
SPACE CHARGE DISTRIBUTION MEASUREMENTS IN 

POLYMERS BY AN IMPROVED PULSED 

ELECTRO-ACOUSTIC METHOD 

YWE LIU 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirernent for the degree of 

Doctor of Philosophy 

in 

Eiectrical Engineering 

Waterloo, Ontano, Canada, 1996 

Q Yue Liu, 1996 



National Library Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services se- bibliographiques 

The author bas granteci a non- 
exc1usive licence dowing the 
National Li'bPary of Canada to 
reproduce, loan, distribide or sell 
copies of bismer thesis by any means 
and m any fomr or fomiat, makbg 

The author retains ownersbip of the 
copyright m hidher thesis. Neither 
the thesis nor substantial extrads 
fiom it may be printed or othérwise 
reproduced with the aathor's 
permission. 

L'auteur a accord6 une licence non 
exclusi. permettant a la 
Bibliothèque nationale du Canada de 
mpmduh, pIêter, distn'bueroll 
vendre dw copies de sa &&se de 
quelque maniére et sous qpe1qpe 
forme cpe ce soit pour mettre des 
exemplaires de cette thèse & la 
disposition des persornes intéressées. 

L'auteur conserve la prowété du 
droit d'auteur qui protège sa thèse. Ni 
la thèse ni des extraits substantieis de 
celle-ci ne doivent &e imprim6s ou 
autrement reproduits sans son 



The Universi~y requires the signaiuns of al1 persons using or photocopying lhis thesis. Please 

sign below. and give address and date. 

iii 



ABSTRACT 

This study presents a novel method of processing measured signais fiom the Pulsed Elecuo- 

Acoustic(PEA) method in order to obtah space charge distriiutions with improved resolution 

and accuracy. The proposed method (ie. the simulation model method) enables surface 

charges to be disthguished from space charge distributions. Therefore, space charge 

distributions can be processed separately nom surface charges without surface charges being 

rnixed into the obtained space charge distributions. In addition, a nonlinear detection and 

optimization process in the simulation model is proposed as an option for even better charge 

distribution results. A brief review of solid breakdown rnechankms and space charge effects 

illustrates the importance of space charge distribution measurements. A iiterature review of 

the availabk space charge distribution measuring techniques shows the advantages of the PEA 

method for space charge distribution measurements. Furthemore, the deconvoIution 

procedure@CON) and the direct method@M), the two previous methods used to obtain 

space charge disvibutions fiom the PEA measured signals, are criticaily reviewed and re- 

analyzed in order to gain a better appteciation of the proposed simulation model method. The 

obtained resuits of four sets of synthetic si@ by the DM, the DCON, and the point matchhg 

simulation model(PMSM) methods; and the obtained resuits of two sets of experimental 

si@ by the PMSM method demonstrate the advantages associated with the use of the 

simulation model method Ako ptesented are experimental studies designed and conducted to 

determine the dyaamic changes of space charge distributions d e r  HVDC uniform field 

voltage applications for sheet specimens made of LDPE. HDPE, UHMWPE, PP and PMMA 

The experimental results are then summarized and discussed. Moreover, in this thesis, the 

PEA method principle is further enended to nonuniform fields (Le. needle-plane electrode 

configurations), where spaçe charge effects are considend crucial. 
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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM STATEMENT AND RESEARCH OBJéCTlVES 

Polymer technology has experienced steady and strong growth since the early 1930s. Today, it 

would be difiicult to imagine E e  without polymers; in fact, they are fundamental to virzually 

every phase of oar daily lives The p ~ c i p a l  reasons for their widespread application can eady 

be understood: they are readïiy shaped, inexpensive dîekctric materials with easily controlled 

physicai, mechanical and ekctrical properties. Dielecaic materials (Le. the electricai and 

electronic insalatïng materials), are esential to the proper operation of aIl elechical and 

electronic equipment, having applications in a wide variety of components[l]: in integrated 

circuits, transistors, and diodes; in wires and cabIes; in connectors; in hybrids; in transformers, 

coils, and bushings; etc. It is believed that mach of the dnving force behind the development 

of many modem polymers came fiom the electrical and electronics indusaies. Most principal 

polymers for typical electtical iasulation, according to their broad product group classification. 

are well outlined in reference 121. 

For high voltage iasulation systems such as high voltage cables, capacitors, insulators, 

transformers, and bushings, polymers have ken extensively used. However, in high voltage 

power transmission cabks, for example, the oil-impregnated-papes insuiation has traditionally 

been regarded as the most diable composite indation system[3 1. 

The main disadvantages with polpoas are that they are highly susceptible to degradation by 

corona discharges and may undergo additional degradation due to treeing when exposed to 

high voltage stressesB]. In 1979, thue was an attempt to use PE (poiyethykne) cable for dc 

l m m k i o n  in Japan This attempt was aborted because the cable hoke d o m  when the polaaty 



was changed[4]. M e s  decades of sesearch w o n  on soiid breakdown(inc1nding electric 

treeing). one thing bas becorne very clea.. The presence of space charge inside polymers plays 

an important sole in the degradation, the treeing and the bnakdown of poIpers[3-301. It is 

therefore essential to cl- space charge eects on p o 1 . r ~  if the application of polymers in 

the high voltage insuiation is to become more reliable. 

The basic space charge efsaa is nsuallynn?rred to as the distortion of the ek&c field pattern This 

terrn underlines the viral importance of obtaining direct space charge distn'bution measurements to 

determine the m a l  m t d  ekctric field pattern under the electric sa es^. Several space charge 

distn'bution measUrhg techniques have already been proposed[31-711. Much work has been done 

to irnprove these measoring techniques m order to ckrify space chaxge dynamic behawurs inside 

polymers- Howew. it is di necessary to i m p m  these techniques to provide space charge 

dynamics with higher accuracy and enough resolution. In addition, most of the reported space 

charge meastuemen& m the literature are ander d o m  fields(ie., pkne-plane &mode set- 

ups)[3 1-7q. Recently. these measIlzements have been extended to the cylindrical Wd[77-791. 

Electric treeing is an important phenornenon that occm when a n o n d o m  field e d .  Neeciie- 

plane eectrode configuration is often adopted for treeing investigations- However, up to now, only 

a linle work[l9-241 has been done to measare the total space charge or average position inside a 

needle-plane elecaode configuration. To the authois Iniowledge, there has been no approach 

proposed in the literature to measure space charge distriitiom under non-unifonn k1ds where 

space charge effects are crucial, probably because of die difncnlty of pfesenting the non-Unaormity. 

Therefore, this study pians to choose one of the available space charge distniution techniques, 

improve the technique under unifonn fields for higher resolution and aawacy and, in the addition, 

extend it to needle-plane ele*ro& coiifi,&ns. 

The main purpose in developing space charge meamhg methods is to mnstigate the space charge 

dynamic behaviour and thereby to help m midersrandmg the breakdom and ekctric treeing 

processes- Recently, some mearchers have iised measurement rnethods for space cbarge dymnic 

mvestigation and tried to relate the% resuits with the bnakdown mechanisms- However, we are st4 

far h m  a ni11 understanding of space charge dynamic behaviours Much more experimental 



research is necessary to cl* space charge characteristics, espeeay irs dynamic charanenm 
. - 

Cs 

inside poIymers(such as charge i n . n ,  accumuiation and transportation). 

The p m n t  nsearch is aimed at nirdier developing tk space charge dktribution measaring 

techniques m ordu to chifjr the charge dynaimcs m9de polymes. Mon specincally, it f the 

fobwing obpctives 

Choosiog one space charge distribution measuring tec-w that is not only Suaable for the 

space charge dynamic investigation but also easy to set np experirnentallly; improving the 

accuracy and the resolution of the tecmue imdu a u&mi field through a signal processing 

approach and comparing the new approach with the old approaches. 

Implernenting a d o n n  aeld space charge distniution measuring system, setting up some 

experimental procedures and applying the irnproved spice charge distniution signal processing 

method to hwstigate space charge dynamic behaviom m some selected polymers. 

Dircusmig the space charge e k t  Mde polymers based on the measurements and fhdings of 

the second part. 

Extending ~ & n n  field spacc charge distribution meatmhg pwcipies to a nonuniforni field 

(ie. needle-plane elecoode connguration). 

1.2 RESEARCH PROGRAM AND THESIS ORGANIZATION 

To hilfil the above objectives, the folbwing ze~earch program was andertaken and organized in the 

fobwing order. 

Chapter 2 contains the pertinent literamn revkws. It presents an owrview of typicaî properties of 

the selected p l .  (PE. PP and PMMA); an oveMew of solid breakdom mechaniSm 

investigations and space charge e&cts; a a y  on the e&hg space charge distniution rneasuïng 

techniques arnong which the pulsed ekctro-acoristic (PEA) mthod was chosen for ninher 

developmenc mi a literature review of the PEA method. 



Chapter 3 re-analyses the PEA systern and des& the proposed simulation model which 

attempted to improve the availabk PEA Sgaal procashg methods so as to provide the space 

charge distn'bution with higb accuracy and enough resolution This included the simulation 

modeis for nnifonn fidd and needle-plane neld 

Chapter 4 compares, an andytic pomt ofvkw, the charge distriition results obtained under 

uniform fieid asstlfllpti011~ by the M previous data processing methods, the deconvolution 

procedure @CON) and the direct method (DM), with the proposed pomt matching simulation 

model(l?MSM). Font sets of synthetic signals are useci. Then, h m  an eXpenmental point of view, 

two sets of e-ntal signais are processed by the PMSM to demonstrate the procedures and 

pertinent points associated with the application of the PMSM to eXpenmental signais. 

Chapter 5 demonstnues the eqerhnental anangement for setting op PEA measnring systems for 

d o m  field space charge disttibution measnrement and the measuring resalts obtajned for the 

sheets of LDPE, EXDPE, UBMWPE, PP and PMMA mider Step Incremed Voltage, Cbnstmt 

Voltage, and Short C'Mt e-ental conditions. The influence of material de*, molecular 

weight and specinc hsulating material on the space charge dynamics is disciissed. 

Chapter 6 presents the concInsions of this research study and recommendations for fuWe study. 

Appendix A coIlects the relevant subjects and concepts used in the thesis. 

Appeadix B shows the detected p r w u n  wave eqnatinns when the transducer is put Hi a arbinary 

position on the plane side oftbe ~ e e d i e - p h  electrode co&guratbn. 

Appendix C proposes a ncursive minimum v h  deconvohtion simiilatinn rnodel and a 

maximum likelihood deconvohtion simuhtbn mo&L 

Appendix D presents a nonlincar & e n  and optimization process (NDOP) used to fbrther 

improve the obtained charge distnition rem& and the appücation of the NDOP to thRe set of the 

synthetic si@. 



CHAPTER 2 

LITERATURE REVIEWS 

This Chapter presents the relevant literature reviews. F i y ,  Section 2.2 presents an o v e ~ e w  

of the typical properties of the polymers selected in the experimental research A brief 

literature overview on solid breakdown m e c h a h  and space charge effects is presented in 

Section 2.3. It inustrates the importance of space charge distribution measurements. 'Iken. in 

Section 2.4, the developed space charge distribution techniques are summarized and compared. 

Among hem, the pulsed electro-acoustic (PEA) method was chosen to be M e r  developed in 

the research Section 2.5 is a survey of the literatuce on the previous studies of the PEA 

method. 

2.2 OVERVlEW OF POLYMERS SELECTED IN RESEARCH 

The polymers adopted h this research to investigate space charge effects were 

polyethylene(PE), polypropylene (PP) and polymethyrnethacrylate(PMMA). Table 2.1 shows 

their chernical structures. The typical physical properties that are rehted to high voltage 

applications are presented in this section. 

For wire and cable, polyethylene(PE) has becorne the most versatile iiimlation material, largely 

because of its relative low price, processability, resistance to chexnicals and moisture, flexibility 

at low temperatures and exceknt electrical properties[5]. Polyethylene is produced by 

polymerizing ethylene gas (CH2=CH2) into long polymer chahs. Depending upon the 



polymerization processes, polyethylene is produced in low (0.919-0.925 glcm3), medium 

(0.926-0.940 g/cm3). and high (0.941-0.965 dan3) demitks, cakd iow density polyethykne 

(LDPE), medium de* polyethylene (MDPE) and bigh density polyethylene (HDPE) 

respec tively . 

TABLE 2.1 
CHEMICAL STRUCTURES OF POLYETHPLENE, POLYPROPVLENE, AM) 

Pol ye thylene 

PEI 

Polyprop y lene 

(PR 

Polyethylene is classifïed not oniy by density, but &O by molecuiar weight. EIigh density 

polyethylene, with moiecuiar weights averaging in the 300,000 to 500,000 range, is cailed 

high-molecuiar-weight high density polyethylene(HMW-HDPE) and is used principally as 

primary insuiation. Altbough the average molecular weight is fiom 300,000 to 500,000, the 

molecular weight distribution is broad, with a sigrdkmt proportion of lower molecular weight 

mokules  to faciitate processing[2]. A high density polyethylene with molecular weights in 

the range of 3 to 6 W o n  is called ulrahigh-moleculat-weight polyethylene (WMWPE). 

Important factors affecthg the properties of PE are degree of crystaIlinity, molecular weight, 

and molecular weight distribution. Higher crystallinity cm increase tensile strength rigidity, 

chernical resistance, and opacity, while reducing permeability to liquids and gases. 

The above mentioned PE polymers are thennopiastic, which means that they sofkn on heating 

below their decomposition temperature and that they harden to their original state on cooling. 

Polyethylene may be crosslinkedmE) to a thermoset material by the addition of one and a 

haif to two percent dicumyl peroxide to formulations or by elecuon beam radiation [2]. 



Themmsets refer to rigid, infrisi'ble organic materials which Iose their plas- when M y  

cured. Since their appearance in the 1960s, XLPE cables bave dominateci the distn'bution 

cable field m North AmenCa, Japan and Northem Emope[S], kgely because they may be 

operated at 90°C and intermittenity at 130°C during fauit conditions. They ais0 have good 

low temperature properties, show i n c r e d  resistance to ozone and corona(as compared to 

hear PE) and have good impact, ahrasion and environmental stress cracking resistance 

characteristics. However, the XLPE cables are also subject to tree growth. 

Arnong various kinds of polyethylene, LDPE, W P E  and CRIMWPE were chosen to 

investigate the influence of density and molecular weight on space charge dynamics. XLPE 

was not se1ected because it is not comrnercially available in sheet form To compare the 

ciifference of charge dynaniics in ciiffixent polymmic materials, polypropylene(PP) (nonpolar 

poiymer as PE) and acrylic(pMMA) (polar polymer) were selected. 

Polyprop ylene (PP), formed by polymeriPng propylene(CH3CH=CH2), is closely related to PE, 

both chemically and in end uses. It is the most ri@ p o l y o ~  with high resistance to 

environmental stress cracking, even when it comes into contact with solvents and polar 

materiais. Its dielecaric properties and moiSnire resistance are among the best for aiI plastic 

polymers. Be*, it is one of the lightest piastics(0.909/cm3), making it more economical to 

mold than moa other resins and more suitable for processing into moIded indation parts, 

extmded wire and cabîe insulation, and dieIectric films. Aiso, PP is heat sealable and non-toxic. 

Due to these advantages, the Rural Eiectdkation Administration (REA) and cable 

manufacturers rrecognize PP and HDPE as aIternatable[2]. Some people have claimed that PP 

has signincant manufacturing advantages. Howevez, the bnttieness (glass iramition) 

temperature of PP (-15OC) is much higher than PE (-76OC), a fact which Mts its applications 

in power cables. 

PolymethyImethacIylates(acrylics) are noteworthy for mperlative optical properties and 

weatherability. They are produced by polymerizing methyl methacryiate alone or combined 

with other unsaturateci monomers Acrylic resias exhibit outstanding arc resistance even &er 

immersion in water or long-term outdoor exposure. Qarity is exceknt. Major uses for 



acryiics take advantage of their superior optical properties. They are king used mcreasingly Ui 

fiber optics. High arc cesistance makes acrylics suitable for high voltage applications such as 

circuit breakers. A decreasing dielectxic constant with increasing frequencies makes acrylics 

attractive candidates for high fbquency applications. 

2.3 OVERVlEW OF SOLlD BREAKDOWN MECHANISMS AND 
SPACE CHARGE EFFECTS 

2.3.1 Basic Space Charge Effects 

Changiag or distorthg the electric fieid pattern is considered the basic efféct of space charge. 

Experinientaiiy, for Morm fields, it was found that afkr pre-Stressmg with dc, the same polarity 

impuk breakdown strengths were increased, while the opposite polarity impulse strengtbs were 

decreased[o]. This resuit suggests the formation of space charge causes the distomon in the 

effective interna1 eiectrical &Id. 



GeneraJly, accordmg to whether space charge has the same polariry as its nearby elecwde, the 

space charge distribution inade a sample is simply clasgned as a homo-charge distribution or a 

hetero-charge distributioa Figure 2.1 shows the influence of these distributions on the internd 

elecaic field profiles under uniform field set-ups. Quaürativey, the the pmtnsbg expexirnents can 

be explaineci by spea charge eneCts. 

Assume that space charges are buiit up during dc pre-smsshg as a d t  of eEecerons Sijected fiom 

the cathode andor holes being injectai h m  the anode- A homocharge distribution is fomed in 

the sample as Figure 2.l(a) shows As the elecaic fields near the interfaces of eiectrodes and 

insulating material are ckmsed, nirther charge mjecton tends to be weakened. If, afkr dc pre- 

saessiag, a same polarity impulse voltage is applkd, this voltage needs to be much higher in order 

to initiate further charge mjectioa ûdy when charge mjeaion continues to take place can the 

electric field near the middle of the sample reach sufncient magnitude to lead to breakdown. If a 

reverse polarity impulse voltage is apphd, the former homocharge distribution becornes hewo- 

charge as shown in Figure 2.1 (b). The electrk oeld htensity at interfices can be much bigher in a 

lower voltage application, causing a large amount of charge to release or inject suddeniy, and 

initiating breakdown professes andlor degradation proceses (like treeing) at the inwface first, 

followed by the bfeakdown of the huktmg sample[8]. 

For n o n d o m  field, Usuany, a partiai breakciown is observed at the sife of the high local electiic 

field, whkh leads to a "uee", named aamed tbe characteristic feature of tbe breakdown paths. Trees 

are found to stan at aspentiesT voids, or irnbedded particles, ail of which serve as local field 

enhancement sites[15]. There are ekmic trees, water trees, ekctm-chemical mes, etc., clasdkd 

according to the condition leadmg to the tree[8]. nie two stages of tree growth are initiation and 

pro pagatioa Factors w hich stimulate initiation do no t necessafily encourage propagation* and 

vice versa. Space charge effects have been found to play an miportant role diredy or indirectly in 

dl these treeing processes* especially their initiatinns[lS-281. Electnc trees can be initiated by 

Werent kinds of voltage applications. Apart h m  pohnty reversal effects, treeing has been 

obsemed when both electrodes were short-ckcuited after the application of dc voltage lower tban 

the nonunifonn neld dc tree iaception vohage[q. 



Moreovet, a weil-known e+nt showed that an elecnic trez coald be hmed spontaneoudy. 

By mjectnig 3MeV electrons h m  a Van de Graaff aCCelerator mto a PMMA bh& a tree pattern 

was fomed when a gromded metal nail was presed into the sample perpendicalar to the radiation 

direction only a&r the accnnnilated space charge m the sample reached certain -7. This 

experiment showed how powemil the sudden charge release can be. Also it bints, when a grounded 

metal nail ir connected to of6et a p& the sudden movement of the accumnlated space charges 

undu th& *generated high field is enough to damage tbe sanipie mterials[7J. 

From the above mentioned eqerhental redîs and discussion, it is obvious that the space charge 

effects, especiany the dynamic c- 0 .  of space charge formation (mkction), accumulation 

and tmmportation etc., play important r o k  in electric treemg and breakdown in polymers. From 

tracing of the fbotprints of theoretical mvestigations on soüd breakdown mechanisms in Section 

2.3.2, it becomes even more apparent that space charge efEcts are essential to solid breakdown and 

treeing processes and have to be introduced into the solid breakdown (treeing) theories to shorten 

the distance between theoretical predications and expimental resuIts. - 

2.3.2 Solid Breakdown Mechanfsms and Space Charges Effects 

Table 2.2 suama&a most theories and models of ekctric breakdom and treemg mechanisms 

according to thek basic assumptions and their appkation ranges. Oniy a brkf overview of these 

theories is pruvided hen. For detailed tbeoBes, one can &kr to the corzesponding rehmces. 

As show Ïn Table 2.2, theories developed midu the homogeneous diele& assumptions are 

chssified mto two groups. One is favorired at high temperature; the 0 t h  is fâvoured at low 

temperature. The therrrml brerrkdown presented by Wagner in 1922 [6] descnid the bnakdown 

Cntegon m tenns of the themial conductivity of the dielectric and the pre-breakdown eîectàcal 

conductbity. Uder high ekctoc &Id mtensities, cumuktive h a h g  that cleveloped in local paths 

wirhin the materials c o u  cause dkulecaic and ionic conduction bsses which wonld generate heat 

more rapidiy than it couid be dissipated. Breakclown was proposed to occur because of the diennal 

instabfity [8,9]. ï'ïmmd breakdam is favoured at high taaperanire since, in generai, the 



electacal condnctMty Ernases and the thermal conductmity deæases as the temperature 

increases[9]. The probiem is that the theory couid give the critical voltage ranges h m  about zero 

with bad electrode cooling to iieady i&dy wiih efnaan ekctrode cooiingDO]. The ekèctm 

necJianiccJ bmakdbm theory introduced by Stark and G;non in 1955[9] is also Iawured at high 

temperatore, and ir is maialy for p l .  since thcir Young's modales are iow, especiany at high 

temperatare. 1t proposecl that the compressive stress due to the electric stress could reduce the 

efEcLive specimen thicloiess and nsalt m a higher elechic stress inscie. The electromechanical 

critical condition was reached when elecaic fieM intensity reduced the specimen thiclaiess to exp(- 

112) times the initiai thickness[8,9]. 

In Iow temperatnre ~gions, thmaal mscabiliry and ekctromecfianical cohpse usually do not nsult 

in faim. However, breakdom dl occurs when the neld mtensity becomes sutscient to accelerate 

electrons through the insuhion material. nie electronk processes have been identined as playing 



an important rok in breakdom proocesses at Iow temperature. Pweiy eleci&aZ breukdown 

mechanisnu are all based on the electronic ~KK'RSS~S. This research was mtended to be conducted 

at Iow temperatureSI 

In thefiLI e m W n  bretzMbwn tbeory, ciineat multiplication is considexed as the Rsult of the 

quantum-mecm tmmIling h m  the valence band to the condricrion band in the presence of a 

strong electnc field. The critical &Us cahihted by th% theory are maliy of an order of magnitude 

largex than expeEimental breakdom strengh[8,9] which SEdicate some other ekctronic processes 

might happen befôre the field emission crhical neld is mxhed. Tbe i&i& brerrk.rl;own tbeories 

suggest that the cricical field strength is nached when some instabiiicy occurs in the electronic 

conduction current. The intrinsic critkaL W d  strength is calcnlated Born the conduction-ekctron 

energy balance equation, The balance state is reached when the rate of energy gained by 

conduction e-ns h m  the field is equal to the rate of energy aansfiened to the lanice by these 

electrons Compared with the expimental breakdown results as functions of temperature, the 

order of magnitude and temperature dependena of the breakdom strength are correct for some 

alkali halides[9]. This soggests that the onset of sgmsEant coDinon ionisation is an impomt Wor 

in the omet of pure@ electrical breakdown. However, this theory is stdl not adequate to q l a m  al1 

experhental results; p-s because it is based on a homogeneous infinite m e h  without 

considering the boundary conditions such as ehtro& separations, coafigurations, and material 

propexties, etc.. The f i e  volume braakdown theory is idment to polymers It expIains the 

breakdown phemmena of polymers around the glas traariton temperaaile (bw temperature). The 

basic idea is that h e  vohanes in polyniers pmvide space fbr electrons to be accelerated under bigh 

fields. The electron mean i?ee path is associated with the fke volume, and is thus relateci to the 

energies that ekctmns can gain 6rom the high &M and the breakdom strength of the polym~6,8]. 

In the fULl emission, bainsic andjhe vdiane bmahbm theories, the number of conduction 

electmns is viewed as inmashg suddenly and fOIlowbg a situation m which kakdown has 

happened. Avalarnche di&#eId theoEes, on the other hand, masider that the conduaion- 

electron muitipIication is a process that graduaiiy miches mtolembk proportions as the field 

sbtength enhanced[9]. 



There are severai criticai criteria formuiated on the basis of the avalanche mechanism. such as the 

fotty-generatjon tbeory, the arvOGQnche-ninanerd collrodc emksbn tbeory, and space-cturrge- 

enkweaa cd&aifi&, etc.. They can expiain the thiclmess dependence of brakdown strength 

that non-avalanche theories cannot, 

The fomgenecmrrOn cd&dj2Lrl saen* theory. originaiiy developed by FrPhlich and by Sein in 

1949[9], is baseci on a single-ebro11 collision-ionkition The mcrdanche-enhanced cathode 

enrission theory was considered by Forkni and Mmnaja in 1964[9]. btead of takuig account of 

the avalanche mdt@Iication resultmg h m  only one ektron starhg &cm the cathode, they 

considered the coosequences of avalanche multiplication of eniission cumnt nom the cathode. 

However, both theories are bounded on the assumption of Wom fïeIds. When colasion ionisation 

is considered as an important element h a theory, the umfom fieid assumption encounters severe 

dBkultFes, especiany when the= are many generatiom of colliMn ionisation. The reason is that 

space charges @oth ekuons and holes) caused by the build-up of an electron avalanche should 

result in a nonmitorm kld strength distribution[9]. Therefore, some other theoDes developed 

withui the avaknche breakdown category bave attempted to &op the assumption of uniforrn fields. 

Spuce-charge-mirrurced cathdè earksbn theoîies, as proposed by ODwyer 19.1 9, consider the 

space charge effect and treat the hoie current and ektron curent by assumuig the continuity of 

c m r k  The breakdom is described to occur wben the space charge immediately in h n t  of the 

cathode (due to relatively immobile hoh) ceaches such proportions that the eiectron curent 

mjected fiom tbe cathode is sufoclInt to destroy tbe mate& From spoce-charge-enhmced 

ccrrltodc emiSsi011 tbeories, a universal characteristic for the critical field strength as a fiinction of 

thichess bas been de-; a a negalbe c e S i S ~  anâ, coquently, an UIlStabk conduction 

characteristic is proposed (the negative difkrential &tance had been 0bse~ed expexhentaily 

[12]); and the steady-state conduction characteristics for a dielectric between phne-plane electrode 

and spherical ektrode geomeny are cahilated with the omet of negative residance as the 

breakdom criterim[ll]. 



One-ccurier UItpocf bn&&n theories, pposed by Kkiu[13,14], consider not ody electron 

injection and coIlmon ionisation, but also the ené*s of recombmation and trapping of electrons and 

holes. An important conc1osion is that the d ica l  breakdom neld and breakdown time are affécted 

by the trapped e]#aon charge densigc 'Ibey wiii both iacnase wkn the charge density m-, 

which mdicates a protective e&ct ofelectron charge h m  breakdown[l4]. 

When a nonunifor. M d  ex* inside a solid, the partial breakdown will have a p t e r  tendency to 

happen More the bulk breakdown. ' E s  is actuaiïy the case in p&al situations. The elecaic 

treeing is generaIly accepted as the process of partiai breakdown m very high ekctxic neld regions. 

Experimentallly. needle-plane or needle-needle geometry is o&n used to mvestigate the treeing 

processes. Fsom the previous reviews on breakdown mechanisms, it is obvious that the theories 

concedng electrode ef6eas. and ionisation processes ofFer cbser expianations of experimental 

results. These ef6eas and processes introduce space charge edlkts mto breakdown mechaniaas and 

suggest the non-unifonni@ of intenial fkld and the importance of bcai field mtensity to breakdown 

initiation Needle-plane or naedie-needle electrode CO-n can concentrate the electric field 

on the needie point, and thus may facilitate the reseatch of breakdown bhiathn, ie. tree Ïniîiation. 

Several theories have been put forward to illnmmate the electric treeing pro cesse^^ such as the 

charge Weciion and aboeaon theory proposed by Tanaka and Greenwood[18], the 

elecfnifmchM mechaniCs (fisdd linircd spoce c h q e  nodel) 1251, and the fmdal mode1 

proposed by Z e k  et a23]. 

The c h q e  @è&n and e x t m h n  theory (Tanaka t h e o ~ )  emphasised the initiation by charge 

injection and exaaaion among severai other explanations for the iaitiation of an electric aee. such 

as a tree itiitiatod by mechanical fatigm, or by parnial discharge, etc. This theory explains the 

incubation p M d  of inithtbn d e  which thue are M appamt pisi;lal changes ami no detectabie 

partid dischargMl8]. It proposes that ektmns, when they are mjected h m  rm electrode and 

exaacted baclorvad, might gain energy high enough to attack polymt chahs, initiate chemicai 

reaction and cause p o l .  degradation. The degradation might nsult m the fi,rmation of a very 

narmw channeL A tree starts to gmw when the narrow channel becornes ktge enough to allow 



gaseous discharge[l8]. 'Ibis theory proposes that the bgarithm of the tree initiation time is related 

to the electric fi& and the efktïve work fiuaction. Elcperanents b h a v e  c o h e d  the injection and 

extraction of charge under a high neld This theoqr correms the influence of a needle eiectrode 

work function on the tree initiation whge, and proposes the importaace of mterfâce properties 

between elrctrode and dielectec xnateds Xowevett work h c t k a s  are w d y  meamred in ultra- 

high vacuum; the jus&atbn of the codatbn between the work fiinction and tree initiation is, 

therefore, only quabtk.  

The work done by Zeller and his CO-workus is regarded as the ht attempt to predict the amount 

of charge that can accumiilatp!, or the volume it cm occupy in nielPilztncs[lS, 22-26]. 

EZecfn,ofirrcam mecltanks asnimes that the foanatinn of a partial discharge (PD) channel requires 

a formation enexgy, the maüuion or growth of a PD charmel Jeads to a reiease of electrostatic 

energy, and the growth is eaergetically possibk ody if the derivative offormation e w g y  is Iess than 

or equal to the demative of electrostatic eaergy to the growth CO-ordinate[25J. They proposed that 

this relation is a "unitj4ng" one for it is mdependent of whatever mechanism is predominant in the 

chamel formation energy or the electrostatic energy for cbannel propagation Thus, it rnight be 

possible to inoodi~ce any or any c o m k d  ef68ctr, into the relation and set up a specik modeL It 

has been f m d  that the breakclown field is rnuch higher than the space charge injection &Id 

requirement Z the presence of space charge is d u d e d  in a m o w  M o r e t  this resuit proves that 

space charge must be taken hto account m a breakdom modeL With the fiU ürniang space 

eharge(FLSC) mudel, the theuhion of the complicated space charge &m&y is simplified without 

any parameters(such as mobiary and trap dens0ties) acept the a5ticai fieid, Ec- Ir assumes that 

electrons wiU move into th msiilation if the electrk k h i  is gnater than E.. Since in a needle-plane 

set-up tk field will decrease apart h m  the needle tip, at some distance! the fïeiâ wiü be too low to 

support the movemnt of electrons; thus the electmns win stop moving and form the edge of space 

charges. Witlim the space charge edge, the ekctric &ld is asserted to have a magaihide h d  at Ec 

since elecaons will continue to move rapidly away h m  the cathode if E>& and wiü maintain a 

sufkknt volume of space charge to keep the field at L This space charge region is cakd the@&i 

hzifUIg space chwge. The mode1 predicts that then will be m relation between the PD level and 



riseful service lise because the crucial quantity for damage is the energy den* which depends on 

the hgth and radius of tbe chanmi, not the change in the total ebctrostatic energy caused by the 

discharge[25]. 

Compared with the PLSC model, the fmW mode2 provides an ewn more unifjing pi- 

covering homogeneous space charge mn, melihe stmctures, and fihunentary breakdown. A 

qualitatip.e relation is set up betwem the global f m  of the pattern and two simple ph- 

parameters E and E, The tree gmwth pro- is assumed to be proportionai to the local field 

 EL>^ when EbRE, and zero when The poteatial in a devebped tree structure is defined to 

be equal to VO+E& where Vo is the potentiai of the connehg electrode, s ïs the length of the path 

dong the structure which c o ~ e c t s  the pomt to the ekctmde. With -nt & and En the me 

pattern can be obtained by cornputer simulation. The space charge cloud was found to be 

homogeneous, leading to a ~e~limitatioa of local fieid enhancement as the FLSC mode1 d e ~ ~ l ' b e s  

when EFEI. Breakdown occm ody if the voltage eaceeds the pmduct E d  where d is the 

electrode spacing. The space charge cloud was fomd to con& of the non-symmetric charge 

disûliutions and fhmentary or treelike structures, whidi might îead to an amplification, 

propagation, and branching of the iocai field enhancement, when E,<E, Breakdown might occur at 

voltages MW EB m Uiis case. 

ThefmctaC mu&l illustrates the reWn between local stochastic and @bal deteaniniStic aspects 

of dielrctric iastabiüties[23]. In reaiity, Uie mntaialP are inhomgeneous on a microscopie SC*, or 

even on a macroscopic SC&, due to the dielectcic stracnire, morphology, structural inGguianty, the 

presellce of additives, etc, Zefler et al àoeve it would be possi'ble to absorb aIl h o w n  factors 

into an efktise pmbabiiity law for growth and to make detenninistic p ~ d r t i o n s  about the pattern 

of the preLebreakdown[23]. 

There have also been several theoretical solid breakdown modeis denbped for inhomogenous 

dielecûics. When a high electric fieid is applld, the typical phenomemi are that some sites may 

concentrate higher fieid, andlor some sites ma. have a lower ability to sustain the electric field and 

act as weak points. Therefore, More the cikW& balL breakdown, parrial discharges may occur 



in any intemal voids or bubbh that are present or may develop. The elecaic dkcharge or comna 

mechaniSm is conskked predominant. Besides, the grseous modsl proposed by Budenstein[29] 

and the weakpoutf b m w n  theorpI8J pments two typM ways to deal with the khomogenous. 

In the gaseous mu&Z, a c h  uhtihtkn of VatiOus physid processes whkh have been observed 

in many experiments are inciuded. A kge  number of material parameters and a number of 

assumptions wouId be necessary to proceed with the computation. The WC& point bnakfown 

theoxy, on the other han& uses a statisticat approach instead of considering detailed breakdown 

processes[8]. The probabiiity of breakclown is assumed to have a WeibUn distn'budon which 

re&m the weak point distributions inside &kctriCS, W a i  distabution is also accepted in 

insulation agemg studies. 

2.3.3 Discussions 

The processes leadhg to breakdom are complicated because breakdown is Muenced by many 

hors ,  such as the wavefomi of the appiied voltage, the e h d e  configuration, the properties of 

the conductor and the msalator mamiais, the quality of the mterfbce between the electrode and the 

insulating mamiai, etc.. If di the expexhental details are to be considered m a theoreticai model or 

a différent mode1 for every ddkent dielecoic under e n r y  dieerent ciccumstance is to be proposed, 

the model will be eirher too complicated or off& btk ingght into the ph+ processes mvolved 

and each has no practicai valw[lO]. 

The fwher devebpmen of breakdom rne!chanisms is compücated owing to the material propereies 

and the properties c h @ g  with tempemue, elccaic hld application, and otha environmentai 

conditions, A iink seans to be necmmq to account for the influence h m  an aie fâctors and to 

relate them with the ixeakdown, From the above m y  of breakdown mectumians, space charge 

charactegstics seem to be a basic chie for the breakdom developed uader high ncld and thus seem 

to be the suitable link. N o  matter how one desaibes the khaviour of bceakdown, thennaly, 

electromechanically, or p d y  electacaly, the actuai breakdom or partial breakdown happens due 

to the local field strength. The low breakdown voltage doesn't maa the local field strength iaside 

the diefectzic or at the in- betwcen the eiectrode and the dielectric is low. R a k ,  it suggests 



the importance of evaluating the actual neld distribution inside the diekctxïc under the high field, 

and suggests the i m p o m  of space charge disaibution which distorts the iocd &Id If the space 

charge disaibution can k fomd, it may provide more detailed iriformatîon about what happens 

inside the diel?ctric and may help to construct some simple breakdown criteria 

2.4 SPACE CHARGE DISTRIBUTION MEASURING TECHNIQUES 

When an electric field is applied to a dielectec nn>tPirial several processes can take place. The 

dipoles are oriented by the field ions can migrate, and charges may be hpcted and/or extracted at 

the intehies under some Tiiese eBms couid be coasidered as usefd effécts as for 

electrets. However, they are very undesirable when the dielectric material is used as an 

insuiator(HV cables or capacitors etc.) as discussed in Section 2.3. In these two very dÎfhent 

situations, it B highly desirable to understand the physical processes mvolved in order to control 

them, for instance, to obtain long-Iifetime! electrets or, in contrast, to prevent the formation of 

breakdown conditions. Therefore, varioas experimentai techniques, such as electrostatic 

measurements, cuirent measurements, ekctmn paramagnetic resonance, and detemination of 

charge, field or potential distributions etc., have been put fornard to falnl diis goal. Among them, 

the charge distribution mea~utements are most @pifkant and am;in the most attention. This 

section reviews several main techniques that have been d e d p e d  for the charge distniution 

measurements. Ta& 2.3 smDmarues tbese methods and puts them info two categork destructive 

methods and non-destmctive methods Table 2 4  shows their principal set-ups, th& advantages 

and their disadvantages. 

2.4.1 Destructive Methods 

Potentiai probe techniques, the clasScal proceduces to measure charge distributions[3 11, have been 

appkd extensively on thick dielectrics and have yielded a wealth of mforraation13 1-33 1. The fieU 

pmbe techniqueo[34] is a typical example of these gmup methods Based on the principle for 

a capaciti. field probe[35,36J, it measurrs the charge distn'butions as the cut specimen moves with 

a mobile table. Because of the Gmitathns of cutting, diese group techniques are of linle use for thin 



fiims. Besides, the specimen is damaged after cuttiag. Also cutting may change the charge 

diSnlion; tkfefbre, these techniqpes are mt nry pop* today. 

The chaqe compensafion r n e t h t d ' ~  cornes h m  the method of vktud elecûodes worked out 

by Sessler et @31,37J in 1977. Also a destructive method, it is based on the generation of a 

conducthe ~ g i o n  within a two-sided metallLed and short-circaited sample by meam of a scanning 

ekctron microscope pmviding a mono-energetic, dafpse beam whose ewgy  couid be adjusted in 

the range of 5-55keV. Wben the h n t  of the conductive region, which f o m  a virtuai eiectrode, is 

swept through the sample by kmsing the beam energy, ait the charges onginaIl. stored within the 

material are pmgressively compensated for, resukïng in a release of the induction charges residing 

on the rear ekctrode. The fiont electrode ofthe sample is connected to an electrometer to monitor 

the irradiation curzent whik the mu ekcuode is connected to a high capacirance charge meastuhg 

set-up to detemmie the measriring 4 values needed to calnùate p(x) in the sample with a simple 

set ofequatior1~[31,37]. CCM: can measiire the charge distn'bution with a resolution of lm 

MethOdZ 

1 : metbod proper for thkk sample 
2: m~proper for th in ! ihu  
3 : methoà propet for boîh thick sample 

and thin illm 



11  ess sure Wave ~ q q p t t o n  MW I 



There are other destructive invasive probing methods, for example, diBL4ng chernical solvents 081 

to Hxrate trapped charges. Because destructive methods camot be repeated on the same sample. 

t k y  are not suitable to masure the dyDamiE change ofcharges[39], and therefore were not chosen 

m the research. 

In 1977, besides CCM, there were two other methods reported[32] w k h  built-up nvo basic 

principks for non-destructive space charge distriiution rneasurements. Oae was based on the 

thermal excitation. the method of short kat  pulses, proposed by CoIliPs[4ûJ, whkh was later 

developed as  the thamal pukke method[41-441. The other was based on the pressure wave 

propagation, tbe pressure pulse wave method, devdoped by Laureaceau et a4s], which was later 

called the pte~rure wuve propagation Method[46,47] or the laser-inducedpnsnm pulre method 

[Ml. In the 198% anotber two methods were deveioped basxi on the two basic principles. One 

was called the Caser intenSap moduLaiion method by Lang et al(49-511 in which fiequency- 

rnodulated waves were used instead of thermal pulses. The other was called the puked ekètî!m--- 

acoustic method by Takada et a52-56j or the elècoiorJlg slhiuhted acouslic wave method by 

Bernstein et a39,57-591, in w k h  the pressure waves were mtemaüy geoerated ar locations of 

charges when an eiectrk pulse was applied h d  of exte- geaerated by a laser. 

The basic pMciple ofthenrrcrlpulse~) method is to apply a step-like heat pulse to one side of a 

SPecEnen b~ i h m i d o ~ ~ .  The time variations of the open&& potentiai Merence across the 

specimen or the shortcircuit cumnt through tbe spefmien cm be analysed during the thexmai 

equali7iition afrer the nonuniforrn heating by the puise. The voltage or cunent response is due to 

the noauniform~ themial expansion and the bcai change in the dielectcic constant. It appears 

possible to calculate p(x) by deconvohuion of an integrai relation between tempera= Hicrease and 

voltage or arnait change co~~esponding to time[4@44]. 

In the hrcr in&* modu-n 0 method, each mhce of a sampk is exposed to a He-Ne 

laser beam whose mtensity can be moduhted in a Smus0ida.i bhion by an electro-mechanical 



chopper or an acousto-optic rnodulatoa6û-631, On the snrface of the semLtransparent and vacuum 

the propagation of temperature waves into the bulk of the polymer- As they progress through the 

sample, the temperature waves are attenaated and retarded m phase and provide a non-unifonnly 

distniuted tbemial force. This fixe mteraas with the spatkdiy distnited charges to produce 

sgiusoidal pyroelecalic carrent. The red and imagimypm of this current are then measured with a 

lock-m amplifier which has the same reférenœ phase as the fkquency gerrtator which derives the 

electtornechiurical (or acousto-optic) modalator- A special nurnerical andysis is reqmRd to 

transform the experimental current-fkquency data mto the desired spatial distriiutiom[49-51,60- 

631. 

Both these t h e r d  exchation methods may be perfbrmed repeatedly on the same sample. They are 

non-destructive, but the numehi analpsis is too complicated to originate space charge disttibutions 

fiom the measured s i m  for both methods. Thesefore, they were not considered fiirther- 

The pressun wavc pmpgafcon (Pm) method(45-4ûy64-71,77) applies a short rise t h e  pressure 

wave propagating at the velocity of sound in a dielectnc mateeaL This mechanical perturbation 

compresses the atomic structure and resuits m thRe effé*s: the displacement of charges following 

the atomic kttice; the vashion of the rrlative pemmmnty 
* . .  because of the variation of the local 

concentration of dipoles and charges; and the gemtion of charges by piemiktrk enects in the 

compressed region, These ttme efncts will vary the charges on both electrodes. The open-circuit 

voltage or th- short-circilit curent wili tbereikre contain inhmiation on the space charge 

distniution, the variation of piezoelectric activity in the sampky and the tirne! dependence of the 

pressure wave[74]. The wave fhnt of the pressure wave acts as a probe sensitive to charge or 

potential travehg at the vebcity of sound thugh tàe sample. If If pressure pro& is known, the 

electnc M d  distnition can be obtained h m  the meamemmt of open-circuit voltage (or short- 

circuit curzent) by nso1 .g  an integrai equatian. The total charge distn'bation cm be obtained 

through Poisson's equation, by desvation When the pressure wave cm be described by a short 

duration pulse, the open circuit vohage directly gives the spatial distriiutions of the eiecaic k l d ,  



while the short-circuiî current, dmctly provide the space charge de* distribution, after the 

complete penetraîion of the palse m the sample. 

The basic principle of thepukde lec~USIEC VEA) method is to apply a shoa duration elecaic 

pulse to the sampk. At locations wbere charges are pcesent, the displacements of the charges due 

to electric fôrces caased by the eleaec pulse will generate presswe w a w  whkh nansmit through 

the sampk. A transducec can be used to detect the pressme waxs and transfk them mto a voItage 

signal whkh can be amp&d, recorded and procesred to obtain the charge distri'bation. The 

principles and experimentai set-up of the PEAmethod are discussed in detail in Section 2.5. 

The group of methods involving pressore wave propagation, PWP and PEA, may be performed 

repeatedly in the same sarnpk while it is charghg. Space charge accumulation can be monitored 

dynamically so as to identify the behaviour of microscopie cha-rge motion[39]. Besides, the 

numerical and. to obtain charge distribution h m  measurements is much simpler than those 

thennai excitation methods. 

2.4.3 Comparing Advantages and Disadvantages 

The purpose of the survey on the avaiiabk spae charge distn'bution meamring methods is to 

compare the advantages and disadvantages of these methods and selea one among them that is 

suitable for the reseamb objeaives, 

The obpctives on space charge disttibution measurement are to find out how spaa charges are 

generated, accumuiated and transported to help m understanding the eîectric treeing and bzeakdown 

rnectilmisms in p o l .  PWP and PEA methods have become the prime candidates. PWP is a 

wen established method with high resolution. Wiih the application of a high quality kser, the 

pressuce wave can be as narrow as 311s. However, the set-up is very expensive and 

sophisticated[39]. 



Due to the physical limhtbn of the duration of the elecaic pulse and the bandwidth of the 

transducer, the resohtion of PEA caanot be as high as PWP. The higbest resolation reported, un& 

recently. is aromd 0.061~1, wliich corresponds to a pressme waw duration of about 30ns 

However, the eqmhmta i  setsp of PEA is much cheaper and sànpler than the PWP. It can be 

applied outside hiboratory environrnents. Since our investigation abjects are not 5ns, the 

resolution of PEA may be improved in this research to be high enough for the space charge 

disaiution measumnents, Based on these hcüngs, the PEA method is chosen to be fûrther 

developed and used as a tool to h . a t e  the space charge distnition dynamics in this research. 

2.5 THE PEA METHOD UNOER UNlFORM FIELD 

2.5.1 Introduction 

The idea of developing an ehxtn,-acoustic technique began in 1983152J. It was caIIed the electro- 

acoustic transducer technique and was used to masure electric fkld mtensicy at a 

dielecbidelectrode mterface. It provided information about the inte.r&cX electric kld that 

identified the poIarity of charge carriers but not about the field distri'bution throughout the bulk of 

the dielectric. Tbe acoustiE wave was excited by an alternathg etecteC source of lMHz TWO 

piezoelectric transducers were used to pick up acoustic waves fiom both high voltage and ground 

electrodes, and aaiiSnr them mto elecaic Sgaals, which would be amplikd and reCtined. The 

rectined signal amplinides were proposed proportional to the &c& field intensities at the nearby 

eiectrodes. 

In the middle 1980s, an hproved version calW Electric Stress Pulse Techngue[535(l was 

developed to measore the total charge quantiey and the meaa pmetration depth of charges in a 

plastic phte in;idiated by an ekchon beiun. A HV op to 20kV ekctric puise of 9 b  was used to 

generate an acoustic mve. Only one pie- transducer was iised at the bwe.@ound) 

electrode. An oscilbscope was rised to record the ekctric s Q d  tramfémd ftom the transducet. 



At the end of 1980s a princïpie ofproceSSmg the signals by the decomro1ution procedure was put 

forward[55,56J. This made D possible to obtah a space charge dishibution profile inde a materd 

This technique, &d the Pulsed Ektro-acoustic (PEA) rnethod, is non-destnictive, cheaper than 

the PWP method, and can be pezformed m sita with any space charge generathg experiment 

Therefore, research on Hapmving the PEA mahod and using it fôr the imresiigation of space charge 

efnrts has prweededemzsince- 

The first Snprovement on tbe method was to improve the transducer to obtain a nearly £iat 

fkquency response o w  the range of Fourier components averaged in the system pas  band, such 

that the output signal nom the transducer could be considered proportional to the detected pressure 

wave. Bemstem et al [39] used an acoastrany rnatched PZ3 transducer m place of the resonant 

structure ofprevious wo& while Takada et a1 1721 used a wider bandwidth PVDF transducer. nie 

width of the electric pulse was reduced to 30ns for a higher remlution and the possMky of applying 

a direct method for charge distaiution measuements The basic prinale of the PEA h o d  

under a Unaorm field assumption, the two already devebped signal processing methods (the 

deconvoIution procedure and the dûea method), abng with a summary of the experjmentd 

research using the PEA method, are disciissed m &tail below. 

2.5.2 Basic Prfnciple for Uniform Fieid PEA Method 

The PEA method for obseniing &nt space charge in diekcrric msuktors involves applying a Eut 

and relatively small voltage puise across a sample conminhg space charge. The perturbation 

launches a stress wave which propagates at a veiocity of sound and is Rceived by a piezoelectric 

transducer mounted in the acoustic pathI55J. The prsriple swip for the PEA method is shown in 

Figure 2.2. 

Under d o m  neM assumption, the electnc puise 6eld e h )  generated by the heelecaic pulse voltage 

vp(t) iaside the sampie is d o m i ,  which indiCates that any position aMde the sample, the ekcûic 

pulsefieIdisgivenby: 



where d is the sampk thicEmess. Eqriation (2-1) is valid mider the assmnption that the application of 

the d short duration electac puise WOU not nsult m an.. change of the space charge 

Assimie theRare m&ce cbargeswiih- and @ distribated onthe grotmd and the HV 

elxaode-sample mterntce$ and there are d u m e  space charges with d e n e  p(x) unüody 

distributed at each layer x as show11 in Figure 2.2. When the eîectric puise voltage v a )  is applied, 

these charges are subjected to additional elecnrc fbzces due to the electec pulse fields e,(t). The 

short duration additional electtic force acts on each small charge layer and mates an acoustic 

pressare wave[39,55,72-7q. If the generated pnsnrre wavcs are considered to be plam waves 

with amplitude propoaionai to the ekctcic forces* they wiii obey foztowing reIationships[55]. 

EQure 2.2 Diagram fot the pBncipIe of the PEA method 

At the ground elecaode-sampk incerfiice? the pressure wave: 

and at the HV eJectrode-sampîe intedice, 
I 



where K is a constant reiated to the Uansfer efnfiency h m  the charge viiration to pressure wave, 

~ ~ ~ f w t h e ~ s p a o e p e n n i t t i v i t y i m d ~ , i s t h e t e l a t i v e ~ c ~ n s t a n t o f t h e s a m p k  

material. 

When pressure waves an generated h m  th& sources, they wJ1 be nairsmitted dong +x or ;r 

direction The pressure w a .  dong -x direaion are ttansmitted thcough the sample, through the 

ground electtode-sampie mterface, then ~ a c h  the Ûansducer and constnict the h t  signaL The 

waves tht  are mmnitted almg +x diRctPon wiü mich the HV elemde-sample mterface 

part of them will be dected  at the HV inteditce and will be t m s m b d  back through the sample to 

the ground ekctrode-sample intedke. The part of these waves that can be eansnitted through the 

ground mtedàce will get to the tmsducer and hm the second signaL Whenever pressure waves 

reach the ground inteiface, part of them wiii be reflected back to +x direction and thns there wiIî be 

the third, the fourth, etc. signals which wiIl eventuriay decay to zero since the reflection coeflkients 

are Iess than 1. 

Assume there is m attenuation and dispersion for the acoustic waves dnring theg propagation, and 

the linear superposition principie can be used when two or more acoustic waves mteract The total 

pressure wave detected by the uansducer couid then be wdten as a sum of all signals fkom the fim 

signal n=l to n=hfmity: 

where c2 is the vebcity of sound transmated through the sample mamiai, & is the ground 

elecaode-sampk intedice ttansmisnoa coefncknf and & is tbe HV electmde-sampk mtedkce 

refiection coefkknt, If Zg, Z, 21, and Z, stand for the 

electrode, the sample, the HV electrode, and the 

acoustic impedance of the grotmd 

transducer mat& respectively, 

then, K, = 2zg , and K, , 2, -2, 
2, + z* 2, + Z h  



The acoustic impedaact of a material is equal to the density of the material times the velocity 

of sound traosmitted through the material[85,86]. 

The total Sgnai is therefore based on tbe first and the second Spnais. It is proposed that balf the 

almg +x direction and half wili be iraasnated signal after generation wili be traasmned dong -x 

where, 

In equations (218)-(2- 1 1). tkb is equal to VQ. where 1 is the length of the ground ektrode 

(acted as a delay line), cl is the acoustic velocity of the ground electrode materiaL Aluminum 

I is generaily used as the ground eltctrode materiaL ki, k2. and k~ are constants, = - XX,K. ,  
2 

Due to many other effects that may be present and auence the later signal, the space charge 

distributions have been obtained by recording and processîng oniy p,, ( t)  + p,, ( t )  + p, ( t )  . part 

of the whole pressun waves. 

When pressure waves reach thc transducer, the piezoelectric transducer will transfer the 

detected pressure waves into a voltage signal which can be amplined by an amplifier and then 

recorded by an oscilloscope. 



The whole detecting system(transducer, arnpiifïer & oscilloscope) is considered as a iinear 

the-invariant system. If h(t) is used to account for its system d e r  function, vdt) stands for 

the output signals recorded by the oscilloscope, then, fiom system point of view, vdt) codd be 

expressed as a convolution of h(t) andp(t). 

2.5.2 The Deconvolution Procedure 

To obtain space charge distriiution nom measurements, the deconvoIution procedure was 

pro posed in 1988 [69 1, using fiequenc y domain analysis to obtain space charge distributions. 

Although surface charge response was used to calibrate the space charge distn'bution densiq, 

only the signal correspondhg to the intemal space charge disaibution P(x) (Le., related to 

pressure wave p,,, (t)), was considered in the method. The presence of CQ and oi was not 

mentioned in the developed procedure. 

Defbe 7zdc2, equation (2-9) can be written as: 

Combining equatiom (2-12) and (2-14), the e&ct of intemal space charges on the first output 

signal v , ~ ,  (t) cm be written as: 



If V,, V), R(B. -and H(B stand for the Fourier uansforms of vspl (t). r(t), and h(t) respectively. 

in the fiequency domain. 

v,* cf) = &H(f )RCf w, Cf 1 exp(-.P*,,, 11 - 
It is proposed that the space charge distribution can be obtained fiom: 

'(t) =F-I(RV))=~+(~ vrplcf) 1 - 
2 2 VIEp (f )exp(-j21Fftuay 

Before applying equation (2-17), it is necessary to know the denorninator 

k2 c2 H( f) E, (f) exp(-j2Md*) , which re£îects the measuring system vansfer function This 

is obtained from a sheet of charge. Two ways were used to generate a sheet of charge. One 

was to use the ground electrode-sample interface surface charge 010 as shown in Figure 2.3(a); 

the other was to generate a sheet of charge as shown in Figure 2.3@)[57,58]. 

Figure 2.3 Methods used to obtain a sheet of charge 

If the same materials and same contacting interface are used (Le. ail constants reiated to 

acoustic impedance of materials are the same), it can be deduced that under the same elecvic 

pulse voltage vP(t), the output voltage signai for Figure 2.3(a) case is. 

while the voltage signai for Figrire 2.3(b) case under the same electric pulse voltage vP(t) is, 



where, under unifom field assumption, 0x0 and aequal to &&VI d,. 

Figure 2.3(a) c w  is usually used to calibrate the space charge de*. Consider only Figure 

2.3(a) case, speciaüy, for &=d, hn, vp(t)/&=ep(t). When vP(t) is much smaller than the 

applied dc voltage V, the second tem in eqaation (2-18) can be omitted directly (Let vs#'(t) 

denote that the second term have ken omitted in vrl&)). AIternatively, one can fkst apply no 

dc voltage(V=OkV) to get an output voltage vm(t) only owing to the second term, then apply 

dc voltage V to get vS~a(t), subtract vrlm(t) from vrldt), the second tenn cm be taken out(let 

~~~o'~'(t)=v~~o(t)-v~~oo(t)) .  The Fourier eransforms of vS~fJ(t) or vsId2)(t) can be readily written 

as: 

Therefore, equation (2-17) can be simplified. A h ,  due to k1=k2, 

When r(tJ is available, the space charge distribution p(x) can be obrained cornpondingly. 

2.5.4 The Direct Method 

To get rid of the deconvolution, a direct method was proposed in 1994[7q by applying a 

short-duration p u k  and wide-bandwidth tsmsduaz with a neady 8at fRsuency response over 

the range of Fourier comporients a- in the system pass biud, such that the bmdwidth of 

U''C~) or ~ 1 d ~ ~ m  is much wider than that of RM; &/JJ@ or &d2'fl can then be considered 

as a constant to RM. Altematively, fiom time domain point of view, vSd1'(t) or vS1~''(t) signal 

is much n m w e r  than r(t), such that v,#'(t) or vr10'2J(t) can be considered as an 8 impulse to 



r(t). The measured signal Y,, (t) is then proportional to rit), which means that v,, (t) &ecdy 

gives the space charge disaibution. 

The fkst signal vs1(t) is considend but only the space charge distribution Y,, (t) is focused. It 

is supposed that the duration AT of the electrk pulse edt) is much shoner, such that edt) in 

equations (2.8)-(2.10) can be consîdered as a delta hioction with an amplitude e,. Thus, v&) 

had the relationship as: 

~ , l ( t )  = Ki, C W l  +&r(t)AT + k j ~ ~ I e p  (2-22) 

where Kh was a constant related to h(t), 

To obtain space charge distribution, constants are calibrated by integrating the surface charge 

respoose v,#)(t) or v#)(t) which can be obtained using the same rnethod as described for the 

deconvolution procedure. Since vJ~d"(t) or ~ ~ l ~ ~ ' ( t )  is linearly reiated to 010,  the integration of 

vs&t) or vZ~dZ)(t) has the relationship as: 

2.5.5 Discussions 

The principle of the deconvolution procedure is simple but the appücation of the procedure in 

practice confro-nts difficulty. First of ail, it is not reaiiy possible to obtain [ V I # ' ~ - ~  or 

[ v ~ ~ $ ~ ' v ) ] - ~  by simply "inverting" hf'(j7 or ~,'~'y). As [81) cited the practical 

impkmenkrrion of th& pn'ncfpk is trfcky, since the system is wt necessarily stable and 

strongly amplinles al1 the additionai disturbances in the frequency ranges around the zeros of 

the function V I f @ .  Additionaiiy, the signals vS&) and v,, (t) obtained fkom practical 



measurernents are contaminated with noises. Because we never know values for the noise, we 

can never cornpute exact et) fkom eqoation (2.21). Finally, because we can never compute the 

exact inverse operation, it may be very difnnilt to obtain a high resolution version of the 1-0 
instead of a b1-d version[82]. As shown in Chapter 4 when ~ t # J ~ ~ - L  or [ K J ~ ~ ' ~ ] - ~  is 

stable and a perfect inverse! operation of &#'fl or &~')(fl, no blUmng occm. However, 

when [KI(/"'c~)]" or K~~(2)@]-1 is not stable a d o r  signais are comipted by additive 

noises(wh.ch is mostly what happens in practice), the obtained resdts can be mneous. 

The signai proceshg in the diRa method is much simpier than the decomoIution procedure. Of 

course, the cost lies in makmg a shoa duration el8ctric puJse and a wide bandwidth transducer. 

When the ekctric palse is shorter, the pressure wave has more high ikquency contents, and 

the attenuation and the dispersion of the pressure wave, when transmitted through the 

polymeric sample material, become severe. The space charge distribution obtained by the 

direct method then needs a 66recovery" whkh has to add a transfer function to account for the 

attenuation and dispersion effects and thus has to implement a deconvolution process in the 

end to accompliîh the "recovery"[83]. Then, the "simple" direct method becomes 

complicated. 

The deconvolution procedure disregards the srirface charges at the electrode sampb interfaces, 

wNe the direct method cm only represe11t these surface charges as shapes of the electric pulse 

with a dmtion of AT which are lke space charge distdbutions. This is due to the basic 

assumption that, for the direct method to apply, the bandwidth of charge distribution shodd be 

smaller than the bandwidth of the detecting system trans6u funetion and that of the electric 

puIse. Shce the siidace charge is corresponding to a 6 impulse in the space charge 

distribution, its bandwidth is firom zero to inhnity, diue is no way practically to have a 

transducer or an ekctnc puise with such a wide bandwidth. Therefore, by the direct method, 

the surface charge can never be represented by a 6 impulse in the charge distribution but 

bluned with a duration around AT. The resoIution of the direct mthod is proposed to be 

cAT.By eIecm>-beam-iaadiation, spaa charges may mahly distribute in the center of the 

dielectric with induced surface charges at eiectrode sample interfaces. For a thicker sample, a 



short duration eiectric pulse, and a highly damped transducer, the signal respoose conhg from 

the space charges may be discemed nom the surface charge signals and processed 

independently. By applying a high electric field, space charges are genediy dûuibuted near 

the elecuode polymer sample interfaces. where surface charges are usually present. The 

surface charges may be caused by the applied fkld or be induced by the inside space charges. 

Therefore, when the direct method is applied, it wdi be hard to distinguish fkorn the output 

voltage signal whether the distribution is innuenced by the s u d k t  charge or the space charge. 

The accuracy of the obtained space charge densities near the interfaces is then greatly 

decreased. 

Above aIl, work still needs to be done to improve the signal processing methods for the PEA 

method. The work must focus on improwig the resolutioa and the a c c m y  of the obtained 

space charge distriibutiou, especially near the interfaces by trying to make surface charge 

distinguishable fmm the space charges. Section 3.2 wül discuss the above comments m e r .  

2.5.6 Summary of Expetirnents Using the PEA Method 

The PEA method has successfuny ofked tirne-resolved space charge disaïbution pro& generated 

by two approaches. nie fim was space charge gerierateà by a p p w g  HVDC vohage[57], and the 

second was generated by miplanting an electron-bearn at one boundary of the sample[55,56J. 

A few years ago. thece were only a few studies ushg tk PEA method to mvestigate bnDc space 

charge behaviours and inte- efltécts, such as shidying the buik space charge behaviours in 

PMMA un&r imposed vimtai cathode conditio@8], characterizing the charge behaviour of 

PMMA sampies at temperature h m  40 to 90°C with moderate appiied fkIds[57] and comparing 

the space cbarge distributions un&r CXLPE-Oü, Semiconducting-PE-Semiconducting mterfàce 

conditions[73-75J. Recently, a lot of papers have pre~ented their reseuch on space charge 

dynamics m poiymers ushg tbe PEA method Tb is due to the k t  that the PEA method, despite 

a lot of debate, bas gradUany beui accepted as a poweril and simple tool to present space charge 



distriions inside polymers; it is also due to the urgent demand to understand the space charge 

dynamics in polymers so that poiymrïc msulation, such as XLPE cables, can be appoed with more 

reliability. 

U n k  plane-plane and cyhdrical ekmde set-ups, polyethyiene(mainly, LDPE, and XLPE) have 

been actkly studied uader dc voltage application It has found that space charge distributions in 

polyehylene strongly &pend upon additives, by-pmducts of the crosshkkg reaction, olridation 

products, and the electrode ma&kk[78-80]. The d t s  are summarized as encouraging the 

formation of hetemharge for non-crossliakwl LDPE. For XLPE, an additive çuch as antioxidant 

prohibiteci the formation of heterocharge, w k  the byproducts encouraged the formation of 

heterocharge. Besides, heterocharge accumuhtion is found to take place m A y  under a iow field, 

and tends to saturate. Under a high Md, beterocharges were formed soon &r the application of a 

voltage, folIowed by tbe injection h m  the cathode. Followiag this, intermittent injections of charge 

packets h m  the anode are found to take pkce. The space charge distribution kept chaaging 

without becommg s*. 

Besides the experiments under dc application, the PEA method bas attempted to be applied to ac by 

ushg a voltage pulse generator with phase-resolving fiurtion[79]. The direct method has ken 

used to get the space charge distributions h m  measurements. It seerns tbat the PEA method is 

very promising, bemg easy to apply to various measmement conditions. If a better data pmessing 

method can be proposeci and applied to provide higher resohtion and hi* accuracy of the space 

charge distributions, this method can be a mature and relia& tool for space charge dynamic 

investigations and on-iine detection to belp m the understanding of the solid breakdom mechanism 

and the accompliîbment of nliable pre-huit âetectim of the insulation systems. 



CHAPTER 3 

SIMULATION MODEL 

The great need to investigate space charge accnmuiation inside solid dielectrics under high 

elecaic fields has stimnlated the development of space charge distn'bution measuring 

techniques in solids in the high voltage insulation area. At present, the research goal is not jus 

to obtain the charge distribution prome but also to represent the space charge distri'bution with 

higher acmacy and higher resolution. For aI1 the distnition masorring techniques, it has 

been difnnilt to àistinguish surface charges from the space charge distr'bution rneasurerrients. 

Under high eLectric fields, space charge distributions are mostly homocharges or heterocharges 

distributed near the elecaode ~arnple i n i d c e s ,  where sdace charges are usually present 

These sudace charges may be caused by the applied voltages W o r  be induced by the inside 

space charges. Unless specially compensated, they cannot be treated as zeros even if the 

electrodes are short-circuited. Thaefore, if s d k e  charges can not be distuiguished fkom the 

space charge distributions, treating the mked distributions as the space charge distrl'butions 

would definitely lead to the inaccurate representation of the space charge distributions. 

Arnong the available measuring techniques, the Piilsed Electro-acoustîc (PEA) method has its 

own advantages o v a  the others due to its simple experimentd setup and the simple 

rehtionship between charge distributions and output signals. Signals rneasured Mder Pnifonn 

fields by the PEA method have been processed by the deconvolution procedure to obtain space 

charge distributions since 1988[55J. To sirnpw data processhg, a direct method has been 

proposed [76] in which the deconv01ution is cdiminated. As discussed in Section 2.5.5, the 

practical hnplementation of the deconvolution procedure is difonilt, and the direct method 

cannot represent surface charge weïl and loses its SinipliCity when the attenhon and the 

dispersion of the pressure wave have to be considered(because the deconvolution process is 



necessary to account for the attenuation and dispersion factors when high frequency contents 

increase). The direct method limits the system resolution to the width of the electric pulse 

whereas the resolution for the deconvolution procedure depends upon whether the system is 

noise fiee (or with high sipal-noise ratio)and invertiabla The direct rnethod can only 

represent a surface charge as a short duration distrîbution instead of a 6 impuise whereas the 

deconvolution method anempts to evade the presence of sOTface charges. When surface 

charges caanot be distingukhed fkom space charge distnbutons, the accuracy of the obtained 

space charge distribuion decreases especidly near the mterfaces. Therefore, the proposed 

simulation model has been designed to improve the deconvolution procedure such that the 

measuring system need not to be noise h e ,  and, in the meantirne, to enabie surface charges to 

be disthguished fkom space charge distributions, thereby improving the resolution and 

accuracy of the obtained space charge distribution. 

This chapter re-analyzes the PEA measuring system in Section 3.2, then discusses how to 

apply the simulation model to obtain space charge distriiutions under unifom fields(p1ane- 

plane ekctrode configurations) in Section 3.3. The extension of the simulation model principle 

to nonunifonn fields(need1e-plane electrode configurations) is presented in Section 3.4. 

3.2 RE-ANAL YZNG THE PEA SYSTEM 

3.2.1 Introduction 

From the literature reviews of space charge disuibution measuring techniques(Section 2.4). the 

measuring principle of the PEA rnethod(Section 2.5) has advantages over the others. From 

M e r  literature reviews of the PEA method (Section 2.5), it seems that a novel signai 

processing method is necessary to overcome the difficulties of the deconvolution procedure 

and the direct method In order to have a better appreciation of the new signal proceshg 

method(simuiation mode1 method), the PEA measuring system, the deconvolution procedure, 

and the direct rnethod are n-analyzed from the dynamic system point of view in this section. 



3.2.2 System Representation 

Re-consider the typical uniform field PEA setup as shown in Figure 2.2. If pdt) hchdes only 

the detected pressure wave pdt), pd(t) and pdt) among the totalpl(t)+ p2(t), generated by 4, 

p(x). and q respeztively, fiom equations (2-7)-(2-IO), considering kz=kl. and let k'=kdkl, one 

c m  obtain: 

where the syrnbols have the same meanings as described in Section 2.5.2. If the detecting 

system(transducer, amplifier, and oscilloscope) can be regarded as a hear time-invariant 

system. and h(t) accounts for its system transfer function, the output voltage signal obtained 

from the oscilioscope corresponding to the pdt) has this relationship (Appendur A-2 and A-3): 

Due to the presence of the second tenns in equations (3-2) and (3-4). pdt) and pdt) are no t 

linearly proportional to the SUfface charges ai ami at. Three approaches can be used to take 

the second terrns out of the equations. 

1. If edt) is very mail compared to the ekuic fields OI/'E~ and at the interfaces, the 

second terni can be directiy neglected, and denotes this vdt) as v!''(t). 

2. If the sample staas  with no space charge inside, one can obtain vdt ) ,  which is due to only 

the influence of the second terms, and hence we cm get rid of the second term in 

v!"(t) = v,(t)-v&). 



3. For general cases, one can apply a positive pulse nrst to obtain v,(t), and then apply a 

negative pulse to obtain v,-(t), and then obtah ~ ~ ~ ) ( t ) = ~ ~ [ v ~ + ( t ) - v ~ ~ ( t ) ]  in which there are 

no second tenns. 

If we let vJt) represent v/(t),  vl."(t). or vi3'(t), it can be shown t h ,  after any one of these 

three approach&, 

For a same thickness sample that contains no space charges, Le., pO=û, surface charges 0 1 0  

and am are dismited on the groumi, aad HV electrode-sarnple mtekes when the sample is 

subjected to a dc voltage. Under the same setup and experhental conditions, the voltage 

signal respoDses for the t h e  approaches respectively vslo"'(t), v,ldt)(t), and vs1i3'(t) to the 

surface charge has the nlationship: 



Let g(t) be the voltage response to a unit surface charge, 

Equations (3-6)-(3-10) can then be combineci and simplined as: 

Let X = C ~ Z  so as the space domain signals are traasferred into time domain signals, where the 

space charge distribution p(x) is correspondhg to HZ)), (3-13) can be written as: 

or in more compact fonn: 

v, (t) = [cl S(t) + c&) + K o26(t - d / cz )]* g(t) 

Equation (3-15) indicates that the PEA system c m  be dexribed as a hear the  hvailant(LTI) 

system as shown in Figure 3.1. The output signal vJt) is the convolution of the charge 

distriiution(surface charges and space charge disuition) and the system vansfer function g(t) 

(Appendix A-2 and A-3). Since a e a c e  charge corresponds to a 6 impulse in a space charge 

distribution, g(t), the output response to a unit surface charge, acmally comsponds to the 

system impulse mponse (IR). 

Figure 3.1 System representation of the PEA principle system 



The LTI system satisfis: 

Output = Inpur * IR, 

where, 

(output = v&) 
d {Input = @(t) + c2r(t) + Y u26(t --) 
c., 

Therefore, to obtain the charge distriibution, it is associated with the "inverse problem" of 

generating the Input to the Ln system kom known values of its O~tput and IR. This is called 

deconvolution. 

3.2.3 Re-analydng the Deconvolution Procedure@CON) 

Since the Fourier transform of equation (3-15) has the fom: 

Without considering cl and 02, the deconvolution procedure reviewed in Section 2.5.3 was 

actuaily attempted to obcain input nom: 

where vQ(t) denom the part of sigaals coming fkom the inside space charges. As it is known, 

when space charges are distributeci near the surface charges, it is hard to obtain v+(t) from 

v&). However, this is not the onïy difficuIty of the deconvolution procedure@CON). 

I f  I.~*'denotes P ' [ I / ~ ~ I ' ) ] ,  it can be deduced that: 
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~nput  = output *IR-' (3-2 1) 

The procedure can be represented as shown in Figure 3.2, where GV) is the Fourier transform 

convolutim deconvo lutio n 

Figure 3.2 System representation of deconvolution through direct inverse of system IR 

D 
Input 

As discussed brieily in Section 25.5, the procedure to get the input is "tricky"[81], panly 

because it is not really possi'bk to obtain the operation of IR" by ''inverti&' a system's IR. if., 

for example, some of the system's zeros lie outside of the unit circle in the cornplex Z domain, 

then IR-' will be an unstable operatioa Some of its poles will be unstable because they will lie 

outside of the unit circle; therefore, direct inversion of IR is never recommended[82]. 

GO 
IR 

AdditionaUy. the measured output of a Ln system is often contaminated by additive noise, Le., 

Measrtred Output = Input * IR + Noise (3-22) 

, v ( t  * 
output 

so that 

Input = Mearured Output * W-' - Noise* IR" (3-23) 

Cf@ 
IR-' 

Because we never know the values for the noise, we can never compute the input from (3-23). 

Even if we can compute IR-', it is extremely difncuit to compute ~oise*I.~-'. Negiecting this 

tenn may lead to serious emrs in mconstnicting the Input. 

~ n ~ u :  

Finally, because we cannot compute the exact inverse operation, it may be very diffkult to 

&tain a high resolution version of the input instead of a blurred version because 



input = measured out put*^^-' - noise* Li?" 

= (input*~~+noise) *IR-' - noise * IR-' 

= input*(ZR* IR-') = input* resolutiunfunction 

where 

I f  IR-' is a perfect inverse operation of IR, then the resolution function is a 6 hinction. No 

blurring occurs in this case because, when resolution hction is a 6 function, the convolution 

of input with a 6 fimction is the input itseK EIR-' is les than a perfect inverse operation, then 

(IR* IR-') does not equal a 8 fruiction Instead, it equais a smeared delta hinction, where the 

amount of smearing depends on the bandwidth of the IR operation and signal-to-noise ratio. 

Figure 3.3 shows the profiles of the resolution hinctions[82]. 

blurred 
reso1ution reso1ution resolution 

Figure 3.3 Resolution Fmction 

Noise ,+ 

Figure 3.4 System representation of the PEA measuring system 

The design of a deconvolution operator requires a carefiil balanchg of bandwidth and signal-to 

noise ratio effects The more realistic measdg  system representation is shown in Figue 3.4. 

The actuaily measured signais are denoted as v,&) and g&). which satisfy 



v, ( t)  = v, ( t)  + Noise = Input * LU + Noise 
(t)  = g(t)  + Naise = LU + Noise 

The DCON is a design procedure based on deterministic principles. It is inadequate because it 

totdy neglects the signal-to-noise-ratio effects. 

3.2.4 Re-analyzing the Direct Method(DM) 

If a system 1 '  is a perfiect 6 impulse or an approximate one correspondhg to a very wide 

bandwidth compared to the bandwidth of an input signal, Le. one can write IR= k&). When 

the signai-to-noise-ratio is very high(the noise is negiigible). The Output signal is proportionai 

to the actual Input as: 

Output = input * k&) = k x Input 

Input = Output / k (3-28) 

which means only a hear  calibration is necessary to obtain the Input Erom the Output. 

The direct method@M), as described in Section 2.5.4. is attempted to obtain the space charge 

distribution in this way. 

or more precisely, 

where the denominator is a constant. 



The DM overcomes part of the diflidties of the DCON as the deconvolution process is 

elirninated. However, as discussed already ia Section 2.5.5, due to the presence of surface 

charges, the bandwidth of the input is fiom w o  to innoite, the direct method still has 

difticulties unless one can get rid of sufiace charges or parantee that space charges are not 

distributed near the d a c e  charges. Only in these two special situations, the output signals 

vSd(t) due to space charges can be distinguished f?om those due to the surface charges 

k.02 

Input 
I, 
IR Output 

+ 
ideal case 

practical cases 

Figure 3.5 Comparing direct rnethod resdts for the ideal and practical cases 

Fiist of al& it is impossii to have IR= k&t) due to the limitation of generatmg such a narrow 

electric pulse and the fact that attenuation and dispersion become severe in polymers for higher 

fkequency contents. If one negiects the presence of the surface charges and assumes the 

bandwidth of the system IR cm be considered as a constant correspondhg to the space charge 

distribution, the obtawd space charge disuibution near the interfaces will be blumd with the 



surface charge signals. The accuracy is decreased and the cesolution is limited to the duration 

of the sysiem IR. Therefore, the accuracy and the reso1ution of the DM do not seem worth the 

efforts made to increase the bandwidth of the system IR. 

Additionally, for a practical PEA measnring system, additive noises and overshoots may not be 

totally &d out They may be disregarded as part of the space charge distrïibutions. Figure 

3.5 compares the DM resuits for the ideal case, and one good and one bad practical case. 

Since it is unreaiistic to have the ideal case, it is not proper to blindly assume the system IR û 

ideal and disregard the acaial waveshape of the system IR 

3.3 UMFORM FIELD SIMULA TlON MODELS 

3.3.1 Introduction 

The simulation model is proposed to overcome the previously discussed diniculties of the 

DCON and the DM methods. Attempts are made to distmguish surface charges flom the 

space charge distribution in the simulation modeL The basic idea of the simulation model 

principle is to sirnulate the charge distribution in the discrete-time domain using the measured 

data from the PEA measurement [VA) and g&], and determine the charge distribution by 

rninimizing the clifference of the error between the measured data and the predicted d u .  

ln the simulation model, the system IR needs to be a broad bandwidth but not Iike in the DM, 

in which it has to be at ieast approximately a 6 impulse. The system IR will be funy considered 

in the simulation model in constrast to the DM, where only the integration of IR provides the 

denominator constant. The way to obtain the input (ie. charge distribution) in the simulation 

model is &O by deconvolution, but the design of the deconvolution is based on stochastic (Le. 

random) p ~ c i p i e s  iiistead of deterministic principles. The deterministic procedure totaiiy 

neglects the sigml-to-noise-ratio effecu whiie the stochastk design procedure can hancile both 

the bandwidth and the signal-to-noiseratio effwts. 



Since the simulation mode1 obtaios the charge dismhtion in the discrete-thne domaia 

(Appendix A-4) through digital simulatioa many algorithm in discrete-time signal processing, 

system identifkation and control theory can be applied. In this thesis, only one approach is 

attempted. It is called the point matcbing simuiation model PMSM) approach. AlternatRrely, 

other deconvolution approaches (such as the minim~vâriance deconvolution approach, 

maximurmlikelihood deconvolution approach. etc.) may be bonowed to construct other 

simulation model approaches (Appendix C). The cünerences m n g  them wiII be their models 

set for the system and the methods used to detemine the values of the mode1 parameters. 

Whatever the approach, the simulation model has three main steps[91]. 

1. Setting up simulation models ie., discretking the PEA system and setting up disnete 

moàels such as I'ut-model(charge distnouton), IR-mou, and Noise-mdek 

2. Determinhg the values of the parameters of the models, mainly obtaining the dismete 

charge dismbutio~ 

3. Reconstructing the charge disûibution fiom the discrete charge distribution results, which 

includes distinguishing sarface charges fiom charge distribution and reconstructing the 

space charge distribution. 

The three main steps for the point matching simulation model (PMSM) approach are detailed 

individually in Section 3.3.2, Section 3.3.3 and Section 3.3.4. 

33.2 Step 1: Setting up Simulation models 

"Models cm be constnxcted for different purposes. For complex modeh, it is connmn that the 

equations are not explicitly expressed in closed form. The model might then onIy exkt as a 

computer program that is useci for simulation Such rnodeîs cm be caîied simulation models." 

[841 

The objectives in setting up the simulation model is to simulate the surface charges q and q, 

and the space charge distribution Mx), mch that the hukvd  output signal SVik) generated by 



the sirnalated charge distri'bution is close to the measmeci signal with minimum error or a 

minimum statistical measme of SV(k)-vdk). The cornparison between the simulateci and the 

meamred sïgnàts can easily be done in the discrete-tim do& Therefore, the f m  sep is to 

discretize the measuring PEA system This task is accomplished by discretizing space charge 

distribution p(x), system IR and output signai. Figure 3.6 shows the PEA system in the 

discrete-time domain in contrast to the PEA system in continuous-time domain as shown in 

Figure 3.4. 

Consider N points equaiiy spaced within the sampIe. Replace space charge distribution p(xJ 

with (Nt2) pseudo d a c e  charges cr,(xi) to simulate the actual space charge distribution, let, 

( x i )  x ) ,  (i=O-ml), (3-3 1) 

w here m=O, xrv+i =d and Ax= XÏ+I -xi =dl(N+l). Equation (3-13) can then be witten as: 

If we define A=dx/cz, then x ~ i c z d ~ .  Equation(3-3 1) can be m e r  simplifieci and Wfitten as: 

where @O)= ai + q@), HiAr)= %(xi), (i=l-NJ, and @(N+ I )Ar) = K @+a,(d). 

Figure 3.6 System representation of the PEA systwi in discrete-tim domain 

Discretking vI,(t) and g(t) also by the period Ac equation(3-32) becomes: 



N+I 
v, (k) = o(i)&(k - i )  . 

Apply the Z transfomi to equation (3-35): 

where K,(z), G(z) and m) are the Z ~ansforms of v&), g(t) and asequence respectively. 

Equation (3-22) @es the basic convolution mdeL It contains three components, Le., inpur, 

IR and noise. The next step is to determine how to model the three components in the 

designated simulation model approach. 

The information of charge dismibution is containeci in the Input. From equation(3-35), the 

The PMSM approach uses equation (3-37)(ie. the Nk) sequence directly as the @ut model). 

When a nonlinear detection and opthbation process is used for "More Improvement" of the 

charge distribution results(as shown in Figure 3.8), the input a sequence is modeled as an 

event sequence q(k) M e s  an amplitude sequence d(k) as shown in equation (3-38). 

If other deconvolution simulation mode1 approaches are set-up, for example, the minimum 

variance deconvolution approach, the quation (3.37) Wk) may be used and assumd to be a 

Gaussian white sequence with ter0 mean and a certain variance. If the maximum likelihood 



deconvolution approach is used, the equation (3-38) is used and consiàered as a Bernoulli- 

Gaussian white sequence, which means that q(k) denotes an e h n t  of the Bemoolli sequence, 

and d(k) an element of the Gaussian SeqlIence. It is necessary to investigate whether the amai  

charge distribution Mk) or q(k) and &k) can be regarded as an Gaussian sequence or Bemouili 

sequence before one can apply these two weU-known decomolution approaches. This is one 

of the main reasons that the minimum variance deconvolution and the maximum likelihood 

deconvolution approach are not attempted in this research. 

2) IR-mo&k 

Equation (3-18) @.es the IR for continuous system, Le. LR=g(t). The sampled values of the 

IR(or g(t)) by Ar are denoted g(O), g ( l ) ,  g(2), ... ..., as descn'bed in equation (3-34). One 

model for IR is to use its sample values directly. This îs called a moving average(MA) modeL 

Usually, ZR is of finite Iength, ie. g(k)=O (or 4) when k4no or k2 m+M,  where mo acts as a 

delay. Then, 

The parameters of the moving average wdel are g(m+I), g(m+2), ... ... , g(m+M). 

Although they rnay not be exactiy detarinieci due to the presence of noise, the number M will 

be known as g,(m+l), gm(~+2), ... ... , g&m+M) are measured and known. The PMSM 

approach as presented in this thesis uses the MA =del for the system LR. To build np MA 

model nom the measured signal, one n a d  to choose the proper delay m, such that g(m)=O 

while g ( m ~ + l ) d .  Due to the presence of noise, the chosen deiay fiom the measured signal 

may not sa* the above conditions. If the delay is chosen at an earlier point. g(m+I)(which 

cannot be zero) is around zero, the simulation redts can be very unstable. If the delay is 

chosen at a iater point, g(m)(which should be zero) is not zero, the information of the system 

before the chosen mo wdi be lost. Therefore, for the PMSM, the delay will be adjusteci for 

better resdts. 



There are many other ways to model ZR, for example using the autoregressive-movïng average 

(ARMA) model which models the 2-transform of IR as a ratio of two polynomials, i.e., 

An ARMA model is descriid by 2n parameters(a1, a2. ..., a, and h, b& ..., b.) which cm be 

the smallest number of independent parameters. Generdy, the number of parameters that 

desciibe the ARMA model namely 2n, is much smaller than the nurnber M. For other 

deconvolution approaches, for example, the minimum vafiance deconvo1ution and the 

maximum likelihood deconvolution approaches, using the ARMA model may be better in order 

to reduce the dimension of the ma& involved and to speed up the computation However, 

for PMSM approach, because the relationships used to obtain the a sequence are simple and 

straightforward, the MA model is considered easier to apply. 

3) Noive-model: 

The Nuise in the PMSM is assumed to be additive, zero mean, white, and Gaussian. The 

symbol n(k) is used to denote an element of this sequence. For other deconvolution 

approaches, for example, the minimum vaciance deconvolution and the maximum likeiihood 

deconvolution, the Noise is also modekd as an additive, zero mean, white, and Gaussian 

sequence. 

It is necessary to mention that the simulation model presented above neglects many realistic 

and important effects that are often present in practical appiications. These effects can be 

Uicluded in the simulation model but at the expense of complexity. For example, the 

attenuation and dispersion effects, if they are not compensated for, wîii produce false values 

for the resulting a impulse sequence. Compensation is usuaIly achieved by applying a tirne- 

varying gain factor to the data[82,83]. The simulation model can be modified in a very 

straightforward marner to one that includes time-varying andor nonstationary eEects(821. In 

addition, other effects may be involved, such as colored measmement noise, and recorded 

signals distorted by a bandpass filter, etc.. They cm also be included in the simulation model if 

their characteristics are h o  wn. 



3.3.3 Step 2: Obtaining a Sequence 

This step is the core of the &dation model rnethods, Every set-up simulation model 

approach may have its own way to determine its model parameters. However, the goal of each 

approach is to obtain the discrete @ut: Q sequence or called c mipulse train. The way in 

which the PMSM is used to obtain csequence is shown below. 

According to the models that are set up for the PMSM, one can write the foiiowing 

relationships for the measured output signals: 

If noise is very small and negligibk, Le., n(kW, one can directiy have the relationship: 

v, (k) = m l *  g, (k) 

due to: 

If n(.) is no t negligi'bk, a "Noise reduction process" , as shown in Figure 3.8, is necessary. 

Since the noise n(k) is assamd to be additive with zero mean, white, and Gaussian sequence, it 

is proposed to apply an anti-causal, zero-phase filter such that the noise sequence can be 

rninimized and neglected. 'Ilie processhg scheme is shown in Figure 3.7. 

Figure 3.7 Rocessing scherne of anti-causal, zao-phase filter implernentation 



The relationship of the output aher the filter irnplementation is: 

where H&) stands for H/lfz)HAz), the equation (3-44) is correct on the condition that 

n(k)*hdk) is neglig'ble comparing to g(k)*hi(k) and qk)*g(k)*hdk). Since n(k) is an additive, 

zero mean, white and Gaussian sequence, Hkz) ïs chosen to be a certain point avaaging FIR 

filter. Best results are proposed to occur when the sequences v,(k) and gm(k) have a length at 

least three tirnes the filter order and when the sequences tapers to zero on both edges. 

After the filtering, one can have the simila, rehionship as equation (3-42): 

Applying the Z transfomi to equation (3-44), one can obtaln[91]: 

The difference equation that represents the system is: 

From this diffaence equation, one can get the relationship: 



Therefore, 

Similar equations c m  be obtained in temis of v a )  and g,,,(k) if the Z tramforni is applied to 

equation(3-42) for the case that noise is very maIl and negligible. 

This method is called point matching because the obtained CT sequence in convolution with 

g,' (k) (or g,F )  when noises are neg l ig i )  matches all the discrete points of v,' (k) (or vm(k)), 

k = l ,  2, ... , N+2. Although equations (3-46)-(3-49) fonow the detemiuiistic deconvolution 

procedure, the direct matching approach is not a detemiuiistic deconvolution, not only because 

the noise reduction@re-fiItering) process m h h b s  the noise effect but mostly because one has 

the fieedom to adjust delay m such that g,'(mo+I)(or gm(m+l)) is signincant for a stable and 

acceptable a sequence. Therefore, it is acceptable if there is stiü some noise comipted in 

g,' (k) and v,' (k)(or gm(k) and vdk) ) .  Besides, the O sequence obtained this way can be used 

as an initial sequence to start a nonünear deteaion and opthbation process(ND0P) for 

"More Iniprovemnt" of the charge distribution resnlts. The NDOP is conducted in the 3rd 

simulation mode1 step. 

3.3.4 Reconstructing S pace Charge Distribution p(r) 

The signal outputs of v,'(t) and g(t) fiom the digital oscilloscope are in discrete forms. If At 

stands for the signal sample duration fiom the oscilloscope. Ar is equd to an integer nurnber 

times At. This integer number is the step used in the simulation. If A denotes the step, the a 



sequence, aÿ)(j=û-N+1), under step A can be obtawd. If the simulation step is changed to 

another step, for exampk A', one can obtain another a sequence, d(j')(j'=û-N'cl). The 

definition of the pseudo sarface charges suggests that the densities %(xi) are alrnost 

propomonal to the step, whik the real siPEice charges br and q wilI not change their values 

when the step is changed. The presence of surface charges can then be extracteci from the two 

cr sequences. 

The surface charges @, rh, and pseudo srrrtzce charges q(0) and q(d )  cm be d e t e d e d  by 

solving : 

cl +ap (0)A = @(O) 
cl + op (O)&' = a' (O) 
K a 2  +ap(d)A=o(N +1) 
K oz t o P ( d ) A 1  =a'(N1+l) 

When ai, 02, and the pseudo surface charges %(O) and q(d)  are hown, one can take 0. and 

oz out and leave only the pseudo surfàce charge sequence cb(0). %(l), ..., ~(xc),  ..., and %(d). 

The space charge densities withui the sample at each step point can be determinecl fiom 

A data reconstniaor such as a zero-order hold can then be applied to obtain the space charge 

density between xi to Xi+l, where i=O-N. Thus, the contirnous space charge distribution in the 

sampie is obtained. Since the redts afta zero-order hold have some discontinuity, a 

waveshaper or smother can be applied to niaLe the space charge distribution smooth. This 

can be achieved using a zero-phase wavelet convoluted with the space charge distribution[87]. 

The anti-causai zero-phase filter desaibed in Section 3.3.3 is used in the th&. When space 

charge distribution is obtained, one can put fi and Q back in the position of O and d to get the 

total charge distribution, Le. "the Simulaed Charge Distribution" as called in Figure 3.8. 

Since the simulated charge d i s a i o n  is continuous, it is possible to discretize it in a very 

small step such as A=1, the sampling rate. The obtained O secpence is denoted as do). Then, 

if the system IR-mode1 sampfed at A=l is applied, one can obtain the simuiated output: 



impulse response sampkd at A=1, and N, denotes the total sampie points nom O-d when A=1. 

Then, one can compare vmD(k) with SV(k) and see if the dinerence between the two is smaü 

and charge dise'bution is acceptable. If F(k) is nsed to stand for [SV(kJ-v,'(k)], the best 

result is that F(k) iF srna compared to the noise level and white, containing no more charge 

distribution information. If F(k) is not smd and the charge distribution based on common 

knowledge is not acceptable, one needs to adjust the delay mo andor simulation step(A andlor 

AT) and go back to Section 3.3.3 (the "Point Matching DecomoZution" as called in Figure 

3.8) to obtain a new a sequence. If F(k) is small and the charge distribution is acceptable. "the 

simulated charge that represents the ac-1 charge in specimen M i n  given tolerance", as 

called in Figure 3.8, is obtained. 

As will be shown in Cbapter 4, the results obtained fiom the above processes usually are 

aiready better than those obtained fiom the DM and the DCON, and cm be output to generate 

"the space charge dism'bution obtained ly the simulation mdel" by detracting the surface 

charges 01 and @ fkom position O and d (fiom "the simulnted chmge that represented the 

uctziul chmge in specinzm within given tolermce"). Additionally, for the PMSM approach, 

the already mentioned nonlinear detection and optimization p r o c e s s ~ O P )  c m  be applied if 

one wants "More Improvement' of the results. After the nonlinear detection and optimization 

process, the most s i m a n t  O sequence, d(k), is obtained. The d(k) sequence can be used to 

construct the "simlated chmge distribution" and give the improved "space charge 

disnibution obtumed by the simulation mdel". The demibed procedures of the point 

matching simulation mode1 is summnrUed and shown in Figure 3.8. 

The NDOP proposed in this research to obtnin the most sipnincant CJ sequence contains three 

main steps, the threshold detection, the single most-likely replacement(SMLR) detection, and 

the nonlinear least-square optimization. Due to the fact that the NDOP is very time- 

consurning, the NDOP has only k e n  applied to the four sets of synthetic signals iwtead of 



experimental sipals. The procedures of the NDOP and the resuits of applying one run of 

NDOP to the 2nd, the 3rd, and the 4th sets of synthetic Sgnals are detded in Appendix D. 

The results of applyhg one nui of NDOP to the la set of synthetic signais are shown in 

Chap ter 4. 

3.3.5 Discussions 

The appiication of the simuîation mode1 to the W o n n  field space charge distribution 

measurements irnproves the resolution of the obtained charge distribution up to the sampling 

interval (when A=1) instead of the dmation of system IR in the DM. Surface charges rnay be 

distinguished kom the o sequences when two simulation steps are used. The accuracy of the 

space charge disa'butioon is improved espeaalIy near the electrode-sample interfaces. The 

improvernent of resolution and acmacy is verified in Chapter 4. Comparing two simulation 

step results, one can have mare confidence about the conectness of the obtained space charge 

distributions. However, the computation t i n  is increased, especiaIiy for the application of 

NDOP. If the step is very small such that Az<&c~, ushg the contimious nature of the space 

charge, one can approxbate1y obtain: 

Thexefore, one step is enough. Equations (3-51) and (3-53) are used to construct space charge 

dismbution nom the d seqnence obtained from the NDOP. 

Stochastic design procedures can hancile both the Signai-noise ratio effects and the bandwidth 

effects better than the detemmmc 
. .  . design procedures[82]. There are two types of stochastic 

deconvolution operations: linear or nonlinear. GenaaIly, h l i n e a r  operations had to more 

srneareci out resolution fiuictions than do nonlinear deconvolution operations. Hence, the 

nonlinear processes Uiside the PMSM such as taking sarface charge out More smoothiog and 

adding a detection process before the least p a r e  optimnzation process is attempted in order to 

obtain high resolution charge distribution r d t s  fiom the detected signais. 



Figure 3.8 The algorithm of the point matching simulation mode1 (PMSM) 



3.4.1 Introduction 

Space charges have important effects upon treeing, aging and breakdown processes in solid 

dieIectrics[6-fl. Many efforts have ken made to develop measuring techniques for charge 

distributions in solids, especially in polymers. The pulsed electro-aco ustic method(PE A) and 

pressure wave propagation method(PWP) have been used to meaîure charge distributions 

under plane-plane and CO& electrode coafiguntions[72-79J. To the author's best 

knowledge, there is almost no approach m the literanire that measures dynamic chmges of 

space charge distributions in solids mder needle-plane electrode configurations except to 

measure the to ta1 injected space charge and its relative position[20,2 1,241. In practice, treeing, 

aging and breakdown start at the point of local field enhancement. Needle-plane electrode 

configuration is usuaIly adopted to simulate this extreme field situation. This section shows the 

attempt to M e r  develop the PEA method to measure charge distributions under needle-plane 

electrode configurations. This measmement is important but difkult due to the nonunifonnity 

of the electric field. Based on the generation and propagaaon properties of the pressure wave, 

dong with the electric field calculation, a rneasuring principle is proposed in Section 3.4.2. 

With the application of the simulation mode1 to process the obtained signals discussed brie£iy in 

Section 3.4.3, it seems possible to meûsure space charge disaibution in a nonuniform field. 

3.4.2 Prinaple 

A principle PEA setup for a needle-plane elecaode configuration is shown in Figure 3.9[93]. 

Assume there are space charges p h  r, 8) dism'buted M e  the dielectric, surface charges 

a,(O, r, 0) on the lower interface and surface charges rr,(d,,40) concentrated at the needle tip. 

When a short duration electric pulse vp(t) is applied, an elecaic field due to the pulse ep(x, r, 8,t) 

will be established. Each charge is then subjected to the electric stress, causing a displacement 

fiom its original position and generating a pressure wave. Tt is assumed that the dielectric is a 



homogenous, isotropie and elastic solid. When the waveiength of the pressure wave is much 

greater rhan the dimension of the charge location and the acoustic pressures are measured at 

distances far nom the source. each charge location acts as a simple source. The generated 

pressure wave is non-directional and transmis in all directions as a spherical acoustic 

waveC85J. 

Figure 3.9 Principie of the PEA method for needle-plane electrode configuration 

The amplitude of the pressure is then proportional to the source strength and reduces inversdy 

in proportion to the distance f?om the source when the wave propagates from it[84. 

where p is the acoustic pressure at a distance a fkom the source, pl is the acoustic pressure at 

a=l .  According to (3-54). the acoustî pressure in the source itself would becorne infinite, 

which is just as unreal as a point source. Real sources aiways have finite dimensions and, in 

prolamity to them, the acoustic wave is usualiy not strictly sphericaL Equation (3-54) 

therefore applies only to very large distances compared with the dimensions of the source. 

When this condition is not yet fulfilled at a distance 1, as mentioned in 1861, pl can refer merely 

to a quantity specifîed purely for determining the strength of the source. 



Figure 3.10 shows rehction of a sphericai wave at a plane interface for the longitudinal wave. 

Oniy rays which are ahost perpendicuhr still intersect each other after refraction at a vinual 

center 0'. The rehcted wave can be regarded as a spherical wave oniy in this particuiar 

zone[86]. The relationships are: 

Figure 3.10 Refiaction of a spherical wave at a plane interface 

The angles of divergence of narrow beams incident at right angles are in the rate of the 

acoustic velocities. The pattern of the acoustic pressure in the second material is determined 

by the WNal center O' fcom which the distance a in Equation (3-54) must be calculated. For 

Figure 3.9, if the source is at x, the virtual center wiU be at C ~ C I .  The distance fkom this 

virtual source to the transducer will be I+cdcl. 

Based on the above rnentioned properties of spherical waves, a transducer with smaü active 

area is chosen. Wben the diameter of the transducer active area is much smaller than the 

length of lower elecuode, according to Equation (3-55). it is reasonable to assume that only 

the pressure wave transmitted perpendrular to the lower dielectrk-electrode interface can 

reach the uansducer and be detected. If a 2 O m  in length 5mm in diameter duminurn 

elecuode with a sound velocity above 5000m/s, for example, is placed on a dielectric polymer 

with a sound velocity around 2000m/s, then the maximum detectable injection angle is less than 



5.6'- Besides, with a smaIi active area transducer, one can assume that the space charges are 

distributed d o r m l y  within an area equal to the Ûansducer active are3 at arbibiary x fiom O to 

d- Thus, waves with the same x coordinates wiU reach the transducer at the same time. The 

three dimension charge distri'butions can be simpUïed to one dimension pk), (O), and a,(d) 

within the transducer active area[93]. 

Since the source e n g t h  for a simple acoustic soarce is equd to the surfice integral of the 

scalar product of the vector velocity amplitude and its cornpondhg surface element(8fl, it 

cm be deduced that the amplitude of pressure wave pJt), due to p(x) detected by the 

transducer, is proportional to the snrface integral of the x component of the electric stress due 

to the pulse that space charges are subjected to. 

where k is a constant, r, is the racüus of transducer active area, 1 is the length of the lower 

electrode, cl, c2 are the sound velocity of the Iower electrode and the dielectric respectively, 

and ep&r,t) is the x component of the electric pulse field at an arbitrary ( sr )  point(variab1e 0 

is omitted due to the axial symmetry of the elecaic pulse field). 

For sudace charges o,(d), its pressure wave p.&) is: 

where r, is the radius of the needle tip, k' is a constant 

For surface charges a@), its pressure wave pdt) is: 



Applying the superposition principle, the total pressure wave p(t) detected by the transducer is: 

where, 

At chis stage, the electric pulse field e,(x,r,@,t) contains both space and time variabIes. It is 

more convenient to separate them This can be done under the assumption that the application 

of the eleariç puise voltage wili not change the space charge distniution [Appendix A-11. If 

Ce(x,r, O) stands for the electrk field at a general point ( x ~ ,  8 f )  due to the application of a unit 

voltage(Vc = I Volt) in the needle-plane configuration, eP(xsrs&t) c m  then be w r b n  as: 

In addition, equations (3-56)-(3-58) 

coefficient Cix), which is defîned as: 

and (3-60) cm be M e r  sinplined using the correction 

where Ce&r) stands for the x component of Ce(xpr). 

When the total pressure wave p(t) reaches the transducer, the same as the d o r m  fieki case, 

the pressure wave wiil be changed by the nansducer into a voltage signaL The voltage signal 

will be anrplitkd and recorded as v&). Suppose the system that transfers p(t) to vdt) is linear 

the-invariant, in the tirne domain; then there is the convolution relationship: 

where h(t) is the system transfer function (Appendix A-3). 



It cm also be processed using three approaches for the unifonn neld case to get rid of the 

second term in equations (3-57) and (3-58). 

1. Omit the terms when they are negiïgi'ble compared to the sudace charges response and 

denote as vJ"(t). 

2. subtract signals a&) by the signai vd(t) which is obtained when no dc voltage is applied and 

no space charge is distributed inside the sample, and denote the subtraction as ~ { ~ ' ( t ) .  

3. for general cases, appIy a positive ektric pulse fkst and get an output v,(t); then we 

change pulse polanty to negative and get an output v&). let ~!~'(t)=1/2[v,+(t)-v,(t)]- 

It can be deduced that: 

where, 

( f )  = Y$ ( t )  - v,o ( t )  
vS* 0) = = p' (t)' h ( t )  

or 

pdl ( t )  = K k i r;l ~d 
[oz (d)Ce(d)vp (t  - - - - 

1 c2 
11 

1+2d '0 

The above equations are developed when both the center of the transducer and the center of 

the needle tip are on the x axir. More generd equations are developed [Appendix B] for the 

aansducer moved to an arbitrary position of the plane side of the sampie. PrincipaIiy, by 

moving the transducer, the three dimension charge distributions can be profiled. 



3.4.3 Nonuniform Simulation Mode1 

With equations (3-64-3-68), dong with the kld calculation, the space charge dimibution can 

be onginated by using the principal idea of the deconvoIntion procedure @CON) or the direct 

method (DM). However, the disadvantages of the DCON and the DM still exist for the 

nonuniform case. Moreover, for the DM, Ït is known that the system resolution can be 

improved only by decreasing AT. However, when dT is decreased, the electric pulse contains 

more higher fkequency components. Thus, the bandwidth of the transducer has to increase. A 

transducer with wide bandwidth not only is expensive, but also has a low traTlSfer coefncient, 

which rneans that the transfened voltage signal is smdi for the sarne pressure. Besides, due to 

the higher attenuation of pressure wave in polymers at higher frequency, the amplinide of 

pressure waves reaching transducer diniiaisbes too. As mentioned earlier, a transducer with a 

small active area is essentid. Therefore, it is better to find a way to improve the resolution 

without decreasing AT, or in other words, to propose a data processing method whose 

resolution can be less than c2AT. Therefore, the simulation mode1 is the best one to apply[93]. 

Suppose there are N points xi (i= I ,  2, ...JV) with spacing Ax within (0,dJ. Ax=dl(N+ 1). Deke 

op (xi  ) = p(xi)& , Y&) has its dimete fom: 

If applying a low DC voltage to a sample without space charge, the output processed signal 

v & ) ~  then contains only the information on the two d a c e  charges v~( t )  and v2(t). 



The subscripu DC indicate values that are known and obtained fiom the calibrating s q l e .  

nierefore, when vl(t) and vt(t) are separable, one c a .  obtain g(t) that is only due to fi: 

Equation (3-69) can then be written as: 

If we define Ae&/cz, then x . = i c ~ A ~ .  Equation(3-74) can be W e r  simplined and m e n  as: 

N+i 
V, ( t)  = ç b ( i ~ r ) ~ ( t  - iA?) , 

where 

Discretizing v,,(t) and g(t) also by the period A% equation(3-76) becomes: 



Obviously, equations.(3-75). (3-77) and (3-78) have the same forms as equations (3-32)-(3-34) 

respectively. Therefore, the simulation mode1 discussed in Section 3.3 to obtain the o 

sequence can be osed to obtain the nonurlifom field csequence. The only Merence is that, 

after the asequence is obtained, one needs to use equation (3-76) to originate the @(O), ~ ( x J  

(i=O-ml), and q(d) .  The same ss in the d o m  field case, surface charges @(O) and ai(d) 

c m  be distinguished using two steps or one step when A ~ ~ d / c z ;  the space charge distriiution 

can be reconstructed by a hold device; and a zero-phase filter c m  be applied to srnooth the 

space charge distribution. 

3.4.4 Discussions 

The proposed nonumform space charge distribution measuring technique enabies the 

measurement of space charge distribution under needle-plane conîïgurations. Since the 

technique Is based on the generation, propagation and detection of the pressure wave, it can 

be applied to any type of eiectrode system as long as its electric field of the electrode system 

(fiee of space charges) at 1 V voltage application is known or can be calculated. The 

proposed simulation mode1 makes it possible to obtain enongh resolution with the application 

of a wider electric pulse. 

The equations developed in Section 3.4.2 and Section 3.4.3 are for the special case that the 

center of the transducer is on the x axis. One can assume the charge distribution is in one 

dimension for the uniform field case. However, one camot make the assumption for the 

nonuniform field case, and the charge distrriution is in three dimensions. Therefore, equations 

must be extended for the general case that the transducer is put in an arbitrary position on the 

plane side of the needle-plane electrode configuration. For the continuity of the thesis, the 

equations developed for the transducer in an arbitrary position are presented in Appendix B. 

With the simulation model dong with space charge t?ee elecuic field calculatioa, the three 

dimension charge distribution under needle-plane electrode configuration cm be obtained. 



CHAPTER 4 

SIMULATION MODEL CRITIQUE 

The purpose of this research ir to develop an improved measaring technique for space charge 

distribution measarement. However, to achieve this aim, it wodd not be practical to compare 

this technique with the other rneasuring techniques experinientally; and there is no standard 

space charge distribution and no malyticai tool to calculate accurately the charge distniution 

inside the specimen. Therefore, two steps of verifkation are used and discussed in Section 4.2 

and Section 4.3 respectively. 

The fïrst is a simufation vexifïcation to show, fiom an analytic point of view (using four sets of 

synthetic signals) that 

1. the proposed method, the point matching simulation mode1 (PMSM), is working; and 

2. the PMSM method has advantages over the existing methods, the ci.ire!ct method (DM) and 

the deconvolution procedure @CON). 

The second is an experimental verifkation to show, kom an expMmental point of view (using 

two sets of experimental signais undet d o m  fields) that: 

1. the PMSM is working for experimental signals; and 

2. the procedm proposed for the PMSM method as applied to experimental signaJs are 

working. 

The two v ~ a t i o n s  suggest that the PMSM method improves both the resolution and the 

accuracy of the obtained space charge distribution. An overall discussion of the results of the 

two verincations is then provided in Section 4.4. 



4.2 COMPARISON OF DM, DCON AND PMSM MET- FROM 
ANALMK: M T  OF VIEW 

4.2.1 Introduction 

Four sets of synthetic signais are used to compare the DM, the DCON, and the PMSM 

methods nom an analytic point of view. There are two reasons to use synthetic signals, as 

briefly mentioned in Section 4.1. M y ,  tbe DM requires a wide-bandwidth transducer and a 

short duration pulse. The transducer used in the present experiments has a bandwidth fiom 

0.25iMHz to 6MHz and has some puise ~ g i n g .  Therefore, the DM camot be used to process 

the expetimenta.1 signals. To compare the DM with the WON and the PMSM, synthetic 

signals are necessary. Secondly, there is practically no standard space charge disttiution 

available. and there is no analytical tool to provide the charge distriiution accurately. One 

c m o t  test the accuracy of space charge measuring techniques experimentaiiy. The synthetic 

signals cm be generated corresponding to an assumed charge distri%ution and an assumed 

system IR; therefore, after processing the synthetic signals with dinerent methods, one can 

assess the accuracy and the resolution of these methods by comparing the space charge 

distribution obtained by these methods with the assumed charge dismbutions. 

The purpose of using four sets of signais is to illustrate the effect of noise, the effect of the 

charge distribution, and the ef fat  of the bandwidth of the system transfer function on the 

obtained space charge distributions by the three methods (the DM, the DCON, and the 

PMSM) methods. Tt i necessary to mention a small change in notatioa In Chapter 3, o 

sequence was denoted as Nk), k=O-N+I. For the easy application in Matlab code, a sequence 

is denoted as Nk), but k=I-N+2. 

Basically, two space charge distributions are assumed and used to build up the four sets of 

signals. One has sharp changes in charge distribution, denoted as SPD1; the other has slow 

changes in space charge distribution, denoted as SPD2. Figure 4.1 shows the waveshape of 



SPDl. Only surface charges are dismiiuted at the ground electrode sample interface 

NI)= CI+ q,(1)=m=2c/m~. There are space charges [ofi)=q(xi)=.p(x)ctdt. (i=1-300)] 

distriiuted inside the sample. but t h !  existed main'ly fkom points 180 to 240 and fkom points 

280 to 300. Also, there are &&ce charges presented at the HV elecaode sampk interface 

(az=0.6~m~). And a(300)= csrçq,(d)= ~i+p(d)c2At=1c/m~. Figure 4.2 shows the waveshape 

of SPD2. in which space charges are disttibuted aU over the sample fiom points 1 to 261, 

261 
HI)= fi+ %(')=-0.5m2, and ~~(261)=arça,o=0.44~lmz.+(d)=.C/rn~. The total charge, ~ ( k )  , is 

k=l 

equal to zero to meet the experimental charge distribution condition for bound charges. 

-1 
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Figure 4.1 Assumed charge distribution SPDl 

Figure 4.2 Assumed charge distribution SPD2 

Two types of system LR(s(k)) are assumed. One has short duration. gs(k), as shown in Figure 

4.3; the 0 t h  has wide duration, gW(k), as shown in Figure 4.4. In hct, gw(k) is acnimy the 

detected system LU ftom our PEA experimental sy sm for the Thick HDPE specimen, 



Figure 4.3 Assumed system IR, gf(k) 

Figue 4.4 Assomed system IR, gw(k) 

The noise sequence n(k) is assumed to be additive, zero mean, white, and Gaussian. Its 

variance, V i n ,  is chosen to be 5% of the maximum value of the signal without noise. 

The est set of signais differs fiom the other three sets in that the fkst set is noise-fiee white 

the others are comrpted with noise. Thesefore, the effect of noise can be studied. The first 

and the second sets of signals differ nom the thiid and the fourth sets in that the fxst and the 

second sets use SPDl while the third and the fourth sets use SPD2 to baild up the synthetic 

output signals; thus the effect of spaa charge distri'buition can be observed. Fmally, the fourth 

set of signals Mers fiom the other three sets in that the wide duration system IR if used; thus, 

the effect of system IR can be compared. More specinc descriptions of the four sets are listed 

below, 

The fist (1st) set of signais uses SPDl and g8(k) to bu& up noise-ke synthetic output 

signals v,,,!(k) and g,'(k): 

= SPLN * gs (k) + O x n(k) 



The waveshape of vml(k) is shown in Figure 4.5. The waveshape of gm'(k) is the same as bat  

is shown in Figure 4.3. 

The second (2nd) set of sipals uses SPDl and gs(k) to buiîd up the noise-corrupied 

synthetic output signal vm2(k) and gm2(M: 

The waveshapes of vm2(k) and g2(k) are shown in Figure 4.6 and Figure 4.7 respectively. 

The third (3rd) set uses SPDZ and gs(k) to build up a noise-corrupted synthetic signal 

vm3(k) and g2(k): 
vm3 (k) = SPD2 * g2(k) + n Q )  

k) L)' gs (k) + n(k) 
The waveshape of vm3(k) is shown in Figure 4.8. To reduce the work of computation, the 

waveshape of g2(k) is considered the same as ,gAk), as shown in Figure 4.7. 

And f?nany, the founh (4th) set uses SPDZ and gw(k) for the noise-compted synthetic 

signal d ( k )  and g/(k):  

The waveshapes of v,'(k) and g,'(R) are shown in Figure 4.9 and Figure 4.10, respectively. 

Figure 4.5 The fmt set output signal ~ , ~ ' ( k )  



Figure 4.6 The second set output signal vs$(k) 

Figure 4.7 The noise-corrupted measured IR (g,t(k) and g,.'(k)) 
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Figure 4.8 The ihvd set output signal vm3(k) 

Figure 4.9 The fourth set output signal v,'(k) 



-T -6' O 100 S c 0 0  =O0 400 eoo - 7- a- - '-0 
DIU PObnir 

Figure 4.10 The noise-compted measured IR (g:(k)) 

The processing resuits for the four sets of signals by the three methods are discussed 

individually in Section 4.2.2, Section 4.2.3, Section 4.2.4, and Section 4.2.5, respectively. 

4.2.2 The 1st Set of Signals 

The output measured signais for the 1st set are shown in Figure 4.3 Cg,'(k)) and Figure 4.5 

( k ) )  No mise is added which indicates that g,'(k)=g(k) and vm'(kl=v&). The charge 

distribution resuits of this set of signals obtained by the DM, the DCON and the PMSM 

methods are shown below. 

1) The direct method(DM) 

As knciwn in Section 2.5-4 and Section 3.2.3, the DM method bekves that the measwed 

output signal is propomonai to the space charge distribution. nie proportional constant is 

equal to 1 over the integration of system IR(&)). Figure 4.1 1 shows the charge distriiution 

resulrs obtained by the DM when mo is chosen at point 49. As described in Section 3.3.2, mo is 

related to the delay and refers to the point at whrh g(m)=O whik g(ma+I)#û. The Merence 

between Figure 4.1 1 and 4.5 is only a iinear calibration and a waveshiftiag. A cornparison of 

Figure 4.1 1 with Figure 4.1 (the assumed charge disuibution SPDI) shows that surface 

charges, the rapid change of space charges and the space charges dismibuted near the surface 

charges are obviously not represented weiL When there is only surface charge present, the 

surface charge is represented as a distnaution having the waveshape of the system IR When 

there are space charges near surface charges. the resulting distribution is the mix of the two. 



If one uses Figure 4.11 charge distribution to obtaùi a simulated output signal SV(k), as 

compared in Figure 4.12, the ciifference between the simuiated output signal N ( k )  and the 

actuai mestsured signai v,'(k) is quite large. The différence is show in Figure 4.13 around 

M.3V. Since the choice of mo is quite subjective, mo was adjnsted around point 49. It was 

found that, if mo is chosen at points other than 49, the difference can be even larger. 

Figure 4.11 Charge distriiution obtained by the DM method for the 1st set of signals 

Figare 4.12 Cornparison between v,'(k) and SV (using F igm 4.1 1 charge distribution) 

Fi- 4.13 Difference between v d k )  and SV of Figure 4.12 



2)  The deconvoluüon procedure(DC0N) 

Figure 4.14 gives the amplitude of the Fourier transfomi of system IR, - ie. system vansfer 

function, g,'(k). Figure 4.15 gives the amplitude of the Fourier uansform of the measmi 

signal vmi(k). Figure 4.16 shows the resuits of the deconvoIution procedure. The charge 

distriiution is designated as the real component of ~ * [ ~ ~ ~ m I ( k ) ) / f l (  g,'(k)]). The obtained 

charge dismibution is almost exactiy the same as the SPD1 (shown in Figure 4.1). Figure 4.17 

shows the dinerence between the simulated SV(k) (cdculated using Figure 4.16 charge 

disuiwon) and the origmal vml(k) (as shown in Figure 4.5). The merence is in the order of 

10% The perfect result is owing to that the 1st set of signals are noise-free, and the 

assumed gs(k) is invertible. 

Figure 4.14 Amplitude of the Fourier uansform of g,'(k) 

Figure 4.15 Amplinide of the Fourier transfomi of va'(& 

Figure 4.16 Charge distribution obtained by DCON for the 1st set signals 



Figure 4.17 Cornparison between v,'(k) and SV (using Figure 4.16 charge distribution) 

3) The point mafching simulàfion mdet(PMSM) apptoaeh 

Since the noise is zero for the fkst set of signais, the noise reduction process is not necessary. 

In fact, v,'(k) and g,'(k) can be processed directly. Figure 4.18 and Figure 4.19 show the 

results of csequence when the simulation step A=2 and A=4, respectively and where mo is set 

at point 49. Comparing these two figures, one sees that: 

1. at i= 2, O( 1)=&(1)=2~/m~, which indicates that only the surface charge is present; 

2. inside at points i=I+4k(k=I-74), ai) =d(i)/2, whkh indicates that space charges are 

dismbuted withh the sample; and 

3. at i=301, e301) = 1.4C/m2, d(301) =2.3CIm2, which indicates that surface charge and 

space charge may be present, 

Solving Equation (3-SO), one can obtain that 0.5C/m2 and q ( d )  =p(dlc~~t=0.45c/rn~. 

Figure 4.20 shows the charge distribution after reconstruction using the resuits of Figures 4.1 8 

and 4.19. Surface charges and volume charges are differently treated. The distributions inside 

the sample are mainly based on the A=2 results. The dismbution obtauied is closed to the 

distribution in Figure 4.1. It is obvious that surface charges cm be much better represented 

than they can in the DM. If Figure 4.20 charge distribution is used to coastruct the simulated 

ouiput signal SV(k), the Merence between W ( k )  and v,'(k) is also much iess than that 

obtained fcom the DM. The ciifference is l e s  than kû.04V as shown in figure 4.21. When 

Figure 4.20 charge distribution is used as the initial input to an optimization process to 

minimize the les t  square error between S V 0  and v,'(k), good resdts can also be obtained. 

If F deno tes the ciifference ( s ~ v , ' ) ,  with the accuracy of t~ setting at 0.0 1, the accuracy of F 

setting at 0.0 1, Figure 4.22 charge distribution is obtained after about 11 hour optimization 



computation The dinerence between W(k)  and v,'(k) for Figure 4.22 charge distn'bution is in 

the order of lûU as shown in Figure 4-23. 

Figure 4-18 a sequence obtaùied by PMSM at 4=2 for the 1st set signak 

Figure 4.19 a sequence obtahed by PMSM at A=4 for the 1st set signals 

Figure 4.20 Charge distribution after reconstruction mainly based on A=2 

Figure 4.21 Difference between SV(k) and v,'(k) for Figure 4.19 charge distribution 
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Figure 4.23 Difference between VA) and S V 0  for Figure 4.21 charge distribution 

4.2.3 The 2nd Set of Signals 

The second set of signais an vnn2(k) and gm2(k), as show in Figure 4.6 and Figure 4.7 

respectively. As nooises are contaminated in this set signais, the charge distribution results 

obtained by the three methods wiil change. 

1) The direct method(DM): 

Figure 4.24 shows the charge distriùution obtained rising the DM method with mo=49. A 

zero-phase waveshaper cm k applied to mala? the distribution smooth. Figure 4.25 shows the 

charge distribution after a 10 point amLcausal zero-phase average fïiter is applied. Figure 4.26 

cornpans the masured output vn'(k) with the simulated output SV(k) (generated âom Figure 

4.24 charge distribution). The Merence between the two is shown in Figure 4.27. Figure 

4.28 then compares the measmed output v,'(k) with th simalated output SVik) (generated 

fiom Figure 4.25 charge distriiution). The difference between t h e .  is shown in Figure 4.29. 



Figure 4.24 Charge distribution obtained by the DM method for the 2nd set signals 

Figure 4.25 Fiitered charge distribution obtained by the DM method for the 2nd set signals 
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Figure 4.27 Difference between SV(k) and vsm2(k) of Figure 4.26 
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Figure 4.28 Cornparison between vm2(k) and SV(k) for Figure 4.25 charge distribution 
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Comparing Figure 4.24 and Figure 4.25 with Figure 4.11 shows that the obtained charge 

distributions for the 2nd set signals are simiiar to the charge distribution obtained for the 1st 

set signals, except that Figure 4.24 is cormpted with noise and Figure 4.25 is not as sharp as 

Figure 4.11. This indicates that the DM method is not sensitive to noise. The presence of 

noise reduces the resolution and accuracy of the charge disaibutio~ but the waveshape of the 

obtained charge distribution does not change very much due to the noise. Also, the Merence 

between SY(l) and vm2(k) does not change much compared to the diflkrence between SV(k) 

and v,'(k) as shown in Figure 4.13 maidy because the amplitude of the Merence is even 

larger than the noise level. 

2) The deconvolutron pmcedure(DC0N): 

Figures 4.30 and 4.31 show the amplitude of Fourier transform of gm2(k) and vm2(k), 

respectively. The charge distribution obtallied by the DCON method is shown in Figure 4.32. 

Although, as demonmted in Figure 4.33 and Figure 4.34, the W i n c e  between v d k )  and 

the simulated W ( k )  (generated with Figure 4.32 charge distribution) is not as large as that 



resulting fiom the DM method, the charge distribution is far fiom the SPDl distribution. The 

charge distribution shown in Figure 4.32 is of no use unless the high fiequency noise in the 

charge distn'bution can be eliminated using a properly designed Glter. Figure 4.35 shows the 

charge distribution obtahed by filterhg Figure 4.32 with a 10 point anti-causal, zero-phase 

average filter. The multing charge distribution is meaninfi and the redution seems better 

than that of the D M  However, the cornparison between vm2(k) and SV(k) as shown in Figure 

4.36 and Egure 4.37 indiCates tbat the clifference is qnite large from points 50 to 70, because 

surface charge NI)  is represented as a charge distribution with some duration. 

Figure 4.3 1 Amplitude of Fourior transform of output signal (vm2(k))] 
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Figure 4.32 Charge distribution results by the DCON method for the 2nd set 



Figure 4.33 Cornparison between v d k )  and SV(k) (Figure 4.32 charge distribution) 

Figure 4.34 DifEerence between vsm2(k) and SV(k) of Figure 4.33 
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Figure 4.35 Fitered charge dismbution by the WON rnethod 

Figure 4.3 6 Corn parison between v,'(k) and SV(k)(Figure 4.35 charge distribution) 

Figure 4.37 Difference between vsm2(k) and SV(k) of Figure 4.36 



From these resuits, the following conclusio11~ c m  be obtained: 

1. when si@ are noise-corrupted. the resdts obtaïned directly nom the DCON method are 

very bad, indicating that the DCON is very sensitive to noise. A special nlter. or so-caiied 

waveshaper, has to be designed to eliminate high fkquency noise in the distn'bution. 

Hopefüily, the nUer will work efficiently and provide meanin@ resdts. 

2. When the low pass filter is applied. it will not cause signincant problems to the 

representation of space charges; howeves, the presence of surface charges will be srneared 

in the charge distribution results, because the bandwidth of a surface charge is nom zero to 

infinïty. The low pass filter wül make sadace charges appear as a dismbution with some 

duration as if some space charges are distributed This cm cause a large difference as 

show in Figure 4.36 and Figure 4.37. 

3. Better resdts cm be obtained if one cm: 

identify the presence of snrface charges, using the superposition theory, and 

subtract the surface charges fimm the total charge distribution; 

apply a filter only to the subtraction, the space charge distribution; and then. 

superimpose the surface charges upon the smoothed space charge distribution to 

construct the total charge distribution. 

This is what the simulation modeï is intended to do. 

As mentioned in Cbapter 3, the PMSM approach will first apply a noise reduction process 

when the noise B not negligible in the output s i g n a  Before presenting the results obtained 

koom the PMSM approach, it is necessary to show what one can obtain fkom the DECON for 

the signais afta the noise reduction pmcess. Figure 3.38 and Figure 3.39 show the g2 '(k) and 

vm2'(k) when a 10 point anti-causa1 zero-phase average filter is applied to &k) and v&) 

respectively. Figure 4.40 and Figure 4.41 show the amplitude of the Fourier transfom of 

Figure 4.38 and Figure 4.39 sipals Figure 4.42 is the charge dism'bution obtained ciirectly by 

the DCON. Figures 4.43 and 4.44 compare the diflètence between v,'(k) and SV(k) 

(generated ushg Figtm 4.42 charge distribution). Figure 4.45 shows the charge distribution 

when the 10 point anti-causai zero phase average filter is applied. And Fgures 4.45 and 4.46 

compare the ciifference between v,'(k) and W(k)  (using Figure 4.44 charge distribution). 



It is obvious that ql )  is falsely represented becanse the DCON is very sensitive to noise. The 

above resdts indicate that, even if the true charge distribution is no t hown,  the cornparison 

between the measured output and the simalated output(using the charge disaibution) can help 

determine whether the charge dism'bution is fine or has missed some important information 

and, therefore, whether the charge distribution needs improvement or correction. 

Figure 4.39 Filtered output signal (vm2 '(k)) 

Figrue 4.40 AmpIitude of Fourier transform of nItered IRg,"(k)) 

Figure 4.41 Amplitude of Fourier transfonn of fiitered output (v>'(k)) 



Figure 4.42 Charge distribution obtained by the DCON procedure 

Figure 4.43 Cornparison between vm2'(k) and SV(k)(Figure 4.42 charge distribution) 

Figure 4.44 Difference between v,,,,"(k) and SV(k) of Figure 4.43 

Figure 4.45 Filtered charge distribution 

Figure 4.46 Cornparison bemveen vm2'(k) and SV(k)(Figure 4.45 charge distribution) 
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Figure 4.47 DBerence between v,"(k) and SV(k) of Figure 4.46 

3) The point matchhg simulation modeI(PMSM) approach 

This section shows the charge distribution results obtained ushg the PMSM method for F ~ R  

4.38 and Figure 4.39 gm2'(k) and v,"(k). Figures 4.48 and 4.49 present the a sequences when 

mo is set at 47, step A r 2  and A'=4, respectively. 

Figure 4.48 O sequence when A=2 and d 7  

Figure 4.49 O sequence when A'=4 and mo=47 

From the obtained u sequences, 01, 02, oP(1), and op(iV+2) can be caicuiated using equation 

(3-50). Let o*(I) = -((I), @(i) =Hi), (i=2 to N+l), and a*(N+2) = dx~~((N+t); one can 

apply zero-phase filter or zero-order hold to make the sequence continuous. A 10 point zero- 



phase average flter is used to smooth the a* sequence. Aftec smoothing. al and are added 

to points I and N+2; thus charge disuibution is buiit as shown in Figure 4.50. Figures 4.51 

and 4.52 compare vsm2'(k) and SV(k) (using Figure 4.49 charge distribution). Figures 4.53 and 

4-54 use the noisecompted g,'(k) and compare noise-compted vm2(k) and SV(@. 

Figure 4.50 Charge disuibution obtained by the PMSM method(Fdtered) 

Figure 4-51 Comparison between vd'(k) and SV(k)(Figure 4.50 charge distribution) 

Figure 4.52 Difference between vm2'(k) and SV'k) of Figure 4.5 1 
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Figure 4.53 Comparison between vm2(k) and SV(kmgure 4.50 charge distribution) 



Figure 4.54 Dinerence between v,'(k) and SV(k) of Figure 4.53 

Figure 4.55 is built by ikst applying a zero-order hold to G*/A sequence and then 

superirnposing and fi on the space charge distriibution at points I and N+2. Figures 4.56 

and 4.57 compare vm2'(k) and SV(k) (using Figure 4.55 charge distribution). Figures 4-58 and 

4.59 use the mise-comipted g i ( k )  and Figure 4.55 charge distribution to obtain SV(k) and 

compare noise compted v,'(k) with the SV(k). 

Figure 4.55 Charge distribution obtained by PMSM method(zero-order-hold) 

2 Figure 4.56 Cornparison between v, '(k) and SV(k)(Figure 4.55 charge disaibution) 



Figure 4.57 Différence between v,' '(k) and SV(k) of Figure 4.56 

Figure 4-58 Cornparison between v,'(k) and SV(k)(Figure 4.55 charge distribution) 

Figure 4.59 Difference between vd(k) and W(kJ of Figure 4.58 

A cornparison of the charge distribution obtained by the PMSM(Figure 4.50 or Figure 4.55) 

with those obtained by the DMfigure 4.24 or Figure 4.25) and the DCON(Figures 4.32 & 

4.35 or Figures 4.42 8t4.43 nveals that the nsolution and the accrnacy of the PMSM are 

obviously better than those of the DM and th: DCON. The PMSM shows little seasitivity to 

noise as compared with the DCON and stiii pmvides high nsolution as compared with the DM 

and DCON. Besides, the difkrence between vmr2(k) and W(k)  generated usjng the charge 

distribution obtained by the PMSM method is much s m a k  than the difference between vm2(k) 

and W(k) generated using the charge distribution 0btaine.d by the DM and DCON, indicating 

no misrepresentation of the actiral charge distribution(SPD1). 



Figure 4.60 Cornparison between vdP(k )  and SV(k) (SPD1) 

Figure 4.62 Cornparison between v,$(k) and SV(k)(SPD 1 )  

Figure 4.63 Difference between vm2(k) and S V 0  of Figure 4.62 



Owing to the presence of noise, one cannot expect the obtained charge disuibution to be the 

same as SPD 1 or the difference between vd'(k)  and SV(& or vm2(k) and SV(kI to be very 

srnaIl, approaching zero, as for the noise-& signai set Figures 4.60 and 4.61 compare 
2 v, '(k) and SV(k) generated using SPDl, and Figures 4.62 and 4.63 compare vm2(k) and SV(k) 

generated ushg SPD1. Obviously, the clifference between vm2'(k) and SV(k) or v,'(k) and 

SV(k) stiU ercists even with charge distribution SPD1. Comparing the amplitude of the 

diEerence between vm2'(k) and SV(k) or v,'(k) and w k )  using SPDl and the amplitude of 

correspondùig difference using the charge distribution obtained by the PMSM, one can see that 

the PMSM resuits are very good. 

The accuracy and resolution of the O btained charge distribution depend upon the noise Ievel 

system bandwidth, and the seasitivity of the method (used to get the charge distribution) to the 

noise and bandwidth effects. As mentioned in Chapter 3, the iinear process is more sensitive to 

the noise and bandwidth effects than the nonliaear process. To obtain Figure 4.50 and Figure 

4.55 charge distribution, a nonlinear procw already used at the interfaces, Le., at points 1 and 

N+2. From comparisons, it is c h  that this process produces better results than the DM and 

the DCON. However, near the place where rapid change of charge distribution occurs, the 

results seem to be a little bit smeared. Therefore, for even better results, the noniinear 

detection and . optjmization process(ND0P) can be considered to funher improve the 

resolution. 

Since the noalùiear detection and opthkation process is very theîonsuming, it has not been 

applied to the experimental s i g d  but only to the synthetic signak For the conrinuity of the 

thesis, the application of the nonhear detection and optimization process for the 2nd set of 

signals are prented in Appendix D-2. The function of the nonlinear detection and 

optimization process shows the potentiaî of the PMSM for high resolution and accuracy in 

representing the charge disaibution. 



4.2.4 The 3rd Set of Sipals 

The 3rd set of signals are noise-compted g/(k) and van3(k) as shown in Figures 4.7 and 

4.8 respectively. The charge distn'bution resuits obtained using the DM, the M30N, and 

the PMSM methods for this set of signals are demonstrated in this section. 

1) The direct metlrod(DM) 

Figure 4.64 shows the charge disuibution obtained by the DM method when m is set at 

point 53. Figure 4.65 and Figure 4.66 compare v,.'(k) and SV(k)(Figure 4.64 charge 

disuiution). When the 10 point zero-phase average filter is applied to Figure 4.64, 

Figure 4.67 charge disvibution is obtained. Figures 4.68 and 4.69 compare vm3(k) and 

SV(k) using Figure 4.67 charge distribution. 

Figure 4.64 Charge distribution obtaimd by the DM method for the 3rd set signal 

Figure 4.65 Cornparison betweeo vm3(k) and SV(k)(Figure 4.64 charge distribution) 



Figure 4.66 Dinerence between v,m3(k) and SV(& of Figure 4-65 

Figure 4.67 Filtered charge distribution obtained by the DM method 
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Figure 4.68 Cornparison beiween vm3(k) and SV(k)(Figure 4.67 charge distribution) 

Figure 4.69 Difference between v,z(k) and SV(k) of Figure 4.68 



From these results and a cornparison of the 2nd set of signals processed by the DM, the 

DM can clearly identify the slow change of charge distribution The difference between 

vtm3(k) and SV(k) generated using the DM charge distribption result is comparable to the 

noise IeveL However, it is st i l l  danniIt for the DM to identÏQ the presence of sinface 

charges. CompaSng the charge distniution obtained by the DM(Figure 4.64 or 4.67) with 

SPD2 shows that fi is rnissing while the presence of is similar to a space charge 

dismiution. Nevertheh, fiom these results, one cm see that, if no snrface charges exin 

in a distribution, if the space charges are distributed at a considerable distance fkom the 

surface charges, or if the space charges distributecl near the sudace charges are not 

important, the representation of space charge disaibution fkom the DM is fine. The 

procedure to obtain the space charge distri'bution is qigte simple and straightforward, as 

long as the systemlX is narrow and with no rings. 

2) The deconvolufion(.ON) pmcedwe 

F i p e s  4.70 and 4.71 show the amplitudes of the Fourier transfom of output g,&) and 

vm3(k). Figure 4.72 shows the charge distribution obtained by the DCON? which is bad. 

Figure 4.73 and Figure 4.74 compare vm3(k) wah S V 0  asing Figure 4.72 charge 

distribution. Figme 4.75 is the charge distribution obtained when Figure 4.72 is filtered by 

the 10 point anti-causal zero-phase average filter. Further? Figure 4.76 and Figure 4.77 

compare vm3(k) with W(k)  using Figure 4.75 charge disbn'bution. 

Figure 4.70 Amplitude of Fourier transfomi of output g,.'(k) 



Figure 4.7 1 Amplitude of Fourier transfonn of output vm3(k) 

Figure 4.72 Charge distribution obtained by the DCON for the 3rd set 

Figure 4-73 Cornparison between vm3(k) and SV(k)(Figure 4.72 charge distribution) 

Fi- 4.74 Difference between vm3(k) and SV(k) of Figure 4.73 

Figure 4.75 Filtered charge distribution obtained by the deconvolution procedure 



Figure 4.76 Cornparison between vm3(k) and m(R)(Figure 4.75 charge distribution) 
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Figure 4.77 DDinence between vm3(k) and SVik) of Figure 4.76 

AIthough the nItered charge distribution is not the same as SPD2, especially near the 

interfaces, the representation of internai space charge distribution is not bad. This can also 

be seen fiom the resdts of applying the DCON to the filtered output &(k) and vm3'(k). 

Figure 4.78 and Figure 4.79 show g,."(k) and v s i  '(k) which are o btained by applying the 

10 point zero-phase average nIter to Figure 4.7 and Figure 4.8 gm3(k) and vd(k) ,  

respectively. Figures 4.80 and 4.8 1 are the amplitudes of the Fourier trapsforms of g,."(k) 
3 and v ,  '(k). Figure 4.82 shows the charge distriiution obtained by the DCON. Figures 

4.83 and 4.84 compare vm3'(k) with SV(') using Figure 4.82 charge distriibution. Figure 

4.85 shows the nItered charge distribution by the deconvolution procedure and Figures 

4.86 and 4.87 compare v$m3'(k) with SV&) generated using the filter charge distribution 

The 6 r s t  surface charge is again falsely represented, resulting in a large ciifference between 
3 v, '(k) with SV&) around that position. The intemal space charge distribution is sriU 

acceptable, but surface charges and space charge aear the interfaces are fat fram king 

represented weL Therefore, as compared with the DM at the conditions of noise- 

corrupted signals, short duration IR, and slow changes of space charge distribution, the 

DCON has no advantages over the DM; instead, the DM seems better than the DCON 

because of the simple way in which it obtains the space charge distribution. 



Figure 4.78 FFtered system IR gm3 '(k) 

Figure 4.79 Frltered output signal v,."(k) 

Figure 4.80 Amplitude of Fourier transform of fltered IR g,,?(k) 

Figure 4-81 Amplitude of Fourier transfonn of fiitered output signai v,."(k) 
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Figure 4.82 Charge distribution for filtered signais by the DCON 



Figure 4.83 Comparison between vm3'(k) and SV(k)(Figure 4.82 charge distribution) 

Figure 4.84 Difference between vm3(k) and SV(k) of Figure 4.83 

Figure 4.85 Wtered charge distribution 

Figure 4.86 Comparison between v,.'(k) and SV(k)(Fgure 4.85 charge distribution) 

Figure 4.87 Difference between vm3(k) and SV(k) of Figure 4-85 



3) The point matchi~~g sirnukthn modal (PMSM) appmach 

Figures 4.88 and 4.89 show the osepuence obtained by the PMSM using Figures 4.78 and 

4.79 nItered output when mo is set at point 47. A r 2  and A' -4, respectkdy. Figure 4.90 

and Figure 4.98 show the charge distaition obtaïned using Figure 4.88 and Figure 4-89 

sequences. The constructing procedures are the sarne as descnbed in Section 4.2.4.3) for 

the 2nd set of signalS. The 10 point zero-phase filter Ïs used to obtain Figure 4.90 charge 

distribution whiie the zero-order-hold is used to obtaki F i e  4.98 charge dhrï'bntion- 

Fiboliiles 4.91,4.92,4.99 and 4.100 compare vm3'(k) and S V 0  using Figures 4.90 and 4.98 

charge dism'bution respectEvely. It is clear fkom the diaerence plot(Figures 4.92 and 

4.100) that the dinerence near the interfàces is a bit larger than that inside the sample. As 

the total sum of the charge is zero for SPD2, one can adjust o7N+2) to equal the sum of 

the obtained charge distriiution fhm i=l to N+I. Figures 4.93 and 4.101 show the 

charge dism'bubons after adjusting the value at N+2. Figures 4.94,4.95,4.102, and 4.103 

compare vm3'(k) and S V 0  using Figure 4.93 and Figure 4.101 charge dism'bution 

correspondingiy. One can see that the diffaence @gure 4.95 and Figure 4.103) gets a bit 

srnaller around the adjusteci place. Figrnes 4.96,4.97 and 4.104, 4.105 compare between 

vSm3(k) and W(k)  using Figures 4.93 and 4-10 1 charge distriions respectively. 

Figure 4.88 O sequence obtained by the PMSM when A=2, m=47 

Figme 4.89 a sequence obtained by the PMSM when A' 04, m=47 



Figure 4.90 Charge distribution obtained by the PMSM(Fi1tered) 

Figure 4.9 1 Comparison between ~ ~ ~ ~ ' ( k )  and W(k) (Figure 490 charge distribution) 

Figure 4.92 Merence between v,."(k) and SV(k) of Figure 4.9 1 

Figure 4.93 Adjusted charge distribution by the PMSM 

Figure 4.94 Cornparison between v,.' '(k) and SV(k) (Figure 4.93 charge distribution) 



Figure 4.95 Difference between vS/'(k) and SV(k) of Figure 4.94 

Figure 4.96 Comparison between vm3(k) and W ( k )  ( Figue 493 charge distribution) 

Figure 4.97 Difference between vm3(k) and SV(k) of Figure 4.96 

Figure 4.98 Charge distribution by PMSM(zero order hold) 

Figure 4.99 Comparison b e m n  vm3'(k) and SV(k) (Figure 4.98 charge distribution) 



Figrire 4.100 Difference between v,."(k) and SV(k) of Figure 499 

Figure 4.10 1 Adjusted distribution by PMSM(zer0-order-hold) 

Figure 4.102 Cornparison between vm3 '(k) and SV(k) (Figure 4.10 1 charge distribution) 

Figure 4.103 Merence between vm3'(k) and SV(k) of Figure 4.102 

Figure 4.104 Corn parison between v,m3(k) and SV(k) (Figure 4.10 1 charge distribution) 



Figure 4.105 Diffmnce between vm3(k) and W(k)  of Figure 4.104 

Figure 4.106 Compare Figure 4.93 and Figure 4.101 charge distributions with SPD2 

It is obvious that the resolution and acmacy of the charge distnition obtained by the 

PMSM are also better tha. those obtained by the DM and the DCON methods for a slow 

change in charge disaïution Figme 4.106 M e r  compares Figure 4.93 and Figure 

4.101 charge distBbutions with the assumed SPD2. It is shown that the obtained charge 

distributions by the PMSM are nearly the same as SPD2. The ciifference only happens a 

bit more near the interfaces because nto is set at a slightly later point to obtain a more 

stable result. As discussed in Chapter 3, rn is defineci as the beginning of the system IR 

signal at the point where the IR value g(m)=O. When the signal is cent-ated with 

noise, mo may not be well chosen i€ one chooses the point that the signal is zero to 

d e t e d e  the mo point. If ~ Q I  is chosen earlier, g(m+l), which should be nonzero, may 

actualiy be zero and if the noise contrinites a large percentage of the value of g(m+l), 

then the obtained results wiiI be quite unstabïe. Section 4.3.3 will show the effect of delay 

on the resultiog charge distribution with expexhmtal si@. When mo is chosen at a 

later point, the obtained M l )  actuaîly accounts for several pomts inside the sample. This 

is why the resdting H l )  is larger than what is a c W y  at that point. On the otha hand, 

the rnatching of the signal due to o(N+2) wiü start a bit earlier. As a result, 0(N+2) is less 



than what is actualiy at that point. In addition, a noise reduction process applied to the 

noise-corrupted signals before pomt rnatcbing process can &O cause some smearing in the 

results. 

The fact that the PMSM resdts are considered better than those of the DM and the 

DCON methods is aiso due to the fact that the difference between v$m3'(k) and SV(k) using 

charge distniution obtaiDed by the PMSM is less than that using the charge distniutions 

O btained by the DM and the DCON. The ciifference proves to be a üttle bit smaller for the 

charge distribution consaicted using the zero-order-hold than for that obtained using the 

zero-phase Elter. This srna11 effect can aLFo be obsemed fiom the correspondhg figures 

for the 2nd set of s i W .  The reason is that the nIter leads to slightly more smeared 

results than the zero-order-hold. More improvement can be achieved to obtain better 

results through the nonlinear detection and optimization process(ND0P) using Figure 

4.93 or Figure 4.10 1 as the initiai input. However, the PMSM results are considered good 

enough in the sense that, if the SPD2 is used to generate SVO, the clifference between 
3 v, '(k) and SV(k) or between vm3(k) and SV(k) is at the same level as that clifference using 

3 the PMSM results. Figures 4.107 and 4.108 compare the dinerence between v, '(k) and 

Figrire 4.107 Cornparison between v,."(k) and m(R) (SPD2) 

Figure 4.108 Merence between vm3'(k) and SV(k) of Figure 4.107 



Figure 4.109 Cornparison between vm3(k) and SV(k) (SPD2) 
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Figure 4.1 10 Difference between vm3(k) and SV(k) of Figure 4.109 

The attempt to apply NM)P to the PMSM results obtained for the 3rd set of signals is 

described in Appendix D-3. The representation of surface charge at point 261 can be 

4.2.5 The 4th Set Signais 

The 4th set of signais are ~$(k) and vm4(k) as shown in Figure 4.10 and Figure 4.9, 

respectively. The charge distributions obtained by the DM, the DCON, and the PMSM 

methods for this set signais are presented in this section. 

1) Tnr direct metIrod0M) 

The DM method cannot apply to this set of sipals because the system IR has not only a 

wide duration but also sigoincant rings in the signal. 



2) The deco~t~oItlfio~~ procedure(DC0N) 

Figures 4.1 11 and 4.112 show the amplitude of the Fourier ttansfonn of gm4(k) and vm4(k) 

respectively. Figure 4.113 &es the charge distnition obt;Wied by the DCON procedure. 

Figures 4.114 and 4.115 compare va'(k) with W(k) Usmg Figure 4.113 charge 

distriition. Due to the bad distribution obtained, a 10 pomt zero-phase average nhu is 

applied to Figure 4.113 to mter the charge distribution; however, the mtered charge 

distribution this the is not good either, as shown in Figure 4.1 16. F i e s  4.117 and 

4.118 compare vm4(k) with W(k)  ushg Figure 4.114 charge distriition. Allhough the 

merence between vm4(k) and SV(k) using the mter charge distniiution, is not large 

compared with the noise level, the charge distribution r e d t  is obvious1y far from SPD2. 

Figure 4.1 11 Amplitude of Fourier transform of system IR (gm4(k)) 
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Figure 4.1 12 Amplitude of Fourier traasfonn of the output v 2 ( k )  

Figure 4.113 Charge distribution obmined by the DCON procedure for the 4th set 
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Figure 4.1 l4CompaBson between vs2(k) with SV(& (Figure 4.1 13 charge distribution) 
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Figure 4.115 Difference between vm4(k) with SV(k) of Figure 4.1 14 

Figure 4.1 16 Filtered charge distribution by the DCON 

Figure 4.1 17 Cornparison between v a k )  with W(k) (Figure 4.1 16 charge distribution) 
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Figure 4.1 18 Difference betweea vm4(k) with SV(k) of Figure 4.1 17 



When the system IR has a wide duration and, more importantiy, the rise tirne of the IR is 

slow, the bandwidth of the system is narrow. When the baodwidth of the system is narrow 

for the 4th set of signals as compared with the other sets, even the oItered charge 

distribution results camot provide a good profile of the charge distribution. This 

demonstrates that the DCON is aise sensitive to the bandwidth effects. 

3) nie proposed PMSM apptouch 

Figures 4.1 19 and 4.120 show the signal output g/'(k) and v,"(k) when a 10 point zero- 

Figures 4.121 and 4.122 give the O btained a sequences ushg the point matchhg approach 

when mo is set at point 162, A=2 and A'=4 respectively. 

Figure 4.1 19 Filiered system IR (g,' '(k)) 

Figure 4.120 Fdtered output signal (vm4'(k)) 

Figure 4.121 a sequences using PMSM when mo-162 and A=2 



Figure 4.122 a sequences using PMSM when m=I62 and A'=4 

Figure 4.123 Charge distribution obtained by the PMSM(Fitered) 

Figure 4.124 Cornparison between v 2  '(k) with SV(k) (Figure 4.122 charge dis tribution) 

Figure 4.125 Difference between vm4'(k) and SV(k) of Figure 4.124 

Figure 4.126 Charge distribution by the PMSM after adjustment 



Figure 4.123 shows the tiltered charge distribution obtahed using the direct matching 

simulation modeL A 20 point zero-phase average mter is applied at this the. Figures 
4 4.124 and 4.125 compare v ,  '(k) with SV(k) using Figure 4.123 charge distribution. 

Based on the total charge king zero, Figure 4.126, the adjusted charge disaibution is 
4 obtained. Figures 4.127 and 4.128 compare v, '(k) with SVik) generated using Figure 

4.126 charge distribution, and Figures 4.129 and 4.130 compare v a )  with the SV(k). 

Figure 4.127 Cornparison between v,' '(R) with W(k) (Figure 4.126 charge distribution) 

Figure 4.128 Difference between v,"(k) with SV(k) of Figure 4.127 

Figure 4.129 Cornparison between v,'(k) with SV(k) (Figure 4.126 charge distribution) 

Figure 4.130 Difference between vm4(k) and SV(k) of Figure 4.129 



It is clear that the di&rence for the adjusted charge distributon in Figure 4.128 is Iess ia 

magnitude than that for unadjusted charge distribution in Figure 4.125. 

As the system bandwidth is decreased, the obtaimd charge dismbuton cannot be better 

than that obtained for the 3rd set of signais, which means that bandwidth effects exkt in 

the PMSM approach. However, the PMSM is less sensitive to the bandwidth effects than 

the DCON. As cornpared to Figure 4.126. charge distribution with SPD2, the charge 

distrilution pro& is correct; therefore, it is stiIL true that the resolution and accuracy of 

the PMSM is much better than those of the DM and the DCON. 

In regards to what has been done to the 2nd and the 3rd sets of signals, Figures 4.13 1 and 

4.132 compare vm4'(k) with SV(k); while Figures 4.133 and 4.134 compare mise- 

corrupted vm4(k) with m(k) using SPD2 charge distribution Comparing the difference in 

Figure 4.128 and Figure 4.130 (using Figure 4.126 charge distri'bution) with that in Figure 

4.132 and Figure 4.134 (using SPD2). one c m  observe that, although the difference using 

Figure 4.126 charge distniution is larger in ampiitude than using SPD2, some information 

about the charge distribution does not seem to be represented weiL This information cm 

be recovered through the nonlinear detection and optimktion process(ND0P). Because 

it is known that the nonlinear stochastic process can provide high resolution, Figure 4.126 

charge distribution is used as an initiai value for the NDOP. The resdts of the application 

of the NDOP for the 4th set of signals is shown in Appendix D-4, which proves that the 

nonlinear stochastic pro- can han& the noise effecu and the bandwidth effects better 

than a linear stochastic process, but with much more computation the.  
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Figure 4.13 1 Cornparison between vm4'(k) and SV(k) (SPD2) 



Figure 4.132 Difference between v,'(k) and SV(k) of Figure 4-13 1 

Figure 4.133 Cornparison between v,'(k) and SV(k) (SPD2) 

Figure 4.134 merence between vm4(k) and SV(k) of Figure 4.133 

The charge distribution res& using the three methods to process the four sets of 

synthetic signals are discussed and suinmarized in Section 4.4. The overall conclusion is 

that the PMSM mefhod seems to be the best approach among the three methods. In the 

next section, Section 4.3, the PMSM method is verified firom an experimental point of 

view with two sets of experimental signals: one contains oaly surface charges; the other 

contains bo th surface charges and the space charge distribution. 



4.3 PMSM CRITIQUE FROM AN EXPERIMENTAL POINT OF VIEW 

4.3.1 Introduction 

Synthetic signals can be used to ver* whether a signal processing method is working or, more 

specincaJIy, to illustrate the capability? the resolution and accaracy, and the advantages and 

disadvantages of the signal processing method. Howewr, *ce the signal processing method 

is intended to be applied to the experUnenta1 signais(i.e. the fial signals), it is necessary to 

fkther vermi@ whether the signal processing method is wonting weii with the experimental 

signals and to discover how to obtain good ~ e ~ u l t s  fiom the experimental signals nsing the 

signal processing method. 

In addiMn to the noise de&d in the noise mode1 for synthedc signais (assumed to be a 

white Gaussian sequence with zero mean), many other distrrrbances can exist in the detected 

experimental signak, such as a dc trend (sestilthg in non-zero mean noises)[92] or even a Iow 

fkequency trend (resdting in colored noise)[82]. Thus, the experimental signals may not 

approach the models that have been set up in order for the signal procashg method to apply. 

Although one cannot get rid of these trends, it is necessary and possible to nrmiinize the trends 

through some data pre-processing procedures. It is important not only to pre-process the 

measured output signais before applying signal processing methods to them, but also to test the 

obtained mdts h m  the signal processing method befon regarding them as the conect 

resuits. Unljke synthetic signal proces9ag. where one knows exactly the charge diSnribution 

used to bnild up the synthetic signais? t h e  is no "standard" charge distribution available for 

one to test whether the obtained charge distabution conectly and accurately refiects the actual 

charge distribution. However, the expaimental conditions an bown, and therefore, it is 

important to test w h e k  the obtained charge distribution satisfies the experimentai conditions. 

Table 4.11941 shows the PMSM procedures that are set up for processing experimental signals. 

Section 4.3.2 discusses the proceduces in detail To demonstrate the procedures and vezi@ the 



results obtaioed by the PMSM, two experimental si@ are used: one is used to generate the 

system transfer fiinction(1R). w&h is considered to contain only surface charges in the charge 

distriiution; the other is the arbitrary seiected masured signai at -60kV dc voltage application. 

Section 4.3.3 shows how the two signa are processed and what resalts are obtained. 

BLOCK DIAGRAM OF EXPERIMENTAL SIGNAL PROCESSING PROCEDURES 

1 CODY waveforms from hard disk into cornouter 1 

l~ransform wavefonn files(*.&) into data files (*.dat) 1 

1 ~ o a d  in all the  mou^ data nles in Matlab 1 

1 Data Re-pmcessing 1 
- 

Obtain g(t) system Get corresponding 
transfer function v,'(t) output signais 

I 

Apply shulatioa model: 
1) step A results 
2) step A' results 
3) solve for 0,,p(0), q&p(d) 
4) space charge dism3ution 

J, 
Apply self resuit testing 

1) a, adjnsting if necessacy 
2) electric field distribution 
3) eleceic potential 

i 



4.3.2 Experimental Signal Processing Procedures 

The principal set-up of the PEA method has ban shown in Figure Z.l(Chapter 2). The 

experimentaï set-up of om PEA system c m  be found in Figure S.l(Chapter 5). The 

procedures as shown m Table 4.1 are used to process each group of data obtained for each 

specimen The TDS644A SOOMHz digital odoscope is used in the experiments. It has a 

feanire that aîlows one to save waveforms into a 3.5" disk with *.wfin mes. Converting 

software is availabie which cm transform *.a nles hto *.dat files- The *.dat file can be 

loaded in Matlab e d y ,  and the data can be pmcessed using Matiab code. 

TABLE 4.2 
A ROUTINE USED FOR DATA PRE-PROCESSINC; 

l ~ o a d  in a l .  the group data files in Matiab 1 
I - 

1 Data selection and 1 

1 low f'requency trend 1 

Data Re-processing 

O btain g, '(k) syste 
transfet function I Get 

When ail the group data files are loaded in Matlab as shown in Table 4.1, a data pre-processing 

programs will be applied to them. nie data pre-processing is a prerequisite for aii 



experimental signais. The same processing routine most be appkd to all the grotxp signais- It 

was found the routine shown in Table 4.2 works weL 

When an the gmup data are loaded in, the &ta selection mrd orgmization procedwe will 

select signals that can be used as the system IR(traasfer hction); decide how to m8iimue the 

Muence of the second tenn in equations (3-2) and (3-4) Psmg either of the three approaches 

as descnid in Chapter 3; and process all signais accordingIy- For our experirnentd situation, 

the sample bas no or lit& previous space charge, the signal obtained when only the elemic 

pulse voltage is applied to the specimen (dc voltage application is O kV) is selected as v d ( k ) .  

After a l l  the 0th signals detract this v Jk) signal, the idluence of the second tenn is taken 

out, and their correspondhg vm(k) are obtained. The selected si@ that is used to generate 

the system IR will be processed the same way as aIL the other signals. The selection of the 

system IR signal is made to one signal or the sum of several signals at a low dc voltage 

application (less than the charge injection voltage). Then, this selected signal subtracts vd(k), 

and the output of the subttaction is denoted as v d k ) .  

When v d k )  and v&) are obtained, the next step is to minim;m the small different dc biases 

or Iow fiequency trends among the group si@. This is the most signincant function of data 

pre-processing. Several methods can be applied to get the trends, such as calculating the 

average value of the first 100 points of data of the signal; calculating the average value of all 

the data of the signal; and applying a very low kquency p a s  61ter(for example, a 200 point 

zero-phase average filter for a total 500 point signal) to the signa1 many times until the 

Merence between the filtered signal at th% time and the filtered signal at the k t  t h e  is within 

a smail tolerance. When the trend is obtained, the trend is subaacted fiom the signal; the trend 

in the subtracted signal is then mhhhed .  

When the measmed output sigaals are noisy (ie. compted with high hquency random noise), 

a noise reduction process is necessary. Then a 10 os 20 point(depending on the total points of 

the signal) anti-causal zero-phase average filter is used to miniimze the high fkquency noises. 

After that, the dc trend is iaiimnized again; then the obtained signal c m  be denoted as v,'(k) 

or v, '(k). 



The system transfer fiuiction '(k) is essential to the acniracy and resolution of the O btained 

space charge distribution. It is defined as the system response to ~ U i r n ~  surface charge 

density[2]. When v,'(k) is available, two more processing steps are used to get g,'(k). One ici 

to divide vm8(k) by tbe dc voltage daférence between the two signak iwd to generate v&) 

times &&Id, where d is the thiclrness of the specimen. 'Ibe other is to choose three caning 

points nom the obtained signai: the startmg point of the iïrst interface signal pl,  the starthg 

point of the second interface signal p2 and the first peak point of the second intedice signal 

p3. When pl, p2, and p3 are available, we retain signai voltage values within p l  and p2, and 

set vahies to zero for data points bss than pl  and more than p2, the system LR (g,'(k)) is thus 

obtained. The point p3 is chosen as the termination point for the PMSM. The simulation will 

stop when the p3 point is reached. 

This rnethod to obtain the system IR (g,'(k)) is conect under the assumption that there is no or 

a negligiile amount of space charge inside the specimen; and if the specimen already has space 

charges, the sudden increased voltage will not change the inside space charge profile 

significantly. 

With gm8(k) and v,'(k), one caa apply PMSM as atready discussed in Section 4.2 to obtain the 

surface charges cl, 02, and space charge &ribution. For experimental signal processing, it is 

better to apply self-testhg1941 to see whether the obtaiued charge distribution results are 

acceptable. For the experimental conditions, it is known that, when the potentiai of the ground 

electrode is zero, the potentiai of the HV eLecaode equah the dc voltage applied. It is known, 

where, V denotes potentiai, E denotes the electric field, 

The ektric field at the first interface is: 



According to Poisson's law, 

the interna1 eIectric field can be caldated as: 

where k is âom I to N+1 corresponding to x nom dr to d Therefore, the poteatkl V(d) can 

be calculated usîng the obtained charge distribution. The calculated V(d) can then be 

cornpared with the applied voltage. If the two are close with an acceptable Merence, self- 

testing iP pmed and the results are considered acceptable. lf the two are fat fiom each other 

for al1 the group data, one has to check the reason and go back to the pre-processing. By 

suitable adjustment of data pre-processing, one cm usudy obtain the charge distri'butions that 

can pass se&testing. 

In addition, the experimental condition requins that the elecvic field at the second interface 

satisties: 

There fore, a, can be adjusted. 

Two experimental signals measuted for the Thick HDPE specimen are used to demonstrate the 

presented procedures in the next section. Detaüed information about the Thick HDPE 

specimen and the enperimental set-up is pnsented in Chapter 5. 

4.3.3 Experimental Signals and Proœssing ResuIts 

Figure 4.135 shows three measured signais for a Thkk HDPE specimen using the Figure 5.1 

experimental set-up. One signal is obtained when only the electric pulse voltage(-2.3kV) is 

applied (no dc voltage application, Le. dc voltage at O kV) to the spepecimen, which has not ben  

subjected to any electric stress before and has virtudy no space charge inside. Another is the 



sum of the sipals when -15kV and -20kV are applied to the specimen denoted as -35kV 

signai. The thrkness of the Thick HDPE sample is 2.35mm. It is assumeci chat no space 

charge is injected when -15kV and -20kV are appüed This signal is selected to generate the 

system transfer hinctioa The third is the signal measured when the sample is subjected to Step 

Increused Volrage and when the voltage reaches -60kV. This signal is denoted as the -60kV 

sipal in this section. Detailed voltage applications for the Thick HDPE specimen can be 

found in Figure 5.2 in Chapter 5. 

Fgure 4.136 shows two signais: one is the subtraction of the total -35kV signal by the OkV 

signal; the other is the subtraction of the -6OkV signal by the OkV signal. M e r  the subtraction. 

the two sipals can be denoted as vdk) .  Since the first signal is also used to generate the 

system vansfer function, it can also be denoted as vg,Jk). The &ta selecrion and organimtion 

process is complete for the two signais. 

Figure 4.135 Original measured output sipals 

The (-35kV and -6ûkV) signals after the Data selection and organization pmess 



One purpose in choosing the transfer function signal is to show how to obtain the system IR 

nom the measurements. Besides, since it is k-nown that the transfer function signal is regarded 

as containing only surface charges br and @, and Crt62. if the charge distriiution obtained by 

the PMSM for the transfer fiinction signal caonot r e k t  this fact, the PMSM method caanot 

be considered to be working welL Therefore, the aansfer fuiaction signal is used as a 

veriiication of the PMSM method for experimental signais. The reason for choosing the -60kV 

signai is to demonstrate how to apply the PMSM signai processing procedures to an 

experimental signal, and to determine whether the PMSM signal proceshg procedures are 

working fine for an experimental signal. 

Figure 4.137 shows the two signals after a dc trend mniimization process. The trend was 

obtahed by caiculating the total average of the signaL Figure 4.138 shows the two signais 

after king fjltered by a 20 point zero-phase average aIter and a dc trend minimized by the total 

signai average again. Both si@ can be denoted as v,'(k). The JSkV signal can ais0 be 

denoted as vPD(k). Figure 4.139 shows the system traasfer function g,'(k) O btained after 

processing vma(k) as described earfier in this section. 

Figure 4.137 Signais after minimizing their dc mnds 



There are two important points to consider in the expetimental signal processing. One is the 

fact that the experimental signais are usualiy contaminated with noise. Therefore, mo needs to 

be chosen properly for stable results as alnady discussed in Section 3.3 and Section 4.2. For 

our particular PEA system, it is found that g(m+l) should be around 10% of the first peak 

voltage. For a sampling rate at 500MS/s, a sampling tirne interval At=2nr, this means roughly 

about 1045 data points' delay. One way is to choose m = p l  with the simulation step above 

10. Aitematively, it is found that the simulation step cm reach 1 ( ie .  the samphg rate) if 

g,'(k) and v,'(kJ are both delayed for 10-15 points. This means that the fkst 10 to 15 points 

of gmJ(k) after pl  are set to zero, m=pl+delay. This may influence the accuracy to some 

extent, but the resolution can be improved. Figure 4.140 shows the results of applying the 

PMSM to the signal a d  to generate Figure 4.139 ttaasfer fnnction. Figure 4.141 shows the 

results of applying the PMSM to the -60kV signal. The simulation steps are set to 1 and 2 

whüe three delays are used, 5, 10 and 15 points after p l  point. The first peak of gm'(k) ici at 

g m ' ( p r + 3 7 ) = - 2 . 1 7 6 7 v ,  wtiüe gm9@1+5)=-0.0337V, gm '(PZ + I O ) = - O . O g I 2 V ,  and g m f ( p l +  15) 

=-0.2028V. 

It can be seen that when the delay 1 5 becanse the percentage of the noise contaminated in the 

gm'(pl+5) i) high, the signal-noise-ratio at that point is low, and unstable results are obtained 

for the -60kV signai. This is not obviously oberved fkom the 35kV signal used to generate 

the m e r  function due to the fact that the values o f  the signal âom p l  to p2 an exactly 

proportionai to the tmasfer fiinction fiom pl to p 2  AAer the p2 point, when the simulation 

continues fiom p2 to p3, one cm observe that the results obtained with delay 5 are noiaer than 

those with delay 10 and 15. 



Figure 4.140 Impulse results of the -35kV sigaal used to generate the transfer function 

Figure 4.141 hpulse  results for the -6OkV signal 

The addition of extra delay can mean that the surface charge a2 is not represented as sharply as 

CI. This is the other important point that needs to be discussed for experimental signais. It is 

found that the second interface (HV electrode) can sometimes be as sharp as the k t  

interface (ground elecaode) cl, if p2 is picked considering the effect of delay. However, if p2 

is not chosen that well, the second inteditce wili tend to be a dissibution as shown in Figures 

4.140 and 4.141. Fortunately, the experimental condition provides a way to adjust 02 as 

discussed in Section 4.3.2. Cornparhg the impulse results at different steps can suggest 

whether the simulation itseIfis correct or not. Satisfving the exphentai condition can verify 

whether die simulation nsults are correctly reflecting the experirnents. 

Figures 4.142 and 4.143 show the charge distribution after adjtistrnent for the JSkV(transfef 

fiinction) signai and the -60 kV signal respectively. An extra delay of 10 afrer pl is used. 

Figure 4.144 shows the electric Wd distributions Biside the sample calcnlated ushg the 

adjusted and unadjusted charge distributions for the two sigrAs. Figure 4.145 gives the 

potential distribution based on the adjusted electec neld distribution as a self testing to the 



distribution results. And îïnaiIy, Figure 4.146 shows the space charge distributions afrer taking 

out the surface charges for the -35kV and the -60kV signals. 

Figure 4.142 Charge distribution after adjusmient for transfer function signal 

Figure 4.143 Charge distribution after adjusment(-60kV signal) 
*O 
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Figure 4.144 Electnc field distribution 

Figure 4.145 Potential distribution 
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Figure 4.146 Space charge distribution by simulation mode1 

It is obvions that the adjustments of in Figure 4.142 and Figure 4.143 recover the smeared 

results in Figure 4.140 and Figure 4.141. From Figure 4.144 the elecaic field dimibation, it 

can be observed that the a2 adjment is actually forcing the field to reduce to zero 

irnmediately at the point corcesponding to the HV electrode sample interfice instead of 

gradually. Therefore, t is Iike ushg a2 at the point of HV electrode sample intedace to 

account for ail the gradually changed charge distn'bution after the point of 02. This adjustment 

procedure appears to wotk quite weIL for the -35kV transfer function signal. As the results 

show in Figure 4.142 and Figure 4.146, s&e charges are distributed only at the two 

interfaces. and no space charges are djsttibuted insi& the specirnea Furthermore. the 

potential distniution as shown in Figure 4.145 ends at -35kV; the electric field disaiution in 

Figure 4.143 indicates a uniform neld distribution. Besîdes, the resdts of the -60kV signal 

indicates that there are srnail amounts of homocharges distnbuted near the interfaces; the 

electric field distribution is almoa d o m ;  and the potential disaibution ends at around - 
60kV. AU these results ver* that the PMSM ip working fine and the results obtained fiom the 

PMSM match the experimental conditions that are set for them. 

The developed signal processing procedares descn'bed above have k e n  applied to dI obtained 

experimentai sipals to obtain th& space charge distributions. The sesnlts of the experimental 

space charge distribution investigation are presented in Chapter 5. 



4.4 DISCUSSION 

Table 4-3 summarizes the characteristics of the DM, the DCON, and the PMSM methods fiom 

the charge distribution results for the four sets of sïgnals obtairmed by the three methods 

individually. The e&ct of noise, the e e c t  of charge distribution, and the effect of the 

bandwidth of the system IR on the three signal processïng methods are discussed as advantages 

and disadvantages inside the Table. The procedures used for each method for each set of 

signds are summarized in the Table as weU. 

As one can see nom Table 4.3, the DM method bas the lowest capacity to present sudace 

charges and the rapid change of charges, and the DCON has the lowest stability and highest 

sensitiviv to noise. Both DM and DCON seem to be more sensitive to the bandwidth etfecu 

than the PMSM. When the bandwidth of system IR ir m o w  or the system IR has some 

ringing effects, the DM camot be applied. Tberefore, m this se-, the sensitivity of DM to 

the system bandwidth e&cts is even higher than the DCON. Figure 4.147 fnaher shows the 

above comments on the three signal processing methods. 

DM PMSM DCON 
1 I I 

low highB 
sensitivity to noises 

PMSM DCON DM 
I I I 

low high' 
effects of the system bandwidth on 

the obtained charge distribution resuits 

PMSM WON DM 

good bad 
representation of surface charges 

and rapid changes in charge distribution 

Figure 4.147 Cornparison among thee methods 
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The resolution and the accmcy of the DCON depend on the resolution fiinction IR*IR-', and 

therefore, depend on the bandwidth of the IR operation and signal-to-noise ratio. When there 

is no noise presented in the signals (1st set of signals) and the IR is invertiable, the resolution 

and accuracy of the DCON are vesy good. However, if noise exists (the 2nd. 3rd and 4th 

sets), the resolution and the accinacy degease greatly, espespecially when the bandwidth of the 

system LR is rrduced (the 4th set). The resolution and the acnuacy of the DM depend on the 

duration and the waveshape of the system IR. It has the strictest requirements for the system 

IR, in one sense: the sensitivity of DM to the system bandwidth effects is considered even 

higher than that of the DCON. However, the DM is not as sensitive to noise as the DCON. 

Overall, the PMSM is better than the DM and DCON conceming the resoIution and accuracy. 

The resolution and the accuracy of the PMSM depend npon the simulation step and the delay. 

Generally, the sm& the step use& the higher the resolution and the accuracy and, of course, 

the longer the computation time. Usually in the simulation, a larger step is used first, then the 

step is decreased, halved, for example* If the two results are about the same, thir, means the 

Iarger step can be used in the simulation and the simulation r d t s  are correct Moreover, 

changhg the simulation steps enables snrface charges to be âistingaished fkom space charge 

distniutions. This can bnprove the accuracy of the obtaiiled charge disttibution, especially the 

space charge distribution near the ground electrode-ample interface. 

The highest resolution for the PMSM can be up to the sampIing interva when the step A=I, 

Le., A=At. To obtain a stable a sequence, the delay is adjpsted to make g ( m + I )  sigmfcant 

cornpared the noise ieveL As presented in Section 4.3 fiom experimental signals, g ( m + I )  is 

better at around 10% of the first peak of the system IR. For no matter how sharply the system 

IR(wide bandwidth) is increased or how dowly system IR(nanow bandwidth) is increased, 

g(mo+2) will be l e s  than the first peak, which indicates that the delay wiU neva be more than 

the rise time of the system IR. The resolution of the PMSM method can then be guaranteed to 

at least correspond to the rise time of the system IR and can be up to the sampling internai, 

especidy when a nonlinear detection and opthhtion process (NDOP) is appiied. 



For our typical PEA system, signals are sampkd at 5OOMSfs Cie. the sampling intend is 211s) 

and the sound velocity of the specimen is around 20ûûmls, the resolution of the obtained space 

charge distribution can be up to 4jm. 

The PMSM is better than the two previous methods in the sense that it is capable of providing 

more useful and more trustworthy information of anknown charge distri'butiow £iom the 

measured or synthetic signals. With a nonlinear approach to idenw the presence of surface 

charges or. furthemore, with a nonlnlear detection and optimization process (NDOP), the 

resolution and the accuracy can be much better than the two previous methods. 

The PMSM approach is just one way to apply the simulation mode1 idea Some other 

approaches can also be used, for exampie. the recursive minimum variance deconvolution 

approach and maximum likelihood deconvolution approach, as pcanted in Appendix C. Wh 

the maximum likelihood deconvolution approach. for example, one can apply the simulation 

mode1 idea. update the system IR parameters and statistical parameters, untii the maximum 

likelihood r d t s  are obtained. The cesolution and accuracy can be expected to improve. 

Ho wever, the maximum likelihood deconvolution(MLD) requires the ac tual sequence behg 

spike-like[87J. As for the charge disuibution, the a sequences are mainly pseudo a sequeaces; 

therefore, the appkation of the MLD U sW1 under investigation to determine whether it can be 

applied to obtain the space charge distribution. 



CHAPTER 5 

CHARGE DYNAMICS 

Chapter 4 demonstrated that the Wace charge distribution obtained by the PMSM method 

represents, with high resolution, the a m a l  charge distribution inside the test specimens more 

closety than the DM and DCON methods. Chapter 5 extends the application of the Wroved 

PEA rneasuring technique presented in Chapter 4. The PMSM method is applied to some 

p o l d c  materials in order to investigate the charge dynamics inside these rnaterials. In other 

words, the purpose of this chapter is to obtain useful information about the behavior of space 

charges under ciif5erent testing conditions to establish a meanineful relationship between the 

space charge disaibution ÿiside the h s d a ~ g  material and the breakdown mechanisms. 

As reviewed in Chapter 2 Section 2.3, the distortion to the electric field due to the space 

charge effect is considered one of the most important secondary effecrs on electric treeing, 

aging and breakdown phenomena in polymers. It is believed that space charges are injected 

into the ÏnsuIating material under high voltage application. It is found experimentaIly(Section 

2.3.1) that the polarity reversal or short circuit can cause an electric tree to occur at a voltage 

lower than the dc tree initiation voltage[q. A sudden release of space charges in a PMMA 

block can damage the insulating m a t u  and lead to the electric treeing, and no voltage 

application is necessary. As discussed in Section 2.3, the dynaniic changes of space charge 

distribution inside the insulating material play an miponant role in the initiation of electric 

treeing and breakdown, therefore, suggesting the great need to develop the space charge 

distribution techniques in order to clarify charge dynamics (Le. charge injection, accumulation 

and transportation characteristics). With the improved PEA meamring technique using the 

proposed PMSM method, we plan to investigate the foilowing phenomena in this research: 



1. space charge injection under HVDC voltage application. 

2. space charge aecumuliitiofi and nonsportution under constant HVM= voltage application, 

3. the effect of polanty reversai on the dyMmic changes of space charge distribution. 

4. the effect of short circuit on the dynamic changes of space charge distribution, 

5. the decay of space charges under short circuit condition, and, 

6.  the d-c b e M o r s  of space charge distribution in different insuiating materials. 

To investigate the above aspects, experiments are designed and perfonned for the sheets of 

LDPE, ThidThick HDPE, üHMWPE, PP and PMMA, mder tbese conditions: 

1. step hcreased HVDC voltage applications-investigaimg the space charge injection. and 

space charge dynaMcs as HVDC voltage increases. 

2. constant HVDC voltage application(inc1uding voltage reversal)-inves tigatïng the charge 

accumulation and nonsportarion under constant HMX3 voltage appiication and the effect 

of polarity reversal on the dyMmic changes of space charge distribution. 

3. short circuit coadition--investigatmg the effect of short circuit on the dynamic chmges of 

space charge distribution. and the decq of the space charges. 

The dynmic belmiors of space charge distribution in different polymeric materiais can be 

compared from the results of the above three types of experiments for the different specimens. 

The Step Increaied Voltage experimenu: In tbis experiment, the PEA measurements are 

conducted at each step voltage as the dc voltages are h t  increased fkom O kV to positive or 

negative 10 kV. Tben the voltage is increased with a step of positive or negatiw 5kV until the 

dc voltages get to positive or negative 85kV or 90kV. 

ZRe Connont Volrage Application experimenu: This experiment is conducted at a constant 

positive or negative voltage not less thm 60kV while the application thne is increased. When 

the space charge distribution d e r  the positive HVDC constant voltage application is 

compared with that under the negative HVDC? the effect of polanty reversal on dynamic 

changes of space charge distribution can be obsewed. 



The Shon Circuit qeriments: There are two types of short circuit experiments. 

Type#I: Whenever a Step Increuse Vdtage eqeriment or a Constant Voltage Application 

erperiment is nnished, the H M C  voltage is reduced to zero. The specimen is short- 

circuited(both sides of the specimen are comected to ground). This is the comection for 

the short circuit experirnent, Next we apply an electric pulse and masure the signal 

coniuig out of the transducer. Mer that, we a.Uow the voltage to increase to a positive or 

negative polarity, depending on the test requkements. 

Type#2: The Short Circuit experimenn can be conducted with the s p e b n  continuousIy 

short-circuited for a long perîod without any fÙrther application of HVDC The purpose of 

this procedure is to investigate the decay of the space charges inside the specimens as time 

increases- 

The experimentai setup and the voltage application to each specimen are detded in Section 

5.2. The three types of experimentd results for all the investigated specimens are surnrnarized 

in Section 5.3, Section 5.4, and Section 5.5 respectively. Fmally, the space charge dynamic 

behavior inside LDPE, HDPE, UHMWPE, PP and PMMA are discussed overd in Setion 5.6 

based on the experimental results s h o w  in Section 5.3-5.5. 

5.2 EXPERDVENTAL ARRANGEMENT 

The experimental setup used in the experiments, shown in Figure 5.1, contains the insulating 

supporter, electrode holder, ol container, oil, specimen, electrodes, tramducex, cable 

connection, prearnpliner, oscilloscope, eiecmc pulse generator, capacitor, and HVDC supply, 

etc.. The main components inside the set-up are discussed individually below. 



- 
Figure 5.1 Experimental setup 

1 ) Specimen and Elecbodes 

TotaUy, seven kinds of specmens were used in the experknents. Specimens were cut into 

41/4"~41X' pieces from commercial sheets which had not been nibjected to any electric stresses 

before. Each was cleansed using wash acetone (CH3COCH3) before preconditioning. 

According to ASTM 618, Procedure A, preconditioning at 4û/î3/50 was chosen because ail 

the specimen thicknesses are less than 7nm Condition 40/23/50 refns to the condition of the 

test specimen in the standard laboratory atmosphere (temperame at 23S°C, relative hurr0dty 

at 50%fi%) for 40 hours immediately pnor to testing. 

A three electrode system was adopted to guarantee that the electric field application was 

uniform in the center where the tnnsducer picks up signa. To ensure elecaic connection 

between elemodes and the specimen, evaporated AI, conducuve aluminum tape and 

conduciive copper tape were used. The thickness of the evaporated Al was around l p ~ ,  the 

thickness of the Al tape was about O.lmm, and the thickness of the copper tape was about 

0.04mm The overaU results of 12 specimens are shown and discussed in this chapter. Each 



specirnen is aven a narne. Table 5.1 gives the name of each specmien dong with its average 

thichess, its dielectrïc constant, and the comection electrode used. The dimensions of the 

three electrodes is shown in Figure 5.2. The Al and the Cu tape were cut into diameters 

925m.m and $50m and $38/$50mm ring, and pasted on the specimen. A rouer was used to 

press the sape, eliminate gas bubbles, and ensure the connection. 

specimen 
d (mm) 

Er 

! 

specimen 

~onductive layers 

electrodes 
specimen 
d ( m )  

E, 

Figure 5.2 Dimension of the three electrode system 
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The ground eIemode is a cyhder made of AL The diameter of the cyhder is 15- and the 

total  height is 30 mm The shie1ding electrode is a Cu tube with an inner-diameter of 38mm 

and an outer diameter of 42nim The HV electrode is made of stainiess steeL The shape and 

dimension of the specimen, the W elecaode, the ground electrode, and the shielding electrode 

are shown in Figure 5.2. 

The transformer o l  Voltesso35 was chosen as the medium Its physical properties and oil 

content(has inhibitor content 0.07 wt%) indicate that it is type 1 oü [ASTM 3487. The 

viscosity of the oil at 40°C is 8.3 cst; therefore, conditions of 60°C and 40Pa (0.3 Torr) 

[ASTM 24131 are considered to apply for drying and degassing the Iiquid. The 02 was 

preheated to 60°C and degassed for 45 minutes in a vessel comected to a ES250 pump which 

garantees a vacuum much better than 0.5 Torr. 

3 ) Transdzicer - 
The diameter of the active area of the transducer is 3/s inch, The bandwidth of the transducer 

was specially designed from 0.25-6MHz The ûanxlucer was caiibrated by the company 

(Etalon Lnc.) in water using three transducers (IMHz, 2MH2, and S m )  as transmitters. The 

sound pressure was fist calibrated by a calibrateci hydrophone. The calibration chart is shown 

in Fimpre 5.3. 

Recelvlng Sensitivity 
(Measured in water) 

Figure 5.3 Chlibration chart of the transducer 



The Teknoriics type 1Al dual trace plug-in unit was used as a preaqlifier before the output 

of the transducer was connecteci to the oscinoscope. nie bandwidth of the preampliner is 

30MHz with a gain up to 10. 

5) Oscilloscope 

TDS 644A 500 MHz digitizing osdoscope was used to record the measured signak. The 

osc~oscope has a feature to let one record mea~u~ed signals on a 3.5" floppy dûk. Therefore, 

off-line signal processing can be easily performed. Ano ther feature is that the osciuoscope can 

measure, for example, 100 signals, and output the average of these signals. Ln this way, the 

random noise can be decreased. In addition, the oscilloscope has two built-Li low pass atm. 

The cut-off kequency of one is at 100MHz; that of the other is at 20MHz. Since the main 

ftequency range of the useful signals is below 20MHz, the 20MHz filter was inipIernented to 

the signds. - 

6) Electric Pulse Generafor 

Figure 5.4 shows the circuit used to generate the elecuic pulse. The Ruke High Voltage 

Power Supply Mode1 408B was used since it can provide up to k6kV dc voltage. The electric 

pulse voltage, therefore, can be up to a k V .  The electric pulse voltage of -2.3kV was used for 

alI the measurements. 

Figure 5.4 Circuit diagram of the electric pulse generator 



Figure 5.5 Waveshapes of the electric pulse 

Figure 5.5 shows two waveshapes of the measured electric pulse. The Channel 1 signal was 

obtained by using a resistive voltage divider, and the Channel 2 signal was obtained using a 

capacitive voltage divider. As measured Born the osciiloscope,. the Channel 1 electric pulse has 

a width of 69.811s and a rise time of 38.8 ns, while the Channel 2 has a width of 54.811s and a 

rise tirne of 19.2n.s. 

7) m c  Supply 

Brandenberg Multiplier lOOkV mode1 908R dong with Brandenberg Power Supply & Connol 

Unit mode1 108, was used to provide HVDC up to f 1ûûkV. The polariv was easily changed. 



8) Others 

The other parts are shown clearIy in Figure 5.1. Double shieIding cables were used to 

eüminate the interference. Springs were used in the electrode holder to ensure the electrodes 

were tightly attached to the specimen. Insulators and insuJating supporters enable the HVDC 

to be safely supplied fiom the bottom of the speclnen. 

5.2.2 General Test Procedure 

When each specimen was tested in the experimental setup, a -2.3kV e l e d c  pulse was applied 

to the specimen with no dc voltage applied (zero HVDC voltage). Measurements f?om the 

nansducer were obtained and denoted as v,&) for each specimen. The recorded v d ( t J  was 

used as mentioned in Section 4.3 to get rid of the bfiuence of the second terni Ïn  the pressure 

wave signds(equations (3-2) and ( 3 4 .  

Then, a Step Increased Voltage was applied to each specimen. This is called the first step 

NIcreased voltage experiment. Some of the specimens were subjected to a positive step 

inmeased dc voltage; others were subjected to a negative step increased dc voltage. When the 

absolute value of the dc voltage reached a certain Ievel(such as 85kV or 90kV), the 

measurement was stopped. This voltage level was detemhed in this experiment by the 

maximum stable output voltage fiom the dc generator, which was 90kV in this case. Afier 

that, the applied voltage was set to zero quickiy, and the specimen short-circuited; this is the 

1st shon circuit of ali  specirnens. Then, four specimens (niin HDPE, Thick HDPE, HDPE, 

and PP) were subjected to another Step Increased Voltage application, which is called the 

second step increased voltage aperiment. Mer the second step increased voltage 

rxperirnent, the specimens were again short-circuited. This is the 2nd short circuit for the four 

selected specimens. 

After di the Step Increased Voltage applications were finished, a Constant Voitage 

Application of the same polarity as the step voltage was appiied to the specimen for more than 

1000 minutes. This is called thefirst connant voltage application. 



After the first constant voltage application, the voltage was again turned to zero and the 

measmments taken during this period are calied the 3rd shan circuit for the four specimens, 

and the 2nd shon circuit for the other 8 specimens. Then. a reversed po- HVDC was 

applied to the specimens, except ZTHMWPE-E, HDPE-E and PMMA-E. For UHMWPE-E, a 

higher same poianty HVDC was appIieci. For ADPE-E and PMMA-E, no more experiments 

were carrieci out. The reversed polanty ENDC is another Cormant Voltage Application. It is 

denoted as the second constant voltage application anâ/or the first reversal for the rest of the 

specimens. After that, the specimen was short circuited again, these rneasurernents are the 4th 

shon circuit for the four specimens ÇTtiin HDPE, Thick HDPE, HDPE, and PP), and the 3rd 

shon circuit for the others. 

1 
Figure 5.6 Dc voltage applications for LDPE, Thin&Thick HDPE, and WMWPE specimen 





Step Increaed Voltage Eq>eriment 

Increase the voltage initially by +/- lOkV 
Increase the voltage in steps by +/- 5kV 
At each step perform the PEA measurements 
Stop the experiment when a certain level of voltage is reached 

1 'Ihis is the Ith step increared voltage ] 
1 

Qui&y set the appiied voltage to zero 
Short-circnit the specimen(both sides are grounded) 
Perfonn the PEA measurements 

This is the Ith short circuit i 

N.B. PEA measurements: apply an electric pulse to the specimen and pick up the signals h m  
transducer 



Constant Voltage Eaperiment l 
Apply a constant HVDC to the qxchen 
At certain tirne interval, perfonn the PEA measurements 
Stop the experiment after certain period (usually >1000min) 

L 

1 This is the AQh comtmr voltage o p p l i c o n  1 
I 

- 

Short Circuit Eqerimnt (Type#l) 

Quicldy set the applied voltage to zero 
Sholi-circuit the specimen(b0th sides are goundeci) 
Perfonn the PEA measurements 

I 

This is the Ith short circuit t 

Reverse the polarity of 

1 This is the Kth reversal 1 

Thick HDPE PP 

- -7 
1 Shon Circuit Experiment 

Figure 5.9 Block diagram of the voltage application procedures 



5.3 STEP INCREASED VOLTAGE EXPERIMENTS 

5.3.1 Procedures 

As discussed in Section 5.2 and shown in Figure 5.6-5.8, the first s e p  increased volmgr 

experiments were conducted for ali the 12 specimens. For six specimens, a positke polarity 

test was conducted. In this experiment, the dc voltage was fit increased fiom zero to 

positive 10 kV. Then it was increased with a step of positive 5kV until dc voltage reached 

positive 85kV for Thin HDPE and HDPE-Cu, anci positive 90kV for LDPE, PMMA, PMMA- 

E. and UHMWPE-E. 

For the other six specirnens, a negative pokity test was conducted. In this experiment, the dc 

voltage was k t  increased from zero to negative 10 kV. Then, R was increased with a step of 

negative 5kV until the dc voltages reached negative 75kV for HDPE, negative 85kV for Thick 

HDPE, and negative 90kV for LEBfWPE, PP, HDPE-E, and LDPE-E. 

The second Hep increased voltage was conducted (as sho wn Li Figures 5.6, 5.7 and 5.9) for 

the Thin HDPE with voltage increased up to +85 kV; the Thick HDPE with voltage increased 

up to -70kV; HDPE and PP with voltage increased up to -90kV. 

These experiments were intended to investigate the charge injection and vace charge 

dynamics as HVDC voltage increases for different specimen rnaterials. 

FiCollre 5.10 plots the surface charges a, and q obtained using the PMSM as explained in 

Chapter 4 for the LDPE, Thick/Thin HDPE, and UHMWPE specimens when they were 

subjected to thefirst step increased voltages. The theoretical values of the surface charges for 

these specmiens under u115on-n field assumption are cdcnlated using equation a,= q=* i&Nd  

and ploned as dash dots in Figure 5.10 for al i  specimens. Figure 5.11 shows the dynamic 

changes of space charge distributions inside these specimens when the dc voltages were 

increased step by sep. Figure 5.11 are in consistent with Figure 5.10 in the sense that the 



amplitude of sinface charge density is less than that of the d o m  field s a c e  charge density 

when homocharge injection is dominant whüe larger than chat of the uniform field surface 

charge density when heterocharge co1lectïon is dominant. 

Figure 5.10 The dianges of surface charges vs the appied volnge 

LOPE Thin HOPE 

Thick HOPE UHMWPE 

Figure 5.1 1 Space charge distributions vs appiied voltage for LDPE,Zhin/Ihick HDPE, and 

WHMWPE under rhefirst srep increased voltages 
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Figure 5.12 The changes of sudace charges vs the applied voltage 
Thln HOP€ m m k  HOPE 

Figure 5.14 The changes of surface charges vs applied voltage 



PMMA 

HOPE PP 

Figure 5.15 Space charge distribution vs applied voltage for PMMA, HDPE-CU, HDPE and 

PP under theps t  sep increased voltages 

1 
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Figure 5.16 The changes of surface charges vs the applied voltage 
HOPE PP 

Figure 5.17 Space charge distribution vs applied voltage (the 2nd step increased voltages) 



Fikgme 5.18 The changes of surface charges vs applied voltage (Al-evaporated specimens) 
PMMA-E UHMWPE-E 

HDPE-E LOPE-E 

Figure 5.19 Space charge distribution vs applied voltage for specimens with Al-evaporated 

electrode under the 1st step increased voltages 

Fi,pre 5.12 shows the surface charge changes in Thh/Thïck HDPE under the second srep 

incrensed voltage. And Figure 5.13 @es the changes of space charge distribution in the two 

specimens. Figure 5.14 shows the changes of surface charges for PMMA, HDPE-Cu, HDPE 

and PP specmiens under thefsrst step increased voltage applications. Figure 5.15 shows the 

dynamic changes of their interna1 space charge distributions. The dash dot in Figure 5.14 

indicates the dculated surface charge density (under uniforrn field assurnption) verse the 



applied voltage for each specimen. Figures 5.16 and 5.17 show the changes of surface charges 

and space charge disaiutions respectively, for the M)PE and PP s p e h n s  under the 2 ~ i  

step increared volmges. Figures 5.18 and 5.19 show the changes of suface charges and space 

charge distniutions respectiveLyT for the HDPE-E, LDPE-E, PMM.ET and LJEMWPE-E 

specimens under the In step increased voltage application. The dash dot in Figure 5.18 also 

indicates the calculateci sinface charge density (under unifonn field assumption) verse the 

applied voltage for each specirnen. 

5.3.3 Discussion 

The resuits of the above experimental results suggest that each specimen has a balance between 

charge injection and charge colIection when it is subjected to a dc voltage. For specimens that 

have not been subjected to any electric stress More, at the a m  of the voltage application, a 

slight mount of the homocharge seens to forni, perhaps due to homocharges king repeiled 

from electrodes. As the application time and the voltage are incxeased, these charges seem to 

move to the other side of the elecrrode. This process is denoted as the heterocharge 

collection. At low dc voltage ( les than the charge injection voltage), heterocharge 

distributions seem to form. As the W D C  voltage is m e r  increased, the homocharge 

injec rio n stms at bo th electrodes or mauùy fiom the HV electrode dependhg on rhe interfacial 

properties of the specimen. If the charge injections fkom the HV electrode and ground 

eiectrode are almost at the same level (for example, Thick HDPE), the homocharge 

distribution tends to form If the charge injection fiom the HV electrode ïs dominant (for 

exarnple, Thin HDPE, UHMWPE and PMMA), a slight amount of charge with the same 

poiarity of the HV electrode is distributeci near the HV electrode sample interface; while a 

large amount of that poiarity charge seerns to be distributed n e z  the ground electrode sample 

interface. The ground electrode acts like a heterocharge collecter. 

Comparing theoretical values (under uniform e l d  assulllption) with experimental results in 

Figure 5.10, it shows that for LDPE, injections happen at both electmdes when the voltage is 

larger than 20kV. For Thin HDPE, charge injection is mainIy from HV electrode, and it 



occurs around 25kV. For Thick HDPE, onLy a slight charge injection happens around -50kV. 

Furthemore, UFBfWF'E is like HDPE, but the heterocharge colletion near the ground sample 

interface seerns to be more dominant. The charge injection voltage is around -65kV for 

UHMWPE. 

When we compare the results under the 2nd step increaed voltage with those under the firsr 

swp increared voltage application. we note that the charge distriiutions versus the applied 

voltages for Thin HDPE, HDPE, and PP do not change much, except for some negative 

charges at ground electrode s q 1 e  interface, and a small amount of positive charges at the HV 

electrode sample interface under zero and 1ow voltage application. However, for Thick 

HDPE, a large number of negative charges accumulate near the ground electrode sample 

inteifaces and increase as the voltage increases. 

The space charges of HDPE and HDPE-Cu are much less than those of Thùi and Thick HDPE, 

perhaps because elecmc fields are less when the specmien thickness is increased. Therefore, 

there is only a s d  amount of charge injection and coIlection; the charge dynamic acavity is 

O bviously less. For PP, negative HVDC is applied. As voltage increases. negative charges are 

gndually increased near the ground electrode sample interface. Also, as the voltage increases, 

the positive charges gradually accumulate near the HV electrode sample interface, and in the 

meantirne, the intemal part of the specirnen gradually has a concave shape negative charge 

distribution. This internai concave shape phenornenon can also be observed fkom the second 

strp increared voltage application. 

Cornparhg the experimental results of PMMA-E with PMMA, we see that the changes of 

charge distribution versus the applied voltage seem to be the same. Also, it seems that a small 

number of negative charges already exist before the voltage application for PMMA-E, 

possibly because of the evaporation process using an electron beam to evaporate AL The small 

amount of electcon injection during the evaporation process seerns possibly to explain the 

Merent charge disaibution behavior vs applied voltage between HDPE-E and HDPE or 

HDPE- Cu. As seen fiom the second step increased voltage application for Thick HDPE, the 



space charges accumulate more substantially than for the first s e p  hcreased volrage 

application; the possible exphnation for the phenomenon is that the charge injection during the 

first sep increased voltage appIication and the 1st shon circuit may cause some degradation 

of the specimen near the intefices and create more traps for the space charges to accumulate. 

For HDPE, there is not much charge accumulation even during the second s e p  increased 

voltage application, perhaps because the smaüer charge activity happens before the second strp 

Nicreased voltage application. For HDPE-E, pro bably the evaporation process introduces 

charge injections and causes some degradation of the specimen material near the interfaces. 

and therefore, the charge accumulation near interfaces becornes mach more than the almon 

same thickness HDPE and HDPE-Cu specirnens. 

Comparing the resuks of the positive HVDC voltage application with negative KVDC voltage 

appkation LDPE(+) with LDPE-E(-); UHMWPE-E(+) with UHMWPE(-);Thin HDPE(+) 

with Thick HDPE(-)], we see that negative HVDC has more tendency to lead to iarger amount 

of (negative) charge accumulation than (positive) charge accumulation under positive W C .  

More information about the dynarnic changes of space charge dism3ution cm be obtained 

fkom the Connant Voltage application experimental results, which will be discussed in the next 

section. 



5.4 CONSTANT VOLTAGE APPLICATION EXPERMENTS 

5.4.1 Procedures 

Afier the Step Increased Voltage applications, as described in Section 5.2 and shown in 

Fiawe 5.6-5.9, specimens were short circuited and constant voltages of the same po Iarity 

as the step increased voltages were applied to alL the 12 specimens for more than 1000 

minutes. After the first cornant voltage application, poIarity was reversed for moa of 

the specirnen except HDPE-E and PMMA-E, for which the voltage application was 

stopped; and UHMWPE-E, for which a hi* magnitude of the same polarity voltage was 

applïed. After the first reversai, the moa signincant Constant Voltage Appiication 

experiments were the 2nd 3rd, 4th, and 5th reversals for LDPE and UHMWPE 

specirnew. AU these experiments were designed to study the charge dynaniics under a 

constant voltage application and the effect of polarity reversa1 on the space charge 

dismbution. The results are shown in Section 5.4.2 below. 

5.4.2 Results 

Figure 5.20 shows the dynarnic changes of space charge dismbutions for LDPE and Thin 

HDPE under +65kV, and for Thick HDPE and UHMWPE under -65kV. Figure 5.21 

shows the dynarnic changes of space charge distributions for PMMA under +70kV, 

HDPE-Cu under +60kV, HDPE under -60kV, and PP under -65kV. And Figure 5.22 

shows those for PMMA-E and üHMWPE-E under +65kV, and HDPE-E and LDPE-E 

under -65kV. Mer the first constant voltage application, the voltage is decreased to 

zero and the specimens are short circuited. HVDC polarity is changed and reverse 

poiarity is applied except for LHMWPE-E. Figure 5.23 shows the space charge dynamics 

when this first ratersal happens to LDPE, Thin HDPE, Thick HDPE and üHMWPE. 

Figure 5.24 shows those for PMMA, HDPE-Cu, and LDPE-E, and higher umeversed 

voltage for LTHMWPE-E. To funher investigate the charge dynamic behaviors when 

HVDC voltages are reversed, LDPE and UHMWPE have been chosen for more reversals. 



Figure 5.25 shows the dynamic changes of charges in LDPE and UHMWPE when the 

second and the third reverses are applied 

and fifth reverses are applied. 
LDPE 

And Figure 5.26 shows those when the forth 

fkln HOPE 

Figure 5.20 Space charge dynamics (same polarity as step increased voltage tests) 
PMMA -7OkV W O P E - C u  40kV 

Figure 5.21 Space charge dynamics (same poIarity as step increased voltage tests) 
PMMA-E +akV UPIMWPE-E -LsV 

HOPE-L -86kV LOPE-t -66kV 

Figure 5.22 Space charge dyaamics (same polarity as step increased voltage tests) 
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Figure 5.23'space charge dynamics under reversed dc voltage for LDPE Thin HDPE 

Thick HDPE and UHMWPE 
PMMA -70kV W D P E - C U  -7OkV 

Figure 5.24 Space charge dynamics under reversed dc voltage for PMMA, HDPE-Cu, 

LDPE-E, and bigher voltage for UHMWPE-E 
LOPE -kV LOPE 4 k V  

UHMWPE -66kV UHMWPE t66kV 

Figure 5.25 Space charge dynamics for LDPEâUHMWPE under the 2nd & 3rd revers& 
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- 0-0  x(mm) 

UHMWPE -6SkV UHMWPE 4 5 k V  

Figure 5.26 Space charge dynamics for LDPE&UHMWPE under the 4th and 5th reversais 

5.4.3 Discussion 

The results for the first constant voltage applicati~n~gure 5.20-5.22) are summarized 

below : 

1. When positive polarity is applied at HV electmdes, positive charges are disuibuted 

war the ground electrodes for Thin HDPE and PMMA-E. and for LDPE most of the 

tirne, however, srnail number of negative charges tend to distnbute near ground 

electrodes for HDPE-CU and UHMWPE-E, and for PMMA most of the tirne. 

Whatever positive or negative charges are distriiuted near the ground electrode. 

negative charges are present near the HV electrodes for ail the specimens. For LDPE, 

there is obviously positive charge injection h m  the HV elecaode side and negative 

charge mpction fiom the ground elecDode side. The negative charges mjected from 

the ground electrodes and the positive charges from the HV ekctrodes seem to 

penetrate inside the spefirnen, away from the injected elecaodes. As voltage 

application time hcreases, mon  charges are accumukted and the accumulation 

regions graddy  tend to extend to the inner part of the specimee These dynamic 

behaviors of space charge distribution are regarded as a space charge distribution 



pattern and denoted as the L D P P  pmern. For ;iU the other specimens, this kind of 

tendency or pattem &O exists, but to a much srnaII degree. This fincihg indicates that 

space charges are much easier to be injected into LDPE materials than the other 

testing materials used(HDPE, UHMWPE, PP and PMMA), 

2. When negative HVDC is applied at the W electrode, negative charges are present at 

the ground electrode for al l  the testing specimens. A carefid examination of the 

experimental resutts near the HV electrode side shows that negative charges are 

present there (Thick HDPE, UHMWPE, HDPE and LDPE-E), except PP and HDPE- 

E, for which positive charges are distributed near the HV electrode. As voltage 

application time increases, LDPE-E shows the inmeases of negative charges near the 

HV electrode. As the tirne increases, positive charges start to grow and penetrate 

deeper in the specimen near ground electrodes. This pattem is denoted as LDPE-E 

pattern, 

It can be seen that there are remarkable changes in space charge distributions when the 

polvity is changed; however, the changes are quite smaIl when the polanty is the sme but 

the voltage is applied at a higher leveL For CTHMWPE-E, when higher voltage is applied, 

the charge pattem reniains the same, and the amount of charges is slightly increased. For 

others, when reversed voltages are applied, the whole patterns seem to change. Men 

polanty changes fÏom positive to negative, for LDPE, large number of negative charges 

are distributed at both electrode sides. a pattem is denoted as LDPE pattern. For Thin 

HDPE, mainly positive charge disiributim(Thin H D P ~  pattern) changes into all negative 

charges ( Thin HDPE panem). For PMMA, the panem with a srnail amount of negative 

charge distributed near ground and HV electrode interfaces(PMMA' pattern) changes 

into the pattern that a large amount of negative charge is distributed near ground 

electrode, while a small amount of positive charge is distributed near the HV 

electrode(PMMA- pattern or heterocharge disnibution). For HDPE-Cu, the pattern 

becomes a typical heterocharge distribution. The hererocharge disniburion pattern is also 

held for PP and HDPE-E under negative voltage application. 



When the KVDC voltage is changed fiom negative to positive, for Thick HDPE, negative 

charges decrease as the voltage application time inmeases. For UIMWPE, negative 

charges disaibuted near ground e l m o d e  sample interface (UHMWPE pattern) change to 

positive charges (uHMPF pattern), and the number of charges increase to higher 

positive values as the application tirne hcreases. For LDPE-E, the pattern looks like the 

LDPF pattern but with less negative charge injection near the ground electmde. 

The finther reversai experiments for LDPE and UKMWPEmgure 5.25 and Figure 5.26) 

show more clearly that a certain charge distribution pattern exists based on the charge 

injection voltage of the material and the polarity of HVDC voltage applied at the HV 

elecnode. When negative voltages are applied, space charge distributions will tend to 

form the negative voltage application paneni, and vice verse. When the voltage is 

reversed, space charge dûaibution can change very fast towards the other paneni 

correspo nding to the reversed voltage. Moreover, whenever the voltage is reversed back 

to the negative or positive, the number of charges inside the specimen are obviously 

increased compared to the previous negative or positive charge disaibution pattern. In 

more simple words, fkequent reverses of polarity seem to lead to more charge 

accumulation. It cm be predicted that the breakdown of the specimen wiU happen earlier 

if the specimen is subject to more reversals. 

Moreover, ftom the above experimental resdts, it is clear t h  negative poianty HVDC 

c m  lead to greater negative charge accumulation than positive poiarity. This seems to 

prove that charge injection is easier for electrons than for holes, and may suggest that the 

density of the trap to catch electrons is higher than that of the trap to catch holes in the 

testincg material. 



5.5 SHORT CIRCUIT EXPERIMENTA L RESUL TS 

5.5.1 Procedures 

Afrer each cycle of step increased voltage appIication and each cycle of constant voltage 

application, the specimens were short-circuited as shown in Figures 5.6-5.9. It has k e n  a 

weU-known experimental phenornenon that a short-circuit can lead to earlier damage of 

the insulation rnaterials[q. Treeing and breakdown are fomd to happen when specimens 

are short-circuited (Section 3.3)[6-v.' Therefore, it has been an important pan of this 

research to measure space charge distributions when specimens are short-circuited and to 

CO mpare the space charge distributions before and after the short-circuits. In addition, for 

some specimens, for example, LDPE, c o n ~ u o u s  short-circuit experiments were 

conducted after space charges exist in the specirnen to investigate the decay of space 

charges. Therefore, we can Say that two types of short circuit experiments are conducted 

as mentioned in Section 5.1. The dinerence between the two types Iw in that Type#I is 

performed innnediately after a HVDC voltage application and that T y p a  is perfonned 

while the specimen has been kept short-circuited for a long penod. The resdts of the 

Type#I show the space charge disaibution before and after the short-circuit The results 

of the T'e#2 shows the decay of the space charges disaibuted inside the specimen as the 

short circuit time increases. The results of the Type#] for all specimens and the results of 

the Type#2 for four specimens(Thick NDPE, PP, UHMWPE-E, and LDPE) are 

demonstrated in Section 5.5.2. 

5.5.2 Results 

Figures 5.27:5.37 show the fmt type short circuit experimental results of ai l  the 12 

specimens. Figure 5.38 shows the charge dynanrics in Thfck HDPE specimen for 300 

minutes and in PP for 780 minutes after the last short-circuit Figure 5.39 shows those 

results in UHMWPE for 1360 minutes and in LDPE for more than 37530 nimutes(more 

than 20 days). 
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Figure 5.28 Short circuit experimenral resuits for LDPE 
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Figure 5.32 Short circuit resulrs for HDPE-Cu 
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Figure 5.33 Short circuit results for HDPE 
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Figure 5.39 Charge decay dynamics in UHMWPE-E and LDPE 

5.43. Discussion 

We can observe two tendencies fiom the TpeH short circuit figures: 

1. when the space charges accumuiated near interfaces are positive and the short circuit 

takes place, the space charges accumdated have a greater tendency to change to 

negative polarity. 

2. when space charges accumulated near the inteditces are negative and the applied 

voltage reduced to zero and the specimen is short-circuited. the space charges 

accumulated there have a greater tendency to remain negative. 

These resdts seem to indicate that ihe main charge carriers are electrons and the 

movement of electrons are the main cause of the changes in the space charge distributions. 

From the dynamic changes of charge distribution, it cm be seen that short circuit cannot 

make the charge inside polymers decay immediately and completely. The amount of 



charge in Thick HDPE after king short-circuited for 300 ininutes, in PP after 780 

minutes, or in UHMWPE afier 1360 minutes does not seem to decrease. The significant 

decay of total space charges in LDPE seerns to happen aAer 40 minutes as shown in 

Figure 5-40. However, even after more than 20 days, space charges still exkt in LDPE. 

The intemal charge will move to the inthces, and the total number of charges WU 

decrease, but there wil l  stiIl be some resiciue of charges inside the specmien distributed, 

rnainly near the intdacs. 

Figure 5.40 The decay of total arnount of space charges in LDPE 

5.6 SUMMA RIES A ND DlSCUSSlONS 

Although every specimen is not the same even if they are cut IÏom the same sheef the 

space charge dynamic characteristics of different materials can still be iilustrated fiom the 

results of the three categorics of the discussed experiments. 

1 .  The charge injection field for LDPE is obviously lower than the other specimen 

mateW.  From the step increased voltage experiments, the charge injection voltage is 

around 25-35kV, corresponding to a eLcaical M d  stress around 10kV/m The 

LDPE mataial demonstrates les  ability to sustain space charge injection since space 

charges can grow into the mat& and preserve a certain depth, depending on the 

appüed voltages and application tirne. 

2. The charge injection electrical field stress of HDPE is more than two times chat of 

LDPE as known nom step increased voltage e x p e h n t s  of Thin HDPE. Thick 

HDPE, HDPE-Cu, and HDPE specimens. The results of the first step increused 



voltage application shows more charge accumulation for HDPE-E than the other 

HDPE specimens. However, it seerns that the behavior can be expiained: the Al 

eMporation process has resulted in some charge king injected. As one can see fiom 

the second negative step increased voltage experiment of Thick tIDPE, the tendency 

of negaeive charge increases with voltage, near the ground electrode. This resuit, the 

same as for the HDPE-Cu, suggeas that the charge injection might httroduce some 

degradation of the specimen material near both the ground electrode-samp1e interface 

and the HV electrode-sample intedace; therefore, ït creates more traps for space 

charge accumulation. 

3. Cornparing alI the specimens under positive HVDC and negative HVDC voltage 

applications suggest that negative HVDC has more potential to lead to more charge 

injedon and more negative charge accumulation than the positive HVDC. The 

UHMWPE-E speciinen, for example, is subjected only to positive HVDC voltage 

applications; the amount of charges are very low even when +80 kV is applied to it. 

Another example is the Thin HDPE. Although there is obvious charge injection for 

the Thui HDPE specimen at the HV electrode side, the arnount of charge accumuiated 

k not as much as the Thick HDPE(when negative RVDC is applied). This can also be 

seen fiom PMMA, PMMA-E, HDPE-Cu specimens. 

4. The resdts of PMMA and PMMA-E are consistent. For the step increased voltage 

experiments, after the application voltage reaches 65kV, the arnount of charge seerns 

to increase rapidly to a higher leveL A hypothesis is that some changes happen to 

some polar molecules at this voltage leveL 

5. Cornparing the space charge distributions inside PP with HDPE and UHMWPE and 

PMMA, it seerns that charge distribution of PP is not due to charge carriers such as 

electrons and holes but rather to poIarization. For HDPE etc., the space charge 

distributions in the inner part of the specimen are about zero and remain zero when the 

applied voltage is increased. For PP, on the contrary, as one can see fiom Figure 5.15 

and 5-17? the inner becomes concave and, as the voltage increases, this concave shape 

become more obvious. Kt is supposeci that a kind of orientation of PP molecules rnay 

rake place when the eleceic stress is inaeased. 



6. The amount of space charge dismkuted inside both UHMWPE and UHMWPE-E is 

litde. This result suggests that the bulk materials of the two specimens and their 

material c h a r a c t ~ c s  are the &. However, the amount of charge distributed near 

the ground electrode for UHMWPE is much greater than for UHMWPE-E, suggests 

that the Al-tape connection between ground electrode and the specimen for 

UHMWPE rnay introduce sorne interfaciai polarization activities, or provides sorne 

defects w hich encourage space charge injection, accumuiation, and transportation. 

The different charge dynamic behaviors for different materiab, as summarized above, 

indicate that the ability of a rnaterial to sustain the relation of charge injection to the 

materiai dentity is only tnie for the sarne material base. The deasity of PP is the srnailest 

among the five investigated materials; however, PP Ïs mach better than LDPE, considering 

the abiiïty to sustain charge injection. For the three PE type rnaterials, LDPE has the 

10 west density and is obviously not as good as HDPE and UHMWPE. Ho wever, as PE 

density reaches high density as HDPE, the density effect is saturated. Even if the 

molecuiar weight is very high, the abiiity to sustain charge injection will not irnprove 

much. This is not only true for UHMWPE but &O tnie for XLPE. However, the 

innease of the mo1ecuIa.r weight can increase other propertïes of the material, such as the 

mechanical men,@, the working temperature, which are in that sense useful. 

From these experiments, the following charge dynamic behaviors for a l l  the specimens are 

found to be the same. 

1. Negative HVDC application can lead to a iarger amount of charge accumulation than 

the positive HVDC appiication; 

2. Altho ugh the charge disaibution for different specimens of the same rnaterial rnay no t 

be the same, the charge distribution patterns of these specimens under constant voltage 

applications may fall into just two patterns, one for positive HVDC application, the 

other for negative HVDC application, such as LDPF pattern and LDPF pattern, 

UHMWPE' pattern and UHMWP E paneni etc.. 



3. Frequent reverse of polarity will Iead to fiequent pattern changes and result in fiequent 

charge injection, which can cause damage to the material nea. the interface and 

provide more traps near the interface, and, as a resuIt, more charge accumulation. 

4. Short circuit has more potendal to cause electron injection than hole injection(or in 

O ther words, electron extraction), 

From the measurements, despite the two typical charge dism'butions (Le. the so-called 

ho mocharge distri'bution and the heterocharge distribution) two special pattern are found 

for LDPE. One is for negative HVDC application, the LDPE pattern, with negative 

charges near both eiectrodes and some positive charges dismbuted beside the negative 

charges near the ground electrode. The other is for positive HVDC application, the 

L D P F  pattern with negative charges nea. the HVDC side and a srnail arnount of imer 

positive charge beside them. A slight nurnber of positive charges sometimes appear and 

sometîmes disappear near the ground eIectrode, and a large amount of negative charges 

distributed wirh some depth inside the specimen near the ground electrode. From the two 

charge distribution patterns, one can observe that two processes exkt and compete with 

each other: the homo-charge injection and the heterocharge cdection. It seem that aU 

the space charge distributions corne fiom the balance of the two processes. The injection 

is not CO~MUOUS; once an injection happens, the field stress decreases near the intefices. 

Then the injection stops, and the collection process nam. When more heteroçharges are 

coliected, the field stress increases near the inteditces; then, another injection starts. From 

the constant voltage application experlments, we can observe that, tho ugh sometirnes the 

number of charges may increase as the constant voltage application t h e  increases, the 

overail tendency is for the nimber of charges near -the interfaces to decrease. One can 

predict that, if there Ïs no sudden changes m the applied voltage, such as a short-circuit, 

voltage reversal, lightning, or 0 t h  fault situations, the presence of space charges wiU not 

reduce the lifetime of the insulation. Ho wever, if fault situations happen, the lifetime wîil 

reduce since the rapid movernent of space charges can cause the degradation of the 

insulation material and resuk in more space charges. It c m  be predicted that after the 

intemal space charge reaches a certain arnount, a M t  situation will lead to the initiation 

of aeeing or breakdown processes. - 



CHAPTER 6 

CONCLUSIONS AND FURTHER WORK 

6.1 CONCLUSIONS AND CONTRIBUT'ONS 

The urgent need to investigate the dynamic behaviors of space charges inude polymers was 

identined by the review of solid breakdown mechanisrns and space charge effects in Chapter 

2(Section 2.3). Foliowing the review presented in Chapter 2 (Section 2.4). it becomes 

apparent that the PEA method is well suited to the space charge dynamic investigation. The 

advantages of the PEA rnethod lie in simple rehtionships between output signals and Wace 

charge distributions and the simple experimental setup. However, the resolution of charge 

dismbution obtained by the PEA method is low compared to the other techniques. This 

research aimed to overcome this deficiency asing the improved PEA method. 

Revious work on the PEA method was reviewed in detaü in Chapter 2 (Section 2.5) and 

reanaiyzed in Chapter 3 (Section 3.2). The rnethods used to O btain space charge distributions 

fiom measured output signais seemed to need iqrovement. The two previously used signal 

processing methods, the deconvolution procedure@CON) and the direct method@M), each 

have difnculty in providing charge distributions with high resolution and accuracy. A novel 

application of stochastic principies and nonlinear operations is employed in the proposed 

simulation model to hancile both the bandwidth and signal-to-noise-ratio effects; therefore, to 

provide high resolution. The point-matching simulation model approach was attempted and 

presented in Chapter 3(Section 3.3). The key contritiutions of the proposed point rnatching 

simulation model to the space charge distribution measurements c m  be identified as: 

1. the ability to identify the presence of s d a c e  charges; 



the ease of processing space charge disaïution information separate kom surface charge 

information; and the ease of combinhg space charge dismition with surface charges to 

form the whoIe charge distribution; 

the improvement of system resolution to at lest the Ne time of the system transfer 

tiinction up to the sampling intervals (depending on the used simulation step and delay) 

which is usually much s d e r  than the width of the system IR 

the judgment of whether the obtained charge distn'bution is correct by examining the 

Merence between the sirnulated output signal generated nom the obtained charge 

distribution, and the original measured output signal. 

the introduction of a nonünear detection and optimization for even better results. 

in addition, the principle of the PEA method was further extended to nonuniform fields(neede- 

plane elecaode configurations) in Chapter 3 (Setion 3.4). the simulaaon model, the 

charge distribution in nonuniform field can be obtained. The merence kom the uniform field 

k: designed only to obtain a correction factor sequence, which can be calculated when the 

electric fields of the electrode configuration without space charges can be obtained. 

A cornparison of the processed results for four sets of synthetic signals by the DM. the DCON. 

and the point matching simulation model (PMSM) is presented in Chapter 4(Section 4.2). It 

was Xiustrated from the analytic point of view that 

1) the DM has the lowest resolution amoog the three methods but has the most requirements 

for appiication to the system (transfer function (IR) to be short duration pulse with no 

~ g h g  effect). Much more information of space charge distribution can be gathered if the 

PMSM is applied to the signals obtained for the DM method. A serious shortcornhg of 

the DM method is the inability to ident* the presence of surface charges. 

2) the DCON is the most sensitive to noise and therefore the least stable method arnong the 

three. A small dûturbance can lead to a rnessy result A wen-designed filter rnay help to 

get nd of the high fkequency noises and recover the charge distn'bution. However, the 

obtained charge distribution may or may not be the correct profile. Even if the charge 



distribution pronle is correct, the slnface charges are smeared and mixed with the space 

charge distribution after the atering process. 

3) the PMSM uses the pnor knowledge of the charge distribution (Le. nnface charges are 

present at the ground and the W electrode intertzces)). Therefore, Sllifitce charges are 

expected to be present at ~(0) and a(N+1) of the a sequence. When two o sequences 

correspondhg to two simulation steps are obtained, the two surface charges can be 

calculated. The surface charges can then be taken out of the space charge distribution. 

One can apply a filter to the space charge distribution instead of the whole charge 

distribution. This is the main advantage of the PMSM over the DM and the DCON 

methods. Moreover, the PMSM allows one to adjust the delay and the noise reduction 

procew; therefore, its ability to hande the signal-noise-ratio effects is better than the 

DCON. 

4) the judgment of whether the charge distribution is acceptable can be based on whether the 

obtained charge distribution profile is reasonable and &O on whether the dinerence 

between the Sxmuiated output signal (using the obtained charge disaibution profile) and the 

ori-&al measured output signal is small enough compared to  the noise. The point 

macching prhciple is acnially an attempted to obtain a o sequence, that when convoluted 

with the system CR-model it generates a SimuIated output signal SV(k) that matches every 

step point of the original measured output signal v$&) or v,'(k). Therefore, the difference 

is paranteed to be srnail if the simiilation is stable. One can roughly know whether the 

simulation is stable ftom the two a sequence results. 

Chapter 4 (Section 4.3) used two sets of experimental signais and demonstrated the signai 

processing procedures used by the PMSM to process the real signals. One contribution in this 

part is the proposal of a pre-processing procedure; anotha contribution is the proposal of a 

self t e s ~ g  algorithm. Although there are many experimentd approaches to obtah space 

charge distributions in solids, one cannot check the validity of the results in any of the existing 

methods. The self testing algorithm provides a way to test whether the obtained charge 

distribution saasfies the experimental conditions. 



Dynamic changes of charge distributions in the sheets of LDPE, HDPE, UHMWPE , PP and 

PMMA were uivestigated throngh a series of exp-nts: Step Increased Voltage 

experiments, Coll~fant Voltage exp-nts, and Shon Circuit experiments. The experimentd 

resuits were presented and swmmked in Chapter 5. The main contributions and experimentai 

findings are as foIlows: 

1 .  for the fÏrst tirne the simulation model is used to process experimental signais. Surface 

charges can be calculateci and the changes of surface charges cm be used as an indication 

of the intemal space charge distributions. When the measured surface charges are Iower 

than the theoretid charges calculateci under e o r m  field (Le. s d a c e  charges are 

decreasing). it ïndicates either homecharges are injected or homocharges are dihbuted 

near that interface. When experimental surface charges are higher than the theoretical 

unifonn field charges (Le. surface charges are increasing), it indicates either heterocharges 

are coilected or heterocharges are distri'buted near that interface. 

2. two different space charge distribution patterns exist for HVDC positive and HVDC 

negative voltage application[94]. 

3. polanty reversal will result in more charge accumulation and that short-circuits will initiate 

the rapid electron injection process when the positive charges exist before the short circuit. 

4. due to polarity reversal (because of the short circuit), there wiU be more charge 

accumuiation, which will lead to the electric treeing and eventually breakdown of the 

material. 

6.2 FURTUER WORK 

Ftuther work wiIl head rnainly in two directions: irriproving the simuhaon model method and 

c l m g  space charge dynamics in polymers with more designed experiments and experiments 

under needle-plane electrode conf5gurations. 

The nonünear deteaion and opthbation process(ND0P) has not been applied to experimental 

signals because the process is quite cime consuming. It is thezefore hoped that M e r  work 



c m  h d  a way to reduce the computation tirne. One possible way is to use the ARMA(auto- 

regressive movhg average) mode1 in place of the MA(moving average) model for the system 

IR in order to reduce the amount of calcuiation. Further, it rnay be worth to apply recursive 

minimum variance deconvolution and the maximum iikelihood deconvolution to the simulation 

rnodel, 

Witli the application of the sHnuIation model more information of the charge dismbutions cm 

be obtained. It is therefore hoped that the simulation nodel can be used to obtain the charge 

dynaxnics for some more designed experiments, especially expe-nts under nonuniform field, 

and for some more polymeric materialS. Aiso, it is hoped that the space charge distribution 

rneasurement can be combined with other relevant measurements such as the rneasurement of 

energy storage and relaxation, thermdy stimulated cment, and high field conductivity, etc.. 

The application of the simulation rnodel to simuIated signals and experimental signals 

demonsuates that the simulation model principle can separate surface charges fkom space 

charges and provide more accurate space charge distribution results and higher resolution. It 

seems that the simulation model can also be applied to the PWP (Pressure Wave Propagation) 

signal processing. W h  the separation of surface charges, the accuracy and the system 

resolution c m  aIso be improved. 
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APPENDIX-A 

RELEVANT CONCEPTS 

As it is known, for a UIljfcnm fieici elecaode sehip ( i . ~  plane-plane electrode con6guratin), when there 

is no space charge distrifuted inside a specirnen, the electric field at any point, x, in the specimen, wfien 

a voltage V is appied, can be Hmtten as: 

where d is the tnickness of the specimen. 

W k n  space charges are distniuted inside the specimen, the unif- field wiü become nonUILiform, 

Suppose the ekcaic field generated by the dismhted space charges is E,(x). using the superposition 

principle, the total elecrric field thea is, 

(A- 1 -2) 

If the appüed voltage Uicreases a AK  und^^ the condition that this change wùl oof change the space 

charge d i m i o n  (i.e. E,,(x) remaios the same) the rotai ellecaic field then is: 

'Inerefore, the additional field due to the increase in voltage is: 

(A- 1-3) 

Obviously, &(x) is related to the voltage dinereace anci tbe electrode configuration, and it bas nahing 

to do with the space charge distribution. nierefie, one can Say that the electac puise fidd is related 

oniy to the electric puise voltage and the electrude configuration under the condition that the short 

duration mail pulse voltage application will ad change the aisting space charge distribution. 



When two Lautent Series 

are multiplieci togeth fmaily, a new series ofthe same type results 

where the new coefficients CA are related to the old ones as follows: 

The sapence k)f is cafled tbe convolution of the se~uences (a,}: and {bn}=. When two 

bilateraï Laplace integrais are rnu1tipLieû together, the contiauous analogue of thk m o n  is obtained. 

The result is an integral of the same form, 

This combination of hctions occurs so f3equdy that it may be regardeci as one of the fundamental 

operations of anal@- The W o n  c(x) is cailed the convoluiion of d x )  and Mx), and the integrai in 

(A-2-6) is commoaly abbreviated as a(x)*b&) or as a*b. 

Altesnatively, tk equatioa may be thought of as an inte@ transfcxm. 'Ihe mal notation will be 

and this win be caed îhe convolution transfom with kernel G(x) of zhefW1ction (dr) intoflx)- 



Convolution is by far the most impartant operation tbat desgi'bes the bebavior of a linear time-invariant 

dyaamic system. It is the operation of convdution tiiat teïïs us bw to compute the output of a 

LTI system h m  its input and impulse response(lR), Le., 

Convolution is associated with the 'Ybrward pmblem" of gemxatiag the respoase of a LTI system from 

the knom values of its input ami IR[82]. Deconvolution is the umaveïing of convolution. ït is 

associated with the 'inverse pr&lernT of genaatting the input to the LTI system from the known values 

of its output and IR, 

Consida a continuous-tirne. Liaear, thne-invariant (CTLTI) system with a singie input Nt) and a single 

output(respo11se) y(t) as illustrated in bIock form in Figure A-3- 1. The output-input relationship of such 

a system can always be descnbed by a dflerential equation of the f m .  

d * ~  k-1 d'x d'-lx 4r+bk-i~+~--+boy=aL-+q,-+---+aox 
dt dfk ' dtL dt' ' 

Figure A-3- 1 Input-output fom for CTLTI system 

Nt) rcf) 

in most cases, kLI, and the integer k specines the order of tk system. 

The output may also be expressed in of the bevdution integral and the impulse response. T k  

a 

impuise respome g(t) is tbe response of the system when the input is a unit impulse W o n  &t). 

CTLTI System[g(t) j 

Asmming that the impulse response is h w n ,  die response due to any input Mt) can be expressed as 



Assume that the system is iaitially relaxeci (Le. no =&Y is stored in the system). Apply the Laplace 

traLlSform to (A-3-1). It can be shown that all initiai condition tems resultiog from application of the 

Laplace traasfonn are canceled on both sides of the equation. 'Ibe tTS1IISfonned m o n  is 

A traLlSfer bction (or system W o n )  Gh) is &fined as: 

where N(s) is the nrunerator polynomial and D(s) is the denominatm polyoomial. Using the transfer 

function, the input-output relatiooship gmply becornes 

The tirnedomain respoase y(t) can then be detambed by inversion of Y(s). 

The impulse reqcmse can now be readily determined by Ietting Nt)=&) or X(s)=I. In this case the 

output transfonn is identical with the transfer fimction, so we have for the impulse response 

Now consider a discretetime, linear, tirne-invariant(DTLTI) system consisting of a single input Mn) 
and a single output y(n). Such a system can be ckscribed by a Iinear ciifference equation with constant 

coefficients of the fcmn 

~ n ) + ~ n - D + ~ n - ~ + + . + . + ~ n - k ) = @ n ) + q ~ - O + ~ n - ~ + - + q ~ n - k )  (A-3-8) 

This equation descri'bes an orinary ciifference equation of adet k with constant coefficients. This 

equation has certain features similar to the differential equation iaput-output relationship of a 

continuous-time system. If (A-3-8) is solved for y(n), the resuit is 



A very mtaesting feature of (A-3-9) is that it can be completely solved by tbe basic aritbmWc 

operatioas of multipLication, addition, and S U ~ ~ O I L  Ail that is required to start a solution is to 

specify the input fiiactim n(n) and tbe £irst k values of the output yh). The algorithm of (A-3-9) is then 

appüed step by step. T b  soiution of a difference equation is seen to be consickably simpla in concept 

than that of the cacresponding difkential e~uati011, 

Consider a relaxed system (i.e one with no M a i  values stored in the system). If we take the z- 

t r an s fm  of both sides of (A-3-8). we obain afier factoring 

The transfer fiuiction H(z) of thediscrete-time system is dehed as 

where N(zl is the numerator polywrnial and D(z) is the dem minatm poiynomiai. 

The expression of (A-3-12) is arraaged in negative p e r s  if z, wliich is w a l l y  the most narural form 

in which the W o n  occurs. On tk oiber hand, it is fiequeatïy desrable to express H(z) in positive 

powas of z, particulatly when we wish to factor the polywmials a to perform a partial fiaction 

expansion. 'Ibis is dooe by multiplying numeraior and demminator by f, and the result is 

Using the traosfa fiiaction concept, the input-outpt celatiomhip becornes 



Thus. a discrete-time system can be represented by the same type of aaosfer function rdatioaship as for 

a coniinuous-time system, As in the case of a cmtim~olls-time system, we may define the impulse 

respome by assumiag that the input is siniply *(n)=&n). In tk case of a conrimious-time systexn, the 

impulse response is often somewhat difficuit to impleme~lt physically. However, fm a discrete-time 

system, the "impulse fimctim" is simp1y a number(usuaily unity) applied at a singe sampliog instant, 

which is readily implemeoted in an actual system. Since Z[&z)]=I. the impulse response h(n) is seen 

to be 

A discrete-time signal may represent either a pure1y digitaI si@ as would be employed in a cornputet 

or a sampled-data signal which occurs in certain hybrid systems. A saxnpIed-data signal can be 

consideral as arïsing from sampling a contiauous-tirne signal at periodic intervals of time T. The 

sampling rate or sampling frequency isfi = I K  In -der to avuid aliasing, it is rkzc~sary thatfs-fi %, 

where fh is the highest possiMe frequency. This kads to the important inequaiity: 

EquatiUn(A-4-1) is a statement of ShanntinTs SampIiag Tbeotem, which states that a signal must be 

sampled at a rate at least as high as twice tbe higbest frequency in the specrrum. In practice, the 

sampliag rate mua be chosen to be somewhat greater thaa 2fi to ensure recovery with practical 

hardware limitations. 

A convenient definition tbat is usefiil in sampling analysis is tbe fo1cüng fie~uerry fo. It is given by 

fo=fn =InT. The folding fiequeacy is simp1y the higbest fi.equency that can be processed by a aven 

discrete-time system with sampling ratef. Any fiecpency greater thanfo will be "folckd" anâ cannot be 

recovered. In addition, it wiü obscure &ta within the correct fie~ueacy range; thezefme, it is impartant 

to cleariy limit the fie~uency content of a signal Mme sampîhg. The h i m t  fiequencyfi in the signai 

is called the Nypuist fiequeacy, and the minimum sampiing rate 2fi , at which the signal could 

theoreticaIly be recovered, is d e d  the Nyquist rate. 



Figure A 4 1  Develqmnt of sampleddata signal using ideaï impilse sampling 

Consider the ideal impulse sampling as shown in Figure A 4 1 .  The puise function is designated as 

p i f ) ,  and it is assumed to be a train of impulse functioos of the form 

'Ihe sampled-data signal x*(t) can be expresseci as 

The oniy vaiues of x(t) having signinance in (A43) are those at f=nT. Hence, an dtemate f m  fm 

the sampled-data signal is 

It huns out that a sequence of m b e r s  wfach appears in a compuiet can be conveniently represented as 

weights of an inpulse train fm purposes of mathematical analysis. nie main puint to remember is that 

the weight of a given impulse represents tbe value(0c digitai mimba) at the instant that the impulse 

A continuous-time signal couid be recovefed from its sampled-data f i  by passing the sampled-data 

signai through a low-pass fiiter having a cutoff somwhere baween fi and frfn. This process of 

reconstruction can be aided by the use of a holding device, which actually performs a portion of the 



filtering required, thus pemitting the use of a Iess complu< Hier fa the nnal smoothiag. There are a 

number of hoIding devices, the zer(wxder hdd is tbe simpIest one, w h k h  simpIy accepts tùe value of the 

pulse at the begirmtog of a sarripling interval and hoIds it to the begimiing of tbe aext interval, at which 

time it changes to tbe oew value. The cesuithg fiincticm is, of course, not Wxmany the same as the 

original signal Mixe sampling, but it is in the facm of a ccmtinums-m function, and it wïlI be easier 

to perform sub-nt processing on it in this form. 

Consider now the case of a general âiscretetime signal which is defmd only at integer multiples of a 

basic interval T. This signal diffas nom tbe sampled-data signai xyt) only in the sense that it may aot 

necessarily have &sen from sampling a continuaus-tirne signal. limead, it may have &sen fkom some 

purely discrete or digital process. Nevertheles, we cm stiII inteqret the signal in the fonn of (A-4-4) 

whenever desirable. Except where it is desirable to use the samp1eddata Uiterpretation, the most 

straightforward notation for a dhcrete-time sigoal û simply Mn), where n is an iateger denoed over 

soue range n&n4t2. The integer n defhes the particuiar Iocatim in the sequence coi~espondhg to a 

given smpIe. if the dimete-tirne signal is deriveci Born sampling a continuous-time signal ~ ( t ) ,  the 

signals are rdated by 

x(n) = x~(nT) for n an integer 

= O otherwise 

In efkct, (A45) mies that the disaete-tirne signal is equal to the continuous-time signai at sample 

points and is zero ekewhere. 



APPENDIX-B 

FORMULAS FOR TRANSDUCER AT AN ARBITRARY 
POSITION ON THE 'PLANE ELECTRODE 

This section shows the formulas that are deveIoped in tiüs research for transducer at an Ybitrary 

position on the pIme electmde. Figure B-1 shows the case wfien transducer is put at an arbiuary 

position where the needfe tip is not within the detectable area of the transducec. Figure B-2 shows the 

case when transducer is put at an arbitrary position wkre the needle tip is within the detectable a m  of 

the transducer. For either of the two cases, since the active area of ttre transducer is chosen to be smd, 

as mentioned in Section 3.4, d e r  generafion, only the pressure waves transmitted perpendidar to the 

ground electrode sample interface c m  rach the transducer and be detected; and the space charges cm 

be assumed to be unifonnly distn'buted within the detectable a r a  at each x layer. Therefore, the three 

dimension space charge distribution plx,r,e) is simplifieci to one dimension p(x) within the detectable 

area S for each layer at .r. 

The source strength for a simple acoustic source is equal to the surface integnl of the scalar product of 

the vector velocity amplitude and its corresponding surface elernent[85]. Then, it can be deduced that 

the amplitude of pressure wavepdi) due to p(x) detected by the transducer is proportional to the suface 

integnl of the x component of the electnc stress due to pulse that space charges are subjected to. 

where k is a constant, r, is the radius of transducet active area, 1 is the iength of the lower electroâe, cl, 

cz are the sound vdonty of the lower eleamdt and the dielecuic rrspatively. SS, represents the 

detecable area for the x layer, dA nprcsems a smaii innemav in ana, and ep&,r,t) is the x component 

of the electric field due to pulse at an arbirrary (x,r,0) point. 

The same as the case mentioned in S d o n  3.4, the electric field due to pulse e,(x,r,@.f) contains both 

space and tirne variables. It is more co~lvenient to separate them. This can be done under the 

rissumption that the application of an electric pulse WOU not cause any change of the space charge 

distnbution[Appendix A- 11. If Ce(x,r, 0) stands for the electric field at a general point &,r, 8) due to the 



vp (t)Ce(x, r. 0)  
e, (x, r, 0, t )  = = v, (t )Ce (x, r, 6) 

vc 

where e& r, t) and CeAx,r) stand for the x component of e& ct) and C e k  r). 

Figure B-1 Principle set-up Case I for rransducer at an arbitrary position 

Figure B-2 Rincip1e set-up Cirsc 2 for Cransducer at an ubitrary position 

Equation (B- 1) cm then be written as: 



Now just let Mx) stands for the double integrai and ïeave how to CaIculate Mx) for the two eransducer at 

arbitrary cases laîer, 

For sudace charges q(d), its pressure wave pdt) is: 

where r, is the radius of the needle tip, k' is a constant. 

For surface charges a,@), its pressure wavepdt) is: 

Applying tbe superposition principie. the tord pressure wavep(t) detected by the m d u c e r  is: 

where, 



When the total pressure wave p(t) reacbes tk transducer, the same as tbe unSorm fieId case, the 

pressure wave wiiï be changed by the trarisducer into a voltage signal. The voltage signal will be 

amplineci and recocded as vdt). Suppose the system tbat transfers Nt) to vdt) is ünear the-invariant, in 

the time &main; then thére is the convolution rdationship: 

It can also be processed using tbtee approacches for the uniform field case to get rid of the second term 

in equations (B-7) and (E3-8). 

1) Omit the terms when tbey are negligible compared to the sucface charges response and dewte them 

as v,"'(t); 

2) subtract s i g d s  vdf) by the signai v d t )  wbich is obtained when no & voltage is applied and no 

space charge is distributeci inside tbe sample, ami denote the subtraction as v12)(t); and 

3) for geoeraï cases, apply a positive electric pulse Bm and ger an output v,(t); then change puise 

pdarity to negative and get-an output v&), let ~ ~ ~ ' ( r ) = ~ ~ [ v , ( t ) - v , ( t ) ] ,  

It cm be deduced that: 

(0 = 
vi2)  = Y, ( t )  - Ys,, ( l )  = p' ( t  )* h ( t )  

or 

(B- 14) 



is to change Cf h o  p Therefme, tk similar mnuniform SimuIation model can be set up and we can 

obtain the moWorm field spaœ charge distriiution when the transducer is put at an arbi?rary position 

on the plane electrde. ïhe only important tfiing is to obtain Mx) for the two cases. 

As it is kaown ftom calculus[90], the use of polar co-ordinates in evaluating the double integrai is, 

wbere a. B are ihe extreme values of 0, and a, b are the exaeme values of r, in the region R. The inoer 

ümits Ri, Ra QI, 6h are rad off fkom the appropriate one of the two figures, as shown in Figure B-3 

[(a) or (b)l. 

Figure 8-3 The inner limits RI, Rt, 01 ,  & 

Due to the axial symrnetry of the electric puise field, Ced.r, 8) is nit a M o n  of 8; therefae, the 

Figure B-3 (b) case is coasidered easier to implement. Let Ce&r) dewte Cedxr. O), the equation (B- 

5 )  caa be written as: 



Case 1: Needle point is not w&hin the &&c&bk area 

Figure 8-4 shows an arbitrary detectable area S, for Cme 1. 

Figure B-4 Diagram used for setting up Mx) for Cuse 1 

Using the symmeaical situation+ one can obtain 

Therefore, p(x) cm be calcuiated as long as Ce&r) h m  r=ro to r=r1=ro+2ra is hown 

Care 2: Needle pohf is witliin rlie &&ctab& area 

Figure B-5 shows an arbitrary detectabie area S, for Case 2. 

Figure B-5 Diagram used for settuig op Nx) for Case 2 



Ushg the symmeerid situation, one can obtriin 

where Or, are chosen as zero, while, 

Therefore, N.r) can k calcuiated as long as Ce$x,r) h m  r=O to r=r, , (ri >ro ) is lmown. 

There have ben  a few commercial software packages that cm do the electric field caldation 

Microflux. for example, uses the finite element methoci to caldate the elecmc fieId Microflux is very 

easy ro apply. It aiiows one to assign any path, line or circle, within the cdculated region It let user 

choose the number of data points on the assigned path and generate data files regiirding to the potentiai, 

the electric field components (x and r components for axis-symmemcd case) dong the base coordinate 

at each point. Therefore, using Microflux, Cedx,r) h m  r=ro to r=r~ , or Ce&,r) from r=O to r=rl 

cm k obtained within a certain error limit, 



OTHER SIMULATION MODEL APPROACHES 

Since the basic ideri of the simuiation mode1 is to simuiate the charge distnbution in the discrete-rime 

domûin such that the di.fference between the simulateci output signal(using the hu ia ted  charge 

distnbution) and the original output signal is at a minimum, many aIg0rithm.c can be appiied to ohtriin 

the simulateci charge distribution. The mathematical expressions for aU the simulation mode1 

ripproaches are the same as equation (3-41). The oniy difference among the algorithm are the rnodek 

that are set-up for their algorithm to qply  and the mechods they use to obtain the o sequence. 

Cl Minimum Variance Deconvolution(MVD) Simulation Mode1 

As dready mentioned in Chapter 3. the MVD approach prefers to use the ARMA model for system IR. 

glki and ecpation (3-37) as the input model. assumiag the a sequence to have a white md Gaussian 

nanire with a variance of Var, The noise model is the same as the PMSM. Many approaches in 

Literature can be used to concfuct the MVD. Some are baseci on batch formulas and some are based on 

recursive algonthms. The important feature for an ARMA model is its recursive nature. With this 

nature. the recursive signai pra-essing aigorithm cm be applied which can expedite the cornpuration 

This section is artempted to present a recursive MVD aigorithm (adopteci from literature[82]) to obtain 

the a sequence. 

For the ARMA model in equation as described in equation (3-40). a state-variable representation can he 

set-up as: 

(C- 1-2) 

'O- 
O 

l 

m l  (C-1-1) 



where x~(k), x~(k),  ... , x,(k) are state variables, 

is the state vecta. Equation (C-1-1) is d e d  a state eqyatiou, aad equation (C-1-2) is called an output 

equation. They can be written in the mcue compact notation: 

~ ( k  + 1) = -(k) + ~ ( k )  (C- 1 -4) 

and 

v,(k) = vJk) + n(k) = h' x(k) + n(k) (C- 1-5) 

where x(k) is always an nxl state vector; @ is an nxn state transition rnatrix; y is an nxl input 

distribution vectot; and, h is an ml observation vector. 0, y, and h can be deduced by compwing 

equations (C-14) and (C-1-5) with equations (C-1-1) and (C-1-2), respectively. The recursive MVD 

algorithm coosists of four componemt as shown in Figure C- 1-1 1831. The equations used for the four 

computatioaal subsystems are described below- 

Let x(k 1 k) and p0r 1 k) dense an nxl mean-squared filtered estimate of state veaor x&), one tbat is 

based on che mpacurements v,(I), vd2) ,  ... , and v&), and, its associated nxn covariance mauix. 

Ma& ~ ( k  [ k) desaidescribes tbe estimation emx behneen g& 1 k) and a). 
x(k + qk) = @g(klk) - (C-1-6) 

and 

P(k + qk) = @p(qk)@ +var, yy' (C- 1-7) 

wkre 

~ ( k  + 4k + 1) = [1 - K(k + 1)h' ]x(k + lk) + K(k + l)v,(k + 1)  = = (C- 1-8) 

(C- 1-9) 

(C-1-10] 



and k a ,  1. ..., N+1- 'The Kalman predictor can be initialued by &(O 1 O)=O and P(0 1 0)iO. 

input ~ ( k )  

Figure c-1-1 Inten:omection of the four computationai subsystems that comprise the recursive MM> 

algotithm[82] 

Innovations Process: 

The i~ovations and its variance are the outputs of a forward-ninning Kolman predicror, i.e., 
- 
v,(k + llk) = v,(k + 1) - h8 ~ ( k  + qk) = (C- 1-1 1) 

and 

~ar[<(k + llk)] = h' P(k + qk)h + Varn (C-1-12) 

where kdl ,  1, .... N+1. a&+l[ k) dawnes an ml nean-squared prediction of state vector x(k+ 1), 

based on the measwements v&). ~ ~ ( 2 ) .  ... . and vm(k); and, F(k+lI k) is the am covariance matrix 

that describes the estimation error between a(k+l 1 k) and x(k+l). 



S ~ N + ~ ) = [ I - ~ ( O ? ~ ' ] ' @ S ( ~ + I ( N + ~ ) ~ - I ( O ? ~ ' ] + ~ ~ ' V ~ ~ ~ ~ ~ - ~ ) J  (C-1-14) 

where j=N+2, N+ 1. ... ,1. r(W3 1 N+2)=û and S(N+3 1 N+2)=û. In these qations j - 1) is a 

scalar process kmwn Y the innovations and K(k) is an nxl gain matrix. known as the K&an gain 

Let r(i 1 N+2) denote an nx l badrward-ninnuig(i.e.. j=N+2 N=l, ... ,O) state vector, md S(j 1 N+2) 

denore r(j 1 Nc2)'s associatcd nxn covuimce manix. Then, 

aMV(4fV + 2) = Var,-j r(k + IIN + 2) (C- 1 - 15) 

vcrr[o, ( k l ~  + 2)] = Vuru - Varcf S(k + I[N + Zwur, (C- i -  16) 

where dw(k 1 N+2) denotes the reniaive minimum variance resuits of the a sequence. k=N+2, N+ 1. ... 

-1. With $fV(k 1 Nt2) as the obtained o sequence, the simulateci charge distribution can be constructed 

as discussed in Chapter 3, Section 3.3.3. 

C-2 Marimum Likelihood ûeconvolution(MLD) Simuletion Model 

in the MLD simulation model, the input a sequence is considered as the product of an amplitude 

sequence d(k) and event sequence q(k) ûs shown in equation (3-37). The amplitude sequence d(k) is 

assumed to be a Gaussim sequence chYacterized by variance Van, whiie the event sequence q(k) is 

assumed to be a Bernoulli seqyence chsiracterized by the probability parameter A, There are &O mmy 

ways to perfonn the maximum likelihood deconvolution(82]. Only a simple way is presented here as 

shown in Figure C-2- 1 [87]. 

Ler duL(k 1 N+2) denote the maximum Wrelihood estimaîe of a(R) that uses ail the meaiaremenu v,( 1).  

i lSJ2  ), ... . and v,(k). B y means of sepwon printipIe[87], 

aML(4ïV + 2 ) = d M L ( d ~ + 2 ) q M L ( k l ~  f 2 ) .  (C-2- 1) 

It was shown in [88] tint the ovedl maximum-likhood estimate of a k )  could be obtained hy first 

computing p ( k  1 N+2) and then cornput@ 1 N+2). Quuitity CL(k 1 N+2) cm be obtained via 



maximum ikïïhmd cietdon. When e ( k  1 N+2) is known, one can estimate d e )  Born etpatioos (C- 

1-4) and (C- 1-3, Wtitten here as: 

r(k + 1) = *(k) + 19 IdL (4 N + 2)d(k) (C-2-2) 

VA) = h' x(k) + n(k) (C-2-3) 

When an uncertainties in (C-2-2) and (C-2-3) are joÏntiy Gaussian, the maximum-- 
. . estimates 

of d(k) and x(k) equal minimum-variance estimates of these quantities[89], thus, 

d M L ( k l ~ + 2 ) = d H Y ( d ~ + 2 )  (C-2-4) 

anci 

0 ~ ' ( ~ ~ + 2 ) = d " ( ~ ~ + 2 ) ~ ~ ' ( ~ ~ + 2 )  (C-2-5) 

To nmmize, the MLD conîains perfofming ML detection to &tain N+2). h l ,  2, .... N+2; 

perfonning MVD to &tain d"t(k 1 N+2); and subsequently, dHL(k 1 N+2). The recusive MLD 

algori thni is dernonstrated in Figure C-2-1. 

Data ' Recursive P ( k l  Ni2) i 'Ihreshold i - hPutcfL(k) 
MM)(I) ' v ~ [ u ~ N + $  Detector 

am 1 4 r  

Figure C-2-1 A simple maximum Iikelihood deconvolution algorithm 

This block is the same as in recurssive minimum variance deconvolution approach discussed in Section 

C-1. The out put from this block is dN(k 1 N+2) and V(PCdapR(fl~+?)]. 



The threshold detector deasion strategy is: 

SMLR detector: 

A SMLR(sing1e most-likely replacement) detector is recucsive. The SMLR detector decision strategy is 

designed to examine ail the values of k for which LiD(v,-k)>O and to finci the value of k at which 

fnD(v,k) is a maximum, This time point is then the single time point at which a change is made in the 

reference sequence q, 

The test q, (I* , and the reference qr dini at only one tirne point, the iah, Le., 

qrs(i) = q,(i) for al1 i + k 
q,(i)=l-q,(i) forall i = t  

The detector mie for choosing between sequences q& and q, is given by 

and 



This block is to obtajn ha(&) atter eL@) is available. The f w  mmputationd subsystems tbar 

comprise the recursive MVD algorithm can be appüed with only a very mail correction that is to 

replace y with #(k). When ba{k)  is obtaiaed aML(k[ ~ + 2 )  sequeoce can be obtained nght away 

using equation (C-2-1). 

As has been d i s w s e d  in Section 4.4, tbe maximm ükdihwd deconvolution r-es the a sequence to 

have a spike-like nature. In the words of charge dismhtioa, this means that the sequence should be the 

surface cbarge s q e n c e .  Since most parts inside our a sequence are pseudo surface charges, which do 

na have the spike-like nature. The question of whetbec MLD can be applied to provide accurate charge 

distributions needs more investigations. It may be wottb applyiag if it can just clearly indicam the 

presence of surfa= charges. For with this in f i t ion ,  one may use other methais to obtain the inside 

space charge distribution However, more studies are neassary befbre considering the application of 

the MLD simulation model. 



APPENDIX-D 
I 

NONLINEAR DETECTION AND OPTlMlZATlON 
PROCESS(ND0P): PROCEDURES AND SOME 
APPLICATION RESULTS 

A nonlineu d e t e c h  and optimhtion process (NDûP) is ptoposed for the PMSM to obtain "More 

improvemenrs" of the charge distribution resulrs in this reseafch The proposeci procedures are 

discussed in D- 1. The idea of the threshold detection and the singïe mat-ïikely replacement detection 

from the maximum Iikelihood deanvolution (Appendix C-2) are bomwed to construct a proposed 

detection process for the PMSM and to combine the detection process with a nonliear l e s t  square 

optimi;r.ation process to set up the NDOP. The rtaraotrige of the NDûP is that it cm M e r  improve 

the resolution and accuncy of the obtained charge distniution and minimize the sum of the squared 

F{k), where F(k) is denoted as the ciifference between the simulateci signal output W ( k )  (using the 

ohtained simulated chruge distribution) and the original measured output signai v d k )  or v,'(k). 

However, the disadvanrage of the MiOP lies obviously in that the application of this process is quite 

tune-conswning. As mentioned in Chqter 4, it takes about 11 hours to obtain the improved charge 

distribution results for the first set of synthetic signais with both a and F accuracy set at 0.0 1 through 

oniy the nonluzear 1- squared optimization When output signais are compteci with noises, a 

noniinear detection process must be cmbined with the nonlineu Ieast squared optimization; the 

computation time is then further increased. Due to this disacivantage, the NDOP has been appfied to the 

2nd the 3rd, and the 4th sets of the synthetic signais instead of the experimentai signals. As the cesults 

of one nin of the NDOP to the 2nd the 3rd  and the 4th sets of si@ show respectively in D-2, D-3. 

and D-4, the ability of the NDOP to recover the surf" charges, improve the resolution and accurricy of 

the obtained charge distniution, and minimize the difference F(k) is weii d e m m  

D-1 Procedures of A Nonlinear Deteetion and Optirniration Process 

The procedures of the developed NDOP consist of three steps: threshold detection, SMLR detecttion, 

and the nonlinear leost squared qtimization, as describeci below. The initiai vûlue cf do'(k) cornes 

from the PMSM after the reconstmcting of the charge dimiution from the point matching 



deconvolution and discreting ihe cbarge distn'bution by step A=l. With do'(k), it is possible to calculate 

the initiai ciifference F ' O J ( k )  and the sum of the squared merence do? 

According to the noise level of the Onginai me;tsureù output, a simple sttattegy for a threshold &taoc is 

set up as: 

If there is no noise in tbe signais, tk deteetion process is not necessary. This is equivalent to set -0; 

the third step, the nonlinear least-square optimixation, can be directiy applied as for the 1st set of the 

synthetic signals(Chapter 4). Wben signais are comipted with noise, the M o n  pracess becomes 

imposant, The chaice of a can start at as large a value as 0.1, and then decrease by halves, unfil the 

oMaioed dTD' using the q sequene is l e s  than do' or is amimd a minimum. 

l 
*. f l  (k) = SVm (k) - v,' (k) = z do) (k)qgm' (k - i )  - v,' (k) 

N R!vm W )  
= f [ F ( ~  (k)12 = [z do) (k)qgrnv (k - i )  - vair (k)]' 

k=l k t 1  i-1 

The threshold detector is used to inib'alize the q parameters and provides a refmence qr to the SMLR 

detector. 1f dm' is les than do'. we let do& P j .  



2) SMLR defection: 

A SMLR (single m m - W y  replaceme~lt) -of is reçursive. The purpuse of the SMLR detectof 

decision strategy is to examine ait the values of k for D ( v ' ~ k )  < do' and nnd the value of k at which 

D(vtdk) is a minimum This time poW daignatd k'. is aiai tk single cime point at which a change 

is made in the refisence sequence q,- The test q, q a  , and the refeence qr diner at only one time point, 

the kth, i.e,, 

Figure Bl-1 Single moa UeIy replacement detector search algorihm 

Fipure D-1-1 shows the SMLR search aïgorithm used in the re~eafch Gfia the SMLR detectof, the 

most signincani event sequence b(k) is obraiwd 

The last step is an optimization p e s s  to obtain the most sigoificant amplitude Sequence &fi). 

Mathematicaily, it cm be stated as: 



Eventuaüy, one c m  obtain the most sigmncant d(k)= d(k)a(k) that minimizes a nonlineu function 

composed of sqyared t em.  stuting at an initial estimate d(k)=do'. The obwined d m3y noot be the 

dobal minimum, but it is good enough ifit is just a focai minimum. 
C 

Then, one c m  output this d sequence and ~ ~ c t  the sisnulateci charge distribution using equations 

(3-5 1) and (3-53)- Or one can discrete the obmined simulated charge distribuaon again, using A=l, 

denote the obtslined sequence as dl'(k), and apply the second nui of the NDOP for even better results. 

One c m  repeat the NDOP until one is sarisfieci with the ith &ts or the ciBerem between D") and D'" 

" is not much The more ofien the NWP is repeated, the more cornputanon tune is needed The 

folIowing section D-2, D-3 and D-4 shows the d t s  of applying only one run of the NDOP to the 2nd. 

the 3rd. and the 4th sets of rhe synthetic signais. 

O-2 NODP For the 2nd Set of Signal' 

Figure 4.49 charge distribution is used as the initial charge disuibution du) for the 2nd set of signais to 

die NDOP. The totd initial s u m  of the squued ciifference of Figure 4.5 1 [do'] is 0.2668. A threshold 

detector is appiied. With or setting at 0.05, after the threshold detector, a q sequence is obtained, and 

sum of die squared Merence [LIm)] is reduced to 0.21 19. [duJ] is then set to [~~']=0.2119.  A s-ingie 

most-LikeIy replacement detector is then applied, Figure D-2-1 shows the sequences qrk that makes the 

s m  of the squved ciifference D(v',;k) Ïs less than [PI = 0.21 19. Obviously a test sequence exists 

which c m  minimize the squared difference to 0.1556- Then, we cm replace the original q, by the b a t  

test sequence, and apply the SMLR again. 

Figure D-2-1 The 1st application of the SMLR detector 



Mer the 9th application of the SMLR duefta, the meiimim D(v'-k) among the test ~eqllences q* 

that make D(vB4k) less than 0.21 19 is 0.1206. flfk the lûth appïicatim of the SMLR cJeîector, the 

minimum D(v',k) among the test saquénces q a  tbat make D(v'& less than 0.21 19 is 0.1204. The 

sequence that provida the miriimum D(vD4k) aAer the 10th S U  detecta is then denoteci as the most 

sipifïcant q sequence, qs(k). Figure D2-2 plots tk be(vD,kl as Iess than 0.21 19 for the lûth 

application of the SMLR detector. 

Figure D-2-2 The 10th application of the SMLR detector 

Then, the aonlinear least square optimhmim process is applied, with both a and F accuracy king set 

ar 0.1. After 20 hours, the optimization process hasn't stopped itself. Tùerefme, the optirakation 

pnress is forced to stop. Tbe D" at the stop t h e  is 0.0229. The obtained most significant a sequerice, 

cf, is shown in Figrire D-2-3. 

-i t 
O 60 1 00 1 60 POO 260 300 360 

DL~L PQ(rrtr 

Figure D-2-3 nie d obtained after one nui of NDOP f a  the 2nd set of sigoals 

Applying equation (3-53) and equation (3-51) to the d sequeux and applying a zerephase 5 point 

average film to the iatefnal space charge distribution, we obtain Figure D-2-4 charge disaibution. 



Fi- D-2-4 Charge distribution obtaiaed aCter one run of the NDOP for the 2nd set of signais 

maam: o u - 4 -  O U ~ U C  
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Figure D-2-5 Cornparison berneen v,"(k) and SV(k) (using Figure D-24 charge distribution) 

0.03 
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Figure D4-6 Differetlce between vm2'(k) and SV(@ of Figure D-25 

Figures D-2-5 a& D-2-6 compare the Maena kowa, vm2'(k) and SV(k) (using Figure D-2-4 charge 

distciiution). The sum of qared  difference of Figure D-2-6 is m h h k d  to 0.0308. OIE can discrete 

Figure D-24 charge distriibution by A=I. and regards the obtainrul O sequexe as dl) . Since dl) 



0-3 NODP For the 3rd Set of Signals 

Figure 4.93 charge distribuaon is used as the initiai charge distribution do) for the 3rd set of siCpk to 

the N W P .  The totd initial nun of the s q u d  dif5erence of Figure 4.95 [@O)] is 0.0156. A threshold 

detector is applied With a setring at 0.05, after the threshold detector, a q sequence is obtained, and 

sum of the sguved difference [ ~ ~ q  k 0.0766. Then, a is halved and set at 0.025, after the dueshold 

detector, a q sequence is obtahed, and sum of the squareci difference [D~'] is reduced to 0.0 134. This 

q sequence is chosen as the initial reference sequeme q, Then [D'"] is set to [ D ~ ' ] = O . O  134. A single 

mat-Iikely replacement detector is then applied. Figwe D-3-1 shows the sequences q& that make the 

swn of the squared ciifference D(v',;k) less than = 0.0134. Obviously a test sequence exists 

which c m  rriinimize the squared difference to 0.0121. Then we cm replace the original by the best 

test sequence, and apply the SMLR again. 

0.0 1 =L 
10 =O 30 -Sa -0 Sa 70 -0 1 

t-.rt q s ~ q u ~ r u a o  krt-r rh- rœt-r-MO rmqu-no- 
00 

Figure D-3- 1 The 1st application of the SMLR detector 

Mer the 6th application of the SMLR detector, the minimum D(v',;k) among the test sequences qrk 

that rnakes D(vT,;k) less than 0.0134 is 0.01 L2. Afier the 7th application of the SMLR detector, the 

m u r n  D(v',;k) among the test sequences tint make D(vT,;k) Iess than 0.0 134 is stiU 0.0 1 12. 

The sequence th t  provides the minimum D(vP,;k) rifter the 7th SMLR detector is then denoted as the 

most sitoziificant q sequence. &k). Figure D-3-2 plots the D(vP,;kJ as less than 0.0134 for the 7th 

application of the S m  detector. 

Then. the nonlineu Ieast square optimization process is applied. Both O and F accuracy are set at O. 1. 

Mer about 7 hours, the opthkation process has stopped itself. The P at the stop t h e  is 0.0036. The 

most si~gnificant asequence is obrained, 6, is shown in Figure D-3-3. 



Figure D3-2 The 7th application of the SMLR detecm 

Figure D-3-3 'Ihe d obtained after one nui of NDOP for the 3rd set of signals 

%y applying equation (3-53) and equation (3-51) to the d ~e~uence and applying a zero-phase 5 point 

average Uter to the internai space charge distribution, we ob<ain Figure D-3-4 charge distribution. 

Figure D 3 4  Charge distribution obtained after one rua of the NDOP for the 3rd set of signais 

Figure D-3-5 Compatison behveen v,"(k) and SV(k) (using Figure D-34 cbarge distribution) 
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Figure D-3-6 Difference between v,."(k) and SV(&) of Figure D-3-5 

Figures D-3-5 and D-3-6 compare the difference hetween vm3'(k) and W f k )  (using Figure D-34 charge 

distribution). The sum of the sqyared difference of Figure D-3-6 is minimized to 0.0044. The surface 

charges rire better recovered One c m  discrete Figure D-3-4 charge distribution by A=I, and regards 

the ohtained asequence as do . Due to the fact tint 6" sequence is better than da', another run of the 

NDOP process will geneme M e r  improved charge distribution results. 

0-4 NODP For the 4th Set of Signals 

Figure 4.126 charge distribution is used as the initial charge distribution cf0' for the 3rd set of signais to 

the NDOP. The total initiai sum of the squared difference of Figure 4.128 [D"'] is 16.2910. A 

thresholri detector is applieci With a setthg at 0.01, d e r  the threshold detector, a q sequence is 

obtainecf, and sum of the squared difference [dm'] Îs 19.9 132. Then, a is halved and set at 0.005. afier 

the threshold detector, a q sequence is obtained, and surn of the squared difference [ D ~ ~ ' ]  is 17.1658. 

Then, a is again hrilved and set at 0.0025, rrfter the threshdd detector, a q sequence is obtained and 

s u m  of the squared Merence [ D ' ~ ) ]  is 16.3625. This q sequence is chosen as the initial rderence 

sequence q, because when a is set at O.ûûL25, die sum of the sqyûred difference is even more than 

16.3625. Then, [D'''] is not changed and 16.29 10. A single most-likely replacement detector is 

then applied Figure D 4 1  shows the secpences qrk that make the sum of the squared difference 

D(v',&) less than [0'*']=16.29 10. Obviously, a test sequence exists which can minhize the squued 

merence to 14.0384. Then. we cm replace the onginai qr by the best test seqyence and upply the 

SMLR again. 

Afier the 9th appiication of the S M L R  detector. the minimum D(v',;k) among the test sequencs qtk 

tlut makes D(v',:k) less than 16-29 10 is 8.2539. After the 10th appiication of the SMLR detector. the 



minimum D(v'&k) arnong the test sequeaces q* that make D(vrGk) l e s  than 16.2910 is 7.9022. 

Since it talces about 4 hours fot each SMLR detection, the sequence that proWe~ the minimum 

4-2 plot the W V ' ~ ~ )  that less tban 16.2910 for the 10th application of the SMLR detector. 

Figure D41 me 1st application of the SMLR detector 

Figure D 4 2  The 10th application of the SMLR detector 

Then, tfie mniinear least square optimhah process is applied with both a and F accuracy king set at 

25896. The wst Sgnificant osequence obtaimxi, d. is shown in Figure D43. 

Figure D-4-3 'Ihe d obtained after one nui of NDOP fa the 4th set of signals 



By applying equation (3-53) and equation (3-51) to the d sequence and applying a zero-phare 5 point 

average filter to the interniil space charge distribution, we obtain Figure D-4-4 charge distribution. 

Figure D-4-4 Charge distribution obtiuned after one nin of the NDOP for the 4th set of signals 

Figure P4-5 Cornparison between vm4'(k) and SVfk) (using Figure D4-4 charge disaibution) 

Figure D46 Merence between vm4'(k) and W(k) of Figure D45 

Figures D 4 5  and D-46 compare the diffemce betwmi v,*'(k) and SV(k) ( u s a  Figure D-4-4 charge 

distribution). The sum of the squared Merence of Figure D4-6 is minimized to 2.6252. The surface 

charges are better recovered Comparing d i s  obtained with the application of NDOP to the 3rd and 

the 4th set of s i m  with those obtrrined without the application of NDOP for the 3rd mi 4th set of 

signais, we cm ohserve that the NDOP is less sensitive to the bdwidth effect thm the lin- PMSM 

without applying NWP. Similady, one cm discnte Figure D-44 charge distribution by A=I and 

regards the obwined osequence as cf? M g  to the fact mat d" sequence is better than do). mother 

nin of the NDOP process wül generate further improved charge distribution results. 




