshot, then the sliced model can simulate the next step in
the original model, such that the original model’s resulting snapshot can be projected
onto the sliced model’s resulting snapshot;

78

(a) First show this holds for individual transitions (Section 5.5.2) and then show it
holds for a collection of transitions in an execution step (Section 5.5.3).

3. Prove that any initial snapshot in the original model can be projected onto a cor-
responding initial snapshot in the sliced model, so that together with the proof of
claim 2, prove the correctness claim (Section 5.5.4).

5.5.1 Projection of Snapshot in the Original Model to Snapshot
in the Sliced Model

We want to define the projection of the original model’s snapshot onto the sliced model’s
snapshot. From Definition 6 we know that a snapshot consists of a state configuration and
an interpretation of variables, therefore the projection of snapshot include two notions:

1. The state configuration of the original model must map to a corresponding state
configuration in the sliced model;

2. the value of any relevant variable is the same in both the original model and the
sliced model.

For the first notion, we note that the sliced model is not likely to include all of the states
from the original model, thus “corresponding state configurations” cannot mean equivalent
state configurations. Instead, we write that the state configuration N of the original model
corresponds to the state configuration NL in sliced model if the two state configurations
agree with respect to states that are in the slice:

N ∩ SL ⊆ NL

For the second notion, we only consider the interpretations of system-controlled vari-
ables. Because the environment-controlled variables are influenced by the external envi-
ronment (in both the original and the sliced models), any change that the environment
makes to the environment-controlled variables in the original model is equivalent to the
environment-controlled variables in the sliced model. Thus we do not consider them any
further.

Definition 11. We define that a snapshot in the original model s̄ = (N, σ) is projected
to another snapshot in the sliced model, s̄L = (NL, σL), when

79

� N ∩ SL ⊆ NL;

� ∀v ∈ Rv, σ(v) = σL(v).

We write it as P ((NL, σL)) = (N, σ) or P (s̄) = s̄L.

5.5.2 Projection of One Transition in the Original Model to Ep-
silon or One Transition in the Sliced Model

Recall from Section 5.2 that a transition is a progression in a model’s execution; in contrast,
epsilon in a model is a non-progression in a model’s execution (i.e., no transitions executes
and the model stays in its snapshot).

We want to prove that one transition t in the original model can be projected to one
transition tL or epsilon in the sliced model (Figure 5.3c), such that if the snapshot in
the original model is projected to the snapshot in the sliced model before the transition
(Figure 5.3a), then the snapshot in the original model is still projected to the snapshot in
the sliced model after the transition in the original model (Figure 5.3b).

(a) Before transition (b) After transition (c) Projection of a transition

Figure 5.3: Projection of a transition from the original model to the sliced model

This can be proved by case-based analysis. Before this, we want to explain that a
state that is represented as a merged state in the sliced model is not different from any
part-of-slice state that is not merged with others. To explain this, we first prove that a
merged state in the sliced model has the same properties as either of the constituent states
in the original model. This is expressed in Lemma 1.

Lemma 1. Consider a merged state nmerged in the sliced model. Let n, n′ be two constituent
states of nmerged. Then nmerged = (n ∨ n′).

80

Proof. During the state merging step, any two states n and n′ that satisfy either of the state
merging rules are deleted from the sliced model and a new merged state nmerged is added to
the sliced model. According to the state merging step that we describe in Section 4.4.3.1,
nmerged in the sliced model has the same properties as n in the original model:

� Each of all n’s outgoing transitions exits from nmerged;

– Thus, whenever n has an out-of-slice outgoing path that reaches another state
x that is in the slice, x ∈ ñpos(nmerged).

� Each of all n’s incoming transitions enters nmerged;

– Thus, whenever n has an out-of-slice incoming path from another state y,
nmerged ∈ ñpos(y).

� Both nmerged and n have the same rank of state hierarchy;

– Thus, each of all n’s descendant states is also nmerged’s descendant state if it is
part-of-slice,

– Each of all n’s ancestor states is also nmerged’s ancestor state.

� If n is a default initial state, nmerged is also a default initial state of the same sub-
machine.

In conclusion, nmerged ∈ SL preserves all properties of n. The proof for state n′ is symmetric.
�

For a state n that is merged with another state during the state merging step, we cannot
simply denote n ∈ SL because the original n is not in the sliced model. We cannot simply
denote n /∈ SL either; as what Lemma 1 shows, there exists another state nmerged ∈ SL
which preserves all properties of n and n’s behavior is not different from any other part-
of-slice state. Based on this, we can merge the case when n is in the sliced model and the
case when n is not in the sliced model but is represented as a merged state in the sliced
model; we denote n in SL to represent either of the two cases.

We are now ready to show the case-based analysis. There are seven different types
of transition shown in the decision tree in Figure 5.4. For brevity, we denote SP (t) to
represent the condition of ParentState(ss(t)) = ParentState(ds(t)) and denote merged(t)
to represent the condition when ∃nmerged.(nmerged = ss(t) ∨ ds(t)).

81

Case 1

¬SP (t)

Case 2

ds(t) /∈ SL

Case 6

merged(t)

Case 5

¬merged(t)

ds(t) in SL

ss(t) in SL

Case 4

ds(t) in SL

Case 3

ds(t) /∈ SL

ss(t) /∈ SL

SP (t)

t /∈ TL

Case 7

t ∈ TL

Figure 5.4: The decision tree for case-based analysis in projection of transitions

Lemma 2. Consider a transition t in the original model M , M ` t : (N, σ) ⇒ (N ′, σ′).
The projection function of P (t) is as follows:

P (t) =



ttrue if t /∈ TL ∧ ¬SP (t) (1)

ε if ss(t) in SL ∧ ds(t) /∈ SL ∧ t /∈ TL ∧ SP (t) (2)

ε if ss(t) /∈ SL ∧ ds(t) /∈ SL ∧ t /∈ TL ∧ SP (t) (3)

ttrue if ss(t) /∈ SL ∧ ds(t) in SL ∧ t /∈ TL ∧ SP (t) (4)

ttrue if ss(t) in SL ∧ ds(t) in SL ∧ ¬merged(t) ∧ t /∈ TL ∧ SP (t) (5)

ε if ss(t) in SL ∧ ds(t) in SL ∧merged(t) ∧ t /∈ TL ∧ SP (t) (6)

t if t ∈ TL (7)

ML ` tL : (NL, σL)⇒

{
(NL, σL) for the cases of 2, 3 and 6

(N ′L, σ
′
L) for the cases of 1, 4, 5 and 7

82

Given that P ((N, σ)) = (NL, σL). In the former case, P ((N ′, σ′)) = (NL, σL). In the latter
case, P ((N ′, σ′)) = (N ′L, σ

′
L).

Proof.

Given Conditions At the start of the execution step, we know that P ((N, σ)) =
(NL, σL). Thus,

N ∩ SL ⊆ NL (8)

∀v ∈ Rv .σL(v) = σ(v) (9)

The Case of Cross-Hierarchy Transition Case 1

When (t /∈ TL) ∧ (¬SP (t)), the cross-hierarchy transition step in the general iterative
slicing stage will replace t with a “true” transition ttrue ∈ TL. Then because of the transi-
tion-to-state step, we obtain:

ss(t), ds(t) in SL (10)

Because of (10) and the CD-HD step in the general iterative slicing stage:

AncT ill(ss(t), LCA(ss(t), ds(t))) ⊂ SL (11)

AncT ill(ds(t), LCA(ds(t), ss(t))) ⊂ SL (12)

We can also observe that:

Desc(ss(t) ∪ AncT ill(ss(t), LCA(ss(t), ds(t)))) ∩ SL = DescL(ss(t)) (13)

InitDesc(ds(t)) ∩ SL = InitDescL(ds(t)) (14)

Because of condition (10), (11), and (13), we deduce that through t, each state that is
exited in the original model is either exited in the sliced model if it is part-of-slice, or is
out-of-slice (and therefore does not participate in the state transition in the sliced model).

Because of condition (10), (12), and (14), we deduce that through t, each state that is
entered in the original model is either entered in the sliced model if it is part-of-slice, or is
out-of-slice.

Based on these deductions, the subset relation between the sliced and the original
models’ state configurations, shown at (8), is maintained:

N ′ ∩ SL ⊆ N ′L. (15)

83

Next, we want to prove that ∀v ∈ Rv .σ′(v) = σ′L(v). To do so, we first prove by
contradiction that σ(v) = σ′(v),∀v ∈ Rv . Assume that there is a variable v ∈ Rv whose
value is changed by t, so that σ(v) 6= σ′(v). Then v ∈ cv(t). Based on Definition 9
of relevant variables, there must be another transition tx such that v ∈ mv(tx) and tx is
either a transition in the FOI or the sliced ROS. Based on Definition 4 on data dependence,

tx
dd−−−−−→v t. According to the DD step in the general iterative slicing stage, t must be in

the sliced model; this contradicts the Case 1 condition that t /∈ TL. Therefore:

∀v ∈ Rv .σ(v) = σ′(v) (16)

Because ttrue does not change the values of any variables in the sliced model,

σL = σ′L (17)

Given condition (9), (16) and (17), we get

∀v ∈ Rv .σ′L(v) = σL(v) = σ(v) = σ′(v) (18)

Given both (15) and (18), we deduce that P ((N ′, σ′)) = (N ′L, σ
′
L).

The Case of Having Only Source State in the Slice Case 2

When ss(t) in SL ∧ ds(t) /∈ SL ∧ t /∈ TL ∧ SP (t), the state configuration in the sliced
model does not change whilst the state configuration in original model changes from N to
N ′ through transition t. Because of SP (t), we deduce that:

AncT ill(ss(t), LCA(ss(t), ds(t))) = AncT ill(ds(t), LCA(ds(t), ss(t))) = ∅ (19)

Because of ds(t) /∈ SL and the CD-HD step, we deduce that:

InitDesc(ds(t)) ∩ SL = ∅ (20)

Because of (19) and (20), we get:

entered(t) ∩ SL = ∅ (21)

States that are exited are ss(t) and its descendants. Since the state configuration in
the sliced model remains unchanged, the states that are exited in the original model do

84

not affect the subset relation in (8) (because a subset of NL remains as a subset after some
elements are deleted from it). Altogether, we deduce that:

N ′ ∩ SL ⊆ NL. (22)

Next, we want to prove that ∀v ∈ Rv .σ′(v) = σL(v). To do so, we first prove by
contradiction that σ(v) = σ′(v), ∀v ∈ Rv . This proof will be exactly the same as that in
Case 1 because of the DD step. Given condition (9) and condition (16), we can deduce
that

∀v ∈ Rv .σL(v) = σ′(v) (23)

Given both (22) and (23), we can deduce that P ((N ′, σ′)) = (NL, σL).

The Case of Having Nothing in the Slice Case 3

When ss(t) /∈ SL ∧ ds(t) /∈ SL ∧ t /∈ TL ∧ SP (t), the state configuration in the sliced
model does not change whereas the state configuration in the original model changes from
N to N ′ through transition t. This only difference between this case and Case (2) is that
ss(t) is not in the sliced model. In Case 2, we deduce that entered(t) ∩ SL = ∅ because
AncT ill(ds(t), LCA(ds(t), ss(t))) = ∅ and InitDesc(ds(t)) ∩ SL = ∅; we also explained
that states that are exited (which are ss(t) and its related ancestors and descendants) do
not matter. Therefore, the proof about state configuration is exactly the same as Case 2.
Thus:

N ′ ∩ SL ⊆ NL. (24)

Next, we want to prove that ∀v ∈ Rv .σ′(v) = σL(v). To do so, we first prove ∀v ∈
Rv .σ(v) = σ′(v); this proof is exactly the same as Case 1 because of the DD step. Given
condition (9) and condition (16), we deduce that

∀v ∈ Rv .σL(v) = σ′(v) (25)

Given both (24) and (25), we can deduce that P ((N ′, σ′)) = (NL, σL).

The Case of Having Only Destination State in the Slice Case 4

When ss(t) /∈ SL∧ds(t) in SL∧t /∈ TL∧SP (t), we know that there must be another state
n in SL such that ds(t) ∈ ñpos(n). The state connecting step in the model restructuring

stage creates a “true” transition n
ttrue−−→ ds(t). Because all the states along the path

85

[n1 · · ·nk] (n1 = n, nk = ds(t)) are at the same rank of state hierarchy, we know that
from the analysis of Case 2 that the subset relation between the original model’s state
configuration and the sliced model’s state configuration (8) holds in state n2 (after the first
transition along the path [n1 · · ·nk]); and we know from our analysis of Case 3 that the
subset relation of the state configurations between the original model and the sliced model
holds for any state in {n3, . . . , nk−1}. Therefore, condition (8) holds in this case.

Because the states are all at the same rank of state hierarchy, we also know that:

∀(i, j ∈ {1, . . . , k}).(i 6= j)⇒ AncT ill(n, LCA(n, ds(t))) = AncT ill(ni, LCA(ni, nj)) = ∅
(26)

Also, because ds(t) in SL, we get:

InitDesc(ds(t)) ∩ SL = InitDescL(ds(t)) (27)

Through the “true” transition, the state configuration in the sliced model changes such
that ds(t) and InitDescL(ds(t)) are entered and n and Desc(n) are exited. If we add this
knowledge to conditions (26), (27), and (8), we deduce that:

N ′ ∩ SL ⊆ N ′L. (28)

Next, we want to prove that ∀v ∈ Rv .σ′(v) = σ′L(v). To do so, we first prove σ(v) =
σ′(v),∀v ∈ Rv ; this proof is exactly same as that in Case 1 because of the DD step.
Together with condition (9), we deduce that

∀v ∈ Rv .σ′L(v) = σ′(v) (29)

Given both (28) and (29), we deduce that P ((N ′, σ′)) = (N ′L, σ
′
L).

The Case of Having Source and Destination States in the Slice Case 5

When ss(t) in SL ∧ ds(t) in SL ∧ t /∈ TL ∧ SP (t), the state connecting step in the
model restructuring stage adds a “true” transition ttrue to the sliced model connecting
ss(t) and ds(t). Therefore, the state configuration in the sliced model will change via ttrue
in the same manner that the state configuration in the original model changes via t. Given
condition (8), we get:

N ′ ∩ SL ⊆ N ′L. (30)

86

Next, we want to prove that ∀v ∈ Rv .σ′(v) = σ′L(v). To do so, we first prove that
σ(v) = σ′(v), ∀v ∈ Rv ; this proof is exactly the same as that in Case 1 because of the DD
step. Together with condition (9), we deduce that

∀v ∈ Rv .σ′L(v) = σ′(v) (31)

Given both (30) and (31), we deduce that P ((N ′, σ′)) = (N ′L, σ
′
L).

The Case of Having a Merged State in the Slice Case 6

In this case, the sliced model contains a merged state nmerged that represents both ss(t)
and ds(t). Thus, nmerged = (ss(t) ∨ ds(t)) in SL ∧ t /∈ TL ∧ SP (t). We know that:

nmerged = (ss(t) ∨ ds(t)) (32)

nmerged ∈ NL (33)

Because (32) and (33), ds(t) = nmerged ∈ NL (34)

Because of SP (t),

AncT ill(ds(t), LCA(ds(t), ss(t))) = AncT ill(ss(t), LCA(ss(t), ds(t))) = ∅ (35)

Because during the state merging step in the model restructuring stage, the merged
state contains all child regions of the original states if they are composite states. Therefore:

InitDesc(ds(t)) ⊆ NL (36)

Since the state configuration in the sliced model remains unchanged, the states that
are exited in the original model do not affect the subset relation in (8) (because a subset
of NL remains as a subset after some elements are deleted from it).

Because of (34) and (36), the states that are entered in the original model’s state
configuration are pre-existing in the sliced model’s state configuration. Therefore:

N ′ ∩ SL ⊆ NL (37)

Next, we want to prove that ∀v ∈ Rv .σ′(v) = σ′L(v). When t /∈ TL, the proof is the
same as Case 2, Case 3, Case 4, and Case 5. Therefore:

∀v ∈ Rv .σ′(v) = σ′L(v) (38)

Given both (37) and (38), we can deduce that P ((N ′, σ′)) = (N ′L, σ
′
L).

87

The Case when the Transition is Part-of-Slice Case 7

When t ∈ TL, according to the transition-to-state step in the general iterative slicing
stage, ss(t) in SL, ds(t) in SL. The state configuration in the sliced model changes in the
same manner as the state configuration in the original model. Because ss(t) and ds(t)
are part-of-slice, due to CD-HD step we know that AncT ill(ds(t), LCA(ds(t), ss(t))) and
AncT ill(ss(t), LCA(ss(t), ds(t))) are also part-of-slice; we also know that Desc(ss(t)) ∩
SL = DescL(ss(t)) and InitDesc(ds(t)) ∩ SL = InitDescL(ds(t)). In other words, each
state that is exited in the original model is either exited in the sliced model if it is part-
of-slice, or is out-of-slice (and therefore does not participate in the state transition in the
sliced model); and each state that is entered in the original model is either entered in the
sliced model if it is part-of-slice, or is out-of-slice.

Because t ∈ TL, the value of any relevant variable in the sliced model will change in the
same way as the relevant variables in the original model. Therefore, P ((N ′, σ′)) = (N ′L, σ

′
L).

�

5.5.3 Projection of One Execution Step in the Original Model to
One Execution Step in the Sliced Model

We want to prove that if the original model’s snapshot is projected onto the the sliced
model’s snapshot and the original model performs an execution step e whereas the sliced
model executes the corresponding projected step P (e), then the resulting snapshot in the
original model can be projected onto the resulting snapshot of the sliced model.

Lemma 3. Consider an execution step in the original model M ` e : s̄ ⇒ s̄′ and its
projected execution step in the sliced model ML ` P (e) : s̄L ⇒ s̄′L. If P (s̄) = s̄L, then
P (s̄′) = s̄′L.

Proof. As mentioned in Section 5.2.4, each execution step involves a set of transitions
which occur concurrently, denoted as:

e =

t1
...

tk

In Lemma 2, we have proved that for all types of transitions t in the original model,
there exists a transition P (t) = (ε∨ tL) in the sliced model such that if the original model’s

88

snapshot before executing t is projected to the sliced model’s snapshot before executing
P (t), then the original model’s resulting snapshot after t is projected to the sliced model’s
resulting snapshot after P (t).

According to Definition 8, each concurrent transition of an execution step e occurs in
a distinct orthogonal region; they do not interfere with each others’ state configurations.
In addition, the concurrent transitions’ actions in the sliced model either do not interfere
with each other (i.e., making changes to different relevant variables), or interfere with each
other in the same way as that in the original model (i.e., making changes to the same
relevant variable). If two transitions are making changes to the same variable and one is
part-of-slice while the other one is not, that variable is definitely not a relevant variable
because of DD step. Based on these, we conclude that the projection of snapshots of
individual transitions in e can be composed together to show the projection of snapshots
of e:

P (e) = P

(t1
...

tk

)
=

(P (t1)
...

P (tk)

)
= eL (39)

such that P (tj) = (ε ∨ tjL) for all j.1 ≤ j ≤ k.

In other words, an execution step e in the original model (M ` e : s̄ ⇒ s̄′) has
a projected execution step eL in the sliced model (ML ` eL : s̄L ⇒ s̄′L) such that if
P (s̄) = s̄L, then P (s̄′) = s̄′L.

�

5.5.4 Simulation

Theorem 1. Consider an execution trace in the original model as an infinite sequence
{ei | i > 0} and some simulating execution trace in the sliced model as an infinite sequence
{eiL | i > 0}. Also, M ` ei : s̄i−1 ⇒ s̄i and ML ` eiL : s̄(i−1)L ⇒ s̄iL for all i > 0. Then
P (s̄i) = s̄iL for all i ≥ 0.

Proof. This is a proof by induction.

Base Case: The initial snapshot of the original model is s̄0 = (N I , σI) where N I is the
set comprising the root state and all the default initial states of relevant descendant
states of the root state, which are identified recursively; and σI is an interpretation

89

of all variables to their respective default or uninitialized values. Similarly, the initial
snapshot of the sliced model is s̄0L = (N I

L, σ
I
L).

Intuitively, we know that the initial state configuration in the sliced model N I
L will

be:
N I
L = (N I ∩ SL) ∪NnewI

where NnewI is the new default initial states in the sliced model6. Therefore, N I ∩
SL ⊆ N I

L.

In addition, we know that the values of all relevant variables in the sliced model are
at their default or uninitialized values, because no transitions have executed yet, thus
no transitions’ actions have been performed. Therefore, ∀v ∈ Rv .σI(v) = σI

L(v)

Because N I ∩ SL ⊆ N I
L and σI(v) = σI

L(v),∀v ∈ Rv , we can conclude that P (s̄0) =
s̄0L.

Inductive Case: In Lemma 3, we prove that for an execution step in the original model
M ` e : s̄ ⇒ s̄′ and its projected execution step in the sliced model ML ` P (e) :
s̄L ⇒ s̄′L, if P (s̄) = s̄L, then P (s̄′) = s̄′L. Based on Lemma 3, P (s̄0) = s̄0L leads to
P (s̄1) = s̄1L; then it leads to P (s̄2) = s̄2L and so on.

Together with the base case and the inductive case, we know that the original model’s
snapshot is always projected to the sliced model’s snapshot for the whole execution trace
in the original model. �

5.5.4.1 A Gap between the Theorem and the Simulation Relation

As discussed in Section 5.2.2 and the beginning of Section 5.5, the fact that we miss
out a precise semantic definition of our model makes it impossible to formally prove the
simulation relation between models. Thus, in Theorem 1 we only claim what we have
proved using definition of projection of snapshots. We do not claim that this leads to the
conclusion that the sliced model semantically simulates the original model.

In Section 2.3.1, we explain how Milner defines simulation of two programs [26]. Here
we want to formalize the definition of simulation between the original model and the sliced
model in a similar way.

6Recall from the sub-step 1 of the state connecting step in Section 4.4.3.2 that sometimes when the original default initial
state is not in the sliced model, FormlSlicer searches for the next part-of-slice state to be the new default initial state.

90

Definition 12. Let R ⊆ D×DL where D is the domain of all possible snapshots in M and
DL is the domain of all possible snapshots in ML. Let Next() be a next-step function that
takes in current snapshot of M and outputs the next snapshot through an execution step;
similarly, NextL() is a next-step function for ML. Then we say that R is a simulation
of M by ML if ∀ s̄, s̄L, (s̄, s̄L) ∈ R⇒ (Next(s̄), NextL(s̄L)) ∈ R.

Figure 5.5 is a diagram that illustrates Definition 12.

Figure 5.5: The simulation relation between the execution traces of M and ML

In order to prove that ML and M satisfy the simulation relation in Definition 12,
we need to formalize the next-step function Next() semantically. Intuitively, the state
transition rule which we introduce in Section 5.3 is part of the formalism of Next(); but it
is not sufficient, because the state transition rule simply states part of the model’s behavior
syntactically. We need the semantics of the model so that we can precisely formalize its
behavior. The semantics of the model is usually represented as a tuple that consists of
domains of model elements, relations between model elements, functions of the behavior
of the model that involve the model elements, and possibly more. However, we note that
formally defining the semantics of our model is not a trivial task and proving the simulation
between models using the formal semantics is even more complex. We will leave these to
future work.

91

Chapter 6

Empirical Evaluations of FormlSlicer

This chapter demonstrates that FormlSlicer significantly reduces the size of the original
model. FormlSlicer is a tool implemented in Java for the workflow described in Chapter 4.
At the time of writing, it has 2743 lines of code.

6.1 Choosing a Model for Empirical Evaluation

In order to evaluate how well FormlSlicer reduces model sizes, we must use a model that
represents requirements of a feature-rich software system in a real-world domain; otherwise,
it is not convincing to demonstrate the reduction effects of FormlSlicer.

It is not a trivial task to create such a model in FORML with sufficient content. In
Shaker’s thesis (the original work in FORML [28]), there are only two FORML models—
the telephony case study and the automotive case study. The telephony case study involves
communications among different products; that means that a telephone’s behavior is de-
pendent on another telephone’s behavior. FormlSlicer does not consider communications
among different products, and therefore cannot perform slicing on such a model. On the
other hand, the FORML model in the automotive case study, called Autosoft, does not
involve communications among different vehicles; this makes it a better target for our
empirical evaluation.

The Autosoft model consists of many feature modules. Figure 6.1 shows the feature
model of Autosoft. A feature model is a tree that depicts the constraints among features:
a feature is dependent on another feature if the former is a child node of the latter [35].
In FORML, the feature modules that are dependent on others are expressed in terms of

92

Figure 6.1: A feature model that constraints the relationships between features in Autosoft

state-machine fragments. Because FormlSlicer cannot slice on state-machine fragments, we
need to compose the feature modules to form complete state machines, called FOSMs1. In
this empirical study, an FOSM is composed of at most three feature modules, which are
colored in grey in Figure 6.1; the feature modules as leave nodes (e.g., HP) in the feature
model are small state-machine fragments which enhance the conditions of a few transitions
in the base feature modules, and thus including them in the composition does not make
much difference to our statistics and conclusion. As a result, we obtain five FOSMs from
Autosoft :

� Adaptive cruise control (ACC) (Figure A.2), which is composed from features BDS,
CC and headway control (HC);

� Forward collision alert (FCA) (Figure A.3), which is composed from feature BDS,
CC and FCA;

� Lane change alert (LCA) (Figure A.4), which is composed from feature BDS and
LCA;

� Lane centring control (LCC) (Figure A.5), which is composed from feature BDS, CC
and LCC;

� Speed limit control (SLC) (Figure A.6), which is composed from feature BDS, CC
and SLC.

1See Section 3.3 for the description about feature-oriented state machine (FOSM).

93

Because all of them are based on BDS and four of them are based on CC, they contain
artificial redundancies. In fact, all features from Autosoft are related to a vehicle’s motion.
We find that they are a bit repetitive and want to add some variety to the model. In
light of this, we create two additional FOSMs that are related to a vehicle’s internal air
conditions:

� Air quality system (AQS) (Figure A.7);

� Air conditioning (AC) (Figure A.8).

These two features are derived from Dietrich’s mode-based state machines that model
the behavioral requirements of production-grade automotive features [36]. However, al-
though both Dietrich’s state machines and Shaker’s feature modules are modeling the
behaviors of features in an automotive system, they have very different styles. Thus, we
need to modify Dietrich’s state machines before using them in our empirical study. These
include rewriting some transition labels in Dietrich’s state machines to conform to the
FORML syntax (e.g., rewriting “AC DISENGAGE AND Compressor.pressureGradient >
25.5 ” to “AC DISENGAGE+(o) [Compressor.pressureGradient > 25.5]/ ”), removing un-
defined functions (e.g., performDiagnostics() or sensorBroken()), changing in-state actions
to become part of the labels of self-looping, incoming or outgoing transitions (e.g., remov-
ing the texts “entry/waitTime:=0;” written within the Wait Exit state in AQS and adding
an action “a1:waitTime:=0;” to Wait Exit ’s incoming transition), matching the naming
of similar variables (e.g., changing the variable “Vehicle.speed” to “car.speed” to become
consistent with the other five features), and so on.

Altogether, these seven FOSMs form the input model to FormlSlicer, as shown in
Figure A.1.

6.2 Reduction of Model Size

In Section 1.1.2, we mentioned that a useful sliced model must be smaller than the original
model. FormlSlicer is able to achieve this. Table 6.1 shows the statistics about the model
size comparison. Because there are four types of model elements in FORML—state, region,
transition and variable, we use them to measure a model’s size. The original model consists
of 109 states, 125 transitions, 58 regions and 84 variables. As FormlSlicer has multiple
slicing processes2, each considering a different feature as the FOI, we therefore have 7

2See Section 4.1 on the different slicing processes in the slicing task.

94

different sliced models. Each sliced model consists of the original FOI and the ROS with
a reduced size.

Model States Transitions Regions Variables

S# O# S/O S# O# S/O S# O# S/O S# O# S/O

Slice w.r.t. ACC 30 95 31.6% 24 108 22.2% 23 50 46.0% 20 79 25.3%

Slice w.r.t. LCA 17 101 16.8% 5 117 4.27% 13 53 24.5% 5 77 6.5%

Slice w.r.t. FCA 32 92 34.8% 27 107 25.2% 24 48 50.0% 23 81 28.4%

Slice w.r.t. LCC 36 93 38.7% 31 106 29.2% 28 49 57.1% 25 77 32.5%

Slice w.r.t. SLC 31 95 32.6% 26 108 24.1% 23 50 46.0% 22 79 27.8%

Slice w.r.t. AQS 6 90 6.7% 5 99 5.05% 3 51 5.9% 10 69 14.5%

Slice w.r.t. AC 0 97 0% 0 107 0% 0 50 0% 0 62 0%

AVG 23.0% 15.7% 32.8% 19.3%

Table 6.1: Empirical Results of FormlSlicer on the Automotive Case Study

Table Legend

S# Number in the ROS of the Sliced Model

O# Number in the ROS of the Original Model

S/O S# / O#

AVG Average Percentage of S/O

Table 6.1 shows the size comparison of the ROS before and after slicing. We can see
that the sliced ROS is smaller than the original ROS among all the sliced models. On
average, the ROS of a sliced model has 23.0% of states, 15.7% of transitions, 32.8% of
regions and 19.3% of variables of the ROS of the original model. This is a significant
reduction on the model size.

The first observation from Table 6.1 is that not every sliced model has the same degree
of reduction. Some sliced models are much smaller than the others. This is because the FOI
in the sliced model has fewer feature interactions with the other features. For example, the
sliced model with respect to AQS and the sliced model with respect to AC are both very
small. The reason is that these two features are concerned with the air condition within the
vehicle, whilst the other five features are concerned the vehicle’s motion; in other words,
they do not interact with the other five features. Thus, in these two sliced model, only a
small portion of the ROS is retained and all the components related to ACC, LCA, FCA,
LCC and SLC are not present. In addition, because the AQS feature is dependent on
the AC feature (i.e., it constantly monitors whether AC is active or inactive), the sliced
model with respect to AQS contains a small portion of the original AC. Another example
is the LCA feature. It is concerned with the vehicle’s steering direction (e.g., monitoring

95

the variable car.steerDirection), whilst the majority of features in the model (ACC, FCA
and SLC) are concerned with the vehicle’s moving speed and acceleration; thus, the sliced
model with respect to LCA is smaller.

The second observation from Table 6.1 is that the number of regions is not as signifi-
cantly reduced as other model elements in the sliced model. The reason is that FormlSlicer
does not change the state hierarchy structure; sometimes, in order to keep a transition
within an innermost region, FormlSlicer keeps many layers of state hierarchy. Figure A.12
is a good example on this problem. In order to keep a transition LCCt5 within the region
centerCar, all the parent states and regions (e.g., region LCC) are kept in the sliced model
as well. In an ideal sliced model, these parent states and regions should be “sliced away”
so that the transition LCCt5 can be directly placed under the region CCmain. The same
problem affects the reduction of states in the sliced model as well; but because of our
state merging step, the reduction in the number of states is still better than the number
of regions. This will be left for future work.

6.3 Properties of a Useful Sliced Model

In Section 1.1.2, we introduce that a useful sliced model must be correct, small and precise.
We have demonstrated that a sliced model produced by FormlSlicer is correct (Chapter 5)
and smaller than the original model (Section 6.2). However, in this thesis we do not
measure precision of a sliced model in absolute terms. In some literature, the property of
precision can be defined in a stronger sense that not only must the sliced model simulate
the original model, but also the original model must simulate all observable actions of the
sliced model3. FormlSlicer does not enforce this; but it has several steps that attempt to
preserve the more useful portion of the original model in order to make the sliced model
as precise as possible. For example, if a state has multiple outgoing transitions and one of
the transitions leads to another state in the sliced model, then this state is preserved in
the sliced model due to control dependence. Another example is that we use Korel et al.’s
state merging rules that have been proved to preserve the precision of the original model
[6]; in this way, we prevent producing a slice that is over-minimized due to state merging.

3See Section 2.3.2 for more details on how researchers define the correctness property of a model slicer.

96

Chapter 7

Conclusion

This chapter presents a summary of this thesis and its contributions, as well as possible
directions for future work.

7.1 Summary of Thesis and Contributions

This thesis mainly consists of four parts:

Literature Survey on SBM Slicing
Chapter 2 presents the history, the challenges, the various existing slicing techniques,
the various dependences’ definitions and discussions on slicing correctness that are
related to SBM slicing.

A Detailed Workflow
Chapter 3 and Chapter 4 propose a workflow of slicing on a feature-rich state-machine
model. The workflow includes two tasks: a preprocessing task and a slicing task.
The preprocessing task converts a feature-oriented state-machine model, expressed in
FORML semantics, to a simpler intermediate representation—CFG—and computes
three types of dependences within CFG. The slicing task forks off multiple processes,
where each works on a different feature as the FOI and undergoes a multi-stage model
slicing procedure.

Correctness
Chapter 5 presents the proof to show the correctness of the sliced model. It proves

97

that an execution trace in the original model can be simulated by at least one exe-
cution trace in the sliced model.

The Tool
The slicing tool—FormlSlicer—implements the proposed workflow. Chapter 6 presents
empirical evaluations on this tool to show that the proposed slicing workflow can gen-
erate sliced models that are smaller than the original model.

In a nutshell, this thesis proposes a unique workflow on a hierarchical and concurrent
state-machine model for requirements of feature-rich software systems, by coalescing var-
ious slicing techniques from the literature, and then evaluates the workflow theoretically
and empirically.

7.1.1 Contributions

This thesis has the following contributions.

First, our slicing approach works on a state-machine model that is (1) hierarchical
(including cross-hierarchy transitions), (2) concurrent, and (3) non-terminating. As ex-
plained in Section 2.2.2, these complex modeling constructs pose challenges and the exist-
ing techniques in literature only overcome these challenges partially. FormlSlicer tackles
all challenges by adopting the following approaches:

� The challenge of having hierarchical construct is solved by converting the model to a
group of control flow graphs and using hierarchy dependence to connect different lay-
ers of hierarchy. Therefore, the difficult task of manipulating a hierarchical structure
is decomposed to many simple tasks of manipulating a flat graph structure.

� The challenge of having concurrent construct is also solved by using hierarchy de-
pendence. Each parent state is mapped to multiple child states; each is the default
initial state of a sub-machine inside the parent state.

� The challenge of having cross-hierarchy transitions is solved by preserving these tran-
sitions in the cross-hierarchy transition step in general iterative slicing stage.

� The challenge of a non-terminating state machine is solved by using the non-termination
sensitive control dependence (NTSCD).

98

Second, we contribute a novel slicing algorithm that employs dependences to construct
a model slice from the relevant model elements and then enriches the model slice until
its states preserve the reachability properties of the original model. As explained in Sec-
tion 2.2.2, due to the difficulty of maintaining the well-formedness property of a model
slice, many model slicing approaches are very conservative about removing transitions or
states that can break the graph connectivity; thus, the reduction in their model slicers can
be minor. In our approach, we use the state connecting step to avoid this problem and
thus we can afford to be more aggressive in reducing model size.

Third, we coalesce different existing slicing techniques to form a unique workflow. We
directly borrow the following concepts:

� Korel et al.’s state merging rules [6],

� Korel et al.’s definition in data dependence [6],

� Wang et al.’s definition in refinement control dependence [20] (equivalent to the
“HDtable2” in this thesis),

� Ranganath et al.’s definition in NTSCD [21];

We adapt the following for our own use:

� Ojala’s idea of converting a state-machine model to CFGs [18],

� Ranganath et al.’s computation algorithm of NTSCD [21],

� and Kamischke et al.’s use of a model enrichment step in the slicing algorithm [19].

Fourth, our approach employs a novel decomposition of dependence analyses and slicing
tasks that enables parallel construction of multiple model slices. It is advantageous for
any slicing works that aim to produce n slices from an original model with respect to n
components within the original model.

Fifth, we make automation of slicing easier by simplifying a complex transition label
in FORML. We tackle the challenges of a complex transition label in the following ways:

� The “inState()” expression in guard condition becomes a subtype of data dependence
(DD);

99

� The event generation and receiving in the WCE and WCA are transformed to two
groups of variables—monitored variables and controlled variables.

Sixth, we prove (by simulation) that all behaviors in the original model are preserved in
the sliced model. To our knowledge, this is the first proof of correctness of a construction-
based slicer (vs. a slicer that forms a model slice by simply removing model elements from
the original model).

Lastly, we implement a tool to show that this workflow is feasible and it can produce
model slices that are significantly smaller than their original model.

7.2 Future Work

The following are possible directions for extending the work presented in this thesis.

7.2.1 Extending to Slicing on Software-Product-Line Model

We plan to lift our approach so that it operates on software-product-line models. At
present, the input to the slicer is a model of a product comprising multiple features. Instead,
the composition of a collection of features could be a product line representing a set of
products that are differentiated by which features are present and which are absent. One
idea is to generalize data and control dependencies to be conditional on the presence of the
features that execute data or control actions. Exploring this idea is left for future work.

7.2.2 Bridging the Gap between FormlSlicer’s Input Model and
FORML model

We mentioned in Section 3.3 that FormlSlicer does not perform slicing on the world model.
Because the theme of this thesis is about slicing on SBMs, we do not consider slicing on
the world model, which is based on UML class-diagram constructs. However, we believe
that slicing on the world model is just an implementation work. We can use the set of
relevant variables in FormlSlicer’s slicing output and match them against the class fields in
the world model. If a class field is matched, it is preserved in the sliced model; otherwise
it is sliced away. If all fields in a class are sliced away, the class is also sliced away. This
can be done either manually, or by writing a small program to automate it.

100

FormlSlicer’s input model also have some other differences with FORML model. For
example, FormlSlicer poses a restriction on the input model that no state within an or-
thogonal region that has a sibling orthogonal region can have an outgoing transition that
exits the region. In future work, this restriction can be relaxed. Another example is that
FORML has some semantics that are specifically used for communications among different
products; but FormlSlicer does not consider that. As explained in Section 6.1, this is the
reason why the telephony case study in Shaker’s thesis [28] is not suitable for our empirical
evaluations. This will be left for future work.

In addition, FormlSlicer only deals with a model of all features currently making up a
software system. If new features are added to the software system, then slicing needs to
be performed from scratch. To enable slicing on an evolving software system, perhaps we
can design a mechanism to save past slicing results.

We also plan to extend our dependence analyses and slicing algorithms to accommodate
feature-oriented models in which some features are machine fragments rather than stand-
alone parallel machines. In such models, a fragment will necessarily depend on the feature
machine that it extends, but it may be possible to slice away other (irrelevant) fragments
of the same base machine.

7.2.3 Improving the Workflow

Improving the Dependences

The computation algorithm of CD can be further optimized. Algorithm 4.2 re-starts
the computation of paths representations for each different branching node. However,
by traversing the path from a branching node ni to a reachable node nj, the algorithm
may have encountered another branching node nx along the path and have collected par-
tial information about the dependence relationship between nj and nx; if we can find some
ways to reuse this information, we may not need to start from scratch in computing the
paths representations from nx to nj in another iteration. This will be left for future work.

Improving the Multi-Stage Model Slicing Process

As mentioned in Section 6.2, the number of regions is not as significantly reduced as other
model elements in the sliced model, because our model slicing process does not distort
the state hierarchy of the original model at all. However, in some special cases (e.g.,
Figure A.12), it is preferable to merge several layers of state hierarchy together so that

101

the sliced model looks more neat. In future work, we can study on how to merge different
layers of state hierarchy of a model without making the sliced model incorrect.

Another issue is that currently we preserve all cross-hierarchy transitions in the sliced
model1. Taking away any cross-hierarchy transitions while maintaining the correctness of
the sliced model will be a non-trivial task. We can conduct another independent project to
specifically study on slicing a hierarchical state machine with cross-hierarchy transitions.

7.2.4 Customization of Slicing in FormlSlicer

The FormlSlicer tool can be extended by adding more customization options for the users.

Only Interested in a Few Features but not All Although the use of concurrent
slicing processes is efficient in producing multiple sliced models with respect to different
features, this is an overkill to someone who just want to focus on one feature. FormlSlicer
can be extended to allow users to specify which features they want to focus and then only
forks off a few slicing processes.

Adjusting Degree of Reduction and Precision A more advanced FormlSlicer can
allow users to customize the degree of reduction and precision in the sliced models, de-
pending on the users’ needs. More aggressive state merging rules can be implemented
in FormlSlicer; they all aim to reduce the size of the sliced model further. Users can be
allowed to select which state merging rules to use during the multi-stage model slicing
process. The more state merging rules they choose to use, the smaller and (potentially)
more imprecise the sliced models will become. In this way, we can leave the decision over
trade-off between degree of reduction and precision to users.

7.2.5 Making the Correctness Proof More Rigorous

Currently, we do not provide a precise definition of the semantics of the model due to its
complexity. The semantics of the model is usually represented as a tuple that consists of
domains of model elements, relations between model elements, functions of the behavior

1We determine that due to the complexities brought by any cross-hierarchy transitions in the FOSM, these transitions
need to be preserved in order for the sliced model to correctly simulate the original model. See Section 4.4.2.2 for a more
detailed explanation.

102

of the model that involve the model elements, and possibly more. As explained in Sub-
section 5.5.4.1, missing such a precise definition results in a gap between the theorem we
have proved and the simulation relation that we want to prove. A possible future work can
make the correctness proof more rigorous by defining the concepts formally. This requires
a non-trivial amount of efforts.

103

Appendix A

Automotive: A Slicing Example

The original model, as shown in Figure A.1, consists of seven FOSMs—ACC (Figure A.2),
FCA (Figure A.3), LCA (Figure A.4), LCC (Figure A.5), SLC (Figure A.6), AQS (Fig-
ure A.7) and AC (Figure A.8).

Figure A.9 shows the sliced automotive model with respect to the feature of LCA. It
consists of the original LCA (because it is the FOI) and a sliced ROS. The sliced FOSMs
in the ROS are shown in Figure A.10, Figure A.11, Figure A.12 and Figure A.13. The
FOSMs of feature AQS and AC are not present in the sliced model.

Figure A.14 shows the sliced automotive model with respect to the feature of ACC. It
consists of the original ACC (because it is the FOI) and a sliced ROS. The sliced FOSMs
in the ROS are shown in Figure A.15, Figure A.16, Figure A.17 and Figure A.18. The
FOSMs of feature AQS and AC are not present in the sliced model.

104

Figure A.1: The original automotive model

105

Figure A.2: Original ACC feature of the automotive model

106

Figure A.3: Original FCA feature of the automotive model

107

Figure A.4: Original LCA feature of the automotive model

108

Figure A.5: Original LCC feature of the automotive model

109

Figure A.6: Original SLC feature of the automotive model

110

Figure A.7: Original AQS feature of the automotive model

111

Figure A.8: Original AC feature of the automotive model

112

Figure A.9: The sliced model w.r.t. LCA

Figure A.10: Sliced ACC feature w.r.t. LCA

113

Figure A.11: Sliced FCA feature w.r.t. LCA

Figure A.12: Sliced LCC feature w.r.t. LCA

Figure A.13: Sliced LCC feature w.r.t. LCA

114

Figure A.14: The Sliced Model w.r.t. ACC

115

Figure A.15: Sliced FCA feature w.r.t. ACC

Figure A.16: Sliced LCA feature w.r.t. ACC

116

Figure A.17: Sliced LCC feature w.r.t. ACC

117

Figure A.18: Sliced SLC feature w.r.t. ACC

118

Appendix B

Supporting Functions for Control
Dependency Algorithm

This chapter lists all the supporting functions for Algorithm 4.2. Their respective function
goals have been listed in Table 4.5.

Algorithm B.1: HasNonEmptyPathsFromNode1
Function HasNonEmptyPathsFromNode1 (branchIndex) :

if p[branchIndex]==“!” OR p[branchIndex] is null then return false
else return true

end

Algorithm B.2: IsControlDependentOn1
Function IsControlDependentOn1 (index) :

if p[index]==“!” OR p[index] is null then return false
set paths := array.split(p[index], “;”);
foreach path in paths do

if path is single-length then return true
end
return false

end

119

Algorithm B.3: ReducePaths
Function ReducePaths (index) :

if p[index] is null then return;
set paths := array.split(p[index], “;”);
if paths.length ≤ 1 then return;
SortPaths (paths);
set start := paths.lastIndex;
set i : = start - 1;
set targetIndices := ∅;
ADD the target index of the last subpath of paths[start] into targetIndices
while true do

if paths[i] and paths[start] are the same except the last target index then
ADD the last target index of paths[i] to targetIndices Decrement i;

else
if targetIndices.size > 1 then

set srcIndex := source index of last subpath of paths[start];
set n := allNodes[srcIndex];
if n.outgoingNodes.size == targetIndices.size then

// reduction occurs

for j from i+2 to start do
set paths[j] := null;

end
Delete the last subpath in paths[i+1]

end

end
if i == -1 then break;
reset targetIndices := ∅;
reset start := index of the last unprocessed path in paths
ADD the target index of the last subpath of paths[start] to targetIndices;
reset i := start-1;

end

end
p[index] = paths.join(“;”);
return

end

120

Algorithm B.4: UnionPath
Function UnionPath (prevIdx, nextIdx) :

if p[nextIdx] == “!” then return false;;
if p[nextIdx] is null OR NOT HasNonEmptyPathsFromNode1 (prevIdx) then

p[nextIdx] := p[prevIdx];
return false;

end
set prevIndexSet := array.split(p[prevIdx], “;”);
set nextIndexSet := array.split(p[nextIdx], “;”);
set changed := false;
foreach prevP in prevIndexSet do

set duplicate := false;
foreach nextP in nextIndexSet do

if prevP starts with nextP then
// If next path is prefix of previous path, it indicates a cycle

reset duplicate := true;
reset changed := true;
break

end

end
if duplicate == false then APPEND prevP to p[nextIdx];;

end
return changed

end

Algorithm B.5: ExtendPath
Function ExtendPath (srcIndex, branchIndex) :

if p[srcIndex] == null then set p[branchIndex]:=“srcIndex:branchIndex”;
if p[srcIndex] == “!” then set p[branchIndex]:=“!”;
set srcIndexArr := array.split(p[srcIndex], “;”)
foreach i from 1 to srcIndexArr.size do

APPEND “srcIndex:branchIndex” to srcIndexArr[i];
end
set p[branchIndex]:=srcIndexList.join(“;”)

end

121

References

[1] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, pages 439–449. IEEE Press, 1981.

[2] Frank Tip. A survey of program slicing techniques. Journal of programming languages,
3(3):121–189, 1995.

[3] Kelly Androutsopoulos, David Clark, Mark Harman, Jens Krinke, and Laurence Tratt.
State-based model slicing: A survey. ACM Computing Surveys (CSUR), 45(4):53,
2013.

[4] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

[5] Torben Amtoft, Kelly Androutsopoulos, and David Clark. Correctness of slicing finite
state machines. RN, 13:22, 2013.

[6] Bogdan Korel, Inderdeep Singh, Luay Tahat, and Boris Vaysburg. Slicing of state-
based models. In Software Maintenance, 2003. ICSM 2003. Proceedings. International
Conference on, pages 34–43. IEEE, 2003.

[7] C Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L Wolf. A conceptual
basis for feature engineering. Journal of Systems and Software, 49(1):3–15, 1999.

[8] Muffy Calder, Mario Kolberg, Evan H Magill, and Stephan Reiff-Marganiec. Feature
interaction: a critical review and considered forecast. Computer Networks, 41(1):115–
141, 2003.

[9] Cecylia Bocovich. A feature interaction resolution scheme based on controlled phe-
nomena. Master’s thesis, University of Waterloo, 2014.

122

[10] Grady Booch. Object Oriented Analysis & Design with Application. Pearson Education
India, 2006.

[11] Pourya Shaker, Joanne M Atlee, and Shige Wang. A feature-oriented requirements
modelling language. In Requirements Engineering Conference (RE), 2012 20th IEEE
International, pages 151–160. IEEE, 2012.

[12] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing
Letters, 29(3):155–163, 1988.

[13] Sébastien Labbé and Jean-Pierre Gallois. Slicing communicating automata specifi-
cations: polynomial algorithms for model reduction. Formal Aspects of Computing,
20(6):563–595, 2008.

[14] Frances E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler
Optimization, pages 1–19, New York, NY, USA, 1970. ACM.

[15] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 9(3):319–349, 1987.

[16] David Harel. Statecharts: A visual formalism for complex systems. Science of com-
puter programming, 8(3):231–274, 1987.

[17] George H Mealy. A method for synthesizing sequential circuits. Bell System Technical
Journal, 34(5):1045–1079, 1955.

[18] Vesa Ojala. A slicer for UML state machines. Helsinki University of Technology, 2007.

[19] Jochen Kamischke, Malte Lochau, and Hauke Baller. Conditioned model slicing of
feature-annotated state machines. In Proceedings of the 4th International Workshop
on Feature-Oriented Software Development, pages 9–16. ACM, 2012.

[20] Wang Ji, Dong Wei, and Qi Zhi-Chang. Slicing hierarchical automata for model
checking uml statecharts. In Formal Methods and Software Engineering, pages 435–
446. Springer, 2002.

[21] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, and
Matthew B Dwyer. A new foundation for control dependence and slicing for mod-
ern program structures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(5):27, 2007.

123

[22] Kelly Androutsopoulos, David Clark, Mark Harman, Zheng Li, and Laurence Tratt.
Control dependence for extended finite state machines. In Fundamental Approaches
to Software Engineering, pages 216–230. Springer, 2009.

[23] Randy Allen and Ken Kennedy. Optimizing compilers for modern architectures: a
dependence-based approach, volume 289. Morgan Kaufmann San Francisco, 2002.

[24] Andy Podgurski and Lori A. Clarke. A formal model of program dependences and its
implications for software testing, debugging, and maintenance. Software Engineering,
IEEE Transactions on, 16(9):965–979, 1990.

[25] Kelly Androutsopoulos, Nicolas Gold, Mark Harman, Zheng Li, and Laurence Tratt.
A theoretical and empirical study of efsm dependence. In Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on, pages 287–296. IEEE, 2009.

[26] Robin Milner. An algebraic definition of simulation between programs. Citeseer, 1971.

[27] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. Verifying safety
properties of a powerpc- microprocessor using symbolic model checking without bdds.
In Computer Aided Verification, pages 60–71. Springer, 1999.

[28] Pourya Shaker. A feature-oriented modelling language and a feature-interaction tax-
onomy for product-line requirements. PhD thesis, University of Waterloo, 2013.

[29] Joanne M Atlee, Sandy Beidu, Nancy A Day, Fathiyeh Faghih, and Pourya Shaker.
Recommendations for improving the usability of formal methods for product lines. In
Formal Methods in Software Engineering (FormaliSE), 2013 1st FME Workshop on,
pages 43–49. IEEE, 2013.

[30] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In Computer Aided Verification, pages
359–364. Springer, 2002.

[31] Cecylia Bocovich and Joanne M Atlee. Variable-specific resolutions for feature in-
teractions. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 553–563. ACM, 2014.

[32] Alexander Knapp and Stephan Merz. Model checking and code generation for uml
state machines and collaborations. Proc. 5th Wsh. Tools for System Design and Ver-
ification, pages 59–64, 2002.

124

[33] Jianwei Niu, Joanne M Atlee, and Nancy A Day. Template semantics for model-based
notations. Software Engineering, IEEE Transactions on, 29(10):866–882, 2003.

[34] Dániel Varró. A formal semantics of uml statecharts by model transition systems. In
Graph Transformation, pages 378–392. Springer, 2002.

[35] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical report,
DTIC Document, 1990.

[36] David Dietrich. A mode-based pattern for feature requirements, and a generic feature
interface. Master’s thesis, University of Waterloo, 2013.

[37] Sergiy Kolesnikov, Alexander von Rhein, Claus Hunsen, and Sven Apel. A compari-
son of product-based, feature-based, and family-based type checking. In Proceedings
of the 12th International Conference on Generative Programming: Concepts &
Experiences, GPCE ’13, pages 115–124, New York, NY, USA, 2013. ACM.

[38] David Dietrich and Joanne M Atlee. A mode-based pattern for feature requirements,
and a generic feature interface. In Requirements Engineering Conference (RE), 2013
21st IEEE International, pages 82–91. IEEE, 2013.

[39] Malte Lochau, Sebastian Oster, Ursula Goltz, and Andy Schürr. Model-based pairwise
testing for feature interaction coverage in software product line engineering. Software
Quality Journal, 20(3-4):567–604, 2012.

[40] Paul Clements and Linda Northrop. Software product lines: practices and patterns.
Addison-Wesley, 2002.

125

	List of Tables
	List of Figures
	List of Algorithms
	Glossary
	Introduction
	Model Slicing
	What Is Model Slicing
	Properties of a Useful Sliced Model

	Feature-oriented Model Slicing
	Feature Interactions in Feature-rich System Requirements
	Model Slicing used in Feature-oriented Requirements in Software Systems

	Thesis Overview
	Thesis Statement

	Chapter Summary

	Related Work
	Program Slicing
	Dependence-based Slicing

	Slicing on State-based Models (SBMs)
	What Is an SBM
	Challenges of SBM Slicing
	Relevant SBM Slicing Techniques
	Dependences in SBM Slicing

	Correctness of Slices
	Simulation in Programs
	Simulation in SBMs

	Cone of Influence Reduction

	Preliminaries
	Terminology
	What Is FORML
	Scope of FormlSlicer

	FormlSlicer
	Overview of FormlSlicer's Workflow
	Preprocessing: Model Parsing and Conversion from FORML to CFGs
	Transformation of Transition Labels
	Control Flow Graph (CFG)

	Preprocessing: Dependence Analyses
	Hierarchy Dependence
	Data Dependence
	Control Dependence
	Summary

	Multi-Stage Model Slicing Process
	Initiation Stage
	General Iterative Slicing Stage
	Model Restructuring Stage
	More Examples
	Summary

	Correctness of FormlSlicer
	Overview
	Terminology
	Variable, State, Region, Transition and Model
	State Configuration and Interpretation
	Dependences
	Execution Step

	State Transition Rule
	FormlSlicer's Multi-Stage Model Slicing Process
	Definitions
	Multi-Stage Model Slicing Process

	Proof
	Projection of Snapshot in the Original Model to Snapshot in the Sliced Model
	Projection of One Transition in the Original Model to Epsilon or One Transition in the Sliced Model
	Projection of One Execution Step in the Original Model to One Execution Step in the Sliced Model
	Simulation

	Empirical Evaluations of FormlSlicer
	Choosing a Model for Empirical Evaluation
	Reduction of Model Size
	Properties of a Useful Sliced Model

	Conclusion
	Summary of Thesis and Contributions
	Contributions

	Future Work
	Extending to Slicing on Software-Product-Line Model
	Bridging the Gap between FormlSlicer's Input Model and FORML model
	Improving the Workflow
	Customization of Slicing in FormlSlicer
	Making the Correctness Proof More Rigorous

	Appendix Automotive: A Slicing Example
	Appendix Supporting Functions for Control Dependency Algorithm
	References

