
A Modular Notation for Monitoring
Network Systems

by

Prashant Raghav

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Prashant Raghav 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Design of next generation network systems with predictable behavior in all situations poses
a significant challenge. Monitoring of events happening at different points in a distributed
environment can detect the occurrence of events that indicates significant error conditions.
We use Modular Timing Diagrams (MTD) as a specification language to describe these
error conditions. MTD’s are a component-oriented and compositional notation. We take
advantage of these features of MTD and point out that, in many cases, global MTD spec-
ifications describing behaviors of several system component can be efficiently decomposed
into a set of sub-specifications. Each of the sub-specifications describes a local monitor
that is specific to the component on which the monitor is intended to run. We illustrate the
compositional nature of MTD in describing several network monitoring conditions related
to network security.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor, Professor
Richard Trefler for his continuous support of my masters study and research, his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time
of research and writing of this thesis. I could not have imagined having a better supervisor
and mentor for my masters study.

Also, I would like to thank my good friends Vijay Subramanya and Hisham El-Zein
who supported me through the good times and the challenging times.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof.
Grant Weddell and Prof. Michael Godfrey, for their encouragement, insightful comments,
and hard questions.

Last but not the least, I would like to thank my parents, Vijay and Kusum Raghav for
their unconditional love, support and encouragement.

iv

Dedication

This is dedicated to my family and my friends.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Problem Description . 1

1.2 Approach . 2

1.3 Organization . 3

2 Background 4

2.1 History . 4

2.2 Monitoring Network Systems . 5

2.3 Apache Spark . 6

2.3.1 Resilient Distributed Datasets . 7

2.3.2 Spark Streaming . 7

2.4 Monitoring Network System with MTD . 8

3 Modular Timing Diagrams 9

3.1 Informal Description . 9

3.2 Modular Timing Diagrams: Syntax & Definition 10

3.3 Semantics . 12

3.3.1 ∀-automaton . 13

3.3.2 RTD Language . 13

3.3.3 MTD Language . 14

vi

4 Security Vulnerabilities 15

4.1 User Authentication . 16

4.2 Communication Security . 19

4.3 Network Access Control . 20

4.4 Email Filtering . 20

5 Observations 22

5.1 KDD dataset . 22

5.2 MSF File . 24

5.3 Clustering and Live Streaming of Data . 25

6 Conclusion and Future Work 28

References 29

vii

List of Figures

2.1 Apache Spark Framework . 7

3.1 An example MTD . 10

3.2 A component RTD . 11

4.1 MTD of User Login - Password verification 18

4.2 MTD of User login - IP Verification . 19

4.3 MTD of Email Filtering . 21

5.1 Data Format . 22

5.2 Distributed Monitoring System . 23

5.3 MSF file . 25

5.4 System Design . 26

viii

Chapter 1

Introduction

This thesis provides a framework to monitor network systems that are vulnerable and
requires constant monitoring. We accomplish this using Modular Timing Diagrams, a
compositional notation, along with Apache Spark [53], a distributed computing framework.
The high level specifications written in the MTD notation are converted to a text file which
is then provided as an input to Spark. If some suspicious activity is detected, an alarm is
raised and the network administrator is notified.

1.1 Problem Description

Multi-component, network services, such as banking and financial services, may be de-
livered across large disparate networks. These services need to be delivered reliably and
robustly. Although simulators and network analyzers can detect some network errors, due
to the potentially large state space associated with the network size, analysis may be infea-
sible. We use network analysis to detect unauthorized access. However network analysis
is a difficult, complex and demanding task. Therefore we describe monitors designed to
detect and report the occurrence of significant network events.

Formal verification is used to find intricate errors that are hard to detect by testing [35].
One approach to Formal verification is model checking [13]. In the worst case, a model
checker may need to analyze all reachable system states, and even modest-sized finite
state systems may have state spaces of enormous size[17]. Although in recent years model
checking has seen much improvement [11, 6], applying it in real-world scenarios, such as
network systems, remains a challenge. Testing [51] is used in practice to detect bugs in the

1

system. However testing in general is, not an exhaustive procedure and it is possible that
a significant bug goes unreported and later affects the system. Hence, runtime verification
[33] is often used in conjunction with testing to check program correctness during system
execution.

Providing a mathematically precise notation for describing essential aspects of dis-
tributed systems - in this case, system requirements - may be a complex task. Temporal
logic[17] is often used in this regard. Typically, specifications for distributed systems are
written from a global perspective, while event monitoring at the individual process loca-
tions is necessarily a local concern. Thus it is important to adopt a notation for writing
global specifications that also characterizes the local events of interest.

1.2 Approach

Modular Timing Diagrams (MTD) [3], which is a component-oriented and compositional
notation, is used as a specification language for describing the occurrence of significant
error events during the system operation. We take advantage of the two aforementioned
properties of the notation and point out that, in many cases, global MTD specifications
can be efficiently decomposed into a set of sub-specifications in a straightforward manner.
Each of the sub-specifications describes a local monitor that is specific to the component
on which the monitor runs. A separate, standalone component maybe used to collect the
result of several distributed monitoring components. In this regard, we make use of this
compositional nature of MTD to translate the single specifications into distributed sub
specifications of several parts. Each part in itself is an MTD describing the occurrence of
error conditions at a particular location in the network. MTD components are designed to
monitor all events and messages local to the network nodes they are running on and raise
alarms to notify network administrators of the occurrence of a specified error event.

Modular Timing Diagrams was proposed as a notation that ties together visual spec-
ification and modular reasoning of asynchronous system. MTD notation can be used to
represent universal properties of asynchronous system. Universal properties are properties
that hold for all computation in the system. MTD is an extension to timing diagrams[2]
used frequently in the hardware industry to specify timing and ordering properties of
hardware protocols. Timing diagrams are simple and intuitive but are unable to express
iterations and disjunctions. MTD on the other hand not only provides a way to represent
those properties, but is also expressive enough to describe any ω-regular property.

High level specifications of a network system are described using MTD notation. These
specifications are error conditions which can result in data loss or unauthorized access. The

2

individual MTDs are then transformed into a modular specification file, which is described
later. Once the file is generated based on the previous attacks on the system, it is easy to
analyze the new requests with Apache Spark[53] and classify them as attacks or normal
requests. As part of the framework we describe an approach to monitor network system
using MTD. Our experience of using MTD with Spark to monitor network system is very
encouraging and we were able to perform the monitoring task with minimal lines of code.

Data transfer in network protocols can lead to security vulnerabilities in the system.
Transmitting data over a network allows third parties to access the data resulting in data
loss. One approach in mitigating this is user authentication where a user is verified before
they are provided access to the resources. Chapter 4 describes how user authentication
can be represented and monitored using MTD.

1.3 Organization

The thesis is organized as follows. Chapter 2 describes the background necessary to under-
stand the thesis. In Chapter 3 the syntax and semantics of MTD are described. Chapter
4 looks at several network security concerns and their description using the MTD’s. In
Chapter 5, an example environment network with MTD monitors is built with Apache
Spark. A brief conclusion with suggestions for future work is given in Chapter 6.

3

Chapter 2

Background

The goal of this thesis is to describe the use of compositional nature of MTD for monitoring
network systems. This chapter covers the theoretical background necessary to understand
this work. First, the literature and related work around timing diagram’s are covered in
detail. Then we describe Apache Spark, the framework used in this work. Later, we look
at various other ways of monitoring network systems and show how our work differs from
them.

2.1 History

Timing Diagrams are often used in hardware industries to specify behaviour for circuit
components. Several researchers have investigated the use of timing diagrams for verifica-
tion. In his paper, Boriello et al[9] provided an approach for symbolic timing verification of
timing diagrams. However timing diagrams lacks a precise notation and as such is unsuit-
able for verifying correctness. Therefore, a representation with more precise semantics that
also allows for an efficient, compositional model checking algorithm, such as the Regular
Timing Diagrams, is necessary.

Fisler et al[16] showed that we can translate timing diagrams into temporal formulas.
In her paper, Amla et al [3] illustrates an efficient model checking algorithm using Regular
Timing Diagrams by verifying a master-slave model. Regular Timing Diagrams[2] are an
intuitive notation but one cannot express disjunction and iterations using them. Nina
further proposed a class of timing diagrams called Modular Timing Diagrams[3] that not
only handles these properties but is also as expressive and intuitive as the omega regular

4

languages. In this work we show to use the Modular Timing Diagram notation to monitor
network systems.

There are, however, other notations used to describe high level implementation sce-
narios. Message Sequence Charts[49](MSC) are the standard way for describing them,
particularly in the case of communication protocols. MSC are used to represent proper-
ties written in temporal logic and then comparing the execution paths of two different
processes. MTD on the other hand specifies universal properties of an asynchronous sys-
tem and hence is complementary to the MSC notation. Although Timeline Diagrams [44]
present universal properties too, they are limited to totally ordered sequence of events.
Thus MTD can be viewed as a compact form of set of timelines. Damm et al [19] in their
work proposed Live Sequence Charts. Chai and Schlingloff [14] provided an approach to
monitor systems with by extending Live Sequence Charts.

2.2 Monitoring Network Systems

Formal Verification is a way of proving that system satisfies correctness properties. There
are three parts of formal verification.

• A mathematically precise description of system execution behaviour.

• A logic to represent properties about the system.

• An algorithm to check if the properties are satisfied by the system.

One approach to this is model checking. In model checking systems, properties are
represented by temporal logic and checks are provided to see weather the system satisfies
the given properties. However model checking is not practical for network systems of even
modest size because of the huge state space associated with the system [7].

Runtime Verification deals with the study and application of verification techniques that
monitors the system under scrutiny at runtime and checks weather the run of the system
satisfies or violates the correctness property. The main tool for runtime verification are
monitors whose sole purpose is to check weather the system behaviour satisfies correctness
properties. Typically monitors are generated from higher level specifications of system
design. These specifications are generally written in Linear Temporal Logic [4]. The goal
of thesis is to explore the use of compositional MTD notation to represent high level
specifications of network system design.

5

There are various applications of runtime verification in software systems. Java Pathex-
plorer [26] is used to monitor java programs. Pike [40] gave an approach to monitor ultra
critical systems. Peters and Parnas[39] suggested monitors for runtime verification of soft-
ware and Hardware systems. Wilcox and Christina [51] provided an approach to effectively
monitor Stochastic Systems. Temporal Rover [11] is a runtime verification tool based on
future time metric temporal logic.

Networks have become more vulnerable after the shift from location-restrictive access
to unrestricted access. Hewlett Packard in its report said there has been a 176% increase in
cyber crime since 2010. Some of these attacks follow certain known patterns. For example,
accessing a user account from a certain IP address in rapid succession is one of the ways to
exploiting network services making the network inaccessible to intended users. This type
of attack is classified as denial of service[29]. Other types of attacks could be sending or
receiving abnormal bytes of data or accessing multiple ports simultaneously.

Various tools have been developed for monitoring network systems. They detect anomaly
in the network by matching the network state to patterns or set of rules describing char-
acteristics of anomalies[41]. Yu Gu et al. [24] proposed a technique to detect anomalies
in network traffic using maximum entropy estimation. Brutlag et al [12] used Holt Winter
Forecasting[15] model to predict future traffic based on the history of network traffic. Bro
et al [38] monitored network system by monitoring network link over intruders traffic tran-
sit. Yuh Huang and Thomas Wicks [27] gave a distributed intrusion detection framework
using attack strategy analysis. Sekar et al[42] gave a specification language for network
intrusion detection system which enables a strict static and dynamic checking. This thesis
introduces the use of compositional nature of MTD’s in conjunction with Apache Spark
for monitoring network systems.

2.3 Apache Spark

Apache Spark is a in-memory cluster computing framework designed for large scale data
processing. Spark is 100X times faster than other distributed computing framework called
Hadoop[43]. The speed can be attributed to the fact that Spark keeps the intermediate
data cached in local JVM. Hadoop on the other hand writes the intermediate data on to
the disk, which is expensive. Apache Spark applications can be written in any of Scala,
Python and Java. Spark stack shown in Figure 2.1 comes bundled with tools like Spark
SQL, MLlib, Spark Streaming and GraphX.

• SparkSQL: Unified access to structured data, provides compatibility with Apace Hive

6

and standard connectivity to tools like JDBC[25] and ODBC[23].

• Spark Streaming: For scalable fault tolerant streaming applications, Spark can run
in both batch and interactive mode.

• MLlib:Scalable Machine Learning library.

• GraphX:Large Scale Graph Processing Framework.

Figure 2.1: Apache Spark Framework

2.3.1 Resilient Distributed Datasets

The main abstraction for computation in Spark is Resilient Distributed Datasets [52].
RDD’s are defined as Read Only fault-tolerant, parallel data structures [52]. RDD support
two kinds of operations transformations and actions. RDD can store results in memory
and can apply simple transformation such as join or map. Due to the immutable nature of
RDD’s each transformation results in the creation of new RDD. Spark creates direct acyclic
graph of these transformations. Once the RDD’s are defined through transformations,
actions can be applied on them. Actions are operation that returns a value(count,collect
and save). These actions include functions like count, foreach, countbykey and first In
Spark RDD’s can be stored in disk by calling persist. Since it is just an RDD it can be
queried via SQL Interface or machine learning algorithms etc.

2.3.2 Spark Streaming

Spark Streaming is part of the spark stack and enables processing of live stream of data.
After capturing data for a predefined interval, batches are created on which data manip-

7

ulation operations such as map, reduce or join are performed. Since Spark Streaming is
built on top of Spark users can apply machine learning algorithms using MLLib and graph
processing operations can be performed using GraphX.

Once the data is transformed or manipulated it can be stored in database or file sys-
tem. Spark provides an API for processing live continuous stream of data called DStream.
DStream is represented internally as Resilient Distributed Datasets and lets user manipu-
late them through a series of operation. Once the operations are performed the results are
returned in chunks. Dstream provides both stateless and stateful operators. Stateless op-
erators such as map or join are those which act independently on each interval. Operators
can be stateful with windowing over several batch intervals.

2.4 Monitoring Network System with MTD

The main goal of this thesis is to monitor network systems for violations described using
compositional Modular Timing Diagrams. This covers various security vulnerabilities oc-
curred due to user authentication and dos attacks. Apache Spark provides the distributed
framework necessary to utilise the compositional nature of MTD and it also contains API
for live streaming of data which is required in case of network systems.

Data can be ingested from many sources like Kafka, Twitter, HDFS or TCP into Apache
Spark. For monitoring network systems using MTD’s the main source of live data are the
TCP servers. These TCP servers analyzes all the incoming requests and classify them as
normal or attack.

The high level specification provided by the network administrator are represented
using our compositional MTD notation. These high level specifications represent the error
conditions that may come from attack on the system. MTD notation is manually converted
into a text format called MSF file described later. This MSF file is given as input to Apache
Spark which parses the file and extract useful pattern/information out of it. The extracted
information is then use to verify each incoming connection request and an alarm is raised
if some suspicious activity is detected.

8

Chapter 3

Modular Timing Diagrams

In this section, the syntax and semantics of modular timing diagrams is discussed. Modular
timings diagrams (MTD) are an extension of the regular timing diagram[1] notation. A
regular timing diagram (RTD) module is defined over a finite time period and represents
timing dependencies between events that occur in the time period. These RTD modules
are linked together by construct to form an MTD. The constructs can denote forking,
deterministic choices or iteration. An example MTD with symbols is shown in Figure 3.1.

3.1 Informal Description

MTD semantics are represented by sequences of change events. Each event sequence is
described by a precondition and postcondition. As shown in Figure 3.1, a precondition is
denoted by dashed rectangle that indicates the initiation sequence of an event. A post-
condition is represented by solid rectangle indicating the outcome of an MTD condition.
Filled node at the beginning indicates an initial precondition node represented by an empty
RTD. Precondition and postcondition are linked together by a connector. Terminal nodes
are subset of postnodes and are not associated with an outgoing connector. A connector
can be a conjuctor or a disjunctor based on the event. Symbol ∨ with guards specifies a
disjunctor denoting deterministic choices. Symbol ∧ indicates a conjunctor and represents
branching.

MTD checks begin at the initial node which can be an empty node, a precondition or
a postcondition. Edges between nodes are labelled by Guard condition. The successors

9

Figure 3.1: An example MTD

of precondition nodes are only validated or checked if the guard condition on the edge
of precondition node holds. What successors of the current node are to be checked is
determined by the connectors. An ∨ connector with guards indicates selection of a unique
successor while ∧ requires that all successor nodes are checked. Iterations are allowed in
MTD by looping. An example of looping shown in Figure 3.1 can be represented by an
arrow from initial node back to the empty node. If a precondition is satisfied its associated
postcondition node must be satisfied. All postcondition nodes used in current work are
represented by RTD’s with no looping conditions. Therefore each of the post condition
can be represented by a deterministic finite automaton.

3.2 Modular Timing Diagrams: Syntax & Definition

An MTD is specified by a number of variables, each taking a finite set of values. An
MTD models sequences of change events over time. Event MTD specifies the ordering and
dependencies between different events with respect to time. An event can be denoted by
a pair (n, i) where n is the variable linked to a domain Dn, and i denotes the position of
an event.

If one event is sequentially dependent on another event, such dependencies are called

10

Figure 3.2: A component RTD

sequential dependencies and are represented by a curved line as shown in Figure 3.2. The
transition or dependency of one event to another consumes clock cycles, denoted by a
pair(a,b) where a occurs before b. Vertical lines in the diagram denote disjoint sets of
concurrent dependencies.

A Waveform denotes changes in value of an event variable(see Figure 3.2). Each com-
ponent RTD is specified by waveforms and timed dependency between points on the wave-
form. The values could be 0 (Low), 1 (High) and X. X denotes unspecified values. The
(a, b) waveform is shown in Figure 3.2.

Modular timing diagrams are formed by composing together RTDs. The definition of
point, event, RTD and MTD are discussed in the next few paragraphs.

Definition 1: Point A point (p, i) associates the variable p with a particular time
instance in the computation, i and a value to the variable. For the RTD in Figure 3.2:
(a, 0), (b, 0), (a, 1) and (b, 2) denote points in the waveform (a, b).

Definition 2: Regular Timing Diagrams A Regular Timing Diagram is defined by
a tuple of the form (p, S, E, SD,CD) where

• p is a set of point defined over the waveform, WF .

• S represents a finite set of variable names associated with the events over a period
of time. A single variable name is denoted by s.

• For every s there is a finite set of events E(s) represented as [s, 0], [s, 1],..., [s,ns].

• SD denotes a set of sequential dependency on points in the waveform, WF. Each SD

is denoted by (p, i)
[a,b)−−→ (q, j), where (p, i) and (q, j) denotes two points in WF . The

value a, b represents a timing dependency. Here a ∈ N is a natural number and b ∈
N ∪ ∞ and 1<a<b. Figure 3.2 gives a simple example of sequential dependency, at
points c and d.

• CD is a set of disjoint points called concurrent dependency. Figure 3.2 shows con-
current dependencies at point e and point f .

11

Another import term for understanding MTD is an event. An event is a change in
value of a variable wrt. time. Example of events can be the change in state of a button, a
user logging activity or a click on the webpage.

Definition 3: Event An event in an RTD (p, S, E, SD,CD) is defined as follows.

• E denotes an event.

• If s denotes a variable, linked to an event then (s,0) is an event.

• For an event (s, i), if there is a change in value from s(i) to s(j) then (s, j) as event.

• If (s, i) is in concurrent dependency with an event, then (s,i) is an event.

• For a sequential dependency (p, i)
c,c−→ (q, j) if (p, i) is an event then (q, j) is an event.

Definition 4: Modular timing Diagram A modular timing diagram is specified by
a tuple (N,C, I, F) where,

• N denotes the finite set of nodes. The set consist of two types of nodes Npre and
Npost where Npre denotes a set of pre nodes and Npost denotes a set of post nodes.

• C represents a set of connectors, C ∈ (∨, ∧). ∨ connector ∈ N × 2G×N . Where G is
set of guards or boolean expressions. These guard are set of intersection constraints.
Further, ∧ connector is an element of N × 2N . Figure 3.1 shows an example MTD
with all the components labelled.

• I ⊆ Npre is a set of initial nodes.

• F is a set of fair nodes that defines co-Buchi acceptance condition.

3.3 Semantics

This section describes the semantics of MTD’s as mentioned in the original paper [3]. The
semantics of an MTD is a set of infinite sequences over a vector of variable values declared
in the component RTD’s. Each of the vector values represent a state. The semantics is
specified using a ∀-automaton. The language of the automaton is the semantics for an
MTD.

12

3.3.1 ∀-automaton

The deterministic ∀-automaton, A, can be denoted by a tuple (Σ, Q, Q0, δ , F) where Σ is
a finite set of symbols called an alphabet; Q is a finite set of states; Q0 ⊆ Q, is a nonempty
set of start state of the automaton; δ is a transition function specified by δ: Q × Σ→ 2Q+

,
where Q+ = Q∪{ε(q) : q ∈ Q}; F ⊆ Qω denotes a set of accepting sequences. A word is a
finite sequence of letters in Σ. The set of all possible finite words over Σ is denoted by Σ∗.

A run of the ∀-automaton, A, on input string σ ∈ Σω is an infinite sequence ρ from
(Q× N)ω starting with an initial state Q0. A representation of the form (q, i) indicates the
current state of the automaton is q and is reading symbol σi. A run is valid if for initial
state, ρ0 = (q, 0), q ∈ Q0 and, ∀i ∈ N , ρi = (qi, ai) and ρi+1 = (q′, a′) where a′ = a and
ε(q′) ∈ δ(q, σa) or a′ = a + 1 and q′ ∈ δ(q, σa). The input is accepting if the projection of
ρ on Q is in F .

3.3.2 RTD Language

The language for, r, for a non empty RTD, is specified by a DFA, (S, ζ, SD, CD). The
language for the automaton is a set of finite strings z in, Σ∗ that satisfy the following
condition. For each string there is a locator function, which determines the position of the
events in the string. The locator function for z is specified by λz : ζ → [0..|z| − 1] such
that

• The value of each event in ζ can be located in z and has a value consistent with that
in r. If λz(s, i) has a value p then value of s at the p position on z, zp(s) = v(s, i).

• Let value of λz(s, i) = k and λz(s, i + 1) = l, then for every j that lies in [k, l), the
value of s at jth position of z, zj(s) = v(s, i).

• For each sequential dependency specified as, (s, i)
c−→ (t, j), where c denotes the

timing constraint of the form (clock, [a, b)). The number of events between λz(s, i)
and λz(t, j) is in [a, b).

• For each pair of events, (s, i) and (t, j) in concurrent dependency cd ∈ CD, λz(s, i)
= λz(t, j).

13

3.3.3 MTD Language

An MTD, T composed of RTD’s {ri} is denoted by a tuple (N,C, I, F). The ∀-automaton,
BT for T is defined as follows: For RTD ri, let Bi =(Σ, Qi, {q0}, δi, Fi) where Qi finite
set of states; {q0} is a nonempty set of initial state; Fi is the set of final states. The set
of states for ∀-automaton, BT , is (∪iQi)∪{ti |i ∈Nterm}. A transition of BT includes the
transitions of each Bi along with new transitions in the given order.

• If ri denotes a terminal post node, then for each q ∈ Fi and a ∈ Σ, add δ(q, a) =
{ε(ti)}, add δ(ti, a) = {(ti)}. This represents a transition from final state of terminal
nodes to the state that accepts any subsequent set of values.

• If ri ∧-connected to rj,, rk then for each q ∈ Fi and a ∈ Σ, add δ(q, a) =
{ε(q0i), ..., ε(q0k)}. This represents forking, and every node is accepting.

• If ri is ∨-connected to guards gj,, gk to RTD’s rj,, rk then for each q ∈ Fi and
a ∈ Σ, add δ(q, a) = {ε(q0l)}, where gl(a) is the unique guard that holds for a. This
denotes deterministic choices.

The acceptance condition ensures that any infinite path should get stuck in prenodes or
should be in infinitely often accepting states for post nodes. Thus whenever a run enters
nodes of MTD, it must either satisfy all the pattern in the post nodes, or it should exit at
the prenode.

14

Chapter 4

Security Vulnerabilities

Security vulnerabilities are network communication flaws that may result in sharing secure
information or in denying users access to information which they must be able to access.
Our testing dataset contains attacks that can be classified into four broad categories wide
enough to encompass the major attacks. We describe them below.

• Denial of Service[29] (DoS) is an attack where the attacker floods the server with
requests affecting its performance. Examples include Syn flood[37] and teardrop
attacks [30]. A DoS attack on a system, called land[21], is when the attacker sends
spoofed SYN packets with source and destination having the same address.

• Remote to Local (R2L) attacks concerns unauthorized access from a remote machine.
Eg. password guessing[20].

• User to Local (U2L) attacks involve unauthorized access to local superuser privileges.
The attacker exploits the vulnerability to gain access to the root account despite
having only normal user privileges. Eg. buffer overflow attacks[18].

• Probing[54] is gathering information about a network system to breach its security.
Eg. portscanning.

Some of the security vulnerabilities that cause modern data breaches and their specification
are highlighted below.

15

4.1 User Authentication

Organisations need to know the identity of a user before allowing them access to the
system. This prevents misuse of data, forging emails and keeps the system secure. Before
logging into the system the user is requested to enter his credentials. This process is termed
authentication.

An attack on this kind of system generally falls under R2L where a remote machine
tries to gain access to a forbidden resource.

To verify that the system’s authentication is not violated we represent the user authen-
tication process using our MTD notation shown in Figure 4.1. Authentication process on
the server side can be represented as a sequence of events in MTD and the outcome of
logging after verification is a post condition in MTD. MTD can also represent two-way
verification process by synchronizing the verification process at each level and linking it
through an MTD node. We present the steps of authentication/verification process but
not the details of cryptographic calculations since their verification is beyond the scope
of this work. To illustrate our work, a detailed MTD for user authentication is given in
Figure 4.1.

There are different ways to identify each kind of attack. DoS attack can be identified
using the number of requests from a given host. Some probe attacks can be identified
based on number of port accessed in a particular time period. However attacks on user
authentication, such as R2L, are mostly content based [45]. To detect these attacks, content
features such as the number of failed login attacks are used to look for any suspicious
behaviour in the data field of the packets. For experiments, our dataset contains attacks
marked by the type of R2L attack. We used those attacks as error conditions and generated
MTD’s from them for user authentication. Our experiments are further discussed in the
next chapter.

A specification for user authentication can be described as:

• Webpage displays a form for user login, in Figure 4.1 denoted by page.

• User enters the login id and password.

• Database loginDb contains a database of all registered users, all incoming login re-
quest with valid id and password is matched with .

• If the password is valid, user is given access to the system.

16

• If invalid password, user is asked thrice to enter the password, failure to enter correct
password after three trials results in an alarm and admin is notified.

The main entities involved in the user authentication process is the user account, a
webpage to display the login, a database of registered users and a server that directs
the request to the database. The user account represented by user are identified by two
variables, id and pwd. The webpage provides a view to the system where the user enters
details. The webpage is handled by two variables cmd and detail. Server consists of two
variables request and db. These variables ensures that each login request is directed to the
database for verification. In the current case the database that maintains the list of users
is represented by loginDb.

We have specified the following features for verification: the basic user login with valid
username and password; the retry password request; specific account access for a particular
user. The retry password feature enables the user to reenter password if the password in
the database does not match with the valid user account. The user can retry entering
the password three times. Failure to enter correct password after the three trials results
in blocking the requesting IP to further access the network. In the current example the
blocking period is 20 sec represented by server.block. The administrator is notified of the
suspicious activity by the variable admin.notify.

MTD diagrams are read from left to right. The ∧ connector at the start indicates that
the event has to be validated at any point along the computation provided by a left arrow
pointing to the initial node. The precondition node of MTD presents a webpage to the
user represented by page and user enters the required details to access the account. A
clock represented by clk represents the time frame at which the specific event occurs. It
can be seen from Figure 4.1 that verification requests starts just after the server.request
variable is set. The database consist of all users registered with their encrypted passwords
and user name.

The server verifies the details with the database. If the details entered by the user
matches the one in the system the user is given student access. The access level varies
according to the user id - a professor access or a student access or an administrative
access. Although the login page is the same for all users, what portion of the system is
accessible to the user is determined based on credentials. In Figure 4.1 the node after
the execution is a postcondition node. The exclusive-or connector above the condition
ensures only one active state at a given time. Also it can be seen in the postcondition that
server.db.cmd variables ensures that user can enter the password at most thrice but after
that the server.request variable is set to false.

17

Figure 4.1: MTD of User Login - Password verification

If the username and password do not match then the user is asked to re-enter the
password in the error message displayed. The postcondition verifies the username and
password and passes to the next step of IP verification. A ∨ connector indicates the
selection of a unique successor while in case of ∧ all successor nodes are checked. The user
is given a limited number of trials set by server.retry. If these trials end in failure then the
user is asked to register and the account is temporarily blocked for a short period of time
specified by server.db.cmd.

Once the user details are verified the next task is to verify the IP address as shown
in Figure 4.2. Such location specific monitoring may be required in financial service com-
panies, for instance. The main task of IP verification is to prevent suspicious account
activity. This usually occurs when some malware is installed in the system resulting in
remote access from a false location. If the user is logged in from a location, say L1, at
a point of time and from a far-away location L2 after a short period, then the activity is
considered suspicious. In such a case, the user is not given access to the system despite
providing correct login details. This verification is done by perusing through the last few
login activities of the user to find a match with the user’s current location. On failure, the
user is blocked with a message saying suspicious activity detected.

18

Figure 4.2: MTD of User login - IP Verification

In the example shown in Figure 4.2 we assume that the user is located in Germany
denoted by variable user.loc and all of their requests are coming from Germany. In the
preprocessing phase, the loc variable provides the location of the request. Initially the
server retrieves the location of the user and then compares it with their account’s previous
locations obtained from the log file, useractivity.log. The MTD connector verifies the
condition that the variable user.valid holds. user.valid compares the locations to provide
access to the user. In our example, the postcondition indicates that a suspicious activity
is detected since the account login is requested from Germany while the last few accesses
were from India.

4.2 Communication Security

Communication security is ensuring secure communication by preventing a third party from
listening to the communication. Hiding the parties in communication is one of the ways
to achieve this. Attacks on the communication link usually belong to the class of attacks
called probing. The network administrator provides error conditions that might lead to

19

attack on the system. These network conditions are represented using MTD. User can
make use of the distributed nature of MTD to represent them separately for each machine.
MTD can communicate with the server to check each incoming connection. During data
transfer between two parties if the data is passing through an unregistered node, this might
be a attack on system and the framework notifies the network administrator about it.

4.3 Network Access Control

Network Access Control (NAC) manages the access to a resource on a sever. Access control
restricts the data that each registered user can access. NAC also involves the use of various
software to restrict access such as firewall and spyware detection tools.

Attacks on a system with NAC can be classified as above into R2L or L2R. MTD checks
can be enforced at the initial verification step to limit the access of resources to a particular
person. This will ensure a constant monitoring of not only the network systems but also
the software on it.

4.4 Email Filtering

Email is critical to any organisation. Emails can serve as delivery system for spyware,
worms and viruses. Email is sometimes used as a tool for DoS attack.

Email bomb[8] is a form of DoS attack where attacker sends large number of emails in
order to overload the server where the email is hosted. We show that our MTD framework is
capable of detecting email bombs. MTD constantly monitors emails coming from different
sources by distributing the specifications across different machines. Specifications contain
sender’s address, destination address along with the mail domains. Any form of email
bombing will result in overloading of server by mails.

Email monitoring happens at two levels. The lowest level is the connection level where
the senders Ip address and domain are checked. Checks are provided to make sure that
filtered mails adhere to RFC standard. When an unwanted probe is detected system raises
an alarm. In the content level verification the content of the mail is verified. Attachments
are examined to check if they are virus free and the mail doesn’t contain suspicious content.

In this work, we are mostly concerned with the connection level verification of emails.
Our dataset contains connection string marked with attack and normal. Error conditions

20

Figure 4.3: MTD of Email Filtering

are generated from our testing dataset, discussed later with connection strings marked
with DoS. These error conditions are further enhanced considering security for financial
institutions, and an MTD shown in Figure 4.3 is generated from it.

As soon as the mail enters the system it is verified to see if it is coming from a registered
domain. Since the mail is not stored unless verified another variable called server starts
the verification process. Server checks the database to verify if the mail adheres to RFC
standards, and is coming from registered user. Server replies back with a command to
indicate weather the mail is valid or not. If the guard condition denoted by mail.valid is true
the mail is accepted in the system. If the domain is not valid then the mail is discarded and
network administrator is notified, denoted by network.notfiy. Variable server.request.max
denotes the maximum number of request a server can handle at a particular instance of
time. This is just a error condition and can very according to the specification. To keep
the count of number of request the MTD maintains a variable mail.num. If the number
of mails from a particular user exceeds the server.req.max limit, this might be a case of
email bombing, so the administrator is notified about it. In Figure 4.3 as soon the user
receives more then four mails from the sender per second labeled by mail.num the variable
mail.acceptbecomes false and the mail is discarded.

21

Chapter 5

Observations

To demonstrate the compositional nature of MTD, we performed various experiments on
a cluster computing framework called Apache Spark[53]. One of the main reasons for
choosing Apache Spark was its performance in handling large amount of real time data.

5.1 KDD dataset

For testing purposes, we used a popular intrusion detection dataset by KDD [46]. The
dataset is captured from DARPA[32] 98 intrusion detection system evaluation program.
DARPA is about 4 gigabytes of compressed raw TCP dump data from seven weeks of
network traffic. The data consists of around 5 million connections, each of around 100
bytes. A connection represents a sequence of TCP packets from a source IP to target IP

Figure 5.1: Data Format

22

Figure 5.2: Distributed Monitoring System

address, number of bytes sent, types of connection etc. Each row in the dataset is marked
with either normal or attack.

A row from the dataset is shown in Figure 5.1. The main fields are labeled. The
connection shown in Figure 5.1 denotes a TCP connection with 215 bytes sent and 45076
bytes received. We see that the last field specifies the type of request - type of attack or
normal. This field is used to separate normal connections from suspicious ones marked by
a type of attack. During the monitoring process, a request to the system or network is
observed by monitors immediately.

The KDD dataset is analyzed and all requests marked by a type of attack are extracted.
The attacks belong to the four categories of attacks mentioned above. For our system, we
extracted all the attacks marked DoS and R2L. The IP addresses associated with these
attacks are termed blocked. The connection strings associated with the attacks are then
explored. Error conditions are generated from these strings which in turn generate the
specifications and hence the MTDs. This dataset is only used to test our approach and
should not be used for building real time systems as the dataset reflects traffic pattern
more then a decade ago and quite a few newer types of attack have come up since then.

However, in practice, the network administrators provide their own specifications. Fig-
ure 5.2 above summarizes the key step in the distributed monitoring process. Initially the
system administrator generates high level specification from previous data. This can be
log files or datasets of previous user activity. These high level specification contains error
conditions associated with the network. Examples of error conditions include blocked IP

23

addresses, the maximum number of requests per time unit a user is allowed, the number
of incorrect password attempts etc.

These high level specification are expressed with our MTD notation. We make use of the
compositional nature of MTDs to translate single monolithic specifications into distributed
specifications of several parts. Each part in itself is an MTD describing the occurrence of
these error conditions at a particular location in the network.

5.2 MSF File

To make the system compatible with Spark and utilize MTD’s compositional nature, the
MTD specifications are translated into a text file. The text file is referred as MTD spec-
ification file (MSF). Currently, this file is generated manually from the MTDs but a tool
for converting diagram to text, written specifically for MTD could be useful for this task.
A sample format of MSF is shown in Figure 5.3. The MSF file corresponds to one of the
attack marked R2L in the KDD dataset, which is represented by the MTD in Figure 4.1.

The generated MSF file is used as a specification input to Apache Spark on the given
dataset. Data is ingested in Apche Spark using the streaming API’s. Spark receives stream
of TCP communication data which is then processed by the spark engine. Each connection
is then classified as attack or normal based on the specifications provided. Apache Spark’s
streaming APIs make it easy to process the live stream of data. The tool analyses the real-
time data looking for irregular patterns or fluctuation that might suggest a security breach.
As soon as an attack is inferred, the administrator is notified of the security breaches.

MTD specification files contain several keywords.Pre represents a precondition in MTD
and post represents a postcondition. The connector to be used is indicated in the MSF
by the keyword Connector. The command tag indicates the messages exchanged in the
system. To handle the events that occur at a certain point in time, we associate a time
variable with each command. This variable is assigned either discrete values or indicators
such as ’mid’, ’end’, ’start’ etc. In the given MSF, the messages exchanged are verfiylogin,
errormessage and verifylocation. The postcondition, which is determined by the guard
conditions, is the final state of the system. In our case, the guard conditions are denoted
by a variable called server.db.valid. When a new user enters the system, the generated
MSF is parsed to extract essential information including password, mailid and IPaddress
along with the messages that are associated with each user. Here, user denotes not only
a person entering the system but also various entities such as a database, a system and a
server.

24

Figure 5.3: MSF file

5.3 Clustering and Live Streaming of Data

All the experiments were performed on Amazon Elastic Compute Cloud(Ec2). Five ma-
chines were used to work as a cluster. The cluster contains all five m1.small instances.
One of the nodes is the master node responsible for scheduling tasks to the rest four slave
nodes. The operating system was Ubuntu Server 14.04 LTS.

Spark provides API to access data from different data sources such as HDFS [10], Cas-
sandra [31] and Hive [48]. In our current system we store the data in Hadoop Distributed
File System(HDFS).

In the Hadoop Distributed File System, the master node is called namenode. All other
nodes are called datanodes and all data processing are performed on them. The MSF files
generated from KDD dataset are copied to HDFS. These MSF files are then loaded to
Spark as an RDD. The file is then parsed using the Spark API’s available. Due to the
compositional nature of MTD, the generated MSF files can be distributed across different
slave machines for faster processing. To avoid loading data from disk every time, Spark
caches the data in memory.

A graphical view of our cluster is shown in Figure 5.4. To monitor network on a cluster
of machines we followed the algorithm described below:

25

Figure 5.4: System Design

• Generate a large MTD with blocked IP addresses and specifications for monitoring
the network system.

• Generate smaller sub-specifications from the MTD. This is possible owing to the
compositional nature of MTD.

• Decide the range of IP addresses for each data node based on the previous datasets.

• Each smaller MTD is then converted to an MSF file: in our case, four MSF files
containing different ranges of IP addresses are generated.

• Create a Spark cluster, or a cluster of four data nodes and one name node in our
case.

• Copy MSF file to the corresponding datanode.

• Channel the new requests to the concerned data node for verification based on the
IP address of the incoming request.

The range of IP addresses at each data node is decided based on the test dataset. Each
incoming request is directed to the data node associated with its IP address. Once the

26

request is directed, the MSF file is parsed to match the incoming IP address with the list
of blocked IP addresses at that node. In the case of a match, an alarm is raised to notify
the administrator of the possible attack.

Since network systems are real-time, Spark streaming API’s can be used to process
the real time data. The real-time data is ingested using the TCP connection. In our test
case, the KDD dataset is used and passed to the Spark cluster. The incoming traffic is
monitored based on the RDD generated from MSF file.

Our framework is able to detect unregistered IP addresses and blocked IP address from
the requesting connections. We are also able to monitor cases where the number of requests
to a particular server from single machine exceeds a certain threshold and thus we could
prevent any basic dos attack. We also found that the MSF files after parsing, contains the
error conditions associated with the four types of attacks and, hence, we conclude that the
method of generating MTDs from specifications is effective. Furthermore, our experiments
were conducted on a small cluster; we plan to perform them on multi-user network systems.

27

Chapter 6

Conclusion and Future Work

In this work we show how to monitor network systems using compositional MTD notation.
The main advantage of MTD is its clear graphical interface and its compositional nature
making it easier to represent system specifications of network systems. More specifically,
we show how to use modular reasoning with MTD properties along with asynchronous
compositional reasoning rule to monitor the network. From the error conditions, we gen-
erate specifications that describe the attack. We show that converting these diagrams to
text, allows us to effectively check the user information for forbidden conditions and de-
tect attacks. To evaluate our approach, we performed our experiments using a distributed
framework called Apache Spark. Our MTD components are designed to monitor events and
messages across the network nodes and to notify network administrator of the occurrence
of a specific error event.

For future work, we plan to test our monitoring approach on an IP based network
system. We aim to extend the RTDT [1] tools to MTD to design a graphical editor for
them. A tool to generate MSF file from MTD is the next step in our MTD notation.
We also want to consider how to combine specifications into an optimal representation.
Another important future work could be to use machine learning algorithms to predict
abnormal behaviour.

28

References

[1] Nina Amla, E Allen Emerson, Robert P Kurshan, and Kedar Namjoshi. Rtdt: A
front-end for efficient model checking of synchronous timing diagrams. In Computer
Aided Verification, pages 387–390. Springer, 2001.

[2] Nina Amla, E Allen Emerson, and Kedar S Namjoshi. Efficient decompositional model
checking for regular timing diagrams. In Correct Hardware Design and Verification
Methods, pages 67–81. Springer, 1999.

[3] Nina Amla, E Allen Emerson, Kedar S Namjoshi, and Richard J Trefler. Visual spec-
ifications for modular reasoning about asynchronous systems. In Formal Techniques
for Networked and Distributed SytemsFORTE 2002, pages 226–242. Springer, 2002.

[4] Martin Leucker Andreas Baeur and Christian Schallhart. Runtime verification for ltl
and tltl. ACM Transactions on Software Engineering and Methodology (TOSEM),
20(4), 2011.

[5] Ion Androutsopoulos, John Koutsias, Konstantinos V Chandrinos, and Constantine D
Spyropoulos. An experimental comparison of naive bayesian and keyword-based anti-
spam filtering with personal e-mail messages. In Proceedings of the 23rd annual in-
ternational ACM SIGIR conference on Research and development in information re-
trieval, pages 160–167. ACM, 2000.

[6] Christel Baier and Joost-Pieter Katoen. Principles of model checking. The MIT Press,
Cambridge, MA, 2008.

[7] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

[8] Tim Bass, Alfredo Freyre, David Gruber, and Glenn Watt. E-mail bombs and counter-
measures: cyber attacks on availability and brand integrity. Network, IEEE, 12(2):10–
17, 1998.

29

[9] Gaetano Borriello. Formalized timing diagrams. In Design Automation, 1992. Pro-
ceedings.,[3rd] European Conference on, pages 372–377. IEEE, 1992.

[10] Dhruba Borthakur. Hdfs architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

[11] Guillaume Brat, Doron Drusinsky, Dimitra Giannakopoulou, Allen Goldberg, Klaus
Havelund, Mike Lowry, Corina Pasareanu, Arnaud Venet, Willem Visser, and Rich
Washington. Experimental evaluation of verification and validation tools on martian
rover software. Formal Methods in System Design, 25(2-3):167–198, 2004.

[12] Jake D Brutlag. Aberrant behavior detection in time series for network service moni-
toring. In InProc. of the 14th Systems Administration Conference, page 13.

[13] R. Jhala C. Killian, J. W. Anderson. Life, death, and the critical transition: Finding
liveness bugs in systems code. Proceedings of the Fourth Symposium on Networked
Systems Design and Implementation(NSDI), 2007.

[14] Ming Chai and Bernd-Holger Schlingloff. Monitoring systems with extended live se-
quence charts. In Runtime Verification, pages 48–63. Springer, 2014.

[15] Chris Chatfield. The holt-winters forecasting procedure. Applied Statistics, pages
264–279, 1978.

[16] Hana Chockler and Kathi Fisler. Temporal modalities for concisely capturing tim-
ing diagrams. In Correct Hardware Design and Verification Methods, pages 176–190.
Springer, 2005.

[17] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[18] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beat-
tie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Auto-
matic adaptive detection and prevention of buffer-overflow attacks. In Usenix Security,
volume 98, pages 63–78, 1998.

[19] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts.
Springer, 1999.

[20] Yun Ding and Patrick Horster. Undetectable on-line password guessing attacks. ACM
SIGOPS Operating Systems Review, 29(4):77–86, 1995.

30

[21] Scott Dubal, Douglas Boom, Patrick Connor, and Mark Montecalvo. Detecting a
network attack, December 18 2002. US Patent App. 10/323,985.

[22] Ylies Falcone, Jean-Claude Fernandez, and Laurent Mounier. Runtime verification of
safety-progress properties. In Runtime Verification, pages 40–59. Springer, 2009.

[23] Kyle Geiger. inside ODBC. Microsoft Press, 1995.

[24] Yu Gu, Andrew McCallum, and Don Towsley. Detecting anomalies in network traf-
fic using maximum entropy estimation. In Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, pages 32–32. USENIX Association, 2005.

[25] Graham Hamilton, Rick Cattell, Maydene Fisher, et al. JDBC Database Access with
Java, volume 7. Addison Wesley, 1997.

[26] Klaus Havelund and Grigore Roşu. Monitoring java programs with java pathexplorer.
Electronic Notes in Theoretical Computer Science, 55(2):200–217, 2001.

[27] Ming-Yuh Huang, Robert J Jasper, and Thomas M Wicks. A large scale distributed
intrusion detection framework based on attack strategy analysis. Computer Networks,
31(23):2465–2475, 1999.

[28] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman, Ben-
jamin P Berman, and Phil Maechling. Scientific workflow applications on amazon
ec2. In E-Science Workshops, 2009 5th IEEE International Conference on, pages
59–66. IEEE, 2009.

[29] Peyman Kabiri and Ali A Ghorbani. Research on intrusion detection and response:
A survey. IJ Network Security, 1(2):84–102, 2005.

[30] Byoung-Doo Kang, Jae-Won Lee, Jong-Ho Kim, O-Hwa Kwon, Chi-Young Seong, and
Sang-Kyoon Kim. An intrusion detection system using principal component analysis
and time delay neural network. In Enterprise networking and Computing in Healthcare
Industry, 2005. HEALTHCOM 2005. Proceedings of 7th International Workshop on,
pages 442–445. IEEE, 2005.

[31] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-
age system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[32] Richard P Lippmann, David J Fried, Isaac Graf, Joshua W Haines, Kristopher R
Kendall, David McClung, Dan Weber, Seth E Webster, Dan Wyschogrod, Robert K

31

Cunningham, et al. Evaluating intrusion detection systems: The 1998 darpa off-line
intrusion detection evaluation. In DARPA Information Survivability Conference and
Exposition, 2000. DISCEX’00. Proceedings, volume 2, pages 12–26. IEEE, 2000.

[33] Leonardo Mariani and Mauro Pezze. A technique for verifying component-based soft-
ware. Electronic Notes in Theoretical Computer Science, 116:17–30, 2005.

[34] Tony A Meyer and Brendon Whateley. Spambayes: Effective open-source, bayesian
based, email classification system. In CEAS. Citeseer, 2004.

[35] Madanlal Musuvathi and Dawson R. Engler. Model checking large network protocol
implementations. NSDI, 4, 2004.

[36] Kedar S Namjoshi and Richard J Trefler. On the completeness of compositional
reasoning. In Computer Aided Verification, pages 139–153. Springer, 2000.

[37] Ross Oliver and Tech Mavens. Countering syn flood denial-of-service attacks. In
Invited Talks of USENIX Security Symposium, 2001.

[38] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23):2435–2463, 1999.

[39] Dennis K Peters and David Lorge Parnas. Requirements-based monitors for real-time
systems. Software Engineering, IEEE Transactions on, 28(2):146–158, 2002.

[40] Lee Pike, Sebastian Niller, and Nis Wegmann. Runtime verification for ultra-critical
systems. In Runtime Verification, pages 310–324. Springer, 2012.

[41] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,
volume 99, pages 229–238, 1999.

[42] R Sekar, Ajay Gupta, James Frullo, Tushar Shanbhag, Abhishek Tiwari, Henglin
Yang, and Sheng Zhou. Specification-based anomaly detection: a new approach for
detecting network intrusions. In Proceedings of the 9th ACM conference on Computer
and communications security, pages 265–274. ACM, 2002.

[43] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

32

[44] Margaret H Smith, Gerard J Holzmann, and Kousha Etessami. Events and constraints:
A graphical editor for capturing logic requirements of programs. In Requirements
Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, pages 14–
22. IEEE, 2001.

[45] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali-A Ghorbani. A detailed anal-
ysis of the kdd cup 99 data set. In Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence Applications 2009, 2009.

[46] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali-A Ghorbani. A detailed anal-
ysis of the kdd cup 99 data set. In Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence Applications 2009, 2009.

[47] Wolfgang Thomas. Automata on infinite objects. Handbook of theoretical computer
science, 2, 1990.

[48] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solu-
tion over a map-reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–
1629, 2009.

[49] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Detecting implied scenarios in message
sequence chart specifications. ACM SIGSOFT Software Engineering Notes, 26(5):74–
82, 2001.

[50] National Threat Assessment Ctr US Secret Service, United States of America,
CERT R© Division of the Software Engineering Institute, United States of America,
CSO Magazine, and United States of America. Us cybercrime: Rising risks, reduced
readiness key findings from the 2014 us state of cybercrime survey. 2014.

[51] Cristina M Wilcox and Brian C Williams. Runtime verification of stochastic, faulty
systems. In Runtime Verification, pages 452–459. Springer, 2010.

[52] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceed-
ings of the 9th USENIX conference on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

33

[53] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages 10–10, 2010.

[54] GR Zargar and P Kabiri. Identification of effective network features for probing at-
tack detection. In Networked Digital Technologies, 2009. NDT’09. First International
Conference on, pages 392–397. IEEE, 2009.

34

	List of Figures
	Introduction
	Problem Description
	Approach
	Organization

	Background
	History
	Monitoring Network Systems
	Apache Spark
	Resilient Distributed Datasets
	Spark Streaming

	Monitoring Network System with MTD

	Modular Timing Diagrams
	Informal Description
	Modular Timing Diagrams: Syntax & Definition
	Semantics
	-automaton
	RTD Language
	MTD Language

	Security Vulnerabilities
	User Authentication
	Communication Security
	Network Access Control
	Email Filtering

	Observations
	KDD dataset
	MSF File
	Clustering and Live Streaming of Data

	Conclusion and Future Work
	References

