
Approximation Algorithms for Path TSP,
ATSP, and TAP via Relaxations

by

Zhihan Gao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2015

c© Zhihan Gao 2015

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The results in Chapters 3 and 4 are based on my single-authored papers [33], [34]. The
results in Chapter 5 is based on the paper [15] co-authored with Joseph Cheriyan, Konstantinos
Georgiou, and Sahil Singla. The results in Chapters 6 and 7 are based on the papers [12], [13]
co-authored with my supervisor.

iii

Abstract

Linear programming (LP) relaxations provide a powerful technique to design approximation
algorithms for combinatorial optimization problems. In the first part of the thesis, we study the
metric s-t path Traveling Salesman Problem (TSP) via LP relaxations.

We first consider the s-t path graph-TSP, a critical special case of the metric s-t path TSP. We
design a new simple LP-based algorithm for the s-t path graph-TSP that achieves the best known
approximation factor of 1.5. Then, we turn our attention to the general metric s-t path TSP. [An,
Kleinberg, and Shmoys, STOC 2012] improved on the long standing 5

3
-approximation factor and

presented an algorithm that achieves an approximation factor of 1+
√

5
2
≈ 1.61803. Later, [Sebő,

IPCO 2013] further improved the approximation factor to 8
5
. We present a simple, self-contained

analysis that unifies both results. Additionally, we compare two different LP relaxations of the
s-t path TSP, namely the path version of the Held-Karp LP relaxation for TSP and a weaker LP
relaxation, and we show that both LPs have the same (fractional) optimal value. Also, we show
that the minimum cost of integral solutions of the two LPs are within a factor of 3

2
of each other.

Furthermore, we prove that a half-integral solution of the stronger LP relaxation of cost c can
be rounded to an integral solution of cost at most 3

2
c. Finally, we give an instance that presents

obstructions to two natural methods that aim for an approximation factor of 3
2
.

The Sherali-Adams (SA) system and the Lasserre (Las) system are two popular Lift-and-
Project systems that tighten a given LP relaxation in a systematic way. In the second part of
the thesis, we study the Asymmetric Traveling Salesman Problem (ATSP) and unweighted Tree
Augmentation Problem, respectively, in the framework of the SA system and the Las system.

For ATSP, our focus is on negative results. For any fixed integer t ≥ 0 and small ε, 0 < ε� 1,
we prove that the integrality ratio for level t of the SA system starting with the standard LP
relaxation of ATSP is at least 1 + 1−ε

2t+3
. For a further relaxation of ATSP called the balanced LP

relaxation, we obtain an integrality ratio lower bound of 1 + 1−ε
t+1

for level t of the SA system.
Also, our results for the standard LP relaxation extend to the path version of ATSP.

For the unweighted Tree Augmentation Problem, our focus is on positive results. We study
this problem via the Las system. We prove an upper bound of (1.5 + ε) on the integrality ratio
of a semidefinite programming (SDP) relaxation, where ε > 0 can be any small constant, by
analyzing a combinatorial algorithm. This SDP relaxation is derived by applying the Las system
to an initial LP relaxation. We generalize the combinatorial analysis of integral solutions from the
previous literature to fractional solutions by identifying some properties of fractional solutions
of the Las system via the decomposition result of [Karlin, Mathieu, and Nguyen, IPCO 2011].

iv

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor Prof. Joseph
Cheriyan for his invaluable guidance and continued support for my research during the Ph.D.
program. When I need advice and help, he is always there. He taught me a lot about how to
write a scientific paper, how to select a suitable research topic, and, most importantly, how to be
a good researcher. Without these, I would never have been able to complete this thesis.

Besides my supervisor, I would also like to thank the other members of the thesis examin-
ing committee for reading my thesis and giving useful comments: Prof. Timothy Chan, Prof.
William Cook, Prof. Anupam Gupta, and Prof. Levent Tunçel.

My special thanks go to my research collaborators for the stimulating discussions in our
research meetings: Zachary Friggstad, Konstantinos Georgiou, and Sahil Singla.

I would like to thank my colleagues in the C & O department for providing suggestions and
encouragement for my research: Prof. Chaitanya Swamy, Prof. Laura Sanità, Andre Linhares
and Abbas Mehrabian.

Many thanks to my friends in Waterloo, who make my life colorful even in the hard times
of my Ph.D. journey: Ahmad Abdi, Fidel Barrera-Cruz, Jianfa Cong, Gabriel Gauthier-Shalom,
Feng He, Junbo Huang, Mehdi Karimi, Nishad Kothari, Hadi Minooei, Chunlin Wang, Siying
Wei, Miaolan Xie, Kun Xiong, Xin Xiong, and Hanmeng Zhan.

Last but not least, I would like to thank my family. I would not have made it so far without
their support. I thank my mother, Mei Li, and my father, Bohai Gao, for their unconditional love
and care. I thank my wife, Ye Wang, for staying with me through all the ups and downs of life.
I thank my grandmother Wenxiu Duan for holding my tiny hands and telling what the outside
world looks like when I was a kid. She will live forever in my heart.

v

Dedication

To the memory of my dear grandmother, Wenxiu Duan.

vi

Table of Contents

List of Figures xi

1 Introduction 1

2 Preliminaries 7

2.1 LP relaxations . 7

2.1.1 Path TSP . 8

2.1.2 Asymmetric TSP . 10

2.1.3 TAP . 11

2.2 Lift-and-Project systems . 11

3 Path Graph Traveling Salesman Problem 16

3.1 Preliminaries . 17

3.2 LP-based 3
2
-approximation algorithm . 18

4 Path Traveling Salesman Problem 22

4.1 Preliminaries . 23

4.1.1 Linear programs . 24

4.1.2 T -joins . 25

4.1.3 Polyhedra and convex decomposition 25

4.1.4 Christofides’ algorithm for s-t path TSP 26

vii

4.2 Unified correction vector . 26

4.2.1 AKS’ 1+
√

5
2

-approximation via unified correction vector 30

4.2.2 Sebő’s 8
5
-approximation via unified correction vector 31

4.3 Linear programming relaxations of the s-t path TSP 33

4.4 Counterexample to two approaches . 38

5 On Integrality Ratios for Asymmetric TSP in the Sherali-Adams System 43

5.1 Our results . 44

5.2 Preliminaries . 46

5.2.1 LP relaxations for Asymmetric TSP . 46

5.2.2 The Sherali-Adams system . 47

5.3 SA applied to the Balanced LP relaxation of ATSP 50

5.3.1 Certifying a feasible solution . 50

5.3.2 CGK (Charikar-Goemans-Karloff) construction 56

5.4 SA applied to the standard LP (DFJ LP) relaxation of ATSP 60

5.4.1 Certifying a feasible solution . 63

5.5 Path ATSP . 69

6 Approximating (Unweighted) Tree Augmentation via Lasserre System, Part I: Stem-
less TAP 73

6.1 Our results and techniques . 74

6.2 Preliminaries and notation . 77

6.3 The initial LP . 80

6.4 Lasserre tightening and its properties . 81

6.5 Potential function for stemless TAP . 84

6.6 Algorithm . 86

6.6.1 Semiclosed trees . 87

6.6.2 Credit assignment . 88

viii

6.6.3 Simple contractions and assertions on M 88

6.6.4 Good semiclosed trees . 89

6.6.5 Algorithm in summary . 91

6.6.6 Worked example . 91

6.7 Analysis of the algorithm . 92

6.7.1 Semiclosed trees are good except deficient 3-leaf trees 93

6.7.2 Addressing deficient 3-leaf trees . 97

6.8 Tight example for the analysis . 99

7 Approximating (Unweighted) Tree Augmentation via Lasserre System, Part II 102

7.1 Preliminaries and notation . 104

7.2 Lasserre tightening and its properties . 106

7.3 Potential function . 107

7.4 Algorithm and credits I: Preprocessing steps 112

7.4.1 Semiclosed trees . 113

7.4.2 Maximum matching . 114

7.4.3 Bad 2-stem trees . 114

7.4.4 Credit assignment for the algorithm and the preprocessing 119

7.4.5 Second preprocessing step . 122

7.5 Algorithm and credits II: Overall algorithm . 122

7.5.1 (Up-to-5) greedy contractions and assertions on M 122

7.5.2 Good semiclosed trees . 123

7.5.3 Summary of the algorithm . 124

7.5.4 Stem assertion of the algorithm . 124

7.6 Analysis of the algorithm, and deficient trees 125

7.6.1 Properties from assertions . 127

7.6.2 Most semiclosed trees are good . 130

7.6.3 Addressing deficient trees . 141

ix

8 Conclusion 144

8.1 Path TSP . 144

8.2 Asymmetric TSP . 145

8.3 TAP . 146

References 147

x

List of Figures

2.1 A comparison of the Lift-and-Project systems. A −→ B: B is stronger than A . . 14

4.1 Tight example . 37

4.2 Support graph of xHb with edge xHb values and edge costs 39

4.3 Cost of the good spanning tree . 41

4.4 Tree Jb . 41

5.1 A digraph G with a good decomposition given by the dicycle with thick edges,
and the length 2 dicycles Cj formed by the anti-parallel pairs of thin edges; G−
E(Cj) is strongly connected for each dicycle Cj 50

5.2 G0 and G1 for r = 3 . 56

5.3 Gk and Lk for k ≥ 2 and r = 3 . 56

5.4 An illustration of the vertex-splitting operation used for mapping G to Gnew. . . . 61

5.5 Digraph from Figure 5.1 after the vertex-splitting operation 62

5.6 Transforming a dicycle Cj formed by an anti-parallel pair of thin edges in Fig-
ure 5.1 to Cnew

j by the vertex-splitting operation. 62

5.7 tour(e) . 62

6.1 An illustration of the role of the decomposition theorem for the Las system (The-
orem 6.4.1) in our analysis. 76

6.2 Illustration of a stem s and its twin link `. 77

6.3 Illustration of the proof of Lemma 6.4.3. 83

6.4 Instance for k = 6. 85

xi

6.5 Worked example of the algorithm. 92

6.6 Illustration of deficient 3-leaf tree. 93

6.7 Illustration of auxiliary graph. 94

6.8 The links `v and `a in the proof of Theorem 6.7.3. 97

6.9 Addressing deficient 3-leaf trees by replacing M by M new. 98

6.10 Two building blocks of our example. 100

6.11 Instance for k = 3. 100

7.1 Illustration of the argument flow related to the decomposition theorem by Las
system. 103

7.2 Illustration of a bud b0 in the subtree Tv. 105

7.3 Illustration ofRspecial(b0) for a bud b0. 106

7.4 Illustration of bad 2-stem tree. 115

7.5 Illustration of leafy 3-covers of Tv for Subcase 2.2.2 in the proof of Lemma 7.4.5. 119

7.6 Illustration of deficient 3-leaf tree. 126

7.7 Illustration of deficient 4-leaf trees. 127

7.8 Illustration of an M -covered bud in T . 129

7.9 Illustration of auxiliary graph. 132

7.10 Illustration of a buddy link ` in the proof of Lemma 7.6.5 134

7.11 The links `u and `s in the proof of Lemma 7.6.5. 136

7.12 The links `v and `a in Subcase 1.2 of the proof of Theorem 7.6.6. 139

7.13 The links `v, `a2 and a1b1 in Subcase 2.1 of the proof of Theorem 7.6.6. 139

xii

Chapter 1

Introduction

Combinatorial optimization is motivated by many real-life problems with widespread applica-
tions in transportation, scheduling, network design, etc. Essentially, combinatorial optimization
is a branch of optimization that deals with the problems where we seek an optimal solution from
a finite set of candidates. This finite set of candidates is formed by satisfying the constraints
posed by the problem. Each candidate is called a feasible solution, and the set of all candidates
is called the feasible set. For every optimization problem, there is an associated objective func-
tion that maps each feasible solution to a real value. The value of the objective function for a
feasible solution is called the value of the solution. An optimal solution here means a feasible
solution that minimizes (maximizes, respectively) the objective function if the input problem is
a minimization (maximization, respectively) problem. Thus, the goal of a combinatorial opti-
mization problem is to find an optimal solution with respect to a particular objective function
from a finite set of feasible solutions. We mention that the problems considered in this thesis
are all minimization problems and the objective functions are all nonnegative valued. Specifi-
cally, this thesis focuses on three important problems in combinatorial optimization, namely the
Path Traveling Salesman Problem, the Asymmetric Traveling Salesman Problem, and the Tree
Augmentation Problem.

Although the feasible set is finite, its cardinality increases exponentially with the input size
of the instance. In fact, many combinatorial optimization problems are NP-hard. Thus, it is
impossible to find an optimal solution in polynomial time unless P=NP. One alternative way
to approach NP-hard combinatorial optimization problems is to search for a “near optimal”
solution instead of an optimal one. This motivates the research on approximation algorithms.
For a minimization problem, an α-approximation algorithm is a polynomial-time algorithm that
always outputs a feasible solution whose value is guaranteed to be at most α times the value of
an optimal solution (α > 1). This factor α is called the approximation factor, and it measures the

1

accuracy of the approximation algorithm for solving the problem. One key focus of this thesis is
on the design of approximation algorithms for NP-hard combinatorial optimization problems.

Many different approaches are used for the design of approximation algorithms in combina-
torial optimization, and many approximation algorithms are specific to the problem. However,
there is a fundamental technique commonly used in the design of approximation algorithms: lin-
ear programming (LP) relaxation. Most of the time, a combinatorial optimization problem can be
formulated naturally as an integer program (IP) where the objective function and constraints are
linear, and the variables are restricted to taking integral values. However, in general, solving an
IP is still an NP-hard problem. The difficulty comes from the discrete structure of the feasible
set of the IP. One idea is to relax the IP by allowing the variables to take fractional values such
that the resulting linear program (LP) can be solved in polynomial time (we use the standard ab-
breviation LP to stand for linear programming or linear program). The resulting linear program
is called an LP relaxation of the combinatorial optimization problem. However, a (fractional)
optimal solution of the LP relaxation can be far from the optimal solution of the original opti-
mization problem. To address this difficulty, one possible way is to strength the LP relaxation by
adding more variables and constraints. The Lift-and-Project system provides a systematic tool to
construct tightened relaxations.

For a relaxation of a combinatorial optimization problem, every feasible solution of the prob-
lem corresponds to an integral solution of the relaxation. The integral solution that optimizes
the objective function of the relaxation is called an optimal integral solution. For an instance
of a minimization problem, the integrality ratio of a relaxation is defined to be the ratio of the
value of an optimal integral solution to the value of an optimal (fractional) solution of the re-
laxation. Furthermore, for a minimization problem, the integrality ratio of a relaxation is the
worst-case (supremum) ratio over all instances. The integrality ratio measures the quality of a
relaxation. Informally speaking, integrality ratios are closely related to approximation algorithms
via “rounding”. Rounding a (fractional) optimal solution of a relaxation to an integral solution
is a popular approach in the design of approximation algorithms. Consider a minimization prob-
lem. For all instances, if we could always round an (fractional) optimal solution of a relaxation
to an integral solution such that the value of the integral solution is at most α times the value of
the (fractional) optimal solution, then the integrality ratio of the relaxation would be at most α.
Conversely, if we could establish a lower bound α for the integrality ratio of a relaxation, then
for all instances, it is impossible to always round an optimal (fractional) solution to an integral
solution within a factor lower than α. The other key focus of this thesis is on the integrality ratios
of tightened relaxations generated by the Lift-and-Project systems.

The Traveling Salesman Problem (TSP) and its variants are celebrated NP-hard problems in
the area of combinatorial optimization. Given a complete (undirected) graph with edge costs, the
goal of TSP is to find a minimum-cost Hamiltonian cycle (a cycle that visits every vertex exactly

2

once). We say that the edge costs are metric if they satisfy the triangle inequalities. In this case,
Christofides’ algorithm [20] achieves an approximation factor of 3

2
. Approximation algorithms

for TSP and its variants have been studied for over four decades. In this thesis, we study two
important variants of TSP under metric costs: (metric) s-t path TSP and (metric) Asymmetric
TSP (ATSP).

We first consider a critical special case of the metric s-t path TSP. Let G be a connected
graph with unit cost on each edge. Let s, t be two given vertices in G. The goal of the s-t path
graph-TSP is to find a minimum-cost Hamiltonian path from s to t in the metric completion
of G. A result of Hoogeveen [39] gave a 5

3
-approximation algorithm for this problem. An

and Shmoys [2] provided a sightly improved performance guarantee of (5
3
− ε). Then, Mömke

and Svensson [53] gave a 1.586-approximation algorithm for the s-t path graph-TSP. Mucha
[54] improved the analysis of [53] and obtained a 19

12
+ ε ≈ 1.58333 approximation guarantee

for any ε > 0. Recently, Sebő and Vygen [62] gave the first 3
2
-approximation algorithm by

using ear decomposition and matroid intersection. In Chapter 3, we design a new LP-based 3
2
-

approximation algorithm for the s-t path graph-TSP. Compared with the algorithm from [62],
our algorithm and its analysis are much simpler. It is known that the integrality ratio of the path
version of the Held-Karp LP relaxation is lower bounded by 3

2
even in this graphic metric case.

Our algorithm implies that the integrality ratio of this LP relaxation is at most 3
2

for the graphic
metric. Hence, from this point of view, our algorithm obtains the best possible approximation
guarantee achievable by an algorithm based on the Held-Karp LP relaxation for the s-t path
graph-TSP. These results have been published in the single-authored paper [33].

Given a complete graph with metric edge costs and two fixed vertices s and t, the goal of the
(metric) s-t path TSP is to find a minimum-cost Hamiltonian path between s and t. Hoogeveen’s
[39] 5

3
-approximation guarantee had been the best one since 1991 until the paper [1] by An,

Kleinberg, and Shmoys improved on the 5
3

approximation guarantee and presented an algorithm
that achieves an approximation guarantee of 1+

√
5

2
≈ 1.61803. Later, Sebő [61] further im-

proved the approximation factor to 8
5
. Very recently, Vygen [67] obtained an approximation

factor slightly better than 8
5
. In fact, the algorithm in [61] is the same as the algorithm in [1]. It

is called randomized Christofides’ algorithm. In more detail, we solve an LP relaxation to get an
optimal solution x∗ that can be written as a convex combination of spanning trees. We sample
a spanning tree J from these spanning trees according to the probability distribution defined by
the coefficients of the convex combination. Let T denote the set of vertices of J that have the
wrong degree. Then, similarly to Christofides’ algorithm, the algorithm adds the minimum-cost
T -join to fix the wrong-degree vertices of J . The expected cost of the random solution is the
sum of the expected cost of J , which is the cost of x∗, and the expected cost of the T -join. Any
feasible solution of the T -join polyhedron provides a cost upper bound for the T -join. An et
al. [1] introduced so-called correction vectors to construct a special type of fractional T -join.

3

The correction vectors were further analyzed in [61] to obtain a better approximation factor. In
Chapter 4, we provide a simple correction vector to derive the results of both [1] and [61]. An
et al. [1] and Sebő [61] use two different LP relaxations of the s-t path TSP in their algorithms.
[1] uses the path version of the Held-Karp LP relaxation for TSP, whereas [61] uses a weaker LP
relaxation. This motivates a comparison of these two LP relaxations in Chapter 4. Finally, an
instance that presents obstructions to two natural methods that aim for an approximation factor
of 3

2
is also discussed in Chapter 4. These results appear in the single-authored preprint [34],

which has been accepted for publication in SIAM Journal on Discrete Mathematics.

LP relaxations give a powerful technique to design approximation algorithms for combina-
torial optimization problems. All of our discussions on the s-t path TSP are based on LP relax-
ations. An intriguing possibility for obtaining better approximation factors would be to tighten
the LP relaxations. Some Lift-and-Project systems have been developed in order to obtain tight-
enings of relaxations in a systematic manner.

Assume that each variable in the initial LP relaxation is in the interval [0, 1], i.e., the integral
solutions are zero/one, and let n denote the number of variables in the LP relaxation. A Lift-and-
Project system starts with the LP relaxation, and then iteratively obtains a sequence of stronger
relaxations such that the associated feasible regions form a nested family that contains (and
converges to) the integral hull. By the integral hull we mean the convex hull of the zero-one
solutions that are feasible for the original relaxation. The index of each relaxation in the sequence
of tightened relaxations is known as the level of the system; the level of the original relaxation
is defined to be zero, and the relaxation at level n is exact, i.e., the associated feasible region is
equal to the integral hull. In particular, Sherali and Adams [63] devised the Sherali-Adams (SA)
system, Lovász and Schrijver [50] devised the Lovász-Schrijver (LS) system, and Lasserre [46]
devised the Lasserre (Las) system. See [47] for a survey of these systems; several other Lift-
and-Project systems are known, see [19, 6].

This thesis focuses on the Sherali-Adams system and the Lasserre system. These two
Lift-and-Project systems strengthen relaxations in a “global manner”. On the one hand, this
enhances its algorithmic leverage for deriving positive results. On the other hand, it also makes
it more challenging to design instances with bad integrality ratios for the sequence of relaxations
derived by these Lift-and-Project systems. Over the last two decades, a number of important
improvements on approximation guarantees have been achieved based on relaxations obtained
from Lift-and-Project systems. See [19] for a survey of many such positive results. Meanwhile,
starting with the work of Stephen and Tunçel [64] and Arora et al. [4], substantial research
efforts have also been devoted to showing that tightened relaxations (for many levels) fail to
reduce the integrality ratios for some combinatorial optimization problems; also, see [19] for
a list of negative results. In this thesis, we show negative results and positive results for the
Sherali-Adams system and the Lasserre system, respectively.

4

Given a complete directed graph with metric edge costs, the goal of ATSP is to find a
minimum-cost directed Hamiltonian cycle. Many LP relaxations are known for ATSP, see [57]
for a recent survey. The best known is due to Dantzig, Fulkerson and Johnson; we call it the
standard LP relaxation or the DFJ LP relaxation. To the best of our knowledge, there are two
previous papers with results on the integrality ratio for Lift-and-Project systems applied to the
TSP and its variants. Cheung [18] proved an integrality ratio of 4

3
for the TSP, for O(1) levels

of LS+, the semidefinite programming (SDP) version of the Lovász-Schrijver system [50]. For
ATSP, there is a further LP relaxation of the standard LP relaxation, called the balanced LP re-
laxation. Watson [68] proved an integrality ratio of 3

2
for level 1 of the Lovász-Schrijver system

starting with the balanced LP relaxation for ATSP (in fact, both the systems LS and SA give the
same relaxation at level one). In Chapter 5, we consider the SA system starting with two LP
relaxations of ATSP, and we prove lower bounds on the integrality ratios that survive for multi-
ple levels; the two relaxations are the standard LP and the balanced LP. These results have been
published in the joint-authored paper [14].

Given a connected (undirected) graph G with nonnegative costs (weights) on the edges, to-
gether with a spanning tree T of G, the goal of the weighted Tree Augmentation Problem is to
find a set of edges, F ⊆ E(G)−E(T), of minimum cost such that the graph (V,E(T) ∪ F) is
2-edge connected. Frederickson and Jaja [32] in 1981 presented a 2-approximation algorithm
for the weighted Tree Augmentation problem. In 2001, Jain [40] invented a 2-approximation
iterative rounding algorithm for a more general problem, namely the Survivable Network Design
Problem. To date, the best known approximation factor for the weighted Tree Augmentation
Problem is 2. When the edge costs are uniform, we get the unweighted Tree Augmentation Prob-
lem. It has been proved that even the unweighted Tree Augmentation Problem is APX-hard, see
[43, Section 4]. Since our focus is on the unweighted version, we use the abbreviation TAP for
the unweighted Tree Augmentation Problem. There have been some important advances for TAP.
Nagamochi [55] first beat the 2-approximation factor and presented a (1.875 + ε)-approximation
algorithm for TAP. Subsequently, Even et al. [29] built on the ideas and techniques initiated
by Nagamochi and presented an elegant algorithm and analysis that achieves an approximation
guarantee of 1.8. In a conference publication from 2001, Even et al. [28] reported the first 1.5-
approximation algorithm for TAP. Very recently, Kortsarz and Nutov finalized the journal version
of this result [44].

For TAP, there is a natural LP relaxation, called the covering LP relaxation. A lower bound
of 1.5 on the integrality ratio is known [17]. However, the best known upper bound for the
integrality ratio of the covering LP relaxation is 2, and this is implied by Jain’s result [40].
Whether the integrality ratio of the covering LP relaxation is 1.5 or worse than 1.5 is unknown.
A related open question is whether there exists either an LP relaxation or an SDP relaxation with
integrality ratio at most 1.5. In Chapters 6 and 7, we present an SDP relaxation of TAP with

5

integrality ratio at most 1.5 + ε, where ε can be any small positive constant. This SDP relaxation
is obtained by applying t levels of the Lasserre system to an LP relaxation of TAP where t
depends on ε. A (1.5 + ε)-approximation algorithm is also given for TAP. The algorithm follows
the algorithmic scheme of [29]. Our analysis of the integrality ratio of the SDP relaxation is
based on this algorithm. Also, our analysis relies on the decomposition theorem for the Lasserre
system due to Karlin and Mathieu and Nguyen [41]. These results are based on the joint-authored
papers [12] [13].

This thesis is organized as follows. Chapter 2 gives some notation and presents LP relax-
ations for the optimization problems considered in this thesis. Chapter 2 also has a very brief
introduction to Lift-and-Project systems. Chapter 3 presents an LP-based 1.5-approximation al-
gorithm for the s-t path graph-TSP. In Chapter 4, we study the metric s-t path TSP. Starting from
Chapter 5, we turn our attention to results in the framework of Lift-and-Project systems. Chapter
5 shows lower bounds for the integrality ratios of the Sherali-Adams system applied to two LP
relaxations of ATSP. Chapters 6 and 7 focus on TAP via the Lasserre system. Chapter 6 is for
a special case and Chapter 7 has general results which subsume Chapter 6 but are substantially
more difficult. Chapter 6 serves as an overview of Chapter 7. Finally, Chapter 8 concludes the
thesis.

6

Chapter 2

Preliminaries

In this chapter, we give some notation and present the LP relaxations for the problems considered
in the thesis. A very brief introduction to Lift-and-Project systems is given as well.

2.1 LP relaxations

Let G = (V,E) be a (undirected) graph. We say G is connected if for any two vertices u, v in V ,
there is a path between u and v in G. Furthermore, if for any two vertices u, v in V , there are at
least two edge-disjoint paths between u and v in G, then G is said to be 2 edge-connected.

We call a nonempty, proper subset of vertices S a cut. For a cut S, we define δG(S) =
{(u, v) ∈ E : u ∈ S, v /∈ S}. If S = {v}, then we use δG(v) instead of δG({v}). Furthermore,
if there is no ambiguity, we use δ(S) for short. For any vertex v, the cardinality of δ(v) is called
degree of v.

For a partition W = {W1,W2, . . . ,W`} of the vertex set V , let δ(W) denote ∪1≤i≤`δ(Wi).
Let s, t be two vertices in V . For a cut S, if |S ∩ {s, t}| = 1, then S is called an s-t cut. For a
subset S of V , we let E(S) denote the set of edges induced by S, thus, E(S) = {(u, v) ∈ E :
u, v ∈ S}.

For a vector x ∈ RA, we define x(D) =
∑

e∈D xe for any subset D of A. When D = {e},
we may use xe or x(e). For any two sets A and B, we use A−B to denote {e ∈ A : e /∈ B}. For
simplicity, we may denote the addition (removal) of a single item e to (from) a set A by A + e
(A− e, respectively), rather than by A ∪ {e} (A− {e}, respectively).

7

Given a complete graph G = (V,E) with metric edge costs c, the goal of (metric) TSP is to
find a minimum-cost Hamiltonian cycle (a cycle that visits every vertex exactly once). We say
that the edge costs c are metric if c satisfies the triangle inequalities, i.e., c((u, v)) + c((v, w)) ≥
c((u,w)) for any three vertices u, v, w ∈ V . The following well known linear program is a
relaxation of TSP onG. This LP relaxation is first introduced by Dantzig, Fulkerson and Johnson
[23] but it is also called Held-Karp LP relaxtion [37], [38]; also see the survey paper of Vygen
[66].

(DFJ LP/Held-Karp LP) minimize :
∑
e∈E

cexe

subject to : x(δ(v)) = 2 ∀ v ∈ V
x(δ(S)) ≥ 2 ∀ ∅ (S (V

1 ≥ xe ≥ 0 ∀ e ∈ E

We consider two versions of this LP relaxation for the s-t path TSP and ATSP, respectively.
Following the literature, the analogous LP relaxation for the s-t path TSP is called path Held-
Karp LP relaxation, whereas the analogous LP relaxation for ATSP is called DFJ LP relaxation.

2.1.1 Path TSP

Given a complete graph G = (V,E) with metric edge costs c and two fixed vertices s, t, the goal
of (metric) s-t path TSP is to find a minimum-cost Hamiltonian path from s to t (a path from s
to t that visits every vertex exactly once). The path Held-Karp LP relaxation for the (metric) s-t
path TSP is defined as follows:

(Path Held-Karp LP) minimize :
∑
e∈E

cexe

subject to : x(δ(s)) = x(δ(t)) = 1

x(δ(v)) = 2 ∀ v 6= s, t

x(δ(S)) ≥ 1 ∀ s-t cut S
x(δ(S)) ≥ 2 ∀ ∅ (S (V, |S ∩ {s, t}| even
1 ≥ xe ≥ 0 ∀ e ∈ E

8

The (metric) s-t path TSP is defined on a complete graph with metric edge costs. There is
an equivalent definition of the s-t path TSP starting with a connected graph H = (V,E(H))
with nonnegative edge costs cH . Let s, t be two fixed vertices. Let G = (V,E) be the metric
completion of H with metric edge costs c. By the metric completion of a connected graph H ,
we mean the complete graph on V with the edge costs, where the cost of an edge between v, w
is taken to be the minimum cost (w.r.t. cH) of a path between v, w on H . Let 2H be the graph
obtained from H by doubling every edge of H . The s-t path TSP on G is equivalent to the
problem of finding a minimum-cost trail in 2H from s to t visiting every vertex at least once
(multiple visits are allowed for the vertices but not the edges). Thus, the problem is to find
a minimum-cost connected spanning subgraph of 2H with {s, t} as the odd-degree vertex set.
Hence, the following linear program with constraints on all partitions is another LP relaxation of
the s-t path TSP.

(Partition LP) minimize :
∑

e∈E(H)

cHe xe

subject to : x(δ(W)) ≥ |W| − 1 ∀ partitionW of V
x(δ(S)) ≥ 2 ∀∅ (S (V, |S ∩ {s, t}| even
xe ≥ 0 ∀ e ∈ E(H)

Note that the Partition LP relaxation is defined on the original graph H but the path Held-
Karp LP relaxation is defined on the metric completion G of H .

For the s-t path TSP, there is a closely related concept, called T -join. Consider a connected
graph K = (V,E(K)) with nonnegative edge costs cK . Let T be a nonempty subset of V with
|T | even. For F ⊆ E(K), if the set of odd degree vertices of the graph (V, F) is T , then we call
F a T -join. Since K is connected, a T -join always exists. For any ∅ (S (V , if |S ∩ T | is
odd (even, respectively), then we call S a T -odd cut (T -even cut, respectively). The following
LP formulates the problem of finding a T -join of minimum cost:

(T -join Polyhedron) minimize :
∑

e∈E(K)

cKe xe

subject to : x(δ(S)) ≥ 1 ∀ T -odd S
xe ≥ 0 ∀ e ∈ E(K)

Lemma 2.1.1 [26] Let K = (V,E(K)) be a connected graph with nonnegative edge costs cK

9

and T be a nonempty subset of V with even size. Then, the optimal value of the T -join polyhedron
is the same as the minimum cost of a T -join on K.

2.1.2 Asymmetric TSP

Let G = (V,E) be a directed graph (digraph). We say G is strongly connected if for any two
vertices u, v, there is a directed path from u to v in G. If replacing all directed edges in G by
undirected edges results in a connected (undirected) graph, thenG is said to be weakly connected.

For a vertex subset ∅ (S (V , δoutG (S) denotes {(v, w) ∈ E : v ∈ S,w 6∈ S}, and δinG (S)
denotes {(v, w) ∈ E : v 6∈ S,w ∈ S}. Similarly, if S = {v}, then we use δoutG (v) instead of
δoutG ({v}) and δinG (v) instead of δinG ({v}). Furthermore, if there is no ambiguity, we use δout(S)
and δin(S) for short. For a vertex v, the cardinality of δin(v) is called indegree of v, and the
cardinality of δout(v) is called outdegree of v.

For ATSP, the input graph G = (V,E) is a complete digraph with metric edge costs c. The
goal of ATSP is to find a minimum-cost directed Hamiltonian cycle (a directed cycle that visits
every vertex exactly once). On the complete digraph G, we say that the edge costs c are metric if
c satisfies the triangle inequalities for the directed edges, i.e., c((u, v)) + c((v, w)) ≥ c((u,w))
for any three vertices u, v, w ∈ V where (a, b) means a directed edge from a to b.

The following is the well known version of the DFJ LP relaxation for ATSP; this LP is also
called standard LP relaxation of ATSP.

(DFJ LP/Standard LP) minimize:
∑
e∈E

cexe

subject to: x
(
δin(S)

)
≥ 1 ∀∅ (S (V

x
(
δout(S)

)
≥ 1 ∀∅ (S (V

x
(
δin(v)

)
= 1, x

(
δout(v)

)
= 1 ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

For ATSP, there is a further LP relaxation of the DFJ LP relaxation that is obtained by re-
placing the indegree and outdegree constraints for each vertex by the balanced degree constraint
x(δin(v)) = x(δout(v)); this LP is called the balanced LP relaxation.

10

(Balanced LP) minimize:
∑
e∈E

cexe

subject to: x
(
δin(S)

)
≥ 1 ∀∅ (S (V

x
(
δout(S)

)
≥ 1 ∀∅ (S (V

x
(
δin(v)

)
= x

(
δout(v)

)
∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

2.1.3 TAP

For TAP, the input is a connected (undirected) graph G = (V,E(G)) with a spanning tree T =

(V, ÊT) of G. Let E = E(G)−ÊT . An edge in ÊT is called a tree-edge, whereas an edge in E
is called a link. The goal of TAP is to find a minimum-size subset F of E such that the graph
(V, ÊT ∪ F) is 2-edge connected.

We say that a link uv covers a tree-edge ê if ê is on the unique path of the tree T between u
and v. For any tree-edge ê ∈ ÊT , we use δE(ê) to denote the set of links that cover ê. Finding a
subset F of E such that (V, ÊT ∪F) is 2-edge connected is equivalent to finding a subset F of E
such that every tree-edge is covered by some link in F . The following is a natural LP relaxation
of TAP, called the covering LP relaxation.

(Covering LP) minimize :
∑
uv∈E

xuv

subject to :
∑

uv∈δE(ê)

xuv ≥ 1 ∀ê ∈ ÊT

0 ≤ xuw ≤ 1 ∀uw ∈ E

2.2 Lift-and-Project systems

A Lift-and-Project system is a systematic method to tighten a given LP relaxation iteratively
to finally converge to the integral hull. In this section, we show three popular Lift-and-Project
systems: Lovász-Schrijver system [50], Sherali-Adams system [63], and Lasserre system
[46]. Although all these systems provide the tightened relaxations for the initial LP relaxtion, the
Lovász-Schrijver and Sherali-Adams systems generate linear programs, whereas the Lasserre

11

system generates semidefinite programs. The Lovász-Schrijver system has a stronger SDP
version also shown in this section. In the following, we first give the formal definitions of these
Lift-and-Project systems. But we mention that the main results in this thesis can be stated and
proved without going into these formalities. The properties presented after the definitions for
these Lift-and-Project systems are more critical to our discussion in this thesis. We give the
definitions for the sake of completeness.

Let P̂ := {y ∈ [0, 1]n : gl(y) ≥ 0 for l = 1, 2, . . .m} be a polytope where every gl(y) ≥ 0 is
a linear constraint. Let cov(P̂ ∩ [0, 1]n) be the convex hull generated by the integral solutions of
P̂ . We call cov(P̂ ∩ [0, 1]n) the integral hull of P̂ . For an LP relaxation P̂ of a combinatorial op-
timization problem, optimizing a linear function over the integral hull of P̂ is always equivalent
to the problem itself. Hence, the goal is to tighten P̂ to approach the integral hull of P̂ as close
as possible. The Lift-and-Project system provides a systematic tool for this purpose.

Let P := {λ
(

1
y

)
: λ ≥ 0, y ∈ P̂} be the associated cone with P̂ . When we talk about

a general polytope and its associated cone for the Lift-and-Project systems, we use an accented
symbol to denote a polytope, e.g., P̂ , and the symbol (without accent) to denote the associated
cone, e.g., P . This simplifies the notation in Chapter 5. We defineM(P) to be the set of sym-
metric matrices Y = (Yij) ∈ R(n+1)×(n+1) whose rows and columns are indexed by {0, 1, . . . , n}
satisfying: (i) Yi,i = Y0,i for 1 ≤ i ≤ n; (ii) coli(Y), col0(Y)− coli(Y) ∈ P for 1 ≤ i ≤ n where

coli(Y) is the ith column of Y . Let LS(P̂) := {y ∈ Rn :

(
1
y

)
= col0(Y) for some Y ∈M(P)}.

For any positive integer t, we define LSt(P̂) iteratively by LSt(P̂) = LS(LSt−1(P̂)). Then LSt(P̂)

is called level t of the Lovász-Schrijver system starting with P̂ .

A symmetric d × d matrix A is said to be positive semidefinite if xTAx ≥ 0, ∀x ∈ Rd;
A � 0 denotes that A is symmetric and positive semidefinite. There is a SDP version of Lovász-
Schrijver system requiring the matrix Y to be positive semidefinite. That is, we let LS+(P̂) :=

{y ∈ Rn :

(
1
y

)
= col0(Y) for some Y ∈ M(P) such that Y � 0}. Similarly, LSt+(P̂) is

defined iteratively by LSt+(P̂) = LS+(LSt−1
+ (P̂)). Then LSt+(P̂) is called level t of the SDP

version of Lovász-Schrijver system starting with P̂ .

Let N denote {1, 2, . . . , n}. Let P(N) be the collection of all subsets of N . For 1 ≤ t ≤ n,
we denote by Pt(N) the family of all subsets of N of size at most t; thus Pt(N) = {S ⊆ N :
|S| ≤ t}. We may abbreviate P(N) to P and Pt(N) to Pt.

Let v ∈ RP(N). We define M(v) ∈ RP(N)×P(N) to be the matrix whose (I, J)-entry is
vI∪J . For any U ⊆ N , we denote by MU(v) the submatrix of M(v) indexed by all subsets of

12

U . Let Mt(v) denote the submatrix of M(v) that is indexed by all sets I ∈ Pt(N). For two
vectors u, v ∈ RP(N), we define u ∗ v = M(v)u. Note that the constraints of P̂ are denoted by
gl(y) ≥ 0,∀l ∈ {1, . . . ,m}. The constraint can be viewed as a vector in RP(N). Specifically,
suppose gl(y) ≥ 0 is of the form

∑n
i=1 aiyi − b ≥ 0. Then, the constraint can be viewed as a

vector gl in RP(N) with (gl)∅ = −b, (gl){i} = ai for i ∈ N , (gl)I = 0 for |I| ≥ 2. For 1 ≤ t ≤ n,
we define

SAt(P) := {y ∈ RPt+1 : MU(gl ∗ y) � 0 for all U ∈ Pt and ∀l ∈ {1, . . . ,m}
MW (y) � 0 for all W ∈ Pt+1},

Last(P) := {y ∈ RP2t+2 : Mt(gl ∗ y) � 0,Mt+1(y) � 0 for ∀l ∈ {1, . . . ,m}}.

Although the “∗” operator requires y to be defined on RP(N), we can tell thatMU ,MW , andMt+1

are only concerned with the coordinates of y on a subset of P(N). That is, SAt(P) and Last(P)
only require y ∈ RPt+1 and y ∈ RP2t+2 , respectively. Another way to address the problem of
definition domain here is to extend the vector y ∈ RPt+1 or y ∈ RP2t+2 to a vector in RP(N) by
setting every undefined coordinate to be zero.

Let SAt(P̂) := {y ∈ RPt+1 : y∅ = 1, y ∈ SAt(P)} and Last(P̂) := {y ∈ RP2t+2 : y∅ =

1, y ∈ Last(P)}. Then, SAt(P̂) is called level t of the Sherali-Adams system starting with P̂ ,
and Last(P̂) is called level t of the Lasserre system starting with P̂ . For the notation for SA and
Las systems, we use the convention that a Lift-and-Project system applying to a cone (polytope,
respectively) results in a cone (polytope, respectively). For example, SAt(P) is a cone, whereas
SAt(P̂) is a polytope.

Note that SAt(P̂) and Last(P̂) have higher dimensions than the initial polytope P̂ . Let
SAtproj(P̂) (Lastproj(P̂), respectively) be the projection of SAt(P̂) (Last(P̂), respectively) on the
subspace Rn indexed by the singleton sets. We mention that the higher dimensional set SAt(P̂)

(Last(P̂), respectively) and its projected set SAtproj(P̂) (Lastproj(P̂), respectively) have no dif-
ference in terms of the integrality ratios. This is due to the fact that the cost function is only
defined on the variables in the initial LP relaxation, i.e., the variables indexed by the singleton
sets. Thus, for the integrality ratios, we can consider either SAt(P̂) (Last(P̂), respectively) or
SAtproj(P̂) (Lastproj(P̂), respectively).

We can tell from the definitions that Lastproj(P̂) is stronger than SAtproj(P̂). A comparison of
these Lift-and-Project systems given above is shown in Figure 2.1. We mention that the Sherali-
Adams system is incomparable with the SDP version of the Lovász-Schrijver system.

Although the Sherali-Adams system can be defined by positive semidefiniteness of the rel-
evant matrices as above, there is an equivalent definition only using linear systems (see [47] for

13

LSt(P̂)

LSt+(P̂)

SAtproj(P̂)

Lastproj(P̂)

Figure 2.1: A comparison of the Lift-and-Project systems. A −→ B: B is stronger than A

a proof of the equivalence).

Linearized Sherali-Adams system: Let the linear constraints of P̂ be of the form
∑n

i=1 aiyi ≥
b. Here we include the constraints yi ≥ 0 and−yi ≥ −1 for all 1 ≤ i ≤ n into the system. Then,
SAt(P̂) is a linear program over the variables {yS : S ⊆ {1, 2, . . . , n}, |S| ≤ t+ 1} (thus,
y ∈ RPt+1) with the constraints y∅ = 1 and

n∑
i=1

ai
∑
∅⊆T⊆Q

(−1)|T |yS∪T∪{i} ≥ b
∑
∅⊆T⊆Q

(−1)|T |yS∪T .

for every original constraint
∑n

i=1 aiyi ≥ b and for every disjoint S,Q ⊆ {1, . . . , n} with |S| +
|Q| ≤ t.

A Lift-and-Project system generates a sequence of nested relaxations that converges to the
integral hull of the initial LP relaxation P̂ . In particular, the level n of the Lift-and-Project system
is the same as the integral hull of P̂ . This can be stated as follows:

P̂ = Op0(P̂) ⊇ Op1(P̂) ⊇ Op2(P̂) ⊇ . . . ⊇ Opn(P̂) = conv(P̂ ∩ [0, 1]n)

where Op can be LS, LS+, SAproj, Lasproj . The level of the original relaxation is defined to be
zero.

For the Sherali-Adams system and for any fixed constant t, it is known that the LP relaxation
at level t of the Sherali-Adams system can be solved to optimality in polynomial time, assuming
that the original relaxation has a polynomial-time separation oracle [65]. For the Lasserre
system applied to a polynomial-time size LP and for any fixed constant t, the SDP relaxation

14

at level t of the Lasserre system is of polynomial-time size as well, and thus it can be solved to
optimality (up to a “small enough” additive error term) in polynomial time.

15

Chapter 3

Path Graph Traveling Salesman Problem

In this chapter, 1 we present a new 1.5-approximation algorithm for the s-t path graph-TSP. A
result of Hoogeveen [39] gave a 5

3
-approximation algorithm for this problem. An and Shmoys [2]

provided a sightly improved performance guarantee of (5
3
− ε). Then, Mömke and Svensson [53]

gave a 1.586-approximation algorithm for the s-t path graph-TSP. Mucha [54] improved the anal-
ysis of [53] and obtained a 19

12
+ ε ≈ 1.58333 approximation guarantee for any ε > 0. Recently,

Sebő and Vygen [62] gave the first 1.5-approximation algorithm by using ear decomposition and
matroid intersection.

Compared with the algorithm from Sebő and Vygen [62], our algorithm is conceptually sim-
pler and its analysis is much shorter. The key point of our algorithm is to find a minimum
spanning tree that intersects every narrow cut in an odd number of edges. Such a tree guarantees
that the number of edges fixing the wrong degree vertices is at most half of the optimal value of
the LP relaxation. Finally, the union of the spanning tree and the added edges provide us the 1.5-
approximation guarantee. The detailed description of our algorithm is presented in Section 3.2.
The graphic property is used to guarantee that the cost of the spanning tree we find is bounded by
the optimum of the LP relaxation. However, for the general metric case, there exists an example
such that the cost of the spanning tree in our algorithm is strictly larger than the optimum of the
LP relaxation (see Section 4.4).

1 The results of this chapter have already been published [33].

16

3.1 Preliminaries

Let H = (V,E(H)) be a connected graph with unit cost cH on each edge in E(H). Let s, t be
two given vertices in H . Let G be the metric completion of H with metric edge costs c. The goal
of the s-t path graph-TSP is to find a minimum-cost Hamiltonian path from s to t on G w.r.t. the
edge costs c. Denote the cost of this path by PTSPopt(H). Recall from Section 2.1.1 that the
s-t path graph-TSP on G is equivalent to finding a minimum-size connected spanning subgraph
of 2H with {s, t} as the odd-degree vertex set. The Partition LP defined on H in Section 2.1.1 is
an LP relaxation of the s-t path graph-TSP. Note that cHe = 1 for any e ∈ E(H) in this case. We
restate the Partition LP for unit edge costs as follows:

minimize :
∑

e∈E(H)

xe (LP1)

subject to : x(δ(W)) ≥ |W| − 1 ∀ partitionW of V
x(δ(S)) ≥ 2 ∀∅ (S (V, |S ∩ {s, t}| even
xe ≥ 0 ∀ e ∈ E(H)

This LP relaxation is defined on the original graph. In the graphic case, every spanning tree
in the original graph has minimum cost. We will use this fact to bound the cost of the spanning
tree in our algorithm. Let x∗ be an optimal solution of LP1. Note that LP1 can be solved in
polynomial time via the ellipsoid method [36]. We know that

∑
e∈E(H) x

∗
e ≤ PTSPopt(H).

Let Q be an s-t cut. If x∗(δ(Q)) < 2, we call it a narrow cut (for the solution x∗ of LP1).

Lemma 3.1.1 [1, Lemma 1] Let Q1, Q2 ⊆ V be two distinct narrow cuts such that s ∈ Q1 and
s ∈ Q2 (for the solution x∗ of LP1). Then Q1 (Q2 or Q2 (Q1.

Proof. Suppose that the statement is false. Then both Q1−Q2 and Q2−Q1 are nonempty. Note
that both Q1 − Q2 and Q2 − Q1 are {s, t}-even. Hence, x∗(δ(Q1)) + x∗(δ(Q2)) ≥ x∗(δ(Q1 −
Q2)) + x∗(δ(Q2 − Q1)) ≥ 4 by the constraints in LP1. However, x∗(δ(Q1)) + x∗(δ(Q2)) < 4.
This is a contradiction. 2

Hence, we know that the set of narrow cuts containing s forms a nested family. Let Q1, Q2,
. . . , Qk be all the narrow cuts containing s such that s ∈ Q1 (Q2 (Q3 · · · (Qk (V . Define
Li = Qi − Qi−1 for i = 1, 2, . . . , k, k + 1 where Q0 = φ and Qk+1 = V . Note that each Li is
nonempty and ∪1≤i≤k+1Li = V .

17

In the rest of this section, we address properties of the edge set needed for fixing the wrong
degree vertices of the spanning tree computed by the algorithm. Let T be a nonempty subset of
V with |T | even. Recall from Section 2.1.1 that the following LP is the T -join polyhedron that
formulates the problem of finding a T -join of minimum size on H:

minimize :
∑

e∈E(H)

xe (LP2)

subject to : x(δ(S)) ≥ 1 ∀ T -odd S
xe ≥ 0 ∀ e ∈ E(H)

Let K be a spanning tree with vertex set V . When there is no risk of confusion, we will use
the same notation K for the spanning tree K and its edge set E(K). The set of wrong degree
vertices of K is defined as {v ∈ {s, t} : |δ(v)∩K| even } ∪ {v ∈ V −{s, t} : |δ(v)∩K| odd }.

Lemma 3.1.2 [1] Let T be the set of wrong degree vertices of a spanning tree K. Let S be an
s-t cut. If S is T -odd, then |δ(S) ∩K| is even.

Proof. Since
∑

v∈S |δ(v) ∩ K| = 2|E(S) ∩ K| + |δ(S) ∩ K|, we have |δ(S) ∩ K| has the
same parity as

∑
v∈S |δ(v) ∩K|. Without loss of the generality, we assume s ∈ S, t /∈ S. By the

definition of T , we know that (S−{s})∩T is the set of vertices v in S−{s} such that |δ(v)∩K|
is odd. If |δ(s) ∩K| is odd, then s /∈ T . In this case, since S is T -odd, |(S − {s}) ∩ T | is odd.
Hence, we have an even number of vertices v in S such that |δ(v) ∩ K| is odd, which implies
that

∑
v∈S |δ(v) ∩ K| is even. Otherwise, |δ(s) ∩ K| is even. Then, s ∈ T . This implies that

|(S − {s}) ∩ T | is even. Similarly,
∑

v∈S |δ(v) ∩K| is even. 2

3.2 LP-based 3
2-approximation algorithm

In this section, we give an LP-based 3
2
-approximation algorithm for the s-t path graph-TSP.

Before stating the algorithm, we need some lemmas.

Lemma 3.2.1 There is a polynomial-time algorithm to find all narrow cuts Q1, Q2, . . . , Qk.

Proof. Compute the Gomory-Hu tree for the terminal vertex set V with respect to the capacity
x∗ (see [22, Section 3.5.2]). After that, for each edge of the s-t path in the Gomory-Hu tree,

18

check the corresponding cut. We claim that each such cut with x∗ capacity less than 2 is a
narrow cut, and there are no other narrow cuts. The correctness of this claim follows from the
following observation: For any u ∈ Li, v ∈ Li+1, the narrow cut Qi is the unique minimum u-v
cut. So, there exists an edge ei corresponding to Qi in the u-v path in the Gomory-Hu tree. And
furthermore, Qi is also an s-t cut. This implies ei must be in the s-t path in the Gomory-Hu tree.
Therefore, to find narrow cuts, we only need to check the cuts corresponding to the edges in the
s-t path in the Gomory-Hu tree. 2

Let Hsup be the support graph of x∗. For any L ⊆ V (Hsup), the subgraph of Hsup induced
by L is denoted by Hsup(L). The following is a key lemma in this section.

Lemma 3.2.2 For 1 ≤ p ≤ q ≤ k + 1, Hsup(∪p≤i≤qLi) is connected.

Proof. Consider the graph Hsup which is the support graph of x∗. Note that x∗(δHsup(S)) =
x∗(δH(S)) for any φ (S (V . In this proof, the notation refers to Hsup, e.g., δ(S) means
δHsup(S). Fix p and q, and let L = ∪p≤i≤qLi. We divide the proof into several cases:
Case 1: p = 1 and q = k + 1, i.e., Hsup = Hsup(L). Since the first constraint in LP1 implies
that x∗(δ(S)) ≥ 1 for each φ (S (V , we see that Hsup is connected.
Case 2: p = 1 and q < k + 1. Suppose Hsup(L) is not connected. Then, there exist two
nonempty vertex sets U1 and U2 such that U1, U2 is a partition of L and there exists no edge
between U1 and U2 in Hsup. Without loss of generality, we can assume that s ∈ U1. By the
constraints of LP1, we have x∗(δ(U1)) ≥ 1 and x∗(δ(U2)) ≥ 2. However, L = Qq is a narrow
cut, which implies x∗(δ(L)) < 2. Note that δ(U1) ∩ δ(U2) = φ and δ(L) = δ(U1) ∪ δ(U2). So,
2 > x∗(δ(L)) = x∗(δ(U1)) + x∗(δ(U2)) ≥ 1 + 2 = 3. This is a contradiction.
Case 3: p > 1 and q = k + 1. By the symmetry of s and t, it is the same as Case 2.
Case 4: p > 1 and q < k + 1. Suppose Hsup(L) is not connected. Then, similarly, there exist
two nonempty vertex sets U1 and U2 such that U1, U2 is a partition of L and there exists no edge
between U1 and U2 in Hsup. In this case, by the constraints of LP1, we have x∗(δ(U1)) ≥ 2 and
x∗(δ(U2)) ≥ 2. Let Y1 = ∪1≤i<pLi and Y2 = ∪q<i≤k+1Li. Note that Y1 and Y2 are two narrow
cuts. Also, δ(U1) ∪ δ(U2) ⊆ δ(Y1) ∪ δ(Y2). Note that δ(U1) ∩ δ(U2) = φ by the definition of
U1 and U2. Thus, 4 > x∗(δ(Y1)) + x∗(δ(Y2)) ≥ x∗(δ(Y1) ∪ δ(Y2)) ≥ x∗(δ(U1) ∪ δ(U2)) =
x∗(δ(U1)) + x∗(δ(U2)) ≥ 2 + 2 = 4. This is a contradiction. 2

By setting p = q = i, and by setting q = p+ 1 = i+ 1, we obtain the following corollary:

Corollary 3.2.3 For each i such that i = 1, . . . , k + 1, the graph Hsup(Li) is connected, and
moreover, there exists an edge connecting Li and Li+1 in Hsup.

In our LP-based approximation algorithm for the s-t path graph-TSP, Lemma 3.2.1 provides
a polynomial-time algorithm for Step 2, and Corollary 3.2.3 guarantees that Step 3 and Step 4
are feasible. Thus, the LP-based algorithm runs in polynomial time.

19

Algorithm 3.1: LP-based approximation algorithm for the s-t path graph-TSP
1 Find an optimal solution x∗ of LP1 and construct the support graph Hsup of x∗;
2 Find the narrow cuts Q1, Q2, . . . , Qk containing s, and get the corresponding sets
L1, L2, . . . , Lk+1 (recall: Li = Qi −Qi−1 where Q0 = φ and Qk+1 = V). If no narrow
cuts exist, take Jgood as a spanning tree in H and go to Step 6;

3 For 1 ≤ i ≤ k + 1, find a spanning tree Ji on Hsup(Li);
4 Take an edge ei from Hsup connecting Li to Li+1 for 1 ≤ i ≤ k. Let Eb = ∪1≤i≤k{ei};
5 Construct the spanning tree Jgood = (∪1≤i≤k+1Ji) ∪ Eb;
6 Let T be the wrong degree vertex set of Jgood. Find a minimum-size T -join Fgood in H;
7 Output Jgood∪̇Fgood (disjoint union of edge sets in 2H);

Lemma 3.2.4 For the T -join Fgood in the LP-based approximation algorithm for the s-t path
graph-TSP, we have

|Fgood| ≤
1

2

∑
e∈E(H)

x∗e.

Proof. We claim x∗(δ(S)) ≥ 2 for every T -odd cut where T is the wrong degree vertex set of
Jgood in the algorithm. Let S be a T -odd cut. There are two cases to be considered.

Case 1: S is not an s-t cut. Then, by the constraint of LP1, we have x∗(δ(S)) ≥ 2.
Case 2: S is an s-t cut. If there does not exist any narrow cuts, then clearly x∗(δ(S)) ≥ 2.
Otherwise, for any narrow cut Q, we have |Jgood ∩ δ(Q)| = 1 by Step 4 of the algorithm.
However, by Lemma 3.1.2, we have |Jgood ∩ δ(S)| is even. This means S is not a narrow cut.
Thus, x∗(δ(S)) ≥ 2.
By the claim, we know 1

2
x∗(δ(S)) ≥ 1 for every T -odd cut S. This implies 1

2
x∗ is a feasible

solution of LP2. By Lemma 2.1.1, we have |Fgood| ≤ 1
2

∑
e∈E(H) x

∗
e. This completes the proof.

2

Remark 3.2.5 In fact, if we can find a spanning tree J such that |J ∩ δ(Q)| is odd for each
narrow cut Q, then we can find an edge set F to correct the wrong degree vertices in J such that
|F | ≤ 1

2

∑
e∈E(H) x

∗
e.

Theorem 3.2.6 The LP-based approximation algorithm for the s-t path graph-TSP achieves an
approximation factor of 3

2
.

Proof. Note that Jgood is a spanning tree of H . We consider Jgood as an edge set. So,
|Jgood| = |V | − 1 ≤

∑
e∈E(H) x

∗
e ≤ PTSPopt(H). Also note that |Fgood| ≤ 1

2

∑
e∈E(H) x

∗
e ≤

20

1
2
PTSPopt(H) by Lemma 3.2.4. Since Jgood∪̇Fgood is a connected spanning subgraph of 2H with
{s, t} as the odd-degree vertex set, this gives a Hamiltonian s-t path on the metric completion of
H with cost at most |Jgood| + |Fgood|. Therefore, the LP-based algorithm is a 3

2
-approximation

algorithm. 2

Remark 3.2.7 By the proof of Theorem 3.2.6, we can obtain an upper bound of 3
2

for the integral-
ity ratio of LP1. Furthermore, this also implies that the integrality ratio of the path Held-Karp
LP relaxation is at most 3

2
when restricted to the graphic metric (see Section 4.3). Note that [1,

Figure 1(b)] presented an example with graphic metric giving a lower bound of 3
2

for the inte-
grality ratio of the path Held-Karp LP relaxation. Hence, from this point of view, our algorithm
achieves the best possible approximation guarantee that an algorithm can get based on the path
Held-Karp LP relaxation for the s-t path graph-TSP.

21

Chapter 4

Path Traveling Salesman Problem

Given a complete graph with nonnegative metric edge costs and two fixed vertices s, t, the goal of
the (metric) s-t path TSP is to find a minimum-cost Hamiltonian path from s to t. Hoogeveen [39]
gave an s-t path TSP variant of Christofides’ approximation algorithm for TSP [20], and obtained
an approximation factor of 5

3
. There was no improvement in this approximation factor for over

two decades until An, Kleinberg, and Shmoys [1] improved the approximation factor to 1+
√

5
2
≈

1.61803. One of the key new contributions of [1] is to design and analyse a randomized version of
Christofides’ algorithm. The analysis introduced the notion of a correction vector for the s-t path
TSP. Later, Sebő [61] further improved the analysis and obtained a better approximation factor
of 8

5
. We mention that Vygen [67], very recently, obtained an approximation factor slightly better

than 8
5
. [61] introduced a correction vector different from that of [1], and this is one reason why

the analysis in [61] gives a better approximation factor. Informally speaking, a better correction
vector provides a better approximation factor.

In this chapter, 1 we give a unified presentation of the results from both [1] and [61] by
introducing a new correction vector that we call the unified correction vector. Our correction
vector is simple and it leads to short derivations of the approximation factors of both [1] and
[61]. The difference between our correction vector and the previous ones is that it assigns the
value one to the minimum-cost edge in each so-called τ -narrow cut, whereas the correction
vectors used in [1] and [61] are fractional on each τ -narrow cut. We mention that Vygen’s [66]
comprehensive recent survey discusses the common points of the analysis of [1] and [61], and
the survey sketches short proofs of both approximation factors; however, [66] uses the same
correction vectors as [1] and [61].

1 The contents of this chapter appear in the submitted preprint [34]. This preprint has been accepted for publica-
tion in SIAM Journal on Discrete Mathematics.

22

An et al. [1] and Sebő [61] use two different LP relaxations of the s-t path TSP in their
algorithms. [1] uses the path version of the Held-Karp LP relaxation for TSP, whereas [61]
uses a weaker LP relaxation, the Partition LP in Section 2.1.1. This motivates a comparison of
these two LP relaxations. We mention that Sebő proves an approximation factor of 8

5
for a more

general problem, namely the connected T-join problem, and the LP in his paper is a relaxation
of this problem. We show that both LPs for the s-t path TSP have the same (fractional) optimal
value. Also, we show that the minimum cost of integral solutions of the two LPs are within a
factor of 3

2
of each other; moreover, we present an example to show that the factor of 3

2
is tight.

We prove this result by showing that a half-integral solution of the stronger LP-relaxation of cost
c can be rounded to an integral solution of cost at most 3

2
c.

For the s-t path TSP, it is known that the integrality ratio of the path Held-Karp LP relaxation
has a lower bound of 3

2
. The algorithms from [1] and [61] mentioned above are LP-based. This

leads to the upper bound 8
5

on the integrality ratio of the LP relaxation. A natural open question
is to close this gap by designing an LP-based 3

2
-approximation algorithm for the s-t path TSP.

For the s-t path graph-TSP, a critical special case of the s-t path TSP, the integrality ratio of the
corresponding LP relaxation has been resolved already. The first 3

2
-approximation algorithm was

given by Sebő and Vygen [62] using ear decompositions. In Chapter 3, we presented another,
conceptually simpler, LP-based 3

2
-approximation algorithm. The analysis of the 3

2
-approximation

factor of Chapter 3 uses the graphic property only for one point: to guarantee that the cost of a
special spanning tree constructed in the algorithm is at most the optimum of the LP relaxation.
A natural question is whether we can extend this graphic LP-based approximation algorithm
and analysis to the general metric case. Unfortunately, we present an instance that shows that
the natural extension is not possible. Moreover, our instance also illustrates that probabilistic
methods are relevant for the analysis of improved LP-based approximation algorithms. This
instance may shed some light on how to design a better approximation algorithm for the s-t path
TSP.

This chapter is organized as follows. Section 4.1 has some notation and basic results. Sec-
tion 4.2 presents our unified correction vector. Section 4.3 shows the relationship of two different
LP relaxations of the s-t path TSP. Section 4.4 discusses an instance that points to some of the
obstructions for obtaining better approximation factors.

4.1 Preliminaries

Let G = (V,E) be a complete graph with metric edge costs c. Let s, t be two fixed vertices in
G. When there is no risk of confusion, we will use the same notation H for a subgraph H and its
edge set E(H).

23

For any probabilistic event A, we use Pr(A) to denote the probability of occurrence of A.
For a random variable R, the expectation of R is denoted by E(R).

4.1.1 Linear programs

Recall from Section 2.1.1 that the path Held-Karp LP relaxation for the s-t path TSP is defined
as follows:

minimize :
∑
e∈E

cexe (LP3)

subject to : x(δ(s)) = x(δ(t)) = 1

x(δ(v)) = 2 ∀ v 6= s, t

x(δ(S)) ≥ 1 ∀ s-t cut S
x(δ(S)) ≥ 2 ∀ ∅ (S (V, |S ∩ {s, t}| even
1 ≥ xe ≥ 0 ∀ e ∈ E

The spanning tree polytope is shown as follows:

minimize :
∑
e∈E

cexe (LP4)

subject to : x(E) = |V | − 1

x(E(S)) ≤ |S| − 1 ∀∅ (S (V

xe ≥ 0 ∀e ∈ E

Lemma 4.1.1 Every solution x of LP3 lies in the spanning tree polytope LP4.

Proof. By the degree constraint for each vertex in LP3, we have x(E) = |V | − 1. Now consider
the second set of constraints in LP4. If |S ∩ {s, t}| is even, by the degree and cut constraints in
LP3, x(E(S)) =

∑
v∈S x(δ(v))−x(δ(S))

2
≤ 2|S|−2

2
= |S| − 1. Otherwise, |S ∩ {s, t}| = 1, in which

case, x(E(S)) =
∑
v∈S x(δ(v))−x(δ(S))

2
≤ (2|S|−1)−1

2
= |S| − 1. This completes the proof. 2

24

4.1.2 T -joins

Recall from Section 2.1.1 that the following LP is the T -join polyhedron that formulates the
problem of finding a T -join of minimum cost on G:

minimize :
∑
e∈E

cexe (LP5)

subject to : x(δ(S)) ≥ 1 ∀ T -odd S
xe ≥ 0 ∀ e ∈ E

Recall from Section 3.1 that for any spanning tree K, the set of wrong degree vertices of K
is defined as {v ∈ {s, t} : |δ(v) ∩K| even } ∪ {v ∈ V − {s, t} : |δ(v) ∩K| odd }.

4.1.3 Polyhedra and convex decomposition

Let
P := {x : Ax ≤ b} where A ∈ Rm×n, b ∈ Rm.

Let x′ be a feasible solution of P. For a constraint ai
ᵀ
x ≤ bi in P, we say x′ is tight at this

constraint if ai
ᵀ
x′ = bi. Let x1, x2 be two distinct feasible solutions of P. If there exists a

0 < λ < 1 and y ∈ P such that λx1 + (1−λ)y = x2, we say x1 is in some convex decomposition
of x2 in P.

From the geometry of polyhedra, we have the following characterization of the convex de-
compositions.

Lemma 4.1.2 The solution x1 is in some convex decomposition of x2 in P if and only if x1 is
tight at the constraints of P where x2 is tight.

A nonempty set F ⊆ P is a face if and only if there exists an index set I ⊆ {1, 2, . . . ,m}
such that F = {x : ai

ᵀ
x = bi for i ∈ I, ai

ᵀ
x ≤ bi for i /∈ I} where ai

ᵀ
x ≤ bi is the ith constraint

of P (see [22, Section 6.2]). Hence, the solution x1 is in some convex decomposition of x2 in P
if and only if x1 is in the minimal face of P that contains x2.

25

4.1.4 Christofides’ algorithm for s-t path TSP

Hoogeveen [39] gave a variant of Christofides’ algorithm to achieve the first approximation fac-
tor of 5

3
for the s-t path TSP.

Compute a minimum-cost spanning tree J∗. Let T be the set of wrong degree vertices of J∗.
Find a minimum-cost T -join F ∗. Then, the union J∗∪̇F ∗ of J∗ and F ∗ (that keeps the duplicated
edges) forms a connected graph that has even degree at all nodes except s and t. One can then
take the Eulerian traversal that starts at s and ends at t, and shortcut it, to obtain an s-t path
visiting all vertices of no greater cost.

Theorem 4.1.3 [39] Christofides’ algorithm for s-t path TSP achieves an approximation factor
of 5

3
.

We present a nice proof from Sebő and Vygen [62].

Proof. Let P ∗ be an optimal solution of s-t path TSP. Let T, J∗, F ∗ be as in the algorithm. LetR
be the s-t path in J∗. Since P ∗ is a Hamiltonian path from s to t, we can extract from it a subset
of edges, FP ∗ , that forms a T -join by pairing successive vertices of T in the path. Since P ∗ is a
spanning tree, we know c(J∗) ≤ c(P ∗). Note that we only need to prove c(F ∗) ≤ 2

3
c(P ∗). This

follows from the fact that J∗∪̇P ∗ can be partitioned into three T -joins: one is J∗−R, one is FP ∗ ,
and one is the union ofR and P ∗−FP ∗ . One can check that each of these edge sets is a T -join by
using the fact that T is the set of wrong degree vertices of J∗. Then, 3c(F ∗) ≤ c(J∗) + c(P ∗) ≤
2c(P ∗). This completes the proof. 2

4.2 Unified correction vector

An et al. [1] designed a randomized Christofides’ algorithm for the s-t path TSP, and they proved
an approximation factor of 1+

√
5

2
by analysing this algorithm. Their algorithm and their analysis

were based on the LP relaxation LP3. Sebő [61] presented a new analysis of this randomized
algorithm and improved the approximation factor to 8

5
. The algorithm and analysis of [61] were

based on a different LP relaxation, see the Partition LP in Section 2.1.1. The Partition LP is
restated as LP6 in Section 4.3. In Section 4.3, we prove that LP3 and LP6 have the same optimal
value. This result together with a few more observations implies that LP6 can be replaced by
LP3 in the algorithm and analysis of [61] to achieve the same approximation factor of 8

5
. In this

26

section, we prove the approximation factor of [1]; also, we prove the 8
5
-approximation factor of

[61] based on LP3 rather than LP6.

Randomized Christofides’ algorithm:
Solve the LP relaxation LP3 to get an optimal solution x∗. Since x∗ is in the spanning tree poly-
tope, there exists a convex decomposition of spanning trees J1, . . . , Jl such that

∑
1≤i≤l λiX Ji =

x∗ where
∑

1≤i≤l λi = 1, λi > 0 and X Ji is the edge incidence vector of Ji. Such a decompo-
sition can be found in polynomial time, see Theorem 51.5 of [60]. We sample a spanning tree
J from these spanning trees according to the probability defined by the coefficient λi of each
spanning tree in the convex combination. Let T denote the set of the wrong degree vertices of J .
Then, as in Christofides’ algorithm, a minimum-cost T -join F is added to fix the wrong degree
vertices of J .

The expected cost of the random solution of the algorithm is the sum of the expected cost of
J , which is the cost of x∗, and the expected cost of the T -join F . Any feasible solution of the
T -join polyhedron provides a cost upper bound for the T -join F . We call a feasible solution to
the T -join polyhedron a fractional T -join. An et al. [1] introduced correction vectors to construct
a special type of fractional T -join. A correction vector for a τ -narrow cut S is an edge vector
z that satisfies

∑
e∈δ(S) ze ≥ 1, where the definition of τ -narrow cut will be given next. The

correction vectors were further analyzed in [61] to obtain a better approximation factor. In this
section, we present a unified correction vector to derive the results of both [1] and [61].

The following key definition is introduced in [1]. Let 0 < τ ≤ 1. If an s-t cut Q satisfies
x∗(δ(Q)) < 1 + τ , we call it a τ -narrow cut (for the solution x∗ of LP3). Let Cτ be the set of all
τ -narrow cuts that contain s. The τ -narrow cuts have the same nice property as the narrow cuts
in Section 3.1 although they are defined for the feasible solutions of different LP relaxations. In
fact, a narrow cut can be considered as 1-narrow cut. The proof of the following lemma is the
same as the proof of Lemma 3.1.1.

Lemma 4.2.1 [1] Let Q1, Q2 be two distinct cuts in Cτ (for the solution x∗ of LP3). Then either
Q1 (Q2 or Q2 (Q1.

Similarly to the narrow cuts in Section 3.1, we can use Q1, Q2, . . . , Qk to denote all of the
τ -narrow cuts containing s such that s ∈ Q1 (Q2 (Q3 · · · (Qk (V . Note that Cτ =
{Qi}1≤i≤k. Define Li = Qi − Qi−1 for i = 1, 2, . . . , k, k + 1 where Q0 = ∅ and Qk+1 = V .
Each Li is nonempty and ∪1≤i≤k+1Li = V . We call {Li} the partition derived by the τ -narrow
cuts Cτ .

Let X J denote the edge incidence vector of the edge set of J . For any Q ∈ Cτ , we let eQ
be an edge in δ(Q) of minimum cost. Let X eQ denote the edge incidence vector of {eQ}, i.e.,

27

X eQ
eQ = 1, and X eQ

e = 0 if e 6= eQ. Our unified correction vector is defined as X eQ for each
Q ∈ Cτ , i.e., the unified correction vector simply assigns the value one to the minimum-cost
edge in each τ -narrow cut. In contrast, the correction vectors used in [1] and [61] are fractional
but sum up to at least one for each τ -narrow cut.

Let α, β and τ be real parameters between 0 and 1, whose specific values are given later.
Recall that J is the random spanning tree in the randomized Christofides’ algorithm. Our frac-
tional feasible T -join solution with unified correction vectors, called unified fractional T -join, is
as follows:

Unified fractional T -join:

f = αX J + βx∗ +
∑

Q∈Cτ , Q is T -odd

(1− 2α− βx∗(δ(Q)))X eQ ,

where α, β, τ satisfy the following condition:

α + 2β = 1, τ =
1− 2α

β
− 1, α ≥ 0 and β ≥ 0. (4.1)

Let us derive the settings of α, β and τ in (4.1). The purpose of the unified fractional T -
join f is to provide an upper bound on the cost of the minimum-cost T -join F in the randomized
Christofides’ algorithm. By Lemma 2.1.1, it suffices to make f feasible for the T -join polyhedron
LP5. This requires special settings of α, β and τ .

Consider the cut constraints in LP5. Let S be a T -odd cut. First we need to make sure that
for any Q ∈ Cτ , the coefficient 1− 2α− βx∗(δ(Q)) is nonnegative. Since x∗(δ(Q)) < 1 + τ for
any Q ∈ Cτ , it suffices to set 1− 2α− β(1 + τ) = 0, i.e., τ = 1−2α

β
− 1.

Suppose that S is an s-t cut. Note that S is T -odd. Hence, by Lemma 3.1.2, |δ(S) ∩ J | is
even. If S is not a τ -narrow cut, then f(δ(S)) ≥ αX J(δ(S)) + βx∗(δ(S)) ≥ 2α+ β(1 + τ). By
the assumption that τ = 1−2α

β
− 1, we have f(δ(S)) ≥ 1 in this case. If S is a cut in Cτ , then

f(δ(S)) ≥ 2α + βx∗(δ(S)) + (1− 2α− βx∗(δ(S)))X eS(δ(S)) ≥ 1.

Now the only remaining case is that S is {s, t}-even. Then x∗(δ(S)) ≥ 2 by LP3. Since J
is a spanning tree, we have X J(δ(S)) ≥ 1. This implies f(δ(S)) ≥ αX J(δ(S)) + βx∗(δ(S)) ≥
α + 2β. Hence, in this case, it suffices to set α + 2β = 1.

Hence, we have the following result by the analysis above.

Lemma 4.2.2 The unified fractional T -join f is a feasible solution of the T -join polyhedron
LP5.

28

Lemma 4.2.2 shows that the expected cost of the minimum-cost T -join F computed by the
randomized Christofides’ algorithm is at most the expected cost of the unified fractional T -join.
Hence, the expected cost of the solution of the randomized Christofides’ algorithm is upper
bounded by the optimal value of LP3 plus the expected cost of the unified fractional T -join. In
Section 4.2.1 and Section 4.2.2, we will present two different analyses of the expected cost of
the unified fractional T -join to derive two different approximation factors from [1] and [61] for
the randomized Christofides’ algorithm.

Remark 4.2.3 From the analysis above, the cost analysis of the unified fractional T -join is crit-
ical for proving an approximation factor for the randomized Christofides’ algorithm. If we can
get a better upper bound on the cost of the unified fractional T -join, then the approximation
factor can be further improved.

The following lemma is used in the analysis of the expected cost of the unified fractional
T -join in Section 4.2.1 and Section 4.2.2.

Lemma 4.2.4 [1][61] Let J be the random spanning tree and T be the set of wrong degree
vertices of J in the randomized Christofides’ algorithm. Let Q ∈ Cτ , i.e., Q is a τ -narrow cut.
Then

(i) Pr(|δ(Q) ∩ J | = 1) ≥ 2− x∗(δ(Q)), and

(ii) Pr(Q is T -odd) ≤ x∗(δ(Q))− 1.

Proof. Since J is a spanning tree, |δ(Q)∩J | ≥ 1 always holds. So
∑

i≥1 Pr(|δ(Q)∩J | = i) = 1.
Then

Pr(|δ(Q) ∩ J | ≥ 2) ≤
∑
i≥1

i ∗ Pr(|δ(Q) ∩ J | = i)−
∑
i≥1

Pr(|δ(Q) ∩ J | = i)

= E(|δ(Q) ∩ J |)−
∑
i≥1

Pr(|δ(Q) ∩ J | = i)

= x∗(δ(Q))− 1.

Note that E(|δ(Q) ∩ J |) = x∗(δ(Q)) follows from the fact that E(X J) = x∗ since J is a random
tree in the convex decomposition of spanning trees for x∗ where the coefficients of the spanning
trees define the probability distribution. Thus, we have Pr(|δ(Q)∩J | = 1) = 1−Pr(|δ(Q)∩J | ≥
2) ≥ 2− x∗(δ(Q)). This proves the first inequality.

Now consider the second inequality. By Lemma 3.1.2, |δ(Q)∩J | is even if Q is T -odd. This
means Pr(Q is T -odd) ≤ Pr(|δ(Q) ∩ J | is even) ≤ Pr(|δ(Q) ∩ J | ≥ 2) ≤ x∗(δ(Q))− 1. 2

29

4.2.1 AKS’ 1+
√
5

2 -approximation via unified correction vector

First, we present two lemmas needed for the cost analysis of the randomized Christofides’ algo-
rithm.

Lemma 4.2.5 Let K be a spanning tree with n vertices and edge set E(K). Let S = {Si : 1 ≤
i ≤ n− 1} be a family of subsets of the vertex set of K such that |Si| = i and Si (Si+1. There
exists a bijection from S to E(K) such that each cut Si is mapped to an edge of K in δ(Si).

Proof. Without loss of generality, we can assume that the vertex set of K is {v1, v2, . . . , vn} and
Si = {v1, v2, . . . , vi} for 1 ≤ i ≤ n− 1. We prove the result by induction on n. The statement is
clearly true for n = 2. Suppose n ≥ 3. Consider the vertex vn.

We first pick the edge e of K incident with vn in the unique path of K between vn−1 and vn.
We map Sn−1 to this edge e. Let K ′ be the graph obtained from K−{e} by contracting vn−1 and
vn into a single vertex v′n−1. Note thatK ′ is a connected graph with n−2 edges. This implies that
K ′ is a spanning tree with n − 1 vertices {w1, w2, . . . , wn−1} where wi = vi for 1 ≤ i ≤ n − 2
and wn−1 = v′n−1. Note that δ({w1, w2, . . . , wi}) is a subset of δ(Si) for 1 ≤ i ≤ n− 2. Hence,
we can define the rest of the bijection by applying the induction hypothesis to the spanning tree
K ′ on these n− 1 vertices.

2

Lemma 4.2.6 We have ∑
Q∈Cτ

c(eQ) ≤ c(x∗). (4.2)

Proof. Let Kmin be a minimum-cost spanning tree on G. Consider the partition {Li} derived
by Cτ . We contract every Li into a single vertex. Then the resulting graph obtained from Kmin

is connected. Let K be a spanning tree of the contracted graph. Applying Lemma 4.2.5 to K,
we construct an injective mapping φ from Cτ to the edge set of K such that φ(Q) ∈ δ(Q) for
each Q ∈ Cτ . Note that K ⊆ Kmin. Then

∑
Q∈Cτ c(eQ) ≤

∑
Q∈Cτ c(φ(Q)) ≤ c(Kmin) ≤ c(x∗)

since x∗ is in the spanning tree polytope. The first inequality follows from the fact that eQ is the
minimum-cost edge in δ(Q). 2

Theorem 4.2.7 [1] The randomized Christofides’ algorithm achieves an approximation factor
of 1+

√
5

2
.

30

Proof. Since J is a random spanning tree based on the convex decomposition of spanning
trees for x∗, we have E(X J) = x∗. Hence, the expected cost of the solution of the randomized
Christofides’ algorithm is upper bounded by the optimal value of LP3 plus the expected cost of
the minimum-cost T -join F . By Lemma 2.1.1 and Lemma 4.2.2, the expected cost of F is at
most the expected cost of the unified fractional T -join.

E[c(αX J + βx∗ +
∑

Q∈Cτ , Q is T -odd

(1− 2α− βx∗(δ(Q)))X eQ)]

Lemma 4.2.4

≤ (α + β)c(x∗) +
∑
Q∈Cτ

(x∗(δ(Q))− 1)(1− 2α− βx∗(δ(Q)))c(eQ)

≤ (α + β)c(x∗) + max
0≤z<τ

z(1− 2α− βz − β)
∑
Q∈Cτ

c(eQ)

Lemma 4.2.6

≤ (α + β + max
0≤z<τ

z(1− 2α− βz − β))c(x∗)

By (4.1)
= (α + β + β max

0≤z<τ
z(τ − z))c(x∗).

The last equality follows from the fact that 1 − 2α = β(τ + 1) by (4.1). The value of z that
maximizes the expression is τ

2
. Hence, the upper bound on the expected cost of the unified

fractional T -join is at most (α + β + β(τ
2
)2)c(x∗). Substitute τ = 1−2α

β
− 1, α = 1 − 2β from

(4.1) into the upper bound. Minimizing with respect to β gives
√

5−1
2
c(x∗) with optimal settings:

β = 1√
5
, α = 1 − 2√

5
, τ = 3 −

√
5. Therefore, the optimal value of LP3 plus this upper bound

√
5−1
2
c(x∗) on the expected cost of the unified fractional T -join leads to the approximation factor

of 1+
√

5
2

that was first proved in [1]. 2

In [1], the correction vector is constructed by using flow computations to map the optimal
LP solution x∗ to the τ -narrow cuts. In contrast, our unified correction vector simply assigns
the value one to the minimum-cost edge in each τ -narrow cut. We avoid the flow computation
argument of [1] by using Lemma 4.2.5.

4.2.2 Sebő’s 8
5-approximation via unified correction vector

Let P be the s-t path in J . Sebő [61] points out the crucial fact that J − P is a T -join for the set
of wrong degree vertices T of J . Recall that F is the minimum-cost T -join in the randomized
Christofides’ algorithm. This implies that E(c(F)) ≤ E(c(J−P)). Note that c(x∗) = E(c(J)) =
E(c(J − P)) + E(c(P)).

31

It turns out that E(c(P)) also serves as an upper bound in another cost inequality similar to
(4.2); see the following lemma.

Lemma 4.2.8 We have ∑
Q∈Cτ

(2− x∗(δ(Q)))c(eQ) ≤ E(c(P)). (4.3)

Proof. Let Q ∈ Cτ ; thus, Q is a τ -narrow cut. If |δ(Q) ∩ J | = 1, then let e′Q denote the unique
edge in δ(Q) ∩ J . Recall that a τ -narrow cut is an s-t cut, and therefore e′Q must be in P since
P is the s-t path in J . Moreover, observe that Q is one of the two connected components of
J − {e′Q}. Hence, for distinct Q1, Q2 ∈ Cτ such that |δ(Q1) ∩ J | = 1 and |δ(Q2) ∩ J | = 1, the
edges e′Q1

and e′Q2
must be distinct (otherwise, J − {e′Q1

} and J − {e′Q2
} would have the same

connected components, contradicting the fact that Q1, Q2 are distinct sets containing s). Then

c(P) ≥
∑

|δ(Q)∩J |=1,Q∈Cτ

c(e′Q) ≥
∑

|δ(Q)∩J |=1,Q∈Cτ

c(eQ).

By Lemma 4.2.4,

E(c(P)) ≥
∑
Q∈Cτ

Pr(|δ(Q) ∩ J | = 1)c(eQ) ≥
∑
Q∈Cτ

(2− x∗(δ(Q)))c(eQ).

2

Theorem 4.2.9 [61] The randomized Christofides’ algorithm achieves an approximation factor
of 8

5
.

Proof. By an argument similar to the one in the proof of Theorem 4.2.7, we are only concerned
with the expected cost of the unified fractional T -join, which bounds the expected cost of the
minimum-cost T -join F in the randomized Christofides’ algorithm.

E[c(αX J + βx∗ +
∑

Q∈Cτ , Q is T -odd

(1− 2α− βx∗(δ(Q)))X eQ)]

Lemma 4.2.4

≤ (α + β)c(x∗) +
∑
Q∈Cτ

(x∗(δ(Q))− 1)(1− 2α− βx∗(δ(Q)))c(eQ)

≤ (α + β)c(x∗) +
∑
Q∈Cτ

(x∗(δ(Q))− 1)(1− 2α− βx∗(δ(Q)))

2− x∗(δ(Q))
(2− x∗(δ(Q)))c(eQ)

32

≤ (α + β)c(x∗) + max
0≤z<τ

z(1− 2α− βz − β)

1− z
∑
Q∈Cτ

(2− x∗(δ(Q)))c(eQ)

Lemma 4.2.8

≤ (α + β)c(x∗) + max
0≤z<τ

z(1− 2α− βz − β)

1− z
E(c(P))

By (4.1)
= (α + β)c(x∗) + β max

0≤z<τ

z(τ − z)

1− z
E(c(P)). (4.4)

The last equality follows from the fact that 1 − 2α = β(τ + 1) by (4.1). The value of z that
maximizes the expression is 1 −

√
1− τ . Hence, the upper bound on the expected cost of the

unified fractional T -join is at most (α+β)c(x∗)+β(1−
√

1− τ)2E(c(P)). Substitute τ = 1−2α
β
−

1, α = 1− 2β from (4.1) into (4.4). Then the coefficients of the terms in (4.4) only depend on β.
Denote the coefficient of the last term in (4.4) by h(β) where h(β) = (

√
β−
√

1− 2β)2. Then the
bound can be written as (1−β)c(x∗)+h(β)E(c(P)). Note that c(x∗) = E(c(J−P))+E(c(P)).
Assume E(c(P)) = λ0c(x

∗). So 0 ≤ λ0 ≤ 1 and E(c(J − P)) = (1 − λ0)c(x∗). Since
E(c(J − P)) ≥ E(c(F)), we have

E(c(F)) ≤ min{(1− λ0)c(x∗), (1− β + h(β)λ0)c(x∗)}
≤ max

0≤λ≤1
{min{(1− λ)c(x∗), (1− β + h(β)λ)c(x∗)}}. (4.5)

λ maximizes the expression when (1 − λ)c(x∗) = (1 − β + h(β)λ)c(x∗). So λ = β
h(β)+1

.
Minimizing the upper bound in (4.5) with respect to β gives 3

5
c(x∗) with optimal settings: β =

4
9
, α = 1

9
, τ = 3

4
; moreover, λ = 2

5
. Therefore, the optimal value of LP3 plus this upper bound

3
5
c(x∗) leads to the approximation factor of 8

5
that was first proved in [61]. 2

4.3 Linear programming relaxations of the s-t path TSP

In this section, we investigate the relationship between two different LP relaxations of the s-t
path TSP. Let H = (V,E(H)) be a connected graph with nonnegative edge costs cH , and let s
and t be two fixed vertices. Let G = (V,E) be the metric completion of H with metric costs c.
As mentioned in Section 4.1.1, LP3 is a linear programming relaxation of the s-t path TSP on G.

Recall from Section 2.1.1 that the s-t path TSP on G is equivalent to finding a minimum-
cost connected spanning subgraph of 2H with {s, t} as the odd-degree vertex set. The Partition
LP defined on H in Section 2.1.1 is an LP relaxation of the s-t path TSP for this equivalent

33

definition. We restate the Partition LP as follows:

minimize :
∑

e∈E(H)

cHe xe (LP6)

subject to : x(δ(W)) ≥ |W| − 1 ∀ partitionW of V
x(δ(S)) ≥ 2 ∀∅ (S (V, |S ∩ {s, t}| even
xe ≥ 0 ∀ e ∈ E(H)

Note that LP6 is defined on the original graph H but LP3 is defined on the metric completion
G of H .

In this section, we show that both LPs, LP3 and LP6, have the same (fractional) optimal value,
see Corollary 4.3.3. But these two LPs can differ with respect to integral solutions. Observe that
the integral solutions of LP3 are exactly the s-t Hamiltonian paths of G; this follows because an
integral solution induces a graph that is connected, has degree one at s, t, and has degree two at
all other vertices. The integral solutions of LP6 need not correspond to the s-t Eulerian paths of
H; see the example shown in Figure 4.1.

Let Opt(LP) denote the optimal value of LP, for LP = LP3,LP6. Let Optint(LP) denote the
minimum cost of an integral solution that satisfies all constraints of LP, for LP = LP3,LP6. We
call Optint(LP) the optimal integral value of a linear program LP. The following table summa-
rizes the relationship between the two LPs; the new results of this section appear in the last two
columns.

LPs Graph Costs Optimum Optimal Integral Value
LP3G: metric completion of H c: metric extension of cH Opt(LP3) Optint(LP3)
LP6 H cH ≥ 0 Opt(LP3)Optint(LP6) ≤ Optint(LP3) ≤ 3

2Optint(LP6)

To obtain these results, we need an edge-splitting lemma. Let K be a multigraph, i.e., two
adjacent vertices in K may be connected by one or more edges. Let (u, v), (v, w) ∈ E(K). The
edge-splitting operation on (u, v), (v, w) at the vertex v is defined as follows:

• Remove (u, v), (v, w) and then add (u,w) if u 6= w.

If u = w, then we remove the loop formed by adding (u,w); note that this removal of the
loop has no effect on the edge-connectivity of the graph. We use the following result to prove
Lemma 4.3.2; see [31, Theorem A′].

34

Lemma 4.3.1 [48][49, Ex. 6.51] Let K be a multigraph with even degree at each vertex. Let
v ∈ V (K) and let U = V (K)− {v}. Let d be a positive integer. If

|δ(S)| ≥ d for each ∅ (S (U (4.6)

then the edges incident with v can be partitioned into |δ(v)|
2

disjoint edge pairs (p, v), (v, q) such
that the multigraph obtained by applying the edge-splitting operation to any one of these edge
pairs (at the vertex v) still satisfies (4.6).

Lemma 4.3.2 Let x be a rational solution of LP6 of cost cH(x). Then there exists a solution x′

of LP3 with cost at most cH(x). Moreover, if x is an integral solution, then x′ is half-integral.

Proof. The first part of this statement follows from the parsimonious property shown in [8].
However, to show the second part of the statement, we present a proof for the first part as well.

Define an edge vector y on G as follows:

ye =

{
xe, if e ∈ E(H),

0, otherwise.

Since G is the metric completion of H , we know c(y) ≤ cH(x). Then we construct y′ from y as
follows:

y′e =

{
1 + ye, if e = (s, t),

ye, otherwise.

By the constraints of LP6 and the fact that y′(s,t) = y(s,t) + 1, we have y′(δ(S)) ≥ 2 for each
cut S. Let C be a positive integer such that Cy′ is integral. Consider the multigraph K2C with
2Cy′(u,v) number of edges between u and v. Then |δK2C

(S)| ≥ 4C.

By using Lemma 4.3.1, we apply edge-splitting operations at every vertex until the degree
of every vertex is exactly 4C. We claim that this procedure can be applied such that the number
of edges between s and t is ≥ 2C. To see this, consider an edge-splitting operation at s or t,
say s; note that edge-splitting operation at other vertices does not decrease the number of edges
between s and t. There are at least 2C + 1 feasible edge-splitting pairs available at s (since
otherwise there is no need to do an edge-splitting operation at s, i.e., |δK2C

(s)| = 4C). This
implies that we can always choose an edge-splitting pair such that at least 2C edges between s
and t are preserved.

35

Let z be the edge vector associated with the resulting graph after edge-splitting operations,
i.e., z(u,v) equals the number of edges between u and v in the resulting graph. Furthermore, let
z′ = z/2C. Then z′(δ(S)) ≥ 2 for each cut S, z′(δ(v)) = 2 for each vertex v, and z′(s,t) ≥ 1.
Consider two different vertices u, v. We know z′(δ(u)) = z′(δ(v)) = 2 and z′(δ({u, v})) ≥ 2.
This implies z′(u,v) ≤ 1. In particular, z′(s,t) = 1. Construct x′ from z′ as follows:

x′e =

{
z′e − 1 = 0, if e = (s, t),

z′e, otherwise.

By the properties obtained for z′, we have x′ is a feasible solution of LP3. Note that the edge-
splitting operations never increase the total cost since the edge costs are metric on G. Therefore,
the cost of x′ is at most cH(x). In particular, if x is integral, we can set C = 1 in the procedure.
In this case, x′ is half-integral. 2

Conversely, any feasible solution of LP3 can be transformed to a feasible solution of LP6:
the idea is to replace each edge (u, v) in E(G) by a shortest u-v path in H . Note that every
solution of LP3 is a feasible solution of the spanning tree polytope. Hence, it can be seen that the
transformed solution is feasible for LP6, and, in particular, it satisfies the partition constraints in
LP6. Hence,

Opt(LP6) ≤ Opt(LP3), Optint(LP6) ≤ Optint(LP3). (4.7)

By Lemma 4.3.2, we have the following result.

Corollary 4.3.3 Opt(LP6) = Opt(LP3).

However, LP3 and LP6 may differ in terms of the integral optimal value. Consider the graph
with unit edge costs in Figure 4.1; this is meant to be the original graph H in the instance of the
s-t path TSP.

Note that LP6 is defined on the original graph but LP3 is defined on the metric completion.
Let ` be the length of the middle path in Figure 4.1. It is not hard to see that Optint(LP3) ≈ 3`
but Optint(LP6) ≈ 2` when ` is sufficiently large. (For LP6, consider the integral solution with
value 1 for every edge of the original graph.) In this case, Optint(LP3)

Optint(LP6)
≈ 3

2
. Interestingly, 3

2
can

be proved to be an upper bound for this ratio. This example shows that the upper bound of 3
2

is tight. To prove this upper bound, we present an algorithm to round a half-integral solution of
LP3 to an integral one by increasing the cost by a factor of at most 3

2
.

Apply the randomized Christofides’ algorithm to a half-integral solution x of LP3. Let J be
the random spanning tree obtained from x. Let F be a minimum-cost T -join for the set of wrong
degree vertices T of J .

36

s t

Figure 4.1: Tight example

Lemma 4.3.4 x(δ(S)) ≥ 2 for any T -odd cut S.

Proof. For any vertex v ∈ V , x(δ(v)) is integral by the constraints of LP3. Since xe is
half-integral, x(δ(S)) =

∑
v∈S x(δ(v)) − 2x(E(S)) implies that x(δ(S)) is integral. Suppose

x(δ(S)) < 2 for some T -odd cut S. Then we have x(δ(S)) = 1. By the constraints of LP3, S
must be an s-t cut. Note that E(X J) = x and |J ∩ δ(S)| ≥ 1 since J is a random spanning tree.
This implies |J ∩ δ(S)| = 1 always holds. However, since S is an s-t cut and also a T -odd cut,
we have |δ(S) ∩ J | is even by Lemma 3.1.2. This is a contradiction. 2

Theorem 4.3.5 If the input is a half-integral solution x of LP3, then the randomized Christofides’
algorithm outputs a Hamiltonian s-t path with cost at most 3

2
c(x).

Proof. By Lemma 4.3.4, 1
2
x is a feasible solution of the T -join polyhedron LP5. This means

E(c(F)) ≤ 1
2
c(x). Therefore E(c(J)) + E(c(F)) ≤ 3

2
c(x). 2

Now we are ready to prove the ratio for the optimal integral values of the two LPs.

Theorem 4.3.6 Optint(LP6) ≤ Optint(LP3) ≤ 3
2
Optint(LP6). Moreover, the bounds are tight.

Proof. The lower bound is due to (4.7). Now consider the upper bound. Let x be an optimal
integral solution of LP6. By Lemma 4.3.2, there exists a half-integral solution x′ of LP3 such
that c(x′) ≤ cH(x). By Theorem 4.3.5, we can get an s-t Hamiltonian path with cost at most
3
2
c(x′). This means Optint(LP3) ≤ 3

2
c(x′) ≤ 3

2
cH(x) = 3

2
Optint(LP6).

The tight example for the upper bound is shown in Figure 4.1. For the tightness of the lower
bound, consider the graphH consisting of one path connecting s and t where every edge has unit
cost. 2

37

4.4 Counterexample to two approaches

For the s-t path TSP, the main question is whether there exists a 3
2
-approximation algorithm.

When addressing this problem, two natural questions arise:

• Chapter 3 presented a simple 3
2
-approximation algorithm for the s-t path TSP in the graphic

case. Does it extend to give the same approximation factor for the general metric case?

• Does every spanning tree in a given convex decomposition of an optimal solution x of
LP3 achieve a 3

2
-approximation factor by adding a minimum-cost T -join to fix the wrong

degree vertices?

The first question concerns the extension of the algorithm for the graphic case. The second
question focuses on the role of randomness and probabilistic methods in the analysis of the
recent LP-based approximation algorithms. We answer these questions negatively by providing
a counterexample. In the following, we make the questions more precise and then show how our
counterexample serves as a negative answer.

Recall from Chapter 3 that H = (V,E(H)) is a connected graph with unit edge costs cH and
G is the metric completion of H with metric costs c. Also recall some notation from Chapter 3:
optimal solution x∗ of LP1 (the graphic version of LP6), narrow cuts {Qi}1≤i≤k (for the solution
x∗ of LP1) and its corresponding vertex partition {Li}0≤i≤k+1.

The algorithm in Chapter 3 constructs a minimal spanning tree on each Li and then connects
them together by a unit cost edge between each two consecutive Li and Li+1. This results in a
spanning tree on H , which is called a good spanning tree. Then a minimum-cost T -join Fgood
is added to correct the wrong degree vertices of the good spanning tree. Since every edge in H
has unit cost, the good spanning tree has minimum cost, which is at most Opt(LP6) on H with
unit edge costs. Furthermore, it is shown that the minimum-cost T -join Fgood has cost at most
1
2
Opt(LP6). This gives a 3

2
-approximation factor in total.

The only part in the analysis using the graphic property is that the good spanning tree has
cost at most Opt(LP6). A natural extension of the definition of a good spanning tree would be
as follows:

• In the general metric case, a good spanning tree is constructed by connecting the minimum-
cost spanning tree in each Li with a minimum-cost edge from Li to Li+1.

If the cost of this “extended” good spanning tree is bounded above byOpt(LP6) in the general
metric case, then it gives us a 3

2
-approximation factor for the s-t path TSP. Unfortunately, this is

38

not true. To show this, we present our counterexample, a complete graph G = H = Hb with
metric edge costs cHb and vertex set {0, 1, . . . , 7} where s = 0, t = 7. The metric edge costs cHb
are given by the metric completion of the costs indicated in Figure 4.2 below. Note that for every
edge e in Figure 4.2, cHbe is exactly the edge cost value shown in that figure.

Figure 4.2 shows the support graph of a feasible solution xHb of LP6, where the first number
on each edge denotes the xHb value and the second number denotes the cost of the edge.

0 3 4 5 6

1 2 7

1/3, 1

2/3, 1

1, 1

1, 1

1/3, 1

2/3, 2

1/3, 2

1/3, 2

2/3, 2

1/3, 2
1/3, 2

narrow cuts

1, 1

Figure 4.2: Support graph of xHb with edge xHb values and edge costs

Lemma 4.4.1 xHb is an optimal solution for LP6 with respect to cHb . Furthermore, xHb is an
extreme point of the polyhedron of LP6 on Hb.

Proof. To show the optimality of xHb for LP6, it is sufficient to prove that xHb is an optimal
solution of LP3 by Corollary 4.3.3. We use complementary slackness conditions to prove the
optimality of xHb for LP3. Let S1 be the set of all s-t cuts and S2 be the set of all {s, t}-even
cuts. Let S = S1 ∪ S2.

(Dual of LP3)

maximize : ys + yt + 2
∑
v/∈{s,t}

yv +
∑
S∈S1

dS + 2
∑
S∈S2

dS −
∑
e

ue

subject to :

yw + yv − u(w,v) +
∑

(w,v)∈δ(S),S∈S

dS ≤ c(w,v), (w, v) ∈ E

u, d ≥ 0

39

The following dual solution y, d, u witnesses the optimality of xHb to LP3 by the comple-
mentary slackness conditions:

• u(1,2) = u(3,4) = 2
3
, u(5,6) = 4

3
, and ue = 0 for any other edge e

• d{3,4,5,6} = 1
3

and dS = 0 for any other S

• y0 = 0, y2 = y3 = 2
3
, y1 = y4 = y5 = 1, y6 = 4

3
, y7 = 1

3

Hence xHb is also an optimal solution of LP6.

Denote the polyhedron of LP6 on Hb by K. We now show that xHb is an extreme point of
K. Otherwise, there exists xHb 6= z ∈ K and z′ ∈ K such that xHb = λz + (1 − λ)z′ for some
0 < λ < 1.

Clearly, for any edge e not in the support graph of xHb , we have ze = 0 by Lemma 4.1.2. We
also apply Lemma 4.1.2 to δ(v) for each vertex v, and the cuts S1 = {3, 4}, S2 = {1, 2}, S3 =
{5, 6}, S4 = {3, 4, 5, 6}. Then, z(δ(v)) = 1 for v = 0, 7 and z(δ(v)) = 2 for other vertices,
and z(δ(Sj)) = 2 for 1 ≤ j ≤ 4. Hence, ze = 1 for each e ∈ E1 = {(3, 4), (1, 2), (5, 6)}. Let
a = z(0,3), b = z(4,5). By the z-values on the edges in E1 and the values z(δ(v)) for v ∈ V (Hb),
we have z(0,1) = 1−a, z(1,3) = a, z(3,6) = 1−2a, z(6,7) = 2a, z(2,7) = 1−2a, z(2,5) = 1−b, z(2,4) =
1− b. Now consider δ(2) and δ(S4). Then

2(1− b) + (1− 2a) + 1 = 2, 4a+ 2(1− b) = 2.

Hence, a = 1
3
, b = 2

3
. By checking each edge, z = xHb . This is a contradiction. Therefore, xHb

is an extreme point of K. 2

Note that the analysis in the proof of Lemma 4.4.1 also shows that xHb is an extreme point of
the polytope of LP3 on Hb.

The cost of the corresponding good spanning tree is 10 and is shown in Figure 4.3. The
number on the edge between 3 and 4 in Figure 4.3 is the edge cost. The numbers below the
dashed narrow cuts are the minimum costs of the edges crossing the narrow cuts to connect two
consecutive parts. By Lemma 4.4.1, we know the optimal value of LP6 is cHb(xHb) = 92

3
. So,

we can see that the cost of the good spanning tree is strictly larger than the optimal value of
LP6. This refutes the statement that the cost of the “extended” good spanning tree can be upper
bounded by Opt(LP6).

Interestingly, this instance also illustrates that probabilistic methods are important for the
analyses of improved LP-based approximation algorithms such as the “randomized Christofides’
algorithm” or its deterministic version the “best-of-many Christofides’ algorithm” (see [1]). The

40

0

111

1

222

1 2

3

4

5 6 7

Figure 4.3: Cost of the good spanning tree

randomized Christofides’ algorithm obtains a better approximation factor by sampling a spanning
tree J from the convex decomposition of x∗. However, is it true that for an arbitrary spanning tree
in the support of a given convex decomposition, the cost of the spanning tree plus a minimum-
cost T -join is at most 3

2
Opt(LP3)? In the rest of this section, via the instance Hb, we show this

statement is false in general.

We recall the optimal solution xHb of LP3 on Hb with metric costs cHb . We know that xHb is
in the spanning tree polytope LP4. The tight constraints of xHb for the inequality constraints of
LP4 are illustrated as dashed circles in the Figure 4.4 except the tight constraints for V − {s},
V − {t}, V − {s, t}.

0 3 4 5 6

1 2 7

1/3

2/3

1

1

1/3

2/3

1/3

1/3 2/3

1/31/3

1

Figure 4.4: Tree Jb

41

By Lemma 4.1.2, the tree Jb with the dark edges in the graph of Figure 4.4 is in some con-
vex decomposition of xHb in LP4, i.e., Jb is a spanning tree in the support of some convex
decomposition of xHb . Let Tb be the set of wrong degree vertices of Jb, i.e., Tb = {1, 3, 4, 6}.
Fb = {(3, 6), (1, 4)} is a minimum-cost Tb-join with cost 5. Hence, the total cost of the disjoint
union of Jb and Fb is 15, which is larger than 3

2
times the optimal value cHb(xHb) = 92

3
of LP3.

This shows the importance of the probabilistic techniques in the analysis of the “randomized
Christofides’ algorithm” or its deterministic version the “best-of-many Christofides’ algorithm”.
Note that the minimum-cost Tb-join Fb to fix the wrong degree vertices of Jb is also larger than
half of the optimal value 92

3
of LP3.

42

Chapter 5

On Integrality Ratios for Asymmetric TSP
in the Sherali-Adams System

The Traveling Salesman Problem is to find a minimum-cost tour of a set of cities; the tour should
visit each city exactly once. The most well known version of this problem is the symmetric one
(i.e., TSP), where the distance (a.k.a. cost) from city i to city j is equal to the distance (cost)
from city j to city i. The more general version is called Asymmetric TSP (ATSP), and it does not
have the symmetry restriction on the costs. Throughout this chapter, 1 we assume that the costs
satisfy the triangle inequalities, i.e., the costs are metric.

Linear programming relaxations play a central role in solving TSP or ATSP, both in practice
and in the theoretical setting of approximation algorithms. The most well known relaxation (and
the one that is most useful for theory and practice) is due to Dantzig, Fulkerson and Johnson;
we call it the standard LP relaxation or the DFJ LP relaxation (see Section 2.1). There is a
further relaxation of the standard LP relaxation that is of interest; we call it the balanced LP
relaxation (see Section 2.1); it is obtained from the standard LP relaxation by replacing the
indegree and outdegree constraint at each vertex by a balance (equation) constraint. We may
denote the balance LP relaxation by Bal LP for short. For metric costs, the optimal value of the
standard LP relaxation is the same as the optimal value of the balanced LP relaxation; this is a
well known fact, see [57], [10, Footnote 3].

For both TSP and ATSP, significant research efforts have been devoted over several decades
to prove bounds on the integrality ratio of the standard LP (DFJ LP) relaxation. For TSP, methods
based on Christofides’ algorithm show that the integrality ratio is ≤ 3

2
, whereas the best lower

1 This chapter is based on joint work with Joseph Cheriyan, Konstantinos Georgiou, and Sahil Singla. The results
appear in the submitted manuscript [15], an extended abstract of which has been published [14].

43

bound known on the integrality ratio is 4
3
. Closing this gap is a major open problem in the area.

For ATSP, a result of Asadpour et al. [5] showed that the integrality ratio is≤ O(log n/ log log n).
Very recently, Anari et al. [3] improved the upper bound on the integrality ratio to polyloglog(n)
for ATSP. On the other hand, Charikar et al. [10] showed a lower bound of 2 on the integrality
ratio, thereby refuting an earlier conjecture of Carr and Vempala [9] that the integrality ratio is
≤ 4

3
.

Lampis [45] and Papadimitriou and Vempala [56], respectively, have proved hardness-of-
approximation thresholds of 185

184
for TSP and 117

116
for ATSP; both results assume that P 6=NP.

Karpinski et al. [42] have improved both hardness-of-approximation thresholds to 123/122 and
75/74, respectively, assuming that P 6=NP.

Our goal is to prove lower bounds on the integrality ratios for the tighter LP relaxations for
ATSP obtained by applying the Sherali-Adams system.

Starting with the work of Stephen and Tunçel [64] and Arora et al. [4], substantial research
efforts have been devoted to showing that tightened relaxations (for many levels) fail to reduce
the integrality ratio for many combinatorial optimization problems (see [19] for a list of negative
results). A key paper by Fernández de la Vega and Kenyon-Mathieu [24] introduced a probabilis-
tic interpretation of the SA system, and based on this, negative results (for the SA system) have
been proved for a number of combinatorial problems; also see Charikar et al. [11], and Benabbas
et al. [7]. At the moment, it is not clear that methods based on [24] could give negative results
for TSP and its variants, because the natural LP relaxations (of TSP and related problems) have
“global constraints.”

To the best of our knowledge, there are only two previous papers with negative results for
Lift-and-Project systems applied to TSP and its variants. Cheung [18] proves a lower bound of
4
3

on the integrality ratio for TSP, for O(1) levels of the SDP version of Lovász-Schrijver sys-
tem. For ATSP, Watson [68] proves an integrality ratio of 3

2
for level 1 of the Lovász-Schrijver

system, starting from the balanced LP relaxation (in fact, both the systems LS and SA give the
same relaxation at level one).

5.1 Our results

Our main result is a generic construction of fractional feasible solutions for any level t of the
SA system starting from the standard LP (DFJ LP) relaxation of ATSP. We have a similar but
considerably simpler construction when the starting LP for the SA system is the balanced LP
relaxation. Our results on integrality ratios are direct corollaries.

44

We have the following results pertaining to the balanced LP relaxation of ATSP: We formu-
late a property of digraphs that we call the good decomposition property, and given any digraph
with this property, we construct a vector y on the edges such that y is a fractional feasible solution
to the level-t tightening of the balanced LP relaxation by the Sherali-Adams system. Charikar,
Goemans, and Karloff (CGK) [10] constructed a family of digraphs for which the balanced LP
relaxation has an integrality ratio of 2. We show that the digraphs in the CGK family have the
good decomposition property, hence, we obtain an integrality ratio for level t of SA. In more
detail, we prove that for any integer t ≥ 0 and small enough ε > 0, there is a digraph G from
the CGK family on ν = ν(t, ε) = O((t/ε)t/ε) vertices such that the integrality ratio of the level-t
tightening of Bal LP is at least 1 + 1−ε

t+1
≈ 2, 3

2
, 4

3
, 5

4
, . . . (where t = 0 identifies the original

relaxation).

Our main result pertains to the standard LP relaxation of ATSP. Our key contribution is to
identify a structural property of digraphs that allows us to construct fractional feasible solutions
for the level-t tightening of the standard LP relaxation by the Sherali-Adams system. This
construction is much more difficult than the construction for the balanced LP relaxation. We
present a simple family of digraphs that satisfy the structural property, and this immediately
gives our results on integrality ratios. We prove that for any integer t ≥ 0 and small enough
ε > 0, there are digraphs G on ν = ν(t, ε) = O(t/ε) vertices such that the integrality ratio of the
level-t tightening of the standard LP relaxation on G is at least 1 + 1−ε

2t+3
≈ 4

3
, 6

5
, 8

7
, 10

9
, The

rank of a starting relaxation (or polytope) is defined to be the minimum number of tightenings
required to find the integral hull (in the worst case). An immediate corollary is that the SA-rank
of the standard LP relaxation on a digraph G = (V,E) is at least linear in |V |, whereas, the rank
in terms of the number of edges is Ω(

√
|E|) (since the LP is on a complete digraph, namely, the

metric completion).

Our results for the balanced LP relaxation and for the standard LP relaxation are incompa-
rable, because the SA system starting from the standard LP relaxation is strictly stronger than
the SA system starting from the balanced LP relaxation, although both the level zero LPs have
the same optimal value, assuming metric costs. (In fact, there is an example on 5 vertices [27,
Figure 4.4, p.60] such that the optimal values of the level-1 tightenings are different: 91

3
for the

balanced LP relaxation and 10 for the standard LP relaxation.)

Finally, we extend our main results to the natural relaxation of path ATSP (minimum-cost
Hamiltonian dipath from a given source vertex to a given sink vertex), and we obtain integrality
ratios ≥ 1 + 2−ε

3t+4
≈ 3

2
, 9

7
, 6

5
, 15

13
, . . . for the level-t SA tightenings. Our result on path ATSP is

obtained by “reducing” from the result for ATSP; the idea behind this comes from an analogous
result of Watson [68] in the symmetric setting; Watson gives a method for transforming Cheung’s
[18] result on the integrality ratio for TSP to obtain a lower bound on the integrality ratio for
path TSP.

45

5.2 Preliminaries

When discussing a digraph (directed graph), we use the terms dicycle (directed cycle), etc., but
we use the term edge rather than directed edge or arc.

Consider a strongly connected digraph G = (V,E) with nonnegative edge costs c ∈ RE . By
the metric completion of G, we mean the complete digraph G′ on V with the edge costs c′, where
c′(v, w) is taken to be the minimum cost (w.r.t. c) of a v, w dipath of G.

An Eulerian subdigraph of G is defined as follows: the vertex set is V and the edge set
is a “multi-subset” of E (that is, each edge in E occurs zero or more times) such that (i) the
indegree of every vertex equals its outdegree, and (ii) the subdigraph is weakly connected (i.e.,
the underlying undirected graph is connected). The ATSP on the metric completion G′ of G is
equivalent to finding a minimum-cost Eulerian subdigraph of G.

For a positive integer t and a ground set U , we let Pt denote the family of subsets of U of
size at most t, i.e., Pt = {S : S ⊆ U, |S| ≤ t} (see Section 2.2). We usually take the ground set
to be the set of edges of a fixed digraph. Now, let G be a digraph, and let the ground set (for Pt)
be E = E(G). Let E ′ be a subset of E. Let 1E

′, t denote a vector indexed by elements of Pt such
that for any S ∈ Pt, 1E

′, t
S = 1 if S ⊆ E ′, and 1E

′, t
S = 0, otherwise. Note that 1E

′, 1 has the entry
for ∅ at 1, and the other entries give the incidence vector of E ′.

5.2.1 LP relaxations for Asymmetric TSP

Let G = (V,E) be a digraph with nonnegative edge costs c. Let ÂTSPDFJ (G) be the feasible
region (polytope) of the following linear program that has a variable xe for each edge e of G:

minimize:
∑
e∈E

cexe

subject to: x
(
δin(S)

)
≥ 1 ∀∅ (S (V

x
(
δout(S)

)
≥ 1 ∀∅ (S (V

x
(
δin(v)

)
= 1, x

(
δout(v)

)
= 1 ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

In particular, when G is a complete digraph with metric costs, the above linear program is
the standard LP (DFJ LP) relaxation of ATSP (see Section 2.1).

46

We obtain the balanced LP relaxation (Bal LP) from the standard LP relaxation by replacing
the two constraints x (δin(v)) = 1, x (δout(v)) = 1 by the constraint x (δin(v)) = x (δout(v)),
for each vertex v. Let ÂTSPBAL(G) be the feasible region (polytope) of Bal LP.

minimize:
∑
e∈E

cexe

subject to: x
(
δin(S)

)
≥ 1 ∀∅ (S (V

x
(
δout(S)

)
≥ 1 ∀∅ (S (V

x
(
δin(v)

)
= x

(
δout(v)

)
∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

In particular, when G is a complete digraph with metric costs, the above linear program is
the balanced LP relaxation of ATSP (see Section 2.1).

Our construction of fractional feasible solutions exploits the structure of the original digraph.
This is the reason for discussing the polytopes on the original digraph (and not only on the
complete digraph). To justify this, we observe that any feasible solution for the original digraph
can be extended to a feasible solution for the complete digraph by “padding with zeros.” (This
argument is formalized in Section 5.2.2).

5.2.2 The Sherali-Adams system

In this section, we recall the definition of the Sherali-Adams system from Section 2.2 and
present some basic properties. Here, we use the linearized definition of the Sherali-Adams
system.

Definition 5.2.1 (The Sherali-Adams system) Consider a polytope P̂ ⊆ [0, 1]n over the vari-
ables y1, . . . , yn, and its description by a system of linear constraints of the form

∑n
i=1 aiyi ≥ b;

note that the constraints yi ≥ 0 and −yi ≥ −1 for all i ∈ {1, . . . , n} are included in the
system. The level-t Sherali-Adams tightened relaxation SAt(P̂) of P̂ , is an LP over the vari-
ables {yS : S ⊆ {1, 2, . . . , n}, |S| ≤ t+ 1} (thus, y ∈ RPt+1 where Pt+1 has ground set
{1, 2, . . . , n}); moreover, we have y∅ = 1. For every constraint

∑n
i=1 aiyi ≥ b of P̂ and for

every disjoint S,Q ⊆ {1, . . . , n} with |S| + |Q| ≤ t, the following is a constraint of the level-t

47

Sherali-Adams relaxation.
n∑
i=1

ai
∑
∅⊆T⊆Q

(−1)|T |yS∪T∪{i} ≥ b
∑
∅⊆T⊆Q

(−1)|T |yS∪T . (5.1)

We will use a convenient abbreviation:

zS,Q :=
∑
∅⊆T⊆Q

(−1)|T |yS∪T ,

where zS,Q are auxiliary variables between 0 and 1.

Informally speaking, the level-t Sherali-Adams relaxation is derived by multiplying any
constraint of the original relaxation by the high degree polynomial∏

j∈S

yi
∏
j∈Q

(1− yi),

where S,Q are disjoint subsets of {1, . . . , n} with |S| + |Q| ≤ t. After expanding the products,
we obtain a polynomial of degree at most t+1. Replacing any occurrences of

∏
i∈S yi by the cor-

responding variable yS for all S ⊆ {1, . . . , n} gives the constraint described in Inequality (5.1)
(Definition 5.2.1).

There are a number of approaches for certifying that y ∈ SAt(P̂) for a given y. One popular
approach is to give a probabilistic interpretation to the entries of y, satisfying certain conditions.
We follow an alternative approach, that is standard, see [47], [65, Lemma 2.9], but has been
rarely used in the context of integrality ratios.

First, we recall some notation from Section 2.2. Given a polytope P̂ ⊆ [0, 1]n, consider
the cone P = {y∅(1, y) : y∅ ≥ 0, y ∈ P̂}. (Throughout this chapter, we use an accented
symbol to denote a polytope, e.g., P̂ , and the symbol (without accent) to denote the associated
cone, e.g., P .) Recall that SAt(P̂) is a polytope whereas SAt(P) is a cone. Also, note that
SAt(P̂) = {y : y∅ = 1, y ∈ SAt(P)}.

For a vector y indexed by subsets of {1, . . . , n} of size at most t + 1, define a shift operator
“∗” as follows: for every e ∈ {1, . . . , n}, let e ∗ y to be a vector indexed by subsets of {1, . . . , n}
of size at most t, such that (e ∗ y)S := yS+e. We have the following fact, [65, Lemma 2.9].

Fact 5.2.2 . y ∈ SAt(P) if and only if e ∗ y ∈ SAt−1(P), and y − e ∗ y ∈ SAt−1(P), ∀e ∈
{1, . . . , n}.

48

The reader familiar with the Lovász-Schrijver system may recognize the similarity of its
definition with the characterization of the Sherali-Adams system of Fact 5.2.2 (see Section 2.2).
In fact, the SA system differs from the LS system only in that it imposes additional consistency
conditions; namely, the moment vector y, indexed by subsets of size t + 1, has to be fixed
beforehand. This seemingly small detail gives the SA system enhanced power compared to the
LS system.

Eliminating Variables to 0

In our discussion of the standard LP relaxation and the balanced LP relaxation, it will be conve-
nient to restrict the support to the edge set of a given digraph rather than the complete digraph.
Thus, we assume that some of the variables are absent. Formally, this is equivalent to setting
these variables in advance to zero. As long as the nonzero variables induce a feasible solution,
we are justified in setting the other variables to zero. The following result formalizes the argu-
ments.

Proposition 5.2.3 Let P̂ be the feasible region (polytope) of a linear program. Let C be a set
of indices (of the variables) that does not contain the support of any “positive constraint” of P̂ ,
where a constraint

∑n
i=1 aiyi ≥ b of P̂ is called positive if b > 0. Let P̂C be the feasible region

(polytope) of the linear program obtained by removing all variables with indices in C from the
constraints of the linear program of P̂ (informally, the new LP fixes all variables with indices in
C at zero). Then, for the SA system, for any feasible solution y to the level-t tightening of P̂C ,
there exists a feasible solution y′ to the level-t tightening of P̂ ; moreover, y′ is obtained from y
by fixing variables, indexed by subsets intersecting C, to zero.

Proof. For y ∈ SAt(P̂C), the “extension” y′ of y is defined as follows:

y′S =

{
yS , if S ∩ C = ∅
0 , otherwise

For the corresponding auxiliary variables z, this would imply that

z′S,Q =

{
0 , if S ∩ C 6= ∅
zS,Q−C , otherwise .

In order to show that y′ ∈ SAt(P̂), we need to verify that for every pair of sets S,Q as in
Definition 5.2.1, we have

∑n
i=1 aiz

′
S∪{i},Q ≥ bz′S,Q.

49

First we note that if S ∩ C 6= ∅, then for every i we have z′S∪{i},Q = z′S,Q = 0, and hence the
constraint is satisfied trivially.

For the remaining case S ∩ C = ∅, we have

n∑
i=1

aiz
′
S∪{i},Q =

∑
i∈C

aiz
′
S∪{i},Q +

∑
i 6∈C

aiz
′
S∪{i},Q

=
∑
i 6∈C

aiz
′
S∪{i},Q

=
∑
i 6∈C

aizS∪{i},Q−C

≥ b zS,Q−C (5.2)
= b z′S,Q−C
= b z′S,Q,

where (5.2) follows from the validity of the corresponding constraint of P̂C ; here, we use the
fact that C does not contain the support of any positive constraint – otherwise, the summation∑

i 6∈C(. . .) would be zero since the index set {i : i 6∈ C} would be empty, and hence, the
inequality 0 =

∑
i 6∈C(. . .) ≥ b zS,Q−C would fail to hold for b > 0 and zS,Q−C > 0. 2

5.3 SA applied to the Balanced LP relaxation of ATSP

5.3.1 Certifying a feasible solution

Figure 5.1: A digraph G with a good decomposition given by the dicycle with thick edges, and
the length 2 dicycles Cj formed by the anti-parallel pairs of thin edges; G − E(Cj) is strongly
connected for each dicycle Cj .

A strongly connected digraph G = (V,E) is said to have a good decomposition with wit-
ness set F if the following hold

50

(i) E partitions into edge-disjoint dicycles C1, C2, . . . , CN , that is, there exist edge-disjoint
dicycles C1, C2, . . . , CN such that E =

⋃
1≤j≤N E(Cj); let N denote the set of indices of

these dicycles, thus N = {1, . . . , N};

(ii) moreover, there exists a nonempty subset F of N such that for each j ∈ F the digraph
G− E(Cj) is strongly connected.

Let F denote N − F . For an edge e, we use index(e) to denote the index j of the dicycle
Cj, j ∈ N that contains e. In this section, by a dicycle Ci, Cj, etc., we mean one of the dicy-
cles C1, . . . , CN , and we identify a dicycle Cj with its edge set, E(Cj). See Figure 5.1 for an
illustration of a good decomposition of a digraph.

Informally speaking, our plan is as follows: for digraph G that has a good decomposition
with witness set F , we construct a feasible solution to SAt(ÂTSPBAL(G)) by assigning the same
fractional value to the edges of the dicycles Cj with j ∈ F , while assigning the value 1 to the
edges of the dicycles Ci with i ∈ F (this is not completely correct; we will refine this plan). Let
ATSPBAL(G) be the associated cone of ÂTSPBAL(G).

Definition 5.3.1 Let t be a nonnegative integer. For any set S ⊆ E of size ≤ t + 1, and any
subset I of F , let F I(S) denote the set of indices j ∈ F −I such that E(Cj)∩S 6= ∅; moreover,
let fI(S) denote |F I(S)|, namely, the number of dicycles Cj with indices in F −I that intersect
S.

Definition 5.3.2 For a nonnegative integer t and for any subset I of F , let yI, t be a vector
indexed by the elements of Pt+1 and defined as follows:

yI, tS =
t+ 2− fI(S)

t+ 2
, ∀S ∈ Pt+1

Theorem 5.3.3 LetG = (V,E) be a strongly connected digraph that has a good decomposition,
and let F be the witness set. Then

yI, t ∈ SAt(ÂTSPBAL(G)), ∀t ≥ 0,∀I ⊆ F .

In order to prove our integrality ratio result for ÂTSPBAL, we will invoke Theorem 5.3.3 for
I = ∅ (the more general setting of the theorem is essential for our induction proof; we give a
high-level explanation in the last paragraph of the proof of Theorem 5.3.3 below). Since also
only the values of y∅, t indexed at singleton edges affect the integrality ratio, it is worthwhile to
summarize all relevant quantities in the next corollary.

51

Corollary 5.3.4 We have

y∅, t ∈ SAt(ÂTSPBAL(G)), ∀t ≥ 0.

Moreover, for each dicycle Cj , j ∈ N , and each edge e of Cj we have

y∅, te =

{
t+1
t+2
, if j ∈ F

1, otherwise.
(5.3)

Informally speaking, we assign the value 1 (rather than a fractional value) to the edges of the
dicycles Cj with j ∈ I ⊆ F . For the sake of exposition, we call the dicycles Cj with j ∈ F − I
the fractional dicycles, and we call the remaining dicycles Ci (thus i ∈ I ∪ F) the integral
dicycles.

Proof of Theorem 5.3.3: To prove Theorem 5.3.3, we need to prove

yI, t ∈ SAt(ATSPBAL(G)).

We prove this by induction on t.

Note that yI, t∅ = 1 by Definition 5.3.2.

The induction basis is important, and it follows easily from the good decomposition prop-
erty. In Lemma 5.3.8 (below) we show that y∅, 0 ∈ SA0(ATSPBAL(G)). We conclude that yI, 0

satisfies the first two sets of constraints of ATSPBAL(G), since yI, 0 ≥ y∅, 0 (this follows from
Definitions 5.3.1,5.3.2, since F I(S) ⊆ F ∅(S)). As for the balance constraints, it is enough
to observe that every vertex of our instance (see Figure 5.1) is incident to pairs of outgoing
and ingoing edges, which due to Definition 5.3.2 are assigned the same value. Finally, again
by Definition 5.3.2, and for all edges e, we have 0 ≤ yI, 0e ≤ 1. All the above imply that
yI, 0 ∈ SA0(ATSPBAL(G)), ∀I ⊆ F , as wanted.

In the induction step, we assume that yI, t ∈ SAt(ATSPBAL(G)) for some integer t ≥ 0 (the
induction hypothesis), and we apply the recursive definition based on the shift operator, namely,
yI, t+1 ∈ SAt+1(ATSPBAL(G)) iff for each e ∈ E

e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)), (5.4)

yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)). (5.5)

Lemma 5.3.6 (below) proves (5.4) and Lemma 5.3.7 (below) proves (5.5). 2

We prove that e∗yI, t+1 is in SAt(ATSPBAL(G)) by showing that for some edges e, e∗yI, t+1 is

52

a scalar multiple of yI′, t, where I ′) I (see Equation (5.6) in Lemma 5.3.6); thus, the induction
hinges on the use of I.

Before proving Lemma 5.3.6 and Lemma 5.3.7, we show that yI, t+1, restricted to Pt+1, can
be written as a convex combination of yI, t and the integral feasible solution 1E, t+1. This is used
in the proof of Lemma 5.3.6; for some of the edges e ∈ E, we show that e ∗ yI, t+1 = yI, t+1 (see
Equation (5.6)), and then we have to show that the latter is in SAt(ATSPBAL(G)).

Fact 5.3.5 . Let t be a nonnegative integer and let I be a subset of F . Then for any S ∈ Pt+1

we have yI, t+1
S =

t+ 2

t+ 3
yI, tS +

1

t+ 3
1E, t+1
S .

Proof. We have S ⊆ E, |S| ≤ t+ 1, and we get 1E, t+1
S = 1 from the definition. Thus,

yI, t+1
S =

t+ 3− fI(S)

t+ 3
=

t+ 2− fI(S)

t+ 3
+

1

t+ 3
=

t+ 2

t+ 3
yI, tS +

1

t+ 3
1E, t+1
S .

2

Lemma 5.3.6 Suppose that yI, t ∈ SAt(ATSPBAL(G)), for each I ⊆ F . Then for all e ∈ E and
for all I ⊆ F we have e ∗ yI, t+1 ∈ SAt(ATSPBAL(G))

Proof. For any S ∈ Pt+1, the definition of the shift operator gives (e ∗ yI, t+1)S = yI, t+1
S+e . Let

C(e) denote the dicycle containing edge e, and recall that index(e) denotes the index of C(e).

We first show that

e ∗ yI, t+1
S =

{
t+2
t+3
y
I+index(e), t
S if index(e) ∈ F − I

yI, t+1
S otherwise

(5.6)

If index(e) ∈ I ∪ F , that is, the dicycle C(e) is not “fractional,” then Definition 5.3.2 directly
gives yI, t+1

S+e = yI, t+1
S . Otherwise, if index(e) ∈ F − I, then from Definition 5.3.2 we see that if

C(e) ∩ S 6= ∅, then F I(S + e) = F I(S), and otherwise, fI(S + e) = fI(S) + 1. Hence,

(e ∗ yI, t+1)S =

{
t+3−fI(S)

t+3
if C(e) ∩ S 6= ∅

t+2−fI(S)
t+3

if C(e) ∩ S = ∅
(5.7)

=
t+ 2

t+ 3
y
I+index(e), t
S (5.8)

53

where in the last line we use Definition 5.3.2 to infer that fI+index(e)(S) = fI(S)−1, ifC(e)∩S 6=
∅, and fI+index(e)(S) = fI(S), otherwise.

Note that Fact 5.3.5 along with yI, t ∈ SAt(ATSPBAL(G)) implies that yI, t+1, restricted to
Pt+1, is in SAt(ATSPBAL(G)) because it can be written as a convex combination of yI, t and an
integral feasible solution 1E, t+1. Equation (5.6) proves Lemma 5.3.6 because both yI+index(e), t

and yI, t+1 (restricted to Pt+1) are in SAt(ATSPBAL(G)). 2

Lemma 5.3.7 Suppose that yI, t ∈ SAt(ATSPBAL(G)), for each I ⊆ F . Then for all e ∈ E and
for all I ⊆ F we have yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)).

Proof. Let C(e) denote the dicycle containing edge e, and recall that index(e) denotes the index
of C(e). If index(e) ∈ I ∪ F , then we have F I(S + e) = F I(S),∀S ∈ Pt+1, hence, we have
yI, t+1 = e ∗ yI, t+1, and the lemma follows.

Otherwise, we have index(e) ∈ F − I. Then, for any S ∈ Pt+1, Equation (5.7) gives

(yI, t+1 − e ∗ yI, t+1)S =

{
0 if C(e) ∩ S 6= ∅

1
t+3

if C(e) ∩ S = ∅
(5.9)

=
1

t+ 3
1E−C(e), t+1
S (5.10)

The good-decomposition property of G implies that 1E−C(e), t+1 is a feasible integral solution of
SAt(ATSPBAL(G)). 2

Lemma 5.3.8 We have y∅, 0 ∈ SA0(ATSPBAL(G)).

Proof. Observe that y∅, 0 has |E| + 1 elements, and y∅, 0∅ = 1 (by Definition 5.3.2); the other
|E| elements are indexed by the singleton sets of E. For notational convenience, let y ∈ RE

denote the restriction of y∅, 0 to indices that are singleton sets; thus, ye = y∅, 0{e},∀e ∈ E. By
Definition 5.3.2, ye = 1/2 if e ∈ E(Cj) where j ∈ F , and ye = 1, otherwise. We claim that y is
a feasible solution to ÂTSPBAL(G).

y is clearly in [0, 1]E . Moreover, y satisfies the balance-constraint at each vertex because it
assigns the same value (either 1/2 or 1) to every edge in a dicycle Cj , ∀j ∈ N .

To show feasibility of the cut-constraints, consider any cut ∅ 6= U (V . Since 1E is a
feasible solution, there exists an edge e ∈ E crossing from U to V − U . If e ∈ E(Cj), j ∈ F ,

54

then we have ye = 1, which implies y(δout(U)) = y(δin(U)) ≥ 1 (from the balance-constraints
at the vertices). Otherwise, we have e ∈ E(Cj), j ∈ F . Applying the good-decomposition
property of G, we see that there exists an edge e′(6= e) ∈ E −E(Cj) such that e′ ∈ δout(U), i.e.,
|δout(U)| ≥ 2. Since ye ≥ 1

2
for each e ∈ E, the cut-constraints y(δin(U)) = y(δout(U)) ≥ 1 are

satisfied. 2

The next result presents our first lower bound on the integrality ratio for the level-t relaxation
of the Sherali-Adams system starting with the balanced LP relaxation. The relevant instance
is a simple digraph on Θ(t) vertices; see Figure 5.1. In the next subsection, we present better
integrality ratios using the CGK construction, but the CGK digraph is not as simple and it has
Θ(tt) vertices.

Theorem 5.3.9 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There exists a
digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for the level-t tightening
of the balanced LP relaxation (Bal LP) (by the Sherali-Adams system) is ≥ 1 + 1−ε

2t+3
.

Proof. Let G be the digraph together with the good decomposition shown in Figure 5.1, and let
the cost of each edge in G be 1. We call an edge of G a thin edge if it is contained in a dicycle of
length 2; we call the other edges of G the thick edges; see the illustration in Figure 5.1. Consider
the metric completion H of G. It can be seen that the optimal value of an integral solution of
ATSP on H (equivalent to the minimum-cost Eulerian subdigraph of G) is ≥ 4` + 2, where ` is
the length of the “middle path.” (This can be proved by induction on `, using similar arguments
as in Cheung [18, Claim 3 of Theorem 11].)

Given t and ε, we fix ` = 2(2t + 3)/ε to get a digraph G (and its edge costs) from the above
family.

By Corollary 5.3.4 the fractional solution y∅, t (Definition 5.3.2) is in SAt(ÂTSPBAL(G)): we
have y∅, te = 1 for each thick edge e, and y∅, te = t+1

t+2
for each thin edge e. By Section 5.2.2, we

can extend y∅, t to a feasible solution of SAt(ÂTSPBAL(H)).

Hence, the integrality ratio is

≥ 4`+ 2

2`+ 4 + 2` t+1
t+2

≥ 2(t+ 2)

2t+ 3
− 2

`
≥ 1 +

1− ε
2t+ 3

.

2

55

5.3.2 CGK (Charikar-Goemans-Karloff) construction

We briefly explain the CGK [10] construction and show in Theorem 5.3.14 that the resulting
digraph has a good decomposition. This theorem along with a lemma from [10] shows that
the integrality ratio is ≥ 1 + 1−ε

t+1
for level t of the Sherali-Adams system starting with the

balanced LP relaxation, for any given 0 < ε� 1, see Theorem 5.3.16.

Let r be a fixed positive integer. Let G0 be the digraph with a single vertex. Let G1 consist
of a bidirected path of r+ 2 vertices, starting at the “source” p and ending at the “sink” q, whose
2(r + 1) edges have cost 1 (see Figure 5.2). We call E(G1) the external edge set of G1 (we use
this in the proof of Lemma 5.3.13).

(a) G0

C1 C2 C3 C4p q

(b) G1

Figure 5.2: G0 and G1 for r = 3

u1

v1

u2

v2

u3

v3

G
(1,1)
k−2

G
(1,2)
k−2

G
(1,3)
k−2

G
(2,1)
k−2

G
(2,2)
k−2

G
(2,3)
k−2

G
(3,1)
k−2

G
(3,2)
k−2

G
(3,3)
k−2

p q

Figure 5.3: Gk and Lk for k ≥ 2 and r = 3

56

For each k ≥ 2, we construct Gk by taking r copies of Gk−1, additional source and sink
vertices p and q, a dipath from p to q of r + 1 edges visiting the sources of the r copies in the
order u1, u2, . . . , ur, and another dipath from q to p of r + 1 edges visiting the sinks of the r
copies in the order vr, vr−1, . . . , v1 where ui, vi denote the source and sink of the ith copy of
Gk−1 (see Figure 5.3). All the new edges have cost rk−1. Denote the i-th copy of Gk−1 by G(i)

k−1.
Let Ek = E(Gk) − ∪1≤i≤rE(G

(i)
k−1). Let {G(i,j)

k−2}1≤j≤r be the r copies of Gk−2 in G(i)
k−1. Let

E
(i)
k−1 = E(G

(i)
k−1) −

⋃
1≤j≤r E(G

(i,j)
k−2). Let A(i) be the dipath from ui to vi in E(i)

k−1 and let B(i)

be the dipath from vi to ui in E(i)
k−1. Let E[r]

k−1 = ∪1≤i≤rE
(i)
k−1. We call Ek ∪ E[r]

k−1 the external
edge set of Gk. The other edges form the internal edge set of Gk.

For each k ≥ 2, the digraph Lk is constructed from Gk by removing vertices p and q, and
adding the edges (ur, u1) and (v1, vr), both of cost rk−1. Let E ′k = (Ek ∪ {(ur, u1), (v1, vr)})−
{(p, u1), (v1, p), (ur, q), (q, vr)}. We call E ′k ∪E

[r]
k−1 the external edge set of Lk. The other edges

form the internal edge set of Lk. (Our description of the CGK construction is essentially the
same as in [10], but they use s and t to denote the source and sink vertices, whereas we use p and
q; this is to avoid conflict with our symbol t for the number of levels of the SA system.)

Fact 5.3.10 Let k ≥ 2 be a positive integer. The external edge set of Lk, i.e., E
′

k ∪ E
[r]
k−1, can be

partitioned into r dicycles C ′1, . . . , C
′
r such that

C ′i = {(ui, ui+1), (vi+1, vi)} ∪B(i) ∪ A(i+1), for 1 ≤ i ≤ r − 1, and

C ′r = {(ur, u1), (v1, vr)} ∪B(r) ∪ A(1).

Moreover, for each dicycle C ′i, i = 1, . . . , r, Lk − E(C ′i) is strongly connected.

We denote the decomposition of the external edge set of Lk by

CLk(E
′

k ∪ E
[r]
k−1) = {C ′1, . . . , C ′r}.

Fact 5.3.11 Let k ≥ 2 be a positive integer. The external edge set of Gk, i.e., Ek ∪E[r]
k−1, can be

partitioned into r + 1 dicycles C0, C1, . . . , Cr such that

Ci = {(ui, ui+1), (vi+1, vi)} ∪B(i) ∪ A(i+1), for 1 ≤ i ≤ r − 1,

C0 = {(p, u1), (v1, p)} ∪ A(1), and

57

Cr = {(ur, q), (q, vr)} ∪B(r).

Moreover, for each dicycle Ci, i = 0, 1, . . . , r, Gk − E(Ci) has two strongly-connected compo-
nents, where one contains the source p and the other one contains the sink q.

We denote the decomposition of the external edge set of Gk by

CGk(Ek ∪ E
[r]
k−1) = {C0, C1, . . . , Cr}.

Next we identify a structural property that will allow us to prove that Lk has a good decomposi-
tion.

Definition 5.3.12 We say that Gk has a p, q good decomposition, if the edge set of Gk can be
partitioned into dicycles C1, C2, . . . , CN such that for each 1 ≤ i ≤ N , either

(1) Ci consists of external edges, and moreover, Gk−E(Ci) has two strongly connected com-
ponents, one containing the source p and the other one containing the sink q.

(2) Ci consists of internal edges of Gk, and moreover, Gk − E(Ci) is strongly connected.

Lemma 5.3.13 For all k ≥ 1, Gk has a p, q good decomposition.

Proof. We prove the result by strong induction on k. For the base cases, consider G1 and G2.
For G1, we take the dicycles C1, . . . , CN to be the length 2 dicycles formed by two anti-parallel
edges; thus, N = r + 1 (see Figure 5.2). For G2, we use the decomposition of the external
edge set given by Fact 5.3.11.

For the induction step, we have k ≥ 3; we assume that the statement holds for 1, 2, . . . , k −
1 and prove that it holds for k. By the induction hypothesis, for each 1 ≤ i, j ≤ r, we
know that G(i,j)

k−2 has a p, q good decomposition C(E(G
(i,j)
k−2)) = {C(i,j)

1 , C
(i,j)
2 , . . . , C

(i,j)
N(i,j)
}. Con-

sider the decomposition of E(Gk) into edge-disjoint dicycles given by Ĉ = CGk(Ek ∪ E
[r]
k−1) ∪⋃

1≤i,j≤r C(E(G
(i,j)
k−2)). We claim that Ĉ is a p, q good decomposition of Gk. Clearly, for C ∈ Ĉ

such that E(C) ⊆ Ek ∪ E[r]
k−1, we are done by Fact 5.3.11. Now, consider one of the other

dicycles C ∈ Ĉ; thus C consists of some internal edges of Gk. Then, there exists an i and j
(1 ≤ i, j ≤ r) such that C ∈ C(E(G

(i,j)
k−2)). We have two cases, since either condition (1) or (2)

of p, q good decomposition ofG(i,j)
k−2 applies to C. In the first case, G(i,j)

k−2−E(C) has two strongly

58

connected components, where one contains the source p(i,j) of G(i,j)
k−2 and the other one contains

the sink q(i,j) of G(i,j)
k−2. Note that the external edge set of Gk “strongly connects” p(i,j) and q(i,j),

hence,Gk−E(C) is strongly connected. In the second case,G(i,j)
k−2−E(C) is strongly connected;

then clearly, Gk − E(C) is strongly connected. Thus Ĉ is a p, q good decomposition of Gk. 2

Theorem 5.3.14 For k ≥ 2, Lk has a good decomposition with witness set F such that F = N ,
i.e. every edge in any cycle in the decomposition can be assigned a fractional value.

Proof. Let CLk(E
′

k ∪ E
[r]
k−1) be the decomposition of the external edge set of Lk given by

Fact 5.3.10. If k = 2, then we are done (we have a good decomposition of Lk with F =

N). Otherwise, we use the decomposition Ĉ = CLk(E
′

k ∪ E
[r]
k−1) ∪

⋃
1≤i,j≤r C(E(G

(i,j)
k−2)), where

C(E(G
(i,j)
k−2)) is a p, q good decomposition of G(i,j)

k−2. Using similar arguments as in the proof of
Lemma 5.3.13, it can be seen that Ĉ is a good decomposition with F = N . 2

Lemma 5.3.15 (Lemma 3.2 [10]) For k ≥ 2 and r ≥ 3, the minimum cost of the Eulerian
subdigraph of Lk is ≥ (2k − 1)(r − 1)rk−1.

Theorem 5.3.16 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There exists
a digraph on ν = ν(t, ε) = O((t/ε)(t/ε)) vertices such that the integrality ratio for the level-t
tightening of the balanced LP relaxation for ATSP(Bal LP) (by the Sherali-Adams system) is
≥ 1 + 1−ε

t+1
.

Proof. Given t and ε, we apply the CGK construction with k = r = 5(t+1)/ε to get the digraph
Lk and its edge costs. Let Hk be the metric completion of Lk.

We know from CGK [10] that the total cost of the edges in Lk is ≤ 2k(r + 1)rk−1. By
Theorem 5.3.14, Lk has a good decomposition C1, . . . , CN such that each of the dicycles Cj has
its index in the witness set F (informally, each edge is assigned to a fractional dicycle). Hence,
Corollary 5.3.4 implies that the fractional solution that assigns the value t+1

t+2
to (the variable of)

each edge is feasible for SAt(ÂTSPBAL(Lk)). By Section 5.2.2, this feasible solution can be
extended to a feasible solution in SAt(ÂTSPBAL(Hk)).

Then, using Lemma 5.3.15, we see that the integrality ratio of SAt(ÂTSPBAL(Hk)) is

≥(2k − 1)(r − 1)rk−1

(t+1
t+2

)2k(r + 1)rk−1
= 1 +

1

t+ 1
− 5r − 1

t+1
t+2

(r + 1)(2r)
≥ 1 +

1

t+ 1
− 5

t+1
t+2

1

(2r)

≥1 +
1− ε
t+ 1

.

2

59

5.4 SA applied to the standard LP (DFJ LP) relaxation of
ATSP

Let G = (V,E) be a strongly connected digraph that has a good decomposition, and moreover,
has both indegree and outdegree ≤ 2 for every vertex. We use the same notation as in Sec-
tion 5.3.1, i.e., C1, C2, . . . , CN denote the edge disjoint dicycles of the decomposition, and there
exists F ⊆ N = {1, . . . , N} such that F is nonempty and G− E(Cj) is strongly connected for
all j ∈ F .

We define a vertex-splitting operation that splits every vertex that has indegree 2 (and out-
degree 2) into two vertices (along with some edges); our definition depends on the given good
decomposition of the digraph. The purpose of the vertex-splitting operation will be clear from
Fact 5.4.1.

Vertex-splitting Operation: Let v ∈ V (G) whose indegree and outdegree is 2. Suppose
Ci, Cj are the dicycles in the good decomposition going through v. Let ei1 = (vi1, v), ej1 =
(vj1, v) and ei2 = (v, vi2), ej2 = (v, vj2) be the edges in δin(v), δout(v), respectively, where
ei1, ei2 ∈ Ci and ej1, ej2 ∈ Cj . We split v into vu, vb as follows:

• Replace ei1, ej2 by enewi1 = (vi1, v
u), enewj2 = (vu, vj2) (the new edges are called solid edges)

• Replace ei2, ej1 by enewi2 = (vb, vi2), enewj1 = (vj1, v
b) (the new edges are called solid edges)

• Add the auxiliary edges (also called dashed edges) e0 = (vb, vu), e′0 = (vu, vb).

See Figure 5.4 for an illustration.

We obtain Gnew = (V new, Enew) from G by applying the vertex-splitting operation to every
vertex in G whose indegree and outdegree is 2. We map each dicycle Cj , j ∈ N , of G to a
set of edges of Gnew that we call a cycle and that we will (temporarily) denote by Cnew

j . We
define Cnew

j to be the following set of edges: for every edge of Cj , its image (in Gnew) is in
Cnew
j ; moreover, for every splitted vertex v of G incident to Cj , note that one of vu or vb (the two

images of v) is the head of one of the two edges of Cnew
j incident to {vu, vb}, and one of the two

auxiliary edges e0, e
′
0 has its head at the same vertex; we place this auxiliary edge also in Cnew

j .
For example, in Figure 5.4, the cycle Cnew

i contains the edges enewi1 (image of ei1), enewi2 (image
of ei2), and the auxiliary edge e0, whereas the cycle Cnew

j contains the edges enewj1 , enewj2 , and the
auxiliary edge e′0.

In what follows, we simplify the notation for the cycles of Gnew to Cj (rather than Cnew
j);

there is some danger of ambiguity, but the context will resolve this. We denote the set of auxiliary

60

ei1

ei2ej1

ej2

enewi1

enewi2enewj1

enewj2

e0 e′0

Figure 5.4: An illustration of the vertex-splitting operation used for mapping G to Gnew.

edges (also called the dashed edges) of a cycle Cj = Cnew
j by D(Cj), and we denote the set of

remaining edges ofCj = Cnew
j byE(Cj). Note thatEnew = E(Gnew) =

⋃
j∈N (E(Cj)∪D(Cj)).

Clearly, there is a bijection between the edges of E(Cj) = E(Cnew
j) in Gnew and the edges of

E(Cj) in G. Also, observe that in Gnew, the dashed edges are partitioned among the cycles
Cnew
j , j ∈ N .

Fact 5.4.1 Consider a digraphG = (V,E) that has a good decomposition, and consider x ∈ RE

such that (1) 0 ≤ x ≤ 1, (2) for every dicycle Cj , j ∈ N , xe is the same for all edges e of Cj ,
and (3) for every vertex v with indegree = 1 = outdegree, x(δin(v)) = x(δout(v)) = 1. Then,
for the digraph Gnew = (V new, Enew) obtained by applying the vertex-splitting operations, there
exists xnew ∈ REnew such that 0 ≤ xnew ≤ 1, and xnew(δin(v)) = xnew(δout(v)) = 1,∀v ∈ V new.

Proof. For each j ∈ N , we consider the dicycle Cj . Let αj be the x-value associated with
the dicycle Cj of G, i.e., xe = αj,∀e ∈ E(Cj). Then, in xnew and Gnew, we fix xe = αj,∀e ∈
E(Cj) = E(Cnew

j), and we fix xe = (1− αj),∀e ∈ D(Cj) = D(Cnew
j). It can be seen that xnew

satisfies the given conditions. 2

Definition 5.4.2 Consider the digraph Gnew. For any j ∈ F , let

tour(j) := D(Cj) ∪
⋃

i∈(N−j)

E(Ci).

Thus tour(j) consists of all the solid edges except those in Cj together with all the dashed
edges of Cj . Note that each vertex in Gnew has exactly one incoming edge and exactly one
outgoing edge in tour(j). Thus tour(j) forms a set of vertex-disjoint dicycles that partition
V new.

61

Definition 5.4.3 Let G be a digraph with indegree and outdegree ≤ 2 at every vertex, and sup-
pose that G has a good decomposition with witness set F . Let Gnew be the digraph obtained by
applying vertex-splitting operations to G and its good decomposition. Then G is said to have the
good tours property if tour(j) is connected (i.e., tour(j) forms a Hamiltonian dicycle of Gnew)
for each j ∈ F .

Figure 5.5: Digraph from Figure 5.1 after the vertex-splitting operation

(a) (b)

Figure 5.6: Transforming a dicycle Cj formed by an anti-parallel pair of thin edges in Figure 5.1
to Cnew

j by the vertex-splitting operation.

e

Figure 5.7: tour(e)

62

5.4.1 Certifying a feasible solution

In what follows, we assume that G is a digraph that satisfies the conditions stated in Defini-
tion 5.4.3. We focus on the digraph Gnew obtained by applying vertex-splitting operations to
G; observe that Gnew depends on G as well as on the given good decomposition of G. Let
ATSPDFJ (Gnew) be the associated cone of ÂTSPDFJ (Gnew).

Let E denote the set of images of the edges of G (the solid edges), and let D denote the set
of auxiliary edges (the dashed edges). Given S ⊆ E and I ⊆ F , let F I(S) denote the set of
indices j ∈ F − I such that E(Cj) intersects S, and let fI(S) denote the size of this set; thus,
fI(S) denotes the number of “fractional cycles” that intersect S in the solid edges.

Note that each (solid or dashed) edge e is in a unique cycle C(e); let index(e) denote the
index of C(e) in N ; if index(e) ∈ F − I, then we may use tour(e) to denote tour(index(e)).

Let t be a nonnegative integer. We define the feasible solution y for the level-t tightening of
the DFJ LP relaxation (of ATSP, by the SA system) as follows:

Definition 5.4.4 For a nonnegative integer t and for any subset I of F , let yI, t be a vector
indexed by the elements of Pt+1 and defined as follows:

(yI, t)S =

t+2−fI(S)

t+2
if S ∩D = ∅ (S has no dashed edges)

1
t+2

if S ∩D 6= ∅ and ∃i ∈ F − I : tour(i) ⊇ S

(S contains some dashed edges and is contained in a tour)
0 otherwise

(5.11)

Observe that the second case applies when the set S has one or more dashed edges, and
moreover, S is contained in a tour(i), i ∈ F − I; also, observe that there is at most one tour
that contains S, because the dashed edges are partitioned among the cycles Cj, j ∈ N , so each
dashed edge in S belongs to a unique tour.

Theorem 5.4.5 Let G = (V,E) be a strongly connected digraph that has a good decomposition
with witness set F , and moreover, has (i) both indegree and outdegree ≤ 2 for every vertex, and
(ii) satisfies the “good tours” property. Then, for any nonnegative integer t, and any I ⊆ F with
|I| ≤ |F| − (t+ 2), we have

yI, t ∈ SAt(ÂTSPDFJ (Gnew)).

63

Proof. By Definition 5.4.4, yI, t∅ = 1. Thus, we only need to prove yI, t ∈ SAt(ATSPDFJ (Gnew)).
The proof is by induction on t. The base case is important, and it follows easily from the good
decomposition property and the “good tours” property of G. This is done in Lemma 5.4.6 below,
where we show that yI, 0 ∈ SA0(ATSPDFJ (Gnew)), ∀I ⊆ F , |I| ≤ |F| − 2.

In the induction step, we assume that yI, t ∈ SAt(ATSPDFJ (Gnew)) for some integer t ≥ 0
(the induction hypothesis), and we apply the recursive definition based on the shift operator,
namely, yI, t+1 ∈ SAt+1(ATSPDFJ (Gnew)) iff for each e ∈ Enew

e ∗ yI, t+1 ∈ SAt(ATSPDFJ (Gnew)), (5.12)

yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPDFJ (Gnew)). (5.13)

Lemma 5.4.8 (below) proves (5.12) and Lemma 5.4.10 (below) proves (5.13). 2

The next lemma proves the base case for the induction; it follows from the “good tours”
property of the digraph.

Lemma 5.4.6

yI, 0 ∈ SA0(ATSPDFJ (Gnew)), ∀I ⊆ F , |I| ≤ |F| − 2.

Proof. Note that yI, 0∅ = 1. Let z be the subvector of yI, 0 on the singleton sets {ei}. We
need to prove that z is a feasible solution of the DFJ LP relaxation. It can be seen that z is as
follows: if index(e) ∈ F − I, then ze = 1

2
, otherwise, if e ∈ E (e is a solid edge), then ze = 1,

otherwise, if e ∈ D (e is a dashed edge), then ze = 0. Clearly, z is in [0, 1]E
new and satisfies

the degree constraints. Now, we need to verify that z satisfies the cut constraints in the digraph
Gnew. Consider any nonempty set of vertices U 6= V , and the cut δout(U).

Observe that |F − I| ≥ 2, hence, there are at least two indices i, j such that i, j ∈ F − I.
Hence, both tour(i) and tour(j) exist; moreover, every edge e (either solid or dashed) in either
tour(i) or tour(j) has ze ≥ 1

2
. Clearly, each of tour(i) and tour(j) has at least one edge in

δout(U). Let ej be an edge of tour(j) that is in δout(U). If zej = 1, then we are done, since we
have z(δout(U)) ≥ zej = 1. Thus, we may assume zej = 1

2
. Now, we have two cases.

First, suppose that ej is a dashed edge. Then, note that the edge of tour(i) in δout(U), call it
ei, is distinct from ej (since the tours are disjoint on the dashed edges), and again we are done,
since z(δout(U)) ≥ zei + zej ≥ 1.

In the remaining case, ej ∈ tour(j) is a solid edge and zej = 1
2
. Then, index(ej) ∈ F−I, and

so tour(ej) exists and it has at least one edge e′ in δout(U); moreover, e′ 6= ej because tour(ej)

64

contains none of the solid edges of the cycle Cindex(ej). Thus, we are done, since z(δout(U)) ≥
zej + ze′ ≥ 1. It follows that z staisfies all of the cut constraints.

2

The following fact summarizes some easy observations; this fact is used in the next lemma.

Fact 5.4.7 Let I be a subset of F . Suppose that S is not contained in any tour(j), j ∈ F − I.
(1) Then, for any edge e, S + e is also not contained in any tour(j), j ∈ F −I. (2) Similary, for
any index h ∈ F , S is not contained in any tour(j), j ∈ F − (I + h).

Lemma 5.4.8 Suppose that for any nonnegative integer t and any I ′ ⊆ F with |I ′| ≤ |F|− (t+
2), we have yI

′, t ∈ SAt(ATSPDFJ (Gnew)). Then for any I ⊆ F with |I| ≤ |F| − (t+ 3),

e ∗ yI, t+1 ∈ SAt(ATSPDFJ (Gnew)), ∀e ∈ Enew.

Proof. For any edge e and any S ∈ Pt+1, the definition of the shift operator gives

(e ∗ yI, t+1)S = yI, t+1
S+e .

Let C(e) denote the cycle containing edge e, and let index(e) denote the index of C(e) inN .

We will show that

(e ∗ yI, t+1)S =

yI, t+1
S if e ∈ E(Cj) where j ∈ I ∪ F

(e is a solid, integral edge)
0 if e ∈ D(Cj) where j ∈ I ∪ F

(e is a dashed, integral edge)
t+2
t+3
y
I+index(e), t
S if e ∈ E(Cj) where j ∈ F − I

(e is a solid, fractional edge)
1
t+3

1tour(e), t+1
S if e ∈ D(Cj) where j ∈ F − I

(e is a dashed, fractional edge)

(5.14)

Lemma 5.4.9 (below) shows that

yI, t+1
S =

t+ 2

t+ 3
yI+h, t
S +

1

t+ 3
1tour(h), t+1
S , ∀h ∈ F − I.

Hence, for every edge e (i.e., in every case), e ∗ yI, t+1 is in SAt(ATSPDFJ (Gnew)).

65

Case 1. e ∈ E(Cj) where j ∈ I ∪F (e is a solid, integral edge). We apply Definition 5.4.4 (the
definition of y), and consider the three cases in it:

Subcase 1.1. S ∩ D = ∅. Then we have (S + e) ∩ D = ∅, and moreover, we have
fI(S) = fI(S + e) (the number of “fractional cycles” intersecting S ∩ E and
(S + e) ∩ E is the same, since e is a non-fractional edge). Hence, yI, t+1

(S+e) = yI, t+1
S .

Subcase 1.2. S∩D 6= ∅ and ∃i ∈ F−I : tour(i) ⊇ S. Then it is clear that (S+e)∩D 6= ∅
and tour(i) ⊇ S + e, because tour(i) contains every solid edge except those in the
fractional cycle Ci. Hence, yI, t+1

S+e = 1
t+3

= yI, t+1
S .

Subase 1.3. S ∩ D 6= ∅ and ∀j ∈ F − I : tour(j) 6⊇ S. Then it is easily seen that both
conditions apply to S + e (rather than S). Hence, yI, t+1

S+e = 0 = yI, t+1
S .

Case 2. We have e ∈ D(Cj) where j ∈ I ∪ F (e is a dashed, integral edge). We apply Defi-
nition 5.4.4, noting that (S + e) ∩ D 6= ∅ and there exists no index i ∈ F − I such that
tour(i) ⊇ S + e (no “valid tour” contains a dashed, integral edge), hence, yI, t+1

S+e = 0.

Case 3. We have e ∈ E(Cj) where j ∈ F − I (e is a solid, fractional edge). We apply Defini-
tion 5.4.4. We have two subcases, either S ∩D = ∅, or not.

Subcase 3.1. If S ∩ D = ∅, then (S + e) ∩ D = ∅. Thus, the analysis is the same as in
the previous section; in particular, see Equation (5.6) in the proof of Lemma 5.3.6.
Hence, we have yI, t+1

S+e = t+2
t+3
y
I+index(e), t
S .

Subcase 3.2. Otherwise, S ∩ D 6= ∅. Then we have two further subcases: either there is
an i ∈ F − I with tour(i) ⊇ S or not.

Subcase 3.2.1 Consider the first subcase; thus, S ⊆ tour(i) where i ∈ F − I. Note
that S is not contained in other tours since S ∩ D 6= ∅. We have two further
subcases, either e ∈ E(Ci) or not.
Subcase 3.2.1.1. If e ∈ E(Ci), then tour(i) 6⊇ (S + e), hence, yI, t+1

S+e = 0
(by the last case in the definition of y); moreover, note that tour(i) is the
unique tour containing S but it is not a “valid tour” w.r.t. I + index(e),
hence, yI+index(e), t

S = 0 (by the last case in Definition 5.4.4).

66

Subcase 3.2.1.2. Otherwise, if e 6∈ E(Ci), then tour(i) ⊇ (S + e), and more-
over, tour(i) is a “valid tour” w.r.t. I + index(e) (since i 6∈ I and i 6=
index(e)), hence, we have yI, t+1

S+e = 1
t+3

= t+2
t+3

1
t+2

= t+2
t+3
y
I+index(e), t
S (by the

second case in Definition 5.4.4, for both LHS and RHS).
Subcase 3.2.2. Consider the last subcase; thus, S 6⊆ tour(i) for all i ∈ F − I. Then

by Fact 5.4.7, the same assertion holds w.r.t. (S + e) (rather than S), as well as
w.r.t. (I+index(e)) (rather than I). Hence, we have yI, t+1

S+e = 0 = t+2
t+3
y
I+index(e), t
S

(by the last case in Definition 5.4.4, for both LHS and RHS).

Case 4. We have e ∈ D(Cj) where j ∈ F − I (e is a dashed, fractional edge). We apply
Definition 5.4.4, noting that (S + e) ∩D 6= ∅. We have two subcases, either tour(e) ⊇ S,
or not. If tour(e) ⊇ S, then the second case of Definition 5.4.4 together with the fourth
case of Equation (5.14) (the definition of e ∗ y) gives yI, t+1

S+e = 1
t+3

= 1
t+3

1tour(e), t+1
S .

Otherwise, tour(e) 6⊇ S, and then we have yI, t+1
S+e = 0 = 1

t+3
1tour(e), t+1
S ; note that the

last case of Definition 5.4.4 applies because tour(e) is the unique “valid tour” that could
contain e.

2

Lemma 5.4.9 shows that yI, t+1, restricted to Pt+1, is in SAt(ATSPDFJ (Gnew)); this is used
in Lemma 5.4.8 to show that e ∗ yI, t+1 is in SAt(ATSPDFJ (Gnew)).

Lemma 5.4.9 For any nonnegative integer t, any S ∈ Pt+1, any I ⊆ F with |I| ≤ |F|−(t+3),
and any h ∈ F − I, we have

yI, t+1
S =

t+ 2

t+ 3
yI+h, t
S +

1

t+ 3
1tour(h), t+1
S . (5.15)

Proof. We have S ⊆ D ∪ E, |S| ≤ t+ 1.

We apply Definition 5.4.4 (the definition of y) to yI, t+1, and we have three cases.

Case 1. S ∩ D = ∅. Then yI, t+1
S = (t+3)−fI(S)

t+3
. For the RHS, we have two subcases, either

tour(h) ⊇ S or not. In the first subcase, we have S ∩ E(Ch) = ∅ (since tour(h) con-
tains none of the solid edges of Ch), hence, fI+h(S) = fI(S), consequently, the RHS
is t+2

t+3
(t+2)−fI(S)

t+2
+ 1

t+3
, which is the same as the LHS. In the other subcase, tour(h) 6⊇

S. Then, we have S ∩ E(Ch) 6= ∅ (because S ⊆ E and tour(h) contains all solid
edges except those in Ch), hence, fI+h(S) = fI(S) − 1, and consequently, the RHS
is t+2

t+3
(t+3)−fI(S)

t+2
+ 0 = (t+3)−fI(S)

t+3
, which is the same as the LHS.

67

Case 2. S ∩ D 6= ∅ and there exists j ∈ F − I such that tour(j) ⊇ S. Then yI, t+1
S = 1

t+3
,

by Definition 5.4.4. For the RHS, we have two subcases, either j = h or not. In the first
subcase, we have yI+h, t

S = 0, because tour(h) is the unique tour containing S but it is not
a “valid tour” w.r.t. I + h, hence, the last case in Definition 5.4.4 applies. Thus, the RHS
is 0 + 1

t+3
1tour(h), t+1
S = 1

t+3
, which is the same as the LHS. In the second subcase, j 6= h.

Then, in the RHS, yI+h, t
S = 1

t+2
, because j ∈ F − (I + h) and tour(j) ⊇ S so the second

case in Definition 5.4.4 applies. Moreover, 1tour(h), t+1
S = 0, because j 6= h, and tour(j) is

the unique tour containing S, so tour(h) 6⊇ S. Thus, the RHS is t+2
t+3

1
t+2

+ 0 = 1
t+3

, which
is the same as the LHS.

Case 3. S ∩D 6= ∅ and tour(j) 6⊇ S, ∀j ∈ F − I. Then yI, t+1
S = 0. In the RHS, yI+h, t

S = 0,
by the third case in Definition 5.4.4, since the relevant conditions hold (by Fact 5.4.7).
Moreover, 1tour(h), t+1

S = 0, because h ∈ F − I and tour(h) 6⊇ S. Thus, the RHS is 0,
which is the same as the LHS.

This completes the proof of the lemma. 2

Lemma 5.4.10 Suppose that for any nonnegative integer t and any I ′ ⊆ F with |I ′| ≤ |F| −
(t+ 2), we have yI

′, t ∈ SAt(ATSPDFJ (Gnew)). Then for any I ⊆ F with |I| ≤ |F| − (t+ 3),

yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPDFJ (Gnew)), ∀e ∈ Enew.

Proof. By Lemma 5.4.8 and Lemma 5.4.9, we have for each e ∈ Enew = E ∪ D and any
S ∈ Pt+1,

(yI, t+1 − e ∗ yI, t+1)S =

0 if e ∈ E(Cj) where j ∈ I ∪ F
(e is a solid, integral edge)

yI, t+1
S if e ∈ D(Cj) where j ∈ I ∪ F

(e is a dashed, integral edge)
1
t+3

1tour(e), t+1
S if e ∈ E(Cj) where j ∈ F − I

(e is a solid, fractional edge)
t+2
t+3
y
I+index(e), t
S if e ∈ D(Cj) where j ∈ F − I

(e is a dashed, fractional edge)

(5.16)

Hence, in every case, yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPDFJ (Gnew)). 2

68

Theorem 5.4.11 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε� 1. There exists a
digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for the level-t tightening
of the standard LP (DFJ LP) relaxation (for ATSP, by the Sherali-Adams system) is≥ 1 + 1−ε

2t+3
.

Proof. Given t and ε, we fix ` = 2(2t + 3)/ε to get a digraph G shown in Figure 5.1 where
` is the length of the “middle path”. Let the cost of each edge in G be 1. Then we construct
Gnew from G. We keep the cost of edges in G to be 1 and fix the cost of new edges to be 0. See
Figure 5.5; each solid edge has cost 1 and each dashed edge has cost 0. In the proof of Theorem
5.3.9, we claimed that the minimum cost of an Eulerian subdigraph of G is ≥ 4` + 2. It can be
seen that the minimum cost of an Eulerian subdigraph of Gnew is ≥ 4`+ 2. (To see this, take an
Eulerian subdigraph of Gnew, then contract all dashed edges contained in it, to get an Eulerian
subdigraph of G of the same cost.) Let H be the metric completion of Gnew. Then, the optimal
value of the integral solution in SAt(ÂTSPDFJ (H)) is ≥ 4`+ 2.

Now we invoke Theorem 5.4.5, according to which the fractional solution y∅, t (Definition
5.4.4) is in SAt(ÂTSPDFJ (Gnew)); see Figure 5.5; we have y∅, te = 1 for each solid, thick edge
e (the solid edges of the outer cycle), y∅, te = t+1

t+2
for each solid, thin edge e (the solid edges

of the middle paths), while the value of the dashed edges do not contribute to the value of
the objective. By Section 5.2.2, this feasible solution can be extended to a feasible solution
in SAt(ÂTSPDFJ (H)).

Hence, the integrality ratio of SAt(ÂTSPDFJ (H)) is

≥ 4`+ 2

2`+ 4 + 2` t+1
t+2

≥ 2(t+ 2)

2t+ 3
− 2

`
≥ 1 +

1− ε
2t+ 3

.

2

5.5 Path ATSP

Let G = (V,E) be a digraph with nonnegative edge costs c, and let p and q be two distinguished
vertices. We define P̂ATSPp,q(G) to be the polytope of the following LP that has a variable xe
for each edge e of G:

69

minimize:
∑
e∈E

cexe

subject to: x
(
δin(S)

)
≥ 1 ∀∅ (S ⊆ V − {p}

x
(
δout(S)

)
≥ 1 ∀∅ (S ⊆ V − {q}

x
(
δin(v)

)
= 1 ∀v ∈ V − {p}

x
(
δout(v)

)
= 1 ∀v ∈ V − {q}

x
(
δin(p)

)
= 0

x
(
δout(q)

)
= 0

0 ≤ xe ≤ 1 ∀e ∈ E

In particular, when G is a complete digraph with metric costs, the above LP is the standard
relaxation for the p-q path ATSP, which is to compute a Hamiltonian (or, spanning) dipath from p

to q with minimum cost in the complete digraph with metric costs. For P̂ATSPp,q(G), we denote
the associated cone by PATSPp,q(G).

(In the literature, the notation for the two distinguished vertices is s, t, but we use p, q to avoid
conflict with our symbol t for the number of levels of the SA system.)

An (p, q)-Eulerian subdigraph G of G is V together with a collection of edges of G with
multiplicities such that (i) for any v ∈ V − {p, q}, the indegree of v equals its outdegree and (ii)
the outdegree of p is larger than its indegree by 1 and the indegree of q is larger than its outdegree
by 1 and (iii) G is weakly connected (i.e., the underlying undirected graph is connected). The
p-q path ATSP on the metric completion H of G is equivalent to finding a minimum-cost (p, q)-
Eulerian subdigraph of G.

For any subset V ′ of V , we use G(V ′) to denote the subdigraph of G induced by V ′. As
before, we use Pt to denote Pt(E) (for the ground set E). Also, by the restriction of y on
E ′ ⊆ E we mean the vector y|E′ ∈ RPt+1(E′) that is given by (y|E′)S = yS for all S ∈ Pt+1(E ′).

Lemma 5.5.1 Let t be a nonnegative integer. Let y ∈ SAt(ÂTSPDFJ (G)). Suppose that there
exists a dipath Q ⊆ E from some vertex q to another vertex p such that ye = 1 for each e ∈ Q.
Let VQ denote the set of internal vertices of the dipath Q, and let G′ = G(V − VQ) = G − VQ.
Then,

y|E(G′) ∈ SAt(P̂ATSPp,q(G
′)).

70

Proof. Let V ′ = V − VQ and let E ′ = E(G′), i.e., G′ = (V ′, E ′). The proof is by in-
duction on t. Denote y|E′ by y′ for short. Clearly, y′∅ = 1. Thus, we only need to prove
y′ ∈ SAt(PATSPp,q(G

′)).

Base case: t = 0. Let z be the subvector of y on the singleton sets {ei}, and let z′ be the
subvector of y′ on the singleton sets.

We have to prove that z′ is a feasible solution of P̂ATSPp,q(G
′). It is easy to see that z′ is in

[0, 1]E
′ and it satisfies the degree constraints. Thus, we are left with the verification of the cut

constraints. Observe that each positive edge (on which z is positive) of G with its head (tail) in
VQ has its tail (head) in VQ + q (VQ + p). Let ∅ 6= U ⊆ V ′. If U ⊆ V ′ − {q}, then observe
that every edge in δoutG (U) has its head in V − VQ − U = V ′ − U , hence, we have z′(δoutG′ (U)) =
z(δoutG (U)) ≥ 1. Similarly, if U ⊆ V ′ − {p}, then we have z′(δinG′(U)) = z(δinG (U)) ≥ 1; the
equation holds because every edge in δinG (U) has its tail in V − VQ − U = V ′ − U .

Induction Step: For t ≥ 0, we know y′ ∈ SAt+1(PATSPp,q(G
′)) if and only if for any e ∈ E ′,

e ∗ y′ ∈ SAt(PATSPp,q(G
′)),

y′ − e ∗ y′ ∈ SAt(PATSPp,q(G
′)).

Since y is a feasible solution in SAt+1(ATSPDFJ (G)), we have

e ∗ y ∈ SAt(ATSPDFJ (G)),

y − e ∗ y ∈ SAt(ATSPDFJ (G)).

Note that e ∈ E ′. For any S ⊆ E ′ such that |S| ≤ t + 1, we have (e ∗ y′)S = y′S∪{e} =

yS∪{e} = (e ∗ y)S . Thus, e ∗ y′ = (e ∗ y)|E′ . Similarly, we have y′ − e ∗ y′ = (y − e ∗ y)|E′ . For
any ei ∈ Q, since yei = 1, we have y{e,ei} = ye (by the definition of the SA system), hence, we
have

(e ∗ y){ei} = y{e,ei} = ye = (e ∗ y)∅.

Similarly,
(y − e ∗ y){ei} = yei − y{e,ei} = 1− ye = (y − e ∗ y)∅.

Case 1: (e ∗ y)∅ = 0. In this case, all items in e ∗ y are zero. Thus, e ∗ y′ ∈ SAt(PATSPp,q(G
′)).

Case 2: (e ∗ y)∅ > 0. In this case, we consider e∗y
(e∗y)∅

. Note that (e∗y
(e∗y)∅

){ei} = 1 for any
ei ∈ Q and e∗y

(e∗y)∅
∈ SAt(ATSPDFJ (G)) with value 1 at the item indexed by ∅. By the inductive

hypothesis, we have e∗y
(e∗y)∅

|E′ ∈ SAt(PATSPp,q(G
′)), i.e., e∗y′

(e∗y′)∅
∈ SAt(PATSPp,q(G

′)). Thus,
e ∗ y′ ∈ SAt(PATSPp,q(G

′)).

71

Similarly, we have y′ − e ∗ y′ ∈ SAt(PATSPp,q(G
′)). This completes the proof. 2

From the last section, we know that y∅, t (Definition 5.4.4) is in SAt(ATSPDFJ (G)), where G
is defined in Figure 5.5; note that G is obtained from the digraph and the good decomposition
given in Figure 5.1. The solid edges in G have cost 1 and the dashed edges in G have cost 0.

Let q be the right-most vertex in the second row (incident to two dashed edges), let p be the
left-most vertex in the second row (incident to two dashed edges), and letQ be the dipath of solid
edges from q to p. By the definition of y∅, t, we have y∅, tei

= 1 for each ei ∈ Q. Let G′ = G(V ′)
where V ′ = V − VQ where VQ is the set of internal vertices of the dipath Q. The next result is a
direct corollary of Lemma 5.5.1.

Corollary 5.5.2 We have

y∅, t|E(G′) ∈ SAt(P̂ATSPp,q(G
′)), ∀t ≥ 0.

The proof of the next lemma follows from arguments similar to those in the proof of Theorem
5.4.11.

Lemma 5.5.3 The minimum cost of a (p, q)-Eulerian subdigraph of G′ is ≥ 3`, where ` is the
number of edges in the middle path in G.

Theorem 5.5.4 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There exists a
digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for the level-t tightening
of the standard relaxation (for the p-q path ATSP, by the Sherali-Adams system) is ≥ 1 + 2−ε

3t+4
.

Proof. Given t and ε, we fix ` = 2(3t + 4)/ε. Consider the metric completion H of G′. By
Section 5.2.2, we can extend the feasible solution from Corollary 5.5.2 to a feasible solution
to SAt(P̂ATSPp,q(H)). This gives an upper bound on the optimal value of a fractional feasible
solution to SAt(P̂ATSPp,q(H)). On the other hand, Lemma 5.5.3 gives a lower bound on the
optimal value of an integral solution. Thus, the integrality ratio is at least

3`
t+1
t+2

2`+ l + 2
≥ 1 +

2

3t+ 4
− 2

`
≥ 1 +

2− ε
3t+ 4

.

2

72

Chapter 6

Approximating (Unweighted) Tree
Augmentation via Lasserre System, Part I:
Stemless TAP

In the weighted Tree Augmentation Problem we are given a connected, undirected graph G with
non-negative costs on the edges, together with a spanning tree T of G. 1 Let ÊT be the set of
edges of T . The goal is to find a set of edges, F ⊆ E(G)−ÊT , of minimum cost such that the
graph (V, ÊT ∪ F) is 2-edge connected. By a link we mean an element of E(G)−ÊT ; thus, a
link is an edge of G that can be used to augment T . We say that a link uw covers an edge ê ∈ ÊT
(a tree-edge) if the graph T + uw− ê = (V, ÊT ∪ {uw}−{ê}) is connected. We say that a set of
links F covers the tree T if every edge of T is covered by at least one link of F ; it can be seen
that F covers T iff the graph (V, ÊT ∪ F) is 2-edge connected. Thus, the goal is to compute a
set of links of minimum cost that covers T .

The weighted Tree Augmentation Problem was first studied by Frederickson and Jaja in 1981
[32]. They show that the problem is NP-hard, and they present a 2-approximation algorithm.
Subsequently, it has been proved that even the unweighted Tree Augmentation Problem is APX-
hard, see [43, Section 4]; thus the unweighted problem has no PTAS assuming P 6=NP.

There have been some important advances on this problem for the corresponding unweighted
(i.e., uniform weight) problem. Recall that we use the abbreviation TAP for the unweighted Tree
Augmentation Problem. Nagamochi [55] presented the first algorithm for TAP that improved on
the approximation guarantee of 2; the approximation guarantee is ≈ 1.875. Subsequently, Even

1The results in this chapter are based on a joint-authored paper [12].

73

et al. [29] built on the ideas and techniques initiated by Nagamochi and presented an elegant
algorithm and analysis that achieves an approximation guarantee of 1.8.

The threshold of 1.8 is a natural barrier due to a particular type of subtree configuration, a
so-called “stem” , that occurs in instances of TAP (see Section 6.2 for definitions).

To improve on the approximation guarantee of 1.8, both the algorithm and analysis have
to be refined to handle stems. This introduces significant new complications. In a conference
publication from 2001, Even et al. [28] reported the first 1.5-approximation algorithm for TAP.
Very recently, Kortsarz and Nutov finalized the journal version of this result [44].

There are several other papers on TAP, see e.g., [16, 51, 21, 30, 35], but we do not dis-
cuss them since either they are not directly relevant to our discussion or they are unpublished
manuscripts.

Linear programming relaxations for the weighted version of TAP have been studied for many
years. There is a covering LP (relaxation); see Section 2.1.3. It is well known that the integrality
ratio of this LP is ≤ 2; this can be deduced from Jain’s result [40]. A lower bound of 1.5 on the
integrality ratio is known [17]; in fact, the construction for the lower bound uses uniform weights
for the edges in E(G)− ÊT , hence, the lower bound applies for TAP.

6.1 Our results and techniques

In this chapter, our main result is to apply the Lasserre system to a special case of TAP, and
to derive some properties of the feasible solutions that are then used to analyze the integrality
ratio and approximation guarantee. A stem is a node s incident to three edges of T that satisfies
some additional conditions (see Section 6.2 for formal definitions, and see Figure 6.2 for an
illustration). We use stemless TAP to refer to the special case of TAP where the instance is such
that the tree T has no stem. In this chapter, we prove an approximation guarantee of 1.5 + ε
relative to a solution of the Lasserre system for stemless TAP, for any ε > 0.

The Las system applies to an initial LP (relaxation), and it derives a sequence of tightenings
of the initial LP. A key “decomposition theorem” (see Theorem 6.4.1, [58, 41]) asserts that a
feasible solution at level t can be written as a convex combination of feasible solutions at a
lower level such that all of these lower-level solutions y are “locally integral.” Here, “locally
integral” means that there is a specified subset J ⊆ E(G) − ÊT , such that the solution y takes
only zero or one values on this subset (i.e., ye ∈ {0, 1}, ∀e ∈ J). A key point is that the
difference in levels (between the level t of the given feasible solution and the level of the lower-
level “locally integral” solutions) does not depend on the size of J , rather, it depends on the

74

following “combinatorial parameter” determined by J . Suppose that there exists a constant k
such that every feasible solution x of the initial LP has ≤ k entries in J that have value one, i.e.,
|{e ∈ J : xe = 1}| ≤ k for every feasible solution x of the initial LP. Then for any t > k, a
feasible solution at level t can be written as a convex combination of “locally integral” feasible
solutions at level (t− k). This property does not hold for other weaker Lift-and-Project systems
such as the Lovász-Schrijver system or the Sherali-Adams system.

We formulate an initial LP that is a tightening of the covering LP for TAP; see LP7 in Sec-
tion 6.3. For this purpose, we introduce the notion of overlapping pairs, and we add a family of
constraints on overlapping pairs to our initial LP; see Proposition 6.3.1 in Section 6.3. This (to-
gether with the decomposition theorem) turns out to be the key for proving properties of feasible
solutions to the Las system.

The analysis of our algorithm is based on a potential function. Our potential function is
derived from the Las tightening of the initial LP. In contrast, the previous literature uses potential
functions that are derived from combinatorial lower bounds. We present an example showing that
our potential function is not valid for our initial LP; in other words, the Las tightening is essential
for one part of our analysis.

Our algorithm is “combinatorial” and we do not need to solve the initial LP nor its Las
tightening to run the algorithm (but, the analysis of the algorithm relies on the Las tightening).
Our algorithm may be viewed as a variant of the algorithm of [29, Section 3.4]; see Section 6.6
for details.

The algorithm is a greedy-type iterative algorithm that makes a leaves-to-root scan over the
tree T and (incrementally) constructs a set of links F that covers T . The algorithm starts with
F := ∅, at each major step it adds one or more links to F (it never removes links from F), and
at termination, it outputs a set of links F that covers T such that |F | ≤ the potential function.
The algorithm incurs a cost of one unit for each link added to F . The key to the analysis is to
show that for each major step, the cost incurred (i.e., one plus the number of links added to F) is
compensated by a part of the potential function; see Section 6.6 for details.

It is possible that the naive algorithm gets “stuck.” But, in this scenario, we can prove that
there exists a small combinatorial obstruction. The algorithm can be modified for this scenario.
The modified algorithm finds each occurrence of the small combinatorial obstruction in polyno-
mial time, and then handles all of these occurrences in an appropriate way; see Section 6.7.2 for
details; this part is similar to [29, Section 4.3].

Informally speaking, our analysis in Section 6.7 asserts the following:

if the naive algorithm gets “stuck” then there exists a small combinatorial obstruc-
tion, a so-called deficient 3-leaf tree, see Theorems 6.7.3, 6.7.4.

75

This assertion is the key to this chapter; it turns out that the algorithmic aspects as well as the
analysis of the integrality ratio and approximation guarantee are straightforward consequences.
Our analysis in Section 6.7 makes essential use of the Las system and the decomposition theo-
rem; see Figure 6.1.

Finally, we present an example of stemless TAP such that the approximation guarantee of 3
2

is tight for the algorithm.

Lemma 6.6.3 Lemma 6.7.1 Theorem 6.7.3

Decomposition theorem
for the Las system

Potential function
of Lemma 6.5.1

shows deficient trees under
appropriate conditions

Figure 6.1: An illustration of the role of the decomposition theorem for the Las system (Theo-
rem 6.4.1) in our analysis. The analysis for Theorem 6.7.3 consists of three blocks: low-level
assertions maintained by the algorithm, intermediate-level results (on credits and structural prop-
erties), and the high-level analysis (proof of Theorem 6.7.3); the three blocks are shown from left
to right in the figure. The decomposition theorem pertains to the two right-most blocks. Also,
we use the decomposition theorem to derive our potential function (Lemma 6.5.1).

In Chapter 7, we extend the methods of this chapter to prove the same approximation guar-
antee for (general) TAP. Chapter 7 follows the same outline as this chapter. Moreover, the initial
LP and Las tightening are the same for both chapters. Our motivation for writing this chapter
is to give an accessible presentation of the algorithmic ideas and “flow of arguments” used in
Chapter 7.

An outline of this chapter is as follows. Section 6.2 has definitions and notation. We adopt
the notation and terms of Even et al. [29], where possible; this will aid readers familiar with that
paper. Section 6.3 presents the initial LP, while Section 6.4 discusses the Las tightening of the
initial LP, and proves some basic properties and inequalities. Section 6.5 derives our potential
function, based on a solution of the Las tightening; this section also has an example showing
that our potential function is not valid for the initial LP. Section 6.6 presents the algorithm and
the “credit scheme” used by the algorithm. The most important component of this chapter is
Section 6.7; this section proves the key theorem on deficient trees (Theorem 6.7.3); this section

76

also presents and proves the last piece of the algorithm, namely the handling of deficient trees.
Section 6.8 presents an example of stemless TAP such that the approximation guarantee of 3

2
is

tight for the algorithm.

6.2 Preliminaries and notation

This section presents definitions and notation.

Standard notation including tree T , link set E

Let G = (V,E(G)) be a connected, undirected graph, and let T = (V, ÊT) be a spanning tree
of G. We assume that |V | ≥ 2. Recall some notation from Section 2.1.3. By a tree-edge we
mean an edge of T . Let E denote the edge-set E(G)−ÊT ; we call E the link set and we call an
element ` ∈ E a link; thus, a link is an edge of G that can be used to augment T . An instance of
TAP consists of G and T . We assume that all instances of interest have feasible solutions, that is,
we assume that (V, ÊT ∪E) is 2-edge connected. The goal is to find a minimum-size subset F of
E such that augmenting T by F results in a 2-edge connected graph, i.e., the graph (V, ÊT ∪ F)
is 2-edge connected.

For two nodes u, v ∈ V , we use Pu,v = Pv,u to denote the unique path of the tree T between
u and v.

For a node v ∈ V , we denote the number of tree-edges incident to v by degT (v). Let uv
be a link such that degT (u) = 1, degT (v) = 1, there exists an internal node s in Pu,v such that
degT (s) = 3, and every other internal node w (if any) in Pu,v has degT (w) = 2. Then, uv is
called a twin link and s is called a stem.

s

`

Figure 6.2: Illustration of a stem s and its twin link `. The tree-edges are indicated by solid lines
and the twin link ` is indicated by dashed lines.

We use stemless TAP to refer to the special case of TAP where the instance is such that the
tree T has no stems.

77

For any U ⊆ V , we denote the set of links with both ends in U by E(U), and for any two
subsets U,W of V , we denote the set of links with one end in U and the other end in W by
E(U,W); thus, E(U,W) := {uw ∈ E : u ∈ U, w ∈ W}.

Recall from Section 2.1.3 that a link uv covers a tree-edge ê if Pu,v 3 ê.

For any tree-edge ê ∈ ÊT , we use δE(ê) to denote the set of links that cover ê, thus, δE(ê) =
{uv ∈ E : ê ∈ Pu,v}. For any node w ∈ V , we use δE(w) to denote the set of links incident to
w.

Shadows and the shadow-closed property

For two links u1v1 and u2v2, if Pu1,v1 ⊆ Pu2,v2 , then we call u1v1 a shadow (or, sublink) of u2v2.
In particular, if Pu1,v1 (Pu2,v2 , then we call u1v1 a proper shadow (or, proper sublink) of u2v2.

For each link uv ∈ E, if all sublinks of uv exist in E, then we call E shadow-closed. Clearly,
if E is not shadow-closed, then we can make it shadow-closed by adding all sublinks of each of
the original links. It can be seen that this preserves the optimal value of any instance of TAP.

Observe that a twin link cannot be a proper sublink of another link, because each end u of a
twin link has degT (u) = 1. Thus, when we add sublinks to E to make it shadow-closed, then
none of the added sublinks can be a twin link. Hence, if we start with a stemless instance of TAP,
then we do not introduce any stems when we make it shadow-closed.

Following Even et al., see [29, Assumption 2.2], we make the next assumption.

Assumption: E is shadow-closed.

Contractions, compound nodes and original nodes

By an original node we mean an element of V (T), and by an original link we mean an element
of E.

Recall that the algorithm (incrementally) constructs a set of links F such that, at termination,
T +F = (V, ÊT ∪F) is 2-edge connected. Throughout, we use F to denote the current solution
of the algorithm; initially, F := ∅. We use the standard notion of contracting a link or a set of
links, see [29], [25, Chapter 1]. Throughout, we use T/F (or, T ′ := T/F) to denote the “current
tree” obtained by contracting each of the 2-edge connected components of T +F = (V, ÊT ∪F)
to a single node. Each of the contracted nodes of T/F is called a compound node, see [29,
Section 3.2]; thus, each compound node corresponds to a set of two or more nodes of V (T).

78

Each of the other (non compound) nodes of T ′ is called an original node. For this paragraph,
given an original node v of T , let us use v′ to denote the corresponding node of T/F , i.e., if v is
an original node of T/F , then we have v′ = v, otherwise v′ denotes the compound node of T/F
that contains v. Similarly, let us use u′w′ to denote the “image” of an original link uw ∈ E w.r.t.
the current tree T/F . For a set of original links J ⊆ E, the image w.r.t. the current tree T/F is
{u′w′ : uw ∈ J, u′ 6= w′}. Note that original links that have both ends in the same compound
node of T/F are discarded since they are not relevant for the rest of the execution/analysis. When
we discuss the algorithm and its analysis (in Sections 6.6, 6.7), we may abuse the notation by not
distinguishing between an original link uw ∈ E and its image u′w′ w.r.t. the current tree T/F ;
similarly, we may not distinguish between a set of original links and the set of images of those
original links.

Root, ancestor, descendant and rooted subtrees

One of the nodes r of T is designated as the root; thus, we have a rooted tree (T, r).

Let v be a node of T . If a node w belongs to the path Pv,r, then w is called an ancestor of v,
and v is called a descendant of w. If a descendant w of v is adjacent to v (thus, w 6= v), then w
is called a child of v, and v is called a parent of w. Clearly, every node (except r) has a unique
parent. If v has no child, then we call v a leaf ; clearly, if v has no child, then degT (v) = 1.
Note that r is not a leaf, even if degT (r) = 1. Throughout, we use L to denote the set of original
leaves; we useR to denote V−L, i.e., the set of original non-leaf nodes.

For any node v, we use Tv to denote the rooted subtree of (T, r) induced by v and its descen-
dants. (Throughout, we view T as an “oriented tree” rooted at r, and we use the term subtree to
refer to a rooted subtree.)

We say that a subtree Tv is covered by a set of links J ⊆ E if each tree-edge of Tv is covered
by some link of J .

Property 6.2.1 Suppose T̄ is a rooted tree. Let T̄v1 and T̄v2 be two (rooted) subtrees of T̄ . Then
T̄v1 and T̄v2 either share no node or one is contained in the other.

Proof. Suppose T̄v1 and T̄v2 share a node, say w. Then, both v1 and v2 are ancestors of w. This
implies that one of v1 or v2 must be an ancestor of the other one. Hence, one of the two subtrees
T̄v1 , T̄v2 is contained in the other one (possibly, v1 = v2 and T̄v1 = T̄v2). 2

For any leaf v of T , up(v) denotes a node q in Pv,r that is nearest to the root and adjacent to
v via a link; clearly, up(v) exists by the assumptions of feasibility and shadow-closure.

79

Vectors and convex combinations

For any vector x ∈ RE , let ones(x) denote the set of links of x-value one, thus ones(x) = {uv ∈
E : xuv = 1}.

For a vector x ∈ RE and any subset J of E, x(J) denotes
∑

e∈J xe, and x|J denotes the
restriction of x to J . Given several vectors v1, v2, . . . , we write one of their convex combinations
as
∑

i∈Z λiv
i; thus, Z is a set of indices, and we have λi ≥ 0,∀i ∈ Z, and

∑
i∈Z λi = 1.

Remark 6.2.2 For expository reasons, this chapter uses definitions of “stem” and “twin link”
that are relaxations of the definitions in Chapter 7. The two definitions in this chapter are in-
dependent of the choice of the root r. In Chapter 7, we call a node s of the rooted tree (T, r)
a stem if s is not the root r and has exactly two children, the subtree Ts has exactly two leaves,
and there exists a link between the two leaves; the leaf-to-leaf link is called a twin link. If s is a
stem according to Chapter 7, then it must be a stem according to this chapter, but not vice-versa
(a similar statement holds for twin links). Clearly, if an instance of TAP is stemless according to
this chapter, then it is stemless according to Chapter 7 as well.

6.3 The initial LP

This section presents our LP relaxation (LP7) for TAP.

Let u1v1 and u2v2 be a pair of links. We call it an overlapping pair of links if (i) Pu1,v1 , Pu2,v2

have one or more tree-edges in common, and (ii) either an end of u1v1 is in Pu2,v2 , or an end of
u2v2 is in Pu1,v1 . We call a set of links J an overlapping clique if every pair of links in J is an
overlapping pair.

The following LP with constraints on overlapping pairs gives a relaxation of shadow-closed
instances of TAP.

minimize :
∑
uv∈E

xuv (LP7)

subject to :
∑

uv∈δE(ê)

xuv ≥ 1 ∀ê ∈ ÊT

xu1v1 + xu2v2 ≤ 1 ∀ overlapping pairs u1v1, u2v2 ∈ E
1 ≥ xuv ≥ 0 ∀ uv ∈ E

80

Note that it tightens the feasible region of the covering LP for TAP (see Section 2.1.3),

min{
∑
e∈E

xe : x(δE(ê)) ≥ 1,∀ê ∈ ÊT , 1 ≥ x ≥ 0},

because LP7 has additional constraints for the overlapping pairs. The next result shows that LP7
has the same optimal value as the covering LP, for fractional solutions as well as for integral
solutions, provided the instance is shadow-closed.

Proposition 6.3.1 Consider a shadow-closed instance of TAP. The optimal values of LP7 and
the covering LP are the same. Moreover, the best objective value of an integral solution of LP7
is the same as the best objective value of an integral solution of the covering LP.

Proof. Clearly, any feasible solution of LP7 is also a feasible solution of the covering LP. We
claim that there exists an optimal solution of the covering LP that is feasible for LP7. The first
statement follows from this claim.

Let x be an optimal solution for the covering LP that minimizes
∑

uv∈E length(Pu,v) · xuv,
where length(Pu,v) denotes the number of tree-edges of Pu,v. We show that x is feasible for LP7.
Otherwise, suppose that x violates the constraint for an overlapping pair u1v1, u2v2. W.l.o.g.,
suppose that u1 ∈ V (Pu2,v2) and some tree-edge is in both Pu1,v1 , Pu2,v2 . Then, there is a maximal
(nonempty) prefix of the edge sequence of Pu1,v1 that is contained in Pu2,v2; let us denote this
prefix by Pu1,u∗ . (Note that the link u∗v1 is present because the instance is shadow-closed.)

Let α denote the original value of xu1v1 . Then, we replace the value xu1v1 by 1 − xu2v2 ,
thereby enforcing the constraint for the overlapping pair u1v1, u2v2. Moreover, we add α +
xu2v2 − 1 to the value of xu∗v1 , and if the new value of xu∗v1 exceeds 1, then we replace it by 1.
It can be seen that this preserves the constraints of the covering LP. This procedure decreases
the value

∑
uv∈E length(Pu,v) · xuv but does not increase the objective value

∑
uv∈E xuv. This

contradicts the assumption that x is an optimal solution for the covering LP that minimizes∑
uv∈E length(Pu,v) · xuv.
The last part (on integral solutions) follows from similar arguments, because the above pro-

cedure maintains integrality. 2

6.4 Lasserre tightening and its properties

In this section, we discuss the Las tightening of the initial LP, and proves some basic properties
and inequalities. The lemmas in this section, namely Lemmas 6.4.2-6.4.4, apply for all shadow-
closed instances of TAP; we do not make use of the stemless property.

81

Consider our LP relaxation (LP7) for TAP, and let Lastproj(LP7) denote the projection (on the
subspace RE indexed by the singleton) of the level t tightening of LP7 by the Las system (see
the definition of Lastproj in Section 2.2).

Rothvoß, see [58, Theorem 2], formulated the following decomposition theorem for the Las
system, based on an earlier decomposition theorem due to Karlin, Mathieu and Nguyen [41].
(We use this particular formulation and not the original statement of [41]; hence, we reference
both [41] and [58].)

Theorem 6.4.1 Let J ⊆ E. Let k be a positive integer such that |ones(x) ∩ J | ≤ k for every
feasible solution x of LP7. Then for every feasible solution y ∈ Lastproj(LP7), where t ≥ k + 1,
y can be written as a convex combination: y =

∑
i∈Z λix

i such that xi is in Last−kproj(LP7) and
xi|J is integral (i.e., xiuv is integral for each uv ∈ J), for all i ∈ Z.

Lemma 6.4.2 Let J ⊆ E be an overlapping clique. For every feasible solution x of LP7, we
have |ones(x) ∩ J | ≤ 1. Furthermore, for every level t ≥ 2 and every feasible solution y of
Lastproj(LP7), we have y(J) ≤ 1.

Proof. Let x be a feasible solution of LP7. Then the overlapping constraints in LP7 imply that
|ones(x) ∩ J | < 2. To see this, suppose that |ones(x) ∩ J | ≥ 2. Then there exists a pair of links
u1v1, u2v2 ∈ J , with xu1v1 = xu2v2 = 1; thus, u1v1, u2v2 is an overlapping pair whose associated
constraint in LP7 is violated.

By Theorem 6.4.1, y can be written as a convex combination: y =
∑

i∈Z λix
i such that xi is

in Las1
proj(LP7) and xi|J is integral for each i ∈ Z. Hence, xi(J) ≤ 1 for each i ∈ Z, because

|ones(xi) ∩ J | ≤ 1 and xi|J is integral. Consequently, the convex combination y of xi, i ∈ Z,
satisfies y(J) ≤ 1. 2

Lemma 6.4.3 Letw be a leaf of T . Let ê be a tree-edge with ends u and v such that v is a child of
u, w is a descendant of v (possibly w = v), and every internal node (if any) of the path Pw,u has
exactly one child. Then, δE(ê) is an overlapping clique. In particular, δE(w) is an overlapping
clique.
Moreover, we have y(δE(w)) = 1 for any feasible solution y ∈ Lastproj(LP7) where t ≥ 2.

Proof. Consider any two links f1q1, f2q2 ∈ δE(ê). Clearly, each of the links f1q1, f2q2 must
have an end in Pw,v. Suppose that q1, q2 are the ends in Pw,v, and w.l.o.g., assume that q1 is an
ancestor of q2. Then, observe that f1q1, f2q2 is an overlapping pair, because q1 is in Pf2,q2 and

82

the tree-edge ê is in both Pf1,q1 and Pf2,q2 (see Figure 6.3). Hence, the set of links covering ê is
an overlapping clique.

If we take ê to be the unique tree-edge incident to the leaf w, then it can be seen that
δE(w) = δE(ê) is an overlapping clique. Moreover, by Lemma 6.4.2, y(δE(w)) ≤ 1, whereas
the constraints of LP7 imply that y(δE(w)) = y(δE(ê)) ≥ 1. Therefore, y(δE(w)) = 1. 2

u
v

q1

q2

w

f1

f2

ê

Figure 6.3: Illustration of the proof of Lemma 6.4.3. The solid lines are tree-edges and the
dashed lines are links.

Recall that the matching polytope of the subgraph induced by the leaves, G(L) = (L,E(L))
is given by the following constraints:

x(δE(L)(v)) ≤ 1 ∀v ∈ L

x(E(W)) ≤ |W | − 1

2
∀W ⊆ L, |W | odd

x ≥ 0

The next result is essentially the result on the matching polytope from the survey of Rothvoß,
see [59, Lemma 13, Sec 3.3], translated to our setting.

Lemma 6.4.4 Let ε > 0, and let t ≥ 1
2ε

+ 1. Suppose that y ∈ Lastproj(LP7) is the projection

of a feasible solution of the level t of the Las system. Then, y|E(L)

1+ε
is in the matching polytope of

G(L) = (L,E(L)).

Proof. By Lemma 6.4.3, we have y(δE(L)(v)) ≤ y(δE(v)) ≤ 1,∀v ∈ L. Hence, for any setW ⊆
L, we have y(E(W)) ≤ |W |/2. For “large” odd sets W ⊆ L, we will show that y(E(W)) ≤
|W |/2 implies that y(E(W))

(1+ε)
≤ |W |−1

2
, whereas, for non-large odd sets W , we deduce y(E(W)) ≤

|W |−1
2

by the decomposition theorem (Theorem 6.4.1) and local integrality on E(W).

83

First, consider odd sets W ⊆ L with |W | > 1
ε

+ 1. Clearly, we have y(E(W)) ≤ |W |
2

since
y(δE(L)(v)) ≤ 1,∀v ∈ L. Also, observe that |W |

2
= |W |−1

2
(1 + 1

|W |−1
) < |W |−1

2
(1 + 1

1
ε
+1−1

) =
|W |−1

2
(1 + ε). Hence, y(E(W)) ≤ |W |−1

2
(1 + ε).

Now, consider odd sets W ⊆ L with |W | ≤ 1
ε

+ 1. We apply the decomposition theorem,
Theorem 6.4.1. Note that for any feasible solution x of LP7, by Lemmas 6.4.2, 6.4.3, we have
|ones(x)∩E(W)| ≤ |W |−1

2
≤ 1

2ε
≤ t− 1. Since y ∈ Lastproj(LP7), we have y can be written as a

convex combination: y =
∑

i∈Z λix
i such that xi is in Las1

proj(LP7) and xi|E(W) is integral. Note
that δE(w) is an overlapping clique by Lemma 6.4.3 for every w ∈ W . Hence, for each i ∈ Z,
xi(E(W)) ≤ |W |−1

2
. Consequently, y(E(W)) ≤ |W |−1

2
. This completes the proof. 2

6.5 Potential function for stemless TAP

This section presents the potential function that is used in our analysis.

Let M denote a maximum matching of (L,E(L)); thus, M is a maximum matching of the
leaf-to-leaf links. By an M -link we mean a link that is in M . Let U denote the set of M -exposed
leaf nodes, that is, the set of leaves that are not covered by M .

We will often refer toM andU in the rest of this chapter; these are key items for the algorithm
(Section 6.6) and its analysis (Section 6.7).

Recall thatR is the set of non-leaf nodes, i.e.,R = V−L.

Lemma 6.5.1 Let ε > 0 be a constant, and let t ≥ 1 + 1
2ε

. Let y ∈ RE be the projection of a
feasible solution of the level t of the Las system, i.e., y ∈ Lastproj(LP7). Then

(
3

2
+ ε)y(E) ≥ |U |+ 3

2
|M |+ 1

2

∑
v∈R

y(δE(v)).

Proof.

3

2
y(E) =

3

2
y(E(L)) +

3

2
y(E(L,R)) +

3

2
y(E(R))

≥
(

2y(E(L))− 1

2
y(E(L))

)
+
(
y(E(L,R)) +

1

2
y(E(L,R))

)
+ y(E(R))

=
(

2y(E(L)) + y(E(L,R))
)
− 1

2
y(E(L)) +

(1

2
y(E(L,R)) + y(E(R))

)
84

=
∑
v∈L

y(δE(v))− 1

2
y(E(L)) +

1

2

∑
v∈R

y(δE(v))

(1)

≥ |L| − 1

2
(1 + ε)|M |+ 1

2

∑
v∈R

y(δE(v))

(2)
= |U |+ (

3

2
− ε

2
)|M |+ 1

2

∑
v∈R

y(δE(v)),

where (1) follows from two facts that y(δE(v)) = 1 for any v ∈ L by Lemmas 6.4.3 and
y(E(L))

1+ε
≤ |M | by Lemma 6.4.4, and (2) follows from the observation that |L| = |U | + 2|M |.

Note that |M | ≤ 1
2
|L| = 1

2

∑
v∈L y(δE(v)) ≤ y(E), hence, − ε

2
|M | ≥ −εy(E). Thus, we have

(
3

2
+ ε)y(E) ≥ |U |+ 3

2
|M |+ 1

2

∑
v∈R

y(δE(v)). 2

Lemma 6.5.1 states a key inequality for the level-t tightening of LP7. But, the following
example shows that this key inequality does not hold for all feasible solutions of LP7 (without
tightening by the Las system). The example has a parameter k. We start with a path of length
k−1, then attach a claw (a copy of K1,3) at each node of the path. This gives the tree T . The link
set E consists of a link from one end of the path to the other end, and the three links connecting
every pair of leaves in each copy of the claw. Note that all the sublinks of these links are also
contained in E (see Figure 6.4).

Figure 6.4: Instance for k = 6. The tree-edges of T are indicated by solid lines, and the maximal
links in E are indicated by dashed lines.

Define a feasible solution x of LP7 as follows: the link from one end of the path to the other
end gets value 1, every link connecting a pair of leaves in each claw gets value 1

2
, and all other

links get value 0. It is not hard to see that x is feasible for LP7 and that x(E) = 3
2
k + 1. (Note

that the optimal value of LP7 may be < x(E), but our arguments do not use the optimal value.)

If we pick any node on the path to be the root node, then any maximum matching M ⊆ E(L)
has size k and there are k M -exposed leaves. Thus, 3

2
|M |+ |U | = 5

2
k, and this quantity is larger

85

than (3
2

+ ε)x(E) = (9
4

+ 3
2
ε)k + (3

2
+ ε) for any ε < 1

6
and for sufficiently large k. Thus, the

inequality stated in Lemma 6.5.1 does not hold for x.

6.6 Algorithm

This section presents the details of our algorithm and its analysis following the overview given
in Section 6.1. The working of the algorithm is illustrated below, see Figure 6.5.

We first state our main result for (unweighted) stemless TAP:

Theorem 6.6.1 Consider an instance of stemless TAP. Let ε > 0 be a constant, and let t ≥
max{3, 1

2ε
+1}. The integrality ratio of Lastproj(LP7) is≤ 3

2
+ε. Moreover, there is a polynomial-

time algorithm for finding a feasible solution of TAP of size≤ (3
2

+ε)y(E), where y is an optimal
solution of Lastproj(LP7).

For the rest of this chapter, we fix y ∈ RE to be an optimal solution in Lastproj(LP7), where
t ≥ max{3, 1 + 1

2ε
}, where ε > 0 is any (small) constant. We take the right-hand side of

the inequality in Lemma 6.5.1 to be our potential function. Thus, our potential function is ≤
(3

2
+ ε)y(E). Our goal is to present an algorithm that finds a set of links F that covers T such

that |F | is ≤ our potential function; then, it will follow that |F | is within a factor of (3
2

+ ε) of
optimal.

The purpose of the potential function is to provide “credits” to the algorithm. In Section 6.6.2,
we distribute the credit (i.e., the potential function) among the nodes and links.

Recall from Section 6.1 that the algorithm maintains a set of links F and a current tree
T ′ := T/F . Initially, we have F := ∅, and T ′ := T .

Consider T ′ := T/F and the addition of a single link ` = vw to F . The new tree T/(F ∪
{`}) can be obtained by contracting the unique path of T ′ between v and w, P ′v,w, to a single
compound node. Besides adding a single link in a major step, the algorithm may add a set of links
{`1 = v1w1, `2 = v2w2, . . . , `k = vkwk} such that the union of the paths of T ′ corresponding to
`1, `2, . . . , `k forms a single connected component, i.e.,

⋃k
i=1 P

′
vi,wi

is a connected subgraph of
T ′. Again, the new tree can be obtained by contracting all of these paths into a single compound
node.

The algorithm repeatedly finds a set of links F iter ⊆ E−F such that the contraction of F iter in
the current tree results in a single new compound node, and moreover, the credit available from
the contraction of F iter is ≥ |F iter| + 1 (the credit 1 is for the new compound node; the details

86

are discussed below). We add F iter to F , and obtain an updated current tree T ′. The algorithm
repeats this until T ′ is a single node, that is, until T + F is 2-edge connected.

There are two types of link sets that get contracted by a major step. The first type is a
singleton set, i.e., the major step adds one link to F . The second type is defined via the notion of
a semiclosed tree. This is discussed in the next subsection.

6.6.1 Semiclosed trees

We start by defining the key notion of a semiclosed tree w.r.t. an arbitrary matching of the leaf-
to-leaf links. This notion is due to Even et al., based on earlier work by Nagamochi [55]; also,
see [29, Definition 2.3].

Let T ′v be a rooted subtree of the current tree T ′ = T/F . Let M̄ be an arbitrary matching of
the leaf-to-leaf links. T ′v is called semiclosed w.r.t. M̄ if the following conditions hold:

(i) Each link in M̄ either has both ends in T ′v or has no end in T ′v.

(ii) Every link incident to an M̄ -exposed leaf of T ′v has both ends in T ′v. (Thus, if T ′v 6= T ′,
then none of the links covering the tree-edge between v and its parent is incident to an
M̄ -exposed leaf of T ′v.)

Let M̄(T ′v) denote the set of links in M̄ that have both ends in T ′v.

We define

Γ(M̄, T ′v) := M̄(T ′v)
⋃
{up(w)w : w is an M̄ -exposed leaf of T ′v};

thus, we associate a “basic link set” with the pair M̄, T ′v. In general, the “basic link set” may not
be a cover of T ′v.

By a minimally semiclosed tree T ′v we mean that T ′v is semiclosed but none of the proper
rooted subtrees of T ′v is semiclosed.

Lemma 6.6.2 (Even et al. [29]) Let T ′v be a minimally semiclosed tree w.r.t M̄ . Then Γ(M̄, T ′v)
covers all the tree-edges of T ′v.

Proof. Suppose that some tree-edge ê = pq is not covered by Γ(M̄, T ′v), where q is a child
of p. Observe that pq cannot be incident to a leaf of T ′v since Γ(M̄, T ′v) has a link incident to
each leaf of T ′v. Then, consider the rooted subtree T ′q. It can be seen that T ′q is a semiclosed tree
w.r.t. M̄ , otherwise, Γ(M̄, T ′v) would cover ê = pq. This contradicts the fact that T ′v is minimally
semiclosed. 2

87

6.6.2 Credit assignment

Recall that M is a maximum matching of (L,E(L)), U is the set of M -exposed leaf nodes and
R is the set of (original) non-leaf nodes in T .

We start with the credit given by the potential function of Lemma 6.5.1, and we maintain the
following assignment of credits to the nodes of T ′ := T/F and the links of M :

• every M -exposed original leaf has one credit,

• every compound node has one credit,

• every (original) node v ∈ R is assigned 1
2
y(δE(v)) credit,

• every M -link has 3
2

credit, and

• the (original) root r has one credit.

It can be seen that the potential function of Lemma 6.5.1 suffices for assigning credits to the
initial tree T ′ := T , except for the unit credit for the root r. When the algorithm terminates, the
tree T ′ becomes a single compound node with one credit. But, this credit will not be used any
more, and thus we have a surplus of one credit. We assign this surplus credit to the root r at
initialization.

We mention that the nodes or links that get contracted into a compound node are no longer
relevant for the algorithm or the analysis. In particular, the credit (if any) of such nodes or links
may be used at the step when they get contracted into a compound node, but after that step, any
remaining credit of such nodes or links is not used at all. We take the credit of a link ` w.r.t. the
current tree T ′ to be the credit of the original link corresponding to `.

6.6.3 Simple contractions and assertions on M

Let ` = uw be a link, where u,w are nodes of the current tree T ′, and let P ′u,w denote the path of
T ′ between u and w. We call ` = uw a good link if the sum of the following items is ≥ 2: (i) the
credit of ` = uw, (ii) the number of compound nodes in P ′u,w, (iii) the number of M -exposed
original leaves in P ′u,w, and (iv) 1 if the root r is an original node of P ′u,w. In other words, if
we take the credits associated with y to be “fractional credits,” then uw is a good link if the
“non fractional credits” associated with uw and the nodes of P ′u,w is ≥ 2.

We define a simple contraction to be one of the following types of single-link contractions.

88

• For the current tree, consider a leaf-to-leaf link uw such that each end owns one credit; thus
each of u,w is either a compound leaf node or an original leaf node that is M -exposed.
Observe that uw is a good link.

• For the current tree, consider an M -link uw such that the path between u and w in the
current tree contains at least one compound node. Again, note that uw is a good link.

Lemma 6.6.3 (Assertions on M) Suppose that no simple contractions are applicable. Then

(1) For every M -link uw, every node in the path between u and w in T ′ is an original node.
In particular, in T ′, both ends of each M -link are original leaf nodes.

(2) There exist no links between M -exposed leaves.

6.6.4 Good semiclosed trees

For the rest of this chapter, unless mentioned otherwise, a semiclosed tree means a tree that is
semiclosed w.r.t. the matching M .

Recall that a semiclosed tree is defined w.r.t. an arbitrary matching of the leaf-to-leaf links.
We chose M ⊆ E to be a maximum matching of the leaf-to-leaf (original) links of the (original)
tree T . But, it is not obvious that the the “image” of M in the current tree T ′ is a matching of the
leaf-to-leaf links of T ′.

The image ofM w.r.t. T ′ is {u′w′ : uw ∈M,u′ 6= w′}. We abuse the notation and use M to
denote both M and its image w.r.t. T ′, and by an M -link of T ′ we mean the image of an original
M -link w.r.t. T ′. Whenever we mention semiclosed trees w.r.t. M , we assume that no simple
contractions (see Section 6.6.3) are applicable in the current tree T ′. Then, Lemma 6.6.3(1)
implies that M is a set of leaf-to-leaf links w.r.t. the current tree T ′. Hence, semiclosed trees
w.r.t. T ′ and M are well defined.

Let T ′v be a rooted subtree of T ′. We use M(T ′v) to denote the set of M -links of T ′ that have
both ends in T ′v. We use U(T ′v) to denote the set of M -exposed leaves of T ′v, including both orig-
inal leaf nodes and compound leaf nodes. Let C(T ′v) denote the set of compound non-leaf nodes
of T ′v. Moreover, for any vector x ∈ RE , we use Φ(x, T ′v) to denote 1

2

∑
w∈V (T ′v)∩R x(δE(w)).

2 We define the credit of T ′v to be the sum of the credits of the nodes in T ′v plus the sum of the
credits of the links in M(T ′v).

2Recall thatR is the set of original non-leaf nodes of T ; thus V (T ′
v)∩R denotes the set of nodes of T ′

v excluding
all leaves and all compound nodes.

89

Observe that the credit of a semiclosed tree T ′v is either 1 + 3
2
|M(T ′v)|+ |U(T ′v)|+ |C(T ′v)|+

Φ(y, T ′v) (if r ∈ V (T ′v) ∩ R), or 3
2
|M(T ′v)|+ |U(T ′v)|+ |C(T ′v)|+ Φ(y, T ′v) (if r 6∈ V (T ′v) ∩ R).

We call a semiclosed tree T ′v good if its credit is ≥ |Γ(M,T ′v)|+ 1.

Lemma 6.6.4 Let T ′v be a semiclosed tree. If at least one of the following conditions is satisfied,
then T ′v is good.

• T ′v = T ′

• C(T ′v) 6= ∅

• |M(T ′v)| ≥ 2

• Φ(y, T ′v) ≥ 1

• |M(T ′v)| = 1 and Φ(y, T ′v) ≥ 1
2
.

Proof. First, suppose that the root r is not in V (T ′v) ∩ R. This implies that if T ′v = T ′, then
r must be contained in some compound non-leaf node, hence, C(T ′v) 6= ∅. Then, it can be seen
that the difference between the credit of T ′v and |Γ(M,T ′v)|+ 1 is

=
3

2
|M(T ′v)|+ |U(T ′v)|+ |C(T ′v)|+ Φ(y, T ′v)− |Γ(M,T ′v)| − 1

=
3

2
|M(T ′v)|+ |U(T ′v)|+ |C(T ′v)|+ Φ(y, T ′v)− |M(T ′v)| − |U(T ′v)| − 1

=
1

2
|M(T ′v)|+ |C(T ′v)|+ Φ(y, T ′v)− 1.

The above quantity is ≥ 0 if any one of the conditions listed in the lemma is satisfied, hence, the
result holds.

If the root r is in V (T ′v) ∩ R, then T ′v has one more unit of credit, and again it can be seen
that the result holds. 2

Consider a minimally semiclosed tree T ′v and suppose that it is good. Then, by Lemma 6.6.2,
Γ(M,T ′v) is a cover of T ′v, and moreover, T ′v has enough credit to pay for the contraction of
Γ(M,T ′v). Thus, the algorithm makes progress whenever there exists a minimally semiclosed
tree that is good.

90

6.6.5 Algorithm in summary

We give a summary of the algorithm in pseudocode. The critical step of the algorithm is to find
a good semiclosed tree and a cover of it of appropriate size in polynomial time. The details
of this step are presented in Section 6.7. There, we show that if a semiclosed tree T ′w is not
good, then T ′w and its incident links form a subgraph that we call a deficient 3-leaf tree (this is
the key result of this chapter). The algorithm finds all occurrences of deficient 3-leaf trees in
polynomial time, and then computes another matching of the leaf-to-leaf links that we denote
by M new. Then the algorithm finds a minimally semiclosed tree T ′v w.r.t. M new. We prove that
T ′v is good (it has enough credits to pay for the contraction of a cover of size |Γ(M,T ′v)|) and,
moreover, Γ(M new, T ′v) is a cover of T ′v of appropriate size.

The algorithm starts with F := ∅ (F is the set of links picked by the algorithm) and T ′ := T
(T ′ is the current tree T/F).

Algorithm 6.1: Find an approximately optimal solution for TAP.

1 while T ′ is not a single node do
2 repeatedly apply simple contractions until no simple contractions are applicable;
3 find a good semiclosed tree T ′v with a cover J of size |Γ(M,T ′v)| (Algorithm 6.2 in

Section 6.7 gives the details for finding such a good semiclosed tree) ;
4 add J to F , contract T ′v to a new compound node, update T ′;
5 end

6.6.6 Worked example

The working of the algorithm is illustrated in Figure 6.5. Observe thatM consists of the two links
u0u1, u3u4. Moreover, note that no simple contractions apply at the start, and the subtree rooted at
v1, T ′v1

= Tv1 , is a good semiclosed tree. In the first iteration (of the while loop), Tv1 is contracted
into the compound node a by adding the M -link u0u1 and the link v0v1 (shadow of v0u0) to F ;
thus, a corresponds to T ′v1

. Consider the credits for this iteration. The M -link u0u1 has 3
2

credit
and the M -exposed leaf v0 has 1 credit. It can be seen that Φ(y, T ′v1

) ≥ 1
2
y(δE(v1)) ≥ 1

2
, and

this gives 1
2

credit. (The formal algorithm does not refer to the “fractional credits” Φ(·, ·), but
our analysis relies on these; since we have not presented the formal algorithm in full, we refer
to Φ(·, ·) to justify the working of the algorithm.) Hence, we have ≥ 3 credits, and this pays for
contracting the two links and for assigning 1 credit to the compound node a. Next, the subtree
rooted at v2 (that has two leaves a, u2) is contracted into the compound node b via a simple
contraction applied to the link au2; thus, b corresponds to the subtree rooted at v2. Consider the

91

v0

u0

v1

u1

v2

u2

compound node a

compound node b

u3

r

u4

Figure 6.5: Worked example of the algorithm. The edges of the tree T rooted at r are indicated
by solid lines, and the maximal links in E are indicated by dashed lines. The matching M is
indicated by the thick dashed lines.

credits for this simple contraction. Each of a and u2 has 1 credit, and these 2 credits pay for
contracting one link and for assigning 1 credit to the compound node b. After this, the current
tree T ′ has three leaves, b, u3, u4. Note that T ′ is a good semiclosed tree. In the final step, T ′

is contracted into a single compound node by adding to F the links u3u4 and br (shadow of bu4

corresponding to the original link u2u4). Consider the credits for the final step. Each of b and
r has 1 credit, and the M -link u3u4 has 3

2
credits. Hence, we have 31

2
credits, and this pays for

contracting the two links and for assigning 1 credit to the resulting compound node. Thus, the
algorithm computes the solution F = {v0v1, u0u1, au2 = v1u2, br = u2r, u3u4} of size five; it
can be seen that there exists an optimal solution of size four.

6.7 Analysis of the algorithm

This section has our main result. Informally speaking, it asserts the following: if a semiclosed
tree T ′v is not good, then T ′v (and its incident links) form a deficient 3-leaf tree.

We assume that we are considering the moment after exhausting simple contractions in the
main loop of the algorithm. Thus, Lemma 6.6.3 applies. The analysis mainly consists of two
parts. In Section 6.7.1, using local integrality of feasible solutions to the Las system, we show
that all semiclosed trees are good, except one particular case that turns out to give deficient 3-leaf
trees. Section 6.7.2 shows how to handle the deficient 3-leaf trees. This leads to a polynomial-
time algorithm for finding a good semiclosed tree T ′v and a cover of T ′v of size |Γ(M,T ′v)|.

Deficient 3-leaf tree. Even et al. introduced the notion of “deficient trees”, see [29, Defini-
tion 4.7] and Figure 1 of [29]; each of these configurations consists of a rooted subtree with three
leaves and some incident links.

92

Suppose that T ′v is a semiclosed tree with exactly three leaves a, b1, b2. Clearly, among the
nodes w of T ′v either there is exactly one node with degT ′(w) = 4 or there are two nodes with
degree 3 in T ′. In the latter case, we denote these two nodes by u and q; moreover, we fix the
notation such that u is an ancestor of q, and the leaf b1 is not a descendant of q; thus, a, b2 (but
not b1) are descendants of q. In the former case, we denote by u the unique node that is incident
to four tree-edges. We call T ′v a deficient 3-leaf tree if (i) the link b1b2 is present and it is in M ,
(ii) the link ab1 is present, and (iii) there exists a link b2w such that w ∈ V (T ′)−V (T ′v).

Moreover, in the first case (with a unique node u in T ′v with degT ′(u) = 4), if conditions (i)–
(iii) hold with both labelings (b1, b2) and (b2, b1) of the M -link, then we fix the notation such that
up(b2) is an ancestor of up(b1). We call b2 the ceiling leaf of the deficient 3-leaf tree. Hence, for
any deficient 3-leaf tree T ′v with ceiling leaf b, it can be seen that up(b) is a proper ancestor of v;
so up(b) is not in T ′v.

We mention that the leaf a may be an original node or a compound node; the properties of
the algorithm (see Lemma 6.6.3) ensure that the leaves b1, b2 must be original nodes. Note that
deficient 3-leaf trees are defined w.r.t. M .

v

u

a

b2

b1

(a) v

u

q

b2

b1

a

(b)

Figure 6.6: Illustration of deficient 3-leaf tree.

6.7.1 Semiclosed trees are good except deficient 3-leaf trees

Let T ′v be a semiclosed tree. We construct an auxiliary graph in order to analyze the credits
available in T ′v. We denote the auxiliary graph by AG(T ′v). This is a bipartite graph, and the
two sets in the node bipartition are denoted by ML(T ′v) and AU(T ′v). The first set consists of
the M -covered leaves of T ′v. The second set contains an auxiliary node v̄ (informally speak-
ing, v̄ represents the node set V (T ′)−V (T ′v)), as well as all the M -exposed leaves of T ′v, thus,
AU(T ′v) = {v̄} ∪ U(T ′v). We define the edge set of AG(T ′v) as follows: for every link pq (w.r.t.

93

T ′) with p ∈ ML(T ′v), q ∈ U(T ′v), the edge pq is in AG(T ′v), and for every link pq (w.r.t. T ′) with
p ∈ ML(T ′v), q ∈ V (T ′)−V (T ′v), the edge pv̄ is in AG(T ′v). Thus, AG(T ′v) is a multigraph, and
every edge in AG(T ′v) corresponds to a link (w.r.t. T ′). See Figure 6.7 for an example.

v

u

a

b2

b1

T ′v

b1

b2 a

v̄

AG(T ′v)

Figure 6.7: Illustration of auxiliary graph. The left figure shows a semiclosed tree T ′v where
dashed lines indicate links incident with leaves and the thick dashed line indicates an M -
link. The right figure shows the auxiliary graph AG(T ′v) and its node bipartition ML(T ′v) =
{b1, b2}, AU(T ′v) = {v̄, a}.

Lemma 6.7.1 Suppose that no simple contractions are applicable. Let T ′v be a semiclosed tree
such that T ′v 6= T ′, C(T ′v) = ∅, and |M(T ′v)| ≤ 1. Let x be a feasible solution for LP7.

1. If M(T ′v) = ∅, then Φ(x, T ′v) ≥ 1. Furthermore, T ′v is good.

2. Suppose that |M(T ′v)| = 1, and |U(T ′v)| ≥ 1. Moreover, suppose that x is a feasible solu-
tion for LP7 that is integral on ∪w∈ML(T ′v)δE(w) such that Φ(x, T ′v) <

1
2
. Then, |U(T ′v)| = 1

and the auxiliary graph has a perfect matching such that the corresponding links cover (all
the tree-edges in) T ′v, and moreover, x(`) = 1 for each of the links ` in the perfect matching.

Proof. We start by stating and proving a key claim.

Claim 6.7.2 Let J̄ be a set of links that each have at least one end in T ′v and no end at
anM -covered leaf of T ′v; thus, each link in J̄ has at least one end in V (T ′v)−ML(T ′v).
Then, we have Φ(x, T ′v) ≥ 1

2
x(J̄).

This claim follows from the fact that every link in J̄ has an end in V (T ′v) ∩ R. To see this,
first note that C(T ′v) = ∅, so every non-leaf node of T ′v is in V (T ′v)∩R. Consider any link ` ∈ J̄ ;

94

clearly, ` has no end at an M -covered leaf of T ′v. If ` has an end at a non-leaf node of T ′v, then
we are done. Otherwise, ` has an end at an M -exposed leaf of T ′v. Since T ′v is semiclosed, `
cannot have an end in V (T ′)−V (T ′v). Moreover, by Lemma 6.6.3(2), no link has both ends at
M -exposed leaves. It follows that ` has one end in V (T ′v) ∩R. Thus, we proved Claim 6.7.2.

Let êv denote the tree-edge between v and its parent; êv is well defined since T ′v 6= T ′. Let
J = δE(êv) ∪ (∪u∈U(T ′v)δE(u)). Then, x(J) = x(δE(êv)) +

∑
u∈U(T ′v) x(δE(u)) ≥ 1 + |U(T ′v)|;

the equation holds because (i) T ′v is semiclosed so none of the links in δE(êv) is incident to an
M -exposed leaf of T ′v, and (ii) by Lemma 6.6.3(2), no link has both ends at M -exposed leaves;
the inequality holds because x(δE(ê)) ≥ 1 for every tree-edge ê.

Now, consider the first statement of the lemma. Observe that M(T ′v) = ∅; also, U(T ′v) 6= ∅
since T ′v has one or more leaves. By Claim 6.7.2, we have Φ(x, T ′v) ≥ 1

2
x(J) ≥ 1

2
(1+|U(T ′v)|) ≥

1. Since this inequality holds for every feasible solution x of LP7, it also holds for the feasible
solution y of Theorem 6.6.1. Thus, we have Φ(y, T ′v) ≥ 1. Hence, by Lemma 6.6.4, T ′v is good.

Finally, consider the second statement of the lemma. Observe that |M(T ′v)| = 1 and |U(T ′v)| ≥
1. Note that x is integral on ∪w∈ML(T ′v)δE(w), hence, every link in this set has x-value 0 or 1.

Moreover, by Lemma 6.6.3(1), every M -covered leaf is an original node. For every w ∈
ML(T ′v), since δE(w) is an overlapping clique by Lemma 6.4.3 and x is integral on δE(w), we
have x(δE(w)) ≤ 1. Therefore,

∑
w∈ML(T ′v) x(δE(w)) ≤ |ML(T ′v)| = 2.

Let J̃ = J−
⋃
w∈ML(T ′v) δE(w). Then, Claim 6.7.2 holds for J̃ in this case, hence, Φ(x, T ′v) ≥

1
2
x(J̃).

Note that x(J) = x(δE(êv)) +
∑

u∈U(T ′v) x(δE(u)) ≥ 1 + |U(T ′v)|; this inequality is the same
as the inequality used above. Moreover,

x(J̃) ≥ x(J)−
∑

w∈ML(T ′v)

x(δE(w) ∩ J) ≥ 1 + |U(T ′v)| − |ML(T ′v)| ≥ |U(T ′v)| − 1. (6.1)

Thus, we have Φ(x, T ′v) ≥ 1
2
x(J̃) ≥ 1

2
(|U(T ′v)| − 1).

Clearly, |U(T ′v)| = 1, otherwise, we would have Φ(x, T ′v) ≥ 1
2
, thus giving a contradiction.

Hence, we have |ML(T ′v)| = 2 = |AU(T ′v)|.
Similarly, we claim that each M -covered leaf w of T ′v has a link `w in δE(w) ∩ J of x-

value one; otherwise, we would have
∑

w∈ML(T ′v) x(δE(w)∩ J) ≤ |ML(T ′v)| − 1 since every link
in δE(w) ∩ J takes x-value 0 or 1. This would give the same contradiction (see (6.1) above).

We claim that the set of links {`w : w ∈ ML(T ′v)} maps to the desired perfect matching
AM of AG(T ′v). Otherwise, one of the nodes of AU(T ′v) would be incident to two links from

95

{`w : w ∈ ML(T ′v)}, and we would have x(J) = x(δE(êv))+
∑

u∈U(T ′v) x(δE(u)) ≥ 2+|U(T ′v)|,
and this would give the same contradiction (see (6.1) above).

Finally, we claim that T ′v is covered by the set of links {`w : w ∈ ML(T ′v)} that maps
to AM. Otherwise, there exists a tree-edge ê of T ′v that is not covered by this set of links. Let
δ+(ê) denote the set of links with positive x-value that cover ê. Clearly, each link in δ+(ê) has
an end in T ′v, and moreover, has no end in ML(T ′v); to see the latter assertion, note that each
node w ∈ ML(T ′v) has x(δE(w)) ≤ 1 and x(`w) = 1, i.e., the nodes in ML(T ′v) are already
“saturated” by the set of links that maps to AM. Thus, Claim 6.7.2 applies to δ+(ê) and we have
Φ(x, T ′v) ≥ 1

2
x(δ+(ê)) ≥ 1

2
, giving the same contradiction. 2

Theorem 6.7.3 Suppose that no simple contractions are applicable. Let T ′v be a semiclosed tree
that is not good. Then T ′v is a deficient 3-leaf tree.

Proof. Since T ′v is not good, Lemma 6.6.4 implies that C(T ′v) = ∅, |M(T ′v)| ≤ 1, and
T ′v 6= T ′. Then by Lemma 6.7.1(1), we further have |M(T ′v)| = 1. Hence, by Lemma 6.6.4
again, Φ(y, T ′v) <

1
2
.

Let J = ∪w∈ML(T ′v)δE(w). Note that any node w in ML(T ′v) is original, by Lemma 6.6.3(1).
For any feasible solution x ∈ RE of LP7, we have |ones(x)∩J | ≤ 2 since |ML(T ′v)| = 2. Hence,
by Theorem 6.4.1, and the fact that t ≥ 3, y can be written as a convex combination

∑
i∈Z λix

i

such that xi ∈ Last−2
proj(LP7) and xi is integral on J for each i ∈ Z. If each xi, i ∈ Z, has

Φ(xi, T ′v) ≥ 1
2
, then, since y is a convex combination of the xi, we have Φ(y, T ′v) ≥ 1

2
. This gives

a contradiction. Hence, there exists an i0 ∈ Z such that Φ(xi0 , T ′v) <
1
2
.

Case (1) |M(T ′v)| = 1, U(T ′v) = ∅. Let uw ∈ M(T ′v), i.e., uw is an M -link with both ends in
T ′v. There exists no compound node in the path between u and w in T ′, by Lemma 6.6.3.
Then, it can be seen that T ′v contains a stem with uw as a twin link. This is a contradiction,
because we have an instance of stemless TAP.

Case (2) |M(T ′v)| = 1, |U(T ′v)| ≥ 1. By Lemma 6.7.1(2), we know |U(T ′v)| = 1. (For con-
venience, we will label the nodes of T ′v using the same labels as in Figure 6.6 but our
arguments do not rely on these particular labels.) We denote the M -exposed leaf by a, and
the two M -covered leaves by b1, b2, i.e., ML(T ′v) = {b1, b2}. Now, our goal is to show that
T ′v satisfies all the conditions of a deficient 3-leaf tree.

Since T ′v 6= T ′, let êv denote the tree-edge between v and its parent. By Lemma 6.7.1(2),
there exist two links `v ∈ δE(êv) and `a ∈ δE(a) such that xi0(`v) = xi0(`a) = 1, these

96

two links cover T ′v, and moreover, each of b1, b2 is incident to exactly one of these two
links (since the auxiliary graph has a perfect matching formed by these two links).

If there is only one non-leaf node u in T ′v with degT ′(u) 6= 2 (see Figure 6.6(a)), then we
are done. Otherwise, we have exactly two non-leaf nodes u, q in T ′v with degT ′(u) 6= 2
and degT ′(q) 6= 2. In fact, we must have degT ′(u) = 3 = degT ′(q) since T ′v has exactly 3
leaves. W.l.o.g., we assume that u is an ancestor of q. Then, T ′q has only two leaves. By
the argument in Case (1), the M -link in T ′v cannot have its two ends at the two leaves of
T ′q. This implies that one leaf of T ′q is M -exposed; thus a is a leaf of T ′q. W.l.o.g., take the
other leaf of T ′q to be b2. Thus, the third leaf b1 is not in T ′q.

Suppose that `v is incident to b1 and `a is incident to b2. Then, the tree-edge between q
and its parent is not covered by these two links (see Figure 6.8(a)). This is a contradiction.
Hence, `v is incident to b2 and `a is incident to b1 (see Figure 6.8(b)). Therefore, T ′v satisfies
all the conditions of a deficient 3-leaf tree.

2

v

u

q

b2

b1

a

(a)

`v

`a

v

u

q

b2

b1

a

(b)

`v

`a

Figure 6.8: The links `v and `a in the proof of Theorem 6.7.3.

6.7.2 Addressing deficient 3-leaf trees

Even et al., see [29, Section 4.3], presented an elegant method for addressing deficient 3-leaf
trees. We use essentially the same method in this section. The key point is to (temporarily)
replace the matching M by another matching of the leaf-to-leaf links denoted by M new.

For a deficient 3-leaf tree T ′w, if T ′w is not a proper subtree of another deficient 3-leaf tree, then
we call T ′w a maximal deficient 3-leaf tree. By Property 6.2.1, any two different maximal deficient

97

3-leaf trees are disjoint. To construct M new, we start with M new := M , then we examine each
maximal deficient 3-leaf tree T ′w and we replace the unique link ofM(T ′w) by another leaf-to-leaf
link. In more detail, consider any maximal deficient 3-leaf tree T ′w, and let the three leaves be
a, b, d, where a is M -exposed, b is the ceiling leaf, and bd is the unique link in M(T ′w); we keep
the link ad in M new instead of the M -link bd (see Figure 6.9). Since any two different maximal
deficient 3-leaf trees are disjoint, this replacement takes place independently for each maximal
deficient 3-leaf tree.

w

u

q

b

d

a

r

(a) w

u

q

b

d

a

r

(b)

Figure 6.9: Addressing deficient 3-leaf trees by replacing M by M new. Figure (a) shows a max-
imal deficient 3-leaf tree T ′w with ceiling leaf b and M -exposed leaf a. We obtain the matching
M new from M by replacing the link db by the link da; see Figure (b). T ′w is not a semiclosed tree
w.r.t. M new since b is M new-exposed. Instead, T ′r is a minimally semiclosed tree w.r.t M new. Note
that T ′r is not a deficient 3-leaf tree.

Theorem 6.7.4 Suppose that no simple contractions are applicable. Let T ′v be a minimally
semiclosed tree w.r.t. M new. Then T ′v is a good semiclosed tree w.r.t. M and T ′v has a cover
Γ(M new, T ′v) of size |Γ(M,T ′v)|.

Proof. We start by stating and proving a key claim.

Claim 6.7.5 If T ′v has a node in a maximal deficient 3-leaf tree, then T ′v properly
contains this maximal deficient 3-leaf tree.

Let T ′v share a node with a maximal deficient 3-leaf tree T ′w; let b denote its ceiling leaf. Note
that up(b) is not in T ′w. Observe that b is an M new-exposed node. By the definition of deficient
3-leaf tree, no subtree of T ′w is semiclosed w.r.t. M new. This implies that T ′v cannot be a subtree

98

of T ′w. Since T ′v and T ′w share a node, by Property 6.2.1, T ′v properly contains T ′w. This proves
Claim 6.7.5.

Claim 6.7.5 shows that T ′v cannot be a deficient 3-leaf tree. Otherwise, T ′v is contained in
some maximal deficient 3-leaf tree. This contradicts the claim.

Note that any two maximal deficient 3-leaf trees are disjoint, and the replacement of M -
links takes place locally in each maximal deficient 3-leaf tree. Hence, it can be seen that T ′v is
semiclosed w.r.t. M (because T ′v is semiclosed w.r.t. M new); moreover, we have |Γ(M,T ′v)| =
|Γ(M new, T ′v)| because |M(T ′v)| = |M new(T ′v)|.

Since T ′v is not a deficient 3-leaf tree, Theorem 6.7.3 implies that T ′v is good.

Since T ′v is a minimally semiclosed tree w.r.t. M new, Lemma 6.6.2 implies that Γ(M new, T ′v)
is a cover of T ′v. Moreover, the size of Γ(M new, T ′v) is equal to |Γ(M,T ′v)|. This completes the
proof.

2

The procedure for finding a good semiclosed tree is summarized in the following pseudocode.

Algorithm 6.2: Find a good semiclosed tree by addressing all deficient 3-leaf trees.

1 start with M new := M ;
2 for each maximal deficient 3-leaf tree T ′w do
3 let b be the ceiling leaf, a be the M -exposed leaf, and db be the M -link in T ′w;
4 update M new by replacing db by da (M new := M new−{db} ∪ {da});
5 end
6 find a minimally semiclosed tree T ′v w.r.t. M new (note that M new is a matching of the

leaf-to-leaf links);
7 T ′v is a good semiclosed tree w.r.t. M with a cover Γ(M new, T ′v) of size |Γ(M,T ′v)| by

Theorem 6.7.4;

The discussion above shows how to find a good semiclosed tree T ′v with a cover of size
|Γ(M,T ′v)| in polynomial time, for the main loop in our algorithm in Section 6.6. Therefore,
Algorithm 6.1 (the overall algorithm) runs in polynomial time and returns a solution for TAP
with size ≤ (3

2
+ ε)y(E). This proves Theorem 6.6.1.

6.8 Tight example for the analysis

In this section, we present a tight example to show that the approximation guarantee of our
algorithm cannot be improved beyond 3

2
. The example has a parameter k. It consists of one

99

initial block and k copies of a repeated block. See Figure 6.10.

u1

u2 u3

Initial Block

contract a1a2 to form a

a1

a2

b3

b2 b1

v

Repeated Block

Figure 6.10: Two building blocks of our example. The maximal links are indicated by dashed
lines.

Figure 6.11 shows an instance with k = 3 copies of the repeated block and all maximal links
in E are shown in the figure. Clearly, our instance has no stems. An instance for large k can
be constructed by adding more copies of the repeated block. The root node r is always in the
rightmost copy of the repeated block.

r

repeated blockinitial block

Figure 6.11: Instance for k = 3. The tree-edges of T are indicated by solid lines, and the
maximal links in E are indicated by dashed lines. The maximum matching M is indicated by
thick dashed lines.

In our example, the blocks are disjoint in terms of both tree-edges and links. This implies that
any feasible solution of TAP must cover each block separately. To find an optimal solution, we
only need to consider each block individually. For the initial block, we need two links to cover
the three tree-edges. For the repeated block, we again need two links to cover the six tree-edges
(see the links a1b2, a2b1 in Figure 6.10). Hence, an optimal solution of our instance has size
2k + 2.

Now consider the execution of our algorithm on this instance. The maximum matching M
is shown in Figure 6.11. At the start, there is no good link available for simple contractions.
The initial block is a minimally semiclosed tree (but not a deficient 3-leaf tree). So this block
will be contracted via the M-link in it and the link from the M -exposed leaf to the root of the
block. After that, we enter into the repeated block (see Figure 6.10). At this moment, the link
a1a2 connects two M -exposed leaves, which implies it is a good link; note that there are no other

100

good links. Hence, we apply a simple contraction on the link a1a2 to form a compound node a
(see Figure 6.10). Then, the repeated block forms a minimally semiclosed tree T ′v with 3 leaves
a, b1, b2 and one M -link b2b1 (see Figure 6.10). Note that T ′v is not a deficient 3-leaf tree since
there exists no link between an M -covered leaf of T ′v and a node not in T ′v. Thus T ′v is good. In
the next step, T ′v will be contracted via the two links av (shadow of ab1) and b1b2. After that,
we enter into another repeated block, and we apply the same steps as for the previous repeated
block. The algorithm applies these iterations till it terminates.

During the running of the algorithm, we use 2 links for the initial block and 3 links for each
repeated block (one link for simple contraction and two links for contracting a good semiclosed
tree with 3 leaves). Hence, the algorithm returns a solution of size 2 + 3k. Therefore, the
approximation guarantee of the algorithm is 2+3k

2+2k
. When k is sufficiently large, the approximation

guarantee approaches 3
2
. This shows that the approximation guarantee of our algorithm cannot

be improved beyond 3
2
.

Note that the above instance of TAP has some cut nodes. But we can modify the construction
to get a 2-node connected instance by adding some links to the above instance. We add a link
from the leaf incident with both maximal links in the initial block (see node u2 in Figure 6.10) to
the non-leaf child of the root of the first repeated block (see node b3 in Figure 6.10). Moreover,
for each pair of consecutive repeated blocks, we add a link between the non-leaf children of their
roots. It is not hard to see that the addition of these links does not change the working of the
algorithm. Clearly, the addition of these links cannot increase the size of an optimal solution.
It follows that the approximation guarantee of the algorithm is at least 2+3k

2+2k
, even for 2-node

connected instances.

Proposition 6.8.1 The instance presented above shows that the algorithm in Section 6.6 cannot
provide an approximation guarantee better than 3

2
.

101

Chapter 7

Approximating (Unweighted) Tree
Augmentation via Lasserre System, Part II

In this chapter, 1 we go deeper into the techniques employed in Chapter 6, and prove the same
approximation guarantee of (3

2
+ ε) for (general) TAP. This chapter follows the same outline as

Chapter 6. Moreover, the initial LP and Lasserre tightening are the same for both chapters. Our
algorithm in this chapter follows the scheme of the algorithm shown in Chapter 6, a variant of the
algorithm of [29] (see Section 6.1, Section 6.6.5); in fact, both our algorithm and the algorithm
of [44] follow the same algorithmic scheme of [29] although there are some differences since we
are using a solution of the Las system in our analysis; see Section 7.5 for details.

Our algorithm in this chapter is also “combinatorial” and we do not need to solve the ini-
tial LP nor its Las tightening to run the algorithm. But our analysis relies on the Las system
and the decomposition theorem of Karlin et al. [41]. In fact, we do not know how to prove an
approximation guarantee of (3

2
+ ε) for TAP based on a mathematical programming relaxation

without using the decomposition theorem (Theorem 6.4.1). Our critical use of the decomposition
theorem is in proving the assertion “semiclosed trees without sufficient credit implies presence of
deficient tree”, see Theorems 6.7.3 and 7.6.6. In Chapter 6, we prove Theorem 6.7.3 by applying
the Theorem 6.4.1 to decompose a fractional solution y of the Las system into feasible solutions
that are integral over a particular set of links J (local integrality). Note that the size of J need
not be O(1), and it is possible that |J | = Ω(|V |). Our proof of Theorem 6.7.3 makes essential
use of the local integrality property on link sets of “unrestricted” size; of course, the key to our
approach is to show that ones(x)∩J has size O(1) for every feasible solution x of our initial LP.
This chapter uses the decomposition theorem in a similar way. Other Lift-and-Project systems

1The results in this chapter are based on a joint-authored paper [13].

102

Lemma 7.5.1 Lemma 7.6.1 Lemma 7.6.2

Lemma 7.6.4 Lemma 7.6.5

Lemma 7.6.3

Theorem 7.6.6

Decomposition theorem
by Las system

Potential function
of Lemma 7.3.3

Figure 7.1: Illustration of the argument flow related to the decomposition theorem by Las system.
The argument consists of three blocks: low-level, middle-level, and high-level results shown
from left to right in the figure.

shown in Section 2.2 are weaker than the Las system, and, to the best of our knowledge, the
local integrality property used in our proof of Theorem 6.7.3 does not hold for O(1) levels of any
other Lift-and-Project system in Section 2.2.

We also use the Las system and the decomposition theorem to derive our potential functions,
see Section 6.5 and Section 7.3, but this use of the decomposition theorem can be “bypassed”
because our potential functions may be derived using weaker Lift-and-Project systems such as
the LS system or the SA system. Another way for deriving the potential function in Section 6.5
is based on formulating a stronger LP relaxation by adding constraints such as the “matching
polytope” constraints on the leaf-to-leaf links.

An outline of this chapter is as follows. Section 7.1 has definitions and notation that are new
to this chapter (and not needed in Chapter 6). Section 7.2 discusses the Las tightening of the
initial LP, and proves some new properties and inequalities. Section 7.3 derives our potential
function, based on a solution of the Las tightening; this potential function differs significantly
from the potential function of Chapter 6. Section 7.4 starts the presentation of the algorithm
(and credits) by elaborating on two preprocessing steps. Section 7.5 completes the discussion of
the algorithm (and credits) by presenting the main loop of the algorithm. The most important
component of this chapter is Section 7.6; this section presents the analysis of the algorithm by
first proving some low-level properties, then builds on this to prove some intermediate-level
lemmas, and then proves the key theorem on deficient trees (Theorem 7.6.6); this section also
presents and proves the last piece of the algorithm, namely the handling of deficient trees. Our
analysis in Section 7.6 makes essential use of the Las system and the decomposition theorem,
see Figure 7.1.

103

7.1 Preliminaries and notation

We follow the definitions and notation given in Section 6.2 except the notationR and the defini-
tions of “stem” and “twin links”. Additionally, in this section, we present some definitions and
notation that are new to this chapter.

By the argument in Section 6.2, we can make the following assumption.

Assumption: E is shadow-closed.

Recall that for any U ⊆ V , we denote the set of links with both ends in U by E(U), and for
any two subsets U,W of V , we denote the set of links with one end in U and the other end in W
by E(U,W); thus, E(U,W) := {uw ∈ E : u ∈ U, w ∈ W}. We use similar notation for some
subsets of E; for example, Ereg denotes a particular subset of E (defined below), and Ereg(U,W)
denotes {uw ∈ Ereg : u ∈ U, w ∈ W}.

One of the nodes r of T is designated as the root; thus, we have a rooted tree (T, r). Through-
out this chapter, we use L to denote the set of leaves of T . Let L(Tv) be the set of the leaves in
Tv. The terms tree or subtree refer to a rooted subtree.

Stems and twin links

We call a node s of T a stem if s is not the root r, s has exactly two children, s has exactly two
descendants that are leaves, and there exists a link in E between the two leaves of Ts; we call
the link between the two leaves of Ts a twin link, and denote it by twinlk(s); this differs from
Chapter 6 (see Remark 6.2.2 at the end of Section 6.2). Let E twin denote the set of twin links.
Observe that there is a one-to-one correspondence between twin links and stems. (The notion of
stems and twin links is due to [29].)

Throughout, we use S to denote the set of stems; thus, S = {v ∈ V : v is a stem of T}.
Moreover, we use R to denote the set of nodes that are neither stems nor leaves; thus R =
V−(S ∪ L). The definition of R in this chapter differs from Chapter 6; this is because we may
have stems in the input instance of TAP in this chapter.

For any stem node s, we define δoutE (s) = {vs ∈ E : v /∈ V (Ts)}. Similarly, we define
δinE (s) = {vs ∈ E : v ∈ V (Ts)}.

Buds and buddy links

Besides stems and their associated subtrees, one other type of node plays an important role in
this chapter.

104

We call a leaf b0 a bud (see Figure 7.2) if there exists a (rooted) subtree Tv with exactly
three leaves b0, b1, b2 such that (i) up(b0) is a descendant of v (possibly, up(b0) = v), (ii) Tup(b0)

contains a stem s such that b0, b1 are the leaves of Ts, and (iii) the link b1b2 exists. We call b1b2

the buddy link of b0 and denote it by buddylk(b0). Observe that there exists an ancestor q of
s in Tv such that q is the least common ancestor of s and b2; possibly, q = v, and possibly,
q = v = r; moreover, L(Tup(b0)) = {b0, b1} or L(Tup(b0)) = {b0, b1, b2}. Note that b1 may be a
bud as well. In that case, each leaf of Tup(b1) is in {b0, b1, b2}, there exists a link between b0, b2,
and buddylk(b1) = b0b2.

up(b0)v =

q

s

b1

b2

b0

qv =

up(b0)
s

b1

b2

b0

Figure 7.2: Illustration of a bud b0 in the subtree Tv. The figure on the left-hand side shows the
case when up(b0) is an ancestor of all three leaves in Tv. The figure on the right-hand side shows
the other case.

Consider a bud b0, and let s, q be as above; we define

Rspecial(b0) := V (Pb0,up(b0))−V (Ps,q)−{b0}.

Thus Rspecial(b0) consists of the internal nodes on the tree-path between b0 and s, and all nodes
on the tree-path between the parent of q and up(b0) if up(b0) is a proper ancestor of q (see Figure
7.3).

Fact 7.1.1 Rspecial(b0) is the set of nodes w such that there exists a link b0w in E, and w is
not on the tree-path of the link buddylk(b0). Every node in Rspecial(b0) is an ancestor of b0 and
also has a unique child. For two buds b0, b̄0 associated with two distinct stems respectively,
Rspecial(b0) ∩Rspecial(b̄0) = ∅.

We denote the set of buds by Lbud. We denote the set of buddy links by Ebuddy. Observe that
there is a unique buddy link for each bud; thus, there is a bijection between Lbud and Ebuddy. For

105

up(b0)

q

s

b1

b2

b0

q

up(b0)
s

b1

b2

b0

Figure 7.3: Illustration of Rspecial(b0) for a bud b0. The nodes in Rspecial(b0) are indicated by the
dark solid ones. The figure on the left-hand side shows the case when up(b0) is an ancestor of all
associated three leaves. The figure on the right-hand side shows the other case.

any node w of the tree T , we denote by Lbud(w) the set of buds in the tree rooted at w, Tw. If s
is a stem, then note that Lbud(s) may contain zero, one, or two nodes.

Let Rspecial = ∪b∈LbudRspecial(b) and Rnonspcl = R−Rspecial. Thus, we partition the set R
(of nodes that are neither stems nor leafs) into two subsets, the “special” subset Rspecial and the
“normal” subsetRnonspcl.

We use Ereg to denote the set E−(E twin ∪ Ebuddy), namely, the set of links that are neither
twin links nor buddy links.

7.2 Lasserre tightening and its properties

We apply the Las system to the same initial LP (LP7) in Section 6.3. Section 6.4 contains some
basic properties and inequalities on the Las tightening of LP7. In this section, we present two
new results.

Lemma 7.2.1 Let x be a feasible solution of LP7 and let s be a stem. Then |ones(x)∩δE(s)| ≤ 3.

Proof. Since s is a stem, s is incident to three tree-edges. Let ê1, ê2, ê3 be the tree-edges incident
with s. Consider δE(êi) for 1 ≤ i ≤ 3. Clearly, Ji = δE(êi)∩ δE(s) is an overlapping clique and
δE(s) = ∪1≤i≤3Ji. Then the result follows from Lemma 6.4.2. 2

Lemma 7.2.2 Let t ≥ 3, and let y ∈ Lastproj(LP7) be the projection of a feasible solution of the
level t of the Las system. Suppose that s is a stem with two leaves b0, b1 in Ts.

106

1. For the twin link twinlk(s) = b0b1 of s, we have y(b0b1) ≤ y(δoutE (s)).

2. For a bud b in Ts (if exists), we have y(buddylk(b)) ≤ y(bs) + y(E(b,Rspecial(b))).

Proof. Let J = δE(b0) ∪ δE(b1). Since b0, b1 are both leaves, by Lemma 6.4.3, δE(b0) and
δE(b1) are overlapping cliques. Thus, by Lemma 6.4.2, |ones(x) ∩ J | ≤ 2 for any feasible
solution x of LP7. By Theorem 6.4.1, y can be written as a convex combination

∑
i∈Z λix

i such
that xi ∈ Las1

proj(LP7) and xi|J is integral, ∀i ∈ Z.

(1) Since b0b1 ∈ J , we have either xi(b0b1) = 0 or xi(b0b1) = 1. Let Z1 = {i : xi(b0b1) =
1}. Then y(b0b1) =

∑
i∈Z1

λix
i(b0b1).

Consider xi for i ∈ Z1. Let ês the tree-edge between s and its parent. Then, xi(δE(ês)) ≥ 1.
Notice that every link in δE(ês) with positive xi-value must have s as its end in Ts; otherwise, if
such a link has an end at some other node of Ts, it will be overlapping with the link b0b1, thus
contradicting the constraints on overlapping cliques in LP7. Thus, xi(δE(ês)) = xi(δE(ês) ∩
δE(s)). Hence, xi(δoutE (s)) = xi(δE(ês) ∩ δE(s)) = xi(δE(ês)) ≥ 1 = xi(b0b1),∀i ∈ Z1.
Consequently, y(b0b1) =

∑
i∈Z1

λix
i(b0b1) ≤

∑
i∈Z1

λix
i(δoutE (s)) ≤

∑
i∈Z λix

i(δoutE (s)) =
y(δoutE (s)).

(2) Without loss of generality, suppose b0 is the bud b. Let b1b2 be the buddy link buddylk(b0).
Since b1b2 ∈ J , we have either xi(b1b2) = 0 or xi(b1b2) = 1. Let Zb

1 = {i : xi(b1b2) = 1}.
Then y(b1b2) =

∑
i∈Zb1

λix
i(b1b2).

Consider xi for i ∈ Zb
1. Clearly, there is a link ` = b0w incident with b0 such that xi(`) = 1. If

w is in Pb1,b2 but not s, then ` is overlapping with b1b2, which contradicts the constraints on over-
lapping cliques in LP7. Hence, by Fact 7.1.1, w ∈ Rspecial(b0) ∪ {s}. Then, xi(buddylk(b0)) =
1 ≤ xi(`) ≤ xi(b0s) + xi(E(b0,Rspecial(b0))).

Thus, y(buddylk(b0)) =
∑

i∈Zb1
λix

i(b1b2) ≤
∑

i∈Zb1
λi(x

i(b0s) + xi(E(b0,Rspecial(b0)))) ≤∑
i∈Z λi(x

i(b0s) + xi(E(b0,Rspecial(b0)))) = y(b0s) + y(E(b0,Rspecial(b0))). 2

7.3 Potential function

This section presents the potential function used by the analysis of our algorithm; the potential
function is based on a feasible solution y to the Las tightening of LP7. The potential function
does not apply to feasible solutions of LP7. Thus, it is essential for our results/analysis to tighten
LP7. Possibly, our potential function can be obtained by applying weaker Lift-and-Project sys-
tems (e.g., Lovász-Schrijver , or Sherali-Adams) to LP7. But this does not suffice for our

107

analysis in Sections 7.5–7.6, because our analysis makes essential use of the decomposition the-
orem (Theorem 6.4.1), and that result is not known to hold for other weaker Lift-and-Project
systems.

Our potential function is defined via a subset of the leaves that is denoted by Λ. This subset
is determined by the instance of TAP (informally speaking, it consists of all the leaves of all
occurrences of a particular type of subtree, called a bad 2-stem tree ... see Section 7.4). Thus, our
potential function consists of two parts, a “preprocesing” part and a “normal” part. Our algorithm
applies two preprocessing steps, and one of the preprocessing steps contracts all occurrences of
the maximal bad 2-stem trees, and for this we have to “charge” the “preprocesing” part of our
potential function.

Let Λ be a set of leaves. We say that Λ is compatible if it satisfies the following:

• For every twin link and for every buddy link, either both ends of the link are in Λ or none
of the ends of the link are in Λ; in other words, no twin link and no buddy link is present
in E(Λ, L− Λ).

In what follows, let Λ denote a compatible subset of L.

We denote the set of stems with both leaves in Λ by SΛ. Similarly, let Lbud
Λ denote the set of

buds in Λ, and let Lbud
(L−Λ)

denote the set of buds in L−Λ. By the definition of a compatible set,
the following fact holds.

Fact 7.3.1

Lbud
(L−Λ)

= ∪s∈S−SΛ
Lbud(s),

E twinlk(L−Λ) = {twinlk(s), s ∈ S−SΛ},
Ebuddylk(L−Λ) = ∪s∈S−SΛ

{buddylk(b) : b ∈ Lbud(s)}.

Let M̂ reg
(L−Λ)

denote a maximum matching of the subgraph (L−Λ, Ereg(L−Λ)), and let Û(L−Λ)

denote the set of nodes of this subgraph exposed by the matching M̂ reg
(L−Λ)

; thus Û(L−Λ) =

(L−Λ)−{v ∈ V : v is an end of some link ` ∈ M̂ reg
(L−Λ)

}. We mention that our potential
function (the right-hand side of the inequality in Lemma 7.3.3 below) refers to the terms Λ,
M̂ reg

(L−Λ)
, Û(L−Λ). Thus, when we use our potential function, we have to ensure that these

terms have been defined already; we will “fix” our potential function by appropriately defining
Λ, M̂ reg

(L−Λ)
, Û(L−Λ) in Section 7.4.

108

Given Λ and y ∈ RE , we use lbd y(Λ) to denote the quantity

3

2
y(E(Λ)) +

1

2
y(E(Λ, L−Λ)) + y(E(Λ, V−L)) +

1

2

∑
s∈SΛ

y(δE(s));

this is one of the terms in our potential function; informally speaking, this is the main component
of the “preprocessing” part of the potential function and it is associated with the set Λ.

For any stem s and for any x ∈ RE , we define slackx(s) to be

1

2

(
x(δinE (s)) +

∑
b∈Lbud(s)

(x(E(b,Rspecial(b)))−x(buddylk(b)))
)

+
1

2

(
x(δoutE (s))−x(twinlk(s))

)
.

By Lemma 7.2.2, the following fact holds.

Fact 7.3.2 For any stem s and for any feasible solution y to Lastproj(LP7) where t ≥ 3, we have
slacky(s) ≥ 0.

Lemma 7.3.3 Let ε > 0 be a constant, and let t ≥ max{ 1
2ε

+ 1, 3}. Let y ∈ Lastproj(LP7). Then,

(
3

2
+ ε)y(E) ≥ 3

2
|M̂ reg

(L−Λ)
|+ |Û(L−Λ)|+ lbdy(Λ) +

1

2
y(E(V−L))

+
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

s∈S−SΛ

slacky(s),

where slacky(s) ≥ 0 for s ∈ S.

Proof. By Fact 7.3.2, we have slacky(s) ≥ 0 for s ∈ S. For each link uw, we distribute the
value 3

2
yuw as follows.

• both u,w ∈ L: then uw keeps the value 3
2
yuw;

• both u,w ∈ V−L: then uw keeps the value 1
2
yuw and each of the ends u and w gets value

1
2
yuw;

• only one of u or w is in V−L: then uw keeps the value yuw and the end in V−L gets value
1
2
yuw.

109

(In other words, each node in V−L borrows value 1
2
yuw from each link uw incident to it, and

the link keeps the remaining value; links uw that are not incident to V−L keep all of the value
3
2
yuw.)

Thus, we have

3

2
y(E) =

3

2
y(E(Λ)) +

3

2
y(E(L−Λ)) +

3

2
y(E(Λ, L−Λ))

+
1

2
y(E(V−L)) + y(E(V−L,Λ)) + y(E(V−L,L−Λ)) +

1

2

∑
v∈V−L

y(δE(v)).

Then we increase the coefficients of the twin links and buddy links in E(L − Λ) from 3
2

to
2 by borrowing the value 1

2
y(E twin(L−Λ)) + 1

2
y(Ebuddy(L−Λ)) from the last term above, and

adding it to the term 3
2
y(E(L−Λ)). Thus, we replace the term 3

2
y(E(L−Λ)) by 2y(E(L−Λ))−

1
2
y(Ereg(L−Λ)), and we replace the last term by

1

2

∑
v∈V−L

y(δE(v))− 1

2
y(E twin(L−Λ))− 1

2
y(Ebuddy(L−Λ))

=
1

2

∑
s∈SΛ

y(δE(s)) +
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(δE(v)) +
1

2

∑
s∈S−SΛ

(y(δinE (s)) + y(δoutE (s)))

− 1

2
y(E twin(L−Λ))− 1

2
y(Ebuddy(L−Λ))

=
1

2

∑
s∈SΛ

y(δE(s)) +
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(δE(v)) +
1

2

∑
s∈S−SΛ

y(δoutE (s))− 1

2
y(E twin(L−Λ))

+
1

2

∑
s∈S−SΛ

y(δinE (s))− 1

2
y(Ebuddy(L−Λ))

(1)
=

1

2

∑
s∈SΛ

y(δE(s)) +
1

2

∑
v∈Rnonspcl

y(δE(v)) +
(1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

b∈Lbud
(L−Λ)

y(E(b,Rspecial(b)))
)

+
1

2

∑
s∈S−SΛ

y(δoutE (s))− 1

2
y(E twin(L−Λ)) +

1

2

∑
s∈S−SΛ

y(δinE (s))− 1

2
y(Ebuddy(L−Λ))

(2)
=

1

2

∑
s∈SΛ

y(δE(s)) +
1

2

∑
v∈Rnonspcl

y(δE(v))

+
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
1

2

∑
s∈S−SΛ

(
y(δinE (s)) +

∑
b∈Lbud(s)

(y(E(b,Rspecial(b)))− y(buddylk(b)))
)

+
1

2

∑
s∈S−SΛ

(
y(δoutE (s))− y(twinlk(s))

)
=

1

2

∑
s∈SΛ

y(δE(s)) +
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

s∈S−SΛ

slacky(s).

110

where (2) follows from Fact 7.3.1 due to the assumption that Λ is compatible and (1) follows
from the following equation:⋃

w∈Rspecial

E(w,Lbud
(L−Λ)

(w)) =
⋃

b∈Lbud
(L−Λ)

E(b,Rspecial(b)).

This equation is based on some observations. First, the set on the right-hand side is clearly
a subset of the set on the left-hand side. Conversely, we consider a link wa in the set on the
left-hand side, i.e., w ∈ Rspecial and a ∈ Lbud

(L−Λ)
(w). Since w is an ancestor of a and w is not

on the tree-path of the link buddylk(a), by Fact 7.1.1, we have w is in Rspecial(a), i.e., wa ∈
E(a,Rspecial(a)). Hence, the link wa belongs to the set on the right-hand side as well.

Thus, the expression for 3
2
y(E) can be written as

=
3

2
y(E(Λ)) +

3

2
y(E(Λ, L−Λ)) + 2y(E(L−Λ))− 1

2
y(Ereg(L−Λ))

+
1

2
y(E(V−L)) + y(E(V−L, Λ)) + y(E(V−L, L−Λ))

+
1

2

∑
s∈SΛ

y(δE(s)) +
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

s∈S−SΛ

slacky(s)

=
(3

2
y(E(Λ)) +

1

2
y(E(Λ, L−Λ)) + y(E(Λ, V−L)) +

1

2

∑
s∈SΛ

y(δE(s))
)

+
(
y(E(L−Λ, Λ)) + 2y(E(L−Λ)) + y(E(L−Λ, V−L))

)
+

1

2
y(E(V−L)) +

1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

s∈S−SΛ

slacky(s)

− 1

2
y(Ereg(L−Λ))

= lbd y(Λ) +
∑

v∈L−Λ

y(δE(v)) +
1

2
y(E(V−L))

+
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

s∈S−SΛ

slacky(s)

− 1

2
y(Ereg(L−Λ)).

By Lemma 6.4.3, we have y(δE(v)) = 1 for any v ∈ L. Thus, we can replace the term∑
v∈L−Λ y(δE(v)) (the 2nd term in the displayed equation above) by |L−Λ|. Moreover, by

Lemma 6.4.4, we have y|E(L)

1+ε
is in the matching polytope of (L,E(L)). Thus,

y|
Ereg(L−Λ)

1+ε
is in

111

the matching polytope of (L−Λ, Ereg(L−Λ)), which implies y(Ereg(L−Λ)) ≤ (1 + ε)|M̂ reg
(L−Λ)

|.
We derive the inequality (stated in the lemma) by replacing the term −1

2
y(Ereg(L−Λ)) (the last

term in the displayed equation above) by−1
2
(1 + ε)|M̂ reg

(L−Λ)
|. Now, observe that |L−Λ|− 1

2
(1 +

ε)|M̂ reg
(L−Λ)

| = |Û(L−Λ)| + 3
2
|M̂ reg

(L−Λ)
| − 1

2
(ε)|M̂ reg

(L−Λ)
|, because Û(L−Λ) = (L−Λ)−{v ∈ V :

v is an end of some link ` ∈ M̂ reg
(L−Λ)

}. Note that |M̂ reg
(L−Λ)

| ≤ 1
2
|L| = 1

2

∑
v∈L y(δE(v)) ≤

y(E), hence, − ε
2
|M̂ reg

(L−Λ)
| ≥ −εy(E). Thus, we get our potential function:

(
3

2
+ ε)y(E) ≥ 3

2
|M̂ reg

(L−Λ)
|+ |Û(L−Λ)|+ lbd y(Λ) +

1

2
y(E(V−L))

+
1

2

∑
v∈Rnonspcl

y(δE(v)) +
1

2

∑
v∈Rspecial

y(E(v, V−Lbud
(L−Λ)

(v))) +
∑

s∈S−SΛ

slacky(s).

2

7.4 Algorithm and credits I: Preprocessing steps

We state our main result for (unweighted) TAP:

Theorem 7.4.1 Let ε > 0 be any (small) constant, and let t ≥ max{17, 1
2ε

+ 1}. The integrality
ratio of Lastproj(LP7) is ≤ 3

2
+ ε. Moreover, there is a polynomial-time algorithm for TAP that

finds a feasible solution (a set of links that covers the tree T) of size ≤ (3
2

+ ε)y(E), where y is
an optimal solution of Lastproj(LP7).

For the rest of this chapter, we fix y ∈ RE to be an optimal solution in Lastproj(LP7), where
t ≥ max{17, 1+ 1

2ε
}, where ε > 0 is any constant. Our goal is to show that our algorithm finds a

set of links that covers T of size≤ (3
2
+ε)y(E). We achieve this goal using our potential function

(this is the right-hand side of the inequality in Lemma 7.3.3); we will “fix” the potential function
below by defining the relevant terms (namely, Λ, M̂ reg

(L−Λ)
, Û(L−Λ)). Recall from Section 6.6 that

the potential function provides “credit” to the algorithm.

Also, recall from Section 6.6 that the combinatorial algorithm is a greedy-type iterative al-
gorithm that makes a leaves-to-root scan over the tree T and (incrementally) constructs a set of
links F that covers T . The algorithm starts with F := ∅, at each step it adds one or more links to
F (it never removes links from F), and at termination, it outputs a cover F of T whose size is ≤
the potential function.

112

The algorithm iteratively finds a set of links F iter ⊆ E−F such that the contraction of F iter in
the current tree results in a single new compound node; thus, each contraction creates one new
compound node.

The algorithm incurs a cost of one unit for every link that it picks, and it incurs a cost of
one unit for each new compound node that it creates in the execution. The key to the analysis is
to show that for each step, the cost incurred is compensated by a part of the “credit.”

We mention that the nodes or links that get contracted into a compound node are no longer
relevant for the algorithm or the analysis. In particular, the credit (if any) of such nodes or links
may be used at the step when they get contracted into a compound node, but after that step, any
remaining credit of such nodes or links is not used at all.

7.4.1 Semiclosed trees

We recall the notion of a semiclosed tree w.r.t. an arbitrary matching from Section 6.6.1

Let T ′v be a rooted subtree of the current tree T ′ = T/F . Let M̄ be an arbitrary matching of
the leaf-to-leaf links. T ′v is called semiclosed w.r.t. M̄ if the following conditions hold:

(i) Each link in M̄ either has both ends in T ′v or has no end in T ′v.

(ii) Every link incident to an M̄ -exposed leaf of T ′v has both ends in T ′v.

Let M̄(T ′v) denote the set of links in M̄ that have both ends in T ′v.

We define

Γ(M̄, T ′v) := M̄(T ′v)
⋃
{up(w)w : w is an M̄ -exposed leaf in T ′v};

thus, we associate a “basic link set” with the pair M̄, T ′v. In general, the “basic link set” may not
be a cover of T ′v.

By a minimally semiclosed tree T ′v we mean that T ′v is semiclosed but none of the proper
rooted subtrees of T ′v is semiclosed.

For a rooted tree T ′v and a set of links J , we call J a fitting cover of T ′v if the links in J cover
all of the tree-edges of T ′v but do not cover any other tree-edge; thus, we have ∪uw∈JP ′u,w = T ′v
where P ′u,w is the path of tree-edges between nodes u,w in the current tree T ′.

113

7.4.2 Maximum matching

Our algorithm and analysis are based on a maximum matching of the leaf-to-leaf links that are
neither twin links nor buddy links. Let M denote one such matching; thus, M is a maximum
matching of the subgraph (L,Ereg(L)). By an M -link we mean a link that is in M . We denote
the set of M -exposed leaf nodes by U . We will often refer to M and U in the rest of this chapter.

For the rest of this chapter, unless mentioned otherwise, a semiclosed tree means a subtree
that is semiclosed w.r.t. the matching M .

7.4.3 Bad 2-stem trees

Let Tv be a semiclosed tree rooted at v (w.r.t. M) that has exactly 4 leaves and two stems s1, s2,
where we denote the leaves of the tree Tsi by ui, wi for i = 1, 2.

By a leafy 3-cover of Tv we mean a set of three links J such that J covers Tv, one of the links
in J has one end in Tv and one end in L−L(Tv), and the other two links in J have both ends in
Tv.

We call Tv a bad 2-stem tree if (i) one of the links in E({u1, w1}, {u2, w2}) is in M ,
(ii) two of the leaves are M -exposed, (iii) one of the leaves is incident to all the links in
E({u1, w1}, {u2, w2}) (thus E({u1, w1}, {u2, w2}) has one or two links), (iv) there exists a
cover of Tv of size three, and (v) there exists no leafy 3-cover of Tv. Let us fix the notation such
that w1w2 is the unique M -link in E(L(Tv)); thus, u1 and u2 are M -exposed (see Figure 7.4).

By a maximal bad 2-stem tree Tv we mean a bad 2-stem tree that is not a proper subtree of
another bad 2-stem tree. (Thus, any tree Tq rooted at a proper ancestor q of v (if q exists) must
violate one of the conditions for being a bad 2-stem tree.)

Let Fprep = {Tv1 , . . . , Tvk} denote the set of maximal bad 2-stem trees of T ; clearly, any two
trees in Fprep are disjoint, by Property 6.2.1. We use V (Fprep) to denote

⋃
Tv∈Fprep V (Tv).

We define Λ =
⋃
Tv∈Fprep L(Tv), that is, Λ consists of all the leaves of all the trees in Fprep.

Since each bad 2-stem tree has a cover of size 3, the shadow-closed property implies that
each bad 2-stem tree has a fitting cover of size ≤ 3. Our algorithm applies a preprocessing step
that contracts each tree Tv ∈ Fprep by a fitting cover of size ≤ 3.

Preprocessing step 1 (Λ-contraction): For every tree Tv ∈ Fprep, add a fitting cover of Tv of
size ≤ 3 to F and contract Tv to a compound node.

The “cost” incurred for this step is at most 4|Fprep|, since each tree in Fprep incurs a cost
of ≤ 3 for its fitting cover and a cost of 1 for the resulting compound node.

114

v

s1

u1 w1

s2

w2 u2

Figure 7.4: Illustration of bad 2-stem tree. The dashed lines indicate links and the thick dashed
line indicates an M -link.

This cost is charged to one part of our potential function, namely, it is charged to

lbd y(Λ) +
1

2

∑
v∈Rnonspcl∩V (Fprep)

y(δE(v)).

Lemma 7.4.5 below shows that this quantity is ≥ 4|Fprep|.

Remark 7.4.2 The results in this section show that Λ-contraction is valid, in the sense that
the algorithm has sufficient credits to pay for the cost of this preprocessing step. Moreover, Λ-
contraction is essential for the correctness of the overall algorithm (i.e., the algorithm cannot
skip Λ-contraction), because the proof of Theorem 7.6.6 (Subcase 2.2) relies on Λ-contraction.

Lemma 7.4.3 LetFprep = {Tv1 , . . . , Tvk} denote the set of maximal bad 2-stem trees of T . Then,
we have

lbdy(Λ) +
1

2

∑
v∈Rnonspcl∩V (Fprep)

y(δE(v))

≥
∑

Tv∈Fprep

(3

2
y(E(L(Tv))) +

1

2
y(E(L(Tv), L−L(Tv))) + y(E(L(Tv), V−L)) +

1

2

∑
u∈V (Tv)−L

y(δE(u))
)

Proof. Recall that lbd y(Λ) denotes

3

2
y(E(Λ)) +

1

2
y(E(Λ, L−Λ)) + y(E(Λ, V−L)) +

1

2

∑
s∈SΛ

y(δE(s)).

115

Observe that a bad 2-stem tree has no buds and two stems, so any node of such a tree is either
a leaf, or a stem, or a node ofRnonspcl. Hence, (Rnonspcl∩V (Fprep))∪SΛ =

⋃
Tv∈Fprep(V (Tv)−L),

and so we have

1

2

∑
v∈Rnonspcl∩V (Fprep)

y(δE(v)) +
1

2

∑
s∈SΛ

y(δE(s)) =
∑

Tv∈Fprep

1

2

∑
u∈V (Tv)−L

y(δE(u)).

Now, the lemma follows from the following claim.

Claim 7.4.4 Let Λ1,Λ2, . . . ,Λk be a partition of Λ. Then, we have

3

2
y(E(Λ)) +

1

2
y(E(Λ, L−Λ)) + y(E(Λ, V−L))

≥ 3

2

k∑
i=1

y(E(Λi)) +
1

2

k∑
i=1

y(E(Λi, L−Λi)) +
k∑
i=1

y(E(Λi, V−L)).

To prove the claim, observe that

3

2
y(E(Λ)) +

1

2
y(E(Λ, L−Λ)) + y(E(Λ, V−L))

≥
(3

2

k∑
i=1

y(E(Λi,Λi)) +
1

2

k∑
i=1

∑
j 6=i

y(E(Λi,Λj))
)

+
1

2

k∑
i=1

y(E(Λi, L−Λ)) +
k∑
i=1

y(E(Λi, V−L))

=
3

2

k∑
i=1

y(E(Λi)) +
1

2

k∑
i=1

y(E(Λi, L−Λi)) +
k∑
i=1

y(E(Λi, V−L)).

We partition Λ into the sets Λi = L(Tvi), where Tv1 , . . . , Tvk are the maximal bad 2-stem
trees in Fprep. Then, the lemma follows. 2

Lemma 7.4.5 Let Tv be a bad 2-stem tree. Then we have

3

2
y
(
E(L(Tv))

)
+

1

2
y
(
E(L(Tv), L−L(Tv))

)
+y
(
E(L(Tv), V−L)

)
+

1

2

∑
u∈V (Tv)−L

y(δE(u)) ≥ 4.

Hence, we have

lbdy(Λ) +
1

2

∑
v∈Rnonspcl∩V (Fprep)

y(δE(v)) ≥ 4|Fprep|.

116

Proof. The second statement follows immediately from the first statement and Lemma 7.4.3.
We focus on the first statement.

Let s1, s2 denote the two stems in Tv, and let u1, w1 (u2, w2, respectively) denote the two
leaves in Ts1 (Ts2 , respectively). Thus, L(Tv) = {u1, w1, u2, w2}. W.l.o.g. let w1w2 denote
the unique M -link in E(L(Tv)); the two twin links u1w1, u2w2 are also in E(L(Tv)), and also
E(L(Tv)) may contain one other link incident to w1 or w2; there is no link between u1 and u2

(see Figure 7.4). Note that every link incident to u1 or u2 (the M -exposed leaves of Tv) must
have both ends in Tv, since Tv is semiclosed w.r.t. M .

Let J denote the set of links incident to the leaves of Tv, thus, J =
⋃
i=1,2

(
δE(ui)∪δE(wi)

)
.

For any feasible solution x of LP7, Lemmas 6.4.3 implies that |ones(x) ∩ J | ≤ 4. Hence, by
Theorem 6.4.1, y can be written as a convex combination

∑
i∈Z λix

i such that xi ∈ Las3
proj(LP7)

and xi|J is integral, ∀i ∈ Z. Note that we can apply Lemma 7.2.2 to xi since xi ∈ Las3
proj(LP7).

Thus, it suffices to show that for any i ∈ Z, we have

3

2
xi
(
E(L(Tv))

)
+

1

2
xi
(
E(L(Tv), L−L(Tv))

)
+ xi

(
E(L(Tv), V−L)

)
+

1

2

∑
u∈V (Tv)−L

xi(δE(u)) ≥ 4;

let α denote the left-hand side of the above inequality.

Observe that every link in J with positive xi-value must have xi-value one. Suppose that one
of the links ` ∈ E(L(Tv)) has positive xi-value, thus xi(`) = 1; then we have 3

2
xi(E(L(Tv))) ≥

3
2
, thus ` contributes value 3

2
to α. Also, if one of the links ` with one end in L(Tv) and the

other end at a non-leaf node of Tv has positive xi-value, then we have xi(E(L(Tv), V−L)) +
1
2

∑
u∈V (Tv)−L xi(δE(u)) ≥ 1 + 1

2
= 3

2
, thus, ` contributes value 3

2
to α.

We complete the proof by case analysis, by considering the number of links with positive
xi-value such that one end is in L(Tv) and another end is not in Tv.

Case 1. Suppose that there are no links with positive xi-value such that one end is in L(Tv) and
another end is not in Tv. Then, we focus on the number of links in E(L(Tv)) that have
positive xi-value; this number is zero, one, or two, because every link incident to a leaf
has xi-value zero or one, and moreover, xi(δE(u)) = 1 for each leaf u of Tv, by LP7 and
Lemma 6.4.3. Thus, we have three subcases.

Subcase 1.1. xi(E(L(Tv))) = 0. Every link of xi-value one incident to a leaf of Tv has its
other end at a non-leaf node of Tv, hence, each such link contributes 3

2
to α; we have

four such links, so α ≥ 6.

117

Subcase 1.2. xi(E(L(Tv))) = 1. The link ` in E(L(Tv)) with xi-value one contributes
3
2

to α. The two leaves in L(Tv) that are not incident to ` each contribute 3
2

to α,
because each is incident to a link with xi-value one that has its other end at a non-leaf
node of Tv, hence, α ≥ 9

2
.

Subcase 1.3. xi(E(L(Tv))) = 2. Since xi(δE(u)) = 1 for each leaf u of Tv, the links in
E(L(Tv)) with xi-value one share no ends. By the definition of bad 2-stem trees, all
the links in E({u1, w1}, {u2, w2}) are incident to one of the four leaves. It follows
that the twin links u1w1 and u2w2 both have xi-value one, and each contributes 3

2
to α.

Next, focus on the stems in Tv; by Lemma 7.2.2, xi(δoutE (sj)) ≥ xi(ujwj) = 1 for j =
1, 2. Thus, each stem contributes at least 1

2
to α via the term 1

2

∑
u∈V (Tv)−L xi(δE(u)).

Hence, α ≥ 2(3
2
) + 2(1

2
) = 4.

Case 2. Suppose that there is at least one link with positive xi-value such that one end is in
L(Tv) and another end is not in Tv. Again, we focus on the number of links in E(L(Tv))
that have positive xi-value; it can be seen that this number is zero or one. (Note that every
link incident to a leaf has xi-value zero or one, and moreover, for every leaf u of Tv, we
have xi(δE(u)) = 1.) Thus, we have two subcases.

Subcase 2.1. xi(E(L(Tv))) = 0. Every link of xi-value one incident to u1 or u2 (the M -
exposed leaves of Tv) has its other end at a non-leaf node of Tv, hence, each such
link contributes 3

2
to α; we have two such links. Every link of xi-value one incident

to w1 or w2 (the M -covered leaves of Tv) has its other end either in V−L, and so
contributes 1 to xi(E(L(Tv), V−L)), or else has its other end in L−L(Tv), and so
contributes 1

2
to 1

2
xi(E(L(Tv), L−L(Tv))); again, we have two such links. Hence,

α ≥ 2(3
2
) + 2(1

2
) = 4.

Subcase 2.2. xi(E(L(Tv))) = 1. Let `v denote a link of positive xi-value such that one
end is in L(Tv) and another end is not in Tv. Note that xi(`v) = 1. The end of `v in
L(Tv) must be M -covered; w.l.o.g. assume that this node is w1; let q be the end of `v
in V−V (Tv).
Note that xi(δE(u)) = 1 for each leaf u of Tv. By definition of bad 2-stem tree
Tv, the links in E(L(Tv)) that are not incident to w1 are the twin link u2w2 and
possibly the link u1w2 (there is no link between u1, u2). Thus, either xi(u2w2) = 1
or xi(u1w2) = 1, and this contributes 3

2
to α via the term 3

2
xi(E(L(Tv))). In either

case, one of the M -exposed leaves u1 or u2 is incident to a link of xi-value one that
has its other end at a non-leaf node of Tv, and this contributes 3

2
to α via the term

xi(E(L(Tv), V−L)) + 1
2

∑
u∈V (Tv)−L xi(δE(u)).

We have two subcases, depending on whether q is a leaf or not.

118

Subcase 2.2.1. q /∈ L. Then, the link `v = w1q contributes 1 to α via the term
xi(E(L(Tv), V−L)). Then, we have α ≥ 3

2
+ 3

2
+ 1 = 4.

Subcase 2.2.2. q ∈ L. Then, the link `v = w1q contributes 1
2

to α via the term
1
2
xi(E(L(Tv), L−L(Tv))).

Moreover, observe that we cannot have xi(u1w2) = 1, otherwise the three links
`v = w1q, u1w2, u2w2 form a leafy 3-cover of Tv (see Figure 7.5(a)).
Thus, u2w2 is the unique link in E(L(Tv)) with xi-value one. Now, focus on
the stem s2; by Lemma 7.2.2, xi(δoutE (s2)) ≥ xi(u2w2) = 1. Thus, δoutE (s2)
contributes at least 1

2
to α via the term 1

2

∑
u∈V (Tv)−L xi(δE(u)). Finally, note

that u1s2 is not present; otherwise, we would have a leafy 3-cover consisting of
the (hypothetical) link u1s2 and the links `v = w1q, u2w2 (see Figure 7.5(b)).
So, the link of xi-value one incident with u1 is not in δoutE (s2). Thus, we have
α ≥ 3

2
+ 3

2
+ 1

2
+ 1

2
= 4.

(a) v

s1

u1 w1

s2

w2 u2

q (b) v

s1

u1 w1

s2

w2 u2

q

Figure 7.5: Illustration of leafy 3-covers of Tv for Subcase 2.2.2 in the proof of Lemma 7.4.5.
The dashed lines indicate links and the thick dashed lines indicate M -links.

This completes the case analysis, and completes the proof. 2

7.4.4 Credit assignment for the algorithm and the preprocessing

Recall that the algorithm starts with a number of credits equal to the potential function, namely
the right-hand side of the inequality in Lemma 7.3.3. In order to specify the potential function,
we need to specify M̂ reg

(L−Λ)
, Û(L−Λ). We take M̂ reg

(L−Λ)
to be M ∩ E(L−Λ), i.e., the restriction

119

of M to the subgraph (L−Λ, Ereg(L−Λ)). It can be seen that M ∩ E(L−Λ) = M−E(Λ) is a
maximum matching of the subgraph (L−Λ, Ereg(L−Λ)), as required by the definition of M̂ reg

(L−Λ)

in Section 7.3. We take Û(L−Λ) to be U∩(L−Λ); again, this agrees with the definition of Û(L−Λ)

in Section 7.3.

The “cost” of Λ-contraction (the preprocessing for bad 2-stem trees) is

≤ lbd y(Λ) +
1

2

∑
u∈Rnonspcl∩V (Fprep)

y(δE(u)),

where Fprep is defined above. We subtract this quantity from our potential function and then plus
the credits assigned to the compound nodes formed by contracting maximal bad 2-stem trees in
Fprep, to get the remaining potential function (total credits available) for the rest of the execution.
Clearly, the remaining potential function is

3

2
|M ∩ E(L−Λ)|+ |U ∩ (L−Λ)|+ |Fprep|+

1

2
y(E(V−L)) +

1

2

∑
u∈(Rnonspcl−V (Fprep))

y(δE(u)) +
1

2

∑
u∈Rspecial

y(E(u, V−Lbud
(L−Λ)

(u))) +
∑

s∈S−SΛ

slacky(s)

By the integral potential function we mean the sum of the first three terms above (namely,
3
2
|M ∩E(L−Λ)|+ |U ∩ (L−Λ)|+ |Fprep|), and by the fractional potential function we mean the

sum of the remaining terms (namely, the sum of the four terms that use y).

The following observation is useful for simplifying our notation.

Fact 7.4.6 For the current tree T ′ (after Λ-contraction), U ∩ (L−Λ) is the same as the set of
M -exposed original leaves, and M ∩ E(L−Λ) = M(T ′).

We start with the credit given by the integral potential function, and we maintain the following
assignment of credits to the nodes of T ′ and the links of M(T ′) = M ∩ E(L−Λ):

• every M -exposed original leaf has one credit,

• every compound node has one credit,

• every link of M(T ′) has 3
2

credit, and

• the root r has one credit.

120

It can be seen that the integral potential function suffices for assigning credits to the tree T ′

that results from Λ-contraction. (See Section 6.6, for a discussion on the the unit credit for the
root r.)

We define the integral credit of a set of links J (w.r.t. T ′) to be the sum of the (integral) credits
of the M -links pq such that V (P ′p,q) ⊆

⋃
uw∈J V (P ′u,w), plus the sum of the (integral) credits of

the nodes in
(⋃

uw∈J V (P ′u,w)
)
−(S ∪R), plus one if r occurs as an original node in

⋃
uw∈J P

′
u,w.

In other words, the integral credit of J is the sum of 3
2

times the number of M -links pq such that
V (P ′p,q) ⊆

⋃
uw∈J V (P ′u,w), plus the number of compound nodes in

(⋃
uw∈J V (P ′u,w)

)
−(S∪R),

plus the number of M -exposed original leaves in the same set, plus one if r occurs as an original
node in

⋃
uw∈J P

′
u,w. Informally speaking, this is the amount of integral credit “released” when

we contract all the links in J (these credits are available at this step, but are not available later on
in the execution).

Now, consider the fractional potential function. We use it to maintain an assignment of
fractional credits to the (rooted) subtrees of T ′.

For any subtree T ′v of T ′, observe that V (T ′v) ∩ (Rnonspcl−V (Fprep)) = V (T ′v) ∩ Rnonspcl,
because none of the original nodes in V (Fprep) is present in T ′ after the Λ-contraction; similarly,
we have V (T ′v) ∩ (S−SΛ) = V (T ′v) ∩ S , because none of the stems in SΛ is present in T ′ after
the Λ-contraction.

For any subtree T ′v of T ′ and for any vector x ∈ RE , we use Φ(x, T ′v) to denote

1

2
x(E((V−L) ∩ V (T ′v), (V−L) ∩ (V (T ′)−V (T ′v))))+

1

2

∑
u∈V (T ′v)∩Rnonspcl

x(δE(u)) +
1

2

∑
u∈V (T ′v)∩Rspecial

x(E(u, V−Lbud
(L−Λ)

(u))) +
∑

s∈V (T ′v)∩S

slackx(s).

Informally speaking, Φ(y, T ′v) denotes the fractional credit of T ′v, that is, the part of the frac-
tional potential function that is “owned” by T ′v. This fractional credit of T ′v will be used together
with its integral credit for contracting T ′v. The first term is defined on the set of links with ends
that are original in T ′ such that one is in T ′v and the other is not in T ′v. After contracting the
subtree T ′v, one end of each link in this set would become a compound node in the current tree.
Thus, the credits of the first term are used only once. Similarly, the last three terms are credits
that assigned to original nodes in T ′v. These credits are also used only once.

121

7.4.5 Second preprocessing step

We apply a second preprocessing step after the Λ-contraction and before the main loop of the
algorithm.

Let b0 be a bud in Ts rooted at a stem s, and let b1b2 be the buddy link of b0, where the leaves
of Ts are b0, b1. Moreover, if b1 is also a bud, then we always assume w.l.o.g. that up(b0) is an
ancestor of up(b1).

Preprocessing step 2: If all three of b0, b1, b2 are M -exposed, then we contract the two links
up(b0)b0 and b1b2. Repeat this procedure until no such M -exposed b0, b1, b2 are applicable.

Fact 7.4.7 Preprocessing step 2 has sufficient credits.

Proof. Note that each of the M -exposed leaves b0, b1, b2 has 1 unit of credit. Thus, we have
sufficient credit for contracting two links and forming one new compound node. 2

Remark 7.4.8 The results in this section show that this step is valid, in the sense that the al-
gorithm has sufficient credits to pay for the cost of this step. Additionally, Preprocessing step 2
contracts the node set that is disjoint with that contracted by Preprocessing step 1. Moreover,
Preprocessing step 2 is also essential for the correctness of the overall algorithm (i.e., the algo-
rithm cannot skip this step), because the proof of Lemma 7.6.2 relies on this step.

7.5 Algorithm and credits II: Overall algorithm

We first discuss two key concepts for the algorithm, and then we present pseudo-code for the
overall algorithm. Also, we state and prove several assertions, i.e., we prove some basic proper-
ties maintained by the algorithm. These assertions are critical for the analysis in the next section.

7.5.1 (Up-to-5) greedy contractions and assertions on M

Recall that the integral credit of a set of links J is the sum of the (integral) credits of the M -links
pq such that V (P ′p,q) ⊆

⋃
uw∈J V (P ′u,w), plus the sum of the (integral) credits of the nodes in(⋃

uw∈J V (P ′u,w)
)
−(S ∪R), plus one if r occurs as an original node in

⋃
uw∈J P

′
u,w.

We define an (up-to-5) greedy contraction to be a contraction of a set of links J such that

122

(i) |J | ≤ 5;

(ii) contraction of J results in a single compound node, i.e.,
⋃
uw∈J P

′
u,w forms a connected

graph;

(iii) the integral credit of J is ≥ |J |+ 1.

Note that an (up-to-5) greedy contraction has sufficient credits by definition. The following
assertion is similar to Lemma 6.6.3.

Lemma 7.5.1 (Assertions on M) Suppose that no (up-to-5) greedy contractions are applicable.
Then

(1) For every M -link uw, every node in the path between u and w in T ′ is an original node.
In particular, in T ′, both ends of each M -link are original leaf nodes.

(2) There exist no links between M -exposed leaves.

7.5.2 Good semiclosed trees

Recall that a semiclosed tree means a tree that is semiclosed w.r.t. the matching M , unless men-
tioned otherwise.

After the preprocessing steps, whenever we mention semiclosed trees, we assume that no (up-
to-5) greedy contractions are applicable in the current tree T ′. Then, Lemma 7.5.1(1) implies that
M is a set of leaf-to-leaf links w.r.t. the current tree T ′. Hence, semiclosed trees (w.r.t. M) are
well defined.

We use U(T ′v) to denote the set ofM -exposed leaves of T ′v (including both original leaf nodes
and compound leaf nodes). Let C(T ′v) denote the set of compound non-leaf nodes of T ′v. Also,
we use Lmatched(T ′v) to denote the set of M -covered leaves of T ′v.

Note that every node in V (T ′v)∩R, V (T ′v)∩S is an original node. Recall thatM(T ′v) denotes
the set of M -links (w.r.t. T ′) that have both ends in T ′v.

We define the credit of a (rooted) subtree T ′v of the current tree T ′ to be the sum of the
fractional credit of T ′v, namely, Φ(y, T ′v), and the integral credit of T ′v. The latter is given by
the sum of the following terms: 3

2
|M(T ′v)|, the number of compound nodes in T ′v, the number

of M -exposed original leaves in T ′v, an additional one if the root r is in V (T ′v) ∩ R. We call a
semiclosed tree T ′v good if its credit is ≥ |Γ(M,T ′v)|+ 1. The potential and credit defined in this
chapter are different from that in Chapter 6. However, the next lemma still holds. The proof is
similar to the proof of Lemma 6.6.4.

123

Lemma 7.5.2 Let T ′v be a semiclosed tree. If at least one of the following conditions is satisfied,
then T ′v is good.

• T ′v = T ′

• C(T ′v) 6= ∅

• |M(T ′v)| ≥ 2

• Φ(y, T ′v) ≥ 1

• |M(T ′v)| = 1 and Φ(y, T ′v) ≥ 1
2
.

7.5.3 Summary of the algorithm

We start with F := ∅ (F is the set of links picked by the algorithm) and T ′ := T (T ′ is the current
tree T/F).

Algorithm 7.1: Find an approximately optimal solution for TAP.

1 apply Preprocessing step 1 (Λ-contraction);
2 apply Preprocessing step 2;
3 while T ′ is not a single node do
4 repeatedly apply (up-to-5) greedy contractions until no such contractions are

applicable;
5 find a good semiclosed tree T ′v with a fitting cover J of size |Γ(M,T ′v)| (Algorithm 7.2

in Section 7.6 presents the details for finding such a semiclosed tree);
6 add J to F , contract T ′v to a new compound node, update T ′;
7 end

7.5.4 Stem assertion of the algorithm

This section presents another assertion, called stem assertion, that is important for the analysis
of the algorithm.

Recall that the algorithm iteratively contracts a set of links such that the tree-paths associated
with these links form a connected graph; the set of chosen links and their associated tree-paths
are contracted into a new compound node. When we say that a contraction hits a node v, we mean

124

a contraction during the execution contracts a set of links J such that v ∈
⋃
uw∈J V (P ′u,w); thus,

at least one of tree-edge incident with v is covered by one of these links and v gets contracted
into the compound node formed by that contraction.

Stem assertion: Let s be a stem. The first contraction that hits a node of Ts (during the
execution of the algorithm) must hit s.

Property 7.5.3 The algorithm maintains the stem assertion.

Proof. Let s be a stem. First, consider the two preprocessing steps. Either all of the tree Ts is
contracted or none of the tree-edges of Ts is contracted by Preprocessing step 1 (Λ-contraction).
The same statement holds for Preprocessing step 2. Hence, the stem assertion is maintained by
the two preprocessing steps.

Next, suppose that the first contraction (in the execution) that hits a node in Ts is an (up-to-
5) greedy contraction that contracts a set of links J . If one of the links uw ∈ J has one end
in Ts and the other end not in Ts, then the tree path P ′u,w (in the current tree considered at the
moment) must contain s, hence, the stem assertion is maintained. The remaining possibility is
that all links of J have both ends in Ts. Then observe that the number of integral credits available
in Ts is either zero, one, or two, and, in the last case, both leaves of Ts are M -exposed. (Note
that the root r is a proper ancestor of s in T , by definition of stem.) The greedy contraction of J
requires |J |+ 1 integral credits. Thus, |J | = 1 and J contains the twin link of s. Contracting the
twin link clearly maintains the stem assertion.

Finally, suppose that the first contraction (in the execution) that hits a node in Ts is the
contraction of a good semiclosed tree T ′v. By Property 6.2.1, one of Ts = T ′s, T

′
v is contained

in the other. It is easily seen that no proper (rooted) subtree of Ts is a semiclosed tree. (Note
that there is a shadow link between each leaf and s via the twin link of s, hence, any semiclosed
tree containing a leaf of Ts that is M -exposed will contain s too. Also, any semiclosed tree
containing a leaf of Ts that is M -covered will contain s too.) The only remaining possibility is
that T ′v contains Ts; then, the contraction of T ′v maintains the stem assertion. 2

7.6 Analysis of the algorithm, and deficient trees

This section has our main results. Informally speaking, the key result (Theorem 7.6.6) asserts the
following: if a semiclosed tree T ′v is not good, then either T ′v is a deficient tree (defined below)
or T ′v is a particular type of tree that is easily bypassed by our analysis.

125

The analysis consists of two parts. In Section 7.6.2, using local integrality of feasible solu-
tions to the Lasserre system, we show that all semiclosed trees are good, except for a few cases.
The nontrivial cases give deficient trees. Section 7.6.3 shows how to handle deficient trees. This
leads to an efficient algorithm for finding a good semiclosed tree together with a fitting cover of
appropriate size.

Recall the definition of deficient 3-leaf tree from Section 6.7.

Deficient 3-leaf tree: Suppose that T ′v is a semiclosed tree with exactly three leaves a, b1, b2.
Clearly, among the nodes w of T ′v either there is exactly one node with degT ′(w) = 4 or there
are two nodes with degree 3 in T ′. In the latter case, we denote these two nodes by u and q;
moreover, we fix the notation such that u is an ancestor of q, and the leaf b1 is not a descendant
of q; thus, a, b2 (but not b1) are descendants of q. In the former case, we denote by u the unique
node that is incident to four tree-edges. We call T ′v a deficient 3-leaf tree (see Figure 7.6) if (i) the
link b1b2 is present and it is in M , (ii) the link ab1 is present, and (iii) there exists a link b2w such
that w ∈ V (T ′)−V (T ′v).

Moreover, in the first case (with a unique node u in T ′v with degT ′(u) = 4), if conditions (i)–
(iii) hold with both labelings (b1, b2) and (b2, b1) of the M -link, then we fix the notation such that
up(b2) is an ancestor of up(b1). For both cases, we call b2 the ceiling leaf of T ′v.

v

u

a

b2

b1

(a) v

u

q

b2

b1

a

(b)

Figure 7.6: Illustration of deficient 3-leaf tree. The dashed lines indicate links and the thick
dashed lines indicate M -links.

Deficient 4-leaf tree: Let T ′v be a semi-closed tree with 4 leaves a, b1, b2, c, and exactly one
stem node s, and exactly one M -link such that all nodes in T ′s are original, the leaves of T ′s are
a, b1, and the M -link is b1b2. Let p be the least common ancestor of s and c. Then, T ′v is called a
deficient 4-leaf tree (see Figure 7.7) if (i) T ′p contains all leaves of T ′v, (ii) the link cs is present,
and (iii) there exists a link b2w such that w ∈ V (T ′)−V (T ′v). We call the link cs the latch of T ′v.

The contraction of the latch cs in a deficient 4-leaf tree results in a deficient 3-leaf tree due to

126

v

p
cq

s

b1

b2

a

v

q= p

u

c

s

b1

b2

a

Figure 7.7: Illustration of deficient 4-leaf trees. The dashed lines indicate links and the thick
dashed lines indicate M -links.

the presence of the links ab1, up(b2)b2 (see Figure 7.6(a)). Let b be the ceiling leaf of the resulting
tree. Clearly, up(b) is an ancestor of up(b2).

7.6.1 Properties from assertions

The next lemma states some properties pertaining to stem nodes and semiclosed trees; these
properties are often used in the analysis of the algorithm. The proof of the lemma is based on the
stem assertion.

Lemma 7.6.1 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′v be a semi-
closed tree with C(T ′v) = ∅.

1. If T ′v contains a stem node s, i.e., s ∈ S ∩ V (T ′v), then every node in T ′s is original.

2. In the original tree T , suppose that s is a stem node, and w is a leaf of the subtree Ts. If w
is contained in a compound node 〈c〉 that is an M -exposed leaf of T ′v, then all nodes of Ts
are contained in 〈c〉.

3. In the original tree T , suppose that s is a stem node, and w is a leaf of the subtree Ts. If w
is an original node that is an M -exposed leaf of T ′v, then s is an original node of T ′v.

Proof. The first part follows from the stem assertion.

Consider the second part. By the stem assertion, and the fact that w is contained in 〈c〉, it
can be seen that s is contained in some compound node. If s is contained in 〈c〉, then the proof

127

is done (if a compound leaf node contains a node u ∈ V (T), then that compound node contains
Tu). Now, suppose that s is contained in a different compound node 〈a〉. Then, there exists a
link between 〈c〉 and 〈a〉 (in the current tree), because the link ws is present in E (the input) by
noting that ws is a shadow of the twin link of Ts. It can be seen that T ′v contains 〈a〉 as a leaf,
because T ′v is semiclosed, C(T ′v) = ∅, 〈c〉 is an M -exposed leaf of T ′v, and the link between 〈c〉
and 〈a〉 is present. This gives a contradiction because the compound leaf node 〈a〉 contains s so
it contains Ts, hence, 〈c〉 cannot contain w.

The third part follows from arguments similar to that used for the second part; we give a
sketch. Suppose that s is contained in a compound node 〈a〉. If 〈a〉 is a leaf of T ′, then 〈a〉 would
contain the subtree Ts, and this would contradict the fact that the leaf w is an original node. Since
C(T ′v) = ∅, 〈a〉 cannot be a non-leaf node of T ′v. Thus, T ′v contains w, but it does not contain 〈a〉.
This contradicts the fact that T ′v is semiclosed, because there is a link between the M -exposed
leaf w of T ′v and 〈a〉 (due to the shadow ws of the twin link incident to w). 2

Lemma 7.6.2 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′v be a semi-
closed tree with C(T ′v) = ∅. Suppose that one of the M -exposed leaves of T ′v is a compound
node 〈c〉 that contains a bud b0, and moreover, there exists an original link ` = b0w such that w
is not contained in 〈c〉. Let b1, b2 be two nodes in T such that b1b2 is the buddy link buddylk(b0)
and b0b1 is a twin link. Then, 〈c〉 contains b0, b1, it contains no other original leaf nodes, and
moreover, M(T ′v) contains a link incident to b2.

Proof. Let s be the stem node associated with the twin link b0b1; note that the leaves of Ts are
b0, b1. By Lemma 7.6.1, Ts is completely contained in 〈c〉. Since b0 is contained in anM -exposed
leaf 〈c〉 in T ′v and C(T ′v) = ∅, we have up(b0) is either contained in 〈c〉 or an original non-leaf
node in T ′v. Due to the existence of b0w, we know that up(b0) must be an original non-leaf node
in T ′v.

Consider the node b2. If b2 is an original leaf node in T ′, since T ′v is a semiclosed tree and
there is no link between two M -exposed leaves by Lemma 7.5.1, then the existence of b1b2

implies that b2 is M -covered in T ′v and the other end of the corresponding M -link is also in T ′v.
We are done. Otherwise, b2 is contained in a compound node 〈a〉. Similarly, we know that 〈a〉 is
a leaf in T ′v. By Lemma 7.5.1, 〈a〉 cannot be M -covered in T ′. Thus, 〈a〉 must be 〈c〉 (otherwise,
b1b2 ∈ E implies a link between twoM -exposed leaves 〈a〉 and 〈c〉 in T ′). Hence, we can assume
that b0, b1, b2 are all contained in 〈c〉. In what follows, we prove that this contradicts the fact that
up(b0) is an original non-leaf node in T ′v.

By Preprocessing step 2, one of b0, b1, b2 is M -covered in T (otherwise, the preprocessing
step contracts two links to form a compound node that contains up(b0)).

We have two cases depending on the M -links incident to b0, b1, b2 in T .

128

Case 1. There exists an M -link w.r.t. T incident to one of b0, b1, b2 that has its other end in
L−{b0, b1, b2}; let bu denote such an M -link, where b ∈ {b0, b1, b2}, and u 6∈ {b0, b1, b2}.
Since 〈c〉 contains all nodes in {b0, b1, b2} and bu is an M -link, by Lemma 7.5.1, V (Pb,u)
are contained in 〈c〉. Note that V (Pb,u) has an ancestor of up(b0) in T by the definition of
bud. Thus, up(b0) is contained in 〈c〉. This is a contradiction.

Case 2. Each M -link in T incident to one of b0, b1, b2 has both ends in {b0, b1, b2}. We can have
only one M -link with both ends in {b0, b1, b2} in T . Since M has no twin links and no
buddy links, b0b2 is an M -link, and so b0 is an M -covered bud in T (see Figure 7.8).

up(b0)

s

b1

b2

b0

Figure 7.8: Illustration of an M -covered bud in T .

We reach a contradiction by proving the following claim. It completes the proof of this
lemma.

Claim. Suppose b0b2 is an M -link and b1 is M -exposed. Then, the first con-
traction that hits a node of Tup(b0) (during the execution of the algorithm) must
hit up(b0).

If up(b1) is a descendent of up(b0), then b1 is a bud. In this case, b0b2 is the buddy link
buddylk(b1). But b0b2 is an M -link. This is a contradiction. Thus, up(b1) is an ancestor of
up(b0) but not up(b0). Thus, up(b0) cannot be r, and any subtree of Tup(b0) is not semiclosed
since b1 is M -exposed.

First, consider the two preprocessing steps. Observe that there are no nodes in Tup(b0)

involved in these two steps.

Next, suppose that the first contraction (in the execution) that hits a node in Tup(b0) is an
(up-to-5) greedy contraction that contracts a set of links J . If one of the links uw ∈ J has
one end in Tup(b0) and the other end not in Tup(b0), then the tree path P ′u,w (in the current tree

129

considered at the moment) must hit up(b0), hence, this proves the claim. The remaining
possibility is that all links of J have both ends in Tup(b0). Then observe that the number
of integral credits available in Tup(b0) is 5

2
(one M -link plus an M -exposed node b1). This

means the only possible contraction is a contraction of exactly one link. At this moment,
there is no compound node in Tup(b0). Thus, an M -link in Tup(b0) only has credit 3

2
. This

implies that contraction of an M -link can not be an (up-to-5) greedy contraction. Hence,
the only possibility is that this link has two ends at M -exposed leaves. However, Tup(b0)

only has one M -exposed leaf.

Finally, suppose that the first contraction (in the execution) that hits a node in Tup(b0) is the
contraction of a good semiclosed tree T ′w. By Property 6.2.1, one of Tup(b0), T ′w is contained
in the other. Since any subtree of Tup(b0) is not semiclsoed, we have T ′w contains Tup(b0).
This completes the proof.

2

7.6.2 Most semiclosed trees are good

Let T ′v be a semiclosed tree. Let Lmatched(T ′v) denote the set of M -covered leaves of T ′v.

We call a compound node 〈c〉 of T ′v open if it is an M -exposed leaf of T ′v, and moreover, 〈c〉
contains a bud b0 such that there exists an original link between b0 and an original node that is
not contained in 〈c〉. We call such a bud an open bud (it must be contained in an open compound
node and one of the original links incident to the bud is not contained in the compound node).
Let Bcomp(T ′v) denote the set of open buds of T ′v. Let Borig(T ′v) denote the set of original nodes of
T ′v that are M -exposed buds. Let B(T ′v) = Borig(T ′v) ∪ Bcomp(T ′v).

Lemma 7.6.3 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′v be a semi-
closed tree with C(T ′v) = ∅, |M(T ′v)| ≤ 1 and |S ∩ V (T ′v)| ≤ 2.

Then, y can be written as a convex combination
∑

i∈Z λix
i such that xi ∈ Las3

proj(LP7) and
xi|J is integral, where J = {` ∈ δE(u) : u ∈ (S ∩ V (T ′v)) ∪ Lmatched(T ′v) ∪ B(T ′v)}.

Proof. We claim that |ones(x)∩J | ≤ 14 for any feasible solution x of LP7. The decomposition
of y follows easily from Theorem 6.4.1 and this claim.

To prove the claim, observe that |S ∩ V (T ′v)| ≤ 2 and |Lmatched(T ′v)| = 2|M(T ′v)| ≤ 2, hence,
by Lemmas 6.4.3, 7.2.1, we have

|ones(x)∩{` ∈ δE(u) : u ∈ S ∩ V (T ′v)}| ≤ 6, |ones(x)∩{` ∈ δE(u) : u ∈ Lmatched(T ′v)}| ≤ 2,

130

and for each u ∈ B(T ′v), we have |ones(x) ∩ δE(u)| ≤ 1. Thus, to complete the proof of the
claim, we have to show that |B(T ′v)| ≤ 6.

First, consider any bud b0 ∈ Borig(T ′v) and its associated stem s. By Lemma 7.6.1(3), s is
an original node of T ′v, and so, s ∈ S ∩ V (T ′v). By Lemma 7.6.1(1), each leaf of T ′s is an
original node in T ′. Let b1 be the leaf of T ′s other than b0. By Lemma 7.5.1, b1 is M -covered
(otherwise, the twin link b0b1 connects two M -exposed leaves). Hence, b1 /∈ Borig(T ′v). It follows
that each stem in S ∩ V (T ′v) has at most one leaf in Borig(T ′v). Since |S ∩ V (T ′v)| ≤ 2, we have
|Borig(T ′v)| ≤ 2.

Now, consider one of the buds b0 ∈ Bcomp(T ′v); b0 is contained in some open compound node
and one of the original links incident to b0 has its other end “outside” this compound node. Then,
by Lemma 7.6.2, the buddy link buddylk(b0) shares an end with an M -link in M(T ′v). Since
|M(T ′v)| ≤ 1 and each leaf can be an end of at most 2 buddy links, we have |Bcomp(T ′v)| ≤ 4.
Therefore, |B(T ′v)| = |Borig(T ′v)|+ |Bcomp(T ′v)| ≤ 6. This proves the claim. 2

Lemma 7.6.4 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′v be a semi-
closed tree with C(T ′v) = ∅. Let J be a set of links that each have at least one end in T ′v and
no end in Lmatched(T ′v) ∪ (S ∩ V (T ′v)). Let x be a feasible solution of Las3

proj(LP7) such that x is
integral on the links {δE(u) : u ∈ B(T ′v)}. Then,

Φ(x, T ′v) ≥ min{1

2
,

1

2
x(J)}.

Proof. Let g(x, T ′v) denote 1
2

∑
u∈Rnonspcl∩V (T ′v) x(δE(u))+1

2

∑
u∈Rspecial∩V (T ′v) x(E(u, V−Lbud(u))).

By Fact 7.3.2, we have Φ(x, T ′v) ≥ g(x, T ′v). We will show that either each link ` ∈ J contributes
1
2
x(`) to g(x, T ′v), thereby ensuring g(x, T ′v) ≥ 1

2
x(J), or there exists a set of links that contribute

1
2

to g(x, T ′v).

Consider any link ` ∈ J with x(`) > 0. By Lemma 7.5.1, ` cannot have both ends at M -
exposed leaves. Thus, ` has at least one end in V (T ′v) ∩ R, since it has no end in Lmatched(T ′v) ∪
(S ∩ V (T ′v)) and C(T ′v) = ∅. It is easily seen that, except for one case, ` contributes ≥ 1

2
x(`) to

g(x, T ′v).

The exceptional case occurs when ` has an (original) end at a bud b0 such that b0 ∈ B(T ′v) and
another (original) end w in Rspecial(b0) ∩ V (T ′v) by Fact 7.1.1. Then, we have x(`) = 1 because
x is integral on the links incident with nodes in B(T ′v). We claim that g(x, T ′v) ≥ 1

2
. Let ê denote

the tree-edge between w (the end of ` in V (T ′v) ∩ R) and its parent. Let δ+(ê) denote the set
of links with positive x-value that cover ê. Clearly, x(δ+(ê)) ≥ 1. Consider any link `q = qu
that is in δ+(ê), where q is a descendent of w (possibly, q = w) and u is not in T ′w. If q is a

131

proper descendant of w, then (by the definition of Rspecial(b0)) q is a descendant of the unique
child of w (see Figure 7.3), hence, ` and `q form an overlapping pair such that x(`) + x(`q) > 1;
this is impossible, by the overlapping pair constraints. Hence, we have q = w. Clearly, u (the
other end of `q) cannot belong to Lbud(w) since u is not a descendant of q. Hence, we have
g(x, T ′v) ≥ 1

2
x(E(w, V−Lbud(w))) ≥ 1

2
x(δ+(ê)) ≥ 1

2
. This completes the proof. 2

Let T ′v be a semiclosed tree. We construct an auxiliary graph in order to analyze the credits
available in T ′v. We denote the auxiliary graph by AG(T ′v). This is a bipartite graph, and the two
sets in the node bipartition are denoted by ML(T ′v) and AU(T ′v). The first set consists of the M -
covered leaves Lmatched(T ′v) and the stems S ∩ V (T ′v). The second set contains an auxiliary node
v̄ (informally speaking, v̄ represents the node set V (T ′)−V (T ′v)), as well as all the M -exposed
leaves of T ′v, thus, AU(T ′v) = {v̄} ∪ U(T ′v).

We define the edge set of AG(T ′v) as follows: for every link pq w.r.t. T ′ with p ∈ ML(T ′v), q ∈
U(T ′v), the edge pq is in AG(T ′v), and for every link pq w.r.t. T ′ such that p ∈ ML(T ′v), q ∈
V (T ′)−V (T ′v), the edge pv̄ is in AG(T ′v). Thus, AG(T ′v) is a multigraph (multiple copies of an
edge may be present), and every edge in AG(T ′v) corresponds to a link w.r.t. T ′ (see Figure 7.9).

T ′v

v

c

s

b1

b2

a

b2

b1

s

a

c

v̄

AG(T ′v)

Figure 7.9: Illustration of auxiliary graph. The left figure shows a semiclosed tree T ′v where the
dashed lines indicate links and the thick dashed line indicates an M -link. The right figure shows
the auxiliary graph AG(T ′v) and its node bipartition {s, b1, b2}, {v̄, a, c}.

In what follows, we may abuse the notation by not distinguishing between edges (sets of
edges) of AG(T ′v) and the corresponding links (sets of links).

Lemma 7.6.5 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′v be a semi-
closed tree such that T ′v 6= T ′, C(T ′v) = ∅, |M(T ′v)| ≤ 1 and |S ∩ V (T ′v)| ≤ 2.

132

1. If M(T ′v) = ∅, then for any feasible solution x ∈ Las3
proj(LP7), we have Φ(x, T ′v) ≥ 1.

Furthermore, T ′v is good.

2. Suppose that |M(T ′v)| = 1, and |U(T ′v)| ≥ |S ∩ V (T ′v)| + 1. Moreover, suppose that x
is a feasible solution in Las3

proj(LP7) such that x|J is integral and Φ(x, T ′v) <
1
2
, where

J = {` ∈ δE(u) : u ∈ (S ∩ V (T ′v)) ∪ Lmatched(T ′v) ∪ B(T ′v)}.
Then, |U(T ′v)| = |S ∩ V (T ′v)| + 1. Moreover, the auxiliary graph has a perfect matching
AM(T ′v) such that the following conditions hold (for the set of links corresponding to
AM(T ′v)):

(i) x(`) = 1 for each link ` ∈ AM(T ′v),

(ii) the links of AM(T ′v) cover T ′v,

(iii) for each stem node s ∈ S ∩ V (T ′v), twinlk(s) is in AM(T ′v),

(iv) AM(T ′v) has no links of the form v̄s, where s ∈ S ∩ V (T ′v).

Proof. Let êv denote the tree-edge between v and its parent; êv is well defined since T ′v 6= T ′.
Let J̄ = δE(êv)∪(∪u∈U(T ′v)δE(u)). Then, x(J̄) = x(δE(êv))+

∑
u∈U(T ′v) x(δE(u)) ≥ 1+|U(T ′v)|;

the equation holds because (i) T ′v is semiclosed so none of the links in δE(êv) is incident to an
M -exposed leaf of T ′v, and (ii) by Lemma 7.5.1(2), no link has both ends at M -exposed leaves;
the inequality holds because x(δE(ê)) ≥ 1 for every tree-edge ê.

Let g(x, T ′v) denote 1
2

∑
u∈Rnonspcl∩V (T ′v) x(δE(u)) + 1

2

∑
u∈Rspecial∩V (T ′v) x(E(u, V−Lbud(u))).

By Fact 7.3.2, we have Φ(x, T ′v) ≥ g(x, T ′v).

Part (1) M(T ′v) = ∅. Clearly, |U(T ′v)| ≥ 1, since T ′v has at least one leaf.

Note that 1
2
x(J̄) ≥ 1

2
(1 + |U(T ′v)|) ≥ 1. We will show that every link ` ∈ J̄ contributes

≥ 1
2
x(`) to g(x, T ′v).

First, we show that S ∩ V (T ′v) = ∅. Otherwise, consider any s ∈ S ∩ V (T ′v); by
Lemma 7.6.1(1), every node in T ′s is original, and so the twin link of s has both ends
at M -exposed nodes (since M(T ′v) = ∅); this is impossible due to Lemma 7.5.1.

Next, we show that B(T ′v) = ∅. Since S ∩ V (T ′v) = ∅, Lemma 7.6.1(3) implies that
Borig(T ′v) = ∅ (if a bud b0 ∈ Borig(T ′v) is present as an original M -exposed leaf of T ′v, then
its stem is present as an original node of T ′v). Also, we have Bcomp(T ′v) = ∅, otherwise,
by Lemma 7.6.2, there exists an M -link between two leaves in T ′v (this is impossible since
M(T ′v) = ∅). Thus, B(T ′v) = ∅.

133

Now, observe that every link ` ∈ J̄ has an end in V (T ′v) ∩ R, and hence, it contributes
1
2
x(`) to g(x, T ′v). Therefore, Φ(x, T ′v) ≥ 1. Since this inequality holds for every feasible

solution x in Las3
proj(LP7), it also holds for the optimal solution y of Lastproj(LP7) for

t ≥ 17; see Theorem 7.4.1. Thus, we have Φ(y, T ′v) ≥ 1. Hence, by Lemma 7.5.2, T ′v is
good.

Part (2) In this case, |M(T ′v)| = 1, |U(T ′v)| ≥ |S ∩V (T ′v)|+ 1. Moreover, x|J is integral, where
J = {` ∈ δE(u) : u ∈ (S ∩ V (T ′v)) ∪ Lmatched(T ′v) ∪ B(T ′v)}.
First, we show that x(δE(s)) ≤ 1 for each stem s ∈ S ∩ V (T ′v). We use a contradiction
argument. Suppose that x(δE(s)) > 1. Let δ+

E(s) denote the set of links of positive x-value
incident to s. Note that every link ` in δ+

E(s) has x(`) = 1 because x|J is integral. Since
x(δE(s)) > 1, we have |δ+

E(s)| ≥ 2. This implies that each of the buddy links associated
with the stem s has x-value zero. To see this, note that the set of links in δ+

E(s) covering
each of the three tree-edges incident to s is an overlapping clique, hence, at most one link
of δ+

E(s) belongs to one of these overlapping cliques (by the overlapping pair constraints);
moreover, each buddy link associated with s is overlapping with the links that belong to
two of these overlapping cliques (see Figure 7.10); hence, if a buddy link ` associated with
s has x(`) > 0, then we get a violation (of an overlapping pair constraint) for one of the
three overlapping cliques. Since the buddy links associated with s (if any) have x-value
zero, we have Φ(x, T ′v) ≥ slackx(s) ≥ 1

2

(
x(δE(s)) − x(twinlk(s))

)
≥ 1

2
, and this gives

the desired contradiction.

q
p

s

b3

b1

b2

b0

`

Figure 7.10: Illustration of a buddy link ` in the proof of Lemma 7.6.5. It shows that ` is
overlapping with links in both δoutE (s) and δE(ê)∩ δE(s), where ê is the tree-edge between b3 and
s. For example, ` is overlapping with the links sp and sb3.

For any M -covered leaf w in T ′v, by Lemma 7.5.1, w is an original node, and moreover,
we have x(δE(w)) ≤ 1 by Lemma 6.4.3. Thus, we have x(δE(w)) ≤ 1 for each w ∈
Lmatched(T ′v) ∪ (S ∩ V (T ′v)) = ML(T ′v).

134

Let J̃ = J̄−
⋃
w∈ML(T ′v) δE(w); this is the set of links in J̄ but not in AG(T ′v). We have

x(J̃) < 1; otherwise, by Lemma 7.6.4, we would have Φ(x, T ′v) ≥ min{1
2
, 1

2
x(J̃)} ≥ 1

2
,

which is a contradiction. We have

1 > x(J̃) = x(J̄)−
∑

w∈ML(T ′v)

x(J̄ ∩ δE(w)) ≥ |AU(T ′v)| − |ML(T ′v)|

= |U(T ′v)|+ 1− 2|M(T ′v)| − |S ∩ V (T ′v)|
= |U(T ′v)| − (1 + |S ∩ V (T ′v)|) ≥ 0.

Hence, we have |U(T ′v)| = |S ∩ V (T ′v)| + 1, and |ML(T ′v)| = |AU(T ′v)|. For each w ∈
ML(T ′v), we have x(J̄ ∩ δE(w)) = 1 because x(`) is integral for each link ` ∈ J̄ ∩ δE(w)

(otherwise,
∑

w∈ML(T ′v) x(J̄ ∩ δE(w)) ≤ |ML(T ′v)| − 1 implies that x(J̃) ≥ |AU(T ′v)| −
|ML(T ′v)|+ 1 ≥ 1).

For each w ∈ ML(T ′v), define `w to be the link in δE(w) ∩ J̄ with x(`w) = 1. We claim
that these links form a perfect matching of the auxiliary graph, thus, AM(T ′v) = {lw :
w ∈ ML(T ′v)}. Otherwise, there exist two links `w1 , `w2 that are incident to the same
node u ∈ AU(T ′v). Then, x(J̄) ≥ |AU(T ′v)| + 1, which implies that x(J̃) = x(J̄) −∑

w∈ML(T ′v) x(J̄ ∩ δE(w)) ≥ |AU(T ′v)| + 1− |ML(T ′v)| ≥ 1. This contradicts the fact that

x(J̃) < 1. Our claim follows.

We claim that AM(T ′v) covers T ′v. Otherwise, there exists a tree-edge ê0 in T ′v that is
not covered by AM(T ′v). Let δ+

E(ê0) denote the set of links of positive x-value in δE(ê0).
Then, we have x(δ+

E(ê0)) ≥ 1, and none of the links in δ+
E(ê0) is incident to (S ∩V (T ′v))∪

Lmatched(T ′v); the latter assertion holds because x(`w) = 1 and x(δE(w)) ≤ 1 for ev-
ery w ∈ ML(T ′v), i.e., the nodes in ML(T ′v) are already “saturated” by AM(T ′v). Thus,
Lemma 7.6.4 applies to δ+

E(ê0), and we have Φ(x, T ′v) ≥ min{1
2
, 1

2
δ+
E(ê0)} ≥ 1

2
, which is

a contradiction. Our claim follows: AM(T ′v) covers T ′v.

Additionally, we claim that AM(T ′v) has no links between v̄ and S ∩ V (T ′v). By way of
contradiction, assume that there exists a link ` = sq ∈ AM(T ′v) such that s ∈ S ∩ V (T ′v)
and q /∈ V (T ′v). Suppose that q is an original non-leaf node. Then sq is a link between two
original non-leaf nodes with x(sq) = 1, hence, we have Φ(x, T ′v) ≥ 1

2
due to Fact 7.3.2

and the following term in Φ(x, T ′v):

1

2
x(E((V−L) ∩ V (T ′v), (V−L) ∩ (V (T ′)−V (T ′v)))).

This is a contradiction. Otherwise, if q is a compound node or an original leaf, then we
claim that an (up-to-5) greedy contraction applies, and this too gives a contradiction. Note
that |S ∩ V (T ′v)| ≤ 2 and |M(T ′v)| ≤ 1, hence, |AM(T ′v)| ≤ 4. The credit assigned to the

135

leaves and matching links in T ′v is 3
2

+ |U(T ′v)| = 3
2

+ |S ∩V (T ′v)|+1 = |AM(T ′v)|+ 1
2
. If q

is a compound node or an original M -exposed leaf, then q provides one additional credit,
and this suffices for an (up-to-5) greedy contraction of the links of AM(T ′v); otherwise, q
is an M -covered leaf, and the M -link `q incident to q provides additional 3

2
credit, and this

suffices for an (up-to-5) greedy contraction of `q together with the links of AM(T ′v). Our
claim follows: AM(T ′v) has no link of the form v̄s, s ∈ S ∩ V (T ′v).

Finally, we prove that twinlk(s) = uw is in AM(T ′v) for each stem s ∈ S ∩ V (T ′v). By
Lemma 7.6.1, T ′s is completely contained in T ′v and every node in T ′s is original. We first
claim that no buddy links associated with s have positive x-value if they exist. Otherwise,
without loss of generality, suppose that a buddy link lu = uq in the original input link
set E associated with s has positive x-value where both u, q are original ends. Since T ′v
has at least 3 leaves and C(T ′v) 6= ∅, we have if q is contained in some compound node,
then this compound node must be a leaf in T ′v. If q is not contained in a compound node,
then q is an original leaf in T ′v as well since T ′v has at least 3 leaves. Consider the link ls in
AM(T ′v) incident with s. If the end of ls other than s is not in Ts, then it will be overlapping
with lu and x(lu) > 0, x(ls) = 1. This contradicts the overlapping constraints in LP7. By
the similar argument, we know ls cannot be us. Thus, ls must be ws. Let p be the least
common ancestor of u and q (see Figure 7.11).

p

s

u

q

w
`s`u

Figure 7.11: The links `u and `s in the proof of Lemma 7.6.5.

Consider the link ¯̀ in AM(T ′v) covering the tree-edge between p and its parent (p can be v;
in this case, ¯̀ is the link incident with v̄ in AM(T ′v)). Note that ¯̀has an end at a leaf in T ′p.
Then ¯̀ will be either overlapping with ls or lu. This is a contradiction to the overlapping
constraints in LP7. Thus, no buddy links associated with s have positive x-value if they
exist. Note that one of u,w is anM -covered leaf due to Lemma 7.5.1. Thus, if the twin link
uw is not in AM(T ′v), then x(uw) = 0. Then, we have Φ(x, T ′v) ≥ slackx(s) ≥ 1

2
x(ls) = 1

2
.

This is a contradiction.

136

2

Theorem 7.6.6 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′v be a semi-
closed tree that is not good. Then one of the following holds for T ′v.

1. T ′v is a deficient 3-leaf tree.

2. T ′v is a deficient 4-leaf tree.

3. T ′v has 4 leaves with |M(T ′v)| = 1, and moreover T ′v has no cover of size 3.

Proof. Since T ′v is not good, Lemma 7.5.2 and Lemma 7.6.5 (1) imply that T ′v 6= T ′, C(T ′v) = ∅,
and |M(T ′v)| = 1.

Observe that T ′v has at least one M -exposed leaf. Otherwise, since |M(T ′v)| = 1, T ′v has ex-
actly two leaves and there is an M -link between these two leaves; moreover, by Lemma 7.5.1(1),
every node on the path of T ′ between these two leaves is original; it follows that the link in
M(T ′v) is a twin link; this contradicts the definition of M . Since T ′v has an M -exposed leaf and
exactly two M -covered leaves, it follows that T ′v has at least three leaves.

Also, observe that |S ∩ V (T ′v)| ≤ 2. Otherwise, suppose that |S ∩ V (T ′v)| ≥ 3. Then, by
Lemma 7.6.1, for every stem s ∈ S ∩ V (T ′v), every node in T ′s is original, hence, there exists a
stem s∗ ∈ S ∩ V (T ′v) such that both the leaves of T ′s∗ are M -exposed and there exists a twin link
between these two leaves; this contradicts Lemma 7.5.1(2).

Let ê denote the tree-edge between v and its parent. Let J denote {` ∈ δE(u) : u ∈
(S ∩ V (T ′v)) ∪ Lmatched(T ′v) ∪ B(T ′v)}, where B(T ′v) = Borig(T ′v) ∪ Bcomp(T ′v) (see the discussion
before Lemma 7.6.3 for the definitions of Borig(T ′v),Bcomp(T ′v)).

By Lemma 7.6.3, y can be written as a convex combination
∑

i∈Z λix
i such that xi ∈

Las3
proj(LP7) and xi|J is integral. Since T ′v is not good and |M(T ′v)| = 1, Lemma 7.5.2 im-

plies that Φ(y, T ′v) <
1
2
. Thus, there exists an i0 ∈ Z such that Φ(xi0 , T ′v) <

1
2
.

We claim that |U(T ′v)| ≤ |S∩V (T ′v)|+1. To see this, suppose that |U(T ′v)| ≥ |S∩V (T ′v)|+1.
Then, all of the conditions of Lemma 7.6.5(2) apply, hence, the lemma implies that |U(T ′v)| =
|S ∩ V (T ′v)|+ 1. Our claim follows.

Now, we analyze a few cases, depending on the number of leaves of T ′v. By Lemma 7.6.1,
for every stem s ∈ S ∩ V (T ′v), every node in T ′s is original; thus, each stem s ∈ S ∩ V (T ′v)
contributes two original leaves to T ′v. Therefore, |S ∩ V (T ′v)| ≤ |L(T ′v)|/2.

137

Case 1 T ′v has exactly three leaves. Let the three leaves be a, b1, b2, where a is M -exposed
and b1, b2 are M -covered; thus, b1b2 is the unique link in M(T ′v), and b1, b2 are original
nodes by Lemma 7.5.1. Clearly, |S ∩ V (T ′v)| ≤ 1. We have two subcases, depending on
|S ∩ V (T ′v)|.

Subcase 1.1 |S ∩ V (T ′v)| = 1. Let s be the stem in T ′v. The M -link b1b2 cannot have both
ends in T ′s (since M contains no twin links). Thus, the M -exposed leaf a is a leaf of
T ′s. Then, it can be seen that a is a bud with a buddy link b1b2. This is a contradiction,
since M contains no buddy links.

Subcase 1.2 |S ∩ V (T ′v)| = 0. Then we have |U(T ′v)| = 1 = 1 + |S ∩ V (T ′v)|. By
Lemma 7.6.5, there exist two links `v ∈ δE(ê) and `a ∈ δE(a) such that xi0(`v) =
xi0(`a) = 1, these two links cover T ′v, and moreover, each of b1, b2 is incident to ex-
actly one of these two links (since the auxiliary graph has a perfect matching formed
by these two links).
If there is only one non-leaf node with degree other than 2 in T ′v (see Figure 7.6(a)),
then T ′v is a deficient 3-leaf tree. We are done. Otherwise, we have exactly two non-
leaf nodes u, q in T ′v with degree other than 2. In fact, both these two nodes have
exactly degree 3 since T ′v has exactly 3 leaves. Without loss of generality, we assume
u is an ancestor of q. Then, T ′q has only two leaves. By the argument at the beginning
of the proof, the M -link in T ′v cannot connect both leaves in T ′q. This implies that one
leaf of T ′q is M -exposed. So, it is a. Without loss of generality, we can assume that
the other leaf of T ′q is b2. Then, b1 is the third leaf, which is not in T ′q.
Suppose that `v is incident to b1 and `a is incident to b2. Then, the tree-edge between
q and its parent is not covered by these two links (see Figure 7.12(a)). This is a
contradiction. Hence, `v is incident to b2 and `a is incident to b1 (see Figure 7.12(b)).
Therefore, T ′v satisfies all the conditions of a deficient 3-leaf tree.

Case 2 T ′v has exactly four leaves. Let the four leaves be a1, a2, b1, b2, where a1, a2 are M -
exposed and b1, b2 are M -covered; thus, b1b2 is the unique link in M(T ′v), and b1, b2 are
original nodes by Lemma 7.5.1. We have 1 = |U(T ′v)| − 1 ≤ |S ∩ V (T ′v)| ≤ 2. As above,
we have two subcases, depending on |S ∩ V (T ′v)|.

Subcase 2.1 |S∩V (T ′v)| = 1. Let s be the stem in T ′v. By Lemma 7.5.1, it can be seen that
the twin link of s is incident to one M -exposed leaf, say a1, and to one M -covered
leaf, say b1 (see Subcase 1.1).
Note that |U(T ′v)| = 2 = 1 + |S ∩ V (T ′v)|. By Lemma 7.6.5, there exist three
links a1b1 (the twin link of s), `v ∈ δE(ê) and `a2 ∈ δE(a2) such that xi0(a1b1) =

138

v

u

q

b2

b1

a

(a)

`v

`a

v

u

q

b2

b1

a

(b)

`v

`a

Figure 7.12: The links `v and `a in Subcase 1.2 of the proof of Theorem 7.6.6. The dashed lines
indicate links and the thick dashed lines indicate M -links.

xi0(`v) = xi0(`a2) = 1, these three links cover T ′v, and moreover, each of s, b2 is
incident to exactly one of the two links `v, `a2 (since the auxiliary graph has a per-
fect matching formed by the three links); moreover, s cannot be incident to `v (by
Lemma 7.6.5(2)(iv)). Thus `v is incident to b2, and `a2 is incident to s, i.e., `a2 = a2s.
Let p be the least common ancestor of s and a2 (in T ′v). If T ′p does not contain all
the leaves of T ′v, then it can be seen that the tree-edge between p and its parent is
not covered by the three links a1b1, a2s, `v (see Figure 7.13(a)). It follows that T ′p
contains all the leaves of T ′v. Then, it can be seen that T ′v is a deficient 4-leaf tree (see
Figure 7.13(b)).

(a)

`v

`a2

v

p

a2 s

b1

b2

a1

v

p
a2

s

b1

b2

a1

(b)

`v
`a2

Figure 7.13: The links `v, `a2 and a1b1 in Subcase 2.1 of the proof of Theorem 7.6.6. The dashed
lines indicate links and the thick dashed lines indicate M -links.

Subcase 2.2 |S ∩ V (T ′v)| = 2. If T ′v has no cover of size 3, then item (3) in the statement
of the theorem holds. Thus, we may assume that T ′v has a cover J̄ with |J̄ | = 3.

139

Let s1, s2 be the two stems in T ′v. Let a1, b1 be the original leaves of T ′s1 , and let a2, b2

be the original leaves of T ′s2 . We may assume that a1, a2 are M -exposed and b1, b2

are M -covered, because each twin link is incident to one M -exposed leaf and to one
M -covered leaf by Lemma 7.5.1 (see Subcase 2.1). Thus, b1b2 is the unique link in
M(T ′v).
By Lemma 7.6.1 and C(T ′v) = ∅, T ′v has no compound nodes, i.e., all its nodes are
original.
Observe that T ′v has at least 31

2
credits from the two M -exposed leaves and the M -

link.
Consider the possible leaf-to-leaf links of T ′v. The link a1a2 does not exist, by
Lemma 7.5.1, since a1, a2 are both M -exposed. If both the links a1b2 and a2b1 exist,
then an (up-to-5) greedy contraction applies (we contract these two links and we have
31

2
credits). Thus, at most one of the links a1b2 or a2b1 is present.

If Tv has no leafy 3-cover in T , then it satisfies all the conditions for a bad 2-stem
tree, hence, it would have been contracted in Preprocessing step 1 (Λ-contraction).
This is a contradiction.
Thus, we may assume that Tv in T has a leafy 3-cover J̃ = {`0, `1, `2} where `0 is
a link with ends u,w such that u is in Tv and w is a leaf in L−L(Tv). Let `′0 = uw′

be the corresponding link w.r.t. T ′ for `0 where w′ = w if w is still an original node
in T ′, and otherwise, w′ is the compound node containing w. Note that in either of
the cases, w′ is not in V (T ′v) since every node in T ′v is original. If w′ is a compound
node or an M -exposed original leaf, then an (up-to-5) greedy contraction applies (we
contract the 3 links in J̃ and we have 41

2
credits). Otherwise, if w′ is an M -covered

original leaf, then again an (up-to-5) greedy contraction applies (we contract 4 links,
the links in J̃ and the M -link incident to w, and we have 31

2
+ 3

2
= 5 credits). Thus,

we get a contradiction from the existence of a leafy 3-cover.

Case 3 T ′v has at least five leaves. Then, T ′v has at least three M -exposed leaves and two M -
covered leaves. Thus, we have 3 ≤ |U(T ′v)| ≤ |S ∩V (T ′v)|+1 ≤ 3, since |S ∩V (T ′v)| ≤ 2;
it follows that |U(T ′v)| = 3, |S ∩ V (T ′v)| = 2, and T ′v has exactly 5 leaves.

Let s1, s2 be the two stems in T ′v. Let a1, b1 be the original leaves of T ′s1 , and let a2, b2 be
the original leaves of T ′s2 . We may assume that a1, a2 are M -exposed and b1, b2 are M -
covered, because each twin link is incident to one M -exposed leaf and to one M -covered
leaf by Lemma 7.5.1 (see Subcase 2.1). Thus, b1b2 is the unique link in M(T ′v). Let u be
the fifth leaf of T ′v, where u is not in T ′s1 nor in T ′s2 .

Note that |U(T ′v)| = 3 = 1+|S∩V (T ′v)|. By Lemma 7.6.5, there exist four links a1b1, a2b2

(the twin links of s1, s2), `v ∈ δE(ê) and `u ∈ δE(u) such that each of s1, s2 is incident to

140

exactly one of the two links `v, `u (since the auxiliary graph has a perfect matching formed
by the four links); moreover, `v cannot be incident to {s1, s2} (by Lemma 7.6.5(2)(iv)).
This is impossible. Thus, T ′v cannot have more than four leaves.

The result follows from the above case analysis. 2

7.6.3 Addressing deficient trees

For a deficient 3-leaf (4-leaf, respectively) tree T ′v, if T ′v is not a proper subtree of another deficient
3-leaf (4-leaf, respectively) tree, then we call T ′v a maximal deficient 3-leaf (4-leaf, respectively)
tree. By Property 6.2.1, any two different maximal deficient 3-leaf (4-leaf, respectively) trees are
disjoint.

To handle the deficient 3-leaf trees and deficient 4-leaf trees, we contract some special links
and then replace some links in the matching M to form a new matching M new. Specifically,
we first contract the link set E latch of latches in maximal deficient 4-leaf trees to form T ′′ :=
T ′\E latch, and then we examine each maximal deficient 3-leaf tree T ′′w in T ′′ and replace the
unique link ofM(T ′′w) by another leaf-to-leaf link. In more detail, consider any maximal deficient
3-leaf tree T ′′w in T ′′, and let the three leaves be a, b, d, where a is M -exposed, b is the ceiling
leaf, and bd is the unique link in M(T ′′w); we keep the link ad in M new instead of the M -link
bd (see Algorithm 7.2). Since any two different maximal deficient 3-leaf trees are disjoint, this
replacement takes place independently for each maximal deficient 3-leaf tree.

The new compound node in T ′′ formed by contracting a latch in T ′ is called latched com-
pound node. Since two different maximal deficient 4-leaf trees are disjoint, this contraction of
each latch takes place independently and every latch results in one latched compound node. For
a subtree T ′′v of T ′′, we define latch(T ′′v) := {`(〈clatch〉) : 〈clatch〉 is a latched compound node ∈
T ′′v }, where `(〈clatch〉) is the latch associated with the latched compound node 〈clatch〉.

We remark that the latched compound nodes are formed only for finding a good semiclosed
tree of T ′ in the main loop of the algorithm. They are not the real compound nodes formed by
contracting links in F . In other words, the latches are not added to F just due to these latched
compound nodes to form T ′′. Hence, there is no need to consider credit assignment for the
contraction of latches.

If we contract the latch cs in a deficient 4-leaf tree T ′v where c is a leaf and s is a stem, then
the resulting tree T ′′v′ is a deficient 3-leaf tree (see Figure 7.7) where v′ is the corresponding node
in T ′′ to v in T ′. When v is not on the path in T ′ for the link cs, then v′ = v; otherwise, v′ is the
latched compound node formed by contracting cs. The links ab1, up(b2)b2 witness the deficiency

141

of T ′′v′ where a, b1 are leaves of T ′s and b1b2 is the M -link in T ′v. Let b be the ceiling leaf of T ′′v′ .
Then, up(b) is an ancestor of up(b2) in T ′′ by the definition of ceiling leaf.

Theorem 7.6.7 Suppose that no (up-to-5) greedy contractions are applicable. Let T ′′v be a mini-
mally semiclosed tree in T ′′ = T ′\E latch w.r.t.M new. Then, v cannot be a latched compound node
in T ′′ (implying that T ′v is well defined). Furthermore, T ′v is a good semiclosed tree w.r.t. M and
T ′v has a fitting cover Γ(M new, T ′′v) ∪ latch(T ′′v) of size |Γ(M,T ′v)|.

Proof. Suppose v is a latched compound node. Then, T ′′v is a subtree of a deficient 3-leaf tree
in T ′′ that formed by contracting the corresponding latch in a deficient 4-leaf tree in T ′. Hence,
T ′′v is a subtree of a maximal deficient 3-leaf tree in T ′′. However, by how we form M new, any
subtree of a maximal deficient 3-leaf tree is not semiclosed w.r.t. M new. This is because the
ceiling leaf of the maximal deficient 3-leaf tree is M new-exposed. Thus, T ′′v is not semiclosed
w.r.t. M new. This is a contradiction. Hence, v cannot be a latched compound node. This implies
that v is a node in T ′ and T ′v is well defined.

Claim 7.6.8 If T ′v has a node in a maximal deficient 4-leaf tree in T ′, then T ′v prop-
erly contains this maximal deficient 4-leaf tree. If T ′v has a node in a maximal defi-
cient 3-leaf tree in T ′, then T ′v properly contains this maximal deficient 3-leaf tree.

Suppose T ′v has a node in a maximal deficient 4-leaf tree T ′w. Since contracting the latch in
T ′w results into a deficient 3-leaf tree T ′′w′ in T ′′, Thus, T ′′v has a node in a maximal deficient 3-leaf
tree T ′′u where u is an ancestor of w′ in T ′′. However, every subtree of T ′′u is not semiclosed w.r.t
M new, which implies that T ′′v is not a subtree of T ′′u . By Property 6.2.1, we have T ′′v properly
contains T ′′u . Hence, v is a proper ancestor of w in T ′ and T ′v properly contains T ′w.

Suppose T ′v has a node in a maximal deficient 3-leaf tree T ′w. If this maximal deficient 3-leaf
tree is contained in some maximal deficient 4-leaf tree, then we are done by the analysis above.
Hence, we can assume T ′w has no node in a maximal deficient 4-leaf tree by Property 6.2.1. Then
T ′′w = T ′w is still a maximal deficient 3-leaf tree in T ′′ and no node in T ′′w is a latched compound
node. Then, T ′′v has a node in T ′′w. Similarly, T ′w is properly contained in T ′v. This proves the
claim.

Claim 7.6.8 implies T ′v is neither a deficient 3-leaf tree nor a deficient 4-leaf tree in T ′.

Let u be an M -exposed leaf of T ′v. If u belongs to some deficient 3-leaf tree or deficient
4-leaf tree T ′w, then T ′v contains this T ′w by Claim 7.6.8. Since T ′w is a semiclosed tree w.r.t. M
in T ′, then all links that incident with u have both ends in T ′w. Thus, all links that incident with
u have both ends in T ′v. If u does not belong to any deficient 3-leaf tree or deficient 4-leaf tree,

142

then u is M new-exposed as well in T ′′. Since T ′′v is semiclosed w.r.t. M new, we also have all links
that incident with u have both ends in T ′v. Note that the replacement of M -links only takes place
locally in a maximal deficient 3-leaf tree or a maximal deficient 4-leaf tree in T ′. Thus, T ′v is
semiclosed w.r.t. M , and the number of M -links in T ′v is same as the number of M new-links in it.
Thus, |Γ(M,T ′v)| = |Γ(M new, T ′′v)|+ |latch(T ′′v)|.

Since T ′v is a minimally semiclosed tree w.r.t.M new, by Lemma 6.6.2, Γ(M new, T ′′v) is a fitting
cover of T ′′v . This implies that Γ(M new, T ′′v)∪latch(T ′′v) is a fitting cover of T ′v of size |Γ(M,T ′v)|.
Suppose T ′v is not good. Since T ′v is neither a deficient 3-leaf tree nor a deficient 4-leaf tree in
T ′, by Theorem 7.6.6, we have T ′v has 4 leaves, |M(T ′v)| = 1, and T ′v has no cover of size 3.
However, in this case, |Γ(M,T ′v)| = 3. This is a contradiction. Therefore, T ′v is good. This
completes the proof. 2

The procedure described above to find a good semiclosed tree is summarized as the following
pseudocode.

Algorithm 7.2: Find a good semiclosed tree by addressing deficient trees.

1 for each maximal deficient 4-leaf tree T ′w in T ′ do
2 contract the latch of T ′w;
3 end
4 let T ′′ be the resulting tree;
5 start with M new := M ;
6 for each maximal deficient 3-leaf tree T ′′w in T ′′ do
7 let b be the ceiling leaf, a be the M -exposed leaf and db be the M -link in T ′′w;
8 update M new by replacing db by da (M new := M new−{db} ∪ {da});
9 end

10 find a minimally semiclosed tree T ′′v w.r.t. M new (note that M new is a matching of the
leaf-to-leaf links);

11 T ′v is a good semiclosed tree w.r.t. M with a fitting cover Γ(M new, T ′′v) ∪ latch(T ′′v) of size
|Γ(M,T ′v)| by Theorem 7.6.7;

Algorithm 7.2 shows how to find a good semiclosed tree T ′v with a fitting cover of size
|Γ(M,T ′v)| for the main loop in Algorithm 7.1 in Section 7.5. The contractions of latches to
form T ′′ are only for this purpose. They are not counted for F in Algorithm 7.1.

In conclusion, Algorithm 7.1 runs in polynomial time and returns a solution for TAP with
size at most (3

2
+ ε)y(E). This proves Theorem 7.4.1.

143

Chapter 8

Conclusion

In this chapter, we summarize the main results in this thesis and pose some open questions for
future work.

8.1 Path TSP

In Chapter 3, we design a simple LP-based 1.5-approximation algorithm for the s-t path graph-
TSP. For the more general metric s-t path TSP, in Chapter 4, we present a simple, self-contained
analysis that unifies the results of [1] and [61]; our main contribution is a unified correction
vector. A unified fractional T -join (see Section 4.2) is constructed based on this unified correc-
tion vector. Then, the main results of [1] and [61] can be presented as two different analyses
of the cost of the same unified fractional T -join for the randomized Christofides’ algorithm. An
immediate question is whether we could have a better analysis of the cost of this unified frac-
tional T -join. If true, this may imply an improved approximation guarantee for the randomized
Christofides’ algorithm.

For the metric s-t path TSP, a big open question is whether there exists a 1.5-approximation
algorithm. If the 1.5-approximation factor is achieved, then this would close the gap and match
the known lower bound on the integrality ratio of the path Held-Karp LP relaxation. The ran-
domized Christofides’ algorithm is the first one to surpass the long standing 5

3
-approximation

factor. The instance in Section 4.4 shows the crucial role of randomness for improving the ap-
proximation factor. Specifically, the randomized Christofides’ algorithm samples a spanning tree
based on a probability distribution, which is generated by an arbitrary convex decomposition in
the spanning tree polytope of an optimal solution of the path Held-Karp LP relaxation. One idea

144

is to elaborately choose a particular convex decomposition to form a probability distribution with
the aim of improving the cost analysis of the algorithm. In fact, very recently, Vygen [67] em-
ployed this idea by reassembling spanning trees and slightly improved the approximation factor
to 1.5999.

8.2 Asymmetric TSP

In Chapter 5, we prove that the integrality ratio for level t of the Sherali-Adams system starting
with the standard LP (DFJ LP) relaxation of ATSP is ≥ 1 + 1−ε

2t+3
for any fixed integer t ≥ 0

and small ε, 0 < ε � 1. To obtain this lower bound on the integrality ratio, we construct a
fractional feasible solution for level t of the SA system. Unfortunately, the solution given by our
construction is not positive semidefinite; thus, it does not apply to the LS+ system or to the Las
system. One natural question is whether there exists a fractional feasible solution of the LS+

system that can be used to show a lower bound larger than 1 on the integrality ratio.

To construct a feasible solution of the stronger Las system is more difficult. This is due to
the fact that the Las system not only requires positive semidefiniteness but also places global
constraints via P2t+2 (e.g., Mt+1(y) � 0). Mastrolilli [52] showed a large integrality ratio for
the Las system applied to Capacitated Covering Problems. One key technique there is to force
the constant term b of some constraint aTx ≥ b to be sufficiently small. However, for the natural
LP relaxations of TSP and its variants, the constant terms of constraints are fixed. There are no
lower bound results known for ATSP for any of the Lift-and-Project systems based on positive
semidefiniteness. We mention that for TSP, Cheung [18] showed an integrality ratio of 4

3
for

O(1) levels of the LS+ system. At level 0, it is well known that any integrality ratio for the
standard LP relaxation for TSP applies also to ATSP. Unfortunately, this does not hold for level 1
or higher. Consequently, Cheung’s results [18] for TSP do not apply to ATSP.

Our lower bound 1 + 1−ε
2t+3

on the integrality ratio fade out as the level of the SA tightening
increases, and for t ≥ 35 (roughly) our integrality ratio falls below the hardness threshold of
75
74

of [42]. Thus, our integrality ratio cannot be optimal, and it is possible that a large constant
lower bound (e.g. 2) on the integrality ratio survives for O(1) levels of the SA system. One
research direction is to study whether such a constant exists. This is true for O(1) levels of the
LS+ system starting with the standard LP relaxation of TSP [18].

145

8.3 TAP

The main result of Chapter 7 is to prove an upper bound of (3
2

+ ε) on the integrality ratio of a
SDP relaxation, where ε > 0 can be any small constant, by analyzing a combinatorial algorithm.
This SDP relaxation is derived by applying level t of the Las system to the initial LP relaxation
LP7 where t = max{17, d 1

2ε
e + 1}. Furthermore, there is a polynomial-time algorithm that

always outputs a feasible solution of TAP of size ≤ (3
2

+ ε)y(E), where y is an optimal solution
of Lastproj(LP7).

We propose two open questions on TAP. One is to design a polynomial-time algorithm with
an approximation factor better than 3

2
. The tight example in Section 6.8 shows that 3

2
is the best

approximation factor that we can achieve if we only employ contractions of semiclosed tree and
greedy contractions of small link sets shown in Chapters 6 and 7. However, a different type
of algorithm may exist to break the barrier. The other open question is on the weighted Tree
Augmentation Problem. It is not hard to see that our LP relaxation with overlapping constraints
can be extended to the weighted case. The best known approximation factor for the weighted
Tree Augmentation Problem is 2, and a key open question is to improve on this approximation
factor. One research direction is to study the integrality ratio of the Las system applied to the
weighted version of our LP relaxation of TAP. An open question is whether the integrality ratio
is less than 2 for some constant level of the Las system.

146

References

[1] H-C. An, R. Kleinberg, and D. B. Shmoys. Improving Christofides’ algorithm for the s-t
path TSP. In Proceedings of the 44th Annual ACM symposium on Theory of Computing
(STOC), pages 875–886, 2012.

[2] H-C. An and D. B. Shmoys. LP-based approximation algorithms for Traveling Salesman
Path Problems. CoRR, abs/1105.2391, 2011.

[3] N. Anari and S. O. Gharan. Effective-resistance-reducing flows and Asymmetric TSP.
CoRR, abs/1411.4613, 2014.

[4] S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. Proving integrality gaps without know-
ing the linear program. Theory of Computing, 2(1):19–51, 2006.

[5] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi. An
O(log n/log log n)-approximation algorithm for the Asymmetric Traveling Salesman Prob-
lem. In Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 379–389, 2010.

[6] Y-H. Au and L. Tunçel. Complexity analyses of Bienstock-Zuckerberg and Lasserre relax-
ations on the matching and stable set polytopes. In Proceedings of the 15th Conference on
Integer Programming and Combinatorial Optimization (IPCO), pages 14–26, 2011.

[7] S. Benabbas, S. O. Chan, K. Georgiou, and A. Magen. Tight gaps for vertex cover in the
Sherali-Adams SDP hierarchy. In Proceedings of the 31st IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
41–54, 2011.

[8] D. Bertsimas and C-P. Teo. The parsimonious property of cut covering problems and its
applications. Operations Research Letters, 21(3):123–132, 1997.

147

[9] R. Carr and S. Vempala. On the Held-Karp relaxation for the asymmetric and symmetric
Traveling Salesman Problems. Mathematical Programming, 100(3):569–587, July 2004.

[10] M. Charikar, M. X. Goemans, and H. J. Karloff. On the integrality ratio for the Asymmetric
Traveling Salesman Problem. Mathematics of Operations Research, 31(2):245–252, 2006.

[11] M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for Sherali-Adams re-
laxations. In Proceedings of the 41st Annual ACM symposium on Theory of Computing
(STOC), pages 283–292, 2009.

[12] J. Cheriyan and Z. Gao. Approximating (Unweighted) Tree Augmentation via Lift-and-
Project, Part I. To appear on arXiv.

[13] J. Cheriyan and Z. Gao. Approximating (Unweighted) Tree Augmentation via Lift-and-
Project, Part II. CoRR, abs/1507.01309, 2015.

[14] J. Cheriyan, Z. Gao, K. Georgiou, and S. Singla. On integrality ratios for Asymmetric TSP
in the Sherali-Adams hierarchy. In Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP), pages 340–351, 2013.

[15] J. Cheriyan, Z. Gao, K. Georgiou, and S. Singla. On integrality ratios for Asymmetric TSP
in the Sherali-Adams hierarchy. CoRR, abs/1405.0945, 2014.

[16] J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packings of laminar families.
In Algorithms - ESA ’99, 7th Annual European Symposium, volume 1643 of Lecture Notes
in Computer Science, pages 510–520. Springer, 1999. A longer version is on the web:
http://www.math.uwaterloo.ca/˜jcheriyan/publications.html.

[17] J. Cheriyan, H. J. Karloff, R. Khandekar, and J. Könemann. On the integrality ratio for tree
augmentation. Operations Research Letters, 36(4):399–401, 2008.

[18] K. K. H. Cheung. On Lovász–Schrijver lift-and-project procedures on the Dantzig–
Fulkerson–Johnson relaxation of the TSP. SIAM Journal on Optimization, 16(2):380–399,
2005.

[19] E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps. In Miguel F. Anjos
and Jean B. Lasserre, editors, Handbook on Semidefinite, Conic and Polynomial Optimiza-
tion, volume 166 of International Series in Operations Research & Management Science,
pages 139–169. Springer US, 2012.

[20] N. Christofides. Worst-case analysis of a new heuristic for the Travelling Salesman Prob-
lem. Technical Report 388, Graduate School of Industrial Administration, CMU, 1976.

148

http://www.math.uwaterloo.ca/~jcheriyan/publications.html

[21] N. Cohen and Z. Nutov. A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-
connectivity augmentation of trees with constant radius. Theoretical Computer Science,
489-490:67–74, 2013.

[22] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Opti-
mization. Wiley-Interscience, 1998.

[23] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale Traveling Salesman
Problem. Journal of the Operations Research Society of America, 2:393–410, 1954.

[24] W. Fernandez de-la Vega and C. Kenyon-Mathieu. Linear programming relaxations of
maxcut. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 53–61, 2007.

[25] R. Diestel. Graph Theory (4th ed.). Graduate Texts in Mathematics, Volume 173. Springer-
Verlag, Heidelberg, 2010.

[26] J. Edmonds and E. L. Johnson. Matching: A well-solved class of integer linear programs.
In Combinatorial Optimization, pages 27–30, 2001.

[27] P. Elliott-Magwood. The Integrality Gap of the Asymmetric Travelling Salesman Problem.
PhD thesis, Department of Mathematics and Statistics, University of Ottawa, 2008.

[28] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 3/2-approximation algorithm for aug-
menting the edge-connectivity of a graph from 1 to 2 using a subset of a given edge set.
In APPROX-RANDOM: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 4th International Workshop, APPROX 2001, and 5th Interna-
tional Workshop, RANDOM 2001, Proceedings, pages 90–101, 2001.

[29] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 1.8 approximation algorithm for aug-
menting edge-connectivity of a graph from 1 to 2. ACM Transactions on Algorithms,
5:21:6–21:17, 2009.

[30] S. Fiorini and N. Mutsanas. Notes on the tree augmentation problem. Personal Communi-
cation, 2011.

[31] A. Frank. On a theorem of Mader. Discrete Mathematics, 101(1-3):49–57, 1992.

[32] G. N. Frederickson and J. Ja’Ja’. Approximation algorithms for several graph augmentation
problems. SIAM Journal on Computing, 10(2):270–283, 1981.

149

[33] Z. Gao. An LP-based 3/2-approximation algorithm for the s-t path graph Traveling Sales-
man Problem. Operations Research Letters, 41(6):615–617, 2013.

[34] Z. Gao. On the metric s-t path Traveling Salesman Problem. CoRR, abs/1404.7569, 2014.

[35] K. Georgiou. Tree augmentation. Personal Communication, 2011.

[36] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[37] M. Held and R. M. Karp. The traveling-salesman and minimum cost spanning trees. Oper-
ations Research, 18:1138–1162, 1970.

[38] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning trees:
part II. Mathematical Programming, 1:6–25, 1971.

[39] J. A. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult than
cycles. Operations Research Letters, 10:291–295, 1991.

[40] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

[41] A. Karlin, C. Mathieu, and C. Nguyen. Integrality gaps of linear and semi-definite pro-
gramming relaxations for knapsack. In Proceedings of the 15th Conference on Integer
Programming and Combinatorial Optimization (IPCO), pages 301–314. 2011.

[42] M. Karpinski, M. Lampis, and R. Schmied. New inapproximability bounds for TSP. In Pro-
ceedings of the 24th International Symposium on Algorithms and Computation (ISAAC),
volume 8283 of Lecture Notes in Computer Science, pages 568–578. Springer, 2013.

[43] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-
connectivity network design problems. SIAM Journal on Computing, 33(3):704–720, 2004.

[44] G. Kortsarz and Z. Nutov. A simplified 1.5-approximation algorithm for augmenting edge-
connectivity of a graph from 1 to 2. CoRR, abs/1507.02799, 2015.

[45] M. Lampis. Improved inapproximability for TSP. In APPROX-RANDOM: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th In-
ternational Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012.
Proceedings, pages 243–253, 2012.

150

[46] J. B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 pro-
grams. SIAM Journal on Optimization, 12(3):756–769, 2002.

[47] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relax-
ations for 0-1 programming. Mathematics of Operations Research, 28(3):470–496, 2003.

[48] L. Lovász. Lecture. Conference of Graph Theory. Prague, 1974.

[49] L. Lovász. Combinatorial problems and exercises. North-Holland, 1979.

[50] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991.

[51] Y. Maduel and Z. Nutov. Covering a laminar family by leaf to leaf links. Discrete Applied
Mathematics, 158(13):1424–1432, 2010.

[52] M. Mastrolilli. The Lasserre hierarchy in almost diagonal form. CoRR, abs/1312.6493,
2013.

[53] T. Mömke and O. Svensson. Approximating graphic TSP by matchings. In Proceedings
of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
560–569, 2011.

[54] M. Mucha. 13/9-approximation for graphic TSP. In Proceedings of the 29th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 30–41, 2012.

[55] H. Nagamochi. An approximation for finding a smallest 2-edge connected subgraph con-
taining a specified spanning tree. Discrete Applied Mathematics, 126:83–113, 2003.

[56] C. H. Papadimitriou and S. Vempala. On the approximability of the Traveling Salesman
Problem. Combinatorica, 26(1):101–120, 2006.

[57] R. Roberti and P. Toth. Models and algorithms for the Asymmetric Traveling Salesman
Problem: an experimental comparison. EURO Journal on Transportation and Logistics,
1:113–133, 2012.

[58] T. Rothvoß. Directed Steiner tree and the Lasserre hierarchy. CoRR, abs/1111.5473, 2011.

[59] T. Rothvoß. The Lasserre hierarchy in approximation algorithms. MAPSP Tuto-
rial: Lecture notes, 2013. http://www.math.washington.edu/˜rothvoss/
lecturenotes/lasserresurvey.pdf.

151

http://www.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf
http://www.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf

[60] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Com-
binatorics, volume 24. Springer, Berlin, 2003.

[61] A. Sebő. Eight-fifth approximation for the path TSP. In Proceedings of the 16th Conference
on Integer Programming and Combinatorial Optimization (IPCO), pages 362–374, 2013.

[62] A. Sebő and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597–629, 2014.

[63] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411–430, 1990.

[64] T. Stephen and L. Tunçel. On a representation of the matching polytope via semidefinite
liftings. Mathematics of Operations Research, 24(1):1–7, 1999.

[65] I. Tourlakis. New Lower Bounds for Approximation Algorithms in the Lovasz-Schrijver
Hierarchy. PhD thesis, Department of Computer Science, Princeton University, 2006.

[66] J. Vygen. New approximation algorithms for the TSP. Optima: Mathematical Optimization
Society Newsletter, 90(1-12), 2012.

[67] J. Vygen. Reassembling trees for the traveling salesman. CoRR, abs/1502.03715, 2015.

[68] T. Watson. Lift-and-project integrality gaps for the Traveling Salesperson Problem. Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:97, 2011.

152

	List of Figures
	Introduction
	Preliminaries
	LP relaxations
	Path TSP
	Asymmetric TSP
	TAP

	Lift-and-Project systems

	Path Graph Traveling Salesman Problem
	Preliminaries
	LP-based 32-approximation algorithm

	Path Traveling Salesman Problem
	Preliminaries
	Linear programs
	T-joins
	Polyhedra and convex decomposition
	Christofides' algorithm for s-t path TSP

	Unified correction vector
	AKS' 1+52-approximation via unified correction vector
	Sebo's 85-approximation via unified correction vector

	Linear programming relaxations of the s-t path TSP
	Counterexample to two approaches

	On Integrality Ratios for Asymmetric TSP in the Sherali-Adams System
	Our results
	Preliminaries
	LP relaxations for Asymmetric TSP
	The Sherali-Adams system

	SA applied to the Balanced LP relaxation of ATSP
	Certifying a feasible solution
	CGK (Charikar-Goemans-Karloff) construction

	SA applied to the standard LP (DFJ LP) relaxation of ATSP
	Certifying a feasible solution

	Path ATSP

	Approximating (Unweighted) Tree Augmentation via Lasserre System, Part I: Stemless TAP
	Our results and techniques
	Preliminaries and notation
	The initial LP
	Lasserre tightening and its properties
	Potential function for stemless TAP
	Algorithm
	Semiclosed trees
	Credit assignment
	Simple contractions and assertions on M
	Good semiclosed trees
	Algorithm in summary
	Worked example

	Analysis of the algorithm
	Semiclosed trees are good except deficient 3-leaf trees
	Addressing deficient 3-leaf trees

	Tight example for the analysis

	Approximating (Unweighted) Tree Augmentation via Lasserre System, Part II
	Preliminaries and notation
	Lasserre tightening and its properties
	Potential function
	Algorithm and credits I: Preprocessing steps
	Semiclosed trees
	Maximum matching
	Bad 2-stem trees
	Credit assignment for the algorithm and the preprocessing
	Second preprocessing step

	Algorithm and credits II: Overall algorithm
	(Up-to-5) greedy contractions and assertions on M
	Good semiclosed trees
	Summary of the algorithm
	Stem assertion of the algorithm

	Analysis of the algorithm, and deficient trees
	Properties from assertions
	Most semiclosed trees are good
	Addressing deficient trees

	Conclusion
	Path TSP
	Asymmetric TSP
	TAP

	References

