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Abstract

In the modern deep-submicron Very Large Integrated Circuit(VLSI) design flow intercon-

nect delays are becoming major limiting factor for timing closure. Traditional placement

algorithms such as routability-driven placement (improves routability) and wirelength-

driven placement (reduces total wirelength) are no longer sufficient to close timing. To

this end, timing-driven placement plays a crucial role in reducing the interconnect delay

through timing critical paths (paths with timing violations/negative slacks) of the design

and thereby achieving specific performance/clock frequency.

In the placement flow, timing information about the design can be incorporated during

global placement and/or incremental/detailed placement. Although, over the years, there

has been significant advances in the quality of the global placement, there is a growing need

for high performance incremental timing-driven placement due to the lack of accurate

interconnect information during global placement. Moreover, incremental timing-driven

placement is essential to recover timing while preserving the other optimization objectives

such as total wirelength, routing congestion, and so forth which are optimized at the early

stages of the design flow.

This thesis proposes a simple, yet efficient, incremental timing-driven placement algo-

rithm that seeks to find optimized locations for standard cells so that the total negative

slack of the design can be maximized. Our algorithm consists two stages: (1) Global Move

which positions standard cells inside a critical bounding box to eliminate timing violations

on timing critical nets; and (2) Local Move which provides further timing improvement by

finely adjusting the current locations of the standard cells within a local region.

We evaluate our algorithm using ICCAD-2014 timing-driven placement contest bench-

marks. The results show that, on average, our technique eliminates 94% and 30% of the
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late and early total negative slacks, respectively, and, 82% and 27% of the late and early

worst negative slacks, respectively, under short and long displacement constraints. The

1st-place team of the contest improves late and early total negative slacks by 90% and

39%, respectively, and improves late and early worst negative slack by 76% and 32%, re-

spectively. Taking into account both timing violation improvement and the placement

quality (i.e., other objectives), on average, we outperform the 1st-place team by 3% in

terms of the ICCAD-2014 contest quality score and our technique is 4.6× faster in terms

of runtime.
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Chapter 1

Introduction

1.1 Motivation

Timing closure is a crucial task in the Very Large Scale Integrated circuit(VLSI) design

flow. By timing closure, we mean that the design meets the timing constraints, namely

setup and hold constraints, and the design achieves a specific clock frequency. Figure

1.1 illustrates a typical VLSI design flow. Even though, according to Figure 1.1, timing

closure is mentioned as the last stage of the physical design, timing optimization can be

performed throughout the physical design flow using several techniques. Such techniques

include buffer insertion, gate sizing, timing-driven routing and timing-driven placement

[4]. This thesis focuses on timing closure at the placement stage of the design; specifically

during detailed placement.

Placement is an important and challenging step in the physical design of an integrated

circuit. The quality of the placement impacts the wirelength, routability and the perfor-

mance/timing of the design. Although wirelength-driven and routability-driven placement
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Figure 1.1: Typical VLSI CAD flow.

can help improve the timing (e.g., keeping nets short, in general, will reduce the delay of

the nets), timing critical nets may still be present in the final placed design. Incorporating

the timing information inside the placement flow to identify timing critical nets and then

guide the placement of standard cells which are included in the path of such nets is know

as timing-driven placement.

Timing information during placement can be incorporated either globally or incremen-

tally. While global timing-driven placement moves cells freely from one location to another

to optimize timing on specific nets, incremental timing-driven placement often limits the

displacement of cells from their original locations so that the quality of the global placement

can be preserved. Although, at different points in the flow, one can choose different degrees

of cell movement, there is a growing need for high performance incremental timing-driven

placement in the modern timing closure flow, as it is important to recover timing from

2



early steps of the placement flow while maintaining its solution quality in terms of total

wirelength, routing congestion, placement density and etc. [5]. The two major challenges

faced in obtaining high quality incremental timing-driven placement solutions are:

• Convergence of timing improvement. Timing violations of a design are quantified

using a metric knows as slacks, which is obtained by performing Static Timing Anal-

ysis (STA) (section 2.3.3) on the design. During STA each input/output pin in the

circuit is annotated with slack. As such, the Total Negative Slack (TNS) and/or

Worst Negative Slack (WNS) obtained using STA indicates the amount of timing

violation in a circuit. There might be an exponential number of paths with negative

slack in a given design/circuit. Eliminating only a few paths may result in marginal

improvement. Therefore, an efficient technique is required to a reduce a large number

of critical paths or near critical paths [6].

• Preserving the global placement quality in terms of wirelength and routability. Ini-

tially, incremental timing-driven placement is given a legal placement that might have

been optimized for wirelength and/or routability. Altering the initial landscape of

cells to improve timing on critical nets may have a non-trivial impact on wirelength

and routability of the design. Hence, any movement of cells must preserve the global

placement quality in terms of wirelength and congestion [7]. The cell movements

must also ensure that the final placement is legal.

In this work, we propose an efficient, yet simple, incremental timing-driven placement

algorithm that addresses the aforementioned challenges. Our technique is a greedy path-

based algorithm, which improves the circuit timing while maintaining the initial placement

quality. Our specific contributions are provided in the next section.
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1.2 Thesis Contributions

The key contributions of this work are as follows:

1. Our algorithm is simple but effective. It is based on a greedy path-based technique.

The main flow of the algorithm consist of two stages: Global Move and Local Move.

In the global move stage, we globally move cells to a site inside a critical bounding

box. The global move is composed of two sub-stages: sequential cell pass and com-

binational cell pass. During sequential cell pass, only sequential cells are allowed to

move, whereas in the combinational cell pass, movement of combinational cells are

considered. In the local move stage, we locally move combinational cells to nearby

sites for further improvement of timing.

2. To preserve the global view and the quality of the initial placement, incremental

timing-driven placement should only consider moving cells within the range of max-

imum displacement limit, which is defined as Manhattan distance from the cell’s

original location to the target location. Our global move technique can move cells far

away from their original placement location. As a result, it might violate maximum

displacement limit constraint. Therefore, we provide a methodology which supports

displacement-aware cell movement during the global move stage of the algorithm.

3. Unlike many timing-driven placements that uses inaccurate, often crude, timing mod-

els, during the cell move, our technique relies on accurate timing information to

evaluate the impact of a cell move on the design timing [8]. To reduce the runtime

overhead due to performing STA on the design during every cell move, we parallelize

our static timing analyzer.

4



4. We evaluate the performance of our technique using ICCAD-2014 contest bench-

marks, and compare our results with top three teams of the competition. The exper-

imental study shows that our results are competitive in terms of timing improvement

and runtime.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides background on placement

and timing analysis. Previous work on timing-driven placement is also presented in Chapter

2. Chapter 3 presents our incremental timing-driven placement algorithm with several key

operations described in detail. In chapter 4, results from the experimental study are

presented and compared. Chapter 5 details additional experimentation with the focus on

reducing the runtime of our timing-driven placement algorithm. Finally, conclusions and

future work directions are offered in Chapter 6.
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Chapter 2

Background

This chapter provides some background on placement. We describe common placement

objectives and timing-driven placement. We also describe static timing analysis procedure.

This includes timing models of circuit elements such as combinational cells, sequential cells,

interconnect delay, and propagation of timing information such as delays and slews.

2.1 Placement

The process of designing a VLSI circuit is done in multiple stages due to its complexity. In

the VLSI design flow (Fig 1.1), placement is performed after logic synthesis and technology

mapping, but before routing. Placement is the process of determining the locations of

standard cells or logic elements on a die surface. It takes a set of cells/macros, a netlist,

and a chip outline as its input and produces legal locations for those cells/macros as its

output.

Placement is a complex problem. All modern placers solve placement in several man-
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Figure 2.1: Placement of standard cells on a chip using three commonly used stages: from
left to right (1) Global placement; (2) Legalization; and (3) Detailed placement.

ageable steps. One commonly used placement flow is as follows:

1. Global placement: Given the netlist, global placement seeks to find a rough so-

lution to the problem. Though the obtained solution might violate some placement

constraints, such as no overlap among cells/macros, it is an important step in de-

termining the overall placement quality and runtime [2]. The most commonly used

global placement algorithms can be classified into three categories: (1) Partitioning-

based methods recursively divides (e.g., through recursive bipartitioning) a circuit

into several subcircuits and place those subcircuits in the placement sub-region [9];

(2) Simulated-annealing methods applies probabilistic heuristic search to obtain a

desired place for cells/macros such that particular cost function can be optimized

[10]; (3) Analytical methods approximate some cost function, typically wirelength of

a net using a quadratic cost function, such that the optimal solution can be obtained

using efficient numerical methods [11, 12].

2. Legalization: Given a rough global placement solution, legalization perturbs cells

or macros locally so that no placement constraints are violated (i.e., overlap free)

and the characteristics of the input global placement solution is preserved [13, 14].
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3. Detailed placement: The legalized placement is further improved by moving

cells/macros around iteratively while maintaining the global view of the solution

obtained in the previous steps [15, 16].

Figure 2.1 illustrates an example of standard cell placement using the three steps above

described.

2.2 Placement Objectives

During placement one or more cost functions, such as wirelength, timing, routing conges-

tion, power consumption and thermal issues are optimized. Since timing optimization is

the focus of this thesis, we only provide an overview of other common placement objectives,

namely wirelength and routability.

2.2.1 Total Wirelength

Minimization of total wirelength is the most widely used objective in the placement problem

formulation to indirectly optimize timing, routability and power consumption [2]. The main

idea is to minimize the wirelength of each net in the design so that net delays, routing

demands, and load capacitances can be reduced to improve performance, routability and

power consumption, respectively. Hence, a placement formulation based on total wirelength

has been the focus of most prior research works and has resulted in several high quality

wirelength-driven placement algorithms such as SimPL [12], NTUPlace3 [17], FastPlace3

[18], MAPLE [19] and so on. It is worth noting that total wirelength minimization is only

a heuristic to optimize these other objectives, and hence nets in the most congested region,

along the timing critical paths, or with the highest switching activities may not be shorter.
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Figure 2.2: An example of HPWL(b) and RSMT(c) wirelength estimation technique for a
five pin net(a) [2].

During placement, wirelength of the nets are predicted, because the actual wirelength

of nets are not known until they are routed, which is performed following the placement

phase of the VLSI design flow (Figure 1.1). To estimate the wirelength of a net, among

other approaches, half-perimeter wirelength (HPWL) is the most widely used. The HPWL

of a net is half the circumference of the smallest bounding rectangle that encloses all the

pins in the net (Figure 2.2-b). To emphasize the importance of HPWL in the wirelength-

driven placement, ISPD-2005 placement contest [20] can be considered an example where

HPWL is the metric used to measure the total wirelength of the final placement solution.

Even though HPWL is popular due to its linear computational time, it can significantly

underestimate the wirelength of a net as it only provides the lower bound of the actual

wirelength. A better approach to the wirelength estimation is based on rectilinear Steiner

minimal tree (RSMT). In RSMT, nodes (pins) of a net are possibly connected through

some extra (i.e., Steiner) nodes to minimize the total edge length in Manhattan distance

between connected nodes (Figure 2.2-c). Although RSMT, for nets with at least four pins,

provides more accurate estimation of wirelength than HPWL, it is computationally more

expensive and hence, traditionally, rarely used during placement [2].
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Figure 2.3: Placement bins and their utilization for measuring placement density.

2.2.2 Routability

A placement solution is useless unless it is routable. Therefore, during wirelength-driven

placement, it is essential to estimate routing demands in arbitrary neighborhood of place-

ment regions to tradeoff the wirelength to routability. To estimate the routability, ISPD-

2006 placement contest [21] introduced density target constraint to force a placer to reserve

a specified amount of white space (free space) in any subregions of the placement area for

routing and other optimizations. Given that a placement area is divided into equal sized

bins as shown in Figure 2.3, the density of a placement bin is defined as the sum of the area

of movable cells divided by the total available area in that placement bin. A placement

bin with higher density than the target density must consider spreading cells to the nearby

bins with low placement density bins, if possible, to achieve the specified target density.

The main shortcoming of the aforementioned approach is that it often fails to capture

the uneven distribution of cells in the placement bins. To this end, in [19], a placement den-
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sity metric, know as Average Bin Utilization (ABU), is proposed. ABU γ is defined as the

average area utilization for top γ% bins excluding the bins fully occupied by fixed macros,

and is effective in capturing uneven distribution of standard cells. Thus, minimizing the

ABU γ can uniformly distribute the cells across the placement region.

Since the routabilty of a design is router-dependent, white space allocation based on

target density or ABU can underestimate the actual routing congestion of the design.

Though the actual routing congestion can be measured by performing rough routing (e.g.,

global routing), a router is rarely used during global placement. However, performing

global routing is considered feasible in routability-driven placement. ISPD-2011, ISPD-

2014 and ISPD-2015 rotutabilty-driven placement contests [22, 23, 24] are the examples

where a global router is used to measure the routing congestion of a placement.

2.3 Timing-Driven Placement

In addition to wirelength and routability, timing (performance) of a design is important.

To this end, timing-driven placement seeks to find locations for standard cells in the place-

ment region so that interconnect delay can be optimized at the expense of wirelength and

routability. The main objective of timing-driven placement is either to satisfy all timing

constraints or to achieve maximum clock frequency possible.

In this section, we describe the process of STA, including cell and interconnect delay

models, timing propagation and the procedure of STA itself. Since we rely on ICCAD-

2014 incremental timing-driven placement contest benchmark infrastructure [3] for our

experimental study, the timing models are same as the one used in the contest. Finally,

we also provide the problem formulation of incremental timing-driven placement.
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Figure 2.4: Combinational AND gate (left) and its timing model (right) [3].

2.3.1 Timing Models

This section presents pin-to-pin connection delay and output slew computation for com-

binational, sequential cells and interconnects. Here, the delay defines the amount of time

needed for the signal to propagate from pin-to-pin, whereas output slew defines the amount

of time needed for signal to switch from high-to-low or low-to-high. Typically, a low (high)

signal is defined as 10% (90%) of the voltage.

1. Combinational cells: For a combinational cell (Figure 2.4), its pin-to-pin delay, d,

and output slew, so, can be modeled as a linear combination of load capacitance and

input slew [3] given by

d = a+ bCL + csi (2.1)

so = x+ yCL + zsi (2.2)

where a, b, c, x, y, and z are cell dependent constants determined during standard

cell library characterization, CL is the load capacitance at the output pin and si

is the slew (propagates via interconnect) at the input pin. The value of CL is the

downstream capacitance seen from the output pin of the cell. In this model, CL is
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Figure 2.5: Two interconnected flip-flops and their timing model [3].

given by

CL =
N∑
k=1

Ck (2.3)

where Ck is the parasitic capacitances of the RC tree nodes of the interconnect driven

by the output pin of the cell and N is the set of nodes in the RC tree network including

the cell pins of the fanout.

2. Sequential cells: Sequential cells decompose a circuit into several stages and their

outputs (inputs) acts as starting (ending) points of timing propagation. In a se-

quential circuit, the sequential cells are implemented using one or more flip-flops.

The operation of flip-flops are synchronized by clock signals generated from one or

more clock sources. Due to the distinct positions of flip-flops and clock sources, the

arrival time of clock signal from the clock source to a flip-flop will encounter a de-

lay know as clock latency and it depends on the routing characteristic of the clock

interconnect/net.

There are three important timing parameters pertaining to a (D) flip-flop (Figure

2.5): clock-to-output delay (dCK→Q), setup time (tsetup) and hold time (thold). dCK→Q

is the amount of time a flip-flop takes to propagate the value at its input pin (D)

to output pin (Q) upon the detection of capturing clock edge at its clock pin (CK ).

Proper operation of a flip-flop requires signal at the input pin (D) to be stable for
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Figure 2.6: Interconnect timing model (left) and its RC tree network (right).

a specific amount of time before and after the capturing clock edge. The former is

know as setup time and the latter is the hold time. The setup time and hold time

can be modeled as a linear combination of input slews at the clock and data pins of

the sequential cell [3] and are given by

tsetup = g + hsearlyiCK + jslateiD (2.4)

thold = m+ nsearlyiCK + pslateiD (2.5)

where, g, h, j,m, n, and p are flip-flop specific constants determined standard cell

library characterization and siCK , siD are input slews at clock pin CK and input pin

D, respectively.1

3. Interconnect modeling

A net is used to connect output pin (source/port) of a cell to one or more input pins

(sinks/taps) of other cells. Figure 2.6 illustrates a parasitic RC tree containing only

grounded capacitors and floating resisters, used to model the delay and the output

slew of an interconnect.

1In an early-late split timing model early(late) denotes the lower (upper) bound on the timing charac-
terization.
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Delay. The computation of a port-to-tap delay can be approximated by Elmore

delay model [25]. Given a node e in a RC tree network, the Elmore delay at node e

is given by

de =
N∑
k=1

Rk−1,kCk (2.6)

where Rk−1,k is the resistance of a wire segment between the nodes k − 1 and k in

path from port to node e, Ck is the downstream capacitance at node k and N is the

number of segments in the path from Port to node e.

Output slew. The output slew, so, at tap node T is computed using two step

process. First, the well-approximated output slew, ŝoT , of the impulse response on T

is given by

ŝoT ≈
√

2βT + d2T (2.7)

where dT is the Elmore delay from equation 2.6 and βT is second moment of the

input response at node T , computed by

βT =
N∑
k=1

RkTCkdk (2.8)

where RkT is the resistance of common path between port to node k and port to

node T , and Ck and dk are the lumped capacitance and Elmore delay at node k,

respectively. Second, the output slew, soT , of the response to the input ramp is

computed by

soT ≈
√
s2i + ŝoT (2.9)

where si is the input slew at the port.
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Table 2.1: Table of notation for timing propagation equations.

atY - arrival time at pin Y
ratY - required arrival time at pin Y
dX→Y - combinational cell/port-to-tap interconnect delay from pin X to pin Y
l - clock latency

dCK→Q - sequential cell delay from pin CK to pin Q

2.3.2 Timing Propagation

Profiling the timing characteristic of a sequential circuit involves performing late and early

mode STA on the circuit. As a result, the late and early slacks obtained at each primary

outputs and input pins of sequential cells are computed to quantify the timing violation

of the design. While a design with positive slacks indicates all timing constraints are met,

a design with negative slacks exhibits timing violations. To be specific, a design with late

negative slacks and early negative slacks indicates setup time and hold time violations,

respectively, in the circuit. Slack is a function of arrival time and required arrival time. In

the following, definitions of arrival time, required arrival time and slack are provided. To

help aid the discussion, notation of key variables are listed in Table 2.1.

Arrival time (at). The late(early) arrival time at timing point t 2 of a standard cell is

the latest(earliest) instant the signal reaches the t. For combinational cells (Figure 2.4),

the late and early arrival times at the output pin Y are given as

at lateY = max(at lateA + dlateA→Y , at lateB + dlateB→Y ) (2.10)

atearlyY = min(atearlyA + dearlyA→Y , atearlyB + dearlyB→Y ) (2.11)

According to Figure 2.6, given that Z is the source and A is the tap of an interconnect,

2Timing point t is the input/output pins of a standard cell.
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the arrival times at the input pin A of a combinational cell (Figure 2.4) are given by

at lateA = at lateZ + dlateZ→A (2.12)

atearlyA = atearlyZ + dearlyZ→A (2.13)

For sequential cells (Figure 2.5), the arrival times at the data pin(D) of capturing

sequential cell (FF2) is given as

at lateD = llate1 + dlateCK→Q + dlatecomp (2.14)

atearlyD = learly1 + dearlyCK→Q + dearlycomp (2.15)

Required Arrival time (rat). The late(early) required arrival time at timing point t

is the latest(earliest) instant the signal is allowed to reach t. Consider the situation in

Figure 2.6, where a net driven by output pin Z of a combinational cell drives input pins

T1 and T2 of another cells. Thus, the required arrival time at the output pin Z of the

combinational cell is given as

rat lateZ = min(rat lateT1 − dlateZ→T1, rat lateT2 − dlateZ→T2) (2.16)

ratearlyZ = max(ratearlyT1 − dearlyZ→T1, ratearlyT2 − dearlyZ→T2) (2.17)

The required arrival times at an input pin A of a combinational cell (Figure 2.4) are given

by

rat lateA = rat lateY − dlateY→A (2.18)

ratearlyA = ratearlyY − dearlyY→A (2.19)
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For sequential elements, consider the FF2 of Figure 2.5 with setup time tsetup and hold

time thold. Given a clock period of P, the required arrival time at the data pin D of FF2

is given as

rat lateD = P + learly2 − tsetup (2.20)

ratearlyD = llate2 + thold (2.21)

Slack. Given the arrival time and required arrival time at each timing point t of the

design, the late(early) slack at timing point t is computed as

slack latet = rat latet − at latet (2.22)

slack earlyt = atearlyt − ratearlyt (2.23)

Given the slacks at each timing point t of the circuit, the timing metrics TNS and WNS

are used to quantify the amount of timing of the circuit. TNS and WNS can be defined as

follows:

(1) Total Negative Slack (TNS):

TNS late =
∑
j∈PO

slack latej (2.24)

TNS early =
∑
j∈PO

slack earlyj (2.25)

where PO is the set of all primary outputs and data pins of sequential cells with negative

slacks.
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Figure 2.7: Example circuit (left) and its timing graph (right). Except SOURCE and
SINK nodes, each node in the timing graph represents a cell. The edges in the timing graph
represent the port-to-tap delays of the interconnect computed by Elmore delay model. The
SOURCE and SINK nodes act as timing start and end points, respectively.

(2) Worst Negative Slack (WNS):

WNS late = max
j∈PO

(slack latej ) (2.26)

WNS early = max
j∈PO

(slack earlyj ) (2.27)

where PO is the set of all primary outputs and data pins of sequential cells with negative

slacks.

2.3.3 Static Timing Analysis

STA on a circuit is performed using its timing graph, a directed acyclic graph (DAG) given

that the circuit doesn’t have any combinational loop. The nodes and edges in the DAG

represent the combinational cells in the circuit and port-to-tap delays of interconnects,

respectively. The computation of arrival times (required arrival times) at cells input/output

pins are performed in forward (backward) topological ordering of the corresponding nodes

in the DAG.

For example, Figure 2.7 presents an example circuit and its timing graph. The computa-
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tion of arrival times at cells input/output pins are computed (by equations 2.12, 2.13, 2.10,

2.11) in the forward topological ordering of the nodes given by {SOURCE, C1, C2, C3, C4,

C5, C6, C7, SINK}. On the other hand, the required arrival times at at cells input/output

pins are computed (by equations 2.18, 2.19, 2.16, 2.17) in the backward topological or-

dering of the nodes given by {SINK, C6, C7, C4, C5, C1, C2, C3, SOURCE}. Given the

arrival times and required arrival times for each input/output pins in the circuit, the slacks

can be computed using equations 2.22 and 2.23.

2.3.4 Problem Formulation

In this section, incremental timing driven placement is formulated as a mathematical op-

timization problem. Given initial location (xoj , yoj) for each moveable standard cell cj ∈

C, incremental timing-driven placement seeks to find a new location (xnj , ynj ) such that

timing violations of the initial placement can be eliminated or reduced. In doing so, it

must respect the following physical constraints:

1. Legality. The new location of the cell cj must be within the chip region, denoted

by (Xleft, Ybottom) - (Xright, Ytop). Also, the new location must fit within a row and

be site aligned, meaning that given the width of the site (sitespacing) Wsite and the

hight of the row Hrow, (xnj , ynj ) must be multiples of Wsite, Hrow, respectively. In

addition, the cell cj must be “overlap free” with its nearby cells.

2. Displacement limit. One of the main objective of incremental timing driven place-

ment is to preserve the quality of the initial placement given as input. To achieve

this, timing optimizations are performed under maximum displacement limit con-

straint, which imposes an upper bound on the amount of displacement that a cell
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can be moved from its initial location. In other words, given the initial position (xoj ,

yoj) and the newly found position (xnj , ynj ) of a cell cj, the amount of displacement of

the cell which is measured as the Manhattan distance between the old position and

new position must be less than or equal to the maximum displacement limit Dmax.

Considering the objective and the constraints, the incremental timing-driven placement

can be formulated as the following optimization problem:

Maximize: TNS late + TNS early (2.28)

Subject to: Xleft ≤ xnj ≤ Xright −Wj ∀j (2.29)

Ybottom ≤ ynj ≤ Ytop −Hj ∀j (2.30)

xnj =

⌊
xnj
Wsite

⌋
Wsite ∀j (2.31)

ynj =

⌊
ynj
Hraw

⌋
Hraw ∀j (2.32)

xnj +Wj ≤ xnj+1 ∀ynj = ynj+1 (2.33)

|xnj − xoj |+ |ynj − yoj | ≤ Dmax ∀j (2.34)

Equations 2.29 and 2.30 ensure that the newly found location for the cell is within the

boundary of the chip. The site alignment constraint and the requirement that the cell

must be placed within a row is handled by equations 2.31 and 2.32, respectively. Equation

2.33 make sure that cells do not overlap with nearby cells of the same row. Finally, equation

2.34 describes the upper bound on movement of cells from their original locations.

The objective function of the above-formulated optimization problem is a non-linear

function as it depends on the Elmore delay model for the interconnects delay computation.

In addition, the constraints given by equations 2.31, 2.32 and 2.34 are non-linear too. Thus,
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this optimization problem is non-trival and it cannot be solved by any direct methods.

Therefore, timing-driven placement problem requires effective heuristic techniques to solve

it efficiently in terms of timing optimization and computational runtime. In the next

section, we consider some previous heuristic ideas to address timing optimization during

placement.

2.4 Previous Work

In the literature, net-based, path-based and the hybrid-approaches are the three categories

of techniques used for timing-driven placement [4]. Net-based algorithmic techniques trans-

form the timing information into net-weights or delay budgets(net-constraints), and then

minimize the weighted wirelength instead of the traditional total wirelength. Net weights

can be assigned statically or dynamically. Static net weights are usually computed using

slacks and do not change during placement. [26] proposes a sensitivity guided net-weighting

scheme to increase(decrease) the net-weights from one placement iteration to another, to

minimize the total negative slack. In [27], slack-based path counting scheme was proposed

to assign weights to nets. In dynamic net weighting, net weights are computed using a

timing profile that is updated during placement. In [28], net-weighting is used to solve La-

grangian Dual Problem of the Lagrangian Relaxation Subproblem, to minimize the total

negative slacks in the design.

Generally, path-based methods directly optimizes the design’s timing by capturing the

timing violations as set of constraints, and then minimizing the total negative slack or worst

negative slack using linear programming (LP). Since there can be exponential number of

possible paths with timing violation, [29] adopted target timing to reduce the number of

such paths during net constraint generation of the LP formulation.[30] proposed a differ-

22



ential timing analysis technique in the LP formulation, in which circuit elements and the

interconnects are modeled through variations in cell delay, slew propagation and intercon-

nect delay with respect to accurate timing information. [31] uses simulated-annealing to

reducing the timing violation of the design by defining the cost to minimize as a function

of wirelength and timing penalty.

Hybrid techniques uses features from both net-based and path-based approaches to

eliminate or reduce timing violations in the design.[32] evaluates the critically of nets

using a slack-based net weighting scheme, and then uses simulated-annealing to trade-off

wirelength of non-critical paths to delay improvement of the critical paths. [7] employs

iterative net weighting scheme, which assign high net weights to two pin nets connecting

modules passing through critical paths, to smooth critical paths.

Most existing timing-driven placement algorithms that uses net weighting scheme are

based on global placement, in which cells are allowed to move freely. This approach is

not suitable towards the end of the placement flow (e.g., detailed/incremental placement),

because respecting the maximize displacement limit constraint and maintaining the cell

distribution of the initial placement are important objectives at this stage. Although

the works proposed in [7, 28, 29] are incremental timing-driven placement techniques, they

restrict the movement of cells to the local regions of their current locations due to relying on

inaccurate linear timing models. Consequently, timing improvement obtained using such

techniques may not be optimal. Furthermore, most existing incremental timing-driven

placements are based on computationally expensive LP techniques. As the modern deep-

submicron circuits are large, consisting billions of transistors, LP based incremental timing-

driven placements are not scalable due to the exponential amount of paths with timing

violations in a design. Besides, most incremental timing-driven placement techniques do

not concern about other placement objectives such as placement density constraints. This
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might lead to excessive packing of cells within a neighborhood of placement region causing

routing congestion issues.

In the next chapter, we address these issues by proposing a new incremental timing-

driven placement algorithm based on greedy path-based technique which supports both

global and local cell movements under the constraint of maximum displacement limit to

maximize the total negative slack of the design. In chapter 4, we empirically show that

our technique also provide fast timing convergence compared to other existing incremental

timing-driven placement techniques.
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Chapter 3

Timing-Driven Placement Algorithm

In this chapter, we provide the implementation of our timing-driven placement algorithm

in detail. In section 3.1, an overview of the algorithm is provided. In section 3.2, some key

operations are introduced to facilitate the detailed description of our algorithm discussed

in sections 3.3 and 3.4.

3.1 Algorithm Overview

The abstract flow of our incremental timing-driven placement is given in Algorithm 1. The

proposed algorithm reduces the total negative slack (late) of a circuit by moving critical

cells to specific locations of the chip. A cell (combinational/sequential cell) is critical if

and only if its input/output pins have late negative slacks annotated to them during STA.

We decide the criticality of a cell based only on late mode STA for the following reasons:

• Since a design’s performance (i.e., frequency) is only limited by the late timing vi-

olations, our focus is on reducing the TNS late as much as possible and as fast as
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possible. Generally, the effective way to reduce early timing violations can be done

by buffer insertion technique at a later stage in the physical synthesis flow.

• Our experimental study (chapter 4) shows that, we would not perform worse in

reducing TNS early by choosing cells based on late slacks. In fact, the improvement

we obtained in reducing the early timing violations are comparable to the results

obtained in [28], which targets both early and late timing violations.

As such, Algorithm 1 uses a two stage approach to reduce the total negative slack of a

circuit. In the first stage, known as Global Move, critical cells in the design are moved inside

a critical bounding box, which is defined in section 3.2. This stage comprises two phases:

in phase 1, only critical sequential cells movement are evaluated in an effort to reduce the

total negative slack. We identify this phase as sequential cell pass. In the second phase,

know as combinational cell pass, combinational cells found on critical paths are considered

Algorithm 1 Incremental Timing-Driven Placement

1: procedure IncrementalTDP
2: Input: Legal placement solution with timing violation
3: Input: Maximum allowed cell displacement D
4: Output: Legal placement solution with optimized timing violation
5: Stage 1: Global Move
6: Perform sequential cell pass
7: (subject to cell displacement D)
8: repeat
9: Perform combinational cell pass

10: (subject to cell displacement D)
11: until timing improvement < thresholdg
12: Stage 2: Local Move
13: repeat
14: Perform combinational cell pass
15: (subject to cell displacement D)
16: until timing improvement < thresholdl
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to move inside the critical bounding box to maximize the total negative slack of the design.

It must be noted that while phase 1 is performed only once, we iteratively repeat phase 2

until no further improvement in total negative slack is observed above a certain threshold.

The second stage of Algorithm 1 is identified as Local Move. During this stage, critical

sequential cells of the design will not be moved. Instead, only critical combinational cells

are moved locally. The way the algorithm selects combinational cells for the movement is

the same as phase 2 of the Global Move, but the movement of each chosen combinational

cell is limited to the rows above and below vertically, to the current location of the cell.

This procedure is repeated iteratively until no further improvement in total negative slack

of the circuit is observed above a certain threshold. In both stages of the algorithm the

displacement of the cell movement from its original location is constrained by the maximum

displacement limit Dmax given as an input to Algorithm 1.

3.2 Key Operations

In this section, we introduce three key operations, namely legalization of a cell move,

parallel static timing analysis and incremental Steiner-tree computation, needed to expand

Algorithm 1 in detail.

3.2.1 Legalization of a Cell Move

In any incremental placement algorithm, legalization is an essential step to be implemented

to avoid overlap among cells during/after the proposed cell movements. In the literature,

there are two approaches used for legalizing the placement following the cell movements.

In the first approach, all candidate cells are moved to their desired locations disregarding
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the overlap among cells that might have occurred during the optimization process. This

approach requires subsequent legalization step to remove overlap among cells [29, 30, 33].

However, this legalization is unaware of timing and placement density. This can lead to

degradation in the timing optimization [7] as cell displacement with respect to the chosen

location can be very high and can have negative impact on the placement density [34].

The other approach is to perform an instant legalization, in which placement of cells are

kept legal after every cell move [34]. In this approach, cells can be placed as close as

possible to their desired location while preserving the placement density. Since, while

performing timing optimization, maintaining the initial placement density is essential in

incremental placement flow, we adopt an instant legalization procedure whose steps are

given in Algorithm 2.

In Algorithm 2, a cell is characterized by its physical coordinate of its center and by

its width. Given the cell whose move to be evaluated, and its new location as input to

Algorithm 2, it first seeks to find a legal position for the cell as close as possible to the

new location as described from line 7 to line 22. Following that, any further overlap with

nearby cells are removed iteratively by shifting operation as expressed by line 25 to line 34

of Algorithm 2. During this iterative overlap removal phase, we use a control parameter

called MOVE limit to limit the number cells moved/shifted for the following reasons:

• The more the cells are shifted, the higher the chance of producing an overlap free cell

movement. This, however, means more perturbation to the initial placement solution

or moving a cell into high placement density region. Recall that maintaining the input

placement density is one of the objective of incremental placement algorithms.

• Shifting more cells means longer runtime to legalize a cell movement. Furthermore,

it would also increase the runtime of incremental Steiner tree computation (section
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Algorithm 2 Legalization of a cell move

1: procedure LegalizeCellMove
2: Input: Cell Cj and its new position (xj, yj)
3: Output: True if legalization is successful, False otherwise
4: Rj ← row of the location (xj, yj)
5: Cl ← first cell at the left of (xj, yj)
6: Cr ← first cell at the right of (xj, yj)
7: if Cl = 0 and Cr = 0 then
8: xlow ← Rj .xleft + Cj .w/2
9: xhigh ← Rj .xright − Cj .w/2

10: xj ← max(xlow,min(xj , xhigh))
11: else if Cl 6= 0 and Cr = 0 then
12: xlow ← Cl.x + (Cl.w + Cj .w)/2
13: xhigh ← Rj .xright − Cj .w/2
14: xj ← min(xhigh,max(xj , xlow))
15: else if Cl = 0 and Cr 6= 0 then
16: xlow ← Rj .xleft + Cj .w/2
17: xhigh ← Cr.x− (Cl.w + Cj .w)/2
18: xj ← max(xlow,min(xj , xhigh))
19: else
20: xlow ← Cl + (Cl.w + Cj .w)/2
21: xhigh ← Cr.x− (Cl.w + Cj .w)/2
22: xj ← max(xlow,min(xj , xhigh))

23: (Cj .x, Cj .y)← (xj , yj)
24: nMoved ← 1
25: while Cl 6= 0 and Cr = 0 and Cl.x + Cl.w/2 > Cj .x− Cj .w/2 do
26: Cl.x← Cj .x− (Cl.w + Cj .w)/2
27: Cj ← Cl
28: Cl ← first cell at the left of Cl
29: nMoved ← nMoved + 1

30: while Cr 6= 0 and Cr.x− Cr.w/2 < Cj .x + Cj .w/2 do
31: Cr.x← Cj .x + (Cr.w + Cj .w)/2
32: Cj ← Cr
33: Cr ← first cell at the left of Cr
34: nMoved ← nMoved + 1

35: if nMoved >= MOVE limit or any cell in illegal position then
36: return False
37: else
38: return True
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Figure 3.1: Example of legalization steps described in Algorithm 2.

3.2.3) phase of our placement algorithm.

As such, in our implementation, we choose MOVE limit to 5 as a tradeoff between increasing

the chance of legalizing a cell move and avoid degrading the placement density as well as

improving the runtime of the placer.

Figure 3.1 presents an example of our legalization technique of a cell move. Initially,

cell A is moved to its chosen location. As a result, cell A overlaps with cell B. By shifting

cell B so that it no longer overlaps with cell A has resulted in cell B overlaps with cell C.

Thus, cell C is shifted to remove overlap with cell B. Following the move of cell C, there

is no other overlap remains. Since the total number of cells moved during the legalization

process is 3, which is less than MOVE limit (5), the procedure LegalizeCellMove would

return true. If the number of cells moved surpass MOVE limit or any other violations such

as a cell going beyond the boundary of the row, the procedure LegalizeCellMove would

return false, indicating that all moved cell positions must be restored.

3.2.2 Parallel Static Timing Analysis

STA is an integral part of any timing-driven placement whether it is incremental or global.

How often the STA engines are called during the placement varies depending on the im-

plementation. In this work, the impact of timing on the circuit upon every legalized cell

move is evaluated by performing STA on the new circuit.
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Figure 3.2: Capturing of nodes in the timing graph as a list of vectors during forward and
backward topological sorting for the example circuit presented in Figure 2.7. The cells
in vectors V1, V2, V3, V4 and V5 can be processed independently in that order (orange
arrows) for arrival times computation and in reverse order (violate arrows) for required
arrival times computation.

Even though the runtime of performing STA grows linearly on size of the circuit, calling

STA engines for every move throughout the execution of the timing-driven placement

algorithm can be computationally expensive. Thus, to reduce the runtime of the STA

engine and hence to improve the overall runtime of our incremental timing-driven placement

algorithm, we parallelize the STA.

Our OpenMP implementation of the STA is given in Algorithm 3. In Line 5 and 6 of

the procedure ParallelSTA, the forward and backward topological sorting of the circuit are

captured as a list of vectors where each cell in a vector can be processed for the computation

of arrival times and required arrival times independently. For instance, as illustrated in

Figure 3.2, for arrival times computation, the cells C1, C2, and C3 can be processed

independently once the SOURCE node has been processed. As such, the forward and the

backward list can be given as {{SOURCE}, {C1, C2, C3}, {C4, C5}, {C6, C7}, {SINK}}

and {{SINK}, {C6, C7}, {C4, C5}, {C1, C2, C3}, {SOURCE}}}, respectively. Given the

vectors of cells that can processed simultaneously, from line 10 through 16, arrival times

of input/output pins for each cell is computed in parallel by calling compute at method.
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Algorithm 3 Static Timing Analysis

1: procedure ParallelSTA
2: Input: Timing graph of the circuit, timing parameters of standard cells
3: Output: at and rat of each input/output pin of the circuit
4: Let LF, LB be list of vectors where each vector contains cells that can be processed

independently
5: LF← perform forward topological sort of the circuit
6: LB← perform backward topological sort of the circuit
7: #pragma omp parallel
8: {
9: for i← 1 to | LF | do

10: F← LF[i]
11: #pragma omp for
12: {
13: for j ← 1 to | F | do
14: cell c← F[j]
15: compute at(c)

16: }
17: #pragma omp barrier
18: for i← 1 to | LB | do
19: B← LB[i]
20: #pragma omp for
21: {
22: for j ← 1 to | B | do
23: cell c← B[j]
24: compute rat(c)

25: }
26: }
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Figure 3.3: Incremental Steiner tree computation for cell A, where regeneration of Steiner
tree is needed only for nets N1, N2 and N3.

Before the computation of required arrival time of input/output pin using compute rat

method in the similar way (from line 19 to 25), barrier synchronization is essential (line

17) as the slew propagation obtained during the arrival time computation of cells is required

during the computation of required arrival time.

3.2.3 Incremental Steiner Tree Computation

To perform STA on the design, the interconnects must be modeled as RC tree networks,

as discussed in Section 2.2.1. This, in turn, needs the topology of the routing tree of each

net in the design. In this work, FLUTE [35], a rectilinear Steiner minimal tree algorithm,

is used to generate routing tree for a net. During a cell move, there is no need to call

FLUTE to regenerate Steiner-tree for each net in the circuit. Instead, it only has to be

regenerated for nets associated with the moving cells (i.e., nets connected to the input and

output pin of the cell) as illustrated in Figure 3.3. This incremental computation of Steiner

tree can significantly reduce the overall runtime of Algorithm 1, as there is only, at most,

33



MOVE limit − 1 extra cells needs to be moved (due to legalization) during a cell move.

3.3 Global Move

Most existing incremental timing-driven placement techniques limits the cell movement to

a local window of its current location [28, 29, 30, 33]. This is because of their reliance on

inaccurate or crude timing models of gate delay, interconnect delay, and etc. which might

break down when cells are moved by large distance [8]. Consequently, this might lead to

suboptimal solution as there can be a better solutions if the cells were allowed to move

by larger distances. Therefore, we propose a global move technique which would relax the

constraint of moving the cell only within a local region of its current location. We also rely

on accurate timing information from STA engine due to allowing a cell to move by large

distance from its current location.

3.3.1 Critical Bounding Box

During the global move of a cell, we require a better positioning of the cell. To this

end, inspired by the median idea of [36] 1 for a cell, we define critical bounding box as a

region where the candidate cell would be moved. The basic idea behind finding the critical

bounding box for a critical cell i is that, to find a site for the cell i as close as possible to

the center of the critical bounding box. This, in turn, can reduce the wirelength of nets

that are critical to the cell i and thereby leads to improvement in the design timing. The

critical bounding box for a cell i can be defined as follows: given that a cell i is critical, at

least one of its input pins or output pins must have negative slacks associated with them.

1FastDP[16] uses this idea during its global swap stage to reduce HPWL of nets connecting the candidate
cell.
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Figure 3.4: The critical bounding box of cell C1 is shown as the shaded region. It is defined
by the critical pins T1, T2 of net driven by cell C1 and the critical pin S1 which is the
source pin of the net that drives one of the input pin of cell C1. Pins T2 and S2 are ignored
as they are not critical.

Let No be the set of nets driven by the critical output pins of the cell i. Also, Let Ni be

the set of nets connected to the critical input pins of the cell i. For a net p ∈ No, we find

the critical sink pins location (xps, y
p
s), and for a net p ∈ Ni, we find the driver pin location

(xpd, y
p
d). Upon finding the locations of the critical sink pins and critical driver pins, we

find the optimal bounding box, denoted by (xcl , x
c
r, y

c
b, y

c
t - the left, right ,bottom and top

boundaries), for the cell as follows:

xcl = min({xps}, {x
p
d}) (3.1)

xcr = max({xps}, {x
p
d}) (3.2)

ycb = min({yps}, {y
p
d}) (3.3)

yct = max({yps}, {y
p
d}) (3.4)
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Figure 3.4 shows the critical bounding box for cell C1. Net1 has critical sinks T1, T3, and

Net3 has critical driver pin S1. We ignore pins T2, S2 as they are not critical. Therefore

the bounding box construction involves coordinates (xT1, xT3, xS1, yT1, yT2, yS1). The

resulting bounding box region is shaded in the Figure 3.4. Given the bounding box, the

new site (new location) of the cell i is given by

xi =

⌊
0.5(xcl + xcr)

Wsite

⌋
Wsite (3.5)

yi =

⌊
0.5(ycb + yct )

Hrow

⌋
Hrow (3.6)

The reason for choosing the new location of cell i as the center of the critical bounding

box is to move cell i close to critical cells connecting the cell i. For example, according

to Figure 3.4, when cell C1 is moved inside the center of critical bounding box, the cell

C1 becomes close to the critical cells C2, C3 and C4, thereby reducing the interconnect

lengths connecting cell C1.

3.3.2 Displacement-Aware Cell Move

Typically, in incremental placements, cells are moved under maximum displacement con-

straint D, to limit degradation in the quality of the input (initial) placement solution by

moving cells by far distance [1, 7, 34]. As such, any cell move that violate the maximum

displacement constraint must be aborted. But, disregarding a cell move, due to maximum

displacement constraint violation, may lead to suboptimal timing improvement in the de-

sign. Such degradation in the timing improvement can be minimized by the proposed

displacement-aware cell move. The displacement-aware cell move is defined as follows:

upon finding that a cell C1 violates the maximum displacement constraint D, we construct
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Figure 3.5: Displacement-aware cell move of cell C1: since the new location found by critical
bounding box for cell C1 violates the maximum displacement limit D, the intersection point
(orange) in the displacement bounding box is the new location for cell C1.

a D ×D displacement bounding box around cell C1 as illustrated in Figure 3.5. Then, we

draw a line from the cell’s current location to the center of the critical bounding box of cell

C1 and determine the intersection point (xp, yp) of the line and displacement bounding

box. Given the intersection point (xp, yp), the new location of the cell C1 is given by

xc1 =

⌊
xp
Wsite

⌋
Wsite (3.7)

yc1 =

⌊
yp
Hrow

⌋
Hrow (3.8)

This new positioning of the cell C1 would help avoid aborts due to maximum displacement

constraint violation, and would still move the cell C1 closer to other critical cells connecting

the cell C1.
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3.3.3 Global Move Algorithm

In Global Move, cells are moved inside critical bounding box under the constraint of max-

imum cell displacement to optimize the timing violations of the design. Our global move

consist of two phases, namely, sequential cell pass and combinational cell pass.

(1) Sequential cell pass: In this phase, only critical sequential cells are considered to

move. Sequential cell moves can provide large improvement in the timing [30], because (1) it

allows trade-off of slack between path ending and starting at the sequential cell, (2) changes

to clock latency values at the clock input pins (due to changing routing characteristics of

the clock net), allows data arrival times be modified at the input (data) pins of other

sequential cells, and thereby have an impact on the timing violations of the design. As

such, the purpose of this phase is to eliminate the number of sequential cells with negative

slack at their input pins, and then perform further timing optimization using combinational

cell pass, given that the design remains with timing violations.

The steps of sequential cell pass is shown in Algorithm 4. Although we find critical

bounding box for a critical sequential cell, it may not be possible to move it inside the

critical bounding box due to maximum displacement limit constraint (lines 11 to 13). In

that case, a new location that respects the displacement limit is found for the sequential

cell, using the procedure described subsection 3.3.2 (line 14). It is possible that the newly

found location for the cell may not improve the design’s timing violations. Therefore, we

accept or reject a move based on the benefit function B obtained by equation (3.7)

B = TNS prev − TNS curr (3.9)

where TNS prev and TNS curr are total negative slack before and after the move. If B <

0, we accept the move as it indicates total negative slack of the design has improved from
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Algorithm 4 Sequential Cell Global Move

1: procedure SequentialCellPass
2: Input: Circuit with timing violation, Maximum Displacement limit Dmax

3: Output: Timing optimized circuit using sequential cell global move
4: Build Steiner-Routing-Tree for each net
5: ParallelSTA()
6: Update slack for each pin
7: tnsprev ← total negative slack
8: V ← set of all sequential cells in the circuit
9: for i← 1 to | V | do

10: if V [i] is critical then
11: CBB ← Find critical bounding box
12: Find (xj, yj) using equations 3.5 and 3.6
13: if cell disp > Dmax then
14: Find new (xj, yj) using equations 3.7 and 3.8

15: if LegalizeCellMove(V [i], (xj, yj)) then
16: Incrementally update Steiner-Routing-Trees for all moved cells
17: ParallelSTA()
18: tnscurr ← total negative slack
19: if tnsprev − tnscurr < 0 then
20: Update slack for each pin
21: tnsprev ← tnscurr
22: else
23: Restore all cell positions moved during legalization
24: Incrementally update Steiner-Routing-Trees for restored cells
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the move, as well as update the TNS prev to TNS curr. Otherwise, we reject the move and

leave TNS prev unchanged (line 15 to line 24).

(2) Combinational cell pass: As the name suggest, in this phase only combinational

cells are moved. We observed that moving every critical combinational cell in the design

does not contribute to improvement in the timing of the design. In other words, moving

combinational cells that doesn’t belong to the most critical nets provide zero impact in

the timing of the design. Therefore, to speed up the timing convergence, we only con-

sider moving combinational cells those pass through critical paths between two adjacent

sequential cells and between sequential cells and primary outputs.

Algorithm 5 Combinational Cell Global Move

1: procedure CombinationalCellPass
2: Input: Circuit with timing violation, Maximum Displacement limit Dmax, tnsprev
3: Output: Timing optimized circuit using combination cell global move
4: V ← empty
5: for all sequential cells with critical input pins and critical primary outputs P do
6: n← find the net that drives pin P
7: C ← find the cell that drives net n
8: if C is combinational cell then
9: push(V,C)

10: for i← 1 to | V | do
11: Perform Line 11 to 24 of Algorithm 4
12: P ← most critical input pin of cell V [i]
13: n← find the net that drives pin P
14: C ← find the cell that drives net n
15: if C is combinational cell then
16: push(V,C)

Algorithm 5 provides the description of the combinational cell pass. The candidate

combinational cells are selected in reverse topological order, because critical path between

two adjacent sequential cells or between a primary output and a sequential cell initiates
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Figure 3.6: An example of combinational cell passing procedure between a flip-flop and
primary input pin. Starting from the flip-flop first combinational cell will be selected in
the following order: A, B and C. Note that these combinational cell pass through critical
nets (violet).

from the primary output or the input pins of a sequential cell. Thus, starting from the input

pin D of a critical sequential cell or primary output PO, we find the most critical net n that

drives D or PO. We then pick the combinational cell C that drives the net n as the new

candidate to be considered for moving into critical bounding box, to improve timing of the

circuit (lines 5 to 11). Following that, to find new critical net n, we consider the driver net of

most critical input pin of the combinational cell C. By finding the combinational cell C that

drives the newly found critical net n, we have selected a new combinational cell candidate

to be move inside the critical bounding box (lines 12 to 16). The aforementioned process

will continue until the output pin of a sequential cell or primary input pin is found. Figure

3.6 provides an example of this process, where we will consider moving combinational cell

in the following order: A, B and C.

3.4 Local Move

The objective of the local move is to provide finer improvement in timing by locally moving

the cells from their current locations. In global move, for a cell, there might not be enough
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space in the allocated site of the critical bounding box region. In that case, the cell move

may have be aborted during the legalization process. We also suspect that the site found

inside the critical bounding box for a cell may not be optimal. Thus, the idea here is to

search for the less congested row above/below from the current position of a cell to reduce

vertical wirelength and thereby further improve timing.

In this stage, for a combinational cell i, the row above and blow are considered to be

candidate locations. Similar to the vertical move of [34], the x-position of the cell is not

changed to ensure that the timing improvement is produced by allocating the cell in that

row. The candidate combinational cells for this stage of the algorithm is selected in the

same the way as described in Algorithm 5. A combinational cell i is first tried in the

upper row from its current row. If the move is accepted (i.e, timing is improved), the next

combinational cell i + 1 is tried, otherwise the cell i is tried again in the lower row from

its current row, before moving onto next combinational cell i+ 1.
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Chapter 4

Experimental Study

In this chapter we present benchmarking methodology and numerical results to compare

our algorithm to previous works. We also provide empirical results to justify our algorithm

flow previously presented.

4.1 Benchmarking Methodology

This section provides details of benchmarking circuits and evaluation metrics used for

experimental process.

4.1.1 Benchmarking Circuits

The experiments are conducted using the benchmark infrastructure provided by the ICCAD-

2014 contest (problem B: incremental timing-driven placement) [1]. It comprises 7 bench-

mark circuits, with number of circuit elements ranging from 130k to 959k. Each benchmark

contains the following files:

43



Table 4.1: Details of ICCAD-2014 incremental timing-driven placement contest bench-
marks [1].

benchmark #Cells #Nets
Target
Utility

Clock Period
(ns)

Short/Long Displacement
limit (um)

b19 219268 219290 0.76 5 20/200

vga lcd 164891 164976 0.70 4 10/200

leon2 794286 794901 0.70 64 40/400

leon3mp 649191 649445 0.70 35 30/300

netcard 958792 960616 0.72 42 50/400

edit dist 130674 133223 0.75 5 30/200

matrix mult 155341 158527 0.70 4.4 30/200

• .lef (Cadence Library Exchange Format): provide definitions of design unit, sites,

routing layers and available macros in the library.

• .def (Cadence Design Exchange Format): specifies chip dimension, placeable regions

of the chip as row sites, locations of fixed/movable cells and pins and interconnect

information.

• .sdc (Synopsys Design Constraints): specifies initial timing conditions such as input

drivers and slews, load capacitance at primary outputs and clock period asserted on

the design.

The original placement solution provided in the .def file is legal. To discourage any sig-

nificant distribution from the original placement, maximize cell displacement constraint is

imposed. For each circuit, there are two maximum cell displacement constraint (short and

long) is provided. Table 4.1 shows all essential information about the benchmark circuits

being used in this experiments.
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4.1.2 Evaluation Metrics

The ICCAD-2014 contest proposed the following evaluation metrics to measure the quality

of the results of the incremental timing-driven placement:

(1) Slack Improvement: With respect to initial timing result of the original placement,

it is measured as the weighted average of improvements in TNS late, WNS early, TNS early

and WNS early. The slack improvement is given by

slack improv. = wt × (wl × TNS improv.late + we × TNS improv.early)

+ ww × (wl ×WNS improv.late + we ×WNS improv .early) (4.1)

where wt, ww, wl, we is set 2.0, 1.0, 5.0, 1.0, respectively. From the weights, it is worth

noting that great important is given to TNS than WNS and late slack than early slack

improvements. Please note that TNS improv. and WNS improv. are measured in %.

(2) ABU Penalty: Given a placement solution and it target utilization Γtarget, γ over utilization

is defined as

γ over utilization = max(ABUγ/Γtarget − 1, 0) (4.2)

When γ over utilization greater than zero, it indicates that the average utilization of top

γ% density bins, excluding bins fully occupied by fixed macros, are tightly packed such

that it is even greater than the design’s target utilization. In [37], to measure the qual-

ity of a placement solution, a metric known as ABU penalty is introduced in terms of

γ over utilization and is defined as

ABU penalty =

∑
(Kγ × γ over utilization)∑

Kγ

(4.3)
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where γ = {2, 5, 10, 20} and {K2, K5, K10, K20} = {10, 4, 2, 1}. The higher ABU penalty,

the lesser the quality of the placement and thus requires more cells spreading from highly

dense placement regions.

With respect to ABU penalty of the original placement, the impact on ABU penalty

is defined as

ABU penaltyimpact = 1− (ABU penaltyfinal − ABU penaltyinitial) (4.4)

where ABU penaltyfinal, ABU penaltyinitial are the ABU penalties of final and initial

placements.

(3) Quality Score: The quality score of the final placement is a function of equations 4.1

and 4.4. It is given by

quality score = slack improv × ABU penaltyimpact (4.5)

If the placer increases the timing violations of the initial placement, the slack improv would

be negative, and so is the quality score.

4.1.3 Hardware/Software Environment

We implemented the algorithm in C++, and conducted experiments with quad-core In-

tel(R) Core(TM) i7-2620M, running at 2.70GHz with 10GB of RAM. The operating system

is Ubuntu 14.04 LTS.
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4.2 Sequential Cell Pass or Combinational Cell Pass?

During global move, it is possible to perform combinational cell pass, followed by sequential

cell pass, or conversely. To determine the best flow (i.e.,Combinational/Sequential pass,

Sequential/Combinational pass), we conducted an experiment where all benchmarks are

run using each flow. As an experimental setup, for each flow, we provide maximum 1

hour runtime limit per benchmark. Also, the experiments were conducted under short

displacement constraint. The flow that performed better in terms of quality of the result

and runtime is eventually selected as the feasible flow for the rest of the experimental study.

Table 4.2 summarizes the results for each flows. The first row of the each benchmark

provides the timing results of the initial placement. The second and third row provides

the timing results for our timing-driven placement with combinational/sequential cell pass

flow and sequential/combinational cell pass flow during the global move stage, respectively.

Columns 5 and 6 provide the overall slack improvement and runtime, respectively. A DNF

entry in the Table 4.2 specifies that the results are unavailable for that benchmark, because

the placer needs more than the 1 hour runtime limit imposed.

In terms of runtime, all benchmarks except leon2 and leon3mp, were able to finish

within 1 hour for both flows. Only sequential/combinational pass flow finished bench-

marks leon2 and leon3mp within an hour. This shows that allowing sequential cells to

move at the start of the algorithm increases the speed of the timing convergence. Re-

call that, a sequential cell move can result in large timing improvement for the reasons

described in the last chapter. It is worth mentioning that, during a combinational cell

pass phase of the combinational/sequential pass flow, sequential cells can be moved during

the legalization step of the algorithm. This implicit sequential cell move can also result

in large improvement in timing. The netcard benchmark is an example of such situation
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Table 4.2: Results for combinational/sequential (Com-Seq), sequential/combinational
(Seq-Com) cell pass during global move with short displacement constraint.

benchmark solution
late wns

(sec.)
late tns

(sec.)
early wns

(sec.)
early tns

(sec.)
slack

improv.
runtime

(sec.)

b19
initial -1.16e-9 -1.58e-8 -3.76e-9 -1.14e-5 — —

Com-Seq -2.43e-10 -6.42e-10 -1.99e-9 -4.65e-6 1521.17 196.34
Seq-Com -7.54e-11 -1.42e-10 -1.87e-9 -4.31e-6 1634.01 210.53

vga lcd
initial -1.33e-9 -6.39e-7 -4.58e-9 -4.75e-5 — —

Com-Seq -4.02e-10 -2.19e-9 -3.34e-9 -3.32e-5 1425.50 383.84
Seq-Com -2.96e-10 -1.07e-9 -3.34e-9 -3.49e-5 1467.13 105.38

leon2
initial -1.07e-8 -2.00e-5 -1.25e-7 -1.05e-2 — —

Com-Seq DNF DNF DNF DNF DNF DNF
Seq-Com 0 0 -9.09e-8 -8.91e-3 1557.35 522.96

leon3mp
initial -7.61e-9 -2.82e-5 -6.85e-8 -3.62e-3 — —

Com-Seq DNF DNF DNF DNF DNF DNF
Seq-Com 0 0 -5.30e-8 -2.99e-3 1557.61 1273.99

netcard
initial -7.51e-9 -7.55e-6 -1.08e-7 -7.35e-3 — —

Com-Seq 0 0 -8.69e-8 -5.96e-3 1557.49 284.75
Seq-Com -4.33e-10 -4.33e-10 -8.73e-8 -6.16e-3 1522.81 282.63

edit dist
initial -8.08e-10 -9.41e-8 -1.45e-9 -3.45e-6 — —

Com-Seq -6.50e-10 -2.36e-8 -8.64e-10 -1.63e-6 992.68 1051.13
Seq-Com -6.77e-10 -2.79e-8 -9.17e-10 -1.75e-6 920.01 746.83

matrix mult
initial -4.41e-10 -2.61e-9 -3.59e-10 -1.10e-7 — —

Com-Seq -2.91e-10 -1.30e-9 -3.41e-10 -9.17e-8 709.93 275.70
Seq-Com -3.01e-10 -1.29e-9 -3.32e-10 -8.16e-8 722.08 306.91

Avg. Improv.
Com-Seq 60.54% 84.13% 27.88% 35.55% 1241.35 438.35
Seq-Com 62.73% 83.95% 28.20% 36.00% 1253.21 330.46
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where a sequential cell move during the legalization of combinational cell pass provided

large improvement in the design timing.

Nevertheless, excluding benchmarks leon2 and leon3mp, sequential/combinational pass

flow, on average, runs 1.32× faster than combinational/sequential pass flow and they both

provides similar improvement in timing. This lead us to the conclude that performing

sequential cell pass before combinational cell pass can result in faster timing convergence.

4.3 Empirical Validation

In this section, we analyze the results of applying our technique on ICCAD-2014 contest

benchmarks [1], in terms of timing improvement, quality of the placement and computa-

tional runtime.

4.3.1 Timing Improvement

Table 4.3 and Table 4.4 presents the complete results of timing optimization obtained for

ICCAD-2014 contest benchmarks using short and long displacement constraints, respec-

tively. The late and early worst negative slacks and the late and early total negative slacks

(LWNS, EWNS, LTNS, and ETNS) are shown is columns 3, 5, 4, and 6, respectively. The

1st and 2nd row of each benchmark provides the timing metrics obtained from input (global)

placement and the timing metrics obtained after applying our optimization technique on

the input placement, respectively.

Late WNS and TNS: Our technique reduces late timing violations significantly. The

amount of late timing reduction for each circuit under short and long displacement con-

straint is given in Figure 4.1. Under short displacement constraint late timing violations

of circuits leon2, and leon3mp are reduced to zero, whereas under long displacement con-
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Figure 4.1: Late WNS and TNS improvement for each benchmark circuit with short dis-
placement constraint and long displacement constraint.
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Table 4.3: Results for ICCAD-2014 incremental timing-driven placement contest bench-
marks using short displacement constraint. For each benchmark, table presents metrics for
initial, ours, and contest 1st-place solutions.

benchmark solution
lwns
(sec.)

ltns
(sec.)

ewns
(sec.)

etns
(sec.)

ABU
(e-2)

obt./max
disp
(um)

Quality
score

runtime
(sec.)

b19
initial -1.16e-9 -1.58e-8 -3.76e-9 -1.14e-5 2.59 — — —
Ours -7.54e-11 -1.42e-10 -1.87e-9 -4.31e-6 2.59 18.1/20 1634.01 210.53

1st-place -2.09e-10 -5.31e-10 -1.95e-9 -4.52e-6 2.59 19.8/20 1546.31 61.93

vga lcd
initial -1.33e-9 -6.39e-7 -4.58e-9 -4.75e-5 1.25 — — —
Ours -2.96e-10 -1.07e-9 -3.34e-9 -3.49e-5 1.29 8.7/10 1467.13 105.38

1st-place -3.30e-10 -2.17e-9 -3.27e-9 -3.18e-5 2.17 10/10 1454.50 104.40

leon2
initial -1.07e-8 -2.00e-5 -1.25e-7 -1.05e-2 2.45 — — —
Ours 0 0 -9.09e-8 -8.91e-3 2.46 34.6/40 1557.35 522.96

1st-place 0 0 -8.22e-8 -7.79e-3 2.46 3.2/40 1585.57 1073.95

leon3mp
initial -7.61e-9 -2.82e-5 -6.85e-8 -3.62e-3 0.78 — — —
Ours 0 0 -5.30e-8 -2.99e-3 0.79 17.7/30 1557.61 1273.99

1st-place 0 0 -5.41e-8 3.09e-3 0.78 3.2/30 1550.51 2494.19

netcard
initial -7.51e-9 -7.55e-6 -1.08e-7 -7.35e-3 1.13 — — —
Ours -4.33e-10 -4.33e-10 -8.73e-8 -6.16e-3 1.14 29.2/50 1522.81 282.63

1st-place 0 0 -8.05e-8 -5.78e-3 1.13 6.4/50 1568.42 7269.10

edit dist
initial -8.08e-10 -9.41e-8 -1.45e-9 -3.45e-6 0 — — —
Ours -6.77e-10 -2.79e-8 -9.17e-10 -1.75e-6 0 29.4/30 920.01 746.83

1st-place -7.02e-10 -3.37e-8 -8.34e-10 -1.48e-6 0 4.8/30 864.55 5798.32

matrix mult
initial -4.41e-10 -2.61e-9 -3.59e-10 -1.10e-7 0 — — —
Ours -3.01e-10 -1.29e-9 -3.32e-10 -8.16e-8 0 27.3/30 722.08 306.91

1st-place -3.96e-10 -1.72e-9 -2.81e-10 -4.39e-8 0 4.8/30 534.46 2751.06

Avg. Red.
Ours 73.38% 88.53% 27.26% 30.37% -0.88 — 1340.14 492.75

1st-place 68.69% 84.94% 31.71% 38.98% -10.6 — 1300.62 2793.28

straint, late timing violations of circuits leon2, leon3mp and netcard are completely elim-

inated. On average, the late WNS and TNS reductions are 73% and 89%, respectively,

under short displacement constraint, and 91% and 99%, respectively, under long displace-

ment constraint. The late timing improvement of circuits edit dist and matrix mult are

significantly better when applying long displacement constraint than short displacement

constraint. In all other circuits, the late timing improvements are similar regardless of the

type of displacement constraint applied. This shows that cell movement by largest distant

can sometimes result in better timing improvement.

Early WNS and TNS: Although, we made no effort in reducing the early slacks, there

were reduction in early WNS and TNS. One can observe that, under both displacement
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Table 4.4: Results for ICCAD-2014 incremental timing-driven placement contest bench-
marks using long displacement constraint. For each benchmark, it presents metrics for
initial, ours, and contest 1st-place solutions.

benchmark solution
lwns
(sec.)

ltns
(sec.)

ewns
(sec.)

etns
(sec.)

ABU
(e-2)

obt./max
disp
(µm)

Quality
score

runtime
(sec.)

b19
initial -1.16e-9 -1.58e-8 -3.76e-9 -1.14e-5 2.59 — — —
Ours -2.04e-11 -2.91e-11 -2.01e-9 -4.75e-6 2.59 135.3/200 1653.35 303.54

1st-place -1.09e-10 -2.08e-10 -1.95e-9 -4.52e-6 2.66 160.9/200 1608.60 63.00

vga lcd
initial -1.33e-9 -6.39e-7 -4.58e-9 -4.75e-5 1.25 — — —
Ours -4.02e-10 -1.92e-9 -3.40e-9 -3.72e-5 1.45 188/200 1412.66 235.22

1st-place -2.49e-10 -1.76e-9 -3.27e-9 -3.16e-5 2.99 199/200 1473.79 106.90

leon2
initial -1.07e-8 -2.00e-5 -1.25e-7 -1.05e-2 2.45 — — —
Ours 0 0 -9.14e-8 -8.69e-3 2.46 2.4/400 1561.15 1343.74

1st-place 0 0 -8.22e-8 -7.79e-3 2.46 3.2/400 1585.57 1091.72

leon3mp
initial -7.61e-9 -2.82e-5 -6.85e-8 -3.62e-3 0.78 — — —
Ours 0 0 -5.06e-8 -2.71e-3 0.79 116/300 1576.33 2497.38

1st-place 0 0 -5.41e-8 3.09e-3 0.78 3.2/300 1550.51 2494.19

netcard
initial -7.51e-9 -7.55e-6 -1.08e-7 -7.35e-3 1.13 — — —
Ours 0 0 -8.58e-8 -6.20e-3 1.14 318.5/400 1551.90 379.17

1st-place 0 0 -8.05e-8 -5.78e-3 1.13 6.4/400 1568.42 7274.96

edit dist
initial -8.08e-10 -9.41e-8 -1.45e-9 -3.45e-6 0 — — —
Ours -1.81e-10 -7.60e-9 -9.16e-10 -1.74e-6 0 195.4/300 1442.98 611.22

1st-place -7.02e-10 -3.37e-8 -8.34e-10 -1.48e-6 0 4.8/300 864.55 5755.20

matrix mult
initial -4.41e-10 -2.61e-9 -3.59e-10 -1.10e-7 0 — — —
Ours -4.35e-11 -4.35e-11 -3.38e-10 -8.70e-8 0 179/300 1481.38 173.63

1st-place 0 0 -2.81e-10 -4.39e-8 0 181.4/300 1641.82 2757.76

Avg. Red.
Ours 90.83% 98.54% 26.97% 29.80% -2.60 — 1525.68 782.64

1st-place 83.58% 94.66% 31.71% 39.04% -20.3 — 1470.47 2791.96

constraint, the average improvement in early WNS and TNS are 27% and 30%, respectively.

This result is comparable to the early timing improvement (EWNS: 35%, ETNS: 43%)

obtained by techniques such as [28] which targets slack reduction for both early and late

timing. The improvement in early timing violation mostly came from global sequential cell

phase of our technique. We suspect that the reason for this is as follows: a design has early

timing violation due to signal arrives at timing points earlier than expected. To optimize

early timing violation, interconnects of cells that lie in the early timing violation path must

be increased. During our sequential cell pass phase of Algorithm 1, when the output pin

is late timing critical and the input pin is early timing critical, moving the sequential cell

inside the critical bounding box causes the interconnect associated with the output pin be
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decreased while the interconnect associated with the input pin be increased. Consequently,

a sequential cell move can result in improving both early and late timing violations.

4.3.2 Placement Quality

It is essential to avoid major degradation to the initial global placement quality in terms

of placement bin density while performing the timing optimization.

The impact on a placement bin density is measured using ABU penalty metric. In

Tables 4.3 and 4.4, column 7 provides the ABU penalties of placement solutions for each

benchmark. An increase in ABU penalty from initial to timing-optimized solution is pe-

nalized. As can been, the overhead in ABU penalty to perform timing optimization using

our technique is marginal. Under short and long displacement constraint, we have only

increased the ABU penalty, on average, by 0.88% and 2.60%, respectively. The largest

increase in ABU penalty only came from circuit vga lcd.

Taking both factors (slack improvement and ABU penalty) into account, the quality

score of our timing-driven placer is given in column 9 of the Tables 4.3 and 4.4. On

applying our timing-driven placement technique, the obtained average quality score over

all benchmarks, is 1340.14 and 1525.68, under short and long displacement constraints,

respectively.

4.3.3 Runtime

Table 4.5 presents the runtime breakdown of optimizing the timing of considered bench-

marks using our technique. The runtime of global sequential cell pass (gscp) is a function

of the number of sequential cells in the circuit (determines the Steiner routing tree for

the clock net) and the number of critical sequential cell moves evaluated during the se-

quential cell pass. This explains the larger runtime of the sequential cell pass phase for
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Table 4.5: Runtime breakdown of using our technique for timing optimization on ICCAD-
2014 benchmarks. (gscp - global sequential cell pass, gccp - global combinational cell pass,
lccp - local combinational cell pass)

under short displacement
constraint

under long displacement
constraint

benchmark
gscp
(sec.)

gccp
(sec.)

lccp
(sec.)

runtime
(sec.)

gscp
(sec.)

gccp
(sec.)

lccp
(sec.)

runtime
(sec.)

b19 49.19 68.03 84.46 210.53 53.94 86.57 154.19 303.54

vga lcd 47.79 22.49 27.51 105.38 29.41 111.81 86.45 235.22

leon2 434.42 0 0 522.96 1255.44 0 0 1343.74

leon3mp 1223.28 0 0 1273.99 2380.73 0 0 2431.93

netcard 64.94 26.57 31.27 282.63 204.60 14.94 0 379.17

edit dist 47.87 278.71 395.62 746.83 47.52 285.53 253.55 611.22

matrix mult 5.14 128.08 137.30 306.91 6.11 79.70 52.26 173.63

Avg. 267.52 74.84 76.98 492.75 568.25 82.65 78.06 782.64

circuits leon3mp and leon2, as they are two of larger circuits (≈650k and ≈800k gates)

among the benchmarks. Although the circuit netcard is large (≈1M gates), its runtime of

sequential cell pass phase is low, as the number of critical sequential cell evaluation is low.

Also, for circuits leon2 and leon3mp, runtime of combinational cell pass of both global

and local stages is zero, as the global sequential cell pass eliminates all the late timing

violations. Overall, global sequential cell pass, global and local combinational cell pass

requires 63.45%, 12.88% and 12.80% of the total runtime, respectively.

4.4 Comparison

In this section we compare our results to the top three teams of the ICCAD-2014 contest.

The results of the top three teams were obtained from the contest website [38] and it only

provides the results in terms of quality score and runtime. The computation platform used

in the contest has the following capabilities: CPU: 32 × 64-bit Intel(R) Xeon 2.60GHz,

main memory: 64 GB and OS: CentOS release 6.2. This is slightly different from our
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computational platform.

4.4.1 Comparison to Contest Results

The results of the top three teams from the ICCAD-2014 contest and ours are presented

in Tables 4.6 and 4.7 for the considered benchmarks under short and long displacement

constraints, respectively. In tables 4.6 and 4.7, placer that obtained best quality score per

benchmark is highlighted in bold face font.

Table 4.6: Comparison of results for ICCAD-2014 timing-driven placement contest bench-
marks under short displacement constraint. The results are presented for top three teams
from the contest and ours in terms of quality score and runtime.

Quality score runtime (sec.)
Benchmark 1st-place 2nd-place 3rd-place Ours 1st-place 2nd-place 3rd-place Ours

b19 1546.31 1580.78 1615.01 1634.01 51.45 90.78 166.71 210.53
vga lcd 1454.50 1394.60 1492.01 1467.13 92.54 176.18 135.15 105.38
leon2 1585.57 819.50 1253.90 1557.35 1086.26 1476.90 2565.76 522.96

leon3mp 1550.51 1513.95 1564.71 1557.61 2649.71 3523.07 253.05 1273.99
netcard 1568.42 1279.01 1561.13 1522.81 8044.91 795.59 1611.78 282.63
edit dist 864.55 1137.57 991.49 920.01 4942.80 57.78 94.25 746.83

matrix mult 534.46 1032.93 790.86 722.08 2353.89 84.99 97.32 306.91
AVG. 1300.62 1251.19 1289.64 1340.14 2745.94 886.47 703.43 492.75

Table 4.7: Comparison of results for ICCAD-2014 timing-driven placement contest bench-
marks under long displacement constraint. The results are presented for top three teams
from the contest and ours in terms of quality score and runtime.

Quality score runtime (sec.)
Benchmark 1st-place 2nd-place 3rd-place Ours 1st-place 2nd-place 3rd-place Ours

b19 1608.60 1661.35 1615.01 1653.35 51.44 91.33 184.10 303.54
vga lcd 1473.79 1403.32 1413.61 1412.66 92.25 254.32 146.57 235.22
leon2 1585.57 822.98 266.94 1561.15 1143.68 1447.72 2574.01 1343.74

leon3mp 1550.51 1512.60 1564.71 1576.33 2666.14 3502.40 256.95 2497.38
netcard 1568.42 1279.28 1464.87 1551.90 8188.74 787.96 1647.60 379.17
edit dist 864.55 1113.14 906.96 1442.98 4947.81 47.74 102.30 611.22

matrix mult 1641.82 1520.62 415.22 1481.38 2343.55 86.89 104.64 173.63
AVG. 1470.47 1330.47 1092.48 1525.68 2776.23 888.34 716.59 782.64
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(1) Quality Score

According to Tables 4.6 and 4.7, in terms of the quality score, we outperform other teams

in benchmark b19 under short displacement constraint and in benchmarks leon3mp and

edit dist under long displacement constraint. In other benchmarks, our quality score is

very competitive to the team who achieved the best quality score. Also, our performance is

consistently high regardless of the type (short/long) of maximum displacement constraint.

This can be seen from the quality score comparison graph provided in Figure 4.2. This is

the reason why we outperform all other teams in terms of the average quality score under

both short and long displacement constraints.

(2) Runtime

Because of the computational platform difference between ours and the contest, a direct

runtime comparison between our placer and other teams using Tables 4.6 and 4.7 is impos-

sible. However, we would like to ignore this difference for the average runtime comparison

and differ the reason for it to section 4.4.2. According to Tables 4.6 and 4.7, our runtime,

on average, could be ranked first under short displacement constraint and second under

long displacement constraint. It is also worth noting that, in the contest, the quality score

was given more importance than runtime in deciding the winner of the competition.

4.4.2 Comparison to the 1st-place Team

We compare our results to the 1st-place team in greater detail, because we were able to get

the binary of their placer and able to collect runtime accurately. The row 3 of the Tables

4.3 and 4.4 provides the results obtained by the 1st-place team for each benchmark. The

bold face entries in Tables 4.3 and 4.4 show the placer which produced the best result per

benchmark in terms of quality score and runtime.
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Figure 4.2: Normalized quality score comparison of the top three teams of the ICCAD-2014
contest and ours under short displacement constraint and long displacement constraint.
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Late WNS and TNS: With short displacement constraint, in all but circuit netcard, we

outperform 1st-place team in improving late timing violations. Also, with long displace-

ment constraint, our technique provides better improvement in late timing in all circuits

except vga lcd. On average, we improve late WNS and late TNS by, 6%, 5%, respectively,

under short displacement constraint and 8%, 4%, respectively, under long displacement

constraint.

Early WNS and TNS: In improving early timing violations, we were outperformed by

the 1st-place team in many instances except in circuits b19 and leon3mp. This is expected

as our primary focus was on reducing late timing violations. On average, 1st-place team

performed better in improving early wns and early tns by, 18%, 30%, respectively, under

short and long displacement constraint. It is worth noting that the ICCAD-2014 contest

gives twice as much importance for improving late timing violations as for improving early

timing violations (equation 4.1).

Quality Score: The overhead of performing timing-driven placement on global placement

solutions (measured by ABU penalty) were kept to minimum in both of our technique,

albeit a larger ABU penalty change in circuit vga lcd by the 1st-place team. Taking into

account the slack improvements and the impact on ABU penalties, our performance is

better on 5 out of 7 circuits and 4 out of 7 circuits under short and long displacement

constraint, respectively. This is, on average, 3% increase in the quality by our timing-

driven placement technique.

Runtime: Regardless of the type of displacement constraint applied, we require signif-

icantly less computational time than that of 1st-place team except in circuits b19 and

vga lcd. Under short displacement constraint, our placer is 5.67× faster than 1st-place

team, whereas under long displacement constraint our placer is 3.6× faster than 1st-place

team.
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Given the runtime of 1st-place team for each benchmark in our computation platform

(Tables 4.3 and 4.4) and the contest platform (Tables 4.6 and 4.7), we can infer that the

runtime difference is insignificant per benchmark. In terms of average runtime, we can

observe that our computational platform is slightly inferior to the contest platform. This

is the reason why we ignored the runtime difference in section 4.4.1.

59



Chapter 5

Additional Experimentation

The purpose of this chapter is to explore runtime reduction opportunities of our incremental

timing-driven placement algorithm and to outline some of the challenges we faced in doing

so.

5.1 Clock Net Routing

The global sequential cell pass is the most time consuming phase of our timing-driven

placement algorithm, at least for the larger benchmarks such as leon2, leon3mp and netcard

due to the presents of large number of sequential cells. The runtime of this phase can be

defined as

runtimescp ∝ Nsc × Tcnr (5.1)

where Nsc is the number of sequential cell moves accepted/rejected and Tcnr runtime of a

clock net routing tree generation. In this work, nets are routed using FLUTE [35], which is

a minimal Steiner routing tree algorithm with O(n2) runtime. Since a single clock source

drives all the sequential cells for the considered benchmarks, routing the clock net using

FLUTE is the most time consuming step (i.e.,Tcnr) of the sequential cell pass phase of our

technique. Table 5.1 gives some perspective as to the amount of time spent on routing the
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clock net compared to total amount of time taken by the sequential cell pass.

Table 5.1: Comparison of amount time spent on routing clock net to time spent on sequen-
tial cell pass.

benchmark
Type of disp.
const. limit

clock net routing
Tcnr(sec.)

sequential cell pass
Tscp(sec.)

(Tcnr/Tscp)%

leon2 short 395.99 434.42 91%

leon3mp short 1008.99 1223.28 82%

leon2 long 1097.57 1255.44 87%

leon3mp long 1957.12 2380.73 82%

netcard long 180.56 204.59 88%

In larger circuits, on average, 86% of the time is spent on routing the clock net using

FLUTE. Consequently, by reducing the runtime of routing the clock net, the runtime of

the sequential cell pass can be improved. On the other hand, according to equation 5.1,

any reduction on the time spent on routing the clock net (Tcnr ) should not increase the

amount of sequential cell moves accepted/rejected (Nsc) in a way that the gain we obtain

in reducing the Tcnr be lost by increasing the Nsc. Also we have to make sure that the

techniques we apply to reduce Tcnr result in improving the timing of the initial placement

solution, at all times.

5.1.1 Reducing the Runtime of Clock Net Routing

In an effort to reduce the runtime of routing a clock net, we attempted two heuristics based

on FLUTE that would route clock nets faster. Unfortunately, the results are not promising

and unpredictable. Therefore, the purpose of this section is to explain the reasons for the

failure of our heuristics and lead the discussion to the changes proposed to the netlist in

the benchmarks of ICCAD-2015 contest [5] that would solve this problem.

Here, we consider one heuristic 1 to reduce clock routing time described as follows:

1Additional heuristic is not discussed here, because the conclusions we obtained from our first heuristic
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Figure 5.1: Example of heuristic clock routing tree generation for a four pin clock net.

1. Initially, we route the clock net using FLUTE. Since FLUTE is a minimal Steiner

routing tree algorithm, it represents the tree using set of connected clock pins and

Steiner points. A connection between two Steiner points or between a Steiner point

and a clock pin is know as a segment. We save this in a data structure.

2. When a sequential cell move is proposed, we remove the segment associated to the

moved clock pin from the tree. Then, we search for a Steiner point location that is

closer to the new location of the clock pin in terms of Manhattan distance between

the new location of the clock pin and a Steiner point.

3. Upon finding the closest Steiner point, we create a new segment between the new lo-

cations of the clock pin and the Steiner point. This completes the steps for generation

of a heuristic clock routing tree.

The aforementioned procedure attempts to locally modify the clock tree incrementally

and it can be performed in linear time on the size of the clock pins plus Steiner points.

Figure 5.1 presents an example of generating clock net routing tree using the heuristic for

a 4 pin clock net. Figure 5.1(a) illustrate the initial tree generated by FLUTE. When a

sequential cell associated with the Pin3 is moved, we apply the step 2 of our heuristic to

applies to the second heuristic as well.
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find the closest Steiner point to Pin3 and then apply the step 3 of our heuristic as shown

in Figure 5.2(b). This heuristic generated tree is different from the tree would have been

generated by FLUTE, if we were to compute it from the scratch. Therefore, we additionally

setup a refresh counter that would count up on every sequential cell move proposed, and

when it reaches a predefined threshold value Nuf , a new tree is generated by FLUTE from

scratch.

To test our technique, we provide the following experimental setup: since the focus of

this study is to speed up the global sequential cell pass step, we ignore the combinational

cell pass step of the original algorithm. For simplicity, we only provide the quality score

and the runtime of the sequential cell pass. Furthermore, we limit the runtime to 1 hour

per benchmark and the Nuf is swept with values ∞ (i.e., FLUTE is not used at all), 10, 5

and 0 (i.e., FLUTE is used 100% to route the clock net).

Table 5.2: Quality score and the runtime results for heuristic clock net routing technique
using ICCAD-2014 contest benchmarks under short displacement constraint.

Nuf = ∞ Nuf = 10 Nuf = 5 Original (Nuf = 0)

benchmark
Quality
score

runtime
(sec.)

Quality
score

runtime
(sec.)

Quality
score

runtime
(sec.)

Quality
score

runtime
(sec.)

b19 1416.32 100.90 200.37 90.77 -33.71 63.37 1605.01 63.86
vga lcd 1442.57 370.54 209.62 54.41 434.03 76.79 1467.13 60.34
leon2 DNF DNF 1551.47 878.13 -18675.20 605.26 1557.35 577.15

leon3mp DNF DNF 1578.78 894.29 1559.95 2147.26 1557.61 1324.42
netcard DNF DNF 1564.45 254.45 1562.42 338.10 1521.57 270.30
edit dist 575.83 84.14 597.44 62.96 140.34 66.81 710.48 77.22

matrix mult 69.66 43.33 69.66 42.66 69.66 42.99 87.34 46.20

The results are presented in Table 5.2. When compared to the results with Nuf = 0

(Table 5.2: columns 8 and 9), the Nuf = ∞ (Table 5.2: columns 2 and 3) couldn’t able to

finish before the runtime limit expired for the larger designs such as leon2, leon3mp and

netcard. The reason for this is as follows: as illustrated in Figure 5.2, when using FLUTE

for clock tree evaluation, we get large variations in the TNS compared to the stable TNS

obtained when using heuristic. To explain the variability, we look into example clock
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Figure 5.2: The impact on late total negative slack using FLUTE generated clock net
versus heuristic generated clock net for benchmark leon3mp.

trees given in Figure 5.3: between two successive moves of sequential cells, changes to the

FLUTE generated clock tree can be global. That is, the clock tree can be changed not

only in the region around the moved sequential cell, but also in other regions of the tree.

Consequently, clock latency values of all sequential cells can change significantly. This, in

turn, can have significant impact on arrival times, required arrival times and hence slacks

of all timing points of the circuit. As a result, we might observe significant impact on

TNS between two successive sequential cell moves as shown in Figure 5.2. But, since our

heuristic only modify the clock tree locally around the moved sequential cell, the impact

on the timing is negligible, thereby wouldn’t be able to provide faster timing convergence.

This limitation of our heuristic is somehow rectified when Nuf is less than ∞. With

Nuf = 10 (Table 5.2: columns 4 and 5), we obtain comparable performances to Nuf = 0 for

all benchmarks but b19 and vga lcd in terms of runtime and performance. Here, it is worth

noting that the larger improvement in the timing came from, whenever a sequential cell

move is accepted during FLUTE is used to route clock net than heuristic. Although, when
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Nuf = 10, the timing of each benchmark has been improved from their initial timing, the

timing improvement cannot always be guaranteed due to the large disagreement between

the routing characteristic of clock trees generated by FLUTE and the heuristic. This can

be observed from the results obtained for Nuf = 5 (Table 5.2: columns 6 and 7). Here,

we have negative quality score for designs b19 and leon2. By approximating the routing

characteristic of the clock net, we are accepting/rejecting sequential cell moves using false

timing values. Therefore, a wrong sequential cell move acceptance based on false timing

improvement can irretrievably worsen the timing violations of a circuit from their initial

timing.

In conclusion, the main challenge in approximating FLUTE generated tree is the un-

stable behavior of FLUTE as shown in Figure 5.3. Such an unstable clock net routing also

leads to unpredictable timing behavior of the circuit. The main problem for the considered

benchmarks is that (1) allowing single clock source to drive the entire sequential cells in the

circuit and (2) using FLUTE to route large clock nets. These features will be eliminated in

ICCAD-2015 contest[5] benchmarks by the introduction of Local Clock Buffer (LCB). The

idea behind LCBs is to allow each LCB to drive only up to few sequential cells, for example

40 to 50 sequential cells. This would, in turn, facilitate (1) a faster clock net routing tree

generation, because the size of the clock net would be equal to as many sequential cell as

an LCB drives (2) any reasonable routing approximation would be able to replace FLUTE,

as the size of the clock net is too small, on any reasonable placement, actual route wouldn’t

make that much difference [5].

5.2 Impact of Sequential Cell Ordering

The purpose of this section is to evaluate the impact on the quality score and runtime by

the order in which sequential cells are tried. To this end, we propose sequential cells to
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Figure 5.3: FLUTE generated trees during two successive sequential cell moves for bench-
mark leon3mp. The circles in the bottom tree shows, among other places, the places where
the tree got changed from the tree on the top. The red circle indicates where the sequential
cell moved.
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Figure 5.4: Example of timing critical path starting and ending at two different (D)flip-
flops. The critical path from Q to D can be eliminated either by moving launching flop or
receiving flop.

be tried in the following manner: Recall that sequential cells are the starting and ending

points of timing paths. This means that a critical path starts at the output pin of the

sequential cell (launching sequential cell) and ends at input pin of another sequential cell

(receiving sequential cell) or primary output as illustrated in Figure 5.4. It presents two

possible opportunities to eliminate a specific critical path - either by moving launching

sequential cell or receiving sequential cell.

As such, to implement the aforementioned idea, we make the following changes to the

sequential cell pass phase of our Algorithm 1: before we start moving the sequential cells,

we first collect all the critical launching sequential cells in a list. Second, for each launching

sequential cell, we find its critical receiving sequential cells using breath first search. Then,

sequential cells are moved to their chosen positions in launching sequential cell followed by

its receiving sequential cells order.

The results for the modified algorithm is presented in Table 5.3 with original Algorithm

1. In Table 5.3, the algorithm that provided the best result per benchmark is highlighted

in bold face font. Compared to the results of our original Algorithm 1, the proposed

modification to Algorithm 1 has resulted in improvement in both quality score and runtime,

on average. To be specific, the quality score of all but benchmark leon3mp has improved

under short displacement constraint, whereas, under long displacement constraint, the
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quality score has improved for all benchmarks except leon3mp and vga lcd. The runtime

has also improved for the modified Algorithm 1, on average. Even though the runtime

of smaller designs has slightly increased, it has decreased for larger designs such as leon2,

leon3mp and netcard.

Table 5.3: Comparision of results for ICCAD-2014 benchmarks under shor and long dis-
placement constraints with original and modified timing-driven placement algorithm.

Under short displacement
constraint

Under long displacement
constraint

Original Algorithm1 Modified Algorithm1 Original Algorithm1 Modified Algorithm1

Benchmark
Quality
score

runtime
(sec.)

Quality
score

runtime
(sec.)

Quality
score

runtime
(sec.)

Quality
score

runtime
(sec.)

b19 1634.01 210.53 1642.26 349.30 1653.35 303.54 1659.40 449.15
vga lcd 1467.13 105.38 1522.14 84.50 1412.66 235.22 1390.91 170.48
leon2 1557.35 522.96 1571.88 839.24 1561.15 1343.74 1571.88 835.47

leon3mp 1557.61 1273.99 1550.18 309.05 1576.33 2497.38 1550.18 307.79
netcard 1522.81 282.63 1567.43 298.90 1551.90 379.17 1571.18 248.47
edit dist 920.01 746.83 987.17 906.32 1442.98 611.22 1465.98 973.43

matrix mult 722.08 306.91 871.01 456.94 1481.38 173.63 1531.08 328.14
AVG. 1340.14 492.75 1387.43 398.18 1525.68 782.64 1534.37 473.27

In conclusion, compared to the average quality score of the original Algorithm1, the

modified Algorithm 1 shows 4% and 1% improvement under short and long displacement

constraint limit, respectively. In terms of average runtime, the runtime reduction by the

modified Algorithm 1 amounts to 19% and 40% under short and long displacement con-

straint, respectively.
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Chapter 6

Conclusions and Future Work

Timing-driven placement is becoming crucial step of the VLSI CAD flow to close timing,

as the circuit performance of the modern deep-submicron technology is largely dominated

by interconnect delay. Incremental timing-driven placement is tasked with finding opti-

mized locations for standard cells on the chip under maximum displacement constraint so

that paths with negative slacks can be eliminated with minimal distribution to original

placement.

In this work, we proposed a simple yet effective incremental timing-driven placement

algorithm based on greedy path-based technique. Unlike many traditional timing-driven

placement algorithms which adopts cell movement within local fixed-size window region,

we provided a methodology that supports displacement-aware global cell movement. We

have also divided the cell movement into two separate stages, namely sequential cell pass

and combinational cell pass, to provide faster timing convergence. Furthermore, we relied

on the actual timing profile from STA engine to guide our placer without much overhead

on the runtime.

Experimental results showed that our technique provides significant improvement in

reducing the timing violations without degrading the placement quality of the original
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solution on the ICCAD-2014 contest benchmarks. On average, we outperform the 1st-

place team who won the contest in terms of quality score and runtime.

The following are some future research directions that we can employ to extend our

timing-driven placement algorithm.

• Incremental STA can be an attractive feature to have within timing-driven placement

algorithm to improve runtime. This means, figuring out the portion of circuit that

would be affected by a cell move, and then performing STA on that specific part

of the circuit, instead of the whole circuit. We couldn’t able to include this feature

into our timing-driven placement, because, for the considered benchmarks, entire

circuit may be affected due to single clock source driving all sequential cells. The

LCB introduction for the ICCAD-2015 contest benchmarks enables us to implement

incremental STA.

• To minimize the impact on variability, we can extend our timing-driven placement

technique to focus on maximizing timing on paths with slack values between 0 and

1, at the expense of runtime.

• During timing optimization, it essential not to introduce any routing congestion in the

design. To this end, we can include a global router to guide timing-driven placement

with routing congestion information.

• We can also incorporate fast buffer insertion techniques to solve early timing viola-

tions during the timing-driven placement.
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driven placement based on dynamic net-weighting for efficient slack histogram com-

pression,” in Proceedings of the 2015 Symposium on International Symposium on Phys-

ical Design, ISPD ’15, (New York, NY, USA), pp. 141–148, ACM, 2015.

[29] W. Choi and K. Bazargan, “Incremental placement for timing optimization,” in Com-

puter Aided Design, 2003. ICCAD-2003. International Conference on, pp. 463–466,

Nov 2003.

[30] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin, Y. Parasuram, and

B. Halpin, “How accurately can we model timing in a placement engine?,” in Design

Automation Conference, 2005. Proceedings. 42nd, pp. 801–806, June 2005.

74

http://www.ispd.cc/contests/14/ispd2014_contest.html
http://www.ispd.cc/contests/14/ispd2014_contest.html
http://www.ispd.cc/contests/15/ispd2015_contest.html
http://www.ispd.cc/contests/15/ispd2015_contest.html


[31] W. Swartz and C. Sechen, “Timing driven placement for large standard cell circuits.”

[32] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for fpgas,” in Pro-

ceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field Pro-

grammable Gate Arrays, FPGA ’00, (New York, NY, USA), pp. 203–213, ACM, 2000.

[33] T. Luo, D. Newmark, and D. Pan, “A new lp based incremental timing driven place-

ment for high performance designs,” in Design Automation Conference, 2006 43rd

ACM/IEEE, pp. 1115–1120, 2006.

[34] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell density-driven detailed

placement with displacement constraint,” in Proceedings of the 2014 on International

Symposium on Physical Design, ISPD ’14, (New York, NY, USA), pp. 3–10, ACM,

2014.

[35] C. Chu, “Flute: fast lookup table based wirelength estimation technique,” in Com-

puter Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on,

pp. 696–701, Nov 2004.

[36] S. Goto, “An efficient algorithm for the two-dimensional placement problem in elec-

trical circuit layout,” Circuits and Systems, IEEE Transactions on, vol. 28, pp. 12–18,

Jan 1981.

[37] M.-C. Kim, N. Viswanathan, Z. Li, and C. Alpert, “Iccad-2013 cad contest in place-

ment finishing and benchmark suite,” in Computer-Aided Design (ICCAD), 2013

IEEE/ACM International Conference on, pp. 268–270, Nov 2013.

[38] M.-C. Kim and J. Hu, “Incremental timing driven placement.” http:

//cad_contest.ee.ncu.edu.tw/CAD-Contest-at-ICCAD2014/problem_b/

results/ICCAD2014_Contest_P2_Results.pdf.

75

http://cad_contest.ee.ncu.edu.tw/CAD-Contest-at-ICCAD2014/problem_b/results/ICCAD2014_Contest_P2_Results.pdf
http://cad_contest.ee.ncu.edu.tw/CAD-Contest-at-ICCAD2014/problem_b/results/ICCAD2014_Contest_P2_Results.pdf
http://cad_contest.ee.ncu.edu.tw/CAD-Contest-at-ICCAD2014/problem_b/results/ICCAD2014_Contest_P2_Results.pdf

	List of Tables
	List of Figures
	Glossary
	Introduction
	Motivation
	Thesis Contributions
	Thesis Organization

	Background
	Placement
	Placement Objectives
	Total Wirelength
	Routability

	Timing-Driven Placement
	Timing Models
	Timing Propagation
	Static Timing Analysis
	Problem Formulation

	Previous Work

	Timing-Driven Placement Algorithm
	Algorithm Overview
	Key Operations
	Legalization of a Cell Move
	Parallel Static Timing Analysis
	Incremental Steiner Tree Computation

	Global Move
	Critical Bounding Box
	Displacement-Aware Cell Move
	Global Move Algorithm

	Local Move

	Experimental Study
	Benchmarking Methodology
	Benchmarking Circuits
	Evaluation Metrics
	Hardware/Software Environment

	Sequential Cell Pass or Combinational Cell Pass?
	Empirical Validation
	Timing Improvement
	Placement Quality
	Runtime

	Comparison
	Comparison to Contest Results
	Comparison to the 1st-place Team


	Additional Experimentation
	Clock Net Routing
	Reducing the Runtime of Clock Net Routing

	Impact of Sequential Cell Ordering

	Conclusions and Future Work
	Bibliography

