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Abstract 

Exceptionally high aspect ratio, smooth hydrophobic graphitic walls, and nanoscale 

inner diameters of carbon nanotubes (CNTs) cause the unique phenomenon of efficient 

transport of water and gas through these nanoscale molecular tubes. Molecular transport 

through the cores of CNTs is of significant interest from both fundamental and application 

aspects. The application of CNTs as nanofluidic channels is envisioned in many areas, 

ranging from desalination, carbon capture, drug delivery, DNA sequencing and translocation, 

protein separation, single molecule sensing, to nanofluidic transistors and diodes. A 

fundamental understanding of the mechanisms governing molecular transport through CNT 

pores is much needed and, unfortunately, still lacking, which demands further research. In 

this work, CNT-based smart membranes and arrayed devices are explored both as a versatile 

platform for fundamental studies and as exemplary devices for biosensing applications. 

         In Chapter 3, a study of ion transport across smart, DNA-functionalized CNT 

membranes is reported. The diffusive transport rates of ferricyanide ions were monitored 

through an array of vertically aligned CNTs (VA-CNTs) functionalized with amine-modified 

single-stranded DNA (ssDNA) (Cy3-T15-NH2) probes. Reversible closing of CNT pores 

was achieved by the addition of complementary DNA (A15), gating ion transport. Our 

analysis suggests that pore blocking occurs due to steric hindrance at the CNT pore 

entrances.    
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Chapter 4 focuses on the design and fabrication of arrayed CNT devices. Each device 

consists of a large number (roughly 4x105) of aligned multiwalled CNTs span a barrier 

separating two fluid reservoirs, enabling direct electrical chronoamperometric measurement 

of ion transport through the nanotubes and analyzing ion transport properties. Here we intend 

to demonstrate the theoretically predicted ultrahigh ion flow rate through multiplexed CNT 

devices that are directly electrically addressable. Compared with traditional nanopore 

devices, ours feature distinct advantages. The CNTs have a remarkably high aspect ratio and 

they can confine an entire molecule and also extend the duration of transport, which is likely 

to result in new translocation characteristics. Our devices have a planar design, which enable 

simultaneous optical and electrical probing.  

        Results presented in this work show the potential of CNT nanofluidic devices for the 

fundamental studies of the nanoconfinement effects on ion transport. The developed 

synthesis and fabrication methods are envisioned to lead to novel biosensors based on 

nanofluidics, which can find a broad spectrum of significant applications such as disease 

diagnostics, food safety monitoring, and environmental pollution detection. 
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Chapter 1: Introduction and Thesis Objectives 

1.1 Introduction to Carbon Nanotubes and their Applications 

Nanotechnology is having a profound impact on our society. The global earnings of 

businesses incorporating nanotechnology hit $254 billion in 20091. The invention of new 

functional nanomaterials and nanodevices has greatly improved our lives. Nanotechnology 

involves the synthesis and fabrication of material at sizes of less than 100 nm, and improves 

production using more efficient and sustainable ways. For instance, Carbon nanotube (CNT) 

is one of the greatest discoveries2. CNTs are an allotrope of carbon, in addition to diamond 

and graphite, and have a range of electrical, thermal, and structural properties that can change 

based on the physical design of the nanotube. 

Carbon structures can be classified based on the nature of their carbon-carbon bonds. 

In diamond, chemical bonding occurs as a result of sp3 hybridization in a tetrahedral lattice 

pattern. In graphite, carbon atoms sp2-hybridize to form a hexagonal lattice in two-

dimensional layers named graphene, which are arranged on top of each other and held by 

weak van der Waals forces. Carbon in sp2 hybridization can form other exciting structures, 

like the cylindrical form seen in CNTs. In 1991, Ijima first discovered graphitic shells with 

an inter-layer separation of ~0.34 nm, diameters of ~10 nm, and a high length-to-diameter 

ratio. These are now known as multi-walled carbon nanotubes (MWNTs)1. In 1993, Ijima et 

al. discovered single-walled carbon nanotube (SWNT)3, which consists of a graphene sheet 

rolled into a cylindrical tube. The diameter of a SWNT is on the order of one nanometer, 



 

  2 

about 5 x 104 times smaller than the thickness of a human hair, whereas the length of a 

SWNT can be up to several millimeters. Therefore, a CNT can have an aspect ratio (length-

to-diameter ratio) of up to 108:1, which is considerably larger than that of any other material4. 

1.1.1 Extraordinary properties of CNT 

CNTs exhibit extraordinary mechanical, thermal and electrical properties. The elastic 

modulus of SWNT is about 1000 Gpa (1 TPa), which is five times higher than the strength of 

carbon steel5. Theoretically, the thermal conductivity of SWNT is up to 6600 W/ (m K), 

more than five times higher than that of diamonds. Due to the elimination of electron 

scattering, CNTs can be ballistic conductors. They have the highest current density (109 

A/cm2) on record, which is 100 times greater than that of copper wires6. The high aspect ratio 

(up to 1.36×108) and surface area (up to 1315 m2/g) offer a high surface area for modification 

of CNTs with functional molecules7,8. 

The unique structure of CNT contributes to the distinguishing thermal and electrical 

properties that make them potentially useful in a wide range of applications in electronics and 

optics. In particular, CNTs have been explored as the main components of energy transport in 

next-generation devices such as light-emitting diode (LED), field-effect transistor (FET), 

thermal rectifier, and photon wave-guide9 due to their axial electrical conductivity10,11 and 

thermal conductivity12–14 in high aspect ratio15,16. In addition, CNTs possess atomically 

smooth surfaces17, and researchers have proposed CNTs as ideal candidates for mass 

transport in nanoscale, such as molecular transport, selective gas permeation, and 

nanofluidics. 
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1.1.2 CNT Basic Structure 

CNTs are the tubular allotrope of carbon with sp2 hybrid C=C bonds. As mentioned, 

they can be formed as single walled (SWNT), double walled (DWNT), or multi walled 

(MWNT) concentric tubes. Figure 1-1 shows the structure of CNTs. Additionally, they can 

have different chiralities, diameters, lengths, and they can be organized into films, mats, 

forests, and yarns18–21. Figure 1-1a shows a TEM image of a DWNT and a MWNT with 

different diameters and number of walls. Figure 1-1b shows schematically the hexagonal 

order of the carbon atoms in the graphene sheet. The direction and vector around which the 

graphene sheet rolls determines the chirality of the obtained CNT. 

Basically SWNTs are described with a vector called the chiral vector, 𝐶, which is 

defined as follows: 

𝐶 = 𝑛𝑎! +𝑚𝑎!                                (1.1) 

 

in which n and m are integers and 𝑎!and 𝑎!  are the unit cell vectors in the two-dimensional 

lattice of the graphene sheet22. The nanotube axis is perpendicular to the chiral vector 𝐶. The 

value of (n,m) defines the chirality of the nanotubes (i.e., armchair, zigzag and chiral) and its 

electrical, optical, thermal and mechanical properties. 
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Figure 1-1: TEM and representative images of carbon nanotubes. (a) TEM images of 

double walled and multi walled CNTs (by Iijima, 19912). (b) Schematic drawing of a 

hexagonal lattice of carbon atoms showing the chiral vector 𝑪 and chiral angle θ for a 

(2,4) nanotube (by Avouris et al., 20014, Reprint with permission). 

For instance if |n-m|=3p, the nanotubes are metallic (highly conducting), and if |n-

m|=3p±1, the nanotubes are semiconducting (p is an integer). The diameter of the nanotubes 

can be obtained by the following formula: 

𝑑 = 0.344+ 0.1exp  (− !
!!
)                                (1.2) 

in which !
!!

 is the radius of the tube and c is the length of the chiral vector 𝐶 and is equal to 

the circumference of the nanotube22: 

𝑐 = 𝑐 = 𝑎 𝑛! + 𝑛𝑚 +𝑚!                               (1.3) 
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Multi walled CNTs (MWNTs) are tubular structures with several concentric SWNTs, 

as shown in TEM images. Their electronic properties are not as diverse as those of SWNTs, 

and they are mostly metallic23. 

1.1.3 Synthesis of CNTs  

1.1.3.1 Chemical Vapor Deposition 

There are different methods of synthesizing CNT, including arc discharge, laser 

ablation, high-pressure carbon monoxide (HiPCO), and chemical vapor deposition 

(CVD)24,25. Of these, CVD is the most widely used method for creating controlled CNT 

structures, because it allows for a relatively desirable yield, and can be used to produce 

vertically aligned, rather than randomly oriented, CNTs with few defects (Figure 1-2)26. 

CVD takes a bottom-up approach, in which the 'root' catalysts of metal-nanoparticles are 

exposed to carbon sources at a high temperature to give rise to CNT. First, a substrate is 

prepared with a layer of metal catalyst particles, such as nickel, cobalt, iron, or a combination 

of these, and is heated to approximately 700 °C26. Then, two kinds of gases are introduced 

into the reactor: process gases, such as ammonia, argon, and nitrogen, which constitute the 

surrounding atmosphere, and an actual hydrocarbon source, such as acetylene, ethylene, 

ethanol or methane. Subsequently, in a process called pyrolysis, the hydrocarbon from the 

source is decomposed by plasma or thermally and becomes in contact with metal catalysts to 

initiate the growth of CNTs. 
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Figure 1-2: Comparison of CNTs grown by CVD and other methods. (a) Highly, 

vertically aligned SWNTs fabricated by CVD. (b) Unaligned, mixed SWNTs produced 

by arc discharge. 

In 2006, Brukh and Mitra studied CVD reaction pathways, with C2H4 as the carbon 

precursor27. It is now commonly accepted that ethylene goes through the following reactions 

to produce elemental carbon. First, C2H4 decomposes to form acetylene (C2 H2) via: 

C2H4 (g) → C2H2 (g) + H2 (g)           (1.4)  

The Acetylene then reacts with hydrogen radical (H) to form a vinyl radical (CH3) and 

elemental carbon (C), which will produce either CNTs or non-tubular carbon:  

C2H2 (g) + H (g) → CH3 (g) + C (g)     (1.5) 

It is important to note that the identity of the CNT formed does not solely depend on the 

nature of the hydrocarbon source, but also on other parameters, such as the properties and 

composition of the metal catalyst, metal-support interactions, and reaction conditions like 
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temperature, pressure, inert/hydrocarbon gas ratio and gas flow rate26. With present 

technology, researchers have limited control of the parameters, making it difficult to 

synthesize one specific type of CNT. Thus, a proper identification or separation process is 

often implemented to extract the target CNT from as-synthesized CNTs. 

1.1.3.2 Synthesis of Aligned CNT Structures 

In early 1990s, researchers tried to synthesize carbon nanostructures on a large scale 

for industrial use. They also attempted to fabricate controlled structures of aligned CNTs. At 

this stage research was done to explore the electrical, optical and magnetic properties of 

CNTs. One of the applications for the aligned nanotubes is to fabricate field-emission 

devices. In 1995, a French group, reported the fabrication of aligned MWNT films by arc 

evaporation process28. Consequently, other research groups synthesized aligned CNT 

patterns using other techniques. Compared with other techniques, CVD is the most scalable 

and industrially feasible process for the synthesis of CNTs. Vertically aligned CNT (VA-

CNT) films have been grown on a substrate having iron nanoparticles as catalysts 

incorporated in a silica matrix29. In 1998, Ren et al. studied the synthesis of aligned MWNTs 

on nickel coated glass substrates by plasma enhanced, hot filament, chemical vapor 

deposition from a combination of acetylene and ammonia30. However, in this case, 

significant portion of the CNTs had bamboo like structures due to the low temperature 

formation. Likewise, another group of researchers produced aligned CNT arrays using 

hydrocarbons and ferrocene as catalysts31. Researchers at the University of Kentucky have 

concentrated on improving and high-scale fabrication of MWNT arrays by using ferrocene 
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and xylene at about 650 ºC32. The catalyst decomposes to make particles, which are 

deposited on the substrate. The carbon sources then react with the catalyst and eventually 

crystalline graphite walls grew on the catalyst nanoparticles. Therefore, the dimension of the 

catalyst particle defines the diameter of the CNTs. The carbon nanotubes grow by a 

combination of tip and base growth mechanisms, with the catalyst nanoparticle detected at 

the top of some growing CNTs33. 

One of the approaches for alignment of CNTs, for the application of some partial 

alignment of CNTs in a polymer matrix, was done by mechanical stretching34. These 

nanostructures could also be aligned along the flow direction throughout extrusion of a 

polymer composite melt34. Alignment of CNTs can also be accomplished by extruding a 

polymer melt of polystyrene and nanotubes in the direction of the extrusion35. For the 

samples that have a large volume of CNTs, we cannot have a great alignment, because the 

melt is not fluid enough. A research group at Rice University could align SWNT bundles by 

applying a magnetic field of about 7 T during the filtration of CNT suspension filtration 

process36,37. 

1.1.4 Patterned Aligned CNT Structures 

Owing to the advances in Micro and Nanotechnology, several fabrication techniques 

have been developed to use the patterning processes in designing various catalyst 

configurations and shapes on substrates. Photolithography is a technique in which a substrate 

with a desired pattern design is made, on which a catalyst thin film can later be deposited. 
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The patterned catalyst, when used for CNT growth, results in a patterned CNT structure with 

a three-dimensional configuration.  

Basically, the substrate is coated with a light-sensitive chemical called “photo-resist”, 

or simply “resist”. Later, a light source (UV for example) is used to transfer a geometric 

pattern from a photo-mask to the photo-resist coated on the substrate. Then the exposed area 

is treated chemically, either to stabilize or fix the patterned design on the photo-resist or to 

etch it away, depending on the photo-resist type (i.e., negative or positive, respectively, 

Figure 1-3). Figure 1-3 shows photolithography procedure by using lift-off resist (LOR) or 

Polymethylglutarimide (PMGI) resist. 

The pattern obtained on the substrate can be coated with a metal catalyst through electron 

beam deposition or sputtering techniques (step 5). At the end, when the photo-resist has been 

removed in the lift-off step, the patterned designs of the desired metallic catalyst remain on 

the substrate. The substrate obtained with the patterned catalyst design can be used to grow 

CNTs through a CVD process. Various patterns of the aligned CNTs can be grown by this 

method on a patterned design of Fe catalysts on a Si/SiO2 substrate. During the growth in the 

CVD chamber and at high temperature, growth gases dissociate on the catalyst patterns on 

the substrate, dissolve in it, and later CNTs grow only at those areas where catalyst film is 

present. Therefore, several different patterns of aligned CNTs can be made with this 

technique, which can be beneficial for diverse applications. 
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Figure 1-3: Photolithography process with lift-off resist (MicroChem, USA) 
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Using CVD method, improvements have been done to reduce the production of 

amorphous carbon on the catalyst particles and therefore increase the growth yield of 

nanotubes20,21. It has been shown that small amounts of water vapor or oxygen together with 

the synthesis gases can reactivate the catalysts and therefore, longer CNTs can be 

obtained21,38. At growth temperatures, catalyst thin films turn to nanoparticulate islands, i.e. 

catalyst nanoparticles, dispersed homogenously all over the substrate. The density and size of 

the catalyst nanoparticles depend on the thin film thickness and the annealing temperature, 

and therefore define the final morphology of the CNTs. The more dense the catalyst 

dispersion, the more compact the CNT structure, because the nanotubes lean on each other 

when they are growing as a result of van der Waals forces39. Wei et al.39 have shown that the 

thinner the catalyst film, the smaller the particles are during thermal annealing, and the 

denser are the obtained CNTs. 

It has been reported that the presence of a thin alumina supporting layer enhances the 

catalyst activity and density of the CNTs as well as their length, and these features are 

influenced by the porosity of the alumina layer40. It is possible to grow CNTs as tall as a few 

millimeters with the help of an alumina supporting layer41. 

1.2 Membranes with VA-CNTs 

1.2.1 What Are Membranes 

A membrane is a continuous 2 dimentional material (e.g. graphitic sheet) base on a 

physical chemistry definition. From a biological perspective, it is a lipid film having highly 

selective protein channels. In this thesis, membranes are defined as 2D films that allow 
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selective transport driven by forces, such as concentration, pressure, or electric field gradient. 

The main application of a membrane is to transport specific specie over other kinds. For 

instance, a reverse-osmosis membrane is a polymer film that permits water to pass through 

but salt to be preserved, and can be used to desalinate salty water. A microfiltration 

membrane will preserve colloidal particles and can be applied for drinking water filtration. 

Different factors, such as size exclusion in porous membranes, diffusivity in polymeric 

membranes, and electrostatic forces in nanofiltration, are functioning in combination with 

one another. 

Understanding transport phenomena at the nanoscale is an important challenge, 

because it consists of chemical, electrical and mechanical effects. Membranes with pores that 

are uniform and well defined are platforms of interest for basic investigation of membrane 

transport. Such membrane structures are promising for simultaneous flux and selectivity 

increase. 

1.2.2 Fabrication of VA-CNT Membranes 

The membrane fabrication process is to use grown crystalline CNTs and to seal the 

space between the CNTs by using a polymer matrix42 or ceramic as filler43 while preserving 

the CNTs alignment, and using plasma oxidation in order to open up the CNTs. Researchers 

at the University of Kentucky fabricated the first VA-CNT membrane in a polymer. The 

membranes consisted of about 1010 CNTs/cm2, with dimensions of about 7 nm, and which 

allowed measurement of transport of gases and ions through these membranes42.  
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As this thesis is on a membrane structure, which is composed of CNTs in a polymer 

matrix, a short paragraph on polymer nanocomposites is presented. Polymer nanocomposites 

are described as the combination of a polymer matrix and attachments that have at least one 

dimension in the nanometer range. CNTs are nanomaterials with their diameters in the 

nanoscale and have remarkably high mechanical potency, electrical conductivity, and high 

aspect ratio, making them great candidates to add in polymer matrices44. Randomly oriented 

CNTs have been used as supports on polymers like poly-vinyl alcohol45, and polystyrene46. 

Aligned CNT polymer composites are interesting structures for applications such as field 

emission devices, electromagnetic protecting devices47 and also for membranes42. Ravarikar 

et al48 published an article reviewing the mechanism of infiltration of methyl acrylate 

monomers in MWNT arrays and it’s following polymerization. Another example is 

polystyrene that has high wettability49 with CNTs and so fabrication of a film by a spin 

coating method is straightforward. 

The vertically aligned CNTs in the polymer matrix frequently have a graphitic cap or the 

catalyst metal particle closing the graphitic cores. In order for the vertically oriented 

membrane structure to have the nanotubes as transporting channels, these materials need to 

be removed. Liming Dai et al.50 have showed the possibility of applying the plasma oxidation 

process to eliminate amorphous carbon layers and open CNTs without destroying their 

structure. Some oxidation methods, including high temperature treatment51 or harsh acid 

treatment would destroy the membrane. Plasma-oxidation process is efficient because its 

controllable, and it’s possible to fabricate a macroscopic CNT array device. The plasma-
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oxidation process which is a key step for membrane fabrication, acts three important 

functions: It removes residual polymers and expose the CNT tips out of the polymer matrix 

by oxidative etching, as the oxidation kinetics of the polymer is faster than that of the CNTs; 

It etches amorphous carbon and Fe impurity by HCl treatment; Finally, it introduces 

functional groups (–COOH) at the CNT tips, which makes the tips ready for chemical 

functionalization. The CNT membrane structure reported by the Hinds group, showed a BET 

pore-size distribution of about 6 ±2 nm, after the plasma oxidation process, which is in 

agreement with TEM observations of the inner core of about 7 nm42. A schematic of the 

membrane fabrication process is indicated in Figure 1-4. The CNT membrane demonstrated 

transport of gases and ions, which shows that the above process is capable of forming a 

practical membrane structure, composed of vertically aligned open CNTs, which function as 

channels for molecular transport. 
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Figure 1-4: Processing steps involved in aligned CNT membrane fabrication process. 

with permission from reference52. 

1.3 CNT Nanofluidics 

CNTs, with nanometer scale diameters and smooth surfaces, offer a unique system for 

studying molecular transport and nanofluidics. Although the idea that water can occupy such 

confined hydrophobic channels is somewhat counter-intuitive, experimental evidence has 

verified that water can actually occupy these channels53,54. Water transport through 

molecular-scale hydrophobic channels is also important because of the similarity of this 

system to transmembrane protein pores55,56. In recent years, numerous simulations57,58 of 

water transport through SWNTs have proposed that water can occupy these nanochannels, 

and furthermore fast molecular transport happen. Molecular dynamics (MD) simulations 

suggest that the increase in molecular transport relates to the smoothness of the nanotube 



 

  16 

inner core and also relates to molecular ordering phenomena that may happen in the CNTs 

with an inner diameter of 1 to 2 nm57–59. For similar reasons, simulations of gas transport 

through SWNTs60 predict flux enhancements of several orders of magnitude relative to other 

similarly sized nanoporous materials. Membrane-based gas separation systems using zeolites 

provide precise separation and size exclusion, although often at the expense of throughput or 

flux. It may be possible to use SWNT to create a membrane that offers both high selectivity 

and high flux.  

Considering such theoretical predictions, it is essential to verify the fast transport 

phenomena experimentally. The unique geometry of the CNT allows chemical modifications 

to be placed specifically at the pore openings, allowing for gatekeeper activity. The term 

“gate keeper” is used here to refer to a chemical layer only at the pore entrances that 

selectively allows chemicals to pass into and through the pores of the membrane, much like 

how natural protein channels work. Both enhanced transport and gatekeeper selectivity are 

key elements for mimicking natural protein channels. Success with this approach would 

allow for fast transport and high selectivity, which is not attainable with conventional 

membrane systems to match the performance level of natural protein channels. Researchers 

have recently fabricated MWNT-membranes with larger pore diameters (6 to 7 nm) by 

encapsulating vertically aligned arrays of MWNTs within polymer matrices42,43 and by 

templated growth within nanochannels61. Enhanced water transport through these larger 

MWNTs has recently been reported62. Quantifying transport through an individual tube in a 

MWNT membrane is difficult because MWNTs are prone to blockages, in particular by 
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“bamboo” structures and catalyst particles that can migrate to and obstruct the nanotube 

interior63–65. The consequence of such blockages is a marked reduction of the active 

membrane pore density. In contrast, there are few reports of “bamboo” structure formation or 

catalyst migration in SWNTs or double-walled CNTs (DWNTs). However, it has been 

difficult to produce VA-CNTs uniformly and at large scale38,58. The main challenges are in 

defining a deposition procedure to seal the gaps in the nanotube array and moreover in 

performing a selective etching procedure to open the nanotubes without creating holes in the 

membrane structure. The technical challenges in nanofabrication are some of the key causes 

for the difference between the amount of studies from computational and experimental 

reports, and they offer great research opportunities in experimental CNT nanofluidics. 

1.4 Thesis Motivation and Objectives 

This Ph.D. thesis focuses on comprehending the molecular transport properties 

through CNTs. Significant to the study is the design of a CNT membrane structure, which 

contains a considerably large number of vertically aligned CNTs (about 1010/cm2) letting 

macroscopic measurement of transport across the CNT membrane. The principal goals of the 

thesis are to develop a new platform by which to realize and study ion transport through the 

atomically smooth CNT cores, to verify that charged molecules attached to the conducting 

CNT membranes control the molecular transport, and to indicate the potential of the CNT 

nanofluidic devices for the fundamental studies of ion transport. We also aim to develop 

synthesis and fabrication techniques to design and fabricate novel biosensors based on CNT 

nanofluidics, which have various significant applications in health and environment. 
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Chapter 2: CNT Nanofluidics 

Recent developments in nanotechnology have facilitated the combination of 

nanomaterials and conventional microstructures, and so the monitoring of the nanoscale 

behavior of mass transport or fluid dynamics of molecules or ions enclosed in geometries 

comparable with molecular dimension. Here, we introduce and provide a summary and 

overview of CNT Nanofluidics. CNT Nanofluidics is a field of study and a research area that 

conveys mass transport through CNTs under nanoscale confinement. 

The following sections explain recent accomplishments done by experimental and 

theoretical research groups aiming for the kinetics of ions in CNTs, including transport of 

ions under CNT nanoconfinement, selectivity and ion exclusion in connection with CNT-

based membrane skill. Lastly, this section concludes with some aspects of CNT 

Nanofluidics. 

2.1 CNTs as Nano-vessels or Mass Transport Nanochannels 

In 1993 Ajayan and Ijima66 for the first time performed the viability of liquids 

infiltrating the cores of CNTs and acting as nanocontainers. In a following publication by the 

same group, it was reported that, comparing metals, inorganic materials were difficult to 

diffuse inside open CNTs67. This is because inorganic materials have higher surface energy 

mismatch with the CNT compared with liquid metals. The significant outcome of this study 

was the possibility of opening the CNTs using gas phase oxidation. One of the applications 

of such penetration performance is the template assisted synthesis of nanomaterials68.  
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In 1994 and 1998, Dujardin et al.69 studied the wetting behavior of CNTs and 

reported the results. In their experiments molten metals were infiltrated in MWNT samples 

with diameters of 2 to 20 nm and they concluded that some liquids with a surface tension of 

less than 180 mN/m would wet the MWNTs. Therefore, liquids like water could easily wet 

the MWNT, but not for all molten metals. A following study demonstrated that SWNT 

samples perform similarly. 

CNTs as nanochannels for molecular transport study have interested scientists and 

engineers. Some research groups started investigating on the unique transport properties of 

CNTs and this was possible due to the rapid improvement and progress of molecular 

simulation methods. David Sholl and Karl Johnson at Carnegie Melon University studied the 

diffusion of gases like Ar, N2, and CH4, through nanoporous materials including CNTs. The 

inspiration for their findings was to study some potential inorganic materials for gas 

separation applications. This group reported that the transport of argon gas through CNT 

membranes were approximately 3 to 4 orders of magnitude more than through zeolitic 

pores59. They reported that the reason for the enhanced transport through CNT membranes is 

the smooth and frictionless graphitic CNT walls that allow specular reflection of the gases. 

Another study has been done by the Susan Sinnot group at the University of Kentucky70 on 

gas transport through CNTs using molecular dynamics. Their simulation studies also 

predicted very fast transport of gases through CNTs71. 

Nick Quirke’s group at Imperial College explored the hydrodynamics of fluid flow 

for low Knudsen number fluids through graphitic pores. Their studies indicated that there is 
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large slip lengths for these fluids72.  For the first time, in 2002, they suggested the existence 

of slip boundary conditions on smooth CNT surfaces73. The same research group reported 

extremely rapid diffusion of oil in CNTs which is not understandable by the Washburn 

equation57. 

Gerard Hummer and his team at the National Institute of Health in Maryland were 

interested in studying water transport through CNTs and this was mainly inspired by the 

tubes’ hydrophobic nature and resemblance to protein channels. Molecular Dynamics 

simulations compared CNTs to the protein channels. CNTs offered a much simpler model for 

their important publication in 2001. The authors suggested that water transport through 

hydrophobic CNT channels occurs at an peculiar speed through the supportive movement of 

a hydrogen bonded network through the smooth walls of CNTs58. Kalra et al.74 investigated 

the osmotic transport of water through CNTs. The studied water flow velocities were similar 

to he ones realized in natural water channels like aquaporin. Klaus Schulten’s group also 

studied the water and proton transport performance through CNTs. The water dipoles were 

highly aligned unidirectional in original nanotubes. This alignment was slightly disturbed in 

the modified CNTs75. More simulation studies by other groups will be mentioned in 

subsequent sections, specifically the ones related to the experimental studies in this thesis.  

Another research group studied the transport of liquids in SWNT bundles. Their 

observation of induced voltage in the direction of flow was not consistent with standard 

electrokinetic phenomena and was described by an induced charge mechanism at the 
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polarizable liquid electrolyte interface76. The observed voltage is a function of the liquid 

ionic properties and so this device could be used as a flow sensor. 

Gogotsi et al. of Drexel University have studied the behavior of water inside 

hydrothermally synthesized CNTs by in situ microscopy techniques. In 2002,53 the research 

group reported the flow velocities of water to be about 0.5x10-4 cm/s in nanotubes with 50 

nm inner diameter. This research group also studied the kinetics of water inside disordered 

carbon nanotubes, Appling scanning electron microscope. In the current work, the CNTs 

were occupied with water, then frozen at -80 ºC and analyzed by HR-TEM and EELS77. 

Based on the observations from these experiments, it was found that there was a segmented 

filling of water with air bubbles inside CNTs with pore diameter of about 20 to 100 nm and a 

thorough filling for the pore diameters of 5 to 10 nm. For the case of crystalline nanotubes a 

gap of about 4 Å was observed in between the graphitic walls and the frozen water78. This 

finding proposes that water molecules did not wet crystalline CNTs with small diameter. 

The first experimental mass transport measurements of CNTs was performed on 

single pore carbon nanotube membranes with about 120 nm pore diameter77. This large 

diameter nanotube did not demonstrate any unusual transport properties and was synthesized 

for Coulter counting applications. A Coulter counter is a device that can calculate biological 

cells or particles. The single pore device is placed in an electrical potential gradient. The 

transport of the particle through the nanopore is sensed by ion current measurements78. 

Although it is necessary to fundamentally understand the mass transport at the nanoscale, 

such a single pore membrane with a large diameter would have limited applications in small 
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molecules or in large-scale separations. It is essential to develop strategies for synthesizing 

membrane platforms with smaller diameter CNTs for chemical engineering or drug delivery 

applications. 

An important challenge therefore remained: to fabricate and characterize CNT 

membranes with a large array of CNTs for fundamental mass transport studies, validating 

some of the MD predictions and developing large area platform applications. Readers 

interested in fluid transport through CNTs are referred to an outstanding review article by 

Whitby et al79. 

2.2 Ionic Solution in CNTs 

Different aqueous ionic solutions contribute in numerous biological procedures. 

Based on different applications, aqueous ionic solution systems can be allocated to different 

classifications: ion transport systems (ion transport in CNTs is desired), ion selectivity 

systems (ion transport in CNTs is selectively favorable) and ion exclusion systems (ion 

transport is unfavorable in CNT). One of the main applications of ion exclusion is in water 

purification. There are also chemical, medical, and industrial applications. The main recent 

interests in water desalination are based on creating economical methods of producing water 

in which most of the dissolved salts are ionic. Although technologies like reverse osmosis80, 

electrodialysis and membrane distillation for desalination are broadly used, the fabrication of 

an efficient membrane materials that can isolate salt from water attracts interest as it has the 

potential of extending fresh water accessibility by making water desalination more 

economical. The unique water transport property in CNT mentioned in the previous part and 
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pore sizes comparable with the ions sizes are specifying CNTs as a very favorable option for 

the exclusion of harmful chemicals, and contaminants from polluted water. Molecular 

dynamics simulations81 predicted that CNT membranes with below nanometer pore sizes can 

offer considerably higher efficiency when applied in a reverse osmosis desalination process. 

Simulation studies demonstrate, CNTs with (5,5) and (6,6) chiralities can reject 100% of salt, 

a 680 to 1100 times enhancement over conventional membranes used for reverse osmosis. 

The success was related to the energy barriers at the openings of these nanotubes, which can 

govern the transport of ions into the CNT pores. The transport mechanism is linked to the 

amount of energy needed for the elimination of the hydration layer. In case of water transport 

through a CNT pore, the residual hydrogen bonds of water molecules inside the CNTs 

decrease the energy for the entrance. 

Ion bio-channels can control many tasks in our body, for instance the electrical 

impulses transfer to nerves and hormone release. Ion diffusion through the biological 

channels is assumed to be a simple physical procedure. The properties of ionic diffusion 

through the CNTs are increasingly being applied as theoretical and experimental replicas for 

the transmembrane protein channel studies for ion transport across cell membranes. These 

studies are helping our understanding of how ions permeate through cells. This knowledge 

will finally guide us to solutions for many human diseases initiated by ion channel 

malfunction. Selectivity of K+ from Na+ ions can be because the removal of K+ ions from 

their hydration shells is thermodynamically more desirable than removing the hydration 

shells from Na+. This theory can be hypothetically used for both experimental and MD 
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studies. Furthermore, use of Donnan membrane idea to the transportation of ions under CNT 

nanoconfinement could contribute to the design and manufacture of novel devices for 

efficient separation, production of smart materials, and further novel applications82,83. These 

techniques require neither electricity nor pressure gradient for continuous function. These 

techniques have the potential to recover high purity aluminum in a one-phase process and 

reuse it in the same plant. Moreover, the CNT devices designed for ion transport and have 

prospective applications in energy generation, nanosensors, chemical nanoreactors, and ionic 

field effect transistors84,85, because the high surface-area-to-volume ratio in CNTs leads to 

ion separation by a ionic transport method governed by surface charges. The following 

section focuses on introducing MD simulation work on ionic transport through CNTs, 

including the fundamental theoretical models employed in MD simulations in order to 

explain the behavior of ions through nanochannels. 

2.3 Molecular Dynamics simulation theories 

Currently, molecular dynamics is broadly applied in analysis of kinetics and behavior 

of biological molecules. Although MD simulation at the nanoscale is limited, MD in 

modeling of liquids and gases under CNT nanoconfinement is promising and has inspired 

scientists to apply MD in the study of the performance of ionic solutions inside CNT. 

Basically, MD relates Newtonian second law and potential energy.  

        (2.1) 
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in equation 2.1, mi is the mass of a atom or molecule i, ri is its position, and UT is the 

potential energy that is related to article positions. The selection of the potential is important 

as it can determine interactions between the particles in the simulation. To describe 

electrostatic interactions such as van der Waals attraction and Pauli repulsion, Lennard-Jones 

potential, is commonly used. The effect of the electrostatic charges of particles to the 

potential follows Coulomb’s law86. 

𝑢 𝑟!" = 4𝜀!"
!!"
!!"

!"
− !!"

!!"

!
+ !!!!
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        (2.2) 

Equation (2.2) indicates a typical interaction potential including the electrostatic 

charge effect, in which rij is the distance between particles i and j, qi is the partial charge 

allocated to the particle i, and 𝜀!" and 𝜎!" are, respectively, the energy and size parameters 

achieved by the Lorentz-Berthelot linking rule: potential disappears at the interparticle 

distance of 𝜎!" = ( 𝜎! + 𝜎!)/2 and has a minimum well depth of 𝜀!" = (𝜀!𝜀!)!/!. Poisson 

equation (equation 2.3) and Nernst-Planck equation (equation 2.4) are applied for 

mathematical explanation of the potentials84,87,88. 

∇!𝜙 𝑟 = − !
!!!
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Considering the equations (2.3) and (2.4), 𝜀 is dielectric constant of the 

solution,  𝜀!  is  the  permittivity  of  vacuum,𝑛! is the density of ions of ion type 𝑖, 𝑍!𝑒 is their 

charge, 𝐽! is ion flux, and 𝐷! is the diffusivity of ion type 𝑖. Equations (2.3) and (2.4) can be 
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used to determine ionic current in a nanochannel and density of surface charges. When the 

tube surface charge is in such a condition that the Debye length increases near to the pore 

radius, repulsion of co-ions conveys selectivity of ions to the nanopore. Therefore, by 

changing the surface charge, the ion transport can be adjusted. Study of ion hydration in the 

bulk water compared with CNT nanoconfinement situation is of great importance. MD can 

be used to define the probability of the ion position P(z,r) out of the distribution function. A 

free energy profile, G(z), e.g. potential of mean force for the CNT in a one-dimensional 

situation, can be estimated as shown below: 

𝐺 𝑧 = −𝑘!𝑇  𝑙𝑛 𝑃(𝑧, 𝑟)𝑑𝑟!
!        (2.5) 

where T is the temperature, R is the nanotube radius, and 𝑘! is the Boltzmann’s constant. 

Several ab initio MD simulations consider the polarizability of nanotube in the context of 

density functional theory89–91. Depending on delocalized π-electrons the polarizability of the 

nanotubes varies. For instance, polarizability of metallic CNTs makes ion permeation less 

desirable than the semiconducting CNTs. Additionally, large computational cost avoids a 

broad use of ab initio analysis in large structures. Aluru and Xu91 indicated that when water 

molecules and ions transport the nanotubes, the metallic SWNT has greater screening effects 

than the semiconducting SWNTs. These studies suggest that it should be feasible to 

distinguish between ions with different charges and to distinguish between metallic and 

semiconducting nanotubes. Leung et al.90 performed AIMD to show that binding energies for 

metallic (6,6) SWNT are 2.9 and 1.8 eV for Na+ and Cl−, respectively, whereas a much larger 

(18,18) SWNT demonstrates lower binding energies of 2.2 and 1.1 eV. This finding indicates 
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that the proposed use of VA-CNT in ion rejection membranes may need thorough 

reassessment. The authors also mentioned that confined environments and molecular 

structures could play a major role in the transport and selectivity procedures. Ions act in a 

similar way in CNTs with diameters larger than 0.96 nm, regardless of the water 

configuration under nanoconfinement81,86,88,92,93. The behavior of ions in CNTs with bigger 

diameter matches the experimental results82,94–96. 

When liquids are confined in nanoscale, some exceptional properties are evident that 

are not distinct at macroscales. When the tube size become comparable to the size of the 

transporting molecules, the interaction between the transported molecules and the CNT 

surface could act as a leading aspect for the molecule flow procedure, so invalidating the 

continuum theory and may result in a single case configuration of water97,98. These 

outstanding nanoscale phenomena can be applied not only to transport of water molecules, 

but also to water as a processing element during the ion transport. The state of the protons in 

low temperature water in nanotubes is different from other water phases. The temperature of 

transition between the bulk water and the ice like water phase depends on CNT size and also 

the interaction between the CNT and water molecules. Understanding of the transporting 

water phase at room temperature in CNTs with various sizes is of huge interest99. 

We can use MD as a great tool that benefits us to understand CNT transport facts that 

are challenging or difficult to do by experimental methods. However, all models have their 

own limitations, and the theories are mainly established for macro scale. Therefore, in using 
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these models for nanoscale, we need to study the validity of simulation results. The 

importance of using molecular dynamics is possibly not less than of experimental findings. 

2.4 Ion Rejection, Selectivity and Transport 

Regarding the behavior of ions in CNTs, it is hard to consider a difference between 

exclusion, selectivity and transport. For instance, ion transport blockage means ion exclusion, 

and ion selectivity means rejection of some ion types and transport of some other kinds. 

Various simulations and experimental studies have revealed some possibilities for favorable 

processes. Understanding of the relation between driving force and chemical modification for 

specific example are fundamental, as each one may result in completely diverse applications. 

2.4.1 Ion Exclusion 

Water is the most plentiful liquid on earth; however, only 3% is clean and drinkable. 

Consequently, purification and desalination of seawater and salty water are topics of interest. 

Fornasiero et al.82 fabricated CNT membranes (with CNT dimensions of less than 2 nm) and 

studied the ionic solution transport through the CNTs. Hydroxyl, carbonyl, and carboxylic 

functional groups are chemically grafted on the nanotube opening in order to introduce 

negative charges to the CNT opening. Ion transport and also exclusion properties of this 

system were studies, as a function of, pH, solution concentration, and ion dimension. They 

proved that hydrophobic; sub-2-nm CNT pores, which were negatively charged on the pore 

entrance, can reject ions and verify that electrostatic forces is accountable for ion exclusion 
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in CNT pores. Their results agreed well with the Donnan membrane equilibrium model, 

which provides additional confirmation verifying the effect of electrostatic interaction83.  

Later, Banerjee et al.100 confirmed that CNTs could be used for water desalination by 

introducing different charge distributions on the CNT pore opening. Molecular dynamics 

simulations indicated that when the diverse charge distributions are used, there is significant 

ion entry into the nanotubes, and the negative charges on SWNTs cause decrease in the ion 

diffusion to the nanotubes. These findings increase the attractiveness of the CNT-based 

devices as a system for water purification. 

Goldsmith et al.101 simulated a model for membranes with nanopores of armchair 

CNTs of different chiralities such as (8,8), (10,10), (12,12), (14,14), and (16,16) with surface 

modification. Nonequilibrium MD was used to study the flow of NaCl aqueous solution for 

both uncharged and charges CNTs. In case of CNTs with no charge, the ion flow rates 

linearly depend on the applied pressure and increased with pore size. The flow ratio of ion 

transport was smaller than water transport, which was the confirmation of salt exclusion from 

the ionic solution. However, for the charged CNT, both water and ion transport rates were 

lower than the case of uncharged CNT, and the smallest (8,8) and (10,10) systems 

demonstrated complete ion exclusion. Modification of CNT with surface charges caused a 

reduction in the total flux of water and improved the amount of salt rejected from the system.  

As a distillation system based on membranes, Gethard et al.102 suggested a mixed 

matrix composed of a polypropylene membrane embedded with evenly distributed, 

Polyvinylidene fluoride surrounded MWNTs. The hydrophobic property of MWNT 
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enhanced removal of the MgSO4 and NaCl salts from the ionic solution. As water transport 

happen in a vapor phase during the distillation procedure, water did not face any permeation 

barrier. Thus, the filtered water purity was improved. Tofighy et al.103 suggested a method of 

using a sheet net of chemically oxidized CNTs to attract salts in ionic solutions, and was 

tested successfully. Consequently, the capability of MWNT to adsorb toxic heavy metal from 

water was experimentally explored by Kandah et al.104, using oxidized MWNT. These 

Oxidized CNTs were efficient in adsorbing and removing nickel from water. For instance, 

having negatively charged chemical groups on CNT pores enhance cation adsorption ability. 

These oxidized CNT structures have been an excellent commercial membrane to be used in 

removing nickel from water. The application of CNT as a nanochannel for ion rejection 

devices is a capable route for ion exclusion from aqueous solutions. One of the greatest 

approaches in the area of ion exclusion is the control of charges and so the electrostatic 

interactions at the CNT pore opening, because the necessary ion exclusion could be reached 

by simple approaches like CNT chemical modification or adjusting the pH of the ionic 

solution. 

2.4.2 Ion Selectivity 

Comprehending and explaining ion selectivity are fundamental. Channels behave 

differently towards K+ and Na+ ions and this fact is interesting for reaseachers. Ions in 

aqueous solutions are more energetic because they are hydrated, which are 

thermodynamically a more favorable state. When pore dimension is smaller than the size of 

the hydration shell, the ion requires removing the hydration layer in order to enter to the pore. 
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This method can be applied for gated ion transport by entrance energy barrier 

modification88,105–107.  

In Peter and Hummer88 model for CNT membrane, nonpolar pores with diameters of 

about 5 Å can thoroughly block Na+ ions, but they transport the ions in case the pore 

diameters increase to about 10 Å. Shao et al.86 studied Na+ and K+ selectivity inside CNT 

pores with diameters of 0.60, 0.73, 1.0, 1.28 and 2.00 nm. The smaller CNTs were more 

favorable for diffusing hydrated K+. In contrast, in the larger CNTs the situation is different. 

This study showed that the ion selectivity is linked to the energy needed in order to 

incorporate the hydrated ion under CNT nanoconfinement.  

In another study Gong et al.108 also showed that selectivity in a (9,9) SWNT could be 

enhanced by modification of the CNT inner wall by carbonyl oxygen chemical groups. This 

simulation indicated a significant selectivity, which was related to the hydration of confined 

K+ or Na+, which could be further modified by various arrangements of the carbonyl 

functional groups. Dzubiella et al92 used MD simulation in equilibrium and nonequilibrium 

states and studied the ionic aqueous solution permeation in a hydrophobic pore and 

investigated the relation of ion and water transport on pore diameter. They reported that the 

energy barrier at the CNT entry was lower for the K+ comparing the Na+ ions. Moreover, 

when the tube diameter was smaller than a critical value, water had to be driven by an 

electric field in order to enter the pore. The energy barrier that avoids ion permeation into 

CNTs decreased to a few kBT when the electric field that polarized the channel was 

increased. Comparable results on ion selectivity in charged surroundings were also reported 
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by Yang et al109. They studied the separation of cations with various sizes in negatively 

charged (5,5) CNT nanopores using MD simulations. In case of low pore charge density, 

there was no entrance of ions into the CNTs. However, in case of higher pore charge density 

the ion partitioning was promoted, and the larger ions entered the CNT earlier than smaller 

ions. Therefore, they proposed the presence of a free energy barrier that can be modified by 

changing the pore charge density. 

Later, Song et al.110 confirmed pressure controlled ion selectivity in narrow CNTs. 

They studied SWNTs with diameters of 3.4-6.1 nm to illustrate that Na+, K+ and Cl- ions 

experience different energy barriers in entering the CNTs. For instance, in the (5,5) tube, the 

order of free energy barriers is ΔGCl- > ΔGNa+ >ΔGK+, meaning K+ entrance  to the SWNT is 

the easiest. A main impact on the free energy barrier difference was the required energy 

related with a hydration shell of the ions. Ions in small pores cannot have a coordination 

number close to their bulk value. So, in this case selectivity was governed by the ion 

solvation energy. This description could also fit the selectivity in potassium nanochannels. 

Simulations and experimental studies have predicted the significance of the hydration shells 

dimension on ion selectivity. There is a correlation between the ions’ behavior under CNT 

nanoconfinement and some biological procedures in our body. Consequently, such studies 

could help us for inventing cure for illnesses such as Alzheimer's disease, blindness, heart 

disorders. 
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2.4.3 Ion transport 

Ionic flow through CNTs attracts significant interest from industry because of its 

potential use in energy applications, and from academia because of the essential influence of 

the transport mechanisms. Controlled ion transport carries the possibility of applying CNT 

for using in drug delivery systems, molecular sensors, nanoreactors, and ionic transistors. 

Dzubiella et al.92 explored cation transport in an aqueous solution under equilibrium 

and nonequilibrium conditions by applying a basic model of hydrophobic pores. Their 

simulation studies indicated the discontinuous filling of hydrophobic cylindrical pores by 

water under equilibrium states, provided that the pore radius exceeded a value of Rc = 5.3 Å. 

Under this critical radius, water could diffuse the pore by application of a robust electric 

field. It was also confirmed that hydrophobic pores have a lower entrance energy barrier for 

K+ than for Na+, despite the smaller sodium ion size. Lately, experiments and MD simulation 

performed by Strano et al.111 showed a CNT-based nanofluidic device. They applied different 

ionic solutions, induced the transport by a standard clamp method, and monitored currents 

for different applied electric fields across two reservoirs, which was linked by nanotubes (up 

to 45) that were 500 mm in length as illustrated in Fig. 2.1. They noticed pore blocking when 

cations are driven into CNTs, hindering proton current. The proton conductance through the 

nanochannel could be because of the attraction of protons and exclusion of anions from a 

negatively charged CNT opening, which was done by oxygen plasma etching. Although 

stochastic signals in CNT considered comparable to the biological channels, the transport and 

entrance mechanisms of hydrated ions for CNT differed from the biochannels, because the 
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quantity of negative charges on CNT pore opening was insufficient, so ions had to be 

enforced to diffuse the CNT pore. The simulations expected the presence of an optimum rate 

of proton penetration into the nanopores that increases the ion transport efficiency. They 

detected a single molecule ionic resonator. Ions can easily diffuse into the CNTs when there 

are external forces. Based on the MD simulation of potassium ion transport in CNTs85 driven 

by electric field, K+ ions can penetrate CNTs faster when pushed by an external force than 

when pushed by thermal variations. This conclusion suggests the application of data storage 

devices in CNTs. 

      Other MD simulations, by Beu et al.93 explored the ionic current dependence on CNT 

diameter. The simulations indicated that the ions in an aqueous solution inside the nanopores 

encounter considerable energy barriers and can only transport through CNTs larger than 

(7,7). The (8,8) CNT permits ion diffusion simply, and there is a low current magnitude of 

approximately 0.05 nA in different circumstances. 



 

  35 

 

Figure 2-1 : Fabrication of SWNT ion channels. An epoxy structure with two 

compartments is bonded onto a substrate with ultralong and aligned CVD-grown 

nanotubes. Reprinted with permission from reference111 

The ion current or the number of ion transports through CNTs demonstrates a quadratic 

difference with respect to the CNT pore dimension and disappears when the CNT size 

becomes around 1.1 nm (for the (8,8) CNT). 

There are not much experimental studies of ion transport through CNT compared 

with MD simulations. Yu et al.96 experimentally studied ion transport though CNT-based 

membrane with 3 nm CNT and also 3 nm nanopores. The membrane was made by solvent 

evaporation method and was used as a perfect model system for exploring ion diffusion 

through CNTs. Ion transport through CNT membranes blocked after a few hours at the 

temperature of 298 K, however when the temperature was increased by about 20 K and when 
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the membrane was exposed to ultrasound sonication, ion transport considerably increased. 

Water adsorption isotherms for the CNT membranes proposed that the adsorbed water can 

make a discontinuous phase at the temperature of 293 K, however it can rapidly make a 

continuous phase at larger temperatures. While the temperature rises or ultrasound sonication 

opened the tubes, ions diffuse in CNT at a flow rate comparable to the bulk diffusion in 

aqueous solution. This conclusion implies the application of CNT membranes for water 

treatment and desalination. Dong et al.98 did MD simulation of aqueous ionic transport in 

(9,9) and (10,10) CNTs and they proved evidence of an extraordinary phase behavior of the 

ionic solution in CNT. Although the amount of cations and anions entered to the CNTs were 

identical, cations continuously entered faster into the CNTs than anions throughout the whole 

transport procedure. The hydrogen bonding interaction shows a leading function for cations 

and anions when enclosed in CNT. Considering the free energy, that can define a driving 

force of ions and counter ions in entering CNT, clarified that a cation could diffuse in CNT 

by favorable distribution of Lennard-Jones interactions. However, based on the free energy 

estimation it is challenging for anions to diffuse the CNT channel instinctively. A more 

favorable situation would be when an ion permeating a CNT accompanying a cation and it’s 

counter anion by hydrogen bonding. 

Water presence is necessary as a process facilitator for transporting ions in CNTs. 

Ionic current through CNTs is highly related on the CNT size. This evidence suggests one 

method of controlling ion gating in CNT nanoconfinement. We can also control the ion 

transport in the nanochannels by regulating electrostatic interactions between ions and the 
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CNT pores. Merging of the concentration gradient, polarization of CNT, chemical 

functionalization, and application of an external electric field can make this adjustment to 

CNT. Most of the times, MD simulations based on simplified water potentials ignore the 

polarizability effect in simulations. Considering CNT length scale, there is a difference 

between simulated CNT and CNT used in experiments, the earlier being calculated 1 nm, 

while the later is in the order of micrometers. Each of the simplifications initiated from 

considering limits in simulation studies can considerably affect the validity of the data, and 

so care needs to be taken. 

To summarize, molecular dynamics is extensively applied to analyze the behavior of 

ions inside CNTs, however it is not established enough to study the detailed ionic 

configuration and ion transport in CNT nanoconfinement. Consequently, there are emerging 

research opportunities. So far, various interaction potentials have been studied to understand 

and explain how water and ion behave in nanoscale; but each potential is not valid in 

capturing the entire picture of the behaviors. Selectivity, exclusion, and transport of ions are 

all highly linked processes. The relationship between these concepts is based on the same 

simple mechanisms that control ion behavior in CNTs. In a CNT with small radius, it is the 

interaction between the water hydration shell of an ion and the opening of the CNT that 

shows an important role. This interaction can become particularly important to ion exclusion 

and selectivity. CNTs with larger diameters, transport ions more often than other phenomena. 

External forces applied to CNT can offer a gated ion transport mechanism. Functionalization 

of the CNT openings and defect sites can improve an electrostatic interaction between ions 
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and CNT openings, and can offer another selectivity way to the ion transport. The selectivity 

mechanism in the ion transport through CNTs can also be influenced by the applying an 

electric current or by control of pH of the solution. Control of different physical properties 

related to the ions and CNTs may qualify practical selection among ion selectivity, ion 

exclusion, and ion transport. 

The potential for the use of CNTs for water desalination is motivating researchers to 

develop new models of simulation and experimental techniques and platforms for studying 

the exclusion of ions from an aqueous solution. The similarity between CNTs and biological 

channels is promising to facilitate understanding of the mechanism of selectivity between 

potassium and sodium ions in the body. Study of ion transport under CNT nanoconfinement 

propose various applications, such as for nanocontainers for drug delivery systems, 

nanoreactors, molecular detectors, rectifier circuits and ionic transistors. Eventually, the 

collaboration between simulation and experimental studies will let to better comprehend the 

fundamental science concept of ionic behavior under CNT nanoconfinement and to define 

valuable areas to use in the fundamental science. 

2.5 Summary 

CNT Nanofluidics studies mass transport phenomena in the nanoscale distinctively 

occuring inside CNTs. One feature of this transport is the significance of molecular 

interaction under CNT nanoconfinement between a transporting molecule or ion and carbon 

wall. While water is confined in CNT, water molecules will face a potential offered by the 

hexagonal network of carbon atoms. The most important aspects determining water transport 
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in CNTs is the hydrophobicity, smoothness and curvature of CNTs. Consequently, water 

transport in large-curvature CNTs will not follow any prediction of continuum theory. CNTs 

are effective structures for gas transport. A collision process illustrates the transport 

mechanism for gas. When gas enters a CNT, its momentum relocates from gas to gas 

collision to gas to CNT collision. In this event, the smoothness of the CNT wall shows a key 

role by enhancing collisions between gas molecules and the CNT wall, thus improving the 

transport. Ions inside CNTs can take three paths, i.e., selectivity, exclusion, and transport, 

based on the dimensional comparison between CNT diameter and the actual hydration shell 

of the ion. Besides the dimensional relationship, other physical mechanisms can also join in 

selecting one of the ion transfer paths. These mechanisms include, electric field, electrostatic 

interaction, and solution pH. Efficient transport of water and gas through CNT can play a 

role as a main feature for energy efficient filtration, if joined with selectivity mechanisms. 

Advances in this area could lead to effective water purification, seawater desalination, 

demineralization, gas separation for greenhouse gas emission improvement, biomolecular 

separation, DNA sequencing, and more. CNT-based Nanofluidics is rapidly merging 

fundamental nanoscience and socio-industrial needs, and offers potential for focusing 

humanity’s future sustainability issues. 
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Chapter 3: Smart DNA Functionalized Carbon Nanotube Membrane 

Devices 

3.1 Introduction 

Protein channels are outstanding and fascinating biological systems that can 

selectively transport essential chemicals through cell membranes faster than inorganic pores 

can. The fabrication of synthetic membranes with nanopores that mimic biological 

transmembrane protein channels have numerous applications, ranging from drug delivery, 

water purification, molecular sieving, to DNA sensing 112–115. These membranes should 

possess selective gate chemistry at the pore entrance, a mechanism for fast hydrodynamic 

flow, and a mechanism to stimulate the channel 116. 

There have been several different approaches towards obtaining biomimetic 

membranes. Previous studies on artificial protein channels have investigated the use of 

porous alumina or track-etched polycarbonate substrates with well-ordered nanoporous 

structures and selective chemistry 114,115,117–119. However, these studies did not offer the 

capability to create an efficient chemical layer to act as a gatekeeper over the pores. 

Furthermore, these channels do not offer enhanced hydrodynamic flow. 

Recently, carbon nanotubes (CNTs) have been investigated as a biomimetic fluidic 

channels due to their fast hydrodynamic velocity profiles, highly uniform and tunable pore 

diameters, and gating capabilities 57,58,72,120–125. Early molecular dynamics (MD) simulations 

predicted strong hydrogen bonding of water in hydrophobic CNTs, resulting in a faster 

hydrodynamic flow rate than that expected for conventional porous platforms57 and on the 
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same order as water through Aquaporin-1. MD simulations and experiments have shown that 

the increased hydrodynamic flow velocities through CNTs can be attributed to the atomic 

smoothness of the graphitic surface displaying near-perfect slip properties 57,58,72. In another 

study, a fast flow rate of molecules was also predicted based on the near frictionless nature of 

the CNT walls72,126. A key challenge in using synthetic membranes is the introduction of 

reversible gating properties. Gating membranes have been made using stimuli-responsive 

hydrogels, which exhibit reversible phase changes in response to temperature, pH, or electric 

charge 127-128. However, some disadvantages are associated with applying hydrogels 129. For 

example, hydrogel membranes have low mechanical stability and low molecular diffusivity 

130. In contrast, CNT membranes, which have been studied in the present report, are 

remarkable candidates that can be mechanically strong and allow enhanced ion/molecular 

transport that mimics biological ion channels. Researchers have fabricated MWNT-

membranes with specific pore diameters by using vertically aligned MWNT arrays in 

polymer 131-132 or ceramic matrices. Furthermore, gatekeeper chemistry has been developed 

for regulating ions and small molecules through CNT membranes; short and long-chain 

alkanes, negatively charged dye molecules, long polypeptides, and proteins 124,133-134. In the 

present work, we design a responsive, smart, controllable CNT membrane by regulating ion 

transport through an array of vertically aligned carbon nanotubes functionalized with Cy3-

T15-NH2 single-stranded DNA embedded in polydimethylsiloxane (PDMS). 

The tips of the CNTs with carboxyl end groups were functionalized, forming the basis 

for gatekeeper-controlled chemical separations or an ion-channel mimetic sensor. If a 
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selective functional molecule were attached to the entrance of the CNT and coordinated with 

a bulky receptor, the CNT pore would be blocked and the ionic flow through the CNT core 

would be reduced124,133-134. The ionic flow could be easily detected by electrochemical 

methods and could offer the basis of a selective sensor device. In the current study, the 

amino-modified probe DNA (Cy3-T15-NH2) was grafted to the CNT membrane surface 

followed by cDNA (A15) hybridization. 

3.2  Materials and Methods 

3.2.1 Synthesis of VA-MWNTs 

To make our CNT membrane, the next step was to grow an array of ultra-long, 

aligned MWNTs (VA-MWNTs) using the CVD-method with high purity ethylene as the 

carbon source, hydrogen and argon as the carrier gas (70:70:70 sccm) in a 25 mm tube 

furnace (Lindberg, USA). The growth temperature was 725˚C. Ultra-long, aligned MWNTs 

were grown for 1 hour. The growth time can be varied depending on the desired length. 

Figure 3-1 shows the CVD system setup, growth mechanism, and SEM images of as-grown 

VA-MWNTs.  
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Figure 3-1: Synthesis of vertically aligned MWNTs. (a) Schematic of a CVD system. (b) 

Illustration of carbon nanotube growth. (c), (d) and (e) SEM images of MWNTs grown 

by CVD method at 725˚C. 
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3.2.2 Synthesis of the Membrane and the Control Device 

Next, the VA-MWNTs were embedded in polydimethylsiloxane (PDMS, Sylgard 

184, 1:10 catalyst: resin ratio) and cured in a vacuum oven for 1 hour at 70°C. The MWNT-

PDMS membranes were then submerged in HF for 10 minutes to detach them from the 

silicon substrate. Following this, the MWNT-PDMS membranes were wet etched in a 

solution of N-methyl pyrrolidinone (NMP) and tetra-butyl ammonium fluoride (TBAF) for 

1.5 hours in order to chemically etch the excess PDMS. The ratio of NMP to TBAF/water 

was 3:1. TBAF etches PDMS and NMP dissolves the etched material. Subsequently, the 

membranes were exposed to plasma oxidation for 20 minutes so as to remove excess polymer 

from the surface and open MWNT tips (Figure 3-5). This process also introduced carboxylic 

acid functional groups onto the tips of the MWNTs. 

3.2.3 DNA Functionalization 

Cy3-T15-NH2 single-stranded DNA was grafted onto the tips of the CNTs using 

carbodiimide chemistry, which has been successful in grafting small and large molecules 

onto CNT entrances 124,131,135. The conjugation reaction was carried out overnight at room 

temperature using carbodiimide chemistry with a final volume of 1 mL containing 10 µM 

amino-modified probe DNA (Cy3-T15-NH2), 10 mM EDC·HCl (freshly prepared), 25 mM 

NaCl, and 25mM MES (pH 6.0). After reaction, the solution was removed, and the 

membrane was washed with 500 µL of deionized water twice to remove free ssDNA. For 

cDNA hybridization, 200nM cDNA (A15) was added into the 50mM NaCl solution and 50 

mM PBS (pH 7.5) with a final volume of 1mL and left overnight. The CNT-ssDNA-cDNA 
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complex was purified by removing the solution and rinsing the membrane with PBS to 

remove free cDNA.  

3.2.4 Ionic Transport Measurements 

The experimental setup consisted of MWNT-PDMS membranes inserted between 

two additional PDMS O-rings with a 4 mm diameter, which defined the effective membrane 

area to be 12.56 mm2. For ion transport experiments, the MWNT-PDMS membranes were 

clamped between two polystyrene (PS) cuvettes, which functioned as the feed and permeate 

reservoirs. The experimental setup for measuring ion transport through these DNA-

functionalized CNT membranes is shown in Figure 3-2.  

 At the start of each transport experiment, the feed reservoir, which was previously 

filled with 1 mL of 0.1 M KCl, was replaced by 1 mL of 1M [Fe(CN)6]3- .The [Fe(CN)6]3- 

solutions were made by dissolving potassium ferricyanide (Sigma-Aldrich) into 0.1 M KCl 

aqueous solution. The permeate solution were sampled at various time points over 48 hours. 

In order to prevent any pressure-driven transport, the solution levels were ensured to be the 

same height on both the feed and permeate sides. The permeate solution was periodically 

measured using electrochemical measurements using a CHI650A potentiostat (CH 

Instruments). Differential pulse voltammetry (DPV) was used to determine the potassium 

ferricyanide concentration. Calibration plots of the potassium ferricyanide solution in the 

range of 1 to 10-7 M were obtained. The detection limit of this technique is 10-5 M (Figure 3-

3). 
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Figure 3-2: Ion transport experimental setup. (a) Picture of two measurement setups. 

MWNT-PDMS membrane device and PDMS (no MWNT) control membrane are 

clamped between two couvetts. (b) and (c) Schematic drawings of the experimental 

setup and the studied [Fe(CN)6]3-  ion. 
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Figure 3-3: Calibration curve for DPV detection of potassium ferricynide. 

3.2.5 Fluorescence Studies 

Fluorescence studies were implemented to qualitatively study the grafting of amino-

modified ssDNA (Cy3-T15-NH2) to the CNT membrane surface. After ssDNA binding, the 

membrane was washed by deionized water twice and visualized under an inverted epi-

fuorescence microscope (Eclipse Ti-S, Nikon) with a CCD camera (Qimaging Retiga 2000R 

Fast 1394). The excitation wavelength was 540 nm. For comparison, a membrane with no 

ssDNA binding was also visualized. The fluorescence image of MWNT-PDMS membrane 

after grafting of ssDNA is shown in figure 3-4. The fluorescence (red) is from the Cy3-

labelled ssDNA, confirming the successful conjugation of ssDNA onto the MWNT 

membrane.  



 

  48 

 

Figure 3-4: Confirmation of ssDNA grafting on MWNT membrane. (a) Transmission 

white-light image of the membrane before ssDNA grafting. (b) Fluorescence microscopy 

image of the membrane after ssDNA grafting. 

3.3  Results and Discussion 

The fabrication procedure for developing CNT membranes is shown in figure 3-5. 

Vertically aligned CNTs were grown on a silicon substrate using 4 nm Fe as the catalyst and 

ethylene as the carbon source, as reported136. Figure 3-5a includes a scanning electron 

microscopy (SEM) image of as-grown aligned CNTs, showing the high degree of vertical 

alignment. Figure 3-5b shows the cleaved edge of the CNT-PDMS membrane. Because of 

the cleaving process, some of the CNTs are protruding from the surface. The as-grown CNTs 

had a length of ~ 500 µm, as determined by SEM. To further characterize the as-grown 

CNTs, they were imaged with a high-resolution transmission electron microscope (HR-
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TEM), as shown in Figure 3-6. HR-TEM images confirm that the as-grown CNTs are 

MWNTs with an inner diameter around 5 nm. During the CVD growth, tube size is defined 

by the diameter of the iron catalyst particles, which can be seen in the Figure 3-6b inset. 

Figure 3-6c shows histogram of inner diameters of the MWNTs. 

Each MWNT-PDMS membrane contains a large number of MWNTs (~ 4x1010 

tubes/cm2) (figure 3-5c). This high density allows macroscopic measurement of ion transport 

through the membrane. Importantly, the open tips of the MWNTs in the membrane were 

functionalized with carboxylic groups that can be used for further linkage of receptor 

molecules easily. These receptors can readily bind to a target molecule, which subsequently 

can open/close the pore entrance. The aim was to switch functionalized nanopore membranes 

between on and off states reversibly, by attaching and releasing target molecules in a 

controlled fashion.  

In the current study, single-stranded DNA (ssDNA) was anchored to MWNT ends as 

receptors to enable a reversible on/off system. Specifically, to design a smart membrane, the 

MWNT pore entrances were functionalized with amine-modified probe ssDNA that binds 

reversibly to cDNA. The hypothesis is that ion transport through the nanotube pores would 

be hindered when cDNA binds to the probe ssDNA and restored when cDNA is released. As 

a result, this study would establish the ability to gate molecular transport through CNT cores 

for potential applications such as controlled drug release systems and DNA sensing based on 

molecular gating. 
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The experimental setup for ion transport measurement through the MWNT-PDMS 

membrane is shown in figure 3-2. For ion transport measurements, the membrane was 

clamped between two Polystyrene cuvettes, which acted as the feed and permeate reservoirs. 

The studied ion is the potassium ferricyanide. 

 

Figure 3-5: Schematic illustration of the experimental steps for the fabrication of 

membranes with aligned MWNTs (top row), along with the  SEM and optical images of 

the fabricated membrane. Bottom row: (a) SEM of as grown MWNT forest, (b) SEM of 

a cleaved CNT membrane, and (c) Optical image of the free standing membrane. 
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Figure 3-6: TEM characterization of as-grown carbon nanotubes. (a) and (b) HR-TEM 

images showing MWNTs with 5 nm inner core diameter. Inset: AFM image of the Fe 

catalyst nanoparticles. (c) Histogram of inner diameters of the MWNTs. 

 

 



 

  52 

 

 

Figure 3-7: Reversible gating of ion transport via DNA hybridization and 

dehybridization. (a-d) Schematic representation of the CNT membrane as fabricated, 

after ssDNA functionalization, after exposure to mismatched and complementary DNAs 

in solution. (e & f) Amount of ferricyanide ions transported through various 

membranes over time. Control is a PDMS membrane without CNTs. 
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The diffusive transport of [Fe(CN)6]3- ions through the CNT membranes was 

observed, since the ion concentrations in the permeate reservoirs increased progressively 

over the course of time. The opening and closing of the nanopores was sensed by monitoring 

the transport of [Fe(CN)6]3- through the membranes. Using the permeate ion concentrations 

measured, the moles of ions permeated through the MWNT membranes over 48 hours were 

calculated and plotted in Figure 3-7e & f. The net flow of ions from the feed to the permeate 

reservoir was driven exclusively by the concentration gradient across the membrane, which 

was 1 M originally and assumed to be constant during transport measurements. By applying 

linear regression to the data points in Figure 3-7e & f, molar flux (J) values were taken for 

each CNT membrane for quantitative comparison. 

Table 3-1: Molar Fluxes of [Fe(CN)6]3- through CNT membranes of different 

functionalizations 

CNT	
  Membrane	
   J	
  (mmol/hr	
  m2)	
  

Plain	
   37.7	
  	
  

ssDNA	
   22.2	
  

Dehybridized	
   27.3	
  

Mismatched	
   6.01	
  	
  

cDNA	
   <	
  3.15	
  x	
  10-­‐2	
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Before the functionalization of ssDNA to the CNT membranes, a molar flow rate of 

4.74x10-1 µmol/hr was observed for [Fe(CN)6]3-. We also calculated the theoretical molar 

flow rate (MFR) through a plain CNT membrane using the following equation,  

𝑀𝐹𝑅 = 𝐷∆𝐶
𝐴!""
𝐿!""

                                                    (3− 1) 

where D is the diffusion coefficient of [Fe(CN)6]3- in water, ΔC is the concentration gradient 

across the membrane, Aeff and Leff are the effective area and thickness of the membrane, 

respectively. The CNT membranes have an exposed area of 1.256 x 10-1 cm2, thus Aeff is 

1.256 x 10-1 cm2 x (πr2) x N = 2.46 x 10-4 cm2 where r ~ 2.5 nm (the pore radius determined 

by HR-TEM, as shown in figure 3-6), and N is the number of tubes per unit area (tubes/cm2). 

Furthermore, Leff is 5 x 10-2 cm, where Leff is the membrane thickness obtained by SEM. For 

[Fe(CN)6]3- permeation through a plain CNT membrane using a 1 M feed, we obtained a 

molar flow rate of 5.14 x 10-1 µmol/hr or a molar flux of 40.92 mmol/hr m2. The 

experimental molar flux obtained is in good agreement with the theoretically calculated 

value. In the theoretical calculations, we assumed all pores are open by the etching process 

and are clear of any residual catalyst particles. However, previous studies showed that only 

10% of the CNTs are open after plasma treatment137. In addition, structural blockages such as 

bamboo type structures, which are evident in Figure 3-8, further reduce the effective area of 

the membranes. Even though the exact percentage of CNT lockage is unknown, we suspect 

that enhanced to ion transport through CNTs is present, in accordance with previous reports 

135-138. 
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Figure 3-8: HR-TEM images of MWNTs showing structural defects. 

A flux of 22.2 mmol/hr m2 was observed after ssDNA functionalization, suggesting 

that the attachment of ssDNA to the pore entrances hinders the overall transport of 

[Fe(CN)6]3- through the membrane. The presence of chemical moieties at the pore entrance 

imparts steric and other physical interactions between the solute species and the membrane. 

In our case, ssDNA binds mismatched or complementary DNA due to nucleobase pairing, 

altering the pore entrances of the CNT membrane. After incubating the ssDNA-CNT 

membrane with cDNA, a flux less than 3.15 x 10-2 mmol/hr m2 was measured, indicating 

ssDNA-cDNA binding lowered the flux of [Fe(CN)6]3- by three orders of magnitude, 

sterically blocking the transport of [Fe(CN6)]3- through the CNT membranes. As the debye 

length for the studied ionic solution (1 M of [Fe(CN)6]3- in 0.1 M KCl) is ∼ 0.125 nm, the 

electric double layer does not extend into the pore and the membrane does not exhibit any 

cationic selectivity and we can conclude that we only have the steric blocking effect in this 

study. 
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We also measured the molar flux through the ssDNA-CNT membrane exposed to 

mismatched DNA (msDNA, AAAAAAACAAAAAAA), which consists of a single-base 

mismatch at the 8th base position, and the complimentary DNA (cDNA, A15). The binding 

kinetics of ssDNA-cDNA and ssDNA-msDNA can be predicted using the following 

equilibrium kinetics equation, 

        𝐾!" = 𝑒(!∆!  
! !")                    (3-2) 

where 𝐾!" is the equilibrium constant, R is ideal gas constant (8.314 x 10-3 kJ/mol k), T is the 

temperature (295.15 k) and, ∆𝐺  ! is free energy change due to DNA hybridization.  ∆𝐺  ! is 

equal to 39.215 kJ/mol and 27.408 kJ/mol for cDNA and msDNA respectively. Assuming 

DNA hybridization on the membrane surface can be described using Langmuir isotherm, 

𝐾!" =
!

!(!!!)
                                                                              (3-3) 

where c is the initial concentration of DNA, and    𝜃 is the equilibrium fraction of hybridized 

DNAs. In our experiment, c is kept at 10-7 M. Considering equation 3-2, the equilibrium 

constant is equal to 8.76 x 106 M-1 and 7.1 x 104 M-1 for both cDNA and msDNA cases 

respectively. So by considering equation 3-3, the equilibrium fraction of hybridized DNAs is 

equal to 0.466 and 0.0071 for cDNA and msDNA cases respectively. So the ratio of 

hybridized cDNA with respect to msDNA case in equilibrium is about 66, which can explain 

the difference between the molar fluxes for cDNA and msDNA. 

Finally, it is worthwhile to note that the dehybridized membrane, which consists of a 

ssDNA-functionalized CNT membrane after the removal of cDNA, has a molar flux of 27.3 
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mmol/hr m2, indicating no loss to ion permeation upon cDNA removal. cDNA hybridization 

was reversed by heating the membrane for 2 hours in 60°C deionized water, thus restoring 

the molar flow rate of the ions across the ssDNA modified CNT membrane (Figure 3-7f).  

The use of ssDNA-CNT membranes with cDNA regulates the ion permeation through 

the membrane, displaying reversible on/off characteristics. The use of [Fe(CN)6]3- as a 

marker to monitor nucleobase binding offers the means to recognize DNA with single base-

pair mismatch. 

3.4 Conclusions 

In summary, the ion transport across the plain and DNA-functionalized carbon 

nanotube membranes was studied. The membrane is composed of VA-MWNTs embedded in 

a PDMS Matrix. The diffusive transport rates of ferricyanide ions were measured in four 

cases. Therefore, DNA base pairing at the entrance of CNTs is shown to modulate ion 

permeation through the membrane by steric pore blocking. Furthermore, reversible opening 

and closing of CNT pores were achieved by the addition and removal of A15 complementary 

DNA, gating ion transport. 

 Also, the ssDNA functionalized CNT membrane is capable of recognizing single 

base-pair mismatches. As a result, this study has demonstrated the ability to gate molecular 

transport through CNT cores for potential applications such as controlled drug release 

systems and DNA sensing based on molecular gating achieved with DNAs. 

Such ability has led us to design and fabricate novel parallel MWNT nanofluidic 

devices, which will be discussed in the next chapter. 
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Chapter 4: Arrayed Multi-walled Carbon Nanotube Nanofluidic 

Devices 

4.1 Introduction 

Advances in CNT synthesis methods and experimental design have only recently 

enabled the make of devices to explore transport through the small diameter CNTs. These 

devices hold promise as next-generation sensors, platforms for water desalination, ion 

conduction, energy storage, and to directly probe molecular transport under significant 

geometric confinement. In this chapter, the development of arrayed MWNT nanofluidic 

devices is presented. Compared with traditional nanopore devices, these nanotube devices are 

different. These nanotubes have a remarkably high aspect ratio and so they can confine 

molecules and also they can increase the translocation time, which possibly result in novel 

translocation features. The devices have a planar design, which qualifies simultaneous optical 

and electrical measurements. The devices are designed to have multiple nanofluidic devices 

on one chip in order to be suitable for simultaneous detection. 

4.2 Experimental Methods and Materials 

4.2.1 Design and Fabrication of the Arrayed Multi-Walled Carbon Nanotube 

Nanofluidic Devices 

An experimental platform was explicitly designed to characterize ion transport 

through the interior of CNTs. The devices were fabricated using an epoxy-based material 

(SU-8), a negative resist that is highly functional and optically transparent. Cured SU-8 
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(MicroChem) films, or microstructures, are very resistant to solvents, acids, and bases and 

have excellent thermal and mechanical stability, making them well suited for fabricating 

permanent structures such as fluidic channels. SU-8 structures acts as an oxygen plasma 

mask, in order to open the CNT ends, and to form liquid reservoirs at both sides of the CNTs. 

The following steps were taken to fabricate the SU-8/PDMS nanofluidic devices. 

4.2.1.1 Patterned CVD Growth of Vertically Aligned MWNTs  

4.2.1.1.1 Aluminum Oxide Deposition 

The first step was aluminum oxide (alumina) deposition. Beginning with a RCA 

cleaned Si<100>/SiO2 wafer, 20 nm thick alumina layer was deposited by Atomic Layer 

Deposition (ALD) technique (Oxford PlasmaLab 100 FlexAL). The alumina acts as a 

diffusion barrier to reduce the amount of iron that is lost by diffusion into the substrate. It 

may also mediate the surface mobility of iron as it is heated and thus impact catalyst particle 

formation. 

4.2.1.1.2 Catalyst Photolithography Patterning and Catalyst Deposition 

The next step was iron catalyst patterning, which was performed by standard 

photolithography technique. The patterns were transferred from a photo mask onto the 

photoresist using UV exposure. Then the exposed areas were washed with a developer and, 

finally, iron thin film was deposited. The final pattern was rinsed with acetone and 

isopropanol to remove the photoresist residues. Thus, the iron pattern remained on the 

substrate where it was directly deposited. If no patterning was done, a thin layer of iron was 



 

  60 

deposited on the Si/SiO2 substrate. The catalyst used was a 4 nm iron (Fe) film, electron 

beam evaporated on Si<100>/SiO2 wafers. The Fe film was patterned by the standard 

photolithography technique, using AZ3330 photoresist and LOR5A as the lift-off resist. To 

obtain maximum process reliability, substrates were cleaned and dried prior to applying the 

LOR5A resist. The process began with solvent cleaning, rinsing first with dilute acid, 

followed by DI water. To dehydrate the surface, the wafers were baked at 200°C for 5 

minutes on a contact hot plate. An adequate amount of LOR5A was dispensed on the 

substrate. The dispense spin speed and time were 500 rpm and 5 seconds, respectively. The 

terminal spin speed was 3000 rpm and the spin time was 45 seconds. The LOR5A coated 

wafers were baked at 150˚C for 3 minutes and cooled to room temperature. AZ3330 

photoresist was then spun onto the substrates. The dispense spin speed and time were 500 

rpm and 15 seconds, respectively. The terminal spin speed was 4000 rpm and the spin time 

was 45 seconds. The AZ3330 coated wafers were baked at 90˚C for 5 minutes. After cooling 

to room temperature, the samples were patterned by UV exposure machine (Oriel Mask 

Aligner) at 40 mW/cm2 for 14 seconds and were post exposure baked at 110˚C for 3 minutes 

followed by cooling to room temperature. After developing in the AZ300 developer for 45 

seconds, the samples were hard baked at 110˚C for 2 minutes. The next fabrication step 

before growing the MWNTs was electron beam iron deposition, which is shown in Figure 

4.1. 
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Figure 4-1: Fe catalyst fabrication. (a) Fe catalyst mask design. (b) AFM image of the 

Fe catalyst nanoparticles, which were annealed at 725˚C. 

4.2.1.1.3 CNT Growth by Chemical Vapor Deposition (CVD) 

CNT membranes were fabricated as described previously 136. VA-CNTs with 5 nm 

pore diameter were grown through chemical vapor deposition (CVD) using high purity 

ethylene, hydrogen, and argon as the synthesis gases (70:70:70 sccm) in a 1-inch tube 

furnace (Lindberg). The growth temperature was 725˚C, and the catalyst used was a 4 nm Fe 

film E-beam evaporated on Si<100>/SiO2 wafers. The growth time was between 30-60 

minutes with no pre-annealing step. The TEM image (Figure 4-2) shows that the CNTs 

grown by CVD have an average inner diameter of 5 nm, and are well correlated to the 

density and size of the Fe catalyst particles. 
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Figure 4-2: TEM images of multi-walled carbon nanotubes grown by CVD method at 

725 ˚C using 4 nm Fe thin film 

 

4.2.1.2 VA-MWNT Capillary Folding 

Fabricating the nanofluidic devices requires folding of the vertically aligned MWNTs 

to form horizontally aligned carbon nanotube (HA-CNT) patterns, which is done by a 

capillary folding method. Figure 4-3 a illustrates the process of capillary folding of VA-

CNTs. A thin VA-CNT wall structure was grown by thermal CVD from a lithographically 

patterned catalyst film. Then a solvent that wets the CNTs (5% ethanol and 95% DI water) 

was added to a beaker, and the CNT sample was immersed in the solution. As the sample 

was taken out, it was observed that the wall had collapsed to the substrate, resulting in HA-

CNT. The self-directed folding of patterned VA-CNT walls into HA-CNT patches is caused 

by a mechanical instability induced by capillary forces. The collective deformations and 
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motions of the CNTs, were caused by both internal and external capillary forces on the CNT 

forest, as shown in Figure 4-3 a139. Figures 4.3 b to e shows the SEM images of the VA-

MWNTs before and after folding. 
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Figure 4-3: Folding of MWNT arrays by capillary folding method (a) step-by-step 

schematic of structural transformation induced by liquid condensation onto the Silicon 

substrate (Reprinted with permission from reference 141). (b) and (c) are SEM images 

of the VA-MWNTs before folding, and (d) and (e) are SEM images of the HA-MWNTs 

after folding, at different scales. 
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4.2.1.3 Protecting CNTs and Plasma Etching 

Once the HA-MWNT array was made, plasma etching and opening of the CNT ends 

were carried out. Photolithography was used to fabricate the SU-8 microfluidic structure. 

This structure not only serves as the microchannel through which to introduce the testing 

solution, but also is a protective layer to protect the part of the CNTs that should not be 

etched by oxygen plasma. The SU-8 film was patterned by standard photolithography, using 

SU-8 2025 (MicroChem) negative photoresist. An adequate amount of SU-8 2025 was 

dispensed on the HA-MWNT sample. The dispense spin speed and time were 500 rpm and 5 

seconds, respectively. The terminal spin speed was 2000 rpm, and the spin time was 30 

seconds. The SU-8 coated wafers were baked at 65˚C for 3 minutes and at 95˚C for 6 

minutes. After cooling to room temperature, the samples were patterned by UV exposure at 

40 mW/cm2 for 60 seconds (Oriel mask aligner) and were post exposure baked at 65˚C for 1 

minute followed by 95˚C for 6 minutes. The samples were then cooled to room temperature 

and finally developed in SU-8 developer for 3 minutes. Fabrication required an additional 

step: removing the exposed MWNTs by oxygen plasma etching (Trion Phantom Reactive Ion 

Etcher (RIE)), and opening both ends at the bottom of the epoxy reservoirs (Figure 4-4). For 

this step, the RIE condition was as follows: the oxygen flow, chamber pressure and RIE 

power were 30sccm, 250 mTorr and 100W, respectively. The duration was 5 minutes and 

was optimized to remove all the exposed MWNTs and to prevent etching of the CNTs 

underneath the SU-8 layer. 
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Figure 4-4: Protecting CNTs and oxygen plasma etching (a) SEM image of a HA-

MWNT block on the silicon substrate before SU-8 patterning. (b) and (c) Optical 

images of HA-MWNT block before and after plasma etching. 

4.2.1.4 Microfluidic Master Making 

To fabricate the microfluidic patterns, soft lithography technique was used. The 

patterned silicon wafer was plasma etched, producing the silicon master, as follows: 

• Depositing 200 nm sputtered Aluminum (Al) deposition, which was used as an RIE 

mask. 

• Al patterning which was prepared by AZ3330 spin coating at 500 rpm for 15 

seconds, 400rpm for 45 seconds, 5 minutes soft baking at 90˚C, 14 seconds UV 

exposing, 3 minutes post exposure baking at 110˚C, 70 seconds developing in 

AZ300 developer, followed by 2 minutes hard baking at 110˚C. 

• Wet etching of Al layer using PAN etch for 1 min at 40˚C. 
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• RIE of Silicon with the following parameters: 160 mTorr Chamber pressure, 200 W 

ICP, 20 W RF power, 7 sccm O2 gas flow, 12 sccm SF6 gas flow and the etch rate 

was 0.02 µm/sec) 

• Wet etching of Al layer using PAN etch for 1 min at 40˚C. 

The next step was PDMS molding and finally bonding the PDMS microfluidic channels to 

the device, which is described in the next section. 

4.2.1.5 PDMS Molding and Bonding 

PDMS microfluidic channels were fabricated using standard soft lithography. For this 

technique, PDMS prepolymer and the curing agent were purchased from Dow Corning 

(Midland, MI, USA). To begin the fabrication, a photomask design with microchannels was 

created (CAD/Art Services, Bandon, OR, USA), followed by the previously explained master 

fabrication process. A plasma etched Si wafer was applied as the master for molding. PDMS 

prepolymer was thoroughly mixed with its curing agent at a weight ratio of 10:1 and 

degassed for 30 minutes under vacuum. The mixture was then poured onto the master and 

cured for 1 h at 80 °C. After curing, the PDMS substrate with a thickness of 2 mm was 

peeled off from the master, and two, 1 mm diameter holes were punched at the reservoir 

locations (Figure 4-5). 
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Figure 4-5: Silicon microfluidic master and PDMS Molding 

By bonding the PDMS microfluidic channels to the Si/CNT/SU-8 substrate, the final layer 

was prepared. Specifically, an oxygen plasma treatment of both PDMS and SU-8 surfaces 

was applied for 20 seconds at 29.6 W. Finally, the two substrates were bonded together. As 

the PDMS/SU-8 bonding was not strong enough, the following approaches were tried in 

order to improve the bonding between the PDMS and SU-8:  

• Using prime coat as adhesive  

• Using uncured PDMS as glue 

• Coating a thin layer of uncured SU-8 followed by curing 

• Modifying the surface with 3-aminopropyltriethoxysilane (APTES) 

• Fabricating Si3N4 Shadow mask by protecting SU-8 from burning under oxygen 

plasma 

None of these methods were perfect. Consequently, the device was designed in a different 

way. This bonding issue was solved by fabricating the device with PDMS. The following 

steps were taken to fabricate the PDMS device (Figure 4-6): 
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• Transferring the HA-MWNT onto the PDMS slab substrate. The PDMS slab was 

made by the same procedure mentioned in chapter 3. The uncured PDMS mixture 

(10:1 weight ratio) was spin coated on the PDMS slab for 2 minutes at 4000 rpm. 

Then, the CNT sample and the coated PDMS slab were put together and baked for 

1 hour at 80˚C. Eventually, the PDMS slab was peeled off and the HA-MWNT 

were completely transferred. 

• Making the microfluidic master: the master was made by SU-8 photolithography as 

explained in chapter 3. 

• Depositing Al: 100 nm Al was sputtered, making the cured PDMS easier to peel. 

• Making PDMS microfluidics: PDMS molding, using soft lithography, enabled the 

transfer of the pattern. 

• Glue bonding of PDMS: the uncured PDMS mixture (10:1 weight ratio) was spin 

coated on the PDMS slab for 2 minutes at 4000 rpm. The CNT sample and the coated 

PDMS microchannels were next set together and, to ensure adherence, baked for 1 

hour at 80˚C. 

• Plasma etching of CNT: the RIE was applied for 25 minutes in a chamber with 50 

mTorr pressure, 250 W RF power, 13 sccm O2 gas flow, and 37 sccm CF4 gas flow. 

• Using Plexiglass to hold the device and to enlarge the reservoirs (Figure 4-6). 
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Figure 4-6: Schematics of MWNT ion channel device. (a) Ultra long MWNTs are 

aligned on a silicon wafer. (b) The PDMS structure covers the MWNTs during the 

etching process and also acts as a barrier between the two ionic solutions, blocking all 

molecular transport except that through the MWNTs. (C) Actual picture of the device. 

 

4.3 Results and Discussion 

4.3.1 Ionic transport measurement 

Once the CNT based nanofluidic device was fabricated, droplets of 1 M sodium 

chloride (NaCl) in DI water was added to one side of the open-ended nanotubes, i.e. the feed 

reservoir, and DI water was added to the other side, i.e. the permeate reservoir. The device 

was then left to air dry over night. Salt crystals were found in the area where the water was 

initially placed (SEM image, Figure 4-7 C). Elemental analysis by energy dispersive X-ray 
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spectroscopy (EDX) proved the presence of Na (9.51 atomic %) and Cl (4.33 atomic %) in 

the permeate reservoir, which have translocated through the CNT-embedded PDMS barrier 

(Figure 4-7). The same test was performed with potassium ferrocyanide (C6N6FeK4), and the 

EDX results verified the existence of nitrogen (N) (9.75 atomic %), iron (Fe) (1.83 atomic %) 

and potassium (K) (0.75 atomic %) transported through the CNT-embedded PDMS barrier 

(Figure 4-8). A transport test through the control devices with no CNTs was also performed 

and indicated no ion transport through barrier. 
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Figure 4-7: Evidence of ion transport through MWNTs. (a) EDX confirms the NaCl 

presence in the permeate reservoir. (b) Experimental platform showing droplets of 

NaCl and water connected by the MWNT arrays. (c) SEM image of NaCl crystals found 

in the area where the water evaporated. 
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Figure 4-8: Evidence of ion transport through MWNTs. EDX confirms the C6N6FeK4 

presence in the permeate reservoir. Inset: Experimental platform showing droplets of 

C6N6FeK4 and water connected by the MWNT arrays. 

 

4.4 Conclusions and Future Work 

In this part of the study, we have designed and fabricated novel CNT nanofluidic 

devices, by taking use of vertically aligned and ultra-long MWCNTs for the study of the ion 
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transport and potential applications. Here are some of the important aspects of the project 

that leads us to the future work. 

• There are a lot of simulations and few experimental data (providing experimental 

conformation to test theoretical models). 

• There are long channels to extend the event time and detect the current changes. 

• The devices have very high aspect ratio such that they can confine the entire 

biomolecule. 

• The CNTs are long enough to be used for separation applications. 

• The CNTs are capable of chemical modification 

• The CNTs are capable of doping for ion selective applications. 

• Our devices have a planar layout, which could enable simultaneous optical and 

electrical probing. 

We envision many possibilities for new devices with enhanced construction and further 

analysis methods available, in particular the possibility of DNA sequencing. 
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Chapter 5: Conclusions and Future Work 

5.1 Conclusion 

CNTs have been one of the most interesting one-dimensional nanomaterial for years. 

Many researchers have been studying their outstanding properties in various applications, 

and have demonstrated that CNTs are attractive materials for making various nanodevices. 

The exceptionally high aspect ratio, smooth walls, and nanoscale inner diameters of CNTs 

cause the distinctive phenomenon of ultra-efficient transport of water and gas through these 

ultra-narrow nanotubes. Water and gas molecules move through nanotube pores orders of 

magnitude faster than through other pores of comparable size. However, despite the current 

research, there are still few practical applications of CNTs, due to a lack of understanding 

about their fundamental properties and potential. CNT membranes are a versatile and truly 

powerful nanoscale platform for fundamental studies of nanofluidics. 

The first part of this Ph.D. thesis has mainly dedicated to the design and fabrication of 

CNT membrane devices and exploring the ion translocation through a unique CNT 

membrane device composed of vertically aligned and opened CNTs with inner core diameter 

of about 5 nm. The main features of the CNT membrane structure are that the pore size is 

arranged by the inner core of the CNT, making remarkable control over pore size distribution 

possible; the smooth graphitic inner core lets less interaction between molecules in transition, 

which leads to high transport ion flow rates; introducing selective chemistry is possible; and 

the membrane is electrically conductive because of the CNTs crossing. The study sets the 

foundation for understanding and controlling transport through this novel membrane device. 
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In summary, DNA-functionalized CNT membranes were designed and used to mimic 

biological ion channels regulated by nucleobase-pairing of ssDNA. Single-stranded DNA 

base pairing at the entrance of CNTs is shown to modulate ion permeation through the 

membrane by steric pore blocking. Furthermore, the fabricated CNT membranes are 

reversible and are capable of recognizing single base-pair mismatches. As a result, this study 

has established the membranes’ ability to gate molecular transport through CNT cores for 

potential applications such as controlled drug release systems and DNA sensing based on 

molecular gating achieved with DNAs. 

The major conclusion of the thesis for the first part of the study is as follows: 

In chapter 3 mass transports was demonstrated and it exceeds conventional predictions in 

nanochannels. However, chemical functionalization of the CNT tips introduces enhanced 

interaction between the solvent and tube opening to reduce the unique flow velocity. 

Gatekeeper molecular interactions can control the ionic diffusion through a CNT membrane 

structure. 

Taking advantage of carbodiimide chemistry allows the CNT membrane to be 

covalently attached to functional molecules (ssDNA), changing the gate chemistry, which in 

turn change the flux and selectivity, as showed in Chapter 3. 

A main characteristic of the membrane structure is that it is electronically conductive. 

The studies done in this thesis are based on concentration gradient ionic diffusion through the 

CNT membranes. Future research can be focused on studying the effect of potential on the 

ion transport rate through the CNT membranes. 
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Learning and considering the results of the ion transport through the CNT membranes 

discussed in Chapter 3 of the thesis, we moved on to the second part of the thesis (Chapter 4). 

In it, we report the design and fabrication of devices in which CNT nanofluidic devices, 

composed of an array of aligned high aspect ratio multiwalled CNTs, span a barrier between 

two fluid reservoirs. This device is expected to enable direct electrical chronoamperometric 

measurement of ion transport through the nanotubes and analysis of the ion transport 

properties. The ion translocation can be probed from ionic current signals. 

Our devices have a planar design, which support simultaneous optical and electrical 

analyzing. The current device structure is compatible with lab-on-a-chip micro-total-analysis 

systems and microelectronics. CNT nanofluidics is relating fundamental nanoscience and 

industrial needs, and suggests potential applications for focusing on future sustainability 

concerns of humankind. 

Among myriad applications of transport through the CNT membrane, one of the 

interesting applications is in using these structures as ionic separations. In this thesis the 

evidence of steric interactions between permeating molecules and attached molecules on the 

membranes was demonstrated. A model, consisting of sterically hindered diffusion at the 

tube entrance and near bulk diffusivity inside the core, could quantitatively describe the 

fluxes. Also techniques for increasing the attached molecules on the CNT walls to increase 

the electrostatic/steric interaction are demonstrated. But, a limitation is that the functional 

molecules on CNT walls will cause the solvent to interact intensely with the walls and will 

greatly diminish the most attractive feature like high mass transport. So, the best method 
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would be to have a highly selective chemistry at the CNT end, whereas leaving the inner core 

of the CNT pristine. More research needs to be done to learn how to increase selectivity 

without disturbing the permeability through the CNTs. Membranes with large CNT core 

diameters of about 7 nm appear to be more appropriate for separation of macromolecules. 

The pore sizes are large and not suitable for gas separation applications, although chemical 

functionalization could feasibly present some selectivity. 

5.2 Directions of Future Work 

Future research could be focused on optimization of the functional group density and 

dimension of the macromolecule in order to improve the efficiency of the device for drug 

delivery applications. Depending on the application, different functional molecules for 

different permeates is needed. Additional possible applications would require use of the 

electrochemical catalytic and fast transport property of the membrane. The CNTs could 

simply function as catalyst carriers, and the membrane structures could be used as membrane 

reactors, where mass transport and heterogeneous electrochemical catalysis could be 

combined to realize Electrochemical Membrane Reactors. Such devices could be promising 

for fuel cell or environmental applications. 

CNT membranes represent an emerging branch of membrane science with numerous 

opportunities for use in materials science and engineering, and potential applications in 

different areas related to the environment and energy. Researchers may be inspired by the 

fact that CNT-based membranes are great choices to advanced materials, like the thin-film 

composite membranes used for the desalination of seawater. At this point, it may be 
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worthwhile to restate that this unique class of membranes can provide several competitive 

advantages, such as very fast liquid and gas transport properties; tighter control over pore-

size distribution; chemically modified mass-transport properties; stimuli-responsive 

behavior; and well-defined nanofluidic frameworks for understanding molecular transport at 

the nanoscale. 

As an example, the array of CNT membranes is potentially attractive for filtration 

applications such as protein separation. Their electrical conductivity could be useful for flux 

regeneration and environmental remediation applications such as in electrochemical 

membrane reactors. Open-ended CNT membranes are being considered for desalination 

applications, while mixed-matrix membranes could provide materials with novel transport 

properties for conventional membrane processes, such as membrane distillation or gas 

separation. 

Despite this interest, challenges remain in synthesizing these membranes 

reproducibly, cost effectively, and with minimum variation of diameters over large areas. For 

example, desalination membranes for >95% salt rejection would require less than 1 in 100 

tubes above 1-nm diameter. These approaches could be controlled at the synthesis stage, that 

is, with greater understanding and fine-tuning of the growth of nanotubes. 

Another approach requires application of diameter-controlled arrangement of CNTs 

from SWNT suspensions, followed by alignment of CNTs based on self/electric-field-based 

assembly. To summarize, research on CNT membranes is at a promising stage of evolution. 

Real-life applications are expected to emerge in the near future. However, several 
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fundamental and engineering questions still remain unaddressed. Therefore, this highly 

exciting and remarkable multidisciplinary research area is in need of breakthroughs in 

nanoscale materials science, composite materials engineering, and better understanding of 

transport phenomena. 
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