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Abstract

A graph problem P is a vertex-subset problem if feasible solutions for P consist of
subsets of the vertices of a graph G. The st-connectivity problem for a vertex-subset
problem P takes as input two feasible solutions Ss and St, and determines if there is a
sequence of reconfiguration steps that can be applied to transform Ss into St, such that
each step results in a feasible solution of P of size bounded by k and each step is a vertex
addition or deletion. For most NP-complete problems, this problem has been shown to
be PSPACE-complete, while for some problems in P, this problem could be either in P or
PSPACE-complete. However, knowing the complexity of a decision problem does not di-
rectly imply the complexity of its st-connectivity problem. Therefore, it is natural to ask
whether we can find a connection between the complexity of a decision problem and its
st-connectivity problem when restricted to graph classes. This question motivated us to
study the st-connectivity problems Clique Reconfiguration and Dominating Set
Reconfiguration, whose decision problems’ complexity for restricted graph classes is
extensively studied, to get a better understanding of the boundary between polynomial-
time solvable and intractable instances of these reconfiguration problems. Furthermore, we
study the Cluster Vertex Deletion Reconfiguration problem, a problem whose
decision problem is related to the Clique problem, to find whether there is a connection
between the complexity of this problem and the Clique Reconfiguration problem.

Following are the main contributions of this thesis. First, we show that the Clique Re-
configuration problem is linear-time solvable for paths, trees, bipartite graphs, chordal
graphs, and cographs. Then, we prove that the Cluster Vertex Deletion Recon-
figuration problem is linear-time solvable for paths and trees, and that it is NP-hard on
bipartite graphs, and PSPACE-complete in general. Finally, we determine that the Dom-
inating Set Reconfiguration problem is linear-time solvable for paths, cographs,
trees, and interval graphs. Furthermore, we show that the problem is PSPACE-complete for
general graphs, bipartite graphs, and split graphs.
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Chapter 1

Introduction

Reconfiguration is a new field of study and has gained significant attention over the last
decade. The main topic of this thesis is reconfiguration. One of the biggest impacts of
algorithmic graph theory has been its usefulness in modelling real-world problems, where
the domain of the problem is modelled as a graph and the constraints on the solution
define feasible solutions. Reconfiguration problems [29] model real-life dynamic situations
in which we seek to transform a solution into a more desirable one, maintaining feasibility
during the process. Many puzzles can be described as reconfiguration problems. Those are
the puzzles of the following type: ”Given an initial configuration and a collection of moves,
can a final configuration be reached in a finite number of moves?”.

Figure 1.1: A source configuration and a target configuration of the Tower of Hanoi
(source: https://www.khanacademy.org/computing/computer-science/algorithms/

towers-of-hanoi/a/towers-of-hanoi)

For example, in the Tower of Hanoi, we are given three rods and a number n of disks
of different sizes which can slide onto any rod (Figure 1.1). Only one disk can be moved at
a time, and a disk can only be moved if it is the uppermost disk on a stack and it can only
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be placed on top of a bigger disk. The puzzle starts with the source configuration where
the disks are in a stack in ascending order of size on one rod, and the goal is to reach a
configuration in which all the disks form a stack in ascending order of size on another rod,
the target configuration.

Another puzzle is the Sudoku puzzle. The goal is to fill a 9 × 9 grid with digits so
that each column, each row, and each of the nine 3 × 3 sub-grids that compose the grid
contains all of the digits from 1 to 9 (Figure 1.2). A given integer may not appear twice
in the same row, column, or in any of the nine 3× 3 sub-grids of the 9× 9 playing board.
The puzzle starts with a partially completed grid as a source configuration, and the target
configuration is a fully completed grid.

Figure 1.2: A partially completed grid and a solution of Sudoku (source: http://en.

wikipedia.org/wiki/Sudoku)

The application of reconfiguration problems goes beyond puzzles. For example, con-
sider the well-known art gallery problem [1]. This problem originates from the real-world
problem of guarding an art gallery with the minimum number of guards to monitor all
the rooms in the gallery. Consider a graph G where each vertex represents a room and
each edge represents the adjacency of two rooms. We assume that a guard in a room can
monitor the room itself and all the adjacent rooms. Then, we want to be able to monitor
all the rooms by putting guards in only a subset of the rooms. Assuming we can hire at
most k guards, we want to find a subset D of at most k guards that can monitor all the
rooms of the gallery. For security reasons, each room can only be accessed by exactly one
guard. Since guards work in shifts, we frequently need to change the subset of guards
into another subset of guards. Throughout this transformation, all the rooms must be
monitored (Figure 1.3). This problem is the Dominating Set Reconfiguration [22]
problem where each subset of guards represents a dominating set of the graph.

2

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku


S

T

Figure 1.3: A sequence of dominating sets from S to T , where k = 4 and the vertices in
the dominating sets are depicted by filled circles.

Figure 1.3 represents a transformation between two solutions of the art gallery problem
as a graph where each node represents a feasible solution. This type of graph is called a
reconfiguration graph. The nodes of a reconfiguration graph correspond to all the possible
configurations and there is an edge between two nodes whenever the corresponding config-
urations can be transformed into one another with a single application of a transformation
rule, a reconfiguration step. Given two configurations in the reconfiguration graph, one can
ask if there exists a walk (reconfiguration sequence) from one configuration to the other. In
more generality, reconfiguration problems have the following structure: a search problem
P , a minimum (maximum) size k for each solution of a minimization (maximization) prob-
lem P , and a polynomially testable symmetric adjacency relation A on the set of feasible
solutions of P .

We can construct a reconfiguration graph RP(I,A, k) that consists of a node for each
feasible solution to instance I of optimization problem P , where the size of each solution is
at least k for P a maximization problem (of size at most k for P a minimization problem,
respectively), for positive integer k. There is an edge between two nodes of RP(I,A, k)
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whenever the corresponding solutions are adjacent under the adjacency relation A. The
diameter of graph G is the maximum over all pairs of vertices u and v in V (G) of the length
of the shortest path between u and v. We define the following reconfiguration problems
that have been studied so far in the reconfiguration framework, where S and T are feasible
solutions for I:

(1) Does there exist a path between S and T in RP(I, A, k)? This is known as the
st-connectivity problem [8,29–31].

(2) Is the reconfiguration graph RP(I,A, k) connected? This is called the connectivity
problem [4,11,17].

(3) What is a shortest path between S and T in RP(I,A, k)? This is known as the
shortest reconfiguration path problem [20,39].

(4) What is the diameter of RP(I,A, k) [5, 8, 30]?

In this thesis, we will focus on answering question (1) for some reconfiguration problems.
We say a problem P is a vertex-subset problem when feasible solutions of P for graph G
correspond to subsets of V (G). Before we find out if there exists a path between S and T in
RP(I,A, k), we have to fix the reconfiguration rule of a reconfiguration step. We will define
three different reconfiguration rules of vertex-subset graph problems that were originally
defined as reconfiguration rules on independent sets [34]. First, there is the token sliding
(TS) rule, in which we can view two given feasible solutions as two sets of tokens placed on
the vertices of a graph, and the reconfiguration rule is to slide a single token along an edge.
Second, there is the token jumping (TJ) rule, in which one is allowed to move a single
token of a feasible solution to any other vertex, forming another feasible solution. Finally,
there is the Token Addition and Removal (TAR) rule where one can add or remove a single
token at a time as long as the resulting set is a feasible solution. Two adjacent nodes in the
reconfiguration graphs under the TS and TJ rules are always of the same cardinality since
no token is being added or removed. In this thesis, we are interested in reconfiguration
search problems that arise from optimization problems. Optimization problems are turned
into search problems by setting a threshold (upper bound for minimization problems, lower
bound for maximization problems) and the cardinality of each feasible solution must be
bounded by that threshold. Since the cardinality of feasible solutions of these problems
can vary, we only use the TAR rule as our reconfiguration rule.

The idea of reconfiguration problem in the mathematical literature is not a new con-
cept, but there has been recent interest in reconfiguration problems from the point of view
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of computational problems. The reconfiguration framework has been applied for a number
of problems, including satisfiability [20], independent set [29, 34], vertex coloring [9, 11],
list-edge coloring [30], clique, set cover, integer programming, matching [29], block puz-
zles [25], dominating set [22,48] and so on.

One of the first key results under the reconfiguration framework was obtained by the
study of the satisfiability problem [20]. The complexity questions of the connectivity prob-
lem, the st-connectivity problem and the maximal diameter of the reconfiguration graph
have all been addressed for the satisfiability problem [45].

The notion of reconfiguration framework was first introduced by Ito et al. [29] when
they studied the complexity of st-connectivity in the reconfiguration graph of a host of op-
timization problems. They proved that the problem of st-connectivity for the NP-complete
problems Power Supply, Independent Set, Clique, Vertex Cover, Set Cover
and Integer Programming is PSPACE-complete. For most NP-complete problems, the
st-connectivity problem has been shown to be PSPACE-complete [29, 30, 34], while for
some problems in P, this problem could be either in P [29] or PSPACE-complete [7]. The
3-colorability problem [9] is an example of an NP-complete problem whose st-connectivity
problem is in P, and Shortest Path [6] is an example of a problem that is in P but whose
st-connectivity problem is PSPACE-complete. Thus, knowing the complexity of a decision
problem does not allow us to directly infer the complexity of its st-connectivity problem.

Hence, it would be very interesting to find a connection between the complexity of
decision problems and the complexity of the corresponding reconfiguration problem to get
a better understanding of both problems. Therefore, it is natural to ask whether there
is a connection between these two problems when restricted to graph classes, meaning
whether the st-connectivity problem for an NP-complete problem, when restricted to a spe-
cific graph, is also PSPACE-complete and in P for problems in P. This question motivated
us to study the st-connectivity problems Clique Reconfiguration and Dominating
Set Reconfiguration, whose decision problems’ complexity for restricted graph classes
is extensively studied, to get a better understanding of the boundary between polynomial-
time solvable and intractable instances of these reconfiguration problems. Furthermore, we
study the Cluster Vertex Deletion Reconfiguration problem, a problem whose
decision problem is related to the Clique problem, to find whether there is a connection
between the complexity of this problem and the Clique Reconfiguration problem.

Recently, there has been an interest in studying the complexity of the st-connectivity
problem for Independent Set [34] and Dominating Set [22, 48] when restricted to
graph classes. The study of Independent Set Reconfiguration [34] provided an-
other example of a problem in P whose st-connectivity problem is PSPACE-complete when
restricted to perfect graphs. The study of Dominating Set Reconfiguration [22, 48]
proved that the reconfiguration graph of this problem is connected when k = n− 1 and G
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has at least two non-adjacent edges where n represents the number of nodes of the original
problem, or when G is a chordal or a bipartite graph and k is one greater than the max-
imum cardinality of a minimal dominating set. In this thesis we build on this work and
study the st-connectivity problem for Dominating Set on a collection of graph classes.
We also study the well-known Clique problem and the related Cluster Vertex Dele-
tion [21] problem to obtain a better understanding of their st-connectivity problems and
of the connections between their complexities.

This thesis is organized as follows. In Chapter 2, we introduce the terminology used
throughout the thesis, and formally define the three underlying problems being studied.
In Chapter 3, we familiarize the reader with the problems considered in this thesis by
providing a few examples and provide a summary of the known and relevant results re-
lated to them. Chapter 4 provides a general scheme to build linear-time algorithms for
the Cluster Vertex Editing Reconfiguration and the Dominating Set Recon-
figuration problems. In Section 5 we prove that Clique Reconfiguration can be
solved in time linear in the number of edges for paths, trees, bipartite graphs, chordal
graphs, and cographs. In Section 6, we first prove that Cluster Vertex Editing Re-
configuration can be solved in time linear in the number of edges for paths and trees.
Then, we show that the problem is NP-hard on bipartite graphs. Finally, we prove that it
is PSPACE-complete in general. In Section 7, we first prove that Dominating Set Re-
configuration can be solved in time linear in the number of edges for paths, cographs,
trees, and interval graphs. Then, we show that the problem is PSPACE-complete for gen-
eral graphs, bipartite graphs, and split graphs. Concluding remarks, open problems, and
directions for future research are discussed in Chapter 8.
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Chapter 2

Preliminaries

In this chapter, we define some terms, definitions, and notation which will be used through-
out the thesis, define the underlying problems of the problems studied in this thesis, and
provide some preliminary results. Section 2.1 outlines the notation that will used through-
out the thesis, and the formal definitions of the graph classes for which we will prove
the complexity of our problems. In Section 2.2, we provide formal definitions of the un-
derlying problems whose st-connectivity problem is studied in the following chapters. In
Section 2.3, we provide all the notation and definitions related to reconfiguration as well
as general results of reconfiguration problems.

2.1 Graph Theory

The following graph theoretic definitions can be found in Diestel’s book [13]. A simple
graph is an undirected graph that has no loops (edges connected at both ends to the same
vertex) and no more than one edge between any two different vertices. We assume that
each input graph G is a simple graph with vertex set V (G) and edge set E(G), where
|V (G)| = n and |E(G)| = m. A subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). For a set S ⊆ V (G) of vertices, the subgraph of G induced by S is denoted
by G[S], where G[S] has vertex set S and edge set {uv ∈ E(G[S]) | u, v ∈ S, uv ∈ E(G)}.
For a vertex v in a graphG, letNG(v) = {u ∈ V (G) | vu ∈ E(G)} andNG[v] = NG(v)∪{v}.
For a set S ⊆ V (G) of vertices, we define NG[S] =

⋃
v∈S NG[v] and NG(S) = NG[S] \ S.

The degree of a vertex v is |NG(v)|. We sometimes drop the subscript G if it is clear from
context.

A walk of length l from v0 to vl in G is a vertex sequence v0, . . . , vl such that for all
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i ∈ {0, . . . , l − 1}, vivi+1 ∈ E(G). It is a path if all the vertices are distinct. It is a cycle
if l ≥ 3, v0 = vl and v0, . . . , vl−1 is a path. An induced path in an undirected graph G is a
path that is an induced subgraph of G. The complement G of a graph G is a graph with
V (G) = V (G) and with the property that two vertices are adjacent in G if and only if they
are not adjacent in G. We say that a graph class G (i.e., a set of graphs) is closed under
taking complements if G ∈ G holds for every graph G ∈ G.

A vertex or edge set satisfying a specific condition is minimal (maximal) (with respect
to the condition) if no proper subset (superset) of the set satisfies the condition. A graph
G is connected if there is a path between every pair of vertices. A connected component
of G is an induced subgraph C of G such that V (C) is a maximal subset of V (G) such
that G[V (C)] is connected. The diameter of graph G is the maximum over all pairs of
vertices u and v in V (G) of the length of the shortest path between u and v. A matching
M ∈ E(G) in a graph G is a set of edges of G such that no two of them share a vertex.
We write V (M) to denote the set of vertices incident to edges in M . An induced matching
of G is the set of edges M ⊆ E(G) such that M is a matching and for any distinct edges
uu′, vv′ ∈ M , G has none of the edges in {uv, uv′, u′v, u′v′}.

We adopt known conventions for referring to some special graphs [10]. Pk denotes a
path on k vertices and k−1 edges. Ck denotes a cycle on k vertices and k edges. Trees are
connected graphs without cycles. A subtree of a tree is a connected subgraph of the tree.
A complete graph is a simple undirected graph in which each pair of distinct vertices is
connected by a single edge. A spanning tree of a graph G is a subgraph of G that contains
all of the vertices of G. A maximum spanning tree is a spanning tree of a weighted graph
having maximum weight. A clique is a subset S of vertices of an undirected graph such
that the induced subgraph of S is complete. An independent set is a subset S of vertices
of an undirected graph such that for u, v ∈ S, uv 6∈ V (G). A vertex cover is a subset S of
vertices of an undirected graph G such that G[V (G) \ S] is edgeless.

The following definition, fact, and notation will be used in defining the Cluster Ver-
tex Deletion problem.

Definition 2.1.1. A graph is a cluster graph if every connected component forms a clique.

Fact 2.1.1. A cluster graph does not contain an induced path of three vertices.

For a graph G, a set D ⊆ V (G) is a deletion set of G if the removal of D transforms G
into a cluster graph, that is, a collection of disjoint cliques. Note that V (G) always forms
a deletion set of G.

Figure 2.1 illustrates some inclusion relationships among well-known graph classes. For
a problem P , we want to find the boundary in graph classes between polynomial-time

8



Path

TreeCographInterval

BipartiteSplit

Chordal

Perfect

Figure 2.1: Inclusion relationships among various graph classes defined in Section 2.1,
where each arrow represents the inclusion relationship between graph classes: A → B
represents that A is properly included in B [10].

solvability and intractability. Thus, if P has a polynomial-time algorithm for a graph
class A, we choose a graph class B that includes A and find the complexity of P in this
graph. Similarly, if P is PSPACE-complete for a graph class A, we choose a graph class
B that is included in A and find the complexity of P in this graph. When constructing
polynomial-time algorithms, we usually start with paths and to prove PSPACE-completeness,
we start with general graphs. We now give formal definitions of some graph classes for
which we will prove the complexity of the three main problems of this thesis.

Definition 2.1.2. A graph G is bipartite if there exists a partition (A,B) of its vertex set
such that G[A] and G[B] are edgeless.

Kn,m denotes a biclique, i.e. a complete bipartite graph with n vertices in the first
partition, and m vertices in the second. For bipartite graphs, the Clique and Domi-
nating Set problems are in P [33] and the Cluster Vertex Deletion problem is
NP-complete [36]. Therefore, it is interesting to study the the st-connectivity problem for
these problems for bipartite graphs and show whether it has the same complexity as their
underlying problems. We show in this thesis that this conjecture is true.

Based on the fact that we can compute a tree of maximal cliques of a chordal graph G in
time linear in |E(G)| [46] and the fact that the Clique problem is in P for chordal graphs,
we ask whether the st-connectivity problem is also in P. We prove that this problem is in
P in Chapter 5.
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Definition 2.1.3. A graph is chordal if every induced cycle is of length three.

We denote by MC(G) the set of all maximal cliques of a chordal graph G and we denote
by MC(G, v) the set of maximal cliques of V (G) that contain a vertex v ∈ V (G). The
maximal cliques of a chordal graph can be connected to form a clique tree [26]. A tree T
is a clique tree of G if each node of T corresponds to a maximal clique in MC(G), and the
cliques containing a vertex v ∈ V (G) yield a subtree of T . Each edge of T is assigned the set
that represents the intersection of the maximal cliques defined by its endpoints. Figure 2.2
(a) illustrates a chordal graph G, and (b) a clique tree T of G. The set S representing the
edge E = (M,M ′) where M,M ′ ∈ T is a proper subset of M and M ′. The intersection
graph I of MC(G) is the graph such that each maximal clique of MC(G) is represented
by a vertex, and two vertices of I are connected if and only if the corresponding maximal
cliques intersect [19]. A clique tree is a maximum spanning tree of the intersection graph
I of G, where the weight of an edge is defined as the size of the intersection [23]. Since
a clique tree T is a maximum spanning tree of the intersection graph I of G, the weight
of the minimum-weight edge in the path between two nodes A,B ∈ T is the maximum
among the minimum-weight edges of all possible paths between A and B in I [27]. We use
α(T ) to denote the minimum cardinality of any set S represented by an edge of T . We will
refer to vertices in G using lower-case letters and to nodes in T using upper-case letters.

We now define the join and union operations that are used in building cographs. The
union G = G1 ∪G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets
E1 and E2 is the graph with V (G) = V1∪V2 and E(G) = E1∪E2. The join G = G1∨G2 of

graphs G1 and G2 is represented as (G1 ∪G2). Based on the fact that the Independent
Set Reconfiguration problem is in P for cographs [34], it is interesting to show whether
this problem can be reduced to one of our problems. We show that there exists such a
reduction to the Clique Reconfiguration problem, defined in the next section.

Definition 2.1.4. Complement reducible graphs, also called cographs, are defined recur-
sively as follows [12]:
(1) A graph consisting of a single vertex is a cograph.
(2) If G1 and G2 are two (disjoint) cographs, then so is their union G1 ∪G2.
(3) If G is a cograph, then so is its complement G.

Fact 2.1.2. Cographs have no induced path on four vertices. Therefore, they are also called
P4-free graphs or P4 restricted graphs [12].

Fact 2.1.3. Graph G is a cograph if it can be constructed from isolated vertices by disjoint
union and join operations [12].
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Figure 2.2: (a) A chordal graph G, (b) a clique tree T of G.

If a graph G is an interval graph, we can obtain an interval representation of G in linear
time [35]. Therefore, since two intervals intersect only if there exists an edge between their
respective vertices and since the Dominating Set problem is in P for cographs, it is
interesting to ask whether its st-connectivity is also in P. We show that this problem is in
fact in P.

Definition 2.1.5. A graph G with V (G) = {v1, v2, . . . , vn} is an interval graph if there
exists a set I of (closed) intervals I1, I2, . . . , In such that vivj ∈ E(G) if and only if Ii∩Ij 6=
∅ for each i, j ∈ {1, 2, . . . , n}. We call the set I of intervals an interval representation of
the graph.

We show in Section 7.2.2 that the Dominating Set Reconfiguration problem,
defined in the next section, is PSPACE-complete for split graphs.

Definition 2.1.6. A graph is is a split graph if its vertex set can be partitioned into a
clique and an independent set [10].
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2.2 Graph Problems

All the underlying problems of the reconfiguration problems studied in this thesis are graph
vertex-subset problems. A problem P is a vertex-subset problem when feasible solutions
of P for graph G correspond to subsets of V (G). We say a problem P is a vertex-subset
maximization (minimization) problem whenever the optimal solution of P corresponds to
a subset of V (G) of maximum (minimum) size.

A classical example of a vertex-subset minimization problem is the Vertex Cover
(V C) problem. The corresponding decision problem is defined as follows:

Input: An undirected graph G and a non-negative integer k.
Question: Is there S ⊆ V (G) such that |S| ≤ k andG[V (G)\S] is edgeless?

G

Figure 2.3: Example of a vertex cover (filled circles) and an independent set (white circles)
of a graph G.

An example of a vertex-subset maximization problem is the Independent Set (IS)
problem. The corresponding decision problem is defined as follows::

Input: An undirected graph G and a non-negative integer k.
Question: Is there I ⊆ V (G) such that |I| ≥ k and G[I] is edgeless?

Both of these problems have been proven to be NP-complete [33]. It is easy to see, by
the definition of a vertex cover and an independent set, that if S is a vertex cover of G,
then G \ S forms an independent set of G, and vice versa. Figure 2.3 illustrates a vertex
cover and an independent set of a graph G. The relationship between these two sets gives
us a reduction between the two problems and proves that these two problems are equally
hard [18].

We now introduce the underlying vertex-subset problems of the reconfiguration prob-
lems studied in this thesis.
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The first problem is the Clique problem, which is a vertex-subset maximization prob-
lem that is intensively studied in graph theory [43]. A clique C of G is maximal if it is not
an induced subgraph of any larger clique.

The corresponding Clique (CL) decision problem is defined as follows:

Input: An undirected graph G and a non-negative integer k.
Question: Does G contain a clique C with |C| ≥ k?

The following proposition shows the relation between a clique and an independent set
of a graph G. This relation will be used to prove the results of Section 5.4.

Proposition 2.2.1. For S ⊆ G, S is a clique in G if and only if S is an independent set
in the complement G of G.

Figure 2.4 part (a) illustrates a clique S of four vertices depicted by filled circles and
part (b) shows that S is an independent set in G. Thus, a simple reduction from the
decision problem of Independent Set proves that this problem is NP-complete [18].

The second problem is the Cluster Vertex Deletion (CV D) problem [28], a
vertex-subset minimization problem whose corresponding decision problem is defined as
follows:

Input: An undirected graph G and a non-negative integer k.
Question: Does G contain a deletion set S ⊆ V with |S| ≤ k?

Fact 2.2.1. If S is a deletion set of G, then S ∩ A is a deletion set of G[A], where
A ⊆ V (G).

Figure 2.4 (b) shows a deletion set of size 4 depicted by filled circles.

Finally, the third problem is the vertex-subset minimization Dominating Set prob-
lem. For a graph G, a set D ⊆ V (G) is a dominating set of G if N [D] = V (G). Note that
V (G) always forms a dominating set of G. For a vertex u ∈ V (G) and a dominating set D
of G, we say u is dominated by v ∈ D if u 6∈ D and u is adjacent to v. Figure 2.3 shows a
dominating set of size 5 depicted by white circles.

The corresponding Dominating Set (DS) decision problem is defined as follows:

Input: An undirected graph G and a non-negative integer k.
Question: Does G contain a dominating set D ⊆ V (G) with |D| ≤ k ?

Observation 2.2.1. If S is a feasible set of G for a vertex-subset minimization problem
P , then any superset S ′ of S is also a feasible set of G.
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(a)
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(b)

Figure 2.4: (a) A graph G, (b) the complement graph G of graph G.

2.3 Reconfiguration

For any vertex-subset problem P , graph G = (V,E), and a positive integer k, we consider
the reconfiguration graph RP(G, k). A set S ⊆ V has a corresponding node in V (RP(G, k))
if and only if S is a feasible solution for P and |S| ≤ k (|S| ≥ k) if P is a minimization
(maximization) problem. We write RP-MIN(G, k) (RP-MAX(G, k)) to refer to the reconfig-
uration graph of a vertex-subset minimization (maximization) problem P .

We refer to vertices in G using lower case letters (e.g. u, v) and to the nodes inRP(G, k),
and by extension their associated dominating sets, using upper case letters (e.g. A,B).
Given A,B ∈ V (RP(G, k)), we let A∆B = (A \ B) ∪ (B \ A) denote the symmetric dif-
ference of A and B. Formally, there exists an edge between A and B in RP(G, k) if and
only if there exists a vertex u ∈ V (G) such that (A \ B) ∪ (B \ A) = {u}. Equivalently,
there exists an edge between A and B in RP(G, k) if and only if |A∆B| = 1. We say that
A and B are adjacent if their symmetric difference has size 1.

We write A ! B if there exists a path in RP (G, k), a reconfiguration sequence, joining
A and B. Two nodes A,B ⊆ V (RP (G, k)) share an edge whenever the corresponding
configurations can each be obtained from the other by the application of a single transfor-
mation rule, a reconfiguration step. Any reconfiguration sequence between a source feasible
solution Ss and a target feasible solution St, denoted 〈S0, S1, . . . , S`〉 for some positive in-
teger l, has the following properties:
(a) S0 = Ss and S` = St;
(b) Si−1 and Si are adjacent for each i ∈ {1, 2, . . . , `}; and
(c) Si is a feasible solution for P for each i ∈ {1, 2, . . . , `}.

We say that a reconfiguration sequence 〈S0, S1, . . . , S`〉 of feasible solutions of P between
Ss and St is reversible if its reverse 〈S`, S`−1, . . . , S0〉 is also a reconfiguration sequence
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between St and Ss. Note that any reconfiguration sequence is reversible since if the sequence
〈S0, S1, . . . , S`〉 of feasible solutions of P is a reconfiguration sequence between Ss and St,
then its reverse sequence 〈S`, S`−1, . . . , S0〉 is a reconfiguration sequence between St and
Ss. We say vertex v ∈ V is added at step i if v 6∈ Si−1 and v ∈ Si for each i ∈ {1, 2, . . . , `}.
Similarly, a vertex v is deleted at step i if v ∈ Si−1 and v 6∈ Si for each i ∈ {1, 2, . . . , `}.
We say a vertex v ∈ V is touched in a reconfiguration sequence σ if v is either added or
deleted at least once in σ. A vertex w in a feasible solution S is deletable if S \ {w} is
also a feasible solution of P . A feasible solution S of G is minimal if there is no deletable
vertex in S. Similarly, a vertex w in a feasible solution S is addable if S ∪ {w} is also a
feasible solution of P . A feasible solution S of G is maximal if there is no addable vertex
in S. We use λ(G) to denote the minimum cardinality of any feasible solution of a graph
G. Similarly, Λ(G) is the maximum cardinality of any feasible solution of a graph G.

Definition 2.3.1. For any vertex-subset minimization problem P, graph G, positive integer
k, Ss ⊆ V (G), and St ⊆ V (G), we define the following decision problem:

P-Min-R: For Ss, St ∈ V (RP-MIN(G, k)), is there a path between Ss and St in
RP-MIN(G, k)?

Definition 2.3.2. For any vertex-subset maximization problem P, graph G, positive integer
k, Ss ⊆ V (G), and St ⊆ V (G), we define the following decision problem:

P-Max-R: For Ss, St ∈ V (RP-MAX(G, k)), is there a path between Ss and St in
RP-MAX(G, k)?

We denote by (G,Ss, St, k) an instance of P-Min-R (P-Max-R).

The definition of the st-connectivity problem for an underlying optimization problem
follows naturally from the definition of the optimization problem itself. We use Inde-
pendent Set (IS) as an example below, which corresponds to the IS-Max-R problem,
defined as follows:

Input: A graph G, two independent setsDs andDt of G, and an integer
threshold k ≤ min{|Ds|, |Dt|}.

Question: Is there a path from Ds to Dt in RIS-MAX(G, k)?

By Proposition 2.2.1, we know that a subset S of G forms a clique in G if and only if S
forms an independent set in G. Using this fact, some known results for IS-Max-R can be
converted into results for the st-connectivity problem for Clique denoted as CL-Max-R.
It is known that the IS-Max-R problem for a cograph G is solvable in time linear in
|E(G)| [34]. We will show in Section 5.4 that this result can be converted into a result for
CL-Max-R.

15



In the following proposition, we show conditions for a no-instance of P-Min-R.

Proposition 2.3.1. Given an instance (G,Ss, St, k) of P-Min-R, if any of the following
conditions are true then we have a no-instance:
(1) k < λ(G),
(2) k = λ(G) and Ss 6= St,
(3) Ss is minimal, k = |Ss| and Ss 6= St, or
(4) St is minimal, k = |St| and Ss 6= St.

Proof. In case (1), if k < λ(G) then there does not exist any solution of size k since λ(G)
is the minimum cardinality of any feasible solution of G. In case (2), if k = λ(G) and Ss

and St are feasible solutions of size less than or equal to k, Ss and St are feasible solutions
of G of minimum cardinality. Since |Ss| = |St| = λ(G), there does not exist a deletable
vertex in Ss or St. Hence, Ss and St are isolated nodes in RP-MIN(G, k). Similarly, in cases
(3) and (4), if Ss (St) is minimal and k = |Ss| (k = |St|), there does not exist a deletable
vertex in Ss (St). Hence, Ss (St) is an isolated node in RP-MIN(G, k).

Fact 2.3.1. Given an instance (G,Ss, St, k) of P-Min-R, if Ss = St and k ≥ λ(G), then
we have a yes-instance.

In the following proposition, we show conditions for a no-instance of P-Max-R.

Proposition 2.3.2. Given an instance (G,Ss, St, k) of P-Max-R, if any of the following
conditions are true then we have a no-instance:
(1) k > Λ(G),
(2) k = Λ(G) and Ss 6= St,
(3) Ss is maximal, k = |Ss| and Ss 6= St, or
(4) St is maximal, k = |St| and Ss 6= St.

Proof. In case (1), if k > Λ(G) then there does not exist any solution of size k since Λ(G)
is the maximum cardinality of any feasible solution of G. In case (2), if k = Λ(G) and
Ss and St are feasible solutions of size greater than or equal to k, Ss and St are feasible
solutions of G of maximum cardinality. Since |Ss| = |St| = Λ(G), there does not exist an
addable vertex in Ss or St. Hence, Ss and St are isolated nodes in RP-Max(G, k). Similarly,
in cases (3) and (4), if Ss (St) is maximal and k = |Ss| (k = |St|), there does not exist an
addable vertex in Ss (St). Hence, Ss (St) is an isolated node in RP-Max(G, k).

Proposition 2.3.3. Given an instance (G,Ss, St, k) of P-Max-R, if k = 0 then we have
a yes-instance.
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Proof. Since k = 0, there exists a reconfiguration sequence from Ss to St in RP-Max(G, k)
by removing all vertices of Ss one by one, and then adding all the vertices of St one by
one.

Fact 2.3.2. Given an instance (G,Ss, St, k) of P-Max-R, if Ss = St and k ≤ Λ(G), then
we have a yes-instance.
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Chapter 3

Related Work

In this thesis, we are interested in finding a connection between the complexity of de-
cision problems and their respective st-connectivity problems, when restricted to graph
classes, to get a better understanding of both problems. Therefore, we work on the two
extensively studied problems Clique and Dominating Set, and find results of the com-
plexity of their st-connectivity problems for several graphs. Furthermore, we study the
st-connectivity problem for the Cluster Vertex Deletion problem, a problem related
to the Clique problem, to find whether there is a connection between their corresponding
st-connectivity problems.

Reconfiguration of the Clique problem. The first problem studied in this thesis is the
Clique Reconfiguration problem (CL-Max-R). This problem is defined as follows:

Input: A graph G, two cliques Ss and St of G, and an integer threshold
k ≤ min{|Ss|, |St|}.

Question: Is there a path from Ss to St in RCL-MAX(G, k)?

The reconfiguration graph RCL-MAX(G, k) of a graph G contains all cliques of G of size
at least k as its node set, and two nodes share an edge whenever the corresponding cliques
differ on exactly one vertex. An example of a reconfiguration sequence between two cliques
of size 3 of a graph is given in Figure 3.1. Every feasible solution of size greater than or
equal to 3 is shown as solid circles. Note that RCL-MAX(G, 3) is not connected, which
implies that there exists at least one pair of feasible solutions of this instance for which
there does not exist a reconfiguration sequence.
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Ito et al. [29] proved that the st-connectivity problem for a number of NP-complete
problems can be shown to be PSPACE-complete by extending the idea developed for the
NP-completeness proof of the original problem. To show that CL-Max-R is PSPACE-com-
plete, they used a polynomial-time reduction from IS-Max-R by extending the well-known
reduction from the Independent Set problem to the Clique problem. Similarly, they
showed that IS-Max-R is PSPACE-complete by extending the original NP-completeness
proof that uses a reduction from the 3SAT problem [42], whose st-connectivity problem
is also PSPACE-complete [20]. They also showed that the problem of computing the max-
imum threshold k such that there exists a reconfiguration sequence between two nodes of
RCL-MAX(G, k) for a graph G cannot be approximated within any constant factor unless
P = NP. To the best of our knowledge, these are all the results in the literature for the
CL-Max-R problem.

The Independent Set Reconfiguration problem [34] is one of the most well-
studied reconfiguration problems. It is one of the only problems whose complexity was
studied restricted to graph classes. It was proven that IS-Max-R is solvable in linear
time for even-hole-free graphs and cographs under the token sliding rule [34]. It is well
known that the Independent Set problem and the Clique problem are related, since a
clique C in a graph G forms an independent set in the complement G of G. Thus, given that
we have these results for IS-Max-R, it is desirable to obtain results to related problems
and extend previous work. Therefore, in this thesis, we study the CL-Max-R problem and
delineate its complexity restricted to various graph classes. During the study of this prob-
lem, a paper on the Clique Reconfiguration problem [32] that studies this problem in
the same context was published. We present in this thesis the results that were obtained
independently of this work. We prove that CL-Max-R can be solved in time linear in the
number of edges for paths, trees, bipartite graphs, chordal graphs, and cographs.

Reconfiguration of the Cluster Vertex Deletion problem. The second problem stud-
ied is the Cluster Vertex Deletion problem (CVD-Min-R). This problem is defined
as follows:

Input: A graph G, two deletion sets Ss and St of G, and an integer
threshold k ≥ max{|Ss|, |St|}.

Question: Is there a path from Ss to St in RCVD-Min(G, k)?

Figure 3.2 shows the reconfiguration graph RCVD-Min(G, 3) for an input graph G con-
sisting of an instance of CV D and k = 3. Every feasible solution of size less than or equal
to 3 is shown as solid circles. In contrast to the CL-Max-R problem considered above,
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Ss St

Figure 3.1: A reconfiguration sequence from Ss to St in RCL-MAX(G, 3) of length 4 (shown
in thick lines) for a graph G.

RCVD-Min(G, 3) is connected, which implies that there exists a reconfiguration sequence be-
tween any two feasible solutions of this instance. Also, note that in RCVD-Min(G, 3), there
is a path of size at most 4 between any two feasible solutions of this instance.

Note that the underlying decision problem of CVD-Min-R asks to find a set S ⊆ V (G)
such that the removal of S from G results in a graph where every connected component
forms a clique. Having studied the CL-Max-R problem, and since there is a connection
between the underlying decision problems of CVD-Min-R and CL-Max-R, we were inter-
ested in studying the CVD-Min-R problem in the same context. We studied this problem
when restricted to some graph classes that we studied for CL-Max-R to find a connection
between the two related reconfiguration problems under these same graph classes. We
show that, similarly to CL-Max-R, CVD-Min-R can be solved in time linear in the num-
ber of edges for paths and trees. However, on bipartite graphs, the CL-Max-R problem is
solvable in time linear in the number of edges and we prove that the CVD-Min-R problem
is NP-hard. Finally, we prove that it is PSPACE-complete in general.

Reconfiguration of the Dominating Set problem. The last problem studied is the
st-connectivity problem for the Dominating Set problem (DS-Min-R). This problem is
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Ss St

Figure 3.2: A reconfiguration sequence from Ss to St in RCVD-Min(G, 3) of length 4 (shown
in thick lines) for a graph G.

defined as follows:

Input: A graph G, two dominating sets Ss and St of G, and an integer
threshold k ≥ max{|Ss|, |St|}.

Question: Is there a path from Ss to St in RDS-Min(G, k)?

Figure 3.3 shows the reconfiguration graph RDS-Min(G, k) for an input graph G con-
sisting of an instance of DS and k = 3, where every feasible solution of size less than or
equal to 3 is shown in solid circles.

Haas and Seyffarth [22] initiated the investigation of the reconfiguration of dominat-
ing sets. The main question they tried to answer was whether the reconfiguration graph
RDS-Min(G, k) for a graph G and a non-negative integer k is connected. Hence, they tried
to determine whether there exists a reconfiguration sequence between any two nodes of
the reconfiguration graph. They first proved that for any graph G with at least two non-
adjacent edges, RDS-Min(G, k) is connected if k ≥ {|V (G)| − 1,Λ(G) + λ(G)}, where λ(G)
(Λ(G)), defined in Section 2.3, denotes the minimum (maximum) cardinality of any domi-
nating set of a graph G. To prove this result, they first showed that RDS-Min(G, |V (G)|−1)
is connected if G is a graph with at least two non-adjacent edges. Then, they showed that
RDS-Min(G,Λ(G)) is not connected if G is a graph with at least one edge. Finally, they
combined these results to prove the result stated above. Then, they restricted G to chordal
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Ss St

Figure 3.3: A reconfiguration sequence from Ss to St in RDS(I, 3) of length 4 (shown in
thick lines).

and bipartite graphs and proved that RDS-Min(G, k) is connected whenever k ≥ Λ(G) + 1
by using the properties of these graphs. They left as an open question whether the latter
results could be extended to all graphs.

Recently, Suzuki et al. [48] improved these results and addressed the open question by
Haas and Seyffarth to find an example of a graph G for which RDS-Min(G,Λ(G)+1) is not
connected. They improved the former results by showing that RDS-Min(G, |V (G)| − µ) is
connected if G has at least µ+ 1 non-adjacent edges, and its diameter is linear in |V (G)|.
They showed this result by proving that there exists a reconfiguration sequence between
any dominating set D of G such that |D| ≤ |V (G)| −µ, and the dominating set D′ formed
by removing an endpoint of each non-adjacent edges of G. Finally, they showed that there
exists an infinite family of graphs such that ifG belongs to this family,RDS-Min(G,Λ(G)+1)
is not connected.

Haas and Seyffarth [22] and Suzuki et al. [48], as described above, have studied the
connectivity problem for theDominating Set. In this thesis, we build on this recent work
by studying the st-connectivity problem DS-Min-R for the Dominating Set problem
when restricted to graph classes. We show the connection between the complexity of the
extensively studied Dominating Set problem and its st-connectivity problem DS-Min-R
for various graph classes. We chose to study this problem on graph classes for which
the complexity of Dominating Set is known and compare it to the complexity of its
st-connectivity problem. We show that DS-Min-R, similarly to its underlying decision
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problem [33], can be solved in time linear in the number of edges for paths, cographs,
trees, and interval graphs. Furthermore, we show that the problem is PSPACE-complete for
general graphs, bipartite graphs, and split graphs, whereas the underlying decision problem
is NP-complete [3].

23



Chapter 4

Canonical Configuration

In this chapter, we introduce a scheme that will be used in the linear-time algorithms of
Sections 6 and 7. In the remainder of this section, P represents either CVD or DS.

Our idea is to use the concept of a “canonical” solution for a graph G, which is a
well-defined node in the reconfiguration graph which is connected by a path to any other
node in the reconfiguration graph. So, proving the existence of a canonical solution proves
that there exists a path between any two feasible solutions of a reconfiguration graph.
We say that a minimum feasible solution C for an instance I of P-Min-R is universally
reachable if S ! C inRP-MIN(G, k) holds for every feasible solution S of G and k = |S|+1.
To prove that there exists a path between any two feasible solutions of a reconfiguration
graph, we have to show that there exists a universally reachable solution that is connected
by a path to any other node in the reconfiguration graph, called a canonical solution.
The canonical solution is a universally reachable node that is used to prove that all the
universally reachable solutions are connected in the reconfiguration graph. We now state
the following theorem that we prove using the results of Lemmas 4.1 and 4.2.

Theorem 1. If an instance I = (G,Ss, St, k) of P-Min-R has a canonical solution for a
graph G, then P-Min-R can be solved in time linear in |E(G)|.

We note that problem P-Min-R is a decision problem asking for the existence of a
reconfiguration sequence. Thus, we do not need to find a canonical solution in linear time.
Hence, to solve problem P-Min-R, it suffices to prove the existence of a canonical solution.
Before proving Theorem 1, we prove Lemmas 4.1 and 4.2 that together establish the main
theorem.
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Lemma 4.1. Suppose an instance I = (G,Ss, St, k) of P-Min-R has a canonical solution
for a graph G, where P corresponds to either CVD or DS. Then I is a yes-instance if
k ≥ max{|Ss|, |St|}+ 1.

Proof. Let C be a canonical solution for I. Then, there exists a reconfiguration sequence σ
between Ss and C in RP-MIN(G, k′) for k′ = |Ss|+ 1, by definition of a canonical solution.
Suppose that k ≥ max{|Ss|, |St|} + 1. Since k ≥ |Ss| + 1 = k′ and each set in σ is
of cardinality at most k ≤ k′, we clearly have Ss ! C in RP-MIN(G, k). Similarly, we
have St ! C in RP-MIN(G, k). Since any reconfiguration sequence is reversible, we have
Ss ! C ! St in RP-MIN(G, k). Thus, this is a yes-instance.

Lemma 4.1 implies that, if instance I has a canonical solution C, then it suffices
to consider the case where k = max{|Ss|, |St|} since all instances are yes-instances if
k > max{|Ss|, |St|}. We will show in the following lemma that there is a no-instance
(G,Ss, St, k) of P-Min-R in such a case, and that it can be easily determined in time
linear in |E(G)|.

Lemma 4.2. Suppose an instance I = (G,Ss, St, k) of P-Min-R has a canonical solution
C for a graph G. Let S be an arbitrary feasible solution of I such that S 6= C, and let
k = |S|. Then, S ! C holds if and only if S is not a minimal feasible solution.

Proof. We first prove the if direction. Suppose that S is not minimal. Then, S contains
at least one vertex x which is deletable from S, that is, S \ {x} forms a feasible solution
of G. Since C is canonical and S is not minimal, max{|S \ {x}|, |C|} = |S \ {x}|. By
Lemma 4.1, since k = |S| = |S \ {x}|+1 = max{|S \ {x}|, |C|}+1, we have S \ {x} ! C
in RP-MIN(G, k). Since x ∈ S is a deletable vertex, there exists an edge between the
nodes representing S \ {x} and S in RP-MIN(G, k). Therefore, we have S ! S \ {x} and
S \ {x} ! C so S ! C holds in RP-MIN(G, k).

We now prove the only-if direction by proving its contrapositive. Suppose that S is
minimal. Then, S does not contain a deletable vertex. Hence, any feasible solution S ′

which is adjacent to S in RP-MIN(G, k) must be obtained by the addition of a vertex to
S. Therefore, |S ′| = k + 1 > k = |S|. Since |S ′| > k, S ′ 6∈ RP-MIN(G, k). Hence, S is an
isolated node in RP-MIN(G, k). Therefore, S ! C in RP-MIN(G, k) does not hold.

Corollary 4.1 can be immediately obtained from Lemma 4.2 as it shows that if an
instance I of P-Min-R has a canonical solution C for a graph G, then there exists a
reconfiguration sequence S ! C in RP-MIN(G, k), where S is an arbitrary feasible solution
and |S| = k, if and only if S is not minimal.
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Corollary 4.1. Suppose an instance I = (G,Ss, St, k) of P-Min-R has a canonical solu-
tion for a graph G, Ss 6= St and k = max{|Ss|, |St|}. Then I is a yes-instance if and only
if Si is not minimal for every i ∈ {s, t} such that |Si| = k.

Recall that throughout this section, P is either dominating set or cluster vertex dele-
tion. We now show that we can determine in time linear in |E(G)| whether or not a feasible
solution S of an instance of P is minimal.

If P corresponds to DS, first scan all vertices in V (G)\S. For each vertex in V (G)\S,
count how many neighbours it has in S and mark it if it has exactly one. This takes
O(|N(v)|) time for one such vertex, and hence O(|E(G)|) time total. Then, for each vertex
x ∈ S, we check whether there exists a vertex y ∈ N [x] which is only dominated by x.
If such a vertex exists, we discard the vertices in N(x) \ S from the graph. Otherwise, S
is not minimal. Since a vertex v ∈ (V (G) \ S) is discarded after visiting each vertex in
N(v) exactly once, each edge in G[V (G)\S] is visited at most once. Furthermore, a vertex
e = {u,w} in G[S] is visited at most twice (it is visited when v = u and when v = w).
Therefore, we can determine in time linear in |E(G)| whether or not a dominating set is
minimal.

If P corresponds to CVD, then by definition of a deletion set, every connected compo-
nent of G[V (G) \ S] forms a clique. Note that S is not minimal if there exists a connected
component C of G[V (G)\S] and a vertex x ∈ S such that C∪x forms a clique and x is not
connected to any other connected component C ′ of G[V (G) \ S]. We first enumerate the
vertices of each connected component of G[V (G) \ S]. Since each connected component
is a clique, we can repeatedly pick a random vertex y ∈ (V (G) \ S) that has not been
visited yet, and enumerate the vertices of N [y] that form a connected component. This
can clearly be done in |E(G)|. Then, for each connected component C of G[V (G) \ S],
we check whether there exists a vertex in S which is adjacent to each vertex of C. This
can be done by finding the intersection of the neighbourhoods of all the vertices of a con-
nected component. This is similar to finding the intersection of the sets that represent the
neighbourhood of each vertex, which can be done in time linear in |E(G)| [14]. Finally,
among these sets that represent vertices that are adjacent to each vertex of a component
of G[V (G) \ S], we count the number of occurrences of each vertex in all the sets. If there
exists a vertex that occurs exactly once, then S is not minimal. Otherwise, S is minimal.
Therefore, we can determine in time linear in |E(G)| whether or not a deletion set is min-
imal.

Lemma 4.3. For an instance I = (G,Ss, St, k) of P-Min-R, we can determine in time
linear in |E(G)| whether or not a feasible solution S of I is minimal.
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We note again that Lemmas 4.1 and 4.2 imply that only the existence of a canonical
solution is required to solve the problem. Furthermore, by Corollary 4.3, we can determine
if a feasible solution S is minimal in time linear in |E(G)|.

We now prove Theorem 1, using the results obtained by the above lemmas.

Proof. If an instance I = (G,Ss, St, k) of P-Min-R has a canonical solution C for a graph
G, then by Lemma 4.1, I is a yes-instance if k > max{|Ss|, |St|}. By Fact 2.3.1, I is a
yes-instance if Ss = St and k ≥ λ(G). By Corollary 4.1, if k = max{|Ss|, |St|} and Ss 6= St,
I is a yes-instance if and only if Si is not minimal for every i ∈ {s, t} such that |Si| = k. By
Corollary 4.3, we can determine if a feasible solution S is minimal in time linear in |E(G)|.
By Proposition 2.3.1, I is a no-instance if k < λ(G). So if I has a canonical solution, then
P-Min-R can be solved in time linear in |E(G)|.

The following lemma shows that when constructing a canonical dominating set for an
instance of DS-Min-R, it suffices to construct a canonical dominating set for a connected
graph.

Lemma 4.4. Let I = (G,Ss, St, k) be an instance of DS-Min-R where G is a graph
consisting of p connected components G1, G2, . . . , Gp. Let S be any dominating set of G
and suppose that Ci is a canonical dominating set in RDS-MIN(Gi, ki) for ki = |S ∩V (Gi)|.
Then, C = C1 ∪ C2 ∪ · · · ∪ Cp is a canonical dominating set of I.

Proof. Since S is a dominating set of G and Gi is a connected component of G for each
i ∈ {1, 2, . . . , p}, S ∩ V (Gi) is a dominating set of Gi. Furthermore, since Ci is a canonical
solution in RP-MIN(Gi, ki), we have S ∩ V (Gi) ! Ci in RP-MIN(Gi, ki + 1). Therefore,
there exists a reconfiguration sequence between S ∩V (Gi) and Ci in RP-MIN(Gi, ki+1) for
each i ∈ {1, 2, . . . , p}.

To prove that C is a canonical dominating set of I, we have to show that S ! C in
RP-MIN(G, k) holds, where k = |S| + 1. First, we construct a sequence σ of sets between
S and C = C1 ∪ C2 ∪ · · · ∪ Cp. Then, we show that each set in σ is a dominating set of G
and of cardinality at most |S|+ 1.

For each i ∈ {1, 2, . . . , p}, we let S0 = S and construct a subsequence σi that transforms
Si−1 into Si = Si−1 \((Si−1∩V (Gi))∪Ci) by only transforming the set Si−1∩V (Gi) into Ci

using the sets in the reconfiguration sequence from Si−1∩V (Gi) to Ci in RP-MIN(Gi, ki+1).
Note that σi transforms Si−1 into Si by only adding or removing vertices in V (Gi). Since
σi corresponds to a reconfiguration sequence in RP-MIN(Gi, ki+1) and S0 = S where S is a
dominating set of G, each set in σi is a dominating set of G. Note that S = (S ∩ V (G1))∪
(S ∩ V (G2))∪ . . .∪ (S ∩ V (Gp)) and ki = |S ∩ V (Gi)| for each i ∈ {1, 2, . . . , p}. Therefore,
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k1+k2+. . .+kp = |S|. Since a subsequence σi only adds and removes vertices in V (Gi), the
size of each set of σi in V (G)\V (Gi) is equal to |S|−ki. Furthermore, since Ci is a canonical
solution in RP-MIN(Gi, ki), each set in σi is of size at most |S| − ki + (ki +1) = |S|+1. By
definition of a canonical dominating set, Ci is a minimum dominating set of Gi. Therefore,
we have |Si−1 ∩ V (Gi)| ≥ |Ci| for each i ∈ {1, 2, . . . , p}. Thus, we have |Si−1| ≥ |Si|. Since
σ is a sequence from S0 = S to Sp = C and |Si−1| ≥ |Si|, each set in σ is of cardinality
at most |S| + 1. Therefore, σ is a reconfiguration sequence from S to C in RP-MIN(G, k)
where k = |S|+ 1. Consequently, C is a canonical dominating set of I.

We will now introduce some notation of a characterization of a representative set S ⊆
V (G), for some rooted tree G, that we will use in Sections 6.1.1, 6.1.2, 7.1.1, and 7.1.2.
Suppose that the vertices in S are ordered as w1, w2, . . . , w|S| by a post-order depth-first
traversal of the tree starting from the root r of G. For each i ∈ {1, 2, . . . , |S|}, we denote
by Gi the subtree of G which is induced by wi and all its descendants in G.

Observation 4.1. Only the root wi of Gi is adjacent with a vertex in V (G) \ V (Gi).

Then, for each i ∈ {1, 2, . . . , |S|}, we define a vertex subset Ci of V (G), as follows:

Ci =

{
V (Gi) \

⋃
j<i V (Gj) if i 6= |S|;

V (G) \
⋃

j<i V (Gj) if i = |S|.

Note that since V (Gi) = C1 ∪ C2 ∪ . . . ∪ Ci, {C1, C2, . . . , C|S|} forms a partition of V (G).
Figures 6.1, 6.2, 7.1, and 7.2 illustrate such a partition of a tree G. Furthermore, notice
that

S ∩ Ci = {wi} (4.1)

holds for every i ∈ {1, 2, . . . , |S|}.
We will refer to this notation as the canonical representation of S for G. We now

prove the following lemma that we will use in Sections 6.1.1 and 6.1.2 for an instance of
CVD-Min-R on trees, and in Sections 7.1.1 and 7.1.2 for an instance of DS-Min-R on
trees.

Lemma 4.5. Suppose an instance I = (G,Ss, St, k) of P-Min-R, where P corresponds to
either CVD or DS, has a minimum feasible solution S for a tree G. Furthermore, using
the canonical representation of S for tree G, suppose that for every feasible solution T of
I for G, |T ∩Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}. Also, suppose that S ∩ V (Gi) is a
feasible solution of Gi. Then, S is a canonical solution of I.
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Proof. By the definition of canonical solution, we have to show that T ! S in RP-Min

(G, k) holds, where k = |T |+1. First, we construct a sequence σ = 〈σ1, σ2, . . . , σ|S|〉 of sets
between T and S, where each σi represents a subsequence of σ. Then, we prove that each
set in σ is a feasible solution of I when I is an instance of CVD-Min-R or DS-Min-R.
Finally, we prove that each set in σ is of cardinality at most |T |+ 1.

We let T0 = T be the first set of the sequence σ. For each i from 1 to |S|, we set
h = 1 and we construct a subsequence σi = 〈T 1

i , T
2
i , . . . , T

li
i 〉 of σ in the following phases,

for some positive integer li, where each set in σi is formed after each addition or removal
of a vertex, and Ti = T li

i :
(1) If wi /∈ Ti−1, add vertex wi, let T

1
i be the resulting set, and set h = 2.

(2) For j ∈ {h, . . . , li}, remove a vertex c ∈ T j−1
i ∩

(
Ci \{wi}

)
and let T j

i be the resulting
set.

Note that for every j, T j
i in σi is obtained from T j−1

i by the addition or removal of a single
vertex. By Equation 4.1, S ∩Ci = {wi} and by construction of Ti, we have Ti ∩Ci = {wi}
for every i ∈ {1, 2, . . . , |S|}. Therefore, Ti ∩Ci = S ∩Ci. Since V (Gi) = C1 ∪C2 ∪ . . .∪Ci

and Ti ∩ Ci = S ∩ Ci for every i ∈ {1, 2, . . . , |S|}, we have

Ti ∩ V (Gi) = S ∩ V (Gi). (4.2)

Furthermore, since Ti ∩ V (Gi) = S ∩ V (Gi) and S ∩ V (Gi) is a feasible solution of Gi,
Ti ∩ V (Gi) is a feasible solution of Gi. Let U denote the set V (G) \ V (Gi). Note that by
construction of Ti,

Ti−1 ∩ U = Ti ∩ U. (4.3)

We now show that each set in σ is a feasible solution of I when I is an instance of
CVD-Min-R and when it is an instance of DS-Min-R. For both instance cases, we first
show that each set Ti forms a feasible solution of G. Then, we show that each set in σ is
a feasible solution of G.
Case 1: Suppose that I is an instance of CVD-Min-R. First, using induction, we
show that each set Ti forms a deletion set of G. Then, we show that each set in σ =
〈σ1, σ2, . . . , σ|S|〉 is a deletion set of G by showing that each set of σi is a deletion set of G.

We now show that each set Ti forms a deletion set of G. Since T0 = T and T is deletion
set of G, the base case holds. Suppose that Ti−1 is a deletion set of G. By Fact 2.2.1, since
Ti−1 is a deletion set of G, Ti−1 ∩ V (Gi−1) is a deletion set of Gi−1. Similarly, Ti−1 ∩U is a
deletion set of G[U ]. Since Ti−1∩U = Ti∩U and Ti−1∩U is a deletion set of G[U ], Ti∩U is
a deletion set of G[U ]. By Equation 4.2, we have Ti∩V (Gi) = S∩V (Gi). By the statement
of Lemma 4.5, S∩V (Gi) is a deletion set of Gi. Since Ti∩V (Gi) = S∩V (Gi) and S∩V (Gi)
is a deletion set of Gi, Ti ∩ V (Gi) is a deletion set of Gi. Therefore, since Ti ∩ V (Gi) is a
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deletion set of Gi and Ti ∩ U is a deletion set of G[U ], where U = V (G) \ V (Gi), Ti is a
deletion set of G. Since both the base case and the induction step hold, by induction, each
set Ti is a deletion set of G, for each i ∈ {1, 2, . . . , |S|}.
Case 2: Suppose that I is an instance of DS-Min-R. Similarly to Case 1, we use in-
duction to show that each set Ti forms a dominating set of G. Then, we show that each
set in σ is a dominating set of G by showing that each set of σi is a dominating set of G.

We now show that each set Ti forms a dominating set of G. Suppose that Ti−1 is a
dominating set of G. By Equation 4.2, Ti ∩ V (Gi) = S ∩ V (Gi). By the statement of
Lemma 4.5, S ∩ V (Gi) is a dominating set of Gi. Therefore, Ti ∩ V (Gi) is a dominating
set of Gi. By construction of Ti, the only vertices added or removed in σi belong to Ci.
Thus, each vertex removed in Phase (2) is dominated by a vertex in Ti ∩ V (Gi). Further-
more, since by Observation 4.1 wi is the only vertex in Gi that is adjacent with a vertex
in V (G) \ V (Gi), any vertex in Ti−1 ∩ U that is dominated by a vertex in Ci is dominated
by wi. Hence, since Ti−1 is a dominating set and, by Equation 4.3, Ti−1 ∩ U = Ti ∩ U ,
each vertex in Ti ∩ U is dominated by a vertex in Ti. Therefore, Ti is a dominating set of
G. Since both the base case and the induction step hold, by induction, each set Ti is a
dominating set of G, for each i ∈ {1, 2, . . . , |S|}.

We now show that, for both cases, each set of σ is a feasible solution of G by showing
that each set of σi is a feasible solution of G. By Observation 2.2.1, all the sets formed in
Phases (1) and (2) are feasible solutions since each of them is a superset of Ti. Therefore,
since each set in the subsequence σi forms a feasible solution of G, each set in σ is a feasible
solution of G.

Finally, we prove that each set in the sequence σ from T to S in RP-Min(G, k) is of
cardinality at most |T |+1. We first show that |Ti−1| ≥ |Ti| for each i ∈ {1, 2, . . . , |S|} and
that the maximum cardinality of any set in σi is |Ti−1| + 1. Then, since |T0| = |T | and
|Ti−1| ≥ |Ti|, the cardinality of any set in the sequence from T to S in RP-Min(G, k) is at
most |T |+ 1.

We now show that |Ti−1| ≥ |Ti| for the cases where wi ∈ Ti−1 and wi 6∈ Ti−1. Then,
we conclude that the cardinality of any set in σ is at most |T | + 1. If wi ∈ Ti−1, then no
vertex is added in Phase (1), hence each set in σi is of cardinality at most |Ti−1| because
we only delete vertices in Phase (2). Therefore, |Ti−1| ≥ |Ti| holds. We thus consider
the case where wi 6∈ Ti−1. By the statement of Lemma 4.5, for any feasible solution T
of I, |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}. Therefore, since Ti−1 is a feasible
solution of I, |Ti−1 ∩ Ci| ≥ 1 holds. Since wi 6∈ Ti−1 and |Ti−1 ∩ Ci| ≥ 1 holds for every
i ∈ {1, 2, . . . , |S|}, we have Ti−1∩

(
Ci \{wi}

)
6= ∅. Therefore, all the sets obtained in Phase

(2) are of cardinality at most |Ti−1|. Thus, |Ti−1| ≥ |Ti| holds. Since Ti−1 is a feasible
solution and there is only a single vertex addition in the subsequence σi, each set in σi is
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of cardinality at most |Ti−1|+1. Therefore, σ is a reconfiguration sequence from T to S in
RP-Min(G, k) such that all intermediate feasible solutions are of cardinality at most |T |+1.

We have thus proved that for the minimum feasible solution S for G, T ! S holds in
RDS-MIN(G, k) for every feasible solution T of I for G and k = |T |+1. Therefore, S forms
a canonical solution of I.
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Chapter 5

Clique Reconfiguration

In this chapter, we study the CL-Max-R problem. The CL-Max-R problem was proven to
be PSPACE-complete on general graphs by Ito et al. [29]. We show in the following sections
that CL-Max-R can be solved in time linear in |E(G)| for paths, trees, bipartite graphs,
chordal graphs, and cographs. Recall that these results were found independently from the
work by Ito et al. [32]. We refer the reader to that work for polynomial-time algorithms
for graphs of bounded clique size and graphs having polynomially many cliques.

5.1 Paths

In this subsection, we show that CL-Max-R is solvable in time linear in |E(G)| for any
path G. Recall that, from Section 2.3, Λ(G) represents the maximum cardinality of any
feasible solution of a graph G.

Fact 5.1.1. Given any path G, the cardinality of a maximum clique is Λ(G) = 2.

For an instance (G,Ss, St, k) of CL-Max-R, we will show that either we have a trivial
no-instance or we can find a reconfiguration sequence from Ss to St in time linear in |E(G)|.

Theorem 2. For any instance (G,Ss, St, k) of CL-Max-R where G is a path, CL-Max-R
can be in solved time linear in |E(G)|.

Proof. We will first check whether this is a no-instance by checking if any of the conditions
from Proposition 2.3.2 hold, in which case we report a no-instance. Otherwise, we will
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u s0 v1 v2 v3 v4 t0

Figure 5.1: An example of a path with Ss = {u, s0} and St = {t0}.

show that we have a yes-instance.
To prove that we have a yes-instance, we show that when none of the conditions of

Proposition 2.3.2 hold, there is a reconfiguration sequence from Ss to St in RCL-MAX(G, k).
By Fact 5.1.1, the cardinality of a maximum clique is 2. Therefore, if Ss = St and k ≤
2, then by Fact 2.3.2, we report a yes-instance. Since by Proposition 2.3.2 we have a
no-instance when k > 2 or when k = 2 and Ss 6= St, we only have to show that I is a
yes-instance for Ss 6= St and k ≤ 1.

By Proposition 2.3.3, if k = 0 then we report a yes-instance. So the case remaining
is when k = 1. Let s0 and t0 be two vertices in G such that s0 ∈ Ss and t0 ∈ St. We
construct a reconfiguration sequence from S

′
s = {s0} to S

′
t = {st} such that all intermediate

cliques are of cardinalities at most 2. Then, we show that Ss ! S
′
s and S

′
t ! St hold in

RCL-MAX(G, 1), and therefore Ss ! S
′
s ! S

′
t ! St holds.

We start by constructing the path G′ = (v0, v1, . . . , vl), for some positive integer l, of
vertices between s0 and t0 by using depth first search in G, such that v0 = s0 and vl = t0 [2].
Then, we construct the reconfiguration sequence between S

′
s and S

′
t in RCL-MAX(G, 1). For

i ∈ {1, 2, . . . , l}, we construct the reconfiguration sequence as follows:
(1) Add vertex vi.
(2) Remove vertex vi−1.

Clearly, all the sets formed in steps 1 and 2 are cliques as they are either a single vertex or
two vertices forming an edge. Since |S ′

s| = 1 and the sets in the reconfiguration sequence
from S ′

s to S
′
t are obtained by an alternation of a removal and an addition of a single vertex,

each set formed is a clique of size at most two. Figure 5.1 illustrates a path G such that
triangles are vertices in Ss = {u, s0}, squares are vertices in St = {t0}, striped nodes are
vertices in the path from s0 to st, and white circles are every other vertex in V (G).

Note that if |Ss| = 2, then S ′
s = Ss \ u where u ∈ Ss and u 6= s0. Similarly, if |St| = 2,

then St = S ′
t \ w where w ∈ St and w 6= t0. Therefore, Ss ! S ′

s and S ′
t ! St holds.

Hence, there exists a reconfiguration sequence Ss ! St in RCL-MAX(G, 1).
The depth first search algorithm finds path G in time linear in |V (G)|. Since steps 1

and 2 take constant time and we go through path G only once, our algorithm is linear in
|E(G)|.
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5.2 Trees and Bipartite Graphs

In this subsection, we show that CL-Max-R is solvable in time linear in |E(G)| for any
tree or bipartite graph G.

Fact 5.2.1. Given any tree or bipartite graph G, the cardinality of a maximum clique is
Λ(G) = 2.

Similarly to paths, for an instance (G,Ss, St, k) of CL-Max-R, we will show that either
we have a trivial no-instance or SS ! St in RCL-MAX(G, k).

Theorem 3. For any instance (G,Ss, St, k) of CL-Max-R where G is a tree or a bipartite
graph, CL-Max-R can be solved in time linear in |E(G)|.

Proof. Similarly to paths, we first check whether this is a no-instance by checking if any of
the conditions from Proposition 2.3.2 hold, in which case we report a no-instance. Other-
wise, we try to find a path in G that contains a vertex s ∈ Ss and a vertex t ∈ St. If there
does not exist such a path, we report a no-instance. Otherwise, we will show that we have
a yes-instance. Note that such a path always exists if G is a tree.

When none of the conditions of Proposition 2.3.2 hold, to prove that we have a
yes-instance or a no-instance, we will implement a modified breadth-first search algorithm
to find if there exists a path P such that s, t ∈ V (P ), where s ∈ Ss and t ∈ St. If
G is a bipartite graph and there does not exist such a path, we will show that it is a
no-instance. Otherwise, we will show that there is a reconfiguration sequence from Ss to
St in RCL-MAX(G, k). By Fact 5.2.1, the cardinality of a maximum clique is 2. Therefore, if
Ss = St and k ≤ 2, then by Fact 2.3.2, we report a yes-instance. Since by Proposition 2.3.2
we have a no-instance when k > 2 or when k = 2 and Ss 6= St, we only have to show that
I is a yes-instance for Ss 6= St and k ≤ 1.

We now show how to find whether there exists a path P ⊆ G such that s, t ∈ V (P ),
where s ∈ Ss and t ∈ St.

By Proposition 2.3.3, if k = 0 then we report a yes-instance. We find if there exists a
path P of vertices between a vertex s ∈ Ss and a vertex t ∈ St in G by implementing a
modified breadth-first search algorithm as follows: We start a breadth-first search at vertex
s. For every vertex v we discover, we mark it as visited and store its predecessor. We do
not revisit a vertex that has already been visited and we stop the search after vertex t
has been visited or after there are no more vertices that can be visited. If G is a bipartite
graph and vertex t was not visited after the breadth-first search, then there does not exist
a path between s and t and we report a no-instance. Otherwise, if vertex t was visited after
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the breadth-first search, we can reconstruct the path in reverse order by starting at vertex
t and visiting the predecessor of every vertex in the path until we reach vertex s. We now
have a path P of G that begins at s and ends at t. Similarly as in the proof of Theorem 2,
we can now find a reconfiguration sequence from Ss to St by first removing the vertex in
Ss \ {s} (if there exists such a vertex), then reconfiguring the clique from {s} to {t} along
path P as in the proof of Theorem 2, and then adding the vertex in St \ {t} (if there exists
such a vertex). This algorithms clearly runs in time linear in |E(G)|. Therefore, we can
find a reconfiguration sequence between Ss and St in time linear in |E(G)|.

Observation 5.2.1. Theorem 3 holds for all graphs G with clique-size at most 2.

5.3 Chordal Graphs

By Section 2.1, we can compute a clique tree of a chordal graph G in time linear in |E(G)|
and we know that a graph is a chordal graph if and only if it has a clique tree. Figure 5.2
(a) illustrates a chordal graph G such that triangles are vertices in Ss = {1, 2, 3} and
squares are vertices in St = {7, 8, 10}, and (b) its clique tree T where Ss = {1, 2, 3} and
St = {7, 8, 10}. For an instance I = (G,Ss, St, k) of CL-Max-R where G is a chordal
graph, we will show that CL-Max-R can be solved in time linear in |E(G)|. Note that for
a clique tree T of G, a node M ∈ T represents a set of vertices of G such that M is a
maximal clique of G. Therefore, there exists nodes A ∈ T and B ∈ T such that A ⊇ Ss and
B ⊇ St. We start by checking whether any conditions of Proposition 2.3.2 hold, in which
case we report a no-instance. Then, we find a path P = 〈M0,M1, . . . ,Ml〉 in the clique
tree T from a node M0 ⊇ Ss to a node Ml ⊇ St. The path P from M0 to Mt represented
by thick edges is shown in Figure 5.2 (b). Finally, we show that I is a no-instance if there
exists a clique Sj = Mj−1 ∩Mj such that k > |Sj|, for any j ∈ {1, 2, . . . , l}. Otherwise, we
show that I is a yes-instance.

Theorem 4. For any instance I = (G,Ss, St, k) of CL-Max-R where G is a chordal graph,
CL-Max-R can be solved in time linear in |E(G)|.

Proof. We start by checking whether any conditions of Proposition 2.3.2 hold, in which
case we report a no-instance. Otherwise, we will find a maximal clique M0 ∈ T such that
Ss ⊆ M0 and a maximal clique Mt ∈ T such that St ⊆ Mt, for a clique tree T of G.

Let C ∈ {Ss, St}. To find a maximal clique M such that C ⊆ M , we first set
L = V (G) \ C where L are potential clique vertices. Then, starting with clique C, we
iterate over L’s vertices, adding a vertex c ∈ L to the current clique if c is connected to
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Figure 5.2: (a) A chordal graph G, (b) a clique tree T of G.

each vertex in the current clique, and set L = L \ {c} otherwise. Note that for each vertex
v ∈ L, we go through the vertices NG(v) checking whether the current clique is a subset
of NG(v), in which case we add it to the current clique, otherwise we discard it from L.
Therefore, we go through each edge of G at most once. This algorithm is linear in |E(G)|.

Using this algorithm, we find maximal cliques A and B in G such that Ss ⊆ A and
St ⊆ B in time linear in |E(G)|. Then, we find the nodes M0 = A and Mt = B in the
clique tree T using the depth-first search algorithm on trees that runs in time linear in
|V (T )| [2].

Then, we construct the path P = (M0,M1, . . . ,Ml), where Ml = Mt for some posi-
tive integer l, of maximal cliques in T between M0 and Mt using the depth-first search
algorithm on trees that runs in time linear in |V (T )| [2]. Note that P is the unique path
between M0 and Mt since T is a tree. Let Cj = Mj−1 ∩Mj for each j ∈ {1, 2, . . . , l}, and
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assume that |Cj| is given for each edge of the clique tree.
Then, we will show that I is a no-instance if there exists a clique Cj such that |Cj| < k

for any j ∈ {1, 2, . . . , l}, and a yes-instance otherwise. Note that there exists a reconfigu-
ration sequence S between Mj−1 and Mj in RCL-MAX(G, k) only if |Mj−1 ∩Mj| ≥ k since
the clique Mj−1 ∩Mj must be in S. Note that Mj−1 ∩Mj = Cj. Furthermore, as stated
in Section 2.1, since T is a maximum spanning tree of the intersection graph I of G, the
weight of the minimum-weight edge in P is the maximum among the minimum-weight
edges of all possible paths between M0 and Mt in I. Hence, if there exists a clique Cj in
the unique path P between M0 and Mt such that |Cj| < k for any j ∈ {1, 2, . . . , l}, I is a
no-instance. Note that in Figure 5.2, all the edges in the path between Ss and St have the
same weight of 2. If there is no such Cj, then Cj−1 ! Cj holds in RCL-MAX(G, k) because
Cj−1∪Cj ⊆ Mj−1 and hence Cj−1∪Cj forms a clique of G for each j ∈ {1, 2, . . . , l}. Thus,
we have C0 ! Cl in RCL-MAX(G, k). Since Cs ⊆ M0 and C0 ⊆ M0 and Cs ∪ C0 ⊆ M0,
Cs ! C0 holds in RCL-MAX(G, k). Similarly, since Ct ⊆ Mt and Cl ⊆ Mt and Ct∪Cl ⊆ Mt,
Cl ! Ct holds in RCL-MAX(G, k). Therefore, Cs ! Ct holds in RCL-MAX(G, k).

5.4 Cographs

In this section, we show that the CL-Max-R problem can be solved in time linear in |E(G)|
where G is a cograph.

By Proposition 2.2.1, we know that S ⊆ G is a clique in G if and only if S is an
independent set in G. Using this fact, we will prove the following lemma.

Lemma 5.4.1. Let Ci be a clique of a graph G for all i ∈ {1, 2, . . . , l}, where l is some
positive integer. A sequence 〈C1, C2, . . . , Cl〉 is a reconfiguration sequence of cliques in
RCL-MAX(G, k) if and only if 〈C1, C2, . . . , Cl〉 is a reconfiguration sequence of independent
sets in RIS-MAX(G, k).

Proof. We first prove the if direction. Suppose that 〈C1, C2, . . . , Cl〉 is a reconfiguration
sequence of independent sets in RIS-MAX(G, k). Then, by Proposition 2.2.1, each Ci is
a clique in G, for each i ∈ {1, 2, . . . , l}. Therefore, a reconfiguration step between the
independent sets Ci−1 and Ci in RIS-MAX(G, k) is a reconfiguration step between the
cliques Ci−1 and Ci in RCL-MAX(G, k). Hence, 〈C1, C2, . . . , Cl〉 is a reconfiguration se-
quence of cliques in RCL-MAX(G, k). We then prove the only-if direction. Suppose that
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〈C1, C2, . . . , Cl〉 is a reconfiguration sequence of cliques in RCL-MAX(G, k). Then, by Propo-
sition 2.2.1, each Ci is an independent set in G, for each i ∈ {1, 2, . . . , l}. Thus, a recon-
figuration step between the cliques Ci−1 and Ci in RCL-MAX(G, k) is a reconfiguration step
between the independent sets Ci−1 and Ci in RIS-MAX(G, k) Therefore, 〈C1, C2, . . . , Cl〉 is
a reconfiguration sequence of independent sets in RIS-MAX(G, k).

We now prove the following theorem using the results of Lemma 5.4.1.

Theorem 5. For a cograph G, CL-Max-R can be solved in time linear in |E(G)|.

Proof. By the definition of cographs, the class of cographs is closed under taking comple-
ments [12]. By Lemma 5.4.1 and by the fact that IS-Max-R can be solved in time linear
in |E(G)| for a cograph G [34], CL-Max-R is solvable in time linear in |E(G)|.
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Chapter 6

Cluster Vertex Deletion
Reconfiguration

In this chapter, we study the CVD-Min-R problem. We show in the following sections
that CVD-Min-R can be solved in time linear in the number of edges for paths and trees.
Furthermore, we prove that the problem is NP-hard on bipartite graphs. Finally, we prove
that it is PSPACE-complete in general.

6.1 Linear-Time Algorithms

In this section, we show that CVD-Min-R is solvable in time linear in |E(G)| for paths
and trees. These proofs are very similar in spirit to the proofs that DS-Min-R is solvable
in linear time on paths and trees, given in the PhD thesis by Amer E. Mouawad [38].

6.1.1 Paths

In this section, we show that CVD-Min-R is solvable in time linear in |V (G)| for any path
G. By Theorem 1 it suffices to prove that an instance of CVD-Min-R has a canonical
deletion set for a path G. To do so, we construct a canonical deletion set for a path G. By
Proposition 5.1.1, the cardinality of a maximum clique in G is 2. Therefore, the cluster
graph formed after the removal of a deletion set from G is composed of disjoint edges and
isolated vertices. We assume that V (G) = {1, 2, . . . , n} for some positive integer n. We
denote the two 1 degree vertices by r and s, where r denotes the root of G and s the leaf of
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G in a tree corresponding to the path. We start by labelling each vertex of G with one of
1, 2 and 3, from vertex s to vertex r in the following pattern: 1, 2, 3, 1, 2, 3 and so on. We
denote by S the set of all vertices in G that are labelled with 3. Figure 6.1 (a) illustrates
a path labelled in the described pattern.

r1

3

2

1

3

2

1

3

2

1 s

(a)

r

w1

w2

w3

s

C1

C2

C3

(b)

Figure 6.1: (a) The labelling of a path P , (b) the partition of V (P ) into C1, C2, C3.

We prove the following theorem by showing that S forms a canonical deletion set of an
instance of CVD-Min-R for G.

Theorem 6. For an instance I = (G,Ss, St, k) of CVD-Min-R for a path G, CVD-Min-R
can be in solved in time linear in |V (G)|.

Proof. By Theorem 1, it suffices to prove that S forms a canonical deletion set of I for path
G. By Lemma 4.5, to prove that S forms a canonical deletion set of I, using the canonical
representation of S for G, we have to show that S forms a minimum deletion set of G such
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that for every deletion set T of G, |T ∩Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}, and that
S ∩V (Gi) is a deletion set of Gi. First, we prove that S is a deletion set of G. Afterwards,
we show that S ∩ V (Gi) is a deletion set of Gi. Then, we prove that |T ∩Ci| ≥ 1 holds for
every i ∈ {1, 2, . . . , |S|}. Finally, we prove that S is a minimum deletion set of G.

Using the canonical representation of S for G, we show that S is a deletion set of G. It
suffices to show that for every i ∈ {1, 2, . . . , |S|}, each Ci\wi is a cluster graph. Figure 6.1
illustrates the canonical representation of a path P partitioned into subsets C1, C2, C3

where solid circles are vertices in S, striped circles are vertices labelled with 2, and white
circles are vertices labelled with 1. In Ci, wi has as child a vertex labelled with 2. Vertices
labelled with 2, by construction, each have a child labelled with 1 and vertices labelled
with 1 do not have children in Ci. So after the removal of wi from Ci, the edge connecting
the vertices labelled with 1 and 2 will form a connected component, hence forming a clique.
Therefore, for every i ∈ {1, 2, . . . , |S|}, each Ci\wi is a cluster graph, so S is a deletion set
of G.

Now, we prove that S ∩ V (Gi) is a deletion set of Gi. Recall that V (Gi) = C1 ∪ C2 ∪
. . . ∪ Ci. By definition of a cluster graph, a union of cluster graphs is a cluster graph.
Therefore, since Ci\wi is a cluster graph for every i ∈ {1, 2, . . . , |S|}, V (Gi) \S is a cluster
graph. Thus, S ∩ V (Gi) is a deletion set of Gi.

We now show that for an arbitrary deletion set T of G, |T ∩ Ci| ≥ 1 holds for every
i ∈ {1, 2, . . . , |S|}. Suppose instead that T ∩Ci = ∅ holds for some index i ∈ {1, 2, . . . , |S|}.
We prove that Ci never forms a cluster graph. Then, since T ∩ Ci = ∅ and Ci is not a
cluster graph, T is not a deletion set of G; this contradicts the assumption that T is a
deletion set of G.

By construction, wi can only have as child a vertex labelled 2 and a vertex in Ci labelled
with 2 has a child labelled with 1. The path formed by the vertices labelled 1, 2, and wi

creates an induced path of length three. Therefore, Ci is not a cluster graph. Hence,
we have proved that for an arbitrary deletion set T of G, |T ∩ Ci| ≥ 1 holds for every
i ∈ {1, 2, . . . , |S|}.

Finally, we prove that S is a minimum deletion set of G. Note that Ci\{wi} is composed
of an edge forming a connected component of cardinality 2. By Proposition 5.1.1, the
cardinality of a maximum clique in G is 2. Therefore, since Ci, after the removal of wi,
forms a maximum clique and |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}, S forms a
minimum deletion set of G.

By Lemma 4.5, since S is a minimum deletion set of G such that for an arbitrary
deletion set T of G, |T ∩ Ci| ≥ 1 for every i ∈ {1, 2, . . . , |S|}, and S ∩ V (Gi) is a deletion
set of Gi, S is a canonical deletion set of I.
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6.1.2 Trees

In this section, we show that CVD-Min-R is solvable in time linear in |V (G)| for any tree
T . Similarly to the case of paths, by Theorem 1 it suffices to prove that an instance of
CVD-Min-R has a canonical deletion set for a tree G. To do so, we construct a canonical
deletion set for a tree G.

We choose an arbitrary vertex r of degree one in G, and regard G as a rooted tree
whose root is r. We first label each vertex in G with one of 1, 2 and 3, from the leaves
of G to the root r of G, as in the following steps (1)–(3); intuitively, the vertices labelled
with 3 form a deletion set of G, each vertex u labelled with 1 will form a clique by being
isolated or by forming an edge with a vertex v labelled with 2:
(1) All leaves in G are labelled with 1.
(2) Pick an internal vertex v of G such that all children of v have already been labelled.

Then,
- label v with 1 if all children of v are labelled with 3;
- label v with 2 if v has exactly one child labelled 1 and none labelled 2; and
- otherwise label v with 3.

For each i ∈ {1, 2}, we denote by Vi the set of all vertices in G that are labelled with
i, and by S the set of all vertices labelled with 3 . Then, {V1, V2, S} forms a partition
of V (G). Figure 6.2 (a) illustrates a tree whose vertices are labelled following the above
steps.

r
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3 2

2 1

1
3

1 1
2

1

T

(a)

w3

w1

w2

T

C1

C2

C3

(b)

Figure 6.2: (a) The labelling of a tree T , (b) the partition of V (T ) into C1, C2, C3.

Theorem 7. For an instance I = (G,Ss, St, k) of CVD-Min-R for a tree G, CVD-Min-R
can be in solved in time linear in |V (G)|.
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Proof. By Theorem 1, it suffices to prove that S forms a canonical deletion set of I for
tree G. By Lemma 4.5, to prove that S forms a canonical deletion set of I, we have to use
the canonical representation of S for G to show that S forms a minimum deletion set of G
such that for every deletion set T of G, |T ∩Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}, and
that S ∩ V (Gi) is a deletion set of Gi. First, we prove that S is a deletion set of G. Then,
we show that S ∩ V (Gi) is a deletion set of Gi. Subsequently, we prove that |T ∩ Ci| ≥ 1
holds. Finally, we prove that S is a minimum deletion set of G.

Using the canonical representation of S for G, we show that S is a deletion set of G.
Figure 6.2 illustrates the canonical representation of S for a tree T partitioned into subsets
C1, C2, C3, where solid circles are vertices in S, striped circles are vertices in V2, and white
circles are vertices in V1. It suffices to show that for every i ∈ {1, 2, . . . , |S|}, each Ci\wi

is a cluster graph. In Ci, wi can have as children vertices labelled with 1 or 2. Note that
there is exactly one vertex labelled 3 in each Ci so if a vertex v ∈ Ci has as child a vertex
u labelled with 3, u 6∈ Ci. Vertices labelled with 1 do not have children in Ci because
a vertex is labelled with 1 in G if it is a leaf or if all of its children are labelled 3. The
removal of wi from Ci will leave the vertices labelled with 1 isolated, hence each will form
a clique. Vertices labelled with 2 by definition must have exactly one child labelled with
1 and can as well have children labelled with 3. Similarly, the vertices labelled with 3 do
not belong to Ci and the vertices labelled with 1 do not have children in Ci. So after the
removal of wi from Ci, the edge connecting the vertices labelled with 1 and 2 will form a
connected component, hence forming a clique. Therefore for every i ∈ {1, 2, . . . , |S|}, each
Ci\wi is a cluster graph, so S is a deletion set of G.

Now, we prove that S ∩ V (Gi) is a deletion set of Gi. By definition of a cluster graph,
a union of cluster graphs is a cluster graph. Therefore, since Ci\wi is a cluster graph for
every i ∈ {1, 2, . . . , |S|} and V (Gi) = C1∪C2∪ . . .∪Ci, V (Gi)\S is a cluster graph. Thus,
S ∩ V (Gi) is a deletion set of Gi.

Now, we show that for an arbitrary deletion set T of G, |T ∩ Ci| ≥ 1 holds for every
i ∈ {1, 2, . . . , |S|}. Suppose for a contradiction that T ∩ Ci = ∅ holds for some index
i ∈ {1, 2, . . . , |S|}. We prove that Ci never forms a cluster graph. Then, since T ∩ Ci = ∅
and Ci is not a cluster graph, T is not a deletion set of G; this contradicts the fact that T
is a deletion set of G.

We first consider the case where wi has at least two children and then the case where
it has exactly one child. First, consider the case where wi has at least two children in Ci.
Then, by definition of a tree, these children do not have any edges between them. Since
the path between any two children of wi that goes through wi creates an induced path of
length three, Ci does not form a cluster graph. This contradicts the assumption that T
is a deletion set of G. Finally, consider the case where wi has exactly one child which,
by construction, can only be a vertex labelled 2. By construction, a vertex in Ci labelled
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with 2 must have at least one child, one of which must be labelled with 1. Then, the
path formed by the vertices labelled 1, 2, and wi creates an induced path of length three.
Similarly, this is a contradiction since T is a deletion set of G. Hence, we have proved that
for an arbitrary deletion set T of G, |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}.

Finally, we show that S is a minimum deletion set of G. By Equation 4.1, we know
that S ∩ Ci = {wi} and |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|} where T is an
arbitrary deletion set of G. Also, we know that {C1, C2 , . . . , C|S|} forms a partition of
V (G). Suppose as a contradiction that there exists a deletion set T ′ with |T ′| < |S|. Since
S ∩Ci = {wi} holds for every i ∈ {1, 2, . . . , |S|} and |T ′| < |S|, there exists a Ci such that
T ′ ∩ Ci = ∅. This contradicts the fact that |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}.
Hence, S is a minimum deletion set of G.

By Lemma 4.5, since S is a minimum deletion set of tree G such that for an arbitrary
deletion set T of G, |T ∩ Ci| ≥ 1 for every i ∈ {1, 2, . . . , |S|}, and S ∩ V (Gi) is a deletion
set of Gi, S is a canonical deletion set of I.

6.2 NP-hardness

In this section, we show that CVD-Min-R is NP-hard for bipartite graphs.

We define the notion of iterative compression [21] whose central idea will be used in
proving our result. Iterative compression employs a so-called compression routine. Given
a problem instance and a corresponding feasible solution, a compression routine either cal-
culates a smaller feasible solution or proves that the given feasible solution is of minimum
size. Using a compression routine, one finds an optimal feasible solution to a problem
by inductively building up the problem structure and iteratively compressing intermediate
feasible solutions. In the application of iterative compression of the Cluster Vertex
Deletion (CV D) problem, the compression routine first exhaustively considers all possi-
ble sets that correspond to the intersection of the given solution and a potentially smaller
solution, and discards the elements in these sets from the problem instance. Then, it tries
to find a smaller solution which is disjoint from the given solution. Unlike this compression
routine, to prove the main result of this section, we only need to find a solution which is
smaller than the given solution. Therefore, we define the compression routine of the CV D
problem, called the Cluster Vertex Deletion Compression (CV DC) problem, as
follows:
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Input: An undirected graph G and a deletion set D of G.
Question: Is there a vertex set D′ ⊆ V (G) such that D′ is a deletion set

and |D′| < |D|?

Another problem that will be used in proving our result is the NP-complete maximum
induced matching problem [47] defined as follows:

Input: An undirected graph G = (V,E) and a non-negative integer k.
Question: Is there an induced matching M ⊆ E with |M | ≥ k?

First, we will show in Theorem 8 that the CV D problem is NP-complete on bipar-
tite graphs by a polynomial-reduction from maximum induced matching on bipartite
graphs. Then, we prove in Theorem 9 that the CV DC problem on bipartite graphs is
NP-complete by using a Turing reduction from CV D on bipartite graphs. Finally, we
prove in Theorem 10 that CVD-Min-R is NP-hard by a reduction from CV DC on bipartite
graphs.

Theorem 8. The Cluster Vertex Deletion problem is NP-complete on bipartite
graphs.

Proof. Clearly, Cluster Vertex Deletion is in NP. Given a deletion set D and a non-
negative integer k, one can verify in polynomial time if that is a deletion set of size at most
k. This can be done by checking whether |D| ≤ k and by removing the deletion set, and
taking each connected component and checking if it forms a clique.

To show that it is NP-complete, we give a polynomial-time reduction from the NP-complete
maximum induced matching problem on bipartite graphs [47]. Let (G, k) be an instance
of maximum induced matching for a bipartite graph G where V (G) = {v1, v2, . . . , vn}
and E(G) = {e1, e2, . . . , em}. Then, V (G) can be partitioned in polynomial time into
two subsets A and B such that G[A] and G[B] are edgeless [37]. We construct the cor-
responding bipartite graph G′ as follows. Let I be the set of isolated vertices of G and
V (G′) = V (G) \ I. For G′ the resulting graph, G′ is bipartite. Let |V (G′)| = n′ and
(G′, k′ = n′ − 2k) be the corresponding instance of Cluster Vertex Deletion for bi-
partite graphs. Clearly, this instance can be constructed in polynomial time. We will prove
that G has an induced matching M of size at least k if and only if G′ has a deletion set D
of size at most k′.

If M is an induced matching of G of size at least k, we will show that there exists a
deletion set of size at most k′ in G′. M is an induced matching, so by definition of an
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induced matching, no two distinct edges of M are joined by an edge of G. If M is an
induced matching of G, then D = V (G′) \ V (M) is a deletion set since any component of
G[V (G′)\D] is an edge of M , hence a clique. The induced matching M is of size at least k
which implies that |V (M)| ≥ 2k, and since |V (G′)| = n′, |D| = |V (G′)|−|V (M)| ≤ n′−2k.
So if G has an induced matching M of size at least k, then G′ has a deletion set of size at
most k′.

If G′ has a deletion set D of size at most k′, we will show that there exists a matching
of size at least k in G. Since G′ \ D is a bipartite graph, there exists a partition (A,B)
of its vertex set such that G[A] and G[B] are edgeless. Since the bipartite graph G′ does
not have any isolated vertices and D is a deletion set, G′ \D is a bipartite cluster graph.
By Fact 2.1.1, the cluster graph G′ \ D contains no induced path of three vertices. Fur-
thermore, by Fact 5.2.1, the bipartite graph G′ \D has cliques of maximum cardinality 2.
Therefore, since G′ \D does not have any isolated vertices, the only connected components
that form cliques are edges. We know that |V (G′)| = n′ and |V (D)| ≤ k′ where k′ = n′−2k
so |V (G′)| − |V (D)| ≥ 2k. So we can conclude that G′ \D is formed of at least k edges no
two of which are joined by an edge of G′, which is by definition an induced matching. By
construction, V (G′) = V (G) ∪ I so an induced matching of size at least k in G′ yields an
induced matching of size at least k in G. So if G′ has a deletion set D of size at most k′,
then G has a matching of size at least k.

We will now use the result of Theorem 8 to prove that CV DC on bipartite graphs is
NP-complete. One can easily show that an efficient algorithm for CV DC implies an efficient
algorithm for CV D, and hence NP-hardness of CV D implies NP-hardness of CV DC (see
the paper by Fedor V. Fomin et al. [16] for a similar reduction for vertex cover). We give
the details here for completeness.

Theorem 9. The CV DC problem is NP-complete on bipartite graphs.

Proof. To show that the CV DC problem is NP-complete on bipartite graphs, we give
a Turing reduction from CV D on bipartite graphs. We will prove that if we have an
algorithm A that can solve the CV DC problem, we can solve the CV D problem using a
polynomial number of calls to algorithm A.

Let G be the graph for which we are trying to find if there exists a deletion set of size at
most k. We will solve the problem by using algorithm A which uses iterative compression.
We will start with D = V (G); clearly D is a deletion set. We then give graph G and
the deletion set D as the input to A, and let D′ be the deletion set that A outputs after
applying its compression routine. If |D′| ≥ k, then we repeatedly try to find a smaller
deletion set for G by giving graph G and the deletion set D = D′ as input to algorithm
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A. At every iteration, A either returns a smaller deletion set for G, or proves that D is
optimal. If it is optimal, then we can conclude that G does not have a deletion set of size at
most k. Since eventually D = ∅, we obtain a solution for G once the algorithm A returns
a deletion set D′ with |D′| ≤ k. Since the algorithm A either returns a smaller solution or
proves that the given solution is of minimum size, we will call A at most |V | times.

Finally, we can use the result of Theorem 9 to prove that CVD-Min-R is NP-hard by a
reduction from CV DC on bipartite graphs.

Theorem 10. The CVD-Min-R problem is NP-hard on bipartite graphs.

Proof. We will show that the problem is NP-hard on bipartite graphs by a polynomial-time
reduction from CV DC on bipartite graphs.

Let (G,D) be an instance of CV DC for a bipartite graph G where V (G) = {v1, v2, . . . ,
vn}, E(G) = {e1, e2, . . . , em} and D is a deletion set of size k. Figure 6.3 (a) illustrates a
bipartite graph G and a deletion set of size 4 represented by solid circles. We construct
a bipartite graph G′ as follows. We let V (G′) = A ∪ B, where A = {a1, a2, . . . , an} and
{ai, aj} ∈ E(G′) if {vi, vj} ∈ E(G), and B is a biclique with partitions U and W . We
let U = {u1, u2, . . . , uk+1} and W = {w1, w2, . . . , wk+1}. Since B is a biclique, for every
two vertices u ∈ U and w ∈ W , uw is an edge in E(G′). The resulting graph G′ is
bipartite. Let Ds = D ∪ U , Dt = D ∪ W , and k′ = 3k. Clearly, |Ds| = |Dt| = 2k + 1.
Figure 6.3 (b) illustrates a graph G′ whereDs is represented by triangle shaped vertices and
Dt is represented by striped vertices. Let (G′, Ds, Dt, k

′) be the corresponding instance of
CVD-Min-R for bipartite graphs. Clearly, this instance can be constructed in polynomial
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Figure 6.3: (a) A graph G, and (b) a graph G′.
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time. Thus, we will prove that Ds ! Dt in RCV D-Min(G
′, k′) if and only if there is a

deletion set D′ ⊆ V (G) and |D′| < |D|.
We first prove the if direction. Suppose there is a deletion set D′ ⊆ V (G) such that

|D′| < |D|. Since |D| = k and |D′| ≤ |D| − 1, then |D′| ≤ k − 1. We will form a
reconfiguration sequence of deletion sets in RCV D-Min(G

′, k′) between Ds and Dt. We will
construct the reconfiguration sequence σ in 8 stages, and at each stage, we will show that
the sets formed are deletion sets of size at most k′. Note that by Observation 2.2.1, all sets
formed in the stages where we add vertices to our deletion set are deletion sets. Therefore,
we will only prove that the sets formed are deletion sets in stages where we delete vertices
from our deletion set. Also, by Observation 2.2.1, to prove that all the sets formed in the
stages where we remove vertices are deletion sets, it suffices to show that our resulting set
is a deletion set. We form the reconfiguration sequence between Ds and Dt as follows:
(1) Add each vertex of D′. The resulting deletion set size is 2k+1+|D′| ≤ 2k+1+k−1 ≤

3k = k′.
(2) Remove each vertex from D. The resulting set is U ∪ D′ which is a deletion set of

G′ since D′ is a deletion set of A and U is a deletion set of B. The resulting deletion
set size is |U |+ |D′| ≤ (k + 1) + (k − 1) = 2k < k′.

(3) Add k arbitrary vertices of W . The resulting deletion set size is |U | + |D′| + k ≤
3k = k′.

(4) Remove one vertex u ∈ U . The resulting set is a deletion set since the vertex w ∈ W
that is not in our deletion set and u form a cluster graph as they form an edge. The
resulting deletion set size is k′ − 1.

(5) Add vertex w ∈ W where w is the unique vertex in W that is not in our deletion set.
The resulting deletion set size is k′.

(6) Remove each vertex from U . The resulting set is W ∪D′ which is a deletion set of G′

since D′ is a deletion set of A and W is a deletion set of B. The resulting deletion
set size is |W |+ |D′| ≤ 2k < k′.

(7) Add each vertex of D. The resulting deletion set size is |D′|+ |W |+ |D| ≤ 3k = k′.
(8) Remove each vertex from D′. The resulting set is D ∪W which is a deletion set of

G′ since D is a deletion set of A and W is a deletion set of B. The resulting deletion
set size is |D|+ |W | ≤ 2k + 1 < k′.

Thus by stages (1)-(8), there exists a reconfiguration sequence Ds ! Dt in RCV D-Min

(G′, k′). Consider the instance in Figure 6.3 (b) where k′ = 12, D = {a3, a5, a6, a7},
and D′ = {a10, a12, a13}, the reconfiguration between Ds and Dt in RCV D-Min(G

′, 12) as
described above holds as each set formed is a deletion set of size at most k′ = 12.

We now prove the only-if direction by proving its contrapositive. Suppose that there
does not exist a deletion set D′ ∈ V (G) such that |D′| < |D|. Suppose for contradiction
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that there exists a reconfiguration sequence σ between Ds and Dt in RCV D-Min(G
′, k′).

Since there does not exist a deletion set D′ ∈ V (G) such that |D′| < |D|, D is a minimum
deletion set of G and A, and λ(A) = |D| = k. Since B is a biclique, there exists an
induced path (x, y, z) of size three, where x, z ∈ U and y ∈ W . Similarly, there exists
an induced path (a, b, c) of size three, where a, c ∈ W and b ∈ U . Furthermore, since
|U | = |W | = k + 1, the size of a minimum deletion set of B is k + 1, and λ(B) = k + 1.
Note that all vertices of U must be removed to form Dt. Let N be the first deletion set
in σ such that a vertex u ∈ U was removed, and M the deletion set from which N was
obtained through the removal of u. Note that M contains all k + 1 vertices of U and at
least k vertices of A since M is a deletion set of G′. Similarly, N contains exactly k vertices
of U and at least k vertices of A. The deletion set N must also contain at least k vertices
of W ; otherwise two vertices v1, v2 ∈ W and u would form the induced path {v1, u, v2} of
length three. Therefore, N contains exactly k vertices of U , at least k vertices of A and at
least k vertices of W . Hence, |N | ≥ 3k = k′, so N must contain exactly k vertices of U ,
k vertices of A and k vertices of W . Note that M is obtained from N by the removal of
vertex u, hence M = N ∪ {u}. Therefore, |M | = |N | + 1 = k′ + 1 > k′. Therefore, there
does not exist a reconfiguration step from M to N , a contradiction.

6.3 PSPACE-completeness

In this section, we prove that CVD-Min-R is PSPACE-complete for general graphs. Amer E.
Mouawad [38] proved in a similar way that DS-Min-R is PSPACE-complete. Before stating
Theorem 11, we will define the H-Word Reconfiguration problem [49]. Given a pair
H = (Σ, R), where Σ is an alphabet and R ⊆ Σ2 a binary relation between symbols, we
say that a word w over Σ is an H-word if every two consecutive symbols of w are in the
relation R. If one looks at H as a digraph (possibly with loops), where every symbol in the
alphabet is represented by a vertex and there is an edge (u, v) if (u, v) ∈ R, a word w is an
H-word if and only for two consecutive symbols (x, y) in w, (x, y) ∈ E(H). The H-Word
Reconfiguration problem asks whether two given H-words ws and wt of equal length
n can be transformed into one another by changing one symbol at a time so that all
intermediary steps are also H-words of length n. The H-Word Reconfiguration is
know to be PSPACE-complete for general graphs [41].

Theorem 11. CVD-Min-R is PSPACE-complete for general graphs.
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Proof. One can observe that the problem is in PSPACE [29, Theorem 1]. We thus show
that it is PSPACE-hard for general graphs by a polynomial-time reduction from H-Word
Reconfiguration.

Let (H,ws, wt) be an instance of H-Word reconfiguration, where H = (Σ, R),
Σ = {s1, s2, . . . , sm}, ws = a1a2 . . . an and wt = c1c2 . . . cn. We construct an instance G of
CVD-Min-R as follows. We first make n gadgets Gi for all 1 ≤ i ≤ n, where each gadget
Gi will be used to represent the ith character of an H-word. Each Gi is a split graph with
V (Gi) = Ci ∪ Si, where Ci is a clique of size 2m and Si = {si1, . . . , sim} an independent set
of size m; more precisely, each vertex sij ∈ Si corresponds to symbol sj ∈ Σ. We join all
vertices in Ci to each vertex in Si such that E(Gi) = {{cj, sil} | cj ∈ V (Ci), s

i
l ∈ V (Si), 1 ≤

j ≤ 2m, 1 ≤ l ≤ m}. Let V (G) = V (G1) ∪ V (G2) ∪ . . . ∪ V (Gn) and in addition, for each
binary relation (sa, sb) 6∈ R, add an edge between sla and sl+1

b for all l = 1, . . . , n − 1. We
let Ds = L1 ∪ L2 ∪ . . . ∪ Ln, where Li = Si \ {ai} for all 1 ≤ i ≤ n. Similarly, we let
Dt = U1 ∪ U2 ∪ . . . ∪ Un, where Ui = Si \ {ci} for all 1 ≤ i ≤ n. The construction of G for
Σ = {a, b, c}, R = Σ2 \ {(a, a), (b, a), (c, b), (c, c)}, ws = abc, wt = bca, and n = 3 where
each vertex in Si that corresponds to symbol a ∈ Σ is represented by a triangle, each vertex
in Si that corresponds to symbol b ∈ Σ is represented by a square, each vertex in Si that
corresponds to symbol c ∈ Σ is represented by a circle, and vertices of Ds are represented
by dashed nodes and vertices of Dt are represented by grey filled nodes, as illustrated
in Figure 6.4. Let G be the resulting graph, and let (G,Ds, Dt, k = n(m − 1) + 1) be
the corresponding instance of CVD-Min-R. Clearly, this instance can be constructed in
polynomial time.

G1 G2 G3

C1 C2 C3

s11 s12 s13 s21 s22 s23 s31 s32 s33S1 S2 S3

Figure 6.4: A graph G.
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The construction that allows us to transform an H-word w of H to a deletion set D of
G is as follows: let w = b1b2 . . . bn. We know that V (G) = V (G1) ∪ V (G2) ∪ . . . ∪ V (Gn)
where each Gj is a split graph with an independent set Sj and a clique Cj for all 1 ≤ j ≤ n.
Note that every vertex in each Sj corresponds to a symbol in the alphabet Σ. For u ∈ Sj,
it is easy to see that Sj \ {u} is a deletion set of Gj since, by construction, Cj ∪ u forms a
cluster graph. Let D = D1 ∪D2 ∪ . . . ∪Dn, where Di = Si \ {bi} for all 1 ≤ i ≤ n.

We will now prove that D is a deletion set of G by showing that G[V (G) \ D] is a
cluster graph. Note that each Di is a deletion set of Gi. If we look at G[V (G) \D], then
we notice that G[V (G) \ D] = (C1 ∪ {b1}) ∪ (C2 ∪ {b2}) ∪ . . . ∪ (Cn ∪ {bn}). We know
by definition of an H-word that every two consecutive symbols of an H-word are in the
relation R. Hence, by construction, there are no edges between bi and bi+1 in G[V (G) \D]
for all 1 ≤ i ≤ n. Thus, each G[Ci ∪ {bi}] is a connected component that forms a clique,
which makes G[V (G) \D] a cluster graph. Note that |Di| = m− 1 for all i, which makes
D a deletion set of size n(m− 1).

We will now prove that the size of a minimum deletion set of G is n(m − 1). We will
first show that the size of a minimum deletion set of Di for any i ∈ {1, 2, . . . , n} is m− 1.
Since Gi is a split graph, there exists an induced path (x, y, z) of size three, where x, z ∈ Si

and y ∈ Ci. We can either remove all the vertices of Ci and get a deletion set of size 2m, or
removem−1 vertices of Si and get a deletion set of sizem−1. Hence the size of a minimum
deletion set of each Di is m− 1. By construction, E(G) \ {E(G1), E(G2), . . . , E(Gn)} are
edges between vertices of S1, S2, . . . , Sn. Choosing any vertex in V (G) \ V (Gi) to be in
our deletion set does not reduce the number of induced paths of size three in Gi, so we
have to choose at least m − 1 vertices of each Gi to be in our deletion set D of G. Since
we have shown that there exists a deletion set of size n(m − 1), the minimum size of a
deletion set of G is n(m− 1). Therefore, any deletion set D of G of size n(m− 1) must be
in the following form: D = D1 ∪D2 ∪ . . . ∪Dn, where Di = Si \ {si} for all 1 ≤ i ≤ n and
an arbitrary vertex si ∈ Si. Note that by construction, the deletion set that corresponds
to an H-word of size n of H is a minimum deletion set and any minimum deletion set of
size n(m − 1) corresponds to an H-word of size n. Furthermore, note that since Ds and
Dt are minimum deletion sets of size n(m − 1) and k = n(m − 1) + 1, a reconfiguration
sequence Ds ! Dt in RCV D-Min(G, k) is an alternating sequence of deletion sets of size
n(m− 1) and of deletion sets of size n(m− 1)+1. Therefore, since any deletion set of G of
size n(m − 1) corresponds to an H-word of size n, the corresponding deletion sets of two
adjacent H-words in H are two reconfiguration steps apart in G.

Now, we will define a reconfiguration step between two adjacent deletion sets Di and
Di+1 of G. By definition of adjacency, (Di \Di+1)∪ (Di+1 \Di) = {u} for some u ∈ V (G).
If u ∈ Di, we remove u to get Di+1. Otherwise, if u ∈ Di+1, we add u to get Di+1.
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We now prove that Ds ! Dt in RCV D-Min(G, k) holds if and only if there is a recon-
figuration sequence of H-words in H between ws and wt. We first prove the if direction.
Suppose that ws ! wt in RH−word(H,n) holds, and hence there exists a reconfiguration
sequence in H between ws and wt. It suffices to prove that if there is a reconfiguration
sequence between any two adjacent H-words of H, there is a reconfiguration sequence be-
tween the two deletion sets that correspond to the two H-words. Let the deletion sets D2i

and D2i+2 in G correspond to the adjacent H-words wi = e1e2 . . . en and wi+1 = f1f2 . . . fn
in H, respectively. We will now show the correspondence between a reconfiguration step
from wi to wi+1 in H and the reconfiguration steps from D2i to D2i+2 in G, for any
1 ≤ i ≤ n − 1. We know that two adjacent H-words differ by exactly one symbol. Let
that symbol be the lth symbol of wi and wi+1, so el 6= fl. We know by construction
that D2i = D2i

1 ∪ D2i
2 ∪ . . . ∪ D2i

n where D2i
j = Sj \ {ej} for all 1 ≤ j ≤ n. Similarly,

D2i+2 = D2i+2
1 ∪ D2i+2

2 ∪ . . . ∪ D2i+2
n where D2i+2

j = Sj \ {fj} for all 1 ≤ j ≤ n. Since

wi and wi+1 differ only at the lth symbol, D2i
j = D2i+2

j for all j except for j = l because
el 6= fl. By construction, |D2i| = n(m − 1) < k. Let the first reconfiguration step be
D2i+1 = D2i∪{fl} where, by Observation 2.2.1, D2i+1 is a deletion set of size k. The next
and last reconfiguration step is D2i+2 = D2i+1 \ {el} where D2i+2 is the deletion set that
corresponds to the H-word wi+1.

We now prove the only-if direction. Suppose that Ds ! Dt in RCV D-Min(G, k) holds,
and hence there exists a reconfiguration sequence in G between Ds and Dt. Recall that this
reconfiguration sequence must be an alternating sequence of deletion sets of size n(m− 1)
and of deletion sets of size n(m−1)+1 since n(m−1) is the size of a minimum deletion set
of G and k = n(m−1)+1. Since any H-word corresponds to a deletion set of size n(m−1),
it suffices to prove that if there is a reconfiguration sequence between two deletion sets D2i

andD2i+2 ofG, where |D2i| = |D2i+2| = n(m−1) andD2i andD2i+1 are two reconfiguration
steps apart in the reconfiguration sequence, there is a reconfiguration sequence between
the two H-words that correspond to D2i and D2i+2. We know that D2i \D2i+2 = {u} and
D2i+2 \D2i = {v} where u, v ∈ V (G) and u 6= v. Since D2i is adjacent to D2i+1 and D2i+1

is adjacent to D2i+2, a reconfiguration sequence from D2i to D2i+2 will be as follows: add
vertex v and let D2i+1 be the resulting deletion set of size n(m− 1)+1 = k. Then, remove
u to obtain D2i+2.

We will now show that v and u are in the same independent set Sj of Gj for a j ∈
{1, 2, . . . , n}. Recall that while proving that the size of a minimum dominating set of G is
n(m−1), we showed that any deletion set D of G of size n(m−1) must be in the following
form: D = D1 ∪D2 ∪ . . . ∪Dn, where Df = Sf \ {sf} for all 1 ≤ f ≤ n and an arbitrary
vertex sf ∈ Sf . Therefore, since D2i is a deletion set of minimum size n(m − 1), it must
be of the form D2i = D2i

1 ∪D2i
2 ∪ . . . ∪D2i

n where D2i
l = Sl \ {xl} for all 1 ≤ l ≤ n and for
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some vertex xl ∈ Sl. Similarly, D2i+2 = D2i+2
1 ∪D2i+2

2 ∪ . . .∪D2i+2
n where D2i+2

l = Sl \ {yl}
for all 1 ≤ l ≤ n and for some vertex yl ∈ Sl. Thus, D2i ∩ V (Gj) = Sj \ {xj} for some
vertex xj ∈ Sj. Therefore, if u ∈ Sj and v 6∈ Sj, then the removal of u from D2i+1 will
create an induced path (u, z, xj) of size three in the split graph Gj, for an arbitrary vertex
z ∈ Cj. Similarly, if u 6∈ Sj and v ∈ Sj, then u ∈ Sh for a set Sh ∈ G and Sh 6= Sj. Since
D2i+2∩V (Gh) = Sh \{yh} for some vertex yh ∈ Sh, the removal of u from D2i+2 creates an
induced path (u, z, yh) of size three in the split graph Gh, for an arbitrary vertex z ∈ Ch.
Therefore, v and u are in the same independent set Sj of Gj.

If (xl, xl+1) ∈ E(G), since xl 6∈ D2i for all 1 ≤ l ≤ n, (c, xl, xl+1) creates an induced
path in Gl ∪ Gl+1, for an arbitrary vertex c ∈ Cl where Cl represents the clique of Gl.
Therefore, (xl, xl+1) 6∈ E(G) and hence (xl, xl+1) ∈ R for all l ∈ {1, 2, . . . , n − 1}. So
wi = x1x2 . . . xn is the corresponding H-word in H of D2i where xh is the hth character of
wi for each h ∈ {1, 2, . . . , n}. Similarly, since D2i+2 is a deletion set, (yl, yl+1) 6∈ E(G) and
hence (yl, yl+1) ∈ R for all l ∈ {1, 2, . . . , n− 1}. So wi+1 = y1y2 . . . yn is the corresponding
H-word in H of D2i+2 where yh is the hth character of wi+1 for each h ∈ {1, 2, . . . , n}.
Since D2i \D2i+2 = {u} and D2i+2 \D2i = {v} where u, v ∈ V (G) and u 6= v and u, v ∈ Sj,
wi and wi+1 differ only at the jth symbol. So wi and wi+1 are adjacent H-words.
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Chapter 7

Dominating Set Reconfiguration

In this chapter, we study the DS-Min-R problem. The following results have appeared (in
a slightly different form) in collaborative work with Ito et al. [24]. We show that DS-Min-R
can be solved in time linear in the number of edges for paths, cographs, trees, and interval
graphs. Furthermore, we show that the problem is PSPACE-complete for general graphs,
bipartite graphs, and split graphs.

7.1 Linear-Time Algorithms

In this section, we show that DS-Min-R is solvable in time linear in the number of edges in
paths, cographs, trees and interval graphs. The results of Sections 7.1.1 and 7.1.2 appeared
in a slightly different form in the PhD thesis by Amer E. Mouawad [38].

7.1.1 Paths

In this section, we show that DS-Min-R is solvable in time linear in |V (G)| for any path
G. By Theorem 1 it suffices to prove that any instance of DS-Min-R has a canonical
dominating set for a path G. To do so, we construct a canonical dominating set for a path
G. Note that if |V (G)| = 1, then the unique vertex of G represents a dominating set. We
assume that |V (G)| ≥ 2 and V (G) = {1, 2, . . . , n} for some positive integer n. We denote
the two 1 degree vertices by r and s, where r denotes the root of G and s the leaf of G. We
start by labelling vertex s with 1. Then, we label each vertex of G with one of 1, 2 and 3,
starting from the neighbouring vertex of s to the neighbouring vertex of r in the following

54



pattern: 3, 2, 1, 3, 2, 1 and so on. We label vertex r with 2 if its neighbour is labelled with
3, and with 3 otherwise.We denote by S the set of all vertices in G that are labelled with
3. For each i ∈ {1, 2}, we denote by Vi the set of all vertices in G that are labelled with
i. Then, {V1, V2, S} forms a partition of V (G). Figure 7.1 (a) illustrates a path labelled in
the described pattern.

r3

2

3

1

2

3

1

2

3

1 s

(a)

r

w1

w2

w3

w4

s
C1

C2

C3

C4

(b)

Figure 7.1: (a) The labelling of a path P , (b) the partition of V (P ) into C1, C2, C3, C4.

Using the canonical representation of S for G, we show that S is a deletion set of G.
It suffices to show that for every i ∈ {1, 2, . . . , |S|}, each Ci\wi is a cluster graph.

Theorem 12. For an instance I = (G,Ss, St, k) of DS-Min-R for a path G, DS-Min-R
can be solved in time linear in |V (G)|.

Proof. By Theorem 1, it suffices to prove that S forms a canonical dominating set of
I for path G. By Lemma 4.5, to prove that S forms a canonical dominating set of I,
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using the canonical representation of S for G, we have to show that S forms a minimum
dominating set of G such that for every dominating set T of G, |T ∩ Ci| ≥ 1 holds for
every i ∈ {1, 2, . . . , |S|}, and that S ∩ V (Gi) is a dominating set of Gi. First, we prove
that S is a dominating set of G. Then, we show that S ∩ V (Gi) is a dominating set of Gi.
Afterwards, we prove that |T ∩Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}. Finally, we show
that S is a minimum dominating of G.

We first show that S is a dominating set of G. It suffices to show that both V1 ⊆ N(S)
and V2 ⊆ N(S) hold. Let v be any vertex in V1, and hence v is labelled with 1. If v = s,
then its neighbour is labelled with 3. Note that v 6= r since r is either labelled with 2
or 3. For any other vertex v, by the construction above, v has a neighbour labelled with
3. Therefore, v ∈ N(S), which implies that V1 ⊆ N(S). Let u be any vertex in V2, and
hence u is labelled with 2. If v = r, it is labelled with 2 only when its neighbour is labelled
with 3. Note that v 6= s since s is labelled with 1. By the construction above, any vertex
labelled with 2 has for neighbour a vertex labelled with 3. Therefore, u ∈ N(S), which
implies that V2 ⊆ N(S). Therefore, S forms a dominating set of G.

Now, we prove that S ∩ V (Gi) is a dominating set of Gi. By construction, since
V1 ⊆ N(S) and the root wi ∈ S of Gi is the only vertex in V (Gi) that is adjacent with
a vertex in V (G) \ V (Gi), we have V1 ∩ V (Gi) ⊆ N(S ∩ V (Gi)). Similarly, we have
V2 ∩ V (Gi) ⊆ N(S ∩ V (Gi)). Therefore, S ∩ V (Gi) is a dominating set of Gi.

Using the canonical representation of S for G, we show that |T ∩ Ci| ≥ 1 holds for
every i ∈ {1, 2, . . . , |S|}. Figure 7.1 (b) illustrates the canonical representation of a path P
partitioned into subsets C1, C2, C3, C4 where solid circles are vertices in S, striped circles
are vertices in V2, and white circles are vertices in V1. We prove that Ci contains at least
one vertex u such that N [u] ⊆ Ci. Therefore, the vertex u is not dominated by any vertex
in T . Thus, |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}.

We first consider the case where Ci contains s, then the case where Ci contains r, and
finally the case where all the nodes of Ci are internal vertices of G. First, consider the case
where wi has the degree one vertex s for neighbour. Then, N [s] ⊆ Ci holds since s has wi

for unique neighbour. Second, consider the case where Ci = C|S| contains the degree one
vertex r. If r is labelled with 3, then r has for unique neighbour a vertex u ∈ Ci labelled
with 1 or 2. Therefore, N [r] ⊆ Ci. Otherwise, if r is labelled with 2, then it has for unique
neighbour wi. Therefore, N [r] ⊆ Ci. Finally, consider the case where i 6= |S| and wi is an
internal vertex such that the neighbour u ∈ Ci of wi is also an internal vertex in G. By
construction, since wi is labelled with 3, u is labelled with 1. Then, since u is an internal
vertex, its neighbour x 6= wi is labelled with 2. Therefore, N [u] ⊆ Ci holds for vertex u of
wi.

Finally, we prove that S is a minimum dominating of G. Since Ci contains at least one
vertex u such that N [u] ⊆ Ci and |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}, S is a
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minimum dominating set of G.
By Lemma 4.5, since S is a minimum dominating set of tree G such that for an arbitrary

dominating set T of G, |T ∩ Ci| ≥ 1 for every i ∈ {1, 2, . . . , |S|}, and S ∩ V (Gi) is a
dominating set of Gi, S is a canonical dominating set of I.

7.1.2 Trees

In this section, we show that DS-Min-R is solvable in time linear in |V (G)| for any tree
G. By Theorem 1 it suffices to prove that any tree G has a canonical dominating set. To
do so, we will construct a canonical dominating set of an instance of DS-Min-R for a tree
G, similar to the construction of a canonical deletion set in Section 6.1.2.

We choose an arbitrary vertex r of degree one in G, and regard G as a rooted tree
whose root is r. We first label each vertex in G with one of 1, 2 and 3, from the leaves
of G to the root r of G, as in the following steps (1)–(3); intuitively, the vertices labelled
with 3 form a dominating set of G, the vertices u labelled with 1 will be dominated by the
parents of u, and the vertices v labelled with 2 will be dominated by at least one of the
children of v:
(1) All leaves in G are labelled with 1.
(2) Pick an internal vertex v of G, which is not the root, such that all children of v have

already been labelled. Then,
- label v with 1 if all children of v are labelled with 2;
- label v with 3 if at least one child of v is labelled 1; and
- otherwise label v with 2.

(3) Label the root r with 2 if its child is labelled with 3, otherwise label r with 3.

For each i ∈ {1, 2}, we denote by Vi the set of all vertices in G that are labelled with i, and
we denote by S the set of all vertices labelled with 3. Then, {V1, V2, S} forms a partition
of V (G). Figure 7.2 (a) illustrates a tree T labelled in the described pattern.

Theorem 13. For an instance I = (G,Ss, St, k) of DS-Min-R for a tree G, DS-Min-R
can be solved in time linear in |V (G)|.

Proof. By Theorem 1, it suffices to prove that S forms a canonical dominating set of I.
By Lemma 4.5, to prove that S forms a canonical dominating set of I, we have to use the
canonical representation of S for G to show that S forms a minimum dominating set of G
such that for every dominating set T of G, |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|},
and that S ∩ V (Gi) is a dominating set of Gi. First, we prove that S is a dominating set
of G. Afterwards, we show that S ∩ V (Gi) is a dominating set of Gi. Then, we show that
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Figure 7.2: (a) The labelling of a tree T , (b) the partition of V (T ) into C1, C2, C3, C4.

|T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}. Finally, we prove that S is a minimum
dominating set of G.

We first show that S is a dominating set of G. It suffices to show that both V1 ⊆ N(S)
and V2 ⊆ N(S) hold. Let v be any vertex in V1, and hence v is labelled with 1. Then, by
the construction above, v is not the root of G and the parent of v must be labelled with 3.
Therefore, v ∈ N(S), which implies that V1 ⊆ N(S). Let u be any vertex in V2, and hence
u is labelled with 2. Then, u is not a leaf of G. Notice that 2 is assigned to a vertex only
when at least one of its children is labelled with 3. Therefore, u ∈ N(S), which implies
that V2 ⊆ N(S). Therefore, S forms a dominating set of G.

Now, we prove that S ∩ V (Gi) is a dominating set of Gi. By construction, since
V1 ⊆ N(S) and the root wi ∈ S of Gi is the only vertex in V (Gi) that is adjacent with
a vertex in V (G) \ V (Gi), we have V1 ∩ V (Gi) ⊆ N(S ∩ V (Gi)). Similarly, we have
V2 ∩ V (Gi) ⊆ N(S ∩ V (Gi)). Therefore, S ∩ V (Gi) is a dominating set of Gi.

Using the canonical representation of S for G, we show that for an arbitrary dominating
set T of G, |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}. Figure 7.2 (b) illustrates the
canonical representation of a tree T partitioned into subsets C1, C2, C3, C4 where solid
circles are vertices in S, striped circles are vertices in V2, and white circles are vertices
in V1. We prove that Ci contains at least one vertex u such that N [u] ⊆ Ci. Thus, the
vertex u is not dominated by any vertex in T . Therefore, |T ∩ Ci| ≥ 1 holds for every
i ∈ {1, 2, . . . , |S|}.

Recall that all leaves in G are labelled with 1, and hence wi is an internal vertex. We
first consider the case where Ci has a vertex u that is a leaf of G, then the case where Ci

contains the root r of G, and finally the case where all the nodes of Ci are internal vertices
of G. First, consider the case where wi has a child u which is a leaf of T . Then, N [u] ⊆ Ci
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holds for the leaf u.
Second, consider the case where Ci = C|S| contains the root r of G. Recall that r is

of degree one, and is labelled with either 2 or 3; we prove that N [r] ⊆ C|S| holds. If r
is labelled with 2, then by construction, its unique child v is labelled with 3 and hence
v = w|S|. Therefore, C|S| contains both r and v, and hence N [r] ⊆ C|S| holds. On the other
hand, if r is labelled with 3 and hence r = w|S|, then its child v is labelled with either 1 or
2. Therefore, C|S| contains both r and v, and hence N [r] ⊆ C|S| holds.

Finally, consider the case where i 6= |S| and wi is an internal vertex such that all children
of wi are also internal vertices in G. Since wi is labelled with 3, there exists at least one
child u of wi which is labelled with 1. Then, since u is an internal vertex, all children of u
(and hence all “grandchildren” of wi) are labelled with 2. Therefore, N [u] ⊆ Ci holds for
the child u of wi.

Lastly, we prove that S is a minimum dominating of G. Since Ci contains at least one
vertex u such that N [u] ⊆ Ci and |T ∩ Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}, S is a
minimum dominating set of G.

By Lemma 4.5, since S is a minimum dominating set of tree G such that for an arbitrary
dominating set T of G, |T ∩ Ci| ≥ 1 for every i ∈ {1, 2, . . . , |S|}, and S ∩ V (Gi) is a
dominating set of Gi, S is a canonical dominating set of I.

7.1.3 Cographs

In this section, we show that DS-Min-R is solvable in time linear in |E(G)| for any co-
graph G. By Theorem 1, it suffices to prove that G has a canonical dominating set. By
Lemma 4.4, it suffices to consider the case where G is connected and we may assume that
G has at least two vertices, because otherwise the problem is trivial.

Note that since G is connected, it must have been obtained by applying a join operation
to two cographs Gu and Gv, hence G = Gu∨Gv. By definition of join, if a ∈ Gu and b ∈ Gv

then the set {a, b} forms a dominating set.
We now construct a minimum dominating set C. If there exists a vertex x ∈ V (G)

that dominates all vertices in G, that is, N [x] = V (G), we let C = {x}. Otherwise, we let
C = {u, v} where u and v are arbitrary vertices in Gu and Gv, respectively. It is clear that
C forms a minimum dominating set of G.

For an instance I = (G,Ds, Dt, k) of DS-Min-R, we will show that either we have a
trivial no-instance or that for any dominating set D, there exists a reconfiguration sequence
D ! C in RDS-MIN(G, k). In other words, either we can easily conclude that there is no
reconfiguration sequence from D to C in RDS-MIN(G, k) or we can find a reconfiguration
sequence from both D and C in time linear in |E(G)|.
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We prove the following theorem.

Theorem 14. The DS-Min-R problem is solvable in time linear in |E(G)| for any cograph
G.

Proof. Given an instance I = (G,Ds, Dt, k) of DS-Min-R, we show that we can determine
whether I is a no-instance or yes-instance in time linear in |E(G)|.

First, we check whether any cases of Proposition 2.3.1 hold. If any case holds, then
I is a no-instance. Then, we show that in any other case, I is a yes-instance. To prove
that we have a yes-instance, we show that for any dominating set D of G, D ! C in
RDS-MIN(G, k) holds, where k = |D|+ 1.

We construct a sequence A = 〈D0, D1, . . . , Dl〉 from D to C such that all vertex subsets
in the path from D to C in RDS-MIN(G, k) are dominating sets of cardinalities at most
|D| + 1. First we show that there is such a sequence in the case where |C| = 1, and then
in the case where |C| = 2.

In the case where |C| = 1, then C = {x} where N [x] = V (G). We construct the
sequence A from D to C as follows, where a set in A is formed after each addition or
removal of a vertex:
(1) If x 6∈ D, add x.
(2) Remove all vertices in D \ x one by one.

The resulting set in Step (1) is a dominating set of size at most |D|+ 1 since x dominates
all vertices in G. All the vertex subsets formed in Step (2) contain vertex x, thus they
are dominating sets. Furthermore, they are all obtained by the removal of a vertex from
the resulting vertex of Step (1), therefore they have size at most |D| + 1. Hence, all the
vertex subsets in the path from D to C in RDS-MIN(G, k) are dominating sets of size at
most |D|+ 1. Hence, in this case, D ! C in RDS-MIN(G, k) holds.

In the case where |C| = 2, C = {u, v} where u ∈ V (Gu) and v ∈ V (Gv). Since C is
a minimum dominating set of size 2, |D| ≥ 2. Therefore, we have D ⊆ V (Gu) ∪ V (Gv).
Hence, we must have D ∩ V (Gu) 6= ∅ or D ∩ V (Gv) 6= ∅. Assume the latter, the other
case is symmetric. We let h = 0 and construct the sequence A of G between D and C in
RDS-MIN (G, k) as follows:
(1) If v 6∈ D, add v, let D1 be the resulting set, and set h = 1.
(2) Remove a vertex a ∈ D1 ∩ V (Gv) \ {v} if it exists, let D2 be the resulting set, and

set h = h+ 1.
(3) If u 6∈ D2, add u, let D3 be the resulting set, and set h = h+ 1.

Then, for i ∈ {h, . . . , l}, remove a vertex c ∈ Di−1 \ {u, v}. Note that for every i, Di in the
sequence A is obtained from Di−1 by the addition or removal of a single vertex.
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Now, we prove that each vertex subset of A is a dominating set of size at most |D|+1.
In Step (1), D1 is obtained by the addition of the vertex v if v 6∈ D, so by Observa-

tion 2.2.1, D1 is a dominating set and |D1| ≤ |D| + 1. In Step (2), D2 is obtained by the
removal of a vertex a ∈ D1 ∩ V (Gv) \ {v} and v ∈ D2, so D2 is a dominating set of G and
|D2| ≤ |D1| − 1 = |D|. In Step (3), similarly to Step (1), D3 is obtained by the addition of
the vertex u if u 6∈ D2, so D3 is a dominating set and |D3| ≤ |D2|+1 = |D|+1. Note that
each Di contains both {u, v} and |Di| ≤ |D3| for all i ∈ {4, 5, . . . , l}. Since |D3| ≤ |D|+1,
each Di is a dominating set of G of cardinality at most |D|+ 1.

7.1.4 Interval Graphs

In this subsection, we show that DS-Min-R is solvable in time linear in |E(G)| for any
interval graph G. For a given graph G, it can be determined in time linear in |E(G)|
whether G is an interval graph, and if so obtain an interval representation of G [35]. By
Theorem 1, it suffices to prove that an instance of DS-Min-R has a canonical dominating
set for any interval graph. By Lemma 4.4, it suffices to consider the case where G is
connected. We will construct a canonical dominating set of an instance of DS-Min-R for
an interval graph G using the well-known vertex numbering algorithm [44]. Let H be an
interval representation of G. For an interval I ∈ H, we denote by l(I) and r(I) the left and
right endpoints of I, respectively. We also refer to the values l(I) and r(I) as the l-value
and r-value of I, respectively.

Fact 7.1.1. For u, v ∈ V (G), uv ∈ E(G) if and only if r(u) ≥ l(v) and r(v) ≥ l(u) [35].

We first label each vertex in G with one of 1, 2 and 3, from left to right, such that the
vertices labelled with 3 will form a dominating set of G :
(1) Pick the unlabelled vertex vi which has the minimum r-value among all unlabelled

vertices, and label vi with 1.
(2) Let vj be the vertex in N [vi] which has the maximum r-value among all vertices in

N [vi]. Note that vj may have been already labelled, and vj = vi may hold. We label
or relabel vj with 3.

(3) For each unlabelled vertex in N(vj), we label it with 2.

We execute phases (1)–(3) until all vertices are labelled. For each i ∈ {1, 2}, we denote
by Vi the set of all vertices in G that are labelled with i, and we denote by S the set of
vertices labelled with 3. Then, {V1, V2, S} forms a partition of V (G). Figure 7.3 illustrates
the labelling of an interval graph in the interval representation of this graph, where i → j
represents the relabelling of a vertex from a label i to a label j.
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By construction, each vertex in V1 and V2 has for neighbour a vertex in S. Therefore,
S forms a dominating set of G. Note that |V1| ≤ |S| since a vertex labelled with 1 is
dominated by exactly one vertex labelled with 3 and a vertex labelled with 3 dominates at
most one vertex labelled with 1. Since a vertex vi labelled with 1 in Phase (1) is relabelled
with 3 in Phase (2) if it has the maximum r-value among all the vertices in N [vi], the
following observation holds.

Observation 7.1.1. A vertex u ∈ V (G) that is labelled with 1 and is relabelled with 3 has
the maximum r-value among all the vertices in N [u].

Observation 7.1.2. A vertex w ∈ V (G) labelled with 3 was either labelled with 1 and got
relabelled with 3, or has for a neighbour a vertex labelled with 1.

Observation 7.1.3. A vertex u ∈ V (G) labelled with 1 has for a neighbour a vertex w
labelled with 3 which has the maximum r-value among all vertices in N [u].

Before stating Theorem 15, we introduce a canonical representation of S for the interval
graph G. Assume that the vertices in S are ordered as w1, w2, . . . , w|S| such that r(w1) <
r(w2) < · · · < r(w|S|). For each i ∈ {1, 2, . . . , |S|}, we define the vertex subset Ci of V (G),
as follows:

Ci =


{v | r(v) ≤ r(w1) } if i = 1;
{v | r(wi−1) < r(v) ≤ r(wi) } if 2 ≤ i ≤ |S| − 1;
{v | r(w|S|−1) < r(v) } if i = |S|.

(7.1)

For each i ∈ {1, 2, . . . , |S|}, let C−
i = C1 ∪C2 ∪ · · · ∪Ci and C+

i = Ci+1 ∪Ci+2 ∪ · · · ∪C|S|.
Note that {C1, C2, . . . , C|S|} forms a partition of V (G) such that

S ∩ Ci = {wi} (7.2)

holds for every i ∈ {1, 2, . . . , |S|}. Figure 7.3 illustrates C1 with solid intervals, C2 with
dashed intervals, C3 with dotted intervals, and C4 with dash-dotted intervals.

Note that, by Equation 7.1, Ci ∩Cj = ∅ where i 6= j. Therefore, since a vertex labelled
with 3 dominates at most one vertex labelled with 1, two vertices u, v ∈ V1, where u 6= v,
belong to two distinct vertex subsets of {C1, C2, . . . , C|S|}. Since, |V1| ≤ |S| and each vertex
of V1 belongs to a unique vertex subset of {C1, C2, . . . , C|S|}, there exists |S| − |V1| vertex
subsets of {C1, C2, . . . , C|S|} that do not contain a vertex of V1 and |V1| vertex subsets that
contain a vertex of V1.

Observation 7.1.4. The set {C1, C2, . . . , C|S|} of vertex subsets is composed of subsets
containing exactly one unique vertex of V1 and of subsets that do not contain a vertex of
V1.
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C1 C2 C3 C4

Figure 7.3: The labelling of an interval graph in the interval representation.

Theorem 15. For an instance I = (G,Ss, St, k) of DS-Min-R for an interval graph G,
DS-Min-R can be solved in time linear in |E(G)|.

Proof. By Theorem 1, it suffices to prove that S forms a canonical dominating set of I.
Thus, since S is a dominating set, we prove that S is a minimum dominating set and
then, we show that T ! S holds in RDS-MIN(G, k) for every dominating set T of G and
k = |T |+ 1.

To prove that S is a minimum dominating set, we show that |T ∩ Cj| ≥ 1 holds for
every j ∈ {1, 2, . . . , |S|}, for an arbitrary dominating set T of G. Assume instead that
T ∩Ci = ∅ holds for some index i ∈ {1, 2, . . . , |S|}. By Observation 7.1.4, it suffices to first
show that this assumption yields a contradiction when V1 ∩Ci = ∅, and then show that it
yields a contradiction when V1 ∩ Ci = {ui} where ui ∈ V1.

First, consider the case where V1 ∩ Ci = ∅. Since V1 ∩ Ci = ∅ and Ci contains the
vertex wi labelled with 3, by Observations 7.1.1 and 7.1.2, wi has the maximum r-value
among N [wi]. Therefore, since by assumption T ∩ Ci = ∅, wi ∈ Ci must be dominated
by some vertex v in C−

i \ Ci. Note that by Equation 7.1, r(wi) > r(wi−1). Then, since v
dominates wi, we have vwi ∈ E(G). Note that r(wi) > r(v) since v ∈ C−

i \ Ci. Therefore,
since vwi ∈ E(G), by Fact 7.1.1, we must have l(wi) ≤ r(v). Note that v can not be
in C|S| since if i = |S|, v ∈ C−

|S| \ C|S|. Therefore, since v ∈ C−
i \ Ci, by Eq. (7.1),

we have r(v) ≤ r(wi−1). Since r(wi−1) < r(wi) and l(wi) ≤ r(v) ≤ r(wi−1), we have
l(wi) ≤ r(wi−1) < r(wi). Therefore, wi ∈ N(wi−1) holds. Thus, by construction, since
wi−1 is labelled with 3 and wi ∈ N(wi−1), wi must be labelled with 2. This contradicts the
assumption that wi is labelled with 3.

Next, we consider the case where V1 ∩ Ci = {ui}. Since by assumption T ∩ Ci = ∅,
ui ∈ V1 must be dominated by at least one vertex in C−

i \Ci or C
+
i . If ui is dominated by

a vertex in C−
i \Ci, then by the same arguments as above, ui must be labelled with 2 even

though ui is in V1, yielding a contradiction. Therefore, ui must be dominated by a vertex
v in C+

i . Then, since v dominates ui, vui ∈ E(G). Hence, we have v ∈ N(ui) ⊂ N [ui].
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Also, since v ∈ C+
i , by Eq. (7.1), we have r(wi) < r(v). However, by Observation 7.1.3,

wi ∈ S is chosen as the vertex in N [ui] that has the maximum r-value among all vertices
in N [ui]. Thus, r(wi) < r(v) contradicts the assumption that wi has the maximum r-value
among all vertices in N [ui].

Therefore, we have

|T ∩ Cj| ≥ 1 (7.3)

for every j ∈ {1, 2, . . . , |S|}.
Finally, we prove that for every dominating set T of G, T ! S holds in RDS-MIN

(G, k), where k = |T |+1. First, we construct a sequence σ of sets between T and S. Then,
we prove that each set in σ is a dominating set of G. Finally, we prove that each set in σ
is of cardinality at most |T |+ 1.

We let T0 = T be the first set of the sequence σ. For each i from 1 to |S|, we set h = 1
and construct a subsequence σi = 〈T 1

i , T
2
i , . . . , T

li
i 〉 of σ in the following phases, for some

positive integer li, where each set in σi is formed after the addition or removal of a vertex,
and Ti = T li

i :
(1) If wi 6∈ Ti−1, add vertex wi, let T

1
i be the resulting set, and set h = 2.

(2) For j ∈ {h, . . . , li}, remove an arbitrary vertex c ∈ T j−1
i ∩

(
Ci \ {wi}

)
and let T j

i be
the resulting set.

Note that in the transformation σi, each set is formed after a removal or addition of a
vertex.

We now show that each set in σ forms a dominating set of G. First, we use induction
to show that each set Ti forms a dominating set of G for each i ∈ {1, 2, . . . , |S|}. Then,
we show that each set in σ is a dominating set of G by showing that each set of σi is a
dominating set of G.

Using induction, we show that each set Ti forms a dominating set ofG. Since T0 = T and
T is a dominating set of G, the base case holds. Suppose that Ti−1 is a dominating set of G.
By Equation 7.2, S∩Ci = {wi} and by construction of Ti, we have Ti∩Ci = {wi} for every
i ∈ {1, 2, . . . , |S|}. Therefore, Ti∩Ci = S ∩Ci. Furthermore, since C−

i = C1∪C2∪ · · · ∪Ci

and Ti ∩ Ci = S ∩ Ci for every i ∈ {1, 2, . . . , |S|}, we have Ti ∩ C−
i = S ∩ C−

i . By
construction of σi, the only vertices added or removed in σi belong to Ci. Therefore, since
T0 = T , the only vertices that are added or removed in forming Ti belong to C−

i . Thus, we
have Ti ∩C+

i = T ∩C+
i . Note that if we can show that any vertex v ∈ V (G) is dominated

by a vertex in Ti, then we have proved that Ti is a dominating set.
Case 1: First, suppose that r(v) ≤ r(wi). By Equation 7.1, v ∈ C−

i . Note that C−
i =

C1 ∪C2 ∪ · · · ∪Ci and by Equation 7.2, S ∩Ci = {wi}. Therefore, since S is a dominating
set of G, a vertex in C−

i is dominated by a vertex in S∩C−
i . Then, since Ti∩C−

i = S∩C−
i ,
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v is dominated by a vertex in Ti ∩ C−
i .

Case 2: Second, suppose that r(wi) ≤ l(v). By Equation 7.1, v ∈ C+
i . Note that C+

i =
Ci+1 ∪ Ci+2 ∪ · · · ∪ C|S| and by Equation 7.2, S ∩ Ci = {wi}. Therefore, since S is a
dominating set of G, a vertex in C+

i is dominated by a vertex in S ∩ C+
i . Then, since

Ti ∩ C+
i = S ∩ C+

i , v is dominated by a vertex in Ti ∩ C+
i .

Case 3: Finally, suppose that l(v) < r(wi) < r(v). Then, by definition of an interval graph,
vwi ∈ E(G). Hence, v is dominated by wi ∈ Ti.

Since both the base case and the induction step hold, by induction, each set Ti is a
dominating set of G, for each i ∈ {1, 2, . . . , |S|}.

We now show that each set of σi is a dominating set of G. By Observation 2.2.1, all
the sets formed in Phases (1) and (2) are dominating sets since each of them is a superset
of Ti. Therefore, since each set in the subsequence σi forms a dominating set of G, each
set in σ is a dominating set of G.

Finally, we prove that each set in the sequence from T to S in RP-Min (G, k) is a set
of cardinality at most |T | + 1. We show that |Ti−1| ≥ |Ti| for each i ∈ {1, 2, . . . , |S|} and
that the maximum cardinality of any set in σi is |Ti−1| + 1. Then, since |Ti−1| ≥ |Ti|, the
cardinality of any set in the sequence from T0 = T to T|S| = S in RP-Min (G, k) is at most
|T |+ 1.

We show that |Ti−1| ≥ |Ti| holds in the cases where wi ∈ Ti−1 and wi 6∈ Ti−1.
Case 1: Suppose wi ∈ Ti−1. Since wi ∈ Ti−1, no vertex is added in Phase (1) nor in Phase
(2). Therefore, each set in σi is of cardinality at most |Ti−1|.
Case 2: Suppose wi 6∈ Ti−1. Since Ti−1 is a dominating set of G, by Equation 7.3, |Ti−1 ∩
Ci| ≥ 1 holds for every i ∈ {1, 2, . . . , |S|}. Therefore, since wi 6∈ Ti−1, we have Ti−1 ∩

(
Ci \

{wi}
)
6= ∅. Since there is only a single vertex addition in the subsequence σi, each set in

σi is of cardinality at most |Ti−1|+ 1.
We have thus proved that S is a minimum dominating set and that T ! S holds

in RDS-MIN(G, k) for every dominating set T of G and k = |T | + 1. By definition of a
canonical dominating set, S forms a canonical dominating set of I.

7.2 PSPACE-completeness

7.2.1 General Graphs

In this section, we prove that DS-Min-R is PSPACE-complete for general graphs. Stronger
results are proven in the collaborative work with Ito et al. [24].

A problem that will be used in proving our results is the PSPACE-complete VC-Min-R
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problem [29] defined as follows:

Input: A graph G, two vertex covers Ss and St of G, and an integer
threshold k ≥ max{|Ss|, |St|}.

Question: Is there a path from Ss to St in RVC-Min(G, k)?

We will show that DS-Min-R is PSPACE-hard for general graphs by a polynomial-time
reduction from VC-Min-R.

Theorem 16. DS-Min-R is PSPACE-complete for general graphs.

Proof. Our reduction follows from the classical reduction from Vertex Cover to Domi-
nating Set [18]. Let (G,Cs, Ct, k) be an instance of VC-Min-R where V (G) = {v1, v2, . . . ,
vn} and E(G) = {e1, e2, . . . , em}. Without loss of generality, it is assumed that G has no
isolated vertices. We construct the corresponding graph G′ as follows. For every edge
(vi, vj) ∈ E(G), we add a new vertex vij and join it with each of vi and vj by two new
edges (vi, vij) and (vij, vj). Then, let (G′, Ds = Cs, Dt = Ct, k

′ = k) be the corresponding
instance of DS-Min-R. Note that this instance can be constructed in polynomial time.

We now prove that Ds ! Dt in RDS-Min(G
′, k′) holds if and only if Cs ! Ct in

RV C-Min(G, k) holds. We first prove the if direction. Note that the reconfiguration rule of
these two problems is the same since the symmetric difference of each problem is of size
one. Because both problems employ the same reconfiguration rule, it suffices to prove that
any vertex cover C of G forms a dominating set of G′. By definition of a vertex cover,
a vertex cover C of G must include at least one vertex of an edge (vi, vj) ∈ G. Since vi
and vj dominate each other and dominate vij in G′, any vertex cover of G forms a domi-
nating set of G′. Therefore, if there exists a reconfiguration sequence between Cs and Ct

in RV C-Min(G, k), then there exists is a reconfiguration sequence between Ds and Dt in
RDS-Min(G

′, k′).
We now prove the only-if direction. Suppose that there is a reconfiguration sequence

σ between Ds and Dt in RDS-Min(G
′, k′). Note that since Ds = Cs and Dt = Ct, Ds and

Dt do not contain a vertex in V (G′) \ V (G). Thus, if a vertex vij in V (G′) \ V (G) is
touched in σ, then vij must first have been added in σ. By construction, NG(vij) = {vi, vj}
and vi ∈ NG(vj) and vj ∈ NG(vi), thus both NG[vij] ⊆ NG[vi] and NG[vij] ⊆ NG[vj]
hold. Therefore, instead of adding vij to a dominating set of σ, we can either add vi or
vj since they both dominate vij and its neighbours, and obtain a reconfiguration sequence
of dominating sets in G′ between Ds and Dt which only touch vertices in G. Then, this
reconfiguration sequence of dominating sets between Ds and Dt in RDS-Min(G

′, k′) is also
a reconfiguration sequence of vertex covers between Cs and Ct in RV C-Min(G, k).
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7.2.2 Split Graphs

In this section, we prove that DS-Min-R is PSPACE-complete for split graphs. We will show
that it is PSPACE-complete for split graphs by a polynomial-time reduction from VC-Min-R.

Theorem 17. DS-Min-R is PSPACE-complete for split graphs.

Proof. Our reduction follows from the NP-completeness proof of Dominating Set on split
graphs. [3].

Let (G,Cs, Ct, k) be an instance of VC-Min-R where V (G) = {v1, v2, . . . , vn} and
E(G) = {e1, e2, . . . , em}. Figure 7.4 (a) illustrates a vertex cover {v2, v4} of a graph.
Without loss of generality, it is assumed that G has no isolated vertices. We construct the
corresponding graph G′ as follows. We let V (G′) = A ∪ B, where A = {ai | vi ∈ V (G)},
and B = {b1, b2, . . . , bm}. We add all edges between the vertices of A to form a clique,
and each vertex bi ∈ B has two neighbours in A which correspond to the endpoints of
the edge ei ∈ E(G). Figure 7.4 (b) illustrates a dominating set {a2, a4} of the corre-
sponding split graph of the graph in part (a). Let G′ be the resulting graph, and let
(G,Ds = Cs, Dt = Ct, k

′ = k) be the corresponding instance of DS-Min-R. Clearly,
this instance can be constructed in polynomial time. We now prove that Ds ! Dt in
RDS-Min(G

′, k′) holds if and only if Cs ! Ct in RV C-Min(G, k) holds.
We first prove the if direction. Because both of these problems employ the same recon-

figuration rule, it suffices to prove that any vertex cover C of G forms a dominating set of
G′. Since C ⊆ V (G) = A and A is a clique, C dominates all the vertices in A. Further-
more, since C contains at least one endpoint of each edge e ∈ E(G) and each vertex bi ∈ B
has two neighbours which correspond to the endpoints of the edge ei ∈ E(G), at least one
neighbour of each vertex bi is in C. Thus, C is a dominating set of G′.

We now prove the only-if direction. Suppose that there is a reconfiguration sequence
σ between Ds and Dt in RDS-Min(G

′, k′). By construction, for each vertex bi ∈ B corre-
sponding to the edge ei = vuvw in E(G), both NG[bi] ⊆ NG[vu] and NG[bi] ⊆ NG[vw] hold.
Therefore, if a vertex bi is added in σ, we can instead add either of its neighbours, since
they dominate bi and its neighbours, and obtain a reconfiguration sequence of dominating
sets in G′ between Ds and Dt which only touch vertices in A. Since for any dominating
set D ⊆ A = V (G) each vertex bi ∈ B is dominated by at least one vertex in D ⊆ V (G),
D forms a vertex cover of G. Thus, if Ds ! Dt in RDS-Min(G

′, k′) holds, Cs ! Ct in
RV C-Min(G, k) holds.

By the reduction given in the proof of Theorem 17, the following lemma clearly holds.
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Lemma 7.2.1. Let (G,Ds, Dt, k) be an instance of DS-Min-R, then DS-Min-R is PSPACE-
complete for split graphs even if Ds, Dt ⊆ A.
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Figure 7.4: (a) Vertex cover {v2, v4} of a graph, (b) dominating set {a2, a4} of the cor-
responding split graph, and (c) dominating set {a2, a4, y} of the corresponding bipartite
graph.

7.2.3 Bipartite Graphs

In this section, we prove that DS-Min-R is PSPACE-complete for bipartite graphs by a
polynomial-time reduction from the same problem on split graphs.

Theorem 18. DS-Min-R is PSPACE-complete for bipartite graphs.

Proof. Our reduction follows from the NP-completeness proof of Dominating Set on
bipartite graphs that uses a polynomial-time reduction from the same problem on split
graphs [3].

Given an instance (G,Ds, Dt, k) of DS-Min-R on split graphs where V (G) = {v1, v2,
. . . , vn}, E(G) = {e1, e2, . . . , em}, and G is a split graph, by definition of a split graph
in Section 2.1, G can be partitioned into two subsets A = {ai | vi ∈ V (G)} and B =
{b1, b2, . . . , bm} such that A forms a clique and B an independent set. By Lemma 7.2.1,
the DS-Min-R problem remains PSPACE-complete even if Ds, Dt ⊆ A, therefore we can
assume that Ds, Dt ⊆ A. We construct the corresponding graph G′ as follows. We make
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A an independent set by removing all the edges that join two vertices of A and we add
two vertices x and y. In addition, we add an edge e = (x, y) and join vertex y with
every vertex of A. Let G′ be the corresponding graph. Note that G′ is a bipartite graph
as it can be partitioned into two independent sets A′ = A ∪ {x} and B′ = B ∪ {y}.
Figure 7.4 (c) illustrates a dominating set {a2, a4, y} of the corresponding bipartite graph
of the split graph in part (b). Let (G′, D′

s = Ds ∪ {y}, D′
t = Dt ∪ {y}, k′ = k + 1) be the

corresponding instance of DS-Min-R for bipartite graphs. We now prove that D′
s ! D′

t

in RDS-Min(G
′, k′) holds if and only if Ds ! Dt in RDS-Min(G, k) holds.

We first prove the if direction. Suppose that there is a reconfiguration sequence between
Ds and Dt in RDS-Min(G, k). Note that it suffices to show that for any dominating set D
of G, D ∪ {y} forms a dominating set of size k′ in G′. By construction, since the only
removed edges are those that joined vertices in A and B ⊂ NG[D], B ⊂ NG′ [D]. The
vertex y dominates A and x, hence D ∪ {y} forms a dominating set of size k + 1 = k′.
Therefore, there exists a reconfiguration sequence between D′

s and D′
t in RDS-Min(G

′, k′).
We then prove the only-if direction. Suppose that there is a reconfiguration sequence

σ between D′
s and D′

t in RDS-Min(G
′, k′). Note that the only vertices that dominate the

vertex x are x and y, hence any dominating set must contain x or y and NG′ [x] ⊆ NG′ [y].
Since y ∈ D′

s and y ∈ D′
t and y is the unique vertex in G′ that dominates x, we can

assume that y ∈ D′ for any dominating set D′ in σ. Also, note that since G is a split
graph with A as a clique and B as an independent set, NG(bi) ⊆ A for a vertex bi ∈ B.
Furthermore, since the only removed edges are those that joined vertices in A and the only
edges added join y to every vertex of V (G′) \ B, NG′(bi) ⊆ A for a vertex bi ∈ B. Also,
note that y dominates each vertex in A. Recall that Ds ⊆ A and Dt ⊆ A, and therefore if
a vertex bi ∈ B is touched in σ, there exists a reconfiguration step in σ where bi is added.
Therefore, if a vertex bi ∈ B is added in σ, we can instead add either of its neighbours in
A and obtain a reconfiguration sequence σ′ of dominating sets in RDS-Min(G

′, k′) between
D′

s and D′
t which only touch vertices in A. Consider any dominating set D′ ∈ σ′. We

now show that D′ ∩ V (G) forms a dominating set of size at most k in V (G). Note that
|D′| ≤ k′, since D′ is a dominating set in RDS-Min(G

′, k′). Since y ∈ D′ and y 6∈ V (G),
we have |D′ ∩ V (G)| ≤ k′ − 1 = k. Note that since σ′ is a reconfiguration sequence in
RDS-Min(G

′, k′) between D′
s = Ds ∪ {y} and D′

t = Dt ∪ {y} which only touches vertices in
A, where Ds, Dt ⊆ A, we have D′ ∩ V (G) ⊆ A. Also, since D′ ∩ V (G) ⊆ A and A forms
a clique in G, A ⊆ NG[D

′ ∩ V (G)]. In addition, since NG′(y) = A ∪ {x}, each vertex in
B is dominated by some vertex in D′ ∩ V (G). We have thus shown that D′ ∩ V (G) is a
dominating set of G of cardinality at most k. Therefore, if D′

s ! D′
t in RDS-Min(G

′, k′)
holds, Ds ! Dt in RDS-Min(G, k) holds.
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Chapter 8

Conclusions and Directions For
Future Work

Path

TreeCographInterval

BipartiteSplit

Chordal

Perfect

CL-Max-R(linear)

DS-Min-R(linear)

DS-Min-R(PSPACE-complete)
CVD-Min-R(NP-hard)

CVD-Min-R(linear)

Figure 8.1: Our results, where each arrow represents the inclusion relationship between
graph classes: A → B represents that A is properly included in B [10].

The results obtained in this thesis paint an interesting picture of the boundary between
intractability and polynomial-time solvability of Clique Reconfiguration, Cluster
Vertex Deletion Reconfiguration, andDominating Set Reconfiguration from
the viewpoint of graph classes, as illustrated in Figure 8.1. A problem of interest is to es-
tablish a connection between the complexity of the st-connectivity problem of a problem
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and the complexity of the underlying decision problem. We know that this relationship is
not as easy as “P implies P” and “NP-complete implies PSPACE-complete”.

In Section 5, we showed that the Clique Reconfiguration is solvable in time linear
in the number of edges for paths, trees, cographs, bipartite and chordal graphs. The study
by Ito et al. [32] extended this work and proved that this problem is solvable in polynomial
time on planar and even-hole-free graphs, and is PSPACE-complete for perfect graphs. This
is an example of a problem whose st-connectivity problem is solvable in polynomial time for
many graph classes, and is PSPACE-complete in general. The only graph class for which the
relationship between Clique Reconfiguration and its underlying decision problem is
not “P implies P” is perfect graphs, where the st-connectivity problem is PSPACE-complete
and the underlying decision problem is solvable in polynomial time. This result further
shows that this relationship is not as subtle as “P implies P”.

In Section 6, we showed that the Cluster Vertex Deletion Reconfiguration
problem is solvable in time linear in the number of edges for paths and trees. We also
proved that this problem is NP-hard on bipartite graphs and PSPACE-complete in general.
In contrast to the related Clique Reconfiguration problem, the complexity of this
problem on bipartite graphs is NP-hard. It would be interesting to solve the complexity
of this problem on super-classes of paths, such as cographs, interval, and split graphs, as
this would give us a better understanding on the connection between the complexity of
these two problems. Furthermore, such a result would highlight the structure of the graph
classes that lie at the boundary between tractability and PSPACE-completeness.

In Section 7, we showed that the Dominating Set Reconfiguration problem is
solvable in time linear in the number of edges for paths, trees, cographs, and interval
graphs. Furthermore, we showed that this problem is PSPACE-complete for split graphs,
bipartite graphs, and in general. Having proven these results, we notice that for interval
graphs, that have a path-like structure of cliques, this problem is solvable in linear time.
However, for chordal graphs, which can be represented as a tree of cliques, this problem is
PSPACE-complete. Therefore, the clique structure of a graph may be a good indicator of
the complexity of this problem.

Having studied these three reconfiguration problems under classical complexity for fa-
miliar graph classes, a direction for future work would be to study these problems under
the parameterized complexity [15] for the same graph classes. Parameterized complexity
tries to confine the exponential “explosion” in the running time of a problem to the pa-
rameter instead of the input size. The main hierarchy of parameterized complexity classes
is FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t], for every integer t ≥ 1, where FPT denotes the
fixed-parameter tractable class and W -hardness is the analogue of NP-hardness in classical
complexity. To the best of our knowledge, Dominating Set Reconfiguration is the
only problem among the three problems studied in this thesis that has been studied under
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parameterized complexity [40]. This problem was proven to be W [2]-hard when parame-
terized by k + l, where k is the size of the solutions and l is the length of the sequence of
steps. A new problem of interest would be to find a connection between the classical com-
plexity and parameterized complexity of these problems to get a “finer” classification of
these problems, not only in the tractable and intractable case, but also the fixed-parameter
tractable case.
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