
Secure Protocols for Key
Pre-distribution, Network Discovery,
and Aggregation in Wireless Sensor

Networks

by

Kevin J. Henry

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Kevin J. Henry 2015

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The content presented in Chapter 3 was co-authored with Maura Paterson. All chapters
of this thesis were authored under the supervision of Douglas Stinson.

iii

Abstract

The term sensor network is used to refer to a broad class of networks where several
small devices, called sensors, are deployed in order to gather data and report back to one
or more base stations. Traditionally, sensors are assumed to be small, low-cost, battery-
powered, wireless, computationally constrained, and memory constrained devices equipped
with some sort of specialized sensing equipment. In many settings, these sensors must be
resilient to individual node failure and malicious attacks by an adversary, despite their
constrained nature.

This thesis is concerned with security during all phases of a sensor network’s life-
time: pre-deployment, deployment, operation, and maintenance. This is accomplished by
pre-loading nodes with symmetric keys according to a new family of combinatorial key
pre-distribution schemes to facilitate secure communication between nodes using minimal
storage overhead, and without requiring expensive public-key operations. This key pre-
distribution technique is then utilized to construct a secure network discovery protocol,
which allows a node to correctly learn the local network topology, even in the presence of
active malicious nodes. Finally, a family of secure aggregation protocols are presented that
allow for data to be efficiently collected from the entire network at a much lower cost than
collecting readings individually, even if an active adversary is present.

The key pre-distribution schemes are built from a family of combinatorial designs that
allow for a concise mathematical analysis of their performance, but unlike previous ap-
proaches, do not suffer from strict constraints on the network size or number of keys per
node. The network discovery protocol is focused on providing nodes with an accurate view
of the complete topology so that multiple node-disjoint paths can be established to a des-
tination, even if an adversary is present at the time of deployment. This property allows
for the use of many existing multi-path protocols that rely on the existence of such node-
disjoint paths. The aggregation protocols are the first designed for simple linear networks,
but generalize naturally to other classes of networks. Proofs of security are provided for
all protocols.

iv

Acknowledgements

I would like to thank all members, past and present, of the Cryptography, Security, and
Privacy (CrySP) research lab for inspiring and shaping my work over the years.

v

Dedication

To my parents, who have never failed to offer their support.

vi

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction to Sensor Network Research 1

1.1 Introduction to Sensor Networks . 2

1.1.1 Example Applications . 4

1.2 Security Issues in Wireless Sensor Networks 7

1.2.1 Pre-deployment . 10

1.2.2 Deployment/Setup . 11

1.2.3 Operation . 15

1.2.4 Management/Maintenance . 16

1.3 Organization and Contributions . 18

1.3.1 Pre-deployment . 18

1.3.2 Deployment/Setup . 19

1.3.3 Operation . 20

1.3.4 Maintenance . 20

2 An Overview of Combinatorial Key Pre-distribution 22

2.1 Key Pre-distribution . 23

2.1.1 Naive Schemes . 25

vii

2.1.2 Randomized Schemes . 26

2.1.3 But Why Rely on Randomness? . 29

2.2 Combinatorial Design Theory . 30

2.2.1 Set Systems . 30

2.2.2 Configurations . 31

2.2.3 Balanced Incomplete Block Designs 33

2.2.4 Transversal Designs . 34

2.2.5 Other Designs . 35

2.3 Set Systems as KPSs . 35

2.4 The Linear Scheme . 37

2.4.1 A More Thorough Analysis . 41

2.5 The Quadratic and Higher Degree Schemes 43

2.5.1 Higher Degree Constructions . 45

2.6 A Useful Generalization . 46

2.7 Multiple Space Schemes . 51

2.8 Summary and Remarks . 53

3 Flexible Parameters for Combinatorial KPSs 55

3.1 Problems with Parameter Choice . 56

3.2 Approaches to Varying Network Size . 57

3.2.1 Randomized Subset Schemes . 58

3.2.2 Resolvable and Decomposable Designs 59

3.2.3 Decomposable Schemes . 60

3.2.4 Finer Control Over Network Size 63

3.3 Deriving Performance Metrics . 63

3.3.1 Analysis of the Decomposable Linear KPS 64

3.3.2 Analysis of the Decomposable Quadratic KPS 65

3.3.3 Computing Performance Metrics for Arbitrary Set Systems 68

3.4 Comparison of Decomposable and Randomized Approaches 75

3.5 Summary and Remarks . 81

viii

4 Secure Network Discovery 83

4.1 Introduction . 83

4.1.1 Related Work . 84

4.2 Problem Setting . 85

4.3 Tools and Assumptions . 87

4.3.1 Authentication . 87

4.3.2 Key Pre-distribution . 90

4.3.3 Localization and Directional Antennas 91

4.4 Proposed Solution . 92

4.4.1 Phase 1: Identifying Neighbors . 92

4.4.2 Phase 2: Identifying 2-Hop Paths 98

4.4.3 Phase 3: Beyond 2-Hop Paths . 102

4.4.4 Adding New Nodes . 103

4.5 Performance Analysis . 103

4.6 Summary and Remarks . 106

5 Resilient Aggregation in Sensor Networks 110

5.1 The Aggregation Problem . 111

5.1.1 Secure Aggregation . 113

5.1.2 Problem Statement . 116

5.1.3 Naive Solutions . 118

5.1.4 Comparison to Existing Approaches 119

5.2 Linear Networks . 124

5.2.1 Key Pre-distribution for Linear Networks 128

5.3 Secure Aggregation using the Optimal KPS 128

5.3.1 Aggregation when k = 1 . 129

5.3.2 Analysis . 133

5.3.3 An Attack Against a Naive k > 1 Protocol 133

ix

5.4 Aggregation Using the Pairwise KPS . 136

5.4.1 Analysis . 141

5.5 Aggregation Using the Group-Based KPS 144

5.5.1 Reacting to Node Spoofing Attacks 148

5.6 Comparing Linear Approaches . 149

5.7 Moving Beyond Linear Networks . 150

5.7.1 Merging Two Paths Into One . 151

5.7.2 Merging Multiple Paths . 152

5.8 Linear Sub-Networks in Random Topologies 156

5.9 Comparison to Previous Approaches . 160

5.10 Grid-Based Networks and Load Balancing 164

5.11 Group-Based Aggregation for Grid Networks 166

5.12 Summary and Remarks . 168

6 Conclusion 169

APPENDICES 172

A Summary of Notation 173

B Data Tables 175

References 180

x

List of Tables

2.1 The effect of node compromise on resilience in the linear scheme. 42

2.2 The effect of node compromise on resilience in the quadratic scheme. . . . 45

2.3 The two-hop connectivity (Pr2) and resilience of the linear LS-KPS and
MS-KPS. 53

3.1 Sample values for L for several small intersection thresholds. 71

3.2 Comparison of performance metrics for transversal design-based schemes. . 76

5.1 Summary of communication costs for the optimal, pairwise, and group-based
linear aggregation protocols. 151

B.1 Resilience of random KPSs derived from a TD(2,15,71). This data was used
to generate Figure 3.2. 175

B.2 Connectivity of random KPSs derived from a TD(2,15,71). This data was
used to generate Figure 3.2. 177

xi

List of Figures

1.1 The Mica2 and Mica2Dot sensor nodes. 3

1.2 An example of a millimeter-scale smart dust node. 4

2.1 Example of the Eschenauer-Gligor KPS. 27

2.2 A (7, 7, 3, 3)-configuration, also known as the Fano plane. 32

2.3 Example blocks in a TD(2,4,5). 35

2.4 Some sample blocks in the linear LS-KPS. 38

3.1 A partial resolution of a TD(2, 5, 5). 60

3.2 Comparison of linear schemes based on a TD(2, 15, 17) with maximal net-
work size N ≈ 5000. 77

3.3 Comparison of quadratic schemes with intersection threshold η = 1 based
on a TD(3, 15, 17) with maximal network size N ≈ 5000. 78

3.4 Comparison of quadratic schemes with intersection threshold η = 2 based
on a TD(3, 15, 17) with maximal network size N ≈ 5000 79

3.5 Comparison of linear schemes based on a TD(2, 25, 157) with maximal net-
work size N ≈ 24000. 80

3.6 Comparison of quadratic schemes with intersection threshold η = 1 based
on a TD(3, 25, 29) with maximal network size N ≈ 24000. 80

3.7 Comparison of quadratic schemes with intersection threshold η = 2 based
on a TD(3, 25, 29) with maximal network size N ≈ 24000 81

4.1 The Fingerprinted Mutual Authentication Protocol (FMAP). 88

xii

4.2 A pictorial demonstration of neighbor discovery. 94

4.3 A pictorial demonstration of neighbor discovery (cont.) 95

4.4 The intersecting neighborhoods of two-hop neighbors. 99

4.5 An example of two-hop neighbor discovery 101

4.6 The probability that the LHM assumption is satisfied for a random network. 104

4.7 The probability 2HM assumption is satisfied for a random network. 105

4.8 The probability that the LHM assumption is satisfied for a variety of differ-
ent parameter with fixed density. 107

4.9 The probability that the 2HM assumptions are satisfied for a variety of
different parameter sets with fixed density. 108

5.1 A simple aggregation tree within a network. 112

5.2 Commitment tree generation in the CPS aggregation protocol. 122

5.3 An (8, 2)-linear sensor network. 125

5.4 Examples of subsets of a thick linear network, and thick two-level linear
network. 126

5.5 A minimal Euclidean spanning tree on a geometric graph of 100 nodes. . . 127

5.6 Optimal and pairwise KPS for a (10, 3)-linear network, and group-based
KPS for a (10, 2)-linear network. 129

5.7 A resilient data aggregation protocol for (N, 1)-linear networks where k = 1
using the optimal KPS . 131

5.8 A flawed data aggregation protocol for (N, 1)-linear networks where k = 2 . 134

5.9 A resilient data aggregation protocol for k = 2. 137

5.10 A resilient data aggregation protocol for k = 2 (cont.) 138

5.11 A (16, 3)-linear network partitioned into groups and subgroups 144

5.12 In-group aggregation for subgroup si. 145

5.13 A group-based aggregation protocol . 146

5.14 A network that consists of two simple linear networks converging into a
single linear network. 151

xiii

5.15 Breakdown of a tree into overlapping linear networks. 153

5.16 The “optimal k = 1” tree-based aggregation protocol. 154

5.17 A comparison of a Euclidean minimum spanning tree and a breadth-first
spanning tree. 157

5.18 A balance between the MST and the shortest path tree in a Euclidean network.160

5.19 A minimum directed spanning tree. 161

5.20 A simple grid-based sensor network and a trivial linear spanning tree. The
square node denotes the base station. 164

5.21 A pair of spanning trees for a grid network with communication range d = 1,
where each merge node in one tree is a leaf node in the other. 165

5.22 A pair of spanning trees for a grid network with communication range d =
1.5, where each merge node in one tree is a leaf node in the other. 166

5.23 A grid network partitioned into groups of size 4× 4, and subgroups of size
2× 2. 167

xiv

Chapter 1

Introduction to Sensor Network
Research

The term sensor network is used to refer to a broad class of networks where several small
devices, called sensors, are deployed in order to gather data and report it back to one
or more base stations. Traditionally, sensors are assumed to be small, low-cost, battery-
powered, wireless, computationally constrained, and memory constrained devices equipped
with some sort of specialized sensing equipment. These descriptors are not precise, which
makes formalizing a problem statement using sensors difficult in most cases. In practice, the
term sensor can be applied to any communication-enabled sensing device whose processing
power lies somewhere in the domain between a smart card and a cell phone. A sensor
network is a collection of such sensors, ad-hoc or otherwise, which collectively coordinate
their actions in order to sense data about their environment and forward it to a central
location.

This thesis is concerned with a subset of the sensor network problem domain where
nodes have extremely limited computational and memory constraints. In particular, we
present a suite of protocols that allow resource-constrained sensor nodes to operate dur-
ing all phases of a network’s lifetime in the presence of an active malicious adversary.
The severe limitations of sensors in this setting make many common cryptographic tech-
niques, such as public-key cryptography, too expensive to consider. In general, we rely on
symmetric-key cryptography and design protocols from the ground up, beginning with a
minimal set of assumptions, to identify precisely what capabilities are necessary in order
provide a provably secure solution. We provide complete proofs of security and simulation
results where applicable.

1

The protocols presented in this thesis span the main phases of the lifetime of a sensor
network. First, we present a flexible variant of an existing key pre-distribution scheme
that allows for combinatorial key pre-distribution to be used in networks of arbitrary size,
rather than just networks where the number of nodes is a prime or prime power. We
then demonstrate how this scheme can be used to perform secure network discovery in the
presence of an active malicious adversary, by using a consensus-based voting protocol.

The main operational goal of a sensor network is to collect and report data to a base
station. We present a suite of aggregation protocols that makes this process more efficient,
and ensures that damaged or compromised nodes cannot maliciously alter the network-wide
aggregate without detection. These protocols are based on a family of linear networks; how-
ever, we demonstrate that such networks arise naturally in many common sensor network
settings. The generalization of our approach can be applied to many other topologies while
incurring only small overhead at each point two or more paths merge in a spanning tree.

1.1 Introduction to Sensor Networks

The most general interpretation of the term “sensor network” refers to any network in
which low-cost, low-power nodes are deployed to collect and forward sensor readings, and
as such, they encompass a wide variety of node capabilities and applications. Definitions
in the literature are often vague, as there is no standard accepted definition of a sensor
network. For example, according to Jawhar and Mohamed [53],

“a sensor network can be described as a collection of sensor nodes which co-
ordinate to perform some specific action.”

and according to Martin and Paterson [74],

“There is no single, precise, definition of a wireless sensor network. As a result
this term is applied to a wide family of networking environments that support
a range of applications.”

The lack of a precise definition makes sensor networks a wide open space of research, with
many different assumptions about the individual capabilities of sensor nodes and the set-
tings where they will be deployed. One common platform for sensor network development
is TinyOS [63], an operating system built specifically for sensor networks. TinyOS is often
used in conjunction with Mica sensor hardware. Figure 1.1 shows a typical Mica2 sensor
node alongside a Mica2Dot node, with the following specifications:

2

Figure 1.1: The Mica2 and Mica2Dot sensor nodes. The full sized Mica2 node is powered
by 2 AA batteries, while the Mica2Dot is powered by a 1 inch coin cell. Images taken from
the Mica2 [29] and Mica2Dot [30] data sheets

• Processor: ATmega 128L (8-bit, 16 MHz)

• Program Flash Memory: 128K bytes

• Measurement Flash Memory: 512K bytes

• Communication Range: 500–1000m

• Size: 58 x 32 x 7mm (Mica2), 25 x 6mm (Mica2Dot)

• Weight: 18g (Mica2), 3g (Mica2Dot)

• Power: 2x AA batteries (Mica2), 3V coin cell (Mica2Dot)

The Mica sensor platform was first released in 2002, and provided researchers with a
low-cost, standardized platform upon which sensor network protocols could be implemented
and tested. Mica nodes are physically large, allowing them to be powered with off-the-
shelf hardware, and to be equipped with standard connectors for attaching different sensing
equipment. In the decade following the release of TinyOS and the Mica platform, several
other similar nodes have been released.

A different branch of hardware-related sensor research has been pushing the limits on
the physical size of sensor nodes, typically at the expense of communication range, memory,

3

Figure 1.2: An example of a millimeter-scale smart dust node, based on the node presented
by Lee et al. [62]. Photograph by Martin Vloet, Michigan Photography [102].

and computational ability. The goal of such work is to make the nodes as small and cheap
as possible, while still retaining a useful amount of functionality. For example, the node
presented by Warneke et al. [107], around the same time the Mica platform was released,
has a total volume of 16 mm3, and the node presented a decade later by Lee et al. [62] is
less than 2 mm3 in volume. Nodes on this scale are sometimes referred to as smart dust.

The contrast between Mica-like nodes and smart dust nodes exemplify the wide scope
of sensor network research. Solutions for one class of node may make assumptions that are
not relevant for a different class of nodes. In particular, the trend of reducing the size and
cost of individual nodes in smart dust networks, potentially at the expense of speed and
storage, suggests that there will always be a demand for protocols that make a minimal
set of assumptions about the capability of each node.

1.1.1 Example Applications

Akyildiz et al. [2] provide a survey of potential sensor network applications, partially sum-
marizing earlier proposals [38]. They identify several types of measurements that a sensor

4

node may be deployed to measure. These include:

• Temperature

• Humidity

• Vehicular movement

• Light levels

• Pressure

• Soil conditions

• Noise levels

• The presence or absence of certain objects

• Mechanical stresses

• Motion characteristics (velocity, orientation, etc.).

In addition to specific sensor types, they also enumerate many deployment environments
where sensor networks could be used. These include:

1. Military applications

• Battlefield surveillance

• Reconnaissance of opposing forces and terrain

• Targeting

• Damage assessment

• Nuclear, biological, and chemical attack detection and reconnaissance.

2. Environmental applications

• Forest fire detection

• Biocomplexity mapping

• Flood detections

• Precision agriculture.

5

3. Health applications

• Physiological data monitoring

• Patient tracking/monitoring

• Drug administration.

4. Home applications

• Home automation

• Smart environment.

5. Other applications

• Climate control in office buildings

• Vehicle monitoring

• Inventory control.

Alongside their survey of applications, Akyildiz et al. also survey pre-deployment, de-
ployment, post-deployment, and environmental issues that affect sensors throughout their
lifetime. These phases roughly match the same phases considered in this thesis, which are
discussed in detail in the next section. Yick et al. [112] provide another survey that iden-
tifies many of the same deployment scenarios, but they consider the requirements of each
deployment scenario in more detail, and relate them to existing sensor network technologies
that have emerged since their initial exploration.

Commercial hardware is now available that addresses most of the sensing applications
discussed above. A notable example is the Libelium Waspmote [66], which provides an
updated Mica-like platform with several types of swappable sensors. These include:

• Gas sensors

• Event sensors (pressure, impact, vibration, etc.)

• Water sensors (pH, temperature, dissolved gases, etc.)

• City monitoring (noise, dust, luminosity, humidity, etc.)

• Parking monitor (car detection)

• Agriculture (moisture, UV, temperature, plant characteristics, etc.)

6

• Video (cameras, IR, etc.)

• Radiation (Geiger counter)

• Smart meter (water, power, etc.)

Each of these sensors sits on top of a node that is of similar size to the Mica2 node in
Figure 1.1, which has a physical footprint slightly larger than two AA batteries.

1.2 Security Issues in Wireless Sensor Networks

Sensor networks have been proposed for a variety of applications. In many of these ap-
plications, an active adversary or a global eavesdropper may be present, but even in the
general case, there are several security considerations to be made. Sensor networks may be
deployed in an unknown or hostile environment and are subject to physical damage upon
deployment, or during operation, as a result. Nodes are battery-operated and expected
to fail over time. Sensing equipment, or the nodes themselves, may also malfunction and
behave in an unpredictable manner.

A common example that demonstrates several key security issues is the use of sensors to
survey hostile or adversary-controlled territory. An airplane is loaded with several sensor
nodes and flies over the area to be surveyed, dropping sensors as it goes (and potentially
damaging some of them). The goal of these sensors is to self-organize and establish a
communication network, collect data about their surroundings, and forward it back to a
base station. The adversary wishes to prevent data collection, and is expected to capture
and disable nodes, re-program nodes, insert fake nodes, and alter or block communication
between nodes. Even if nodes can be made tamper-proof, the adversary may have control
over the environment and can feed false information to nodes. Durisic et al. [36] provide a
survey of military applications of wireless sensor networks.

Shi and Perrig [98], and Wang et al. [105] identify the following general security re-
quirements:

• Availability — Ability to remain accessible in the presence of DoS attacks.

• Authorization — Ability to prevent unauthorized nodes from joining the network.

• Authentication — Ability to verify that a given message originated from a given
node.

7

• Confidentiality — Ability to ensure that only the intended recipients can read mes-
sages.

• Integrity — Ability to ensure that messages have not been altered during transit.

• Fault Tolerance — Ability to continue operation in the presence of failure.

• Self Healing — Ability to recover from and adapt to changes in the network.

• Non-Repudiation — Ability to prevent a node from denying it sent a signed message.

• Repudiation — Ability to deny having sent a signed message.

• Freshness — Ability to detect if old messages are replayed.

• Reliability — Ability to guarantee a message is delivered.

• Accountability — Ability to detect and punish malicious or malfunctioning nodes.

• Forward Secrecy — Ability to prevent a node from reading messages once it is re-
moved from the network.

• Backward Secrecy — Ability to prevent a new node that joins the network from
reading any previous messages.

• Scalability — Ability to accommodate both very small and very large networks.

• Flexibility — Ability to accommodate different deployment methods and environ-
ments.

• Resiliency — Ability to continue operation in the presence of compromised nodes.

Not all applications will require all security considerations. In general, these security
requirements are not specific to sensor networks, and apply to virtually any networking
application.

Karlof and Wagner [54] provide an intuitive approach to sensor network security for
routing protocols by considering network assumptions, trust requirements, threat mod-
els, and security goals before considering specific routing attacks in detail. The attacks
considered are:

• Message tampering and message replay — Maliciously altering routing information.

8

• Selective forwarding/dropping — Selectively dropping some messages but not others.

• Sinkhole attacks — Attempting to route as much traffic through a single malicious
node as possible.

• Sybil attack — One node pretending to be multiple nodes.

• Wormhole attacks — Using a high-power transmitter to connect one or more mali-
cious nodes, thus creating more attractive but adversarial-controlled links.

• HELLO flood — Spoofing or re-broadcasting HELLO messages to falsely convince nodes
they are within communication range.

• Acknowledgment spoofing — Spoofing of link-level protocol communication messages
to falsely convince a node its messages were or were not delivered.

In general, attacks against sensor networks can also be categorized with respect to the
Open Systems Interconnection (OSI) model, with attacks occurring at one of the physical,
data link, network, transport, or application layers.

Karlof and Wagner’s threat model distinguishes between a node-class attacker, which
is subject to the same constraints as a regular sensor node, and a laptop-class attacker,
which has capabilities similar to a base station. Distinctions are also made between insider
attacks, performed by a malfunctioning or compromised node, and outsider attacks, per-
formed by an attacker adding unauthorized nodes to the network. As a final consideration,
both active and passive adversaries are considered, with the former able to actively inject
or alter messages into the network. Active adversaries are often considered to be local,
able to communicate with only a small portion of the network, while passive adversaries
are often considered to be global, and are able to eavesdrop on all messages sent over the
network. In many applications, the base station is considered to be tamper-proof and is
treated as a trusted third party. Cardenas et al. [17] provide a similar taxonomy of sen-
sor network threat models based on a study of Supervisory Control and Data Acquisition
(SCADA) networks.

When considering security issues, it is useful to approach sensor network operation as
occurring in a set of discrete phases which can be analyzed independently. The lifetime of
a sensor network can be broken down into four distinct phases:

1. Pre-deployment

2. Deployment/Setup

9

3. Operation

4. Management/Maintenance.

Each of these phases has its own set of security considerations, which will be discussed
briefly in the next section. These phases are similar to the phases discussed by Carmen
et al. [18]. In their model, the lifetime of a sensor network was broken into manufacture,
storage, pre-deployment, deployment, mission, and mission completion. These parallel the
four phases presented above, with the addition of the physical security of the nodes prior
to deployment. Physical security during manufacture and storage is beyond the scope of
this thesis.

The protocols presented in this thesis each use slightly different adversarial models,
which are presented alongside each protocol in the subsequent chapters. In all cases we
assume an adversary compromises and assumes control over a subset of nodes in the net-
work. The key pre-distribution scheme in Chapter 3 is analyzed with respect to random
node compromise across the entire network. The later chapters require constraints on the
number of compromised nodes within certain subsets of the network. In some cases, a
majority of honest nodes are required locally to prevent malicious nodes from injecting
false information. In the case of linear topologies, considered in Chapter 5, we require
that honest nodes occur with sufficient frequency that the adversary cannot segment the
network by taking control of sufficiently many consecutive nodes.

1.2.1 Pre-deployment

This phase is concerned with all aspects of sensor node security before the network is
deployed.

Node Capability

The physical characteristics of each node must be established before any security consid-
erations can be made. In particular, the basic capabilities, such as memory, CPU, and
battery power all determine the types of cryptographic techniques that can be utilized.
While symmetric-key cryptography is often used in sensor networks, much research has
been done to make public-key cryptography practical for resource-constrained nodes. Rel-
evant works include the first elliptic curve cryptography (ECC) implementation for sensor
networks [70], RSA and additional ECC implementations [104], and the TinyPBC [80] and
TinyECC [68] libraries.

10

The communication medium in sensor networks is also an important consideration.
Although most sensor network protocols assume omnidirectional wireless broadcasts as the
communication medium, many [6,13,58,79] have begun investigating the use of directional
antennas in sensor networks. In particular, Ash and Potter [6] and Kumar and Varma [58],
utilize directional antennas in order to perform localization, which allows a sensor node
to determine its approximate physical location after deployment. The communication
medium also determines whether or not known methods for distance bounding [14,92], or
fingerprinting [31,91], are available.

Additionally, special hardware, such as a GPS receiver or synchronized clocks, may be
available in some settings.

Key Management

Because symmetric-key cryptography is usually preferred in sensor networks, the problem
of pre-distributing keys to each sensor node is an important area of research. Eschenauer
and Gligor [37] proposed a simple key pre-distribution scheme where each node is issued a
random subset of keys from a larger key pool. This idea has been extended by others [24]
as well. More recently, combinatorial designs have been utilized for key pre-distribution to
increase efficiency or add additional useful properties. Examples include early proposals
by Çamtepe and Yener [21], who utilize balanced incomplete block designs (BIBDs) and
generalized quadrangles to manage keys. Martin explores the design space of sensor net-
works [73] and draws parallels between several design requirements and existing designs.
Combinatorial approaches have also been used in specialized settings, such as for grid
topologies [9], and settings where nodes are deployed in separate groups [76]. Transversal
design-based systems [61] are used extensively in this thesis.

In systems where public-key cryptography is utilized, the key management step would
also include issuing keys and certificates to each node before deployment.

1.2.2 Deployment/Setup

The deployment phase is concerned with the physical characteristics of the network after
it is deployed, along with protocols that run once, such as network discovery, when the
network comes online.

11

Topology

Because sensor networks are used in a variety of applications, there are a variety of topolo-
gies that arise naturally depending on how nodes are deployed and how keys are issued.
More efficient protocols are possible when additional assumptions can be made about the
structure of the network.

In many applications, nodes are assumed to be distributed completely at random, thus
giving rise to a random topology. A common assumption is that nodes are distributed by
airplane over a region. In this setting, nodes are still considered to be randomly distributed,
however additional assumptions arise due to the nature of deployment. In particular, a
node dropped from a specific point will likely land within an expected radius, and nodes
dropped shortly before or after will have a higher probability of being nearby than nodes
dropped much earlier or later. Such networks have a partially random topology.

Sensor networks that contain nodes of differing capabilities often give rise to a natural
hierarchical topology. Nodes with greater communication range, computational ability, and
larger batteries can aid in routing or aggregating messages for lower-power nodes in their
neighborhood. In settings where there is complete control over the deployment location of
nodes, the most natural topology is often a grid, as it provides a high level of coverage using
a small amount of nodes. Some protocols have been designed specifically for grid-based
sensor networks [9]; however, in general the area is not well studied.

Martin and Paterson [74] observe that the network topology has a tremendous impact on
the design of sensor network protocols, and provide a simple, but comprehensive framework
for categorizing networks based on the expected topology and key requirements. Their
framework considers three categories:

1. Homogeneity

• Homogeneous — All nodes have identical capability.

• Hierarchical — Nodes have a natural hierarchy based on capability.

2. Control Over Deployment/Topology

• Fixed, no control — Sensors are distributed randomly.

• Fixed, partial control — Sensors are distributed with some control over general
location, but with some randomness on exact location. For example, nodes
distributed from a plane will likely land within an expected area and near other
nodes dropped at the same time.

12

• Fixed, full control — Network topology is predefined.

• Locally mobile — A node is mobile within a well-defined subset of the network.

• Fully mobile — Nodes are mobile throughout the entire network.

3. Communication structure

• t-complete — All subsets of size t should be capable of secure communication.

• locally t-complete — All local subsets of size t should be capable of secure
communication, where “local” refers to nodes that are neighbors in some sense,
such as those that are within each other’s communication range.

• regionally t-complete — All subsets of size t in a given geographic region should
be capable of secure communication.

The distinction between locally complete and regionally complete can be used, for example,
to distinguish between cases where nodes deployed in a fixed topology should share keys
with other nearby nodes in their communication range, while mobile nodes should share
keys with other nodes deployed in the same general region, even if this region is significantly
larger than any node’s communication range. In the context of the above framework, the
protocols presented in this thesis are mainly designed for homogeneous, fixed networks,
with regionally or locally t-complete communication structure.

Jawhar and Mohamad [53] have observed that sensor networks have found several
applications in settings where the network topology is inherently linear. For example,
monitoring of pipelines, railways, subway tunnels, power lines, and border control have
all been proposed using sensor networks. Very little work exists in the literature that
specifically targets linear topologies. This thesis presents a new family of protocols designed
for linear topologies, which generalizes naturally to grid- and tree-based topologies.

Network/Neighbor Authentication

Before messages can be routed in a sensor network, each node must determine its neighbors
and the local network topology. This process is the first step for routing protocols, such
as ARAN [97], S-AODV [114], and DV-SRP [83]. Poturalski, et al. [88] study the problem
of neighbor discovery in sensor networks and demonstrated that approaches that rely on
either message transmission time or distance between nodes cannot be secure in many
settings; however, protocols that rely on both transmission time and location can be secure.
Their model assumes nodes cannot collaborate with one another to determine the network

13

topology. Distance alone is not sufficient, as an adversary utilizing a wormhole attack,
where a message is recorded in one location of the network, and then replayed at a different
point in the network, can falsely convince two nodes they are close together. If an adversary
is able to quickly forward a message, or relay messages between two nodes it controls at a
high enough speed, then time alone is not sufficient in some cases. This thesis presents a
collaborative approach to network discovery in the presence of active malicious nodes.

Key Establishment

Cryptographic keys allow nodes to encrypt messages or compute message authentication
codes (MACs), thus providing confidentiality against a passive adversary, and authenticity
and integrity against an active adversary. Even when keys are pre-distributed to nodes,
it is possible that many pairs of nodes wishing to communicate do not have a key in
common, or may wish to establish a new unique pairwise key. In these situations, common
neighbors between the two nodes can be used in order to establish a new shared key known
only to these two nodes. Such approaches include those of Chan, Perrig, and Song [24],
Ling and Znati [67] and Wu and Stinson [108], each of which utilize multiple node-disjoint
paths in order to securely establish a key between two nodes. The key establishment
problem is not considered in this thesis; however, the existence of multi-path protocols
for key establishment provides motivation for the network discovery protocol presented in
Chapter 4.

Localization

Some sensor network applications require that sensors are able to estimate their physical
location in the network. This ability allows sensor readings to be tied to a physical lo-
cation, as well as allowing the detection of certain types of attackers within the network.
Localization protocols allow a node to determine either its absolute position, or its position
relative to other nodes in the network. Ash and Potter [6], and Kumar and Varma [58]
provide two different approaches utilizing wireless antennas to perform localization. Cheng
et al. [27] provide a comprehensive survey on localization in sensor networks. An attacker
may wish to inject false location information into the network in order to accomplish a
wormhole attack, or a Sybil attack, which could both be detected if precise locations of
each node were known. If a node relies on special “anchor” nodes, or infers its location
from the location of other nodes, it must be able to determine its location even if some
of its neighbors are malicious. This problem has been considered by Alfaro et al. [4], who

14

provide a protocol that allows a node to determine its location using neighbor-supplied
data, as long as the number of malicious neighbors is below a certain threshold.

Localization protocols are utilized in Chapter 4 as a tool to perform collaborative
network discovery. Including location information in route discovery messages allows for
the detection of malicious nodes claiming to have the ability to communicate with nodes
outside of their communication range.

1.2.3 Operation

The operation phase is where a sensor network spends most of its lifetime. During this
phase nodes are actively collecting sensor readings and forwarding them to the base station.

Routing

Routing messages within a sensor network is dependent on knowledge gained during the
network discovery phase. ARAN [97], S-AODV [114], and DV-SRP [83] are examples of
general routing protocols for sensor networks, and they generally focus on determining the
shortest path from a node to its destination. The limited availability of battery power
to send messages must be taken into consideration when routing messages, so that no
single node receives a significantly higher load than others while routing messages. A more
complete survey of sensor network routing protocols is given by Al-Karaki and Kamal [3]
and Akkaya and Younis [1], and a survey of multi-path routing protocols is given by Stavrou
and Pistillides [99].

Network discovery and routing are closely related. The above protocols provide meth-
ods for discovering a route from a source to a destination, while the network discovery
problem considered in this thesis is concerned with learning the complete topology within
a subset of the network. With complete knowledge of the topology, determining a route to
a destination is made much easier.

Aggregation

Because broadcasting a message is usually the most draining operation a sensor node per-
forms, it is desirable to minimize the total number of messages sent when collecting sensor
readings. For this reason, sensor readings may be aggregated hop-by-hop rather than
having each node send its individual reading back to the base station. Rajagopalan and

15

Varshney [90] survey several techniques for data aggregation in wireless sensor networks.
In an adversarial setting, a malicious node may be in charge of forwarding a single mes-
sage that contains readings from many other nodes in the network. Various approaches
to enforcing correct behavior or detecting malicious behavior include hash tree-based ap-
proaches [25,40], directed diffusion-based approaches [96], concealed aggregation using ho-
momorphic encryption [81, 93], and homomorphic signatures [64]. In general, aggregation
techniques are closely related to the underlying network topology and the communication
model of the sensor network. In homogeneous networks, push and pull diffusion techniques
are common. In the former, nodes initiate the propagation of sensor readings toward the
base station, while in the latter the base station itself initiates the protocol by advertis-
ing the type of information it is seeking. In hierarchical and group-based networks, the
underlying topology provides natural points for aggregating data, such as a clusterhead
aggregating readings for all nodes it is coordinating. The aggregation problem is considered
in much greater detail in Chapter 5.

Perfectly Secure Message Transmission

Perfectly Secure Message Transmission (PSMT) [32,106] allows a message to be transmit-
ted from a source to a destination in such a way that the sender is guaranteed that the
message is delivered and is unaltered as long as the assumptions of the protocol are met.
The message is split across multiple node-disjoint paths and is reliably delivered if fewer
than a third of the paths contain an adversarial node. Interactive variants of PSMT can
also be constructed as long as fewer than one half of the paths contain an adversarial node.
Perfectly secure message transmission has been used as a building block for key estab-
lishment schemes [108], and can be used as a tool for building secure reliable aggregation
protocols.

This thesis does not improve any prior results in perfectly secure message transmissions,
but solves the related problem of determining multiple node-disjoint paths within the
network so that multi-path protocols, such as PSMT, can be utilized. The discovery of
such paths is not considered in the above proposals.

1.2.4 Management/Maintenance

During the lifetime of the network, non-sensing tasks, such as key refreshing or the addition
of new nodes, may be required.

16

Adding/Removing Nodes

Due to the limited lifetime of sensor nodes, it may be desirable in some settings for new
nodes to be periodically added to the network to replace nodes that have failed. Networks
operating in this setting require that protocols used for network discovery, routing, and key
pre-distribution be flexible enough to accommodate the addition of nodes post-deployment.
Additionally, nodes deployed in a hostile environment may be compromised or become
damaged. Honest nodes should possess the ability to detect and inform others of malicious
nodes when possible, in an effort to limit their ability to interfere with normal network
operation.

The flexible key pre-distribution schemes presented in Chapter 3 allow for future net-
work growth with deterministic performance with respect to both connectivity and re-
silience.

Key Refreshing

When compared to the problems of key pre-distribution and key establishment, the problem
of key refreshing in sensor networks has seen relatively little attention. As an adversary
captures deployed nodes, more keys are leaked and the overall security of the network
is diminished. By periodically refreshing keys in the network, forward secrecy can be
achieved, eliminating the ability of the adversary to decrypt messages that have been
recorded prior to a node’s compromise. This problem has been considered by Blackburn
et al. [10], as well as Guo and Leung [42], for example. A broader survey is given by He et
al. [45].

Adversary Detection

The problem of detecting malicious nodes in sensor networks has been well studied. A
wireless intrusion detection system was proposed by Chen et al. [26], while the problem of
detecting Sybil attacks/cloned nodes has been considered by Li and Gong [64, 65], among
others. The problem of wormhole detection is also well studied, with results by Hu et
al. [50], Bose et al. [15], and Dong et al. [33]. Detecting a passive adversary is difficult, which
is why many secure sensor network protocols require that two nodes only exchange sensitive
information if they have some sort of cryptographic key in common. Key pre-distribution
schemes, like the family presented in Chapter 3, facilitate initial secure communication the
network, and the network discovery protocol presented in Chapter 4 allows nodes to learn

17

the local network topology so that multi-path key establishment can be used to establish
a key with a neighbor, even if an active adversary is present. The aggregation protocols in
Chapter 5 actively detect malicious behavior and alert the base station when it occurs.

1.3 Organization and Contributions

This thesis presents a suite of secure protocols that touch on all phases of a sensor network’s
lifetime, thereby allowing nodes to self-organize and operate in the presence of an active
malicious adversary. Moreover, the protocols presented here do not utilize computationally
expensive primitives, such as public-key cryptography, making them suitable for use on
virtually any class of sensor hardware. The specific contributions, as they relate to each
phase, are summarized here. For reference, a summary of notation used in this thesis is
provided in Appendix A.

1.3.1 Pre-deployment

The pre-deployment phase is concerned with all aspects of a node prior to deployment. Our
goal is to begin with a minimal set of assumptions about node capability, and add specific
requirements as needed. For this reason, we rely only on the use of symmetric keys, and
assume no public-key infrastructure is available. This approach provides functionality that
targets the widest possible range of applications. The availability of protocols that make
minimal assumptions about node capability allows resources to be spent on minimizing the
size and cost of nodes, rather than on increasing their capability to accommodate secure
protocols.

The main contribution in pre-deployment is given in Chapters 2 and 3, where a family
of flexible key pre-distribution schemes is presented. Chapter 2 explains the theory behind
combinatorial designs and demonstrates how they can be used for key pre-distribution.
These combinatorial designs are highly structured and well-studied, with a wide body of
results to draw from, and allow for precise mathematical analysis. Unfortunately, their
highly structured nature comes at the cost of rigid parameter choices.

Chapter 3 presents two new families of combinatorial key pre-distribution schemes that
directly address the problem of inflexible parameter choice. The first family decomposes the
underlying combinatorial design into several smaller designs, allowing for a precise perfor-
mance analysis of numerous fixed-size subsets of the complete design. This decomposition

18

greatly expands the range of network sizes that the scheme can be applied to, without sacri-
ficing the ability to precisely analyze the expected performance of the scheme. The second
family considers the use of random subsets of arbitrary size, thus allowing the construction
of networks of any size with predictable performance. The trade-off for complete flexibility
in network size is a loss of precise mathematical analysis of performance. We compensate
for this by providing several simulations that confirm the expected performance of our
approach.

Chapter 3 contains joint work published with Maura Paterson [47].

1.3.2 Deployment/Setup

Chapter 4 presents a collaborative approach to secure network discovery in the presence
of an active adversary. We assume that nodes have been distributed in a random topology
with no prior knowledge of their expected neighbors in the network. The only pre-loaded
information that each node possesses is a set of keys issued according to the “linear” key
pre-distribution scheme presented in Chapter 3.

The protocol in Chapter 4 is partly motivated by the existence of multi-path protocols,
such as multi-path key establishment and perfectly secure message transmission. These
protocols assume that an adversary has compromised some subset of the network, and
utilize multiple node-disjoint paths to allow nodes to securely establish keys or send mes-
sages. These approaches assume the existence of multiple node-disjoint paths, and leave
the problem of actually establishing said paths as an open problem.

We present a protocol for establishing the local network topology to an arbitrary depth
even when an active adversary is present from the very beginning. This adversarial as-
sumption is stronger than assumptions many other protocols use, where it is assumed that
the adversary is not present until some time after deployment. The protocol is consensus-
based, and only accepts the existence of a node and its neighbors if a majority of the
received information is consistent. This property prevents an adversary from injecting
false information as long as adversarial nodes do not form a majority in any portion of
the network. Simulated results are included to demonstrate the effect of random node
compromise on the assumption that the majority of nodes in a given neighborhood are
honest.

The network discovery protocol presented here ensures that each node can present only
one identity to the network, and that its identity must be consistent with the keys it was
issued. This property ensures that a malicious node cannot present multiple identities or
convince an honest node that it lies on more than one specific path between two nodes.

19

Therefore, paths produced by our protocol are suitable for use in protocols like perfectly
secure message transmission and multi-path key establishment.

This protocol was presented previously [48].

1.3.3 Operation

The main goal of a sensor network is to capture and forward data to a central location. A
common technique for saving energy during this process is to aggregate data hop-by-hop
as it flows towards the base station, which allows for a single flow of information to capture
the state of the network, rather than having each node report its readings individually.

Chapter 5 presents a family of aggregation protocols designed to aggregate over linear
networks. Although linear networks are simple, they are a naturally arising topology in
sensor networks. Many of the existing aggregation techniques assume a tree-based struc-
ture, which, while applicable to a linear network, tend to provide worst-case performance
when used with them. Our protocols exploit the linear topology of the network to pro-
vide data aggregation with real-time adversary detection, which we accomplish by utilizing
multiple natural key pre-distribution schemes for linear networks.

Although our aggregation protocols are based on a linear topology, we demonstrate
that linear networks arise naturally in many general settings and demonstrate a method
for utilizing our protocols over arbitrary topologies.

1.3.4 Maintenance

The main contributions in this thesis are three families of secure protocols for combinatorial
key pre-distribution, network discovery, and data aggregation, which directly targets the
pre-deployment, deployment, and operation phases, respectively. While none of these
directly target the maintenance phase of a sensor network, all three protocols have an
impact on it.

The flexible key pre-distribution schemes presented in Chapter 3 allow for a high degree
of flexibility over parameter choice. This flexibility allows us to choose parameters for a
larger than necessary number of nodes, while retaining predictable performance when only
a subset of these nodes are deployed. Thus, parameters can be chosen to allow for new
nodes to be added to the network without any significant change in the performance of
the underlying key pre-distribution scheme, and without having to issue additional keys to
already deployed nodes.

20

Chapter 4 describes a network discovery protocol that is secure in the presence of an
active adversary. While this protocol is intended to be run by all nodes concurrently, the
same approach can be repeated when new nodes are added into the network, thus allowing
them to discover the local network topology.

Aggregation techniques prolong the lifetime of a sensor network by reducing the total
energy expenditure when collecting data from all nodes. The aggregation protocols in
Chapter 5 are designed to allow for runtime detection of malicious behavior so that the
protocol can be aborted early and the malicious nodes can be dealt with. Depending on
the deployment scenario, nodes could update the topology to route around potentially
malicious nodes, or the network administrator could be alerted to replace said nodes.

21

Chapter 2

An Overview of Combinatorial Key
Pre-distribution

The previous chapter provided a brief introduction to sensor network research. Although
sensor nodes are understood to be computationally limited, memory limited, and power
limited, they encompass such a wide variety of applications that it is difficult to provide
specific details. Several libraries exist that provide public key and elliptic curve cryptog-
raphy on sensor nodes, and there are multiple platforms which are powerful enough to
utilize them. At the same time, researchers continue to push for smaller nodes, often at
the expense of computational ability or available storage.

The continual shrinking of sensor nodes suggests that there will always a class of sensors
for which public key cryptography is simply too expensive to implement. In these settings,
it makes sense to pre-load sensors with a small set of symmetric keys that will enable secure
communication after deployment. These keys are issued according to a key pre-distribution
scheme (KPS), with each node possessing some small keyring from a larger master keylist.

This chapter is concerned with the pre-deployment phase of a sensor network, and is
intended to establish the necessary background theory to derive a new family of flexible key
pre-distribution schemes for sensor networks. In particular, we are concerned with combi-
natorial key pre-distribution schemes, which utilize well-studied combinatorial designs to
determine which keys are issued to which nodes.

We begin with a brief introduction to the key pre-distribution problem and establish
some useful metrics in evaluating the performance of a KPS. This is followed by an overview
of several families of combinatorial designs and a demonstration of how they can be nat-
urally mapped to key pre-distribution schemes. Two of these schemes, the “linear” and

22

“quadratic” schemes, are presented and analyzed in detail, as they form the basis for a
new family of KPSs in the next chapter.

2.1 Key Pre-distribution

In 2002, Eschenauer and Gligor [37] identified three fundamental problems with respect to
the use of symmetric key cryptography in WSNs:

1. Key Pre-distribution:

• How do we assign keys to individual sensor nodes?

2. Shared-Key Discovery:

• Two nodes can only communicate if they are within each other’s communication
range, and they have a common shared key.

• How do two nodes determine if they share a common key?

3. Path-Key Establishment:

• Nodes that cannot communicate directly should be able to communicate via one
or more multi-hop paths.

• How can we efficiently determine secure multi-hop paths?

• Ideally, a two-hop path is preferred.

By multi-hop path, we mean a path of the form n1 → n2 → . . . → nk where k ≥ 3. A
two-hop path is a path of the form n1 → n2 → n3. A solution to the key pre-distribution
problem can be evaluated with respect to several metrics, the most important of which are
described below.

Storage Requirements

Because sensor nodes are typically constrained with respect to storage, the total number of
keys, denoted by k, should be kept “small”. Although the total amount of space that can
be dedicated to key storage may vary between different models of sensors, it is common to
aim for a system that can achieve acceptable performance with k < 100. In general, the
smaller the value of k, the more difficult it becomes to balance connectivity and resilience.

23

Network Connectivity

In the most general network settings, no information about the network topology is known
prior to deployment. Therefore, it is desirable that any random pair of nodes in the network
have a reasonably high probability of sharing a key with each other. The probability that
two randomly chosen nodes share at least one key is denoted by Pr1.

Network Resilience

In an adversarial setting, it is assumed that one or more nodes will eventually be compro-
mised, and all keys possessed by a compromised node will be revealed to the adversary.
Therefore, the impact of an adversary learning a subset of the keys must be understood. If
s nodes are compromised at random and have their keys revealed, then fail(s) denotes the
probability that a random link between two honest nodes in the network is compromised as
a result. The metric fail(1) is often used, as it demonstrates the impact of a single random
node becoming compromised. Note that a smaller value of fail(1) corresponds to a higher
degree of resilience in the network.

In general, computing a precise value for fail(1) is straightforward, but computing a
general formula for fail(s) is not. Lee and Stinson [60] provide a more accurate estimate
for fail(s) for two of the KPSs considered later in this chapter, with results summarized in
Tables 2.1 and 2.2.

Computational and Communication Requirements

Intuitively, increasing the number of keys per node, k, leads to a greater degree of connec-
tivity, as the probability that two nodes share a key, Pr1, increases. However, this comes at
the cost of increasing fail(1) as result, as a larger number of keys are leaked when a single
node is compromised. It is preferable if a KPS can optimize the trade off between connec-
tivity and resilience without incurring high storage cost, and that it be flexible enough that
parameters can be chosen to suit a wide range of network requirements. Because sensor
nodes are computationally limited and energy limited, any scheme attempting to address
these problems must do so without incurring a high computation or communication cost.

Additional Considerations

While most key pre-distribution schemes are concerned with striking a balance between
storage, connectivity, and resilience, it is also important that a KPS be flexible enough to

24

apply to a broad class of networks. For example, it may be desirable for a KPS to allow
for one parameter, such as storage, to be fixed, while still allowing the balance between
resilience and connectivity to be tweaked. Some applications may require support for nodes
to be added or removed from the network. Others approaches may rely on information
about the network, such as topology, being known in advance.

2.1.1 Naive Schemes

The main metrics considered in the previous section are easily demonstrated through the
following naive solutions to the key pre-distribution problem.

Scheme 1. The Trivial KPS. Given a network N , choose a single master key K. For
each n ∈ N , give key K to node n.

The trivial KPS simply assigns the same master key to each node in the network. This
scheme achieves optimal storage (k = 1), only a single key per node, as well as perfect
connectivity (Pr1 = 1), as any pair of nodes possess the shared key K. The trade-off
for perfect connectivity and storage in this case is worst-case performance with respect to
resilience. In the trivial KPS, fail(1) = 1, meaning every link in the network is no longer
secure once a single node is compromised. This scheme demonstrates the theoretical lower
bound for storage and connectivity, and an upper bound for resilience and connectivity.

Scheme 2. The Pairwise KPS. Given a network of N of N nodes, for each pair of
distinct nodes ni, nj ∈ N , give nodes ni and nj the distinct pairwise key Ki,j.

The pairwise scheme assigns a unique key to every distinct pair of nodes in the network,
thus achieving perfect connectivity (Pr1 = 1), as well as perfect resilience (fail(1) = 0).
These properties come at the cost of worst-case storage, with k = N − 1. The pairwise
scheme demonstrates an upper bound on necessary storage, as well as a theoretical lower
bound on resilience.

Scheme 3. The Unique Key KPS. For a network N , give each node n ∈ N a unique
key.

The unique scheme assigns each node in the network a unique key. This scheme achieves
optimal storage (k = 1), as well as perfect resilience (as there are no links to compromise),
but at the cost of worst-case connectivity (Pr1 = 0). Note that the performance in this
case is identical to issuing no keys at all. We assume that at least one key will be issued
to each node in a KPS.

25

2.1.2 Randomized Schemes

The Eschenauer-Gligor Randomized KPS

Along with identifying the main key pre-distribution problems outlined in this chapter,
Eschenauer and Gligor [37] also proposed a simple solution that achieves a better balance
between resilience and storage than the naive schemes.

Scheme 4. The Randomized KPS. [37] Given a network N , choose a master key list
K of v distinct keys. For each node n ∈ N , give a random subset of size k from K to node
n.

Figure 2.1 contains a simple example with a master key list K of size v = 100 where
K = {1, . . . , 100}, and each node is issued ten keys.

In the Eschenauer-Gligor Randomized KPS, each node is issued a random k-subset
from a master key list K of size v. Two nodes perform shared-key discovery by exchanging
a list of key identifiers and simply checking their own keyring against the received list.
Path-key establishment is performed by comparing the key lists of neighbors for common
keys to determine a secure path to any nearby node with which a key is not shared.
A variant of this approach is to generate the identifiers in each node’s keyring using a
keyed pseudo-random function. This approach shifts a majority of the communication
cost to computational cost, as nodes simply exchange seeds rather than entire lists of keys.
Therefore, the computational and communication costs are:

• Exchanging key lists: O(k) communication and O(k) computation

• Exchanging seeds: O(1) communication and O(k log k) computation (if the key list
must be sorted; more efficient approaches may be possible).

The connectivity of the scheme is given by

Pr1 = 1−
(
v−k
k

)(
v
k

)
= 1− ((v − k)!)2

v!(v − 2k)!

≈ k2

v
(when v � k).

26

N1 = {17,21,31,41,47,73,75,85,93,97} Shared keys with N1

N2 = {19, 54, 59, 66, 67, 72, 72, 80, 91, 92}
N3 = {28, 42, 44, 45, 51, 63, 65, 73, 80,97} {97}
N4 = {2, 8, 19, 21, 22, 42, 66, 71,97, 100} {97}
N5 = {3, 12, 13, 60, 77, 90, 92, 94, 98, 99} ∅
N6 = {39, 42, 45, 46, 51, 52, 61, 69, 82, 89} ∅
N7 = {14, 23,31, 33, 34, 55, 57, 74, 81, 87} {31}
N8 = {14, 18, 40, 54, 58, 68, 71,85, 87, 93} {85}
N9 = {11, 18, 20, 42, 49, 64, 76, 81, 89, 99} ∅
N10 = {6, 18, 26, 37, 39, 57, 66, 81, 84,93} {93}

Figure 2.1: Example of the Eschenauer-Gligor KPS with a master key list K = {1, . . .,
100}, where each node is assigned k = 10 keys. Node N1 shares a common key with nodes
N3, N4, N7, N8, and N10. The link between uncompromised nodes N1 and N3 is only
compromised if node N4 becomes compromised.

The resilience of the scheme is given by

fail(1) ≈
(
v−1
k−1

)(
v
k

)
=

k

v
.

This approximation holds when each pair of nodes are using a single key to communicate.
In practice, nodes sharing more than one common key could derive a new key from their
entire set of shared keys. If v � k2, then it is expected that most links in the network
will be secured using only a single key. A general formula for fail(s) is given by Kendall et
al. [55].

Using the above formulas, it can be shown that relatively high levels of connectivity
can be achieved with a small number of keys per node. For example, let v = 10000 and
k = 75. Then we have

Pr1 ≈
752

10000
= 0.5625 fail(1) ≈ 75

10000
= 0.0075.

Therefore, each node in the network has a greater than 50% chance of sharing a key with
a random neighbor, but a smaller than 1% chance that a given link with a neighbor will
be insecure if the adversary captures a random node.

27

Because the keyring for each node is selected independently, the randomized KPS allows
additional nodes to be added to the network by simply choosing a new random keyring for
each new node. Depending on the application, the randomized KPS may require additional
bookkeeping by a network administrator to keep track of which keys are assigned to which
nodes.

The q-composite KPS

In the previous section it was noted that in the randomized KPS, two nodes may share
more than one key. Chan at al. [24] have advocated choosing parameters such that two
nodes communicate if and only if they have at least q keys in common. From these q
keys, a key derivation function can be used to derive a new pairwise key between nodes.
The goal is to provide a higher degree of resilience, as a larger numbers of nodes must be
compromised before the adversary is expected to learn a specific set of q keys.

Scheme 5. The q-composite KPS. [24] Given a network N , choose a master key list K
of v distinct keys. For each node n ∈ N , give a random subset of keys from K of size k to
node n. Two nodes must have at least q keys in common to establish a secure connection.

Two nodes that share at least q′ ≥ q keys {k1, . . . , kq′} can derive a new shared key by
computing

k′ = HASH(k1||k2|| . . . ||kq′),

where HASH is a suitable hash function, and the keys are sorted in some agreed upon order.
Analysis of the q-composite scheme is more complicated than the randomized scheme. The
probability that two nodes share exactly i keys is given by

Pr(i) =

(
v
i

)(
v−i

2(k−i)

)(
2(k−i)
k−i

)(
v
k

)2 .

Therefore, we can compute the probability that two nodes have at least q keys in common
by

Pr1 = 1− (Pr(0) + Pr(1) + . . .+ Pr(q − 1)).

The resilience of the scheme is given by

fail(s) =
k∑
i=q

(
1−

(
1− k

v

)s)i
Pr(i)

Pr1
.

28

Using the above formulas we can demonstrate how changing the value q affects performance.
Let v = 5000 and k = 75.

q Pr1 fail(1)
1 0.6808 0.008223
2 0.3108 0.000152
3 0.1019 0.000002

For each additional key two nodes use to communicate, the probability than an adversary
can compromise the link drops dramatically. However, this is accompanied by a significant
drop in Pr1 as well.

The computation and communication costs of the q-composite scheme are identical
to the randomized scheme, with the small additional cost of the key derivation function.
Similarly, it is trivial to add nodes to the network, and the same bookkeeping must be
done to track which keys have issued to which nodes.

2.1.3 But Why Rely on Randomness?

Randomized approaches to key pre-distribution provide a simple and straightforward so-
lution to the key pre-distribution problem, but a consequence of assigning keys randomly
is the inability to make precise statements about the performance of the KPS. Although
the expected connectivity of the randomized and q-composite schemes is quite high with
the appropriate choice of parameters, there is still a small chance that the key graph of the
KPS may be disconnected. It also possible that certain keys will be held by a larger than
expected number of nodes, leading to a loss of resilience, or that some keys may be held by
a very small number of nodes, leading to unnecessary storage. Because keys are assigned
randomly, a network administrator requires a large amount of randomness to assign keys,
and must also keep track of which keys are issued to which nodes if they wish to perform
simple tasks such as computing network statistics or assessing the impact of a specific node
compromise.

In the previous sections it was established that when using a randomized KPS, nodes
must have a mechanism by which they can determine which keys are shared with their
neighbors. One option is use O(k) communication and O(k) computation to search the
key list. An alternative is to use O(1) communication to transmit a seed for a pseudo-
random function, and O(k log k) computation to compute, sort, and search the key list.
Due to the fact that communication tends to be orders of magnitude more expensive than

29

computation, the latter case is generally preferable for any practical set of parameters. In
memory-limited settings, another benefit of generating key identifiers from a seed is the
ability to store another node’s list of keys simply by storing the seed.

The benefits of using a random seed to generate a node’s list of keys exemplifies why
deterministic approaches may be a better option for key pre-distribution. A fully deter-
ministic key pre-distribution scheme does not rely on any randomness to distribute keys,
allows for precise analysis, and does not require and additional bookkeeping by a network
administrator. If keys are distributed according to a more structured object than a simple
ordered list, then it is also possible to achieve computational costs that are lower than the
approaches described in this section.

A natural approach to deterministically distributing keys is to use some sort of struc-
tured, symmetric pattern. Because entire branches of mathematics and combinatorics are
concerned with the study of repeating and overlapping structures, there is a rich body of
already-established results that can be naturally applied to the key pre-distribution prob-
lem. Furthermore, these structures may have additional properties that are useful in the
context of sensor networks. The remainder of this chapter is dedicated to evaluating a
subset of these approaches.

2.2 Combinatorial Design Theory

Combinatorial design theory is concerned with arranging elements of a finite set in such a
way that certain “nice” or “balanced” properties are achieved. The notion of a “nice” or
“balanced” property is vague, but may, for example, refer to the separation of elements into
different subsets such that certain numerical properties hold. The question of whether or
not such an arrangement exists, and, if so, how many exist and how they can be efficiently
constructed, all fall under the umbrella of design theory. More specifically, this section is
concerned with a subset of designs known as block designs, which lend themselves naturally
to the key pre-distribution problem.

A full description of the relationship between a design and a key pre-distribution scheme
is given in Section 2.3, but the relevant parallels are also described alongside the definitions
and examples of designs in this section.

2.2.1 Set Systems

The most general combinatorial design is a set system.

30

Definition 1. A set system, or design, is a pair (X,A), where

1. X is a set of elements, called points, and

2. A is a collection of non-empty subsets of X, called blocks.

As an example, consider the following:

X = {1, 2, 3, 4, 5, 6, 7}
A = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}} .

This set system also has some additional structure not required by the definition of a set
system. For example, choose any point x ∈ X. The degree of x is the number of blocks
in A that contain x. In this example, every point has degree 3. Such a system is said to
be regular, of degree 3. Similarly, choose any block b ∈ A. The rank of b is the number of
points in the block. In this example, each block has rank 3. Such a system is said to be
uniform of rank 3.

If the points in X are cryptographic keys, then blocks can be thought of as keyrings.
A uniform design is one where each keyring is the same size, and a regular design is one
where each key appears in the same number of keyrings. These properties provide the
foundation for building a KPS from a combinatorial design.

2.2.2 Configurations

A set system that is both regular and uniform suggests a strong notion of symmetry within
the design. When constructing a KPS from a such a design, both regularity and uniformity
are desirable properties. Such systems are referred to as configurations.

Definition 2. A (v, b, r, k)-configuration is a set system (X,A) where

1. |X| = v and |A| = b,

2. (X,A) is regular of degree r,

3. (X,A) is uniform of rank k, and

4. every pair of points occurs in at most one block.

31

Figure 2.2: A (7, 7, 3, 3)-configuration, also known as the Fano plane. Each dot is a point,
and each straight line (or circle) denotes a block. Note that any pair of points in this
configuration has only a single line (or circle) that passes through both of them.

The set system described in the previous section also happens to be a configuration.
Figure 2.2 shows a visualization of this configuration, and makes it easy to see that every
pair of points occurs in exactly one block. Alternatively, this property can be restated as
any two blocks intersect at at most a single point, which suggests an interesting property
for a KPS derived from a configuration. In a configuration-based KPS, any pair of keys
appears in at most one keyring.

Consider a configuration where every pair of points occurs in exactly one block. Such a
design is highly structured and straightforward to analyze, which allows us to make precise
statements about the behavior of a configuration-based KPS. Each block in such a system
contains k points, and each of these points is contained in exactly r blocks in the design.
Therefore, given a block A ∈ A and a point x ∈ A, there exist r − 1 other blocks in the
design that contain x. Furthermore, because every pair of points occurs in at most one
block, these r − 1 blocks intersect A only at the point x. This property holds for each of
the k points in A. Because there are b− 1 other blocks in the design, we can compute the
probability that two random blocks intersect by

Pr1 =
k(r − 1)

b− 1
. (2.1)

Recall the natural mapping of points to keys and blocks to keyrings in a KPS, and
assume that two blocks intersect at point x. A pair of nodes, each possessing one of these
keyrings, are able to form a secure link. An adversary is able to compromise this link if it

32

compromises another node whose keyring contains x. There are b − 2 other nodes in the
network, and only r − 2 of them possess point x. Therefore,

fail(1) =
r − 2

b− 2
(2.2)

Equations 2.1 and 2.2 also allow us to demonstrate the trade-off between connectivity
and resilience in a configuration-based KPS through the following

ρ =
Pr1

fail(1)
=
k(b− 2)(r − 1)

(b− 1)(r − 2)
≈ k. (2.3)

This demonstrates that in a naive construction of a configuration-based KPS, there is a
direct linear relationship between the connectivity and resilience of the system. If each
node stores k keys, then the connectivity will be approximately k times larger than fail(1).
Note that this is the same approximate performance as the randomized KPS considered
previously. Recall the formulas Pr1 ≈ k2

v
and fail(1) = k

v
for the Eschenauer-Gligor

Randomized KPS in Section 2.1.2. It is easy to see that the randomized scheme also
provides a trade-off of ρ ≈ k. The q-composite scheme from Section 2.1.2 is the same when
q = 1, but gets progressively better as q grows.

2.2.3 Balanced Incomplete Block Designs

A configuration is a regular, uniform set system where any two blocks intersect at at most
a single point. Although this property may be useful in some settings, it may be seen
as unnecessarily restrictive in others. For example, recall the q-composite KPS, which
achieves a high degree of resilience by only allowing nodes who share multiple keys to
communicate. This observation suggests that a more general definition could be useful.

Definition 3. A (v, b, r, k, λ)-BIBD, or balanced incomplete block design, is a set system
(X,A) where

1. |X| = v and |A| = b,

2. (X,A) is regular of degree r,

3. (X,A) is uniform of rank k, and

4. every pair of points occurs in exactly λ blocks.

33

The definition for a BIBD is very similar to a configuration. In a configuration, two
blocks intersect at at most a single point, while in a BIBD two blocks intersect at exactly
λ points. In particular, a (v, b, r, k, 1)-BIBD is always a configuration, but the reverse need
not be true. The example design in Figure 2.2 is a (7, 7, 3, 3, 1)-BIBD.

2.2.4 Transversal Designs

The definitions in the previous section were all demonstrated using the same example
(7, 7, 3, 3, 1)-BIBD, and the relevance of each design with respect to KPSs was hinted at.
In order for a design to be useful as a KPS, it is not sufficient for nice theoretical properties
to exist. We must also be able to efficiently construct such a design for a wide array of
parameters. Transversal designs are useful in this regard.

Definition 4. A transversal design TD(t, k, n) is a triple (X,H,A) where

1. X is a finite set of points with |X| = kn,

2. H is a partition of X into k groups of size n, and

3. A is a set of k-subsets of X such that

(a) |H ∩ A| = 1 for every H ∈ H and A ∈ A, and

(b) Every t elements of X from different groups occur in exactly one block in A.

Transversal designs are named for the fact that nodes are partitioned into groups, and
each block transverses the groups, intersecting each group at a single point. Figure 2.3
shows an example of some blocks in a transversal design.

The definition of a transversal design with t = 2 is similar to that of a configuration, as
any pair of points in a TD(2, k, n) occur in exactly 1 block. In fact, it can be shown that
a TD(2, k, n) is a (kn, n2, n, k)-configuration, allowing the use of Equations 2.1 and 2.2 to
describe the performance of a TD(2, k, p)-based KPS.

An explicit and efficient construction for a KPS built from transversal designs is given in
Section 2.4. Note that Definition 4 includes the parameter n. The constructions considered
in Section 2.4 and the remainder of the thesis make use of algebraic fields, so our attention
will be limited to transversal designs TD(t, k, p) where p is a prime or prime power, such
that we can choose points in the design as tuples from Fp.

34

Figure 2.3: Example blocks in a TD(2,4,5). Each vertical line represents a group, and
each block is represented by a line that transverses the partition, intersecting each group
at exactly one point. Note that two blocks may intersect, but they never overlap at more
than one point (because t = 2).

2.2.5 Other Designs

Although the focus of this chapter is primarily on regular and uniform designs, such as
BIBDs and transversal designs, there exist many other designs that can be utilized for
combinatorial key pre-distribution. Comprehensive surveys of such designs include The
Handbook of Applied Cryptography [28], and Combinatorial Designs: Constructions and
Analysis [101], as well as surveys by Martin focused on the key pre-distribution problem
in general [72], and the key pre-distribution problem specifically in sensor networks [73].
Solutions based on generalized quadrangles [20], mutually orthogonal Latin squares [109],
inversive planes [34], among others have been proposed. Paterson and Stinson [84] summa-
rize several approaches and introduce partially balanced t-designs in an attempt to capture
the essential properties of many existing combinatorial design-based KPSs.

2.3 Set Systems as KPSs

The previous sections demonstrated some of the parallels between combinatorial designs
and key pre-distribution schemes. The points in a set system naturally map to keys, and
the blocks of such a system naturally map to keyrings. This idea was originally explored by
Çamtepe and Yener [20,21], who proposed, among other systems, a KPS based on BIBDs.
Since then, a variety of different approaches have been proposed.

35

To build a KPS from a design we simply associate each node with a distinct block from
the set system. In practice, each point is not associated with a key, but rather with a
key identifier. If a node is associated with a given block, it is issued the key identified
by each point in the block. It is assumed that the underlying combinatorial structure,
including which block is associated with which node, is public, but that the actual keys
remain secret.

Scheme 6. The Generic Combinatorial Design KPS. Given a network N = {n1,
. . ., nb}, choose a set system (X,A) with X = {1, . . . , v} and A = {A1, . . . , Ab}, and a set
of keys K = {K1, . . . , Kk}. For each ni ∈ N , give node ni the set of keys {Kx : x ∈ Ai}.

Configurations are an ideal candidate for a combinatorial KPS, as they are both regular
and uniform. We use the example (7, 7, 3, 3)-configuration from the previous section to
demonstrate. Recall,

X = {1, 2, 3, 4, 5, 6, 7}
A = {123, 145, 167, 246, 257, 347, 356}.

We can use this configuration to distribute seven keys to seven nodes using the Generic
Combinatorial Design KPS such that each node possesses three keys, and each key is
possessed by three nodes.

Node Block Keys
n1 {1, 2, 3} {K1, K2, K3}
n2 {1, 4, 5} {K1, K4, K5}
n3 {1, 6, 7} {K1, K6, K7}
n4 {2, 4, 6} {K2, K4, K6}
n5 {2, 5, 7} {K2, K5, K7}
n6 {3, 4, 7} {K3, K4, K7}
n7 {3, 5, 6} {K3, K5, K6}

While the mapping from a configuration to a KPS is natural, we have not yet specified
how two nodes perform shared-key discovery. If there exists an efficient method for comput-
ing a block from a node’s identifier, then nodes can perform shared-key discovery without
exchanging any information beyond their identities. The next sections demonstrate explicit
constructions that allow for efficient shared-key discovery.

36

2.4 The Linear Scheme

In 2005, Lee and Stinson proposed a KPS based on transversal designs [59], which was
further studied by the same authors [61]. This scheme is well suited to sensor networks
due to the fact that it has a simple construction, allows for two nodes to perform shared-
key discovery efficiently, and provides a good balance between connectivity and resilience.
In this section we describe a specific instance of Lee and Stinson’s KPS that is constructed
from a TD(2, k, p), also known as the linear Lee-Stinson-KPS (LS-KPS), or simply the
linear KPS, or linear scheme when the context is clear. We recall that b = N denotes the
number of nodes in the network (or blocks in the design), v denotes the total number of
keys/points, k denotes the number of keys/points stored by each node, and r denotes the
number of nodes (blocks) possessing any given key (point).

Scheme 7. The Linear LS-KPS. [61] Fix the value k and let p be a prime power such
that 2 ≤ k ≤ p. Then a linear (v, b, r, k)-LS-KPS can be constructed for v = kp, b = p2,
and r = p. Given a network N = {na,b : a, b ∈ Fp}, construct a TD(2, k, p) (X,A) as
follows:

Let X1 ⊆ Fp with |X1| = k and define X = X1 × Fp. For each (a, b) ∈ Fp × Fp define

Aa,b = {(x, ax+ b) : x ∈ X1}

and let A = {Aa,b : (a, b) ∈ Fp × Fp}.
Choose a set of keys K = {Ka,b : (a, b) ∈ X}. For each node na,b ∈ N , give node na,b

the set of keys {Kx,y : (x, y) ∈ Aa,b}.

In the linear LS-KPS, each node is indexed by the tuple (a, b), and the keys possessed
by each node are functions of these two values. Conceptually, each node’s keys correspond
to discrete points along the line ax + b inside some fixed interval. If the slopes of two
distinct node’s lines are the same, then these lines do not intersect and the nodes do not
share a key. If two node’s lines have different slopes, then those lines may or may not
intersect within a fixed interval.

Shared-key discovery in the linear LS-KPS is straightforward. Let na,b and na′,b′ be two
distinct nodes. To determine if they share a key, the following is performed:

1. If a = a′ then na,b and na′,b′ do not share a common key.

2. If a 6= a′ then compute x = (b′ − b)(a′ − a)−1 ∈ Fp. If x ∈ X1 then na,b and na′,b′
share the common key Kx,ax+b. Otherwise na,b and na′,b′ do not share a common key.

37

Figure 2.4: Some sample blocks in the linear LS-KPS. Each non-vertical line denotes a
block (wrapping from the top to the bottom), and each dot denotes a point. If two nodes
are associated with lines that have the same slope, then their lines will never intersect.
If two of these diagrams are drawn on top of each other then it is easy to see that many
intersections take place.

In the first step, the two nodes are determining whether or the slope of the line specifying
their keys is the same. Therefore, in some cases, two nodes require only a single comparison
to determine if a key is shared. In the second step, the intersection point is computed,
and, if it lies in the correct range, the two nodes have computed the label of their shared
key. The computation performed in this step is dominated by a single multiplication of
an inverse in Fp, where p is the square root of the total number of nodes. In practice, p
will be a small two or three digit prime, making this a very computationally inexpensive
operation.

The following theorem is useful for evaluating the performance of the linear KPS.

Theorem 1. (Lee and Stinson [61, Theorem 4.1]) The design constructed in Scheme 7 is
a (v, b, r, k)-configuration (or equivalently, a (kp, p2, p, k)-configuration).

Proof. Recall the properties of a configuration from Definition 2.

1. X = X1 × Fp and |X1| = k. Therefore |X| = kp. A = {Aa,b : (a, b) ∈ Fp × Fp}.
Therefore |A| = p2 and property 1 is satisfied.

38

2. Choose any point (x, y) ∈ X and choose any a ∈ Fp. Then we can compute b =
y − ax ∈ Fp, which shows that the point (x, y) occurs at least once for each a ∈ Fp.
Let b2 ∈ Fp with (x, y) = (x, ax + b2). Then ax + b = ax + b2 ∈ Fp, and it must be
true that b = b2. Therefore, each point (x, y) occurs exactly once for each a ∈ Fp,
satisfying property 2.

3. Each block Aa,b contains k distinct points, one for each value in X1. Therefore,
property 3 is satisfied.

4. Let (x1, y1) and (x2, y2) be distinct points in the same block Aa,b, so x1 6= x2. Then
y1 = ax1 + b and y2 = ax2 + b. Consider

y2 − y1 = ax1 + b− (ax2 + b) = a(x2 − x1).

rearranging, we have a = y2−y1
x2−x1 . Therefore, any two points uniquely determine the

value of a. It was demonstrated previously that for any fixed point and value of a,
there is exactly one value of b such that Aa,b contains that point. Therefore, any pair
of distinct points (x1, y1) and (x2, y2) occur in exactly one block Aa,b, so satisfying
property 4 is satisfied.

Furthermore, it can be shown that the construction in Scheme 7 is also a TD(2, k, p).

Theorem 2. (Lee and Stinson [61, Theorem 4.2]) The design constructed in Scheme 7 is
a TD(2, k, p).

Proof. Let x ∈ X1, define Hx = x × Fp, and define H = {Hx : x ∈ X1}. We show that
(X,H,A) satisfies the properties in Definition 4.

1. By Theorem 1, |X| = kp, and property 1 is satisfied.

2. By definition, H is a partition of X into k groups of size p, where all points in X with
the same x-coordinate are part of the same group. Therefore, property 2 is satisfied.

3. Let Aa,b ∈ A. For a given x ∈ X1, there is exactly one point (x, y) ∈ Aa,b such that
(x, y) = (x, ax+ b). Therefore, |Aa,b ∩Hx| = 1, satisfying property 3a. It was shown
in Theorem 1 that any two distinct points occur in exactly one block of A, satisfying
property 3b.

39

It follows that Scheme 7 is simply a concrete construction for a Generic Combinatorial
Design KPS based on a TD(2, k, p). The partitionH of the design can be seen in Figure 2.4,
where the points are partitioned evenly as columns. Each block transverses these points
as a straight line, with block Aa,b containing a set of points arranged along a line of slope
a. More specifically, Figure 2.4 demonstrates a subset of blocks from a TD(2, k, p) with
p = 5 and k = 4. Lee and Stinson provide the complete list of blocks in this design [61].
Let X1 = {0, 1, 2, 3} ⊆ Fp. Then X = {(x, y) : x ∈ X1, y ∈ Fp}. Adopting the shorthand
notation (x, y)→ xy, the points in X can be partitioned according to their x-coordinate:

H0 H1 H2 H3

{00, 01, 02, 03, 04} {10, 11, 12, 13, 14} {20, 21, 22, 23, 24} {30, 31, 32, 33, 34}

and the blocks of the underlying KPS are:

b = 0 b = 1 b = 2 b = 3 b = 4
a = 0 {00, 10, 20, 30} {01, 11, 21, 31} {02, 12, 22, 32} {03, 13, 23, 33} {04, 14, 24, 34}
a = 1 {00, 11, 22, 33} {01, 12, 23, 34} {02, 13, 24, 30} {03, 14, 20, 31} {04, 10, 21, 32}
a = 2 {00, 12, 24, 31} {01, 13, 20, 32} {02, 14, 21, 33} {03, 10, 22, 34} {04, 11, 23, 30}
a = 3 {00, 13, 21, 34} {01, 14, 22, 30} {02, 10, 23, 31} {03, 11, 24, 32} {04, 12, 20, 33}
a = 4 {00, 14, 23, 32} {01, 10, 24, 33} {02, 11, 20, 34} {03, 12, 21, 30} {04, 13, 22, 31}.

These blocks correspond directly to those in Figure 2.4 for a = 0, 1, 2. It is easy to see that
each block intersects each group from the partition exactly once. It can also be observed
that no two blocks in the same row intersect, and that any distinct pair of points occurs
in exactly one block.

Theorem 1 established that the design used in the linear KPS is in fact a (v, b, r, k)-
configuration. Therefore, Equations 2.1 and 2.2 can be used to describe the performance
of the scheme:

Pr1 =
k(r − 1)

b− 1
=
k(p− 1)

p2 − 1
=

k

p+ 1
(2.4)

fail(1) =
r − 2

b− 2
=

p− 2

p2 − 2
. (2.5)

Because the underlying design is a configuration, the same trade-off between connectivity
and resilience exists

ρ =
Pr1

fail(1)
=

k(p2 − 1)

(p+ 1)(p− 2)
=
k(p− 1)

p− 2
≈ k.

40

2.4.1 A More Thorough Analysis

Although a high degree of connectivity between random nodes is typically considered a
good thing, a higher degree of connectivity in configuration-based KPSs also implies a
higher value of fail(1). For this reason, it may be desirable to choose parameters such that
Pr1 is low, and rely on path-key establishment to provide two-hop paths between nearby
nodes. The structure of the linear KPS allows for a simple analysis of the probability that
two nearby nodes that do not share a key are able to establish a two-hop path-key.

Let ni and nj be two nodes, and let C denote the number of common neighbors of ni
and nj. Define Pr2 to be the probability that ni and nj do not share a key, but that one
or more of their C common neighbors shares a key with both. In other words, Pr2 denotes
the probability that a secure two-hop path is necessary and exists between nodes ni and
nj.

Let X, Y be two disjoint blocks in a TD(2, k, p) with X = {x1, . . . , xk} and Y =
{y1, . . . , yk} where xi, yi ∈ Hi. We are interested in computing the number of blocks that
intersect both X and Y ; i.e., the number of blocks containing {xi, yj} for 1 ≤ i, j ≤ k. For
i 6= j, Property 4(b) of Definition 4, states that there is a unique block that contains xi
and yj. Therefore, whenever i 6= j, there exists a block that contains xi and yj. In other
words, there are precisely k2 − k blocks that intersect any pair of disjoint blocks X and
Y . A design with this property is called a common intersection design (CID), first defined
by Lee and Stinson [60]. Such designs have an additional parameter µ, that represents
a lower bound on the number of blocks that intersect any pair of disjoint blocks. This
parameter was introduced to allow for the analysis of two-hop paths in a network utilizing
a combinatorial KPS. Therefore, the underlying design of the linear KPS, a TD(2, k, p),
which is also a (kp, p2, p, k)-configuration, is also a (kp, p2, p; k2 − k)-CID.

With a precise bound, µ = k2 − k, on the number of potential two hop paths, the
expected probability of such a path existing among C neighbors can be established. There
are p2−2 other nodes in the network, and p2−2−µ of them are unable to aid in establishing
a path key. Therefore, the probability that all C neighbors are unable to aid in establishing
a path-key is given by (

p2−2−µ
C

)(
p2−2
C

) .

The probability that a path-key is necessary and that at least one neighbor is able to aid
in establishing a path-key is given by

Pr2 = (1− Pr1)×

(
1−

(
p2−2−µ

C

)(
p2−2
C

)) .
41

A simplified estimate of Pr2 is given by Lee and Stinson [61], based on the observation
that µ is likely to be small with respect to p2

Pr2 = (1− Pr1)×

(
1−

(
p2−2−µ

C

)(
p2−2
C

))

≈ (1− Pr1)×

(
1−

(
p2 − 2− µ
p2 − 2

)C)

= (1− Pr1)×
(

1−
(

1− µ

p2 − 2

))C
=

(
1− k

p+ 1

)
×

(
1−

(
1− k(k − 1)

p2 − 2

)C)
.

Using a similar approach, the effect of multiple node compromises can also be estimated

fail(s) ≈ 1−
(

1− p− 2

p2 − 2

)s
,

where fail(s) denotes the probability of any given link in the network being compromised
after s nodes are captured. Table 2.1 demonstrates the effect on resilience as more nodes
are compromised for some sample parameter choices.

Table 2.1: The effect of node compromise on resilience in the linear scheme.
p = 71 (approx. 5000 nodes)
s fail(s)
1 0.0137
2 0.0272
3 0.0405
4 0.0536
5 0.0666
10 0.129
20 0.241

p = 157 (approx. 24000 nodes)
s fail(s)
1 0.00629
2 0.0125
3 0.0187
4 0.0249
5 0.0311
10 0.0611
20 0.119

42

2.5 The Quadratic and Higher Degree Schemes

A larger family of KPSs can be constructed in the same manner as the linear scheme by
considering transversal designs of higher strength, i.e., when t > 2. We first consider the
quadratic scheme, based on a TD(3, k, p).

Scheme 8. The Quadratic LS-KPS. [61] Fix the value k and let p be a prime power
such that 3 ≤ k ≤ p. Then a quadratic (v, b, r, k)-LS-KPS can be constructed for v = kp,
b = p3, and r = p2. Given a network N = {na,b,c : a, b, c ∈ Fp}, construct a TD(3, k, p)
(X,A) as follows:

Let X1 ⊆ Fp with |X1| = k and define X = X1 × Fp. For each (a, b, c) ∈ Fp × Fp × Fp
define

Aa,b,c = {(x, ax2 + bx+ c) : x ∈ X1}
and let A = {Aa,b,c : (a, b, c) ∈ Fp × Fp × Fp}.

Choose a set of keys K = {Ka,b : (a, b) ∈ X}. For each node na,b,c ∈ N , give node
na,b,c the set of keys {Kx,y : (x, y) ∈ Aa,b,c}.

Like the linear scheme, each node in the quadratic scheme is indexed using a tuple.
Similarly, as the name implies, each node is issued keys according to a quadratic polynomial,
rather than a straight line as in the linear scheme. Any three distinct keys from different
groups are held by exactly one node in the network, and each node may share either one or
two keys with a neighbor. For this reason, the underlying design of the quadratic scheme
is not a configuration, however, it is a transversal design.

Theorem 3. The design constructed in Scheme 8 is a TD(3, k, p).

Proof. As in the proof of Theorem 2, let x ∈ X1, define Hx = x × Fp, and define H =
{Hx : x ∈ X1}. Then |X| = kp and H is a partition of X into k groups of size p. For a
given x ∈ X1 there is exactly one point (x, y) ∈ Aa,b,c such that (x, y) = (x, ax2 + bx+ c).
Therefore, |Aa,b,c∩Hx| = 1. It remains to be seen that any triple of points occurs in exactly
one block.

Let (x1, y1), (x2, y2), and (x3, y3) be points such that x1, x2, and x3 are distinct. If
these three points occur in the same block, then there exists a, b, c ∈ Fp such that

y1 = ax21 + bx1 + c

y2 = ax22 + bx2 + c

y3 = ax23 + bx3 + c.

43

In Fp, these equations have a unique solution. Therefore, any triple of points occurs in
exactly one block and the design is a TD(3, k, p).

It follows that the quadratic scheme is simply the Generic Combinatorial KPS based on
a concrete construction of a TD(3, k, p). Since the quadratic scheme is not a configuration,
the previously established equations for Pr1 and fail(1) do not apply. The following theorem
aids in establishing performance metrics.

Theorem 4. (Lee and Stinson [61, Theorem 5.2]) Suppose (X,H,A) is a TD(3, k, p).
Then every point x ∈ X occurs in exactly p2 blocks, and every pair of points from different
groups occurs in exactly p blocks. Furthermore, any block A ∈ A intersects exactly a1 =
k(p− 1)(p− k+ 2) blocks in one point, exactly a2 =

(
k
2

)
(p− 1) blocks in two points, and is

disjoint from exactly a0 = p3 − 1− a1 − a2 blocks.

From Theorem 4, we see that each block in the design intersects a2 other blocks at
exactly two points. The probability that a pair of nodes share two keys is

Pr1 =
a2

p3 − 1
=

(
k
2

)
(p− 1)

p3 − 1
=

k(k − 1)

2(p2 + p+ 1)
. (2.6)

From Theorem 4 we also have that any pair of points from different groups occur in exactly
p blocks. If a given pair of points secures a link between two nodes, then p−2 of the p3−2
other blocks in the network contain both of these keys, allowing us to compute

fail(1) =
p− 2

p3 − 2
. (2.7)

A more general estimate of resilience is given by Lee and Stinson [61]. The probability that
a link is remains secure after s node compromises is the probability one or both keys from
a pair remain secure. This probability can be estimated by counting the number of ways
of choosing s nodes that do not contain the first key plus the ways of choosing s nodes
that do not contain the second key, and subtracting the overlap. A given key is contained
in p2 blocks, and the number of blocks containing one or both of a pair of keys is 2p2 − p,
so

fail(s) = 1−
2
(
p3−p2
s

)
−
(
p3−2p2+p

s

)(
p3−2
s

) (2.8)

≈ 1− 2

(
1− p2 − 2

p3 − 2

)s
+

(
1− 2p2 − p− 2

p3 − 2

)s
, (2.9)

44

Let A1 be a block with points distributed according to f(x) and A2 be a block with
points distributed according to g(x). Shared-key discovery is performed by computing the
points where f(x) = g(x), or equivalently, the roots of the polynomial f(x)− g(x) = 0. If
two such roots r1 and r2 exist, and r1, r2 ∈ X1, then (r1, f(r1) = g(r1)) and (r2, f(r2) =
g(r2)) are the common points in each block, and are labels for the shared keys in the
quadratic KPS.

In general, the quadratic scheme provides a slightly lower degree of connectivity when
two keys are required to form a secure link, but achieves a higher degree of resilience
when only a small number of nodes are compromised, as both keys must revealed to an
adversary to compromise a link. The quadratic scheme also incurs a higher computation
cost, as nodes must find the roots of a quadratic polynomial in order to determine shared
keys. Table 2.2 demonstrates the effect on resilience as more nodes are compromised, and
can be compared directly to Table 2.1 in the previous section.

Table 2.2: The effect of node compromise on resilience in the quadratic scheme.
p = 17 (approx. 5000 nodes)
s fail(s)
1 0.0031
2 0.0122
3 0.0265
4 0.0448
5 0.0665
10 0.2034
20 0.4894

p = 29 (approx. 24000 nodes)
s fail(s)
1 0.0011
2 0.0044
3 0.00979
4 0.0168
5 0.0255
10 0.0868
20 0.2531

2.5.1 Higher Degree Constructions

The construction of the linear and quadratic scheme generalizes in the obvious way to
higher degree polynomials. The underlying design is a TD(t, k, p) and keys are blocks
computed using a degree t − 1 polynomial. Higher strength designs allow for a greater
degree of resilience, as nodes may have η = 1, 2, . . . , t − 1 keys in common, but with the
drawback of more complicated performance metrics, and a greater computational cost to
perform key discovery. For completeness, the general construction appears below; however,
attention will be limited to the linear and quadratic schemes for practical reasons. The

45

next chapter demonstrates that the linear and quadratic schemes can be made flexible
enough to apply to nearly any practical application.

Scheme 9. General Transversal KPS. Fix values t and k and let p be a prime power
such that t ≤ k ≤ p. Then a t-(v, b, r, k)-LS-KPS can be constructed for v = kp, b = pt,
and r = p. Given a network N = {nc : c ∈ (Fp)t}, construct a TD(t, k, p) (X,A) as
follows:

Let X1 ⊆ Fp with |X1| = k and define X = X1 × Fp. For each c = {c0, c1, . . . , ct−1} ∈
(Fp)t define

Ac =

{(
x,

t−1∑
i=0

cix
i

)
: x ∈ X1

}
and let A = {Ac : c ∈ (Fp)t}.

Choose a set of keys K = {Ka,b : (a, b) ∈ X}. For each node nc ∈ N , give node nc the
set of keys {Kx,y : (x, y) ∈ Ac}.

As with the early transversal design-based schemes, this is simply the Generic Com-
binatorial Design KPS on a specific construction of a TD(t, k, p). Shared-key discovery
between two nodes is performed by evaluating their polynomials at each point intersection
point. If at least 1 ≤ η ≤ t− 1 keys are available, a secure link can be formed.

2.6 A Useful Generalization

Thus far we have considered a hierarchy of combinatorial designs by iteratively introducing
necessary properties to a basic set system. Configurations are a popular choice for generic
KPS constructions because of several nice properties:

1. Uniformity ensures that each node has the same number of keys,

2. regularity ensures that keys are evenly distributed across the nodes, and,

3. pairs of points occurring in at most one block allows for the maximal number of
connections in the network.

The structure of the design also allows for simple formulas to express the connectivity and
resilience of the KPS. In order to efficiently construct such a KPS, the linear and quadratic

46

schemes utilized a subset of configurations called transversal designs. In the linear case,
because a TD(2, k, p) is a configuration, the formulas for performance metrics still hold.
Analysis of the quadratic scheme is more complicated, as the underlying design is not a
configuration, and the block intersection properties of the design require more detail to
characterize.

Paterson and Stinson [84] have observed that a variety of different combinatorial con-
structions have appeared in the literature for use as KPSs. They propose a generalization
that encapsulates nearly all of them and derive performance metrics for this general class
of designs. The schemes proposed in the next chapter will utilize their approach when
analyzing performance.

Definition 5. Partially Balanced t-Design. [84] Let v, k, t, be positive integers and
let λi be a positive integer for 0 ≤ i ≤ t − 1. A t-(v, k, λ0, . . . , λt−1)-partially balanced
t-design (PBtD) is a pair (X,A) that satisfies:

1. |X| = v and A is a set of k-subsets of X.

2. There are exactly λ0 blocks.

3. For 1 ≤ i ≤ t− 1, every i-subset of points occurs in either 0 or λi blocks.

4. For t ≤ i ≤ k, every i-subset of points occurs in either 0 or 1 blocks.

It follows from this definition that the number of blocks is b = λ0, and, if it assumed
that every point occurs in at least 1 block, then the design is also of degree r = λ1.

It is easy to see that a transversal design is also a PBtD. It holds that in a TD(t, k, p),
any set of 0 ≤ i ≤ t points from different groups occur in exactly nt−i blocks. In the case
of the linear scheme, we have a TD(2, k, p) where each pair of points from different groups
occurs in exactly 1 block. In the case of the quadratic scheme we have that each pair of
points from different groups occurs in exactly p blocks, and each triple of points occurs in
exactly 1 block. It follows that a TD(2, k, p) is a 2-(kp, k, p2, p)-PBtD, and a TD(3, k, p) is
a 3-(kp, k, p3, p2, p)-PBtD.

The values λi characterize the block intersection properties of the design. In particular,
we are interested in cases when the underlying design is of strength t = 2, 3. Two blocks
{A1, A2} ∈ A form a link if |A1 ∩ A2| ≥ η. In the linear case, η = 1, and in the quadratic
case we may consider η = 1 or η = 2, depending on the application.

If |A1 ∩A2| = i ≥ η, then the link is referred to as an i-link. A block A is said to break
a link if A /∈ {A1, A2} and |A1 ∩ A2| ⊆ A. In other words, A breaks the link between A1

47

and A2 if A contains all points shared by A1 and A2. For a fixed block A, let αi denote
the number of i-links that block A is contained in, and let βi denote the number of i-links
that block A breaks. In the linear case, we define

α = α1

β = β1,

while in the quadratic case we define

α = α1 + α2

β = β1 + β2.

Similarly, let Li be the total number of i-links and define L = L1 in the linear case and
L = L1 + L2 in the quadratic case. Finally, let B be a block and C a subset of B of size i
and define

µ′(i) = |{A ∈ A : A ∩B = C}|.

Then, for a given set of i points in B, µ′(i) represents the number of other blocks in the
design that also contain those i points. A recursive formula for µ′(i) is given by Paterson
and Stinson [84]. The relevant value for the linear scheme is

µ′(1) = p− 1,

and for the quadratic scheme,

µ′(2) = p− 1

µ′(1) = p2 − 1− (k − 1)(p− 1).

We can now state the following results:

Lemma 1. (Paterson and Stinson [84, Lemma 4.1]) For η ≤ i ≤ t− 1, it holds that

αi =

(
k

i

)
µ′(i).

Lemma 2. (Paterson and Stinson [84, Lemma 4.2]) For η ≤ i ≤ t− 1, it holds that

βi = µ′(i)

(
λi
2
− i
)(

k

i

)
.

48

Lemma 3. (Paterson and Stinson [84, Lemma 4.3]) For η ≤ i ≤ t− 1 it holds that

Li =
bαi
2

L =
bα

2
.

Theorem 5. (Paterson and Stinson [84, Theorem 4.8]) It holds that

Pr1 =
α

b− 1
.

Theorem 6. (Paterson and Stinson [84, Theorem 4.7]) It holds that

fail(1) =
β

L− α
.

Applying the formulas above to a TD(2, k, p) we have:

(v, b, r, k) = (kp, p2p, k)

µ′(1) = p− 1

α1 = α = k(p− 1)

β1 = β = k(p− 1)
(p

2
− 1
)

L1 = L = kp2(p− 1)

Pr1 =
k

p+ 1

fail(1) =
p− 2

p2 − 2
.

The formulas for Pr1 and fail(1) are identical to Equations 2.1 and 2.2. The analysis is
slightly more interesting for a TD(3, k, p), as we can examine the performance for η = 1, 2.
Equations 2.6 and 2.7 presented previously only considered the η = 2 case.

(v, b, r, k) = (kp, p3, p2, k)

µ′(2) = p− 1

µ′(1) = (p2 − 1)− (k − 1)(p− 1)

α1 = k(p− 1)(p− k + 2)

49

α2 =

(
k

2

)
(p− 1)

β1 =
k(p− 1)(p− k + 2)(p2 − 2)

2

β2 =

(
k

2

)
(p− 1)

p− 2

2
=

(
k

2

)(
p− 1

2

)
L1 =

p3k(p− 1)(p− k + 2)

2

L2 =
p3
(
k
2

)
(p− 1)

2
.

If we fix η = 2 then we obtain the same results as Equations 2.6 and 2.7:

Pr1 =
α

b− 1
=

(
k
2

)
(p− 1)

p3 − 1
=

k(k − 1)

2(p2 + p+ 1)

fail(1) =
β

L− α
=

(
k
2

)(
p−1
2

)
p3(k

2)(p−1)
2

−
(
k
2

)
(p− 1)

=
p− 2

p3 − 2
.

Next, fix η = 1. Then

α = k(p− 1)(p− k + 2) +

(
k

2

)
(p− 1)

= k(p− 1)
(2p− k + 3)

2
.

β =
k(p− 1)(p− k + 2)(p2 − 2)

2
+

(
k

2

)(
p− 1

2

)
,

and

L =
p3k(p− 1)(p− k + 2)

2
+
p3
(
k
2

)
(p− 1)

2
.

Thus, we can compute

Pr1 =
α

b− 1
=
k(2p− k + 3)

2(p2 + p+ 1)

and

fail(1) =
β

L− α
=

2p3 + (4− 2k)p2 + (k − 5)p+ 2k − 6

(2p− k + 3)(p3 − 2)
.

When η = 1, the formulas for Pr1 and fail(1) are much more complicated than the
η = 2 case. Nevertheless, it is still useful to have a precise measure of performance.

50

2.7 Multiple Space Schemes

Recall that the value ρ was introduced to demonstrate the trade-off between connectivity
and resilience in a KPS. For configuration-based schemes, it was shown in Section 2.2.2
that ρ ≈ k. In other words, Pr1 cannot be greater than approximately k · fail(1). The
linear scheme is a configuration-based scheme, and therefore subject to this constraint. The
quadratic scheme is not a configuration-based scheme, and achieves a better ratio between
connectivity and resilience, as shown in Table 2.2. This improvement follows from the fact
that when η = 2, a given link is only broken when two specific keys are compromised,
which occurs with much lower probability than just a single key being compromised.

Lee and Stinson [61] observe that the resilience of the LS-KPS can be increased by
nesting multiple KPSs inside of each other. Rather than using a linear scheme to distribute
k keys to each node, it can be used to distribute membership in k different KPSs. In order
to compromise a single key, an attacker must compromise both the linear scheme, and the
secondary scheme, which would typically require the compromise of multiple additional
nodes. A good candidate for the secondary scheme is a Blom Scheme [11].

In Blom’s key pre-distribution scheme, a symmetric bivariate polynomial f(x, y) is used
to define the key shared by a pair of nodes. Each node is given a single partial evalua-
tion of this polynomial (i.e, a univariate polynomial), and the degree of this polynomial
determines the resilience of the system. In the simplest case, knowledge of two points is
sufficient to reconstruct the original polynomial. Therefore, an adversary that learns the
key information from two nodes in a Blom scheme can compute all keys in the system.

Scheme 10. Blom’s Scheme. Let q be a prime number, and let N = {n1, . . . , nN} be a
network of N < q nodes.

1. For each ni ∈ N , choose a unique element ui ∈ Zq. The value q and each ui are
made public.

2. Choose random values a, b, c ∈ Zq and define

f(x, y) = a+ b(x+ y) + cxy.

3. For each ui, compute
gi(x) = f(x, ui) mod q

and securely transmit this value to ni as its secret key.

51

4. Nodes ni and nj can compute their shared key Ki,j = Kj,i, by computing one of the
two following values:

Ki,j = gi(uj) or

Kj,i = gj(ui).

The scheme generalizes naturally to higher degree symmetric bivariate polynomials,
which introduces a straightforward increase in storage cost as the degree of f(x, ui) in-
creases, and in computational cost when evaluating gi(uj) for the same reason, but allows
for a larger number of node compromises before the scheme is broken. Blom’s scheme is
also well-defined if q is a prime power, with computations taking place in Fq.

When the linear scheme is used to distribute membership in a set of Blom Schemes, it
is referred to as a Multiple Space KPS (MS-KPS). The storage requirement of each node is
doubled, and the cost of key computation is increased by a constant number of additions
and multiplications to compute the underlying key from the Blom scheme. The benefit to
such an approach is a significant increase in resilience to key compromise. As shown by Lee
and Stinson [61], the multiple space LS-KPS using the simple variant of Blom’s Scheme
decreases the probability of a compromised affecting other links in the network by an order
of magnitude, and often more when only a small fraction of nodes are compromised. Note
that Pr1 is unaffected by switching to the MS-KPS, as any two nodes that share a point in
the outer linear scheme are always able to derive a shared key in the inner Blom scheme.

To instantiate the MS-KPS, one would create kp instances of a Blom scheme, one for
each point in the underlying transversal design of the linear scheme. Each of these Blom
schemes must be large enough to accommodate p distinct nodes, as each point in the
underlying TD occurs in p blocks. Each node is then issued membership in k of these
Blom schemes according to its block A in the TD. For each point in A, the node is given
a unique ID uA in the Blom scheme associated with this point (which can be derived from
it’s label in the linear scheme), and is issued an evaluation of f(x, uA) as described above.
If two distinct nodes share a key in the underlying TD, then they use their shared point
to determine which Blom scheme to use to compute their shared key.

Despite the fact that no two nodes ever have more than one key in common, the MS-
KPS can achieve very high levels of connectivity and resilience. This fact is demonstrated
in Table 2.3. Setting k = 50 and p = 149, the left table shows the probability that a one-
or two-hop path exists between two nodes ni and nj when C nodes lie in their common
neighborhood (i.e., are candidates to route messages between them), and the right table
shows the probability that the link between them is compromised given that the adversary
has learned keys from s nodes. In the left table, Pr1 = 1

3
for all values of C.

52

Table 2.3: The two-hop connectivity (Pr2) and resilience of the linear LS-KPS and MS-
KPS for k = 50 and p = 149. The value Pr1 = 1

3
is constant for all values of C.

C Pr2 Pr1 + Pr2
1 0.074 0.407
2 0.139 0.472
3 0.197 0.530
4 0.249 0.582
5 0.295 0.628
10 0.460 0.793
15 0.551 0.885
20 0.602 0.936

s LS-KPS MS-KPS
2 0.0132 0.0001
5 0.0327 0.0017
10 0.0642 0.0073
20 0.1244 0.0281
30 0.1807 0.0590
40 0.2333 0.0972
50 0.2827 0.1404

The idea of nesting multiple KPSs to boost resilience can be applied to virtually any
KPS setting, including the new schemes presented in the next chapter. The Blom scheme
is an ideal candidate, especially in conjunction with the linear scheme, as it boosts the
resilience of the network significantly, without incurring much computational overhead.
Martin [73] summarizes several combinatorial approaches, including the MS-KPS consid-
ered here, and their applicability to constructing “nested” or “layered” KPSs. He concludes
that this is a promising direction for providing a greater degree of flexibility in combina-
torial KPSs. The next chapter also addresses the problem of flexibility in combinatorial
KPSs, using a different approach, but the resulting schemes are good candidates for use in
a nested KPS, much like the basic linear scheme considered here.

2.8 Summary and Remarks

This chapter presented an overview of combinatorial designs and established their use for
key pre-distribution. Of these designs, transversal designs were presented in detail, as they
are particularly useful for sensor network key pre-distribution. Transversal designs can be
constructed efficiently, and allow for efficient neighbor discovery when the strength of the
design is low, which led to the definition of the linear scheme, and the quadratic scheme,
corresponding to transversal designs of strength two and three, respectively.

Paterson and Stinson observed that a number of combinatorial KPSs, including the
transversal design-based schemes considered here, shared common properties, and intro-

53

duced partially balanced t-designs as a means of unifying the analysis of each of these
approaches. The analysis of PBtDs led to a thorough analysis of the quadratic scheme
with intersection threshold η = 1. The idea of nesting multiple KPSs to build so-called
multiple space schemes was also considered.

The next chapter presents some new families of combinatorial KPSs based on the
linear and quadratic schemes considered here, and utilizes the theory of partially balanced
t-designs to analyze their performance. The goal of these new schemes is to address a
fundamental limitation in many combinatorial design-based KPSs. Namely, that such
designs only exist for restricted sets of parameters, which places undesirable constraints on
the size of the network.

54

Chapter 3

Constructing Combinatorial KPSs
With Flexible Network Parameters

By nature, sensor networks can be considered fragile in several ways. Battery-powered
sensors will eventually fail when their battery dies, potentially leading to a loss of connec-
tivity in the network. When adversarial settings are considered, nodes are expected to be
compromised by an adversary and could be taken offline, or logically removed from the
network by neighbors when caught misbehaving. The random nature of deployment may
reveal that certain regions do not have sufficient sensor coverage once the network is up and
running. To combat this, it may be necessary to prolong the life of a network by adding
additional nodes at a later time to compensate for nodes that are no longer available.

The key pre-distribution schemes considered in the previous chapter have nice theo-
retical properties, but may not be perfectly suited to actual sensor network needs. This
problem is elaborated on in the next section. In the remainder of this chapter we consider
techniques for adding flexibility to a family of combinatorial key pre-distribution schemes
that allow them to be used in a wide variety of deployment scenarios. In particular, con-
structions are provided that can accommodate a much wider range of network size and
storage requirements than the schemes in the previous chapter, including the ability to de-
terministically add nodes to the network while still retaining the precise theoretical analysis
and benefits of using a deterministic combinatorial-based approach. Performance metrics
for these new approaches are derived, and a generalized technique for computing perfor-
mance metrics for less structured designs is presented. We conclude with a performance
analysis that compares the approaches considered for a few concrete sets of parameters,
and demonstrate that the more flexible techniques considered here are able to match, or
nearly match, the performance of the schemes considered in the previous chapter.

55

This chapter contains joint work with Maura Paterson, and has been published previ-
ously [47].

3.1 Problems with Parameter Choice

The linear and quadratic schemes presented in the previous chapter are able to achieve
a reasonable balance between connectivity and resilience, along with providing simple
formulas to compute or estimate these values for any valid parameter set. For a fixed
network size, (determined by p), the parameter k, or key storage, can be controlled to
achieve a variety of connectivity/resilience bounds. Despite this, transversal design-based
schemes have been criticized [12] due to restrictions on parameter choices.

Our constructions of transversal design-based schemes are defined by three parameters,
(t, k, p), and, in the case of linear and quadratic schemes, t is fixed and only p and k are
chosen. From this, a (v, b, r, k)-LS-KPS can be constructed where

v = kp (total keys)

b = pt (total nodes)

r = pt−1 (nodes per key)

k = k (keys per node)

and t ≤ k ≤ p. These parameters imply that the size of the network must be p2 or p3,
where p is a prime or prime power. Furthermore, k is bounded above by p, so a small
value of p forces the maximal number of keys to be small as well. The formulas for Pr1
and fail(s) for the linear and quadratic schemes were computed based on the assumption
that all blocks in the underlying design were present in the network.

Consider a network of 1000 nodes. If we wish to use the linear scheme to distribute
keys, then p = 31 only accommodates a network size of b = 961 nodes, while p = 37
accommodates b = 1367 nodes. If we attempt to use a quadratic scheme, the best choice
is p = 11, which gives us network size of b = 1331, with the added constraint that each
node can have a maximum of k = 11 keys. The connectivity of such a system may not be
high enough for some applications.

These properties have been criticized in the literature for being too restrictive, and the
solution of simply choosing larger parameters and deploying a subset of the network was
dismissed with the claim that network performance becomes unpredictable [12]. Alternate

56

schemes have been proposed; however, unlike the straightforward parameter choice of a TD-
based KPS, the alternate suggestions are much more complicated. For example, parameter
selection for the schemes of Bose et al. [12] is as follows:

1. b = af(2g + 1), k = (a − 1)f + g, v =
(
a
2

)
f 2 + 1

3
(2g + 1)g, where a, f(≥ 2) are any

integers such that g ≥ 3 satisfies g = 0 or 1 mod 3.

2. b =
(
m
2

)
(2g + 1), k =

(
m−2
2

)
+ g, v = 3

(
m
4

)
+ 1

3
(2g + 1)g, where m(≥ 4) is any integer

and g is as above.

3. b = p2(2g + 1), k = k̃ + g, v = k̃p + 1
3
(2g + 1)g, where p(≥ 3) and k̃(< p + 1) are

integers such that k̃ − 2 mutually orthogonal Latin squares of order p exist, and g is
as above.

While these schemes certainly provide a wide variety of parameter choices, the complexity
of the constructions makes choosing a concrete set of parameters for a fixed network size
or storage requirement difficult.

There is clear motivation for KPSs that allow for straightforward parameter selection, as
the linear and quadratic schemes provide, but that also allow for a great degree of flexibility
in choosing network size and storage requirements, as provided by Bose et al. [12]. To this
end, the remainder of this chapter is dedicated to describing a new family of KPSs based on
the linear and quadratic schemes that can be used in a much wider variety of applications,
while still retaining straightforward parameter choice and performance metric evaluation.
Furthermore, we demonstrate that randomly deploying a subset of the linear and quadratic
schemes does not lead to any significant loss of connectivity or resilience, thereby allowing
the linear and quadratic schemes to be utilized for networks of arbitrary size without
introducing any additional complexity.

3.2 Approaches to Varying Network Size

The analysis of the connectivity and resilience of transversal design-based KPSs considered
thus far has relied on the assumption that all blocks of the design are present in the
network. In practice, it is usually expected that a small number of nodes will lose power,
be compromised, or otherwise fail during deployment and operation. Therefore, even if the
parameters of the KPS perfectly match the desired network, it may be impossible to make
exact claims about the performance of the network under a realistic operating scenario. We

57

now consider two approaches that can be used to address this problem, and by extension,
allow for the schemes considered in the previous chapter to be used for a wide array of
applications without sacrificing performance.

3.2.1 Randomized Subset Schemes

We can establish a family of key pre-distribution schemes based on selecting a random
subset of a design with the idea that a sufficiently large random subset of nodes will
still retain the performance of the entire network. Such a result is expected due to the
regularity and uniformity of the underlying design used to distribute keys. Randomized
subset schemes are formally presented in this section, and are evaluated with respect to
other approaches in Section 3.4

Scheme 11. Random Subset KPS. Let (X,A) be a combinatorial KPS for a network
of N nodes. For a network N of m < N nodes, construct a new KPS by selecting m
distinct blocks from A uniformly at random.

This definition can be applied specifically to the linear and quadratic schemes presented
earlier.

Scheme 12. Random Linear KPS. Given a network of size m, fix the value k and let p
be the smallest prime power such that 2 ≤ k ≤ p and m < p2. Construct a linear LS-KPS
as in Scheme 7, and choose m distinct blocks uniformly at random.

Scheme 13. Random Quadratic KPS. Given a network of size m, fix the value k and
let p be the smallest prime power such that 3 ≤ k ≤ p and m < p3. Construct a quadratic
LS-KPS as in Scheme 8, and choose m distinct blocks uniformly at random.

Although the existing formulas for connectivity and resilience do not apply to random
subset schemes, we expect the performance of random subset-based schemes to match
the performance with exceptionally high probability as long as the network contains a
reasonably large proportion of the original KPS. We demonstrate later in this chapter that
even a very small subset of the original KPS is chosen, the performance metrics are virtually
identical with very high probability. Therefore, while the definitions for the random linear
and quadratic KPSs suggest choosing p to be the smallest prime or prime power that
will accommodate the network, this is not strictly necessary. Parameters can be chosen
optimistically to, for example, allow additional nodes to be added to the network in the
future.

58

On top of the lack of concrete analysis, random subset schemes do suffer from some
of the drawbacks of the randomized KPS schemes considered earlier (Schemes 4 and 5).
Namely, a good source of randomness is needed, and additional bookkeeping is necessary
to keep track of which blocks are included in the network.

3.2.2 Resolvable and Decomposable Designs

The previous section discussed choosing subsets of a design at random in order to build
a KPS for a wider variety of network sizes. Rather than relying on random subsets, we
can utilize some additional structure of certain combinatorial designs in order to deter-
ministically select a subset of the network in such a way that a concrete analysis is still
possible.

Definition 6. A design (X,A) is said to be resolvable if there exists a partition R of its set
of blocks A into parallel classes, each of which in turn partitions the set X. The partition
R is called a resolution.

Consider a TD(2, k, p) = (X,H,A). Definition 6 states that such a design is resolvable
if it possible to partition the blocks of the system into distinct sets B1, B2, . . . Bp such that
each x ∈ X belongs to precisely one block in each Bi. Each Bi is known as a parallel class,
and the set R = {B1, . . . , Bp} is a resolution of the design. Figure 3.1 demonstrates this
for a TD(2, 5, 5). Note that, because each parallel class partitions the set of points X, no
two blocks in the same parallel class intersect.

The resolution of a TD(2, k, p) is useful because it allows for the selection of subsets of
the design in such a way that there is still a regular and uniform structure to each subset.
Each parallel class of a TD(2, k, p) is, in fact, a TD(1, k, p), and can be analyzed using any
general result for transversal designs. The ability to decompose a TD(2, k, p) into p copies
of a lower degree design is not dependent on the value t = 2. For example, the underlying
TD(3, k, p) used in Scheme 8 can be partitioned into p copies of a TD(2, k, p), each of
which can be further decomposed into p copies of a TD(1, k, p), or parallel classes. This
property holds in general for the family transversal designs established earlier. The blocks
of a TD(t, k, p) can be partitioned into disjoint sets, each of which is a TD(t− 1, k, p).

A necessary property in the linear case is that each Bi in the resolution partitions the
set X, which implies that no two blocks in a given parallel class intersect. The resolution
of a TD(3, k, p) into p copies of a TD(2, k, p) does not have this property, as multiple blocks
in each Bi will intersect. Despite this, the ability to partition a higher degree transversal
design into p copies of a lower degree design is extremely useful. For higher degree designs,

59

B1 B2 B3

Figure 3.1: (Previously presented as Figure 2.4.) A partial resolution of a TD(2, 5, 5). In
each parallel class, it is easy to see that each point is contained in exactly one block (or
line in the diagram). The parallel classes form a partition of the design, and the blocks
within each parallel class form a partition of the points within the design. The two parallel
classes not shown consist of all lines of slope a = 3 and all lines of slope a = 4.

we refer to this process as a decomposition. Although each Bi in the resolution of a higher
degree design is not necessarily a partition of X, and therefore not necessarily a parallel
class, a similar property does exist. Namely, although two blocks of a TD(t, k, p) may
intersect in t − 1 points, no two blocks in the same Bi intersect at t − 1 blocks. This
property follows from the fact that each Bi is a TD(t− 1, k, p).

3.2.3 Decomposable Schemes

In the same manner that the random subset KPS builds a smaller KPS from a larger one
using random subsets, we can define a family of KPSs based on decomposable designs
which adjust the network size by choosing a subset of the decomposition.

Scheme 14. Decomposable KPS. Let (X,A) be a combinatorial KPS for a network of
N nodes, where (X,A) is a decomposable design with resolution B1, . . . , Bp. For a network
N of m < N nodes, construct a new KPS by selecting all blocks in B1, . . . , Bj where
|B1 ∪ . . . ∪Bj| = m.

60

The decomposable KPS deterministically chooses a subset of a larger KPS by adding
groups one at a time until the desired network size is met. Note that this still imposes a
constraint on the size of the network. For example, the TD(2, 5, 5) considered in Figure
3.1 contains 25 blocks, but the decomposable KPS can be used for networks of size m =
5, 10, 15, 20, 25.

The transversal designs used to construct the linear and quadratic schemes are also
decomposable designs. Therefore, we can construct decomposable versions of the corre-
sponding KPSs. We begin by demonstrating that underlying designs are decomposable.

Theorem 7. The TD(2, k, p) constructed in Scheme 7 is a resolvable design with resolution
R = {B1, . . . , Bp}, where Bi = {Ai,j | j ∈ Fp}. Furthermore, each Bi is a TD(1, k, p).

Proof. R is clearly a partition of A. Fix Bi and assume there exists a point (x, y) contained
in two distinct blocks Ai,j and Ai,h in Bi. This implies y = ix + j and y = ix + h in Fp,
which implies i = h, contradicting the fact that Ai,j and Ai,h are distinct. Therefore, Bi is
a partition of X.

Theorem 8. The TD(3, k, p) constructed in Scheme 8 is a decomposable design with res-
olution R = {B1, . . . , Bp}, where Bi = {Ai,j,k | j, k ∈ Fp}. Furthermore, each (X,Bi) is a
TD(2, k, p).

Proof. We show that each Ba is a TD(2, k, p). In particular, we show that, using the same
groups as the TD(3, k, p), any pair of points occurs in at most one block. If this is not the
case, then there exist two points (x1, y1) and (x2, y2) with x1 6= x2 that occur in two blocks
in Ba, which implies that there exists b, b′, c, c′ with b 6= b′ and c 6= c′ such that

y1 = ax21 + bx1 + c

y1 = ax21 + b′x1 + c′,

and

y2 = ax22 + bx2 + c

y2 = ax22 + b′x2 + c′.

Therefore,

bx1 + c− (b′x1 + c′) = 0

bx2 + c− (b′x2 + c′) = 0,

61

and,

bx1 + c− (b′x1 + c′) = bx2 + c− (b′x2 + c′)

bx1 − b′x1 = bx2 − b′x2
bx1 − bx2 = b′x1 − b′x2
b(x1 − x2) = b′(x1 − x2).

Because x1 6= x2, we have b = b′ (and therefore c = c′), contradicting our assumption.
Therefore, any pair of points in Ba occur in at most one block, and, since there are p2

points, it follows that Ba is a TD(2, k, p).

The fact that each Bi in the resolution of the quadratic scheme is a TD(2, k, p) is
intuitive. Each block Aa,b,c in the quadratic scheme is determined by a polynomial of the
form y = ax2 + bx + c ∈ Fp. Each Bi fixes the value of a. Therefore, the blocks within a
given Bi are all of the form y − ax2 = bx+ c, which is identical to the polynomial used to
generate blocks in the linear scheme, shifted by a constant value.

Blocks within the linear and quadratic scheme are indexed using tuples from (Fp)t, and
each Bi in the resolution is defined simply by fixing the first index in the tuple. If we
restrict our attention to Zp where p is prime, then this observation implies a simple and
natural ordering on the decomposition of each design. In this case, we can refer to the first
` blocks of these designs without ambiguity.

Scheme 15. Parallel Class (Decomposable) Linear KPS. Given a linear LS-KPS
as in Scheme 7 using a TD(2, k, p) and a network of size m = `p, construct a Decomposable
Linear KPS by combining all blocks contained in the first ` parallel classes of the TD(2, k, p).

Scheme 16. Decomposable Quadratic KPS. Given a quadratic LS-KPS as in Scheme
8 using a TD(3, k, p) and a network of size m = `p2, construct a Decomposable Quadratic
KPS by combining all blocks contained in B1, . . . , B` in the resolution of the TD(3, k, p).

As with the random linear and quadratic schemes presented earlier, it is not strictly nec-
essary to choose p to be the smallest prime power that satisfies the requirements. Instead,
p can be chosen somewhat optimistically to allow for future network growth. However,
unlike the random schemes, the fact that the smaller subnetwork is chosen based on the
structure of the underlying design allows us to derive concrete performance metrics. Addi-
tionally, no randomness is required to select which blocks are included in the subnetwork,
and no bookkeeping is necessary to keep track of which blocks have been assigned to nodes.
Because the resolution is naturally ordered, the size of the subnetwork determines precisely

62

which subset of blocks are in use. Although the decomposable schemes have several ben-
efits over random schemes, they are less flexible with respect to network size. In their
presented form, the decomposable schemes can only accommodate network sizes that are
a multiple of p or p2, as nodes must be added to the network one Bi at a time for the
performance evaluation presented in the next section to be correct.

3.2.4 Finer Control Over Network Size

If a finer degree of control over network size is required, there are different approaches
that can be considered. Theorem 16 established that the TD(3, k, p) used in the quadratic
scheme is not only decomposable, but is decomposable into p instances of a TD(2, k, p),
each of which are themselves decomposable. Therefore, one could utilize the decomposable
quadratic scheme to select a subnetwork of size `p2, consisting of B1, . . . , B` from the
resolution, and then add `′p additional nodes from B`+1 using the linear parallel class
scheme. In this manner, networks of size p, 2p, . . . , p3 can be accommodated, while still
retaining the ability to derive precise performance metrics.

A second approach is to combine the decomposable schemes and random schemes. To
reach a specific network size m, we choose ` such that B1, . . . , B` do not contain enough
blocks, but B1, . . . , B`+1contain too many blocks. We then use the random scheme to
select m − `pt−1 nodes from B`+1. This approach balances the benefits and drawbacks
of both schemes. The performance analysis applies only to blocks in B1, . . . , B`, which
are completely deployed, and randomness/bookkeeping are only necessary for the partially
deployed blocks in B`+1.

Although these and other approaches are possible, the remainder of this chapter is
restricted to considering the random and decomposable schemes on their own. The per-
formance results later in this chapter demonstrate that even relatively small subnetworks
can still achieve good performance, which allows for significant flexibility when choosing
p, which in turn allows for more flexibility in subnetwork size.

3.3 Deriving Performance Metrics

The previous sections in this chapter have built a family of key pre-distribution schemes
based on transversal designs of strength 2 (linear) and 3 (quadratic) that allow for efficient
construction, efficient key discovery, flexible parameter choice, and allow for thorough anal-
ysis of performance metrics. Weaknesses in these schemes were identified, and more flexible

63

generalizations based on both random subsets and deterministic subsets, by exploiting the
resolvability of the underlying transversal designs, were proposed. In this section we more
closely examine the performance of these schemes, and demonstrate that the flexible gen-
eralizations are amenable to concrete analysis, much like the original schemes they were
based on.

3.3.1 Analysis of the Decomposable Linear KPS

The decomposable linear KPS provides a simple method for deterministically selecting a
subset of blocks from a TD(2, k, p). The underlying set system resulting from selecting
B1, . . . , B` in the resolution of a TD(2, k, p) turns out to be a partially balanced t-design,
allowing the formulas from Section 2.6 to be used for performance metrics.

Definition 7. A TD(2, k, p, `) is a set system consisting of 1 ≤ ` ≤ p parallel classes from
a TD(2, k, p).

Theorem 9. A TD(2, k, p, `) is a 2-(kp, k, `p, `)-PBtD.

Proof. Given ` parallel classes of a TD(2, k, p), let A be the set of blocks contained within
these classes, and let X be the set of points contained within these classes. Note that
the set X contains the same kp points as the original TD(2, k, p), as every point in the
original design is contained in each parallel class. The set A contains `p blocks, as each of
the ` parallel classes contain p distinct blocks, and we have λ0 = `p. Because each point
occurs exactly once in each parallel class, we have that each point occurs in exactly λ1 = l
blocks. Finally, each point in the original design occurs in at most 1 block, and therefore
occurs in at most 1 block in A. Therefore, all necessary properties from Definition 5 are
satisfied.

Recall from Section 2.6 that for a given point and block containing that point, µ′(1)
denotes the number of other blocks in the design that contain that point. In this case,
the symmetry of the underlying PBtD means that the value of µ′(1) is independent of the
choice of point and block. The value α represents the number of links in the network that
a given block is contained in, the value β represents the number of links that a given block
can break, and the value L represents the total number of links in the network. Using the

64

previously derived formulas yields:

µ′(1) = λ1 − 1 = `− 1,

α = kµ′(1) = k(`− 1),

β = µ′(1)

(
λ1
2
− 1

)
k = (`− 1)

(
`

2
− 1

)
k,

L =
bα

2
=
`pk(`− 1)

2
.

Applying Theorems 5 and 6 gives us

Pr1 =
α

b− 1
=
k(`− 1)

`p− 1
, (3.1)

fail(1) =
β

L− α
=

`− 2

`p− 2
. (3.2)

Setting ` = p yields the corresponding formulas for the complete linear scheme (Equations
2.4 and 2.5). Therefore, the decomposable linear scheme can be seen as a generalization
of the linear scheme.

3.3.2 Analysis of the Decomposable Quadratic KPS

In a similar manner to the previous section, the quadratic scheme can be analyzed by using
results for partially balanced t-designs.

Definition 8. A TD(3, k, p, `), with ` ≤ p, is a set system consisting of B1, . . . , B` from
the resolution of a TD(3, k, p).

Theorem 10. A TD(3, k, p, `) is a 3-(kp, k, `p2, `p, `)-PBtD.

Proof. Given B1, . . . , B` from the resolution of a TD(3, k, p), let A be the set of blocks
contained within B1, . . . , B`, and let X be the set of points contained within these blocks.
Note that X contains the same kp points of the original TD(3, k, p), as every point in
the design is contained in each Bi. The set A contains `p2 blocks, as each Bi contains p2

distinct blocks, and so λ0 = `p2. Each point in X is contained in exactly p blocks in each
Bi, and is therefore contained in exactly λ1 = `p blocks total. Next, consider any pair of
points from the original TD(3, k, p). If this pair of points occurs in the same group H of
the TD(3, k, p), then they occur in precisely 0 blocks of the design. Otherwise, in each of

65

B1, . . . , B` there is exactly 1 block that contains this pair of points, and λ2 = `. Finally,
any set of 3 points occurs in at most 1 block of the TD(3, k, p), and therefore occurs in
either 0 or 1 blocks of the TD(3, k, p, `). Thus, all necessary properties from Definition 5
are satisfied.

As before, we can apply the formulas from section 2.6 to the decomposable quadratic
scheme. If a pair of points occur in a block B, and there are λ2 blocks total containing
this pair, then

µ′(2) = λ2 − 1

other blocks intersect B at this pair of points. Paterson and Stinson [84] provide a formula
to recursively compute µ′(1):

µ′(t− 1) = λt−1 − 1,

µ′(i) = λi − 1−
t−1−i∑
j=1

(
k − i
j

)
µ′(i+ j).

In the case of a 3-(kp, k, `p2, `p, `)-PBtD, we have

µ′(1) = λ1 − 1− (k − 1)µ′(2)

= `p− 1− (k − 1)(`− 1).

As with the analysis of the quadratic scheme using PBtDs, we can consider the perfor-
mance of the parallel class variant with intersection thresholds of both η = 1 and η = 2.
We begin with the η = 2 case, where nodes must have a pair of keys in common to
communicate. Utilizing the formulas from Section 2.6 gives us:

α =

(
k

2

)
µ′(2)

=

(
k

2

)
(`− 1),

β = µ′(2)

(
λ2
2
− 1

)(
k

2

)
= (`− 1)

(
`

2
− 1

)(
k

2

)
,

L =
bα

2

=
`p2(`− 1)

2

(
k

2

)
,

66

fail(1) =
β

L− α
=

`− 2

`p2 − 2
(3.3)

Pr1 =
α

b− 1
=
k(k − 1)(`− 1)

2(`p2 − 1)
. (3.4)

Setting ` = p yields identical results to those derived for the original quadratic scheme.

We can now set η = 1 and repeat this process, albeit with much more complicated
formulas:

α = kµ′(1) +

(
k

2

)
µ′(2)

= k(`p− 1)−
(
k

2

)
(`− 1)

β = µ′(1)

(
λ1
2
− 1

)
k + µ′(2)

(
λ2
2
− 1

)(
k

2

)
= (`p− 1− (k − 1)(`− 1))k

(
`n

2
− 1

)
+ (`− 1)

(
`

2
− 1

)(
k

2

)
L =

bα

2
,

=
`p2
(
k(`p− 1)−

(
k
2

)
(`− 1)

)
2

,

fail(1) =
β

L− α
=

2(`p− 1)(`p− 2)− (k − 1)(`− 1)(2`p− `− 2)

(`p2 − 2)(2`p− 2− (k − 1)(`− 1))
(3.5)

Pr1 =
α

b− 1
=
k(2`p− 2− (k − 1)(`− 1))

2(`p2 − 1)
. (3.6)

As expected, these formulas agree with the earlier derived formulas when ` = p. It is
worth noting that while the above formulas are quite complicated, they simply contain
polynomials in `, p, and k, which are either direct network parameters, or closely related
to direct network parameters. In comparison to the schemes by Bose et al. [12], presented
earlier in Section 3.1, the above formulas are more intuitive. One can fix a direct network
parameter, such as at the number of keys per node k, and easily examine the expected
outcome on performance for various network sizes using the above formulas.

67

3.3.3 Computing Performance Metrics for Arbitrary Set Sys-
tems

The performance metrics derived earlier rely heavily on the structure of the underlying
design. In the case of random subset schemes, and for other less structured set systems,
there may not be enough structure to compute these metrics directly from known network
parameters. This section describes a method that can be used to efficiently compute
performance metrics for less structured set systems.

Let (X,A) be a set system with b blocks of size k, and suppose the maximum intersec-
tion size of any two blocks is t− 1. For each set of points C of size i, where η ≤ i ≤ t− 1,
define λC to be the number of blocks A ∈ A containing all points in C. For the linear
scheme, λC represents the number of times a given single key occurs in the network. In
the quadratic scheme with η = 2, each C is a two-element set, and represents the number
of times each pair of points occurs in the network. The λC values are sufficient to compute
performance metrics for the resulting KPS. Such an approach is beneficial as the values
of λC are readily available for many types of designs, such as partially balanced t-designs.
In the case that values for λC are unknown, they can be computed in Θ(bk) time simply
by iterating over each block. By comparison, a naive approach would require each pair
of blocks to be compared in order to discover shared sets of keys, resulting in a cost of
Θ((bk)2).

Computing Connectivity

The λC values are straightforward to compute simply by iterating through each block and
counting occurrences of keys. We now consider how these values can be used to compute
the connectivity Pr1 for any uniform set system where the maximum intersection size of
two blocks is known.

Given a set of points C with η ≤ |C| ≤ t− 1, define a C-link to be a set of two blocks
{A,B} such that A∩B = C. In other words, A and B form a C-link if they share the set
of keys contained in C. The number of C-links is denoted by λ′(C), where

λ′(C) = |{{A,B} : A,B ∈ A, A ∩B = C}| .

In the case of the linear KPS, λ′(C) represents the number of pairs of nodes that rely on
a given single key for communication. In the quadratic KPS, λ′(C) is defined for η = 1, 2,
and represents the pairs of nodes that rely on a given key, or a given pair of keys for
communication. In all cases, if |C| = t − 1, then λ′(C) =

(
λC
2

)
. The next lemma follows

directly from the principle of inclusion-exclusion.

68

Lemma 4. If |C| = i ≤ t− 1, then

λ′(C) =
∑

D⊆X\C,|D|≤t−1−i

(−1)|D|
(
λC∪D

2

)
.

In particular, λ′(C) =
(
λC
2

)
if |C| = t− 1.

Define an i-link to be any C-link where |C| = i. For η ≤ i ≤ t − 1, let Li denote the
number of i-links. Note that if i ≥ t then there do not exist any i-links, and if i < η, then
the number of shared keys is below the intersection threshold and a secure link does not
exist. For any η ≤ i ≤ t− 1, it follows that

Li =
∑
|C|=i

λ′(C), (3.7)

and we can denote the total number of links in the network by

L =
t−1∑
i=η

Li. (3.8)

Given the total number of links in the network, the probability that any pair of nodes
share a key is given by

Pr1 =
L(
b
2

) . (3.9)

We now demonstrate how to compute Li using the λC values. Define

qi =
∑
|C|=i

(
λC
2

)
. (3.10)

Lemma 5. For η ≤ i ≤ t− 1 , it holds that

Li =
t−1∑
j=i

(−1)j−i
(
j

i

)
qj. (3.11)

Proof. The formula from Lemma 4 must be summed over all C such that |C| = i. In doing
so, the term (−1)|D|

(
λC∪D

2

)
is included in the sum

(|C∪D|
|C|

)
=
(|D|+i

i

)
times.

69

For η ≤ i ≤ t− 1, let

ai =
i∑

j=η

(−1)i−j
(
i

j

)
. (3.12)

Then we can prove the following.

Theorem 11.

L =
t−1∑
i=η

aiqi, (3.13)

where ai and qi are as defined in equations 3.12 and 3.10, respectively.

Proof. When summing Equation 3.11, each qi is included precisely ai times.

Recalling our earlier formula for Pr1, we have the following.

Corollary 1.

Pr1 =

∑t−1
i=η aiqi(
b
2

) . (3.14)

Table 3.1 demonstrates some sample values for L as computed using the formulas in
this section. The relevant values for the linear scheme occur when t = 2, and the relevant
values for the quadratic scheme occur when t = 3 and η = 1, 2. When t = 3 and η = 1,
the result q1 − q2 can be interpreted as the total number of times two blocks intersect at
a single point, minus the number of blocks that were counted twice because they intersect
at two points.

Computing Resilience

The previous section defined a C-link as a set of two nodes that intersect at all points
contained in C, and λ′(C) is the number of links that rely on C. Therefore, the number of
nodes that break a given C-link {A,B} is given by λC − 2. Because there are b− 2 other
nodes in the network, the probability that a random node breaks a given link is given by

λC − 2

b− 2
.

Averaging this over all L links in the network yields

fail(1) =
1

L

∑
{C : η≤|C|≤t−1}

(λC − 2)λ′(C)

b− 2
. (3.15)

70

Table 3.1: Sample values for L for several small intersection thresholds.
t η L
2 1 q1
3 2 q2
3 1 q1 − q2
4 3 q3
4 2 q2 − 2q3
4 1 q1 − q2 + q3
5 4 q1
5 3 q3 − 3q4
5 2 q2 − 2q3 + 3q4
5 1 q1 − q2 + q3 − q4

As with the analysis of connectivity in the previous section, our goal is to find an equivalent
formula which relies only on the λC values, and not the λ′(C) values. Recalling Lemma 4,
we note the following when |C| ≤ t− 1:

∑
{C : η≤|C|≤t−1}

λCλ
′(C) =

∑
{C : η≤|C|≤t−1}

λC ∑
D⊆X\X,|D|≤t−1−i

(−1)|D|
(
λC∪D

2

) .

Let E = C ∪D, then the above is equal to

∑
{E : η≤|E|≤t−1}

(λE
2

) ∑
{C : η≤|C|,C⊆E}

(−1)|E|−|C|λC

 .

Separating out the constant terms yields the following lemma.

Lemma 6. ∑
{C : η≤|C|≤t−1}

λCλ
′(C) =

∑
{E : η≤|E|≤t−1}

µE

(
λE
2

)
, (3.16)

where
µE =

∑
{C : η≤|C|,C⊆E}

(−1)|E|−|C|λC . (3.17)

71

Some special cases of this lemma are useful

µE =

{
λE if |E| = η
λE −

∑
x∈E λE\{x} if |E| = η + 1.

(3.18)

Applying Lemma 6 to Equation 3.15 allows us to state the following theorem.

Theorem 12.

fail(1) =
1

L(b− 2)

 ∑
{E : η≤|E|≤t−1}

µE

(
λE
2

)− 2

b− 2
. (3.19)

Proof. The result follows directly from applying Lemma 6 to Equation 3.15, with the
observation that ∑

{C : η≤|C|≤t−1}

λ′(C) = L,

which follows from Equations 3.7 and 3.8.

Efficiently Computing Connectivity and Resilience

Given a set system (X,A) with b = |A|, with maximum block intersection t − 1, the
following method can be used to efficiently compute Pr1 and fail(1) for a KPS built from
this set system without any additional knowledge of the structure of the design.

1. For η ≤ |C| ≤ t− 1, compute λC for each set C as follows:

(a) Set λC ← 0 for all C.

(b) For each block A ∈ A and for every C ⊆ A such that η ≤ |C| ≤ t − 1, set
λC ← λC + 1. Node that when η and t are fixed, known values, this requires
Θ(b) time.

2. Compute µC for η ≤ |C| ≤ t− 1 using Equation 3.17.

3. Compute qi for η ≤ i ≤ t− 1 using Equation 3.10.

4. Compute L using Equation 3.13.

5. Compute Pr1 using Equation 3.14, and compute fail(1) using Equation 3.19.

The approach outlined here is used in the next section to compute performance metrics
for the random linear KPS (Scheme 12) and random quadratic KPS (Scheme 13) for a
variety of network sizes.

72

Examples

The algorithm in the previous section can be demonstrated through some simple examples.

Example 1. Recall the configuration considered in Figure 2.2. The complete design is
defined by

X = {1, 2, 3, 4, 5, 6, 7}
A = {123, 145, 167, 247, 256, 346, 357}

with Pr1 = 1 and fail(1) = 0.2. Each pair of points occurs in at most a single block, so
t = 2. If we change the last two blocks of the set system by introducing a new key:

A′ = {123, 145, 167, 247, 256, 348, 358},

then the previously established formulas for a configuration are no longer valid. The
resulting λ values are

λ1 = 3 λ2 = 3 λ3 = 3 λ4 = 3 λ5 = 3 λ6 = 2 λ7 = 2 λ8 = 2.

From this it is easy to compute q1 = 18. Because t = 2 and η = 1, we know from Table
3.1 that L = q1 = 18, and, by Equation 3.14,

Pr1 =
L(
b
2

) =
18

21
≈ 0.86.

Because the maximum intersection threshold in this scheme is t − 1 = 1, it holds that
µC = λC , as |C| = 1 in all cases. Using Equation 3.19 we can compute

fail(1) =
1

18× 5

(
5× 3

(
3

2

)
+ 3× 2

(
2

2

))
− 2

5
≈ 0.17.

Unsurprisingly, a small modification to the underlying set system has only a small
impact on the performance metrics. We now consider a more complicated example.

Example 2. Consider the following set system

X = {1, 2, 3, 4, 5, 6}
A = {123, 124, 125, 456, 136}.

73

By simple inspection it can seen that some pairs of keys occur in multiple blocks, but any
triple is unique, therefore t = 3 and we can compute metrics for intersection thresholds of
η = 1, 2. The λC values are as follows

λ1 = 4 λ2 = 3 λ3 = 2 λ4 = 2 λ5 = 2 λ6 = 2

when |C| = 1, and

λ1,2 = 3 λ1,3 = 2 λ1,4 = 1 λ1,5 = 1 λ1,6 = 1
λ2,3 = 1 λ2,4 = 1 λ2,5 = 1 λ2,6 = 0

λ3,4 = 0 λ3,5 = 0 λ3,6 = 1
λ4,5 = 1 λ4,6 = 1

λ5,6 = 1

when |C| = 2. From these, we compute q1 = 13 and q2 = 4. When η = 1, we have
L = q1 − q2 = 9 and

Pr1 =
L(
b
2

) =
9(
5
2

) =
9

10
.

When η = 2, we have L = q2 = 4 and

Pr1 =
4

10
.

In order to compute fail(1), we must first compute each µC . When |C| = η = 2 it holds
that µC = λC , and Equation 3.19 gives us

fail(1) =
1

4× 3

(
3

(
3

2

)
+ 2

(
2

2

))
− 2

3
=

1

4
.

Note that only λ1,3 = 3 and λ1,4 = 2 produce non-zero terms for
(
λC
2

)
. When η = 1, we

use Equation 3.18 to compute

µ1,2 = −4 µ1,3 = −4 µ1,4 = −5 µ1,5 = −5 µ1,6 = −5
µ2,3 = −4 µ2,4 = −4 µ2,5 = −4 µ2,6 = −5

µ3,4 = −4 µ3,5 = −4 µ3,6 = −3
µ4,5 = −3 µ4,6 = −3

µ5,6 = −3.

Again, using Equation 3.19, we have

fail(1) =
1

9× 3

(
4

(
4

2

)
+ 3

(
3

2

)
+ 4× 2

(
2

2

)
− 4

(
3

2

)
− 4

(
2

2

))
− 2

3
=

7

27
.

More results using this approach, but applied to much larger families of set systems,
are given in the next section.

74

3.4 Comparison of Decomposable and Randomized

Approaches

This chapter has thus far presented several flexible constructions for combinatorial design-
based KPSs based on a family of transversal designs. In this section, we compare the
performance metrics Pr1 and fail(1) for a variety of network parameters. Nine different
schemes are considered:

A: The Linear KPS (Scheme 7), based on a complete TD(2, k, p).

B: The Quadratic KPS (Scheme 8), based on a complete TD(3, k, p) with intersection
threshold η = 2.

C: The Quadratic KPS (Scheme 8), based on a complete TD(3, k, p) with intersection
threshold η = 1.

D: The Decomposable Linear KPS (Scheme 15), based on a TD(3, k, p, `) with ` ≤ p.

E: The Decomposable Quadratic KPS (Scheme 16), based on a TD(3, k, p, `) with ` ≤ p
and intersection threshold η = 2.

F: The Decomposable Quadratic KPS (Scheme 16), based on a TD(3, k, p, `) with ` ≤ p
and intersection threshold η = 1.

G: The Random Linear KPS (Scheme 12), based on a random subset of a TD(2, k, p).

H: The Random Quadratic KPS (Scheme 13), based on a random subset of a TD(3, k, p)
with intersection threshold η = 2.

I: The Random Quadratic KPS (Scheme 13), based on a random subset of a TD(3, k, p)
with intersection threshold η = 1.

Performance metrics for these schemes are summarized in Table 3.2. Note that schemes
A, D, and G are identical when ` = p in the decomposable scheme, or the entire network
is included in the random scheme. Similarly, schemes B, E, and H are identical when the
entire design is used, as are schemes C, F, and I.

For scheme A, the total number of nodes in the underlying TD(2, k, p) is p2, and for
schemes B and C, the total number of nodes in the underlying TD(3, k, p) is p3. In the
case of schemes D, E, and F, the total number of nodes in the underlying TD(t, k, p, `))

75

Table 3.2: Comparison of performance metrics for each transversal design-based scheme.
The parameters L, λE, and µE are defined in Section 3.3.3, and correspond to the total
number of links in the network, the number of occurrences of each set of keys in the
network, and the number of links relying on a given set of keys, respectively.

Scheme Pr1 fail(1)

A: k
p+1

p−2
p2−2

B: k(k−1)
2(p2+p+1)

p−2
p2−2

C: k(2p−k+3)
2(p2+p+1)

2p3+(4−2k)p2+(k−5)p+2k−6
(2p−k+3)(p3−2)

D: k(`−1)
`p−1

`−2
`p−2

E: k(k−1)(`−1)
2(`p2−1)

`−2
`p2−2

F: k(2`p−2−(k−1)(`−1))
2(`p2−1)

2(`p−1)(`p−2)−(k−1)(`−1)(2`p−`−2)
(`p2−2)(2`p−2−(k−1)(`−1))

G,H,I: L

(b
2)

1
L(b−2)

(∑
{E : η≤|E|≤t−1} µE

(
λE
2

))
− 2

b−2

is ` · pt−1. For schemes G, H, and I, the underlying design is a TD(t, k, p), but any
number of blocks 1 ≤ b ≤ pt may be selected. In order to accurately compare the relative
performance of these schemes, parameters must be chosen such that the resulting network
sizes are approximately equal. The following sets of parameters achieve this:

1. Let N ≈ 5000. Then schemes based on a TD(2, 15, 71) can be compared to schemes
based on a TD(3, 15, 17). In this case, 712 = 5041 and 173 = 4913, and the size of
the resulting networks differ by less than 3%. Each block in these designs contains
15 points, which corresponds directly to the number of keys each node stores.

2. Let N ≈ 24000. Then schemes based on a TD(2, 25, 157) can be compared to schemes
based on a TD(3, 25, 29). In this case, 1572 = 24649 and 293 = 24387, and the size
of the resulting networks differ by approximately 1%. Each block in these designs
contains 25 points, and each node stores 25 keys.

Because schemes A, B, and C form the basis for the flexible schemes proposed in this
chapter, but do not allow for flexible selection of parameters themselves, we use them as
a baseline for comparison. The decomposable schemes (D, E, and F) allow for network
sizes of m = ` · pt−1 for 0 ≤ ` ≤ p, however, only results for ` ≥ 2 are of interest. This
restriction is due to the fact that a single parallel class from a TD(2, k, p) does not contain
any intersecting blocks, and a single group from the decomposition of a TD(3, k, p) does

76

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000 5000

Pr
1

Network Size (m)

TD (2,15,71)

random
decomposable

σ
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 1000 2000 3000 4000 5000

fa
il(

1)

Network Size (m)

TD (2,15,71)

random
decomposable

σ

Figure 3.2: Comparison of linear schemes based on a TD(2, 15, 17) with maximal network
size N ≈ 5000.

not contain any blocks that intersect in two points, so the resulting connectivity is Pr1 = 0.
For the random schemes (G, H, and I) we compute average results over multiple random
subsets of size ` · pt−1 to match the network sizes of the decomposable schemes. For each
datapoint we distribute keys according to a TD(t, k, p), select a random subset of nodes of
size m = ` · pt−1 for 1 ≤ ` ≤ p, and use the process described in Section 3.3.3 to compute
Pr1 and fail(1). This process is repeated over 100 trials, and the average and standard
deviation for each datapoint are computed. As seen in the graphs and in Appendix B, 100
trials was sufficient to produce extremely low deviation across trials.

Each set of results in this section is presented in a graph which includes a line demon-
strating the relevant metric for the decomposable schemes, computed using the formulas
in Table 3.2, and average results for the randomized scheme as described above. The stan-
dard deviation is also included for the random case, but is too small to be distinguished for
most datapoints. Tables with exact data values are included in Appendix B for reference.
Both the decomposable and random schemes converge to the performance of the complete
schemes when the entire network is included.

We first consider schemes A, D, and G based on a TD(2, 15, 71), with results pre-
sented in Figure 3.2. Observe that the performance of the random scheme is essentially
flat, with only small deviations when the subnetwork size is small. The decomposable
schemes provide poor connectivity and high resilience, but quickly approach the expected
performance of the complete network. Once approximately a third of the nodes are in-
cluded, the performance of the decomposable scheme is nearly the same as the original

77

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000

Pr
1

Network Size (m)

TD (3,15,17), η=1

random
decomposable

σ
 0

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045

 0 1000 2000 3000 4000 5000

fa
il(

1)

Network Size (m)

TD (3,15,17), η=1

random
decomposable

σ

Figure 3.3: Comparison of quadratic schemes with intersection threshold η = 1 based on
a TD(3, 15, 17) with maximal network size N ≈ 5000.

scheme.

Schemes A, D, and G based on a TD(2, 15, 71) can be compared directly to Schemes C,
F, and I based on a TD(3, 15, 17) with intersection threshold η = 1. This comparison is the
most direct, as only a single key is required for secure communication, even though a pair
of nodes may share two keys. Results are presented in Figure 3.3. As with the t = 2 case,
we see that the random scheme tends to approximate performance of the network from
the beginning, and the decomposable scheme quickly approaches the performance of the
complete, becoming a good approximation once about a third of the nodes are included.
The resulting connectivity is higher, accompanied by a loss of resilience (larger fail(1)),
due to the fact that more nodes intersect at a single point in the quadratic scheme. The
main observable difference is the shape of the curves. The decomposable scheme begins
with a much higher connectivity (and lower resilience), and converges to the expected
performance from above. This behavior follows from the fact that each group in the de-
composition of a TD(3, 15, 17) is a TD(2, 15, 17), whereas each group in the decomposition
of a TD(2, 15, 71) is a parallel class with no intersecting blocks. The connectivity and
resilience of a TD(2, 15, 17)-based KPS are

Pr1 =
k

p+ 1
=

15

18
≈ .833

fail(1) =
p− 2

p2 − 2
=

13

152 − 2
≈ .0523.

78

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1000 2000 3000 4000 5000

Pr
1

Network Size (m)

TD (3,15,17), η=2

random
decomposable

σ
 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 1000 2000 3000 4000 5000

fa
il(

1)

Network Size (m)

TD (3,15,17), η=2

random
decomposable

σ

Figure 3.4: Comparison of quadratic schemes with intersection threshold η = 2 based on
a TD(3, 15, 17) with maximal network size N ≈ 5000

As ` grows, more groups are added to the set of included blocks. Within each group the
expected connectivity and resilience are as above, but the connectivity of nodes between
groups is lower. As the probability that two random nodes fall within the same group drops,
the expected performance of the network quickly converges to the expected performance
of the complete scheme.

Schemes B, E, and H based on a TD(3, 15, 17) with intersection threshold η = 2 can be
compared to the η = 1 case to observe the effect of requiring a pair of nodes to posses two
shared keys in order to communicate. Results are presented in Figure 3.4. The shape of
the graph resembles the performance of the TD(2, 15, 71)-based scheme, which is expected.
Each Bi in the resolution is a TD(2, 15, 17), and therefore no two blocks from a given Bi

will ever intersect at two points. As more blocks from the resolution are added, more pairs
of nodes with two shared keys exist and the performance approaches that of the complete
scheme. In general, the η = 2 is slower to converge to the expected performance, with
closer to half the network being required to achieve a good approximation, and provides a
lower connectivity than the η = 1 case. To balance this, the quadratic scheme achieves a
significant boost to resilience (approximately an order of magnitude), which follows from
the fact that two specific keys must be compromised for a given link to be broken. As in
the other cases, the random scheme tends to approximate performance quite closely even
for small network sizes.

79

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5000 10000 15000 20000 25000

Pr
1

Network Size (m)

TD (2,25,157)

random
decomposable

σ
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 5000 10000 15000 20000 25000

fa
il(

1)
Network Size (m)

TD (2,25,157)

random
decomposable

σ

Figure 3.5: Comparison of linear schemes based on a TD(2, 25, 157) with maximal network
size N ≈ 24000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000 25000

Pr
1

Network Size (m)

TD (3,25,29), η=1

random
decomposable

σ
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5000 10000 15000 20000 25000

fa
il(

1)

Network Size (m)

TD (3,25,29), η=1

random
decomposable

σ

Figure 3.6: Comparison of quadratic schemes with intersection threshold η = 1 based on
a TD(3, 25, 29) with maximal network size N ≈ 24000.

80

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5000 10000 15000 20000 25000

Pr
1

Network Size (m)

TD (3,25,29), η=2

random
decomposable

σ
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 5000 10000 15000 20000 25000

fa
il(

1)

Network Size (m)

TD (3,25,29), η=2

random
decomposable

σ

Figure 3.7: Comparison of quadratic schemes with intersection threshold η = 2 based on
a TD(3, 25, 29) with maximal network size N ≈ 24000

Figures 3.5, 3.6, and 3.7 contain corresponding results for a larger network of N ≈ 24000
nodes. The observed patterns of performance are the same as the N ≈ 5000 case. Further
trials for several other network sizes were computed, but have not been included as the
observed performance patterns were consistent with the included results.

3.5 Summary and Remarks

This chapter established the problem of key distribution and demonstrated that combina-
torial designs provide a convenient mathematical tool for solving the key pre-distribution
problem. Through a series of stricter definitions, transversal designs were identified as an
ideal candidate for building KPSs, as they are amenable to concrete analysis of perfor-
mance metrics, can be constructed simply, and incur a low computational cost for nodes
to determine shared keys. The main drawback of these designs lies in the restrictions on
network size and its relationship to the maximum number of keys per node.

Attempts to provide more flexible approaches have been proposed, but the simplicity
of TD-based approaches was lost. This chapter presented two approaches, along with
thorough analysis, that allow transversal designs to be used for a much wider variety of
parameters. These approaches allow for the construction of a TD-based KPS using only two
parameters, p and k, to distribute keys to a network of size m = ` ·p ≤ p2 or m = ` ·p2 ≤ p3

81

as long as k ≤ p, and provide concrete formulas for performance metrics. An alternate
approach based on random subsets was also presented that allows for arbitrary network
sizes of m ≤ p2 or m ≤ p3, with an efficient algorithm for computing performance metrics.
Although not considered in this thesis, the results generalize to higher-strength designs.

Performance results demonstrate that in our deterministic schemes, for the parameter
sets considered, as long as at least half of the blocks in the underlying design are utilized for
key pre-distribution, then performance closely matches that of the entire design. This result
allows for the use of the simple (and more intuitive) formulas for the entire design to be
used as an accurate estimate for performance. If less than half of the blocks are included,
the changes in connectivity and resilience are predictable according to our analysis. In
general, if only a small fraction of the network is to be deployed, then better performance
can be achieved by choosing different parameters (i.e., a smaller value of p) and deploying
a larger fraction of the network.

Performance results for the randomized subset schemes demonstrate that even when a
very small subset of blocks are included from the underlying design, the resulting perfor-
mance matches that of the entire design extremely closely. This result suggests that net-
works of arbitrary size can be easily accommodated using the randomized subset schemes,
with virtually no loss of performance.

82

Chapter 4

Secure Network Discovery Using
Combinatorial Key Pre-distribution

4.1 Introduction

The previous two chapters presented an introduction to combinatorial key pre-distribution,
and then derived a family of flexible combinatorial key pre-distribution schemes for wireless
sensor networks. These schemes are applicable at the pre-deployment phase of a sensor
network’s operational lifetime, and allow nodes to engage in secure communication even
when the post-deployment topology is unknown. This chapter is concerned with the de-
ployment and setup phases of a sensor network, and utilizes specific properties of linear
KPSs to facilitate network discovery in the presence of active malicious nodes.

Recall that, according to Martin and Paterson’s framework [74], sensor networks can be
broadly categorized according to their relative capabilities, how they are deployed, and their
ideal communication structure. In a homogeneous sensor network all nodes are identical,
whereas a hierarchical network contains nodes of varying capabilities. In practice, this
is often in the form of a two- or three-level tree, with many low power nodes forwarding
information to a single higher power node (often called a base station). A large network
may have several base stations, all forwarding their data to some final central location.

In terms of deployment, sensor nodes can either be fixed or mobile. In the latter case,
a distinction can be made between nodes that are free to travel throughout the entire
network (fully mobile), and those nodes may only move within in fixed region (locally
mobile). When considering fixed networks, distinctions are made between having full
control, partial control, or no control over the location of nodes after deployment.

83

This chapter is concerned with a simple homogeneous, fixed, no-control network with
pre-distributed cryptographic keys. The goal is to investigate what assumptions are nec-
essary to allow a node to accurately determine the local network topology in the presence
of an active adversary. In particular, we are concerned with establishing multiple node-
disjoint paths between a source node and its destination. Node-disjoint paths allows for
the use of the perfectly secure message transmission protocol of Dolev et al. [32], as well
as other protocols built upon the same idea, such as the multi-path key establishment pro-
tocols of Wu and Stinson [108], or the multi-path key reinforcement protocol by Chan et
al. [24]. These protocols assume that multiple node-disjoint paths exist between a source
and a destination, but do not specify how such a set of paths can be discovered. When
the topology is unknown prior to deployment, then nodes must be able to determine the
local network topology, even in the presence of one or more malicious nodes attempting to
inject false routing information.

We present a protocol that proceeds in multiple steps, each of which allows a node
to expand its view of the network by one hop. This protocol is based on voting and the
assumption that an honest majority of nodes are present at each point in the network
in which a decision must be made about the identity of a node. We accomplish this
goal through the use of a linear key pre-distribution scheme that allows a node to prove its
identity by proving it possesses two specific keys. In order to evaluate the practicality of this
approach, simulation results are provided that demonstrate that, with proper parameter
choices, we can still determine network topology even when a large number of malicious
nodes are present during network discovery.

The work in this chapter has been published previously [48].

4.1.1 Related Work

In addition to providing a framework for categorizing sensor networks, Martin and Pater-
son [74] provide a comprehensive survey of key establishment protocols for sensor networks,
while Karlof and Wagner [54] have surveyed a number of attacks against routing protocols
in sensor networks.

Many secure routing protocols for ad-hoc wireless networks have been presented, such
as ARAN [97], S-AODV [114], and DV-SRP [83], but they have not focused on solving
the problem of establishing several node-disjoint paths to a destination. The protocol
presented here addresses this problem.

Poturalski et al. [88] have given a formal treatment of neighborhood discovery in wire-
less networks and give an impossibility result for protocols that rely solely on message

84

transmission time or distance between nodes. However, it was shown that secure protocols
utilizing both distance and location are possible. Their model specifically excluded pro-
tocols that rely on cooperation with other nodes, and hence their result does not directly
apply to the protocol presented here.

Recall that Eschenauer and Gligor [37] presented a simple key pre-distribution scheme
based on randomly assigning a small set of keys (drawn from a larger pool) to each node,
and Chan et al. [24] have extended this approach. Others have considered combinatorial
key pre-distribution, such as Çamtepe and Yener [20] or Lee and Stinson [61], with the
latter being utilized in this thesis to construct a new family of flexible key pre-distribution
schemes. In these deterministic schemes, a node’s identifier determines which keys it
holds via a public function, although the keys themselves are still chosen randomly. More
specifically, the combinatorial design specifies the labels of the keys each node holds, but not
the keys themselves. These approaches were described in much greater detail in Chapter 2.
In particular, the scheme of Lee and Stinson is utilized here to allow for the authentication
of a node’s identity (and therefore its entire keylist), by proving it possesses any two keys
consistent with its claimed identity.

Distance bounding protocols [14] utilize different characteristics of the communication
medium to put an upper bound on the distance between two nodes. Rasmussen and
Čapkun [92] have demonstrated that extremely accurate distance bounding is possible
over radio frequency. Their solution is practical for sensor networks.

A recent direction in sensor network research is to consider the use of directional anten-
nas instead of omnidirectional antennas. Boudour et al. [13] have investigated how modern
protocols can be changed to accommodate the use of directional antennas, and Ash and
Potter [6] have demonstrated a method for sensor network localization that in some cases
can estimate the location of a node to within one or two meters using directional antennas.

4.2 Problem Setting

Let N = {n1, n2, . . . , nN} be a sensor network. Our focus is limited to homogeneous sensor
networks, in which the storage, computation, and communication capabilities of sensor
nodes are identical. The method of communication used by all nodes is omnidirectional
wireless broadcasts. More specifically, all nodes have a fixed communication radius d such
that any message sent by a given node will be overheard by any node within distance d and
no others. The set of nodes within distance d of node ni is referred to as ni’s neighborhood,
with the nodes in ni’s neighborhood being referred to as ni’s neighbors.

85

In order to facilitate secure communication between sensor nodes, a key pre-distribution
scheme (KPS) is utilized to issue each node with a subset of cryptographic keys selected
from a master key list. The set of keys issued to each node is determined by a unique iden-
tity associated with each node ni. Although nodes are free to perform both unencrypted or
encrypted communication, transmission of sensor readings should only be done if a secure
path exists all the way from the source to the destination. By secure, we mean that each
pair of nodes communicating along the path must be able to communicate using a shared
key.

Upon deployment, nodes are distributed geographically randomly (i.e. a fixed, no con-
trol network). Thus, upon activation, no node has any knowledge of its neighbors. The goal
of each node is to discover the local network topology to the extent that it can establish
multiple disjoint paths between itself and a base station or other desired destination. We
require multiple disjoint paths rather than the shortest path so that multi-path protocols,
such as perfectly secure message transmission, can be utilized. These protocols ensure that
a node can always report its readings, even in the presence of an active adversary, when
the assumptions of the protocol are satisfied.

The process of deploying the sensor network (say, for example, by dropping them out
of an airplane) may cause nodes to become damaged or to malfunction. Thus, each node
will only route messages through those nodes it believes are functioning properly and are
capable of secure communication with other nodes. Furthermore, if nodes are deployed
in a hostile environment, then an adversary may attempt to reprogram a subset of the
nodes, jam communication between nodes, or insert fake nodes into the network, thus
providing additional incentives for each node to verify the correct functioning of those
nodes it communicates with.

We stress that the model considered here is extremely restrictive. Nodes are deployed
with no prior knowledge of the topology, and are pre-loaded with only a small number of
symmetric keys to facilitate secure communication. We assume an adversary is present and
that a random subset of nodes in the network are compromised. The lack of information
about the network and the presence of an adversary from the very beginning necessitates
several strong assumptions in order to limit the ability of compromised nodes and to
accurately discover the network topology. These assumptions are considered in the next
section, alongside a discussion of how they can be realized in practice.

86

4.3 Tools and Assumptions

4.3.1 Authentication

Consider the simple problem of two nodes wishing to verify whether or not they both
possess a shared key, and hence, are capable of secure communication with each other.
One may attempt to use a simple challenge/response protocol to solve this problem. ni
sends an encrypted message to nj. If nj is in possession of the key used to encrypt the
message, then it can respond with the correct plaintext message. Unfortunately, such a
simple solution is not sufficient. Consider a node ni attempting to verify a shared key K
with a malicious node mj who does not actually possess the key. A malicious node mk

who does possess the key could reply in place of mj, thereby spoofing mj’s identity. For
this reason, we introduce the following assumption:

Assumption 1. (Identity) We assume that each node has the ability to distinguish be-
tween two messages from the same source, and two messages from different sources.

This assumption allows ni to verify that the response to its challenge came from mj

and no one else, and in practice, can be realized through wireless fingerprinting [31, 91],
which provides a mechanism for obtaining a fingerprint unique to each node from a received
RF signal. Moreover, a mutual authentication protocol utilizing fingerprinting is given by
Rasmussen and Čapkun [91], which is utilized here for network discovery. This protocol
is presented in Figure 4.1. No formal proof of security is provided, but the protocol is
similar in spirit to the secure SKID3 protocol [77, Section 10.17] with additional checks
added to make sure the fingerprints are as expected. We will henceforth refer to this as
the Fingerprinted Mutual Authentication Protocol (FMAP).

The FMAP protocol, as presented, assumes that each node is pre-loaded with the
fingerprint of every other node. In order to avoid the overhead this would cause (and the
inability to add nodes to the network at a later time), we have each node commit to its
identity by broadcasting a simple HELLO message containing its claimed identity (and hence
its key list). Each node that overhears such a message can verify that the fingerprint has
not been seen before and store it locally, which allows us to make the following assumption:

Assumption 2. (Uniqueness) We assume that each node can commit to at most one
unique identity.

The node identity and uniqueness assumptions allow us to protect against many spoof-
ing attacks and the Sybil attack [35], where a single node pretends to be many nodes within

87

(A)lice (B)ob
Pick NA ∈U {0, 1}k

A,NA // if fpsig ≈ fpA continue
Pick NB ∈U {0, 1}k

if fpsig ≈ fpB continue

B,NA,NB
MACK(B,NA,NB)oo

A accepts B
A,NA,NB

MACK(A,NA,NB)// if fpsig ≈ fpA continue
B accepts A

Figure 4.1: The Fingerprinted Mutual Authentication Protocol (FMAP) [91]. Here fpsig
denotes the fingerprint of the received message, fpA and fpB the fingerprints of Alice and
Bob respectively, and K is a key shared by Alice and Bob.

the network. Otherwise, a successful Sybil attack would allow an adversary to cast several
votes in a consensus-based protocol in order to alter the outcome.

Rasmussen and Čapkun’s experimental results on fingerprinting were initially carried
out with a single powerful receiver in a network that computed all fingerprints at a single
location. The intention was to demonstrate that RF fingerprinting was possible for sensor
nodes, and to later port the technique to individual nodes. Others have continued in
this direction, such as Knox and Kunz [57], who also investigate authentication via RF
fingerprinting, but they limit their attention to what can be achieved using embedded
processors on the nodes themselves. Their approach assumes no pre-shared fingerprint
information, and tolerates inaccuracies by pooling results from all nearby nodes and allows
a group of connected nodes to establish a “conference key” shared by everyone in the
group, ultimately leading to the ability to authenticate direct neighbors. Although we
use the FMAP protocol in this paper, the correctness of our approach relies only on the
assumptions outlined in this section, and other approaches, such as Knox and Kunz, could
be substituted.

It is important to note that the FMAP protocol only demonstrates that node mj has
the ability to compute a MAC under a given key K. This setting does not exclude the
case where a node mj may use another node mk as an encryption or decryption oracle.
More specifically, mj may forward the challenge message to a colluding node mk, who
then responds to mj with the appropriate response, who then replies to ni. Because ni
receives the response from the “correct” node, the fingerprints will match and ni will be

88

falsely convinced that mj possesses a shared key. In order to combat this, we reiterate an
assumption from Section 4.2:

Assumption 3. (Uniformity) We assume that all nodes have uniform communication
range and all messages sent by a node are received by all of its neighbors.

By this assumption, if mj attempts to forward the challenge to a colluding node, then
ni will overhear it. Furthermore, any malicious neighbor of ni cannot send a message to
mj without ni overhearing it. In practice, this requires silence from other nodes in ni’s
neighborhood until the mutual authentication protocol completes. Should this be violated,
the protocol will have to be re-run.

The Uniformity assumption is extremely limiting, and unlikely to hold even in ideal
circumstances in a real world deployment. The purpose of making such a strong assumption
is to perfectly limit the ability of adversarial nodes to collaborate without detection. In
practice, it is sufficient to detect and respond to this behavior in a manner that detects
most instances of misbehavior. To realize this in a more practical setting, we could rely
on received signal strength (RSS) measurements. Rather than assume that each node
communicates with a consistent, pre-defined radius, we can detect and respond to many
cases of nodes significantly altering their communication strength, much in the same way
we record fingerprints for each node. Along with recording a fingerprint, nodes can record
the expected RSS for each neighbor. If at any time a node is observed to be broadcasting a
message at a significantly different rate, it can be assumed that a malfunction or malicious
behavior is occurring. In order for two malicious nodes to lower their communication range
and “whisper” to each other without detection, they must be closer to each other than to
any other node in the network, otherwise a low RSS will be observed by an honest node. We
assume random node compromise, so the probability that malicious nodes are frequently
near each other is low. In the case that it does occur, we stress that our goal is to establish
multiple node-disjoint paths for use in multi-path protocols, and such protocols tolerate a
certain threshold of compromised paths.

Theorem 13. If two nodes successfully complete the FMAP protocol using key K, then
both nodes must be in possession of K and be within each other’s neighborhoods, except
with very small probability.

Proof. The identity, uniqueness, and uniformity assumptions combined ensure that the
protocol can only be successfully completed if both nodes know K, or can guess it, and
if the fingerprints on each message are as expected. Assuming the underlying mutual
authentication protocol is secure, an adversary is only successful if it can guess K and can

89

successfully spoof fingerprints. Danev and Čapkun [31] claim an error rate as low as 0.24%
on fingerprint recognition.

Some problem settings consider nodes that can lower their communication range in an
effort to reduce power consumption, thus violating the uniformity assumption. If nodes
were allowed to selectively reduce their communication range then two nearby malicious
nodes may be able to exchange messages without detection by others. This ability would
prevent us from proving Theorem 13.

4.3.2 Key Pre-distribution

We established in the previous section that a node can recognize two messages from the
same source, that a node can commit to at most one identity, and that two nodes can verify
a shared key. These assumptions do not, however, allow us to actually verify the identity
(and key list) of a node. Because a given node will be relying on its shared-key neighbors
to forward messages to those nodes with which it does not share a key, and also to nodes
outside of its communication range, it is desirable for a node to be able to prove its identity
(and therefore its key list), thus proving who it can communicate with securely. To aid in
solving this problem, we use a key pre-distribution scheme (KPS) that allows for a node
to be uniquely identified by the keys that it possesses. For example, the linear LS-KPS
scheme of Lee and Stinson [61] allows a node to be uniquely identified by knowledge of any
two keys that it possesses, while maintaining practical system parameters. This system
was presented in detail in Section 2.4, and was generalized in the following chapter to allow
for additional flexibility in parameter choices. The flexible variants considered in Chapter
3 are compatible with the assumptions used here, but for ease of presentation we use the
basic linear scheme.

The Linear LS-KPS

For a network of size N = b, let k be the number of keys issued to each node, let r be the
number of nodes possessing a given key, and let v be the total size of the key pool. A linear
(v, b, r, k)-LS-KPS can be derived for certain values of v, b, r, and k. More specifically, let p
be a prime power such that 2 ≤ k ≤ p. Then Lee and Stinson [61] show that a (kp, p2, p, k)-
LS-KPS can be constructed. To construct such a scheme, let X1 ⊆ Fp such that |X1| = k.
Each node will be issued a label (identifier) (a, b) ∈ Fp × Fp which determines the set of
key identifiers Aa,b = {(x, ax+ b) : x ∈ X1}.

Two nodes na,b and na′,b′ can determine if they share a key through the following:

90

1. If a = a′, then na,b and na′,b′ do not share a common key.

2. If a 6= a′, then compute x = (b′ − b)(a′ − a)−1 ∈ Zp. If x ∈ X1, then na,b and na′,b′
share the common key Kx,ax+b. Otherwise na,b and na′,b′ do not share a common key.

As an example of the linear LS-KPS, let p = 47 and k = 30. Then v = kp = 1410,
n = p2 = 2209 and a linear (1410, 2209, 47, 30)-LS-KPS can be constructed. Thus, if each
node stores just 30 keys, then we can accommodate up to 2209 nodes while maintaining
the property that a node is uniquely identified by any two keys that it possesses.

The LS-KPS is well suited to sensor networks as two nodes can efficiently determine
whether or not they share a key. Shared-key discovery can be performed using only two
integer subtractions and one inverse in Fp, where p is very small. Furthermore, the multiple-
space variant of the LS-KPS, presented earlier as the MS-KPS in Section 2.7, can be utilized
here for a significant boost in resilience.

4.3.3 Localization and Directional Antennas

Most sensor networks feature nodes that broadcast and receive messages using omnidi-
rectional antennas, with their communication region being a sphere of radius d centered
around the node. A more recent area of study has been the investigation of sensor networks
utilizing directional antennas. Although we assume omnidirectional broadcast for commu-
nication, there are tools that have been developed using directional antennas that are of
interest, the most relevant being the localization methods by Ash and Potter [6]. Utilizing
received signal strength and angle of arrival at multiple directional antennas on a single
node, a node is able to estimate the position of a neighbor to an accuracy of less than one
meter in some cases, with the ability to estimate the angle of arrival of an incoming signal
to within 3 degrees. Ash and Potter’s methods are of particular interest as they do not
rely on any trusted anchor nodes possessing additional hardware, such as a GPS device.
Thus, their localization method is referred to as self-localization, as it does not require any
additional trust between nodes.

The later phases of our network discovery protocol assume that nodes have the ability
to learn basic location information about their neighbors to within an error of ε, where ε
is significantly smaller than the communication range d of each node. This information
is utilized to ensure that nodes are physically located in a way that is consistent with
their claimed view of the network. Directional antennas are one method of achieving this,
but our protocols do not require that nodes have the ability to send directional messages.
Nodes could, for example, be equipped with multiple small antennas such that differences

91

in received signal strength at each antenna is enough to infer the approximate incoming
angle and distance of an incoming message.

4.4 Proposed Solution

4.4.1 Phase 1: Identifying Neighbors

The first goal of each node is to discover which nodes are within its neighborhood and
to verify their identities. In order to achieve this, each node will commit to an identity
and then perform the FMAP protocol described in Section 4.3.1 with each neighbor it is
supposed to share a key with. Each node then broadcasts the result of the FMAP protocol
to all other nodes in their neighborhood so that they may decide whether or not to trust
each node. For simplicity, we assume all nodes come online at the same time. Adding
nodes into an existing network will be discussed later. Let ni be the node running the
protocol.

1. Broadcast a HELLO message containing the identity of node ni.

2. For each HELLO message received, record the fingerprint and identity, making sure
that the fingerprint has not already been seen. From this point on, fingerprints are
verified for each received message.

3. For each neighboring node nj with which a key is supposed to be shared with node
ni, broadcast (BEGIN FMAP, ni, nj) and run the FMAP protocol to verify the key.

4. (a) If FMAP is successful, broadcast ACCEPT KEY nj.

(b) If FMAP is not successful, broadcast REJECT KEY nj.

5. (a) If a neighbor nj of ni begins the FMAP protocol with nk, record the tuple
(nj, nk).

(b) If nj broadcasts ACCEPT KEY nk, verify that the tuple (nj, nk) has been recorded,
and if so, add ACCEPT KEY to the tuple.

(c) If nj broadcasts REJECT KEY nk, verify that the tuple (nj, nk) has been recorded,
and if so, add REJECT KEY to the tuple.

6. Wait until no new nodes have come online and no new ACCEPT KEY or REJECT KEY

votes have been heard for a period of time t0.

92

7. Mark any run of FMAP that has yet to complete as REJECT KEY.

8. Apply the “accept rule” (discussed below) to each nj and broadcast the result as
ACCEPT ID nj or REJECT ID nj.

At the end of this process, each node ni has a list of those nodes in its neighborhood
(both identity and fingerprint), has verified those nodes with which it shares a key, and
knows the result of all other FMAP protocols run by its neighbors. It remains to be decided
when a node should accept the identity of each of its neighbors (i.e., what the “accept rule”
is). The parameter t0 represents a timeout value, meant to determine whether or not nodes
in the neighborhood are still in the process of completing their runs of the FMAP protocol.
Figures 4.2 and 4.3 demonstrate the process of neighbor discovery.

Recall that the linear LS-KPS allows one node ni to uniquely identify any other node
nj if it can be convinced of any two keys that nj possesses. A consequence of this is that
each node can verify at most a single key with any other node, for if the nodes had two
keys in common this would imply that they were the same node. Similarly, if a malicious
node attempts to lie about its identity then it possesses at most one key associated with
the false identity it has assumed.

Definition 9. A set of nodes casting a vote for nj is said to form a t-Local Honest Majority
(t-LHM) if:

1. There are more ACCEPT KEY votes than REJECT KEY votes;

2. at least t distinct keys were verified by nodes casting votes; and

3. if K = {k1, . . . , km} are the different keys verified with nj using FMAP, then the
previous two properties are satisfied for the set K \ ki for all ki ∈ K.

In other words, a set of voting nodes forms a t-LHM if a majority of the nodes have cast
an ACCEPT KEY vote over t different keys, even when all nodes possessing any single key are
removed from the vote. This property is intended to capture the fact that, if a malicious
node attempts to lie about its identity, then it can have at most one key consistent with
that identity. Therefore, it can falsely convince all honest nodes possessing that one key
to accept its false identity.

Theorem 14. A node can cast at most one ACCEPT KEY or REJECT KEY vote for another
node. Furthermore, a node can only vote for another node with which it supposed to share
a key and with which it has run the FMAP protocol.

93

(a) (b)

(c) (d)

Figure 4.2: A pictorial demonstration of neighbor discovery. (a) The central node N sends
a HELLO message to identify itself to its neighbors. (b) It overhears a similar message from
each neighbor. (c) Node N then announces that it is authenticating node N1, and (d)
performs the FMAP protocol. (Continued in Figure 4.3.)

94

(e) (f)

(g) (h)

Figure 4.3: (Continued from Figure 4.2.) A pictorial demonstration of neighbor discovery.
(e) Node N informs its neighbors that it successfully completed the FMAP protocol with
node N1. (f) Node N records each instance of the FMAP protocol it overhears, and
(g) appends the record with the announced result. (h) Finally, once each FMAP run
is complete, node N announces whether or not it accepts the identity of node N1, thus
informing its neighbors that it can provide a route to node N1.

95

Proof. In Step 3 of the protocol, each node broadcasts the fact that it is beginning the
FMAP protocol with another node. Each node that overhears a run of the protocol records
this fact in the tuple (nj, nk). Because the list of keys given to each node is derived from
its identity, it can easily be verified that nj and nk are supposed to share a key. By the
uniformity assumption, if both nj and nk are in a node’s neighborhood, then it will overhear
each step of the FMAP protocol between them. Thus, only those tuples/votes that are
valid with respect to the previous observations will be used to establish a node’s identity.
The fact that a node may cast at most one vote follows directly from the uniqueness and
identity assumptions.

Note that Theorem 14 does not guarantee that the FMAP protocol was successful (or
not) between nodes nj and nk, only that ni can observe that the appropriate messages were
exchanged and that only one vote was cast by each. It is possible that two malicious nodes,
one or both lying about their identities, could fake the FMAP protocol and cast a false
ACCEPT KEY vote for each other. Similarly, a malicious node may successfully complete
the FMAP protocol with another but vote REJECT KEY regardless. A malicious node could
also announce it was beginning the protocol with a node that it cannot talk to, and then
announce the result. This behavior is undetectable by ni, but will be addressed in the next
phase of the protocol.

Definition 10. The t-LHM-Accept Rule:

1. If ni is supposed to share a key with nj and it does not complete the FMAP protocol
with nj, then reject nj.

2. If the set of nodes casting a vote for nj form a t-LHM, then accept the identity of nj
as valid;

3. otherwise, reject the identity of nj.

The t-LHM-Accept Rule relies on the fact that if there are enough honest nodes in
ni’s neighborhood, then they can always achieve a majority when voting on nj’s honesty.
In order to prove the security of the protocol, we must put a bound on the number of
malicious nodes participating in a given vote.

Assumption 4. (LHM) Let K be the set of keys possessed by nj that are also possessed
by common neighbors of ni and nj (including the shared key between ni and nj if it exists).
We assume that |K| ≥ 3 and there are more honest nodes in the common neighborhood
possessing keys from the set K \ ki for all ki ∈ K than malicious nodes.

96

This assumption is intended to capture a necessary condition for the 2-LHM-Accept
Rule to be a sufficient condition for determining a neighbor’s honesty.

Theorem 15. If a node nj is accepted by 2-LHM-Accept and the LHM assumption holds,
then nj is not lying about its identity.

Proof. We first note that, if nj fails the FMAP protocol with ni, then it is immediately
rejected by ni. Assume nj is lying about its identity; then nj has at most one key K
consistent with its claimed identity. Also, recall that, by Theorem 14, each node can cast
at most one vote. The 2-LHM property will only be satisfied if the number of ACCEPT KEY

votes from nodes not possessing K is greater than the number of REJECT KEY votes, and at
least two other keys are verified. Each honest node that does not possess K will cast one
REJECT KEY vote for nj, and in the worst case each malicious node not possessing K will
cast at most one ACCEPT KEY vote. By the LHM assumption, the number of REJECT KEY

votes is greater than the number of ACCEPT KEY votes among neighbors not possessing K.
Hence, the 2-LHM-Accept rule is not satisfied and nj’s identity will not be accepted.

The LHM assumption also places a limit on the capability of malicious nodes to prevent
honest nodes from being accepted.

Theorem 16. If the LHM assumption holds, then a coalition of malicious nodes cannot
force an honest node nj to be rejected by ni with the 2-LHM-Accept Rule.

Proof. If an honest node nj is rejected, then it must have received more REJECT KEY votes
than ACCEPT KEY votes. Recall that, by Theorem 14, each node can cast at most one vote.
Because nj is honest, each REJECT KEY vote must have come from a distinct malicious
node. The LHM assumption guarantees that there are always more honest nodes than
malicious nodes in situations considered by the 2-LHM-Accept Rule, and hence, there can
never be more REJECT KEY votes than ACCEPT KEY votes for an honest nj.

Theorems 15 and 16 together prove the correctness of our neighbor discovery protocol.
It is worth noting that, if ni completes the FMAP protocol with nj, then ni has directly
verified that ni possesses a single key K consistent with its claimed identity. This fact
means the 1-LHM-Accept Rule is sufficient in the case where ni and nj share a key, with
the caveat that 1-LHM must verify a key different from K.

Phase 1 does not rely on any sort of location information to authenticate neighbors, but
Phase 2 requires a modification to include location information to ensure nodes claiming to
have a route to a 2-hop neighbor are not lying. This is accomplished by assuming each node

97

can compute an approximate location for each of its neighbors. An interesting direction
for future work is to determine if nodes can estimate each other’s position by including
received signal strength (RSS) measurements along with their public accept during Phase
1. With a complete set of relative RSS measurements between neighbors there may be
sufficient location information to verify a node’s location for Phase 2.

4.4.2 Phase 2: Identifying 2-Hop Paths

At the conclusion of Phase 1, each node has a list of its neighbors and has decided whether
or not to accept their claimed identities. From this point on, we assume that an honest
node ni will ignore the existence of any node nj it could not verify during Phase 1. To
simplify presentation we also assume that ni can establish a path to any neighbor it does
not share a key with via its local neighbors. Table 2.3 from Chapter 2 shows the probability
that 2-hop paths exist to any neighbor for some example parameters, and longer length
paths would be possible to calculate from ni’s verified neighbors, thereby increasing the
likelihood a local path can be established. Our goal in this section is to establish 2-hop
neighbors that exist outside of ni’s neighborhood (i.e., paths of the form ni → nj → nk).

Verifying the identity of ni’s 2-hop neighbors is different than identifying nodes in ni’s
neighborhood, as we lose the ability to verify fingerprints on nk, as well as the ability
to overhear whether or not the FMAP protocol was actually executed. Furthermore, we
cannot assume that an intermediate node nj is honest, only that it is not lying about its
identity. Recall that in Step 5a of Phase 1, node ni records the tuple (nj, nk) when the
FMAP protocol is initiated by a neighbor. If nk is also in ni’s neighborhood, then the
corresponding tuple (nk, nj) is also recorded. Thus, during Phase 1, node ni also learns
which nodes nk lie outside of its neighborhood such that nj has successfully completed the
FMAP protocol with nk, and whether or not they were accepted in Step 8. Such nodes
are referred to as 2-hop neighbors. We can use this information to apply a voting protocol
similar to Phase 1.

Our main problem during this phase is identifying those nodes that are attempting to
vote on the identity of nk, but who are not actually within nk’s communication range. Let
Ni denote ni’s communication range (i.e., the nodes in ni’s neighborhood). Any node in
Ni can cast a vote for nk, but only those nodes that lie in the region Ni ∩Nk are capable
of routing a message between ni and nk. Nodes in the region Nj \ Nk are unable to route
a message to nk, but learn of nk via nj during Phase 1. Nodes in the region Ni \ Nj
are unable to route a message to nk, and do not overhear nj during Phase 1 (but could
overhear a node in Nj \Nk that repeats the fact). A malicious node in Nj \Nk could falsely

98

Figure 4.4: Only nodes in Ni ∩ Nk are capable of routing a message, but malicious nodes
in Nj −Nk learn about nk from nj, and nodes in Ni −Nj learn about nk from malicious
nodes in Nj −Nk, thus enabling them to falsely claim they can route to nk.

broadcast that it is beginning the FMAP protocol with nk and then cast a vote. Similarly,
if a node in Nj \Nk falsely begins the protocol, then a malicious node in Ni \Nj learns of
nk and can do the same. The fact that any of ni’s neighbors is capable of learning of nk’s
existence means that, in the worst case, every malicious node in ni’s neighborhood that
shares a key with nk will cast a false vote.

Clearly, if there are more honest nodes in Ni ∩Nk that can route messages between ni
and nk than malicious nodes inNi, then the malicious nodes cannot cast enough REJECT ID

votes to prevent nk from being accepted. Unfortunately, the malicious nodes can still falsely
accept nk’s identity, thus suggesting a secure path exists where it actually does not. For
this reason, we have each nj include localization information about nk, allowing malicious
nodes to be detected in many cases.

Assumption 5. The Honest 2-Hop Majority (H2M) assumption states that there are more
honest nodes in Ni ∩ Nk that can route messages between ni and nk than malicious nodes
in Ni.

Let the protocol in Phase 1 be altered such that each node includes information on
the location of nj (i.e., the relative angle and distance) when it broadcasts its ACCEPT ID

vote. Furthermore, we assume that ni can compute similar localization information on nj
as needed. Then the protocol for identifying 2-hop neighbors from ni’s point of view is:

99

For each 2-hop neighbor nk:

1. For each accepted neighbor nj casting an ACCEPT ID vote for nk:

(a) Compute (nj, nk, ACCEPT ID, loc(nk)), where loc(nk) is the location of nk rela-
tive to ni.

2. For each neighbor nj casting a REJECT ID vote for nk:

(a) Compute (nj, nk, REJECT ID, loc(nk)), where loc(nk) is the location of nk rela-
tive to ni.

3. Wait until no new votes for nk have been received for a pre-specified period of time
t1.

4. Let Sk be the largest subset of tuples from Steps 1 and 2 such that all estimates of
loc(nk) are within 2ε of each other and nj ∈ Ni ∩Nk (according to the consensus on
nk’s location), where ε is the maximum error of localization.

5. (a) If there are more ACCEPT ID votes in Sk than REJECT ID votes, then accept all
nj in Sk who cast an ACCEPT ID vote as being able to route messages to nk.
Broadcast the message ACCEPT ROUTE nj,nk.

(b) If there are more REJECT ID votes in Sk than REJECT ID votes, then do not
accept nk as being an honest node and do not include them in any path.

Figure 4.5 demonstrates the protocol. As with the protocol in Phase 1, this protocol
relies on the fact that a majority of the nodes voting on nk are honest. If this assumption
holds, then there will exist a majority of nodes that agree on nk’s position, who also lie
within communication range of ni and nj. The parameter t1 is a timeout value used to
ensure all votes for nk have been received before proceeding.

Theorem 17. If the H2M assumption holds, and if nj /∈ Ni ∩Nk, then ni → nj → nk will
not be accepted as a valid 2-hop path, except with small probability.

Proof. In Step 4 of the protocol, Sk is chosen to be the largest set of nj such that each nj
agrees on nk’s position, and lies in the intersection of ni and nk’s communication range.
By the H2M assumption, the honest nj’s will agree on nk’s position with accuracy 2ε,
thus defining the common intersection of ni and nk’s communication range to within 2ε.
Hence, any node lying about its ability to communicate with nk must be within 3ε of nk’s
communication range, as we can only estimate nj’s position with accuracy ε.

100

Figure 4.5: An example of two-hop neighbor discovery. Node N learns about node N4

(and its location) via nodes N1, N2, N3. The honest nodes form a majority, and prevent
malicious node M from claiming it can route to node N4.

Theorem 17 allows us to conclude with high probability that only votes from those
nodes that are actually capable of communication with nk will be included in the set Sk.

Theorem 18. If the LHM and 2HM assumptions are satisfied, and nk is accepted by the
protocol, then nk exists and is not lying about its identity.

Proof. This follows from Theorem 15 and the fact that by the 2HM assumption a majority
of the nj in Sk are honest. If nk is lying about its identity, then each honest nj will have
detected this in Phase 1 and broadcasted a reject vote. Hence, nk has proven its identity
to each honest nj in Sk.

Note that, during Phase 2, a node discovers if any malicious node attempted to claim it
could route messages to nk when it was not in communication range. Thus, we can mark
such nodes as untrusted and not consider any path containing them in the future.

101

4.4.3 Phase 3: Beyond 2-Hop Paths

We now consider how a node can extend its knowledge of the network to longer paths. At
the end of Phase 2, each node has determined its 2-hop neighbors and broadcasts that fact
publicly. Additionally, any malicious node that has claimed a false identity, or the ability
to communicate with a 2-hop neighbor when it cannot, has been discovered, except with
small probability. We continue from this point assuming that each node has established
a path to each of its neighbors, as well as to its 2-hop neighbors, and that each of these
paths are valid.

In Phase 1, each ni learns paths of the form ni → nj, and in Phase 2 each ni learns
paths of the form ni → nj → nk. Just as nodes informed their neighbors of the results
of Phase 1 so that the information could be utilized to construct 2-hop paths, each node
broadcasts the results of Phase 2 so that nodes if their neighborhood learn which 3-hop
paths exist. More specifically, each nj will broadcast all paths it has discovered of the form
nj → nk → nl.

Recall that each nj accepted in Phase 2 must have proven they are capable of commu-
nication with nk (by proving their identity in Phase 1), that they lie within nk’s commu-
nication range, and also that the nj’s form an honest majority. Therefore, if a majority of
the nodes nj that are capable of communicating with nk broadcast knowledge of a route
nl via nk, then ni can conclude that said route does in fact exist. ni’s view of the network
can be updated accordingly, and ni can inform its neighbors of the fact that a secure path
to nl has been determined.

From ni’s point of view, the process is as follows:

For each 3-hop path ni → nj → nk → nl

1. Wait until no new 3-hop paths to nl via nk have been received for a period of time
t2.

2. Let Sk be the set of nj capable of routing a message to nk.

3. Let Sl be the set of nj capable of routing a message to nl via nk.

4. If |Sk ∩ Sl| > 1
2
|Sk| broadcast ACCEPT ROUTE nj,nk,nl for each route involving nj

and nk;

5. otherwise, broadcast REJECT ROUTE nj,nk,nl.

102

The same process can be followed for routes of arbitrary length. During each subsequent
phase, node ni increases its knowledge of the network by one hop by relying on the nodes
that were verified during Phases 1 and 2 of the protocol. In practice, this process would be
repeated until each sensor node has discovered a base station, the desired destination node,
or for a fixed maximum number of hops to ensure it eventually terminates. Therefore, the
total cost of network discovery is dependent on the depth to which a nodes wish to learn
the topology of the network.

4.4.4 Adding New Nodes

In order to accommodate new nodes being added to the network, we observe that once
network discovery has completed, each node has established its own view of the network.
When a new node comes online, it can announce its presence through a HELLO message
and engage in the FMAP protocol with its neighbors to establish its identity. This process
is essentially re-running Phase 1 of the protocol, where, upon completion, each node in
the neighborhood will accept or reject the new node’s identity. By broadcasting these
votes, surrounding nodes are informed of the new node and its status, and the information
is propagated throughout the network as each node repeats whether or not it accepts or
rejects the new node, as described in Phase 3. The new node can learn about the rest of
the network by querying its neighbors. Because an honest majority is assumed, the new
node will accept a path through the network as valid only if a majority of its neighbors
agree on its existence.

4.5 Performance Analysis

Our protocol relies heavily on the assumption that there always exists an honest majority
that can be trusted. In order to justify that such an assumption is practical, we investigate
how likely it is that our LHM and 2HM assumptions are satisfied as more malicious nodes
are added to a network. To do so, we run a Java simulation where 50 keys are assigned to
2000 randomly labeled nodes with communication radius 1 using a (50 · 149, 1492, 149, 50)-
LS-KPS as described in Section 4.3.2, which are then distributed randomly over a square
region according to a density parameter δ (i.e., we vary the size of the network to produce
the desired density), such that we expect πδ nodes to lie in any circle of radius 1. Note that
nodes around the perimeter of this area will have fewer nodes in their neighborhood than
interior nodes on average. Our simulation includes results from all nodes in the network,
including perimeter nodes.

103

Figure 4.6: The probability that the LHM assumption is satisfied for a random network of
2000 nodes, each possessing 50 keys, for varying numbers of malicious nodes.

104

Figure 4.7: The probability 2HM assumption is satisfied for a random network of 2000
nodes, each possessing 50 keys, for varying numbers of malicious nodes. The graph only
considers pairs of 2-hop neighbors such that at least three nodes exist that can route
messages between them.

105

To test the LHM assumption we take every pair of neighbors (ni, nj) and test whether
or not the nodes in ni’s neighborhood satisfy the LHM assumption with respect to nj as
a growing number of malicious nodes are added to the network. The graph in Figure 4.5
shows our results. We observe that, at low network densities, the LHM assumption is
difficult to satisfy due to the fact that among ni and its neighbors there must be at least
three distinct keys shared with nj. Once network density is sufficiently high, we see that
the LHM assumption is satisfied nearly 100% of the time, even when more than 100 nodes
present during network discovery are malicious.

To test the 2HM assumption we take every pair of 2-hop neighbors (ni, nk) such that
there exist at least three different nj capable of routing a message between ni and nk, and
test whether or not the 2HM assumption is satisfied with respect to ni and the set of nj
nodes as a growing number of malicious nodes are added to the network. We limit our
analysis to situations where three or mode intermediate nodes exist because voting on the
validity of a link does not make sense until at least three nodes are involved. The graph in
Figure 4.7 shows our results. We observe that at low node density the 2HM assumption is
satisfied with higher probability. This observation is due to the fact that situations where
three intermediate nodes exist are somewhat rare, and a larger number of malicious nodes
are required before it is expected that one lies within any given node’s communication
range. At higher densities we observe that the 2HM is still satisfied with high probability
even when more than 50 nodes are malicious.

In order to study the effect of parameter choice on the probability that the LHM and
2HM assumptions are satisfied, we repeated the previous experiments for a variety of
different parameter sets. The results are summarized in Figures 4.8 and 4.9 for the fixed
density δ = 20. We observe that performance is closely related to the ratio between k and
p, which is reflected in the network itself by the probability of two nodes sharing a key
increasing as the ratio of k to p approaches 1. When connectivity is high, more malicious
nodes must be present before the LHM or 2HM assumptions are violated.

4.6 Summary and Remarks

We have considered a solution to the problem of discovering disjoint paths in a sensor net-
work that assumes an active adversary is present in the network from the very beginning.
Although several assumptions are required to ensure the protocol is secure, we demon-
strate that practical tools, such as combinatorial key pre-distribution, fingerprinting, and
self-localization, can be used to realize these assumptions. We also show that the resulting

106

Figure 4.8: The probability that the LHM assumption is satisfied for a variety of different
parameter sets using a fixed density of δ = 20. Here, each data set is marked with the
tuple (p, k, n), where n is the number of nodes.

107

Figure 4.9: The probability that the 2HM assumptions are satisfied for a variety of different
parameter sets using a fixed density of δ = 20. Here, each data set is marked with the
tuple (p, k, n), where n is the number of nodes. The graph only considers pairs of 2-hop
neighbors such that at least three nodes exist that can route messages between them.

108

protocol is resilient in the presence of many adversarial nodes. Because we rely on fin-
gerprinting and localization, there always exists a small probability that a malicious node
could exploit the inherent error in these techniques, however, we emphasize that our goal
was to establish disjoint paths so that perfectly secure message transmission protocols can
be utilized. Such protocols are designed assuming an adversary controls up to one third of
the paths between nodes.

It may be possible to strengthen this protocol by performing additional analysis on the
votes received in Phases 1 and 2. A REJECT vote implies that at least one of the voters
is malicious, but determining which node(s) solely from the votes overheard among nodes
would allow for the detection of malicious nodes in some situations where they are not lying
about their identity. It may also be possible to relax our need of localization in Phase 2
and instead rely only on distance bounds or angle of arrival information. These problems
motivate future work in secure network discovery.

109

Chapter 5

Resilient Aggregation in Sensor
Networks

With regards to the life cycle of a sensor network, the previous chapters have examined
issues at the pre-deployment and deployment/setup phases of a network’s lifetime. This
chapter continues by considering the operational phase of a sensor network. In particular,
the problem of secure data aggregation is considered.

At a high level, the goal of a sensor network is to collect sensor readings from some
number of sensor nodes. This problem setting is distinguished from other ad-hoc networks
by the fact that sensors are resource limited with respect to computational speed, memory,
energy, and communication range. Typically, the most energy-intensive task a sensor
networks performs is transmitting a message. For this reason, minimizing the total number
of messages a node transmits is extremely important. Sensor networks have been proposed
for a variety of applications, but each deployment tends to have the same goal of each
sensor node measuring some aspect of its environment and forwarding this information to
a sink or base station.

A common technique to preserve energy in a sensor network is to aggregate sensor
readings as they travel from a node to the base station. If the application allows for
messages to be combined in some manner on a hop-by-hop basis, then this achieves a
significant decrease in the energy necessary to collect readings from the entire network.
For example, if an application requires only statistical information about sensor readings,
such as the sum, average, or sum of squares (standard deviation), then nodes can simply
add their sensor readings into an aggregate total before passing it onwards.

This chapter investigates the aggregation problem in settings where an active adver-

110

sary is present within the network, and whose goal is to alter the correct network-wide
aggregate by a sufficient amount without being detected. Results are first presented for
a special family of networks, known as linear networks. The resulting protocols are then
used as building blocks to construct secure aggregation protocols for a much wider variety
of network topologies. We first review the aggregation problem in more detail and summa-
rize previous solutions to the problem. In particular, we consider two previous protocols in
detail and discuss their shortcomings when applied to linear networks. Three natural key
pre-distribution schemes for linear networks are identified, and three protocols for secure
aggregation are presented based on these schemes. The role of linear subnetworks in both
randomized networks and structured networks, such as a grid topology, is then discussed,
in order to demonstrate the use of linear protocols in more general network settings.

5.1 The Aggregation Problem

Although this section’s title suggests that aggregation is a “problem”, in-network data
aggregation is a solution widely used in sensor networks to conserve energy, and therefore
prolong the lifetime of the network. Aggregation is simply the practice of combining, or
aggregating, two or more messages into a single message as they travel toward a base
station, thereby reducing the total amount of energy needed to deliver both messages.
This practice introduces a loss of precision, as the base station receives f(x, y), for some
aggregation function f , instead of individual readings x and y. Many applications may
only be concerned with aggregate statistics, such as the total number of observed events,
average number of events, or the variance across the network, for example, so the loss of
precision may be worth the energy savings. Figure 5.1 depicts one potential technique for
aggregation. The shaded nodes collect readings from nearby nodes, apply an aggregation
function, and send a single aggregate value onwards. This process allows the aggregate
total for all 19 nodes to reach the base station using just 19 messages. If each node
reported a reading individually, the same network would require 52 messages to deliver
each individual reading.

Fasolo et al. [39] provide a comprehensive survey of existing aggregation techniques, and
identify several important aspects of aggregation protocols for sensor networks. To begin,
aggregation protocols can be designed with or without size reduction. An aggregation
function, such as simple addition, allows two readings to be combined into a single reading
of similar size. Such an approach only makes sense if all readings are drawn from the
same domain, such as two temperature readings. Adding together a temperature and a
humidity reading, for example, would not yield a useful result. An alternative is to simply

111

Figure 5.1: A simple aggregation tree within a network. Each of the darker shaded nodes
aggregates the received readings, along with its own reading, and forwards the result as a
single aggregate message toward the base station.

concatenate the two readings and forward them together as a single message or packet.
This approach does not reduce the total size of the data, but instead reduces the overhead
of delivering two separate messages. This chapter is mainly concerned with aggregation
techniques that provide size reduction, but the solutions considered could be adapted to
settings without size reduction.

A related aspect to size reduction is lossless vs. lossy aggregation functions. The
addition function is lossy, as there is no way to determine individual sensor readings without
extra information, while concatenation is lossless when messages are of a known size,
as it can be trivially reversed. The protocols presented in this chapter are, in general,
lossy protocols, but require nearby nodes to exchange enough information such that the
aggregation function is lossless within a small enough radius in the network.

Another important aspect of an aggregation function is whether or not it is sensitive
to duplicate readings, as this greatly impacts the design of an aggregation protocol. A
function, such as addition, is duplicate sensitive, as including the same reading multiple
times changes the result. Duplicate sensitive functions typically require information to
follow only a single path to the base station, and therefore naturally yield tree-based
aggregation topologies, such as the network in Figure 5.1. Alternatively, an aggregation
function such as the boolean OR function, is duplicate insensitive, as for any reading x, it
holds that x OR x = x. The protocols considered in this chapter are duplicate sensitive in

112

general.

Various design considerations give rise to three distinct approaches to aggregation:

1. Tree-based - Nodes are organized into an aggregation tree, typically dictated by the
underlying routing protocol. Each node receives aggregates from each of its children,
combines them, and forwards the result to its parent. The Tiny Aggregation Protocol
(TAG) [69] is an example of this approach.

2. Cluster-based - Nodes are placed, or self-organize, into clusters with a distinguished
node acting as a clusterhead. Each node forwards its reading to the clusterhead, who
then aggregates all readings and forwards the result to the base station. Although
similar in spirit to tree-based approaches, cluster-based approaches are considered
a distinct category because the group and cluster head selection typically require
nodes to exchange messages with many other nearby nodes. An example of such an
approach is the Low Energy Adaptive Clustering Hierarchy (LEACH) protocol [46].

3. Diffusion-based - Nodes use a duplicate insensitive aggregation function and for-
ward readings down multiple potentially overlapping paths towards the base station,
thus adding redundancy and avoiding potential single points of failure. These ap-
proaches often utilize the fact that wireless sensor nodes communicate over a broad-
cast medium, so messages can be sent to multiple neighbors with a single broadcast.
Examples include Directed Diffusion [51,52] and Synopsis Diffusion [78].

5.1.1 Secure Aggregation

Although aggregation can be thought of as a solution that conserves energy, the “problem”
considered here is to address the presence of an active adversary within the network, as
aggregating data significantly increases the impact of even a single malicious node. Recall
Figure 5.1 and assume one of the aggregating nodes is malicious. Each aggregator is
responsible for forwarding the readings of at least five other nodes. Therefore, a malicious
aggregator is granted a much higher influence than it would otherwise have, as it can
arbitrarily alter the readings of five other nodes in the network. In the worst case, a
malicious aggregator next to the base station may be able to arbitrarily set the aggregate
total for the entire network. More specifically, we may expect a malicious node to do one
or more of the following:

• Report an invalid sensor reading,

113

• Arbitrarily alter the aggregate total, or

• Deviate from the aggregation protocol (i.e., refuse to forward messages).

The goal of a secure aggregation protocol, is to protect against one or more of these, or
other potential malicious behavior. The specific goal of this chapter is to defend against
both of the first two behaviors. Beyond detection, addressing deviations from the protocol
are outside the scope of this work. Nothing at the protocol level can prevent a malicious
node from refusing to participate or broadcasting random noise. In other words, the goal is
a protocol that limits the actions of a malicious node that wishes to modify the aggregate
total by more than a single valid sensor reading. Note that unless additional assumptions
are made about the distribution of nodes or the environment, such as the property that
any given reading will be sensed and reported by at least two nodes, it is impossible to
force a malicious node to report its true reading, as opposed to a valid possible reading.
It is also the nature of sensor networks that nodes are expected to fail over time, either
during deployment (dropped from an airplane, for example), due to environmental issues,
or as their batteries fail. Thus, even in a non-adversarial model, there is motivation to
verify the integrity of data.

The above descriptions are concerned with the correctness of the final aggregate total,
and with limiting the ability of a malicious node to modify it. Secure aggregation protocols
that are concerned only with the integrity of the aggregate total are often referred to as
resilient data aggregation protocols. An orthogonal family of secure aggregation protocols,
known as either concealed or private data aggregation protocols, focus not on integrity, but
on the secrecy of individual sensor readings, and of the aggregate total itself. The protocols
presented in this chapter are resilient aggregation protocols, and are focused on detecting
malicious behavior not only after the fact, but as it occurs during aggregation.

Resilient Aggregation

Resilient aggregation protocols have been studied in a number of different settings. Wag-
ner [103] formally investigates which aggregation functions are possible to securely com-
pute. The model considers several nodes that directly send their readings to a single
aggregating node, who then outputs the aggregate total, and demonstrates that even sim-
ple aggregation functions, like the sum or average, are insecure in the presence of a single
adversary. Other functions, such as counting functions or the median, are more robust.
These results are not unexpected, as many statistical functions, such as the average, are
greatly affected by extreme values. These results also demonstrate the need for a resilient

114

aggregation protocol to enforce constraints on the readings submitted by malicious nodes.
The protocols presented later in this chapter do just that, by relying on nearby nodes to
verify that each reading lies within a pre-defined range.

Manulis and Schwenk [71] provide a formal security model and framework for resilient
aggregation, alongside a protocol that is secure in their model. The problem setting consid-
ered in this chapter matches their model quite closely; however, for ease of understanding,
a simpler presentation is used to our protocols.

Hu and Evans [49] present one of the first protocols for resilient aggregation. The
protocol aggregates over a tree where each leaf node submits a sensor reading, and each
non-leaf node is responsible for aggregating its subtrees. In order to protect against a single
malicious node, nodes also forward authentication information to their grandparents in an
attempt to detect any malicious behavior by the node between them. As the protocols
considered in this chapter are similar in spirit to this approach, a more detailed description
is given in Section 5.1.4.

Przydatek et al. [89] provide a different approach to tree-based resilient aggregation,
which focuses on computing a good approximation of the aggregate total when there is
a single aggregator and some fraction of the nodes are compromised. This approach has
inspired improvements which allow multiple aggregating nodes, such as proposals by Chan
et al. [25] and Frikken and Dougherty [40]. These approaches detect malicious behavior
during a verification phase, which occurs after aggregation has completed. The protocols
considered in this chapter attempt to detect malicious behavior as it occurs, so that energy
can be saved by terminating the protocol early. A more detailed description of these
approaches is given in Section 5.1.4.

Other approaches based on clustering have been proposed, such as SDAP [111], with
the goal of minimizing the impact of malicious aggregators located near the root of a
spanning tree, who are responsible for reporting aggregate totals for a large portion of the
network. The capability of malicious nodes is minimized by partitioning the aggregation
tree into subgroups, and including additional authentication information for each subgroup.
Synopsis-diffusion approaches have also been proposed, such as those by Roy et al. [95,96],
which utilize duplicate insensitive methods. Additional approaches include random set
sampling [113], detecting statistical anomalies [16], and homomorphic MACs [64]. While
these protocols do provide resilient aggregation for a variety of settings, they are either not
compatible, or do not perform well for the topology and key pre-distribution requirements
of the family of linear networks considered here.

115

Concealed and Private Aggregation

In some applications, individual sensor readings, or the aggregate total of them, may be
considered sensitive information. In this setting, the focus of protocols may be on providing
confidentiality of sensor readings rather than integrity, if not both. Such aggregation
protocols are referred to as concealed data aggregation protocols (CDA) [41] or private data
aggregation protocols (PDA) [43] depending on the aggregation topology and the privacy
goals of the protocol [22].

Chan and Castelluccia [22] provide a formal security framework for concealed and pri-
vate aggregation. Peter et al. [87] provide a survey of concealed data aggregation pro-
tocols, while Bista and Chang [8] provide a survey of private data aggregation protocols
separated into three categories: perturbation-based, shuffling-based, and homomorphism-
based. Perturbation-based approaches work by scrambling individual sensor readings be-
fore sending them to an aggregator who is able to recover the aggregate, but not individual
readings. Examples of such approaches include CPDA [43] and PRDA [82]. Shuffling-based
approaches break individual sensor readings into multiple pieces that are sent to multiple
destinations. Examples include SMART [43] and improvements on it [110], and iPDA [44],
with the latter also focusing on integrity/resiliency as well. Homomorphism-based ap-
proaches utilize homomorphic cryptosystems to allow the aggregation of encrypted data.
Examples include work by Girao et al. [41], Armknecht et al. [5], and Castelluccia et al. [19].

5.1.2 Problem Statement

We now state the specific problem studied in the rest of this chapter. Let N = {n1, n2,
. . ., nN} be a sensor network of N nodes. Assume that nodes have some mechanism to
determine when aggregation is to take place. In practice, this may occur at fixed time
intervals, or as the result of some network-wide event, such as a request from the base
station. Each node ni possesses a reading ri from a pre-specified set of possible readings
R = {0, 1, . . . , R − 1}. A reading ri ∈ R will be referred to as a valid sensor reading,
while a reading not in the set R is invalid. Information flows through the network toward
the base station according to some aggregation protocol, with each honest node behaving
according to the protocol. A subsetM⊂ N of nodes are malicious, and under the control
of an adversary. For ease of presentation, assume the aggregate function used by all nodes
is addition.

Definition 11. Let N = {n1, n2, . . . , nN} be a sensor network, let M ⊆ N be the set of

116

malicious nodes in N , and let

T =
N∑
i=1

ri

be the actual correct aggregate total of all readings in N . An aggregation protocol is secure
(or resilient) if it either outputs an aggregate total T ′ such that

|T − T ′| ≤ |M|(R− 1),

or identifies the presence of one or more malicious nodes.

Definition 11 states that an aggregation protocol is secure if a malicious entity can
modify the aggregate total by at most one valid sensor reading for each node under its
control. We can accomplish this by restricting any single malicious node to modifying the
aggregate total by at most a single valid sensor reading. That is, a malicious node can lie
about its own reading, but cannot otherwise alter another honest node’s reading within the
aggregate total. Should the adversary modify the aggregate total by more than a single
valid sensor reading for each node it controls, then the base station should be alerted to
this fact.

The model here is identical to that of Chan et al. [25], who introduced the notion of a
direct data injection attack, as an attack where a malicious entity controlling one or more
nodes may submit a false reading for each node that it controls, with the constraint that
false readings must be valid. This attack model leads to their definition of an optimally
secure aggregation protocol as a protocol where the base station will not accept any ma-
liciously modified aggregate total, except for what can be achieved using a direct data
injection attack.

We assume the presence of an adversary that can eavesdrop on all communication and
that can selectively compromise a subset of nodes, but cannot compromise the base station.
The adversary learns all key information from compromised nodes and may reprogram
or alter the behavior of compromised nodes, but it cannot otherwise alter the physical
capabilities of any node. The goal of an adversary controlling k nodes is to modify the
aggregate total by more than k valid sensor readings without detection. Attacks such as
jamming communication, refusing to participate in the protocol, or other denial-of-service
attacks are outside the scope of our threat model. However, such attacks can be detected
and addressed through other means, such as placing an upper bound on the running time
of the protocol.

In the event that malicious behavior occurs, it is not specified how the base station
should respond. The protocols in this chapter detect the approximate location of malicious

117

activity down to a set of k nodes, but nodes simply abort the protocol and inform the base
station if this occurs. The base station could instruct nearby nodes to simply ignore
the potentially compromised subset in the future, or could engage in a more expensive
interactive protocol to pinpoint the precise point of failure. The appropriate response to
malicious behavior depends on the specific application.

5.1.3 Naive Solutions

As a baseline for comparison, we first consider some bounds on the performance of a
resilient aggregation protocol. Let N = {n1, n2, . . . , nN} be a sensor network and assume
each node in the network is aware of its children and parents in a spanning tree rooted
at the base station. Such knowledge arises naturally in a network, as nodes must, at a
minimum, have knowledge of at least one path to the base station in order to deliver any
messages. Typically, the spanning tree is minimal with respect to some established metric,
such as energy use / distance between nodes.

• No Aggregation - Each node sends its reading as a message routed directly to
the base station with no aggregation. A node at distance d requires each node on
the path between itself and the base station to send a single message, at a cost of
d messages in the network. The node’s upstream neighbor does the same, adding
an additional d − 1 messages, and so on. Combined, nodes along any given path of
length d collectively generate d(d+ 1)/2 messages.

• The Optimal Protocol - If no adversary is present, then each leaf sends its read-
ing to its parent, and each internal node receives a single message from each child,
aggregates them, and sends a single message to its parent. The total communication
cost of this protocol is a single message per node, for a total of N messages.

• Optimal with Integrity Check - The optimal protocol can be modified to pro-
vide integrity for the aggregate total. Assume a single message authentication code
accompanies each message. Then each node sends a pair of messages, and the total
cost is 2N .

The above protocols demonstrate the best (O(N)) and worst (O(N2)) case for an
aggregation protocol. Alongside the total communication cost, the per-node cost must also
be considered. In the optimal case, each node is required to send a constant number of
messages, while in the worst case, nodes closer to the base station handle a disproportionate
number of messages. A good aggregation protocol should balance energy use across nodes
so that the lifetime of the network can be maximized.

118

5.1.4 Comparison to Existing Approaches

Although the problem of secure/resilient aggregation is well studied, most approaches are
hierarchical in nature, with each node forwarding readings to an aggregator node higher up
in an aggregation tree. Linear networks are a special case of trees, so existing tree-based
approaches could be naively applied to linear networks; however, linear networks often
produce worst-case performance for tree-based algorithms. This fact is true of many of the
tree-based approaches mentioned thus far, and is explored in more detail in Sections 5.1.4
and 5.1.4. Analysis often assumes a balanced aggregation tree is already defined, without
specifying how to construct a balanced tree. Similarly, in a linear network, each non-
endpoint node is an aggregator, whereas in a complete binary tree only half of the nodes are
aggregators. Linear networks also do not match the desired topology for synopsis diffusion-
based approaches [96], which utilize multiple node-disjoint paths, and are inefficient if
random set sampling is used, as any query must traverse the entire network on its way to
a destination. For these reasons, protocols built specifically for linear networks are useful.
Existing clustering-based approaches to aggregation could be considered, but the cluster-
based approach presented in this chapter exploits the linear arrangement of groups to
perform both aggregation and verification with only two messages per node, which matches
the theoretical best case performance. Overall, this chapter presents three protocols for
resilient data aggregation built specifically for simple linear sensor networks, inspired by
three natural key pre-distribution protocols for linear networks (described in Section 5.2.1).

The protocols presented here are designed from the ground up to:

• Exploit the known topology of linear networks;

• utilize natural key pre-distribution schemes for linear networks;

• limit the capability of a malicious node;

• detect malicious behavior as it occurs, not afterwards; and

• provide proofs of security.

To motivate our specialized aggregation protocols for linear networks, we first describe
two existing approaches that demonstrate the problem with applying a tree-based algo-
rithm to a linear network.

119

Hu and Evans Protocol

One of the earliest protocols to provide resilient aggregation is given by Hu and Evans [49],
who provide a tree-based protocol that protects against singular (non-adjacent) malicious
nodes by having a node and its grandparent exchange information to ensure the node in
the middle performed aggregation correctly. This approach is the same basic idea that
underlies the protocols presented in this chapter. For simplicity, Hu and Evans assume
that all non-leaf nodes in the network are simply aggregators and do not contribute a
reading themselves. This assumption can be eliminated in a straightforward manner by
having each aggregator create a virtual leaf node attached to itself.

Hu and Evan’s protocol consists of two distinct phases. In the first phase, each leaf
forwards its sensor reading to its parent, along with a MAC computed using a key known
only to the leaf and the base station. Each aggregating node receives a set of readings
and/or aggregate totals along with MACs, computes the updated aggregate from the re-
ceived reading, and computes a MAC on the updated aggregate using a key shared only
with the base station. The received readings, the MACs generated by its children, and
the updated MAC are all forwarded to the node’s parent. Aggregation continues in this
manner until it reaches the root.

When aggregation is complete, the verification phase begins. Each aggregating node
possesses a set of readings, a set of MACs on those readings from its grandchildren, and
the resulting aggregate total. Using an authenticated broadcast [86], the base station then
reveals the individual keys used by each node to compute the MACs, thus enabling every
node’s grandparent to verify that the intermediate node between them properly forwarded
the correct data. If any node fails to verify the received MACs, then it can raise an alarm
and alert the base station. Subsequent runs of the protocol require each node to move on
to the next key in a deterministic key chain.

The protocols presented in this chapter are similar in spirit to the approach by Hu and
Evans, hereafter referred to as the HE protocol; however, the assumptions and execution
differ in several key ways:

1. The HE protocol assumes the base station can broadcast directly to individual nodes.
The protocols in this chapter do not require direct interaction with the base station.

2. The HE protocol assumes the network is dense and several nodes exist within one
hop of any node. This assumption does not hold in linear networks.

3. The HE protocol assumes that if an aggregating node is malicious, then its child

120

and grandparent are both honest. The protocols presented in this chapter provide
resilience in the presence of multiple connected malicious nodes.

4. The protocols in this chapter detect malicious activity as it occurs, not during a
later verification phase. This property allows for energy savings by terminating the
protocol early.

5. The basic HE protocol is not scalable, as the base station communicates with each
node after each run of the protocol. A scalable variant is proposed in which the base
station assists each relevant pair of nodes in establishing shared secret information
to be used locally within the network. The protocols in this chapter do not require
any extra setup prior to the first run of the protocol.

The protocols considered in this chapter follow the approach of Hu and Evans by
utilizing nearby nodes to ensure no set of nodes misbehaves, but also leverage the key
features of a strict linear topology to achieve resilience using only a single flow of data from
one end of the network to the other. This reduction in communication cost is possible due
to the additional assumptions that can be made for a fixed linear topology.

The CPS Aggregation Protocol

The aggregation protocol by Chan et al. [25], hereafter referred to as the CPS protocol,
is a widely cited hierarchical aggregation protocol in the sensor network literature. The
adversarial model is identical to the model in this chapter, but the topology and key
requirements for individual sensor nodes are different. Each node is expected to share a
key with the base station, and the base station must be able to perform an authenticated
broadcast to all sensor nodes in the network. The first assumption is quite common in
sensor network literature, and the second can be realized through existing protocols, such
as µTESLA [86]. The CPS protocol proceeds in four phases:

1. Query Dissemination - The base station initiates the aggregation request, which
creates an aggregation tree spanning the network as the request propagates.

2. Aggregation Commitment - The sensor nodes collaboratively construct a com-
mitment tree over the aggregation result. Each leaf constructs a node containing its
identifier and its sensor reading, which is forwarded to its parent. Each internal ag-
gregating node constructs a node in the commitment tree by computing the updated
aggregate result along with a hash over all of its children, including a virtual leaf
node containing its own sensor reading.

121

3. Distributed Verification - Each node independently verifies that its reading was
included in the result. To accomplish this, each node in the tree must receive enough
information to independently compute the same result its parent did. In other words,
each node in the network must receive the result computed by every sibling of a node
on the path from itself to the root. This information is disseminated by having each
node, starting with the base station and progressing downward, broadcast the set
of aggregation nodes it received. The base station also includes a nonce for use in
the next phase. The root of the tree and the nonce are sent using an authenticated
broadcast.

4. Confirmation - Each node independently recomputes the aggregation result and
verifies it is correct. If so, each node ni forwards MACki(nonce||OK), or MACki(nonce
||NOT OK) otherwise, where ki is the unique key shared between node ni and the base
station. Each internal node computes the XOR of its received MACs and forwards
the result to its parent. Because the base station possesses all keys, it is able to
compute the expected result independently. If the received and computed MACs are
identical, then the aggregation result is accepted as correct.

Figure 5.2: Commitment tree generation in the CPS aggregation protocol. Each aggregator
node creates a virtual leaf containing its sensor reading, and creates a node in the commit-
ment tree by computing a hash over its children. Figure taken from Chan et al. [25, Figure
1].

122

Figure 5.2 demonstrates the aggregation commitment phase of the CPS protocol. Dur-
ing each phase of the protocol, information flows either upwards or downwards throughout
the entire network. In the verification phase, each node must receive the aggregation result
computed by the sibling of each node on the path from itself to the root. For example, in
Figure 5.2, the base station informs node A1 of the result H0 and I0, while node A1 informs
node C1 of the same, along with the results A0, B1, and D0. This pattern continues, with
the node G0 requiring the set {F0, C0, E0, A0, D0, H0, I0}. The resulting communication
cost to disseminate these results is dependent on the degree of each node in the tree, along
with the length of the path from a leaf to the root.

Frikken and Dougherty [40] provide a method for generating a tree for use in the CPS
protocol such that the resulting communication cost of the protocol is O(lgN) for each
node. The authors of the CPS protocol have revisited it [23], demonstrating that the pro-
tocol itself achieves a more general functionality than just aggregation. More specifically,
the protocol can be altered in such a way that authenticated broadcast is no longer nec-
essary, as the commit-verify process can provide this functionality on its own. The ability
to compute and verify hash trees over an aggregation topology can be utilized for other
purposes, such as node-to-node signatures or a simple public key infrastructure, with the
only requirement being that each node shares a unique pairwise key with the base station.

Although the CPS protocol performs well and provides useful functionality in a general
setting, the hierarchical nature of the protocol does not lend itself well to linear networks.
To verify its reading is included in the total, each node recomputes the result for each
node on the path from itself to the root. Using Frikken and Dougherty’s method, the
aggregation tree has expected depth lgN , which is the main factor in communication cost
for each node. In a linear network, the depth of the tree is N , leading to a per-node cost of
O(N), and O(N2) total communication cost. In this worst-case setting, the naive approach
of simply forwarding each reading directly to the base station is a cheaper option. This
result is not unexpected, as tree-based algorithms generally incur a cost depending on the
depth of the tree, so linear networks are expected to achieve worst-case performance when
a generic tree-algorithm is applied.

The communication cost of the CPS protocol is not uniform across the network. Nodes
closer to the root require fewer messages to verify that its contribution was included in the
root node. While asymmetry in the communication cost may be seen as a drawback, it can
also be argued that such a pattern of communication works well in a hierarchical network,
where nodes closer to the root are generally responsible for routing messages from a larger
proportion of the network. By comparison, the protocols for linear networks considered
in this chapter achieve a constant cost per node. If aggregating sensor readings is the
primary activity of the network, then balancing communication cost across all nodes is the

123

approach that best prolongs the lifetime of the network by ensuring each node’s energy
costs are the same.

5.2 Linear Networks

Linear networks are a natural deployment model for sensor networks. Applications such
as pipeline, subway, border, or perimeter monitoring are inherently linear. Jawhar and
Mohamed [53] give a classification of linear sensor networks that focuses on the topology
of the network (thin, thick, or very thick), as well as a hierarchical classification of nodes
according to capability and role within the network.

The simplest linear network is a thin / one-level network of uniformly distributed
identical sensor nodes deployed along a straight line. Such a network may also be referred
to as a simple linear network or a one-dimensional network.

Definition 12 (Simple Linear Network). A simple linear network is a connected non-cyclic
graph where each node has exactly one neighbor, or two distinct neighbors. The two nodes
with only one neighbor are referred to as the endpoints of the network.

Although the physical arrangement of nodes is linear, the fact that nodes communicate
wirelessly means that a node may be able to communicate with more than just its direct
neighbors in the physical network. Thus, the communication graph may have additional
edges not present in the physical network graph.

Definition 13 ((N, d)-Linear Network). A (N, d)-linear network is a linear network con-
taining N nodes, each able to communicate with nodes up to d hops away. The nodes of
such a network are denoted by n1, n2, . . . , nN where nodes n1 and nN are the endpoints,
and node ni is located between nodes ni−1 and ni+1 for 1 < i < N .

Figure 5.3 shows an example of an (8, 2)-linear network.

We refer to nodes that are directly adjacent to each other as neighbors, and neighbors
at distance d if there are d− 1 nodes in between them.

In terms of Martin and Paterson’s framework, a simple linear network is:

• Homogeneous - All nodes that are not endpoints are identical.

• Fixed - Nodes are not mobile.

124

Figure 5.3: An (8, 2)-linear sensor network. The left diagram shows the physical layout
of the network along with dotted circles denoting the communication range of each node.
The right diagram shows the communication graph for the same network

• Full control - Given the sequential deployment nature of linear networks, it is rea-
sonable to assume that the order nodes are deployed in is fully controlled.

These properties, in particular, the high degree of control over the deployment of nodes,
allow for the use of very efficient key pre-distribution schemes to facilitate secure commu-
nication.

An important factor that distinguishes linear sensor networks from more general net-
works is the expected difference in node density. In general, sensor networks are modeled
as nodes deployed on a flat plane, with each node having a given communication radius.
Because linear networks are one-dimensional, it is expected that far fewer nodes will be
located within any given node’s communication range. In the extreme case, each node in
a linear network may have at most two neighbors within its communication range.

Jawhar and Mohamed do not formally define a thick linear network, but rather give an
intuitive definition where nodes are distributed randomly between two parallel lines, with
the width of the network being far greater than the height of the network. The overall
shape of the network is linear, but the local topology need not be. In a two-level linear
network, the higher-tier nodes would form a linear network. Examples of thick linear
topologies are given in Figure 5.4. These networks differ from the simple case in that
node density is much higher, and therefore may be more amenable to general aggregation
techniques. Note that because of the linear nature of the network, there still exist a large
number of nodes along the edges of the network with lower connectivity than might be
expected in a more regularly shaped network. The two-level network could be abstracted
as several side-by-side sensor networks, as each lower level node has a nearest second level
node acting as a base station to which it sends its readings. The second level nodes are
arranged in a simple linear network, and can therefore use the protocols in this chapter to

125

Figure 5.4: Examples of subsets of a thick linear network, and thick two-level linear net-
work. A thick linear network would continue with a similar deployment pattern in either
direction.

perform their aggregation.

Linear Protocols as Building Blocks

Although the linear problem setting differs from that of most general networks, linear sub-
networks are often utilized in general networks, such as simply routing a single message
between two nodes. Therefore, depending on the specific setting, protocols for linear
networks can serve as building blocks for protocols in more general settings. While a
natural approach is to utilize a tree structure for aggregation, typically a minimal spanning
tree in the underlying routing protocol, linear networks still arise naturally in the spanning
trees of a random network. Figure 5.5 demonstrates this for a network of 100 random

126

nodes. Nodes are distributed randomly across a square plane, and are connected if they
are within a fixed distance of each other (i.e., the network is a geometric graph). The
minimal Euclidean spanning tree is highlighted, and demonstrates that even in a well-
connected network, many nodes in the spanning tree have only a single child, and those
that don’t typically only have two children.

Figure 5.5: A minimal Euclidean spanning tree on a geometric graph of 100 nodes. The
MST is rooted at the darker node in the top left corner, and two nodes are connected with
a grey line if they are within each other’s communication range.

The protocols in this chapter are designed with simple linear networks in mind, but
Section 5.7 describes how the same approach can be used to merge two or more linear
networks at a single point, provided that certain assumptions about key pre-distribution
hold. Therefore, although initially designed for simple linear networks, the results in this
chapter can be utilized for aggregation in random topologies without much modification,
without sacrificing any resilience.

127

5.2.1 Key Pre-distribution for Linear Networks

In order to facilitate secure communication, nodes are pre-loaded with cryptographic keys
using a key pre-distribution scheme (KPS). Earlier chapters of this thesis investigated a
family of combinatorial key pre-distribution schemes that are suited for a wide variety
of homogeneous, fixed, randomly distributed sensor networks. Although these schemes
perform extremely well for random topologies, the simplicity and deployment pattern of a
(N, d)-linear sensor network (e.g., fixed, full-control) lends itself well to three specific key
pre-distribution schemes:

1. Optimal (N, r)-KPS - Each node shares a pairwise key with nodes at distance 1 and
distance r.

2. Pairwise (N, r)-KPS - Each node shares a distinct key with each neighbor at distance
j, for 1 ≤ j ≤ r.

3. Group-based (N, r)-KPS - Each consecutive subset of r+ 1 nodes shares a distinct
group key.

The Optimal (N, r)-KPS scheme was introduced by Martin and Paterson [75], and is
optimal with respect to the number of keys necessary to maintain secure connectivity in
a network when d = r and up to r − 1 nodes are unavailable. If r consecutive nodes
are unavailable, then the network becomes disconnected regardless of the underlying KPS.
Additionally, each key in the optimal scheme is possessed by exactly two nodes, thus
minimizing the number of nodes affected by the compromise of any given key.

The above schemes can be combined, for example, by issuing both pairwise keys and
group keys to nodes. Additionally, these basic schemes may be augmented with additional
specialized keys, such as each node sharing a unique pairwise key with a base station. In
most settings, it is natural to choose r = d, although depending on the network setting and
requirements, the value of r used for key pre-distribution need not match the maximum
communication range d of the network.

The goal of the next sections is to establish resilient data aggregation protocols for
simple linear networks under pairwise, group-based, and optimal key pre-distribution.

5.3 Secure Aggregation using the Optimal KPS

The optimal (N, d)-KPS for (N, d)-linear networks specifies that each node shares unique
keys with each neighbor at distance 1 and each neighbor at distance d, for a total of four

128

(a) Optimal (N, r)-KPS

(b) Pairwise (N, r)-KPS

(c) Group-based (N, r)-KPS

Figure 5.6: Optimal and pairwise KPS for a (10, 3)-linear network, and group-based KPS
for a (10, 2)-linear network. In (a) and (b), shared keys are denoted by a link between two
nodes, whereas in (c) each circled group of nodes possess a unique key

keys per non-endpoint node when d > 1, except for nodes less than distance d − 1 from
an endpoint, which possess only three keys. This scheme is optimal with respect to the
number of keys possessed by each node to maintain secure connectivity even if up to d− 1
consecutive nodes fail. In this section, we present a technique for secure aggregation using
a KPS inspired by the optimal KPS.

As a starting point, consider a (N, 1)-linear network N = {n1, . . . , nN}, where each
node is capable of communication only with nodes at distance 1. This case is the most
restrictive case possible, as each node can only speak to its direct neighbors in the network.
We assume that some nodes in N are malicious, but that no more than k consecutive nodes
are malicious. Note that we still allow multiple disjoint sets of up to k consecutive malicious
nodes, as long as there is at least one honest node in between them. In the same way that
the optimal (N, r)-KPS provides resilience against r − 1 node failures by ensuring nodes
distance r apart have a shared key, we can provide resilience during aggregation against
up to k consecutive malicious nodes by ensuring that nodes at distance k+1 have a shared
key, even if they are not capable of direct communication. More specifically, although N
is a (N, 1)-linear network, we distribute keys using the optimal (N, k + 1)-KPS. That is,
each node shares a distinct key with nodes at distance 1 and nodes at distance k+ 1. The
key shared between two nodes ni and nj will be referred to by ki,j where |i − j| = 1 or
k + 1.

5.3.1 Aggregation when k = 1

To begin, consider the case when k = 1, i.e., where no two consecutive nodes in N are both
malicious. In order to prevent a single malicious node, say mi = ni from contributing an

129

invalid sensor reading, we have node ni−1 tag the aggregate total Xi−1 from the first i− 1
nodes using a message authentication code (MAC) under key ki−1,i+1. Node ni+1 proceeds
if and only if it receives from mi the value Xi−1 along with a MAC to verify it is unaltered,
as well as the updated aggregate Xi (or, equivalently, the sensor reading ri). Thus, ni+1

can verify that both Xi−1 and ri are correct, and, if so, node ni+1 can correctly compute
Xi+1 = Xi−1 + ri + ri+1. Figure 5.7 demonstrates this process in three cases. The first case
demonstrates the beginning of the protocol, the second case demonstrates non-endpoint
nodes, and the third cases demonstrates the termination of the protocol.

The protocol in Figure 5.7 is resilient as long as no two malicious nodes are neighbors
within the network, because single malicious nodes are forced to pass their reading, along
with an authenticated aggregate sum from its previous neighbor, on to an honest node.
The honest node verifies the validity of the received reading, adds it into the aggregate
sum, and then forwards the sum, its own reading, and an authentication tag on to the
next node so the process can be repeated. The protocol terminates either when a node
outputs reject, or when the base station nN receives and validates the values XN−2 and
rN−1. The resilience of the protocol is proven in Theorem 19.

Theorem 19. Suppose that the protocol in Figure 5.7 is being used for data aggregation,
that node ni is honest, that no two neighbors are both dishonest, and that nodes n1, . . . , ni−1
do not output reject. Then, ni either outputs reject, or node ni correctly computes
Xi =

∑i
j=1 rj where r1, . . . , ri ∈ {0, . . . , R− 1}.

Proof. We prove this by strong induction on i, first considering i = 1 as a base case.
If node n1 is honest, then it knows the correct value of r1 = X1, and it can compute
t1,3 = MACk1,3(X1). If node n1 is dishonest, then node n2 must be honest. Node n2

has knowledge of r2 and receives X1 = r1 directly from n1, with which it can verify
that r1 ∈ {0, . . . , R − 1}. Therefore, node n2 can correctly compute X2 = r1 + r2 and
t2,4 = MACk2,4(X2).

For the purpose of strong induction, assume that all honest nodes nj for 1 ≤ j ≤ i− 1
can correctly compute

Xj−1 =

j−1∑
l=1

rl,

where rl ∈ {0, . . . , R− 1}, as well as correctly compute tj−1,j+1.

Suppose that node ni−1 is honest, and that node ni−2 is possibly dishonest. Then, by
induction,

Xi−1 =
i−1∑
l=1

rl

130

n1 n2 n3

X1 ← r1
t1,3 ← MACk1,3(X1)

X1, t1,3
//

verify X1 = r1 ∈ {0, . . . , R− 1},
else reject

X2 ← r1 + r2
t2,4 ← MACk2,4(X2)

X1, X2

t1,3, t2,4
//

ni−1 ni ni+1

Xi−2, Xi−1
ti−2,i, ti−1,i+1

//

verify ti−2,i, else reject

ri−1 ← Xi−1 −Xi−2
verify ri−1 ∈ {0, . . . , R− 1}, else reject

Xi ← Xi−1 + ri
ti,i+2 ← MACki,i+2

(Xi)
Xi−1, Xi

ti−1,i+1, ti,i+2
//

nN−2 nN−1 nN

XN−2, XN−1
tN−2,N

//

verify tN−3,N−1, else reject

rN−2 ← XN−2 −XN−3
verify rN−2 ∈ {0, . . . , R− 1}, else reject

XN−1 ← XN−2 + rN−1
XN−2, XN−1

tN−2,N
//

Figure 5.7: A resilient data aggregation protocol for (N, 1)-linear networks where k = 1
using the optimal KPS

131

and ri−1 ∈ {0, . . . , R − 1}. If ti−2,i 6= MACki−2,i
(Xi−2), then node ni outputs reject.

Otherwise, Xi−2 = Xi−1 − ri−1 and node ni can correctly compute Xi = Xi−1 + ri and
ti,i+2 = MACki,i+2

(Xi).

Next, suppose that node ni−1 is dishonest, then node ni−2 must be honest. By induction,

Xi−2 =
i−2∑
l=1

rl

is the correct aggregate total and ti−2,i is a valid MAC for Xi−2. If either of these values are
modified by ni−1, then node ni will output reject, unless node ni−1 can forge a MAC using
key ki−2,i. Node ni receives the value Xi−1 from node ni−1, computes ri−1 = Xi−1 −Xi−2,
and can verify directly that ri−1 ∈ {0, . . . , R−1}. Therefore, node ni can correctly compute
Xi = Xi−2 + ri−1 + ri and ti,i+2 = MACki,i+2

(Xi).

Corollary 2. The protocol in Figure 5.7 satisfies Definition 11.

Although the protocol presented in Figure 5.7 allows the detection of the presence of
active malicious nodes, it does not allow us to precisely identify which node is malicious.
If a node ni fails to verify the tag tki−2,i

there are three possibilities:

1. Node ni is malicious and falsely claims that tki−2,i
is invalid;

2. Node ni−1 is malicious and altered the value tki−2,i
; or

3. Node ni−2 is malicious and forwarded an invalid tki−2,i
.

As these three nodes are the only nodes to handle the value tki−2,i
, they are the only nodes

that could have possibly altered it. The limited key information and communication range
of each node makes detecting which of these cases occurred difficult, if not impossible,
without additional assumptions or the assistance of the base station. As our goal is simply
to prevent an incorrect aggregate total from being reported, precise adversarial detection
and how to respond to it is left as future work.

The protocol as presented in Figure 5.7 assumes that nodes can compute ri−1 from Xi−1
and Xi−2. It is straightforward to modify the protocol to avoid this requirement simply by
having node ni−1 forward ri−1 instead of Xi−1. Then node ni computes Xi−1 using Xi−2
and ri−1.

132

5.3.2 Analysis

As a baseline for comparison, we note that any hop-by-hop aggregation protocol requires
each node to send at least one message to propagate the aggregate total. Adding an
integrity check, such as a MAC, would add an additional message per node. Therefore, we
can assume a lower bound of two messages per node and 2N messages total in the absence
of any malicious nodes.

The communication cost of the k = 1 protocol is straightforward to compute. Each non-
endpoint node ni forwards four messages: the current aggregate total Xi and a MAC to be
verified by node ni+2, and the previous hop’s aggregate total Xi−1 along with the received
MAC to be verified by node ni+1. Therefore, the total communication cost is slightly less
than 4N messages. Note that in a (N, 1)-linear network, communication between nodes at
distance 1 is implicitly authenticated when traffic flows in one direction, as there is only
one possible source for a received message. A malicious node attempting to impersonate
a different honest node would result in duplicate messages, which is readily detected. The
protocol could be altered to explicitly authenticate messages between nodes at distance 1,
either by adding an additional MAC (yielding a total of five messages per node), or by
utilizing an authenticated mode of encryption.

For ease of presentation, no additional information was included in any MAC to avoid
replay attacks. If the protocol is run more than once, then an adversary can reuse messages
and MACs from a prior run of the protocol without detection. In practice, a nonce must
be included in each MAC to ensure freshness. Depending on the specific application, a
nonce is readily available in the form a counter, time stamp, or session identifier.

This protocol can be viewed as the natural adaptation of the approach of Hu and Evans
to a linear network. The fact that nearby nodes are guaranteed to possess shared keys
allows for verification to take place during the aggregation phase rather than afterwards,
thereby eliminating the need for caching or re-computing results, and allowing for early
termination if malicious activity is detected. A large drawback of Hu and Evans’ approach
is the inability to detect pairs of connected colluding nodes. The next section demonstrates
the difficulty in naively extending this approach in an attempt to protect against multiple
malicious nodes.

5.3.3 An Attack Against a Naive k > 1 Protocol

The protocol in the previous section can be naturally extended to larger values of k simply
by distributing keys using the optimal (N, k + 1)-KPS. Each node would then receive an

133

authenticated aggregate sum from k+ 1 hops back, along with readings from the previous
k hops to verify directly.

Figure 5.8 demonstrates such an approach for k = 2. Unfortunately, this method is not
adequate to protect against colluding malicious nodes.

ni−1 ni ni+1

Xi−1, ti−1,i+2

Xi−2, ti−2,i+1

Xi−3, ti−3,i
//

verify ti−3,i, else reject

ri−1 ← Xi−1 −Xi−2
ri−2 ← Xi−2 −Xi−3
verify ri−1, ri−2 ∈ {0, . . . , R− 1}

else reject

Xi ← Xi−1 + ri
ti,i+3 ← MACki,i+3

(Xi)
Xi, ti,i+3

Xi−1, ti−2,i+2

Xi−2, ti−2,i+1
//

Figure 5.8: A flawed data aggregation protocol for (N, 1)-linear networks where k = 2

Although this approach is the natural generalization of the secure k = 1 protocol
presented in the previous section, it is now possible for a pair of malicious nodes to alter
the aggregate total by more than two valid sensor readings. This attack arises due to the
fact that, in the k > 1 setting, an honest node immediately preceding a malicious node is
not guaranteed to have its aggregate total verified by an honest node. For example, if node
ni is honest, it is possible that nodes ni+1 and ni+3 are both dishonest. If this occurs, it
is possible for node ni+1 to alter the total without being detected, as malicious node ni+3

would normally be the node to detect such an attack. This situation could not arise in
the k = 1 case, as any malicious node always has an honest node on either side of it. In
other words, this approach works to defend against two consecutive malicious nodes, but
no longer protects against colluding non-consecutive malicious nodes.

To illustrate an attack against the naive k = 2 protocol, consider a network where the
honest reading of node ni is ri = 0. A pair of malicious nodes should be able to modify

134

the total by at most 2(R − 1). Consider a connected subset of the network {ni, mi+1,
ni+2, mi+3, ni+4}, where nk denotes an honest node and mk denotes a malicious node. The
attack proceeds as follows:

1. Node ni sends the following to node mi+1:

Xi−2 = Xi−1 = Xi = 0
ti−2,i+1, ti−1,i+2, ti,i+3.

2. Node mi+1 replaces Xi with X ′i = R − 1, adds the reading ri+1 = R − 1 to the
total such that Xi+1 = 2(R − 1), and computes the MAC ti+1,i+4 on this total. The
following is forwarded to node ni+2:

Xi−1 = 0, X ′i = R− 1, Xi+1 = 2(R− 1)
ti−1,i+2, ti,i+3, ti+1,i+4.

3. Node ni+2 verifies the unaltered value Xi−1 = 0 and accepts, forwarding the following
to node mi+3:

X ′i = R− 1, Xi+1 = 2(R− 1), Xi+2 = 2(R− 1)
ti,i+3, ti+1,i+4, ti+2,i+5

4. Node mi+3 is supposed to verify that ti,i+3 is a valid MAC (on Xi = 0), but ignores
the fact that the malicious node mi+1 has replaced it with X ′i = R − 1. Node mi+3

sets ri+3 = R − 1, computes Xi+3 = 3(R − 1), and computes a MAC ti+3,i+6 on this
value. The following is forwarded to node ni+4:

Xi+1 = Xi+2 = 2(R− 1), Xi+3 = 3(R− 1)
ti+1,i+4, ti+2,i+5, ti+3,i+6

5. Node ni+4 verifies that ti+1,i+4 is a valid MAC on Xi+1 and accepts Xi+1 as valid.
At this point, the malicious nodes have managed to modify the total by 3(R − 1)
without being detected.

This attack can be avoided if any MAC generated by an honest node is always verified
by an honest node, however this requires a much stronger assumption on the distribution
of malicious nodes when working in the optimal KPS setting, that is unlikely to apply in
any practical setting. The next section demonstrates how this problem can be overcome if
additional keys are distributed to nodes, such as in the pairwise KPS model.

135

5.4 Aggregation Using the Pairwise KPS

The previous section presented a protocol for detecting non-consecutive malicious nodes
during aggregation and demonstrated the difficulty in extending it to detecting coalitions
of malicious nodes. In this section we extend the protocol to protect against a coalition of
up to k consecutive malicious nodes when k > 1. The goal of this protocol remains the
same: to prevent a malicious node from altering the aggregate total by more than a single
valid sensor reading. A coalition of consecutive malicious nodes should therefore only be
able to modify the aggregate total by no more than k valid sensor readings.

The basic idea behind the single-node protocol is to exploit the existence of honest
nodes on either side of any malicious node. The first honest node computes and forwards
an authenticated aggregate total that the next honest node can verify. If the malicious
node in the middle misbehaves, one of the next two hops will detect it. The k-resilient
version of the protocol is based on the same idea using the pairwise (N, k + 1)-KPS. Any
coalition of up to k consecutive nodes must have an honest node on either side of it. Thus,
authentication information from k+ 1, k, . . . , 2 hops back will be forwarded at each hop to
ensure that none of the preceding k nodes have altered the aggregate total in an invalid
manner. Therefore, the extended protocol requires that any two nodes ni and nj within
distance d ≤ k + 1 of each other must have a unique pairwise key, ki,j, shared with each
other. Figure 5.9 demonstrates a 2-resilient aggregation protocol, broken into three cases
demonstrating the beginning, general case, and termination of the protocol. A security
proof when k = 2 follows.

The protocol presented here assumes a (N, 1)-linear network with a pairwise (N, k+1)-
KPS. In an (N, k+1)-linear network, the protocol can be made much more efficient by node
i forwarding the value ti,i+k+1 directly to node ni+k+1. In general, for any communication
range d where 1 < d < k + 1, each node will forward messages directly to any node at
distance r ≤ d, or d hops further in the network for nodes at distance r > d. As in the
k = 1 protocol, if the communication range of nodes is only 1 (i.e., a (N, 1)-linear network),
then a separate MAC may not be necessary to authenticate messages between nodes at
distance d = 1.

As in the k = 1 case, the protocol as presented here assumes that nodes can compute
readings from the previous hops using only theXi values. It is straightforward to modify the
protocol to avoid this requirement simply by having nodes from k forward their individual
readings instead of aggregate totals. Node i then computes Xi from these readings rather
than computing the readings from aggregate totals.

Theorem 20. Suppose the protocol in Figure 5.9 is being used for data aggregation, that

136

n1 n2 n3

X1 ← r1
t1,2 ← MACk1,2(Xi)
t1,3 ← MACk1,3(Xi)
t1,4 ← MACk1,4(Xi)

X1, t1,2, t1,3, t1,4
//

verify t1,2, else reject

verify ri−1 = X1 ∈ {0, . . . , R− 1},
else reject

X2 ← X1 + r2
t2,3 ← MACk2,3(X2)
t2,4 ← MACk2,4(X2)
t2,5 ← MACk2,5(X2)

X1, t1,3, t1,4
X2, t2,3, t2,4, X2,5

//

ni−1 ni ni+1

Xi−3, ti−3,i
Xi−2, ti−2,i, ti−2,i+1

Xi−1, ti−1,i, ti−1,i+1, ti−1,i+2
//

verify ti−1,i, ti−2,i, ti−3,i
else reject

ri−1 ← Xi−1 −Xi−2
ri−2 ← Xi−2 −Xi−3
verify ri−1, ri−2 ∈ {0, . . . , R− 1}
else reject

Xi ← Xi−1 + ri
ti,i+1 ← MACki,i+1

(Xi)
ti,i+2 ← MACki,i+2

(Xi)
ti,i+3 ← MACki,i+3

(Xi)
Xi−2, ti−2,i+1

Xi−1, ti−1,i+1, ti−1,i+2

Xi, ti,i+1, ti,i+2, ti,i+3
//

Figure 5.9: A resilient data aggregation protocol for k = 2. Each node receives the
aggregate sum from the three nodes preceding it, along with a MAC from neighbors at
distance d = 1, 2, 3 to ensure that the sums are unaltered by any potentially malicious
intermediate nodes. (Continued in Figure 5.10)

137

nN−2 nN−1 nN

XN−4, tN−4,N−1
XN−3, tN−3,N−1, tN−3,N
Xi−1, tN−2,N−1, tN−2,N ,

//

verify tN−2,N−1, tN−3,N−1, tN−4,N−1
else reject

rN−2 ← XN−2 −XN−3
rN−3 ← XN−3 −XN−4
verify rN−2 ∈ {0, . . . , R− 1}, else reject

verify rN−3 ∈ {0, . . . , R− 1}, else reject

XN−1 ← XN−2 + rN−1
tN−1,N ← MACkN−1,N

(Xi)
XN−3, tN−3,N
XN−2, tN−2,N
XN−1, tN−1,N

//

Figure 5.10: (Continued from Figure 5.9) A resilient data aggregation protocol for k = 2.
Each node receives the aggregate sum from the three nodes preceding it, along with a
MAC from neighbors at distance d = 1, 2, 3 to ensure that the sums are unaltered by any
potentially malicious intermediate nodes.

138

node ni is honest, that at most k = 2 consecutive nodes are dishonest, and that nodes
n1, . . . , ni−1 do not output reject. Then, ni either outputs reject, or node ni correctly
computes Xi =

∑i
j=1 rj where r1, . . . , ri ∈ {0, . . . , R− 1}.

Proof. We prove this by strong induction on i, first considering i = 1, 2, 3 as base cases.

• If node n1 is honest, then it knows the correct value of r1 = X1, and it can correctly
compute

t1,4 = MACk1,4(X1),

t1,3 = MACk1,3(X1), and

t1,2 = MACk1,2(X1).

• If node n1 is dishonest, then node n2 may be honest. If so, node n2 receives X1 = r1
directly from n1, with which it can verify t1,2 is valid and that r1 ∈ {0, . . . , R − 1},
outputting reject if not. Therefore, node n2 can correctly compute

X2 = r1 + r2,

t2,5 = MACk2,5(X2),

t2,4 = MACk2,4(X2), and

t2,3 = MACk2,3(X2),

or outputs reject.

• If both nodes n1 and n2 are dishonest, then node n3 must be honest. Node n3 receives
X1, t1,3, t1,4, X2, t2,3, t2,4, t2,5. From these values, node n3 can verify that t1,3 and t2,3
are valid and compute r1 = X1 and r2 = X2−X1, verifying that r1, r2 ∈ {0, . . . , R−1},
and outputting reject if not. Therefore, node n3 can correctly compute

X3 = r1 + r2 + r3,

t3,6 = MACk3,6(X3),

t3,5 = MACk3,5(X3), and

t3,4 = MACk3,4(X3),

or outputs reject.

139

For the purpose of strong induction, assume an honest node nj for 1 ≤ j ≤ i − 1 can
correctly compute

Xj−1 =

j−1∑
l=1

rl,

where rl ∈ {0, . . . , R− 1}, as well as correctly compute ti−1,i+2, ti−1,i+1, ti−1,i.

Suppose that node ni−1 is honest, and that nodes ni−2 and ni−3 are possibly dishonest.
Then, by induction,

Xi−1 =
i−1∑
l=1

rl,

where rl ∈ {0, . . . , R − 1}. If ti−3,i, ti−2,i, and ti−1,i are not valid MACs, then node
ni outputs reject. Otherwise, the received values Xi−3, Xi−2, and Xi−1 are the same
values forwarded by nodes ni−3, ni−2, and ni−1 respectively. Because node ni−1 is honest,
ri−1 = Xi−1 −Xi−2 ∈ {0, . . . , R− 1}, and node ni can correctly compute

Xi = Xi−1 + ri,

ti,i+1 = MACki,i+1
(Xi),

ti,i+2 = MACki,i+2
(Xi), and

ti,i+3 = MACki,i+3
(Xi).

Next, suppose that node ni−1 is dishonest and that node ni−2 is honest. Then, by induction,

Xi−2 =
i−2∑
l=1

rl

is the correct aggregate sum at node ni−2, and ti−2,i is a valid MAC for Xi−2. If ti−3,i, ti−2,i,
or ti−1,i are invalid, then node ni outputs reject. Otherwise, the received values Xi−3 and
Xi−2 are the same values forwarded by nodes ni−3 and ni−2 respectively. Therefore, node ni
can correctly compute ri−1 = Xi−1−Xi−2 and verify that ri−1 ∈ {0, . . . , R−1}, outputting
reject if not. If node ni does not output reject, then Xi−1 is correct and node ni can
compute

Xi = Xi−1 + ri,

ti,i+1 = MACki,i+1
(Xi),

ti,i+2 = MACki,i+2
(Xi), and

ti,i+3 = MACki,i+3
(Xi).

140

Finally, suppose that both nodes ni−1 and ni−2 are dishonest. Then, by assumption,
node ni−3 must be honest, and, by induction,

Xi−3 =
i−3∑
l=1

rl

is the correct aggregate sum at node ni−3, and ti−3,i is a valid MAC for Xi−3. If ti−3,i,
ti−2,i, or ti−1,i are invalid, then node ni outputs reject. Otherwise, node ni can compute
ri−2 = Xi−2−Xi−3 and ri−1 = Xi−1−Xi−2 and verify ri−2, ri−1 ∈ {0, . . . , R−1}, outputting
reject if not. If node ni does not output reject, then Xi−1 and Xi−2 are correct and
node ni can compute

Xi = Xi−1 + ri,

ti,i+1 = MACki,i+1
(Xi),

ti,i+2 = MACki,i+2
(Xi), and

ti,i+3 = MACki,i+3
(Xi).

Corollary 3. The protocol in Figure 5.9 satisfies Definition 11.

This protocol generalizes naturally to larger values of k. Each node receives the aggre-
gate total for each of the preceding k + 1 nodes, along with a MAC on each of them to
very authenticity. From this information, a node can compute the previous k sensor read-
ings, verify that they are valid, and compute the updated aggregate total. The node then
computes a MAC on the updated aggregate total for each of the k + 1 nodes at distance
1, 2, 3, . . . , k + 1. The security proof is similar to the k = 2 case.

5.4.1 Analysis

The communication cost of each node is dependent on both the maximum number of
consecutive malicious nodes k, and the maximum communication range of each node d.

To begin, assume that d = 1, and each message must be routed hop-by-hop. Each node
ni must forward the current aggregate total, as well as authentication information for k+1
nodes at distance 1, 2, . . . k + 1 nodes further in the network. Therefore, node ni creates
and sends Xi as well as k MACs on Xi to the next hop (giving a total of k + 2 messages).

In addition to the messages node ni generates, it is also responsible for forwarding
authentication information from the previous k hops:

141

• The aggregate total Xi−k along with one MAC to be forwarded for node ni+1 (two
messages).

• The aggregate total Xi−k+1 along with two MACs to be forwarded for nodes ni+1

and ni+1 (three messages).

• ...

• The aggregate total Xi−1 along with k MACs to be verified by nodes ni+1 through
ni+k (k + 1 messages).

Therefore, in addition to the k + 2 messages node ni generates, it also forwards

2 + 3 + . . .+ k + 1 =
(k + 1)(k + 2)

2
− 1

=
(k2 + 3k + 2)

2
− 1

=
1

2
(k2 + 3k)

messages from previous hops. Therefore, the total communication cost when d = 1 for
node ni is

1

2
(k2 + 3k) + k + 2 =

1

2
(k2 + 5k + 4)

messages.

In the case that d ≥ k + 1, each message can be forwarded directly to its intended
recipient. Therefore, the total communication cost is simply 2k + 2.

Finally, assume that 1 < d ≤ k + 1. In this case, each message is forwarded to the
correct node if it is within communication range, or d hops further in the network towards
its destination. In order to approximate the total communication cost, we consider the
amount of network traffic a single node not near an endpoint generates when forwarding
authentication information to the next k + 1 nodes in the network.

For ease of presentation, assume k + 1 is a multiple of d. Then messages may need to
travel up to h = k+1

d
hops in the network during aggregation.

• Authentication information sent to nodes up to distance d away is sent directly (d
messages in total).

142

• Authentication information sent to nodes between distance d+ 1 and 2d travels two
hops (2d messages in total).

• ...

• Authentication information sent to nodes between distance (h − 1)d and hd travels
h hops (hd messages in total).

Therefore, the authentication information generated by a node incurs a communication
cost of

d+ 2d+ . . .+ hd =
h(h+ 1)

2
d

=
k+1
d

(
k+1
d

+ 1
)

2
d

=
(k + 1)(k + d+ 1)

2d

=
k2 + kd+ 2k + d+ 1

2d

If k + 1 is not a multiple of d, then there are an additional k + 1 mod d authentication
messages that must travel dk+1

d
e hops.

Each node also forwards the aggregate total for itself to the next k+1 hops, generating
an additional k + 1 messages. Therefore, the total communication cost incurred by each
node is

k2 + 3kd+ 2k + 3d+ 1

2d
+

(⌈
k + 1

d

⌉)
(k + 1 mod d).

Because each node sends and receives the same number of messages (except for those
within k + 1 hops of an endpoint), the amount of traffic a non-endpoint node generates
is identical to the number of messages it is responsible for forwarding during a run of the
protocol. Therefore, the expression above describes the total number of messages each
non-endpoint node must send, as well as providing an upper bound on the number of
messages nodes near an endpoint must send.

As in the previous aggregation protocol, an application-specific nonce must be included
in each MAC to prevent replay attacks.

143

S1 S2 S3 S4 S5 S6 S7 S8

G1 G5 G9 G13

G3 G7 G11

Figure 5.11: A (16, 3)-linear network partitioned into groups and subgroups

5.5 Aggregation Using the Group-Based KPS

In group-based key pre-distribution, each node is a member of one or more groups, and each
group has an associated group key to allow secure communication among group members.
In an (N, d)-linear network, it is natural to divide the network into connected groups of
size d + 1, as this is the largest group size such that all members of a group are within
each other’s communication range. We refer to the group containing nodes ni, . . . , ni+d as
group gi, the members of which all possess the shared group key ki.

Let N be a (N, d)-linear network where d > 1 and group keys are distributed as
described above. For ease of presentation, assume d is odd and N is a multiple of d + 1.
This assumption allows N to be uniquely partitioned into disjoint connected subgroups of
size d+1

2
:

N = s1 ∪ s2 ∪ . . . ∪ s2 N
d+1
,

where
si =

{
n (i−1)(d+1)

2
+1
, n (i−1)(d+1)

2
+2
, . . . , n i(d+1)

2

}
and si ∪ si+1 is a group in the underlying group-based KPS possessing some group key

ski,i+1 = k (i−1)(d+1)
2

+1
.

For example, consider a (16, 3)-linear network partitioned under this scheme. The 16
nodes are partitioned into four groups of adjacent nodes:

g1 = {n1, n2, n3, n4} g5 = {n5, n6, n7, n8}
g9 = {n9, n10, n11, n12} g13 = {n13, n14, n15, n16}.

144

Each nj ∈ si performs the following:

1. broadcast (nj, rj) encrypted under key ski,i+1

2. set Ysi ← rj
3. for each nl ∈ si \ {nj} do

(a) receive (nl, rl) encrypted under key ski,i+1

(b) if rl ∈ R then Ysi ← Ysi + rl

4. resolve duplicate readings / bad readings
5. output Ysi (the aggregate total of all non-rejected readings)

Figure 5.12: In-group aggregation for subgroup si. Upon completion, each node in si
correctly learns the subgroup aggregate Ysi or outputs reject for one or more nodes

Each group is further partitioned into two subgroups:

s1 = {n1, n2} s2 = {n3, n4} s3 = {n5, n6}
s4 = {n7, n8} s5 = {n9, n10} s6 = {n11, n12}
s7 = {n13, n14} s8 = {n15, n16}.

In this scheme, s1 ∪ s2 = g1 in the underlying group-based KPS, so all members of s1 ∪ s2
share the key sk1,2 = k1. Similarly, s2 ∪ s3 = g3 in the underlying KPS, with members of
both subgroups possessing the key sk2,3 = k3.

Because all members of a group (or subgroup) share a common key, aggregation within
a group (or subgroup) is trivial. Each member can simply broadcast its reading using
the group key, and all members of the group can independently verify the validity of each
sensor reading, as well as compute the aggregate total for the group. If any sensor reading
is out of range, then the result of the protocol is reject. This outcome is accomplished
using only a single message from each node within the group. We refer to this sub-protocol
as in-group aggregation (see Figure 5.12).

Next, to perform aggregation across the entire network, each subgroup of nodes si first
computes its in-group aggregate total Ysi . Aggregation then occurs subgroup-by-subgroup
along the network, with each node from a subgroup updating the aggregate total with the
current subgroup aggregate, and then forwarding the result to the next subgroup. When
passing the aggregate total Xi from subgroup si to subgroup si+1, the key ski,i+1 is used,
ensuring that all members of si+1 receive the aggregate total. The use of key ski,i+1 also

145

for each si ∈ N do

for each nj ∈ si
1. receive (nl, Xi−1) for nl ∈ si−1
2. Xi−1 ← SELECT{(nl, Xi−1)|nl ∈ si−1}
3. Ysi ← In-Group-Agg(si)
4. Xi ← Xi−1 + Ysi
5. Broadcast (nj, Xi) encrypted under key ski,i+1

Figure 5.13: A group-based aggregation protocol

allows all other members of si to independently verify that the correct aggregate value
was passed on by each node. As long as a majority of nodes within each subgroup are
honest, a malicious coalition of nodes will not be able to forward an incorrect aggregate
total without detection. Figure 5.13 demonstrates this process. In the case that malicious
behavior is detected, the honest nodes could choose to continue and re-run the protocol,
with those nodes that did not agree with the majority omitted during the second run. An
alternative approach is to halt aggregation and forward the labels of the detected malicious
nodes to the base station.

The protocol in Figure 5.13 is broken into several steps. During the first step, nodes in
subgroup si are informed of the aggregate total Xi−1 by each node in si−1. In the second
step, each node applies a SELECT function to determine the correct value of Xi−1 in the
case that all readings are not identical. A possible SELECT function is discussed below.
Next, nodes in subgroup si perform in-group aggregation to determine Ysi . Finally, each
node computes the updated aggregate total Xi and broadcasts the result, thereby allowing
the next subgroup to continue with the protocol.

In step 1 it is possible that a malicious node ml may choose to forward an incorrect
aggregate total (ml, X

′
i−1). The job of the SELECT function is to take all received (nl, Xi−1)

tuples and output the correct value of Xi−1. A simple and natural choice for the SELECT

function is to choose the aggregate total that a majority of nodes agree on, or output
REJECT if no majority exists. With such a SELECT function, the correct aggregate total can
be computed with complexity O(d), and it can be shown that the group-based aggregation
protocol outputs the correct aggregate total whenever a majority of nodes in each subgroup
is not malicious. This result is demonstrated in Theorem 22.

146

Both the in-group aggregation and group-based aggregation protocols are vulnerable to
message flooding or node spoofing attacks, where a malicious node submits more than one
reading for itself or while pretending to be another node. Without additional shared keys
or assumptions, defending against such an attack in this setting is impossible. Techniques
for mitigating these attacks are discussed in Section 5.5.1. The proofs below demonstrate
security in the absence of spoofing attacks.

Theorem 21. If nodes cannot spoof their identity, then the in-group aggregation protocol
in Figure 5.12 allows each node in a subgroup si to correctly compute the subgroup aggregate
total Ysi, such that Ysi contains a valid reading from each honest node in si, and at most
one valid sensor reading for each dishonest node in si. If any invalid readings are received,
the protocol also outputs reject.

Proof. Suppose each node in nj ∈ si broadcasts a valid sensor reading rj using the key
ki,i+1. Therefore, each node in si receives rj directly, verifies rj ∈ R, and adds rj to Ysi . On
the other hand, if a dishonest nj broadcasts rj /∈ R, then it is omitted from the aggregate
total and the node nj is marked as malicious. Thus, only valid readings from dishonest
nodes are included in Ysi .

Theorem 22. Suppose a majority of nodes in each subgroup are honest, nodes cannot spoof
their identity, and subgroups s1, . . . , si−1 do not output reject. Then, using the protocol
in Figure 5.13 with the SELECT function choosing the majority answer, each node in si
learns the correct aggregate total Xi =

∑i
j=1 Ysj .

Proof. Nodes in s1 can run the in-group aggregation protocol, and, by Theorem 21, they
correctly learn the aggregate total Ys1 = X1.

For the purpose of induction, assume nodes in si−1 can correctly compute Ysi−1
andXi−1,

where Ysi−1
is the subgroup aggregate for si−1 and Xi−1 is the aggregate total

∑i−1
j=1Xsj .

If a node nj ∈ si−1 is honest, then it broadcasts the correct message Xi−1 using key
ki,i+1, which is received by each node in si. Because a majority of nodes in si−1 are honest,
the output of SELECT{(nj, Xi−1)|nj ∈ si−1} is the correct aggregate total Xi−1. Therefore,
each node in si will accept the correct value Xi−1. By Theorem 21, each node in si can
correctly compute Ysi . Therefore, each node can correctly compute Xi = Xi−1 + Ysi .

Corollary 4. The protocol in Figure 5.13 with the majority SELECT function satisfies
Definition 11.

Note that although the group-based KPS issues keys to each connected subset of d
nodes, the group-based aggregation protocol described here only utilizes the group keys
s1, . . . , s2 N

d+1
.

147

5.5.1 Reacting to Node Spoofing Attacks

The in-group aggregation and group-based aggregation protocols in this section rely on
the assumption that each node can contribute only a single reading or aggregate total
in each protocol. In particular, the protocols are not secure if a malicious node mi can
pretend to be an honest node nj. In this case, the malicious node can spoof nj’s identity by
broadcasting a message of the form (nj, r

′
j), causing all nodes to receive readings of both

rj and r′j for node nj. Therefore, a mechanism to react to duplicate readings must be in
place.

The node spoofing attack is possible due to the lack of source authentication when
sending messages using group keys. There are several approaches that can be used to mit-
igate this, depending on the individual capabilities of each node. Some potential solutions
are discussed below.

Pairwise Keys

Assume that each pair of nodes in any group possess a unique shared key. If two or more
readings are received for a given node ni, then node ni can prove which reading is correct by
sending a MAC on (ni, ri) to each member of the subgroup individually using its pairwise
keys instead of the group key. Thus, each node learns the correct value ri and can continue
with the protocol. If multiple valid MACs are received, then it can be assumed that node
ni is compromised or malicious.

Wireless Fingerprinting

Wireless fingerprinting [91] allows one node to generate a deterministic identifier from the
physical characteristics of any received message from another node. If fingerprinting is
available, then two identical messages from different senders are distinguishable. There are
two approaches to using fingerprinting: pre-shared fingerprints, and discovered fingerprints.
In the former case, each node is pre-loaded with the fingerprint of each other node in the
group, while in the latter, each node learns the fingerprint of a node after deployment.

In the case of pre-shared fingerprints, determining the true reading from a set of dupli-
cates is trivial. If multiple messages match a single fingerprint, it can be assumed that the
node is malicious. When fingerprints are not pre-loaded, during the first run of the protocol
each node can record the fingerprint associated with the received message for each node.
Because fingerprints are unique, each node can commit to at most one identity within the

148

network. If one fingerprint is associated with multiple nodes, then it can be assumed that
the fingerprint belongs to a malicious node. If two different fingerprints commit to the
same identity there may be no possible way to tell which one is honest. In this case, both
nodes can be marked as malicious as a precaution. This approach limits the impact of a
malicious node to knocking out a single honest node.

Directional Antennae and Distance Bounding

Directional antennae [6] allow a node to estimate the direction of the sender of a message,
which is easier to accomplish in a linear network than in a two-dimensional network. If
duplicate messages are received, any message that does not originate from the correct side
of the network (i.e., left or right) cannot possibly be from an honest node.

Similarly, distance bounding [92] allows a node to put an upper bound on the distance
of a sender. If nodes are homogeneous, uniformly spaced, and broadcast at fixed power
levels, precise distance location, rather than just an upper bound, may also be available.
If duplicate messages are received, any message that does not originate from a node within
the correct distance cannot possibly be from an honest node.

On their own, neither direction nor distance bound information is sufficient to deter-
mine which message from a set of duplicates came from the correct sender. However,
direction and precise distance trivially solve the problem, as only a single node can be at
a given distance and direction. Precise distance on its own is sufficient as well, however,
determining the correct message requires all nodes in a group to participate in the process.
All nodes in the next subgroup are always located later in the network, and, by assump-
tion, this subgroup contains an honest majority of nodes. If nodes in the next subgroup
also confirm the measured distances of a given message, there will be an honest majority
of nodes agreeing on a specific location.

5.6 Comparing Linear Approaches

In a non-adversarial setting, resilient hop-by-hop aggregation in a simple linear network can
be performed using N messages to aggregate each reading hop-by-hop, and an additional
N messages to ensure integrity. Therefore, we can use a baseline of 2N messages as a
point of comparison for our protocols. The performance results for each linear protocol are
summarized in Table 5.1.

149

Using the optimal KPS, we presented a protocol that protects against any number of
malicious nodes, provided that no two malicious nodes are directly next to each other
in the network. This result is achieved with only four keys per node, and requires each
node to send two messages (a single reading, and the aggregate reading), along with two
authentication tags. The total cost of this protocol is 4N messages, with two MACs being
computed by each node. The limited number of keys in this setting makes extending such
an approach to a larger number of adjacent malicious nodes difficult.

Using the pairwise KPS, we presented a protocol that protects against k adjacent
malicious nodes within the network. The cost of this protocol scales with the value of k.
As k grows, information from k + 1 hops back, along with the associated authentication
information, must be passed along the network and verified by each node. Depending
on the communication range of the nodes, the total communication complexity of the
protocol is between 2(k + 1)N messages when nodes can send authentication information
directly to the intended recipient, and

(
1
2
(k2 + 5k + 6)− 2

)
N messages when d = 1 and

all authentication information must be routed hop-by-hop.

Our final protocol utilized shared group keys and protects against localized clusters of
malicious nodes. The network is divided into subgroups, and the protocol can proceed as
long as there is an honest majority of nodes in each subgroup. The communication overhead
in this protocol is minimal, however it may require specialized tools to protect against
certain attacks. Each node broadcasts its own reading, and later broadcasts the updated
aggregate, but must be active to listen to and record the messages of other nodes within
its subgroup. The communication complexity of this protocol during regular operation is
therefore 2N messages.

5.7 Moving Beyond Linear Networks

The linear protocols presented thus far provide resilient aggregation in the presence of mul-
tiple adversarial nodes, or the real-time detection of malicious behavior, with a tweakable
parameter that balances the trade-off between protocol overhead and maximum number
of consecutive malicious nodes in the network. These protocols were purpose-built to pro-
vide resilient aggregation in simple linear networks, and therefore utilize the specific key
pre-distribution patterns expected in such a deployment. In this section we establish that
the functionality of these protocols is independent of the underlying linear topology, and
instead relies only on the key pre-distribution scheme used. If nearby nodes possess the
relevant shared keys, then the same approach can be used to aggregate over an arbitrary
tree.

150

Table 5.1: Summary of communication costs for the optimal, pairwise, and group-based
linear aggregation protocols.

Malicious nodes Communication cost (per node)

Optimal KPS
k = 1 4

Pairwise KPS
k = 1 1

2
(k2 + 5k + 4)

d < k and d | (k + 1) k2+3kd+2k+3d+1
2d

d < k and d - (k + 1) k2+3kd+2k+3d+1
2d

+ (dk+1
d
e)(k + 1 mod d)

k = d− 1 2k + 2

Group-based KPS
honest majority (per subgroup) 2

5.7.1 Merging Two Paths Into One

We begin by considering the simplest relevant tree topology, where two simple linear net-
works converge at a single point and continue as a simple linear network. In other words, we
study a family of trees where exactly one node has two children. Figure 5.14 demonstrates
such a tree.

c2

c1

al

...

a1

bm

...

b1

Figure 5.14: A network that consists of two simple linear networks converging into a single
linear network.

By Theorem 19, nodes along any linear path in a network can either correctly aggregate
their sensor readings in the presence of non-connected adversarial nodes, or detect malicious

151

action by adversarial nodes. Our goal is to extend this process so that it can be used to
merge two disjoint paths in the network at a single point, allowing aggregation to occur
over a binary aggregation tree.

Let A = {a1, a2, . . . , al} and B = {b1, b2, . . . , bm} be two disjoint paths in a network
where node al and node bm are both connected the same node c1, such that they form
an incomplete binary tree rooted at c1. Let Ai and Bj represent the aggregate total of
readings from nodes {a1, . . . , ai} and {b1, . . . , bj} respectively, and let Ci represent the
aggregate total of the entire subtree rooted at node ci.

Assume that no two connected nodes in the tree containing A, B, and c1 are malicious,
and that nodes at distance 1 and distance 2 have distinct pairwise keys shared with each
other. In other words, A ∪ {c1} and B ∪ {c1} are both linear networks that satisfy the
requirements of the “optimal k = 1 protocol”. The idea is to perform aggregation over
both of these linear networks independently.

Assume that node c1 is honest. Node c1 is the last node in the linear path A ∪ {c1},
so, by Theorem 19, node c1 can correctly learn the aggregate sum Al + rc1 , or it outputs
reject if malicious behavior is detected. Similarly, node c1 is the last node in the path
B ∪ {c1} and it correctly learns Bm + rc1 , or outputs reject. Therefore, node c1 can
correctly compute C1 = Al +Bm + rc1 as the correct aggregate sum for the tree rooted at
c1, or outputs reject.

If node c1 is dishonest then it must be have an honest neighbor c2, where c2 /∈ A ∪ B
(i.e., node c2 is the parent of node c1 in the tree). Node c2 is the last node in the path
A∪{c1, c2} (similarly, B∪{c1, c2}). By Theorem 19, node c2 correctly learns the aggregate
total Al + rc1 + rc2 (similarly, Bm + rc1 + rc2), or outputs reject. Recall that during the
“optimal k = 1” protocol, node c2 has knowledge of the individual values Al, Bm, and rc1 .
Therefore, node c2 can correctly compute C2 = Al +Bm + c1 + c2.

5.7.2 Merging Multiple Paths

Following the approach in the previous section, a merge node c1 can viewed as the terminal
point of multiple linear networks, and it can therefore learn the aggregate total for each
of them. Similarly, c1’s parent node c2 can be viewed as the terminal point of multiple
linear networks, each of which merges at node c1. Therefore, if node c1 is dishonest, then
the honest node c2 can compute the aggregate total for each path merging at c1, as well as
aggregate readings from additional children other than c1. Figure 5.15 demonstrates this
idea.

152

Figure 5.15: Breakdown of a tree into overlapping linear networks. Aggregation is per-
formed over each subnetwork such that readings from the overlap are only included once.
As a result of linear aggregation, both the merge point and its parent learn the correct
aggregate total for each subtree. By extending each linear subnetwork to the parent of the
merging node, the parent is able to verify that the merge node computed each aggregate
correctly.

We now demonstrate that secure aggregation is possible over an arbitrary tree structure,
given the constraint that no two consecutive nodes (i.e., no parent-child pair) are both
malicious. Let N = {n1, n2, . . . , nN} be a network of N nodes arranged in a tree. The
height of a node in the tree is the length of the longest path from that node to one of
its descendant leaf nodes. The individual reading for node ni is denoted by rni

, and the
aggregate total of the subtree rooted at node ni is denoted by Xni

. Figure 5.16 describes
an aggregation protocol for N .

The protocol in Figure 5.16 has the same structure as its linear counterpart, with each
node receiving authenticated copies of the aggregate subtotal from the previous nodes at
distance 1 and distance 2. If all received messages are authentic, then the new aggregate
total is computed, and the result, along with the necessary authentication information,
is forwarded to the next node. It is assumed that each node knows the complete local
topology, and therefore exactly which messages are expected, and which should be sent.

Theorem 23. Suppose that the “optimal k = 1” tree-based aggregation protocol is being
used for data aggregation in a tree-based network N , and the following are true:

1. Node ni is honest;

153

• Each leaf node nl node sends to its parent:

1. Its sensor reading rnl
= Xnl

2. If node nl has a grandparent nl+2, it also sends tknl,nl+2
= MACknl,nl+2

(Xnl
)

• Each non-leaf node nh receives from each child nh−1:

1. For each child nh−2 of node nh−1:

(a) The aggregate total Xnh−2

(b) The authentication tag tnh−2,nh

2. The sensor reading rnh−1

• Each non-leaf node verifies the received applicable authentication tags, and outputs
reject if necessary

• Each non-leaf node computes the aggregate total for each child

• Each non-leaf, non-root node nh sends to its parent nh+1:

1. Its sensor reading rnh

2. For each child nh−1:

(a) The aggregate total Xnh−1

(b) The received authentication tag tnh−1,nh+1

3. If node nh has a grandparent nh+2, it also sends tknh,nh+2
= MACknh,nh+2

(Xnh
)

Figure 5.16: The “optimal k = 1” tree-based aggregation protocol.

2. no two connected nodes are both dishonest; and,

3. no node in the subtree rooted at node ni outputs reject.

Then node ni either outputs reject, or node ni correctly computes Xni
, where Xni

contains
the true sensor reading for any honest node, and a single valid sensor reading for each
dishonest node in the subtree rooted at ni.

154

Proof. We prove this through strong induction on the height of a node h, first considering
nodes at height h = 0 and h = 1 as base cases. Let n0 be a node with height h = 0 (i.e.,
a leaf node). If node n0 is honest, then it knows the value Xn0 = rn0 and can compute
the necessary authentication tags for its grandparent. If node n0 is dishonest, then its
parent, n1, at height 1 must be honest. Node n1 receives Xn0 = rn0 directly from each
of its children and can verify that rn0 is a valid sensor reading for each of its children.
Therefore, node n1 can correctly compute Xn1 . and the necessary authentication tags for
its grandparent.

For the purpose of strong induction, assume that any honest node nj at height j, for
0 ≤ j ≤ h − 1 can correctly compute Xnj

and the associated authentication tags, as well
as Xnj−1

for any child nj−1.

Let nh be an honest node at height h > 1 in the aggregation tree. Without loss of
generality, let node nh−1 be a child of node nh, and, if it exists, let node nh−2 be a child of
node nh−1.

• If nodes nh−1 and nh−2 are honest, then node nh correctly learns Xnh−2
(if it exists)

and rnh
.

• Otherwise, one (but not both) of nh−1 or nh−2 are dishonest.

– If node nh−1 is dishonest, then:

∗ If nh−1 is a leaf, then rnh−1
= Xnh−1

and node nh can directly verify that
the reading is valid.

∗ If nh−1 is not a leaf, then all of its children must be honest. By induction,
the aggregate total computed by Xnh−2

for the subtree rooted at nh−2 is
correct. If tnh−2,nh

6= MACknh−2,nh
(Xnh−2

), then node nh outputs reject.
Otherwise, the received value of Xnh−2

is correct. If the received value
rnh−1

is not valid, then node nh outputs reject. Otherwise, node nh has
knowledge of correct values of Xnh−2

and rnh−1
.

– If node nh−1 is honest, then node nh−2 is dishonest. By induction, node nh−1
correctly learns Xnh−1

and Xnh−2
. If MACknh−2,nh

(Xnh−2
), then node nh outputs

reject. Because node nh−1 is honest, the received value Xnh−2
is correct and

rnh−1
is valid. Therefore, node nh correctly learns Xnh−2

and rnh−1
.

In each case, if node nh does not output reject, then for each grandchild nh−2, node nh
correctly learns Xnh−2

, and for each child nh−1, node nh correctly learns rh−1. Therefore,
for any child nh−1, node nh can correctly compute Xnh−1

as the sum of all aggregate totals

155

from grandchildren rooted at node nh−1 plus the reading of rnh−1
. Similarly node nh can

correctly compute Xnh
as the sum of all aggregate totals from its children, plus its own

individual reading rnh
.

Analysis

The “optimal k = 1” tree-based protocol has the same message structure as the linear
protocol. More specifically, the linear protocol can be viewed as a special case of the tree
based protocol, with a single leaf, and each non-leaf node having exactly one child. Each
node forwards its reading, an aggregate total, authentication information from one hop
back, and authentication information for two hops forward. Therefore, the total number
of messages is the same as in the linear case; approximately 4N messages total. The
difference lies in the number of messages sent by each individual node. If a node has c
children, then it must forward c subtree aggregates and c authentication tags to its parent.
This increase in communication is balanced by the fact that for each path that merges,
there is an extra leaf node in the network that is only required to send two messages. For
example, the simple tree in Figure 5.15 has a single merge point where three linear subtrees
come together, and therefore contains three leaf nodes. The two additional leaves send two
fewer messages than most others in the network, but the as a result the merge node is
required to send an additional two messages for each path it merges. This imbalance in
communication cost in addressed in Section 5.10 through the use of multiple aggregation
trees.

5.8 Linear Sub-Networks in Random Topologies

The performance of a tree-based aggregation protocol is highly dependent on the structure
of the underlying tree. The linear-based protocols presented in this chapter perform best
when a network can be naturally modeled as a set of linear networks that occasionally
merge, while the more traditional tree-based approaches perform best when aggregating
over a balanced tree whose depth is logarithmic in the total number of nodes. The goal
of this section is not to establish the “best” aggregation model, but to explore viable
possibilities with the goal of establishing linear networks as a natural sub-topology in
many settings.

As a starting point, consider the random network depicted in Figure 5.17. The network
consists of 100 nodes distributed randomly in a unit square. The base station is located
near the top-left corner, and two nodes are connected if the distance between them is less

156

Total Length: 6.96 Total Length: 16.01
Depth: 40 Depth: 8
Leaves: 25 Leaves: 50

Non-Merge: 52 Non-Merge: 26
Merge points: 23 Merge points: 24

Figure 5.17: A comparison of a Euclidean minimum spanning tree and a breadth-first
spanning tree generated from a random breadth-first traversal of nodes distributed in a
unit square. Two nodes are connected with a grey line if they are within each other’s
communication range.

than or equal to 0.2. The left figure depicts a Euclidean minimal spanning tree (MST),
which connects all nodes in the network to the base station using the shortest possible
total Euclidean distance. If all nodes are to participate in an aggregation protocol, and
if the energy needed to transmit a message is proportional to the distance it must travel
(i.e., nodes can intentionally broadcast at a lower power if they know their neighbor is
close), then the MST represents the topology capable of aggregating all messages using
the least amount of total energy. The energy cost for each node is proportional to the
distance between itself and its parent in the MST. Although the MST is efficient, there are
several drawbacks that may make it unsuitable in some scenarios. Namely, the individual
sensor nodes must have some mechanism for determining and disseminating the MST,
there is no control over the depth and degree of nodes within the tree, and the resulting

157

communication pattern may be considered counterintuitive. For example, the longest path
in the MST in Figure 5.17 is 40 hops, and terminates at a node that is only 2 hops away
from the base station in the underlying communication graph.

The right portion of Figure 5.17 depicts a random breadth-first search (BFS) of the
network. Such a traversal is generated by starting at the root and adding each a link
to each unvisited neighbor, then marking it as visited. The process is repeated for each
newly visited node in a random order, thus growing the height of the tree by one each
iteration. This process replicates the common technique of constructing an aggregation
tree by broadcasting a “HELLO” message. Each node that receives such a message chooses
the sender as its parent in the aggregation tree, and rebroadcasts the message to inform its
children, if any exist, that it can serve as a route back to the base station. The resulting
tree in Figure 5.17 can be seen as a natural method of constructing a spanning tree over
a random network, and, unlike the MST, each node lies along a short path to the base
station. The depth of the tree is 8, but total length (and resulting energy consumption) is
over twice that of the MST.

Aside from the individual characteristics considered above, the MST and BFS tree in
Figure 5.17 differ greatly in expected degree of each node. The MST can be viewed as
several linear networks that occasionally merge. In this case, every merge point in the
network consists of exactly two paths merging into one. The BFS tree consists of many
shorter paths that frequently merge, often with more than two paths merging at the same
point. The structure of Euclidean spanning trees in random graphs has been studied
before, and characteristics of the single random network considered here are typical of the
expected structure of a MST in general. Steele et al. [100] have shown that the probability
that a given node has a specific degree in the MST converges to a constant. Using a Monte
Carlo simulation they estimate that these probabilities converge to the following:

Pr[degree(ni) = 1] = 0.221
Pr[degree(ni) = 2] = 0.566
Pr[degree(ni) = 3] = 0.206
Pr[degree(ni) = 4] = 0.007
Pr[degree(ni) ≥ 5] = 0.000

In other words, over 78% of the nodes in the MST of a random network are expected to
occur on a linear path (degree 1 or 2), and with high probability, the remaining nodes are
merge points where only two paths come together. This observation also suggests that
the MST is unlikely to be of logarithmic depth, and therefore may not be an ideal choice
for many tree-based algorithms. It has since been proven that an MST always exists with

158

maximal degree D ≤ 4 [94]. The same paper also demonstrates that while determining a
bounded-degree spanning tree for D ≤ 3 is known to be NP-Hard (with the D = 2 case
being the traveling salesman problem) the D ≥ 4 case is solvable in polynomial time.

The problem of balancing the efficiency of minimum spanning trees with the depth of
shortest-path trees has been studied by Khuller and Raghavachari [56], who provide an
algorithm that takes a MST and a shortest path tree as input, and outputs a tree which
combines the two according to a parameter γ, which controls the balance between minimiz-
ing the total length of the network and the length of individual paths in the resulting tree.
Figure 5.18 demonstrates this balance visually. The MST of the depicted Euclidean graph
has the same issue as the MST in Figure 5.17, where a node located near the base station
ends up routing its messages over a long path. Sub-figure (d) demonstrates a balance
between the shortest path tree and MST in which messages are routed in a more natural
manner.

An alternative approach to providing a more natural communication pattern is to model
nodes as points in a directed Euclidean graph, where a directed edge connects two nodes
if they are within a fixed distance of each other, and if the edge points towards the base
station. Such graphs are often referred to as drainage networks, as they can be used to
model the flow of small streams of water as they flow and collect into a reservoir or basin.
The use of such graphs was introduced in the context of radio communication by Bhatt
and Roy [7], who consider the problem of propagating a radio transmission that originates
at a base station and travels only in the positive quadrant originating at each node. Their
goal was to study to properties of the minimum directed spanning tree (MDST) of such a
network. Figure 5.19 shows an example of a MDST from their paper.

The theory of MDSTs is not well studied, but they form an interesting model for the
ideal communication structure of a random network. The MDST is the communication
structure with smallest total length such that each hop ensures a message moves geograph-
ically closer to its destination. Simple inspection of Figure 5.19 also reveals that linear
subnetworks naturally arise in such a tree, and, aside from the base station, the num-
ber of paths converging tends to be small. Penrose and Wade [85] have also studied the
properties of MDSTs, and the random networks depicted in their work also show similar
behavior. Their work does establish that, unlike the regular Euclidean MST, there is no
upper bound on the degree of a node in a MDST. Nevertheless, MDSTs appear to be an
appealing communication structure for random sensor networks, and they appear to have
significant linear substructure and merge points of low degree.

159

Figure 5.18: A balance between the MST and the shortest path tree in a Euclidean network.
Figure taken from Khuller et al. [56].

5.9 Comparison to Previous Approaches

Having explored multiple aggregation topologies that can arise in a sensor network, we
now compare the performance of the linear-based approaches in this chapter with the
hierarchical approaches discussed in Section 5.1.4.

The table in Section 5.6 summarizes the communication cost of linear-based protocols
when aggregating over a simple linear topology. These approaches can be used to aggregate
over an arbitrary tree by considering multiple overlapping linear subnetworks and running
the protocol once over each. Each leaf in the tree incurs a lower communication cost, as it
does not need to route any messages from its descendants, but instead shifts these messages
from itself to the first merge point in the network, where two linear networks overlap and
must run the linear protocol twice. If merges are infrequent and of low degree (i.e., only

160

Figure 5.19: A minimum directed spanning tree. A link is only included when it lies in the
positive quadrant originating at the sender. Figure taken from Bhatt and Roy [7].

two paths are merging), then the expected overhead when paths merge is at most double
the cost of the linear protocol.

If multiple aggregation topologies are available, then load balancing across multiple
runs of the protocol is possible. If nodes are able to alternate between acting as a leaf node
and acting as a merge node, then, across multiple runs of the protocol, the amortized com-
munication cost will approach that of the protocol when used on a simple linear network.
Section 5.10 discusses techniques for accomplishing this.

Hu and Evans (HE)

Recall the HE protocol [49]. Each leaf node sends a message containing its ID, its reading,
and a MAC to its parent. Each non-leaf node forwards its children’s readings and MACs, as
well as a MAC on the aggregate total of its children. Nodes do not possess the appropriate
keys to verify any MAC at this time. Once aggregation completes, the base station reveals
the keys and each node can verify the MACs that it received are correct. If no node raises
an error, then the aggregation result is considered correct. This approach is essentially the
same process used by the k = 1 protocol in this chapter. Each node provides authentication

161

information to its grandparent that allows for malicious activity by a parent to be detected.
The main difference between the linear and HE approaches lies in the key pre-distribution
scheme used. The HE protocol uses an authenticated broadcast primitive to synchronize
and later reveal session keys for each run of the protocol, while the linear approaches assume
that nearby nodes have the necessary keys pre-loaded which is a natural assumption for
the full-control deployment nature of linear networks.

1. The linear and HE approaches have similar communication costs for aggregation, but
differ in the verification phase. The linear protocols provide real-time detection of
malicious behavior while the HE protocols require a separate verification phase. The
HE verification phase would be piggybacked on the next aggregation request that
propagates across the network and therefore does not add significant communication
overhead when the protocol is run multiple times. Nodes are required to cache
messages until verification is complete.

2. The HE protocol only aggregates readings from leaf nodes in the aggregation tree,
while the linear approaches assume all non-leaf nodes contribute a reading. It is
likely possible to modify the HE protocol to allow aggregating nodes to contribute a
reading, but the problem was not considered in the original proposal.

3. The HE protocol only considers non-consecutive malicious nodes (k = 1), while the
linear protocols generalize naturally. The HE protocol could be extended in a similar
manner, but it would also require nodes to cache all additional messages until the
verification phase.

Chan, Perrig, Song (CPS)

The CPS protocol works by computing a hash over the aggregation tree, which is then
disseminated to all nodes via an authenticated broadcast. Each node recomputes the root
of the hash tree using its own input to verify that it was included in the result. This
process requires each node to learn the computed values of all siblings of the nodes on the
path from itself to the root. For a properly constructed tree, this can be accomplished
using O(lg n) communication per node. In general, the communication cost depends on
both the depth of a node, and the degree of each node along the path from itself to the
root. Communication cost is not uniform across the network, as nodes further from the
root require more information to compute the result.

The aggregation commitment phase of the CPS protocol requires an aggregate subtotal
and an authentication tag to propagate upwards in the network, which requires a pair

162

of messages from each node to be sent to its parent. The confirmation phase is similar,
with only a single message needed per node. The aggregation verification phase is more
complicated.

Recall the network in Figure 5.17. The minimum spanning tree of this network is
not a balanced tree, while the BFS spanning tree is somewhat balanced and matches the
aggregation topology expected by the CPS protocol. In the BFS tree, the bottom right
node is at depth 8, and, if a virtual leaf node is added to each non-leaf non-root node, the
path from it to the root contains 19 off-path nodes. Therefore, this node must receive 19
messages of the form (Xi, ti) where Xi is a subtree aggregate, and ti is an authentication
tag in order to perform verification. Across all phases of aggregation, the furthest nodes
in a network such as the one in Figure 5.17 incur over 20 messages per node. This cost
decreases linearly as nodes get closer to the base station, with a minimum of 5 messages
(2 aggregation commit messages, 2 verification messages, and 1 confirmation message) in
the best case.

By design, the CPS protocol does not detect malicious activity until the confirma-
tion phase; however, the CPS protocol can detect malicious behavior from any number
of malicious nodes. A single malicious node has the ability to lie during confirmation,
thus invalidating the entire result on its own. Such denial of service attacks are usually
considered outside the scope of an aggregation protocol, as they are readily detected and
can be addressed via other means. The linear protocols detect malicious behavior as it
occurs, thus allowing a protocol to be aborted early to save energy, and also reveal the
possible malicious nodes within a reasonably small radius in the network. The trade-off
for such an approach is an upper bound on the number of connected malicious nodes. The
linear protocols can protect against a large number of malicious nodes but they require
that honest nodes exist with sufficient frequency to detect any misbehavior.

The linear approaches compare favorably to the CPS protocol for small values of k. For
example, consider the MST in Figure 5.17 with k = 1. The communication requirement
is 2 messages per leaf, 4 messages per non-merge node, and 6 messages per merge node.
The worst-case congestion in the MST using the linear protocol is similar to the best case
communication using the CPS protocol. For larger values of k, the resulting increase in
communication overhead for merge points (and the nodes following them) can be computed
from the formulas in Figure 5.1.

163

5.10 Grid-Based Networks and Load Balancing

The technique used in this chapter to translate a linear aggregation protocol to a tree-
based aggregation protocol decomposes a tree into multiple overlapping linear networks.
In a simple linear network, almost every node is a non-endpoint in the network and incurs
the same communication cost. In a tree, a large number of leaves exist, each of which is
the origin of a path that will eventually be merged in the aggregation tree. The additional
authentication messages that would have been handled by a node in a simple linear network
are instead shifted to the nearest merge point, where two linear subnetworks overlap.
In this section we present some preliminary techniques that can be used to balance the
communication cost across multiple runs of the protocol.

Figure 5.20: A simple grid-based sensor network and a trivial linear spanning tree. The
square node denotes the base station.

Simple linear networks represent the simplest non-trivial network topology for aggrega-
tion. Despite their simplicity, they arise naturally, both due to linear deployment patterns
and as important subnetworks in many settings. Another common deployment pattern is
to place sensor nodes regularly in a grid pattern over a two-dimensional area. Such deploy-
ment patterns are called grid networks, and represent a natural communication structure
for monitoring a square or rectangular area. The symmetric nature of grid-based deploy-
ments also makes it easy to define small families of spanning trees that balance the per-node
communication cost of aggregation over multiple runs of the protocol.

Figure 5.20 demonstrates a simple grid based network and a trivial linear spanning
tree. Provided that nearby nodes share the appropriate keys, such a spanning tree allows

164

Figure 5.21: A pair of spanning trees for a grid network with communication range d = 1,
where each merge node in one tree is a leaf node in the other.

for linear protocols to be used without modification. Figure 5.21 demonstrates a pair
of spanning trees that are not linear and have much lower depth than the trivial linear
spanning tree. This pair of trees has the property that all communication takes place with
nodes at distance d = 1, and any node that acts as a merge point for two paths in the
first tree is a leaf in the second tree. Therefore, over multiple runs of the protocol, the
additional overhead of merging paths of offset by the reduced communication cost of acting
as a leaf node. Figure 5.22 shows a second possible family of spanning trees if nodes are
able to communicate over a distance of at least d = 1.5 to their diagonal neighbors in the
grid. In each case, nearby nodes must have the appropriate shared keys in each spanning
tree to enable resilient aggregation.

The problem of load balancing across multiple runs of a protocol is not unique to the
tree-based approaches presented in this chapter. The CPS protocol suffers from a similar
problem, where the deeper a node is in the tree, the greater the number of messages
required for it to verify that its reading appears in the final aggregate. It was argued in
Section 5.8 that linear subnetworks play an important role in many general settings, and an
overview of several techniques for generating an aggregation tree was considered. The load
balancing issue, both in the protocols presented here and in other protocols, such as the
CPS protocol, suggest an interesting direction for future work in spanning tree research:
generating multiple spanning trees over the same network with certain nice properties,
that also satisfy certain constraints. For example, it may be desirable to have a family of
trees where the average degree or the average depth of each node is constant across the

165

Figure 5.22: A pair of spanning trees for a grid network with communication range d = 1.5,
where each merge node in one tree is a leaf node in the other.

family, such that each tree is also a good approximation of a minimal spanning tree. The
use of multiple base stations is likely to make this problem easier. For example, placing
base stations at each corner and the center of a square network and then computing the
minimum spanning tree rooted at each of these base stations may result in a set of spanning
trees that would balance load over multiple runs of an aggregation protocol.

5.11 Group-Based Aggregation for Grid Networks

The previous section examined some simple pairs of spanning trees that allow for load-
balanced aggregation in a grid topology using tree-based aggregation. These protocols
inherit the same key requirements and adversarial assumptions as the original protocol,
where all nodes at distance d ≤ k+1 in the tree must have unique pairwise keys shared with
each other in order to protect against up to k connected malicious nodes in the aggregation
tree. The group-based protocol allows for a different set of adversarial assumptions, where
a majority of nodes in any given subgroup are required to be honest. This protocol can
also be extended naturally to a grid-based setting with little modification.

At its core, the group-based protocol simply utilizes the broadcast nature of communi-
cation to perform a public vote. If a majority of the received messages are identical and
a majority of the nodes are honest, then that message must be correct. The fixed nature
of deployment in a linear network allowed for a simple selection of groups and subgroups

166

that exploit this fact to propagate an updated aggregate total, one subgroup at a time,
towards the base station. Grid networks also provide a natural mapping into groups and
subgroups if the communication range is large enough.

Given a grid network, let 2r be the largest integer such that all nodes within a 2r× 2r
sub-grid are within each other’s communication range. Each of these 2r × 2r sub-grids
defines a group which can be partitioned into four r× r subgroups. If the entire network is
partitioned into groups of this form, each possessing a group key, then any pair of adjacent
subgroups have a group key in common, and any node in these subgroups can broadcast
to all members of both subgroups in a single message. Figure 5.23 demonstrates this for a
network where r = 2.

Figure 5.23: A grid network partitioned into groups of size 4×4, and subgroups of size 2×2.
The right figure shows a possible aggregation topology for the group-based aggregation
protocol.

In order to perform aggregation, nodes perform in-group aggregation to learn the sub-
group aggregate total, and then broadcast the result using the appropriate group key. If
two paths of subgroups merge, the nodes in the subgroup performing the merge simply
run the protocol once for each path, and combine them together when broadcasting the
updated aggregate total. If necessary, load balancing can be achieved using balanced fam-
ilies of aggregation trees, as discussed in Section 5.10. This approach is resilient as long
as a majority of nodes in each subgroup are honest. In other words, the group-based ag-
gregation protocol can detect up to b r2−1

2
c malicious nodes in any subgroup, regardless of

their physical layout in the underlying topology.

167

5.12 Summary and Remarks

This chapter presented three resilient aggregation techniques for linear topologies based
on three natural key pre-distribution schemes for linear networks. These protocols were
designed with a minimal set of assumptions and protect against small subsets of malicious
nodes by relying on nearby honest nodes to exchange enough information to verify all in-
termediate nodes have behaved correctly. When pairwise keys are available, this approach
incurs overhead proportional to k, the maximum number of connected malicious nodes. If
nodes have long communication range and can transmit messages directly to their intended
receiver, then the protocols incur a communication overhead that is linear in k. Other-
wise, authentication information must be routed over multiple hops, reaching a maximum
overhead that is quadratic in k. Group-based aggregation exploits the broadcast nature
of communication and performs aggregation using a consensus-based approach. In each
case, malicious behavior is detected as it occurs, instead of during a second verification
phase. This real-time detection allows for early termination of the protocol if malicious
activity occurs. For each protocol a proof of correctness is provided, and a precise analysis
of communication overhead was computed.

Following the development of aggregation protocols for linear topologies, a method
of generalizing the approach to more general networks was discussed. It was established
that linear networks arise naturally in a variety of settings, and that many aggregation
trees can be characterized as a small set of linear networks that occasionally merge, rather
than a somewhat balanced tree of logarithmic depth. Traditional hierarchical aggregation
approaches assume a balanced tree, while the protocols considered here perform well in
the opposite case.

A key weakness of some aggregation protocols, including those presented here, was
identified. Namely, that the per-node cost of aggregation is not uniform. Methods of
addressing this problem for tree-based protocols in the context of a grid topology were
discussed, and the more general problem of constructing a family of spanning trees that
naturally provide load balancing was identified. This problem motivates future research in
the area that is of both theoretical and practical interest. It was also demonstrated that
the group-based aggregation protocol for linear networks can be naturally extended to
grid-based networks without significant modification, which allows for extremely efficient
aggregation in settings where each node can broadcast to a large group.

168

Chapter 6

Conclusion

This thesis presented a family of protocols that span the lifetime of a sensor network. In
order to efficiently facilitate secure communication between nodes after deployment, we
used a key pre-distribution scheme to issue a small number of symmetric keys to nodes
during the pre-deployment phase. In particular, we presented a new family of flexible key
pre-distribution schemes based on transversal designs. Many combinatorial design-based
schemes, including transversal design-based schemes, suffer from strict constraints on the
selection of network parameters. The new schemes presented in this thesis address this
problem directly by decomposing a transversal design of strength t into several copies of a
lower-strength design. Utilizing the theory of partially balanced t-designs, we demonstrated
how to derive performance metrics for a KPS built from any subset of these lower-strength
designs. Experimental results were included that demonstrate that choosing fixed-size
subsets using lower-strength designs, or choosing random subsets of any size, both closely
approximate the performance of the KPS where all nodes are included, as long as the
subset is sufficiently large.

The technique of decomposing a design-based KPS into smaller pieces increases flexi-
bility and could be applied to designs other than transversal designs. Similarly, the idea of
nesting designs, such as in the MS-KPS, is worth pursuing further. Simple Blom schemes
were considered for the inner KPS, but it is possible that other schemes might provide use-
ful functionality. A greater understanding of the trade-off between the increase in storage
and computation versus the increase in resilience as KPSs are nested poses and interesting
direction for future work. In particular, a comparison of the quadratic scheme and the
linear MS-KPS using a Blom scheme would be useful.

The decomposable schemes utilized the natural sub-structure of transversal designs.

169

A design of strength t can be decomposed into p copies of a design of strength t − 1.
Decomposing the design in this manner retains enough structure to use results on partially
balanced t-designs to analyze the connectivity. A drawback to this approach is that no two
blocks within a single Bi from the resolution intersect, thereby lowering the connectivity
of the network when a small number of them are deployed. A possible direction for future
work is to investigate other deterministic methods for selecting subsets of a transversal
design such that even small subsets of the network closely approximate the performance
of the entire design. Similarly, other families of designs may be decomposable in a manner
that yields better performance for deterministic subsets.

Linear key pre-distribution schemes, such as the strength 2 designs considered in this
thesis, have a particularly useful property: any given pair of keys is issued to exactly one
node. In other words, by proving possession of two specific keys, a node can prove its entire
list of keys. This property was utilized to solve the network discovery problem, one of the
main problems during the setup phase of the network. We presented a collaborative pro-
tocol where nodes directly verify keys with their neighbors and then cast “votes” publicly
to inform their neighbors of the result. Each node records the votes locally and applies an
“accept rule” to determine if there is enough information to accept the identity of a node
as correct. As nodes accept or reject the identity of their neighbors, they broadcast the
result to inform other nodes of the outcome. By repeating this process, knowledge of the
network propagates and continues to grow. As long as an honest majority exists for each
vote, a malicious node cannot inject false routing information without detection. Because
this approach propagates the complete network topology, it can be used to establish mul-
tiple node-disjoint paths, thereby enabling the use of secure multi-path protocols, whose
security relies on the existence of such paths.

The network discovery protocol considered here requires specific constraints on the
capability of sensor nodes. Without any prior knowledge of the topology or public-key
infrastructure, assumptions about the communication range of nodes, and their ability to
computer fingerprints and directional information on incoming messages was necessary.
These assumptions were used to build a set of sufficient conditions to securely discover
neighbors, but no proof was given that these conditions were necessary. It would be
interesting to demonstrate that these assumptions necessary, or to eliminate them if they
are not.

Sensor networks have found many applications in settings where the communication
topology is inherently linear. Even in settings where the underlying topology is not linear,
nodes are typically concerned with efficiently routing information towards the base station,
which generally takes place along a linear subnetwork. Other important communication
structures, such as many types of spanning trees, naturally contain long linear subnetworks

170

or can be characterized as sets of linear networks that occasionally merge. Targeting the
operational phase of a sensor network, we presented three approaches to data aggregation
in linear networks, each based on a specific natural key pre-distribution scheme for linear
networks. These protocols allow for data to be aggregated hop-by-hop as it moves towards
the base station, preventing an adversary from modifying the aggregate total by more than
a single sensor reading without detection. We then demonstrated how this approach can be
adapted to work in more general network settings without incurring significant overhead.
This approach works well for networks with aggregation trees that are unbalanced or have
merge points of low degree. Many tree-based approaches have worse-case performance in
linear networks and are intended for use in settings where the aggregation topology is a
nearly balanced tree.

The investigation of linear subnetworks identified some interesting research problems.
In particular, a method for computing a family of spanning trees that balance communi-
cation cost across multiple executions of an aggregation protocol would be useful. Some
simple examples were presented for grid networks, but the general problem has applications
for both linear and traditional hierarchical approaches. A better understanding of how to
generate spanning trees that are subject to specific constraints, particularly for random
topologies, is likely have interesting applications for sensor network research.

The aggregation protocols considered here were concerned with resilience, but not with
privacy. In some settings it may be desirable for aggregation to both private and resilient,
such that individual readings, or even the aggregate total itself, are not revealed to any
node, except for the base station. Adapting the protocols considered here to provide
privacy is difficult, as they explicitly rely on nearby nodes to ensure readings are valid.

171

APPENDICES

172

Appendix A

Summary of Notation

N A sensor network

N network size

ni, (1 ≤ i ≤ N) a node in N
ki,j, (1 ≤ i, j ≤ N) key shared by ni and nj

C # common shared-key neighbors of ni and nj

Ni, (1 ≤ i ≤ N) neighborhood of node ni

KPS Key Pre-distribution Scheme

K set of all keys in the KPS

v total number of keys |K|
k number of keys stored by a node

Pr1 probability that two nodes have a common key in
a given KPS

Pr2 probability that two hop path exists when two
nodes do not share a key

fail(s) probability a link in the network is compromised
after s nodes are compromised

η intersection threshold (min. # shared keys)

ρ connectivity / resilience trade-off Pr1
fail(1)

Designs

X set of points

173

A collection of blocks

v number of points |X|
b number of blocks |A|
r degree of points in a regular design

k rank of blocks in a uniform design

λ block intersection size

t strength of a transversal design

H a partition of X (k groups of size n)

p a prime or prime power

α number of links a block is contained in

β number of links a block breaks

L total number of links

µ′ number of other blocks containing a given point

Aggregation

ri sensor reading of node ni

R upper bound on sensor readings

R the set of valid sensor readings {0, 1, . . . , R}
M the set of malicious sensor nodes

mi a malicious sensor node (replaces ni)

d max communication distance of a node

r key sharing “radius” for linear network KPSs

ki,j pairwise key between nodes ni and nj

k max number of consecutive malicious nodes

Xi aggregate total for the first i nodes or subgroups

ti,j authentication tag (MAC) computed using ki,j

Gi a group with leftmost node is node ni

si a subgroup (see Figure 5.11)

Yi aggregate total for subgroup i

174

Appendix B

Data Tables

Table B.1: Resilience of random KPSs derived from a
TD(2,15,71). This data was used to generate Figure 3.2.

l fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)
2 0.013749 0.000642 0.011989 0.015357
3 0.013660 0.000381 0.012879 0.014684
4 0.013687 0.000278 0.013134 0.014481
5 0.013702 0.000234 0.013158 0.014362
6 0.013704 0.000179 0.013294 0.014108
7 0.013676 0.000140 0.013338 0.014077
8 0.013687 0.000136 0.013356 0.014063
9 0.013707 0.000109 0.013418 0.013950
10 0.013690 0.000094 0.013476 0.013964
11 0.013682 0.000077 0.013505 0.013850
12 0.013698 0.000071 0.013552 0.013897
13 0.013696 0.000068 0.013517 0.013836
14 0.013685 0.000058 0.013558 0.013820
15 0.013691 0.000055 0.013528 0.013841
16 0.013685 0.000055 0.013586 0.013830
17 0.013694 0.000053 0.013583 0.013862
18 0.013692 0.000044 0.013579 0.013800
19 0.013694 0.000042 0.013602 0.013808
20 0.013694 0.000042 0.013582 0.013812

175

Table B.1: (continued)

l fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)
21 0.013693 0.000037 0.013588 0.013780
22 0.013694 0.000033 0.013602 0.013792
23 0.013687 0.000034 0.013603 0.013760
24 0.013693 0.000031 0.013632 0.013780
25 0.013692 0.000025 0.013614 0.013746
26 0.013690 0.000026 0.013592 0.013749
27 0.013690 0.000025 0.013631 0.013743
28 0.013692 0.000021 0.013630 0.013737
29 0.013691 0.000019 0.013633 0.013730
30 0.013688 0.000019 0.013639 0.013729
31 0.013693 0.000020 0.013655 0.013749
32 0.013693 0.000018 0.013645 0.013732
33 0.013693 0.000016 0.013661 0.013752
34 0.013693 0.000016 0.013659 0.013737
35 0.013695 0.000014 0.013667 0.013724
36 0.013691 0.000014 0.013655 0.013727
37 0.013694 0.000012 0.013664 0.013725
38 0.013694 0.000015 0.013664 0.013735
39 0.013693 0.000012 0.013662 0.013726
40 0.013691 0.000012 0.013668 0.013720
41 0.013693 0.000011 0.013668 0.013726
42 0.013695 0.000013 0.013664 0.013726
43 0.013693 0.000010 0.013674 0.013725
44 0.013693 0.000009 0.013664 0.013712
45 0.013692 0.000008 0.013673 0.013715
46 0.013694 0.000007 0.013679 0.013715
47 0.013693 0.000007 0.013679 0.013709
48 0.013693 0.000008 0.013676 0.013715
49 0.013693 0.000007 0.013676 0.013710
50 0.013693 0.000007 0.013673 0.013710
51 0.013694 0.000005 0.013682 0.013709
52 0.013693 0.000006 0.013679 0.013705
53 0.013694 0.000005 0.013683 0.013707
54 0.013694 0.000005 0.013681 0.013704
55 0.013694 0.000004 0.013683 0.013707

176

Table B.1: (continued)

l fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)
56 0.013693 0.000004 0.013683 0.013703
57 0.013693 0.000004 0.013681 0.013706
58 0.013693 0.000003 0.013683 0.013704
59 0.013693 0.000003 0.013684 0.013698
60 0.013693 0.000003 0.013685 0.013700
61 0.013693 0.000002 0.013688 0.013698
62 0.013693 0.000002 0.013688 0.013700
63 0.013693 0.000002 0.013687 0.013702
64 0.013693 0.000002 0.013689 0.013697
65 0.013693 0.000001 0.013689 0.013697
66 0.013693 0.000001 0.013690 0.013697
67 0.013693 0.000001 0.013691 0.013696
68 0.013693 0.000001 0.013692 0.013695
69 0.013693 0.000000 0.013692 0.013694
70 0.013693 0.000000 0.013693 0.013694
71 0.013693 0.000000 0.013693 0.013693

Table B.2: Connectivity of random KPSs derived from a
TD(2,15,71). This data was used to generate Figure 3.2.

l fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)
1 0.208129 0.008217 0.185111 0.228169
2 0.208647 0.003964 0.197283 0.218659
3 0.208178 0.002706 0.202719 0.215121
4 0.208296 0.001944 0.204200 0.213159
5 0.208403 0.001608 0.204138 0.212795
6 0.208455 0.001297 0.204861 0.211721
7 0.208241 0.001010 0.205467 0.210976
8 0.208214 0.000963 0.205741 0.210926
9 0.208424 0.000790 0.206175 0.210355
10 0.208313 0.000695 0.206834 0.210374

177

Table B.2: (continued)

l P r1(mean) Pr1(std. dev.) Pr1(min) Pr1(max)
11 0.208234 0.000541 0.206914 0.209409
12 0.208359 0.000501 0.207433 0.209764
13 0.208359 0.000477 0.207073 0.209418
14 0.208284 0.000427 0.207436 0.209333
15 0.208332 0.000422 0.207219 0.209515
16 0.208267 0.000397 0.207473 0.209335
17 0.208340 0.000391 0.207518 0.209341
18 0.208324 0.000329 0.207455 0.209105
19 0.208339 0.000311 0.207681 0.209109
20 0.208333 0.000309 0.207523 0.209267
21 0.208333 0.000277 0.207566 0.209007
22 0.208340 0.000243 0.207638 0.209064
23 0.208282 0.000248 0.207686 0.208775
24 0.208336 0.000230 0.207860 0.208999
25 0.208327 0.000184 0.207737 0.208744
26 0.208307 0.000198 0.207572 0.208763
27 0.208309 0.000186 0.207903 0.208706
28 0.208322 0.000160 0.207863 0.208648
29 0.208314 0.000145 0.207887 0.208595
30 0.208295 0.000146 0.207896 0.208618
31 0.208337 0.000148 0.208046 0.208760
32 0.208330 0.000136 0.207953 0.208620
33 0.208334 0.000125 0.208096 0.208799
34 0.208331 0.000122 0.208052 0.208685
35 0.208344 0.000109 0.208120 0.208560
36 0.208318 0.000109 0.208046 0.208621
37 0.208338 0.000094 0.208113 0.208588
38 0.208338 0.000114 0.208114 0.208655
39 0.208330 0.000089 0.208108 0.208568
40 0.208316 0.000091 0.208140 0.208556
41 0.208336 0.000086 0.208144 0.208569
42 0.208345 0.000098 0.208104 0.208569
43 0.208331 0.000074 0.208187 0.208585
44 0.208334 0.000065 0.208109 0.208480
45 0.208328 0.000060 0.208179 0.208492

178

Table B.2: (continued)

l P r1(mean) Pr1(std. dev.) Pr1(min) Pr1(max)
46 0.208335 0.000053 0.208232 0.208499
47 0.208334 0.000053 0.208223 0.208458
48 0.208331 0.000058 0.208205 0.208499
49 0.208330 0.000050 0.208211 0.208460
50 0.208332 0.000051 0.208178 0.208459
51 0.208339 0.000041 0.208246 0.208457
52 0.208332 0.000042 0.208226 0.208426
53 0.208338 0.000034 0.208256 0.208440
54 0.208339 0.000036 0.208245 0.208418
55 0.208336 0.000033 0.208255 0.208437
56 0.208333 0.000030 0.208256 0.208410
57 0.208334 0.000028 0.208241 0.208427
58 0.208329 0.000026 0.208255 0.208417
59 0.208331 0.000023 0.208262 0.208371
60 0.208332 0.000021 0.208273 0.208386
61 0.208333 0.000017 0.208295 0.208371
62 0.208335 0.000017 0.208291 0.208387
63 0.208334 0.000016 0.208285 0.208397
64 0.208332 0.000012 0.208301 0.208361
65 0.208332 0.000010 0.208305 0.208360
66 0.208332 0.000009 0.208312 0.208360
67 0.208333 0.000007 0.208316 0.208358
68 0.208334 0.000005 0.208321 0.208347
69 0.208333 0.000003 0.208324 0.208343
70 0.208333 0.000002 0.208329 0.208339
71 0.208333 0.000000 0.208333 0.208333

179

References

[1] Kemal Akkaya and Mohamed F. Younis. A survey on routing protocols for wireless
sensor networks. Ad Hoc Networks, 3(3):325–349, 2005.

[2] Ian F. Akyildiz, Wei Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless
sensor networks: A survey. Comput. Netw., 38(4):393–422, 2002.

[3] Jamal N. Al-Karaki and Ahmed E. Kamal. Routing techniques in wireless sensor
networks: a survey. Wireless Communications, IEEE, 11(6):6–28, 2004.

[4] Joaquin G. Alfaro, Michel Barbeau, and Evangelos Kranakis. Secure localization of
nodes in wireless sensor networks with limited number of truth tellers. In Commu-
nication Networks and Services Research Conference, 2009. CNSR ’09, pages 86–93,
2009.

[5] Frederik Armknecht, Dirk Westhoff, Joao Girao, and Alban Hessler. A lifetime-
optimized end-to-end encryption scheme for sensor networks allowing in-network
processing. Comput. Commun., 31(4):734–749, 2008.

[6] Joshua Ash and Lee Potter. Sensor network localization via received signal strength
measurements with directional antennas. In Proceedings of the Forty-Second Annual
Allerton Conference on Communication, Control, and Computing, pages 1861–1870,
2004.

[7] Abhay G. Bhatt and Rahul Roy. On a random directed spanning tree. Advances in
Applied Probability, 36(1):19–42, 2004.

[8] Rabindra Bista and Jae-Woo Chang. Privacy-preserving data aggregation protocols
for wireless sensor networks: A survey. Sensors, 10(5):4577–4601, 2010.

180

[9] Simon R. Blackburn, Tuvi Etzion, Keith M. Martin, and Maura B. Paterson. Distinct
difference configurations: Multihop paths and key predistribution in sensor networks.
IEEE Transactions on Information Theory, 56(8):3961–3972, 2010.

[10] Simon R. Blackburn, Keith M. Martin, Maura B. Paterson, and Douglas R. Stin-
son. Key refreshing in wireless sensor networks. In Reihaneh Safavi-Naini, editor,
Information Theoretic Security, volume 5155 of Lecture Notes in Computer Science,
pages 156–170. Springer Berlin Heidelberg, 2008.

[11] Rolf Blom. Non-public key distribution. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, Advances in Cryptology – CRYPTO ’82, pages 231–236.
Springer US, 1983.

[12] Mausumi Bose, Aloke Dey, and Rahul Mukerjee. Key predistribution schemes for
distributed sensor networks via block designs. Designs, Codes and Cryptography,
67(1):111–136, 2013.

[13] Ghalem Boudour, Aubin Lecointre, Pascal Berthou, Daniela Dragomirescu, and
Thierry Gayraud. On designing sensor networks with smart antennas. In 7th IFAC
International Conference on Fieldbuses and Networks in Industrial and Embedded
Systems, pages 349–356, Toulouse, France, 2007.

[14] Stefan Brands and David Chaum. Distance-bounding protocols. In Tor Helleseth,
editor, Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes in
Computer Science, pages 344–359. Springer Berlin Heidelberg, 1994.

[15] Levente Buttyán, László Dóra, and István Vajda. Statistical wormhole detection in
sensor networks. In Refik Molva, Gene Tsudik, and Dirk Westhoff, editors, Secu-
rity and Privacy in Ad-hoc and Sensor Networks, volume 3813 of Lecture Notes in
Computer Science, pages 128–141. Springer Berlin Heidelberg, 2005.

[16] Levente Buttyán, Péter Schaffer, and István Vajda. CORA: Correlation-based re-
silient aggregation in sensor networks. Ad Hoc Netw., 7(6):1035–1050, 2009.

[17] Alvaro A. Cardenas, Tanya Roosta, and Shankar Sastry. Rethinking security proper-
ties, threat models, and the design space in sensor networks: A case study in SCADA
systems. Ad Hoc Netw., 7(8):1434–1447, 2009.

[18] David W. Carman, Peter S. Kruus, and Brian J. Matt. Constraints and approaches
for distributed sensor network security. Technical report, NAI Labs, The Security
Research Division, Network Associates, Inc., 2000.

181

[19] Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik. Efficient
and provably secure aggregation of encrypted data in wireless sensor networks. ACM
Trans. Sen. Netw., 5(3):20:1–20:36, 2009.

[20] Seyit A. Çamtepe and Bülent Yener. Combinatorial design of key distribution mech-
anisms for wireless sensor networks. In Pierangela Samarati, Peter Ryan, Dieter
Gollmann, and Refik Molva, editors, Computer Security - ESORICS 2004, volume
3193 of Lecture Notes in Computer Science, pages 293–308. Springer Berlin Heidel-
berg, 2004.

[21] Seyit A. Çamtepe and Bülent Yener. Combinatorial design of key distribution
mechanisms for wireless sensor networks. IEEE/ACM Transactions on Networking,
15(2):346–358, 2007.

[22] Aldar C-F. Chan and Claude Castelluccia. A security framework for privacy-
preserving data aggregation in wireless sensor networks. ACM Trans. Sen. Netw.,
7(4):29:1–29:45, 2011.

[23] Haowen Chan and Adrian Perrig. Efficient security primitives derived from a secure
aggregation algorithm. In Proceedings of the 15th ACM Conference on Computer
and Communications Security, CCS ’08, pages 521–534, New York, NY, USA, 2008.
ACM.

[24] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution schemes
for sensor networks. In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, SP ’03, pages 197–213, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[25] Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical in-network aggre-
gation in sensor networks. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS ’06, pages 278–287, New York, NY, USA, 2006.
ACM.

[26] Rung-Ching Chen, Chia-Fen Hsieh, and Yung-Fa Huang. A new method for intrusion
detection on hierarchical wireless sensor networks. In Proceedings of the 3rd Inter-
national Conference on Ubiquitous Information Management and Communication,
ICUIMC ’09, pages 238–245, New York, NY, USA, 2009. ACM.

[27] Long Cheng, Chengdong Wu, Yunzhou Zhang, Hao Wu, Mengxin Li, and Carsten
Maple. A survey of localization in wireless sensor network. International Journal of
Distributed Sensor Networks, 2012:1–12, 2012.

182

[28] Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial Designs,
Second Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC,
2006.

[29] Crossbow Technologies. Mica2 datasheet. http://pdf.datasheetarchive.com/

indexerfiles/Datasheet-026/DSA00462855.pdf. Accessed 2015-04-21.

[30] Crossbow Technologies. Mica2Dot datasheet. http://pdf.datasheetarchive.com/
indexerfiles/Datasheet-026/DSA00462856.pdf. Accessed 2015-04-21.

[31] Boris Danev and Srdjan Čapkun. Transient-based identification of wireless sensor
nodes. In Proceedings of the 2009 International Conference on Information Process-
ing in Sensor Networks, IPSN ’09, pages 25–36, Washington, DC, USA, 2009. IEEE
Computer Society.

[32] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message
transmission. J. ACM, 40(1):17–47, 1993.

[33] Dezun Dong, Mo Li, Yunhao Liu, Xiang-Yang Li, and Xiangke Liao. Topological
detection on wormholes in wireless ad hoc and sensor networks. IEEE/ACM Trans-
actions on Networking, 19(6):1787–1796, 2011.

[34] Junwu Dong, Dingyi Pei, and Xueli Wang. A key predistribution scheme based
on 3-designs. In Dingyi Pei, Moti Yung, Dongdai Lin, and Chuankun Wu, editors,
Information Security and Cryptology, volume 4990 of Lecture Notes in Computer
Science, pages 81–92. Springer Berlin Heidelberg, 2008.

[35] John R. Douceur. The sybil attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London, UK, 2002.
Springer-Verlag.

[36] Milica P. Durisic, Zhilbert Tafa, Goran Dimic, and Veljko Milutinovic. A survey of
military applications of wireless sensor networks. In Embedded Computing (MECO),
2012 Mediterranean Conference on, pages 196–199, June 2012.

[37] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for distributed
sensor networks. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS ’02, pages 41–47, New York, NY, USA, 2002. ACM.

[38] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next cen-
tury challenges: Scalable coordination in sensor networks. In Proceedings of the 5th

183

http://pdf.datasheetarchive.com/indexerfiles/Datasheet-026/DSA00462855.pdf
http://pdf.datasheetarchive.com/indexerfiles/Datasheet-026/DSA00462855.pdf
http://pdf.datasheetarchive.com/indexerfiles/Datasheet-026/DSA00462856.pdf
http://pdf.datasheetarchive.com/indexerfiles/Datasheet-026/DSA00462856.pdf

Annual ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom ’99, pages 263–270, New York, NY, USA, 1999. ACM.

[39] Elena Fasolo, Michele Rossi, Jörg Widmer, and Michele Zorzi. In-network aggrega-
tion techniques for wireless sensor networks: A survey. IEEE Wireless Commun.,
14(2):70–87, 2007.

[40] Keith B. Frikken and Joseph A. Dougherty, IV. An efficient integrity-preserving
scheme for hierarchical sensor aggregation. In Proceedings of the First ACM Confer-
ence on Wireless Network Security, WiSec ’08, pages 68–76, New York, NY, USA,
2008. ACM.

[41] Joao Girao, Dirk Westhoff, and Markus Schneider. CDA: Concealed data aggregation
for reverse multicast traffic in wireless sensor networks. In Proceedings of the 2005
IEEE International Conference on Communications, ICC ’05, pages 3044–3049, 2005.

[42] Song Guo and Victor Leung. A compromise-resilient group rekeying scheme for
hierarchical wireless sensor networks. In Proceedings of the IEEE Wireless Commu-
nications and Networking Conference, WCNC ’10, pages 1–6, 2010.

[43] Wenbo He, Xue Liu, Hoang Nguyen, Klara Nahrstedt, and Tarek Abdelzaher. PDA:
Privacy-preserving data aggregation in wireless sensor networks. In Proceedings of
the 26th IEEE International Conference on Computer Communications, INFOCOM
’07, pages 2045–2053, 2007.

[44] Wenbo He, Hoang Nguyen, Xue Liu, Klara Nahrstedt, and Tarek Abdelzaher. ipda:
An integrity-protecting private data aggregation scheme for wireless sensor networks.
In Proceedings of the 2008 IEEE Military Communications Conference, MILCOM
’08, pages 1–7, 2008.

[45] Xiaobing He, Michael Niedermeier, and Hermann de Meer. Dynamic key manage-
ment in wireless sensor networks: A survey. Journal of Network and Computer
Applications, 36(2):611–622, 2013.

[46] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
Energy-efficient communication protocol for wireless microsensor networks. In Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences, HICSS
’00, Washington, DC, USA, 2000. IEEE Computer Society.

[47] Kevin Henry, Maura B. Paterson, and Douglas R. Stinson. Practical approaches to
varying network size in combinatorial key predistribution schemes. In Tanja Lange,

184

Kristin Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography – SAC
2013, volume 8282 of Lecture Notes in Computer Science, pages 89–117. Springer
Berlin Heidelberg, 2014.

[48] Kevin Henry and Douglas R. Stinson. Secure network discovery in wireless sensor
networks using combinatorial key pre-distribution. In 2011 Workshop on Lightweight
Security Privacy: Devices, Protocols and Applications – LightSec, pages 34–43, 2011.

[49] Lingxuan Hu and David Evans. Secure aggregation for wireless networks. In Proceed-
ings of the 2003 Symposium on Applications and the Internet Workshops, SAINT-W
’03, Washington, DC, USA, 2003. IEEE Computer Society.

[50] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes: A defense
against wormhole attacks in wireless networks. In Proceedings of the Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications Societies, IN-
FOCOM ’03, pages 1976–1986, 2003.

[51] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, and John Heide-
mann. Impact of network density on data aggregation in wireless sensor networks. In
Proceedings of the 22nd International Conference on Distributed Computing Systems,
ICDCS ’02, pages 457–458, Washington, DC, USA, 2002. IEEE Computer Society.

[52] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed dif-
fusion: A scalable and robust communication paradigm for sensor networks. In
Proceedings of the 6th Annual International Conference on Mobile Computing and
Networking, MobiCom ’00, pages 56–67, New York, NY, USA, 2000. ACM.

[53] Imad Jawhar and Nader Mohamed. A hierarchical and topological classification of
linear sensor networks. In Proceedings of the 2009 Conference on Wireless Telecom-
munications Symposium, WTS ’09, pages 72–79, Piscataway, NJ, USA, 2009. IEEE
Press.

[54] Chris Karlof and David Wagner. Secure routing in wireless sensor networks: Attacks
and countermeasures. In Proceedings of the 2003 IEEE International Workshop on
Sensor Network Protocols and Applications, pages 113–127, 2003.

[55] Ed Kendall, Michelle Kendall, and Wilfrid S. Kendall. A generalised formula for
calculating the resilience of random key predistribution schemes. Cryptology ePrint
Archive, Report 2012/426, 2012.

185

[56] Samir Khuller, Balaji Raghavachari, and Neal Young. Balancing minimum spanning
trees and shortest-path trees. Algorithmica, 14(4):305–321, 1995.

[57] David A. Knox and Thomas Kunz. Rf fingerprints for secure authentication in single-
hop wsn. In IEEE International Conference on Wireless and Mobile Computing,
WIMOB ’08, pages 567–573, Oct 2008.

[58] Dileep Kumar and Shirshu Varma. An efficient localization based on directional
antenna for wireless sensor networks (WSN’s). International Journal of Computer
and Electrical Engineering, 1(5):542–549, 2009.

[59] Jooyoung Lee and Douglas R. Stinson. Deterministic key predistribution schemes
for distributed sensor networks. In Helena Handschuh and M. Anwar Hasan, editors,
Selected Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,
pages 294–307. Springer Berlin Heidelberg, 2005.

[60] Jooyoung Lee and Douglas R. Stinson. Common intersection designs. Journal of
Combinatorial Designs, 14(4):251–269, 2006.

[61] Jooyoung Lee and Douglas R. Stinson. On the construction of practical key predis-
tribution schemes for distributed sensor networks using combinatorial designs. ACM
Trans. Inf. Syst. Secur., 11(2):5:1–5:35, 2008.

[62] Yoonmyung Lee, Gyouho Kim, Suyoung Bang, Yejoong Kim, Inhee Lee, Prabal
Dutta, Dennis. Sylvester, and David Blaauw. A modular 1mm3 die-stacked sens-
ing platform with optical communication and multi-modal energy harvesting. In
2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
ISSCC ’12, pages 402–404, 2012.

[63] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler.
TinyOS: An operating system for sensor networks. In Werner Weber, Jan M. Rabaey,
and Emile Aarts, editors, Ambient Intelligence, pages 115–148. Springer Berlin Hei-
delberg, 2005.

[64] Zhijun Li and Guang Gong. Data aggregation integrity based on homomorphic
primitives in sensor networks. In Proceedings of the 9th International Conference on
Ad-hoc, Mobile and Wireless Networks, ADHOC-NOW ’10, pages 149–162, Berlin,
Heidelberg, 2010. Springer-Verlag.

186

[65] Zhijun Li and Guang Gong. DHT-based detection of node clone in wireless sensor
networks. In Jun Zheng, Shiwen Mao, Scott F. Midkiff, and Hua Zhu, editors, Ad
Hoc Networks, volume 28 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 240–255. Springer
Berlin Heidelberg, 2010.

[66] Libelium Comunicaciones Distribuidas S.L. Waspmote sensor overview. http://

www.libelium.com/products/waspmote/sensors/. Accessed 2015-04-20.

[67] Hui Ling and Taieb Znati. End-to-end pairwise key establishment using node disjoint
secure paths in wireless sensor networks. Int. J. Secur. Netw., 2(1/2):109–121, 2007.

[68] An Liu and Peng Ning. TinyECC: A configurable library for elliptic curve cryptog-
raphy in wireless sensor networks. In 2008 International Conference on Information
Processing in Sensor Networks, IPSN ’08, pages 245–256, 2008.

[69] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG:
A tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[70] David J. Malan, Matt Welsh, and Michael D. Smith. A public-key infrastructure for
key distribution in TinyOS based on elliptic curve cryptography. In Proceedings of
the First Annual IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks, SECON ’04, pages 71–80, 2004.

[71] Mark Manulis and Jörg Schwenk. Security model and framework for information
aggregation in sensor networks. ACM Trans. Sen. Netw., 5(2):13:1–13:28, 2009.

[72] Keith M. Martin. The combinatorics of cryptographic key establishment. In Anthony
Hilton and John Talbot, editors, Surveys in Combinatorics 2007, pages 223–274.
Cambridge University Press, 2007. Cambridge Books Online.

[73] Keith M. Martin. On the applicability of combinatorial designs to key predistribution
for wireless sensor networks. In Yeow Meng Chee, Chao Li, San Ling, Huaxiong
Wang, and Chaoping Xing, editors, Coding and Cryptology, volume 5557 of Lecture
Notes in Computer Science, pages 124–145. Springer Berlin Heidelberg, 2009.

[74] Keith M. Martin and Maura B. Paterson. An application-oriented framework for
wireless sensor network key establishment. Electron. Notes Theor. Comput. Sci.,
192(2):31–41, 2008.

187

http://www.libelium.com/products/waspmote/sensors/
http://www.libelium.com/products/waspmote/sensors/

[75] Keith M. Martin and Maura B. Paterson. Ultra-lightweight key predistribution in
wireless sensor networks for monitoring linear infrastructure. In Olivier Markowitch,
Angelos Bilas, Jaap-Henk Hoepman, Chris J. Mitchell, and Jean-Jacques Quisquater,
editors, Information Security Theory and Practice: Smart Devices, Pervasive Sys-
tems, and Ubiquitous Networks, WISTP ’09, pages 143–152, Berlin, Heidelberg, 2009.
Springer-Verlag.

[76] Keith M. Martin, Maura B. Paterson, and Douglas R. Stinson. Key predistribution
for homogeneous wireless sensor networks with group deployment of nodes. ACM
Trans. Sen. Netw., 7(2):11:1–11:27, 2010.

[77] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[78] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson.
Synopsis diffusion for robust aggregation in sensor networks. In Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems, SenSys ’04,
pages 250–262, New York, NY, USA, 2004. ACM.

[79] Martin Nilsson. SPIDA: A direction-finding antenna for wireless sensor networks. In
Pedro J. Marron, Thiemo Voigt, Peter Corke, and Luca Mottola, editors, Real-World
Wireless Sensor Networks, volume 6511 of Lecture Notes in Computer Science, pages
138–145. Springer Berlin Heidelberg, 2010.

[80] Leonardo B. Oliveira, Michael Scott, Julio Lopez, and Richard Dahab. TinyPBC:
Pairings for authenticated identity-based non-interactive key distribution in sensor
networks. In Proceedings of the 5th International Conference on Networked Sensing
Systems, INSS ’08, pages 173–180, 2008.

[81] Suat Ozdemir. Concealed data aggregation in heterogeneous sensor networks using
privacy homomorphism. In Proceedings of the IEEE International Conference on
Pervasive Services, pages 165–168, 2007.

[82] Suat Ozdemir, Miao Peng, and Yang Xiao. PRDA: polynomial regression-based
privacy-preserving data aggregation for wireless sensor networks. Wireless Commu-
nications and Mobile Computing, 15:615–628, 2013.

[83] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure on-demand distance vector
routing in ad hoc networks. In Proceedings of the 2005 IEEE/Sarnoff Symposium on
Advances in Wired and Wireless Communication, pages 168–171, 2005.

188

[84] Maura B. Paterson and Douglas R. Stinson. A unified approach to combinatorial
key predistribution schemes for sensor networks. Designs, Codes and Cryptography,
71(3):433–457, 2014.

[85] Mathew D. Penrose and Andrew R. Wade. On the total length of the random minimal
directed spanning tree. Adv. in Appl. Probab., 38(2):336–372, 2006.

[86] Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen, and David E. Culler.
SPINS: Security protocols for sensor networks. Wirel. Netw., 8(5):521–534, 2002.

[87] Steffen Peter, Dirk Westhoff, and Claude Castelluccia. A survey on the encryption of
convergecast traffic with in-network processing. IEEE Transactions on Dependable
and Secure Computing, 7(1):20–34, 2010.

[88] Marcin Poturalski, Panos Papadimitratos, and Jean-Pierre Hubaux. Secure neighbor
discovery in wireless networks: Formal investigation of possibility. In Proceedings of
the 2008 ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’08, pages 189–200, New York, NY, USA, 2008. ACM.

[89] Bartosz Przydatek, Dawn Song, and Adrian Perrig. SIA: Secure information ag-
gregation in sensor networks. In Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, SenSys ’03, pages 255–265, New York, NY,
USA, 2003. ACM.

[90] Ramesh Rajagopalan and Pramod K. Varshney. Data-aggregation techniques in
sensor networks: A survey. Communications Surveys Tutorials, IEEE, 8(4):48–63,
2006.

[91] Kasper Bonne Rasmussen and Srdjan Čapkun. Implications of radio fingerprinting
on the security of sensor networks. In Proceedings of the Third International Con-
ference on Security and Privacy in Communications Networks and the Workshops,
SecureComm ’07, pages 331–340, 2007.

[92] Kasper Bonne Rasmussen and Srdjan Čapkun. Realization of RF distance bounding.
In Proceedings of the 19th USENIX Conference on Security, USENIX ’10, pages 25–
37, Berkeley, CA, USA, 2010. USENIX Association.

[93] Wei Ren, Yi Ren, and Hui Zhang. H2S: A secure and efficient data aggregative
retrieval scheme in unattended wireless sensor networks. In Proceedings of the Fifth
International Conference on Information Assurance and Security, volume 2 of IAS
’09, pages 450–453, 2009.

189

[94] Gabriel Robins and Jeffrey S. Salowe. Low-degree minimum spanning trees. Discrete
& Computational Geometry, 14(1):151–165, 1995.

[95] Sankardas Roy, Mauro Conti, Sanjeev Setia, and Sushil Jajodia. Secure data ag-
gregation in wireless sensor networks: Filtering out the attacker’s impact. IEEE
Transactions on Information Forensics and Security, 9(4):681–694, 2014.

[96] Sankardas Roy, Sanjeev Setia, and Sushil Jajodia. Attack-resilient hierarchical data
aggregation in sensor networks. In Proceedings of the Fourth ACM Workshop on
Security of Ad Hoc and Sensor Networks, SASN ’06, pages 71–82, New York, NY,
USA, 2006. ACM.

[97] Kimaya Sanzgiri, Bridget Dahill, Brian N. Levine, Clay Shields, and Elizabeth M.
Belding-Royer. A secure routing protocol for ad hoc networks. In Network Protocols,
2002. Proceedings. 10th IEEE International Conference on, pages 78–87, 2002.

[98] Elaine Shi and Adrian Perrig. Designing secure sensor networks. Wireless Commu-
nications, IEEE, 11(6):38–43, 2004.

[99] Eliana Stavrou and Andreas Pitsillides. A survey on secure multipath routing pro-
tocols in WSNs. Comput. Netw., 54(13):2215–2238, 2010.

[100] J. Michael Steele, Lawrence A. Shepp, and William F. Eddy. On the number of leaves
of a euclidean minimal spanning tree. Journal of Applied Probability, 24(4):809–826,
1987.

[101] Douglas R. Stinson. Combinatorial Designs: Constructions and Analysis. Springer-
Verlag New York, 2004.

[102] Martin Vloet. M3 with pressure sensor. https://www.flickr.com/photos/

26556146@N07/16254669028/, 2014. Accessed 2015-04-20.

[103] David Wagner. Resilient aggregation in sensor networks. In Proceedings of the 2nd
ACM Workshop on Security of Ad Hoc and Sensor Networks, SASN ’04, pages 78–87,
New York, NY, USA, 2004. ACM.

[104] Haodong Wang and Qun Li. Efficient implementation of public key cryptosystems
on mote sensors (short paper). In Proceedings of the 8th International Conference
on Information and Communications Security, ICICS ’06, pages 519–528, Berlin,
Heidelberg, 2006. Springer-Verlag.

190

https://www.flickr.com/photos/26556146@N07/16254669028/
https://www.flickr.com/photos/26556146@N07/16254669028/

[105] Yong Wang, Garhan Attebury, and Byrav Ramamurthy. A survey of security issues
in wireless sensor networks. Communications Surveys Tutorials, IEEE, 8(2):2–23,
2006.

[106] Yongge Wang and Yvo Desmedt. Perfectly secure message transmission revisited.
IEEE Transactions on Information Theory, 54(6):2582–2595, 2008.

[107] Brett A. Warneke, Michael D. Scott, Brian S. Leibowitz, Lixia Zhou, Colby L. Bellew,
J. Alex Chediak, Joseph M. Kahn, Bernhard E. Boser, and Kristofer S.J. Pister. An
autonomous 16 mm3 solar-powered node for distributed wireless sensor networks. In
Proceedings of IEEE Sensors, volume 2, pages 1510–1515, 2002.

[108] Jiang Wu and Doug R. Stinson. Three improved algorithms for multipath key estab-
lishment in sensor networks using protocols for secure message transmission. IEEE
Trans. Dependable Secur. Comput., 8(6):929–937, 2011.

[109] Li Xu, Jianwei Chen, and Xiaoding Wang. Cover-free family based efficient group
key management strategy in wireless sensor network. Journal of Communications,
3(6):51–58, 2008.

[110] Geng Yang, Sen Li, Xiaolong Xu, Hua Dai, and Zhen Yang. Precision-enhanced and
encryption-mixed privacy-preserving data aggregation in wireless sensor networks.
Intl. Journal of Distributed Sensor Networks, 2013:1–12, 2013.

[111] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. SDAP: A secure hop-by-
hop data aggregation protocol for sensor networks. In Proceedings of the 7th ACM
International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc
’06, pages 356–367, New York, NY, USA, 2006. ACM.

[112] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network
survey. Comput. Netw., 52(12):2292–2330, 2008.

[113] Haifeng Yu. Secure and highly-available aggregation queries in large-scale sensor
networks via set sampling. In Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, IPSN ’09, pages 1–12, Washington, DC,
USA, 2009. IEEE Computer Society.

[114] Manel Guerrero Zapata and N. Asokan. Securing ad hoc routing protocols. In
Proceedings of the 1st ACM Workshop on Wireless Security, WiSE ’02, pages 1–10,
New York, NY, USA, 2002. ACM.

191

	List of Tables
	List of Figures
	Introduction to Sensor Network Research
	Introduction to Sensor Networks
	Example Applications

	Security Issues in Wireless Sensor Networks
	Pre-deployment
	Deployment/Setup
	Operation
	Management/Maintenance

	Organization and Contributions
	Pre-deployment
	Deployment/Setup
	Operation
	Maintenance

	An Overview of Combinatorial Key Pre-distribution
	Key Pre-distribution
	Naive Schemes
	Randomized Schemes
	But Why Rely on Randomness?

	Combinatorial Design Theory
	Set Systems
	Configurations
	Balanced Incomplete Block Designs
	Transversal Designs
	Other Designs

	Set Systems as KPSs
	The Linear Scheme
	A More Thorough Analysis

	The Quadratic and Higher Degree Schemes
	Higher Degree Constructions

	A Useful Generalization
	Multiple Space Schemes
	Summary and Remarks

	Flexible Parameters for Combinatorial KPSs
	Problems with Parameter Choice
	Approaches to Varying Network Size
	Randomized Subset Schemes
	Resolvable and Decomposable Designs
	Decomposable Schemes
	Finer Control Over Network Size

	Deriving Performance Metrics
	Analysis of the Decomposable Linear KPS
	Analysis of the Decomposable Quadratic KPS
	Computing Performance Metrics for Arbitrary Set Systems

	Comparison of Decomposable and Randomized Approaches
	Summary and Remarks

	Secure Network Discovery
	Introduction
	Related Work

	Problem Setting
	Tools and Assumptions
	Authentication
	Key Pre-distribution
	Localization and Directional Antennas

	Proposed Solution
	Phase 1: Identifying Neighbors
	Phase 2: Identifying 2-Hop Paths
	Phase 3: Beyond 2-Hop Paths
	Adding New Nodes

	Performance Analysis
	Summary and Remarks

	Resilient Aggregation in Sensor Networks
	The Aggregation Problem
	Secure Aggregation
	Problem Statement
	Naive Solutions
	Comparison to Existing Approaches

	Linear Networks
	Key Pre-distribution for Linear Networks

	Secure Aggregation using the Optimal KPS
	Aggregation when k=1
	Analysis
	An Attack Against a Naive k>1 Protocol

	Aggregation Using the Pairwise KPS
	Analysis

	Aggregation Using the Group-Based KPS
	Reacting to Node Spoofing Attacks

	Comparing Linear Approaches
	Moving Beyond Linear Networks
	Merging Two Paths Into One
	Merging Multiple Paths

	Linear Sub-Networks in Random Topologies
	Comparison to Previous Approaches
	Grid-Based Networks and Load Balancing
	Group-Based Aggregation for Grid Networks
	Summary and Remarks

	Conclusion
	APPENDICES
	Summary of Notation
	Data Tables
	References

