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Abstract 

The Terahertz (THz) radiation –also known as “T-ray and THz gap”– refers to a certain band of the 

electromagnetic spectrum whose frequency extends between 0.1THz and 10THz. Compared to the 

microwave band, the THz radiation has higher frequency. Therefore, it can be used for high capacity 

wireless communication and high resolution imaging application. Furthermore, several applications –

such as biomedical imaging and spectroscopy – can be designed to use the unique material response 

to the THz radiation. The lack of an appropriate (stable, compact, high power and reasonably 

inexpensive) THz radiation source has held up the progress in these THz potential applications. 

Powered by the advance in the modern micro-fabrication techniques along with the huge progress 

in the computational resources/tools, several THz radiation sources have been introduced. These 

sources can be classified as; vacuum sources, solid state source and laser and photonic sources. 

Among these sources, the Vacuum Electronic Devices (VEDs) demonstrate the highest average 

power. Therefore, it can be used to accomplish both the compact size and the sufficient generated 

power requirements for the THz source. Since the parameters of the VED –such as the operating 

frequency, the power conversion efficiency and the bandwidth– are defined from the Slow Wave 

Structure (SWS) design, the SWS is considered as the key element in the VED radiation source. The 

design of the VED source is performed in two steps; the cold analysis and the hot analysis. While, the 

design of the SWS is performed in the cold analysis, the hot test deals with the electron beam-wave 

interaction and the electromagnetic field generation. 

In this work, the Photonic Crystal (PC) structure is used to design a novel Double Defected PC 

(DD-PC) based SWS. Compared to other SWSs, the DD-PC structure has no axial discontinuity, 

which facilitates the fabrication of the SWS. Additionally, the generated THz radiation is extracted 

from the defects, which is located away from the electron beam. Hence, the electron beam-wave 

interaction process is not affected. Moreover, since the DD-PC based SWS is a metallic structure, it 

can be used for high THz power radiation. Taking advantage of non-uniform Finite Difference 

Frequency Domain (FDFD) method, the design of a DD-PC based SWS operating at 130GHz was 

performed.  

Due to the complexity of the SWS and electron beam-wave interaction, the hot analysis was carried 

out using a numerical analysis. The numerical simulation can be divided into two connected sub-

simulations; the electromagnetic field simulation and the particle simulation. While, the Finite 
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Difference Time Domain (FDTD) analysis is used as the electromagnetic field simulator, the physical 

parameters of the electron beam were calculated using the Particle In Cell (PIC) simulation. The 

FDTD/PIC simulation was used to analyze the performance of several Backward Wave Oscillators 

(BWO) designed using the DD-PC based SWS. Furthermore, the FDTD/PIC was used to optimize the 

BWO parameters for maximum THz radiation. To reduce the simulation time, a parallel Open Multi-

Processing (OpenMP) version of the FDTD/PIC tool was created and implemented. 

To alleviate the high acceleration voltage required for the electron beam in the BWO using the DD-

PC based SWS, the Axial loaded Double Defected Photonic Crystal (ADD-PC) based SWS was 

implemented at 200GHz. Starting from the band gap diagram, the ADD-PC based SWS was 

designed. Then using the High Frequency Structural Simulator (HFSS), an optimization of the SWS 

was performed. Then, the design of the SWS was verified using the HFSS probe-wheel experiment. 

The performance of the BWO using the ADD-PC based SWS was investigated using the FDTD/PIC 

simulation. Finally, to show the potential of the proposed SWS, a BWO operating at 650GHz was 

presented using the ADD-PC based SWS. The FDTD/PIC simulation results, of the proposed BWO, 

indicate that an output power of almost 8W at 650GHz with 1.8% conversion efficiency can be 

achieved. 
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Chapter 1 
Introduction 

Covering the gap between the microwave band and the optical band in the electromagnetic spectrum, 

the Terahertz (THz) radiation is an electromagnetic radiation whose frequency extends from 0.1 to 

10THz  [1]. Although the THz radiation is naturally available in everyday life, it is considered as the 

least explored region in the electromagnetic spectrum. The main reason of this is the lack of 

appropriate THz radiation source. Due to technical difficulties involved in the design, analysis, 

optimization and realization of a compact THz source, the term “THz gap” is used to define this 

frequency band. 

 

Since several physical processes have unique spectral features in THz band such as; energy gaps in 

superconductors, rotational transition in molecules, and intra-band transitions in semiconductors, and 

 

Figure  1-1 The THz radiation band in the electromagnetic spectrum  [1]. 
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powered by the advance of micro-fabrication techniques and micro-electronics, research in the THz 

frequency regime has become an important research topic within the last two decades. In addition to 

the high data rate communication offered in this frequency band, several applications are designed to 

use these particular characteristics of material responses to THz radiation  [2- 7]. 

1.1 Motivation and Methodology 

In most of the sub-millimeter (sub-mm)/THz application, the radiation source is the keystone element. 

There are two types of THz radiation; the pulsed radiation, and the Continuous Wave (CW) radiation. 

At present, the bottle neck in the development of commercial THz applications is the lack of a 

compact THz radiation source. The main challenges in the THz source are the generated power, the 

source efficiency and the compactness of the source. Since the THz radiation is highly attenuated, the 

THz source should be powerful enough to overcome it. Also, The source should be compact enough 

to be deployed in the system  [8-  10]. 



 

 3 

 

In the last decade, powered by the advance in the optical technology and the fast growth of the 

microwave technology, the THz gap has rapidly shrunk. However, neither the optical source nor the 

microwave devices were able to fully exploit the THz gap. For the microwave frequency end (low 

frequency side - Figure  1-2) the electronic-based sources are able to cover the THz gap, up to 0.8THz, 

but their output power falls down rapidly as the frequency increases  [11- 12]. On the other side of the 

gap, the fundamental physical limitation of the laser source (kT ≈ 26 meV , where k is Boltzmann 

constant) bounds its use as a compact, room temperature and powerful source at this band  [13]. The 

THz power performance of both the solid state sources and the optical sources are presented in Figure 

 1-2. 

While, the Vacuum Electronic Devices (VEDs) are known as efficient, stable and high power 

microwave energy sources  [15-18], realization of the VED source in THz band faces different 

challenges (Figure  1-3). These challenges include; the electron beam, thermal management, source 

 

Figure  1-2 THz-power performance of different sources around the THz gap  [14]. 

RTD: Resonant tunnel diode. IMPATT: Impact ionization avalanche transit-time diode. Gunn: 

Gunn laser. QCL: Quantum-cascade laser. III–V: Denotes groups III and V in the periodic table of 

elements. 
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fabrication and the efficiency. To have a reliable source, an electron beam with a cathode life time > 

104 hour is required. Also, the efficiency of the proposed VED source should be high enough such 

that the generated power is larger than 1mW. Depending on the source efficiency, a powerful and 

compact cooling system is required. Besides, the dimensions of the proposed source should be 

realizable using modern micro-fabrication techniques.  

 

 

Since the parameters of the VED source (such as; the operating frequency, operational bandwidth 

and the efficiency) are defined by the proper selection of the Slow Wave Structure (SWS), it is 

considered as the key element in designing VED source. The SWS is an electromagnetic device that 

allows the propagation of an electromagnetic wave with a phase velocity lower than the speed of light 

in the medium. Thus, this electromagnetic wave can interact with an electron beam travelling with the 

same velocity. Although different SWS designs were reported such as; the folded waveguide, the 

coupled cavity, the vane loaded waveguide, and the double corrugated waveguide, they suffer from 

different drawbacks (limited power handling capability, fabrication and assembly of the source and 

tunability problems). 

 

Figure  1-3 The Sub-mm/THz VED source challenges 
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The Backward Wave Oscillator (BWO) is considered as the most promising VED source for THz 

radiation  [18- 19]. Therefore, the main goal of this thesis is to design a BWO operates in this 

frequency band. Since the performance of the BWO is defined by the SWS, a major part of this work 

was dedicated to design it. The project consists of two main phases; the cold analysis and the hot 

analysis (Figure  1-4). Within the cold analysis, novel SWS were designed using the metallic Photonic 

Crystal (PC) structure. To test the suggested structure, a proof of concept prototypes were fabricated 

using both the CNC machining and the 3D print technology. During the hot analysis, a numerical 

Computer Aided Design (CAD) tool was implemented to simulate the electron beam-wave interaction 

problem. Hence, the performance of the BWO was investigated. To illustrate the potential of the 

proposed BWO, the design procedure and optimization of two BWO operating at 200GHz and 

650GHz are provided (Figure  1-4). 

The first phase, the cold analysis, deals mainly with the design of the SWS using a rigorous 

electromagnetic numerical method. In this work, the main idea is to combine both the excellent mode 

selectivity of the PC structure along with the high power handling capabilities of the metallic 

structure in designing the Double Defected Photonic Crystal (DD-PC) based SWS. In order to verify 

the existence of the slow wave mode in the DD-PC based SWS, two main verifications were 

proposed; numerical verification and a simple proof of concept experiment. 

The electron beam-wave interaction is carried out in the second part of this research (hot analysis). 

Due to the complexity of the SWS and the electron beam-wave interaction, a numerical model was 

used to analyze the performance of the THz radiation source. The simulation can be divided into two 

timely interactive sub-simulations; the field simulation and the particle simulation. Taking advantage 

of the timely update of the electromagnetic fields in the Finite Difference Time Domain (FDTD) 

method, the field simulation was carried out. On the other hand, the Particle In Cell (PIC) simulation 

was used to calculate the physical parameters of the electron beam particles (particle momentum, 

acceleration, velocity, and position)  [21-  23]. Both sequential 2D and 3D version of the FDTD/PIC 

simulation was first implemented, and then a parallel 3D version of the code was realized using Open 

Multi-Processing (OpenMP).  Furthermore, using the FDTD/PIC simulation as an optimization tool, 

the optimum values of both the electron beam current and the applied axial magnetic fields were 

obtained.  
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To show the potential of the proposed BWO, the operating frequency of the proposed BWO was 

extended to 200GHz and 650GHz. To fulfill this task, the Axial loaded Double Defected Photonic 

Crystal (ADD-PC) based SWS was introduced. Compared to the DD-PC based SWS, the ADD-PC 

based SWS supports a slow wave mode with lower phase velocity. Thus, the required electron beam 

velocity (and acceleration voltage) is significantly reduced and the overall performance of the BWO 

is enhanced.  

1.2 Organization of the thesis 

The thesis is organized as follows: 

In chapter 2, an overview of the current progress in the THz radiation sources is introduced. Also, 

a literature review on both the available SWS as well as a brief discussion on electron beam sources is 

provided. 

Chapter 3 provides the modal analysis of the SWS using the FDFD. First, an introduction to the 

FDFD method is provided. Using the multi-level meshing and the implementation of the finite 

conductivity, a non-uniform FDFD was established. After that, the design of the DD-PC based SWS 

 

Figure  1-4 A Hierarchy of the research plan 
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• SWS design and Test 

Hot Analysis 
• Electron beam-wave interaction 

Design Example 
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is introduced. The geometrical parameters of the PC structure were calculated from the band gap 

diagram. Then using the non-uniform FDFD method, the modal analysis of the DD-PC based SWS 

was performed. To provide a verification of the existence of the slow wave mode, a scaled model of 

the SWS was fabricated and tested.  

In Chapter 4, the interaction between the electron beam and the electromagnetic fields is carried 

out using the FDTD/PIC tool. First the physics of the FDTD/PIC CAD tool is briefly introduced. 

Several aspects of the CAD tools were discussed in details. Then, a BWO –designed using the DD-

PC based SWS– was analyzed using the FDTD/PIC tool. The parameters of the BWO (the generated 

electromagnetic fields, the average calculated power and the particle physical parameters) are 

discussed in details. Furthermore, the FDTD/PIC tool was used to optimize the generated 

electromagnetic power.   

A full design of 200GHz BWO radiation source was presented in chapter 5. The design was 

performed using two types of SWS; the DD-PC and the ADD-PC structure. A full study of the 

performance and optimization of the proposed BWO was carried-out using FDFD, HFSS and 

FDTD/PIC simulations. Following the same procedure, the operating frequency of the BWO was 

extended to 650GHz. A brief introduction to the design of the SWS and the performance of the BWO 

– at this frequency– was highlighted. 

  Finally, a summary, conclusions and topic for both the current and the future research are presented 

in chapter 6 
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Chapter 2 
Background  

2.1 Introduction 

THz radiation –also known as near millimeter or sub-millimeter radiation– refers to electromagnetic 

fields and waves in the frequency ranges from 0.1 THz to 10 THz. Since THz frequency band extends 

between microwave and infrared bands, so it can be considered as a bridge connecting electronics to 

optics. The THz radiation sources can be categorized into three main categories (Figure  2-1); vacuum 

devices, solid state devices and laser based devices (Figure  2-2). Since the Vacuum Electronic 

Devices (VEDs) are known for its high efficiency and power  [10], the proposed source was selected 

to be a vacuum source. Taking advantage of the excellent mode selectivity, ease of fabrication and 

high thermal conductivity of the metallic Photonic Crystal (PC) structure, The PC was selected as the 

building device of the proposed VED device. The coupling between the vacuum technology and the 

PC devices may result in development of a compact and efficient THz power source.  

The main concept of the Vacuum Electronic Devices (VEDs) is to convert the kinetic energy of the 

electron beam into electromagnetic energy. The electromagnetic radiation is generated from a time 

varying current, which can be achieved either by electron beam velocity modulation, electron beam 

density modulation or both of them. Using static magnetic field or high frequency electric field, the 

time varying current can be done. The mathematical background of the electromagnetic radiated 

power can be explained from Larmor formula   [24]. The relativistic expression for the radiated power 

from a single particle: 
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where “q” is the charge of the particle, “νc” is the speed of light in the vacuum, “γ” is the relativistic  

Lorentz parameter and “ν” is the velocity vector of the particle. 
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Since the parameters of the VED source (the operating frequency, the power conversion ratio and the 

bandwidth) are defined by the SWS. It considered as the main element in the VED. Therefore, 

research for SWS suitable for work in sum-millimeter (sub-mm)/THz band and the 

fabrication/realization of such structure is considered as an active research topic.  

 
(a) 

  
(b)       (c) 

Figure  2-2 Different THz Source Technologies; (a) Vacuum device, (b) Solid state devices, and 

(c) Laser and photonic device 
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Figure  2-1 Available THz source 
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Thus, this chapter is divided into three main parts; the VEDs, the SWS, and the electron emission 

devices. First, a short introduction to the different VEDs is presented. Among the different vacuum 

devices, it was found that the BWO is considered as the most promising source for the THz band. 

After that, different designs of the SWSs are discussed in the next section. Since the electron emission 

is the driving force of the VED device, the last part in this chapter outlines the different types of 

electron guns.  

2.2 The Vacuum Electronic Devices 

Modern microwave VEDs are known for their power efficiency, cost effective, reliability, and 

thermal robustness. They relay on the coherent electromagnetic radiation of electron beam  [25- 26]. 

The coherent electromagnetic radiation generated by the accelerated electron beam can be classified 

into three types (Figure  2-3); Cerenkov radiation, transition radiation and Bremsstrahlung. The 

Cerenkov radiation is generated if a charged particle travels in a medium that can support the 

propagation of an electromagnetic field with a phase velocity less than the speed of the light in this 

medium.  

 

 

Figure  2-3 Coherent Electron beam radiation 
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While the radiation associated with the oscillation of a charged particle in a strong magnetic field is 

defined as Bremsstrahlung radiation, transition radiation happens when a charge particle travels 

between two different medium  [10],   [27- 33].  

In this section, an introductory of the different VED devices, such as; the Travelling Wave Tube 

(TWT), the Backward Wave Oscillator (BWO), the klystron and the magnetron, will be presented. 

The introduction highlights the operation principles and potential use in sub-mm/THz regime. 

2.2.1 The Travelling Wave Type (TWT) 

The TWT is an essential component in communication system  [15], [27]. It consists of; an electron 

gun, electron beam-wave interaction medium, electron beam collector and RF output (Figure  2-4). Its 

operation principle is based on the density modulation. First, the electron gun is used to generate the 

required electron beam with a circular cross section (pencil beam - Pierce gun). As the electron beam 

travels through the SWS, the velocity of the electron beam is bunched, thus the electromagnetic 

radiation is formed. The maximum gain of the TWT is obtained at the synchronization condition: 

bunchsceph νννν =−=         (  2-3) 

where “νph” is the electromagnetic field phase velocity, “νe” is the speed of the electron beam, “νsc” is 

the speed of the decelerated particles and “νbunch” is the bunch velocity. 

 

 
Electron gun SWS Collector 

Electron beam generation Electron beam-wave interaction Exhaust electron 

beam collector 

Figure  2-4 Schematic diagram of the TWT  [34] 
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The advantages of the TWT include; compact size, good linearity, and good bandwidth  [15]. For the 

sub-mm/THz TWT, there are two main challenges; the fabrication of the SWS and the TWT 

assembly. Due to the long length of the interaction medium (SWS) and its small diameter, a careful 

manufacturing is required to build it. In addition, a careful design of the focusing network of the 

electron beam is required to align the electron beam inside the SWS  [35]. Also, an accurate assembly 

of the TWT is required. 

2.2.2 The Klystron 

The klystron operation is based on the velocity modulation of the electron beam  [32], [36- 37]. A 

schematic diagram of two cavity klystron is presented in Figure  2-5. The first cavity “buncher” is 

used to modulate the electron velocity by the input RF signal. Then, as the electron beam travels 

through the drift tube – drift space –, the electron beam bunched. The RF signal is collected from the 

second cavity “collector”. The main drawback of the klystron is its limited bandwidth. 

Taking advantage of the high output power and efficiency of the klystron, and the extended 

bandwidth of the TWT, the Extended Interaction Klystron (EIK) amplifier is introduced. Alike the 

cavity design in the klystron, a ladder circuit is added to the cavity in the EIK amplifier  [37]. 

Compared to a klystron, the EIK has a higher gain per unit length. Therefore, the length of the EIK is 

smaller, and the required magnetic focusing circuit is less complicated  [38- 39]. Furthermore, by 

removing the input cavity, an Extended Interaction Oscillator (EIO) was built as an oscillator. 

Although klystron, EIO and EIK are efficient microwave sources/amplifiers, the migration to sub-

mm/THz band has some limitations. These limitations are mainly due to the electron beam, thermal 

dissipation and the accuracy of the assembly  [10]. As the SWS dimensions decreased, the radius of 

the electron beam is reduced which leads to increase both the space-charge effect and the transverse 

velocity. Therefore the overall performance of the EIK will be limited. Moreover, due to the small 

dimensions of the SWS and the power dissipation, an efficient cooling system may be required to 

avoid thermal breakdown. 
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2.2.3 The Backward Wave Oscillator (BWO) 

Currently, the BWO is considered the most established VED source in the THz regime  [2],  [15- 18], 

 [40]. There are two main types of the BWO; the O-type BWO and the M-type BWO. In the O-type, 

the electron beam and the applied magnetic fields are parallel, while in M-type the magnetic field is 

perpendicular on the electron beam. The main difference between the BWO and the TWT is the 

operating mode. In the TWT, the electron beam interacts with the forward electromagnetic wave. 

While in the BWO the electron beam interacts with the backward wave. Therefore, the 

electromagnetic wave is collected at the electron beam entrance point. Since, the maximum 

electromagnetic wave is located at the point of the minimum electron beam bunching; the efficiency 

of the BWO is limited. To increase the efficiency, a cascade BWO is introduced (Figure  2-6). In the 

cascaded BWO, the first SWS is used to modulate the electron beam, while the second SWS is used 

as the main beam-wave interaction devices  [44- 45].  

The BWO is a tunable device. The improvement in the fabrication techniques, the slow wave 

structure design and the beam-wave interaction software had led to increase of the operating 

frequency, and the efficiency of the BWO. A list of the available BWO sources are listed in Table  2-I 

  [41-44]. All the devices listed in this table required both external DC voltage source (high voltage / 

current) and external water cooling system. Furthermore, the actual dimensions of most of them are 

not listed. 

 

Figure  2-5 A schematic diagram of a two cavity klystron  [37] 
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Q – band 43.5 – 50 GHz 70 – 160 W 

No details about 
the cooling system Ka – band 26.5 – 40 150 – 300 W 

K – band 18 – 26.5 GHz 150 – 190 W 

Table  2-I Available BWO operates at sub-mm/THz band 

 

Figure  2-6 A schematic diagram of the cascaded BWO 
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2.2.4 The Magnetron 

The magnetron is considered as the smallest, robust, cheapest and the most power efficient VED 

radiation source  [46- 47]. Since it is used mainly in microwave heating, it considered as the most 

widely used VED. Comparing to the previous VEDs, the magnetron is a transverse current 

modulation device. It consists of a coaxial cathode surrounded by copper cavity anodes (Figure 

 2-7(a)). Due to both the applied uniform magnetic field and the electromagnetic wave of the cavity, 

the velocity of the electron beam modulated and the wheel of electron formed (Figure  2-7(b)). 

Although there is an effort to extend the operation of the magnetron to the THz band, there are two 

main challenges; the short life time and the lack of high precision tuning mechanism  [48- 50]. 

Currently, the Micro-Electro-Mechanical System (MEMS) technology is used to design a THz 

reveres magnetron  [49], but no further details about the experiments were published. 

 

2.3 The Slow Wave Structure (SWS) 

The Slow Wave Structure (SWS) is defined as a guiding structure which supports the propagation of 

an electromagnetic wave with a phase velocity lower than the velocity of the light in the medium. 

This electromagnetic wave is called the Slow Wave (SW) mode. As a key element, most of the VED 

performance parameters (the power conversion ratio, the operating bandwidth, the tunability of the 

device, the attenuation and the heat dissipation) are determined from the SWS. For example the helix 

SWS has a wide bandwidth, but its thermal capacity limits its usage as a higher power source. 

 
(a)      (b) 

Figure  2-7 (a) A schematic of the magnetron, and (b) picture of the electron beam velocity 

modulation  [34] 
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Alternatively, although the metallic couple cavity structure solves the problem of the thermal 

capacity, its operational bandwidth is almost 5%. In this section a brief description of state of art SWS 

is presented and discussed. 

2.3.1 The Helical Waveguide (HGW) 

The Helical Groove Waveguide (HGW) has two main configurations; either a rectangular cross-

section with a helical groves, or a circular cross section with a helix installed inside it  [52]. Its main 

advantage is the large transverse dimensions. Therefore, its fabrication is feasible   [52]. Moreover, 

since the HGW is an all metallic structure, it has good heat dissipation. Therefore, it can be used for 

high power VEDs. On the other hand, both the limited bandwidth and efficiency of the HGW restrict 

its use. In addition, due to the dispersive nature of the HGW, the electron velocity spread degrades the 

performance of the SWS  [53].  

2.3.1.1 The rippled HGW 

The helical corrugation waveguide consists of a cylindrical waveguide with a helical corrugation of 

the inner surface (Figure  2-8). Compared to the conventional HGW, the rippled HGW have higher 

band width and efficiency  [54-55].  

2.3.1.2 The ridge loaded HGW 

Although the ridge loaded HGW has a narrow bandwidth, the power handling capability and the 

circuit fabrication tolerance provide significant advantage of the SWS. Therefore it can be considered 

as a low cost SWS for millimeter (mm) TWT devices  [53]. For example, an output power of 163W 

with an efficiency of 6.2% was achieved at a frequency of 42GHz. The bandwidth of this device was 

measured to be 1.3%  [53]. 
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2.3.2 The Helix Waveguide 

Although the helix SWS has several advantages for mm-TWT (high bandwidth, low electron beam 

voltage and the relatively high power capabilities)  [56], its realization in sub-mm/THz band is 

difficult. Due to the extremely small dimensions of the helix SWS, it fabrication becomes more 

complex. Moreover, the difficulty of passing a meaningful current through the structure arises. A 

novel fabrication technique for a 650GHz helix slow wave structure was introduced  [57- 58]. 

Although the actual fabrication of the waveguide was done using the lithography (Figure  2-9), no RF 

power was detected at the output port due to misalignment. Another prototype of the helix waveguide 

scaled to operate at 95GHz was introduced, and analyzed using CST studio suite  [59- 60]. The 

simulation shows that a gain of 5.8dB can be achieved at this frequency range, as far as the author 

knowledge, no fabrication and testing results are published. 

 

Figure  2-8 A picture of x-band helical corrugation waveguide  [55] 
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2.3.3 Microstrip meander-line SWS 

To overcome the complex fabrication process of the helix slow wave structure, the microstrip 

meander-line SWS was introduced. It consists of a periodic microstrip meander line placed on a 

partially filled rectangular waveguide is show in Figure  2-10   [61]. Since a single period looks like the 

letter “U”, this mender line may be called the U-shape microstrip meander-lines.  

 

 

Figure  2-10 A microstrip meander line place in a rectangular waveguide  [61] 

 

Figure  2-9 A helix slow wave structure operates at 650GHz  [57] 
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Since the microstrip meander line SWS has the low interaction impedance, the efficiency of the 

oscillator is limited. To overcome this, the raised microstrip meander line SWS is introduced. A SEM 

picture of the raised microstrip meander line is shown in Figure  2-11. The figure shows that the 

dielectric was removed beneath the meander line  [62].  

 

In order to reduce the operating beam-voltage, A V-shaped microstrip meander line SWS was 

introduced (Figure  2-12)  [63]. It consists of; a metal shielding cavity, a dielectric substrate, and a V-

shape metal mender line. Within a frequency range 75 – 100GHz, simulation results indicates that the 

V-shape microstrip meander line SWS required 25% less electron beam-voltage compared to the U-

shaped microstrip mender line SWS.     

 

 

Figure  2-11 A SEM picture of the meander line  [62] 
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The main limitations of the meander line SWS is its limited power capabilities. Moreover, the 

sensitivity the SWS to fabrication and assembly tolerance limits its use in the sub-mm/THz band. 

2.3.4 The Folded Waveguide (FDW) 

The Folded Waveguide (FDW) has become a promising SWS for sub-mm/THz wave devices  [64]. 

The FDW is a serpentine waveguide folded back, multiple times, around itself. The beam tunnel is 

located at the center of the structure (Figure  2-13). The dominant mode (TE10) propagates forward 

and backward across the electron beam, with its forward axial propagation slowed down. Thus this 

wave has a phase velocity matched to the phase velocity of the axial electron beam. Therefore, a good 

interaction between the electromagnetic wave and electron beam can be achieved. The FDW has a 

moderate bandwidth, high power handling capability and it is compatible with the planar fabrication 

using the MEMS technologies   [64- 68].  

Depending on the cross-sectional dimensions, there are two main types of the FDW; the E-plane, 

and H-plane (Figure  2-13). In E-plane FDW, the electric field direction is parallel to the electron 

beam movement, while the electron beam movement is perpendicular to the electric field direction in 

the H-plane FDW. The E-plane FDW has a higher power conversion efficiency [70], while the 

disturbance in the field distribution is significantly reduced in the H-plane FDW  [71]. 

 

 

Figure  2-12 A V-shaped microstrip meander line  [63] 
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(a) 

 
 (b) 

Figure  2-13 A schematic diagram of the FDW, (a) E-plane and (b) H-plane 
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Recently, different shapes of FWG were introduced. In  [72] a folded frame SWS for millimeter 

TWT is proposed. The SWS, shown in Figure  2-14, consists of a series of metal frames connected to 

each other by a V-shape connector. The simulation results indicates that using a sheet electron beam 

(6 KV and 0.2A) produce an average power of 196W with an electron efficiency up-to 16.3%. 

 

The Meander-Line (ML) is an alternative type of the FDW. Figure  2-15 shows the schematic diagram 

of a 3D U-shaped microstrip ML SWS. It consists of two arrays of conductors, connected using a 

series of vias. Compared to the V-shaped ML, the U-shaped ML provides lower circuit attenuation 

and higher gain  [73].  

 

  

Figure  2-15 Schematic diagram of a U-shape meander line (a) 3D view and (b) cross sectional 

view  [73] 

 

Figure  2-14 The Folded Frame SWS 
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There are several drawbacks for the FDW. Complex micro-fabrication is required to realize the FDW. 

Moreover, the conduction losses of the FDW are defined by the sidewall surface roughness. It was 

found that when characterizing a LIGA fabricated FWD to work as a SWS for upper mm-wave 

regime (100 – 300 GHz), it is almost impossible to have a smooth sidewalls  [74- 75]. 

2.3.5 The Periodic Loaded Waveguide (PLW) 

The Periodic Loaded Waveguide (PLW) is considered as the ideal SWS for the Cherenkov based 

devices  [51]. There are two main PLW structures; the disk loaded waveguide and the rippled 

waveguide. 

2.3.5.1 The Disk Loaded Waveguide (DLW) 

The disk loaded waveguide (DLW) is SWS for relativistic electron beam devices. Depending on the 

device, there are two types of excitation fields; the E-fields (TM-mode), and the H-fields (TE-mode). 

The TWT, BWO and the accelerators devices uses the axial electric fields (TM-mode) to interact with 

the electron beam. For the gyro-TWT, the electron beam interacts with the transverse electric fields 

(TE-mode). A schematic diagram of the DLW is presented in Figure  2-16. It consists of a circular 

waveguide loaded with several disks. By controlling the structure parameters (RD is the disk hole 

radius, RW is the waveguide radius, T is the disk thickness and L is the period length), the dispersion 

diagram of the DLW can be tailored  [76- 79].  

 

2.3.5.2 The Ripple Waveguide (RW) 

Instead of having a coaxial disc loaded at several distance across the waveguide, the ripple 

waveguide have a corrugated waveguide walls (Figure  2-17). Compared to the DLW, the ripple 

 

Figure  2-16 A schematic diagram of the DLW 
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waveguide has two main advantages; it can handle higher breakdown field (voltage) and it has better 

beam modulation efficiency compared to the DLW. Several ripple waveguide was used a SWS in 

BWO   [79]. A simulation result of a sine ripple waveguide structure was able to generate 1W of power 

at 220GHz  [80]. Using dimensions scaling, the sine ripple SWS generated the same amount of power 

at 1THz  [81].  

 

2.4 The Electron Beam 

Since the VED is based on converting the electron beam energy to an electromagnetic energy, the 

electron gun is an essential component of the VED. Based on the electron emission, the electronic 

gun can be categorized as; thermionic gun, field emission gun and photo-electric gun. Although the 

thermionic gun is the most common on, several devices are designed to operate using the field 

emission gun. In this section a brief introduction to the both the thermionic gun and the field emission 

gun is provided.  

2.4.1 The Thermionic Gun 

In thermionic gun, the thermal energy is used to free the electron from the surface. Typical current 

density for a thermionic gun is 10 – 30 A/cm2  [82- 83]. Since most material melt if heated, the 

materials that can be used in the thermionic gun are either having a high melting point (refractory 

metals), or those have a low work function. Table  2-II presents the work function and the melting 

point for common thermionic gun materials. 

 

Figure  2-17 A schematic diagram of the Ripple Waveguide  [80] 
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The thermionic gun consists of three main parts; filament (cathode), anode and the Wehnelt (grid), 

Figure  2-18(a). The electron beam emission is directly proportional to the heating current. It can be 

increase by increasing the heating current till the electron beam reaches saturation point (Figure 

 2-18(b)). The tungsten cathode is usually consists of a wire bent into hairpin (Figure  2-19(a)), in order 

to increase the efficiency of the generated beam, a disk attached to the wire bent (Figure  2-19(b)) is 

heated by the wire and emit electrons from the disk.  

 

 
(a)      (b) 

Figure  2-18 (a) Schematic of a thermionic gun and (b) the saturation condition  [84] 
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(eV) 
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(˚K) 

Richardson 

constant (A/cm2K2) 

Tungsten (W) 4.5 3695 60 

Lanthanum hexaboride (LaB6) 2.7 2500 29 

Cerium hexaboride (CeB6) 2.65 2825 3.6 

Table  2-II List of work function and melting temperature of selected materials 
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2.4.2 The Field Emission Gun (FEG) 

Electron emission from material under the influence of strong electric field is called the field 

emission (cold emission). The field emission is usually occurring from the sharp needles, called Field 

Emission Gun (FEG) tip (Figure  2-20). A schematic of the FEG circuit is shown in Figure  2-20(b). 

The figure shows that the gun has two different anodes. The first anode has a voltage of few kV to 

tunnel the voltage from the gun tip. While the second anode, which is connected to higher voltage, is 

used to accelerate the electron beam to the desired velocity. The companied field of the two anodes 

produces an electromagnetic lens that forms the cross-over. Another magnetic lens is required to 

provide more control to the electron beam parameters. 

To overcome the contamination of the FEG, the FEG is usually kept in vacuum. Since the FEG emits 

electrons from a very small tip, the generated beam is extremely small  [85- 86]. Using an array of 

FEGs, a high average current requirement can be achieved  [87]. 

  
(a)      (b) 

Figure  2-19 A tungsten cathode (a) bent wire and (b) disk loaded bent wire 
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2.4.2.1 The Field Emitter Array (FEA) 

Since the Field Emitter Array (FEA) – the cold cathode – has several applications. It attracts a lot of 

attention. The FEA consists of a large number of identical small field emitter organized in a 2D array 

(Figure  2-21). The FEAs has higher beam current, good beam quality and spatial uniform emission 

can be achieved. The main limitation in micro-fabrication of the FEAs is their reliability and the 

efficiency. The Transfer Mold Technique (TMT) is considered as the main fabrication method for the 

FEA. An FEA with different emitter materials such as; Molybdenum (Mo), Lanthanum Hexaboride 

(LaB6), Titanium Nitride (TiN), amorphous Carbon (a-C) and diamond, has been reported  [88- 90]. 

  
(a)      (b) 

Figure  2-20 (a) A FEG tip and (b) Schematic of FEG  [84] 
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2.5 Conclusion 

The above discussion shows that although the VEDs sources can be considered as a promising high 

power sub-mm/THz source, there are several problems and challenges in realizing it. For the SWS 

part, while currently there are several SWS under research and investigation, they have several 

drawbacks. Realization and fabrication problems, limited power handling capabilities, limited 

efficiency are examples for the current challenges in the SWS. On the other hand, although the 

advance in the FEA source fabrication and realization makes it a good choice for VEDs operating in 

THz regime, the complex focusing network requirements limits its use in the VED.  

Starting from the SWS part, using the metallic based Photonic Crystal (PC) based SWS may alleviate 

the above problems. The power handling of the metallic structure, the robust fabrication techniques 

and the good mode selectivity of the PC structure provide an answer to the SWS problem in this band. 

Furthermore, coupling the FEA beam with such structure may result in solving the THz source 

problem. 

  

  

Figure  2-21 An SEM image of an FEA  [88] 
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Chapter 3 
Design and Analysis of the SWS  

3.1 Introduction 

The first step in designing a photonic device is the design of a Photonic Crystal (PC) based 

waveguide. The accurate determination of the modal parameters of the PC waveguide such as; field 

distribution, attenuation constant, phase constant, and phase velocity is a critical part in analyzing of 

such devices. Therefore in this chapter, the non-uniform FDFD method will be introduced to define 

these modal parameters. Then using the non-uniform FDFD method, a novel non-axial slow wave 

structure (the Double Defected Photonic Crystal (DD-PC)) will be proposed and analyzed.   

The chapter will outline the design/analysis of the SWS. First, the FDFD method is established 

highlighting both; the multi-level meshing and the material coefficient implementation. After that, the 

DD-PC based SWS is introduced and analyzed using the proposed FDFD method. Finally, the 

existence of the slow wave mode inside the proposed DD-PC structure was verified using both 

numerical and experimental verifications. 

3.2 The non-uniform FDFD method 

Starting from Maxwell’s equation  [24], assuming all fields vary in longitudinal and time in the form 

ej(βz-ωt) , and scale the electric field by the free space wave impedance: 

BE ωj=×∇          ( 3-1a) 

DH ωj−=×∇         ( 3-1b) 

Convert from the vector form to the component form: 
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Where “ E


” and “ H


”” are the vector form of electromagnetic fields, “β” is the phase shift constant 

and “k0” is the free space wavenumber. 

 

Then, by applying the central difference algorithm on the 2D Yee mesh discretization (Figure  3-1) 

the eigenvalue problem can be expressed as: 
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Where Ex and Ey are the transverse electric fields, and Pxx, Pxy, Pyx and Pyy are square coefficient 

matrices. 

Solving the above eigenvalue problem, the phase shift constant and the associated transverse fields 

can be calculated. Also, the axial fields can be calculated using Maxwell’s equations. The full details 

of the FDFD formulation and the coefficient matrices are provided in  Appendix A. 

3.2.1 The Multi-level meshing 

To increase the accuracy of the FDFD method, a fine mesh is required, which needs more 

computational memory. To solve this problem, the multi-level mesh approach is proposed. Figure  3-2 

shows the 2-to-1 multi level meshing. As the figure shows, the fine mesh was applied to the interface 

between different materials, while the coarse mesh was applied to other parts of the computational 

window. Since the number of points in the fine mesh is twice the number of points in the coarse 

mesh, the mesh is called the 2-to-1 multi level meshing. 

 

Figure  3-1 (a) 2-D Yee mesh based, (b) mesh handle in curved structure  [97] 
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As an example of the above technique, the coefficient matrix of equation (3-2b) will be calculated. 

Using the Yee-discretized, the discretized equation can be re-write as; 

x

EE
EjHjk jizjiz

jixjiy ∆

−
−= + ),(),(

),(),(
1

0 β      ( 3-4) 

For a point in the coarse mesh, equation (3-4) becomes: 

x
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0 β      ( 3-5) 

While for a point at the fine mesh, the discretized equation turns to: 
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β     ( 3-6) 

For a point at the interface between two materials, first an interpolation process is used to calculate 

the field at this point: 

( )
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1
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+= jizjizerpolationz EEE       ( 3-7) 

Then, substitute into equation (3-4), the equation becomes 
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Figure  3-2 The grid distribution of the multi-level meshing 
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Then the coefficient matrix Ax can be expressed as: 

𝑨𝒙 = 𝟏
∆𝒙
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⎜
⎜
⎜
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( 3-9) 

Some features in the above matrix worth mentioning. First, the highlighted zero in the above matrix 

represents the PEC boundary conditions. While the “2” in the coefficient matrix shows a field point 

located in the fine grid part. Finally, the “0.5” terms indicates the interpolation term for the points at 

the interface between the fine/coarse mesh. 

3.2.2 The dielectric constant 

The complex dielectric constant was used to analyze general guiding structure. The dielectric 

constant is defined as: 

 
0ωε

σεεε jjr −−= '''         ( 3-10) 

where “ε′” is the dielectric constant, “ε″” is the dielectric losses, and “σ” is the conductivity. 

 

By simply including the complex dielectric constant, the non-uniform FDFD method can be used to 

analyze lossless dielectric, lossy dielectric and lossy conductive materials.  

3.2.3 Assessment of the non-uniform FDFD Method 

In this section, the stability, accuracy and convergence of the non-uniform FDFD method will be 

investigated. The assessment was performed using the rib waveguide, further justifications are 

provided in  Appendix A. For all the justifications, an electric wall – Perfect Electric Conductor (PEC) 

– boundary condition will be used to terminate the computational window. The simulation was 

performed using a personal computer with following specifications; dual-core CPU 2.6GHz and 4G 

RAM. A Matlab Code was used to implement the FDFD method.  
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3.2.3.1 The Rib Waveguide 

To check the numerical precision of the non-uniform FDFD method in analyzing pure dielectric 

structures, the fundamental mode of a standard rid waveguide was selected as a test bench. A 

schematic diagram of the rib wave guide is shown in Figure  3-3, while a summary of the physical 

dimensions, the material properties and the operating wave length are listed in Table  3-I. Since the 

difference between the dielectric constant of the guiding layer and the substrate layer is very small 

(Δn = 0.040), the numerical method should be accurate enough to detect the waveguide parameters 

(up to the fourth decimal place at least).  

 

 

 

Figure  3-3 A schematic diagram of the Rib Waveguide 
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Operating wavelength 1.15 μm 

Physical 

Dimensions 

Rib width (W) 3.00 μm 

Rib height (H) 0.20 μm 

Slab depth (D) 0.80 μm 

Dielectric 

constant 

Guide refractive index nf 3.44 

substrate refractive index ns 3.40 

Cladding refractive index nc 1.00 

Table  3-I The parameters of the Rib Waveguide 
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(a)      (b) 

Figure  3-4 Transverse magnetic field pattern of (a) dominant mode (b) next higher order mode 
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In this analysis, the discretization lengths in x- and y-directions were selected to be 0.183λ0 and 

0.093λ0, respectively (which is equivalent to 1806 mesh points). The computational time was less 

than 5 seconds. The calculated effective refractive index (neff) was found to be 3.41424. Compared to 

the published Finite Element Method (FEA) a division of almost 0.0149% was detected  [98]. 

Furthermore, the transverse magnetic field pattern (shown in Figure  3-4) shows a good agreement 

with the published one. 

To show the robustness of the proposed non-uniform FDFD method, the variation of the effective 

refractive index of the fundamental mode at different rib height “H” is calculated (Table  3-II). The rib 

height was changed uniformly from 0.1μm to 1.0μm, while the slab depth “D” was selected such that 

H+D=1μm. The table also shows a comparison between the non-uniform FDFD method and different 

numerical methods (the Vector Finite Element Method (VFEM), Imaginary Distance full Vectorial 

Finite Element Beam Propagation Method (IDVFE-BPM) and the VFEM with higher order mixed-

interpolation-type elements (Edge-FEM)). The results show that there is a good agreement between 

the non-uniform FDFD method and the different methods listed. 

 

The next test is the numerical convergence of the non-uniform FDFD method. In this test, the 

effective index of the rib waveguide, at a rib height H of 0.2μm, was calculated at different grid size. 

H (μm) VFEM IDVFE-BPM Edge FEM Non-uniform FDFD 

1.0 3.41210 3.41202 3.41194 3.41163 

0.9 3.41220 3.41213 3.41209 3.41174 

0.8 3.41235 3.41229 3.41224 3.41190 

0.7 3.41255 3.41250 3.41247 3.41214 

0.6 3.41285 3.41279 3.41278 3.41242 

0.5 3.41315 3.41314 3.41312 3.41277 

0.4 3.41365 3.41358 3.41258 3.41332 

0.3 3.41410 3.41410 3.41414 3.41383 

0.2 3.41475 3.41473 3.41480 3.41424 

0.1 3.41560 3.41558 3.41568 3.41569 

Table  3-II Comparison between non-uniform FDFD and different FEM techniques at different 

values of rib heights “H” 
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Table  3-III presents the calculated effective index at different grid sizes. As expected, increasing the 

number of girds increases the number of elements at which the fields are calculated, and hence the 

computational time increases. The table shows that even for a coarse mesh, the variation of the 

effective index is small (within the fourth decimal place). 

 

The final assessment of the non-uniform FDFD is the effect of the boundary separation “R” on the 

calculated effective index (Figure  3-3). The variation of the wall separation “R” on the effective index 

of the fundamental mode, is shown in Table  3-IV. The results indicate that only the fourth decimal 

place was affected by changing the separation “R”, thus the calculated effective index is independent 

on the wall separation. 

 

3.3 The Photonic Crystal (PC) Structure  

The Photonic Crystal (PC) structure consists of periodic materials (dielectric or conducting ones) 

placed in a periodic lattice structure  [101- 102]. The main feature of the PC structure is its ability to 

prevent certain electromagnetic wave – of a certain frequency bands – from propagation inside it. 

These bands of frequencies called the global band gaps. The PC structure can be formed by a one 

(1D) -, two (2D) - or three (3D) dimensions periodic lattice structure. For a 2D PC structures, there 

are two common lattice structures; the square lattice and the triangle lattice.  

R neff 

1.10 3.4144 

1.65 3.4142 

2.65 3.4141 

Table  3-IV Effect of changing the structure size 

Mesh Size Effective index (neff) No. of elements 

30×30 3.4149 1806 

50×50 3.4144 4834 

70×70 3.4143 9310 

85×85 3.4142 13463 

Table  3-III Effect of changing the grid size 
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In this work, using both the good modal sensitivity of the 2D PC structure along with the power 

handling capabilities of the conducting structure, a metallic PC based SWS is introduced and 

analyzed. Since the TM-like mode is mainly responsible for the electron beam-wave interaction, only 

the triangle lattice will be considered in this work   [102]. In this section, the design of the slow wave 

structure (also called the “cold analysis”) will be discussed in details. 

3.3.1 The Photonic Crystal based Slow Wave Structure 

The SWS is an electromagnetic structure that supports the propagation of an electromagnetic mode 

with a phase velocity lower that the speed of the light in the media. As discussed in   2.3 The Slow 

Wave Structure (SWS), the SWS is an essential part in the electron beam-wave interaction devices. 

According to Cerenkov condition, the slow wave mode can interact with an electron beam travelling 

with a velocity synchronized with the phase velocity of these modes. Thus, a narrow band of coherent 

electromagnetic radiation can be extracted from the beam. According to the literature review, there 

are some requirements for SWS design in the THz band. First, to have a high power source, the 

proposed SWS should be a metallic one. Furthermore, since the dimensions of the structure will be 

extremely small, the proposed SWS should have a simple cross section and compatible with the 

modern fabrication techniques. In addition, it will be better to have a separation between the 

generated THz signal and the electron beam to facilitate the extraction of the generated power.  

To achieve these requirements; the metallic Double Defected-Photonic Crystal structure (DD-PC) 

was introduced. The DD-PC based SWS consists of three uniform layers of metallic rods, placed in a 

triangle lattice PC formation (Figure  3-5). The structure consists of two types of defects; a central 

defect (the air-core) and four slow wave defects. The central defect is obtained by removing the inner-

most layer of the metallic rods, thus allowing the electron beam to move axially (longitudinally) 

inside the SWS structure. While, the slow wave defects or transverse-cavities, are formed by 

removing four additional rods as shown in the figure (numbered SW-1 to SW-4). These defects are 

used to support and extract the beam-wave interaction generated electromagnetic waves. In addition 

to its simplicity, the DD-PC SWS structure isolates the electron beam from the extracted 

electromagnetic wave, thereby potentially enabling simple extraction of the generated 

electromagnetic fields. 
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According to Maxwell’s equations, in order to satisfy the wave equation, the wave number of the 

guided modes supported by the structure must satisfy the following dispersion equation  [103- 105]:  

 2222
ztransverse kkk +== µεω        ( 3-11) 

where ktransverse is the wavenumber in the transverse direction, and kz is the wave number in the axial 

(z-) direction (i.e., the phase shift constant, β). The μ and ε are the intrinsic permeability and 

permittivity of the guiding medium (air in our case), and ω is the frequency of operation.  

For a conventional closed metallic waveguide, the transverse wave number is always real. Therefore, 

the longitudinal wave number (kz, or β) is always less than the wave number of the intrinsic medium 

(k). Thus, the guided modes can only be “fast” wave modes  [103-105]. However, the proposed DD-

PC structure has photonic band gap (PBG) like behavior in the transverse direction due to the periodic 

metallic electromagnetic boundary conditions. Thus, in such waveguide structure we can have an 

imaginary transverse wave number associated with a physically propagating mode in the z-direction. 

Therefore, as per (equation 3-11), the axial propagation constant (β) can be larger than the intrinsic 

wave number in the medium; hence the associated propagating wave is a “slow” wave, or the so 

called defect mode of the structure. This is the fundamental underlying principle behind the fact that 

the proposed structure can support axial slow wave propagation without any axial discontinuity. We 

 

Figure  3-5 A cross section of the DD-PC based SWS 
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believe that this is a very important observation for future technological development of the sub-

mm/THz BWO devices.  

Since the conductive rod is the building structure of the DD-PC structure, a full analytical analysis of 

the different modes propagation through such structure was performed in  Appendix B  [124]. The 

analysis also discusses several applications of the surface wave propagation along the conductive rod. 

3.3.1.1 Design of the DD-PC based SWS 

Starting from the band diagram of the triangle lattice metallic PC structure, the geometrical 

parameters of the DD-PC based SWS can be calculated  [103]. Figure  3-6 shows the band diagram, 

with the black dot defines the operating point. This point was selected to allow the first mode to 

propagate with a frequency of 130GHz. From the operating point, the pitch size can be calculated 

(ωΛ/c = 5.4, so at the operating frequency Λ=2.00mm). The rod radius is calculated from the same 

point (r/Λ=0.4, since pitch size was found to be 2.00mm, the rod radius equals 0.8mm). 

 

3.3.1.2 Analysis of the DD-PC based SWS 

Since the structure doesn’t have any axial discontinuity, the non-uniform FDFD method can be 

used to define the modes of the structure. Taking advantage of the structure symmetry, only a quarter 

of the structure was analyzed. The red square highlighted in the Figure  3-5 represents the 

 

Figure  3-6 The band-diagram of the TM mode in a metallic triangle lattice PC, the solid dot 

represent the operating point at 130GHz 
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computational window. The variation of the phase shift constant and the normalized phase velocity of 

the slow wave mode are plotted in Figure  3-7. The figure shows that for a frequency variation 

between 100 to 140GHz, the normalized phase velocity ( cphnormph ννν = ) varies between 0.2 and 

0.6. This verifies that the propagating mode is a slow wave mode. Also the figure shows that for the 

same frequency range, the phase shift constant decreases with the increase of the frequency. This can 

be explained from the fact that as the frequency increases, the electrical dimensions of the structure 

expands. Therefore, the mode becomes less concentrated. And hence the phase shift constant 

decreases. 

The transverse and the axial electric field components of the slow wave mode are plotted in Figure 

 3-8(a) and (b), respectively. The figure indicated that the field is localized at the entrances of the slow 

wave cavity. Thus, a good coupling between the electron beam fields and the slow wave modes can 

be achieved. Furthermore, since field is located at the air opening – away from the copper rods – the 

modal losses is minimized. 

 

 

Figure  3-7 The dispersion curve of the DD-PC based SWS 
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3.4 Verification of the slow wave mode in DD-PC based SWS 

Since the proposed DD-PC based SWS is a novel structure, it is essential to prove the existence of the 

slow wave mode with other techniques. The verification is performed using both numerical analysis 

and simple experiments. As the structure was analyzed using a frequency domain method (non-

uniform FDFD), the numerical verification was done using the Finite Difference Time Domain 

(FDTD) simulation. Furthermore, using the Computer Numerical Control (CNC) machinery, a scaled 

prototype of the SWS was fabricated and tested. 

3.4.1 The numerical verification of the DD-PC based SWS 

The FDTD method is a well know simulation tool used for analyzing electromagnetic structure. 

Taking advantage of the FDTD simple implementation, several complex and complicated problems 

can be tackled. Besides its simplicity, the FDTD method covers a wide band of frequencies in a single 

run  [95],  [106- 107]. 

In the numerical verification, a multi-thread parallel FDTD code was designed to test the DD-PC 

based SWS. Using the parallel computing, a significant reduction in FDTD computational time was 

achieved. The flow chart of the FDTD method is presented in Figure  3-9. The chart shows the three 

  
(a)      (b) 

Figure  3-8 A zoomed picture of (a) the transverse electric field and (b) the axial magnetic field 

calculated at 130GHz. 
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main steps of FDTD simulation; problem initialization, the time loop, and the post processing. During 

the problem initialization, the following tasks were performed. First the different geometrical 

parameters are defined and allocated. Then different material parameters (dielectric constant (εr) and 

the conductivity (σ S/m)) are defined and assigned to different geometrical parts. The final part in the 

problem initialization is the discretization of the computational window, and defining the parameter 

of the applied Absorbing Boundary Conditions (ABCs). The next step – the time loop (Time 

marching) – is considered as the main bottle neck in the FDTD simulation. In each time step the value 

of the electric and magnetic fields are calculated / updated. For the post processing analysis, the 

electromagnetic fields are stored at different positions in the computational window. The time loop 

will continue until either the field values reaches a certain cut-off limit or till the time loop reaches a 

certain number of iterations. Finally, the post processing analysis is applied to the stored 

electromagnetic fields. 

 

In a conventional (sequential) FDTD the field components are updated in a sequential pattern 

(Figure  3-10). Thus, within each time step, at least six calculations are performed one after the other. 

According to the Yee cell, updating of each magnetic (electric) field component depends only on 

electric (magnetic) field components and independent on the other magnetic (electric) field 

components. Therefore, all magnetic (electric) fields can be recalculated at the same time. A flow 

chart of the parallel FDTD is plotted in Figure  3-11. The figure indicates that the three electric 

(magnetic) field components are calculated at the same time step. Therefore, a time speed factor up to 

3x can be achieved  [108].   

 

Figure  3-9 A flow chart of the FDTD 

Intialization 

• Define material 
• Define geomerty 
• Define ABC 

Time loop 

• Update E 
• Update H 

Finalization 

• Apply post 
processing 
 



 

 45 
 

 

Figure  3-10 Sequential (conventional) representation of the FDTD simulation 
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Figure  3-11 Parallel implementation of the FDTD simulation 
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The parallel FDTD is used to verify the slow wave mode existence in the DD-PC based SWS. A 

schematic diagram of the FDTD simulation window is plotted in Figure  3-12. The Device Under Test 

(DUT) consists of three parts; the DD-PC SWS, the input port, and the output port. The input/output 

ports are a coaxial feeder. The structure was excited with a Gaussian pulse. The center frequency (f0) 

of the pulse is 150GHz, while the bandwidth (BW) of the pulse is almost 60GHz. The Perfectly 

Matched Layer (PML) was used as an ABC to terminate the FDTD computational window. To isolate 

the analyzed structure from the ABC-PML, a separation distance of 0.25λ0 (λ0 is the wavelength at the 

center frequency f0) was used to separate the structure from the PML-ABC terminations. Also, in the 

FDTD, all the metallic parts of the structure were defined as a copper (σ = 5.6×106 S/m).  

 

The calculated return loss (S11) of the FDTD code is plotted in Figure  3-13(a). The figure shows that 

at a frequency of around 120GHz, the reflection is minimized. Thus, most of the power incident at the 

input terminal propagates through the structure. Therefore, a propagating mode at this frequency can 

be detected. Similar result was obtained from the insertion losses (S12) figure plotted in Figure 

 3-13(b). The figure shows that at the same frequency (120GHz) a limited bandwidth signal 

transmitted from one port to another. Also, the figure indicates that there is a noise signal detected 

around this frequency.  

A conclusion from the S-parameters calculation indicates that at 120GHz a mode propagates inside 

the structure. The noise detected at the return losses is mainly due to the feeding network. According 

to the modal analysis, the slow wave mode located at the opening of the slow wave defect while the 

 

Figure  3-12 A schematic diagram of the FDTD computational window 
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probe feeding network excited the field at the center of the SWS. Therefore, the probe-feeding 

network alone is not sufficient to excite the slow wave mode. 

 

3.4.2 Analysis and measurement results of the DD-PC based SWS 

In order to re-calculate the dispersion curve of the proposed DD-PC based SWS, the resonant method 

was used  [109-110]. Figure  3-14(a) shows the HFSS model of the DD-PC based SWS with the probe-

wheel radiator. The structure shows two main modifications in the DD-PC based SWS; the rod 

holders and the probe-wheel radiator. To provide a physical support to the SWS and to hold the 

metallic rod in its exact position, two rod holders were added at the top and bottom of the SWS. The 

rod holder is a metallic disk with multiple holes to allow the metallic rod to be installed inside it. The 

second modification is using the probe-wheel radiator to excite the slow wave mode. Since the 

conclusion from the previous section indicates that the probe-radiator cannot excite the slow wave 

mode. Therefore, a probe-wheel radiator was used (Figure  3-14 (b))  [109- 110]. The probe-wheel 

radiator consists of two radiating parts; the wheel radiator and an axial probe radiator. The axial probe 

radiator is used to excite the waveguide modes, while the slow wave modes are launched using the 

wheel radiator.  

  
(a)      (b) 

Figure  3-13 The calculated scattering parameters: (a) the return losses (S11) and (b) the insertion 

losses (S12) 
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The wheel radiator consists of a conducting disk, with several axial symmetrical holes drilled inside 

it. There are two main features of the wheel radiator; first due to its axial symmetry, it excites axial 

symmetrical modes only. Second, it only excites the azimuthal component of the magnetic field (Hφ).  

Since it is a metallic wheel, the tangential electric field equals zero, therefore both cylindrical axial 

electric field (Ez) and the driven radial electric field (Er) component will be excited along with the 

associated azimuthal magnetic field (Hφ). Thus, the slow wave mode (TM-like), located at the 

conducting plates can be excited. This conclusion was verified by the HFSS simulation of the current 

distribution over the wheel radiator itself, shown in Figure  3-15. 

  
  (a)        (b) 

 
(c) 

Figure  3-14 (a) The DD-PC with the probe-wheel radiator, (b) a schematic diagram of the Device 

Under Test (DUT) and (c) the probe-wheel radiator 
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3.4.2.1 Measurement results of the DD-PC based SWS with the probe-wheel radiator 

To have an experimental verification for the existence of the slow wave modes in the DD-PC 

structure, a scaled prototype (5×) was fabricated. A picture of the assembly kit of the DD-PC based 

SWS is shown in Figure  3-16(a). The kit consists of several copper circular rods (42 rods are required 

to fully assemble the DD-PC structure), and the rod holder (2 required for provide physical stability 

for the rod). Figure  3-16(b) shows a picture of the assembled structure (without adding the probe-

wheel radiator). Both the prototype fabrication and assembly were done in the machine shop using 

CNC machinery. 

The S-parameters, return losses (S11) and insertion losses (S12), curve is presented in Figure  3-17. The 

figure shows that there are four spike frequencies observed in both return losses (nulls) and insertion 

losses (peaks).  

 

 

Figure  3-15 The current density over the probe-wheel radiator 
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Figure  3-17 The Scattering parameters of the scaled ADD-PC based SWS 

   
(a)      (b) 

Figure  3-16(a) The assembling rods and rod holder and (b) the assembled DD-PC based SWS 
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A comparison between the HFSS spike frequencies (of the scaled prototype), and the measures 

ones are presented in Table  3-V. The comparison indicates that there is a good correlation between 

the measured and HFSS predictions of the spike frequencies. Also, although the pure slow wave 

mode and pure waveguide mode could not be measured, they were detected using the HFSS 

simulation.  

 

3.5 Conclusion 

At this point, the first phase of the project is completed. First, a metallic PC based SWS was 

introduced and analyzed. The proposed SWS satisfies the pre-defined requirements. First, the SWS is 

a copper based one. Thus, it can be used for high power applications. Replacing the axial 

discontinuity by radial ones has two advantages. First, it facilitates the fabrication of the proposed 

structure. Furthermore, it provides isolation between the electron beam and the generated 

electromagnetic fields. This will ease the extraction of the generated fields from the proposed VED 

device. 

Using the CNC machinery, a scaled prototype of the proposed SWS was fabricated. Measurement 

results of the proposed DD-PC based SWS show a good correlation with the simulation ones. 

Although, the extraction of the dispersion curve is not shown here, it can be expressed as a 

summation of Fourier series (discussed later in section  5.5.1.1 The Dispersion Curve Extraction). 

  

  

 HFSS probe wheel (GHz) Measured (GHz) 

f0 33.9  -- 

f1 35 33.6 

f2 38.5 34.4 

f3 42 39.3 

f4 42.8 41.2 

f5 44.2 -- 

Table  3-V Comparison between measured and HFSS resonance frequencies 
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Chapter 4 
The Analysis of the Electron Beam-Wave Interaction Using the 

Finite Difference Time Domain / Particle In Cell Simulation 

4.1 Introduction 

Since the coherent radiation off the electron beam, as it travels through the SWS, is the main source 

of the generated electromagnetic wave, an accurate modelling of the electron beam-wave interaction 

is an essential part in the VED design. Due to the nonlinear behavior of the electron beam-wave 

interaction, it is extremely difficult to clarify all the details of the interaction between the electron 

beam and the electromagnetic field using theoretical models. Therefore, numerical simulation is 

considered as the main tool for studying the electron beam-wave interaction in VEDs (i.e. to perform 

the hot test simulation).  

In this chapter the interaction between the electron beam and the electromagnetic wave inside the 

SWS is studied in detail. The numerical simulation can be divided into two main parts; the field 

simulation and the particle simulation. The field simulation is used to calculate and update the 

electromagnetic field components at the grid points at each time step. Since this simulation involves 

the update of magnetic and electric fields at every time step, the Finite Difference Time Domain 

(FDTD) simulation can be considered as a perfect candidate for this simulation. The particle 

simulation is responsible of calculating and updating the particle physical parameters (the particle 

position, velocity, acceleration and the applied electromagnetic forces) at each time step. In this 

simulation, the particle analysis was performed the Particle In Cell (PIC) analysis. Starting from the 

first principles concepts, the applied electromagnetic forces can be calculated, and then the particle 

velocity and position can be updated. The two way connection between the FDTD and the PIC are 

established using; the current density “J”, and combination of electric field intensity “E” and 

magnetic flux density “B” (Figure  4-1)  [21]. 
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In this chapter the following topics are covered. First the physical model, in which the basic physics 

of both the field analysis and the particle analysis are introduced. Then an introduction to the 

numerical simulation technique for both the field and particle and the post-processing analysis are 

provided. After that, the FDTD/PIC simulation was used to investigate the performance of the BWO 

using the DD-PC based SWS. The field and particle results of electron beam-wave interaction in the 

proposed BWO are presented. To optimize the BWO, the effect of varying both the beam current and 

the applied DC magnetic flux density on the performance of the BWO is investigated using the 

FDTD/PIC simulation. 

4.2 The Physical Model 

The electron beam-wave interaction simulation can be divided into two main sub-simulations; the 

field simulation and the particle simulation. Therefore, the physical model can be divided to the 

physics of the electromagnetic fields and the electron beam physics. The physics of the 

electromagnetic fields can be fully described using the Maxwell’s equation; 
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Figure  4-1 A schematic diagram of the electron beam-wave interaction simulation 
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where “ E


”  is the electric field intensity (V/m),   “ H


” is the magnetic field intensity (A/m), “ D


”  is 

the electric field density , “ B


” is the magnetic field density, “ J


” is the induced current (A/m2), “ε” is 

the permittivity and “ρv” is the volume charge density (C/m3). 

 

Since the electron beam can be considered as a flow of charged particles traveling at a certain 

speed, the relativistic momentum equation is used to define the particle physics; 
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where “ F


” is the applied electromagnetic force (N), “Q” is the particle charge (C), “ u
 ” is the 

particle velocity (m/sec), “ a
 ” is the particle acceleration (m/sec2), “ R


” is the particle position vector 

(m), and “γ” is the relativistic constant. 

 

The interconnection between both the field simulation and the particle simulation is provided using 

both the current density and the electromagnetic force. The current density generated by the particle 

movement is defined as; 

( ) ( )∑ −=
i

iii rrqtr δν,J        ( 4-4) 

where “qi” is the particle charge, “νi” is the particle velocity, “ri” is the particle position, and “δ” is a 

Dirac delta function. 
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The main difference between the particle and field simulation comes from the spatial representation. 

Since the field simulation was performed using the FDTD, it is a grid based simulation. All the fields 

are discretized in both space and time and allocated to the Yee-gird cells. Therefore, the 

electromagnetic fields are define and updated at fixed grid points. On the other hand, the PIC 

simulation is a grid-free (continuous) simulation. The particles are not aligned to grids. They can 

moves in anywhere inside the simulation domain. Connection between the FDTD (grid simulation) 

and the PIC (grid-free simulation) is considered as a source of the numerical error/noise in the 

FDTD/PIC simulation. 

4.3 The FDTD/PIC simulation 

In this section, both the particle simulation and the field simulation will be discussed in details. First 

the FDTD method, used for field simulation, is briefly introduced. Then a more detailed study of the 

particle analysis using the PIC simulation is discussed. The post processing analysis and the flow 

chart of the simulation procedures are provided at the end of this section. 

4.3.1 The Field simulation (The FDTD algorithm) 

In the FDTD/PIC code, the electromagnetic field simulation was carried out using the FDTD 

simulation  [21-23]. In the FDTD method, the second-order finite difference approach is applied (in 

both time and space domains) to Maxwell’s equations. Thus, a discretized form of Maxwell equation 

can be obtained. Then, using a leap-frog time marching technique, the electromagnetic fields can be 

updated at each time step. Besides its simplicity, FDTD covers a wide range of frequencies in a single 

run. The main limitation of the FDTD is the huge computational cost, in terms of computational time 

and memory requirements. With the advance of the modern computer hardware along with the proper 

implementation of the FDTD algorithm, the memory problem can be solved. Thus, the computational 

time can be considered as the main bottle neck in the FDTD method  [106- 107]. 

4.3.1.1 The Yee Algorithm 

Yee algorithm, also called the Yee-Cell, has the following basic fundamentals  [95]: 

1. The Yee algorithms solves for both the electric and magnetic fields in time and space 

domains. 

2. In space domain, each electric (magnetic) field component is surrounded by four circulating 

magnetic (electric) field components (Figure  4-2(a)). 
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3. In time domain, the leapfrog algorithm is used. The electric field components at time step 

“n+1” is calculated using the stored magnetic field and electric field components at time step 

“n+1/2” and “n”, respectively (Figure  4-2(b)). 

 

4.3.1.2 Discretization of Maxwell’s Equations 

Using the Yee algorithm, the Maxwell equation can be discretized in the following steps: 

1- Convert Maxwell’s equation from the vector form to the component form. For example, the 

electric field in z-direction: 
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2- Apply the finite difference approach: 
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(a)      (b) 

Figure  4-2 (a) The Yee Cell in and (b) the leapfrog algorithm  [106] 
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where 
1n

2
1j,ki,zE +

+ is the discretized electric field in the z-direction at point (iΔx, jΔy, (k+½)Δz), 

and at time step  (n+1)Δt. 
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          ( 4-7) 

Similar discretization can be applied to calculate other discretized electric and magnetic field 

components. 

4.3.1.3 Termination of FDTD computational window 

Since the FDTD problem is bounded in both space and time, a termination of the solution domain is 

required to remove any reflection from the boundaries. These termination boundaries are called the 

Absorbing Boundary Conditions (ABCs). Although several types of ABCs were reported   [106], the 

Perfectly Matched Layer (PML) can be considered as the state-of-art for termination of the FDTD 

region. Therefore, a PML was used to terminate the boundaries of the FDTD problem. 

4.3.2 The Particle Simulation (The PIC Simulation) 

In the particle simulation, the electron beam is considered as a series of electrons, initially travels in 

the axial (z-) direction with an initial speed. To reduce the numerical error/noise, the macroscopic 

principle is used. In the macroscopic principle, each particle consists of a certain number of electrons: 

eparticle n.QQ =         ( 4-8a) 

eparticle n.mm =         ( 4-8b) 

Where “Qe” is the charge of electron (1.6×10-19C), “me” is the mass of the electron (9.1×10-31kg), 

and “n” is the number of electrons in a particle.  
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Therefore, the particle mass-to-charge ratio is equal to the electron mass-to-charge ratio. 

Furthermore in the macroscopic scheme, the particle-particle interaction is not considered. And, the 

interaction between the particle and electromagnetic fields is the only interaction allowed in this 

simulation. Physically, this condition can be imposed by adding a limitation on the initial electron 

beam current density  [21-23],  [111].  

There are two main problems in linking between the FDTD and PIC simulation; the spatial 

simulation conversion and the numerical error/noise reduction. The first problem – the spatial 

simulation conversion – arises mainly from the difference between the spatial FDTD and PIC 

simulation. The FDTD is a grid based simulation, while the PIC simulation is a continuous one. So to 

couple between these two spatial-different simulations the weighting function is used twice every 

time step. First, the weighting function is used to estimate the value of the electric and magnetic fields 

(grid-value simulation) exerted on the electron beam (continuous-value simulation). The second use 

of the weighting function is to find the value of the current density (continuous-value simulation) at 

each grid point (grid-value simulation), such that it can be used to update the electromagnetic fields in 

the FDTD simulation. 

The second problem is related to both the reduction of numerical noise and stability of the 

simulation. In order to enforce the satiability of the FDTD/PIC simulation, It was found by applying 

the Courant stability condition the FDTD/PIC simulation is stable  [21]. For a stable FDTD 

simulation, the time step used must satisfy the Courant stability condition: 
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To reduce the numerical noise, the Gauss’s law is used. Since in the FDTD simulation only the first 

two Maxwell’s equations are used (Equation 4-1), by using the Gauss’s law an estimation of the error 

can be defined as 

( )
( )
ε

ρ tr
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,
, E.Error −∇=        ( 4-10) 
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4.3.2.1 The analysis of the PIC simulation 

The analysis of the PIC simulation is discussed from the first principles. Since there is no limitation 

on the particle speed in the PIC simulation, the general relativistic equation of motion was used. 

Starting from the relativistic equation of motion;  

tm ∂
∂
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
          (  4-11) 

Then, the finite difference approach can be used to update the particle velocity as; 
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Using the updated velocity, the particle position can be updated as; 
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Then using the relativistic constant 
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To link between the FDTD and the PIC simulation, the current density is defined as: 

 parparpar υQJ 
=          ( 4-15) 

4.3.2.2 The Weighting function (δ) 

As discussed above, it is required to have a spatial conversion between the FDTD (grid based 

simulation) and the PIC (continuous based simulation). The weighting function is used to provide 

such conversion. For example a first order weighting function (δ) is defined as: 
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Where “δ” is the weighting function, “r” is the relative position of the particle with respect to the Yee 

grid and “Δ” is the space discretization.  

 

 

 

Figure  4-3 The weighting function of the first and second order 
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A graphical representation of the first order weighting function is plotted in Figure  4-3. To reduce the 

conversion error, higher order weighting functions can be used. A comparison between the first order 

weighting function and the second order weighting is plotted in Figure  4-3. 

4.3.2.2.1 The current density weighting 

Using the weighting function, the continuous-value current density – calculated for the PIC 

simulation – is converted to a gridded-value. Thus it can be used in the FDTD simulation. The 

gridded-value of the current density is expressed as: 

( ) ( ) ( )itr,t,r rr.δJJ
i

−=
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        ( 4-17) 

Where ( )t,ri
J


 is the current density vector at the grid point (ri), and ( )tr,J


 is the continuous current 

density vector. 

4.3.2.2.2 The Electromagnetic wave weighting 

Using the same procedure described above, the electromagnetic field applied on each particle can be 

define as the weighted fields at the surrounded grids; 

( ) ( ) ( )igridrparr rrδEE
i

−=          (  4-18) 

where “ ( ) parrE ” is the electromagnetic field on the particle, “ ( ) gridri
E ” is the field at the Yee grid, 

“ri” is the position of the grid, and the “r” is the actual position of the particle. 

4.3.2.3 The termination of the PIC simulation 

In the real application, the electron beam is terminated by a collector, at which the kinetic energy of 

the electron beam is converted to thermal energy. Since the analysis of the thermal energy is not 

included in this work, a simple replacement of particle was introduced. When the particle reaches the 

end of the structure, the particle is extracted and a fresh particle enters the structure from the other 

end. 

4.3.3 The Post-processing Analysis 

In the post-processing section, the analysis of the generated electromagnetic fields and the particle’s 

physical parameters are performed. Taking advantage of the DD-PC based SWS designed in  3.3.1.1 
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Design of the DD-PC based SWS, the FDTD/PIC simulation was used to analyze the BWO operating 

at 130 GHz. 

4.3.3.1 Electromagnetic Field Simulation 

A cross sectional view of the DD-PC based SWS is shown in Figure  4-4. As the figure shows, the 

structure consists of a three layers of metallic rods, placed in a triangle lattice PC structure with two 

types of defects; the central defect and the slow wave defect. The central defect is formed by 

removing inner most rods. It is designed to allow the electron beams to travel axially through the 

structure. The slow wave defects are formed by removing extra four rods; numbered SW1 to SW4.  

 

In order to sample the generated fields, the fields at the center of each slow wave defect (shown as red 

dots in Figure  4-4) are stored through the entire time simulation for the post-possessing analysis. The 

fields are stored at three axial locations; at 0.25Lz (where Lz is the axial length of the structure), 

 

Figure  4-4 A cross-sectional view of the DD-PC based SWS showing the initial location of the 

electron beams 
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0.50Lz and 0.75Lz. Furthermore, to calculate the generated electromagnetic power, the transverse 

fields are stored at seven axial locations; 0.25Lz, 0.30Lz, 0.40Lz, 0.50Lz, 0.60Lz, 0.70Lz and 0.75Lz. 

4.3.3.2 The Particle Physical Parameters 

Since there are four slow wave defects used to collect the electromagnetic fields, four initial electron 

beams were implemented in the DD-PC based SWS. The exact location of these beams are; (0, 0.5Λ), 

(0.5Λ, 0), (0, -0.5Λ) and (-0.5Λ, 0). A graphical representation of the exact position of the electron 

beams are presented in the cross sectional view of the DD-PC based SWS as a red “×” plotted in 

Figure  4-4. For the post processing analysis, all the physical parameters of the particles are stored at 

each time step. These physical parameters include; the particle position, velocity, acceleration, 

electromagnetic fields applied on each particle and electromagnetic force applied on each particle. 

4.3.4 The Computational Procedure 

The computational steps of the FDTD/PIC simulation are summarized in the flow chart (Figure 

 4-5). As the figure shows, the program starts with zero-initialization of the electromagnetic fields and 

particle stored fields. Then within the time marching loop, both the field (FDTD), and the particle 

(PIC) simulations are excluded. During the PIC simulation, the particle physical parameters are 

update, and then these parameters are used to find the current density “J”. The current density “J” is 

used to excite the electromagnetic fields in the FDTD simulation. Finally, the generated 

electromagnetic fields are used to calculate the electromagnetic forces on the particles. Since both the 

field and the particle simulations are independent; then a parallel approach can be applied to speed-up 

the simulation. Taking advantage of the multiple cores (available in all the modern CPUs), in each 

time step, different cores can be assigned to the FDTD, and PIC simulation. 



 

 65 

 

4.4 The analysis of 130GHz BWO using the FDTD/PIC simulation  

The FDTD/PIC simulation discussed above is used to analyze the electromagnetic beam-wave 

interaction within the DD-PC based SWS. Using the Open Multi-Processing (OpenMP), a 

multithreading parallel implementation of the FDTD/PIC simulation was realized  [112]. 

Starting from the non-uniform FDFD analysis, discussed in  3.2  3.2 The non-uniform FDFD method, 

the modal parameters of the SWS was analyzed. The dispersion diagram along with the modal 

 

Figure  4-5 A flow chart of the FDTD/PIC simulation 
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analysis of the DD-PC based SWS is presented in Figure  3-7. The modal analysis indicates that with a 

frequency band extending from 100 – 140GHz, a slow wave mode is supported by the DD-PC based 

SWS. The corresponding phase velocity of the slow wave mode changes between 0.25νc – 0.55νc. 

Then, a BWO was designed, at 130GHz, using the DD-PC based SWS. At the design frequency 

(130GHz), a slow wave mode has a propagation constant of β= 6.05 rad/mm and the associated phase 

velocity νph = 0.45νc. A summary of the parameters of the BWO using the DD-PC based SWS, is 

listed in Table  4-I. 

 

4.4.1 The Electromagnetic Field Simulation Results 

This section investigates the sampled electric and the magnetic fields, considering specifically the 

time domain analysis and frequency domain analysis. The time domain sampled electric and magnetic 

fields inside the first cavity, at the first plane 0.25Lz, are shown in Figure  4-6(a) top and bottom 

figures, respectively. The figure shows that the Ez field dominates Ex and Ey fields, while Hz field is 

almost zero. Therefore, the generated mode is a TM-like mode. Since the electron beam is travelling 

in the longitudinal (z-) direction, the current density will have a strong z-component. Thus in order to 

have a strong electron wave-beam interaction, the propagating electromagnetic mode should be TM- 

mode type in nature, as verified by our simulation.  

To study the frequency response spectrum of the electromagnetic fields, the Fast Fourier Transform 

(FFT) is applied to the sampled time domain fields. Figure  4-6(b) provides the FFT results of the 

sampled fields shown in Figure  4-6(a). The FFT analysis confirms our desired results. First, all four 

cavities are dominated by fields over a very narrow frequency band (≈130GHz). Second, the 

frequency response of the E-fields and H-fields is almost the same in all the cavities, indicating 

Structure Parameters 
Λ = 2.0 mm 
r = 0.8 mm 

Air-core radius = 1.5 Λ 
Structure material Perfect conductor 

Electron beam νint=0.45νc 
νc : Free space light speed 

Beam current 850𝑚𝐴 
FDTD/PIC window 20 × 20 × 60𝑚𝑚 
DC magnetic flux 0.5𝑇 

Table  4-I A summary of the BWO parameters 
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symmetrical beam-wave interactions. Finally, although FFT results show some noise the structure has 

good frequency selectivity. Similar time-domain and frequency-domain results were obtained inside 

the slow wave cavities at other longitudinal locations consistently. 

 

Further insight to the nature of the generated fields can be gained by time-zooming the FDTD 

generated time-domain electromagnetic fields. This can be done by plotting the fields over a short 

time period. A typical zoomed-in electric and magnetic fields (between 0.55 – 0.57 nsec) inside the 

first cavity at the first longitudinal sampling plane, i.e. at z = 0.25Lz, is plotted in Figure  4-7. The 

transverse electric and magnetic fields are shown in Figure  4-7(top). As the plots show Ex and Hy, are 

sinusoidal in nature (with some noise and a small bandwidth – see Figure  4-6), and in-phase, while Ey 

and Hx are out of phase. Therefore, the two terms of the Poynting vector, Sz = ExHy – EyHx in the 

longitudinal (z-) direction are always constructively. Figure  4-7 (bottom) also presents the time-

zoomed Ez and Hz fields. As discussed later, the Hz field component is zero while the Ez field is 

dominate, compared to Ex and Ey field components. This confirms the TM-like modal nature of the 

generated fields as expected from the theory  [111],  [113]. 

  
(a)     (b) 

Figure  4-6 (a) The Time domain electric (top) and magnetic (down) fields inside the first slow 

wave cavity and (b) the corresponding FFT response of electric (top) and magnetic (bottom) fields 
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The last analysis in this section is the electromagnetic wave classification. The propagating 

electromagnetic mode can be sorted into two categories; the forward wave and backward wave, based 

on the propagation direction. A forward wave propagates in the +z direction, while the wave that 

propagates in the –z direction is called a backward travelling wave. In order to study the nature of the 

generated wave, the electric field is sampled at three different incremental planes: 0.5Lz - 𝛿z, 0.5Lz, 

and 0.5Lz + 𝛿z, where 𝛿z is a very small displacement in z-direction. Then the FFT is applied to the 

sampled fields at the three planes to calculate the corresponding frequency responses. The phases of 

the electric field at these three locations, at 130GHz (the peak of the spectrum), are equal to: -2.87◦, 

 

Figure  4-7 Time-zoomed electromagnetic fields inside the first cavity at 0.25Lz 
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-2.74◦, and -2.70◦, respectively. Therefore, we conclude that the propagating wave is a backward wave 

in nature, since the differential phase has a positive slope along the z-direction (+jωt convention). 

4.4.2 Tunability of the BWO 

According to the dispersion diagram of the DD-PC based SWS (Figure  3-7) the frequency of the 

generated fields can be changed by varying the velocity of the electron beam, which can be done by 

varying the voltage applied to the electron beam source. To show the tunability of the proposed 

BWO, the applied electron beam velocity was changed. Then using the FDTD/PIC simulation, the 

BWO was analyzed with the following electron beam parameters; initial particle velocity 0.50νc and a 

beam current density of almost 50mA/m2. The applied magnetic flux was set to be 0.1T. According to 

the dispersion diagram, there is an electromagnet wave propagating at a frequency of almost 140GHz. 

The sampled electric and magnetic fields, at longitudinal distance of 0.25Lz, inside the first slow wave 

defect (SW1), in both time domain and frequency domain are shown in Figure  4-8(a). The Frequency 

response of the sampled fields indicates that the generated electromagnetic wave has a frequency of 

137GHz, which is less than 3% shift compared to the theoretical expectation. 

A time-zoomed version of the sampled electric and magnetic fields are plotted in Figure  4-8(b). The 

axial electric and magnetic fields are plotted in the top figure. As the figure indicates, the axial 

magnetic fields is almost zero, thus the propagation mode is a TM-like mode. From the transverse 

electromagnetic fields Figure  4-8(b-bottom) the axial power density is adding-up (as explained in the 

previous section).  
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(a) 

 
 (b) 

Figure  4-8 (a) The sampled electric and magnetic fields in time and frequency domains, and (b) 

zoomed version of the fields 
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4.4.3 The Particle Simulation Result 

Next, we explore the time evolution of the particle dynamics. The phase space diagram is used to 

define the electron beam modulation and electron energy lost. It expresses the relation between the 

position of the particle and the associated longitudinal velocity of the particle (νz) at that given point. 

A sample phase space diagram, obtained through the FDTD/PIC simulation, is presented in Figure 

 4-9(top) shortly after the launching of the electron beam, and Figure  4-9(bottom) at the end of time 

simulation. In this figure the four dotted lines represent the normalized longitudinal particle velocity 

of the four beams. The particle velocity is normalized with the initial particle velocity.  

At the beginning of the time evolution, the generated field is small. Therefore, the electron beam-

wave interaction is very weak. Thus, the particle velocity remains almost constant as it transverses the 

interaction length (Figure  4-9 (top)). Toward the end of the simulation time span (steady-state), the 

electron beam-wave interaction is strong. Hence, the beam velocity is expected to be strongly 

modulated. This electron beam modulation is shown in Figure  4-9(bottom). The figure shows that the 

particles have lost almost 15% of its initial velocity.  
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The calculated normalized particle’s Kinetic Energy (KEnorm = KE / KE0, KE=0.5mν2, KE0 is the 

initial KE) at the beginning of the time evolution and at the steady-state are presented in Figure 

 4-10(top) and (bottom), respectively. Several insights about the particle physics can be explained 

from the figure. Since the KE behavior is similar to the behavior of the particle velocity in the z-

direction, this indicates that the main component of the velocity is the longitudinal (z-) component. 

This can be explained from the time domain generated fields plotted in Figure  4-7 and Figure  4-8. 

These figures show that the main electric field component is the axial components, which interacts 

with the axial velocity component, furthermore the initial transverse components of the velocity 

equals zero; this explains the dominance of the axial velocity over the transverse components. 

Besides, the figure indicates that the beam has lost almost 25% of its KE energy through the beam-

 

Figure  4-9 The Phase Space diagram at (top) beginning of time domain simulation and (bottom) at 

end of time domain simulation. 



 

 73 

wave interaction process. The velocity reduction and power/energy losses of the electron beam are 

good indicators of the device efficiency  [10],  [111],  [113- 114]. 

 

A picture of the particles velocity trace is plotted in Figure  Figure  4-11. The figure shows that the 

electron beams have a semi-circular trance, of radius 0.5Λ, in the transverse plane. Therefore, the 

electron beams particles interact with the slow electromagnetic wave located at the entrance of four 

slow wave defects. Furthermore, due to the axial velocity component, the particles travels in a helical 

path through the DD-PC based SWS. Thus, the interaction length is significantly increased compared 

to linear beam movement. The figure indicates that the transverse velocity changes between +1.5×106 

to -1.5×106 m/sec, which is almost 1% of the initial axial velocity. Which confirm the behavior of 

both the particle velocity and the Kinetic Energy shown and explained in Figure  4-9 and Figure  4-10. 

 

Figure  4-10 The variation of the KE at (top) beginning of time domain simulation and (bottom) at 

end of time domain simulation 
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4.4.4 The Electromagnetic Power Density 

Starting from the Poynting theorem, the average electromagnetic power flow in frequency domain 

can be defined as: 

'
HES ×=          ( 4-19a) 

'
xy

'
yxd H.EH.EP −=z        ( 4-19b) 

where, S is the Poynting vector, 
'

H  is the complex conjugate of magnetic field H , and zdP is the 

average power density flow in the z-direction. 

 

Figure  4-11 A 3D velocity trace of the electron beams showing the helical movement behavior of 

the electron beam particles 
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To apply the Poynting theorem, the time domain transverse fields (Ex, Ey, Hx, and Hy) obtained from 

the FDTD simulations stored at different transverse planes. Then, the FFT is applied to these fields to 

calculate the frequency response. In order to reduce the noise, the frequency domain signals are 

numerically filtered using a Gaussian filter with the following parameters: the center frequency equals 

the resonance frequency (130GHz in this case) and the filter bandwidth is 10% around the center 

frequency. After filtering, the Poynting vector in the z-direction (Sz) is calculated using the filtered 

fields. Finally, the calculated Poynting vector is integrated over the cross-sectional area to obtain the 

average power flow in z-direction. A summary of the power calculation processes is plotted in Figure 

 4-12. 

 

The transverse fields are stored at 7 transverse planes, at 0.25Lz, 0.30Lz, 0.40Lz, 0.50Lz, 0.60Lz, 0.70Lz, 

and 0.75Lz. The power flow calculation process is applied at each one of these planes. The cross 

sectional magnitude of the Poynting vector in z-direction, at 0.50Lz, is plotted in Figure  4-13. The 

calculation was done at a frequency of 130GHz. The figure indicates that there is a significant amount 

 

Figure  4-12 A flow chart of the power calculation process 
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of the power located inside the central defect; this can be clarified since the electron beams travel 

through the central defect. Furthermore, since the slow wave mode is located at the opening of the 

slow wave defects, the power is extracted from the central defect to the slow wave defect. The figure 

shows that the strength of the power inside the slow wave defects is almost half the strength of the 

power at the central defect; thus the power extraction can be verified. 

 

The electromagnetic power is calculated by integrating the power density over a circular cross-

sectional area (Figure  4-12), at the pre-determined seven axial planes. The power distribution is 

plotted in Figure  4-14. The figure shows that the maximum generated electromagnetic power is 

located next to the terminal at which the electron beam entranced the SWS. Since the proposed device 

is a BWO, as explained in  4.4.1 The Electromagnetic Field Simulation Results, it is expected to have 

the maximum power location at the entrance point of the electron beam. Thus the generated 

electromagnetic power plotted in Figure  4-14 is justified. Furthermore, to acquire a close approach 

 

Figure  4-13 The magnitude of the z-component of the Poynting vector (logarithmic scale) 
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about the power distribution inside the DD-PC based SWS, the power distribution across the cross-

section is calculated between two segments; the core power and defect strip power. The core power is 

defined as the power within the radius r < 1.5Λ, while the defect strip power is defined as the power 

between 1.5Λ < r < 2.5Λ (the slow wave cavities ring). The core power and the defect strip power, 

along with the overall power distribution are plotted in Figure  4-14. The figure illustrates that the core 

power and the defect strip power are almost the same. Also, both of them equal -approximately- half 

of the overall calculated power (which calculated with a circle of a radius r < 5Λ). 

 

Figure  4-15 presents the time integration of the Poynting vector, in the axial direction, inside the 

center of the first slow wave cavity (SW-1). The integration was done at three different longitudinal 

locations 0.25Lz, 0.50Lz, and 0.75Lz. As shown in the figure, the integration of the Poynting vector 

increases with time which indicates power build up inside the slow wave cavity. Moreover, the 

integration inside the cavity decreases while moving towards the end of the structure, thus verifies the 

backward wave behavior of the slow wave mode. 

 

Figure  4-14 The axial power distribution 



 

 78 

One of the drawbacks of the BWO is the location of maximum electromagnetic power density and 

maximum charged particle modulation. Since the maximum charged particle modulation is located at 

the minimum electromagnetic field location, the overall efficiency of the BWO is limited  [10]. 

 

4.4.4.1 Sector and Sectional Power Analysis 

More information about the power distribution over the cross-sectional area inside the proposed 

DD-PC based SWS can be obtained from the sector power and the sectional power analysis. The 

sector power is defined as electromagnetic power calculated over certain sector (of predefined angle 

Figure  4-16(a)). In this work, four sector regions were defined, each sector extends for 30˚. The start 

and end angles of each sector are defined as 45˚-75˚, 105˚-135˚, 225˚ - 255˚, and 285˚ - 315˚, 

respectively. 

The calculated power over these sectors is plotted in Figure  4-17. The figure indicates that the 

electromagnetic field power is equally distributed over the four sectors. Additionally, the summation 

of the four sector powers equals half of the overall structure power. This verifies that the generated 

electromagnetic power migrates to the slow wave cavities. 

 

Figure  4-15 Time integration of Sz inside first slow wave cavity 
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Figure  4-17 The Sector Power 

  
(a)      (b) 

Figure  4-16 (a) The Sector Power and (b) the Sectional Power 
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More detailed analysis of the power distribution can be studied by the determination of the power 

located between two radii (strip power).  Figure  4-16(b) displays an example of two strips; the inner 

strip which define as a circular area of radius r < Λ, and the second strip, which described as a disk of 

radius r extended between Λ < r < 1.5Λ. The calculated power over five different strips is plotted in 

Figure  4-18. In the first strip (r = 0 to 0.5Λ) the maximum generated power is less than 1W. Since the 

electron beams are located at a radius 0.5Λ, the generated electromagnetic power inside the second 

strip (0.5Λ – 1.0Λ) is almost twice the generated power within the first strip. The last strip is the 

defect strip, which has a radius extend between 1.5Λ to 2.5Λ, has a maximum power of 3.75W. This 

can be explained from the cross sectional power density plot shown in Figure  4-14. Since this strip 

has the slow wave defects located inside it (at which half of the generated electromagnetic power is 

located) this explains the high power level located in this strip. 

 

4.5 Variation of the BWO parameters 

In the last part of the BWO analysis, the effect of changing both the beam current and the applied 

axial magnetic flux density on the generated electromagnetic power is investigated. The analysis was 

performed using the FDTD/PIC CAD tool. 

 

Figure  4-18 The Strip Power 
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4.5.1 The Electron Beam Current 

The electron beam power can be defined based on two parameters: the beam current and the beam 

voltage. The initial velocity of the electron beam particles is defined by the beam voltage. While the 

operating frequency (and bandwidth) of the BWO is directly related to the beam voltage (and beam 

velocity –as discussed in  4.4.2 Tunability of the BWO-), changing the beam current affects the 

generated electromagnetic power. The particle charge is used to calculate the beam current. In this 

section, the effect of changing the electron beam current on the generated power, at a constant beam 

velocity, is investigated. This was done by change the number of electron in each particle (“n” in 

Equation (4-8)). 

The upper limit of the electron beam current was defined such that the particles remain in the 

space-charge limited region – such that the effect of the particle-particle interaction remains 

negligible – (Figure  4-19). This assumption is justified as long as the Preveance Number (PN = I/V3⁄2, 

where I the beam current and V is the beam voltage) is less than 2.5×10-6. Furthermore, increasing the 

beam current may cause the particles to hits the structure walls before the extraction point. Therefore, 

the maximum beam current was selected such that at least 90% of the particles can travel through the 

DD-PC based SWS without hitting its walls. Increasing the beam current has two main effects on 

both the generated electromagnetic power and the spectral purity of the electromagnetic fields. As the 

beam current increases, the electron beam-wave interaction enhanced. Thus, the generated 

electromagnetic power is also increased  [32]. On the other side, increasing the electron beam current 

affected the spectral purity of the generated electromagnetic signal. 
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A plot of the effect of changing the beam current on the calculated maximum generated power is 

plotted in Figure  4-20. As expected, increasing electron beam current enhances the electron beam-

wave interaction, thus the generated electromagnetic power is also increased. Figure  4-20 also shows 

the power within the slow wave cavity ring. The figure indicates that almost half of the structure 

power is within the slow wave cavities ring 

 

Figure  4-19 The Space Charge Limit  [32] 
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As the value of the beam current is boosted, the electron beam-wave interaction is enhanced. Also, 

the kinetic energy lost by the electron beam increases as well; 

 0StateSteady lost KEKEKE −=        ( 4-20) 

where KElost is the changing in the particle KE, KEsteady state is the particle KE at the steady state and 

KE0 is the initial value of the particle KE. 

 

Figure  4-21 shows both the change in the electron beam kinetic energy and the lost electron beam 

power (with respect to its initial value) as it travels through the BWO. The reduction in electron beam 

kinetic energy and electron beam power can be used as a measure of conversion efficiency  [10], [24].  

The effect of changing the beam current on the lost beam power (ΔPbeam=Pbeam|enter.point - 

Pbeam|extract.point). The electron beam power can be defined as: 

 

Figure  4-20 The Effect of changing the beam current 
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beambeambeam .IVP =           ( 4-21) 

where Vbeam is the beam voltage and Ibeam is the beam current. 

 

Since increasing the beam current enhances electron beam-wave interaction. Therefore, the electron 

beam velocity decreases, and hence both the lost beam power and the change in the particle KE 

increases. 

 

 

 

Figure  4-21 The effect of changing beam current on the kinetic energy and the electron beam 

power 
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4.5.2 The Applied DC Magnetic Flux Density  

One of the advantages of slow wave devices is the lower DC magnetic flux density requirements, 

compared to the fast wave devices requirements. For fast wave devices, the resonance condition is 

defined as: 

csωω =           ( 4-22) 

where “ω” is the operating frequency, “s” is the cyclotron harmonics number (for the fundamental 

mode, s is selected to be 1) and “ωc” is the cyclotron frequency. 

 

Using the above equation, it was found that the resonance condition indicates that the emission 

frequency is 29GHz/T. Therefore, in order to generate an electromagnetic field of 130 GHz, a DC 

magnetic flux of 4.5T would be required. Compared to the proposed BWO, which typically needs 

0.5T, the required DC magnetic field for the fast-wave devices is very high  [10],  [16- 17]. 

This section investigates the effect of the applied DC magnetic flux on the electron beam energy. It 

can be preserved from Figure  4-22 that for an applied DC magnetic flux in the range of 0.4 – 0.5T, 

the reduction in electron beam energy is almost 27%. For the particular structure here, the application 

of more magnetic flux reduces the losses in the electron beam, which indicates lower extracted power. 

As the DC axial magnetic flux increases, above a certain limit, the transverse particle acceleration 

increases, and the particles start to hit the walls of the SWS. Hence, the FDTD/PIC code will generate 

a new particle entering the structure with the initial electron beam velocity. This explains the decrease 

of the reduction of the electron beam energy. 
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4.6 Conclusion 

Thus far, the second part of the project – the analysis of the electron beam-wave interaction in the 

SWS – is completed. First, the physical model of both the electromagnetic waves and the particle 

parameters is introduced. Then, using the FDTD simulation and the PIC simulation, the numerical 

analysis of the electron beam-wave interaction was performed. A full discussion of the different 

aspects of the FDTD/PIC simulation was studied in details.  

Taking advantage of the DD-PC based SWS proposed in the previous chapter ( 3.3.1.1 Design of the 

DD-PC based SWS), a BWO operating at 130GHz was proposed. The performance analysis of the 

BWO was carried-out using the FDTD/PIC simulation. The field simulation results were consistent 

with the SWS analysis (performed in the previous chapter). The power simulation results showed that 

the BWO capable of delivering up to 9W with an electron beam efficiency of 33%. The effect of the 

electron beam current variation was analyzed using the FDTD/PIC simulation. As expected form the 

theoretical discussion, the electron beam-wave interaction was significantly enhanced as the electron 

beam current increased. Similarly, the optimum value of the applied magnetic flux was found to be 

0.4 – 0.5T.   

 

Figure  4-22 The effect of changing DC axial magnetic flux density on the beam energy 



 

 87 

Chapter 5 
Design and Analysis of a Cherenkov-radiation based BWO 

5.1 Introduction 

In order to increase the bandwidth and reduce the size of the modern communication devices and to 

fulfill the modern application requirements in terms of power and frequency, the communication 

frequency has been pushed to the sub-mm/THz frequency band. The propagation characteristics and 

the operating bandwidth of the THz frequency band make them an excellent choice for the modern 

wireless communicating system  [3-5],  [7]. The atmospheric attenuation diagram, presented in Figure 

 5-1, shows that there are four frequencies; 35GHz, 94GHz, 140GHz and 220GHz, at which the 

atmospheric attenuation is considerably reduced. Thus, these frequencies were defined as an 

operational window for communication systems. Within this work, a detailed analysis of a BWO, 

using the DD-PC based SWS, operates at the third window was proposed, analyzed and tested in the 

previous two chapters. 

 

In this chapter, a BWO (operates at 200 GHz) is introduced using two different SWSs. The first SWS 

is designed using a DD-PC structure. To enhance the efficiency and to reduce the electron beam 

requirements of the DD-PC based SWS, an Axial loaded Double Defected Photonic Crystal (ADD-

PC) structure is used as a SWS. The modal analysis of the proposed structures is performed using 

both non-uniform FDFD and High Frequency Structure Simulator (HFSS), while the electron beam-

wave interaction is carried out using FDTD/PIC simulation. To show the potential of the ADD-PC 

based SWS, the same design methodology was used to extend the operation of the BWO to 650GHz.  

 

Figure  5-1 Atmospheric attenuation for different weather conditions  [7] 
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The ADD-PC based SWS has lower electron beam requirements. Thus, the efficiency of the BWO 

using this SWS is enhanced. However, the main drawback of the ADD-PC based SWS is the complex 

fabrication requirements. The axial discontinuity and the small structure dimensions of the 650GHz 

design, places limitation with respect to its fabrication using the current fabrication techniques. 

5.2 The Physical Model 

A two dimension (2D) cross-section of the triangle lattice cylindrical PC structure is shown Figure 

 5-2(a). It consists of several metallic rods, each of radius “r”, placed in a triangle lattice structure. The 

distance between the centers of any two adjacent rods is the pitch size “Λ”. The band diagram of the 

first three TM-modes to axial direction of the PC structure is plotted in Figure  5-2(b)  [103]. As the 

figure indicates, the condition for a single mode operation is r/Λ < 0.2.  

 

To design SWS operates at 200GHz; the first step is to design a single mode PC waveguide structure 

at the specified operating frequency. Thus, an operating point that matches the above condition was 

selected (shown as a black dot in the band diagram figure). For a single mode operation, the rod 

radius to pitch size ration (r/Λ), and the normalized pitch size (ωΛ/c) were selected to be 0.125 and 

3.0, respectively. Thus, a single mode waveguide can be designed by creating a central defect (created 

by removing the two inner most layers of rods (Figure  5-3(a)). On the other hand, the DD-PC based 

SWS can be designed by introducing two types of defects; the central defect and the slow wave 

defects (Figure  5-3). 

   
 

(a)      (b) 

Figure  5-2 (a) The triangle lattice, and (b) the band diagram of a triangle lattice for TM-modes  
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5.3 The Modal Analysis 

The modal analysis of both the PC waveguide and the DD-PC was performed using the non-uniform 

FDFD developed in  3.2 The non-uniform FDFD method. In the FDFD analysis, copper metallic rods, 

with a conductivity of σ = 5.96×107 S/m, were used. Taking advantage of the structure symmetry, 

only quarter of the structure was analyzed (represented as a solid square in Figure  5-3) 

5.3.1 The Photonic Crystal Waveguide 

The field profile of the waveguide mode at 200GHz is shown in Figure  5-4. The figure shows that the 

axial electric field is concentrated at the center of the waveguide. The calculated modal phase shift of 

the TM-like mode β = 3.887 – 2.1×10-6 rad/m. 

 

  
(a)     (b) 

Figure  5-3 The schematic diagram of (a) the PC waveguide, (b) the DD-PC based SWS 
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5.3.2 The Double Defected Photonic Crystal (DD-PC) Structure 

For the DD-PC structure, the axial electric field profile of both the slow wave mode and the 

waveguide mode are shown in Figure  5-5. The axial electric field of the TM01-like waveguide mode 

(Figure  5-5(a)), is concentrated at the central defect. Figure  5-5(b) shows the axial electric field of the 

slow wave mode in the DD-PC. A zoomed version of the same figure is presented in Figure  5-5(c). 

The slow wave mode is located in the slow wave defect and concentrated next to the metallic 

conductors. The modal parameters of the waveguide mode and the slow wave mode are given in 

Table  5-I. Due to the finite conductivity of the copper conductor used, both the slow wave mode and 

the waveguide mode have some losses (imaginary part in the phase shift constant). 

In Cherenkov’s radiation, an electromagnetic wave is excited if an electron beam travels through 

medium with a speed that matches the phase velocity of this electromagnetic mode  [33]. Since the 

proposed SWS supports a mode with a phase velocity of almost 0.70νc, then Cherenkov’s radiation 

can be generated within this structure if electrons beam of speed 0.70νc  travel through it. The main 

problem in this device is the high acceleration voltage required. It required almost 125KV to 

accelerate the particles to 0.70νc. Therefore, the electron beam source will require a high operating 

power. Hence, the conversion efficiency of an oscillator using the proposed SWS is expected to be 

low. 

  

Figure  5-4 The waveguide modal fields (a) transverse E-fields and (b) Ez field 
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(a)     (b) 

 
(c) 

Figure  5-5 The operating modes of the structure, (a) the waveguide mode and (b) the SWS mode, 

and (c) Zoomed SWS mode 
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5.4 Analysis of the 200GHz BWO using the DD-PC based SWS 

Using the predesigned DD-PC based SWS, a BWO operates at 200GHz was proposed. The analysis 

of the electron beam-wave interaction was done using the FDTD/PIC CAD tool introduced in the 

previous chapter ( 4.3 The FDTD/PIC simulation). For the electron beam-wave interaction, a circular 

electron beam is used to excite the structure. The main parameters of the BWO are listed in Table  5-II 

 

The maximum beam current limit was defined such that the particles remain in the space-charge 

limited region (Figure  4-19)  [32]. Moreover, the value of the starting current defines the minimum 

electron beam current applied to achieve a particle/field interaction. In the current simulation, the 

electron beam current and the axial magnetic field were selected such that at least 90% of the particles 

reach the end of the structure. 

5.4.1 The Field Simulation Results 

The time domain sampled electric and magnetic fields, at the center of the first slow wave defect 

“SW-1”, are shown in Figure  5-6(a), and (b). The figure shows that the axial electric field dominates 

Parameter Value 

Beam voltage 125KV 

Beam current 17.71 mA 

Beam radius 80 µm 

Applied DC magnetic field 1.5 T 

The structure dimensions 100 × 100 × 4500 μm 

Table  5-II Summary of the BWO parameters 

 Waveguide mode Slow wave mode 

Operating frequency (f) 200GHz 200GHz 

The phase shift (β – rad/mm) 3.91682733 - j4.57×10-6 5.984 - j9.96×10-6 

The Normalized phase velocity (νph/ νc) 1.07016348 0.70 

Wavelength (λ mm) 1.6 1.0 

Impedance (η) 352.5228 538.5727 

Table  5-I The modal parameters of the waveguide mode and the slow wave mode 
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the transverse fields. Also, the axial magnetic field can be neglected compared to the transverse 

magnetic fields. Therefore, the generated fields are TM-like mode, which concurs with the predicted 

from the FDFD modal analysis. The frequency response of the electric and magnetic fields are shown 

in Figure  5-6(c) and (d), respectively. The figure shows that both the electric and magnetic fields have 

the same frequency response (214 GHz).  

Since the FDTD/PIC simulation was performed on a perfect conductor; while the modal analysis, 

performed by FDFD, was done using a copper conductor; it is expected to have a slight frequency 

shift between the modal FDFD and FDTD/PIC results. 

 

  
(a)      (b) 

  
(c)      (d) 

Figure  5-6 The time domain sampled (a) electric and (b) magnetic fields and the corresponding 

FFT response of (c) electric and (d) magnetic fields 
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The time-zoomed sampled transverse electric and magnetic field are shown in Figure  5-7(a) and (b), 

respectively. It is clear from the figure that the transverse electric field components are in-phase, 

while the transverse magnetic field components are out of phase. Therefore we have a constructive 

summation in the power density equations (Power density = ExHy – EyHx). 

 

5.4.2 The Electromagnetic Power Analysis 

Using the Poynting theorem ( 4.4.4 The Electromagnetic Power Density), the generated 

electromagnetic power is calculated. Figure  5-8(a) presents the normalized power density, while a 

time-zoomed version of the same calculation is shown in Figure  5-8(b). The power density 

calculation was performed at a frequency of 214GHz. The zoomed figure shows that the two terms of 

the power density (Pd = Pd1 – Pd2 = ExHy - EyHx) have opposite signs, thus the power density 

calculation is always a cumulative summation. 

 

 
(a)      (b) 

Figure  5-7 A time-zooming of both (a) transverse electric fields and (b) transverse magnetic fields 
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5.5 The Axial loaded Double Defected Photonic Crystal Structure 

The main problem of the slow wave mode in the DD-PC is its high phase velocity. Therefore, the 

required electron beam velocity is high. To reduce the phase velocity, an axial discontinuity is 

introduced (similar to the  2.3.5 The Periodic Loaded Waveguide (PLW)). The axial discontinuity was 

formed by adding metallic disks each of thickness “t” at a certain axial distance “L – cell size”. The 

Axial loaded Double Defected Photonic Crystal guide (ADD-PC) is shown in Figure  5 6(a), while a 

 

Figure  5-8 (a) The power density analysis and (b) time-zoomed figure for the power density 
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cross section of the axial discontinuity is shown in Figure  5 6(b). The analysis of the ADD-PC was 

done using HFSS Floquet’s mode solver. In the HFSS solver, the metallic parts of the structure were 

selected to be perfect conductors. 

 

The initial values of the cell size (L) and the thickness of the discontinuity disk (t) were selected to be 

λ0/2 and L/3, respectively. To optimize the selected values, an optimization analysis was run on the 

HFSS Floquet’s mode solver to find the optimum “L” and “t” values. The optimization is run based 

on the electromagnetic field pattern. For the waveguide mode (also known as the “0-mode” which 

equivalent to a 0˚ phase shift between the master and slave boundary conditions), the fields should be 

concentrated at the center of the structure. On the other hand, the slow wave mode (also called π-

mode or 180˚ phase shift between the master and slave boundary condition), the electric field 

migrates to the walls of the metallic structure.  The optimized values of cell size and the discontinuity 

thickness were found to be 0.75mm and 0.1875mm respectively. 

The HFSS Floquet’s mode setup is shown in Figure  5-10(a). The setup consists of the single cell of 

the ADD-PC terminated with both master and slave boundary conditions. The resonance frequencies 

are calculated at phase difference of 0, π/6, π/3, π/2, 2π/3, 5π/6, and π between the master/slave 

boundary condition. The field pattern of the 0-mode and the π-mode are shown in Figure  5-10(b) and 

(c), respectively. The 0-mode, which is a waveguide mode, is concentrated at the center of the SWS. 

Alternatively, the slow wave mode is located near the copper conductors. 

   
(a)       (b) 

Figure  5-9 (a) A schematic diagram of the ADD-PCF, (b) a cross sectional diagram of the axial 

discontinuity 

 L t 

Z-axis 
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5.5.1 Analysis of the ADD-PC based SWS 

Taking advantage of the Floquet’s mode analysis, the modal parameters of the ADD-PC are 

calculated. These modal parameters are; the dispersion curve, the normalized phase velocity and the 

Beam Interaction Impedance (BII). 

5.5.1.1 The Dispersion Curve Extraction 

Using the resonance frequency data obtained from HFSS Floquet’s mode, the dispersion curve can be 

expanded as  [115]:  

( )( )G,βLcosfunctionf =            (  5-1) 

where, “β” is the phase shift constant, “L” is the cell size, “G” represents geometrical parameters 

(usually selected to be 1.0) and “f” is the frequency of the Floquet’s mode. 

 
(a) 

   
(b)      (c) 

Figure  5-10 (a) A unit cell of the ADD-PC model (analyzed using the HFSS Floquet’s mode), (b) 

The 0-phase shift mode, and (c) the π-phase shift mode 

 Master 

Slave 

Z-axis 
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Since the dispersion relation is an even function of β, and the dependence of frequency on βL is 

periodic with the period of 2π, so it can be expressed as: 

 ( )∑= Lmβcosaf m            (  5-2) 

where “am” is the expansion coefficients.  

Using the Floquet’s frequencies calculated from HFSS Floquet’s at different phase difference values, 

the unknown expansion coefficients “am” can be calculated. Thus, a dispersion curve can be extracted 

as well as other modal parameters. Using the pre-calculated expansion coefficient, a plot of the 

dispersion curve, of the TM-like mode, propagates in the ADD-PC based SWS is shown in Figure 

 5-11. The figure also presents the normalized phase velocity (with respect to the light speed in 

vacuum) for the same mode.  

 

 

Figure  5-11 The dispersion curve for TM-like mode of the ADD-PC based SWS, and the 

associated normalized phase velocity curve 
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5.5.2 The Beam Interaction Impedance 

To estimate the amount of energy transferred from the electron beam to the electromagnetic mode, 

the Beam Interaction Impedance (BII) is calculated   [32]. The BII is defined as:  

PS2β

dSE
BII 2

2
z∫=             (  5-3) 

where “Ez” is the axial electromagnetic field, “β”  is the phase shift constant, “P” is the 

electromagnetic power transmitted by the slow-wave electromagnetic mode, “S” is the beam cross-

sectional area, and the integration is done over the cross section of the beam.  

 

The normalized BII of the first slow wave mode in the ADD-PC is plotted in Figure  5-12. The figure 

shows that the BII is significantly reduced with the increase of the phase difference. The reduction of 

the BII is due to two factors; the excitation of higher order modes, and the field profile. AS the phase 

difference increases higher order modes can propagate through the structure. Therefore, the 

electromagnetic power will be divided between multiple modes. Moreover, as the phase difference 

increases, the field migrates to the conducting rods. Thus, the integration term is significantly 

reduced. This explains the decrease of the BII with the increase of frequency. 
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5.6 Analysis of the 200GHz BWO using the ADD-PC based SWS 

In this section the analysis of the 200GHz BWO using the ADD-PC based SWS is performed. The 

simulation was done using the FDTD/PIC CAD tool. For the electron beam-wave interaction, a 

circular electron beam is used to excite the structure.  

To define the lower limit of the electron beam current, the starting current –for an axial periodic 

structure- is defined as  [116].  

( )
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




=       (  5-4) 

where “IA” is a constant (mc3/q=1.7×104A), “p” is the period length, “L” is the total length of the 

structure, “γi” is the relativistic Lorentz factor, “υzn” is the normalized axial velocity of the electron 

beam, “ω” is the operating frequency, “υgr” is the group velocity at the operating frequency, “Cc” is 

the coupling factor at the resonance frequency, “k= ω/υzn” is the wavenumber at the operating 

frequency,  and “ stI~ ” is a dimensionless number called the universal starting current ( stI~ =7.7). 

 

Figure  5-12 The normalized Beam Interaction Impedance (BII) 
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Using the above equation, a starting current of almost 4.2mA was calculated for the particular 

structure under consideration. The beam current is usually selected to be less than three times the 

starting current. Although increasing the beam current increases both the generated electromagnetic 

power and efficiency, it affects the spectral purity of the generated electromagnetic wave  [37]. 

 

A comparison between the main parameters of the BWO using both the DD-PC based SWS and the 

ADD-PC based SWS is listed in Table  5-III. The table shows that using the ADD-PC based SWS 

reduced the beam voltage from 125KV to 31.3KV. Therefore, there is a significant reduction in the 

electron beam power. 

5.6.1 The Field Simulation Results 

The time domain sampled electric and magnetic fields are shown in Figure  5-13(a), and (b). The 

figure shows that the axial electric field dominates the transverse fields. Also, the axial magnetic field 

is neglected compared to the transverse magnetic fields. Therefore, the generated fields are TM-like 

mode, which verifies the prediction of the HFSS modal analysis. The frequency response of the 

electric and magnetic fields are shown in Figure  5-13(c) and (d), respectively. The figure shows that 

both the electric and magnetic fields have the same frequency response (247 GHz). Compared to the 

DD-PC, the ADD-PC is more selective in the generated frequencies. 

 DD-PC based BWO ADD-PC based BWO 

Beam voltage 125KV 31.3 KV 

Beam current 17.71 mA 9.2 mA 

Applied DC magnetic field 1.5 T 

Beam radius 80 µm 

The structure dimensions 100 × 100 × 4500 μm 

Table  5-III Comparison between the electron beam requirements of two BWO  
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The time-zoomed sampled transverse electric and magnetic field are shown in Figure  5-14(a) and (b), 

respectively. It is clear from the figure that the transverse E-field components are in-phase, while the 

transverse magnetic field components are out of phase. Therefore we have a constructive summation 

in the power density equations (Power density = ExHy – EyHx). 

  
(a)      (b) 

  
(c)      (d) 

Figure  5-13 The time domain sampled (a) electric and (b) magnetic fields and the corresponding 

FFT response of (c) electric and (d) magnetic fields 
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5.6.2 The Power Analysis 

Figure  5-15(a) presents the normalized power density, and a time-zoomed version of the same 

figure is shown in Figure  5-15(b). The power density calculation was performed at a frequency of 

247GHz. The zoomed figure shows that the two terms of the power density (Pd = Pd1 – Pd2 = ExHy - 

EyHx) have opposite signs, thus the power density calculation always add-up. 

 

 
(a)      (b) 

Figure  5-14 A time-zooming of both (a) transverse electric fields and (b) transverse magnetic 

fields 
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5.6.3 The tunability of the BWO 

Taking advantage of the dispersion curve, the ADD-PC can be used as a tunable BWO. To 

demonstrate the tunability of the ADD-PC structure, two operating points were selected on the 

dispersion curve, and the normalized velocity curve, shown in Figure  5-16. The first operating point 

is for an electromagnetic mode with a phase velocity of around 0.35νc. This point has a resonance 

frequency approximately 242GHz. The second operating point defined an electromagnetic mode 

operating at 218GHz with a phase velocity of nearly 0.90νc. 

 

Figure  5-15 (a) The power density analysis, (b) time-zoomed figure for the power density 
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Using the FDTD/PIC CAD tool, the BWO was simulated at these two operation points. A summary 

of the FDTD/PIC simulation parameters are listed in Table  5-IV. The electron beam parameters were 

selected as discussed in  5.6 Analysis of the 200GHz BWO using the ADD-PC based SWS.  

 

 Operating Point 1 Operating Point 2 

νbeam 0.35 νc 0.90 νc 

Ibeam 17mA 23mA 

Bz 1.5 1.5 

Frequency response 
Theoretical – expected 242GHz 218GHz 

Actual – FFT response 247GHz 214GHz 

Table  5-IV The parameters of BWO for two operating points 

 

Figure  5-16 The dispersion curve of the ADD-PC based SWS and the normalized phase velocity 
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5.6.3.1 Field Simulation Results of the First Operating Point 

The time domain sampled electric and magnetic fields and their corresponding frequency domain 

response are shown in Figure  5-17. Similar to the previous analysis, the simulation shows that the 

mode is a TM-like mode. Also, the FFT response of the sampled electric and magnetic fields, shown 

in Figure  5-17(c) and (d) respectively, indicates that fields resonate at the same frequency (247 GHz), 

which is shifted by almost 0.8% compared to the HFSS simulation.  

 

  
(a)      (b) 

  
(c)      (d) 

Figure  5-17 The time domain sampled (a) electric and (b) magnetic fields, and the corresponding 

FFT response of (c) electric and (d) magnetic fields 
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A zoom plot of the transverse electric and magnetic fields are shown in Figure  5-18. The figure shows 

that both the transverse electric field components are in-phase, while, the transverse magnetic field 

components are out of phase. Therefore, the power density (Power Density = ExHy – EyHx) is always 

adding-up.  

 

5.6.3.2 Field Simulation Results of the Second Operating Point 

The time domain sampled electric and magnetic fields and their corresponding frequency domain 

response are shown in Figure  5-19. Similar to the previous analysis, the simulation shows that the 

mode is a TM-like mode. Also, the FFT response of the sampled electric and magnetic fields, shown 

in Figure  5-19(c) and (d) respectively, indicates that fields resonate at the same frequency (214 GHz). 

Also, the zoomed version of the transverse fields (Figure  5-20) indicates that the power density terms 

are constructively adding-up. 

 

 

  
(a)      (b) 

Figure  5-18 A zoomed plot of the transverse (a) electric and (b) magnetic fields 
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(a)      (b) 

  
(c)      (d) 

Figure  5-19 The time domain sampled (a) electric and (b) magnetic fields, and the corresponding 

FFT response of (c) electric and (d) magnetic fields 
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5.6.4 Optimization of the ADD-PC Oscillator 

As discussed above, The ADD-PC resonates at 247GHz (at beam velocity of 0.35νc) which is 25% 

higher than the desired operating frequency. To overcome this frequency overshot, the axial disk of 

the ADD-PC was fine-tuned to operate at 200GHz. A schematic of the optimized ADD-PC is shown 

in Figure  5-21. A summary of the starting point values of the ADD-PC structure parameters are given 

in Table  5-V. 

 

 

Figure  5-21 A cross sectional view of the axial load disk 

 

rhole 

  
(a)     (b) 

Figure  5-20 The time domain zoomed of (c) electric and (d) magnetic fields 
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 Using the HFSS Floquet’s mode analysis, followed by a dispersion curve extraction (equation and 

procedure explained in  5.5.1.1 The Dispersion Curve Extraction), the dispersion curve can be 

calculated. The main optimization parameters in these simulations are; the period length “L” and the 

inner radius of the iris “rhole”.  

5.6.4.1 The Optimization of the period length “L” 

In this section the inner radius of the iris “rhole” is kept constant at 1.2Λ, while the period length “L” 

is changed from 0.05 – 0.5mm with a step of 0.05mm. The dispersion curves of the ADD-PC for 

several period lengths “L” are shown in Figure  5-22(a); and the corresponding phase velocities are 

shown in Figure  5-22(b). 

Parameter Value 
Λ 0.40 mm 
r 0.05 mm 
t 0.50 * L 

rhole Variable 
L Variable 

Table  5-V The Optimized ADD-PCF structure parameters 
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(a) 

 
 (b) 

Figure  5-22 Optimization curves of the ADD-PCF for (a) the dispersion curve, and (b) the phase 

velocity 
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Using the FDTD/PIC CAD simulation tool, it was found the changing the cell length “L” has a 

minor effect on the frequency of the generated electromagnetic wave.  

5.6.4.2 The Optimization of the Inner Radius of the iris “rhole”  

In this part, an optimization of the inner radius of the iris (Figure  5-21) is performed. The period 

length “L” is kept constant at 0.2mm. Figure  5-23 presents both the dispersion and the phase velocity 

curves at two different inner radius of the iris; 0.90Λ, and 0.95Λ. The figure indicates that using an 

inner radius of 0.95Λ, the structure is able to generate an electromagnetic field of a frequency of 

almost 200GHz. 

 

5.6.4.2.1  The FDTD/PIC Simulation of the Optimized Structure 

In this part the results of the FDTD/PIC simulation of the optimized structure are presented. Using 

the same analysis described previous in  5.6 Analysis of the 200GHz BWO using the ADD-PC based 

 

Figure  5-23 The dispersion curve and the corresponding phase velocity of the optimized rhole 
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SWS, the upper and lower limits of the beam currents was set to be 0.5mA and 5.0mA, respectively. 

Therefore, the electron beam operation point was set to be; electron beam current Ibeam of 3.8mA, and 

beam accelerating voltage of 41KV (which equivalent to beam velocity of 0.40c). 

5.6.4.2.1.1 The Field Simulation Results  

The time domain sampled electric and magnetic field inside the first slow wave cavity (SW-1) is 

plotted in Figure  5-23(a) and (b), respectively. The corresponding FFT response of the time domain 

fields is shown in Figure  5-23(c) and (d). The frequency domain analysis indicates that both the 

electric and magnetic fields resonates at almost 199GHz which is very close to the required operating 

point. 
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The power density figure, at 0.10Lz, is plotted in Figure  Figure  5-25(a). The figure shows that the 

maximum power is located at the center of the structure. This is expected, since the electron beam 

travels through the center of the structure. Also, the figure shows that there is a significant amount of 

the power is located inside the slow wave cavities. The axial power distribution is plotted in Figure 

 5-25(b). Since the structure is a BWO, it is expected to have the maximum power at the input 

terminal of the structure. The figure shows that the structure could be able to deliver up-to 30dBm of 

power. 

  
(a)     (b) 

  
(c)     (d) 

Figure  5-24 The time domain sampled (a) electric and (b) magnetic fields, and the corresponding 

FFT response of (c) electric and (d) magnetic fields 
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(a) 

 
 (b) 

Figure  5-25 (a) The Power density distribution and (b) The Power distribution 
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5.7 Verification of the Modal Analysis of the ADD-PC Structure 

In order to prove the existence of the slow mode in the ADD-PC structure proposed here, the 

resonant method is used to accurately re-calculate the dispersion curve  [109-110]. As shown in the 

dispersion analysis  5.5.1.1 The Dispersion Curve Extraction, the SWS supports both fast waves (the 

0-mode is a normal waveguide mode), and slow wave mode (π-mode). Therefore, it is required to 

excite both modes. For exciting the waveguide mode, the axial probe is a common excitation method. 

Since the slow wave mode is located at the conducting walls and inside the SW-defects, it cannot be 

excited efficiently using the axial probe. Therefore, a probe-wheel radiator is used to excite these two 

modes together  [110]. Figure  5-26(a) shows a schematic diagram of the probe-wheel radiator. The 

probe-wheel radiator consists of two parts; the wheel itself and an axial probe. The axial probe is used 

to launch the waveguide mode (TM01-like mode), while the slow wave mode is excited using the 

wheel radiator. 

 

The wheel radiator consists of a conducting disk, with several axial symmetrical holes drilled inside it 

(Figure  5-26(a)). There are two main features of the wheel radiator; first due to its axial symmetry, it 

only excites axial symmetrical modes. Second, it only excites the azimuthal component of the 

magnetic field (Hφ).  Since it is a metallic wheel, the tangential electric field equals zero, therefore 

both cylindrical axial electric field (Ez) and the driven radial electric field (Er) component will be 

excited along with the associated azimuthal magnetic field (Hφ). Thus, the slow wave mode (TM-

like), located at the conducting plates can be excited. This conjecture was verified by the HFSS 

simulation of the current distribution over the wheel radiator itself, shown in Figure  5-27. As 

  
(a)       (b) 

Figure  5-26 The resonant method; Schematic of (a) The probe-wheel radiator and (b) The ADD-PC 

structure with the radiator 
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expected, the current distribution is in the radial direction, which will only excite the azimuthal 

magnetic field (Hφ). 

 

To validate the existence of the slow wave mode, a scaled model of the proposed SWS was 

fabricated. The dispersion characteristic of the SWS was measured using the resonant method. The 

structure was fabricated using a 3D-printer, and then it was coated with a metallic conductive layer. A 

picture of the fabricated structure is shown in Figure  5-28(a), while a schematic of the Device Under 

Test (DUT) is shown in Figure  5-28(b). The DUT is a scaled model of the ADD-PC shown in Figure 

 5-9. In order to support the structure, an extra six thick rods were placed at the corners of the 

fabricated structure (Figure  5-28(b)).  

 

   

(a)      (b) 

Figure  5-28: (a) The scaled fabricated ADD-PC SWS, (b) Schematic of the ADD-PC 

 
Figure  5-27: HFSS simulation of the current distribution on the wheel 
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The return losses (S11) and insertion losses (S12) curve are plotted in Figure  5-29. The figure shows 

that there are four resonant frequencies –corresponding to π/5-mode, 2π/5-mode, 3π/5-mode and 

4π/5-mode– are observed in both S11 (nulls) and S12 (peaks). These frequencies are corresponding to a 

phase shift “βL” of π/5, 2π/5, 3π/5 and 4π/5, respectively 

 
A comparison between the HFSS resonance frequencies and the measures ones is plotted in Figure 

 5-30. The comparison indicates that there is a good correlation between the measures and HFSS 

resonance frequencies. Moreover, although the pure slow wave mode and waveguide mode couldn’t 

be measures, the comparison indicates that as there is a good agreement between the calculated 

resonance frequency and the dispersion curve, thus verifies the successfully launching of both the 

slow wave mode and the fast wave mode. 

  
Figure  5-29 The S-parameters 
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5.8 Extend the operating frequency of the BWO 

To show the potential of the proposed ADD-PC based SWS, It was used to design BWO operating 

at 650GHz. As it will be shown later, the realization/fabrication of the ADD-PC based SWS at this 

frequency is challenging. Due to the small dimensions of the SWS (at this frequency range) and the 

existence of the axial discontinuity, an accurate fabrication is required.  

5.8.1 The ADD-PC based SWS 

Starting from the band gap diagram, the geometrical parameters of the ADD-PC based SWS can be 

calculated (as done in  5.3.1 The Photonic Crystal Waveguide). To accommodate the frequency drop 

due to numerical modelling, the geometrical parameters were selected to operate at 110% of the 

designed frequency (650GHz). A summary of the structural parameters are listed in Table  5-VI. 

 
Figure  5-30 The dispersion curve of the scaled ADD-PC SWS, showing ccomparison between the 

measured and calculated resonance frequencies 
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5.8.1.1 The Dispersion Analysis 

Using the same approach presented in section  5.5.1.1 The Dispersion Curve Extraction, the HFSS 

Floquet’s mode analysis was used to calculate the dispersion curve. The extracted dispersion curve of 

the ADD-PC based SWS and the corresponding phase velocity (normalized with respect to the speed 

of the light in the vacuum) are plotted in Figure  5-31. The phase velocity curve indicates that the 

structure can support a slow wave mode of phase velocity as low as 0.20νc. Using an electron beam 

with a variable beam velocity, obtained by changing the beam acceleration voltage, a continuous 

tuning – over certain band of frequency – of the generated electromagnetic radiation can be achieved. 

Parameter Value 

Rod Radius “r” 15 μm 

Pitch Size “Λ” 100 μm 

Period Length “L” 42 μm 

Inner disk radius “Rin” 100 μm 

Outer disk radius “Rout” 450 μm 

Disk thickness “t” 14 μm 

Table  5-VI The ADD-PC structure parameters 
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5.8.1.2 The Beam Interaction Impedance 

To estimate the amount of energy that can transferred between the electron beam and the 

electromagnetic wave, the beam interaction impedance is introduced  [32]. Following the same 

procedure explained in  5.5.2 The Beam Interaction Impedance, the beam interaction impedance was 

calculated (Figure  5-32).  

 
Figure  5-31 The dispersion curve and the corresponding normalized phase velocity 
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5.8.2 The BWO Performance 

Using the FDTD/PIC CAD tool, the performance of a typical designed BWO will be investigated. 

In the simulation, all the metallic surfaces are considered to be flat and smooth, and made of highly 

conductive copper (σ = 5.99×107Ω-1.m-1). A summary of the BWO and electron beam parameters are 

listed in Table  5-VII.  

 
Figure  5-32 The normalized Beam Interaction Impedance 
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5.8.2.1 Electromagnetic Field Results 

A typical time-zoomed view of the time sampled fields is presented in Figure  5-33. The transverse 

electric fields and magnetic fields are shown in Figure  5-33(a) and Figure  5-33(b) respectively, while 

the longitudinal fields are plotted in Figure  5-33(c). Although the fields have some noise, the figure 

shows the sinusoidal nature of the generated fields. Moreover, the figure indicates that both the 

transverse electric fields are in-phase while the transverse magnetic fields are out of phase; therefore 

the Poynting vector pointing in the z-direction always has a constructive summation. Furthermore, the 

longitudinal fields plot (Figure  5-33(c)) shows that the longitudinal electric field dominates the 

transverse ones, and the longitudinal magnetic fields is almost zero compared to the transverse ones, 

thus the mode is a TM-like mode (as expected from the modal analysis). 

Electron 

beam 

Beam current 13.8 mA 

Beam Voltage 40.9 KV 

Beam radius 50 μm 

Number of particles 2840 

Electrons per particle 100 

DC - Bz 1.5 T 

FDTD window 
113×113×60 cells 

Uniform cell, 14 μm side 

Table  5-VII The BWO parameters 
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A further verification of the field generation can be obtained from the frequency response of the time 

sampled fields. The FFT analysis of the time sampled transverse electric and magnetic fields in the 

second cavity (SW-2) is shown in Figure  5-34(a) and (b), respectively. The figure shows that both the 

eclectic and magnetic fields are resonating at the same frequency (670 GHz). Although it is not 

shown here, all the fields at the other SW-defects resonate at the same frequency. The shift between 

the HFSS resonance frequency predication and the FDTD results is mainly due to both numerical 

errors and the material used. In the FDTD analysis, the SWS consists of a highly conductive copper, 

while in the HFSS analysis the SWS was assumed to be a perfect conductor. 

 
Figure  5-33 Time domain Field, (a) transverse electric fields, (b) transverse magnetic fields and 

(c) axial fields 
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Using the Poynting theorem, the average electromagnetic power was calculated. A logarithmic scale 

of the cross sectional power density at 0.50Lz, in the longitudinal (z-) direction, calculated at a 

frequency of 670 GHz is presented in Figure  5-35(a). The figure shows that maximum of the 

generated power is located at the central defect. Since the electron beam travels through the beam 

tunnel, it is expected to have a large amount of the power in the central defect.  Moreover, the figure 

also shows that a significant amount of the generated power has been migrated to the slow wave 

defects.  

A plot of the variation of the generated electromagnetic power in the axial direction is plotted in 

Figure  5-35(b). Since the proposed structure is a BWO, it is expected to have the maximum power at 

the electron gun end. Furthermore, the maximum generated power is almost 8W. Compared to the 

electron beam power, the overall conversion efficiency of the proposed BWO (efficiency = maximum 

generated power / electron beam power) is almost 1.8%. 

 
(a)     (b) 

Figure  5-34 Frequency domain Fields, transverse (a) electric and (b) magnetic fields 
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.  

(a)  

 
 (b) 

Figure  5-35 The generated power; (a) the power density (dB), and (b) the structure power 
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5.8.2.2 The Particle Analysis 

The variation of the normalized z-component of the particle velocity, at the axis of the SWS, at two 

different time steps (at 0.03 nsec and 0.20 nsec) is plotted in Figure  5-36. Initially (at 0.03 nsec), the 

generated electromagnetic fields are weak. Thus, the electron beam-wave interaction and the particle 

velocity modulation are small (Figure  5-36(a)). While, at 0.20 nsec, the generated waves become 

more robust and the electron beam-wave interaction increases, hence the particle velocity modulation 

is heightened (Figure  5-36(b)). The physics of the particle dynamic can be explained from this figure. 

Initially, there is no electromagnetic wave generated, and the electron beam travels along in the SWS, 

and it initiates the electromagnetic wave excitation. As the generated wave gains strength, the beam-

wave interaction becomes substantial, and some of the particles get trapped in the electric field of the 

electromagnetic fields (deceleration phase). As the electromagnetic wave reaches a saturation point, 

most of the particles are trapped and the particle velocity reaches a minimum. After that the particle 

moves from a deceleration phase to acceleration region, hence the electron velocity begins to increase 

again. Thus the energy is transferring between the electromagnetic fields and the particles  [32]. 

 

The phase space diagram and the Kinetic Energy (K.E. = mν2/2, 222
zyx νννν ++= ) variations are 

presented in Figure  5-37. The z-component of the particle velocity variation, normalized with respect 

to the speed of light in the vacuum, across the SWS length at the beginning of the time simulation and 

at the saturation is plotted in Figure  5-37(a) and (c), respectively. Initially the particles are entering 

the structure so they have not reached the end of the structure. Since initially the SWS is empty and 

the generated fields are weak at this stage, the beam-wave interaction is almost zero. This explains the 

  
(a)      (b) 

Figure  5-36 Particle velocity at (a) 0.03nsec, and (b) 0.20 nsec 
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constant electron beam velocity shown in Figure  5-37(a). While at the saturation case, there is a 

strong generated electromagnetic wave, thus the beam-wave interaction is maximized, and the 

particle velocity is modulated causing bunching (Figure  5-37(c)). Similar behavior was observed in 

the normalized K.E. (K.E.norm = K.E. / K.E.initial) as show in Figure  5-37(b) and Figure  5-37(d). 

 

5.9 Conclusion 

Driven by the modern technology requirements, the operating frequency of the “electromagnetic 

devices” is extending toward sub-mm/THz regime. For several reasons, the generation of high power 

sub-mm/THz electromagnetic wave is always a problematic issue. A key objective of this work was 

to investigate and open the potential extensions of the VED approach for the source technology in this 

frequency regime. The choice of VED strategy (electron beam-wave interaction) is based on their 

impressive record of success at millimeter and microwave frequency range in the recent past. Since 

most of the VED parameters are determine by the SWS parameters, the design of a SWS operating at 

this frequency range is considered as the key stone part in this work.  

 
Figure  5-37 The phase space diagram, at (a) starting of the simulation and at (c) the saturation case, 

and the normalized K.E. at (b) starting of the simulation and at (d) the saturation case 
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To address this objective, both the DD-PC based SWS and the ADD-PC based SWS suitable for high 

power Cherenkov radiation-based VEDs were introduced and analyzed. While the DD-PC based 

SWS has no axial discontinuity, the high electron beam requirements limit its efficiency. On the other 

hand, while the ADD-PC based SWS has a lower electron beam requirements, it requires a complex 

fabrication technique.  

To provide a comparison between these two SWSs, two BWOs operating at 200GHz were 

designed using both of them. While, the DD-PC based SWS was analyzed using the non-uniform 

FDFD method, the dispersion curve and modal analysis of the ADD-PC based SWS were carried-out 

using the HFSS Floquet’s mode solver and the resonance method. The electron beam-wave 

interaction was performed using the FDTD/PIC simulation. The simulation result shows the potential 

of the ADD-PC based SWS as an efficient and a powerful source in sub-mm/THz band. Furthermore, 

another BWO operating at 650GHz was proposed using the ADD-PC based SWS. While, the 

realization of such device faces different challenges, the simulation results showed an excellent power 

and efficiency results.   

Although the design and analysis of both the SWS and the BWO were discussed in details, other 

aspects need further investigation. For extracting the generated electromagnetic fields, special 

input/output ports are required. Although a preliminary coaxial cable was proposed (as will be shown 

in chapter 6 –  6.5 Extraction of the generated wave –), further investigation is required to design 

optimum input/output ports. Furthermore for the BWO realization, although the electroforming 

technique – in which the whole structure is grown as a single unit and therefore the connection 

between the rods and the axial discontinuity can be ensured – is considered as the most promising 

fabrication technique for this type of structures, other fabrication techniques – such as; the 3D 

printing and the high precision micromachining – are considered as possible alternative fabrication 

methods.  
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Chapter 6 
Summary and Conclusion 

6.1 Summary 

The main focus of this thesis was the design of a PC based SWS suitable for table-top and high power 

BWO operating in sub-mm/THz regime. A summary of the key objectives achieved are highlighted 

below: 

• A full vectorial FDFD method was implemented. The FDFD method can investigate both 

dielectric and conductor structure. Using a primitive adaptive (multi-level) meshing, the 

FDFD method can determine the propagating modes properties both efficiently and 

accurately. The accuracy of the FDFD method was tested and verified via different 

examples.  

• A simple outline of the physics of the surface wave propagation over a conducting rod, 

which is considered as the building block of the proposed DD-PC based SWS, is 

introduced.  

• The proposed FDFD method is used to analyze a novel DD-PC based SWS. In order to 

verify the existence of the slow wave mode, further study of the structure was performed 

using both the FDTD and HFSS code. Both methods prove the existence of the slow wave 

mode at the defined frequency. 

• A custom FDTD/PIC CAD tool was developed to analyze the performance and the physics 

of the THz radiation. Both 2D and 3D versions of the FDTD/PIC simulation were first 

implemented, and then a more efficient multithread 3D version of the code was realized 

using the OpenMP.  

• The FDTD/PIC tool was used to investigate the performance of a BWO – designed using 

the DD-PC based SWS – operating at 130GHz. The investigation includes the generated 

electromagnetic field, the average generated power and the electron beam physical 

parameters. Also, the effect of changing the applied magnetic flux and the electron beam 

current on the performance of the BWO was conducted. 
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• To reduce the electron beam requirements and enhance the efficiency of the BWO, the 

Axial loaded Double Defected PC (ADD-PC) SWS was introduced. Both the ADD-PC 

based SWS and the DD-PC based SWS were used to design BWO operating at 200GHz. 

• The design of a BWO operating at 650GHz was performed using the ADD-PC based SWS. 

The simulation results showed a power conversion efficiency of 1.8%. Due to the small 

dimensions and the geometry of the SWS, the fabrication and assembly of the BWO is 

complicated at present. 

• Several scaled prototypes were fabricated and tested. Two main techniques were used in 

the fabrication; the CNC machinery and the 3D printing technology. Using the CNC 

machining a full cupper metallic structure was fabricated. Using the 3D printer, the ADD-

PC structure was realized. Then, using the conductive coating, a metallization layer was 

added to the structure. 

6.2 Ongoing Work 

Along with the presented work here, the following work is still on-going: 

• Using the CNC machining, along with the vacuum enclosure technology, another prototype 

of the cold structure is currently under fabrication. 

• With collaboration with another colleague, the fabrication and the testing of the Field 

Emitting Array (FEA) is currently under development. 

• Other fabrication technology, such as the electroforming technique –in which all the 

structure parts are grown together as a single component or simply an 3D printing using 

copper material–, is considered as an efficient and accurate manufacturing technique that 

can be used to realize the proposed SWS. This fabrication technique is provided from 

Custom Microwave Inc.  [117]   

• The last on-going part in this project is the assembly of the SWS, the FEA, and the 

supporting parts inside a vacuum media.  
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6.3 Future Work 

At this point, we have found some areas that are worth further investigation:  

• Design and implement a wave absorber at the end of the BWO to prevent the forward wave 

from propagation through the structure. Thus, the generated THz radiation power can be 

enhanced and noise level can be significantly reduced.  

• It was found that the FDTD/PIC simulation was very expensive in terms of computational 

resources (time and memory). Since, the computational memory required for FDTD is not as 

critical as the computational time. A parallel implementation of the FDTD/PIC will reduce 

the computational time required for the FDTD/PIC simulation.  

o The first step towards parallelization is to implement the code in a multi-threading 

scheme. Using this approach a speed up factor of ≈ n (where n is the number of the 

available processors) can be achieved.  

o Moreover, using an efficient scheme to implement the FDTD/PIC on a Graphical 

Processing Unit (GPU) should provide further reduction in the simulation time. 

• Using both HFSS and the FDTD/PIC CAD tools, a more extensive optimization can be 

performed. 

6.4 Parallel Implementation of the FDTD/PIC 

Another ongoing project here is the realization of the parallel FDTD/PIC algorithm. In order to 

show the speed-up gained from the parallelization, a comparison between the parallel FDTD/PIC and 

the sequential FDTD/PIC is provided.  

In a conventional FDTD, the field components are updated sequentially. In every time step, all field 

components are updated. Then the particles physical parameters (position, velocity and acceleration) 

are recalculated. After that, the equivalent particle current components are computed.  Instead of 

calculate each field component in a single processer, a speed gain can be obtained by dividing the 

problem over multiple processors (Figure  6-1)  [118-120].  
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A schematic diagram of the OpenMP implementation of the FDTD/PIC is shown in Figure  6-2. As 

indicated previously, the FDTD/PIC was implemented in three main steps; FDTD/PIC initialization, 

the time loop and the post processing. First, initial tasks such as the initialization of the field/particle 

matrices, define the update matrices and discretization of the computational window are completed.  

In each time step the following tasks are preformed; the parallel magnetic field calculation is 

performed, particles physical parameters are defined, the associated current densities are calculated, 

parallel electric field updated occurred, and finally a snapshot of the sampled electromagnetic fields 

and particles parameters are saved to external files. 

   
(a)      (b) 

Figure  6-1 The Time loop, (a) sequential and (b) parallel FDTD 
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Using the previous schematic, the parallel FDTD/PIC CAD tool can be realized. Other topics such as 

spaced discretization and GPU implementation need further analysis.  

6.5 Extraction of the generated wave 

To extract the generated electromagnetic fields, a coaxial cable was added at the point of maximum 

generated power. Since the structure is a BWO, the extraction point was placed at the electron beam 

entrance port. The coaxial transmission line was implemented in the main FDTD using the thin wire 

model  [121-123]. Using Faraday’s law the current was extracted at the output coaxial cable. The 

coaxial cable placed, such that the inner conductor is placed inside the first slow wave defect, and the 

outer conductor placed on the rods. The coaxial cable was terminated with Perfectly Matched Layer 

(PML) boundary conditions to simulate a matched absorbing load.  

 
Figure  6-2 The Parallel implementation of the FDTD/PIC 
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6.5.1 The Coaxial Cable Model 

The field extraction/excitation is performed using a simple coaxial cable model, which was 

configured in the FDTD code using the thin wire model  [121-123].  The thin wire approach is used to 

handle the fields around the inner wire inserted into the FDTD structure. Assuming the wire is a 

perfect conductor, and its radius is smaller than half the cell size (𝑟𝑖𝑛 < 𝑑𝑥
2

), the electric field inside 

the wire equals zero, and the integral Maxwell’s equations are used to analyze the fields. 

 
Starting from Ampere’s law and Faraday’s law: 

( ) ∫=∫
∂
∂

dd C
d

S
d ldHSdE

t


..ε        ( 6-1a) 

( ) ∫=∫
∂
∂

−
pp C

p
S

p ldESdH
t


..µ        ( 6-1b) 

where “Sd” is the dual grid cell facet bounded by contour “Cd” formed by dual-grid cell edges and 

“Sp” is the primary grid cell facet bounded by contour “Cp” formed by primary grid cell edges.  

 

Using the thin wire model, the FDTD/PIC discretization equation can be updated. For example, the x-

component of Faraday law can re-write as: 

∫−=∫
∂

∂
E.dldS

t
H

μ y         ( 6-2) 

Then by applying the discretization, the update equation of the Hy field component becomes: 

 
(a)       (b) 

Figure  6-3 (a) The FDTD thin wire model and (b) a schematic diagram of the proposed BWO with the 

coaxial cable model 
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Since the thin wire is located at the grid (i+1, j, k+½), and assuming the coaxial cable consists of a 

perfect conducting material, then Hy –on grid (i+½, j, k+½) – becomes:  
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On the other side –on grid (i+3/2, j, k+½) – of the thin wire Hy becomes: 
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6.5.2 The Amplifier Analysis 

In this section, the DD-PC based SWS, is used as an amplifier. Therefore, two coaxial cables were 

added to the SWS, as shown in schematic diagram presented in Figure  6-3(b). As the figure shows, 

the input signal is placed at next to the electron beam exit end, while the output signal was extracted 

at a point next to the electron beam entrance point. In the input, a ramped modulated Gaussian signal 

was used as an input. The signal has a center frequency of 150GHz. Figure  6-4 shows the input signal 

in both time and frequency domains. 

 𝑽𝒊𝒏𝒑𝒖𝒕 = �𝐬𝐢𝐧(𝝎𝒕) . 𝒆−𝟎.𝟓(𝒕𝟎−𝒕
𝝉 )𝟐

𝐬𝐢𝐧(𝝎𝒕)
        

𝒕 < 𝒕𝟎
𝒕 > 𝒕𝟎

�       ( 6-6) 
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Figure  6-5 shows the voltage and current signals, in both time and frequency domains, captured at the 

extraction coaxial cable. The frequency domain analysis shows that both the voltage and current 

signals oscillates at the center frequency of 150GHz. Also, the time domain voltage signal has a span 

variation between +10μV and -10μV, and the time domain current signal varies between ±3A. 

 
Figure  6-4: The input signal in (upper) time-domain and (lower) the frequency domain 
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(a)     (b) 

 
(c)     (d) 

Figure  6-5 The extracted voltage wave in (a) Time domain and (c) frequency domain; and current 

wave in (b) Time domain and (d) frequency domain. 
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Appendix A 
The Finite Difference Frequency Domain (FDFD) method 

In this appendix, the formulation of non-uniform FDFD method will be described in details. 

Starting from Maxwell equation, a derivation of eigenvalue problem will be presented. As it will be 

shown, there are two eigenvalue problems. For the transverse electric field (Ex and Ey), a P-based 

eigenvalue problem was established, while for the transverse magnetic field (Hx and Hy) a Q-based 

eigenvalue problem was introduced.  

A. 1. Formulation 

Starting from Maxwell’s equations 

     𝛁 × 𝑬 =  − 𝝏𝑩
𝝏𝒕

     (A1.a) 

     𝛁 × 𝑯 =  𝝏𝑫
𝝏𝒕

     (A1.b) 

Assume that all fields propagate in the axial (z-) direction, and all the field component has a variation 

with time and propagation direction in the form of ej(ωt-βz). Where ω represents the angular frequency 

and β is phase constant. Then Maxwell equations become: 

     ∇ × 𝐸 =  −𝑗𝜔𝐵     (A 2.a) 

     ∇ × 𝐻 =  −𝑗𝜔𝐷    (A2.b) 

After scaling electric field by free space impedance (𝑍0 = �𝜇0𝜖0), the Maxwell’s equation in the 

component form can be expressed as: 

     𝑗𝑘0𝐻𝑥 = 𝜕𝐸𝑧
𝜕𝑦

− 𝑗𝛽𝐸𝑦    (A3.a) 

     𝑗𝑘0𝐻𝑦 = − 𝜕𝐸𝑧
𝜕𝑥

+ 𝑗𝛽𝐸𝑥    (A3.b) 

     𝑗𝑘0𝐻𝑧 = 𝜕𝐸𝑦

𝜕𝑥
− 𝜕𝐸𝑥

𝜕𝑦
    (A3.c) 

and, 

     −𝑗𝑘0𝜖𝑟𝐸𝑥 = 𝜕𝐻𝑧
𝜕𝑦

− 𝑗𝛽𝐻𝑦   (A4.a) 

     −𝑗𝑘0𝜖𝑟𝐸𝑦 = − 𝜕𝐸𝑧
𝜕𝑥

+ 𝑗𝛽𝐻𝑥   (A4.b) 

     𝑗𝑘0𝜖𝑟𝐸𝑧 = 𝜕𝐻𝑦

𝜕𝑥
− 𝜕𝐻𝑥

𝜕𝑦
    (A4.c) 
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The above equations were applied to 2D Yee discretization, shown in Figure A-1, to get; 

   𝑗𝑘0𝐻𝑥(𝑖, 𝑗) = 𝐸𝑧(𝑖,𝑗+1)−𝐸𝑧(𝑖,𝑗)
∆𝑦

− 𝑗𝛽𝐸𝑦(𝑖, 𝑗)   (A5.a) 

   𝑗𝑘0𝐻𝑦(𝑖, 𝑗) = − 𝐸𝑧(𝑖+1,𝑗)−𝐸𝑧(𝑖,𝑗)
∆𝑥

+ 𝑗𝛽𝐸𝑥(𝑖, 𝑗)   (A5.b) 

   𝑗𝑘0𝐻𝑧(𝑖, 𝑗) = 𝐸𝑦(𝑖+1,𝑗)−𝐸𝑦(𝑖,𝑗)
∆𝑥

− 𝐸𝑥(𝑖,𝑗+1)−𝐸𝑥(𝑖,𝑗)
∆𝑦

   (A5.c) 

and, 

   −𝑗𝑘0𝜖𝑟𝑥(𝑖, 𝑗)𝐸𝑥(𝑖, 𝑗) = 𝐻𝑧(𝑖,𝑗+1)−𝐻𝑧(𝑖,𝑗)
∆𝑦

− 𝑗𝛽𝐻𝑦(𝑖, 𝑗)  (A6.a) 

   −𝑗𝑘0𝜖𝑟𝑦(𝑖, 𝑗)𝐸𝑦(𝑖, 𝑗) = − 𝐻𝑧(𝑖+1,𝑗)−𝐻𝑧(𝑖,𝑗)
∆𝑥

+ 𝑗𝛽𝐻𝑥(𝑖, 𝑗)  (A6.b) 

   −𝑗𝑘0𝜖𝑟𝑧(𝑖, 𝑗)𝐸𝑧(𝑖, 𝑗) = 𝐻𝑦(𝑖+1,𝑗)−𝐻𝑦(𝑖,𝑗)
∆𝑥

− 𝐻𝑥(𝑖,𝑗+1)−𝐻𝑥(𝑖,𝑗)
∆𝑦

 (A6.c) 

where,  

     𝜖𝑟𝑥(𝑖, 𝑗) = 𝜖𝑟(𝑖,𝑗)+𝜖𝑟(𝑖,𝑗−1)
2

    (A7.a) 

     𝜖𝑟𝑦(𝑖, 𝑗) = 𝜖𝑟(𝑖,𝑗)+𝜖𝑟(𝑖−1,𝑗)
2

    (A7.b) 

    𝜖𝑟𝑧(𝑖, 𝑗) = 𝜖𝑟(𝑖,𝑗)+𝜖𝑟(𝑖−1,𝑗)+𝜖𝑟(𝑖,𝑗−1)+𝜖𝑟(𝑖−1,𝑗−1)
4

   (A7.c) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-1, 2-D Yee mesh based  

 

By applying the above equations (Equation A5 and Equation A6) to every point in the mesh grid, a 

system of linear equations can be formed in terms of the unknown field profile and the phase 

constant. These equations can be expressed in matrix form as: 

Ey(i+1,j) 

εr(i,j) 

Hz(i,j) 

Hx(i+1,j) 

Ey(i,j-1) 
Hx(i,j-1) 

Ey(i-1,j) 
Hx(i-1,j) Ez(i+1,j-1) 

Ey(i,j+1) 
Hx(i,j+1) 

Ez(i+1,j+1) Ez(i-1,j+1) 

Ez(i-1,j-1) 



 

 143 

    𝑗𝑘0[𝐻𝑥] = �𝐴𝑦�[𝐸𝑧] − 𝑗𝛽�𝐸𝑦�    (A8.a) 

    𝑗𝑘0�𝐻𝑦� = −[𝐴𝑥][𝐸𝑧] + 𝑗𝛽[𝐸𝑥]    (A8.b) 

    𝑗𝑘0[𝐻𝑧] = [𝐵𝑥]�𝐸𝑦� − �𝐵𝑦�[𝐸𝑥]    (A8.c) 

and, 

    −𝑗𝑘0[𝜖𝑟𝑥][𝐸𝑥] = �𝐶𝑦�[𝐻𝑧] − 𝑗𝛽�𝐻𝑦�   (A9.a) 

    −𝑗𝑘0�𝜖𝑟𝑦��𝐸𝑦� = −[𝐶𝑥][𝐻𝑧] + 𝑗𝛽[𝐻𝑥]   (A9.b) 

    −𝑗𝑘0[𝜖𝑟𝑧][𝐸𝑧] = [𝐷𝑥]�𝐻𝑦� − �𝐷𝑦�[𝐻𝑥]   (A9.c) 

 

Where Ax, Ay, Bx, By, Cx, Cy, Dx, and Dy are coefficient matrices. These matrices depend on the 

discretization distance, material constants and the applied boundary conditions. It was found that 

these matrices are sparse matrices. 

A. 2. Derivation of eigenvalue problem 

The derivation of the eigenvalue problem is performed by converting the above system of equations, 

Equation A8 and A9, to two equations. This procedure is performed in the following steps. First, get 

the axial field components (Ez and Hz) and substitute in the above equations. For example, The Ez and 

Hz can be obtained from (A8.c) and (A9.c) as; 

    [𝐻𝑧] = 1
𝑗𝑘0

[𝐵𝑥]�𝐸𝑦� − 1
𝑗𝑘0

�𝐵𝑦�[𝐸𝑥]   (A10.a) 

   [𝐸𝑧] = 1
−𝑗𝑘0

[𝜖𝑟𝑧]−1[𝐷𝑥]�𝐻𝑦� + 1
𝑗𝑘0

[𝜖𝑟𝑧]−1�𝐷𝑦�[𝐻𝑥]  (A10.b) 

Then, Substitute in (A7.a) to get;  

  𝑗𝑘0[𝐻𝑥] = �𝐴𝑦� � 1
−𝑗𝑘0

[𝜖𝑟𝑧]−1[𝐷𝑥]�𝐻𝑦� + 1
𝑗𝑘0

[𝜖𝑟𝑧]−1�𝐷𝑦�[𝐻𝑥]� − 𝑗𝛽�𝐸𝑦�  

  �𝑗𝑘0 − 1
𝑗𝑘0

�𝐴𝑦�[𝜖𝑟𝑧]−1�𝐷𝑦�� [𝐻𝑥] = 1
−𝑗𝑘0

�𝐴𝑦�[𝜖𝑟𝑧]−1[𝐷𝑥]�𝐻𝑦� − 𝑗𝛽�𝐸𝑦�   

  𝑗𝛽�𝐸𝑦� = 1
−𝑗𝑘0

�𝐴𝑦�[𝜖𝑟𝑧]−1[𝐷𝑥]�𝐻𝑦� − �𝑗𝑘0 − 1
𝑗𝑘0

�𝐴𝑦�[𝜖𝑟𝑧]−1�𝐷𝑦�� [𝐻𝑥]   

  �𝐸𝑦� = 1
𝑗𝛽𝑘0

�𝐴𝑦�[𝜖𝑟𝑧]−1[𝐷𝑥]�𝐻𝑦� − �𝑘0
𝛽

+ 1
𝛽𝑘0

�𝐴𝑦�[𝜖𝑟𝑧]−1�𝐷𝑦�� [𝐻𝑥]   

(A11.a) 

Similarly, the other field components can be define as; 

  [𝐸𝑥] = − 1
𝛽𝑘0

[𝐴𝑥][𝜖𝑟𝑧]−1�𝐷𝑦�[𝐻𝑥] − � 𝑘0
−𝛽

− 1
𝛽𝑘0

[𝐴𝑥][𝜖𝑟𝑧]−1[𝐷𝑥]� �𝐻𝑦� (A11.b) 

  �𝐻𝑦� = 1
−𝛽𝑘0

�𝐶𝑦�[𝐵𝑥]�𝐸𝑦� − �− 𝑘0
𝛽

[𝜖𝑟𝑥] − 1
𝛽𝑘0

�𝐶𝑦��𝐵𝑦�� [𝐸𝑥]  (A12.a) 
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  [𝐻𝑥] = 1
𝛽𝑘0

�𝐵𝑦�[𝐶𝑥][𝐸𝑥] − �𝑘0
𝛽

�𝜖𝑟𝑦� + 1
𝛽𝑘0

[𝐵𝑥][𝐶𝑥]� �𝐸𝑦�  (A12.b) 

 

Then the above equations (Equation A11 and A12) are coupled to either transverse electric fields 

components (Ex and Ey) or transverse magnetic fields components (Hx and Hy). For the transverse 

electric field case, the eigenvalue problem is: 

  𝛽2𝐸𝑥 = �(𝑘0
2𝐼 + 𝐴𝑥𝜖𝑟𝑧

−1𝐷𝑥)�𝜖𝑥 + 𝑘0
−2𝐶𝑦𝐵𝑦� − 𝑘0

−2𝐴𝑥𝜖𝑟𝑧
−1𝐷𝑦𝐵𝑦� 𝐸𝑥 

   +�𝐴𝑥𝜖𝑟𝑧
−1𝐷𝑦�𝜖𝑦 + 𝑘0

−2𝐶𝑥𝐵𝑥� − (𝐼 + 𝑘0
−2𝐴𝑥𝜖𝑟𝑧

−1𝐷𝑥)𝐶𝑦𝐵𝑥�𝐸𝑦 

           (A13.a) 

and, 

  𝛽2𝐸𝑦 = ��𝑘0
2𝐼 + 𝐴𝑦𝜖𝑟𝑧

−1𝐷𝑦��𝜖𝑦 + 𝑘0
−2𝐶𝑥𝐵𝑥� − 𝑘0

−2𝐴𝑦𝜖𝑟𝑧
−1𝐷𝑥𝐵𝑥� 𝐸𝑦 + 

   �𝐴𝑦𝜖𝑟𝑧
−1𝐷𝑥�𝜖𝑥 + 𝑘0

−2𝐶𝑦𝐵𝑦� − �𝐼 + 𝑘0
−2𝐴𝑦𝜖𝑟𝑧

−1𝐷𝑦�𝐶𝑥𝐵𝑦�𝐸𝑥 

           (A13.b) 

Which can summarized as,  

     𝛽2 �
𝐸𝑥
𝐸𝑦

� = �
𝑃𝑥𝑥 𝑃𝑥𝑦
𝑃𝑦𝑥 𝑃𝑦𝑦

� �
𝐸𝑥
𝐸𝑦

�   (A14) 

 

Similar equations can be obtained for transverse magnetic field as;  

  𝛽2𝐻𝑥 = �(𝑘0
2𝐼 + 𝐴𝑥𝜖𝑟𝑧

−1𝐷𝑥)�𝜖𝑥 + 𝑘0
−2𝐶𝑦𝐵𝑦� − 𝑘0

−2𝐴𝑥𝜖𝑟𝑧
−1𝐷𝑦𝐵𝑦� 𝐸𝑥 + 

   �𝐴𝑥𝜖𝑟𝑧
−1𝐷𝑦�𝜖𝑦 + 𝑘0

−2𝐶𝑥𝐵𝑥� − (𝐼 + 𝑘0
−2𝐴𝑥𝜖𝑟𝑧

−1𝐷𝑥)𝐶𝑦𝐵𝑥�𝐸𝑦 

           (A15.a) 

and, 

  𝛽2𝐻𝑦 = ��𝑘0
2𝐼 + 𝐴𝑦𝜖𝑟𝑧

−1𝐷𝑦��𝜖𝑦 + 𝑘0
−2𝐶𝑥𝐵𝑥� − 𝑘0

−2𝐴𝑦𝜖𝑟𝑧
−1𝐷𝑥𝐵𝑥� 𝐸𝑦 + 

�𝐴𝑦𝜖𝑟𝑧
−1𝐷𝑥�𝜖𝑥 + 𝑘0

−2𝐶𝑦𝐵𝑦� − �𝐼 + 𝑘0
−2𝐴𝑦𝜖𝑟𝑧

−1𝐷𝑦�𝐶𝑥𝐵𝑦�𝐸𝑥 

           (A15.b) 

This also can be expressed in the matrix form:  

     𝛽2 �
𝐻𝑥
𝐻𝑦

� = �
𝑄𝑥𝑥 𝑄𝑥𝑦
𝑄𝑦𝑥 𝑄𝑦𝑦

� �
𝐻𝑥
𝐻𝑦

�   (A16) 
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Solving the above eigenvalue problem (Equation A14 and A16), a solution for wave-equation can be 

obtained. Furthermore, the longitudinal field components can be calculated from Maxwell’s equations 

(A8.c) and (A9.c). 

A. 3. Assessment Examples 

In this section, further justifications for the non-uniform FDFD method are provided. For all the 

justifications, an electric wall – or simply a Perfect Electric Conductor (PEC) – boundary condition 

will be used to terminate the computational window. The simulation was done on a personal 

computer with following specifications; dual-core CPU 2.6GHz and 4G RAM. A Matlab Code was 

used to implement the FDFD method.  

A. 3. 1. The Circular Waveguide 

In this part, the performance of the non-uniform FDFD method in analyzing metallic structures is 

evaluated. The copper circular waveguide, with conductivity of σ = 5.8×107 s/m, inner radius of 3mm 

and outer radius of 3.6mm, was analyzed at 80GHz. Taking advantage of the structure symmetry, 

only a quarter of the structure was analyzed. For the dominant mode (TM01), the phase shit constant 

“β” was calculated to be: 

𝛽𝐹𝐷𝐹𝐷 = 1.466 − 0.18 × 10−6i   rad/mm 

𝛽𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑎𝑐𝑎𝑙 = 1.472 rad/mm 

The longitudinal electric field is shown in Figure A-2(a). Both the propagation constant value and the 

field pattern are in a good agreement with the theoretical results   [99].  

Figure A-2 (b) presents the transverse field distribution of the TE11 mode, obtained from the non-

uniform FDFD method. The transverse modal field pattern is in a good agreement with the published 

one  [99]. The phase constant of this mode was found to be 1.5586 rad/mm, which has less than 0.2% 

error compared to the theoretical results. 
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A. 3. 2. The Terahertz Air-core Microstructure Fiber (TAMF) 

For the final assessment, the non-uniform FDFD method was used to analyze the terahertz air-core 

microstructure fiber (TAMF). The TAMF is a low loss waveguide for THz band, It consists of a 

hollow core and a cladding layer formed by periodic arrangement of flexible and commercial 

available polytetrafluorethylene (Teflon, refractive index of 2.1) plastic tubes  [100]. A summary of 

the parameters of the TAMF is listed in Table A-I. 

  

Using non-uniform FDFD, the structure was analyzed at a frequency of 637GHz. Figure A-3(a) 

shows the dominant modal electric field of the waveguide. The figure shows that the field is 

concentrated inside the core of the waveguide. Moreover, the modal field is an ARROW-like mode 

Geometrical parameters 

Pitch Size (Λ) 2.08 mm 

Inner tube radius 0.84 mm 

Outer tube radius 1.04 mm 

Dielectric constant 
Teflon 2.1 

Air 1.0 

 

Table A-I The Parameters of the TAMF waveguide 

  
(a)      (b) 

Figure A-2 (a)The Ez field of the dominant mode (TM01), (b) The Transverse field of TE11 mode. 
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from the anti-resonance of the Teflon tubes. Compared to the published field pattern, there is a perfect 

correlation between both field patterns. The variation of the effective refractive index (neff) of the 

TAMF with the frequency is presented in Figure A-3 (b). The figure also shows a good agreement 

between the results obtained from both normal FDFD and non-uniform FDFD method.  

 
  

   
(a)      (b) 

Figure A-3 (a) E modal pattern and (b) The dispersion relation of the TAMF 
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Appendix B 
Analysis of Surface Wave along conductive wire 

In this appendix, a verification of the existence of the surface wave along a conductive rod is 

investigated using the HFSS. Within the following analysis, the properties of the surface waves along 

the conductive wire are calculated, and the accuracy of the HFSS model is investigated. Furthermore, 

some primitive application of the surface wave in material sensing.  

B.1. Propagation of Surface Wave along Copper Rod 

In this part, the propagation of an electromagnetic wave along a copper conductive wire is 

investigated using the HFSS analysis. A schematic diagram of the HFSS model is presented in Figure 

B-1. It consists of conductive rod of radius 0.45mm, and a delta-gap source for excitation  [125]. The 

separation between the rod tip and the coaxial excitation was selected to be 2.5mm. The rod was 

terminated using a tapered section, of length 2.5mm, to facilitate the field coupling to the wire. 

 

B.1.1. Single Rod Analysis 

Using the predefined HFSS model, the reflection analysis (S11 return losses) along the excitation 

probe is plotted in Figure B-2(a). The figure indicates that the delta-gap excitation coupled the 

electromagnetic fields to the rod at two frequencies; 100GHz and 240GHz. The axial field 

distribution along the rod at 100GHz is plotted in Figure B-2(b), while the same electric field at 

 

Figure B-1 HFSS model of a single conductive rod with delta-gap excitation. 
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240GHz is presented in Figure B-(c). The figure shows that both fields are slowly decaying along the 

surface of the conductive rod. 

 

More detailed analysis can be obtained from the field at the surface of the conductive wire. A plot of 

the amplitude of the normalized (with respect to the excitation value) surface field is shown in Figure 

B-3(a). The figure shows that as the field propagates along the wire, the field amplitude is slowly 

decaying. Although it is not shown here, the same decay observation was spotted in the 100GHz case 

 
(a) 

   
(b)      (c) 

Figure B-2 (a) The Return losses, cross-sectional field at (b) 100GHz and (c) 240GHz 



 

 151 

B.1.1.1. Attenuation factor analysis 

In order to investigate the accuracy of the HFSS simulation, the curve fitting technique is used to 

extract the attenuation factor of the HFSS field. Since the electric field at the surface of the 

conducting rod is exponential decay (Figure B-2(a)), an exponential decay fit can be used to calculate 

the attenuation factor: 

     z
Surface eEE .α−= 0      (B-1) 

Where E0 is the maximum field value, α is the attenuation factor and the z is the propagation distance. 

 

Using the exponential decay curve fitting, both the decay for the 100GHz and the 240 GHz surface 

fields were calculated and plotted in Figure B-3(b). The figure shows that both the surface waves are 

attenuated. Furthermore, the effect of the attenuation is increased as the frequency increases.  

For the wave operates at the 240GHz, the curve fitting attenuation factor was found to be 86.31 

Nb/mm. Using the theoretical analysis, the attenuation factor was calculated to be 95.16 Nb/mm, 

which is 9.3% shifted from the curve fitting approximation. Since only two full waves were used to 

extrapolate the attenuation factor, the error between the theoretical and extrapolated values can be 

justified. 

Furthermore, for the 100GHz case the extracted and the theoretical values of the attenuation was 

calculated to be 78.4 Nb/mm and 51.8Nb/mm respectively. As shown in Figure B-3(b), almost one 

full wave of the field was calculated on the rod at 100GHz. Therefore it is expected to have higher 

error values for the surface wave operates at the 100GHz compared to the 240GHz case. 
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The last section in this part is the effect of surrounding medium perturbation. The analysis was 

performed with the same configuration as shown in Figure B-1, with a material box (2.7×2.7×2mm of 

relative permittivity εr=1.5, Figure B-4). 

 

Since the same excitation is used, the insertion losses will be the same and hence the analysis will be 

applied on 100GHz and 240GHz. The cross sectional field at these two frequencies is presented in 

Figure B-5(a) and Figure B-5(b), respectively. For both figures, the field propagates, with attenuation, 

along the rod surface. 

 
Figure B-4 Schematic diagram of the single rod with a material box 

  
(a)       (b) 

Figure B-3 (a) The Surface Field at 240GHz and (b) the extracted exponential decay of the field at 

100GHz and 240GHz 



 

 153 

 

B.1.2. Two Balanced Rods 

Alike the previous section, the coupling analysis between two similar rods is investigated. Figure B-

6(a) shows the schematic diagram of two similar rods, with 1.8mm separation between the axes of the 

rods. Similar to the single rod analysis, a delta-gap excitation technique –with the same excitation 

parameters– will be used. Therefore the fields are coupled to the rod at the same resonance 

frequencies. The axial cross section of the fields at 100GHz and 240GHz (resonance frequencies) is 

plotted in Figure B-6(b) and (c) respectively. For the 100GHz case, the fields at the first rod is 

decaying as it propagates along the rod. The figure also shows that a significant amount of the EM-

fields are coupled to the second rod. Furthermore, the figure shows that the separation between the 

rods provides a guiding mechanism to the fields. The same field behavior is observed in the 240GHz 

resonance. Similarly, the axial cross section at the 240GHz shows that most of the fields are coupled 

in the separation between the two rods. 

  
(a)     (b) 

 
Figure B-5 The cross-sectional field at (a) 100GHz and (b) 240GHz, and (c) a zoomed picture of the 

fields inside the material box. 
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More insight information can be obtained from the surface wave analysis. The electromagnetic fields 

at the surface of the second rod (the extracted field line is shown as a black line in Figure B-6(a)) 

were extracted from the HFSS file. A plot of the surface field is plotted in Figure B-7. The figure 

indicates that the surface wave is a sinusoidal decaying field. The attenuation factor was found to be 

311.3 Nb/mm, which is greater than single rod placed in homogeneous medium. 

 
(a) 

   
(b)     (c) 

Figure B-6 (a) Schematic diagram of the two rods analysis, and cross-sectional field at (b) 100GHz and 

(c) 240GHz 
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B.1.3 Two Unbalanced Rods 

Within this section, the effect of unbalanced rod is investigated. Alike the balanced rod case, the 

radius of the first is kept constant at 0.450mm while the radius of the second rod increased to 

0.675mm (1.5x times the first rod). All other geometrical parameters; excitation network and rod 

separation,  are kept constant.  

 

Since the excitation is kept constant, the delta gap-excitation resonates at 100GHz and 240GHz. The 

axial field across the metallic rods, at 100GHz and 240GHz, is plotted in Figure B-8(a) and Figure B-

8(b), respectively. Both figures show the fields are concentrated at the surface of the rod. Since the 

theoretical analysis indicates that the surface fields are lossy fields, the fields slowly decays as it 

propagate across the rods. 

  
(a)     (b) 

Figure B-8 The axial field pattern at (a) 100GHz and (b) 240GHz 

 
Figure B-7 The field propagation along the surface of the rod 
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B.2 Application of Surface Wave along Conductive Rods 

Taking advantage of the sensitivity of the surface wave to the surrounding medium, it can be used to 

detect different surrounding medium. In this section, a primitive analysis of the potential of the 

surface wave applications in sensing is introduced. The analysis is performed on two coupled rods 

using the HFSS model in two modes; the balanced mode and the unbalanced mode. In the balanced 

case, both the rods have the same radius (0.45mm), and the distance between the centers of the rods 

was selected to be 1.8mm. While in the unbalanced case, the radius of the first rod is 0.45mm and the 

radius of the other rod is increased to 0.675mm. Within both cases, the geometrical parameters and 

the excitation are kept constant. 

Instead of using the delta-gap excitation –as used in the previous section–, the excitation is performed 

by direct connection between the rods and the inner conductor of a coaxial cable. Taking advantage of 

the radius matching between the rod and the “2.92 mm (K) Connectors”, an efficient contact between 

them can be achieved (Figure B-9). The figure also shows a dielectric box placed, in which the 

electromagnetic coupling is performed. Within the following sections, the effect of changing the box 

material on S-parameters is investigated. 

 

B.2.1 Air Dielectric Box 

The first step in this analysis is to define the return losses (S11) without any dielectric box added. This 

is performed in the HFSS by assigning Air properties to the dielectric box. The return losses at the 

excitation port, with the two rods placed in the vacuum is plotted in Figure B-10(a). The figure shows 

that the electromagnetic fields are coupled to the rods at three coupling frequencies; 23.75, 27, and 

29.75GHz. The cross sectional field at 23.75 and 29.75GHz is plotted in Figure B-10(b) and (c) 

respectively. Both figures shows that the fields are coupled between the two rods. 

 
Figure B-9 A schematic diagram of the excitation 
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B.2.2 The Dielectric Box 

To demonstrate the effect of the surrounding medium on the return losses of the surface wave modes, 

a dielectric box, with relative permittivity (εr = 1.25), is used to replace the air box. The calculated 

return loss is plotted in Figure B-11(a). The figure shows that the resonance frequencies are 23, 25.75, 

and 29GHz. The cross sectional field at 23 and 29 GHz is presented in Figure B-11(b) and (c) 

respectively. Compared to the previous section, the resonance frequency and amplitude is shifted due 

to the dielectric box added. Therefore the surface wave propagation along the conductive rod can be 

used in sensing applications. 

 
(a) 

  
(b)    (c) 

Figure B-10 (a) The return losses of the coupled two rods placed in the vacuum, and The cross axial 

field at (b) 23.75GHz and (c) 29.75GHz 
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The sensitivity of the surface wave to different dielectric materials is presented by changing the 

dielectric box materials. A plot of the corresponding return losses of these dielectric boxes, calculated 

around 23GHz and 27GHz, is plotted in Figure B-12(a) and Figure B-12(b), respectively. In both 

figures the resonance frequency and the amplitude of the resonance frequency is affected by the 

dielectric material assigned to the material box. In both figures, as the relative permittivity (εr) of the 

dielectric box increases, a slight reduction of the resonance frequency is noticed. For example, the 

resonance frequency in the first frequency window (around 23GHz) changed from 23.75GHz to 23.50 

when the dielectric box material changed from air to another material with relative permittivity of 

1.05. Replacing the air box with another dialectic box of relative permittivity of 1.25 shifts the 

 
(a) 

   
(b)    (c) 

Figure B-11 (a) The return losses of the coupled two rods placed in the vacuum, and The cross axial 

field at (b) 23GHz and (c) 29GHz 
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resonance frequency to 23.0GHz, while placing a Teflon box reduces the resonance frequency to 

22.5GHz. Similar behavior was observed in the second frequency window (around 27GHz). 

 

  

  
(a)     (b) 

Figure B-12 The return losses at (a) the first frequency window, and (b) the second frequency window 
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