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Abstract

Simulating transient compressible flows involving shock waves presents challenges to the CFD

practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing.

This thesis discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique

implemented for compressible flow. This technique, developed by Ham, Lien and Strong in [6], is

efficient because it refines and coarsens cells using criteria that consider the solution in each of the

cardinal directions separately. Originally designed and tested for laminar flow simulations, in this

thesis the method will be applied to compressible flow. The procedure shows promise in its ability

to deliver good quality solutions while achieving computational savings.

The convection scheme used is the Advective Upstream Splitting Method (Plus) [14], and the

refinement/coarsening criteria are based on work done by Ham et al. Transient shock wave diffrac-

tion over a backward step and shock reflection over a forward step are considered as test cases

because they demonstrate that the quality of the solution can be maintained as the mesh is refined

and coarsened in time. The data structure is explained in relation to the computational mesh, and

the object-oriented design and implementation of the code is presented. Refinement and coarsening

algorithms and their effects on the solution are outlined. The features of the adaptation technique

found to have the greatest influence on the quality of the solution are a) the arrangement of cells

of different aspect ratios, b) the application of the mesh refinement and coarsening at appropriate

intervals throughout the simulation, and c) the refinement criterion used. Computational savings

over uniform and isotropic mesh approaches are shown to be significant.
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Chapter 1

Introduction

This thesis focuses on the use of the anisotropic Cartesian mesh adaptation technique to improve

the resolution of numerical flow simulations governed by the two-dimensional Euler equations. In

particular, flows with strong transient shock waves are chosen to test the ability of the refinement

algorithm to handle moving discontinuities.

1.1 Background

Governing Equations

The Euler equations provide a model for the inviscid compressible flow of a homogeneous fluid in

subsonic and supersonic regimes [12]. They can be used to numerically predict the locations and

shapes of shock waves that occur in regions of the flow where the effects of viscosity are negligible.

Shock Waves

Physically, a shock wave is a thin region of flow (thickness of only a few mean free molecular

paths) that separates two regions of differing stagnation pressure and density. Because pressure

signals travel through a flow field at the speed of sound, some physical mechanism must be present

to modify the supersonic flow direction in the presence of obstacles (or changes in density and

pressure); this mechanism is the shock wave (demonstrated in figure 1.1).

Shock waves can be visualized experimentally using methods such as Schlieren photography,

which uses the index of refraction of the fluid to provide an image of the exponentially-weighted

density gradient.

Numerically, a shock wave is represented by a discontinuity in the flow field variables {ρ, p, ~u};
these discontinuities arise in numerical solutions of the Euler equations for certain geometries and

flow parameters. For numerical solution schemes that incorporate gradient information {∇ρ,∇p,∇u i}
to improve their order of accuracy, these discontinuities (and others) cause numerical difficulties

such as negative density and pressure. These difficulties arise because the numerical reconstruction

of the solution gradient does not take the discontinuity into account and thus may use data points

1
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Figure 1.1: Curved shock wave in front of a cylinder placed in a supersonic flow

that lie across a shock wave; of course, mathematically, gradients are either non-unique or invalid

at discontinuous points. Gradient reconstructions that identify discontinuities and select their data

accordingly have been developed [20] but are computationally very expensive when applied to

transient flows.

Mesh Adaptation

Qualitatively speaking, the governing equations are solved over a mesh consisting of a multitude of

tiny adjacent finite volumes (otherwise known as cells). Each cell maintains corresponding {ρ, p, ~u}
values, usually located at the centroid of the cell, and the overall solution consists of the field of

{ρ, p, ~u} encompassed by the mesh. Thus, the resolution of the numerical solution is limited by the

distance between adjacent finite volumes.

Mesh adaptation serves to selectively modify the mesh layout so that in regions of the flow

where high resolution is required to discern flow features, more cells are added. Likewise, in

smooth regions of the flow, cells are removed in order to increase the computational efficiency. The

total number of cells in the computational mesh does not necessarily need to remain constant, as

long as it does not grow beyond the memory capacity of the computer. Isotropic mesh adaptation

refines areas of the mesh by subdividing cells into cells of equal aspect ratio. Anisotropic mesh

adaptation does not necessarily preserve aspect ratio while subdividing and joining cells. The

differences between anisotropic and isotropic mesh adaptation are covered in greater detail in

chapter 6.

As a quick aside, mesh adaptation is not the only way to improve solution accuracy; one can

use an higher-order numerical scheme to obtain a better numerical estimate of the solution. This

approach works well until discontinuous regions appear in the flow, at which point the high-order

2



scheme must be reduced to a lower-order one (because there are less valid mesh points to choose

from). For example, a fourth-order accurate scheme requires information from four adjacent cells

in each dimension in order to estimate the cell-centred value at the next time step. For those cells

adjacent to or straddling a discontinuity, different (or less) data must be used, compromising the

solution quality at those points.

1.2 Objectives and Scope

This thesis aims to show the following:

1. The anisotropic mesh adaptation technique can be successfully applied to transient compress-

ible flows involving shock waves. Success is measured by comparing the adapted-mesh nu-

merical solution to previously validated experimental and computational results.

2. The anisotropic adaptation technique instead of a uniform mesh leads to significant savings

with respect to the following computational resources: processing time and computer mem-

ory. Furthermore, memory savings are improved when compared to equivalent1 isotropically

refined meshes.

The following limitations apply to the scope of the thesis:

1. All test cases considered are two-dimensional, and the mesh refinement and coarsening algo-

rithms were implemented for a two-dimensional mesh. Three-dimensional equivalents have

been implemented for incompressible flow by Ham et al. [6] but have yet to be applied to

compressible flow.

2. All outflow boundary conditions are supersonic; subsonic outflow boundary conditions intro-

duce numerical difficulties whose mitigation is complex and not necessarily solvable via mesh

refinement. See [10] for a discussion of these difficulties.

3. An ideal gas assumption is made; this precludes test cases involving hypersonic or other

chemically reacting flows.

1.3 Thesis Structure

Chapters 2 to 4 provide the reader with the information required to interpret the uniform mesh

results presented in chapter 5. These results are provided in order to validate the code implemen-

tation of the basic numerical method and to serve as benchmark data against which the adapted

mesh solution can be compared.

The transient mesh adaptation algorithms and refinement criteria are presented in chapter 6.

Although the method is based on work done by Ham et al. [6], the material presented here is

significantly different; the method required modification to be appropriate for compressible flow

involving shock waves. To the best of the author’s knowledge, the anisotropic Cartesian refinement

technique has not yet been applied to unsteady compressible flows in any of the literature. Finally,

results obtained on adapted meshes are presented and discussed.

1Equivalent implies that the refinement criterion remains the same.
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Chapter 2

The Euler Equations

The Euler equations consist of a formulation of the continuity, momentum and energy equations

for inviscid flow. In two space dimensions, they are

∂u

∂t
+
∂f

∂x
+
∂g

∂y
= 0, (2.1)

where

u =







ρ
ρu
ρv
ρeT






, f =







ρu
ρu2 + p
ρuv

(ρeT + p)u






, g =







ρv
ρuv

ρv2 + p
(ρeT + p)v







.

In one space dimension, they are
∂u

∂t
+
∂f

∂x
= 0, (2.2)

where

u =





ρ
ρu
ρeT



 , f =





ρu
ρu2 + p

(ρeT + p)u



 , .

The variable u is the vector of conserved variables; mass, momentum and energy, all per unit

volume. The pressure p is obtained using an equation of state for ideal gases:

p = (γ − 1)

(

ρeT −
1

2
ρ(u2 + v2)

)

. (2.3)

The variables f and g represent horizontal and vertical mass, momentum and energy fluxes,

plus their respective pressure contributions. It is important to note that f = f(u) and g = g(u); this

allows us to construct and analyze flux Jacobian matrices.

The equations (2.1) have two important mathematical properties: hyperbolicity and homogene-

ity. These properties and their implications are easiest to demonstrate using the one-dimensional

Euler equations.
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Hyperbolicity

Consider the Jacobian matrix of the flux f :

A =
∂f

∂u
(2.4)

The system of equations (2.2) is hyperbolic if and only if A is diagonalizable [9]; that is, iff A

can be written as

A = QΛQ−1, (2.5)

where Λ = diag(λ1, λ2, λ3) is a diagonal matrix of the eigenvalues of A.

For the one dimensional Euler equations, we have:

A =





0 1 0
γ−3

2 u2 (3− γ)u γ − 1

−γueT + (γ − 1)u3 γeT − 3γ−3
2 u2 γu



 , (2.6)

Q =






1 ρ
2a − ρ

2a
u ρ

2a (u+ a) − ρ
2a (u− a)

u2

2
ρ
2a

(
u2

2 + a2

γ−1 + au
)

− ρ
2a

(
u2

2 + a2

γ−1 − au
)




 , (2.7)

Q−1 =

(
γ − 1

ρa

)







ρ
a

(
−u2

2 + a2

γ−1

)
ρ
au − ρ

a
−u2

2 − au
γ−1 −u+ a

γ−1 1

−−u2

2 − au
γ−1 u+ a

γ−1 −1







, (2.8)

Λ =





u 0 0
0 u+ a 0
0 0 u− a



 . (2.9)

Notice that the eigenvalues of A represent the speeds at which information in the form of waves

(or characteristics) propagate in a one-dimensional gasdynamic situation. A parcel of fluid with

certain properties moving at speed u accounts for the first eigenvalue; pressure waves travel at the

speed of sound away from the parcel in both directions at speeds u+ a and u− a.

Upwinded finite volume schemes developed for the one-dimensional equations can be directly

applied to higher dimensions by considering flux components normal to cell faces; by doing so,

they implicitly consider waves travelling in directions normal to those cell faces. However, in a real

multidimensional situation, waves ‘transmitted’ by a fluid particle travel in all possible directions

away from that fluid particle, similar to the way in which circular waves result when one drops a

stone into a pool of water. Therefore, by decomposing waves into those which travel in face-normal

directions, a simplification is made.

Homogeneity

The system (2.2) is homogeneous because it satisfies

f(u) = A(u)u. (2.10)

5



This property allows for an efficient splitting of the flux vector into positive- and negative-going

fluxes via the Jacobian matrix A:

f+ = A+u , f− = A−u (2.11)

where

A+ = QΛ+Q−1 , A− = QΛ−Q−1 (2.12)

and Λ± describe positive- and negative-going waves. This approach allows the flux vector to be

effectively upwinded in space, based on wave speeds and directions [29]. The numerical imple-

mentation of this upwinding is discussed in detail in section 3.3.
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Chapter 3

Numerical Methods for the Euler

Equations

3.1 Finite Volume Discretization

In this thesis we consider unstructured two-dimensional anisotropic Cartesian grid cells, such as

the one shown in Figure 3.1. The conserved variables u are stored at the cell centres, and the face

fluxes, stored at the faces, are indexed by cardinal direction {N, S, E, W} and position (denoted by

subscript {0, 1}).

PSfrag replacements

x

y

West

North
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EastufW
0

fE
0

fE
1

gN
0
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1

gS
0

Figure 3.1: A sample Cartesian grid cell with multiple faces and neighbours

Consider the integration of the Euler equations (2.1) over a control volume with area A and
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perimeter C;
∫

A
[u(x, tn+1)− u(x, tn)] dA = −

∫ tn+1

tn

∮

C
[f · ex + g · ey] dl dt , (3.1)

where dl is an infinitesimal length of the perimeter, and ex, ey are the x− and y−components of

the vector normal to the face of the control volume.

In the general case of a Cartesian grid cell with a maximum of two faces1 in each of the cardinal

directions, we obtain the discretized equation:

un+1 = un −∆t
1

∆x∆y

(
1∑

i=0

(lfacef)
E
i −

1∑

i=0

(lfacef)
W
i +

1∑

i=0

(lfaceg)Ni −
1∑

i=0

(lfaceg)Si

)

︸ ︷︷ ︸

flux F(u)

(3.2)

where ∆x and ∆y are the width and height of the cell, respectively, and lface refers to the length of

the face in position i. In the more specialized case of a uniform, structured Cartesian grid, equation

(3.2) reduces to

un+1 = un − ∆t

∆x
(fE

0 − fW
0 )− ∆t

∆y
(gN

0 − gS
0 ) . (3.3)

Equation 3.3 is first-order accurate in time; higher-order extension is discussed in section 3.5.3.

Courant-Friedrichs-Lewy Criterion

Equation 3.3 is explicit, meaning that values at the next time step depend only on values from the

previous time step. Thus, the flow solver is relatively simple, needing only to visit each control

volume once per time step and update u based on the interface fluxes. However, for the solution

to remain stable, the solver must satisfy the Courant-Friedrichs-Lewy (CFL) condition:

The full numerical domain of dependence must contain the physical domain of dependence

[9].

This is equivalent to saying that the time step must be small enough so that the fastest wave speed,

λ = u+ |a|, cannot cross the entire length of a cell in the computational domain. If pressure waves

are able to propagate beyond the length of a cell within a time step, the solution will diverge in

time.

For explicit one-dimensional codes, this condition implies:

CFL = λ
∆t

∆x
< 1.0. (3.4)

However, in practise, for two and higher dimensional codes, the practical upper limit on the CFL
number for maintaining stability lies somewhere below 1.0. In two dimensions, the fastest wave

speed is chosen using:

λ = max(u+ |a|, v + |a|). (3.5)

1This limit is used in the adaptation method discussed in section 6.2
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3.2 Boundary Conditions

3.2.1 Walls

Any cell face may be specified as a wall boundary condition, in which case the flux through the

face is modified by setting the normal component of the velocity to zero. For horizontal wall-faces,

v = 0; for vertical walls, u = 0. This leaves only a pressure term in the momentum flux; for

simplicity, this term is set equal to the cell-centred pressure, so that:

p(xi+1/2, y, t) ≈ p(xi, y, t
n) +O(∆x) +O(t− tn) (3.6)

is a constant extrapolation of pressure that is first-order accurate in space [9]. Linear and higher-

order extrapolation may be used instead.

3.2.2 Inflow and Outflow

Specifying inflow and outflow boundary conditions requires knowledge of the Mach number of the

flow. Recall from chapter 2 that the eigenvalues λi of A determine the direction and speed of

propagation of wave information, and consider an inflow/outflow boundary that is perpendicular

to the direction of flow, as in Figure 3.2. For a supersonic inflow, all waves (u−a, u, u+a) enter the

domain. Therefore, in order to completely specify the properties of a supersonic inflow boundary

condition, all flow variables must be specified at the inlet. For a subsonic inflow, one wave travels

out of the domain, and attempting to define it will cause the problem to be over-specified. The

remaining characteristics may be specified using a combination of either ρ and p or ρ, u, and v.

Outflow specification follows a similar approach; for a supersonic outflow, no flow variables need

to be specified at the exit; face fluxes can simply be determined from the cell-centred conserved

variables u. For a subsonic outflow, one wave travels back into the domain, and must be specified

correctly. Defining subsonic outflow boundary conditions to be free of acoustic reflections and other

spurious phenomena is one of the numerical banes of compressible flow research; in this thesis, no

test cases have subsonic outflow boundaries.PSfrag replacements

Wave Speed λWave Speed λ0 0

Supersonic Boundary Subsonic Boundary

u+ au+ a

u u

u− au− a

Figure 3.2: Wave propagation across boundaries
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3.3 Survey of Numerical Schemes

A multitude of finite-difference, finite-volume and finite-element schemes have been proposed for

solving the Euler equations. In order to provide the reader with a representative background of the

available methods, this section outlines the three fundamental finite-volume paradigms and a few

of their associated numerical schemes. For simplicity, we assume a one-dimensional uniform mesh

with cells indexed by i in the x−direction as in Figure 3.3.

Although not all of the schemes discussed here are derived from finite-volume origins, they can

be phrased in the conservation form of equation (3.3) by defining f W
0 and fE

0 appropriately.

PSfrag replacements

x

fW
0 fE

0

ii− 1i− 2 i+ 1 i+ 2

cell faces

Figure 3.3: A sample cell i in a uniform mesh surrounded by neighbours

3.3.1 Flux via Finite Differences

As the title suggests, the flux at each cell interface is calculated using a given finite-difference ap-

proach. These methods do not necessarily use flow information in the discretization (for example,

upwinding), and tend to use central-difference and/or predictor-corrector formulations.

MacCormack’s Method

This is a predictor-corrector method that comes in two versions:

ũi = un
i −

∆t

∆x
(f(un

i+1)− f(un
i ))

un+1
i =

1

2
(un

i + ũi)−
∆t

2∆x
(f(ũi)− f(ũi−1)) (3.7)

ũi = un
i −

∆t

∆x
(f(un

i )− f(un
i−1))

un+1
i =

1

2
(un

i + ũi)−
∆t

2∆x
(f(ũi+1)− f(ũi)) (3.8)

Version (3.7) is better-suited to capturing left-running waves, while (3.8) is better-suited to captur-

ing right-running waves [9]. The two versions can be expressed in conservation form by defining:

fE
0 =

1

2

(
f(un

i+1) + f(ũi)
)

fW
0 =

1

2
(f(un

i ) + f(ũi−1)) (3.9)
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fE
0 =

1

2
(f(ũi+1) + f(un

i ))

fW
0 =

1

2

(
f(ũi) + f(un

i−1)
)

(3.10)

which correspond to versions (3.7) and (3.8) respectively.

3.3.2 Flux Difference Splitting

This technique provides a basis for numerically upwinding the Euler equations (or any set of hyper-

bolic equations, for that matter [12]) based on wave speed and direction. Since, in subsonic flow,

waves can travel in opposite directions, upwinding based on only one variable such as fluid ve-

locity (as is commonly used for incompressible flow calculations [32]) does not provide numerical

stability.

Recall from chapter 2 that the Jacobian A satisfies homogeneity and may be split into A± which

acknowledge contributions from right-running and left-running waves by defining Λ appropriately:

Λ+ = diag(max(λi, 0))

Λ− = diag(min(λi, 0)) (3.11)

Also consider that the secant-line approximation of the flux difference across a cell face is:

f(ui+1)− f(ui) = Ai+1/2(ui+1 − ui) (3.12)

where Ai+1/2 is some choice of average of the Jacobian between cells i and i + 1. Using equation

(3.11) to split A, the approximation becomes:

f(ui+1)− f(ui) = (A+
i+1/2 + A−

i+1/2)(ui+1 − ui) (3.13)

with A± defined in equation (2.12). Using the fact that contributions related to A+
i+1/2 only affect

cell i + 1 and that contributions related to A−

i+1/2 only affect cell i, then with reference to Figure

3.3, the numerical flux fE
0 at the interface between cells i and i + 1 can be expressed using any of

the following:

fE
0 = f(ũi) + A−

i+1/2(ui+1 − ui)

fE
0 = f(ũi+1)−A+

i+1/2(ui+1 − ui) (3.14)

The key to constructing a flux difference splitting method lies in the definition of Ai+1/2 and its

associated splitting A±

i+1/2.

3.3.3 Flux Vector Splitting

Rather than splitting the Jacobian matrix A and computing fluxes based on the ensuing matrix-

vector products (equation (3.14)), the flux vector is split directly into right-going and left-going

fluxes f+ and f−. Since the flux vector must remain consistent,

f(u) = f+(u) + f−(u) , (3.15)
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all flux vector splitting methods can be expressed as flux difference splitting methods because of the

additional requirement placed on the split flux vector:

f± = A±u . (3.16)

This claim can be verified by using equations (3.15) and (3.16) in (3.13).

Using equation (3.15) in cells i and i+ 1, we obtain the following expressions:

f(ui) = f+(ui) + f−(ui)

f(ui+1) = f+(ui+1) + f−(ui+1) (3.17)

which, when substituted into the expression for the interface flux (3.14), yield:

fE
0 = f+(ui) + f−(ui+1) (3.18)

which is computationally much simpler than its flux difference splitting counterpart.

Steger-Warming Splitting

In [24], Steger and Warming split the wave speeds λi using

λ+
i =

λi + |λi|
2

, λ−i =
λi − |λi|

2
, (3.19)

which are used to constitute the matrices Λ±. Using equations (2.11) and (2.12), they obtained

expressions for the split flux vectors, f±, which clearly depend on the wave speeds λ±i :

λ+
1 =

u+ |u|
2

, λ−1 =
u− |u|

2

λ+
2 =

u+ a+ |u+ a|
2

, λ−2 =
u+ a− |u+ a|

2

λ+
3 =

u− a+ |u− a|
2

, λ−3 =
u− a− |u− a|

2
(3.20)

The split flux vectors are defined by:

f± =
γ − 1

γ
ρλ±1





1
u

1
2u

2



+
ρ

2γ
λ±2





1
u+ a

u2

2 + a2

γ−1 + au



+
ρ

2γ
λ±3





1
u− a

u2

2 + a2

γ−1 − au



 (3.21)

Obviously, if the flow is supersonic, then either f− or f+ must be zero. For subsonic flow, both f−

and f+ contribute to the interface flux. One problem with the Steger-Warming flux vector splitting

is the fact that f± /∈ C1(λi = 0); the derivatives of the split flux vectors are discontinuous when λi

change sign. This creates problems in the solution at sonic points [17].

In two space dimensions, the Jacobians ∂f/∂x and ∂g/∂y must be diagonalized as in chapter 2

in order to find the corresponding f± and g±.

Finally, it is important to note that although the Steger-Warming splitting may share the same

wave speed splitting as a flux difference splitting method, the proportions of the upwinded flux

components will not necessarily be the same, because of the specialized definition of Ai+1/2 re-

quired.
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Van Leer Splitting

In order to overcome the problem of discontinuous flux derivatives, van Leer rewrote the flux vector

in terms of the Mach number,

f =






ρaM
ρa2

γ (γM2 + 1)

ρa3M
(

1
2M

2 + 1
γ−1

)




 , (3.22)

and individually split the three flux components according to the following constraints:

1. f± = f at M = ±1

2. df±/dM = 0 at M = ∓1

3. df±/dM = df/dM at M = ±1

4. f = f+ + f−

5. f+(u) = −f−(−u)

Using the dependence of the flux components on M [9], he went on to develop a continuously

differentiable flux splitting [17] by splitting M into quadratic functions for subsonic flow. For

|M | < 1, the split flux vectors are defined by:

f± = ±ρa
4

(M ± 1)2







1
2a
γ

(
γ−1

2 M ± 1
)

2a2

γ2−1

(
γ−1
2 M ± 1

)2







(3.23)

For M > 1, f+ = f , and for M < 1, f− = f , where f is defined in equation (3.22). It is important

to note that no pressure terms are present in this formulation of f±; they are implicitly split via the

γ, ρ and a terms. If the flux vector were to be formulated using a pressure term in the momentum

component, then the split pressure P± would need to be defined as follows:

P±(M) = p

{
1
2 (1± sign(M)) |M | ≥ 1,
P±(M) otherwise

(3.24)

where

P± =
1

4
(M ± 1)2(2∓M) . (3.25)

This relation can be derived using the constraints listed above.

3.4 First-Order AUSM+ Scheme

The AUSM+ scheme of Liou [14] is an extension of the original AUSM (Advection Upstream Split-

ting Method) scheme of Liou and Steffen [16] in which the flux vector, divided into convective and

pressure components, is split based on Mach number. The division, illustrated in equation (3.26),

occurs in the momentum component of the flux, but not in the energy component.
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f =







ρu
ρu2

ρuv
(ρeT + p)u







+







0
p
0
0






≡ f (c) + f (p)

g =







ρv
ρuv
ρv2

(ρeT + p)v







+







0
0
p
0






≡ g(c) + g(p) (3.26)

This numerical scheme was used throughout the research for the following reasons:

1. It is a more recent flux vector splitting that overcomes the disadvantages of the alternatives

discussed earlier, yet it has already been proven reliable for a range of different flow regimes

(see, for example, [18])

2. It is simple to program, compared to flux difference splitting approaches.

3. The order of accuracy of the scheme was found by Ripley [22] to be 1.81 on a uniform

Cartesian mesh.

For the sake of completeness, the formulation of the scheme will be discussed as a two-dimensional

problem on a uniform Cartesian mesh, as shown in Figure 3.4.
PSfrag replacements
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Figure 3.4: A sample cell (i, j) in the computational domain surrounded by neighbours

Liou extended van Leer’s requirement of a continuously differentiable flux splitting by intro-

ducing Mach and pressure splitting polynomial functions M±, P± which are twice continuously

differentiable at the points M = 0,±1. With these additional constraints, the orders of the poly-

nomial splitting functions become 4 and 5 respectively. Unlike van Leer’s scheme, however, the
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AUSM+ scheme does not split each component of the flux vector individually; rather, the Mach and

pressure splitting functions ensure continuity and consistency.

Using the indexed computational domain of Figure 3.4, the split fluxes at the East and North

interfaces are defined as:

(fE
0 )± =

1

2
(mE

x ± |mE
x |)







ρa
ρua
ρva

(ρeT + p)a







+







0
P±(Mx)

0
0







(3.27)

(gN
0 )± =

1

2
(mN

y ± |mN
y |)







ρa
ρua
ρva

(ρeT + p)a







+







0
0

P±(My)
0







(3.28)

where

mE
x = M+(Mx)i +M−(Mx)i+1

mN
y = M+(My)j +M−(My)j+1 (3.29)

The horizontal and vertical Mach numbers Mx and My are defined as u/a and v/a respectively.

The split fluxes (fW
0 )± and (gS

0 )± are defined similarly. The interface speed of sound, a, is defined (at

each interface between cells) using an average of the states in each neighbouring cell. For simplicity,

this average can be defined using either a =
√
a1a2, or a = 0.5(a1 + a2), where subscripts {1, 2}

refer to the state on either side of the face. In [14], Liou elaborates on another method of finding

the intermediate speed of sound that allows the AUSM+ scheme to exactly locate a stationary shock

discontinuity; this technique uses the Prandtl relation in conjunction with the speed of sound based

on total enthalpy.

It is important to note that the Mach number is ‘double-split’; that is, fluxes are split based on

Mach numbers from both the left and right (and upper and lower) cells. The functions M± and

P± are fourth and fifth-order polynomials that conform to a set of criteria similar to those used by

van Leer. For completeness, they are reproduced from [14] below:

1. The split Mach numbers M± hold the following properties:

(a) M+(M) +M−(M) = M, for consistency.

(b) M+(M) ≥ 0 and M−(M) ≤ 0.

(c) M± are monotone increasing functions of M .

(d) M+(M) = −M−(−M), i.e., a symmetry property.

(e) M+(M) = M as M ≥ 1; M−(M) = M as M ≤ −1.

(f) M± are continuously differentiable.

2. The split pressures P± hold the following properties:

(a) P+(M) + P−(M) = 1, for consistency.

(b) P±(M) ≥ 0 as required by the physical constraint that pressure be nonnegative.
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(c) dP+/dM ≥ 0 and dP−/dM ≤ 0.

(d) P+(M) = P−(−M).

(e) P+(M) = 1 as M > 1; P−(M) = 1 as M < −1.

(f) M± are continuously differentiable.

The split M± depend on the cell Mach numbers in the following way:

M±(M) =

{ 1
2(M ± |M |) |M | ≥ 1,
M±

β (M) otherwise
(3.30)

where

M±

β (M) = ±1

4
(M ± 1)2 ± β(M2 − 1)2,

−1

16
≤ β ≤ 1

2
(3.31)

The split pressures P± are also split based on Mach number:

P±(M) = p

{
1
2(1± sign(M)) |M | ≥ 1,
P±α (M) otherwise

(3.32)

where

P±α (M) =
1

4
(M ± 1)2(2∓M)± αM(M 2 − 1)2,

−3

4
≤ α ≤ 3

16
(3.33)

In the case of the AUSM+ scheme, additional requirements determine α and β:

d2M±

β

dM2
(M = 0) = 0, ⇒ β =

1

8
d2P±α
dM2

(M = ±1) = 0, ⇒ α =
3

16
. (3.34)

Note that when α and β are both zero, the splitting functions revert to those chosen by van Leer

for the subsonic mass flux.

3.5 Higher-Order Extension

Spatial and temporal extension of the numerical method to second– and higher-order accuracy

provides a way of superlinearly improving the accuracy of the solution as cell sizes and time steps

are reduced.

In all of the numerical methods discussed previously, cell data are assumed piecewise-constant;

the flux at the face is generated by a cell-centred conserved variable u. This lack of variation

in u introduces dissipative errors into the solution (see [10] for a discussion of dissipative and

dispersive errors) which result in the unwanted smearing of flow features such as shock and contact

discontinuities.
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3.5.1 Spatial Extension

In order for a finite-volume numerical method to achieve second-order accuracy, gradient informa-

tion must be used in the calculation of the fluxes at cell interfaces. In van Leer’s MUSCL (Monotone

Upstream-centred Scheme for Conservation Laws) approach, piecewise-constant cell-centred data

is modified by higher-order components of the Taylor series approximation to u at the cell faces

[29]. Specifically, for a second-order accurate solution, the cell-centred u must be extrapolated to

the cell faces using ∇u in order to calculate f± and g±. This extension to the numerical method

is vital when using irregular meshes, since first-order finite differences lose accuracy when grid

spacing is nonuniform. Higher-order accurate solutions are possible using, for example, quadratic

approximations of u at the cell face. The PPM (Piecewise Parabolic Method) scheme of Woodward

and Colella [33] uses this approach, as seen in section 4.2.2.

Figure 3.5 demonstrates a typical part of an anisotropic Cartesian mesh, in which cell-centred φ
values (individual components of u) are linearly extrapolated to face centres via the gradient, ∇φ.

PSfrag replacements
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Figure 3.5: Cell-centred φ are extrapolated to cell faces

3.5.2 Gradient Limiters

First-order numerical schemes are highly dissipative; second and higher-order are much less so.

Gradients calculated based on information across flow discontinuities, such as shock and contact

waves, are invalid, and may lead to the catastrophic destabilization of the solution. For exam-

ple, fluxes calculated based on unrealistic gradient information may yield negative pressures and

densities at the next time step.

In order to overcome these problems while maintaining second-order accuracy throughout the

majority of the domain, the solution gradients must be modified, or limited in the presence of

discontinuities and other sharp flow features. In theory, the best approach is simply to locate the

discontinuous regions of the flow and to apply gradient information selectively there; techniques

for accomplishing this exist [20] but are computationally very intensive; they require the inversion

of at least a 5 × 5 matrix for each cell at each time step. In practise, it is easiest to use non-

oscillatory gradient information in order to calculate the cell-centred gradient. In the present code,
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this calculation is performed using either the minmod limiter or the superbee limiter [29].

The minmod limiter captures non-oscillatory gradient information by taking the minimum mod-

ulus of the face-centred gradients and applying it to the cell centre. In other words, if any two

gradients are of different sign, the cell-centred gradient is set to zero. Otherwise, the gradient with

the minimum absolute value is used. The limiter function itself is:

ψminmod(r) =







0, r ≤ 0,
r, 0 ≤ r ≤ 1,
1, r ≥ 1,

(3.35)

where r is the ratio of the ith component of two interface gradients:

r =
∇φ1 · ei

∇φ2 · ei
(3.36)

The subscript {1, 2} denote cell interfaces as shown in Figure 3.6.PSfrag replacements
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Figure 3.6: Face numbering for gradient limiter application

When more than two interfaces are present, the minmod function is applied repeatedly. The su-

perbee limiter is less strict in that it does not necessarily take the gradient with the lowest absolute

value:

ψsuperbee(r) =







0, r ≤ 0,
2r, 0 ≤ r ≤ 1

2 ,
1, 1

2 ≤ r ≤ 1,
r, 1 ≤ r ≤ 2,
2, r ≥ 2.

(3.37)

Using either of these limiters, the cell-centred gradient is simply:

∇φ◦ · ei = ∇φ2 · ei ψ(r) (3.38)

The use of limiters to smooth gradient information does not guarantee the stability of the solu-

tion in two or more dimensions. However, it provides great improvement over unlimited solutions,

most of which do not converge (they result in negative pressure and density) at high Mach num-

bers.
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3.5.3 Temporal Extension

In this work, a formally second-order accurate three-stage Runge-Kutta time-stepping scheme was

adopted for the following reasons:

1. The first-order explicit Euler technique outlined at the beginning of this chapter is highly

sensitive to CFL number when combined with the AUSM+ scheme. Using the 3-stage Runge-

Kutta technique allows improved stability at CFL numbers approaching unity.

2. For high Mach numbered test cases (Mach 2 and above), additional dissipation is needed

to maintain positivity of density and pressure. By using a combination of first– and second-

order spatial accuracy through different time steps, the solution can approach second-order

accuracy while remaining stable. The specific choice of spatial order of accuracy is outlined

in chapter 5.

This technique, outlined in [10], is reproduced below:

u(∗) = un −∆tF(un)

u(∗∗) =
1

2
[un + u(∗)]− ∆t

2
F(u(∗))

un+1 =
1

2
[un + u(∗∗)]− ∆t

2
F(u(∗∗)) (3.39)

where F(u) is the summation of the fluxes through all cell faces, as in equation 3.2.
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Chapter 4

Test Cases

In order to test the effectiveness of the mesh adaptation algorithm, two different geometric config-

urations were used: the backward-facing and forward-facing steps. These two cases were chosen

for the following reasons:

• Both qualitative and quantitative computational and experimental results are readily avail-

able.

• The geometry is simple, so the adaptation algorithm can be used independently of cut-cell

techniques, which are needed to handle non-rectangular geometry.

• Both cases are transient and therefore test the ability of the mesh to preserve the solution

quality while refining and coarsening in time.

The goal of this chapter is to survey the literature related to the chosen test cases and determine

useful benchmarks against which the present code can be compared.

4.1 Backward Step

Shock wave diffraction over a backward step is an important test case for validating numerical

codes that are designed to solve the Euler equations. First and foremost, experimental results are

available for a variety of geometries and Mach numbers (See Skews [23], Schardin [30], Bazhenova

et al. [2], and Takayama and Inoue [28] for experimental results). Secondly, the problem has been

studied extensively from a computational and mathematical point of view. Lastly, a diffracting

shock wave induces secondary physical phenomena in the perturbed region behind the shock [23];

namely, a secondary shock wave, vortex, slipstream, terminator, and an incident sound wave. The

resolution of these phenomena using a given numerical code provides insight into its strengths and

weaknesses.
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4.1.1 Setup of Computational Problem

The backward step is constructed from three equally-sized square cells which are subsequently

refined until the desired mesh resolution is achieved. The geometry and boundary conditions are

shown in Figure 4.1. No measurements are present in the figure because the cell size is arbitrary;

the flow is self-similar for any cell size.

Initially, the fluid states α and β are separated by a single discontinuity at the edge of the step,

a shock wave that moves to the right.

�������

PSfrag replacements

state α

state β

cell 1 cell 2

cell 3

Ms
inlet

wall

Boundary conditions and cell geometry Initial conditions

Figure 4.1: Backward step geometry

For the backward step geometry, three shock Mach numbers Ms = {1.3, 2.4, 5.09} are investi-

gated in order to verify the position and quality of the secondary phenomena. Each Ms is generated

using different pressure and density ratios, and is defined as:

Ms =
W

aβ
(4.1)

where W is the shock wave speed relative to a fixed frame of reference, and aβ is the speed of

sound in the gas in state β.

As the shock wave moves to the right, a velocity is induced in the gas immediately to the left.

This induced speed, us can be calculated along with the initial pressure and density ratios using

the following relations (derived in [1]):

pα

pβ
= 1 +

2γ

γ + 1
(M2

s − 1) (4.2)

ρα

ρβ
=

1 + γ+1
γ−1

(
pα

pβ

)

γ+1
γ−1 + pα

pβ

(4.3)

us =
aβ

γ

(
pα

pβ
− 1

)
√
√
√
√

2γ
γ+1

pα

pβ
+ γ−1

γ+1

(4.4)
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The initial velocity on the right hand side of the shock is set to zero. The x-component of the

initial velocity in state α is set to us, and the y-component is set to zero, since the shock travels in

the x-direction only. Table 4.1 summarizes the pre- and post-shock fluid initial conditions for the

three Ms, determined using equations 4.2, 4.3 and 4.4.

Ms

1.3 2.4 5.09

pα/pβ 1.805 6.553 30.06

ρα/ρβ 1.516 3.212 5.029

us (m/s) 151.7 432.9 624.1

Table 4.1: Pre- and post-shock fluid initial conditions

4.1.2 Existing Experimental and Computational Results

Experimental Results

The experimental study of diffracting shock waves has revealed a complicated flow structure in the

perturbed region behind them. Skews [23] performed experiments for a variety of Mach numbers

and convex corner angles, and has outlined the structure of the perturbed region; qualitatively,

this structure is shown in Figure 4.2. Skews also determined experimentally and tabulated the

following correlations (for several corner angles):

• The slipstream angle variation with the shock Mach number Ms.

• The terminator angle variation with Ms.

• The relationship between Ms and the velocity of the secondary shock.

• The contact surface velocity variation with Ms.

• The variation of the vortex angle and velocity with Ms.

The flow structures shown in Figure 4.2 can be described as follows:

Incident shock: Diffracts in a similar way to a sound wave; its radius of curvature is approximately

u0t.

Reflected sound wave: Propagates upstream and marks the start of the curvature of the incident

shock.

Slipstream: Due to separation, it separates high-velocity gas on the upper side from almost sta-

tionary gas on the lower side. It represents the outermost characteristic of the Prandtl-Meyer

expansion fan.
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Figure 4.2: Structure of the perturbed region behind a diffracting shock wave (from Skews [23])

Terminator: The first characteristic of the Prandtl-Meyer expansion; the angle separating the ter-

minator from the horizontal increases with rising Ms.

Second shock: The region between the slipstream and the terminator is a uniform flow region

parallel to the slipstream [23], and the second shock is a normal shock wave caused when

the flow in this region exceeds Mach 1.0 [27].

Vortex: Located just below the slipstream, its location is well defined for Ms < 1.5. The angle

between the vortex and the slipstream decreases as Ms increases.

Contact surface: Originates at the intersection point of the reflected sound wave and the incident

shock, but is highly diffuse in this region. It becomes better-defined as it nears the region

containing the rest of the flow structures.

Schardin and Bazhenova et al. produced Schlieren images of density gradients for flows over

90 degree convex edges at Mach numbers of 1.3, 2.4, and 5.09. These are shown in Figures 4.3,

4.4, and 4.5.

Computational Results

Figure 4.6, generated by Quirk [21], is a false Schlieren image of computational results for a

diffracting shock wave with Ms = 5.09. The resolution of the simulation is such that there are 560
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Figure 4.3: Schlieren image of a refracting shock wave, Ms = 1.3 (by Schardin [30])

Figure 4.4: Schlieren image of a refracting shock wave, Ms = 2.4 (by Schardin [30])

mesh cells from the apex of the corner to the point where the Mach stem meets the wall.

All of the major flow structures named by Skews can be easily identified in Figure 4.6; the

terminator, secondary shock, and contact wave can all be seen as sharply-defined density gradients.

It is important to note that because of the HLLE switching function used in the simulation, no

expansion shock (a discontinuous expansion wave) is present.

Hillier performed the simulation of a diffracting shock over a backward step in 1991 using less

cells than Quirk (180 000), but for different Mach numbers [7]. Using an explicit second-order

Godunov-type scheme, Hillier achieved computational results matching closely the experimental

results of Skews (1967). Specifically, his results reflected that a) the vortex location becomes
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Figure 4.5: Schlieren image of a refracting shock wave, Ms = 5.09 (by Bazhenova et al. [2])

Figure 4.6: False Schlieren image of a refracting shock wave, Ms = 5.09 (by Quirk [21])

progressively ill-defined as Ms increases, and b) the shape of the incident shock matches Skews’

measurements.

4.2 Forward Step

This test case uses the same geometrical, boundary and flow parameters as the cases studied by

Woodward and Colella [33], and van Leer [31]. The case was first proposed by Emery [4] for

evaluating finite-difference methods, but his results are not comparable to the later studies owing

to their low resolution and parametric differences.

The forward step test case is designed to resolve complex oblique shock reflections, pertinent to

supersonic variable-geometry jet engine intakes. Due to computational constraints faced by Emery,

the test case was designed to be numerically simple to set up (the initial conditions are uniform

throughout the domain, and the outlet boundary condition is supersonic), but is actually difficult
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to perform experimentally, due to the unrealistic combination of initial and boundary conditions.

However, quantitative results are available for a range of numerical methods (see [33]), which

makes this a perfect case for validating the capabilities of the present mesh refinement algorithm,

independently of the numerical method used.

The artificial nature of the test setup helps to evaluate the robustness of the scheme used when

combined with the mesh refinement technique. Because of the strong shock reflection at the lower

face of the step during the first few time steps, it is difficult to maintain positivity of pressure and

density using various numerical schemes. Furthermore, the edge of the forward step is a singu-

lar point of the Prandtl-Meyer expansion fan generated by the flow over the step (John in [8]

shows how the continuity and momentum equations can disobey the second law of thermodynam-

ics through an expansion fan). This introduces numerical difficulty in the form of a nonphysical

expansion shock, which at high Mach numbers and small cell sizes can yield negative pressure and

density in the code.

4.2.1 Setup of Computational Problem

The geometry of the computational domain is identical to that used in [33], and is shown in Figure

4.7. In order for the cells at the lowest refinement level to be square, the domain was divided into

cells of dimension {0.2 × 0.2}, the greatest common factor of 0.6 and 0.8. The inflow and outflow

boundary conditions are both supersonic, so the solver does not have to account for waves leaving

the domain through the inflow or entering through the outflow. The wall boundaries, as in the

backward step case, are full-slip pressure-reflection boundaries.

Initially, the fluid is at Mach 3 everywhere. Since no physical constants or parameters such

as viscosity are involved in the Euler equations, space and time units can be eliminated without

the need for a nondimensional constant (such as Reynolds number) [1] and the flow is driven by

pressure and density ratios. The Mach number is calculated using the usual definition:

M = u

√
ρ

γp
. (4.5)

The simulation is run until time t = 4.0, and the resulting shock wave pattern is examined. At

this stage, the flow is still transient, but the shock waves are moving relatively slowly, which tests

the ability of the refinement technique to maintain the solution quality as time progresses.

4.2.2 Existing Computational Results

Van Leer in [31] presents results by Woodward, who implemented a MUSCL (Monotonic Upstream-

centred Scheme for Conservation Laws) code to compute the forward-facing step test case to both

first- and second-order accuracy in space. The MUSCL scheme allows for the extension of the

Godunov method to higher-order accuracy by using gradient information to determine fluxes. From

these results, shown in Figures 4.8 and 4.9, it is clear that the first-order accurate solution cannot

resolve the oblique shock wave reflected from the upper surface of the step.

Woodward and Colella later repeated the test case in order to compare a number of different

numerical methods [33]. Their best results were obtained using Colella and Woodward’s PPM

(Piecewise Parabolic Method) scheme, and are reproduced in Figure 4.10. The bottom contour plot

is of the quantity A = ln(p)−γln(ρ), which is directly related to the entropy. Since entropy remains
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Figure 4.7: Forward step geometry

Figure 4.8: Woodward’s results from [31]: First-order Godunov scheme

constant along streamlines through isentropic regions of the flow, this plot provides an idea of the

instantaneous velocity field.

The PPM results were performed at a much higher resolution than the MUSCL (∆x = ∆y =
1/80 vs. ∆x = ∆y = 1/20), which is the main reason for the improved resolution of the shock and
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Figure 4.9: Woodward’s results from [31]: Second-order MUSCL scheme

contact waves. However, there is a large discrepancy between the location of the reflected oblique

shock wave on the upper surface of the step. Using the PPM scheme, the point of reflection clearly

occurs near to the point x = 1.45; however, the MUSCL results show a lambda-shock instead of an

oblique shock reflection. This is because the PPM results are entropy-corrected at the step corner.

In [33], Woodward and Colella manually reset the density in the first four cells on the upper face

of the step corner to make their entropy value the same as that found in the four cells on the

lower, vertical face. Without this entropy correction, it is not possible to rid the results of the

lambda-shock.

It is apparent from the pressure and density contours of Figure 4.10 that the reflected oblique

shock waves generally become weaker (in terms of the density and pressure difference across the

shock) the farther downstream they are located. This relative weakness causes low-resolution and

low-order numerical methods to smear discontinuities to the point where the reflected shocks are

unrecognizable, as in Figure 4.8.

Both sets of computational results provide quantitative contour information as well as insight

into the strengths and weaknesses of various numerical schemes, which enables the author to

separate the effects of mesh refinement from the attributes of the numerical scheme used.
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Figure 4.10: Woodward and Colella’s PPM results from [33]: Density, pressure, and entropy
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Chapter 5

Results for Uniform Cartesian Mesh

Both test cases were solved on uniform Cartesian meshes that were obtained by repeatedly refining

the initial meshes shown in Figures 4.1 and 4.7. Uniform mesh results are important for two main

reasons:

• They provide a way to validate the numerical method and data structure independently of

the mesh refinement method.

• Once validated, they provide benchmark data against which the refined mesh results may be

compared.

The ‘higher-order’ results described later in this chapter are not formally second-order accurate.

The high Mach number test cases (the Mach 5.09 backward step and the Mach 3.0 forward step)

are virtually impossible to solve1 using the AUSM+ scheme while incorporating full gradient cor-

rections. Therefore, as suggested in section 3.5.3, the three stages of the Runge-Kutta time stepping

scheme use different gradient corrections to calculate interface fluxes. Specifically, the calculation

of u(∗) in the first stage uses the first-order extrapolation shown in Figure 6.9, while the other two

stages use the second-order extrapolation. For the uniform mesh, the first-order extrapolation is

essentially equivalent to using the cell-centred u in the calculation of the interface fluxes. The

degeneration of the first sub-step to first-order accuracy adds numerical dissipation to the overall

solution, allowing simulations to remain stable at high Mach numbers.

Time steps are chosen so that the CFL number does not exceed 0.2. This may seem low,

and indeed the solution shows little or no degradation for CFL numbers less than 0.8. However,

anisotropic refinement introduces numerical noise into the flow field that requires some time to

dissipate, and so for purposes of comparison, the low CFL choice was made to be the same as that

used to obtain the anisotropic results of chapter 7.

5.1 Backward Step

All backward step results were obtained on a relatively coarse mesh with each cell having dimen-

sions ∆x = ∆y = 40 ÷ 27 = 0.15625m. The three initial cells shown in Figure 4.1 were all refined

1Density and pressure reach negative values.
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7 times in each of the x− and y−directions in order to construct the uniform mesh consisting of

49 152 cells.

5.1.1 First-Order Results

Pressure and density contours of the Mach 5.09 test case are provided in Figure 5.1 for the purpose

of qualitatively comparing the ability of the AUSM+ scheme to resolve flow features at different

orders of accuracy.
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Figure 5.1: Mach 5.09 shock diffraction: pressure and density contours

5.1.2 Higher-Order Results

In each case, the superbee limiter was used in order to maintain positivity of density and pressure.

Without limiting the gradient corrections in each cell, the code diverges for the Mach 2.4 and 5.09
flows.

By juxtaposing density and pressure contours in Figures 5.2 to 5.4, the reader is able to gauge

the ability of the scheme to detect shock, contact and expansion regions.
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Figure 5.2: Mach 1.3 shock diffraction: pressure and density contours

5.1.3 Analysis of Results

Accuracy

Because of the relatively low resolution of the simulation (compared to Quirk’s results, shown in

Figure 4.6), the flow features outlined in section 4.1.2 are diffuse, but nonetheless identifiable. The

following observations can be made about the validity of the results:

1. The shape of the primary shock wave for each Mach number matches its corresponding ex-

perimental result. The kink in the lower Ms = 5.09 shock wave is correctly resolved for both

the first- and higher-order cases.

2. The contact wave appears very diffuse compared to the experimental and high-resolution

numerical results. This is a drawback of all flux vector splitting methods [5]. It is more

clearly resolved in the higher-order contour plots.

3. The secondary shock waves are correctly located and sized in the Ms = 2.4 and Ms = 5.09
plots. As shown by the experimental results, no secondary shock is present for the Ms = 1.3
case. Interestingly, Sun and Takayama determined analytically in [27] that the threshold

incident shock Mach number Ms required for a secondary shock wave to form is Ms = 1.346.
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Figure 5.3: Mach 2.4 shock diffraction: pressure and density contours

5.2 Forward Step

Whereas the backward step cases were solved on a relatively coarse mesh, this case was solved

using a relatively fine mesh. The backward step test case is meant to convey a qualitative picture

of the flow features found behind a diffracting shock wave, and at low resolution the limitations of

the numerical scheme are more apparent. For the forward step, however, we are mainly interested

in the temporal accuracy of the scheme and its ability to discern slow-moving shock waves.

All of the following results were obtained on a uniform mesh with cell dimensions ∆x = ∆y =
0.2 ÷ 26 = 3.125 × 10−3. Based on the initial geometry shown in Figure 4.7, there are a total of

258 408 cells in the mesh.

5.2.1 First-Order Results

Density and pressure contours are plotted for the first-order results in Figure 5.5. The contour

intervals were selected to match those used by Woodward and Colella as shown in Figure 4.10.

5.2.2 Higher-Order Results

Density and pressure contours are plotted for the higher-order results in Figure 5.6. The contour

intervals were selected to match those used by Woodward and Colella as shown in Figure 4.10 in

section 4.2.2.
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Figure 5.4: Mach 5.09 shock diffraction: pressure and density contours

Using the standard interface speed of sound definition,

aIF =
√
a1a2, (5.1)

it was not possible to maintain positivity throughout the simulation while using the superbee limiter

and mixed order-of-accuracy time stepping. To remedy this problem, the speed of sound definition

was changed to be based on velocity and total enthalpy, as specified by Liou in [15]. This approach

increases the numerical dissipation and allows the pressure and density to remain positive in the

expansion region on the upper lip of the step.

5.2.3 Analysis of Results

Accuracy

The most obvious discrepancy between the first-order, higher-order and Woodward and Colella’s

results is that the location of the shock reflection on the lower surface is not well defined in Figures

5.5 and 5.6. Woodward and Colella [33] account for this by using the following arguments:

1. The inability of numerical schemes to avoid entropy-modifying expansion shocks sets up an

erroneous numerical boundary layer that interferes with the shock reflection.

2. The expansion shock is coupled with an over-expansion at the step corner (visible in the

entropy contours of Figure 4.10), which further exacerbates the accuracy problems at the

corner of the flow.
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Figure 5.5: Mach 3.0 flow over a forward step: pressure and density contours

Another discrepancy between all sets of results is the location of the reflected shock wave on the

upper surface of the channel. Since the location of this reflection is directly related to the location

of the lower reflection, it is not surprising that all of the results are different. Woodward and Colella

concede in [33] that there is no straightforward way to quantify numerical effects on this reflected

shock location.

When the higher-order simulation is repeated one refinement level lower (ie. using cells twice

as large), the speed of sound modification is no longer necessary for maintaining positivity, and the

original aIF definition (equation 5.1) can be used. This results in a thinning of the boundary layer

on the lower surface and improvement in the location of the reflected shock.

Apart from the aforementioned discrepancies, the numerical agreement in the region of flow

immediately following the primary shock wave is very good between the present results and those
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Figure 5.6: Mach 3.0 flow over a forward step: pressure and density contours

of Woodward and Colella. The shock locations and contour lines match closely2. This indicates

that the AUSM+ scheme combined with the Runge-Kutta time stepping is accurate within the limits

of its abilities, and the present high-resolution results may be used as a benchmark for comparing

the adapted mesh results of chapter 7.

2Note that the origins of the axes are located differently in Figures 5.6 and 4.10.
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Chapter 6

Cartesian Mesh Adaptation

Mesh adaptation is the process of increasing and decreasing the sizes of computational cells accord-

ing to a solution-related criterion. In most cases, the criterion dictates that cell sizes be reduced in

regions of high solution gradient, and enlarged in regions of low solution gradient. For a first-order

numerical scheme, the solution gradient is proportional to the Taylor series truncation error; for a

second-order scheme, the Hessian matrix is a more accurate indicator of the truncation error. Many

different criteria have been proposed in the literature, some of which use combinations of gradients

and Hessians; these will be discussed in section 6.2.4.

The motivation for performing mesh adaptation arises from the practical computational expense

of performing fluid flow simulations. For each cell in the mesh, several variables that define the

state of the fluid must be stored, and new quantities (gradients, fluxes, etc...) must be calculated at

each time step or iteration. Therefore, reducing the total number of cells in the mesh reduces the

amount of memory needed for each simulation, as well as the time required by the computer to go

through each cell and perform the necessary calculations. Alternatively, given a specific number of

cells (and in turn a specific memory allocation), the resolution of the simulation can be improved

by judiciously reassigning ‘cell memory’ to regions of greater interest in the flow. This approach

is widely used in incompressible flow simulations by employing grid stretching to resolve high

solution gradients in boundary layers.

Since the numerical solutions to the fluid flow problems discussed in this thesis arrive in the

form of cell-centred u values, it is important to have greater numbers of fine-grained cells in areas

of high solution interest. For compressible flow, these usually correspond to shock, contact, and

expansion waves and their associated regions of interaction.

6.1 Survey of Adaptation Techniques

Techniques for adapting Cartesian meshes can presently be divided into isotropic and anisotropic

approaches. In isotropic approaches, the aspect ratio of computational cells remains the same as

they are subdivided and conjoined. In anisotropic approaches, cells are subdivided and reconnected

in only one coordinate direction at a time. In two dimensions, isotropically and anisotropically

adapted meshes can be represented as in Figure 6.1.
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Figure 6.1: Two Cartesian mesh adaptation techniques

6.1.1 Isotropic

In [35], de Zeeuw and Powell present an isotropic mesh adaptation technique that is applied to

steady compressible flow. The data structure used is tree-based, which means that in order to cal-

culate fluxes, the tree must be traversed to obtain neighbouring cell information. Fortunately, the

adaptation technique permits a maximum of only two neighbouring cells in any direction, which

means that only one branch traversal is needed to locate each neighbouring cell. The arrange-

ment of cells within the tree data structure is shown in Figure 6.2, with cell indices referenced as

{refinement level, array index}.
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Figure 6.2: Tree data structure representation of physical mesh

Since de Zeeuw and Powell’s technique is applied to steady flow, calculations begin on a coarse

mesh which is strategically refined as the simulation progresses. Therefore, the method does not

provide for the re-coarsening of cells in areas which should become smooth.

Sun also uses a tree-based isotropic adaptation technique [26] but applies it to unsteady flow,

and therefore uses a coarsening procedure to join cells together when the solution is sufficiently

smooth. Sun adopts many of the ‘mesh quality’ criteria used by de Zeeuw, such as the limit on the

number of neighbouring cells.
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6.1.2 Anisotropic

The grid adaptation method upon which this thesis is based was originally developed by Ham,

Lien and Strong [6], and is an unstructured face-based method that can transiently refine and

coarsen grid cells. Ham et al. applied the method to two- and three-dimensional incompressible

flow at Reynolds numbers below 150. The main advantage of using anisotropic grid refinement over

isotropic refinement is the fact that memory and computational savings can be realized when the

flow gradients are anisotropic in the x- and/or y-directions. Even if anisotropy is present away from

these cardinal directions, the method still yields computational savings over an isotropic technique.

6.2 Cartesian Anisotropic Adaptation for Compressible Flow

The adaptation method and criteria described in this section are independent of the choice of nu-

merical method, provided that the method has a compact stencil and can be written in conservation

form, or in other words, as the updating of cell-centred u based on interface f and g. The data

structure and algorithm are similar to those presented in [6], and are described here for complete-

ness. The adaptation criterion used is different; the choice will be explained further in section

6.2.4.

6.2.1 Data Structure

Object and Class Definitions

The present code is object-oriented, with individual classes defined for computational cells and

[inter]faces, as well as their encompassing mesh, as shown in Figure 6.3.
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Figure 6.3: Classes of objects found in the computational mesh

In [6], Ham et al. use an (i, j) indexing scheme to keep track of cell (x, y) locations. The present

code maintains (x, y) locations explicitly, but also retains the (i, j) indexing scheme in order to

simplify the mesh adaptation process. Using (i, j) indices in order to isolate pairs of cells that may

be conjoined turns out to be simpler to code than using (x, y) locations with cell refinement levels

(li, lj) to accomplish the same task.

Figure 6.4 illustrates the nature of cell indexing. The (i, j) indices correspond to the indices

that would be needed if the mesh were structured, with each cell at the same refinement level. It is
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important to note that whereas the original indexing system of [6] was based around a single origin

cell of indices (0, 0) and refinement level (0, 0), the system has been modified to permit multiple

initial cells (which greatly aids in the formation of backward and forward steps) with refinement

levels of (0, 0), but nonzero indices.
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Figure 6.4: Cell indexing system used in the present code

The cell coarsening algorithm uses the (i, j) indices to determine suitable partner cells; in doing

so, it helps to maintain the smoothness of the mesh by avoiding ‘brick wall’ formations, illustrated

in Figure 6.5. Such irregular meshes were found by the author to cause serious degradation in the

solution quality.

Figure 6.5: The (i, j) indexing system allows the algorithm to avoid such irregular coarsening

In terms of variable storage, Cell and Face objects are required to keep track of their respective

conserved variables and fluxes, as well as standard geometric parameters required in an unstruc-

tured, adaptive mesh. Tables 6.1 and 6.2 summarize the necessary storage requirements for each

class.

Flags must also be stored for the refinement and coarsening processes; however, they can be

implemented in many different ways and are thus left to the developer. A possible method of

storage for these flags is provided implicitly in the algorithm definitions of section 6.2.2.

Object Model

The relationships between Cell, Face and Mesh objects are shown in the UML (Unified Modelling

Language) aggregation diagram of Figure 6.6 (see, for example, [3] or [11] for an introduction to

UML and examples of aggregation diagrams). As described by Figure 6.3, the Mesh is composed of
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Cell Face Mesh

u f CFLmax

∇φ, ∀i : φ = {u}i (x, y) (li, lj)max

(x, y) l (li, lj)min

(∆x,∆y) bcFlags[] dimension[]

(i, j)

(li, lj)

Table 6.1: Class definitions

Variable name Definition

u cell-centred conserved variable

∇φ, ∀i : φ = {u}i gradients of u components

(x, y) cell/face-centred coordinates

(∆x,∆y) cell size

(i, j) cell index

(li, lj) cell refinement level

f face-centred flux

l face length

bcFlags[] boundary condition flags

CFLmax maximum CFL number within the mesh

(li, lj)max maximum allowable cell refinement levels

(li, lj)min minimum allowable cell refinement levels

dimension[] mesh layout parameters

Table 6.2: Variable definitions

linked lists of individual Cell and Face objects. Linked lists are the most efficient data structures

to use when objects must be dynamically added to and deleted from the list [25].

Required Object Facilities

Without discussing fine details of the code, the classes must implement the functionality required

by the refinement and coarsening processes:
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Cell Refinement: This process is outlined in Figure 6.7, and requires the following to be per-

formed:

1. Create a new Cell and extrapolate φ◦ to φ′◦ and φ′′◦ using ∇φ◦.
2. Modify (x, y), (∆x,∆y), (i, j), and (li, lj) of the refined Cells appropriately.

3. Create a new Face between the split Cells, and remap neighbouring Cells’ faces appro-

priately. For example, in Figure 6.7, the Cell containing φc will need another Face to

be added to its collection of North Faces.

4. Modify (x, y), l and bcFlags[] of any Faces that were shortened; supply appropriate

(x, y), l and bcFlags[] to any newly created Faces.
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Figure 6.7: Cell refinement procedure
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Cell Coarsening: This process is outlined in Figure 6.8, and requires the algorithm to:

1. Choose two Cells of the same dimensions and appropriate indices (i, j); remove the

upper (right) Cell and extend the lower (left) Cell.

2. Average φ′◦ and φ′′◦ to obtain φ◦.

3. Delete the upper Cell and intermediate Face from the Mesh’s list of Cells and Faces.

4. Modify (x, y), (∆x,∆y), (i, j), and (li, lj) of the coarsened Cell appropriately.

5. Modify (x, y) and l of any Faces that must be lengthened; delete any Faces that were

made redundant through the process of coarsening. For example, in Figure 6.8, the

Faces beneath and to the left of φ′′◦ must be deleted.
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6.2.2 Refinement and Coarsening Algorithms

Algorithms 6.1 – 6.4 reproduce in pseudo-code the x−refinement and x−coarsening algorithms

as they are implemented in the present code. The y−refinement and y−coarsening algorithms are

defined similarly. These algorithms differ from those of Ham et al. [6] in that additional restrictions

are placed on the refinement levels of adjacent cells, as well as the fact that refinement proceeds

from the largest to the smallest cells.

Algorithm Notation

According to the Face and Cell class aggregation diagram of Figure 6.6, objects of one type carry

specific references to neighbouring objects of another type 1. In the algorithms that follow, this

relationship is described using the right arrow, ‘→’ . For example,

f
L−→ c→ flaggedRefineX

refers to Face f’s left-hand Cell c’s flag ‘flaggedRefineX’.

An arrow followed by an expression in braces means that the expression acts on the variable

belonging to the object. For example,

f
L−→ c→ {li = li − 1}

1e.g. in C++ a Face references its neighbouring Cells through pointer variables
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means that Face f’s left-hand Cell c’s variable li must be decremented.

Loops and if-statements are terminated when the indent level of the pseudo-code block returns

to the same level as the originating expression: ‘end for’ and ‘end if’ are implied. Comments are

provided using slanted text enclosed by parentheses2.

Algorithm 6.1 Flag and refine Cells in the x-direction

Require: all refinement/coarsening flags set to false
1: for all Cells c do

2: {clear refinement & coarsening flags}

3: c→ flaggedRefineX = false
4: c→ flaggedCoarsenX = false
5: Calculate least-squares c→ ∇φ
6: Calculate c→ ∆xtarget

7: for all Faces f do

8: Calculate interface gradients

9: if
[

f
L−→ c→ ∆xtarget ≤ ∆xL

]

OR
[

f
R−→ c→ ∆xtarget ≤ ∆xR

]

then

10: f
L−→ c→ flaggedRefineX = true

11: f
R−→ c→ flaggedRefineX = true

12: for all Cells c do

13: Apply limiter to c→ Faces→ ∇φ to generate new c→ ∇φ
14: {go through Cells and refine level by level}

15: for i = li,min to li,max − 1 do

16: for all Cells c do

17: if [c→ flaggedRefineX ≡ true] AND [c→ li ≡ i] then

18: call refineX(c) {see algorithm 6.2}

6.2.3 Application of the Algorithm to Compressible Flow Simulations

The refinement and coarsening algorithms are not exactly the same as described in [6]; the present

code does not perform more than one iteration of cell coarsening for each refinement level. It

was found that additional coarsening introduces numerical instability in areas of high gradient,

while the memory savings are insignificant. Rather than calling the coarsen routine for each cell

until all cells are at the largest size permitted by the mesh refinement criteria, the code makes

(li,max − li,min) iterations through the code, coarsening the largest cells at first, and proceeding to

the finest. Coarsening the largest cells first ensures that for a sweep of coarsening, any cell is only

joined to another cell once, which helps to maintain the solution quality.

Another difference exists between the present and original versions of algorithms 6.2 and 6.4:

the present versions contain additional restrictions on the refinement levels allowed between neigh-

bouring cells. Specifically, lines 5–8 of refineX() and lines 13–19 of coarsenX() specify that East and

West neighbouring cells cannot be smaller than half the width of the centre cell. This limit on the

change in anisotropy over a given area yields a smoother solution for compressible flow, possibly

because of the simulation’s sensitivity to the gradient reconstruction. On a highly anisotropic mesh

2{For example, this is a comment.}

44



Algorithm 6.2 boolean refineX(Cell c)

1: for all neighbouring Cells cnb ∈ Faces {N,S} do

2: {refine Cells that are preventing c’s refinement}

3: if [cnb → li ≡ li − 1] AND [refineX(cnb) ≡ false] then {recursive refinement}

4: return false
5: {refine cells to maintain a maximum li difference of 1 between Cells }

6: for all neighbouring Cells cnb ∈ Faces {W,E} do

7: if [cnb → li < li] AND [refineX(cnb) ≡ false] then {recursive refinement}

8: return false
9: Create new cell c◦, while c becomes the refined cell to the West

10: c→ {li = li + 1}
11: c→ {i = 2i}
12: c◦ → li = c→ li
13: c◦ → i = c→ i+ 1
14: Add faces and modify geometric data according to Figure 6.7

15: Interpolate cell-centred φ using limited ∇φ
16: set c→ wasXRefined = true
17: set c◦ → wasXRefined = true
18: return true

Algorithm 6.3 Flag and coarsen two Cells in the x-direction

Require: all coarsening flags set to false
1: for all Cells c do

2: Calculate least-squares c→∇φ
3: Calculate c→ ∆xtarget

4: for all Faces f do

5: if
[

f
L−→ c→ ∆xtarget ≥ 2∆xL

]

OR
[

f
R−→ c→ ∆xtarget ≥ 2∆xR

]

then

6: f→ doCoarsen = true
7: f

L−→ c→ flaggedCoarsenX = true

8: f
R−→ c→ flaggedCoarsenX = true

9: {go through Faces and coarsen level by level}

10: for i = li,min + 1 to li,max do

11: for all Faces f do

12: if [f→ doCoarsen ≡ true] AND [f→ wasXCoarsened ≡ false] then

13: call coarsenX(f, i) {see algorithm 6.4}
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Algorithm 6.4 coarsenX(Face f, level l)
1: {make sure we are coarsening cells at the correct refinement level}

2: if
[

f
L−→ c→ li 6= l

]

AND
[

f
R−→ c→ li 6= l

]

then

3: return false
4: {don’t coarsen cells that are/were flagged for refinement}

5: if
[

f
L−→ c→ flaggedRefineX = true

]

AND
[

f
R−→ c→ flaggedRefineX = true

]

then

6: return false
7: {only cells of the same dimensions can be coarsened}

8: if
[

f
L−→ c→ li 6= f

R−→ c→ li

]

OR
[

f
L−→ c→ lj 6= f

R−→ c→ lj

]

then

9: return false
10: {prevent brick-wall coarsening shown in Figure 6.5}

11: if
[

f
L−→ c→ i÷ 2 6= f

R−→ c→ i÷ 2
]

then {the ÷ sign denotes integer division; e.g. 3 ÷ 2 = 1}

12: return false
13: {do not coarsen if the neighbouring cells are finer}

14: for all Faces f
L−→ c

W−→ f do

15: if
[

f
L−→ c→ li > l

]

then

16: return false

17: for all Faces f
R−→ c

E−→ f do

18: if
[

f
R−→ c→ li > l

]

then

19: return false
20: {enforce the limit of ≤ 2 neighbouring cells}

21: for all Cells f
R,L−−→ c do

22: if [c has > 1 Face f ∈ Faces {N,S}] then

23: return false
24: Modify face connectivity and geometry according to Figure 6.8

25: Modify cell geometry for f
W−→ c; average cell-centred u values

26: f
L−→ c→ {li = li − 1}

27: f
L−→ c→ {i = i÷ 2}

28: Remove f
R−→ c from the list of Cells

29: Remove f from the list of Faces

30: return true
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consisting of high aspect-ratio cells, it is difficult to achieve a smooth and accurate reconstruction

using the least-squares method.

Performing a sweep of the entire mesh to coarsen and refine the cells is not necessary at every

time step. The present code operates at low CFL numbers (in the range of 0.1 to 0.2), which

implies that the solution requires 5 to 10 time steps to change significantly within a cell. The

refinement algorithm is therefore run only every 5 time steps, and the coarsening algorithm every

20. Coarsening regularly does not serve to preserve solution accuracy and is computationally more

intensive than refinement, hence its relatively infrequent application. Infrequent coarsening was

also found to yield overall memory savings similar to those yielded by frequent coarsening; this

was a promising result since it implied that cells were not alternating between coarsening and

refinement.

6.2.4 Adaptation Criteria

An adaptation criterion uses a function that is sensitive to some error measure or flow features

to specify which cells need to be refined and coarsened. Often, this function requires the user to

supply parameters for the refinement process to proceed correctly. This either allows finer control

of the solution quality, or else it complicates the problem by introducing several unknowns that

CFD practitioners must ‘feel’ their way around.

There are many adaptation criteria in the literature; however, most fall under one of the follow-

ing categories:

1. Manually-tuned gradient sensors; for example, the criterion used for steady compressible flow

by Ripley [22], based on an implementation by Lien [13]. This criterion flags cells for refine-

ment based on the absolute value of the difference between the density in the centre cell and

its neighbours. It is a simple criterion that is easy to implement and consumes little computa-

tional time. However, it is not sensitive to changes in the second derivative, and requires the

user to specify a tolerance for the gradient, which depends on the flow being simulated.

2. Combination gradient/higher order derivative sensors. In [26], Sun uses a criterion which is

based on the ratio of the second-order Taylor series truncation error term to the first order

one, which, when discretized, approximates a sensor function f(φ) based on the gradients φx

at the cell centre and a neighbouring face:

f(φ) =

∣
∣φx,face − φx,◦

∣
∣

αφ◦/∆x+ |φx,◦|
≈
∣
∣
∣
∣

φxx∆x

2φx

∣
∣
∣
∣
, (6.1)

where α is a small user-defined parameter used to prevent division by zero in the denomi-

nator. Sun used central finite differences to estimate the gradients at cell faces, and a least-

squares technique to reconstruct the cell-centred gradient. Flagging cells for refinement and

coarsening involves comparing the sensor function to user-specified upper and lower bounds

on the ratio, εr and εc:

if f(φ) > εr ⇒ refine cells on either side of face.

if f(φ) < εc ⇒ join cells on either side of face.

This approach yielded good results for Sun’s isotropically adapted mesh, but the user-supplied

parameters were flow-dependent, and the method did not perform as well on the present

anisotropic mesh, due to the noisy nature of the second derivative.
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3. Optimal cell dimensions based on error criteria. For example, consider the lowest-order term

of the Taylor series truncation error (which is dependent on the order of the scheme used)

integrated over the cell area, as presented in [6]. For a second-order accurate scheme, this

error tolerance is a function of the cell dimensions ∆x, ∆y, and the second derivatives ∇2φ.

Ham et al. in [6] obtained quasi-optimal expressions for {∆x,∆y}target, and used those to

determine the required levels of coarsening and refinement in the adaptation algorithm.

In terms of the amount of user knowledge and intervention required to operate the CFD code,

method 3 is the most foolproof since no assumptions about the solution need to be made. The

L∞ error norm provides a worst-case estimate of the error bound, and while there is no guarantee

that this matches the actual error in the solution, it is the best that can be achieved using a Taylor

remainder approximation.

For the present code, method 3 was adopted. However, instead of using the second-order

term in the Taylor series, the first-order term was used to generate optimal {∆x,∆y}target. Two

arguments can be used to justify this choice of error indicator:

1. Although the numerical method used is formally second-order accurate, the use of gradient

limiters and a mixture of quasi-first-order accurate corrections (seen in section 6.2.5) reduces

the code to first-order accuracy in the presence of discontinuities and sharp/oscillatory flow

features.

2. The second derivative is noisy and computationally expensive to reconstruct on a nonuniform

grid, which causes the corresponding adaptation to be haphazard and lose accuracy in key

locations.

Using ∇φ as the functional of interest (the present code takes ∇φ = |∇ρ|) and the first-order

term of the Taylor remainder to be the error term, the optimal {∆x,∆y}target were found to be:

∆x∗ =
(

2τφy

φ2
x

) 1
3

(6.2)

∆y∗ =
(

2τφx

φ2
y

) 1
3

(6.3)

where τ is the user-specified error tolerance. These expressions are derived in appendix A.2.

In smooth flow regions, one or both of φx and φy may be zero; hence, to avoid division by zero

in the code, practical expressions are:

∆x∗ =
(

2τ(φy+α)
(φx+α)2

) 1
3

(6.4)

∆y∗ =
(

2τ(φx+α)
(φy+α)2

) 1
3

(6.5)

where α is some small nonzero constant. In the code, α = 0.01τ was chosen arbitrarily Ideally, α
should be much smaller than τ but larger than machine ε in order to avoid catastrophic cancellation.

6.2.5 Solution Reconstruction via the Gradient

As described in section 3.5.1, the MUSCL approach is used to improve the accuracy of the numerical

estimate of the cell interface flux. This involves extrapolation of the solution u from the centre of
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the cell to another point in the cell. For a formally second-order accurate numerical method on a

uniform Cartesian mesh, this extrapolation takes u to the face of the cell. For the corresponding

first-order accurate method, no extrapolation is performed, and interface fluxes are based on cell-

centred u.

On the adapted Cartesian meshes presented in this thesis, using cell-centred u to calculate

interface fluxes results in severe degradation of the solution quality. Only by using gradient correc-

tions is the solution rendered reasonably smooth as compared to uniform mesh results. However,

for difficult test cases involving high Mach numbers and rapid expansions, even gradient-limited

second-order solutions can yield negative pressures and densities. For this reason, it is sometimes

necessary to have a first-order scheme that will work because of its dissipative nature.

A quasi-first-order accurate scheme can be constructed by using an auxiliary node approach: on

both sides of a given interface (where the flux must be calculated), cell-centred u are extrapolated

to points equidistant from the interface. These points lie on a line that is perpendicular to the

interface and crosses its centre. The distance of the points from the interface is the minimum of

the perpendicular distances between each of the cell centres and the interface. By moving the

locations of the extrapolated u toward the interface, the scheme is extended from first to second-

order accuracy. Figure 6.9 demonstrates the extrapolation graphically.
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Figure 6.9: First- and second-order gradient extrapolation on an anisotropic Cartesian mesh; φ ′ =

φ+∇φ · s

The least-squares method was used to estimate solution gradients; the process is described in

Appendix A.1. In the specific case of a uniform mesh, it can be shown that the least-squares method

approximate the gradient via two-point central differences.

49



Application of Gradient Limiters

In addition to using ∇φ to increase the order of accuracy of the method, the code requires gradient

information during the refinement procedure to determine new cell-centred φ values (see Figure

6.7). As described in section 3.5.2, the use of unlimited gradient information can result in negative

pressure and density in some cells, which dooms the entire flow simulation. The implementation

in code of the minmod and superbee limiters, as they limit x-gradients, is as follows:

Using Figure 6.10 as a reference, both limiters must decide which [combination] of the follow-

ing gradients to use as the cell-centred value:

∂φ

∂x ab
,

∂φ

∂x ac
,

∂φ

∂x ad
(6.6)
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Figure 6.10: Mesh used for gradient limiter application in the x-direction

The face gradients are approximated as in Sun’s implementation [26]:

∂φ

∂x ab
≈ φb − φa

∆xa

2 + ∆xb

2

(6.7)

For each cardinal direction, {N,S,E,W}, if the cell has two faces in a single direction, the

face whose gradient has the lowest absolute value is chosen for the ensuing minmod or superbee

function evaluation. For example, for the East faces of cell a in Figure 6.10:

∂φ

∂x E
= minmod

(
∂φ

∂x ab
,
∂φ

∂x ac

)

(6.8)

The chosen limiter function is then applied exactly as described in section 3.5.2, using the ratio

of the {E,W} pair of gradients as input arguments.
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Chapter 7

Results for Anisotropically Adapted

Mesh

The results presented in this chapter were obtained on anisotropically refined meshes. Two types

of solutions are presented:

1. Results obtained on meshes where the minimum cell dimension is equal to that of the uniform

mesh; these are provided in order to validate the adaptation technique.

2. Results obtained on meshes whose minimum cell dimensions provide yet higher resolution

than the uniform mesh result, while requiring a similar amount of computer memory.

The core numerical methods used to obtain the adapted mesh results are the same as those

used for the uniform mesh results of chapter 5. Refinement sweeps are made once every 5 time

steps, and coarsening sweeps are made once every 20. The CFL number of 0.2 ensures that the

refinement process can keep track of the change in the solution as time progresses1.

7.1 Backward Step

Results of the first type are presented in Figures 7.1, 7.2 and 7.3. The mesh was adapted according

to the target cell sizes defined in equations 6.4 and 6.5 using τ = 10−4 and ∇φ · ei = |∇ρ · ei|.
Density was chosen as the sensor variable because it is the conservative variable that best indicates

changes across shock, contact and expansion waves.

The contours of target cell size are arranged in a geometric sequence as indicated by the caption.

This information was obtained from the uniform mesh results via the calculation of (∆x∗,∆y∗) for

every cell. Since the refinement algorithm is relatively conservative (it refines some cells in order

to maintain the smoothness of the mesh), the actual refined mesh has small cells in places that the

1It does this by ensuring that refinement is performed at least as often as the fastest-travelling wave in the domain

can travel the length of one of the finest cells.
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(∆x∗,∆y∗) information does not predict. In general, however, the qualitative agreement between

the actual refined mesh and the predicted cell sizes is good.
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Figure 7.1: Mach 1.3 shock diffraction: pressure and density contours

Note that the smallest target cell areas correspond to areas where the shock wave or density

gradient is at a 45◦ angle to the mesh; as mentioned earlier, this is the case in which anisotropic

refinement holds no advantage over isotropic.

The results shown in Figures 7.4 – 7.6 are of the second type: the minimum cell dimensions

have been reduced to ∆x = ∆y = 40 ÷ 29 = 7.8125 × 10−2m in order to show the flow features

more clearly. The refinement sensor and value of τ remain the same. In addition to providing

density contours, a false Schlieren image has been created from the density field using a technique

outlined by Quirk [21].
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Figure 7.2: Mach 2.4 shock diffraction: pressure and density contours

7.1.1 Analysis of Results

Quality

The contour plots of density and pressure shown in Figures 7.1 – 7.3 show rougher contours than

those of the uniform mesh. This is because the data structure provides the contour routine with

regularly-spaced data by using a combination of the irregular cell-centred data and gradient extrap-

olation. The present code outputs flow field data as a set of regularly-spaced values superimposed

on a uniform mesh whose cell size corresponds to the finest permissible cells of the adapted mesh.

Thus, the contours are subject to deficiencies associated with the gradient extrapolation and limiter

techniques.

53



−10 0 10 20 30 40
−20

−10

0

10

20

30

−10 0 10 20 30 40
−20

−10

0

10

20

30

−10 0 10 20 30 40
−20

−10

0

10

20

30

−10 0 10 20 30 40
−20

−10

0

10

20

30

PSfrag replacements

Density ρ Pressure p

45 contours: 1.10× 10−2 ≤ ρ ≤ 1.05 45 contours: 4.55× 102 ≤ p ≤ 1.05× 105

Computational meshTarget cell area (∆x∗∆y∗)

Contours @
(

40

2n

)2
, n = 4..11

Figure 7.3: Mach 5.09 shock diffraction: pressure and density contours

Accuracy

In general, the contours shown in the low-resolution anisotropic mesh results of Figures 7.1 – 7.3

closely match their uniform mesh counterparts of Figures 5.2 – 5.4. The main deficiency of the

adapted mesh results is that the flow features are less well-resolved than those of the uniform

mesh. Specifically, the shock and contact waves are slightly more smeared in space. This, however,

is to be expected, since the refinement criterion minimizes only an upper bound on the Taylor series

truncation error.

Another difference between the two sets of results is the fact that the adapted mesh results

show a bunching of contours emanating horizontally from the step corner, out to the top end of the

secondary shock wave for the Mach 2.4 and 5.09 flows. This, shown by a dark horizontal line in the
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Figure 7.4: Mach 1.3 shock diffraction: density contours and false Schlieren

false Schlieren images of Figures 7.5 and 7.6, is a numerical expansion shock. Wu and Li theorize

in [34] that waves travelling across multiple interfaces from coarse to fine cells experience negative

numerical dissipation, which in turn can lead to nonphysical expansion shocks and negative density

and pressure. Close examination of the computational mesh shows that this juxtaposition of cells

does indeed exist along the length of the expansion shock.

The reader may observe that the high-resolution results are significantly more oscillatory than

the low-resolution ones; this is an effect of the gradient extrapolations used in the higher-order

scheme, combined with the superbee limiter, which is less restrictive than the minmod limiter. Uni-

form mesh results at an equivalent resolution would have the same oscillatory features. These

oscillations serve to illustrate how using a mesh refinement criterion based on the second deriva-

tive (rather than the first) would be less effective, since finite difference-based derivatives tend to

amplify high-frequency disturbances in the solution.

7.2 Forward Step

The adaptive mesh simulation encounters negative density and pressure if cells at a refinement

level higher than lmax = 5 are used, even with the modified aIF definition described in section

5.2.3. If a manual entropy fix were to be implemented at the step corner as in [33], this would not

be the case.

As in the backward step test case, the mesh was adapted using density as the indicator variable

for obtaining the target cell sizes (defined in equations 6.4 and 6.5). The stricter value of τ = 10−5

was chosen for the error criterion because of the higher resolution of this simulation over the
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Figure 7.5: Mach 2.4 shock diffraction: density contours and false Schlieren

backward step.

Figure 7.7 shows the computational mesh at different points in time. Most of the shock wave

structure is set up in the first two time units of the simulation. Afterwards, the shock waves move

relatively slowly toward their position at the end of the simulation.

Density and pressure fields are shown in Figures 7.8 and 7.9, where they are directly compared

to those obtained using the uniform mesh. The pressure and density contours are spaced linearly,

whereas the difference contours {∆ρ,∆p} are spaced logarithmically.

7.2.1 Analysis of Results

Quality

As in the backward step test case, contours in the adapted mesh solution are not as smooth as in

the uniform mesh results. This can only be partially explained by numerical noise in the solution

gradients used to extrapolate data onto a uniform mesh. The fact that the simulation does not

maintain positivity at higher mesh refinement levels, even though the uniform mesh simulation

shown in Figure 5.6 succeeded with lmax = 6, is an unrelated conundrum. This fact indicates that

some combination of the adaptation procedure and the method used to extrapolate cell-centred

variables to non-aligned faces causes numerical problems (such as a sudden decrease in artificial

dissipation) for the adapted mesh test cases. The exact cause of these numerical problems is un-

known; however, when the simulation is repeated using a more dissipative numerical method,
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Figure 7.6: Mach 5.09 shock diffraction: density contours and false Schlieren

positivity is maintained. Wu and Li observe in [34] that numerical dissipation has a destabilizing

effect when waves move from coarse to fine cells, so numerical problems in the fine cells at the step

corner could be exacerbated by the fact that coarse cells exist upstream.

Accuracy

It is apparent from Figures 7.8 and 7.9 that the uniform and adapted mesh solutions differ by at

most {∆ρ, ∆p} = 1 × 10−1 in the majority of the regions outside the shock waves. Although

the contours within the shock regions are very tightly packed and correspond closely between

the uniform and adapted mesh results, any slight perturbation to one side or the other may be

responsible for causing the comparatively large solution differences on the order of ∆ρ ≈ 10.

As an indication of the sensitivity of this test case to the numerical method, observe that the

location of the shock reflection at the top of the domain (at x ≈ 1.8) is sightly different between

the uniform and adapted mesh results. At this point, however, the shock is relatively weak (see

Colella’s plot of entropy in Figure 4.10) and therefore so is the solution difference.

One interesting implication of the results of Figure 7.8 is the fact that there are large areas of

the solution where the differences ∆ρ exceed τ = 10−5. This is because the ‘optimal’ target cell

sizes optimize cell size based on only one single, relatively simple indicator of the solution error,

whereas in reality the composition of the solution error is more complicated than the gradient term

of the Taylor series expansion. It is already apparent from its oscillatory behaviour and its difficulty

with the step corner expansion that the uniform mesh result is non-ideal. In addition, the very act

of anisotropic mesh refinement introduces errors into the solution through averaging and gradient

extrapolation – errors that are partially indicated by rougher density and pressure contours.
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Figure 7.7: Mach 3.0 flow over a forward step: computational mesh
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adapted mesh results
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Chapter 8

Concluding Remarks

8.1 Computational Resource Savings

One aim of using the anisotropic mesh adaptation technique was to yield computational resource

savings over uniform and equivalent isotropically adapted meshes. Since the forward step test case

generally consumes the most resources, and its major flow features lie at angles offset from the

cardinal directions, it was chosen as a worst-case scenario for the calculation of resource savings.

Figure 8.1 quantifies the time and memory savings achieved over a uniform mesh, while Figure 8.2

quantifies the memory savings achieved over an equivalent isotropically adapted mesh. Processor

time savings were tabulated and plotted according to the following expression:

Panisotropic

Puniform

=
∆tn, anisotropic

∆tn, uniform

(8.1)

where ∆tn is the real-world time required to reach time step n within the simulation. Note that

there is no valid execution time data at time zero. Memory savings were calculated using a similar

expression:

Manisotropic

Muniform

=
mn, anisotropic

mn, uniform

(8.2)

where mn = (no. faces×mface) + (no. cells×mcell). For the present code, mface = 236 bytes, and

mcell = 352 bytes. These quantities represent the amount of memory required by Face and Cell

objects, and depend on what extra storage is used for convenience within those classes. Obviously,

the memory savings would change if different values were used for mcell and mface.

One interesting feature of Figure 8.1 is the fact that the processing time savings are not pro-

portional to the memory savings. For a uniform mesh, the required processing time is directly

proportional to the memory used, since the same number of operations must be performed on

each Cell and Face object. However, there are two key differences between adaptive and uniform

meshes that explain the difference in the processing time to memory usage ratio:

1. The ratio of the number of cells to the number of faces is not necessarily the same for adapted
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and uniform meshes. For the forward step test cases, the ratios were found to be:
(

no. faces

no. cells

)

uniform

≈ 2.007,

(
no. faces

no. cells

)

adapted

≈ 2.165 (8.3)

Without going into the details of the code implementation, this discrepancy between Cell/Face

ratios affects the computational time since different operations are performed on Cells and

Faces.

2. The act of mesh refinement generally increases the amount of processor time required. The

uniform mesh obviously does not require this functionality.
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Figure 8.1: Memory and CPU time savings provided by anisotropic mesh adaptation for the forward

step test case

For the memory usage comparison of Figure 8.2, the isotropic mesh memory usage was calcu-

lated based on the assumption that all of the anisotropic cells in the mesh would be subdivided in

the appropriate direction (either x−refined or y−refined) until their aspect ratios were equal to the

equivalent isotropically refined cells. Surprisingly for a flow whose major features lie at an angle

to both of the cardinal directions, the anisotropic mesh offers significant memory savings over the

equivalent isotropic mesh.

Although the anisotropic code has the ability to refine isotropically, it is not instructive to com-

pare the processor time required for the anisotropic vs. isotropic meshes. The isotropic mesh data

structures defined in [35] are operated upon differently than the list used in the present code,

and have even been vectorized (see [26]) with the probable result that they are computationally

more efficient. It is difficult, however, to quantify this efficiency without setting up a test case and

running the code on the same platform that was used for the present anisotropic code.

Table 8.1 outlines the percentage of processor time spent on the main computational tasks. The
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Figure 8.2: Memory savings provided by anisotropic over isotropic adaptation for the forward step

test case

Code

Task Uniform Adaptive

Refine cells 0% 23%

Coarsen cells 0% 2%

Calculate AUSM+ fluxes 25% 15%

Step forward in time 19% 26%

Calculate {ρ, p, ~u} from u 3% 2%

Other tasks 53% 32%

Table 8.1: Division of processor time among computational tasks: forward step test case

category ‘other tasks’ is primarily composed of: a) applying the gradient limiter; b) calculating cell-

centred and face-based gradients and c) solution file output. However, some of these tasks are used

by the refinement and coarsening procedures, and so to avoid ‘double-accounting’, only the major

tasks are shown. It is interesting to note that the adaptive simulation consumes more processing

time when stepping forward in time. Code execution time profiles indicate that this is due to the

requirement that the each Cell search lists of neighbouring Face objects in order to add their flux

contribution.
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8.2 Future Direction

In order for the anisotropic Cartesian adaptation technique to be effective for a wider range of

supersonic flows and geometries, the areas outlined below should be examined in further detail

and implemented in code wherever possible.

Cut-cell method: This straightforward improvement has already been implemented in similar

codes by de Zeeuw and Powell [35] and Sun [26]. The cut-cell method allows for improved

resolution of arbitrary boundaries by approximating them with a line (or plane) that ‘cuts’

the computational cells. Boundary conditions are implemented by setting velocity normal to

the ‘cut’ equal to zero and interpolating the boundary pressure in the same way as described

in section 3.2.1.

Extension to three dimensions: The data structure and algorithms were extended by Ham et al.

in [6] to three dimensions. Therefore, extension of the present code is technically feasible. In

three dimensions, however, keeping track of adjacent faces in the code becomes complicated,

and therefore it is worth examining the present code for possible simplifications before taking

on this task.

Solution quality improvement: It is well documented that waves travelling between cells of dif-

ferent aspect ratios experience distortion ([10], [34]) and so the algorithms in this thesis are

stricter than the original ones of Ham et al. in that they place greater limits on the differences

in aspect ratio between adjacent cells. Wu and Li have proposed that such differences can

adversely affect the level of numerical dissipation present, which would suggest that the nu-

merical methods should take neighbouring cells’ aspect ratios into account when determining

fluxes.

Improvement in the quality of the solution would also serve to provide a better estimate of

higher-order derivatives, opening up the possibility of using them in alternate mesh refine-

ment criteria.
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Appendix A

Derivations

A.1 Least-Squares Gradient Computation

This technique relies on the minimization of weighted residuals generated by a finite-difference

approximation to the solution gradient, [φ̃x , φ̃y]
T . The residuals associated with cell i can be

expressed as:

ri(φ̃x , φ̃y) =
∑

all m

wm

([
(φ̃x)i
(φ̃y)i

]

· sm − [(φ)m − (φ)i]

)2

, (A.1)

where sm is the vector from the centroid of cell i to the centroid of neighbouring cell m. In this

work, the weight wm is taken as unity, but could be chosen differently, depending on the nature of

the solution.

By setting the partial derivatives of the residual equal to zero, we obtain a system of equations

that must be solved for the unknowns [(φ̃x)i , (φ̃y)i]
T .

Assigning for convenience

∆x = xm − xi

∆y = ym − yi

∆φ = φm − φi

WXX =
∑

m

wm∆x∆x

WXY =
∑

m

wm∆x∆y

WY Y =
∑

m

wm∆y∆y

WXφ =
∑

m

wm∆x∆φ

WY φ =
∑

m

wm∆y∆φ,
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the system becomes:
[
WXX WXY
WXY WY Y

] [
(φ̃x)i
(φ̃y)i

]

=

[
WXφ
WY φ

]

(A.2)

The closed-form solution to the system of equations is

(φ̃x)i =
(WY φ)(WXY )− (WXφ)(WY Y )

(WXY )(WXY )− (WXX)(WY Y )
(A.3)

(φ̃y)i =
(WXφ)(WXY )− (WY φ)(WXX)

(WXY )(WXY )− (WXX)(WY Y )
(A.4)

A.2 Optimal Cell Size Criterion

Consider the Taylor series expansion of φ(x) about x◦, the cell centre:

φ(x) = φ(x◦) + [∇φ(x)]T x +
1

2
xT [∇2φ(x)]x +O(x3) (A.5)

For a first-order accurate numerical scheme, the leading error term is [∇φ(x)]T x. By assuming

that the maximum absolute error occurs at the farthest point from the cell centre, in two dimensions

the expression becomes ∆x
2 φx + ∆y

2 φy.

Integrating this term over the cell provides an expression for the L∞ error:

εφ,L∞ =

∫ ∆x
2

−
∆x
2

∫ ∆y

2

−
∆y

2

∆x

2
φx +

∆y

2
φy dy dx =

∆x2∆y

4
φx +

∆x∆y2

4
φy (A.6)

We are now in a position to formulate the optimization problem:

maximize ∆x∆y (A.7)

subject to εφ,L∞ ≤ τ (A.8)

∆x ≥ 0 (A.9)

∆y ≥ 0, (A.10)

where τ is a user-specified error tolerance. For φ a single variable such as density, this problem

can be solved analytically using Lagrange multipliers. Following the theory of optimization us-

ing Lagrange multipliers as outlined in [19], we formulate and minimize the following Lagrange

function:

L(∆x,∆y, λ) = −∆x∆y − λ

(

τ − ∆x2∆y

4
φx −

∆x∆y2

4
φy

)

(A.11)

Setting the derivative of L with respect to x = [∆x,∆y]T equal to zero yields the system of

equations:

∇xL =

[

−∆y∗ + λ∗∆x∗∆y∗

2 φx + λ∗∆y∗2

4 φy

−∆x∗ + λ∗∆x∗2

4 φx + λ∗∆x∗∆y∗

2 φy

]

=

[
0
0

]

, (A.12)

where ∆x∗, ∆y∗ and λ∗ are optimal variable values. This system can be reduced to:

λ∗∆x∗φx = λ∗∆y∗φy (A.13)
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It is safe to assume that the strict complementarity condition applies; in other words, constraint

(A.8) is active (equality holds) at the optimal solution, x = [∆x∗,∆y∗]T ; thus, λ∗ 6= 0 and it can be

divided out of the equation. The remaining expression,

∆x∗φx = ∆y∗φy , (A.14)

provides the value of ∆x∗ in terms of ∆y∗; by using this in the equality constraint corresponding to

(A.8), we obtain the following expressions for the optimal target cell dimensions:

∆x∗ =
(

2τφy

φ2
x

) 1
3

(A.15)

∆y∗ =
(

2τφx

φ2
y

) 1
3

(A.16)
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