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Abstract

A scientific agricultural (re)insurance pricing approach is essential for maintaining sustain-

able and viable risk management solutions for different stakeholders including farmers, gov-

ernments, insurers, and reinsurers. The major objective of this thesis is to investigate high

dimensional solutions to refine the agricultural insurance and reinsurance pricing. In doing

so, this thesis develops and evaluates several high dimensional approaches for constructing

actuarial ratemaking framework for agricultural insurance and reinsurance, including two

credibility approaches, a high dimensional copula approach, and a multivariate weighted

distribution approach.

This thesis comprehensively examines the ratemaking process, including reviews of different

detrending methods and the generating process of the historical loss cost ratio’s (LCR’s,

which is defined as the ratio of indemnities to liabilities). A modified credibility approach is

developed based on the Erlang mixture distribution and the liability weighted LCR. In the

empirical analysis, a comprehensive data set representing the entire crop insurance sector

in Canada is used to show that the Erlang mixture distribution captures the tails of the

data more accurately compared to conventional distributions. Further, the heterogeneous

credibility premium based on the liability weighted LCR’s is more conservative, and provides

a more scientific approach to enhance the reinsurance pricing.

The agriculture sector relies substantially on insurance and reinsurance as a mechanism to

spread loss. Climate change may lead to an increase in the frequency and severity of spatially

correlated weather events, which could lead to an increase in insurance costs, or even the

unavailability of crop insurance in some situations. This could have a profound impact on

crop output, prices, and ultimately the ability to feed the world rowing population into the

future. This thesis proposes a new reinsurance pricing framework, including a new crop yield

forecasting model that integrates weather and crop production information from different risk

geographically related regions, and closed form reinsurance pricing formulas. The framework

is empirically analyzed, with an original weather index system we set up, and algorithms that

combine screening regression (SR), cross validation (CV) and principle component analysis

(PCA) to achieve efficient dimension reduction and model selection. Empirical results show

that the new forecasting model has improved both in-sample and out-of-sample forecasting

abilities. Based on this framework, weather risk management strategies are provided for

agricultural reinsurers.

Adverse weather related risk is a main source of crop production loss, and in addition to

farmers, this exposure is a major concern to insurers and reinsurers who act as weather risk

underwriters. To date, weather hedging has had limited success, largely due to challenges
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regarding basis risk. Therefore, this thesis develops and compares different weather risk

hedging strategies for agricultural insurers and reinsurers, through investigating the spatial

dependence and aggregation level of systemic weather risks across a country. In order to

reduce basis risk and improve the efficiency of weather hedging strategies, this thesis refines

the weather variable modeling by proposing a flexible time series model that assumes a

general hyperbolic (GH) family for the margins to capture the heavy-tail property of the

data, together with the Lévy subordinated hierarchical Archimedean copula (LSHAC) model

to overcome the challenge of high-dimensionality in modeling the dependence of weather risk.

Wavelet analysis is employed to study the detailed characteristics within the data from both

time and frequency scales. Results show that it is of great importance of capturing the

appropriate dependence structure of weather risk. Further, the results reveal significant

geographical aggregation benefits in weather risk hedging, which means that more effective

hedging may be achieved as the spatial aggregation level increases.

It has been discussed that it is necessary to integrate auxiliary variables such as weather, soil,

and other information into the ratemaking system to refine the pricing framework. In order

to investigate a possible scientific way to reweight historical loss data with auxiliary variables,

this thesis proposes a new premium principle based on multivariate weighted distribution.

Some designable properties such as linearity and stochastic order preserving are derived

for the new proposed multivariate weighted premium principle. Empirical analysis using

a unique data set of the reinsurance experience in Manitoba from 2001 to 2011 compares

different premium principles and shows that integrating auxiliary variables such as liability

and economic factors into the pricing framework will redistribute premium rates by assigning

higher loadings to more risky reinsurance contracts, and hence help reinsurers achieve more

sustainable profits in the long term.
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Chapter 1

Introduction

It is estimated that global agricultural production must increase by 60% to feed the world’s

population, which will reach 9 billion by 2050. The recent “Sigma” report by Swiss Re

(2013) emphasizes that agriculture insurance is an indispensable part of agricultural risk

management and helps to smooth farm income as well as to promote/encourage food invest-

ment. Furthermore, the study also suggests that the presentation of agriculture insurance

in emerging markets is currently very low but potential premiums by 2025 may reach an

estimated USD 14 -19 billion, representing 3-4 fold increases from the 2011 figure.

The most common crop insurance program, Multiple Peril Crop Insurance (MPCI), serves

to provide financial protection to farmers from yield risks as a result of natural disasters such

as droughts, insects, hurricane, etc. Private reinsurance is an essential part of a sound agri-

cultural insurance system, largely due to challenges of managing losses that often spatially

correlated. The reinsurance arrangement, like the Standard Reinsurance Agreement (SRA)

in the U.S. and the Federal-Provincial Reinsurance Fund in Canada, help to encourage the

participation of private reinsurance and protect the insurers from catastrophic losses. A

sound and scientific rating approach for agricultural insurance and reinsurance ratemaking

is essential in maintaining a sustainable program in the long run. From an actuarial point of

view, the rating problem is equivalent to finding the proper rate based on available historical

observations. To be more specific, given a loss random variable X ∈ Rd×n

X =


X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

. . .

Xd1 Xn2
. . . Xdn
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with observations of n years from d risk sectors, x ∈ Rn×d,

x =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .

xd1 xd2
. . . xdn


actuaries are involved in estimating the parameter of the loss distribution of X in order to

assign appropriate premium rates to each risk sector.

In actuarial literature, an “independent and identical distribution assumption” is often as-

sumed, which considerably simplifies the underlying problem. This assumption can be in-

terpreted in at least two ways:

• The loss is called homogeneous with no contagion in the mass of risks ifX1i, X2i, . . . , Xdi

are independently and identically distributed for all fixed i.

• The loss is called homogeneous with no contagion in time if Xj1, Xj2, . . . , Xjn are in-

dependently and identically distributed for all fixed j.

Relaxing the assumptions of independence and homogeneity, either (or both) of the above

statements introduces more challenges in estimation, but potentially makes the resulting

actuarially rates more appropriate. Given the special risk characteristics of the agricultural

insurance and reinsurance, for instance, large exposure to natural catastrophes and at times

spatial correlations, special considerations must be given to the ratemaking process compared

to more typical property & casualty procedures. To be more specific, serial correlations and

trends are introduced if we drop the independent and homogeneity assumption in time, and

will add challenges in the estimation of loss process (such as crop yield process) distributions.

Meanwhile, dropping the homogeneous assumption will introduce geographical dependence

or inter-business correlations to the loss data.

The main objective of this thesis is to address some of the outstanding, yet essential, issues

in agricultural ratemaking, particularly from an actuarial point of view and with special

attention on investigating high dimensional solutions for the construction of a scientific and

validated ratemaking framework for agricultural insurance and reinsurance.
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1.1 Yield Distribution

Crop yield distribution estimation and forecasting lies at the heart of agricultural insurance

program development. A scientific and accurate yield distribution and forecasting model

helps ensure the resulting premium rates are actuarially fair, since it gives better predictions

of the expected loss as well as the yield shortfalls, which directly relates to the loss distribu-

tions. Technological developments and agronomic advancements are thought to increase the

average and possibly reduce variance of the current yields compared to the past. On the other

hand, severe weather may be increasing in both frequency and severity, which would increase

the overall risk portfolio of the insurers and reinsurers. This thesis proposes the Erlang mix-

ture to model the loss process of crop insurance program in Canada from the prospective of

the reinsurer. Our analysis suggests that compared to parametric distributions commonly

used in agriculture economics, our proposed framework provides better fitting results and

leads to more conservative pricing method for reinsurance companies.

1.2 Credibility Rating

In agriculture insurance, portfolio risks are diverse due to widespread geographical losses,

climate influence, moral hazards, etc. Despite its complexity, the ratemaking approach

adopted is rather naive. For example, simple premium discounts and surcharges will be

applied to differentiate customers with different historical claims. A relative index, called

the Management Experience Transfer (MET) index in Saskatchewan and the Individual

Productivity Index (IPI) in Manitoba, is used to measure the success of the individual

farmer. The index is greater than 1 if the yields of the insured are better than the area

average, smaller than 1 if the yields are lower than the area average, and 1 if no historical

yield data is available for a certain farmer. In general, the MPCI premium is calculated

as

APH yields× Acres planted× Coverage level× Crop Base Price× Price election percentage,

where the APH yields stands for Actual Production Historical yields, and is based on 4 to 10

years of historical yield data; the coverage level represents the deductible level, and usually

ranges from 50% to 85%; the crop base price is usually set by the government agency (e.g.,

Risk Management Agency (RMA) of United States Department of Agriculture (USDA) in the

States) at the beginning of the growing season based on the current market price information

(Josephson et al., 2000).
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Credibility theory has proven to be a useful experience-based ratemaking tool in pricing

Property & Casualty (P&C) insurance policies. Credibility rating takes into considera-

tion the heterogeneity of loss data in time and different insured (or risk) groups. Classical

credibility theory starts from the publication of Bühlmann (1967). A series of extensions

based on this model have emerged since then, the most widely applied models include the

Bühlmann-Straub model (Bühlmann and Straub, 1970) and the regression credibility model

(Hachemeister and Kahn, 1975). Recently, Wen and Wu (2011) propose a credibility model

with a general dependence structure over risks. Credibility approach is applied to mor-

tality risk modeling by Hardy and Panjer (1998) to derive a methodology to calculate the

adverse deviation margin added to mortality rate. Pai et al. (2014) refer to a Bayesian

credibility model for livestock insurance pricing. With the exception of the aforementioned

applications and improvements, credibility theory is rarely applied in agriculture ratemak-

ing procedure. In order to improve the ratemaking process for the agricultural insurance

and reinsurance sectors, this thesis proposes some augmented models based on the credibil-

ity approach to enhance the crop insurance ratemaking framework and improve crop yield

forecasting model.

1.3 Systemic Weather Risks

Weather variability is the primary cause of loss in agriculture by either a single identifiable

event such as hail, fire, flood, etc., or adverse events during certain extended period, such

as continued rainfall, long droughts, etc. Systemic weather risk is cited as one of the main

reasons for the failure of private crop insurance (Miranda and Glauber, 1997). Further, po-

tential effects related to climate change may lead to an increase in the frequency and severity

of spatially correlated weather events, which could lead to an increase in insurance and rein-

surance costs. This could have a profound impact on crop output, prices, and ultimately

the ability to feed the worlds growing population into the future. Adverse weather events,

especially extreme weather events, lead to spatially correlated catastrophes and involve large

geographical regions. This thesis will address these issues by developing a new crop yield

forecasting model that incorporates a comprehensive weather index system.

1.4 High Dimensional Copula Approach

The agriculture sector is subject to a variety of risks, including severe extreme natural haz-

ards, that are usually spatially correlated and affecting many people. Copula models have
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been popular in quantifying systemic and spatially-dependent risks. However, standard

models of systemic risk nearly always assume linear correlations, which have been inade-

quate in capturing nonlinear dependence across different geographic regions (Goodwin and

Hungerford, 2014). In this thesis, a new Lévy subordinated Hierarchical Archimedean copula

(LSHAC) model is proposed to model systemic weather risk. Empirical results show that

the LSHAC model has better estimation performance compared to the classical Gaussian

copula and the traditional hierarchical Archimedean copulas (HAC). Constructed from Lévy

subordinators, the LSHAC model has more flexibility in modeling the tail dependence of

the weather variables across different regions with fewer parameters compared to Gaussian

copulas.

1.5 Multivariate Weighting Approach

The crop insurance sector has some unique features that are not commonly shared with

most business lines of P & C insurance. First, agricultural losses tend to be highly spatially

correlated and are at times encountered in extreme amounts. Second, over the years, the crop

insurance program has experienced many program structure changes, leading to significant

changes coverage levels and premium rates. Finally, agricultural insurance industry is a

weather sensitive sector that is largely exposed to climate change effects and systemic weather

risk. Therefore, some researchers have suggested to incorporate additional variables to weight

the historical losses experiences in order to reflect the weather conditions and programs

changes. For example, a study by RMA suggests a binning procedure integrating weather

variables to weight historical loss data. In this thesis, a multivariate weighting distribution

is proposed to integrate additional auxiliary variables into the ratemaking framework to

enhance the crop reinsurance pricing.

1.6 Organization of Thesis

This thesis focuses on developing sound and improved actuarial and statistic tools in the

context of an agricultural ratemaking framework. Chapter 2 addresses the pricing challenges

in crop insurance and reinsurance, including shortness of data, and geographical correlated

losses with high variations, and develops a scientific pricing framework that combines a new

distribution family, Erlang mixture, and a modified credibility approach. A comprehensive

data set representing the entire Canadian crop insurance sector is used as an empirical

example, and the ten provincial crop insurance regions are used as a framework for the
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credibility model. The new developed credibility-based Erlang model is shown to be superior

and provides enhanced reinsurance pricing.

In Chapter 3, a new reinsurance pricing framework is proposed by developing a new crop yield

forecasting model that integrates weather and crop production information from different

geographically correlated regions. Furthermore, closed-form reinsurance pricing formulas

are also derived. The model is empirically validated by analyzing the available weather

data. Model selection algorithms, combining Cross-Validation (CV) and Principle Compo-

nent Analysis (PCA), are proposed. The results show that the new forecasting model has im-

proved in sample and out-of-sample forecasting capabilities. Based on these results, weather

risk management suggestions are provided for agricultural reinsurance companies.

Chapter 4 discusses a new copula family known as the Lévy subordinated Hierarchical

Archimedean copula (LSHAC). Motivated by the idea that new Archimedean copulas can be

developed from Lévy subordinators, this chapter presents a general framework and notation

system for the LSHAC model. This chapter also proposes a three-stage estimating procedure

for the LSHAC model, with special attention on the estimation of the hierarchical structure of

the copula functions. An empirical estimation example using daily temperatures from eight

Canadian provinces demonstrates the advantage of the modeling capability of the proposed

LSHAC model, relative to traditional elliptical copulas and the classical HAC models. Dif-

ferent weather risk hedging strategies for agricultural insurers are developed and compared.

Empirical results support the importance of dependence structure assumptions.

Chapter 5 proposes a premium principle based on the multivariate weighted distribution to

incorporate auxiliary variables to improve crop reinsurance ratemaking. The premium prin-

ciple based on multivariate weighted distribution has some designable properties including

linearity, stochastic ordering preserving, etc. It is also advantageous over univariate weight-

ing distribution premium principle because it satisfies strict increasing relative risk loading

if the weighting variables satisfy some stochastic ordering conditions. The empirical study

compares the pricing results based on some popular premium principles and shows that by

incorporating auxiliary information, the multivariate weighted distribution premium prin-

ciple is able to assign higher loading to more risky contracts and achieve more sustainable

long-run profits.

The contribution of this thesis lies on refining the actuarial pricing framework of agricultural

insurance and reinsurance with high dimensional modeling solutions. By applying and ex-

tending credibility approach, high dimensional copula approach and multivariate weighting

distribution approach, this thesis provides scientific methodologies to integrate a variety of

auxiliary information, including the weather impacts, economic conditions and loss expe-
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riences from neighbouring regions, to enhance crop insurance and reinsurance pricing and

decision making.
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Chapter 2

A Credibility-based Erlang Mixture

Model for Pricing Crop

Reinsurance

2.1 Introduction

A sound and scientific agricultural (re)insurance pricing approach is essential for maintaining

sustainable and viable risk management solutions for farmers, governments, insurers, and

reinsurers alike. In the ratemaking process, the goal is to determine the fair risk charge,

often through the use of available historical observations. However, agricultural insurance

can be quite difficult to price due to unique challenges, including shortness of data, and

highly variable losses from year to year, which are often geographically correlated across

regions (Porth et al., 2014). Pricing models that lack a scientific framework and possible

consistency over time present a significant concern, including reinsurers who are currently

faced with a competitive landscape, with lower premium rates for some business lines, and

as such, tightening margins. Therefore, a robust pricing framework may help lead to steady

underwriting performance and improved profitability over the long term.

The objective of this chapter is to address some of the fundamental issues surrounding crop

insurance ratemaking, from the perspective of the reinsurer, through the development of

a scientific pricing framework that can be consistently and widely adopted by the agricul-

tural sector. In doing so, this chapter comprehensively examines the ratemaking process,

including a review of the generating process of the historical loss cost ratio’s (LCR’s, which

is defined as the ratio of indemnities to liabilities) in order to gain a better understanding
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of the underlying yield distributions. Another parametric distribution known as the Er-

lang mixture is investigated to improve the goodness of fit. Further, the liability weighted

LCR is introduced as a more conservative definition for the pricing model. Based on these

results, two modified versions of the Bühlmann-Straub credibility model are developed to

enhance the pricing framework by combining information from the observed data of certain

risk categories (i.e. historical LCR’s for the individual region/province), also taking into

consideration the experience from the collective risk pool (i.e. the entire crop insurance

program in Canada across the nine other geographic regions/provinces).

Trending Process

A fundamental issue to be considered before ratemaking is a solid understanding of the

generating process of the historical data. In time series analysis, scholars generally pre-

fer to work with stationary processes, with constant mean and finite variance (Hamilton,

1994). However, in crop insurance, the yield and other related data series, such as the LCR,

do not satisfy this assumption of stationarity. Instead, the crop time series data usually

contains trends defined as either deterministic or stochastic, and the corresponding testing

and detrending methods remain controversial. Many statistical tests have been proposed

by econometricians over the past several decades, including the Augmented Dickey-Fuller

test (ADF test; Dickey, 1976; Dickey and Fuller, 1979), the Phillips-Perron test (PP test;

Perron, 1986; Phillips and Perron, 1988), the Dickey-Fuller with Generalized Least Squares

Detrending test (DF-GLS test; Elliott et al., 1996), and the Kwiatkowski-Phillips-Schmidt-

Shin test (KPSS test; Kwiatkowski et al., 1992). Unit root tests are also developed for

panel data (Andrew Levin, 2002; Maddala and Wu, 1999; Pesaran, 2007). (add more recent

reference)

In empirical studies, researchers typically suggest applying linear trends (or higher order

polynomial trends) to crop yield data with deterministic trends (Gallagher, 1986; Harri

et al., 2009; Luttrell and Gilbert, 1976; Sherrick et al., 2004; Turvey and Zhao, 1999). Some

other research studies have focused on the presence of stochastic trends (Goodwin and Ker,

1998; Moss and Shonkwiler, 1993). A major limitation of these studies is that the current

tools available for testing trends in time series are based on an asymptotic assumption, i.e.,

the sample size is assumed to be very large,(explain asymptotic assumptions) which is not

satisfied in the case of crop insurance due to shortness of data. In view of this limitation,

the aforementioned four methods for testing trends in time series are reviewed in this study,

particularly focusing on the implications of working with small sample sizes, as is the case

in crop insurance. Through Monte Carlo Simulation experiments, we show that in the small

sample cases the size distortion is quite large and the power performance is poor for all four
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of the tests. This finding demonstrates the potential serious limitation in relying on these

tests to obtain accurate and reliable information about trends when data samples are small.

As such, a focus of this chapter is on establishing a scientific approach to pricing that is

robust under different trending processes.

Distribution Frameworks

Deciding which distribution to use for modelling crop yield leads to another challenge. Past

studies have tried to model yields with some known single parametric distributional at-

tributes, including the normal distribution (Just and Weninger, 1999), log-normal distri-

bution (Jung and Ramezani, 1999; Stocks, 2000; Tirupattur et al., 1996), beta distribution

(Nelson and Preckel, 1989; Sherrick et al., 2004; Tirupattur et al., 1996), gamma distribution

(Gallagher, 1986), and weibull distribution (Sherrick et al., 2004). Nonparametric estima-

tion methods have also been applied (Goodwin and Ker, 1998; Ker and Goodwin, 2000). As

consensus has yet to be reached regarding yield modelling, this area of research remains of

central importance given the fundamental importance it serves in the ratemaking process

(Sherrick et al., 2004).

One caution in distribution fitting is working with highly parameterized models, which can

lead to overfitting, and hence poor forecasting and inadequate pricing. Mixture models

studied by researchers such as Lanoue et al. (2010), Woodard and Sherrick (2011b) and

Yang (2011) have indicated that, in comparison to the single distribution models, these

models offer greater flexibility and have better out-of-sample performances. In this chapter

we explore the applicability of another mixture model, known as the Erlang mixture, for

agricultural risk modelling. We also investigate its desirable properties.

To test the proposed Erlang Mixture distribution, different models are compared in terms

of likelihoods and BIC values using a comprehensive data set that represents the entire crop

insurance sector of Canada. The data includes historical indemnities and liabilities (from

which the LCR is calculated), over 1974-2009, across 276 crop types, and 10 geographic

regions (provinces).

Modified Credibility Approach

Credibility theory has received little attention in the area of agricultural insurance pricing,

with the exception of two papers, Josephson et al. (2000), and Pai et al. (2014). In this

chapter, a modified Bühlmann-Straub Credibility Model is developed based on the Erlang

Mixture distribution, in an effort to enhance the reinsurance pricing framework. The mo-

tivation of utilizing a credibility approach is to help address the challenge of shortness of

data, and improve the statistical estimates of the expected losses. The credibility approach
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combines information from the historical LCR’s for the individual region/province, as well

as the collective experience for the entire crop reinsurance program in Canada across nine

other geographic regions/provinces. An empirical pricing example is presented to support

the proposed pricing framework.

Main Contributions of This Chapter

This chapter for the first time investigates the difficulties in deciding trending process with

small data sample in agricultural insurance and introduces the Erlang mixture model in

the context of agricultural risk modeling. By extending the traditional Bühlmann-Straub

credibility model (Bühlmann, 1967; Bühlmann and Gisler, 2005; Bühlmann and Straub,

1970), two extended versions of the Bühlmann-Straub credibility model are also presented

(Section 2.5). This chapter also recommends the liability weighted LCR to reweigh his-

torical losses and provides a more conservative reinsurance pricing framework (Proposi-

tion 2A.1).

The remainder of this chapter is as follows. In the next section, four statistical tests to exam-

ine the trending process of crop loss data are considered, and the corresponding simulation

results are provided. In Section 2.3, a statistical description of the data set is reviewed, and

the proposed Erlang Mixture distribution family is presented in Section 2.4. Based on these

results, the modified Bühlman-Straub Credibility approach is developed in Section 2.5, and

the liability weighted LCR is proposed as a more conservative way to aggregate historical

losses for the pricing model. Section 2.6 provides some empirical evidence regarding the

appropriateness of the credibility models for pricing crop insurance/reinsurance policies. Fi-

nally, the study is concluded in Section 2.7 with some empirical recommendations and future

research directions.

2.2 Trend Testing

2.2.1 Deterministic Trends and Stochastic Trends

For a time series yt and t ≥ 0, a model with deterministic trend is defined as:

yt = dt + ut (2.1)

where dt is some deterministic function of t, and ut is some stationary process. This model

can also be described as a trend-stationary process or integrated of order zero process (I(0)

process). On the other hand, if ut contains an autoregressive unit root, a model with a
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stochastic trend is defined as:

ut =

p∑
i=0

φiut−i + vt (2.2)

where vt is some stationary process, and Max(φi, i = 1, 2, . . . , p) = 1. This model can

also be defined as a difference-stationary process or integrated of order one process (I(1)

process).

Numerous tests have been proposed by econometricians for testing unit roots. They are

known as Unit Root Tests, with the null hypothesis that the time series is I(1) against the

alternative that the time series is I(0). Or conversely, if the null hypothesis is the time series

is I(0) against the alternative hypothesis that the series is I(1), they are known as Stationary

Tests. Under a Gaussian process assumption, Elliott et al. (1996) prove asymptotically that

many tests manage to achieve power functions that are extremely close to the power envelope

given by Neyman-Pearson Lemma, which is the upper bound for the power function of any

tests based on the same likelihood. The asymptotic assumption is highly questionable for

most real world systems. Monte Carlo simulation is used in many studies to examine the

finite sample performance of these tests (DeJong et al., 1991; Phillips and Perron, 1988;

Schwert, 1989). However, these studies are limited in the sense that they all consider sample

sizes larger than 100, which is still relatively large compared to the particular situation in

crop insurance where data of only several decades (with annual observations) are available

at best. Hence, a better understanding of how these tests perform in sample sizes far smaller

than the asymptotic cases, prior to executing these tests for the purpose of testing trends,

becomes critically important.

2.2.2 Simulation Results for Tests

This subsection reviews the four most frequently used tests for unit root followed by a

simulation study.

Unit Root Tests

ADF test: Dickey (1976); Dickey and Fuller (1979) developed the ADF test based on the

AR(p) model defined as:

yt = β′Dt + φyt−1 +

p∑
j=1

ψj∆yt−j + εt (2.3)

12



with H0 : φ = 1 against H1 : |φ| < 1, and where εt ∼ N(0, σ2
ε). Dt is the trend term of the

model, in the following simulation analysis, a “Constant Model” refers to Dt = 1, and the

“Trend Model” refers to Dt = (1, t)′.(define Dt)

PP test: Perron (1986); Phillips and Perron (1988) proposed a unit root test based on a

nonparametric regression model defined as:

∆yt = β′Dt + φyt−1 + ut (2.4)

where ut is I(0), which allows for heterosksdasticity and correlation.

DF-GLS test: Elliott et al. (1996) proposed a family of tests whose asymptotic power

functions are tangent to the Gaussian power envelop by considering the asymptotic approx-

imation based on the local-to-unity alternative c = T (φ − 1). Among this family of tests,

the DF-GLS test, which is a modified and efficient version of the ADF t-test, is shown to

improve power given the same sample size, and when the trending process of the time series

is unknown.

Stationary test

KPSS test: Kwiatkowski et al. (1992) proposed a test with null hypothesis that the time

series is trend stationary, against an alternative that it has a unit root. The model is specified

as

yt = β′Dt + µt + ut, (2.5)

µt = µt−1 + εt, (2.6)

εt ∼ WN(0, σ2
εt). (2.7)

with H0 : σ2
ε = 0 against H1 : σ2

ε > 0, and ut is a stationary process, which is allowed to be

heteroskedastic.

To study the size and power performance of these four tests, we conduct simulation experi-

ments based on the following model with 1000 replicates:

yt = φyt−1 + ut; ut ∼ N(0, σ2) (2.8)

The size distortions and power performances of these tests are listed in Table 2.1 to Table 2.4,

where the Constant Model refers to Dt = 1, and the Trend Model refers to Dt = (1, t)′. Each

row corresponds to various sample sizes (e.g., 25, 50, up to 1000), and the columns are the

number of lags chosen in the testing model. The results are compared to a nominal size of
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0.05. These tables show that when the sample size is larger than 500, all four tests perform

well as indicated by a small size distortion and a high power close to one, even if the Dt

is not correctly specified in the test. However, when the sample size is smaller than 50,

the test results have larger size distortions and unsatisfying power performances, namely,

they provide inaccurate information regarding the trends of the process. Moreover, the size

distortions and power performances are much more sensitive to the misspecification of the

trend when the sample sizes are smaller than 250, which could result in misleading testing

results. For example, in Table 2.1, when the sample size is 50, the average power of the

ADF test is 158.24% higher when the trend model is correctly specified. Additionally, for

the KPSS stationary test, Monte Carlo simulation results are found to be consistent with

the findings reported by Kwiatkowski et al. (1992) for sample sizes equal to 30. Therefore,

we conclude that the current statistical tests for trending processes are not revealing when

sample sizes are prohibitively small, as is the challenge faced in crop insurance. In the

following analysis, we will use the DF-GLS test and KPSS test for agricultural data since

they are providing the best testing results.

2.3 Data Description and Properties

By using a unique and a comprehensive data set that covers the entire crop insurance sector of

Canada (provided by Agriculture and Agri-Food Canada (AAFC)), this section provides an

in-depth analysis on the statistical characteristics of the historical LCR’s (Subsection 2.3.1)

and the trend testing results (Subsection 2.3.2). The data set includes actual indemnities

and liabilities, from 1974 through 2009, across 276 crop types, and 10 geographic regions (i.e.

provinces) in Canada. The ten provinces considered include Alberta (AB), Manitoba (MB),

Ontario (ON), British Columbia (BC), New Brunswick (NB), Nova Scotia (NS), Prince

Edward Island (PEI), Québec (QC), Saskatchewan (SK), and Newfoundland and Labrador

(NFLD).

In this chapter, the indemnities and liabilities are aggregated to a provincial level. From this,

the loss cost ratio’s (LCR’s), are calculated as the ratio of indemnities to liabilities. Rein-

surers commonly utilize the LCR to normalize the loss exposure and examine the underlying

risk profile and compute premiums. This normalization is important because historically

there have been significant increases in liabilities and yields, increasing program participa-

tion, as well as improvements in biotechnology, farming practices, etc. (Coble et al., 2008;

Harri et al., 2009; Miranda and Glauber, 1997; Sherrick et al., 2004; Woodard et al., 2012;

Woodard and Sherrick, 2011a). Given that reinsurers often face constraints regarding the
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Size Distortion(ADF): Constant Mode
Sample/Lags 2 4 6 8 10

T=25 0.0568 0.0715 0.0985 0.1497 0.2642
T=50 0.0519 0.0533 0.0556 0.0629 0.0761
T=100 0.0505 0.0513 0.0515 0.0512 0.0547
T=250 0.0482 0.0461 0.0500 0.0495 0.0458
T=500 0.0487 0.0529 0.0458 0.0542 0.0508
T=1000 0.0439 0.0493 0.0454 0.0426 0.0485

Size Distortion(ADF): Trend Model
T=25 0.0806 0.1149 0.1704 0.3036 0.5553
T=50 0.0625 0.0685 0.0802 0.0910 0.1148
T=100 0.0554 0.0580 0.0609 0.0653 0.0640
T=250 0.0472 0.0553 0.0544 0.0506 0.054
T=500 0.0493 0.0524 0.0509 0.0523 0.0484
T=1000 0.0490 0.0528 0.0531 0.0542 0.0492
Power Performance(ADF): Constant Model

Sample/Lags 2 4 6 8 10
T=25 0.2164 0.2484 0.3118 0.4319 0.6041
T=50 0.2583 0.2475 0.2585 0.2674 0.2865
T=100 0.4440 0.386 0.3594 0.3321 0.3128
T=250 0.9518 0.9095 0.8684 0.8195 0.7663
T=500 1 0.9999 0.9998 0.9992 0.9978
T=1000 1 1 1 1 1

Power Performance(ADF): Trend Model
T=25 0.0836 0.1138 0.1793 0.3096 0.3088
T=50 0.0908 0.0916 0.0882 0.1024 0.1069
T=100 0.1674 0.1478 0.1358 0.1274 0.1255
T=250 0.7499 0.6568 0.5750 0.4941 0.4911
T=500 0.9998 0.9971 0.9930 0.9805 0.9813
T=1000 1 1 1 1 1

Table 2.1: Size distortion and power performance of ADF test. The norminal size is 0.05,
and the Alternative Hypothesis is φ = 0.9. Lags refers to the order of integration in the
ADF regression model (value of p in equation (2.3)).
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Size Distortion(PP): Constant Mode
Zα Zτ

Sample/Lags l4 l12 l4 l12

T=25 0.0474 0.0447 0.0608 0.0587
T=50 0.0574 0.0533 0.0593 0.0588
T=100 0.0510 0.0568 0.0526 0.0589
T=250 0.0513 0.0576 0.0535 0.0528
T=500 0.0529 0.0562 0.0517 0.0577
T=1000 0.0508 0.0507 0.052 0.0517

Size Distortion(PP): Trend Model
T=25 0.0365 0.0356 0.0607 0.0578
T=50 0.0587 0.0540 0.0644 0.0626
T=100 0.0659 0.0618 0.0640 0.0619
T=250 0.0618 0.0627 0.0625 0.0585
T=500 0.0539 0.0584 0.0570 0.0589
T=1000 0.056 0.0534 0.0576 0.0545

Power Performance(PP): Constant Model
Zα Zτ

Sample/Lags l4 l12 l4 l12

T=25 0.0883 0.0945 0.0839 0.0866
T=50 0.1925 0.1892 0.1479 0.1441
T=100 0.4759 0.4845 0.3591 0.3692
T=250 0.9924 0.9912 0.9711 0.9701
T=500 1.0000 1.0000 1.0000 1.0000
T=1000 1.0000 1.0000 1.0000 1.0000
Power Performance(PP): Trend Model

T=25 0.0467 0.0479 0.0722 0.0713
T=50 0.1003 0.0959 0.0999 0.0961
T=100 0.2769 0.2693 0.2350 0.2329
T=250 0.9098 0.9053 0.8644 0.8588
T=500 1.0000 1.0000 1.0000 1.0000
T=1000 1.0000 1.0000 1.0000 1.0000

Table 2.2: Size distortion and power performance of PP test. The norminal size is 0.05, and
the Alternative Hypothesis is φ = 0.9. The test statistics Zα and Zτ are calculated according
to the expressions in the original paper. l4 = floor[4(T/100)1/4] and l12 = floor[12(T/100)1/4].
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Size Distortion(DF-GLS): Constant Mode
Sample/Lags 2 4 6 8 10

T=25 0.1276 0.0983 0.0881 0.0841 0.1143
T=50 0.0914 0.0872 0.0782 0.0693 0.0633
T=100 0.0670 0.0705 0.0633 0.0596 0.0597
T=250 0.0612 0.0600 0.0583 0.0554 0.0560
T=500 0.0539 0.0554 0.0545 0.0485 0.0557
T=1000 0.0535 0.0534 0.0540 0.0489 0.0515

Size Distortion(DF-GLS): Trend Model
T=25 0.0594 0.0353 0.0243 0.0232 0.0523
T=50 0.0395 0.0324 0.0252 0.0202 0.0170
T=100 0.0479 0.0415 0.0376 0.0450 0.0420
T=250 0.0508 0.0494 0.0496 0.0503 0.0445
T=500 0.0491 0.0486 0.0490 0.0452 0.0438
T=1000 0.0410 0.0460 0.0475 0.0446 0.0511

Power Performance(DF-GLS): Constant Model
Sample/Lags 2 4 6 8 10

T=25 0.2180 0.1613 0.1156 0.1057 0.1257
T=50 0.3010 0.2352 0.1881 0.1516 0.1216
T=100 0.5326 0.4442 0.3805 0.314 0.2717
T=250 0.8852 0.8427 0.7800 0.7301 0.6768
T=500 0.9806 0.9642 0.9451 0.9132 0.8957
T=1000 0.9991 0.9975 0.9934 0.9879 0.9790
Power Performance(DF-GLS): Trend Model
T=25 0.0676 0.0384 0.026 0.0224 0.0492
T=50 0.0724 0.0511 0.0355 0.0244 0.0174
T=100 0.1907 0.1571 0.1267 0.1378 0.1041
T=250 0.8207 0.7345 0.6478 0.5604 0.4837
T=500 0.9910 0.9845 0.9677 0.9479 0.9197
T=1000 1.0000 0.9999 0.9995 0.9990 0.9970

Table 2.3: Size distortion and power performance of DF-GLS test. The norminal size is 0.05,
and the Alternative Hypothesis is φ = 0.9. Lags refers to the order of integration in the
ADF regression model (value of p in equation (2.3)).
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Size Distortion(KPSS): Constant Mode
Sample/Lags l0 l4 l1

T=25 0.0518 0.0311 0.0369
T=50 0.0497 0.0402 0.0412
T=100 0.0502 0.0441 0.0457
T=250 0.0494 0.0501 0.0503
T=500 0.0482 0.0460 0.0495
T=1000 0.0511 0.0461 0.0473

Size Distortion(KPSS): Trend Model
T=25 0.0574 0.0399 0.0387
T=50 0.0535 0.0431 0.0406
T=100 0.0531 0.0453 0.0464
T=250 0.0571 0.0467 0.0500
T=500 0.0522 0.049 0.0505
T=1000 0.0514 0.0515 0.0506

Power Performance(KPSS): Constant Model
Sample/Lags l0 l4 l12

T=25 0.1191 0.0877 0.0842
T=50 0.3080 0.2560 0.2576
T=100 0.6048 0.5281 0.5250
T=250 0.9117 0.8498 0.8403
T=500 0.9888 0.9657 0.9630
T=1000 0.9998 0.9944 0.9949

Power Performance(KPSS): Trend Model
T=25 0.0742 0.0512 0.0498
T=50 0.1406 0.0993 0.1016
T=100 0.3859 0.2988 0.2897
T=250 0.8451 0.7558 0.7568
T=500 0.9872 0.9628 0.9634
T=1000 0.9999 0.9968 0.9965

Table 2.4: Size distortion and power performance of KPSS test. The norminal size is
0.05, and the Alternative Hypothesis is φ = 0.9. l4 = floor[4(T/100)1/4] and l12 =
floor[12(T/100)1/4].
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detail of the crop data provided to them, loss modelling becomes difficult. Therefore, a

pricing model that is robust under different trending processes is imperative.

2.3.1 Statistical Characteristics of the LCR Data

This subsection describes the statistical characteristics of the Canadian crop LCR data set

used in this chapter. For all ten provinces, the data is positively skewed, and most provinces

have high kurtosis, reflecting a heavy tail property. Empirical Value at Risk (VaR’s) and

Conditional Tail Expectations (CTE’s) at different levels also report heavy tails. In crop

insurance, a LCR greater than 0.25 is usually suggestive of a substantial and widespread

loss. As shown in Table 2.5, the tail quantiles for most provinces are higher than 0.25,

which suggests the catastrophic nature of the loss experience. This is particularly true

for the three largest crop insurance provinces, Alberta, Manitoba and Saskatchewan, which

together comprise more than 50 % of the crop insurance program in Canada. These statistical

characteristics are important to consider in developing a reinsurance pricing model, where it

is important to ensure that peak loss experiences are accounted for in loading and reserving

considerations.

LCR AB MB ON BC NB NS PEI QC SK NFLD
µ 0.13 0.09 0.07 0.08 0.14 0.05 0.08 0.06 0.11 0.14
σ 0.09 0.07 0.05 0.05 0.11 0.03 0.05 0.04 0.09 0.09
γ1 2.31 1.77 1.39 0.58 1.79 0.65 1.18 1.25 1.97 0.66
γ2 6.33 2.16 1.02 -2.97 4.39 0.11 1.96 1.84 3.93 -0.24

V aR0.85 0.20 0.20 0.11 0.14 0.21 0.08 0.14 0.10 0.19 0.25
V aR0.9 0.23 0.23 0.16 0.16 0.30 0.09 0.15 0.12 0.22 0.28
V aR0.95 0.33 0.29 0.19 0.18 0.37 0.12 0.18 0.15 0.40 0.34

CTE0.85 0.29 0.26 0.17 0.17 0.34 0.11 0.17 0.13 0.29 0.31
CTE0.9 0.35 0.28 0.19 0.18 0.40 0.12 0.19 0.15 0.36 0.34
CTE0.95 0.48 0.32 0.19 0.18 0.57 0.13 0.25 0.19 0.43 0.35

Table 2.5: Statistical Description of the LCR Data.µ-Mean, σ-Standard Deviation, γ1-
Skewness, γ2-Excess Kurtosis.

2.3.2 Trend Testing Results

As discussed in the previous sections, the first step of loss modeling is to understand the data

trending process, and then eliminate the trends accordingly. Various detrending methods can

result in substantial differences in the underlying data series, and at times lead to misspecified
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estimators of the distributions (Zapata and Rambaldi, 1989). Therefore, different trends

require correspondingly appropriate detrending methods. When the trend is deterministic,

the data should be detrended by eliminating the time trend, yet, when the trend is stochastic,

first differences should be used.

In this chapter, we begin the pricing process using the DF-GLS unit root test. The DF-GLS

test is shown to have the best performance for small sample cases among the three unit root

tests according to Table 2.1 to Table 2.3, followed by the KPSS stationary test. Table 2.6

shows the test results of the LCR data for each province according to the DF-GLS test and

KPSS test. Five of the ten provinces are found to have inconsistent results for both tests.

This makes it difficult to draw conclusions from the tests in order to determine the most

suitable detrending method. As such, a model that is robust under various detrending meth-

ods can be very helpful to ensure a sound pricing framework, and avoid misclassification of

the trending process.

LCR AB MB ON BC NB NS PEI QC SK NFLD
time trend 1 1 1 1 1 1 1 1 1 1
DF-GLS I(1) I(0) I(1) I(0) I(0) I(1) I(0) I(1) I(0) I(1)
KPSS I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)

Table 2.6: Test Results of the LCR Data. (Constant Model, Significant level=0.05). 1 in
the first line refers to an insignificant time trend, I(0) refers to a deterministic trend, and
I(1) is a stochastic trending process.

2.4 Erlang Mixture Distribution

In this section, we propose using an Erlang mixture distribution for modelling agricultural

crop data. We will also provide evidence that this distribution is able to capture the tails

of the data more accurately. To the best of our knowledge this distribution has not been

studied in agricultural risk modelling and (re)insurance pricing. The Erlang Mixture family

is a very important class of distribution because theoretically it is dense in the space of

positive distributions. In other words, there always exists a series of mixture of Erlangs that

converges in distribution to an arbitrary positive distribution (Tijms, 1994).
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The probability distribution function (p.d.f.) of the mixed Erlang model is defined as

f(x|θ, α) =
M∑
i=1

αi
xri−1e−x/θ

θri(ri − 1)!
x > 0,

where the scale parameter θ is assumed to be the same for each mixing component, and the

shape parameters ri’s, (i = 1, . . . ,M) are increasing integers, which are assumed to be known

in each round of estimation. The number of mixing Erlang distributions M , the mixing

coefficients αi’s, (i = 1, . . . ,M), and θ, are found by the Expectation-Maximization (EM)

Algorithm proposed by Lee and Lin (2010) to maximize the log-likelihood functions.

To test the plausibility of this distribution for modelling crop data, we use the Bayesian

information criterion (BIC). The BIC was first introduced by Schwarz in 1978, and is defined

as

BIC = −2log(L̂) +K · log(N),

where L̂ is estimated maximum value of the likelihood function, K is the number of pa-

rameters in the model, and N is the sample size. The advantage of using the BIC as our

model selection criterion is that it is valid not only for nested models but also for non-nested

models (Burnham and Anderson, 2002).

In order to compare the goodness of fit of the Erlang Mixture distribution model, some com-

monly used distributions, such as Gamma, Weibull, Beta, Normal and Loglogistic are also

considered as benchmarks. Further, the Erlang Mixture model is considered with respect

to the two different detrending processes considered previously. The first method involves

regressing the LCR’s with respect to time trend and hereafter is referred to as regressed

data, and the second method involves differencing the LCR’s and hereafter is referred to as

differenced data. To be more specific, the regressed data are detrend by reducing the first

order polynomial function of time from the original LCR data, and the difference data are

created by first differencing. The fitting results for the regressed data as well as differenced

data are found in Table 2.7, respectively. For both detrending methods, the Erlang Mix-

ture distributions have the highest likelihoods and the lowest BICs for all the ten provinces.

While the Erlang Mixture distributions are superior, the Gamma and Weibull distributions

also perform well. The empirical cumulative distribution functions (eCDFs) of Erlang dis-

tribution and Gamma distribution for the province SK are presented in Figure 2.1, and the

QQ-plot for Erlang distribution is displayed in Figure 2.2 (add QQ-plots etc to the fitted

distributions).

As mentioned earlier, reinsurers are faced with the challenge of asymmetric information.
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(a) eCDF for Gamma distribution (SK).
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(b) eCDF for Erlang mixture distribution (SK).

Figure 2.1: eCDFs for LCR from SK for Gamma distribution and Erlang mixture distribu-
tion.

Reinsurers often only have access to limited historical time series and often this data is

highly aggregated with mixed coverage levels and rates through time, which may mask

potential trends. From this perspective, within the framework of a parametric approach, the

Erlang distribution has a promising advantage in that it is robust regardless of the detrending

methods, which is not the case with the other distributions. Therefore, the Erlang mixture

distribution may help to improve the ratemaking and loss reserving process for insurers and

reinsurers, particularly when faced with small data samples as in crop insurance.
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Figure 2.2: QQ-plot for LCR from SK fitted with Erlang mixture distribution.
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Maximum Likelihood Estimations: Regressed Data

Province Criteria Erlang Gamma Weibull Beta Loglogistic Normal

AB Log-Likelihood 135.57 50.16 49.76 3.06 43.95 37.92
BIC -242.48 -93.16 -92.36 1.05 -80.74 -68.67

MB Log-Likelihood 200.84 57.61 57.12 4.26 52.17 42.85
BIC -383.77 -108.06 -107.07 -1.35 -97.16 -78.53

ON Log-Likelihood 216.22 76.93 75.99 10.62 70.57 59.01
BIC -414.53 -146.70 -144.80 -14.08 -133.97 -110.85

BC Log-Likelihood 334.73 50.88 52.74 -4.11 43.68 59.95
BIC -651.53 -94.59 -98.32 15.38 -80.18 -112.74

NB Log-Likelihood 205.84 42.58 41.36 3.00 34.58 29.19
BIC -397.34 -77.99 -75.56 1.16 -62.00 -51.21

NS Log-Likelihood 276.44 75.68 75.72 1.69 67.53 75.76
BIC -524.22 -144.18 -144.28 3.78 -127.90 -144.36

PEI Log-Likelihood 175.53 60.69 60.75 1.52 52.81 58.94
BIC -333.14 -114.22 -114.34 4.12 -98.45 -110.71

QC Log-Likelihood 255.88 70.68 71.08 1.85 63.71 69.00
BIC -493.84 -134.19 -134.99 3.48 -120.25 -130.84

SK Log-Likelihood 151.23 50.47 49.73 4.19 43.95 35.20
BIC -284.54 -93.77 -92.29 -1.22 -80.74 -63.23

NFLD Log-Likelihood 265.15 35.67 34.53 -2.60 25.24 35.21
BIC -512.38 -64.18 -61.90 12.37 -43.31 -63.25

Maximum Likelihood Estimations: Differenced Data

AB Log-Likelihood 428.14 -2.65 2.30 -15.99 -9.75 29.96
BIC -842.07 12.42 2.50 39.08 26.60 -52.81

MB Log-Likelihood 251.84 14.07 17.10 -12.15 6.35 33.47
BIC -485.90 -21.04 -27.09 31.41 -5.60 -59.84

ON Log-Likelihood 318.79 35.95 36.48 -2.71 26.24 46.59
BIC -626.90 -64.80 -65.84 12.53 -45.37 -86.07

BC Log-Likelihood 332.68 44.39 45.38 -4.06 34.88 57.41
BIC -651.13 -81.66 -83.64 15.23 -62.66 -107.71

NB Log-Likelihood 384.53 -10.61 -5.81 -13.55 -17.92 22.17
BIC -754.83 28.33 18.74 34.22 42.96 -37.23

NS Log-Likelihood 347.04 40.07 43.08 -3.18 32.65 57.95
BIC -679.86 -73.02 -79.05 13.47 -58.19 -108.80

PEI Log-Likelihood 372.08 17.06 21.23 -10.42 10.02 41.98
BIC -729.93 -27.01 -35.35 27.96 -12.94 -76.85

QC Log-Likelihood 398.93 32.67 35.54 -7.79 25.10 50.08
BIC -776.53 -58.23 -63.97 22.69 -43.08 -93.05

SK Log-Likelihood 349.67 7.06 10.24 -15.26 -0.41 26.59
BIC -685.11 -7.01 -13.36 37.63 7.92 -46.07

NFLD Log-Likelihood 353.31 13.05 15.30 -12.66 5.03 28.42
BIC -685.28 -18.99 -23.49 32.43 -2.95 -49.72

Table 2.7: Maximum Likelihood Estimating Results for LCR Data Under Two different
Detrending Methods.
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2.5 Modified Bühlmann-Straub Credibility Models

The objective of this section is to present an enhanced pricing methodology for crop insurance

through the integration of a modified credibility model, and the Erlang-mixture model. The

credibility model is a widely accepted ratemaking tool used by actuaries in the property

and casualty sectors to price insurance policies for risk exposures such as automobile and

health. More recently, credibility model has also been used for modeling operational risk

(See Bühlmann et al., 2007).

The motivation for using a credibility approach is to enhance pricing through the addition

of supplemental information. For example, suppose we are interested in predicting future

claims of a particular risk class, the traditional pure risk premium approach involves using

past claim experience data pertinent to the risk class. However, in addition to using the

history of claims for the given risk class, credibility theory (see Bühlmann (1967); Bühlmann

and Straub (1970)) argues that the prediction power can be improved by also exploiting

the claim experience of the collective pool of risk classes with similar characteristics. By

restricting the class of estimators to be a linear combination of past observations, an optimal

credibility-based prediction estimator that minimizes the squared difference between the

predicted values and the claim experience can be obtained. This results in an estimator that

is simple and intuitive. The credibility estimator becomes a linear combination between

the individual risk class claim experience and the collective claim experience with relative

weights dependent on the credibility of the claim experience of the risk class to the collective

risk pool. In the special case in which the experience of a risk class is fully credible, then

the experience of the risk class is solely used for future loss prediction.

The classical Bühlmann-Straub credibility model assumes that claims are independent con-

ditional on a given risk category, and the random variables characterizing the risk profiles are

identically and independently distributed (see Bühlmann and Gisler, 2005). However, in the

application of agriculture insurance, the identical conditional distribution assumptions may

not be appropriate because there are some priori differentiations for each province. This pri-

ori differentiation intuitively makes sense since each province is faced with different weather,

technical, and economic situations, therefore, their risk characteristics should contain some

priori differences. In addition to giving a priori differentiation, we obtain the credibility

premium based on two different risk assumptions for our loss data, including a homogeneous

risk assumption and a heterogeneous risk assumption. The two modified Bühlmann-Straub

credibility models are discussed next.

For i = 1, 2, . . . , d and j = 1, 2, . . . , T , where d and T denote, respectively, the number of
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risk categories (i.e. number of provinces in our context), and the number of years of data,

we define the following notation:

• Xij: loss cost ratio (LCR) of risk i in year j,

• Iij: indemnity of risk i in year j,

• Lij: liability (risk exposure) of risk i in year j.

• Θi: the parameter of the i-th risk.

In our context, the LCR Xij =
Iij
Lij

is the basic random variable for the credibility rating.

The parameter Θi is defined as a random variable that describes the risk characteristics for

the i-th risk. The assumptions underlying the homogeneous and heterogeneous risk models,

and the resulting credibility premiums are stated below.

M1: Homogeneous Risk Model:

A1: X = {Xij : i = 1, 2, . . . , d; j = 1, 2, . . . , T} are independent conditional on Θi, with its

(conditional) mean and (conditional) variance given, respectively, by

E[Xij|Θi] = aiµ(Θi) (2.9)

V ar[Xij|Θi] = ai
σ2

1(Θi)

bi
. (2.10)

We use the parameters ai and bi to describe the priori differentiation, due to different

weather, technical, and economic situations, between each geographical regions. µ(Θi)

and σ2
1(Θi) are functions of Θi.

A2: (Θ1,X1), (Θ2,X2) . . . , (Θd,Xd) are independent, and Θ1,Θ2, . . . ,Θd are independent

and identically distributed.

As shown in Appendix 2A.2, for the two assumptions stated above, the credibility premium

for the i-th risk class (province) is given by

CrePHom
i = ZHom

i X̄Hom
i + (1− ZHom

i ).µi (2.11)

In the above formula,

• X̄Hom
i , which denotes the historical average of the LCR of risk category i, is given by

X̄Hom
i =

1

T

T∑
j=1

Xij. (2.12)
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• µ0 = E
(
µ(Θi)

)
can be interpreted as the risk premium for the entire collective risk

pool (without taking into consideration the priori difference between the provinces).

• ZHom
i , which is the credibility factor, captures the weight that is assigned to the his-

torical data of the i-th province in the credibility premium. Formally this is defined

as

ZHom
i =

aibi · T
aibi · T + κHom

(2.13)

with the credibility coefficient κHom given by

κHom =
vHom

aHom
, where vHom = E[σ2

1(Θi)], aHom = V ar[µ(Θi)]. (2.14)

A more intuitive expression for the credibility factor is to use the following equivalent

representation (Bühlmann and Gisler, 2005):

ZHom
i =

T

T + κ̃Hom
where κ̃Hom =

E[V ar[Xij|Θi]]

V ar(E[Xij|Θi])
.

This demonstrates that the credibility factor depends explicitly on three factors. More

specifically, the credibility factor increases as

– the number of observations T increases,

– the variability within the risk classes (as measured by E[V ar[Xij|Θi]]) decreases,

– the heterogeneity of the collective risk pool (as measured by V ar(E[Xij|Θi]))

increases.

The above interpretations are intuitive. The credibility premium (2.11) is a weighted average

between the observed LCR average of the i-th risk category and the risk premium for the

entire collective risk pool. The past observations become more credible and lead to higher

credibility factor with more observations, or the smaller within risk category variability, or

with larger between risk category variability.

M2: Heterogeneous Risk Model:

A1: X = {Xij : i = 1, 2, . . . , d; j = 1, 2, . . . , T} are independent conditional on Θi, , with

its (conditional) mean and (conditional) variance given, respectively, by

E[Xij|Θi] = aiµ(Θi) (2.15)

V ar[Xij|Θi] = ai
σ2

2(Θi)

bi · Lij
(2.16)
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where ai and bi are interpreted similarly as in the previous model and σ2
2(Θi) is another

function in term of Θi.

A2: (Θ1,X1), (Θ2,X2) . . . , (Θd,Xd) are independent, and Θ1,Θ2, . . . ,Θd are independent

and identically distributed.

To capture the heterogeneity of the data, the conditional variance of Xij depends not only on

parameters ai, bi, and a function in term of Θi as in the homogeneous risk model, but, also

on an extra factor Lij, which measures the year j risk exposure of the i-th province. Under

the above assumptions, Appendix 2A.2 similarly establishes that the credibility premium for

province i becomes

CrePHet
i = ZHet

i X̄Het
i + (1− ZHet

i )µi (2.17)

where

X̄Het
i =

T∑
j=1

Lij
Li·

Xij (2.18)

ZHet
i =

aibiLi·
aibiLi· + κHet

(2.19)

Li· =
T∑
j=1

Lij, µi = aiµ0, (2.20)

κHet =
vHet

aHet
, vHet = E[σ2

2(Θi)], aHet = V ar[µ(Θi)]. (2.21)

The interpretations of these parameters are similar to the previous model. The main dif-

ference between the homogeneous and heterogeneous assumptions is that consideration is

given to the improvement of the risk exposure in each year in the heterogeneous model. This

is important because trends in risk exposure, as a result of increasing yields and increasing

commodity prices, leads to considerable variability. This makes the heterogeneous credibility

model more reasonable by factoring both geographic and time variations of liability into the

premium calculation.

Another interesting result arising from these models is in the use of the historical data in the

credibility estimator. In the former model, X̄Hom
i in (2.12) is simply the arithmetic average

of the LCR’s over the past T years, while in the latter model, X̄Het
i in (2.18) is defined as

the liability weighted average of historical LCR’s. This gives rise to two different ways of

averaging past LCR’s, depending on the model assumptions.

This difference could have some important implications for ratemaking. In particular, as

formally established in Appendix 2A.1 (see Proposition 2A.1), under some additional tech-
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nical assumptions, we have X̄Het
i ≥ X̄Hom

i ; i.e., the liability weighted LCR’s is at least as

large as the simple averaging LCR’s. More importantly, this also implies that ratemaking

based on the liability weighted LCR’s should produce a risk premium that is higher than

the corresponding rate based on the simple averaging LCR’s.

Additionally, we assume that the following relationship holds

σ2
1(Θi) =

1

L̄i
σ2

2(Θi) (2.22)

where L̄i = 1
T

∑T
j=1 Lij. This relation is reasonable since σ2

1(Θi) and σ2
2(Θi) can be inter-

preted as the conditional variance of LCR (Xij) and the indemnity (Iij), respectively (recall

(2.10) and (2.16)). Then we have

CrePHom
i =

aibi

aibi + vHom

TaHom

X̄Hom
i +

ai
aibi
vHom

TaHom

+ 1
µ0 (2.23)

CrePHet
i =

aibi

aibi + vHom

TaHom

X̄Het
i +

ai
aibi
vHom

TaHom

+ 1
µ0 (2.24)

where the X̄Hom
i and X̄Het

i are defined in (2.12) and (2.18), respectively. The above results

suggest that if X̄Het
i ≥ X̄Hom

i then CrePHet
i ≥ CrePHom

i . Thus the credibility premium based

on the liability weighted LCR’s is more conservative than the corresponding premium based

on the simple averaging LCR’s.

2.6 Applications of Credibility Models

In Sections 2.3 and 2.4, an extensive analysis was conducted on a unique set of crop data,

covering 10 provinces in Canada over the years 1974 to 2009. Among all the plausible dis-

tributions that were investigated, the Erlang-mixture model was found to provide the best

goodness of fit to the historical LCRs. Section 2.5 then described two modified versions of the

Bühlmann-Straub credibility model, which may provide a better ratemaking framework for

crop (re)insurance policies. Continuing to explore the same set of data, this section provides

additional empirical evidence regarding the appropriateness of the credibility models for pric-

ing crop (re)insurance policies. In particular, Subsection 2.6.1 discusses how the credibility

models can be used to integrate each province’s historical data with the pooled historical

data of all ten provinces to optimally determine the credibility premium (or equivalently the

forecasted LCR) for year 2010. Then by using the province of Manitoba as an example, an
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Homogeneous Model Heterogeneous Model
Province ZH

i PXH
i ZHet

i PXHet
i

AB 0.9561 0.1333 0.9526 0.1405
MB 0.9574 0.0884 0.9618 0.1119
ON 0.9548 0.0553 0.9699 0.0639
BC 0.9777 0.0436 0.9774 0.0691
NB 0.9654 0.0930 0.9727 0.1121
NS 0.9729 0.0534 0.9597 0.0914
PEI 0.9737 0.0745 0.9517 0.1030
QC 0.9729 0.0748 0.9792 0.0903
SK 0.9553 0.1135 0.9743 0.1202

NFLD 0.9765 0.1156 0.9638 0.1538

Table 2.8: Predicted Credibility LCR for the Year 2010. ZH
i and ZHet

i , PXH
i and PXHet

i

are credibility factors and predicted credibility LCRs for the i-th province in the year 2010
under homogeneous and heterogeneous assumptions, respectively.

attempt is made in Section 2.6.2 to reproduce the empirically observed reinsurance data for

the year 2010.

2.6.1 Credibility Premium with Erlang Mixture distribution

The crop data for ten Canadian provinces (see Subsection 2.3) is used to conduct an empirical

analysis for the credibility models described in the last section to predict the year 2010 LCR

for each province. In our analysis, the prior distribution is assumed to be normal and the

parameters are estimated using the maximum likelihood estimation (MLE) method. For

both homogeneous and heterogeneous risk models, the Erlang Mixture Model is calibrated

to the LCR’s. Furthermore, parameters such as ai and bi (i = 1, 2, . . . , d) are estimated

based on the calibrated Erlang distribution, providing the prior information for each risk

category (province). The forecasted credibility LCRs for year 2010 for both risk models (i.e.

(2.11) and (2.17), respectively), together with the credibility factors (i.e. (2.13) and (2.19),

respectively), are listed in Table 2.8.

The reported results clearly exemplifies the importance of the risk assumptions. The as-

sumption of heterogeneity leads to higher predicted LCR’s (relative to homogeneous risk as-

sumption) and thus is more conservative if the model is used for pricing insurance contracts.

Provinces such as Manitoba (MB), Ontario (ON), Saskatchewan (SK), New Brunswick (NB)

and Quebec (QC) are the major crop producers in Canada, and it is of interest to note

that switching from the homogeneous risk model to the heterogeneous risk model results in
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increased credibility factors for these provinces, thus giving more credits to their historical

data. On the other hand, the credibility factors for provinces such as Nova Scotia (NS),

Prince Edward Island (PEI), and Newfoundland and Labrador (NFLD), which comprise a

much smaller portion of the crop sector in canada, result in decreased credibility factors.

When switching from the homogeneous risk model to the heterogeneous risk model, the

credibility factors decrease by 1.366%, 2.285%, and 1.309%, respectively. This means that

the predicted LCR’s for these provinces are giving more credit to information from the entire

collective risk pool.

2.6.2 Manitoba Reinsurance Example

The crop reinsurance treaty that is written based on the LCR is typically a layer reinsurance

contract structure(Porth et al., 2013). For example, the reinsurance treaty for the province

of Manitoba for the year 2010 has lower attachment and upper level of LCR = 15% and

LCR = 27.5%, respectively. This implies that if the observed LCR for the insured year is

less than 15%, there is no reinsurance payout. If the observed LCR is greater than 15%,

then the reinsurers are liable for the loss in excess of 15% up to a maximum of 12.5%

(which is the spread of the attachment points). The actual payout is then adjusted by the

liability exposure forecasted at the inception of the contract. Manitoba Agriculture Service

Corporation (MASC) retains 10% of the liability so that the remaining 90% of the liability

is ceded to private reinsurers. For year 2010, the liability exposure for the private reinsurers

was 1,856,000,000 with reinsurance premium $28,700,000.

Using year 2010 reinsurance data from the province of Manitoba, the objective of this sub-

section is to consider various methods of pricing reinsurance contacts, and assess their ef-

fectiveness by relating the price to that observed in the market. To proceed, two critical

assumptions are imposed. One is that the reinsurance premium P of the contract is assumed

to be determined by the expectation premium principle, defined as

P = (1 + θ)E(LR), (2.25)

where θ is the loading factor and LR is the reinsurer loss exposure random variable. For the

year 2010 Manitoba reinsurance program, we have

LR = max(XMB,2010 − 0.15, 0.125) · Li,2010 (2.26)

where Xi,2010 denotes Manitoba’s LCR random variable in year 2010. Second we assume
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θ = 0.35, which seems to be consistent with crop reinsurance market practice (Porth et al.,

2014).

Based on the above assumptions, the remaining task is to explore ways of determining the

expectation in (2.25) in order to fully specify the reinsurance premium. Here we examine

the following three methods:

Method I: The random variable XMB,2010 in (2.26) is assumed to be modeled by the

Erlang-mixture model with its parameter values calibrated to the historical LCR data

of Manitoba (see Section 2.4). E(LR) is then evaluated accordingly from the calibrated

Erlang-mixture model.

Method II: The credibility premium approach as described in Subsection 2.6.

Method III: This approach is similar to the preceding credibility approach, but, with

the important difference that instead of risk pooling from all ten provinces, the present

approach exploits information only from a smaller subset of provinces. Here we use the

K-means clustering technique to partition the 10 provinces into groups with similar

risk (as measured by the average risk). In our case, the 10 provinces are classified

into three groups as shown in Table 2.9. Note that Manitoba is grouped together

with the provinces of Ontario, British Columbia, Nova Scotia, Prince Edward Island

and Quebec, and this group has the lowest risk exposure (average LCRs is 0.072).

The credibility approach is then applied to this group for determining the reinsurance

premium.

Note that the Method I corresponds to the classical net premium approach but with risk

loading. While Methods II and III are based on the credibility approach, the latter method

has the advantage that it relies on a smaller subset of data (i.e. Group I in Table 2.9).

This reduces the amount of data needed to be collected and hence it is more manageable,

especially where there is a large number of risk categories to begin with. Also, borrowing

information from other risk categories with some similar traits appears to be more reasonable

and credible.

The results are summarized in Table 2.10. For the credibility based methods II and III, both

homogeneous and heterogeneous models are implemented. In addition to the reinsurance

premium, the predicted credibility LCRs are also reported. The last column of the table gives

the pricing error relative to the actual 2010 reinsurance premium, where positive (negative)

value indicates that it is larger (smaller) than the actual price. Using the 2010 price as

the actual price, one immediate conclusion that can be drawn from the results is that net

premium based only on the Erlang mixture model and the credibility premiums under the
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Group Provinces Mean LCR
I MB ON BC NS PEI QC 0.072
II AB SK 0.120
III NB NFLD 0.140

Table 2.9: Classification for Ten Regions/Provinces in Canada.

homogeneous assumptions are not satisfactory, as they underestimate the observed premium

by more than 10%. These observations are quite surprising since the best goodness of fit,

the Erlang mixture model, has a heavier tail and hence should result in a more conservative

estimate of the reinsurance premium. However, the reinsurance premium calculated from

these methods is still less than the observed market premium.

The impact of changing the assumption from homogeneous to heterogeneous is also high-

lighted. If we use all 10 provinces in our heterogenous credibility model, then the resulting

reinsurance premium is more conservative in that it is higher than the observed premium

by almost 10%. On the other hand, if we adopt Method III which uses a smaller subset

of provinces that are more alike, the underestimation error reduces from 13.9% to 4.0% by

using the heterogenous credibility model, as opposed to the homogeneous model.

Figure 2.3: Covariance Coefficient Matrix of Ten Regions/Provinces in Canada

2.7 Conclusions

Crop insurance is faced with a major challenge of limited data which leads to concerns in

pricing insurance and reinsurance contracts. The objective of this chapter was to address
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Method ZMB PXMB Reinsurance Premium Discrepancy
I - - $25,138,608 −12.4%
II Homogeneous 0.9548 0.0884 $24,906,567 −13.2%

Heterogeneous 0.9618 0.1119 $31,538,179 9.9%
III Homogeneous 0.9573 0.0877 $24,710,466 −13.9%

Heterogeneous 0.9614 0.0977 $27,548,036 −4.0%

Table 2.10: Comparison of credibility factors, forecasted LCRs and reinsurance premiums
under various pricing methods. The value under “Discrepancy” column gives the pricing
error relative to the year 2010 reinsurance premium of $28,700,000.

some of the fundamental issues surrounding crop insurance ratemaking, from the perspective

of the reinsurer, through the development of a scientific framework that can be consistently

and widely adopted by the agricultural sector. We show by simulation that the current

tools available for testing trends in time series cannot provide accurate information for small

sample sizes as is in the case in crop insurance. A unique data set comprised of the entire crop

insurance sector in Canada was analyzed, and from this we show that the Erlang Mixture

distribution family, which is newly introduced in this chapter for agricultural insurance

ratemaking, captures the heavy tail property of the loss data better than single distribution

models. In addition, the Erlang Mixture model is shown to be robust under different trending

methods, which is important in dealing with the difficult problem of deciding which trending

process to use for small samples.

To enhance the crop (re)insurance pricing framework, a modified credibility model is in-

troduced. Credibility premiums based on two different risk assumptions of the LCR data

are calculated, including a homogeneous risk assumption and a heterogeneous risk assump-

tion. Further, the “liability weighted” LCR is proposed to aggregate historical loss data.

The results show that the heterogeneous credibility premium based on the liability weighted

LCR’s is more conservative, and provides a more scientific and robust approach to enhance

reinsurance pricing.
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2A Appendix: Proofs

2A.1 A proposition of liability weighted LCR’s

For T years of observations, define two random variables P,Q as

P =
1

T

T∑
i=1

Xi, (2A.27)

Q =

∑T
i=1 XiLi∑T
i=1 Li

, (2A.28)

where Xi, Li (i = 1, . . . , T ), are the LCR and liability in the i-th year. Therefore, P and Q

define two ways to aggregate historical losses, namely, P is the simple average LCR and Q

is the liability weighted LCR. Then we have the following proposition.

Proposition 2A.1. In probability space (Ω,F , P ), we define the following random variables:

1. X : Ω 7→ [0, 1] is LCR,

2. Y : Ω 7→ R+ is crop yield,

3. L : Ω 7→ R+ is liability.

The relationship holds:

X =
(L− Y )+

L
=

0, Y (ω) ≥ L(ω), ω ∈ Ω,

L−Y
L
, Y (ω) < L(ω), ω ∈ Ω.

(2A.29)

Assume liability is a function of yield, f : R+ 7→ R+, namely, L(ω) = f(Y (ω)) for all

ω ∈ Ω0, where Ω0 = {ω : Y (ω) < L(ω)} . Then if for all x ∈ I = X(Ω0), function f(x)

satisfies the following:

1. f(x) ≥ 0 with f(0) = 0,

2. f ′(x) ≥ 0,

3. f ′(x) ≥ f(x)
x

.

Then Q ≥ P almost surely.

Proof. Let us start the proof by defining L(i) as the ith order statistic of random variables
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L, i = 1, . . . , T , i.e.,

L(1)(ω) ≤ L(2)(ω), . . . , L(T )(ω), ω ∈ Ω

• If ω ∈ Ω/Ω0, then,

X(1)(ω) ≤ X(2)(ω), . . . , X(T )(ω), ω ∈ Ω/Ω0

since X(i)(ω) ∈ Ω/Ω0 = 0.

• If ω ∈ Ω0, let function l : I 7→ [0, 1] be l(y) = 1 − y

f(y)
. From the assumptions, we

have l′(y) ≥ 0, since

l′(x) =
yf ′(y)− f(y)

f 2(y)
≥ 0 ∀y ∈ I.

So l(y) is an increasing function on I, which means that

X(1)(ω) ≤ X(2)(ω), . . . , X(T )(ω), ∀ω ∈ Ω0

Therefore,

X(1)(ω) ≤ X(2)(ω), . . . , X(T )(ω), ∀ω ∈ Ω

namely,
X(1)∑T
i=1 L(i)

(ω) ≤
X(2)∑T
i=1 L(i)

(ω), . . . ,
X(T )∑T
i=1 L(i)

(ω), ∀ω ∈ Ω,

Then,

T∑
i=1

1

T
X(i) ≤

T∑
i=1

L(i)

X(i)∑T
i=1 L(i)

a.s. (2A.30)

which is equivalent to that Q ≥ P almost surely.

The inequality 2A.30 follows by directly applying the Chebyshev Sum Inequality. If

a1 ≤ a2, . . . ,≤ aT (2A.31)

b1 ≤ b2, . . . ,≤ bT (2A.32)

1
T

∑T
i=1 ai

∑T
i=1 bi ≤

∑T
i aibi
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2A.2 Deriving the Cedibility Premiums

Credibility premiums search for the best linear combination of the past observations in the

sense of minimizing the quadratic loss (for simplification of the notation, in the following

derivation we suppress the subscript i, which indicates the risk category.):

QL = E[(µ(Θ)− α0 −
T∑
j=1

αjXj)
2]

Hence, the solution α = (α0, α1, . . . , αN)′ needs to satisfy the following for every k =

1, 2, . . . , T :

∂ QL

∂α0

= (−2)Ė(µ(Θ)− α0 −
T∑
j=1

αjXj) = 0

∂ QL

∂αk
= (−2)Ė[Xk(µ(Θ)− α0 −

T∑
j=1

αjXj)] = 0

Namely,

E(µ(Θ)) = α0 +
T∑
j=1

αjE(Xj)

E(µ(Θ)Xk) = α0 +
T∑
j=1

αjE(XjXk)

Also note that:

E(µ(Θ)) = E(E(XT+1|Θ)) = E(XT+1)

E(µ(Θ)Xk) = E(E(µ(Θ)Xk|Θ))

= E(µ(Θ)E(Xk|Θ))

= E(E(XT+1|µ(Θ))E(Xk|Θ)).

= E(XT+1Xk)
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Thus

E(XT+1) = α0 +
T∑
j=1

αjE(Xj) (2A.33)

Cov(XT+1, Xk) =
T∑
j=1

αjCov(Xj, Xk). (2A.34)

The above two equations are called “Normal Equations”.

For M1:

Cov(XT+1, Xk) = Cov(E(XT+1|Θ), E(Xk|Θ)) + E(Cov(XT+1|Θ, Xk|Θ)

= a2aH

Cov(Xj, Xk) = Cov(E(Xj|Θ), E(Xk|Θ)) + E(Cov(Xj|Θ, Xk|Θ)

= a2aH +
a

b
vHδkj

where δkj =

{
0, k = j,

1, else

From (2A.33),

aµ0 = α0 + aµ0

T∑
j=1

αj. (2A.35)

From (2A.34),

a2aH =
T∑

j=1,j 6=k

αja
2aH + ak(a

2aH +
a

b
vH)

=
N∑
j=1

a2aHαj +
a

b
vHαk.

Hence,

α0 =
vH

aH

Nab+ vH

aH

aµ0, αj =
ab

Nab+ vH

aH

Thus, we finally get:

CrePH = ZHX̄H + (1− ZH)µ
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where ZH = Nab

Nab+ vH

aH

, µ = aµ0, and X̄H = 1
T

∑T
j=1 Xk.

For M2, similarly:

Cov(XT+1, Xk) = Cov(E(XT+1|Θ), E(Xk|Θ)) + E(Cov(XT+1|Θ, Xk|Θ)

= V ar(E(Xk|Θ)) + 0

= a2aHet

Cov(Xj, Xk) = Cov(E(Xj|Θ), E(Xk|Θ)) + E(Cov(Xj|Θ, Xk|Θ)

= a2aHet +
a

bLk
vHetδkj.

From (2A.33),

aµ0 = α0 + aµ0

T∑
j=1

αj (2A.36)

From (2A.34),

a2aHet =
T∑

j=1,j 6=k

αja
2aHet + ak(a

2aHet +
a

bLj
vHet)

=
N∑
j=1

a2aHetαj +
a

bLj
vHetαk

Hence, by defining L =
∑T

j=1 Lj, we have

α0 =
vHet

aHet

Lab+ vHet

aHet

aµ0, αk =
Lkab

Lab+ vHet

aHet

Thus, we finally get:

CrePHet = ZHetX̄Het + (1− ZHet)µ

where ZHet =
Lab

Lab+ vHet

aHet

, µ = aµ0, and X̄Het =
T∑
j=1

Lj
L
Xj.
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Chapter 3

A Credibility-based Yield Forecasting

Model for Crop Reinsurance

Ratemaking and Weather Risk

Management

3.1 Introduction

Weather risk plays an important role in forecasting crop yield, which is critical for agricultural

insurance ratemaking. An improved crop yield forecasting model will enhance the scientific

ratemaking framework for crop (re)insurers, and will support the acceleration of agricultural

insurance market worldwide (Ozaki et al., 2008). However, in the presence of systemic

weather risks, there are many challenges in efficiently and accurately forecasting crop yields,

including effects of possible climate changes, selecting predicting variables, restating crop

mix, and modeling geographical differences across regions.

The objective of this chapter is to address these difficulties by developing a new crop yield

forecasting model and reinsurance pricing framework. A main focus will be on enhancing the

actuarial ratemaking for agricultural reinsurance by integrating weather risks and produc-

tion information from different geographical regions. This research will add to the literature

by proposing scientific approach to restate yields through consideration of changing crop

mix over the historical years in order to maintain the consistency of data. In addition,

a comprehensive weather index system is composed to reflect the nonlinearity relationship

of crop yields and weather variables. Efficient algorithms for selecting an optimal predic-
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Weather Risks

Crop Reinsurance Ratemaking

Yield Fore-
casting Model

Pricing Formula

Weather Risk
Management

Figure 3.1: Flow chat of the general modeling framework in Chapter 3.

tion matrix are also devised, and to address the geographical heterogeneity, an expanded

regression credibility model is proposed to improve the crop yield forecasting model. The

model is validated through empirical forecasting results, providing the best in-sample and

out-of-sample forecasting results among the various approaches that are investigated in this

chapter. Finally, weather risk management for reinsurers is discussed by proposing a Divi-

sion to Integration risk management procedure that incorporates the forecasting and pricing

model developed.

An overview of the modeling framework of this chapter can be expressed in the flow chart

shown in Figure 3.1. One of the essential contributions of this chapter is that it provides a

comprehensive framework for reinsurance companies to address weather risks by constructing

an integrated management framework with analytical formulas that include model construc-

tion, premium calculation, and risk assessment.

Climate Change & Weather Risks

Agricultural risk management is faced with a number of challenges, largely due to exposure

of natural catastrophes, creating losses that are at times spatially correlated. Some findings

suggest that possible effects of climate change may contribute to more prevalent extreme

weather, namely, extreme heat, drought, wildfires, and heavy precipitation, which are occur-

ing more frequently and with more intensity (Cassman, 1999; Conway and Toenniessen, 1999;

IPCC, 2013; Motha and Baier, 2005; Pall et al., 2011; Salinger, 2005). From both a short

and long term perspective, the economic impacts brought by extreme weather events can

have significant implications. Lacking information and knowledge of the covariant weather

risks can create a number of challenges for different stakeholders including, farmers, insurers

and reinsurers, and governments.

In recent years, the Property & Casualty (P&C) industry has experienced tremendous losses.
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In 2012 for example, there were approximately $27.8 billion of industry losses in Canada,

among which a large amount of losses were from severe weather events (Insurance Bureau

of Canada (IBC), 2014). In the wake of these losses, however, reinsurers were able to

maintain capacity and absorb severe losses. This outcome has helped lend support to the

reinsurance market in terms of an efficient and cost effective risk management approach

to help reduce risk exposure and vulnerability. Therefore, agricultural insurers often seek

to improve weather risks diversification through the use of such risk management tools as

reinsurance. Further, in some regions the availability of reinsurance capacity drives the

success and sustainability of the agricultural insurance program.

Restatement of Crop Mix

The restatement of crop mix is an important issue in agricultural (re)insurance design and

pricing. The evolution of farming practices creates difficulties for loss modeling given that

historical dates become less representative of the current experience. For example, mixed

cropping, which means growing more than one crop simultaneously on the same piece of

land, helps the producer to diversify and to protect against losses from extreme adverse

weather conditions. Another common farming practice to reduce risk is crop rotation, in

which farmers plant different type of crops in different years to help give nutrients to the soil

and help to mitigate the build-up of pathogens and pests. Further, changes in biotechnology

and increases in commodity prices have influenced the crop that farmers plant, and these

changes in crop mix over time also create concerns over the representativeness of the data.

Therefore, a scientific restatement of historical yield data helps to ensure that the historical

observations are good indicators of future crop production (Coble et al., 2011; Woodard,

2014).

Despite its importance, yield restatement has rarely been discussed in the literature. In

this chapter, we provide an algorithm to restate crop mix for yield forecasting. Serving

as a pre-process step, the restatement algorithm helps prepare the data so that it is more

representative of present farming conditions and the overall risk profile of the current pro-

gram.

Yield Forecasting

Yield forecasting is challenging, largely due to extreme weather events that often lead to

wide spread losses across many geographic regions (Cassman, 1999; Dai et al., 2004; Lobell

and Asner, 2003). A good yield forecasting model helps to predict crop yields before harvest

actually takes place, and offers a scientific foundation for the ratemaking of traditional crop

insurance contracts, such as Multi-Peril Crop Insurance (MPCI). It is widely known that the

traditional crop insurance design is subject to various challenges, including adverse selection
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and moral hazard (Chambers, 1989; Nelson and Loehman, 1987; Quiggen et al., 1994). In

alleviate these issues, recent research has focused on index-based insurance (IBI). Other

issues associate with IBI, on the other hand, surface. One critical issue is the basis risk

which refers to the mismatch between the actual loss on the farm and the payment to the

farmer based on the index. A better understanding of how the crop yield in response to the

weather becomes extremely important in reducing basis risk.

The crop growth process is a nature system based on the interaction of soil, air, water, and

crops. An integrated yield model combining meteorological and climate data is beneficial

for farmers to understand the influences of weather variables and adjust their cultivating

strategies accordingly (Campbell and Diebold, 2005; Kleibera et al., 2011). A major challenge

faced with integrating yield and weather information is how to efficiently select scientific

variables from a complex set of correlated weather variables and reduce the dimension of

explanatory variables to an acceptable number. In this chapter, a comprehensive weather

index system is considered to describe the nonlinear relationship of weather variables and

crop yields. Three efficient model selection algorithms are proposed by combining Screening

Regression (SR), Principal component Analysis (PCA) and Cross Validation (CV), which

efficiently help to achieve the goal of model selection and dimension reduction. Empirical

results show that compared to the traditional multiple regression method, the model selection

algorithms have better in-sample and out-of-sample forecasting abilities.

Geographical Heterogeneity & Credibility Approach

Weather variables impact crop yield differently across various regions (i.e., geographical het-

erogeneity), and this has been studied on a very limited basis (Cai et al., 2013). McCarl et al.

(2008) found that the impact of climate change varies among different regions in the U.S. In

our study, the effect of spatial heterogeneity is explored, and for certain dominant weather

variables there may be a positive effect on yield in some municipalities, yet a negative impact

in other geographical regions. To examine this issue, a new credibility estimator is proposed

to consider the geographical heterogeneity. In addition, the new proposed credibility estima-

tor also shows several other advantages, including unbiasedness and smaller mean quadratic

loss compared to classic regression credibility model.

Main Contributions in This Chapter

This chapter contributes the literature in both methodology development and practical ap-

plications. In therm of methodology, we propose a new credibility estimator that incorpo-

rates weather variables and production information in principal componentgeographically

correlated regions (See Equation (3.9)). We prove that this new credibility estimator is

an unbiased estimator with smaller mean quadratic loss compared to the classic regression
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credibility estimator (Proposition 3.3.1). Closed form reinsurance pricing formulas are also

derived (Proposition 3.3.2).

This chapter also contributes the practical reinsurance pricing and risk management. In

particular, for the first time, we address the issue of crop mix restatement in reinsurance

pricing, and propose a restatement algorithm to maintain the consistency of historical data

(Algorithm 3.2.1). Efficient algorithms that combine screening regression (SR), cross val-

idation (CV) and principal component analysis (PCA) are developed to achieve efficient

dimension reduction and model selection (Algorithms 3.2.2 to 3.2.4). Empirical results show

that the crop yield forecasting model proposed in this paper has improved both in-sample

and out-of-sample forecasting abilities. In addition, a comprehensive weather index system

is developed to reflect the nonlinearity between crop yields and weather variables (Table 3.1).

Finally, based on the framework discussed in this paper, we propose a Division to Integra-

tion weather risk management procedure, providing practical risk management suggestions

to agricultural reinsurers.

The remainder of this chapter proceeds as follows. Section 3.2 constructs a comprehensive

weather index system and introduces three model selection algorithms to facilitate crop

yield forecasting. Section 3.3 proposes a new credibility estimator to address geographical

heterogeneity and improve crop yield forecasting. Closed form pricing formulas are also

introduced to enhance the reinsurance pricing framework. Section 3.4 provides conclusion

remarks with weather risk management suggestions for agricultural reinsurers. The appendix

outlines the proofs.

3.2 Yield Forecasting

Agriculture reinsurance is faced with the challenge of limited loss experience as there is

usually only one growing season for many crops per year in Canada. Further, reinsurers

often have access to highly aggregated loss data, typically at the county level rather than

the farm level. As a result, an accurate crop yield forecasting model is essential to improve

agricultural reinsurance ratemaking. Accurate crop yield predictions, particularly those with

high out-of-sample prediction ability, provide important information for agriculture reinsur-

ance companies to measure loss conditions ahead of time, and hence assist in computing fair

premium rates that are sustainable in the long term. In this section, three model selection

algorithms are proposed to facilitate crop yield forecasting by achieving better in-sample and

out-of-sample forecasting abilities.
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3.2.1 Data Introduction

In this chapter, a detailed farm-level crop yield data set from Manitoba, Canada, is studied.

The data panel covers 216 types of crops from 19238 farms from 1996 to 2011. The weather

data analyzed is the Adjusted and Homogenized Canadian Climate Data (AHCC) from

Environment Canada. It includes daily temperature (maximum, minimum, and mean) from

24 weather stations, and daily precipitation from 30 weather stations in Manitoba. The

weather data contains some missing points, therefore, in order to address the missing data

problem in the weather dataset, the Ordinary Kriging method is employed. “Kriging” is

synonymous with “optimal prediction”, which predicts unknown values from data observed

at known locations. This term was first used by Matheron in 1963 in honour of Krige, who

did preceding work on this method. Through the use of geostatistic spatial model, such as

Kriging, missing data are optimally predicted by minimizing the squared prediction errors

(Matheron, 1963; Plant, 2012).

3.2.2 Restatement of Crop Mix

In order to ensure that the crop yield data observed historically is a good indicator of future

crop production, it is necessary to pre-process the yield data using a procedure commonly

known as “restatement”. Restatement refers to a procedure in which historical data are

adjusted so that the resulting data are a better indication and more representative of the

present situation. This pre-processing procedure is particularly important in the context

of agriculture for reasons such as the evolution of technology, improved farming practice,

changes in weather condition, or any other factor that has significant impact on crop pro-

duction (Coble et al., 2011; Woodard, 2014).

While the restatement of crop mix is important, it should be emphasized that there is scarce

literature which formally addresses this issue. The approach that we describe below is based

on conversations with some practitioners, and is consistent with market practice. Some

important points about the restatement procedure are as follows:

• Over the years there have been many different types of crops produced, therefore, it

is unrealistic to restate each and every single crop. Instead, we focus on restating

a representative crop mix, which is determined from the most recent experience to

provide a better reflection of the current risk profile.

• Due to the variations among crop types, our restatement procedure quantifies the crop

exposure by using the land area that is actually used, instead of using weight, monetary
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value, etc.

• Since we have yield data at the farm level, our restatement procedure first restates

crop mix at the farm-level and then restates at the municipality level, which is more

likely the data aggregation level used by reinsurers. Note that the municipality level

is comparable to the county-level yield data in the U.S. system.

Before describing our restatement procedure, it is useful to recall some previous notations

as well as to define some new terms:

• There are T years of data and each year is indexed by t = 1, . . . , T .

• There are d risk categories (i.e. municipalities) and each risk category is indexed by

i = 1, . . . , d. In our empirical studies, we have T = 16 and d = 122.

• For each time t and risk category i, there are J farms and each farm is indexed by

j = 1, . . . , J . Note that more precisely, J is a function of time t and risk category i.

Here we suppress both subscripts for brevity.

• The total number of crops that have been produced over T years is denoted by K

and each crop is indexed by k = 1, . . . , K. Note that at any particular year and for

any particular risk category, the number of crops that a farm produces will likely be

substantially smaller than K.

• Let yi,j,k,t and Ai,j,k,t denote, respectively, the yield and acres for risk category i, farm

j, crop k and in year t.

The first step in our proposed restatement procedure is to identify the “main crop mix” that

the municipality has been producing in recent years. The “main crop mix” is defined as

the minimum number of crop mix that covers at least 90% of the total farming acres over

the most recent five years. The “optimal crop mix” consists of the “main crop mix” and

“others”, where “others” captures the remaining crops that are not part of the “main crop

mix”, but are produced in the last five years. The “optimal crop mix” determined in this

way is assumed to be representative for the next year’s farming practice and hence it will be

used as a “benchmark” for restating all the historical crop yields. It is noteworthy that this

“optimal crop mix” is not unique, and depends on the definition of “main crop mix”. By

denoting K∗ as the total number of crops in the “main crop mix” for a given municipality,

the set K = {0, k1, k2, . . . , kK∗} is then used to describe the “optimal crop mix” with indexes

k1, k2, . . . , kK∗ for identifying crops that comprise the “main crop mix” and the index 0 for

capturing crops that are in “others”.

Using the “optimal crop mix” as the benchmark, we identify, for each municipality and for
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each year, the subset of farms that has produced at least one of the crops in the “main crop

mix”. We use J∗ to denote the number of such farms and J = {j1, j2, . . . , jJ∗} to denote

the set of indexes for identifying these farms.

The restatement procedure is summarized in the following algorithm:

Algorithm 3.2.1. For each municipality i = 1, . . . , d,

Step 1. Determine the optimal crop mix. This is denoted by K∗ and K = {0, k1, k2, . . . , kK∗}.

Step 2. For t = 1, . . . , T ,

Step 2a. Determine J∗ and J = {j1, j2, . . . , jJ∗}.

Step 2b. For j ∈ J and k ∈ K, calculate the ratio of acres for each crop type in the

“optimal crop mix” as

ai,j,k,t =
Ai,j,k,t∑
l∈KAi,j,l,t

(3.1)

Step 3. Restatement of the farm level ratio of acre: Assume the restated ratio aRi,j,k,t sat-

isfies a third-order polynomial; i.e.

aRi,j,k,t = αi,j,k + βi,j,kt+ γi,j,kt
2 + ηi,j,kt

3

where αi,j,k, βi,j,k, γi,j,k and ηi,j,k are the coefficients of the polynomial. For j ∈ J
and k ∈ K, the corresponding coefficients are optimally determined by minimizing

the sum of square errors as follows:

min
ai,j,k,bi,j,k,ci,j,k

T∑
t=1

(aRi,j,k,t − ai,j,k,t)2.

Step 4. Restatement of municipality level yield per unit acre. Finally from the restated

farm level ratio aRi,j,k,t, the yield per unit acre, yRi,t, for t = 1, . . . , T , is restated as

yRi,t =

∑
j∈J

∑
k∈K a

R
i,j,k,tyi,j,k,t∑

j∈J
∑

k∈KAi,j,k,t
(3.2)

The above algorithm produces {yRi,t; i = 1, . . . , d, t = 1, . . . , T} and these are the restated

crop yields at the municipality level that will be used for subsequent analysis.
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3.2.3 Weather Index System

Given the high sensitivity and low frequency nature of agricultural risks, insurers often cede

a portion of the risk in their portfolio to private reinsurers in order to improve diversifica-

tion. Given the data limitations reinsurers are faced with, reinsurers seek to improve loss

forecasting approaches. This section develops a comprehensive weather index system to ac-

count for nonlinear impacts of weather variables on crop production in order to improve

yield forecasting, and hence loss forecasting. The development of a comprehensive weather

index system may also be useful for the weather derivatives and weather-linked insurance

market, as reinsurers require for more sophisticated methods to help quantify weather risk

conditions.

A weather index is a nonlinear function of weather observations, which provides a direct and

intuitive meteorological measure for certain weather risk. Weather derivatives, for example,

may be a very efficient approach to transfer systemic weather risks in agriculture (Woodard

and Garcia, 2008b) and can be written on a cumulative weather index known as Growing

Degree Days (GDD). GDD is an indicator of the suitability for a crop to grow in terms of

some benchmark temperature. It is assigned a zero value if the daily temperature falls below

the base temperature (T̃ ); otherwise it is the difference between daily temperature and the

base temperature. More explicitly, the value of GDD on day t is

GDDt = max(0, Tt − T̃ ), (3.3)

where Tt is the average of maximum and minimum daily temperature, defined as, Tt =
Tmin + Tmax

2
, and T̃ is the base temperature. Besides the GDD, popular weather indexes

include the Cooling Degree Days (CDD), Heating Degree Days (HDD) and Cumulative

Average Temperature (CAT) 1. Another index system, called Crop Heat Units (CHU), is

calculated from calibrated daily minimum and maximum temperatures (Brown, 1969). It was

originally developed for field corn and has been in used in Ontario for the last 30 years.

In this chapter, a detailed weather index system is developed based on temperature and

precipitation information, aiming at providing a simplified, yet, comprehensive measurement

of weather. We define temperature thresholds θ1, θ2, and θ3 and precipitation thresholds λ1

and λ2 as the following: θ1 and θ2 are the base temperatures, which represent the minimum

temperatures that the crop can grow during the day and the night, respectively; θ3 is the

temperature during the day that the crop could grow at the highest rate. In the CHU system,

1For more detailed definitions, refer to Alaton et al. (2002), Campbell and Diebold (2005) and Alexandridis
and Zapranis (2013).
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θ1 = 10◦C, θ2 = 4.4◦C, and θ3 = 30◦C. As such, we use this as a benchmark and analyze a

wide range of the temperature thresholds in order to assess the detailed relationships between

the crop yields and weather variables, which will help in the forecasting of yields. To be

more specific, we set θ1 from 6 to 10◦C, θ2 from 0 to 4◦C and θ3 from 26 to 30◦C, all with

1◦C increment. As with precipitation, there is scarce literature discussing the selection of

the thresholds, therefore, we use the first and third quartiles of historical precipitation to

define λ1 and λ2, respectively. In addition, from an agronomy point of view, the growing

season (i.e., from May to October for Canada) is the period when the weather may play the

most important role in crop growth. As a consequence, we construct the weather indices

during the growing season. Also note that the weather index system is developed for both a

monthly and an annual basis. The advantage of studying the monthly weather indices is that

more detailed dynamic between the crop yields and weather variables is likely to be detected.

First, the (daily) weather index system is defined, then using different aggregation functions,

the daily indices are integrated along different periods (i.e., either monthly or annually

through the entire growing season) to create a design matrix for crop yield forecasting. The

detailed definitions and notations of the weather index system and aggregating functions are

listed below. Note that all the weather indices are indexed by t, we suppress the index for

brevity.

Weather Index System

• Night Growing Degree Low (NGDL)

NGDL i = min(MinT − θ1i, 0), i = 1, . . . 5,

where θ11 = 0, θ12 = 1, θ13 = 2, θ14 = 3, θ15 = 4(◦C), indicating the night temperature

above which the crops can grow. MinT is the minimum daily temperature.

• Day Growing Degree Low (DGDL)

DGDL i = min(MaxT − θ2i, 0), i = 1, . . . , 5,

where θ21 = 6, θ22 = 7, θ23 = 8, θ24 = 9, θ25 = 10(◦C), indicating the daytime tem-

perature under which the crops may stop development. MaxT is the maximum daily

temperature.

• Day Growing Degree High (DGDH)

DGDH i = max(MaxT − θ3i, 0), i = 1, . . . , 5,
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where θ31 = 26, θ32 = 27, θ33 = 28, θ34 = 29, θ35 = 30(◦C), indicating the maximum

daytime temperature for the crops to grow.

• Precipitation High (PREH)

PREH = max(P − λ1, 0),

where λ1 = 0.1 mm, which is about 0.25% quantile of historical precipitations.

• Precipitation Low (PREL)

PREL = min(P − λ2, 0),

where λ2 = 2 mm, which is about 0.75% quantile of historical precipitations.

The aggregation functions considered in this chapter include maximum value (denoted as

“max”), minima value (denoted as “min”), average value (denoted as “avg”), and total

number of nonzero values (denoted as “cot”). These aggregation functions essentially divide

the weather indices into three types:

• Average Index: Using function “avg”, the average indices provide aggregate mea-

sures of weather conditions during a defined period.

• Extreme Events: Using function “min” and “max”, these indices describe extreme

events during a defined period.

• Extreme Days: Using function “cot”, these indices count the number of days during

a defined period experiencing extreme weather conditions.

After excluding the indices that duplicate the values of the existing variables in the design

matrix or those making the matrix singular, we construct a 140-dimensional design matrix,

where each column is an explanatory variable and each row is one year observation for

the corresponding variables. The structure of the notations of the weather variables (i.e.,

indices) is I+function+ period, where I is the weather index, “function” is the aggregation

function used and “period” is the period through which the index is calculated. For example,

NGDL1cot May means the total number of days that NGDL is above zero during May,

which directly provides knowledge about the downside low temperature risk during May.

The detailed notations and the interpretations of these explanatory variables are listed in

Table 3.1.
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Table 3.1: Notations and Definitions of Weather Indices in the Full Design Matrix. “Index”
is the weather index variables, “function” is the aggregation function used and “period” is
the period through which the index is calculated, where a blank “period” represents the
index for the whole growing season, otherwise “period” can be “May”, “Jun”, “Jul”, “Aug”,
“Sep”, and “Oct”.

Index Threshold Function
Notation Example

(I) (◦C / mm) (fun)

T – max
min
avg

T + fun + period Tmax May: Maximum tem-
perature in May

P – max
min
avg

P + fun + period Pavg: Average precipitation
during growing season

NGDL θ11 = 0,
θ12 = 1,
θ13 = 2,
θ14 = 3,
θ15 = 4.

max
min
avg
cot

NGDL+j+fun+ period,
j = 1, . . . , 5

NGDL1min Aug: Minimum
NGDL (with θ11 = 0◦C)
during August

DGDL θ21 = 6,
θ22 = 7,
θ23 = 8,
θ24 = 9,
θ25 = 10.

max
min
avg
cot

DGDL+j+fun+ period,
j = 1, . . . , 5

DGDL3cot Jul: Number of
days DGDL (with θ21 =
8◦C) is above zero in July

DGDH θ31 = 26,
θ32 = 27,
θ33 = 28,
θ34 = 29,
θ35 = 30.

max
min
avg
cot

DGDH+j+fun+ period,
j = 1, . . . , 5

DGDH5avg Oct: Average
DGDH (with θ35 = 30◦C)
during October

PREH 0.1 max
avg
cot

PREH + fun + period PREHavg Jun: Average
PREH (with λ = 0.1
mm) during June

PREL 2 max
avg
cot

PREL + fun + period PRELcot Sep: Number of
days that PREL (with
λ = 2 mm) is above zero
during September
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3.2.4 Model Selection Algorithms

In geographic and agronomic science, statistical models are widely used as an alternative to

agronomic process-based models in predicting crop yields. Many studies have used multiple

regression models to identify the contributions of weather variables to crop yields and to

perform the forecasting (Lobell and Burke, 2010; Shi et al., 2013). The general form of the

commonly used regression model can be expressed as

Yt = β0 + β1V1,t + β2V2,t + . . .+ εt, (3.4)

where Yt represents the crop yields which could be either time series for single crop yield or

average yields across different regions. V1,t, V2,t, . . . are explanatory weather variables, such

as time, t, growing season mean temperature (Tavg), and total precipitation (Ptol), or their

functions, for instance, T 2
avg, GDDtol, etc.

A first and foremost challenge in this multiple regression model is the model selection prob-

lem, and caution is necessary because any misspecification, misinterpretation, or existence of

multicolinearity will strongly effect the predicting results (Ramsey and Schafer, 2013). Com-

mon modeling practices use either the all possible subsets method or stepwise methods. To be

more specific, the all possible subsets method compares possible combinations of explanatory

variables and uses statistics such as Mallows’ Cp (Mallows, 1973) to select the best model.

The stepwise methods add or remove variables until achieving the best model according to

statistics such as Akaike information criterion ((AIC); Akaike, 1974) or Bayesian information

criterion ((BIC); Schwarz, 1978). However, with a high-dimensional design matrix, such as

the 140-dimensional explanatory variables constructed in our study, the multiple regression

methods can be long and tedious, and may not lead to an optimal model. Additionally, the

aforementioned model selection methods tend to be more experience-based method. Since in

addition to referring to statistical tools such as Cp, AIC or BIC, knowledge of the biophysics,

agronomy, and ecology are required in the variable selection procedure, which can often be

complicated and expensive.

In our study, three model selection algorithms are proposed to help achieve the objectives of

model selection and dimension reduction, combining Screening Regression (SR) with prin-

cipal component Analysis (PCA). SR reduces the dimensionality by allowing only those

“important” explanatory variables in the regression model, while PCA transforms the orig-

inal highly correlated variables into the uncorrelated principal components (PC’s), and re-

tains the variation of the data as much as possible. The optimal threshold of screening is

identified through cross validation (CV). CV has an advantage of limiting the overfitting
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problem, which is common in agricultural loss modeling with very limited historical obser-

vations (Woodard and Sherrick, 2011b), so that the selected models will provide satisfying

out-of-sample prediction abilities, which is of more importance compared to in-sample pre-

diction from the crop yield forecasting prospective. For a more detailed definition of PCA

and CV, refer to Jolliffe (2002) and Kohavi (1995). The details of these algorithms will be

presented in Algorithms 3.2.2, 3.2.3, and 3.2.4. To the best of our knowledge, this is the first

time that algorithms based on these methods (SR, PCA and CV) are proposed for dimension

reduction and model validation for crop yield forecasting.

Algorithm 3.2.2. (Screening Regression (SR) Algorithm) For each municipality i,

i = 1, . . . , d, d = 122 :

Step 1. Calculate sample covariance coefficients between the yields and jth explanatory

variables in the full design matrix (j = 1, . . . , p), denoted as ρ̂Wi,j. The design

matrix starts from the full design matrix W
(0)
i with dimension d

(0)
i = p = 44.

Step 2. Calculate r candidate thresholds ρi = (ρ
(1)
i , . . . , ρ

(r)
i )′,

Step 3. For each ρ
(l)
i , l = 1, . . . , r :

Step 3a. Update the design matrix according to the threshold ρ
(l)
i : exclude explanatory

variables with ρ̂Wi,j smaller than ρ
(l)
i . Update the design matrix to be W

(l)
i with

the dimension being d
(l)
i .

Step 3b. Calculate λ
(l)
i , the out-of-sample predicting error of W

(l)
i , using CV.

Step 4. Calculate the optimal design matrix W ∗
i : Record the optimal threshold with the

smallest predicting error as ρ∗i , and the corresponding design matrix as W ∗
i .

Algorithm 3.2.3. (PCA Screening Regression (PCASR) Algorithm) For each mu-

nicipality i, i = 1, . . . , n, n = 122 :

Step 1. Do PCA transformation to full design matrix W
(0)
i and get new design matrix Z

(0)
i ,

including s
(0)
i PC’s that retain 85% or more variance of the full design matrix.

Step 2. Calculate the sample covariance coefficients between the yields and jth components

in Z
(0)
i (j = 1, . . . , s

(0)
i ), denoted as ρ̂Zi,j.

Step 3. Calculate r candidate thresholds ρi = (ρ
(1)
i , . . . , ρ

(r)
i )′

Step 4. For each ρ
(l)
i , l = 1, . . . , r :
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Step 4a. Update the design matrix according to threshold ρ
(l)
i : exclude components with

covariance coefficients ρ̂Zi,j smaller than ρ
(l)
i . Update the design matrix to be

Z
(l)
i with the dimension s

(l)
i .

Step 4b. Calculate λ
(l)
i , the out-of-sample predicting error of Z

(l)
i , using CV.

Step 5. Calculate the optimal design matrix Z∗i : Record the optimal threshold with the

smallest predicting error as ρ∗i , and the corresponding design matrix as Z∗i .

Algorithm 3.2.4. (Screening PCA Regression (SPCAR) Algorithm) For each mu-

nicipality i, i = 1, . . . , n, n = 122 :

Step 1. Calculate the sample covariance coefficients between the yields and jth explanatory

variables in the full design matrix (j = 1, . . . , p), denoted as ρ̂Wi,j. The number of

dimension starts from d
(0)
i = p = 44.

Step 2. Calculate r candidate thresholds ρi = (ρ
(1)
i , . . . , ρ

(r)
i )′.

Step 3. For each ρ
(l)
i , l = 1, . . . , p :

Step 3a. Update the design matrix according to threshold ρ
((l)
i : exclude components with

covariance coefficients smaller than ρ
(l)
i . Update the design matrix to be W

(l)
i

with the dimension d
(l)
i .

Step 3b. Calculate λ
(l)
i , the out-of-sample predicting error of W

(l)
i , using CV.

Step 3. Calculate the design matrix W ∗
i : Record the optimal threshold with the smallest

predicting error as ρ∗i , and the corresponding design matrix as W ∗
i .

Step 4. Do PCA transformation to design matrix W ∗
i and get Z∗i , containing s∗i PC’s that

retain 85% or more variance of W ∗
i . Z∗i is the optimal design matrix.

3.2.5 Yield Forecasting Results

The three algorithms in Section 3.2.4 are applied to each of the 122 municipalities in the

Manitoba dataset. To demonstrate that these algorithms are effective at dimension reduc-

tion, we also execute the classical regression method expressed in Equation 3.4 to the 122

municipalities. We find that the proposed algorithms can reduce the 140-dimensional ex-

planatory matrix to a manageable set for all 122 municipalities that we have investigated.

In addition to assessing dimension reduction, some statistical measures such as the Akaike

Information Criterion (AIC) and adjusted R2 (AR2) are also examined and computed. The
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resulting histograms and the fitted densities of the AIC over 122 municipalities for three

algorithms and classic regression method are depicted in Figure 3.2 and the corresponding

AR2 are depicted in Figure 3.3.

Another important issue to examine is the forecasting power of the models. Mean Square

Errors (MSE) are calculated to assess the in-sample prediction ability and Leave-one-out

Cross Validation Mean Square Errors (Loo-CVMSE) are calculated for the out-of-sample

prediction. The forecasting results of the classical regression method (CR) are listed in the

first column of Table 3.2, while the forecasting results based on the three algorithms are

reported in columns 3 to 5 of Table 3.2. In the table, “CR” represents the classical regres-

sion method, “SR” is the screening regression algorithm, “PCASR” is the PCA screening

regression method, and “SPCAR” is the screening PCA regression algorithm. The following

observations are based on the forecasting results:

• All three proposed algorithms have better fitting abilities compared to the CR method,

reducing the AICs and improving the AR2s. Form Figure 3.2 and Figure 3.3, we can

observe that the AIC density of the CR method lies on the right of the other densities

while the AR2 density of the CR method lies on the left of the others, indicating

that the CR performs worse than the other models. According to the AR2 results in

Figure 3.3, SR and SPCAR algorithms create Adjusted R2 larger than 0.5, while CR

and PCASR perform worse with most AR2 smaller than 0.5.

• All three proposed algorithms improve the forecasting performance in terms of both

in-sample and out-of-sample criteria. For example, from Table 3.2 we can see that the

average in-sample error of the CR is 0.0208, which is 2.5 times the in-sample error of

SR (0.0082).

• While the CR has acceptable in-sample forecasting errors, it does not perform well

in the out-of-sample forecasting. For example, the average out-of-sample forecasting

errors of the CR method is 20.8711, which is 12 times higher than the SR, 634 higher

than the PCASR, and 608 higher than the SPCAR.

It is difficult to conclude the best model among the three proposed algorithms, since there

is a tradeoff between in-sample and out-of-sample forecasting abilities. For example, the

SR algorithm has the best in-sample fitting ability based on the AR2 and in-sample MSE.

However, a drawback is that it yields relatively large out-of-sample forecasting errors with

a large standard deviation. This may be due to the fact that the SR performs well in some

municipalities but not in others. The other two proposed algorithms, PCASR and SPCAR,

although slightly worse that the SR in the in-sample forecasting, have better performance

in the out-of-sample forecasting. In particular, the in-sample MSE of SPCAR is 35% better
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Figure 3.2: Histogram and Estimated Density of AICs for Thtree Algorithms. “CR” the
represents classical regression method, “SR” is the screening regression algorithm, “PCASR”
is the PCA screening regression method, and “SPCAR” is the screening PCA regression
algorithm.
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than PCASR (0.0142 v.s. 0.0219) while the out-of-sample of SPCAR is 4% worse than

PCASR (0.0342 v.s. 0.0329). Considering that the out-of-sample forecasting capability is of

greater importance for forecasting yields, we propose that the SPCAR is of more interest in

yield forecasting from reducing the out-of-sample forecasting error point of view.

A main advantage of using the SPCAR is reducing the dimension to achieve an optimal design

matrix that has only a few dominant explanatory variables or indices. Empirical analysis

shows that there are great variations across municipalities, with the identified dominant

weather indices varying from municipality to municipality. Therefore, it is of interest to

compare the frequency of the weather indexes that are identified as dominant among all of

the municipalities. The results are summarized in Figure 3.4. “Tmin Oct” (i.e., minimum

temperature during October) is the most dominant weather index that is identified by 106

out of 122 municipalities. “PRELavg May” (i.e., average PREL during May) is the second

most dominant weather index identified by 99 out of 122 municipalities. It is interesting

to note that extreme low temperature and rainfall level have significant impacts on yield

production.

Table 3.2: Summary of Forecasting Results. Important statistics are summarized in this
table including the mean, median, standard deviation (SD), and maximum errors (Max).

In-Sample Errors (MSE)

Statistic CR SR PCASR SPCAR

Mean 0.0208 0.0082 0.0219 0.0142

Median 0.0109 0.0047 0.0119 0.0075

SD 0.0438 0.0159 0.0483 0.0368

Max 0.4247 0.1424 0.4947 0.3804

Out-of-Sample Errors (Loo-CVMSE)

Statistic CR SR PCASR SPCAR

Mean 20.8711 1.7451 0.0329 0.0342

Median 13.8712 0.1291 0.0186 0.0158

SD 34.5929 3.5471 0.0677 0.0845

Max 255.6152 16.9406 0.6733 0.8467
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Figure 3.4: Count of “Dominant” Weather Indexes for Each Municipality.
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3.3 Pricing Framework

In this section, a reinsurance pricing framework is developed, which includes a new crop

yield forecasting estimator to improve out-of-sample forecasting ability, as well as closed

form pricing formulas. Within this framework, the proposed forecasting estimator is con-

structed using an adjusted regression credibility estimator to take into consideration the

geographical heterogeneity is taken into consideration in the reinsurance pricing. This esti-

mator has desirable statistical properties, such as unbiasedness and smaller mean quadratic

losses, compared to the classic regression credibility estimator. The empirical analysis re-

sults further support the improvement of the proposed pricing framework in crop reinsurance

ratemaking.

3.3.1 Geographical Heterogeneity

Geographical heterogeneity has been studied on a very limited basis in literature, yet, plays

an important role in agricultural reinsurance pricing. Actuarial principles dictate that the

ratemaking approaches should be flexible, reproducible, and accurate. Ideally, this requires

that reinsurers have stable and homogeneous risk portfolios, and pricing should be based on
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historical loss data. This helps to ensure that the resulting reinsurance premiums can be

applied to all risks influenced by a variety of time factors, and can measure and represent

the risk conditions reinsurance companies faced.

Unfortunately, the risk portfolios of agricultural reinsurers are usually time and spatially

dependent and highly heterogeneous. Figure 3.5 shows the crop yields for 122 municipalities

in Manitoba, Canada. To highlight the heterogeneity, we also list the summary of correlation

coefficients of the most important weather indices selected in Section 3.2.4 in Table 3.3, which

summarizes the correlations of yields in 122 municipalities and the “key” weather indices.

Take “Tmax Oct” as an example, we can see that the maximum correlation coefficient

between the yield and Tmax Oct is 0.46, while the minimum is -0.45. This means that this

weather index may have positive impact on some municipalities while it may have negative

impact on others. This geographical heterogeneity indicates that the traditional pricing

method for crop reinsurance may fail to consider the spatial differences in the reinsurer’s risk

portfolio, therefore a new reinsurance pricing framework should be considered. In the next

subsection, a new credibility estimator that integrates weather information and considers

the geographical heterogeneity is proposed.

Figure 3.5: Crop Yields for 122 Municipalities in Manitoba, Canada (1996-2011).
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3.3.2 New Credibility Estimator

Let us asssume that there are d risk categories, and let i.i.d random variable Θi describes

the ith risk category, i = 1, . . . , d. In practice, the risk category can be referred to as

different geographical regions, different insurance or reinsurance companies, etc. Conditional

on Θi = θi, let random vector Y (θi), I(θi), L(θi) denote the crop yield, indemnity, and liability

in risk category i, respectively. We further assume Y (θi) follows a model with drift term and

random term:

Y (θi) = µY (θi) + σY (θi)εi, (3.5)

where εi is a standardized random variable with mean zero and variance 1. This is a quite

general model since both µY (θi) and σY (θi) can be functions of time, risk categories, or other

exogenous variable such as weather.

Hachemeister and Kahn (1975) formulate a credibility regression model as a generalization

of the traditional Bühlmann-Straub model (Bühlmann and Straub, 1970; Bühlmann, 1997;

Bühlmann and Gisler, 2005), in which the loss data is assumed to follow a multiple regression

model and the regression coefficients are credibility adjusted. To be more specific, the classic

regression credibility estimator of µY (θi), denoted as µCY (consider a single year hereafter),

Table 3.3: Summary of Correlation Coefficients of important Weather Indices. Important
statistics are summarized in this table, including the mean (E(ρ)), median, standard devia-
tion (

√
Var(ρ)), maximum correlations (ρmax), and minimum correlations (ρmin).

Index ρmin ρmax E(ρ) median(ρ)
√

Var(ρ)

Tmax Oct -0.45 0.46 -0.11 -0.12 0.14

Tmin -0.64 0.62 -0.44 -0.49 0.16

PRELavg May -0.76 0.46 -0.54 -0.59 0.16

PREHmax Sep -0.37 0.66 0.39 0.42 0.15

NGDL1min Oct -0.67 0.57 -0.46 -0.49 0.17

NGDL1min -0.64 0.62 -0.44 -0.49 0.16

DGDL2avg Sep -0.75 0.24 -0.50 -0.51 0.16

DGDL1min Oct -0.65 0.59 -0.47 -0.51 0.16

DGDL1min -0.64 0.61 -0.45 -0.50 0.16

DGDH1max Jul -0.74 0.38 -0.38 -0.40 0.17
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can be expressed as

µ̂CY = WC
i [ACi β

C(θi) + (I− ACi )βC0 ], (3.6)

where WC
i is a 1×p design matrix for risk category i, and βY (θi) is p×1 vector of regression

coefficients. The other parameters are defined as

βY0 = E(βC(θi)),

σ2
Y = E(σ2

Y (θi)),

ΣY
i = σ2

Y

(
(W Y

i )′W Y
i

)−1
,

ΓYi = Cov
(
βC(θi), (β

C(θi))
′),

AYi = ΓYi (ΓYi + ΣY
i )−1.

An important concern about the credibility regression model is the model risk, where the

basic assumption that the loss random variable follows the regression model needs to be

carefully justified. With this in mind, we consider another arbitrary random variable Z(θi)

by assuming that it can be fully specified by the following regression model so that there is

no model risk:

Z(θi) = µZ(θi) = Wiβ(θi) + σZ(θi)ε. (3.7)

where Wi is a 1 × p design matrix, and β(θi) is p × 1 vector of regression coefficients. We

further assume that Z(θi) is related to Y (θi) through the correlation coefficients defined as

ρY Z =
Cov(µY (θi)µZ(θi))√

V ar(µY (θi))V ar(µZ(θi))
.

Let Z = (Zij)n×d be an observation of Z(θi) in year j, i = 1, 2, . . . , d, j = 1, 2, . . . , n. We

know that the credibility estimator of Y (θi) based on observations Z is defined according to

(see, for example Bühlmann and Gisler, 2005):

µ̂Y (θi) = E
(
µY (θ)|L(1, Z)

)
,

= E

(
Proj

(
µY (θ)|L(1, Z, µZ(θi))

)
|L(1, Z)

))
, (3.8)

where L(1, X1, . . . , Xn) denotes the linear space spanned by 1, X1, . . . , Xn. Since L(1, Z) ⊂
L(1, Z, µZ(θi)), and %

(
L(1, µZ(θi))

)
= %

(
L(1, Z, µZ(θi))

)
(%(X) denotes the related σ-field
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generated by random variable X), therefore, by defining

µ̃Y (θi) = E

(
µY (θi)|L(1, Z, µZ(θi)))

)
= E

(
µY (θi)|L(1, µZ(θi)))

)
,

we can express µ̃Y (θi) as a linear combination of µZ(θi), namely,

µ̃Y (θi) = a+ bµZ(θi).

Thus, it needs to satisfy the normal equations (see Bühlmann and Gisler, 2005; Corolary

3.17)

E(µ̃Y (θi)) = a+ bE(µZ(θi)) = E(µY (θi)),

Cov(µ̃Y (θi), µZ(θi)) = bV ar(µZ(θi)) = Cov(µY (θi), µZ(θi)).

Solving the above normal equations yields

a = E(µY (θi))− bE(µZ(θi)),

b =
Cov(µY (θi), µZ(θi)

V ar(θZ(θi))
.

To proceed, it is useful to introduce the following simpler notation:

µY = E(µY (θi)), τY =
√
V ar(µY (θi)), τZ =

√
V ar(µZ(θi)),

σ2
Z = E(σ2

Z(θi)), Mi = σ2
Z(W T

i Wi)
−1, β0 = E(β(θi)),

Ai = Γi(Γi +Mi)
−1, µZ = E(µZ(θi)) = E(Wiβ(θi)),

Γi = Cov
(
β(θi), β

T (θi)
)
, τY Z = Cov(µY (θi), µZ(θi)).

Given the regression credibility estimator of Z(θi), we can derive the new forecasting esti-
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mator µ̂NY as,

µ̂NY = bµCZ + a,

= µY −
τY Z
τ 2
Z

µZ +
τY Z
τ 2
Z

Wi

(
Aiβ(θi) + (I− Ai)β0

)
= µY +

τY Z
τ 2
Z

(
WiAi(β(θi)− β0))

)
,

= µY + ρY Z
τY
τZ

(
WiAi(β(θi)− β0))

)
. (3.9)

The above result is important in the introduction of an auxiliary variable Z(θi) with the true

model known, which is related to Y (θi) using the correlation coefficients between Y (θi) and

Z(θi). In this way, µ̂NY can be adjusted to reduce the risk of model misspecification. This

idea was first proposed by Vylder in 1976 (Vylder, 1976a;b) and has been applied in health

insurance for adjusting large claims. A closer investigation of the expression of equation (3.9)

shows that when the correlation of Y (θi) and Z(θi) is high, namely, |ρY Z | is close to 1, the

estimator reduces to the classical regression credibility estimator µCY . On the other hand, if

the true model for Y (θi) is far away from the specified regression model, |ρY Z | will be small,

and less weight will be allocated to the regression term.

Additionally, the newly proposed forecasting estimator µ̂NY has desirable statistical property

of unbiaseness. We also have the following proposition asserting that the new estimator is

more efficient in the sense of a smaller mean quadratic loss.

Proposition 3.3.1. When λ = ρY Z
τY
τZ
∈ [0, 1], the quadratic loss of the estimator µ̂NY defined

in equation (3.9) is no greater than that of µ̂CY defined in equation (3.6). In other words,

E
(
µ̂NY − µY (θi)

)2 ≤ E
(
µ̂CY − µY (θi)

)2
. (3.10)

Proof. Details are provided in Appendix 3A.1.

Table 3.4 summarizes the forecasting results of the new credibility estimator µ̂NY . We compare

the forecasting results with the SPCAR, which is shown to have the best out-of-sample

forecasting ability, and the classical regression credibility estimator. The second column

in Table 3.4 shows the forecasting results for the SPCAR, the third column is for classical

regression credibility estimator, which is denoted as “RegCred”, and the last column shows

the results for the new credibility estimator, denoted as “NewCred”. We can see that from

both in-sample and out-of-sample points of view, the new credibility estimator proposed in

this chapter has better forecasting abilities, largely due to the fact that the new credibility
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estimator adjusts the model risk by using parameter ρY Z .

Table 3.4: Summary of Credibility Forecasting Results. Important statistics are summa-
rized in this table including the mean, median, standard deviation (SD), and maximum er-
rors (Max).“RegCred” represents traditional regression credibility approach and “NewCred”
represents the new proposed credibility estimator.

In-Sample Errors (MSE)

Statistic SPCAR RegCred NewCred

Mean 0.0142 0.0182 0.0075

Median 0.0075 0.0074 0.0058

SD 0.0368 0.0379 0.0158

Max 0.3804 0.4194 0.3754

Out-of-Sample Errors (Loo-CVMSE)

Statistic SPCAR RegCred NewCred

Mean 0.0342 0.0456 0.0250

Median 0.0158 0.0186 0.0129

SD 0.0845 0.0582 0.0133

Max 0.8467 0.6218 0.4057

3.3.3 Reinsurance Pricing Formula

Agriculture insurance and reinsurance ratemaking procedures are commonly based on a

random variable called the loss cost ratio (LCR). This ratio is also known as the Burning

Ratio in some literature, and is defined as the ratio of indemnities over liabilities in order to

normalize the loss exposures (Josephson et al., 2000; Schnapp et al., 2000).

To be more specific, the liability and indemnity for the ith risk category can be expressed

as:

L(θi) = c · E
(
µY (θi)

)
; (3.11)

I(θi) = max(0, L(θi)− Y (θi)), (3.12)

where c is the coverage level, which in practice is usually 65%, 75%, 85%, etc. We emphasize

that the indemnity and the liability are functions of crop yield, and hence a reliable crop yield

forecasting model plays a fundamental role in crop insurance and reinsurance ratemaking.

It follows from the definition of the indemnity and liability that the LCR in risk category i,
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X(θi), is defined as:

X(θi) =
I(θi)

L(θi)
=

max(0, L(θi)− Y (θi))

L(θi)
. (3.13)

While theoretically there are various designs for the reinsurance coverage, the excess of loss

(XoL) reinsurance policy is the most common. In addition, XoL reinsurance policy is found

to be optimal (Tan et al., 2011) reinsurance design, including for agricultural reinsurance

(Porth et al., 2013). For these reasons, this chapter will focus on the XoL reinsurance policy.

An XoL with a A × B structure implies that the insurer cedes the losses in the LCR layer

above B, up to a limit of A. More explicitly, the loss random variable of the reinsurer for

risk category i, π(θi), is given by

π(θi) = min(A,max(0, X(θi)−B)). (3.14)

The pure net premium of the reinsurer is then the expectation of the corresponding loss

random variable; i.e.

π̂N(θi) = E(π(θi)) = E(min(A,max(0, X(θi)−B))). (3.15)

In practice, insurance policies are typically priced using some premium principle which takes

into consideration the inherent risk, as well as additional expenses such as administration

charges, etc. For an extensive list of premium principles, see Young (2004). In this chapter,

we consider two of the most popular premium principles known as the expectation premium

principle (denoted as π̂E(θi)) and the standard deviation principle (denoted as π̂SD(θi)):

π̂E(θi) = E(π(θi))(1 + η1); (3.16)

π̂SD(θi) = E(π(θi)) + η2

√
V ar(π(θi)). (3.17)

where η1 and η2 are the respective loading coefficients. Proposition 3.3.2 provides reinsurance

pricing formulas for the two premium principles. Not only do the closed form formulas

facilitate agricultural reinsurance pricing, it may also assist the reinsurance companies make

scientific weather management strategies.

Proposition 3.3.2. Let µ = E
(
µY (θi)

)
, σ2 = V ar

(
µY (θi)

)
, and further assume that in

Equation (3.5), ε, is normally distributed. Let K1 = c(1−B), K2 = c(1−A−B), Φ(·) and φ(·)
be the c.d.f and p.d.f. of the normal distribution, respectively. Then the reinsurance premium

for the XoL reinsurance policy (A×B), with coverage level c under the net premium principle,
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the expectation premium principle, and the standard deviation principle, respectively, are

π̂N(θi) =

(
σ

cµ

)
[φ

(
(K1 − 1)µ

σ

)
+

(
(K1 − 1)µ

σ

)
Φ

(
(K1 − 1)µ

σ

)
− φ

(
(K2 − 1)µ

σ

)
−
(

(K2 − 1)µ

σ

)
Φ

(
(K2 − 1)µ

σ

)
], (3.18)

:= M1, (3.19)

π̂E(θi) = M1(1 + η1); (3.20)

π̂SD(θi) = M1 + η2

√
M2 − (M1)2, (3.21)

where

M2 :=

(
σ

cµ

)2{
[

(
(K1 − 1)µ

σ

)2

+ 1]Φ

(
(K1 − 1)µ

σ

)
+

(
(K1 − 1)µ

σ

)
φ

(
(K1 − 1)µ

σ

)
+ [

(
(K2 − 1)µ

σ

)2

− 2

(
(K1 − 1)µ

σ

)(
(K2 − 1)µ

σ

)
− 1]Φ

(
(K2 − 1)µ

σ

)
+

(
(K2 − 1)µ

σ
− 2

(K1 − 1)µ

σ

)
φ

(
(K2 − 1)µ

σ

)}
, (3.22)

Proof. Details are provided in Appendix 3A.2.

3.4 Conclusion Remarks

Weather risks are cited to be one of the major risks that are unmanaged and threatening the

success of agricultural reinsurance business. Faced with new challenges, such as tightening

markets, weather sensitive industries such as reinsurers with specialized agricultural business

units must look to improve their weather risk modeling and management platforms. Based

on the crop yield forecasting and reinsurance pricing framework proposed in this chapter,

we conclude this study by proposing an Division to Integration weather risk management

procedure for agricultural reinsurers, including an exhaustive risk exposure analysis and a

strategic risk management method.

Division : Identifying Weather Risks

The Division step helps to identify the critical weather risk variables, as well as the cor-

responding impact of these variables on incomes, revenues, margins, and profits. The crop

yield forecasting framework developed in the previous sections of this chapter can be used

to achieve these objectives for reinsurers.
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For example, the model selection algorithms proposed in Section 3.2.4, are able to effectively

identify important weather indices, while the analytical pricing formulas in Section 3.3 fa-

cilitate the sensitivity analysis of the impact of important weather indices. Let us recall the

selected important weather indices in Section 3.2.3, Figure 3.4. Some indices indicate extreme

events (e.g., Tmin Oct describes the lowest temperature in October). Some indices are av-

erage measures (e.g., PRELavg May calculates the average PREL during May and provides

information about the average precipitation level). Some indices count extreme days (e.g.,

DGDH1cot Jun counts the nonzero days during June for DGDH and indicates the number

of days that the crops can grow). Identifying these important weather variables is critical for

developing sound weather risk management strategies. Also recall that the reinsurance pre-

mium is defined as a function of weather indices, π(W) = π(W1, . . . ,Wp) : Rp 7→ R, where

W is a p-dimensional weather index. The gradient vector of π(W) is expressed as:

∇π(W) = (
∂π

∂W1

, . . . ,
∂π

∂Wp

)′.

Then it follows from the first order Taylor expansion at an arbitrary point W0 that

π(W) = π(W0) +∇π(W)|W=W0(W −W0).

Under the above linear approximation, the change in premium, as triggered by the weather

indexes, is proportional to the gradient vector ∇π(W). Consequently, the gradient vector is

a measure of the sensitivity of premium with respect to weather indices.

Integration : Managing Weather Risks

Through detailed measurement of the “key” weather variables in the division step, the rein-

surance companies can help control extreme weather risks and proceed to the integration

step, which aims at risk/return optimization and value creation (Ingram, 2009). The inte-

gration step seeks to develop a comprehensive platform to sustainably interpret and control

all risks on some comparable basis for higher level decision making. With a wealth of re-

search in the devision step, the reinsurers have the expertise to provide tailored programs

for different weather-sensitive parts of the risk portfolio. For example, Figure 3.6 shows

the relationship of the weather risk sensitivities with the reinsurance premiums. Note that

this analysis is based on the entire risk portfolio in Manitoba and hence the strategic man-

agement approaches will be promoted at a macro level. We observe that lower reinsurance

premiums are more sensitive to the weather risks and this observation applies to all three

types of weather indices, extreme events, average measures and extreme days. This sug-

gests that the reinsurance companies require adequate capital budgeting to fulfill proposed
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(a) Expectation premium principle.
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(b) Standard deviation premium principle.

Figure 3.6: Relationships of weather sensitivities to reinsurance premiums based on two
premium principles. Results for three weather indices, Tmin Oct, PRELavg May and
DGDH1cot Jun, are displayed.

risk management objectives which can be achieved by carefully selecting appropriate risk

loadings.

The ultimate objective of the Division to Integration procedure is to improve the reinsurance

firm value. Taking into consideration all critical weather risk factors of the corporation, the

risk managers will make high level strategic balance between risk and return, achieving value

creation for the company. Based on the informative and exhaustive “division to integration”

analysis, agricultural reinsurance companies will construct a comprehensive protection for

the total risk portfolio with diversified retention level and coverage limit level for each risk

and achieve an optimal and self-interactive risk management framework.

In summary, this chapter provides a new crop yield forecasting model, which is able to provide

better in-sample and out-of-sample forecasting results, throughout the integration of weather

and geographical correlated regions. A closed form pricing formula for reinsurance policy is

provided, based on a newly proposed forecasting estimator. In the empirical analysis, a new

crop mix restatement algorithm is shown to restate the farming program over the historical

experience to the current level, and dimension reduction and model selection algorithms are

proposed to select the best design matrix in crop yield forecasting. Finally a Division to

Integration procedure is provided for agricultural reinsurers to manage weather risks.
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3A Appendix: Proofs

3A.1 Proof of Proposition 3.3.1

Let us start the proof by defining

QLN = E
(
µ̂NY − µY (θi)

)2

QLC = E
(
µ̂CY − µY (θi)

)2
,

then,

QLN = E
(
µY − µY (θi) + λ(µ̂CY − µZ)

)2

= E
(
µ̂CY − µY (θi) + λ(µ̂CY − µZ) + (µY − µ̂CY )

)2

= E
(
µ̂CY − µY (θi)

)2
+ λ2E

(
µ̂CY − µZ

)2

+E
(
µY − µ̂CY

)2
+ 2λE

(
µ̂CY − µY (θi)

)(
µ̂CY − µZ

)
+2λE

(
µ̂CY − µZ

)(
µY − µ̂CY

)
+ 2E

(
µ̂CY − µY (θi)

)(
µY − µ̂CY

)
Note that E(µ̂CY ) = E

[
E(µ̂CY |θi)

]
= E(µZ(θi)) = µZ , hence,

E
(
µ̂CY − µZ

)2
= V ar

(
µ̂CY
)

E
(
µY − µ̂CY

)2
= V ar

(
µ̂CY
)

+ (µY − µZ)2

also,

2λ

(
E
(
µ̂CY − µY (θi)

)
(µ̂CY − µZ) + E(µ̂CY − µZ)(µY − µ̂CY )

)
= 2λE

(
µ̂YC − µZ

)(
µY − µY (θi)

)
= 2λE

((
µY − µY (θi)

)
E
(
µ̂CY − µZ |θi

))
= 0,

and,

E
(
µ̂CY − µY (θi)

)(
µY − µ̂CY

)
= E

(
µY (θi)− µY

)(
µ̂CY − µY

)
+ E

(
µY − µ̂CY

)(
µ̂CY − µY

)
= −E

(
µ̂CY − µY

)2

= −V ar
(
µ̂CY
)
− (µY − µZ)2.
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Therefore, the Quadratic loss of estimator µ̂NY can be expressed as:

QLN = QLC − (1− λ2)V ar
(
µ̂CY
)
− (µY − µZ)2.

Namely, if λ = ρY Z
σY
σZ
∈ [0, 1], we have QLN < QLC , and relation 3.10 holds.

3A.2 Proof of Proposition 3.3.2

Since

π(θi) = min(A,max(0, X(θ1)−B));

= max(X(θi)−B, 0)−max(X(θi)− (A+B), 0),

where X(θi) is defined as Equation 3.13. Therefore,

π(θi) =
1

L(θi)
[max(L(θi)(1−B)− Y (θi), 0)−max(L(θi)(1− (A+B))− Y (θi), 0)]

= max(1−B − Y (θi)

L(θi)
, 0)−max(1− (A+B)− Y (θi)

L(θi)
, 0)

In general, for a random variable Y ∼ N(µ, σ), we have the following values:

E(1[Y <H]) = Φ

(
H − µ
σ

)
;

E(Y 1[Y <H]) = µΦ

(
H − µ
σ

)
− σφ

(
H − µ
σ

)
;

E(Y 21[Y <H]) = (σ2 + µ2)Φ

(
H − µ
σ

)
− σ(H + µ)φ

(
H − µ
σ

)
;

E((H − Y )21[Y <H]) = [(H − µ)2 + σ2]Φ

(
H − µ
σ

)
+ σ(H − σ)φ

(
H − µ
σ

)
;

E((H1 − Y )(H2 − Y )1[Y <H2]) = [(H1 − µ)(H2 − µ) + σ2]Φ

(
H2 − µ
σ

)
+ σ(H1 − µ)φ

(
H2 − µ
σ

)
,

where 1A is indicator function for event A, H,H1, H2 are constants and H1 > H2.
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Therefore,

E(π(θi)) = (1−B)E

(
1

[
Y (θi)

L(θi)
<1−B]

)
− E

(
Y (θi)

L(θi)
1

[
Y (θi)

L(θi)
<1−B]

)
− (1− A−B)E

(
1

[
Y (θi)

L(θi)
<1−A−B]

)
− E

(
Y (θi)

L(θi)
1

[
Y (θi)

L(θi)
<1−A−B]

)
;

=

{
σ

cµ
φ

(
(K1 − 1)µ

σ

)
− 1−K1

c
Φ

(
(K1 − 1)µ

σ

)}
−

{
σ

cµ
φ

(
(K2 − 1)µ

σ

)
− 1−K2

c
Φ

(
(K2 − 1)µ

σ

)}
,

which is exactly equation 3.18. Meanwhile,

E[(π(θi))
2] = E

(
(1−B − Y (θi)

L(θi)
)21

[
Y (θi)

L(θi)
<1−B]

)
+ E

(
(1− A−B − Y (θi)

L(θi)
)21

[
Y (θi)

L(θi)
<1−A−B]

)
− 2E

(
(1−B − Y (θi)

L(θi)
)(1− A−B − Y (θi)

L(θi)
)1

[
Y (θi)

L(θi)
<1−A−B]

)
,

=

(
σ

cµ

)2

{[
(

(K1 − 1)µ

σ

)2

+ 1]Φ

(
(K1 − 1)µ

σ

)
+

(
(K1 − 1)µ

σ

)
φ

(
(K1 − 1)µ

σ

)
+ [

(
(K2 − 1)µ

σ

)2

− 2

(
(K1 − 1)µ

σ

)(
(K2 − 1)µ

σ

)
− 1]Φ

(
(K2 − 1)µ

σ

)
+

(
(K2 − 1)µ

σ
− 2

(K1 − 1)µ

σ

)
φ

(
(K2 − 1)µ

σ

)
},

Denote:

M1 =

(
σ

cµ

)
[φ

(
(K1 − 1)µ

σ

)
+

(
(K1 − 1)µ

σ

)
Φ

(
(K1 − 1)µ

σ

)
− φ

(
(K2 − 1)µ

σ

)
−
(

(K2 − 1)µ

σ

)
Φ

(
(K2 − 1)µ

σ

)
],

M2 =

(
σ

cµ

)2

{[
(

(K1 − 1)µ

σ

)2

+ 1]Φ

(
(K1 − 1)µ

σ

)
+

(
(K1 − 1)µ

σ

)
φ

(
(K1 − 1)µ

σ

)
+ [

(
(K2 − 1)µ

σ

)2

− 2

(
(K1 − 1)µ

σ

)(
(K2 − 1)µ

σ

)
− 1]Φ

(
(K2 − 1)µ

σ

)
+

(
(K2 − 1)µ

σ
− 2

(K1 − 1)µ

σ

)
φ

(
(K2 − 1)µ

σ

)
},

then, V ar(π(θi)) = M2 − (M1)2, and equation 3.21 holds obviously.

70



Chapter 4

A Copula-based Model for Spatial

Dependence & Aggregation in

Weather Risk Hedging

4.1 Introduction

Weather risk, described as the operational and financial variabilities caused by adverse me-

teorological conditions, is a major environmental issue and a key economic factor. Possible

climate change also brings concerns of more frequent and severe extreme natural hazards over

larger areas and affecting more people (Hellmuth et al., 2009; IPCC, 2007). The agriculture

sector is one of the most exposed industries to weather related risks, with some estimates

stating that adverse weather may be responsible for at least 70% of agricultural loss, includ-

ing crop and livestock production (USDA, 2014). A major challenge facing the agricultural

sector is that weather risk is systematic and undiversifiable in the sense that it is outside the

control of human management, and at times weather risk can be widespread and spatially

correlated, impacting many farms within a region (Porth et al., 2014a). Therefore, weather

risk will not be eliminated by pooling (Doherty and Dionne, 1993), and must be managed

through various risk transfer techniques. Agricultural insurance schemes have played an im-

portant role in helping to stabilize a producer’s income by minimizing the economic effects

caused by adverse weather events.

The main objective of this chapter is to develop and compare different weather risk hedging

strategies for agricultural insurers and reinsurers. This topic is of great importance since

hedging weather risk effectively is critical for the long-term sustainability of the agricultural
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sector. The Property & Casualty (P & C) insurance sector is highly focused on managing

catastrophic losses due to disasters compared to those insurance dealing with life coverages

(Dong et al., 1996; Kleindorfer et al., 2012; Priest, 1996). Further, agricultural insurers and

reinsurers bear higher loss ratios compared to other lines of business in the P&C sector

(Woodard and Garcia, 2008b). Moreover, agricultural insurers may face additional exposure

to weather risk due to the increase of climate variability and uncertainty. As such, managing

weather risks with financial instruments such as weather derivatives has emerged, and over

the past decades has shown more success. While most of the weather derivative (WD) market

transactions are tailor-made in the Over the Counter (OTC) market, the organized markets

are becoming more successful and many types of WDs are traded at the Chicago Mercantile

Exchange (CME).

To help manage the insurers exposure to losses, reinsurance is often an important component

of the risk management strategy. A study from Qatar Re shows that almost 80% of the global

downside risk for agricultural insurers are reinsured (Schneider and Roth, 2013). In Canada,

provincial crop insurance companies can choose to participate in a unique Federal-Provincial

Reinsurance Fund and/or purchase reinsurance from the private market. Similarly, in the

US the Standard Reinsurance Agreement (SRA) and private reinsurance provide significant

risk transfer, helping insurers manage extreme events (i.e., low frequency-high severity). In

general, the various large international agricultural reinsurance companies are high aggre-

gators of risks, and are therefore particularly exposed to catastrophic events. Kunreuther

et al. (1993) study how uncertainty affects the decisions of actuaries, insurers and reinsurers

and suggest improving risk assessment and creating new risk-sharing arrangements to ad-

dress the issues related to uncertainty involving natural and technological hazard. As such,

agricultural reinsurers also require advanced methods to manage the systemic part of their

risk exposures (Turvey et al., 1988).

In some cases hedging weather risks with financial instruments may be advantageous over

traditional reinsurance, in terms of potential reduced cost, and improved market efficiency.

For example, financial instruments do not require loss checking and adjusting, thereby saving

administration costs. Further, financial weather instruments may reduce information asym-

metry, including adverse selection and moral hazard, which was previously mentioned as a

classical crop (re)insurance challenge (Goodwin, 2001; Quiggen et al., 1994). This is because

indemnities of financial weather instruments are triggered based on a specific weather event

rather than actual farm loss, which is a more transparent approach that is not subject to ma-

nipulation, etc. Furthermore, from a statistical inference viewpoint the modeling and pricing

of financial weather instruments may be more appealing compared to reinsurance pricing,

since large volumes of reliable and extensive weather data records are typically available in
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daily frequency. In contrast, reinsurance for agriculture is usually faced with the challenge

of shortness of data, where the loss experience can be very short and at times may suffer

from missing data (Porth et al., 2014b). Therefore, weather hedging via financial engineering

tools may be an ideal complement to agricultural reinsurance.

The second objective of this chapter is to refine the statistical weather variable modeling.

This is an essential, yet, challenging task for financial weather instrument pricing and hedg-

ing, owing to the nonstationarity, seasonality and multidimensionality of the weather data

(Dischel and Barrieu, 2002), as well as the incomplete nature of the market (Alexandridis and

Zapranis, 2013). Unfortunately, existing stochastic weather models are typically designed

for modeling only a single region (with the exception of the work by Okhrin et al. (2013a)).

However, failure to consider the dependence structure for weather variable modeling and

weather derivative pricing may lead to substantial basis risk in the resulting hedging strat-

egy if the spatial correlations are not taken into account. Therefore, in this chapter, we use a

wavelet technique that allows detailed analysis of the nonstationarity and seasonality of the

data, together with a non-Gaussian general hyperbolic (GH) distribution family to capture

the heavy tail property of the data. We model the dependence structure of the weather data

with the copula approach.

The construction and estimation of high dimensional copulas are challenging problems, yet

these are critical and essential for risk management (Kole et al., 2007; Patton, 2009). There-

fore, investigating the theoretical properties and empirical applications of high dimensional

modelling with copulas have attracted much attentions in the literature. Elliptical copula

models are in adequate to capture the nonlinear dependence in the financial returns (Em-

brechts et al., 2002). In addition, the number of parameters in the elliptical copula grows

quadratically with dimension. Vine copula also known as pair copula construction (PCC),

facilitate extensions from bivariate copulas to higher dimensions through conditioning using

a handy graphical tool for labelling high-dimensional dependence structures1. Although ex-

tremely flexible, there are still some outstanding issues still need to be adequately addressed

for vine copula models. These include testing the simplifying assumptions and overcoming

the potential problems due to these assumptions, selecting appropriate bivariate models from

the huge number of potential candidates, designing spatial vines and goodness-of-fit tests

for high dimensional vine copulas, etc.

Archimedean copulas (AC), though have a very small number of parameters irrespective of

dimensions, suffer from the exchangeable structures, which makes AC inadequate to model

1A detailed introduction to vine copulas can be found in Aas et al. (2009), and the estimation of vine
copulas is introduced in Kurowicka and Cooke (2006) for Gaussian vines and Aas et al. (2009) for non-
Gaussian vines.
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complex dependence structures (Weiß and Scheffer, 2015). In an attempt to overcome the ex-

changeability issue of the Archimedean copula, the hierarchical Archimedean copula (HAC)

has been proposed (Joe, 1997). This approach partially overcomes the exchangeability by

“nesting” two or more Archimedean copulas with appropriate groupings. Therefore, HACs

provide a more flexible framework by allowing different distribution properties between each

subgroup with a relatively small set of parameters. Despite their advantages, there are com-

patible conditions which the generators need to be satisfied to ensure that the resulting HAC

yields a valid multivariate distribution. These conditions, however, can be difficult to verify

and hence also restrict its practical applications.

In this chapter, we advocate Lévy subordinated hierarchical Archimedean copulas (LSHAC)

for the modelling of the geographical dependence of weather risks. Hering et al. (2010) in-

troduce the construction and simulation of LSHACs, while Mai and Scherer (2012) discuss

LSHAC within a h-extendibly copula framework. LSHAC model is general enough to com-

prise all HACs whose generators are compatible (Hering et al., 2010). In other words, by

inducing dependence within each group with Lévy subordinators, the hard-to-check compat-

ible conditions are conveniently overcome, leading to more flexible and tractable parametric

models that have huge application potential to benefit empirical modelling.

Despite the advantages, LSHAC models have never been employed in empirical application,

mostly because of the difficulties in on determining the hierarchy structure as well as esti-

mating the parameters for LSHACs. The recursive multi-stage maximum likelihood (ML)

estimation procedure proposed by Okhrin et al. (2013b) is efficient for HACs with the same

generator functions such as Gumbel generator or Clayton generator (hereafter, we call these

models All-GM-HACs or All-CL-HACs in short), but will be computationally demanding

for general HAC models with different generators. Moreover, the technique by Okhrin et al.

(2013b) provides a sub-optimal structure as well as ML estimators because of its recursive

nature, and also LSHAC models are constructed in such a way that the parameters in the

outer layer in the hierarchy should not be estimated later than the inner layer parameters,

meaning the bottom-up recursive procedure by Okhrin et al. (2013b) is not applicable for

LSHACs. Motivated by these observations, this chapter attempts to fill up these gaps by

providing a comprehensive study of some of the outstanding issues in the construction and

estimation of LSHACs. In doing so, we explicitly construct a multi-level LSHAC in a fully

general setting by developing a notation system, an integral representation (Hofert, 2008;

Joe, 1997; Marshall and Olkin, 1988; McNeil, 2008; Whelan, 2004) and the corresponding

sampling algorithm. In addition, we propose to exploit the hierarchical clustering analysis

to efficiently determine the grouping structure of LSHACs with three dissimilarity metrics,

Euclidean, Kendall’s τ and τ -Euclidean. We also use a simulation study to indicate that
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τ -Euclidean metric provides the best grouping reliability on correctly identifying the true

structure. Once the optimal structure of LSHAC is identified, an augmented inference for

margin (AIFM) method is used to estimate the remaining LSHAC parameters.

Empirical results show that the proposed LSHAC model has better estimation performance

compared to the classical Gaussian copula and traditional hierarchical Archimedean copulas

(HAC). To the best of our knowledge, this is the first time that the LSHAC is employed

for modeling the geographical dependence of weather events. Finally, we propose a pricing

framework based on the conditional Esscher transform method (Bühlmann et al., 1996; Ger-

ber and Shiu, 1994) to address the challenge of instrument pricing in an incomplete market.

The empirical analysis of this paper uses temperature data from eight provinces in Canada.

The focus is on temperature, rather than precipitation because previous studies argue that

temperature has a higher correlation with crop production compared to precipitation, and

is better suited for crop insurance hedging (Lobell and Burke, 2008; Woodard and Garcia,

2008a). Using the refined statistical modeling of the weather data proposed in this paper,

four hedging strategies are developed and compared. In assessing the effectiveness of the var-

ious hedging strategies, we are interested in the following three problems: (1) the necessity of

hedging weather risk; (2) the importance of the assumed underlying dependence structure;

(3) the geographical aggregation effect on hedging effectiveness. The results indicate that

hedging weather risk is an important risk management approach to stabilize cash flows and

reduce losses. The importance of capturing the appropriate dependence structure of weather

risk is also highlighted, and the LSHAC is shown to improve the hedging performance. More-

over, the results reveal significant geographical aggregation benefits in weather risk hedging,

which means that more effective hedging may be achieved as the spatial aggregation level

increases.

Main Contributions in This Chapter

This chapter contributes the literature from the following perspectives. First, we we explicitly

constructs a multi-level LSHAC in a fully general setting by developing a notation system,

an integral representation and the corresponding sampling algorithm (Section 4.2.2). In

addition, we propose to exploit the hierarchical clustering analysis to efficiently determine the

grouping structure of LSHACs with a new proposed dissimilarity metrics, τ -Euclidean metric

(Equation (4.17)). We compare the efficiency of this new metric with Euclidean and Kendall’s

τ metric. We also use a simulation study to indicate that τ -Euclidean metric provides the

best grouping reliability on correctly identifying the true structure (Section 4.3). Moreover,

an augmented inference for margin (AIFM) estimating procedure (Section 4.2.3) is proposed

to estimate the remaining LSHAC parameters. This chapter refines the statistical modeling
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of Canadian temperature processes with wavelet analysis and LSHAC model. Finally, this

chapter proposes and compares different weather risk hedging strategies for agricultural

insurers and reinsurers.

The remainder of this paper proceeds as follows. Section 4.2 introduces the methodology

of this paper. In particular, a general framework of LSHAC together with some theoretical

results are developed. After presenting the theoretical model, a three-stage estimation proce-

dure by an AIFM method for LSHACs is proposed. In particular, a new dissimilarity metric

based on the hierarchical clustering analysis is used to determine the optimal structure of a

LSHAC. Section 4.3 provides a simulation study to investigate the efficiency of the proposed

grouping method. In the empirical study in Section 4.4, using Canadian daily temperature

data. Section 4.5 discusses different hedging strategies for the insurers to hedge the weather

risk. The paper concludes with future research directions in Section 4.6. Appendix of the

paper collects the proofs.

4.2 Methodology

4.2.1 Hierarchical Archimedean Copulas (HACs)

A function C : [0, 1]d → [0, 1], C(u1, u2, . . . , ud) = ψ
(
ψ−1(u1)+, ..., ψ−1(ud)

)
defines a d-

dimensional Archimedean copula (AC) if ψ ∈ G = {ψ : [0,∞) → [0, 1] |ψlimu→∞(u) =

0, ψ(0) = 1, (−1)k
dk

duk
ψ(u) ≥ 0, k ∈ N} (Kimberling, 1974; Nelsen, 2006). Functions in

the class of G is known as completely monotonic (c.m.). ψ is called the generator of the

corresponding Archimedean copula and ψ−1 is its general inverse, defined by ψ−1(u) = inf{t :

ψ(t) ≤ u}. According to the Bernstein’s Theorem (Feller, 2008), the class of c.m. functions

coincides with the class of Laplace-Stieltjes transforms on [0,∞). Hence, copulas defined by

the c.m. generators are also known as the Laplace-Stieltjes transform AC (LT-AC).

The advantage of the AC family is that it simplifies the modelling of dependence in high

dimension with only one parameter. The drawback of such simplification is that the result-

ing distribution leads to the exchangeability phenomenon; i.e. the distribution of random

variables (u1, u2, ..., ud) is invariant under permutation. To address this problem, the Hi-

erarchical Archimedean Copula (HAC) models have been proposed by nesting the random

variables into a hierarchy. HAC was first introduced by Joe (1997), and discussed within a

more general framework by Savu and Trede (2010). In that paper, the authors derived re-

cursive formulas for general HACs and provided simulation techniques. Sampling algorithms
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were also discussed by Whelan (2004), McNeil (2008) and Hofert (2012).

The HAC model is best illustrated with an example. Assuming that a six-dimensional HAC

is given by

C(u1, . . . , u6) = Cψ0( Cψ1,1( Cψ2,1(u1, u2), u3 ), Cψ1,2( Cψ2,2(u4, u5), u6 ) ). (4.1)

Note that (4.1) is a three-level HAC with five generators. The copula Cψ0 with generator ψ0

is known as the outer copula while copulas Cψ1,1 and Cψ1,2 (Cψ2,1 and Cψ2,2), with generators

ψ1,1 and ψ1,2 (ψ2,1 and ψ2,2), are the inner copulas at level 1 (level 2), respectively. Thus,

{u1, u2} ({u4, u5}) are first nested by Cψ2,1 (Cψ2,2), grouped together with u3 (u6) under

Cψ1,1 (Cψ1,2), and hence Cψ0 . Besides that ψ0 and ψi,j (i, j = 1, 2) should be c.m., to ensure

(4.1) is a valid copula, the conditions ψ0 and ψi,j ∈ G and (ψ−1
0 ◦ ψi,j)′ and (ψ−1

1,k ◦ ψ2,k)
′ ∈

G (i, j, k = 1, 2), called compatible conditions, need to be satisfied. Note that the notation

“◦” denotes function composition. The compatible conditions cause the construction of

HACs more challenging. If all the generators of a HAC are from the same AC family (e.g.

Gumbel family), these conditions are not too difficult to verify, since in most cases the

copula parameters should be monotonic from top to deeper levels (Embrechts et al., 2003;

Okhrin et al., 2013b). However, if HACs are constructed from mixed generators involving

different families, one has to verify the compatible conditions on a case-by-case basis (Hofert,

2012; Savu and Trede, 2010). For this reason most empirical studies on HAC models have

focused on either All-GM-HACs or All-CL-HACs (Choroś-Tomczyk et al., 2013; Okhrin

et al., 2013a;b; Savu and Trede, 2010). Hering et al. (2010) circumvented this hard-to-check

compatible conditions by constructing two-level HACs via Lévy subordinators (LSHAC) and

provided a stochastic representation using a probability construction. Relying on the fact

that Lévy subordinators are stable under (independent) subordination, Mai and Scherer

(2012) considered an h-extendible framework in which LSHAC is one of the special cases.

They provided a stochastic representation of three-level LSHAC models and explained that

that the stochastic representation can be extended to higher levels in an iterative way.

4.2.2 General Framework of the LSHAC

Hering et al. (2010) delicately constructed c.m. generators for HAC with Lévy subordinators.

In this subsection, we extend the model in Hering et al. (2010) by introducing a multi-level

LSHAC in a fully general setting with a comprehensive notation system, stochastic repre-

sentation and sampling algorithm. Specifically, let {St : 0 ≤ t ≤ T} be a Lévy subordinator,

i.e., a stochastically continuous non-decreasing Lévy process, which has zero start, stationary
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and independent increments (See Tankov, 2004; Proposition 3.10). The Laplace transform

of St satisfies the following equation:

E(e−ωSt) = exp (−tΨ(ω)) , ∀ω > 0, (4.2)

where the non-decreasing function Ψ : [0,∞) → [0,∞) is called the Laplace exponent of

the Lévy subordinator. As shown in Theorem 2.1 in Hering et al. (2010), given a c.m.

generator ψ0, the generator defined by ψ0 ◦Ψ is a c.m. generator and satisfies the compatible

conditions. Mai and Scherer (2012) provided a three-level LSHAC and demonstrated that

this construction via Lévy subordinators could be iterated to higher-level LSHACs. Indeed,

it is theoretically demanding to construct a LSHAC in a fully general setting. To this end, we

provide a notation system and an integral representation (Hofert, 2008; Joe, 1997; Marshall

and Olkin, 1988; McNeil, 2008; Whelan, 2004) of a general multi-level LSHAC.

We now describe a general L-level LSHAC exhibited in Figure 4.1 by introducing the fol-

lowing notation:

• For l = 0, 1, . . . , L, let l denote the index level of LSHAC and Jl denote the number of

copulas at level l.

• At level 0:

– There is only one copula, denoted by C
(0)
0,1 , and hence by construction J0 = 1.

This is also known as the outer copula.

– There is a random time variable V
(0)

0,1 at which the Lévy subordinators for all

subsequent groups are evaluated. We denote its corresponding cumulative distri-

bution function (c.d.f.) as G
(0)
0,1(v) and its LT-AC generator as ψ

(0)
0,1.

• At level l:

– For l = 1, . . . , L and j = 1, . . . , Jl−1, let D
(l)
j be the number of copulas at level

l “emanating” from the j-th copula in the previous level l − 1. Note that the

following condition must hold:

Jl−1∑
j=1

D
(l)
j = Jl, l = 1, . . . , L, (4.3)

and JL = d.

– Let C
(l)
j,k with generator ψ

(l)
j,k be the k-th copula in the j-th cluster with size D

(l)
j .

It is emanated from the j-th copula at level l− 1, for l = 1, . . . , L, j = 1, . . . , Jl−1,
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and k = 1, . . . , D
(l)
j ;

– The m-th adjacent copula emanated from C
(l)
j,k at level l + 1 is denoted as C

(l+1)
s,m ,

where s = 1, . . . , Jl, is the position of C
(l+1)
s,m , satisfying

s =

( j−1∑
q=1

D(l)
q

)
I{j>1} + k, (4.4)

where I{·} is the indicator function.

• At level L :

– We partition (u1, . . . , ud) into JL−1 groups and define

C
(L)
j,k = us, s = 1, . . . , JL, j = 1, . . . , JL−1, k = 1, . . . , D

(L)
j , (4.5)

where s satisfies (4.4).

• Additional definitions:

– Let X(t) denote a Lévy subordinator evaluated at time t, with corresponding c.d.f

G̃(x; t) and Laplace exponent Ψ̃.

– Define function F
(l)
sl−1,jl

(u) as

F
(l)
sl−1,jl

(u) = exp(−ψ(l)−1
sl−1,jl

(u)). (4.6)

Given the above definition of F
(l)
sl−1,jl

, the following function(
F

(l)
sl−1,jl

(u)
)v

= exp
(
− vψ(l)−1

sl−1,jl
(u)
)

(4.7)

is a valid c.d.f. for any positive v (Marshall and Olkin, 1988). Let Ψ
(l)
sl−1,jl

= ψ
(l−1)−1
sl−2,jl−1

◦ψ(l)
sl−1,jl

be the Laplace exponent of a Lévy subordinator, X
(l)
sl−1,jl

, with c.d.f. G
(l)
sl−1,jl

, then the

generator given by

ψ̃
(l)
sl−1,jl

(u; v) =
(
F

(l−1)
sl−2,jl−1

(
ψ

(l)
sl−1,jl

(u)
))v

= exp
(
− vψ(l−1)−1

sl−2,jl−1
◦ ψ(l)

sl−1,jl
(u)
)

= exp
(
− vΨ

(l)
sl−1,jl

(u)
)
, (4.8)

is also a c.m. LT-AC generator, where l = 2, . . . , L− 1 (Feller, 2008; Nelsen, 2006).

Give the above notation and definitions, Theorem 4.2.1 provides the integral representation
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of the multi-level LSHAC depicted in Figure 4.1 in terms of Laplace transform.

C
(0)
0,1 (ψ

(0)
0,1)

C
(1)
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...
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(L)
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(L)
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. . .C
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. . . C
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1,D
(1)
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JL−1,D
(L)
JL−1

Figure 4.1: General Framework of a LSHAC Model

Theorem 4.2.1. Given the structure of a LSHAC in Figure 4.1, the copula function,

C
(
u1, . . . , ud

)
, can be constructed as

∫ ∞
0

D
(1)
J0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

∫ ∞
0

· · ·
∫ ∞

0

D
(L−1)
sL−2∏

jL−1=1

∫ ∞
0

D
(L)
sL−1∏
jL=1

(
F

(L−1)
sL−2,jL−1

(C
(L)
sL−1,jL

)

)v(L−1)
sL−2,jL−1(

dG
)(L−1)

jL−1
,(4.9)

where (
dG
)(0)

j0
= dG

(0)
0,1(v

(0)
0,1),

and (
dG
)(l)

jl
= dG̃

(l)
sl−1,jl

(v
(l)
sl−1,jl

; v
(l−1)
sl−2,jl−1

) . . . dG̃
(l)
s0,j1

(v
(1)
s0,j1

; v
(0)
0,1)dG

(0)
0,1(v

(0)
0,1).

Proof. Proof of Theorem 4.2.1 is provided in 4A.1

It follows from above theorem that the following corollary provides an expression of inner

generators.

Corollary 4.2.1. At level l, where 1 ≤ l ≤ L, the jl-th copula generator in position sl−1:
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ψ
(l)
sl−1,jl

, can be expressed as

ψ
(l)
sl−1,jl

(u) = ψ
(0)
0,1

l⊙
i=1

Ψ̃
(i)
si−1,ji

(u), (4.10)

where
⊙n

k=1 fk := f1 ◦ . . . ◦ fn, and ψ
(l)
sl−1,jl

is c.m..

Corollary 4.2.1 states that at each level of a LSHAC, the generator can be constructed from

composing an outer AC generator and a sequence of Laplace exponents of Lévy subordina-

tors. Tables 4.1 and 4.2 list, respectively, examples of c.m. Archimedean generators and

Lévy subordinators.2 These AC generators and Lévy subordinators are used in the simu-

lation study in Section 4.3 and the empirical analysis in Section 4.4. In addition, the tail

dependences of each Archimedean copula are listed in Table 4.1. In contrast to Gaussian

copula with no tail dependence, the LSHAC models can provide both upper tail dependence

(e.g., GM family) and lower tail dependence (e.g., CL family). For weather risk, where the

extreme events usually happen asymmetrically, LSHAC may have the potential advantage

to achieve more flexibility in modelling the tail dependence of the data.

Table 4.1: Archimedean Copula (AC) generators. CL: Clayton family, GM: Gumbel family.

Family ψ(u) C(u1, . . . , ud) λl λu Parameter

GM ψGM (u) = exp
(
− x 1

θ

)
exp
(
− (
∑d
i−1(−logui))

1
θ

)
0 2− 2

1
θ θ ≥ 1

CL ψCL(u) = (1 + u)−
1
θ

(
1 +

∑d
i=1(u−θi − 1)

)− 1
θ 2−

1
θ 0 θ > 0

Table 4.2: Lévy Subordinators. G: Gamma process, GM: Stable process, IG: the Inverse
Gaussian process.

Subordinator Ψ(u) Parameters

G ΨG = alog
(
1 + u

b

)
a > 0, b > 0

GM ΨGM = ua 0 < a < 1

IG ΨIG = a
√

2u+ b2 − ab a > 0, b > 0

It follows immediately from Corollary 4.2.1 that the All-GM-HAC model, which is the most

commonly used HAC in the empirical analysis, is a special case of LSHAC. This property is

expressed in Corollary 4.2.2 below, and it is also mentioned with a three level HAC example

in Mai and Scherer (2012).

2In the expressions of Laplace exponents, a and b are parameters of the corresponding Lévy measures
(see Tankov (2004) for more information). In addition, Stable process is denoted as GM because it is the
distribution of the Gumbel family.
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Corollary 4.2.2. For an All-GM-HAC, the l-th level copula generator ψ(l)(u) can be ex-

pressed as (l ≥ 1):

ψ(l)(u) = ψ(0)

l−1⊙
k=1

Ψ̃(k)(u) = exp
(
− u

∏l−1
k=1

1
θk

)
.

From the parameterization in Table 4.1 and Table 4.2, ψ(0) represents a GM generator with

θ = θ0, θ0 ≥ 1, and Ψ̃(k) denotes the k-th GM subordinator with a = 1/θk, θk ≥ 1.

Random samples from a LSHAC can be simulated relatively easily by recognizing that(
F

(L−1)
sL−2,jL−1

(C
(L)
sL−1,jL

)
)v(L−1)
sL−2,jL−1 , where jL = 1, . . . , D

(L)
sL−1 , is a valid c.d.f. for any positive

v
(L−1)
sL−2,jL−1

(see (4.7), (4.8) and Theorem 4.2.1). More specifically, if YsL−1,jL is a uniform

random variable on (0, 1), then given V
(L−1)
sL−2,jL−1

with c.d.f. G̃
(L−1)
sL−2,jL−1

(x; t), a random sample

of C
(L)
sL−1,jL

can be obtained via inverse transform as

C
(L)
sL−1,jL

= ψ
(L−1)
sL−2,jL−1

(
−

log(YsL−1,jL)

V
(L−1)
sL−2,jL−1

)
. (4.11)

In summary, for a multi-level LSHAC with a general structure displayed in Figure 4.1, the

random samples can be simulated by a sequential procedure formally described in Algo-

rithm 4.2.1.

Algorithm 4.2.1 (Sampling an L-level LSHAC).

Step 1: Generate a random variable V
(0)

0,1 with c.d.f. G
(0)
0,1(x).

Step 2: For l = 1, . . . , L − 1, sl−1 = 1, . . . , Jl−1, jl = 1, . . . , D
(l)
sl−1, generate a random

variable V
(l)
sl−1,jl

with c.d.f. G̃
(l)
sl−1,jl

(x;V
(l−1)
sl−2,jl−1

).

Step 3: Generate a series of independent uniform random variables: YsL−1,jL , jL = 1, · · · , D(L)
sL−1.

Step 4: Return ŪsL−1,jL = ψ
(L−1)
sL−2,jL−1

(
−

log(YsL−1,jL)

V
(L−1)
sL−2,jL−1

)
= ψ

(0)
0,1

L−1⊙
i=1

Ψ̃
(i)
si−1,ji

(
−

log(YsL−1,jL)

V
(L−1)
sL−2,jL−1

)
.

Then (Ū1,1, · · · , Ū (L)
sL−1,jL

, · · · , Ū (L)
sL−1,JL

) is a sample from copula C(u1, · · · , ud).

Note that when L = 2 and d = J , Algorithm 4.2.1 reduces to the sampling algorithm of a

two-level LSHAC proposed by Hering et al. (2010).
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4.2.3 Structure and Estimation of a LSHAC

In this section, we discuss an estimation procedure for LSHACs, with a special focus on

the determination of the hierarchical structure. Given a d-dimensional sample data with

T observations, xT = (x1, . . . ,xd)T×d, the log-likelihood function of the sample is defined

by

L(θ) =
d∑
j=1

T∑
t=1

logfj
(
xt,j|Ft−1;θM

)
+

T∑
t=1

log
(
c
(
F1(xt,1), . . . , Fd(xt,d)|Ft−1;θ

))
(4.12)

where θ = (θM ,θC ,S) is the parameter vector to be estimated, including the marginal

parameter set, θM , the copula parameter set, θC , and the hierarchy structure S; Ft is the

information available up to time t; c is the corresponding copula density; Fj is the marginal

c.d.f. of xj with density fj, where j = 1, . . . , d.

The classical IFM estimation for copulas, in which θM and θC is calibrated in a two-step

estimation procedure, is widely used and yields asymptotically efficient estimates (Joe, 1997;

Patton, 2006). However, the ML estimation can only be employed to an HAC with a known

hierarchical structure. Consequently, we propose an augmented IFM (AIFM) method with a

three-stage procedure, which additionally determines the hierarchical structure of a LSHAC

by using hierarchical clustering method. Our estimation procedure comprises of three stages:

the first stage focuses on marginal distribution, second stage determines the optimal struc-

ture of a LSHAC, and finally by combining results from the first two stages, the third stage

globally obtains the required ML estimators. We now describe these stages in greater de-

tails.

In the first stage we obtain ML estimator of each margin’s parameter set, θMj , j = 1, . . . , d

from

θ̂Mj = argmax
θMj

T∑
t=1

logfj
(
xt,j|Ft−1;θMj

)
, (4.13)

and produce the pseudo-sample u = (u1, . . . ,ud)
′ by probability transformation with the

estimated marginal distribution functions, namely

u = (u1, . . . ,ud)
′ = (F̂1(x1; θ̂M1 ), . . . , F̂d(xd; θ̂

M
d ))′, (4.14)

where F̂1(x1; θ̂M1 ), . . . , F̂d(xd; θ̂
M
d ) represent the estimates of the marginal probability trans-

formations.
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Let S be the true hierarchical structure that underlies the LSHAC. Given that S is unknown

in practice, the objective of the second stage is to determine Ŝ that closely resemblances S.

As noted earlier, determining the optimal structure of a LSHAC is one of the key issues that

has largely been ignored in the literature on LSHACs, despite its critical role on dependence

modelling. Here we propose to determine the optimal structure of a LSHAC by resorting

to the hierarchical clustering analysis (Jr., 1963; Székely and Rizzo, 2005; Zhang et al.,

2013).

The hierarchical clustering procedure entails choosing an appropriate metric of dissimilarity

between each pair of the pseudo sample, (u1, . . . ,ud)
′, obtained from the first estimation

stage, where uj = (u1,j, . . . , uT,j)
′ and j = 1, . . . , d. The dissimilarity metric is used to

construct a symmetric proximity matrix ζ = [di,j], where di,j denotes a proximity index be-

tween the i-th and the j-th variables. Larger di,j represents a higher level of dissimilarity. In

hierarchical clustering, the Euclidean metric is one of the most commonly used dissimilarity

metrics, where di,j is given by

dEi,j =

√√√√ T∑
t=1

(ut,i − ut,j)2. (4.15)

For the grouping of HAC models, Okhrin et al. (2013b) determine an All-GM-HAC and

an All-CL-HAC by grouping the two variables with the largest Kendall’s τ at each level of

binary hierarchy. Along this line, the second metric is to employ the association between

the variables defined as

dτi,j = 1− τi,j, (4.16)

where τi,j is a dependence association (e.g., Kendall’s τ) between ui and uj. This metric

is widely used in the partition of HAC models. However, the drawback of this approach is

that it fails to take into consideration the dissimilarity resulting from the distance, i.e., dEi,j,

between variables. It is possible, for example, that dτi,j is high but dEi,j is low. To alleviate

this problem, we advocate a new dissimilarity metric as follows:

dτ-Ei,j =
dEi,j

1 + τi,j
. (4.17)

We refer this metric as τ -adjusted-Euclidean (hereafter, τ -Euclidean) metric. Note that

the proposed new metric integrates both Euclidean metric and Kendall’s τ metric in such

a way that a lower dEi,j and a higher dependence (i.e., a larger τi,j) lead to a smaller dτ-Ei,j .
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As a result, the τ -Euclidean metric has the capability of simultaneously reflecting both

the dissimilarity resulting from the Euclidean distance and the association between each

variables. The simulation experiment to be conducted in Section 4.3 further confirms the

superiority of the τ -Euclidean metric in correctly identifying the structure of LSHACs.

Given the calibrated margins F̂1(x1; θ̂M1 ), . . . , F̂d(xd; θ̂
M
d ) obtained in the first stage and the

estimated hierarchical structure, Ŝ, from the second stage, the final stage is to determine

the ML estimator of copula parameter set θC according to

θ̂C = argmax
θC

T∑
t=1

log
(
c
(
F1(xt,1), . . . , Fd(xt,d)|Ft−1; θ̂M ,θC , Ŝ

))
. (4.18)

The resulting AIFM estimator is denoted by θ̂ = (θ̂M , θ̂C , Ŝ), with an optimal hierarchical

structure, Ŝ, obtained from hierarchical clustering analysis.

It is important to distinguish our proposed estimation procedure from that of Okhrin et al.

(2013b). The key difference is that Okhrin et al. (2013b) uses a multistage ML method

to determine the structure of LSHACs as well as the copula parameters. The recursive

nature of their proposed procedure implies that the final estimator of their LSHAC is sub-

optimal. Furthermore, their recursive procedure applies only to generators with specified

“separable” property (such as All-GM-HAC, see also Corollary 4.2.2, and All-CL-HAC).

Consequently, this severely limits the application of their proposed strategy. In contrast,

our proposed estimation procedure requires us to first determine the optimal structure of a

LSHAC before we estimate the necessary parameters. The optimal structure is determined

using the hierarchical clustering analysis involving some commonly used metrics as well as

our proposed metric.

4.3 Simulation Analysis

In Section 4.2.3, we propose using the hierarchical clustering analysis for determining the

optimal structure of LSHAC. In particular, three plausible grouping metrics based on Eu-

clidean, Kendall’s τ , and τ -Euclidean are described. Resorting to a simulation study, this

subsection provides an in-depth analysis on the relative efficiency of these hierarchical clus-

tering metrics. In our benchmark example, we assume a LSHAC model with the following

known structure S

C(u1, · · · , u6) = C
(0)
0,1(C

(1)
1,1(C

(2)
2,1(C

(3)
1,1(u1, u2), u3), u4), C

(1)
1,2(u5, u6)), (4.19)
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and generators

ψ
(0)
0,1(u) = ψGM(u) = exp(−u1/θ), (4.20)

ψ
(1)
1,1(u) = ψGM◦G(u) = exp

(
−
(
a1,1log(1 +

u

b1,1

)
) 1
θ
)
, (4.21)

ψ
(1)
1,2(u) = ψGM◦IG(u) = exp

(
−
(
a1,2

√
2u+ b2

1,2 − a1,2b1,2

) 1
θ
)
, (4.22)

ψ
(2)
2,1(u) = ψGM◦G◦IG(u) = exp

(
−
(
a1,1log(1 +

a2,1

b1,1

(
√

2u+ b2
2,1 − b2,1))

) 1
θ
)
, (4.23)

ψ
(3)
1,1(u) = ψGM◦G◦IG◦GM(u)

= exp
(
−
(
a1,1log(1 +

a2,1

b1,1

(
√

2exp(−u1/θ3,1) + b2
2,1 − b2,1))

) 1
θ
)
. (4.24)

Here the subscripts denote the outer generator and the Lévy subordinators used to construct

the corresponding inner generators. For example, ψGM◦G◦IG◦GM(u) is an inner generator

constructed by a GM outer generator and three sequential Lévy subordinators, namely, G,

IG, and GM. This structure provides a four-level, six-dimensional copula with five gener-

ators. The parameter set of this LSHAC model is θC = (θ, a11, b11, a12, b12, a21, b21, θ31) =

(1.3, 1.3, 10, 0.3, 9, 0.08, 9, 0.5). Using Algorithm 4.2.1, Figure 4.2 depicts the pairwise scatter

plots of a simulated sample from this LSHAC.

Recall that the objective of the simulation study is to evaluate the efficiency of the vari-

ous proximity metrics at identifying correctly the underlying structure of our benchmark

LSHAC. This can be accomplished by first simulating samples from the LSHAC model,

then estimating the structure of the simulated copula using the corresponding hierarchical

clustering metric, and finally comparing to the true underlying structure. The step-by-step

procedure is given as follows:

Step 1: Sample N sets of copula parameters θ̃Cn , n = 1, . . . , N , from uniform distributions

with range [θC(1− π), θC(1 + π)].

Step 2: For each n-th set of copula parameters, where n = 1, . . . , N , sample M inde-

pendent batches each of sample size T from a LSHAC with parameters θ̃Cn and

structure S.

Step 3: For each m-th simulated batch of sample size T , where m = 1, . . . ,M , estimate

Ŝn,m using the hierarchical clustering analysis.

Step 4: Calculate the reliability ratio, ρn, which measures the relative proportion of the

estimated structures Ŝn,m,m = 1, . . . ,M, that correctly identify the true structure
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Figure 4.2: Scatter plots of a generated six-dimensional LSHAC with its structure ex-
pressed in (4.19) to (4.24) and parameter set θC = (θ, a11, b11, a12, b12, a21, b21, θ31) =
(1.3, 1.3, 10, 0.3, 9, 0.08, 9, 0.5).
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S; i.e.,

ρn =
M∑
m=1

IŜn,m=S

M
, n = 1, . . . , N,

where IŜn,m=S is an indicator variable with value equals to one if the estimated

structure coincides with the true structure, zero otherwise.

In our simulation experiments, we assume N = 1000, M = 100, and T = 1000. The hierar-

chical clustering analysis based on three proximity metrics is used to optimally determining

the structures, Ŝn,m, where n = 1, . . . , N and m = 1, . . . ,M . We also use π = 10%, 15%,

and 20% to reflect the parameter uncertainty in the LSHAC. The mean and variance of the

reliability ratio (ρn) over 1000 independent replications are summarized in Table 4.3.

Table 4.3: Mean and Variance of the Reliability Ratio (ρn)

Proximity Measure Statistics π = 10% π = 15% π = 20%

Euclidean
Mean 0.6536 0.6492 0.6426

Variance 0.0108 0.0207 0.0318

Kendall’s τ
Mean 0.7480 0.7425 0.7331

Variance 0.0077 0.0148 0.0234

τ-Euclidean
Mean 0.8384 0.8323 0.8241

Variance 0.0052 0.0099 0.0159

We draw the following conclusions based on the results in Table 4.3:

• The results clearly highlight the superiority of our newly proposed τ -Euclidean metric.

This metric is able to correctly identify the true structure with at least 82% chance.

Not only that this metric yields the highest reliability ratio, its variability (as measured

by its sample variance) is also the smallest. While the Euclidean metric is the worst

among the three metrics, it is comforting to know that it still has a success rate of at

least 64%.

• As the degree of parameter uncertainty increases (i.e. by increasing π from 10% to

20%), the reliability ratio deteriorates slightly with increasing variability. This phe-

nomenon is consistent for all three proximity metrics. It is, however, worth pointing

out that while the performance declines with increasing parameter uncertainty, the

changes are quite small and hence this provides some indication of the robustness of

the underlying proximity metric at identifying the true structure of the underlying

LSHAC.
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Figure 4.3 plots the empirical cumulative distribution functions (eCDF) of the reliability

ratios for the three proximity metrics for π = 10%, 15%, and 20%. It is also of interest to

note that the eCDF of the reliability ratios based on τ -Euclidean metric lies under those of

the other two metrics. According to the definition of stochastic ordering (See, for example,

Hadar and Russell, 1969), the results of τ -Euclidean metric is first order stochastic dominance

over the Euclidean and the association metric. As a result, τ -Euclidean metric achieves

advantages of both Euclidean metric and dependence metric.

4.4 Empirical Analysis of Weather Risk in Canada

In this section, we analyze the systemic weather risk in Canada following the methodology

in Section 4.2. First, the dataset used in this study is described in Section 4.4.1. Next, the

marginal dynamics and spatial dependence of the data are analyzed in Section 4.4.2 and

Section 4.4.3, respectively.

The general modeling framework of the empirical analysis in this chapter is summarized

in Figure 4.4. The multivariate daily average temperature (DAT) model is constructed

involving two steps. First, the marginal dynamic for each region i is analyzed with a wavelet

technique from both time and frequency scales in order to obtain thorough information about

the marginal dynamics of weather processes. Second, the dependence structure between

different regions are constructed with the new proposed LSHAC model, which is shown

to have better estimation performance compared to the traditional Gaussian copula and

hierarchical Archimedean copula (HAC) models. Next, the weather index data are simulated

according to the estimated joint distribution, and the corresponding weather derivatives

are priced under a risk neutral measure. Finally, various weather hedging strategies are

developed and the most efficient approach is identified.

4.4.1 Data

The data used in this paper includes the Adjusted and Homogenized Canadian Climate

(AHCC) data, obtained from Environment Canada covering the years from 2001 to 2011.

This dataset contains daily temperature series for eight provinces in Canada, including Al-

berta (AB), Saskatchewan (SK), British Columbia (BC), Manitoba (MB), Ontario (ON),

New Brunwick (NB), Nova Scotia (NS), and Quebec (QC). The geographical locations of

these provinces are pictured in Figure 4.5. These eight provinces were selected because they

contain 98.72% of the farms and 99.26% of the aggregate farm incomes in Canada, and
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Figure 4.3: Empirical Cumulative Distribution Functions (eCDF) of the reliability ratios
with π = 10%, 15%, and 20% under the three proximity metrics.
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Figure 4.4: Flow chart of the general modeling framework in Chapter 4.

include most agricultural insurance programs in Canada. In addition, there are six weather

derivative trading cities among these eight provinces, including Calgary (AB), Edmonton

(AB), Vancouver (BC), Toronto (ON), Montreal (QC), and Winnipeg (MB).

Map of Canada by Province

Figure 4.5: Map of Canada by provinces
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The descriptive statistics of the data are summarized in Table 4.4. The data displays obvi-

ous heavy tail properties, with the temperature series from all provinces showing negative

skewness, and most large kurtosis. In addition, extreme risks appear for several provinces,

such as AB, BC, NB, and QC, with the 1% quantile having temperature lower than -20
◦C. Moreover, the weather risk conditions are also found to vary in different regions. For

example, the lowest historical temperature is -36.75 ◦C in Quebec, while in Ontario it is -19.8
◦C. A good understanding of the heterogeneity of weather risks across provinces provides

an opportunity for insurers to diversify their risk portfolios and develop efficient hedging

strategies. As an example, the time series and histogram of historical temperature data for

Manitoba is displayed in Figure 4.6.

Table 4.4: Descriptive Statistics of Weather Data in Canada, including Alberta (AB),
Saskatchewan (SK), British Columbia (BC), Manitoba (MB), Ontario (ON), New Brunwick
(NB), Nova Scotia (NS), and Quebec (QC). The statistics include mean, standard deviation
(SD), skewness, kurtosis, and 5% and 1% left quantiles (Q0.05 and Q0.01). The temperatures
are recorded in ◦C.

AB BC MB NB NS ON QC SK

Mean -0.79 5.05 1.44 4.00 5.57 2.33 -0.49 -0.65

SD 6.07 5.16 13.81 9.10 7.39 8.57 6.07 8.56

Skewness -1.58 -1.42 -0.34 -0.38 -0.36 -0.91 -1.05 -1.17

Kurtosis 6.19 5.72 2.00 2.84 2.48 2.99 3.93 4.13

Q0.05 -13.77 -5.18 -22.73 -12.80 -7.40 -14.88 -12.83 -19.07

Q0.01 -22.13 -11.64 -27.72 -18.80 -12.50 -20.44 -18.16 -26.33

4.4.2 Marginal Dynamics with Wavelet Analysis

In order to describe the nonstationarity and seasonality nature of the temperature data,

many statistical models propose to decompose the DAT dynamic as follows (Alexandridis

and Zapranis, 2013; Okhrin et al., 2013a),

Yi(t) = Γi(t) + Πi(t) + Υi(t), (4.25)

where Yi(t),Γi(t),Πi(t), and Υi(t) are the DAT process, trend component, seasonality com-

ponent, and adjusted temperature (i.e., residual part) at time t in area i, i = 1, . . . , d,

respectively.
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Figure 4.6: Time series and histogram of daily temperature data for Manitoba (2001-2011).

93



In studying the Canadian DAT, however, we find although Equation (4.25) illustrates some

stylized general properties of daily temperature data, such as cyclical and seasonal trending,

it does not capture the distinctive characteristics of Canadian DAT, which includes low

temperatures that appear with higher frequency and more extreme values in the winter.

Therefore, we propose to add a “shock” term, i.e. ∆i(t), to emphasize this nature. Hence,

the DAT decomposition becomes:

Yi(t) = Γi(t) + ∆i(t) + Πi(t) + Υi(t) (4.26)

In order to justify the Γi(t),∆i(t), and Πi(t) parts and to determine the compositions of the

seasonal parts, wavelet analysis is performed. The wavelet transform decomposes certain

time series into a time-frequency space, providing detailed analysis of the variability in the

data. Power and Turvey (2010) apply wavelet analysis to study the long-range dependence

in the volatility of commodity futures prices. Alexandridis and Zapranis (2013) use wavelet

technique to study temperature process and price weather derivatives. A more thorough

introduction of wavelet analysis and its application can be found in Daubechies (1990),

Daubechies (1992), and Lau and Weng (1995). In general, a wavelet transform writes a

real-valued signal S(t) with respect to the complex-valued wavelet function ψ(t) as

S(a, b) =
1√
a

∫ ∞
−∞

ψ̃(
t− b
a

)S(t)dt, (4.27)

where function ψ̃(t) is the complex conjugate of the wavelet function ψ(t), and ψ(t) satisfies

the following two conditions: ∫ ∞
−∞
|ψ(t)|2dt < ∞, (4.28)

2π

∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω < ∞, (4.29)

where Ψ(ω) is the Fourier transform of ψ(t). There are different choices of wavelet functions

ψ(t), such as Haar wavelet, Meyer wavelet, Morlet wavelet, and Daubechies wavelet. Among

these wavelet functions, Daubechies 10 wavelets are the most commonly used discrete wavelet

transforms. Therefore, we use Daubechies 10 to decompose the Daily Average Temperature

(DAT) from each region i. The scaling function and wavelet of Daubechies 10 are dis-

played in Figure 4.7. According to Wavelet analysis, the trend term, Γi(t), shockterm,∆i(t)

and seasonality term, Πi(t) are modelled according to Equation (4.30), (4.31) and Equa-
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Figure 4.7: The scaling function and wavelet function for Daubechies 10 (The dotted line is
the scaling function and the solid line is the wavelet function)

tion (4.32).

Γi(t) = γ0 + γ1
t

365
(4.30)

∆i(t) = δ1IM1 + δ2IM2 + δ3IM3 + δ4IM11 + δ5IM12

+ δ6IM11−3||Ti(t)<Qt−1,0.05
+ δ7IM11−3||Ti(t)<Qt−1,0.01

(4.31)

Πi(t) =
K∑
k=1

ak sin

(
2π
(t− ψak
k · 365

))
+

S∑
s=1

bk cos

(
2π
(t− ψbs
s · 365

))

+
V∑
v=1

cv[1− cos

(
2π
(t− ψcv
v · 365

))
] (4.32)

First, for the trend term Γi(t) we observe significant upward linear trends in the temperature

series as represented by the parameter γ1 in Equation (4.30), and this is consistent with

previous work by Alexandridis and Zapranis (2013). Second, it is important to recognize

that extreme low temperatures are prevalent in Canada, and in many cases impact the

success of agricultural production. Therefore, it is critical to model the shock term ∆i(t).

The winter period temperature, from November to March, for each region i is carefully

studied and the extreme low temperatures are identified as a series of indicator functions IA,

which is equal to 1 when event A happens and equal to 0 otherwise. To be more specific, the
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shock term can be mathematically expressed in Equation (4.31), where IM1 (or analogously,

IM2 , IM3 , IM11 , IM12) is the indicator of the event for the time in January (or February, March,

November, December, respectively). IM11−3||Ti(t)<Qt−1,0.05
is the indicator for the event that

the temperatures during the winter period are lower than the 5% past year left quantile, and

IM11−3||Ti(t)<Qt−1,0.01
is for the 1% left quantile. Finally, we express the seasonality term Πi(t)

as Equation (4.32). In particular, in addition to the regular sinusoid functions, Πi(t) also

contains the quadratic terms of sinusoids. This indicates that long-term cycles and complex

periodic dynamics of temperature process are captured by the wavelet analysis.

The coefficients (γ0, γ1, δu, ak, bs, and cv), the phases (ψak , ψbs , and ψcv), and the optimal

orders (K,S, and V ) in Equation (4.30), (4.31), and (4.32), where u = 1, . . . , 7, k =

1, . . . , K, s = 1, . . . , S, and v = 1, . . . , V , are estimated by least squares and selected based

on the Bayesian information criterion (BIC). Maximum Likelihood (ML) method is used to

estimate the optimal orders (m,n, p, and q) and coefficients (ci, ωi, φi,j, θi,j, ηi,j, and ξi,j) in

the ARMA (m,n)-GARCH (p, q) model (Equation (4.33) to (4.35)), and the best distribution

for standard residuals zi(t) are determined based on BIC, where i = 1, . . . , 8.

The residual parts Υi(t) in Equation (4.26) are estimated with a heteroskedasticity model

with the general hyperbolic (GH) family, which has been shown to provide superior fit

for the empirical data in the temperature residual modeling (Alexandridis and Zapranis,

2013; Bellini, 2005; Benth and Benth, 2005). More specifically, the autoregressive moving

average-generalized autoregressive conditional heteroskedasticity (ARMA (m,n)-GARCH

(p, q)) models (Bollerslev, 1986; Engle, 1982) are estimated to analyze the time-varying cor-

relations of Υi(t). Further, the generalized hyperbolic (GH) distribution family (Barndorff-

Nielsen, 1997) is used to model the volatility in order to capture the heavy tail and leptokurtic

properties (Yang, 2011).

The ARMA (m,n)-GARCH (p, q) model with GH residuals are more specifically defined

by

Υi(t) = ci +
m∑
j=1

φi,jΥi(t− j) +
n∑
j=1

θi,jεi(t− j) + εi(t), (4.33)

εi(t) =
√
hi(t)zi(t), (4.34)

hi(t) = ωi +

p∑
j=1

ηi,jhi(t− j) +

q∑
j=1

ξi,jε
2
i (t− j). (4.35)

where Υi(t) is the residual part of the decomposed temperature series in the i-th province at

time t; εi(t), zi(t), and hi(t) are the residual, standard residual, and the conditional variance

96



Signal S(t) Low pass filter

High pass filter

Approximations

Details

Figure 4.8: Discrete wavelet transform (DWT) for the signal to produce approximation
coefficients and detail coefficients that contain information of the original signal

of the i-th province at time t, respectively; and ci, ωi, φi,j, θi,j, ηi,j, ξi,j are corresponding

parameters.

The standard residuals zi(t) are modelled with the General Hyperbolic (GH) family, with

the corresponding density function of GH(α, β, δ, γ, λ) law

fGH(x|α, β, δ, γ, λ) = eβ(x−λ)

(√
α2−β2

δ

)γ
√

2π

(
Kγ

(
δ
√
α2 − β2

))
Kγ−1/2

(
α
√
δ2 + (x− λ)2

)
(√

δ2+(x−λ)2

α

)1/2−γ , (4.36)

where Kγ is the modified Bessel function of the second kind, α, β, and γ are parameters

determining the shape of the GH distribution satisfying α > |β| ≥ 0 and γ ∈ R, δ is the

scale parameter, and λ is the shift parameter. The GH distribution becomes a hyperbolic

distribution when γ = 1, and Normal Inverse Gaussian (NIG) distribution when γ = −0.5.

The Student’s t distribution and Variance Gamma (VG) distribution are included within

the GH family as its limiting cases.

To illustrate, the wavelet decomposition of Manitoba is taken as an example. We perform

discrete wavelet transform (DWT) with Daubechies 10 wavelet at level 11 to the temper-

ature series from Manitoba. The outputs of the DWT provide the detail coefficients and

approximation coefficients at 11 levels containing information regarding the original tem-

perature series. The DWT procedure can be more clearly illustrated in Figure 4.8, and the

decomposition results are displayed in Figure 4.9 and Figure 4.10. A slight upward trend

in temperature process is observed as shown in the decomposed series, such as a11 and d11.

Canadian provinces tend to be more impacted by extreme low temperature during the winter

period, and this property is captured by the wavelet analysis, where the first five details (d1

to d5) show great turbulences during the winter. For the seasonality, we can observe a one

year period circle from a1 to a7 and d8 (i.e., the first seven approximations and the the eighth

detail). From the sixth detail (d6), we find a 0.5 year period circle. Additionally, a8, a9, and

d9 show a two year circle, while a10 and d10 display a circle with a period of four.
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Figure 4.9: Wavelet Analysis of Historical Temperature in Manitoba, 2001 to 2011 (Approx-
imations)

Figure 4.10: Wavelet Analysis of Historical Temperature in Manitoba, 2001 to 2011 (Details)
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The estimating results are listed in Table 4.5 to Table 4.7. Table 4.5 displays the estimating

results for the trend and shock parts. Positive trends (γ1 > 0) exist in the historical temper-

ature process of all eight provinces, indicating a statistically significant climate change effect.

The winter season shocks (∆i(t)) are significant at the 0.01 level for all provinces, except

NB. This implies that low temperature during the winter effects most Canadian provinces.

Shocks during January, for example, have a large negative effect on the time series of the

temperature in the provinces of AB, ON, QC, and SK. The extreme low temperature during

the winter season makes it important for crop insurance companies, who are usually weather

risk takers, to hedge their weather risks in order to stabilize their risk portfolios and generate

profits. Table 4.6 shows the estimating results for seasonality (Πi(t)). Based on the BIC,

seasonalities in AB, BC, MB, and ON are modelled with a summation of four cos2 terms,

while the provinces of NS, QC, and SK model their seasonalities with a summation of four

sin terms, and the seasonality in NB is modelled with a summation of four cos terms. This

shows that the temperature process from the province of NB contains longer expanded cy-

cles. Table 4.7 displays the estimating results for the ARMA(1,1)-GARCH(1,1) models with

the GH residuals. The optimal residual distribution for NB is Variance Gamma (VG), and

for the other seven provinces, the optimal marginal distribution for the residuals are Normal

Inverse Gaussian (NIG).
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Table 4.5: Estimating results for trends (Γi(t)) and shocks (∆i(t)) of temperature processed from eight provinces in Canada.
Values of t statistic are displayed in the brackets. “***” means significant at 0.01 level, “**” means significant at 0.05 level,
and “*” means significant at 0.1 level.

AB BC MB NB NS ON QC SK

Trend

γ0 -0.7882 5.2416 2.1918 2.5206 -2.7289 3.1544 -1.7258 -7.0516

(-25.5611)*** (283.2865)*** (54.3637)*** (1.0849) (-36.7273)*** (40.2966)*** (-31.1911)*** (-123.4392)***

γ1 0.0332 0.0054 0.1374 0.2219 0.1901 0.0925 0.2613 0.0856

(1.4884)** (28.6987)*** (154.1652)*** (0.4800) (41.7917)*** (25.8648)*** (43.3680)*** (64.7446)***

Shock

δ1
-7.2288 -5.4385 -5.5125 -2.5117 -5.0642 -9.0005 -7.6912 -8.9139

(-2.3393)*** (-75.5364)*** (-25.3525)*** (-0.5568) (-52.9220)*** (-13.4708)*** (-30.0510)*** (-88.5591)***

δ2
-5.6189 -2.8430 -5.3406 -2.2019 -3.1094 -7.9048 -7.2951 -7.3550

(-2.7215)*** (-48.4545)*** (-11.6197)*** (-1.0133) (-24.2533)*** (-4.8473)*** (-24.9135)*** (-65.9974)***

δ3
-3.0857 -1.1075 -2.8064 -0.9054 -0.0233 -4.1082 -5.9609 -4.5754

(-1.0642) (-38.4857)*** (-49.2319)*** (-1.8473)** (-23.1348)*** (-32.2007)*** (-22.9898)*** (-65.3638)***

δ4
4.4745 2.5838 -1.8516 4.1377 -2.0467 1.2974 2.6413 2.9775

(3.1169)*** (41.7153)*** (-38.4180)*** (0.4285) (-17.5830)*** (16.3835)*** (16.6558)*** (34.4551)***

δ5
6.6845 4.4799 -4.5805 4.8370 -0.6492 2.4828 5.1586 5.0942

(3.8455)*** (57.9552)*** (-30.3718)*** (1.5165)* (-31.9479)*** (7.8462)*** (46.8879)*** (54.0337)***

δ6
0.8292 0.6818 1.1110 0.0036 0.3245 1.3499 -0.0898 2.0812

(2.4616)*** (10.5084)*** (74.3215)*** (0.6418) (19.3349)*** (2.3137)*** (-8.1510)*** (21.2005)***

δ7
1.8020 0.6721 0.5774 0.3241 -0.3889 -0.7021 -0.1904 1.3706

(3.3684)*** (22.2028)*** (53.9478)*** (0.3171) (-7.3731)*** (-3.6020)*** (-5.9030)*** (23.1412)***
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Table 4.6: Estimating results for seasonality (Πi(t)) of temperature processed from eight provinces in Canada. Values of t
statistic are displayed in the brackets. “***” means significant at 0.01 level, “**” means significant at 0.05 level, and “*” means
significant at 0.1 level. a

AB BC MB NB NS ON QC SK

a1/b1/c1
-2.8574 -4.7873 -15.5948 -11.3118 8.2976 -7.6888 3.2052 7.5575

(-5.5152)*** (-84.3172)*** (-127.4434)*** (-12.5873)*** (275.9175)*** (-11.9757)*** (197.2147)*** (177.1714)***

a2/b2/c2
0.5178 -0.0196 0.8523 0.7481 -0.6810 0.6811 -0.8264 -0.6874

(3.5575)*** (-42.3831)*** (939.1281)*** (0.8365) (-37.1366)*** (8.2525)*** (-24.6348)*** (-38.1103)***

a3/b3/c3
-0.6067 -0.5487 0.3317 0.1669 -0.0929 -0.3330 -0.3576 0.2838

(-1.6267)* (-18.1991)*** (41.1471)*** (0.4725) (-126.0970)*** (-2.5213)*** (-131.3185)*** (68.5091)***

a4/b4/c4
-0.3559 -0.4216 0.8913 1.0131 0.6871 0.8956 -1.0711 -0.3970

(-3.7448)*** (-46.7319)*** (27.5787)*** (1.3156)* (50.5850)*** (14.2602)*** (-14.0708)*** (-68.1067)***

ψa1/ψb1/ψc1
-59.2484 -60.0032 -70.5054 16.8743 59.4274 -50.4186 11.8413 22.4791

(-1.4851)* (-144.2460)*** (-673.9152)*** (1.9613)** (295.4596)*** (-160.3534)*** (19.9947)*** (75.3143)***

ψa2
/ψb2/ψc2

-55.8884 9.0365 -202.8639 47.2855 81.8202 -139.0177 119.9941 73.8153

(-1.6387)* (62.1956)*** (-9.9053)*** (1.4091)* (45.9719)*** (-7.6449)*** (52.6440)*** (46.8854)***

ψa3
/ψb3/ψc3

-82.6372 -73.4053 234.1601 -154.9447 241.9686 233.5305 -124.4196 20.6872

(-3.1977)*** (-59.0252)*** (18.8922)*** (-0.9070) (41.0943)*** (2.2288)*** (-67.7938)*** (55.0413)***

ψa4/ψb4/ψc4
327.1032 342.5273 -177.0218 217.5468 -530.4357 -231.8575 117.6337 200.1544

(2.4239)*** (124.0579)*** (-184.7719)*** (0.7870) (-34.0278)*** (-8.2881)*** (36.2485)*** (126.5108)***

aOptimal models are ak(sin terms) for provinces NS, QC, and SK, bs(cos terms) for provinces NB, and ci(cos2 terms) for provinces AB, BC, MB,
and ON. (k, s, i = 1, 2, 3, 4)
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Table 4.7: Estimating results for residuals (Υi(t)) of temperature processed from eight provinces in Canada. Values of t
statistic are displayed in the brackets. “***” means significant at 0.01 level, “**” means significant at 0.05 level, and “*”
means significant at 0.1 level. 3

AB BC MB NB NS ON QC SK

c
0.4716 0.1049 0.1978 0.0141 0.2627 0.0972 0.2627 0.4364

(9.0714)*** (3.3002)*** (2.3683)*** (0.4236) (5.0305)*** (2.3231)** (5.9512)*** (6.6811)***

ω
0.2041 0.2253 0.2040 0.1593 -0.0402 0.0321 0.1423 0.1593

(9.2429)*** (124.0579)*** (8.1196)*** (5.2108)*** (-34.0278)*** (1.5995)* (4.6270)*** (6.6881)***

φ1
0.5754 0.1479 0.1552 0.2150 0.2354 0.0952 0.1491 0.2181

(5.1166)*** (3.3002)*** (2.6728)*** (2.3246)*** (5.0305)*** (2.2276)*** (2.7712)*** (1.9701)**

θ1
0.8712 0.9773 0.9834 0.6774 0.9783 0.9773 0.8741 0.9528

(79.9812)*** (254.6255)*** (281.2559)*** (33.3144)*** (247.5172)*** (239.6713)*** (80.1137)*** (6.6811)***

η1
0.6708 0.7428 0.8923 0.9112 0.8331 0.9013 0.8826 0.8653

(15.5867)*** (15.0908)*** (40.1683)*** (38.0292)*** (21.4820)*** (33.9433)*** (31.9240)*** (17.3746)***

ξ1
0.2644 0.1854 0.0944 0.0625 0.1221 0.0776 0.0884 0.0959

(6.6870)*** (5.0871)*** (5.0441)*** (4.4450)*** (4.5109)*** (4.1252)*** (4.5254)*** (2.9078)***

α
1.0964 0.9818 1.8781 2.4477 1.4350 1.7215 1.3112 1.2440

(16.1451)*** (17.1439)*** (10.1084)*** (13.4747)*** (13.3460)*** (11.6934)*** (14.2693)*** (15.8703)***

β
-0.1715 -0.1841 -0.2043 -0.0459 -0.1750 -0.3696 -0.1837 -0.3264

(-4.1894)*** (-5.0194)*** (-2.7459)*** (-0.5583) (-3.0475)*** (-5.0818)*** (-3.3527)*** (-6.0781)***

Distribution NIG NIG NIG VG NIG NIG NIG NIG
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4.4.3 Spatial Dependence

After removing the serial correlations from the DAT data and performing the GH probability

transformation according to the model in Section 4.4.2, the next step is to appropriately

model the joint distribution of the resulting pseudo sample, u = (u1, . . . , ud)
′. This is

a critical step because failing to capture an accurate spatial dependence structure of the

weather variables may lead to large basis risk in the resulting hedging strategies. In this

section, the spatial dependence of the temperature process of eight Canadian provinces are

modelled and analyzed with the LSHAC model. Following the modelling procedure and

notation system in Section 4.2.3, the resulting structure is displayed in Figure 4.11 and can

be described as follows:

• The structure emanates from the outer copula (C
(0)
0,1) at level 0.

• At level 1, the structure is classified into two subgroups.

– The first subgroup contains five provinces in the west and middle territories of

Canada (including BC, AB, SK, MB, and ON), and is nested together into the

inner copula C
(1)
1,1.

– The second subgroup contains three provinces in the east (including NB, NS and

QC), and is nested into C
(1)
1,2.

• At level 2, provinces from the west, middle and east parts of Canada are grouped in

to different subgroups.

– Western provinces (including BC, AB and SK) are nested together by C
(2)
1,1.

– Middle provinces (including MB and ON) are grouped together by C
(2)
1,2.

– Eastern provinces NB and NS are first nested together by C
(2)
2,1, and then grouped

into C
(1)
1,2 with QC.

• At level 3, AB and SK are nested together into the inner copula C
(3)
1,1.

We find that the hierarchal structure in Figure 4.11 resembles the geographical positioning

of the eight provinces as shown in Figure 4.5. For example, BC, AB and SK are three

neighbouring provinces in the western part of Canada, and are grouped together. The two

provinces in the middle of the Canadian territory, MB and ON, are in the same subgroup.

The three provinces in the eastern part of Canada, namely, QC, NB, and NS, are grouped

together into another subgroup. This hierarchical structure provides information about

weather risks in different geographical regions. In addition, this structure also indicates

associative relationships between different provinces. The Kendall’s τ matrix is displayed
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in Table 4.8. We can see that weather risks in regions within the same subgroup are more

associative compared to regions in other subgroups. This implies that it is important for

insurance companies to consider the dependence structure of the risk portfolio they hold in

order to develop targeted hedging strategies.

C
(0)
0,1

C
(1)
1,1

C
(2)
1,1

C
(3)
1,1

AB SK

BC

C
(2)
1,2

MB ON

C
(1)
1,2

C
(2)
2,1

NB NS

QC

Figure 4.11: Hierarchical structure of the temperature process for eight Canadian provinces

Table 4.8: Kendall’s τ of Temperature Data Between Each Provinces

AB BC MB NB ON NS QC SK

AB 1.00 0.51 0.25 0.27 0.30 0.35 0.43 0.46

BC 0.51 1.00 0.56 0.55 0.57 0.61 0.45 0.67

MB 0.25 0.56 1.00 0.65 0.52 0.65 0.36 0.70

NB 0.27 0.55 0.65 1.00 0.60 0.62 0.52 0.60

ON 0.30 0.57 0.52 0.60 1.00 0.68 0.44 0.55

NS 0.35 0.61 0.65 0.62 0.68 1.00 0.51 0.65

QC 0.43 0.45 0.36 0.52 0.44 0.51 1.00 0.46

SK 0.46 0.67 0.70 0.60 0.55 0.65 0.46 1.00

According to Theorem 2.1 in Hering et al. (2010), the copulas at each node can be constructed

by composing an outer copula to the Lévy subordinator. Therefore, the LSHAC are highly

flexible models with a large number of candidate models. For example, in the modeling of this

paper the outer copulas of the LSHAC are selected as a Gumbel copula (GM) or Clayton

copula (CL) as listed in Table 4.1. The Lévy subordinators are chosen from the three

processes listed in Table 4.2, including Gamma process (G), Stable process (GM) and the

Inverse Gaussian process (IG). As a consequence, to calibrate the eight dimensional LSHAC

model with seven AC generators in Figure 4.11, we have 2×36 = 1458 models to chose from.

Instead of going through all of the combinations, the estimation begins from the second level
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of the structure (i.e., start from estimating the optimal copulas of C
(2)
1,1,C

(2)
1,2,C

(2)
2,1, andC

(3)
1,1),

and the GM copula is found to provide the best fit. Therefore, the Lévy subordinators for

C
(2)
1,1,C

(2)
1,2,C

(2)
2,1, andC

(3)
1,1 are fixed as a GM, reducing the candidate model to 18. It is

important to emphasize that the GM and CL generators are selected for the outer copula

in order to model asymmetric tail dependence of the data. For example, conditional on

an extreme low temperature in Manitoba, the neighbouring province of Ontario is highly

probable to have a very low temperature too, indicating a lower tail dependence property.

Similarly, an upper tail dependence means that extreme high temperatures tend to appear

together for neighbouring provinces. In contrast to the Gaussian copula, which does not have

tail dependence, the GM copula has upper tail dependence and the CL copula has lower tail

dependence, as shown in the third and forth columns in Table 4.1. Therefore, the LSHAC

models potentially have the advantage of capturing the clusters of the extreme values in the

data.

The estimating results are displayed in Table 4.9. The first seven columns describe the

LSHAC model, including how to choose the Archimedean copulas at each node. The log-

likelihood function values (LLF), as well as the BIC values (BIC) for each model, and the

improvement in BIC of the LSHAC models compared to the Gaussian copula model (BIC

Imp.) are shown. In particular, a positive sign indicates better performance compared to the

Gaussian copula, while a negative sign indicates worse performance. The last column in the

table shows the number of parameters in each copula model (No. Para). The first 9 LSHAC

models are constructed with the GM as their outer generators (denoted as GM-LSHAC), and

the last 9 LSHAC models are constructed with the CL as their outer generators (denoted as

CL-LSHAC).

We obtain the following information based on the estimation results.

• First, based on BIC more than half of the estimated LSHAC models perform better

than the Gaussian copula, and they are highlighted in bold with a “?” in the paren-

theses. In particular, the best LSHAC model has a 88.76 improvement in BIC, and is

constructed with the CL copula as the outer generator, G Lévy subordinator in the

first level and GM Lévy subordinator in the second and the third level (the model in

the last row in Table 4.9).

• Second, the LSHAC models are more efficient in the sense that they have better fit-

ting abilities with smaller sets of parameters. To be more specific, for the particular

structure in Figure 4.11, the LSHAC models have at most 9 parameters, compared to

the Gaussian copula, which has 28 parameters to estimate.

• The first LSHAC model in the table, which is highlighted in bold with a “†”, is con-
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structed in such a way that the copula at each node in the structure in Figure 4.11 is

a GM generator, denoted as All-GM-HAC. This is currently the most common HAC

model used in empirical analysis, such as Okhrin et al. (2013a), which uses an All-

GM-HAC model to estimate the dependence structure of the temperature process in

China. However, as is shown in Table 4.9, the estimation ability of this model is lim-

ited, mainly because it restricts the copula at each node of the structure as a GM

copula. Therefore, this paper introduces a more flexible LSHAC model with a large

number of candidates to improve the estimation abilities.

• Finally, comparing the results of the GM-LSHAC models and the CL-LSHAC models,

the CL-LSHAC models are found to perform slightly better. This may be explained by

the difference in the tail dependence properties. To be more specific, the CL copula,

as shown in Table 4.1, has lower tail dependence, meaning that it can capture low

temperatures that appear together. In contrast, the GM copula only has upper tail

dependence, which models the clusters of extreme high temperatures. The results show

that lower tail dependence models (i.e., CL-LSHAC models) have better fitting results,

indicating that the clustering of extreme low temperatures may be more important than

extreme high temperature in Canada.

4.4.4 Esscher Transform and Pricing Formulas

When the market is complete, a unique risk neutral measure can be obtained by changing

the process of the underlying asset into a martingale, and the securities can be priced as the

expectation of the discounted derivative payoff under the risk neutral measure. However, the

weather market is incomplete and there exists more than one equivalent risk neutral measures

(Tankov, 2004). Therefore, traditional arbitrage-free theory cannot be applied in pricing

securities written on weather indices, since the underlying assets cannot be traded.

The pricing methodology employed in this chapter uses a martingale measure based on the

conditional Esscher transform (Bühlmann et al., 1996; Gerber and Shiu, 1994), which has

been widely used in financial and insurance securities pricing in incomplete markets (Li

et al., 2010; Siu et al., 2004; Yang, 2011). Note that the dependence structure does not

change under both measures. We define a Ft-adapted stochastic process {ζt|t = 1, 2, . . . , T}
as follows:

ζT =
T∏
t=1

exp
(
θY (t)

)
EP
(
exp(θY (t))|Ft−1

) , (4.37)
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Table 4.9: LSHAC estimating results for the eight dimensional hierarchical structure in
Figure 4.11. The first seven columns describe copulas at each node in the LSHAC model.
The next column refers to the log-likelihood function values of different models (LLF), the
Bayesian Information Criterion (BIC) is shown next, followed by the improvement in BIC
of the LSHAC models compared to the Gaussian copula model (BIC Imp.). In particular, a
positive sign indicates better performance relative to the Gaussian copula, while a negative
sign indicates worse performance. The last column shows the number of parameters in each
copula model (No. Para). The first 9 LSHAC models are constructed with the GM as their
outer generators (denoted as GM-LSHAC), and the last 9 LSHAC models are constructed
with the CL as their outer generators (denoted as CL-LSHAC).

Gaussian Copula LLF BIC BIC Imp. No. Para

2743.27 -2628.43 - 28

LSHAC Model

C
(0)
0,1 C

(1)
1,1C

(1)
1,2C

(2)
1,1C

(2)
1,2C

(2)
2,1C

(3)
1,1 LLF BIC BIC Imp. No. Para

GM GM GM GM GM GM GM 2247.98 -2194.66 (†) -433.77 7

GM GM IG GM GM GM GM 2346.85 -2293.54 -334.89 8

GM GM G GM GM GM GM 2377.09 -2323.77 -304.66 8

GM IG GM GM GM GM GM 2595.82 -2542.51 -89.52 8

GM IG IG GM GM GM GM 2694.62 -2641.31 (?) +12.88 9

GM IG G GM GM GM GM 2723.77 -2670.45 (?) 42.02 9

GM G GM GM GM GM GM 2608.84 -2555.52 -72.91 8

GM G IG GM GM GM GM 2708.01 -2654.70 (?) +26.27 9

GM G G GM GM GM GM 2738.12 -2684.80 (?) +56.37 9

CL GM GM GM GM GM GM 2605.90 -2552.58 -75.85 7

CL GM IG GM GM GM GM 2619.31 -2565.99 -62.44 8

CL GM G GM GM GM GM 2620.65 -2567.34 -61.09 8

CL IG GM GM GM GM GM 2725.76 -2672.44 (?) +44.01 8

CL IG IG GM GM GM GM 2718.17 -2664.86 (?) +36.43 9

CL IG G GM GM GM GM 2722.18 -2668.87 (?) +40.44 9

CL G GM GM GM GM GM 2731.76 -2678.45 (?) +50.02 8

CL G IG GM GM GM GM 2765.19 -2711.88 (?) +83.45 9

CL G G GM GM GM GM 2770.51 -2717.19 (?) +88.76 9
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where θ is the parameter of the Esscher transform representing the market price of risk

(MPR) charged for the weather derivatives. Usually θ describes the risk preferences of

policy holders. Hence, a new martingale measure with respect to θ, Qθ, can be defined

as

dQθ

dP
|FT= ζT . (4.38)

The Esscher transform has several advantages. First and foremost, as a generalization of

the Girsanov transform, the Esscher transform changes the jump size (i.e., the price of jump

risk) of the process under Qθ (Hubalek and Neilsen, 2006; Tankov, 2004). Second, the

Esscher transform leads to a minimal entropy martingale measure, which is closest to the

original physical measure (Frittelli, 2000; Hubalek and Neilsen, 2006; Tankov, 2004). Finally,

many distributions stay invariant under the Esscher transform in the sense that their density

functions retain their original form. This makes the Esscher transform easy to obtain and

apply for pricing in a practical sense. The GH family has this invariable property, namely,

the distribution with GH(α, β, δ, γ, λ) law becomes GH(α, β + θ, δ, γ, λ) under the marginal

measure Qθ.

4.5 Hedging Weather Risks

A hedging example is developed in this section, in which weather exposures are hedged with

index-based instruments. The purpose of this example is twofold. First, by applying the

statistical model proposed in Section 4.4, we assess the potential benefits of the LSHAC

dependence assumption in reducing basis risk and improving weather risk hedging. Second,

four hedging strategies are developed to investigate the geographical aggregation levels on

the effectiveness of weather risk hedging performance.

A financial weather contract is a weather contingent contract that pays claims based on

future realization of weather events determined from certain weather indices. It can take

the form of either a weather derivative (WD) or a weather index-based insurance (WIBI)

product. Both are triggered by the underlying weather index, which is the common feature

that is a main focus of this chapter from a risk management viewpoint. The differences

between WD and WIBI are primarily a concern for regulators and policy makers (Dischel

and Barrieu, 2002). Therefore, in this example, we do not identify the differences between

the two unless necessary and refer to both as WDs.

Indices based on temperature have been shown to exhibit strong correlation with crop yield
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(Parodi, 2104), and temperature derivatives have been good contracts to hedge weather risks

that are traded on Chicago Mercantile Exchange (CME) (Woodard and Garcia, 2008a;b).

It follows, therefore, that temperature indices serve as feasible proxies to assess the weather

risk exposures of the insurance company. The most popular weather index, heating degree

days (HDD), is defined as the difference between the daily average temperatures (DAT)

and the base temperature (T̃ ) if DAT falls below T̃ ; otherwise it is assigned zero. Other

popular temperature indices include Cooling Degree Days (CDD) and Cumulative Average

Temperature (CAT). CDD is assigned zero if the DAT is smaller than T̃ ; otherwise it is the

difference between the DAT and the base temperature T̃ . CAT is calculated by summing

the DAT over the contract period. In this chapter, we focus on HDD weather derives to

construct a proxy portfolio of the insurance company.

4.5.1 Hedging Strategies

In this section, we develop four hedging strategies and assess the effectiveness of the hedging

performance. The following assumptions are made:

• We assume that the farmers from 8 provinces in Canada buy WDs to protect their crop

yield losses. Hence the weather risk exposure of the insurance company is a collection

of WD contracts.

• The WDs are based on seasonal accumulated HDD (AccHDD) over the growing season

(May - October) with the form: (Pi−Ki)+ = max(0, Pi−Ki), where Pi is the AccHDD

in province i, defined as

Pi =

∫ t2

t1

HDDt, (4.39)

where [t1, t2] represents the growing season.

• To simplify, we assume that the risk portfolio of the insurance company has equal

weights in each province. Hence, the total exposure of the insurance company can be

expressed as

XExp =
d∑
i=1

1

d
(Pi −Ki)+. (4.40)

• The weather risk exposure is modeled according to a portfolio totaling $1000 million,

which is consistent with Agriculture and Agri-Food Canada (2015) and the Word Bank
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Farmers Insurance Company WD Hedging Portfolio

Premium EQ(XExp) Premium EQ(XHedge)

Hedge Weather RiskProtect Crop Yield Risk

Figure 4.12: Flow chart of the transactions.

survey (Mahul and Stutley, 2010), which reports the agricultural insurance premium

in Canada in 2008 as $1090 million.

• The objective of the insurance company is to find an appropriate hedging portfolio,

denoted as XHedge, to hedge against the weather risk.

• Prices of WDs are calculated under Q measure with Esscher transform, while hedging

performances are examined under P measure.

• Only non-linear hedging strategies with call option type WDs are considered.

• The hedging strategy is developed based on a budget constraint, such that the price

of the hedging portfolio is no more than the price of the risk exposure of the insurance

company.

Figure 4.12 shows the transactions between each stakeholder including the farmers, the in-

surance company and the WD traders. As stated before, this insurance company holds

business across 8 provinces in Canada, i.e., the “business set” of this company can be ex-

pressed as

B =
{
{AB}, {SK}, {BC}, {MB}, {ON}, {NB}, {NS}, {QC}

}
.

The hedging portfolio can be any subset of B. For example, the company can use the weather

index from any individual province to hedge its weather risk exposure; or it can also use the

weather indices from several provinces (e.g.,
{
{AB}, {SK}

}
or
{
{AB}, {BC}, {MB}

}
) to

hedge its weather risk. Theoretically, without any prior information, the insurance company

has 28 choices to construct the hedging portfolio. With the LSHAC approach proposed in

Section 4.4, in contrast, the company is able to develop an appropriate hedging strategy

according to the dependence structure information from the LSHAC model.

Strategy 1: Local hedging strategy

The idea of local hedging is that the insurance company buys WD contracts from only one

province with the form

XHedge
1,g = (Pg −Kg)+, (4.41)
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where g ∈ B. In other words, the hedging portfolio consists of γg shares of WD contract from

province g. Hence, the portfolio after hedging, denoted as XHP
1,g , can be expressed as

XHP
1,g = γgX

Hedge
1,g −XExp + EQ(XExp)− EQ(XHedge

1,g ). (4.42)

In this case, the objective of the insurance company is to decide γg, such that

min
γg

√
V arP(XHP

1,g ),

subject to EQ(XHedge
1,g ) ≤ EQ(XExp). (4.43)

In contrast to local hedging, the remaining three strategies are global hedging. In theory, the

higher the geographical aggregation level, the more offsetting of risks in the portfolio (i.e.,

natural diversification), therefore, the remaining risk is more systematic. This relationship

leads to the following hypothesis:

H0: Hedging strategies with higher geographical aggregation levels are more effective.

As a result, global hedging strategies are proposed to test the hypothesis of the geographical

aggregation effect by introducing different levels of spatial aggregation into the hedging

portfolios.

Strategy 2: Three parts global hedging strategy

According to the hierarchical structure in Figure 4.11, this strategy divides the hedging

portfolio into three parts,

XHedge
2 = XHedge

2,g2,1
+XHedge

2,g2,2
+XHedge

2,g2,3
, (4.44)

XHedge
2,g2,j

= (
∑
gj∈g2,j

ωgjPgj −
∑
gj∈g2,j

δgjKgj)+, j = 1, 2, 3, (4.45)

where g2,1 =
{
{AB}, {SK}, {BC}

}
, g2,2 =

{
{MB}, {ON}

}
, g2,3 =

{
{NB}, {NS}, {QC}

}
,

and δgj is defined as:

δgj =


1
3

j = 1,

1
2

j = 2,

1
3

j = 3.
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Figure 4.13 displays the geographical location of the three parts.

Map of Canada by Province

Figure 4.13: Illustration of the three parts global hedging strategy, where the eight provinces
are aggregated into three parts based on the hierarchical structure in Figure 4.11 and neigh-
bour provinces are put into the same hedging portfolios

Hence, the corresponding hedged portfolio is XHP
2 = XHedge

2 −XExp+EQ(XExp)−EQ(XHedge
2 ).

The objective of this hedging strategy is to solve the following optimization problem:

min
ωgj ,j=1,2,3

√√√√ 3∑
j=1

V arP(XHP
2 ),

subject to EQ(XExp) = EQ(XHedge
2 ), (4.46)

3∑
j=1

∑
gj∈g2,j

ωgj = 1. (4.47)

Strategy 3: Two parts global hedging strategy

The two parts global hedging strategy increases the geographical aggregation level by di-

viding the eight provinces into two parts based on the hierarchical structure from Fig-

ure 4.11.

XHedge
3 = XHedge

3,g3,1
+XHedge

3,g3,2
, (4.48)

XHedge
3,g3,k

= (
∑

gk∈g3,k

ωgkPgk −
∑

gk∈g3,k

δgkKgk)+, k = 1, 2, (4.49)
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where g3,1 =
{
{AB}, {SK}, {BC}, {MB}, {ON}

}
, g3,2 =

{
{NB}, {NS}, {QC}

}
, and δgk

is defined as

δgk =

1
5

j = 1,

1
3

j = 2.

Figure 4.14 displays the geographical location of the two parts, where the first part contains

five provinces and the second part contains three provinces.

Map of Canada by Province

Figure 4.14: Illustration of the two parts global hedging strategy, where the eight provinces
are aggregated into two parts based on the hierarchical structure in Figure 4.11, and neigh-
bour provinces are put into the same hedging portfolios

The optimization problem of this hedging strategy becomes

min
ωgk ,k=1,2

√√√√ 2∑
k=1

V arP(XHP
3 ),

subject to EQ(XHedge
3 ) ≤ EQ(XExp), (4.50)

2∑
k=1

∑
gk∈g3,k

ωgk = 1. (4.51)

Strategy 4: One part global hedging strategy

The one part global hedging strategy aggregates all eight provinces into one hedging portfolio.

Therefore, this hedging strategy has the highest geographical aggregation level, which may
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have the most natural diversification effect.

XHedge
4 = (

∑
g∈B

ωgPg −
∑
g∈B

δgKg)+, (4.52)

and solves the following optimization problem

min
ωg ,g∈B

√
V arP(XHP

4 ),

subject to EQ(XHedge
4 ) ≤ EQ(XExp), (4.53)∑

g∈B

ωg = 1. (4.54)

4.5.2 Hedging Effectiveness

In this section, we discuss the results of different hedging strategies. We are interested

in the following problems: (1) the implication of a hedged vs unhedged portfolio (i.e. the

necessity of hedging weather risk); (2) the importance of the assumed underlying dependence

structure; (3) the geographical aggregation effect on hedging effectiveness. First, we define

hedging effectiveness based on three criteria:

1. Weather risk variance reduction: Following Li and Hardy (2011), we define the hedging

efficiency of certain hedging strategy ∗, Ef∗, as its risk reduction effect. To be more

specific,

Ef∗ = 1− V arP(XHP
∗ )

V arP(XUHP)
. (4.55)

This implies that better hedging strategies have Ef∗ values closer to one. On the

contrary, low Ef∗ values indicate poor hedging performances. Obviously, without

hedging, which we can take it as a “do nothing” strategy, the efficiency is zero.

2. Weather risk value-at-risk (VaR): For each hedged portfolio, XHP
∗ , we calculate the

VaR at 1% level, defined as V aR0.01 = F−1
XHP
∗

(0.01), where the subscription “*” denotes

a certain hedging strategy. As the 1% quantile of the hedged portfolio, V aR0.01 char-

acterizes the left tail of the hedged portfolio distribution. Therefore, a high value of

V aR0.01 indicates a better hedging strategy. To compare the hedging effectiveness, we

also calculate V aR0.01 of the unhedged portfolio, denoted as XUHP.
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3. Weather risk conditional tail expectation (CTE): The 1% level CTE, also called Ex-

pected Shortfall (ES), of a random variable X, defined as CTE(0.01) = E(X|X <

V aR(0.01)), calculates the average losses that have exceeded V aR0.01, providing more

information about the extreme scenarios. As a result, CTE is sometimes preferred

by risk managers in practice (Acerbi and Tasche, 2002). Therefore, we calculate and

compare the CTE0.01 of each hedged (and unhedged) portfolio to see the hedging

effectiveness.

The first criteria measures the weather hedging efficiency in terms of the variance reduc-

tion effect, while the second and the third focus on the reduction in the downside risk, i.e.,

the worst-case scenario of the portfolio. We compare the hedging performances for both

Independent and LSHAC copula assumptions. Our analysis is under different MPR param-

eters assuming θ to be {0, 0.1, 0.3, 0.5}. The results of the different hedging strategies are

displayed in Tabler 4.10, Table 4.12, Table 4.11, and Figure 4.15.

Necessity of Hedging Weather Risk

An efficient hedging strategy should achieve a large reduction in risk, and help the insurance

company maintain stable future cash flows. The hedging error distributions for the original

portfolio without any hedges are shown in Table 4.10. In Figure 4.15, the simulated hedging

error densities of the best local hedging strategy (i.e., local-BC strategy), and the best global

hedging strategy (i.e., one part global hedging strategy), are displayed. It is obvious that all

strategies are able to reduce the portfolio risks significantly under both dependence structure

assumptions, since they have reduced the dispersion of the portfolios. We can also observe

a significant risk reduction effect of the weather hedging from Table 4.11, which displays

the hedging efficiencies of different hedging strategies. In general, all hedges reduce the

variance. The best hedge, i.e., one part global hedge, has hedging efficiency of more than

96% for both dependence structure assumptions and all MPR assumptions. In fact, even

the hedge with the worst performance among all strategies, i.e., the local-ON strategy, can

reduce the variance by 35% or more.

In addition to variance reduction, the weather hedge also reduces the downside risk for in-

surance companies. Table 4.12 displays the V aR0.01 and CTE0.01 of simulated unexpected

cash flows for he risk portfolio with no hedge. From a risk management perspective, V aR0.01

represents the quantile of extreme losses, and CTE0.01 is the expected value of extreme

losses. Therefore, weather hedging is effective in reducing both the probability of loss and

the severity of losses, since all hedges reduce both the V aR0.01 and CTE0.01 compared to

the original portfolios. For example, under the LSHAC copula assumption and θ = 0.1,

the local-AB strategy can reduce the V aR0.01 by 82.07% ( (−2359.68)−(−423.07)
−2359.68

) and CTE0.01
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by 89.22%( (−4112.45)−(−443.51)
−4112.45

). Similarly, one part global hedging strategy can reduce the

V aR0.01 by 92.21%

( (−2359.68)−(−183.85)
−2359.68

) and CTE0.01 by 95.34% ( (−4112.45)−(−191.56)
−4112.45

). Similar results can be ob-

tained with other MPR assumptions. In summary, weather risk hedges play an essential role

for insurance companies to stablize incomes and reduce losses, which is necessary for helping

to ensure a sustainable firm structure.

Importance of Dependence Structures

It is important to understand the impact of introducing the dependence structure in the

statistical modeling of temperature with respect to improving hedging performance. In

particular, under all MPR assumptions the LSHAC model has better hedging performance

compared to the independent assumption. In Table 4.12, we can see that the LSHAC

model can reduce the downside risk of the portfolio further than the independent assumption

for the insurance company. As an example, when θ = 0.1, one part global hedging can

reduce the V aR0.01 by $ 2175.83 million and CTE0.01 by $ 3920.89 million under the LSHAC

model assumption. In contrast, the V aR0.01 and CTE0.01 reductions are $2186.89 million

and $3599.28 million for the independent assumption. Therefore, by comparing the CTE

reduction, we can see that the LSHAC model reduces extreme weather downside risk by

more than $ 321.61 million compared to the independent model. Similarly, in Table 4.11,

under each MPR assumption the LSHAC models achieve better hedging efficiencies relative

to the independent assumption.

Geographical Aggregation Effect

The empirical results support the hypothesis that the effectiveness of the hedging strategy

is dependent on the geographical aggregation effect. More specifically, we find that hedging

strategies with higher levels of aggregation have superior performance in hedging systematic

weather risk. The local hedging strategy has the lowest level of geographical aggregation

among all hedging strategies, and also has the worst performance compared to the global

hedging strategies. It is interesting to note that the one part global hedging strategy which

has the highest spatial aggregation level among the three global hedging strategies, is most

effective in hedging weather risk. These results are consistent with previous work by Woodard

and Garcia (2008a;b), which showed that agricultural hedging can be more effective as the

spatial aggregation in the risk exposure and hedging instrument increases.

We first compare the weather risk VaR and CTE in Table 4.12. As an example, under the

LSHAC model assumption when θ = 0.1, the V aR0.01 and CTE0.01 of the unexpected cash

flows under the best local hedging strategy (i.e., local-BC strategy) are -$684.30 million

and -$1496.53 million, respectively. In contrast, global hedging strategies have better per-
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formance. In particular, the V aR0.01 and CTE0.01 of the hedging errors under three parts

(two parts) global hedging strategy are -$304.47 (-$297.19) million and -$317.69 (-$307.82),

respectively. The one part global hedging strategy has the highest geographical aggregation

level, with V aR0.01 and CTE0.01 of the hedging errors of -$183.85 and -$191.56. The results

in Table 4.11 also show supporting evidence regarding spatial aggregation, where under the

LSHAC model and θ = 0.1 assumptions the local-BC strategy has hedging efficiency of

0.8877, while the one part global hedging strategy increases the hedging efficiency to 0.9680.

Similar observations are also found with the other dependence structure assumptions and

MPR assumptions.

Table 4.10: Summary of statistics of simulated distributions of unexpected cash flows with
no hedge. Independent and LSHAC dependent structure assumptions are compared. In
addition, results for different MPR assumptions are displayed.

Independent LSHAC

θ = 0 θ = 0.1 θ = 0.3 θ = 0.5 θ = 0 θ = 0.1 θ = 0.3 θ = 0.5

µ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

σ 694.87 649.98 580.47 504.99 764.79 696.61 595.06 502.17

VaR -2565.15 -2374.44 -1984.92 -1537.56 -2556.11 -2359.68 -1958.02 -1519.87

CTE -4202.92 -3796.43 -3115.51 -2355.27 -4649.17 -4112.45 -3210.29 -2339.93

Table 4.11: Hedging efficiencies of four strategies. Local hedging strategies have eight choices,
i.e., the insurance company can select to use the HDD from eight provinces to hedge the
weather risks. Independent and LSHAC assumptions are compared. In addition, results for
different MPR assumptions are displayed.

Independent LSHAC

θ = 0 θ = 0.1 θ = 0.3 θ = 0.5 θ = 0 θ = 0.1 θ = 0.3 θ = 0.5

Local

AB 0.8331 0.8331 0.8331 0.8331 0.8680 0.8680 0.8680 0.8680

BC 0.9026 0.9025 0.9010 0.8984 0.8881 0.8877 0.8853 0.8816

MB 0.7393 0.7393 0.7393 0.7393 0.8011 0.8011 0.8011 0.8011

NB 0.8318 0.8340 0.8323 0.8287 0.8095 0.8113 0.8087 0.8042

NS 0.8191 0.8191 0.8191 0.8191 0.8597 0.8597 0.8597 0.8597

ON 0.3498 0.3498 0.3498 0.3498 0.4568 0.4568 0.4568 0.4568

QC 0.8257 0.8257 0.8257 0.8257 0.8628 0.8628 0.8628 0.8628

SK 0.7459 0.7459 0.7459 0.7459 0.8068 0.8068 0.8068 0.8068

Global

3 Parts 0.9117 0.9117 0.9117 0.9117 0.9283 0.9283 0.9283 0.9283

2 Parts 0.9143 0.9143 0.9139 0.9140 0.9284 0.9283 0.9283 0.9282

1 Part 0.9609 0.9609 0.9609 0.9609 0.9680 0.9680 0.9680 0.9680
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Figure 4.15: Simulated distributions of unexpected cash flows for different hedging strate-
gies (MPR assumption: θ = 0) (The first figure is for Independent dependence structure
assumption and the second figure is for LSHAC copula assumption; Line with stars is for
the best local hedging strategy, dotted line is for the best global hedging strategy, and line
with crosses is for the original portfolio with no hedge.)
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4.6 Conclusions

This chapter constructed a generalized multi-level LSHAC model and designed an estima-

tion procedure that focused on a suitable grouping method to determine the hierarchical

structure. We employed hierarchical clustering analysis with Euclidean metric, Kendall’s τ

metric, and τ -Euclidean metric to determine the grouping of variables. The simulation study

showed that the newly proposed τ -Euclidean metric achieved a balance between distance and

association measure, providing the better performance in identifying the true structure.

In the empirical analysis, the proposed estimation methodology was applied to the geograph-

ical dependence structure of the temperature processes in Canada. General LSHACs with

the structure determined by τ -Euclidean metric produces better modelling performances

than elliptical copulas and All-GM-HACs. In particular, we study the systemic weather risk

in Canada and develop different weather risk hedging strategies for agricultural insurers and

reinsurers. In order to reduce the basis risk and improve the efficiency of weather hedging,

we refine the statistical framework of weather variables with a flexible marginal dynamic and

a new copula model. Wavelet analysis is employed to study the detail characteristics of the

weather data from both time and frequency scales, and the general hyperbolic (GH) family

is used to capture the heavy-tail property of the marginal processes. This is the first time

that the Lévy subordinated hierarchical Archimedean copula (LSHAC) model is proposed for

the weather dependence modeling. The results lend support to the importance of capturing

the appropriate dependence structure of weather risk. The LSHAC model reduces extreme

weather downside risk by $ 3920.89 million, which is $ 321.61 more risk reduction compared

to the independent model assumption, leading to more efficient hedging strategies. More-

over, the empirical hedging results support the hypothesis that higher levels of geographical

aggregation achieve more efficient hedging strategies.

4A Appendix: Proofs

4A.1 Proof of Theorem 4.2.1

We prove Theorem 4.2.1 by induction.
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For level y = 0, since ψ
(0)
0,1 is a LT-AC generator with c.d.f G(v

(0)
0,1), we have

ψ
(0)
0,1 =

∫ ∞
0

exp
{
− v(0)

0,1 · u
}
dG

(0)
0,1(v

(0)
0,1), (4A.56)

(F
(0)
0,1 (u))v = exp

{
− vψ(0)−1

0,1 (u)
}
. (4A.57)

According to the definition of LSHAC, the copulas emanated from C
(0)
0,1 with generator ψ

(0)
0,1

are {
C

(1)
s0,j1
|s0 = 1, j1 = 1, . . . , D(1)

s0

}
. (4A.58)

Consequently, we have

C
(0)
0,1 = C

(0)
0,1( C

(1)
s0,1
, . . . , C

(1)

s0,D
(1)
s0

)

= ψ
(0)
0,1

( D
(1)
s0∑

j1=1

ψ
(0)−1
0,1 (C

(1)
s0,j1

)

)
(4A.59)

Then, using (4A.56) and (4A.57) yields

C(u1, u2, · · · , ud) =

∫ ∞
0

D
(1)
s0∏

j1=1

exp
{
− v(0)

0,1ψ
(0)−1
0,1 (C

(1)
s0,j1

)
}
dG

(0)
0,1(v

(0)
0,1),

=

∫ ∞
0

D
(1)
s0∏

j1=1

(
F

(0)
0,1 (C

(1)
s0,j1

)
)v(0)0,1dG

(0)
0,1(v

(0)
0,1),

=

∫ ∞
0

D
(1)
s0∏

j1=1

(
F

(0)
0,1 (C

(1)
s0,j1

)
)v(0)0,1

(
dG
)
j0
. (4A.60)

Similarly, for level y = 1, the copulas emanated from C
(1)
s0,j1

with generator ψ
(1)
s0,j1

are

{
C

(2)
s1,j2
|s1 =

( s0−1∑
m=1

D(1)
m

)
I{s0>1} + j1, j2 = 1, . . . , D(2)

s1

}
. (4A.61)

Since s0 = 0, it is equivalent to{
C

(2)
s1,j2
|s1 = j1, j2 = 1, . . . , D(2)

s1

}
. (4A.62)
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Therefore, we have

C
(1)
s0,j1

= C
(1)
s0,j1

( C
(2)
s1,1
, . . . , C

(2)

s1,D
(2)
s1

) = ψ
(1)
s0,j1

(

D
(2)
s1∑

j2=1

ψ
(1)−1
s0,j1

(C
(2)
s1,j2

)). (4A.63)

Let

ψ̃
(1)
s0,j1

(u; v
(0)
0,1) =

(
F

(0)
0,1 (ψ

(1)
s0,j1

(u))

)v(0)0,1

= exp
{
− v(0)

0,1ψ
(0)−1
0,1 ◦ ψ(1)

s0,j1
(u)
}
, (4A.64)

and

Ψ̃
(1)
s0,j1

(u) = ψ
(0)−1
0,1 ◦ ψ(1)

s0,j1
(4A.65)

be the Laplace exponent of a Lévy subordinator, X
(1)
s0,j1

, with c.d.f. G̃
(1)
s0,j1

. According to the

property of Laplace exponent of a Lévy subordinator expressed in (4.2),

ψ̃
(1)
s0,j1

(u; v
(0)
0,1) = exp

{
− v(0)

0,1ψ
(0)−1
0,1 ◦ ψ(1)

s0,j1
(u)
}
, (4A.66)

= exp
{
− v(0)

0,1Ψ̃
(1)
s0,j1

(u)
}
,

= E(exp
{
− uX(1)

J0,j1
(v

(0)
0,1)
}

),

=

∫ ∞
0

exp
{
− uv(1)

s0,j1
(v

(0)
0,1)
}
dG̃

(1)
s0,j1

(v
(1)
s0,j1

; v
(0)
0,1).

As proved in Theorem 2.1 of Hering et al. (2010), derivative of ψ
(0)−1
0,1 ◦ψ(1)

s0,j1
defined accord-

ing to (4A.65) is c.m.. According to Joe (1997) and McNeil (2008), ψ̃
(1)
s0,j1

(u) is a LT-AC

generator. As a result, we can rewrite (4A.60) according to (4A.63)-(4A.64),

C(u1, · · · , ud)

=

∫ ∞
0

D
(1)
s0∏

j1=1

(
F

(0)
0,1 (C

(1)
s0,j1

)

)v(0)0,1

dG
(0)
0,1(v

(0)
0,1),

=

∫ ∞
0

D
(1)
s0∏

j1=1

ψ̃
(1)
s0,j1

( D
(2)
s1∑

j2=1

ψ
(1)−1
s0,j1

(C
(2)
s1,j2

); v
(0)
0,1

)
dG

(0)
0,1(v

(0)
0,1),

=

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

exp

(
− v(1)

s0,j1
(

D
(2)
s1∑

j2=1

ψ
(1)−1
s0,j1

(C
(2)
s1,j2

))

)
dG̃

(1)
s0,j1

(v
(1)
s0,j1

; v
(0)
0,1)dG

(0)
0,1(v

(0)
0,1),

(4A.67)

122



Similarly, let F
(1)
s0,j1

(u) satisfy(
F

(1)
s0,j1

(u)

)v
= exp

(
− vψ(1)−1

s0,j1
(u)
)
, (4A.68)

then we have

C(u1, · · · , ud)

=

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

(
F

(1)
s0,j1

(C
(2)
s1,j2

)

)v(1)s0,j1
dG̃

(1)
s0,j1

(v
(1)
s0,j1

; v
(0)
0,1)dG

(0)
0,1(v

(0)
0,1),

=

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

(
F

(1)
s0,j1

(C
(2)
s1,j2

)

)v(1)s0,j1(
dG
)(1)

j1
.

(4A.69)

Therefore, (4.9) is satisfied at level y = 1. Now let us assume at level y : 0 ≤ y ≤ l−2 (l ≥ 2),

the following equation holds

C(u1, · · · , ud)

=

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

. . .

∫ ∞
0

D
(y+1)
sy∏

jy+1=1

(
F

(y)
sy−1,jy

(C
(l−1)
sy ,jy+1

)

)v(y)sy−1,jy (
dG
)(y)

jy
. (4A.70)

For notation consistency we let s−1 = 0, j0 = 1. Then at level y + 1, the copulas emanated

from C
(y+1)
sy ,jy+1

with generator ψ
(y+1)
sy ,jy+1

are

{
C

(y+2)
sy+1,jy+2

|sy+1 =
( sy−1∑
m=1

D(y+1)
m

)
I{sy−1>1} + jy+1, jy+2 = 1, . . . , D(y+2)

sy+1

}
. (4A.71)

As a result, we have

C
(y+1)
sy ,jy+1

= ψ
(y+1)
sy ,jy+1

( D
(y+2)
sy+1∑

jy+2=1

ψ
(y+1)−1
sy ,jy+1

(C
(y+2)
sy+1,jy+2

)

)
. (4A.72)

Let

ψ̃
(y+1)
sy ,jy+1

(u; v
(y)
sy−1,jy

) =
(
F

(y)
sy−1,jy

(ψ
(y+1)
sy ,jy+1

(u))
)v(y)sy−1,jy (4A.73)

= exp
{
− v(y)

sy−1,jy
ψ

(y)−1
sy−1,jy

◦ ψ(y+1)
sy ,jy+1

(u)
}

(4A.74)
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and

Ψ̃
(y+1)
sy ,jy+1

(u) = ψ
(y)
sy−1,jy

◦ ψ(y+1)
sy ,jy+1

(u) (4A.75)

be the Laplace exponent of a Lévy subordinator, denoted asX
(y+1)
sy ,jy+1

, with c.d.f. G̃sy, jy+1
(y+1).

Consequently, substituting (4A.75) into (4A.74) yields

ψ̃
(y+1)
sy ,jy+1

(u; v
(y)
sy−1,jy

) = exp
{
− v(y)

sy−1,jy
Ψ̃

(y+1)
sy ,jy+1

(u)
}

= E

(
exp{−uX(y+1)

sy ,jy+1
(v

(y)
sy−1,jy

)}
)

=

∫ ∞
0

exp{−uv(y+1)
sy ,jy+1

}dG̃(y+1)
sy ,jy+1

(v
(y+1)
sy ,jy+1

; v
(y)
sy−1,jy

) (4A.76)

Similarly, ψ̃
(y+1)
sy ,jy+1

is a LT-AC generator. Therefore, (4A.70) can be rewritten as

C(u1, · · · , ud) =

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

. . .

∫ ∞
0

D
(y+1)
sy∏

jy+1=1

ψ̃
(y+1)
sy ,jy+1

( D
(y+1)
sy∑

jy+1=1

ψ
(y+1)−1
sy ,jy+1

(C
(y+2)
sy+1,jy+2

; v
(y)
sy−1,jy

))

)(
dG
)(y)

jy
,(4A.77)

which is equivalent to

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

. . .

∫ ∞
0

D
(y+1)
sy∏

jy+1=1

∫ ∞
0

exp

(
− v(y+1)−1

sy ,jy+1

D
(y+2)
sy+1∑

jy+2=1

ψ
(y+1)−1
sy ,jy+1

(C
(y+2)
sy+1,jy+2

))

)
(4A.78)

dG̃sy ,jy+1(v
(y+1)
sy ,jy+1

; v
(y)
sy−1,jy

)
(
dG
)(y)

jy
. (4A.79)

Let F
(y+1)
sy ,jy+1

satisfy

(F
(y+1)
sy ,jy+1

)v = exp
(
− vψ(y+1)−1

sy ,jy+1
(u)
)
. (4A.80)

Then we have

C(u1, · · · , ud) =

∫ ∞
0

D
(1)
s0∏

j1=1

∫ ∞
0

D
(2)
s1∏

j2=1

. . .

∫ ∞
0

D
(y+1)
sy∏

jy+1=1

∫ ∞
0

D
(y+2)
sy+1∏

jy+2=1

F
(y+1)
sy ,jy+1

(C
(y+2)
sy+1,jy+2

))
(
dG
)(y+1)

jy+1
, (4A.81)

124



which means that (4.9) is satisfied at level y + 1. Therefore, by mathematical induction,

(4.9) holds for all l = 1, . . . , L− 1, and this completes the proof of Theorem 4.2.1.
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Chapter 5

Weighted Distribution Premium

Principle and Agricultural

Reinsurance Pricing

5.1 Introduction

A scientific ratemaking methodology is fundamental and essential for producing a sustainable

risk management solution for various stakeholders, including producers, insurers, reinsurers,

and government. The absence of actuarially sound methods to achieve accurate fair pre-

mium rate limits the development of agricultural insurance and reinsurance program (Ozaki

et al., 2008). Especially for heavily subsidized agricultural insurance programs, such as crop

insurance programs in U.S. and Canada, a slight adjustment in premium rates may signifi-

cantly change the subsidies and may have a substantial impact on taxpayers. Therefore, a

strategic pricing framework will benefit the agricultural insurance industry and ensure its

sustainability over the long term.

The pricing of agricultural insurance products is particularly challenging due to its unique

features as compared to most other commercial lines of P & C insurance (Porth et al.,

2014a). More specifically, agricultural insurance pricing suffers from the shortness of data

with at most several decades historical (annual) loss observations. In addition, agricultural

losses tend to be highly spatially correlated and at times in large magnitudes because of

adverse natural hazards. Moreover, the underlying structural factors of the loss experiences

could change overtime simply due to program changes, technological development, farming

practice, etc.
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The unique challenges pertaining to the agricultural insurance ratemaking suggest the impor-

tance of actuarially sound pricing methodologies. However, until recently, the agricultural

insurance premium rates are based on simple average of historical loss-cost ratio (LCR) ex-

perience (Borman et al., 2013). There is limited literature that discuss how to scientifically

weight historical losses, from different dimensions, to accommodate and adjust various risk

factors. Woodard (2014) constructs a conditional Weibull distribution model that integrates

the weather variables and technology evolutions into crop yields explicitly. Porth et al.

(2014b) propose a “liability weighted” LCR to aggregate historical loss data and introduce a

modified credibility model to weight the loss experiences from different geographical regions

to enhance the reinsurance pricing. Borman et al. (2013) propose to incorporate weights

into the data in order to reflect program changes and weather patterns.

This chapter discusses the ratemaking and risk management of agricultural (re)insurance

from the premium principle perspective. To the best of our knowledge, this is the first

work to formally introduce actuarial premium principles to agricultural ratemaking. Loosely

speaking, a premium principle is a pricing rule that attaches a premium to insurance risks,

and it is the core of actuarial insurance ratemaking (Wang, 1996; Young, 2004) in reflecting

the underlying risk. In this chapter, we discuss some popular premium principles in actu-

arial science and compare the features of the different principles in agricultural ratemaking.

In particular, we propose a new premium principle, which we denote as the multivariate

weighted distribution premium principle, to facilitate the weighting of auxiliary variables

into the pricing framework. This idea is stimulated by some empirical pricing results in

agricultural ratemaking, and the Probability Proportional to size (PPS) sampling method

widely used in statistical sampling. Based on the work by Bühlmann (1980), Furman and

Zitikis (2008a), Patil et al. (1986), Rao (1965), and Wang (1995), we derive some useful

properties of the premium based on multivariate weighted random variables. In addition,

the economic premium principle discussed in Bühlmann (1980), and the Esscher’s principle

can be shown to be special cases of our proposed framework.

To test the advantages and usefulness of our proposed multivariate weighted premium prin-

ciple relative to other well-known premium principles, an empirical study using reinsurance

experience (from year 2001-2011) in Manitoba is conducted. Our empirical results highlight

the importance of incorporating auxiliary information such as liabilities and other macroe-

conomic variables and that the proposed new premium principle is able to assign higher

loading to more risky contract layers and achieve better sustainable long-run profits.

Main Contributions in This Chapter

This chapter contributes to the literature from the following perspectives. First, a new
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premium principle based on multivariate distribution is proposed. This premium principle

extends the work by Furman and Zitikis (Furman and Zitikis, 2008a;b). Some desirable

properties of the proposed multivariate weighted premium principle are presented in this

paper, including positive risk loading and no ripoff, no unjustified risk-loading, linearity,

additivity, and stochastic dominance preserving. The multivariate weighted premium allo-

cation is also additive among layers, making it very appealing to insurance layer pricing. It

includes Wang’s premium principle (Wang, 1995; 1996), univariate weighted premium prin-

ciple (Furman and Zitikis, 2008a), Esshcher’s premium principle, and economic premium

principle (Bühlmann, 1980) as special cases. In particular, it is shown that the multivariate

weighted premium principle has increasing relative risk loading with appropriately chosen

auxiliary variables, while the univariate weighted premium principle has constant relative

risk loading. This chapter, for the first time, introduces the concept of premium princi-

ple into agricultural ratemaking, and provides empirical evidence for the necessity of using

auxiliary variables to enhance agricultural insurance ratemaking.

The rest of this chapter proceeds as follows. Section 5.2 gives a brief introduction of premium

principles. Section 5.3 introduces our proposed multivariate weighted premium principle and

derives some analytical results for a number of parametric models. Section 5.4 introduces

some desirable properties of the multivariate weighted premium principle. Section 5.5 dis-

cusses the relationship of the multivariate weighted premium principle and Wang’s premium

principle. Section 5.6 provides some remarks about how to select appropriate auxiliary vari-

ables in applying multivariate weighted premium principle. Section 5.7 conducts an empirical

analysis on the agricultural reinsurance ratemaking. Section 5.9 concludes the chapter and

appendix collects the proofs.

5.2 Premium Principles

The premium principles are core to actuarial pricing. Let X be a non-negative loss random

variable with the cumulative distribution function FX(x), decumulative distribution function

(or survival function) SX(x) and density function fX(x). A premium principle is then defined

as a functional Π assigned to the insurance risk X. We also denote the collection of all

nonnegative random variables as a set X on the probability space (Ω,F , P ). The quest for

an appropriate premium principle has been an active area of research in actuarial science

and it is also important for various applications including the agricultural ratemaking. An

actuarially sound premium principle needs to satisfy some desirable properties. The list of

these properties can be very long and we list a few standard and important ones below. For
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an inventory of premium principles properties see Young (2004).

1. Positive risk loading: Π(X) ≥ E(X) for all X ∈ X. This property requires that the

premium is no less than the expected payout of the risk (net premium or risk premium)

in exchange for insuring the risk.

2. No unjustified risk-loading: If risk X is degenerated, namely, there exists constant c

such that P(X = c) ≡ 1, then Π(X) = c. Therefore, if a risk pays out a constant c for

certain, the insurer should charge no risk loading and the premium should just be its

certainty loss amount.

3. No ripoff: Π(X) ≤ esssup(X) for all X ∈ X. This means that the insurer should not

charge higher than the maximum value the risk may get.

4. Translation invariance: Π(X + a) = Π(X) + a for all X ∈ X and a ≥ 0. If a risk X

is increased by a fixed number a, the premium for risk X + a should be the original

premium plus a.

5. Scale invariance: Π(aX) = aΠ(X) for all X ∈ X and a ≥ 0. This property is also

known as homogeneity of degree one in the economic literature to preclude arbitrage

opportunities. For example, the premium for 2X should be equal to the premiums of

two insurance policies for the risk X, otherwise, there is a chance for arbitrage.

Combining Property 4 and Property 5 implies linearity.

6. Subaddittivity: Π(X + Y ) ≤ Π(X) + Π(Y ) for all X ∈ X and Y ∈ X.

7. First stochastic dominance (FSD) preserving: If SX(x) ≤ SY (x) for all x ≥ 0, then

Π(X) ≤ Π(Y ).

8. Stop-loss (SL) ordering preserving: If E
[
(X − d)+

]
≤ E

[
(Y − d)+

]
for all d > 0, then

Π(X) ≤ Π(Y ).

Some most commonly used premium principles are listed as follows:

a. Expectation Premium Principle: Πe(X) = (1 + θ)E(X), where θ > 0. Due to its

simplicity, this is the most widely used premium principle in agricultural insurance

ratemaking and in all other types of insurances.

b. Standard Deviation Premium Principle: Πsd(X) = E(X) + θ
√

Var(X), where θ >

0. This premium principle incorporates a risk loading that is proportional to the

standard deviation of the risk. While widely use in general Property & Casualty

(P&C) insurance, this premium principle has received little attention in agricultural

insurance, except for the work by Porth et al. (2013), which analyzes the optimal
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reinsurance contract structure that minimizes the total risk exposure of an insurer

using private reinsurance loss experience for Manitoba and estimated that the optimal

θ is 0.1861.

c. Esscher Premium Principle: Πess =
E(XeθX)

E(eθX)
, where θ > 0. This premium principle,

which is based on the Esscher Transform, is widely used in option pricing especially in

incomplete markets (See, for example Bühlmann et al., 1996; Gerber and Shiu, 1994;

Hubalek and Neilsen, 2006). It is interesting to note that it is a special case of the

Equilibrium Premium Principle proposed by Bühlmann (1980). Additionally, a more

general form of Esscher premium is referred to as the Exponential Tilting Premium

Principle (Heilmann, 1989; Kamps, 1998).

d. Distortion Premium Principle: For any increasing concave function g : [0, 1] 7→ [0, 1]

with g(0) = 0, g(1) = 1, the premium is calculated as Πs(X) =
∫∞

0
g
(
SX(u)

)
du (Wang,

1996; Wang et al., 1997). The function g is called distortion function and g
(
SX(u)

)
is

called distorted probability. This premium principle is constructed based on a trans-

formation of the decumulative distribution function SX(x). A popular special case of

this premium class is called Proportional Hazards Premium Principle (Wang, 1995).

To facilitate reweighing historical losses with auxiliary variables, in this chapter, we first

propose a new premium principle, discuss its desirable properties, and then apply it to

agricultural reinsurance pricing and compare the pricing results with other premium princi-

ples.

5.3 Multivariate Weighted Premium (MWP)

5.3.1 Definitions

A general definition of multivariate weighted distribution can be defined according to Navarro

et al. (2006).

Definition 5.3.1 (Navarro et al. (2006)). The density of multivariate weighted distribu-

tion associated with random vector X = (X1, . . . , Xp) and weighting function w(x) =
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w(x1, . . . , xp) is

fXw(x) = fXw(x1, . . . , xp)

=
w(x1, . . . , xp)

E
(
w(X1, . . . , Xp)

)fX(x1, . . . , xp)

=
w(x)

E
(
w(X)

)fX(x). (5.1)

For the rest of this chapter, we consider X as a non-negative random loss and Y =

(Y1, . . . , Yp) is some p-dimensional random vector with Yi ∈ X, where i = 1, . . . , p. Then the

multivariate weighted distribution with respect to (X,Y ) is defined as follows:

Definition 5.3.2. (Xw,Y w) is a vector of weighted random variables associated with (i.e.,

defined base on) (X,Y ) and w(y) = w(y1, . . . , yp), with joint density

fXw,Y w(x,y) =
w(y1, . . . , yp)

E[w(Y1, . . . , Yp)]
fX,Y (x, y1, . . . , yp)

=
w(y)

E[w(Y )]
fX,Y (x,y) (5.2)

According to these definitions, the density of the weighted random loss, Xw, can be expressed

as (see also Kocherlakota, 1995; Mahfoud and Patil, 1982; Navarro et al., 2006)

fXw(x) =

∫
y∈Rp+

fXw,Y w(x,y)dy

=

∫
y∈Rp+

w(y)fY |X(y|x)fX(x)dy

E
(
w(Y )

)
=

E
(
w(Y )|X = x

)
E
(
w(Y )

) fX(x) (5.3)

We use ψ(x) to denote the following ratio of two expectations:

ψ(x) =
E
(
w(Y )|X = x

)
E
(
w(Y )

) . (5.4)

Remark 5.3.1. It is of interest to note that ψ(x) is the Radon-Nikodym derivative of the

two random variables X and Xw. Given any loss random variable X with density fX(x), we

can define another random variable Xw with density fXw(s) according to equation (5.3).

Remark 5.3.2. It should also be emphasized that if ψ(x) is an increasing function with
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respect to x, the loss size (i.e., severity of the loss), more weight will be assigned to the

adverse events, which satisfies the empirical pricing requirements.

By defining the mapping: Tw : (X,Y )→ Xw as the weighted density transform, where

the superscript w refers to the weighing function w, we are now ready to define a new

premium calculation principle that is based on the multivariate weighted distribution.

Definition 5.3.3. For a risk X with density fX(x), the multivariate weighted premium

associated with some random vector Y and positive weighting function w is defined as

Πw(X,Y ) = E
(
Tw(X,Y )

)
. (5.5)

Proposition 5.3.1. The multivariate weighted premium can be expressed as

Πw(X,Y ) =
E
(
w(Y )X

)
E
(
w(Y )

) . (5.6)

Proof. According to Definition 5.3.3 and Equation (5.3), we have

Πw(X,Y ) = E
(
Tw(X,Y )

)
=

∫
x∈R+

x
E
(
w(Y )|X = x

)
E
(
w(Y )

) fX(x)dx

=
E
(
XE[w(Y )|X]

)
E
(
w(Y )

)
=

E
(
w(Y )X

)
E
(
w(Y )

) .

Remark 5.3.3. In empirical pricing, Y may be some auxiliary random vector variables of

relevance to ratemaking for insurers and reinsurers. In addition, Y needs not be different

from X. In fact, when Y = X, the multivariate weighted premium principle in Defini-

tion 5.3.3 degenerates to the weighted premium discussed in Furman and Zitikis (2008a).

The univariate case and the bivariate case will be further discussed in Section 5.3.2 with

some examples of special weighting functions and distributions.
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5.3.2 Examples of Multivariate Weighted Premium

Univariate Weighting

1. Power weighting (w(u) = uλ)

In the case of power weighting, the univariate weighted premium can be written as

Πw(X) =
E(Xλ+1)

E(Xλ)
. (5.7)

Example 5.3.1. If X has Gamma distribution with parameter GAM(a, b) with the

corresponding p.d.f. fX(x; a, b) =
ba

Γ(a)
xa−1e−bx, the power weighted density transform

Tw(X) also has a gamma distribution with parameters GAM(a + λ, b). According to

Equation (5.7), the univariate weighted premium Πw(X) is

Πw(X) =
a+ λ

b
.

Example 5.3.2. If X has a log-normal distribution with parameter LogN(µ, σ2)

and the corresponding p.d.f. fX(x;µ, σ) =
1

xσ
√

2π
exp

(
−1

2
(
log(x)− µ

σ
)2

)
, the power

weighted density transform Tw(X) also has a log-normal distribution with parameters

LogN(µ+ λσ2, σ2). The univariate weighted premiumΠw(X) is

Πw(X) = exp
(
µ+ (λ+

1

2
)σ2
)
.

2. Quantile weighting (w(u) = I{u>uλ})

In the case of quantile weighting, the univariate weighted premium can be written as

Πw(X) =
E(XI{X>xλ})
E(I{X>xλ})

, (5.8)

where I{u∈A} is the indicator function which is 1 when event A happens, while 0 oth-

erwise. We can see that if uλ is chosen to be the λ-quantile of X, then the univariate

weighted premium becomes the conditional tail expectation (CTE) at level λ.
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To proceed, it is useful to introduce the following notation:

fI(s, t) = I{s≤t}, (5.9)

gI(s, t) = 1− fI(s, t), (5.10)

γ(s, t) =

∫ t

0

us−1e−udu, (5.11)

where the function γ(s, t) is called lower incomplete gamma function.

Example 5.3.3. If X has A Gamma distribution with parameter GAM(a, b), we

have

E(I{X>xλ}X) = E(gI(X, xλ)X)

= E(X)−
∫ xλ

0

x
ba

Γ(a)
xa−1e−bxdx

u=bx
=

a

b

(
1− 1

Γ(a+ 1)

∫ bxλ

0

uae−udu

)
=

a

b

(
1− γ(a+ 1, bxλ)

Γ(a+ 1)

)
, (5.12)

E(I{X>xλ}) = 1− γ(a, bxλ)

Γ(a)
. (5.13)

Therefore, according to Equation (5.8), the univariate quantile weighted premium is

expressed as:

Πw(X) =
a

b

(1− γ(a+ 1, bxλ)

Γ(a+ 1)

1− γ(a, bxλ)

Γ(a)

)
.

Example 5.3.4. If X has a log-normal distribution with parameter LogN(µ, σ2), we

have

E(I{X>xλ}X) = E(gI(X, xλ)X)

=

∫ ∞
logxλ

ex
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
dx

u=x−µ
σ=

µλ=
logxλ−u

σ

eµ+ 1
2
σ2(

1− Φ(µλ − σ)
)
, (5.14)

E(I{X>xλ}) = 1− Φ(µλ), (5.15)

where Φ(·) is the c.d.f. of the standard normal distribution. Therefore, according to
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Equation (5.8), the univariate quantile weighted premium is expressed as:

Πw(X) = eµ+ 1
2
σ2

(
1− Φ(µλ − σ)

1− Φ(µλ)

)
.

3. Exponential weighting (w(u) = eλu)

In the case of exponential weighting, the univariate weighted premium can be written

as

Πw(X) =
E(XeλX)

E(eλX)
, (5.16)

which is the well known Esscher’s premium.

Example 5.3.5. If X has A Gamma distribution with parameter GAM(a, b), the

exponential weighted density transform Tw(X) also has a gamma distribution with

parameters GAM(a, b− λ). When b > λ, according to Equation (5.16), the univariate

exponential weighted premium Πw(X) is

Πw(X) =
a

b− λ
.

The univariate weighted premium examples are summarized in Table 5.1.

Table 5.1: Univariate Weighted Premium Examples

Weighting Function GAM(a, b) LogN(µ, σ2)

Power (w(u) = uλ) a+λ
b exp

(
µ+ (λ+ 1

2 )σ2
)

Quantile (w(u) = I{u>uλ})
a

b

(
1− γ(a+1,bxλ)

Γ(a+1)

1− γ(a,bxλ)
Γ(a)

)
eµ+ 1

2σ
2

(
1−Φ(µλ−σ)

1−Φ(µλ)

)
a

Exponential (w(u) = eλu) a
b−λ - b

aµλ = σlogxλ−x+µ
σ2 .

bExponential weighted premium for log-normal distribution is not defined since the moment generating
function (m.g.f.) of the log-normal distribution is not defined for any positive value of the argument.

Bivariate Weighting

1. Power weighting (w(u) = uλ)

In the case of power weighting, the bivariate weighted premium associated with Y can
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be written as

Πw(X, Y ) =
E(XY λ)

E(Y λ)
. (5.17)

Example 5.3.6. If Y has A Gamma distribution with parameter GAM(α, β) and

conditional on Y = y, the random loss X has a Gamma distribution with parameter

GAM(θ, y), it is easy to show that the marginal density of X is

fX(x) =
baΓ(α + θ)

Γ(θ)Γ(α)

xθ−1

(β + x)α+θ
,

which is generalized Pareto distribution with parameters GDP (α, β, θ). We can show

that the weighted density transform Tw(X) also has a generalized Parato distribution

with parameters GDP (α + λ, β, θ). Therefore, using Equation (5.5), the bivariate

power weighted premium Πw(X, Y ) is

Πw(X, Y ) =
βθ

α + λ− 1
.

Example 5.3.7. If the random loss X and another random variable have bivariate

log-normal distribution with parameters BLogN(µ,Σ), where µ = (µx, µy)
′,Σ1,1 =

σ2
x,Σ2,2 = σ2

y,Σ1,2 = Σ2,1 = σxy = ρxyσxσy. To get the weighted premium, we let X1 =

log(X), Y1 = log(Y ), which are bivariate normally distributed with covariance σxy. We

also note that the conditional random variable X1|Y1 follows a normal distribution

with parameters N(µx + ρxy
σx
σy

(Y1 − µy), (1− ρ2
xy)σ

2
x). Therefore,

E(XY λ) = E(eX1+λY1)

= E(eλY1E(eX1|Y1))

= exp
{
µx − ρxy

σx
σy
µy +

1

2
σ2
x(1− ρ2

xy)
}
E(e

(λ+ρxy
σx
σy

)Y1)

ā=exp{µx−ρxy σxσy µy+ 1
2
σ2
x(1−ρ2xy)}

=
b̄=λ+ρxy

σx
σy

ā exp
{
µy b̄+

1

2
σ2
y b̄

2
}
,

E(Y λ) = exp
{
λµy +

1

2
σ2
yλ

2
}
. (5.18)

Hence, according to Equation (5.17) the bivariate power weighted premium Πw(X, Y )
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is

Πw(X, Y ) = ā exp
{
ρxy

σx
σy

(µy + λσ2
y +

1

2
ρxyσxσy)

}
= exp

{
µx +

1

2
σ2
x + λρxyσxσy

}
.

(5.19)

2. Quantile weighting (w(u) = I{u>uλ})

In the case of quantile weighting, the bivariate weighted premium can be written as

Πw(X, Y ) =
E(XI{Y >yλ})
E(I{Y >yλ})

. (5.20)

Example 5.3.8. If random lossX and random variate Y have the Gamma distribution

assumptions in Example 5.3.6, then we have

E(I{Y >yλ}X) = E(I{Y >yλ}E(X|Y ))

= E(
θ

Y
)− E(

θ

Y
I{Y >yλ})

u=βy
=

θβ

α− 1
− θβ

α− 1

∫ βyλ

0

u(α−1)−1

Γ(α− 1)
e−udu

=
θβ

α− 1

(
1− γ(α− 1, βyλ)

Γ(α− 1)

)
, (5.21)

E(I{Y >yλ}) = 1− γ(α, βyλ)

Γ(α)
. (5.22)

Therefore, according to Equation (5.20), the bivariate quantile weighted premium is

expressed as:

Πw(X) =
θβ

α− 1

(1− γ(α− 1, βyλ)

Γ(α− 1)

1− γ(α, βyλ)

Γ(α)

)
.

Example 5.3.9. If random loss X and random variate Y have the log-normal distribu-

tion assumptions in Example 5.3.7, then similarly by letting X1 = log(X), Y1 = log(Y ),
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we have

E(I{Y >yλ}X) = E(I{Y >yλ}E(X|Y ))

= exp
{
µx − ρxy

σx
σy
µy +

1

2
σ2
x(1− ρ2

xy)
}
E(e

ρxy
σx
σy
Y1I{Y >yλ})

v=
y1−(µy+σxy)

σy
=

vλ=
logyλ−(µy+σxy)

σy

exp{µx +
1

2
σ2
x}
∫ ∞
vλ

1√
2π
e−v

2

dv

= exp{µx +
1

2
σ2
x}
(
1− Φ(vλ)

)
, (5.23)

E(I{Y >yλ}) = 1− Φ(vλ + ρxyσx). (5.24)

Therefore, the bivariate quantile weighted premium can be written as

Πw(X, Y ) = exp{µx +
1

2
σ2
x}
(

1− Φ(vλ)

1− Φ(vλ + ρxyσx)

)
.

3. Exponential weighting (w(u) = eλu)

In the case of exponential weighting, the bivariate exponential weighted premium can

be written as

Πw(X, Y ) =
E(XeλY )

E(eλY )
. (5.25)

Example 5.3.10. If random loss X and random variate Y have the Gamma distribu-

tion assumptions in Example 5.3.6, we can show that the weighted density transform

Tw(X) also has a generalized Parato distribution with parameters GDP (α, β − λ, θ).
Therefore, using Equation (5.5), the bivariate power weighted premium Πw(X, Y ) is

Πw(X) =
(β − λ)θ

α− 1
.

5.3.3 Calculating Multivariate Weighted Premium in More Gen-

eral Settings

To calculate the multivariate weighted premium according to Equation (5.6), the most chal-

lenging part is to compute E(Xw(Y )), which requires knowledge of the joint distribution of

X and Y . Furman and Zitikis (2008b) propose to split the covariance Cov
(
X,w(Y )

)
. We

note that in our multivariate premium setting, we can view w(Y ) as a new random variable

U = w(Y ). In this way E(Xw(Y )) can be easily calculated with a bivariate copula ap-

138



proach. More specifically, according to Sklar’s Theorem (Sklar, 1959), the joint distribution

of X and U can be decomposed into two parts: the marginal distributions, denoted as FX(x)

and FU(u), and the dependence structure, i.e., copula function, denoted as CX,U . Therefore,

we can express the joint c.d.f. and density of X and U as:

FX,U(x, u) = CX,U(FX(x), FU(u)), (5.26)

fX,U(x, u) =
∂2FX,U(x, u)

∂x∂u
= cX,U(FX(x), FU(u))fX(x)fU(u), (5.27)

where the function cX,U is the copula density. With Equations (5.26) and (5.27), we can

easily calculate E(Xw(Y )) as follows:

E(Xw(Y )) = E(XU)

=

∫
R2

xufX,U(x, u)dxdu

=

∫
R2

xucX,U(FX(x), FU(u))fX(x)fU(u)dxdu. (5.28)

Equation (5.28) is not difficult to compute with a known copula function. And this calcula-

tion is especially easy when the copula function is chosen from some copula families where

the densities have closed forms, such as Gaussian copula and Archimedean copula family.

Table 5.2: Bivariate Weighted Premium Examples

Weighting Function Y ∼ GAM(α, β), X|Y ∼ GAM(θ, y) (X,Y ) ∼ BLogN(µ,Σ)

Power (w(u) = uλ) βθ
α+λ−1 exp

{
µx + 1

2σ
2
x + λρxyσxσy

}
Quantile (w(u) = I{u>uλ})

θβ
α−1

( 1−
γ(α− 1, βyλ)

Γ(α− 1)

1−
γ(α, βyλ)

Γ(α)

)
exp{µx + 1

2σ
2
x}
(

1−Φ(vλ)
1−Φ(vλ+ρxyσx)

)
a

Exponential (w(u) = eλu) (β−λ)θ
α−1 - b

avλ =
logyλ−(µy+σxy)

σy
.

bExponential weighted premium for log-normal distribution is not defined since the moment generating
function (m.g.f.) of the log-normal distribution is not defined for any positive value of the argument.
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5.4 Properties of Multivariate Weighted Premium

As a function assigning the random loss to a real number, there are some properties to be

satisfied to make certain rule a desirable premium calculation principle (Wang, 1995; Young,

2004). In this section, we will discuss these properties of the multivariate weighted premium

principle.

5.4.1 Positive risk loading and no ripoff

Proposition 5.4.1. Πw(X,Y ) ≥ E(X) if and only if Cov
(
X,w(Y )

)
≥ 0.

Proof. According to Definition 5.3.3 and Proposiiton 5.3.1, it is straightforward that

Πw(X,Y )− E(X) =
E
(
w(Y )X

)
E
(
w(Y )

) − E(X)

=
E
(
w(Y )X

)
− E
(
w(Y )

)
E(X)

E
(
w(Y )

)
=

Cov
(
X,w(Y )

)
E
(
w(Y )

) . (5.29)

Since w(Y ) is a positive function, we get

Πw(X,Y ) ≥ E(X),

if and only if Cov
(
X,w(Y )

)
≥ 0.

In addition, note that
E
(
w(Y )X

)
E
(
w(Y )

) ≤ esssup(X),

therefore, we have

E(X) ≤ Πw(X,Y ) ≤ esssup(X).
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5.4.2 No unjustified risk-loading

If risk X is degenerated, namely, there exists a constant c such that P (X = c) = 1, for any

random vector Y we have E(X|Y ) = c. Therefore,

Πw(X,Y ) =
E
(
w(Y )E(X|Y )

)
E
(
w(Y )

)
=

E
(
w(Y )c

)
E
(
w(Y )

) = c. (5.30)

5.4.3 Linearity

It is easy to see that for any constants a and b,

Πw(aX + b,Y ) =
E
(
w(Y )(aX + b)

)
E
(
w(Y )

)
=

E
(
w(Y )X

)
E
(
w(Y )

) + b

= aΠw(X,Y ) + b. (5.31)

The linearity property indicates that the multivariate weighted premium is invariant under

a scale change and also satisfies transitivity.

5.4.4 Additivity

For any two loss random variables X1, X2 (not necessarily independent), we have

Πw(X1 +X2,Y ) =
E
(
w(Y )(X1 +X2)

)
E
(
w(Y )

)
=

E
(
w(Y )X1

)
+ E
(
w(Y )X2)

)
E
(
w(Y )

)
= Πw(X1,Y ) + Πw(X2,Y ). (5.32)
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5.4.5 First Stochastic Dominance Preserving

Definition 5.4.1 (Levy (1992)). For two random variables X1, X2 ∈ X, X1 first order

stochastically dominates (FSD) X2, written X1 �s.t. X2, if

SX1(x) ≥ SX2(x) ∀x ∈ R, (5.33)

where Sx(x) = 1− FX(x) is the survival function of the random variable X.

Proposition 5.4.2. For any two random risks X1, X2, random vector Y and weighting

function w, if (X1, w(Y)) and (X2, w(Y)) have the same dependence structure, then the

multivariate weighted premium preserves the first ordering. In other words, if (X1, w(Y))

and (X2, w(Y)) have the same copula function C(u, v) = P(U ≤ u, V ≤ v), where U, V are

uniform random variables, we have

X1 �s.t. X2 ⇒ Πw(X1,Y ) ≥ Πw(X2,Y ). (5.34)

Proof. Let us start the proof by denoting Z = w(Y) with c.d.f. FZ(z). The c.d.f. for X1, X2

are FX1(x) and FX2(x), respectively. We also define function h(s, v) = s−C(s, v). It is easy

to show that h(s, v) is an increasing function with respect to s since

∂h(s, v)

∂s
= 1− ∂

∂s
C(s, v)

= 1− P(V ≤ v|U = s) ≥ 0.

Also note that

X1 �s.t. X2 ⇐⇒ FX1(x) ≤ FX2(x) for all x ≥ 0,

hence,

h(FX1(x), v) ≤ h(FX2(x), v), for all v ∈ [0, 1].

Let v = FZ(z),

FX1(x)− C(FX1(x), FZ(z)) ≤ FX2(x)− C(FX2(x), FZ(z))

⇐⇒ P(X1 ≤ x)− P(X1 ≤ x, Z ≤ z) ≤ P(X2 ≤ x)− P(X2 ≤ x, Z ≤ z)

⇐⇒ P(X1 ≤ x, Z > z) ≤ P(X2 ≤ x, Z > z), for all x, z ≥ 0

⇐⇒
∫ ∞

0

P(X1 ≤ x, Z > z)dz ≤
∫ ∞

0

P(X2 ≤ x, Z > z)dz, for all x ≥ 0. (5.35)
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Also note that for any random loss X and positive random variable Z,∫ ∞
0

P(X ≤ x, Z > z)dz =

∫ ∞
0

E
(
fI(X, x)gI(Z, z)

)
dz

= E

(∫ ∞
0

gI(Z, z)dz · fI(X, x)

)
= E

(
ZfI(X, x)

)
. (5.36)

Therefore, combining Equation (5.35) and Equation (5.36), we have

E
(
ZfI(X1, x)

)
= E

(
w(Y)fI(X1, x)

)
≤ E

(
ZfI(X2, x)

)
= E

(
w(Y)fI(X2, x)

)
. (5.37)

Also note that the c.d.f. of Xw can be expressed as:

FXw(x) =

∫ x

0

E(w(Y )|u)fX(u)

E
(
w(Y )

) du

=

∫ ∞
0

E(w(Y )|u)fI(X, x)

E
(
w(Y )

) fX(u)du

=
E
(
fI(X, x)E(w(Y )|X)

)
E
(
w(Y )

)
=

E
(
fI(X, x)w(Y )

)
E
(
w(Y )

) . (5.38)

Therefore, combining inequality (5.37) and equation (5.38) we obtain

FXw
1

(x) ≤ FXw
2

(x)⇐⇒ Xw
1 �s.t. Xw

2 .

Hence

Πw(X1,Y ) ≥ Πw(X2,Y ).

5.4.6 Stop-loss Ordering Preserving

According to Proposition 5.4.2, it is easy to show that the MWP preserves stop-loss ordering,

as formally asserted in the following corollary.

Corollary 5.4.1. For any two random risks X1, X2 and random vector Y, if (X1, w(Y))

and (X2, w(Y)) have the same dependence structure, then the multivariate weighted premium

preserves the stop-loss ordering, that is, for any random pair (X1, w(Y)) and (X2, w(Y))

143



with the same copula function C(u, v) = P(U ≤ u, V ≤ v), where U, V are uniform random

variables, and any deductible d,

X1 �s.t. X2 ⇒ Πw
(
(X1 − d)+,Y

)
≥ Πw

(
(X2 − d)+,Y

)
. (5.39)

Proof. Since

X1 �s.t. X2 =⇒ (X1 − d)+ �s.t. (X2 − d)+, (5.40)

By denoting Z = w(Y) with c.d.f function FZ(z), and also noting that for any random loss

X,

P
(
(X − d)+ ≤ x, Z > z

)
=

0, x < 0,

P(X ≤ d+ x, Z > z).

According to inequality (5.35), we have

P
(
(X1 − d)+ ≤ x, Z > z

)
≤ P

(
(X2 − d)+ ≤ x, Z > z

)
, for all x, z ≥ 0.

Similarly to the proof of Proposition 5.4.2, we can show that

(X1 − d)w+ �s.t. (X2 − d)w+, (5.41)

where (X − d)w+ denotes the weighted random variable of (X − d)+. Therefore,

Πw
(
(X1 − d)+,Y

)
≥ Πw

(
(X2 − d)+,Y

)
.

Proposition 5.4.2 shows that the weighted premium principle preserves the stochastic or-

dering. Corollary 5.4.1 shows that the introduction of deductibles does not modify the

premiums. It is also interesting to have the following result.

Proposition 5.4.3. If Cov(X,w(Y )) ≥ 0, the weighted loss random variable Xw is first

order stochastically dominates the original random variable X: Xw �s.t. X.

144



Proof. From Equation (5.38), we have

SXw(x) =
E
(
(1− fI(X, x)w(Y )

)
E
(
w(Y )

)
=

E
(
gI(X, x)w(Y )

)
E
(
w(Y )

) , (5.42)

SXw(x)− SX(x) =
E
(
w(Y )

)
E(fI(X, x))− E

(
w(Y )fI(X, x)

)
E
(
w(Y )

)
= −Cov(w(Y ), fI(X, x))

E
(
w(Y )

) , (5.43)

where Cov(w(Y ), fI(X, x)) is the covariance of w(Y ) and fI(X, x), which can be expressed

as:

Cov(w(Y ), fI(X, x)) = E

(
[w(Y )− E

(
w(Y )

)
][fI(X, x)− E(fI(X, x))]

)
≤ 0. (5.44)

The above inequality holds because Cov(X,w(Y )) ≥ 0 and fI(s, t) is a decreasing function

with respect to s. Therefore, SXw(x)− SX(x) ≥ 0 for all x ≥ 0, namely, Xw �s.t. X.

Proposition 5.4.3 shows that Xw, the loss random variable weighted by another positively

correlated random variable w(Y ), is distributed with heavier tails than the original loss X.

This property has appealing empirical interpretations, since premiums calculated from the

weighted loss Xw provides another way of loading to reflect the inherent risk. If we define

the risk loading, denoted as Θπ, of the premium on the loss X, Π(X), as

ΘΠ =
Π(X)

E(X)
− 1, (5.45)

(5.46)

we can investigate the expressions of ΘΠ for each weighted premiums in Section 5.3.2. As

some illustrative examples, we examine the risk loadings for power weighted gamma distri-

bution in both univariate premium and bivariate weighted premium cases.

Example 5.4.1. If X has A Gamma distribution with parameter GAM(a, b), the univariate

power weighted (w(u) = uλ) premium Πw(X) is Πw(X) =
a+ λ

b
. Therefore, the risk loading

of this premium, Θw
Π, can be expressed as Θw

Π =
λ

a
. We can see that if λ > 0, Πw(X) > E(X)
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and Θw
Π > 0. In other words, Cov(X,Xλ) > 0 and the premium has positive risk loading.

Example 5.4.2. If random loss X and random variate Y have the Gamma distribution

assumptions in Example 5.3.6, then the bivariate power weighted (w(u) = uλ) premium

Πw(X, Y ) is Πw(X, Y ) =
βθ

α + λ− 1
. Therefore, if λ < 0, the risk loading, expressed as

Θw
Π =

−λ
a+ λ− 1

, is greater than 0. We can also check that in the case of λ < 0, it satisfies

the condition of Cov(X, Y λ) > 0.

Table 5.3: Risk loading Univariate Weighted Premium Examples. The last column shows
the conditions for positive risk loadings.

Weighting Function GAM(a, b) (λ > 0) LogN(µ, σ2)

Power (w(u) = uλ) λ
b (λ > 0) eλσ

2 − 1 (λ > 0)

Quantile (w(u) = I{u>uλ})
γ(a,bxλ)

Γ(a)
− γ(a+1,bxλ)

Γ(a+1)

1− γ(a,bxλ)

Γ(a)

(xλ > 0) Φ(µλ)−Φ(µλ−σ)
1−Φ(µλ) (xλ ∈ R) a

Exponential (w(u) = eλu) λ
b−λ (λ > 0) - b

auλ = σlogxλ−x+µ
σ2 .

bExponential weighted premium for log-normal distribution is not defined since the moment generating
function (m.g.f.) of log-normal distribution is not defined for any positive value of the argument.

Table 5.4: Bivariate Weighted Premium Examples

Weighting Func-

tion

Y ∼ GAM(α, β),
X|Y ∼ GAM(θ, y)

(X,Y ) ∼ BLogN(µ,Σ)

Power
(w(u) = uλ)

−λ
α+λ−1 (λ < 0) eλρxyσxσy − 1 (λρxy < 0)

Quantile
(w(u) = I{u>uλ})

γ(α,βyλ)

Γ(α)
− γ(α−1,βyλ)

Γ(α−1)

1− γ(α,βyλ)

Γ(α)

(yλ < 0)
Φ(vλ+ρxyσx)−Φ(vλ)

1−Φ(vλ+ρxyσx) (ρxy > 0, yλ ∈ R)a

Exponential
(w(u) = eλu)

−λ
β (λ < 0) - b

avλ =
logyλ−(µy+σxy)

σy
.

bExponential weighted premium for log-normal distribution is not defined since the moment generating
function (m.g.f.) of log-normal distribution is not defined for any positive value of the argument.

Table 5.5 provides a comparison of the various properties among some selected premium

principles discussed in this chapter. A check mark (“3”) implies the premium principle

satisfies the corresponding property, while a cross-mark (“7”) does not. Note that the

distortion premium principle and our proposed MVP are the only two that satisfy all the

properties.
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Table 5.5: Properties of different premium principles. “Expectation” is for Expectation Pre-
mium Principle, “SD” stands for Standard Deviation Premium Principle, “Esscher” repre-
sents for Esscher Premium Principle, “Distortion” stands for Distortion Premium Principle,
and “MWP” stands for Multivariate Weighted Premium Principle.

Property a. Expectation b. SD c. Esscher d. Distortion e. MWP

1. Risk loading 3 3 3 3 3a

2. No unjustified 7 3 3 3 3

3. No ripoff 7 7 3 3 3

4. Translation 7 3 3 3 3

5. Scale 3 3 7 3 3b

6. Subadditivity 3 7 7 3 3c

7. FSD 3 7 7 3 3d

8. SL 3 7 7 3 3e

aCov
(
X,w(Y )

)
≥ 0.

bX and Y are different random variables.
cX and Y are different random variables.
dSee Proposition 5.4.2.
eSee Corollary 5.4.1.

5.4.7 Premium Allocation Among Layers

In this subsection we define the layer random loss variable and its corresponding absolute

risk (AR) function and relative risk function (RR) based on Wang (1995).

Definition 5.4.2. A layer (a, b] of random loss X, denoted by L(a,b], is defined as:

L(a,b] =


0, 0 ≤ X < a

X − a, a ≤ X < b

b− a, b < X.

(5.47)

Definition 5.4.3. 1. A premium principle Π(X) has decreasing absolute risk load if the

Absolute Risk (AR) function, defined as,

AR(x) = Π(L(x,x+h]), h > 0, (5.48)

is a decreasing function with respect to x.

2. A premium principle Π(X) has increasing relative risk load if the Relative Risk (RR)
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function, defined as,

RR(x) = lim
h→0

Πw(L(x,x+h])

E(L(x,x+h])
, (5.49)

is an increasing function with respect to x.

Definition 5.4.4. The hazard function of a random loss X is defined as

λX(x) =
fX(x)

SX(x)
. (5.50)

The hazard rate order is closely related to conditional stochastic ordering and the hazard

function.

Definition 5.4.5 (Denuit et al. (2005)). Given two random variables X1 and X2 , X1 is

said to precede X2 in the hazard rate order, denoted as X1 �h.r. X2, if

[X1|X1 > t] �s.t. [X2|X2 > t], for all t ∈ R. (5.51)

Section 5.4.5 shows that the MWP preserves stochastic order. A natural and follow-up ques-

tion is the allocation of premium among layers. We are particularly interested in verifying

whether the MWP premium is layer additive as well as preserving stochastic ordering among

different layers.

Theorem 5.4.1. Given a random loss X and a random vector Y , we have:

1. (Layer Additive) multivariate weighted premium is “layer additive”, i.e., given a

partition of the domain of X, {(xi, xi+1], i = 0, 1, . . .}, 0 = x0 < x1 < x2 < . . ., we have

Πw(X,Y ) =
∞∑
i=0

Πw(L(xi,xi+1],Y ). (5.52)

2. (Decreasing Absolute Risk Load) the absolute risk function AR(x) is decreasing

with respect to x. In other words, for any constant h > 0, we have

x < y ⇒ Πw(L(x,x+h],Y ) ≥ Πw(L(y,y+h],Y ). (5.53)

3. (Increasing Relative Risk Load) the relative risk function RR(x) is increasing

with respect to x if, and only if, X �h.r. X|Y .
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Proof. 1. Since

X =
∞∑
i=0

L(xi,xi+1], (5.54)

we have

E
(
Xw(Y )

)
= E

( ∞∑
i=0

L(xi,xi+1]w(Y )
)

=
∞∑
i=0

E
(
L(xi,xi+1]w(Y )

)
,

E
(
Xw(Y )

)
E
(
w(Y )

) =
∞∑
i=0

E
(
L(xi,xi+1]w(Y )

)
E
(
w(Y )

) . (5.55)

Namely, Πw(X,Y ) =
∑∞

i=0 Πw(L(xi,xi+1],Y ).

2. The AR function and its derivative can be written as:

AR(x) =
E
(
w(Y )L(x,x+h]

)
E
(
w(Y )

)
=

E
[
w(Y )E

(
L(x,x+h]|Y

)]
E
(
w(Y )

)
=

E
(
w(Y )

∫ x+h

x
SX|Y (u|Y )du

)
E
(
w(Y )

) (5.56)

dAR(x)

dx
=

E
[
w(Y )(SX|Y (x+ h|Y )− SX|Y (x|Y ))

]
E
(
w(Y )

)
≤ 0. (5.57)

The inequality holds because y = SX|Y (x|Y ) is a decreasing function of x.

3. It is shown in Property 3.3.38 in Denuit et al. (2005) that

X �h.r. X|Y ⇔ λX(x) ≥ λx|Y (x), for all x ≥ 0. (5.58)

Also note that the RR function can be expressed as

RR(x) = lim
h→0

E
[
w(Y )

∫ x+h

x
SX|Y du

]
E
(
w(Y )

) ∫ x+h

x
SX(u)du

, (5.59)
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therefore, according to L’Hôpital’s rule

RR(x) = lim
h→0

E
(
w(Y )[SX|Y (x+ h|Y )]

)
E
(
w(Y )

)
SX(x+ h)

=
E
(
w(Y )SX|Y (x|Y )

)
E
(
w(Y )

)
SX(x)

. (5.60)

Hence the derivative of the RR function is

dRR(x)

dx
=

E

(
w(Y )

SX|Y (x|Y )

SX(x)
(λX(x)− λX|Y (x|Y ))

)
E
(
w(Y)

) . (5.61)

Combining Equation (5.61) and (5.58), we conclude that

X �h.r. X|Y ⇔
dRR(x)

dx
≥ 0.

In view of Part 3 in Theorem 5.4.1, we can see that multivariate weighted premium principle

is superior over the univariate version in the sense that univariate weighted premium has

constant risk loading. We summarize this property in the following corollary.

Corollary 5.4.2. The univariate weighted premium, Πw(X) =
E
(
w(X)X

)
E
(
w(X)

) , has a constant

relative risk loading. More specifically,

RR(x) = lim
h→0

Πw(X)

E(L(x,x+h])
= 1. (5.62)

Proof. The RR function in the univariate weighted premium principle context can be ex-

pressed as

RR(x) = lim
h→0

E
(
w(L(x,x+h])L(x,x+h]

)
E
(
w(L(x,x+h])

)
E
(
L(x,x+h]

)
= lim

h→0

E
(
w(X − x)I{x≤X<x+h}

)
+ E
(
w(h)hI{X≥x+h}

)
[E
(
w(0)I{X<x}

)
+ E
(
w(X − x)I{x≤X<x+h}

)
+ E
(
w(h)I{X≥x+h}

)
]E
(
L(x,x+h]

) .
For notation convenience, we define Eu = E

(
w(X − x)I{x≤X<x+h}

)
+ E

(
w(h)hI{X≥x+h}

)
,

Ed1 = E
(
w(0)I{X<x}

)
+ E
(
w(X − x)I{x≤X<x+h}

)
+ E
(
w(h)I{X≥x+h}

)
and Ed2 = E

(
L(x,x+h]

)
.
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Hence,

RR(x) = lim
h→0

Eu
Ed1Ed2

.

Note that when h→ 0, Eu → 0 and Ed2 → 0, according to L’Hôpital’s rule:

RR(x) = lim
h→0

d

dx
Eu

Ed1
d

dx
Ed2 + Ed2

d

dx
Ed1

.

In addition,

Ed1 |h→0 = w(0)FX(x) + w(0)SX(x),

d

dx
Ed2 |h→0 = SX(x+ h)|h→0 = SX(x),

d

dx
Eu|h→0 =

(
w′(h)h+ w(h)

)
SX(x+ h)|h→0 = w(0)SX(x),

Ed2
d

dx
Ed1 |h→0 = 0.

Thus

RR(x) =
w(0)SX(x)(

w(0)FX(y) + w(0)SX(y)
)
SX(x)

= 1. (5.63)

5.5 Relationship with Wang’s Premium Principle

Wang’s premium premium is defined with respect to a distortion function, g : [0, 1]→ [0, 1],

which satisfies the following three conditions:

(i). g′(x) ≥ 0;

(ii). g(0) = 0, g(1) = 1;

Then Wang’s premium principle based on the function g, denoted as H(X; g), is expressed

as (Furman and Zitikis, 2008a; Wang, 1995)

H(X; g) =

∫
x∈R+

g
(
SX(x)

)
dx. (5.64)
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The following proposition shows that for a particular MWP we can find a corresponding

representation for the Wang’s principle.

Theorem 5.5.1. Given a random risk X ∈ X such that E(|X|) < ∞,E(|X|2) < ∞, a

random vector Y , which is X measurable, and a weighting function w, then there exists a

function g(x), satisfying conditions (i)-(iii).

Proof. If Y is X measurable, we can find a non-negative function, h(x), satisfying

h(X) =
w(Y )

E
(
w(Y )

) ≥ 0. (5.65)

Also recall that

Πw(X,Y ) =
E
(
w(Y )X

)
E
(
w(Y )

)
= E(Xh(X)). (5.66)

Let us define the function g(x) as g(x) =
∫ x

0
h
(
S−1
X (u)

)
du, then we can verify that g(x)

satisfies the conditions (i)-(ii). More specifically,

(i). g′(x) = h
(
S−1
X (x)

)
≥ 0;

(ii). g(0) = 0, g(1) =
∫ 1

0
h
(
S−1
X (u)

)
du =

∫∞
0
h(x)dF (x) = E

(
h(X)

)
= 1.

Additionally, the multivariate weighted premium principle based on the function g can be

expressed as ∫ ∞
0

g
(
SX(x)

)
dx = E

(
Xg′(SX(X))

)
= E

(
Xh(X)

)
= Πw(X,Y ). (5.67)

The risk-adjusted premium based on the proportional hazard (PH) transform is a special

case of Wang’s premium (Wang, 1995). According to the definition of hazard function in

Equation (5.50), we can see that the PH transform adjusts the risk X by mapping the

original loss variable X to another random variable XPH with a hazard rate function

λXPH(t) =
1

ρ
λX(t), ρ > 0. (5.68)
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Considering the hazard rate function of the multivariate weighted random variable Xw, we

find that

λXw(t) =
fXw(t)

1− FXw(t)
(5.69)

=
SX(t)E

(
w(Y )|X = t

)
SXw(t)E

(
w(Y )

) λX(t). (5.70)

In other words, instead of a constant ρ, multivariate weighted premium principle uses a

function,

ρ(t) =
SXw(t)E

(
w(Y )

)
SX(t)E

(
w(Y )|X = t

) , (5.71)

to deflect the hazard rate. Indeed, the weighting function of the risk-adjust premium can be

expressed as

w(x) = c
(
SX(x)

) 1
ρ
−1
, (5.72)

where c is a constant satisfying c =
E(w(X))

ρ
.

5.6 Selecting the Auxiliary Variables

Despite many desirable properties of the multivariate premium principle, from an empirical

application point of view, it is always important, yet challenging, to have a good idea of

how to choose the auxiliary weighting random vector Y . Bühlmann’s 1980 paper provides a

great example, in which an economic premium principle is derived under some equilibrium

conditions. In particular, as a special case of this economic premium principle, when the

exponential utility function U(W ) = e−ρW is considered, the economic premium principle

is

Π(X, Y ) =
E
(
XeρY

)
E
(
eρY
) , (5.73)

where ρ = 1/

p∑
i=1

1

ρi
, ρi is the risk aversion for each risk agency in the market and Y =∑p

i=1Xi is the sum of all the risks in the market, i = 1, . . . , p. It is interesting to note

that if we define the weighting function w(y) as w(y) = eρy, and choose Y =
∑p

i=1Xi
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as the weighing random variable, then this economic premium can also be expressed as a

multivariate weighted premium. More interestingly, the Esscher principle is a special case

of this economic premium principle, where X and Y −X are independent.

Now we give another interesting example to show the advantages of the proposed multivariate

weighted premium principle. Generally speaking, an arbitrary premium principle, Π, can

always be written as a summation of the risk premium (i.e., net premium) and a risk loading,

namely,

Π = E(X) + ΘΠ(X), (5.74)

where ΘΠ(X) denotes the risk loading. The expressions of risk loadings can be different

according to the premium principle we choose. For example, the expectation premium

principle uses θE(X) to present the risk loading, where θ is a constant (loading factor);

while in the standard deviation premium principle, the risk loading is proportional to the

standard deviation of the underlying risk, i.e., θ
√

Var(X), where θ is a constant. In the

case of weighted premium principle, the risk loading can be expressed as a function of the

covariance of the random loss and the weighting variable. To be more specific, for the

univariate weighted premium principle, the premium can be written as

Πw(X) =
E
(
w(X)X

)
E
(
w(X)

)
= E(X) +

Cov
(
X,w(X)

)
E
(
w(X)

) . (5.75)

Similarly, for multivariate weighted premium principle, the premium can be written as

Πw(X,Y ) =
E
(
w(Y )X

)
E
(
w(Y )

)
= E(X) +

Cov
(
X,w(Y )

)
E
(
w(Y )

) . (5.76)

From an insurance ratemaking point of view, a good premium principle needs to provide

the insurers sufficient and stable risk loading. Assume now that there are p risks in the

market, X1, . . . , Xp, we choose the weighting variable to be Y = (
∑p

i=1 Xi − d)+ ∧m, and

use the exponential weighting function w(y) = eηy, then the corresponding univariate and
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multivariate weighted premium for each risk, Xi, can be expressed as

Πw(Xi) =
E
(
Xiexp(Xi)

)
E
(
exp(Xi)

) , (5.77)

Πw(Xi, Y ) =
E
(
Xiexp{η(

∑p
i=1Xi − d)+ ∧m}

)
E
(
exp{η(

∑p
i=1Xi − d)+ ∧m}

) . (5.78)

To compare, we set both premiums equal to an expected premium with loading factor θ,

namely, we let Πw(Xi) = Πw(Xi, Y ) = (1 + θ)E(Xi), and we compare the variations of the

estimations of the two premiums. As an example, we further assume that all the risks follow

independent gamma distributions with a common rate parameter, i.e., Xi ∼ GAM(ai, b),

therefore,
∑p

i=1Xi ∼ GAM(
∑p

i=1 ai, b). Denote X =
∑p

i=1Xi, a =
∑p

i=1 ai, X−i =
∑

j 6=iXj

and a−i =
∑

j 6=i aj, then X ∼ GAM(a, b) and X−i ∼ GAM(a−i, b). Now, it is straightfor-

ward to write the denominator of equation (5.78) as

E
(
exp{η(X − d)+ ∧m}

)
= E

(
I{X<d}

)
+ E
(
eη(X−d)I{d≤X<m+d}

)
+ E
(
eηmI{X≥m+d}

)
=
γ(a, bd)

Γ(a)
+ e−ηd

ba

(b− η)a
γ
(
a, b(d+m)

)
− γ
(
a, bd

)
Γ(a)

+ eηm(1−
γ
(
a, b(d+m)

)
Γ(a)

).

Meanwhile, the the numerator of equation (5.78) can be written as

E
(
Xiexp{η(X − d)+ ∧m}

)
= E

(
XiE(I{X−i<d−Xi}|Xi)

)
+ E
(
XiE(I{d−Xi≤X−i<d+m−Xi}|Xi)

)
+ E

(
XiE(I{X−i≥d+m−Xi}|Xi)

)
.

E
(
XiE(I{X−i<d−Xi}|Xi)

)
=

∫ d

0

xaie−bx
baiγ

(
a−i, b(d− x)

)
Γ(ai)Γ(a−i)

dx

E
(
XiE(I{d−Xi≤X−i<d+m−Xi}|Xi)

)
=

∫ d

0

xaie(η−b)x−ηdba−i
γ
(
a−i, b(m+ d− x)

)
− γ
(
a−i, b(d− x)

)
(b− η)a−iΓ(ai)Γ(a−i)

dx

+

∫ d+m

d

xaie(η−b)x−ηdba−i
γ
(
a−i, b(m+ d− x)

)
(b− η)a−iΓ(ai)Γ(a−i)

dx

E
(
XiE(I{X−i≥d+m−Xi}|Xi)

)
=

∫ d+m

0

xaie−bx+ηm bai

Γ(ai)
(1− γ(a−i, b(d+m− x))

Γ(a−i)
)dx

+

∫ ∞
d+m

xaie−bx+ηm bai

Γ(ai)
dx.

By setting Πw(Xi) = (1 + θ)E(Xi), i = 1, 2, 3, we get ηuniv
i =

bθ

1 + θ
, where ηuniv

i is the

parameter under the univariate weighted premium for risk i. The corresponding estimator

for the multivariate premium, ηmult
i , is calculated numerically by setting Πw(Xi, Y ) = (1 +

θ)E(Xi). In the numerical example below, we assume that there are three risks, a1 = 1, a2 =
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2, a3 = 3, and b = 0.5. We also assume that the loading factor under the expectation

premium principle, θ, is 0.1. It is easy to calculate ηuniv
i = 0.0455, i = 1, 2, 3, and ηmulti

1 =

0.0269, ηmulti
2 = 0.0189, ηmulti

3 = 0.0145. Under the condition that Πw(Xi) = Πw(Xi, Y ) =

(1 + θ)E(Xi), we find the optimal d∗ = 4.90 and m∗ = 49.60, such that the variances of

the multivariate weighted premium estimators are minimized. The standard errors of the

estimated premiums under the univariate and multivariate premium principles are listed in

Table 5.6. We can see that the variation of the multivariate premium for each risk is smaller

than that of the univariate weighted premium.

Table 5.6: Variation of the premium estimations. “UWP” denotes univariate weighted
premium and “MWP” denotes multivariate weighted premium.

Risk Premium
Standard Errors of Estimation

UWP MWP

X1 2.2 0.4269 0.3805

X2 4.4 0.6238 0.5027

X3 6.6 0.6340 0.5254

5.7 Empirical Analysis

5.7.1 Data and Reinsurance Contract

The empirical study of this chapter employs a data set that covers private reinsurance in

Manitoba, including actual indemnities and liabilities from 2001 through 2011. The private

reinsurance program in Manitoba uses an excess of loss (XoL) reinsurance policy that is

defined as follows. For the loss random variable X ∈ X, the reinsurance company covers

part of the loss between the layers a and b. In other words, for the XoL random variable,

L[a,b], defined as,

L[a,b] =


0, X < a

X − a, a ≤ X < b

b− a, X ≥ b,

(5.79)

the reinsurance contract has the form, τL[a,b], where 0 < τ < 1 is the coverage level. As

mentioned before, it is critical to select the auxiliary variables Y to implement the multivari-

ate premium principle. A natural choice of Y is the liability, since in agricultural insurance
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and reinsurance, both indemnity and liability are closely related to the crop yield. In fact,

in empirical pricing, the loss cost ratio (LCR), defined as the ratio of the indemnity over

liability, is recommended for standardizing the trends of farm practice, technology improve-

ment, etc. However, empirical pricing based on LCR is still weighting the liability with

some ad hoc method that lacks scientific foundations. Using multivariate weighted premium

principle, this chapter provides a more comprehensive and scientific methodology to inte-

grate liability, as well as other auxiliary variables, into the reinsurance pricing. Another set

of promising candidate for auxiliary variables is the economic variables, such as the Gross

Domestic Product (GDP), Consumer Price Index(CPI), crop commodity prices, etc. The

economic conditions have important impact on the agricultural reinsurance industry and of

course integrating these variables into the reinsurance premium will improve the ratemaking

framework.

In the empirical analysis of this chapter, we use both liability (denoted as YLiab) and Canadian

GDP (denoted as YGDP) as the auxiliary variables. Note that our pricing framework is

not necessarily restricted to two dimensions, and one can select an arbitrary k-dimensional

auxiliary variables for the pricing, as we will show in the pricing formulas in Section 5.7.2

(Proposition 5.7.4 and Proposition 5.7.5). The descriptive statistical summary is displayed

in Table 5.7. We observe that the data has skewness and kurtosis values that are very

close to zero, leading us to consider multivariate normal to model their joint distribution.

Therefore, we execute a variety of (univariate and multivariate) normality tests to confirm

that multivariate normal distribution is an appropriate model for the data. The test results

are listed in Table 5.8 and a “3” to indicate the data has passed the test at 0.05 significant

level. The univariate normality tests we consider in this study include Shapiro-Wilk’s test,

Cramer-von Mises’s test, Kolmogorov-Smirnov’s test, and Anderson-Darling’s test, while the

multivariate normality tests we consider are Mardia’s test, Henze-Zirkler’s test and Royston’s

test 1. From Table 5.8, we find that the data pass the individual normality tests as well as

the joint multivariate normality tests. Therefore, it is reasonable to define the distribution

as follows:

X = µx + εx, where εx ∼ N(0, σ2
x),

YLiab = µLiab + εLiab, where εLiab ∼ N(0, σ2
Liab),

YGDP = µGDP + εGDP, where εGDP ∼ N(0, σ2
GDP),

and (X, YLiab, YGDP) follows joint normal distribution.

1For more detailed introduction of these tests, refer to Anderson (1952; 1962); Henzea and Zirkler (1990);
Kolmogorov (1933); Mardia (1970); Royston (1991); Shapiro and Wilk (1965); Smirnov (1948).
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Table 5.7: Summary of descriptive statistics for the data including the loss experience and
liability of the private reinsurance program in Manitoba and the GDP of Canada. The data
period is from 2001 to 2011.

Statistical Summary

Loss Liability GDP

Mean 147.91 1427.62 1453.08

Standard Deviation 100.99 430.32 209.66

Median 99.49 1338.60 1486.92

Skewness 0.66 0.50 -0.15

Kurtosis -1.18 -1.30 -1.57

Correlation Coefficients

Loss Liability GDP

Loss 1 0.3513 0.3864

Liability 0.3513 1 0.7873

GDP 0.3864 0.7873 1

5.7.2 Reinsurance Premiums

In this subsection, we consider the reinsurance contract as defined in Equation (5.79) and

derive analytical expressions of the reinsurance premiums under different premium principles.

Proofs of the propositions in this section are relegated to Appendix 5A.

Expectation Premium Principle

Under the expectation premium principle, namely Πe = (1 + θ)E(τL[a,b]), we can calculate

the reinsurance premium according to Proposition 5.7.1.

Proposition 5.7.1. Under the expectation premium principle, the reinsurance contract

τL[a,b], defined as Equaiton (5.79), has the premium Πe expressed as

Πe = τ(1 + θ)

{
(b− a) + (µx − b)Φ

(
b− µx
σx

)
− σxφ

(
b− µx
σx

)
−(µx − a)Φ

(
a− µx
σx

)
+ σxφ

(
a− µx
σx

)}
. (5.80)

Standard Deviation Premium Principle

When we consider the standard deviation premium principle, i.e., Πsd = E(τL[a,b])+θ
√

Var(τL[a,b]),

the reinsurance premium is calculated according to Proposition 5.7.2.
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Table 5.8: Normality test results. Both univariate normality tests and multivariate normality
tests are performed for the data. Significant level of the tests is 0.05.

Univariate Normality Test

Test Name Variable Statistic p-value Result

“Shapiro-Wilk’s”

Loss 0.8679 0.0729 3

Liability 0.8954 0.1623 3

GDP 0.9501 0.6448 3

“Cramer-von Mises’s”

Loss 0.1006 0.0955 3

Liability 0.0848 0.1600 3

GDP 0.0377 0.6924 3

“Kolmogorov-Smirnov’s”

Loss 0.2296 0.1078 3

Liability 0.2084 0.2004 3

GDP 0.1593 0.6069 3

“Anderson-Darling’s”

Loss 0.6121 0.0824 3

Liability 0.4964 0.1666 3

GDP 0.2452 0.6896 3

Multivariate Normality Test

Test Name Statistic p-value Result

“Mardia’s”
Skewness 7.7241 0.6558

3
Kurtosis -0.9971 0.3187

“Henze-Zirkler’s” HZ 0.6455 0.1506 3

“Royston’s” H 5.1092 0.1579 3
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Proposition 5.7.2. Under the standard deviation premium principle, the reinsurance con-

tract τL[a,b], defined as Equation (5.79), has the premium Πsd expressed as

Πsd = τL1 + τθ
√
L2 − (L1)2, (5.81)

where

L1 = E(L[a,b]) = (b− a) + (µx − b)Φ
(
b− µx
σx

)
− σxφ

(
b− µx
σx

)
−(µx − a)Φ

(
a− µx
σx

)
+ σxφ

(
a− µx
σx

)
. (5.82)

L2 = E
(
(L[a,b])

2
)

= σx(µx − a)φ

(
a− µx
σx

)
−
(
(µx − a)2 + σ2

x

)
Φ

(
a− µx
σx

)
+ (b− a)2

+
(
(µx − a)2 + σ2

x + (b− a)2
)
Φ

(
b− µx
σx

)
+ σx(2a− b− µx)φ

(
b− µx
σx

)
. (5.83)

Esscher’s Premium Principle

In the context of Esscher premium principle, namely, Πess = τ
E
(
exp(θτL[a,b])L[a,b]

)
E
(
exp(θτL[a,b])

) , the

reinsurance premium can be written according to Proposition 5.7.3.

Proposition 5.7.3. Under the expectation premium principle, the reinsurance contract

τL[a,b], defined as Equaiton (5.79), has the premium Πess expressed as

Πess =

eθτ (µx−a)+ 1
2
θ2τσ

2
x
{
σx
[
φ
(a−µx−θτσ2

x
σx

)
− φ

( b−µx−θτσ2
x

σx

)]
+

(µx − a+ θτσ
2
x)[Φ

( b−µx−θτσ2
x

σx

)
− Φ

(a−µx−θτσ2
x

σx

)
]
}

+ (b− a)eθτ (b−a)[1− Φ
( b−µx

σx

)
]

Φ
(a−µx

σx

)
+ eθτ (b−a)[1− Φ

( b−µx
σx

)
]

+ eθτ (b−a)+ 1
2
σ2
xθ

2
τ [Φ
( b−µx−θτσ2

x
σx

)
− Φ

(a−µx−θτσ2
x

σx

)
]

,(5.84)

where θτ = τθ.

Distortion Premium Principle

Recall that the distortion premium principle is defined as Πd =
∫∞

0
g
(
SL[a,b]

(u)
)
du. Also

note that the survival function of random variable, L[a,b], can be written as

SL[a,b]
(u) =

Sx(u+ a) 0 ≤ u < b− a,

0 u ≥ b− a,
(5.85)
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therefore,

Πd =

∫ b

a

g
(
SX(u)

)
du. (5.86)

In this study, we consider a class of distortion function called Beta transform, defined as

ga,b(u) = β(a, b;u) =
Γ(a+ b)

Γ(a)Γ(b)

∫ u

0

ta−1(1− t)b−1dt. (5.87)

This distortion function has the form of incomplete beta function (Hogg and Klugman, 1984).

Wirch and Hardy (1999) consider the beta distortion family in the context of distortion

risk measures and discuss its advantage of utilising the whole loss distribution rather than

focusing entirely on the tail as CTE, which is desirable for capital adequacy.

Moreover, the Beta distortion family includes two important distortion functions that are

widely used in the insurance premium principles as its special cases: PH transform and Dual

power transform. To be more specific, if we set a = 1, we get dual power transform with

θ = b:

gθ(u) = 1− (1− u)θ, θ ≥ 1; (5.88)

while if we set b = 1, we get PH transform with θ = 1/a:

gθ(u) = u
1
θ , θ ≥ 1. (5.89)

Multivariate Weighted Premium

We derive the reinsurance premium under a general multivariate normal distribution setting.

Assume that our k-dimensional auxiliary vector follows a joint normal distribution, namely,

Y = (Y1, . . . , Yk)
T ∼ Nk(µY ,ΣY ) and further assume that X and Y also follow multivariate

normal distribution, namely,

(Y , X)∼ Nk+1(µ,Σ),

where

µY = (µ1, . . . , µk)
T ,

µ = (µY , µx)
T = (µ1, . . . , µk, µx)

T ,

Σ =

ΣY , σY X

σTY X σ2
x

 .
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let us now denote α = (α1, . . . , αk)
T ,y = (y1, . . . , yk)

T . In this chapter we are particularly

interested in two types of weighting functions, linear weighting function and exponential

weighting function.

• Linear weighting function:

wl(y) = α0 +αTy. (5.90)

• Exponential weighting function:

we(y) = eα0+αTy. (5.91)

The k-dimensional weighted reinsurance premiums with the two types of weighting functions

are expressed in Proposition 5.7.4 and Proposition 5.7.5.

Proposition 5.7.4. Under the multivariate weighted premium principle, with the weight-

ing random vector Y and the weighting function wl(y) in Equation (5.90), the reinsurance

contract τL[a,b], defined as Equaiton (5.79), has the premium Πwl(X,Y) expressed as

Πwl(X,Y) = (µx − a+
σ2
xβ1

α0 +αTµY
)

{
Φ

(
b− µx
σx

)
− Φ

(
a− µx
σx

)}
(b− a)

{
1− Φ

(
b− µx
σ

)}
+ σx

{
φ

(
a− µx
σx

)
− φ
(
b− µx
σx

)}
, (5.92)

where

β1 =
αTσY X
σ2
x

.

Proposition 5.7.5. Under the multivariate weighted premium principle, with the weight-

ing random vector Y and the weighting function we(y) in Equation (5.91), the reinsurance

contract τL[a,b], defined as Equaiton (5.79), has the premium Πwe(X,Y) expressed as

Πwe(X, Y ) = σx
[
φ

(
a− µx − αTσY X

σx

σx

)
− φ
(
b− µx − αTσY X

σx

σx

)]
+(µx − a+αTσY X)

[
Φ

(
b− µx − αTσY X

σx

σx

)
− Φ

(
a− µx − αTσY X

σx

σx

)]
+(b− a)

[
1− Φ

(
b− µx − αTσY X

σx

σx

)]
. (5.93)
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5.8 Empirical Results

5.8.1 Parameter Estimation

In this section, we estimate the parameters for different premium principles presented in

Section 5.7.2 using least square method. The estimated results are listed in Table 5.9. It

is interesting to note from the estimated results that for the distortion premium principle,

a is estimated to be 1, so that the Beta distortion function degenerates to the dual power

distortion function. In fact, we can get exactly the same estimating result when we use the

dual power distortion function. This result shows that compared to the PH transform, the

dual power distortion function is more suitable to our data.

Table 5.9: Estimating results for different premium principles using least square method.2.

Premium Principles Parameter Value

Expectation θ 0.0722

Standard Deviation θ 0.1753

Esscher’s θ 0.1963

Distortion
a 1.0000

b 1.1492

Linear Weighted
α1 45.1216

α2 7.3767

Exponential Weighted
α1 3.6628

α2 5.7589

To reduce the number of parameters to estimate, we restrict α0 = 0 in the linear weighted premium and
the exponential weighted premium.

5.8.2 Pricing Results

In this subsection, we study the features of different premium principles. Let us consider the

XoL reinsurance contract, L[a,a+h), defined in Equation (5.79), where b is set to be a+h. We

increase the attachment level a from 0 up to 550 with 50 increments and fix h = 50. The

very last contract has no limit, therefore the reinsurers will cover every loss greater than

550. Using the parameters estimated in Section 5.8.1, the pricing results are displayed in

Table 5.10 and Figure 5.1.
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One of the most important insights to our empirical pricing results is that by integrating

information from the auxiliary variables, for example the liabilities and Canadian GDP as

in this study, the resulting Weighted Premium Principle is able to adjust more risk loading

at higher layers of reinsurance contracts. In contrast, the Expectation Premium Principle

attaches too high loading at lower layers while not enough risk loading at higher layers.

For example, for the first contract, L[0,50), the premiums is 52.3616 under the Expectation

Premium Principle and 50.0203 under the Standard Deviation Premium Principle. How-

ever, it might be unreasonable to charge higher than the capped risk. The Exponential

Weighted Principle gives reasonable loading for lower layers while increases the risk load-

ing for higher layers. Comparing these premium principles, we find the Esscher’s Premium

Principle charges lowest premiums and the Expectation Premium Principle charges the sec-

ond lowest. Distortion, Linear Weighted and Standard Deviation Premium Principle have

similar risk loading on the layer contracts, which are higher than Esscher’s and Expectation

Premium Principles and lower than the Exponential Weighted Premium Principle.

Table 5.10: Pricing results for different layer contracts under each premium principle. Each
row shows the layer of the contract while the columns show the results for different pre-
mium principles. “Expectation” stands for Expectation Premium Principle, “SD” represents
Standard Deviation Premium Principle, “Esscher” stands for Esscher’s Premium Principle,
“Distortion” is for Distortion Premium Principle, “L-Weighted” means Linear Weighted
Premium Principle, and “E-Weighted” stands for Exponential Weighted Premium Principle.

Contract Expectation SD Esscher Distortion L-Weighted E-Weighted

[0, 50) 52.3616 50.0203 48.9200 49.3281 49.2954 49.5786

[50, 100) 50.0255 48.6513 46.9001 47.7516 47.7404 48.5630

[100, 150) 45.2246 45.1156 42.7122 44.0454 44.1845 46.0326

[150, 200) 37.4290 38.6477 35.7847 37.3487 37.8255 41.0522

[200, 250) 27.4260 29.6621 26.6419 28.0297 28.9159 33.3066

[250, 300) 17.2827 19.9288 17.0605 18.0145 19.1207 23.7875

[300, 350) 9.1545 11.5845 9.1485 9.6738 10.6619 14.5425

[350, 400) 4.0074 5.8421 4.0314 4.2689 4.9194 7.4469

[400, 450) 1.4321 2.6058 1.4431 1.5315 1.8528 3.1434

[450, 500) 0.4141 1.0629 0.4167 0.4436 0.5642 1.0812

[500, 550) 0.0963 0.4102 0.0966 0.1032 0.1379 0.3005

[550,∞) 0.0209 0.1952 0.0216 0.0224 0.0317 0.0810

As a special section in Property & Casualty (re)insurance, agricultural reinsurance also

pays special attention to managing catastrophic losses due to disasters leading to extremely

high layers. In fact, agricultural insurers and reinsurers bear higher loss ratios than other
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Figure 5.1: Premiums for different layer contracts under each premium principles.

lines of business in P & C sectors due to additional exposure to weather risks and spatially

correlation geographical risks. Therefore, it is of great interest to study the relative risk

loading (RRL) at higher layers of the contracts (Definition 5.4.3). As stated before, for any

premium principle, the premium for the risk X, Π(X), can always be written as

Π(X) = E(X) + θ(X), (5.94)

where θ(X) is the risk loading of the premium Π(X). Therefore, RRL− 1 = lim
h→0

Θ(L(x,x+h])

E(L(x,x+h])
compares the risk loading at each level of contract layer to the net premium. Higher RRL

indicates more risk-adjusted loading to the layer relative to the net premium.

In our empirical analysis, we select a small value of h = 10 and display the results for the

RRL in Figure 5.2. We can see that the Expectation Premium Principle has a constant

RRL = 1.0722, which is the value of θ in Equation (5.80). This means that the Expectation

Premium Principle fails to allow more relative loading at higher levels. The RRL of Esscher’s

Premium Principle is vary close to1 and stays almost the same for all the layers of contracts.

Actually, as shown in Corollary 5.4.2, when h 7→ 0, RRL of Esscher’s transform is 1. It is

disadvantageous of the Esscher’s Premium Principle because essentially it does not charge
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any extra loading to the risk in addition to the net premium for higher layers.

It is also interesting to compare the RRL values of the Standard Deviation Premium Principle

(RRLSD) and the Exponential Weighted Premium Principle (RRLE-Weighted). We find that at

lower layers RRLSD > RRLE-Weighted. However, at some point the two RRL lines come across

and then RRLSD < RRLE-Weighted. Therefore, Exponential Weighted Premium Principle

is able to assign higher Relative loading at higher layers compared to Standard Deviation

Premium Principle.
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Figure 5.2: Relative risk loading for different layer contracts under each premium principles.

5.8.3 Profit and Loss Analysis

In this section, we perform a simple case study with a hypothetical long term profit &

loss analysis for the reinsurance companies based on each premium principle. To proceed,

we assume that in each of the future 10 years (i.e., 2012 - 2021), the reinsurers collect

premiums, pay the indemnities, and invest the profits in stocks offering lognormal returns,

with annual parameters µS = 0.05 and σS = 0.2. We further assume that the risk free rate
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of return is rf = 0.9%3. Figure 5.3 shows the simulated densities of the 10-year profits of the

reinsurance companies under different premium principles, with negative values indicating

loss and positive values indicating profits. Statistical summary and the histograms of the

simulation results are summarized in Table 5.11 and Figure 5.4.

A major objective of agricultural reinsurance companies is to stabilize their cash-flows and

long-term revenue in the presence of adverse weather events. The profit & loss analysis results

highlight the advantage of the new proposed multivariate weighted premium principle for

reinsurers to achieve this goal. As shown in Figure 5.3, the density curve of exponential

weighted premium principle locates on the right of the the other densities. Table 5.11

shows that the exponential weighted premium principle is able to achieve the highest VaR

and CTE compared to the other premium principles. This is mostly because, as discussed

in Section 5.8.2, by integrating auxiliary variables into reinsurance pricing, multivariate

weighted premium principle is able to assign higher risk loadings to more risky contracts,

therefore, in general attain better profit to reinsurance companies in the long-run.
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Figure 5.3: 10-year profit under each premium principles.

3The parameters are selected as a enlightening example. The risk free rate of return is based on the
annual average yield of Treasury bill in Canada in 2014. Other appropriate discount factor can also be
selected.
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Table 5.11: Summary statistics of the profit simulation results (Unit: Million CAD$). Re-
sults are based on 100,000 times simulation.

Mean SD CV Skewness Kurtosis VaR CTE

Expectation 80.52 169.19 2.10 -0.52 5.69 -207.35 -326.84

Standard Deviation 144.88 175.22 1.21 -0.20 5.13 -142.81 -252.74

Esscher 104.15 169.36 1.63 -0.41 5.22 -181.61 -297.66

Distortion 92.79 168.98 1.82 -0.44 5.21 -195.79 -310.12

Linear Weighted 121.29 172.36 1.42 -0.32 5.20 -164.37 -280.16

Exponential Weighted 275.52 189.55 0.69 0.28 4.78 -17.99 -116.69

5.9 Conclusion

Previous research indicates that it is necessary to integrate auxiliary variables into the

ratemaking process to refine the pricing framework. This chapter proposes a new pre-

mium principle based on multivariate weighted distribution to provide a formal approach

of weighting auxiliary variables in the historical loss experience. Some desirable properties

of the premium based on multivariate weighted distributions are derived. In addition, the

economic premium principle discussed in Bühlmann (1980) and the Esscher’s premium are

special cases of the framework proposed in this chapter. An application to the reinsurance

experience in Manitoba from 2001 to 2011 reveals that integrating liability and economic

variables into the pricing framework redistributes premium rates, assigning higher loadings

to more risky layers of contracts and hence achieves more sustainable long-term profits.

5A Appendix: Proofs of Propositions in Section 5.7

5A.1 Proof of Proposition 5.7.1

First we define the indicator function IA as

IA =

1, x ∈ A,

0, x /∈ A.
(5A.95)
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Note that E(L[a,b]) = E
(
(X−a)I{a≤X<b}

)
+E
(
(b−a)I{X≥b}

)
, and X ∼ N(µx, σ

2
x), hence,

E
(
(X − a)I{a≤X<b}

)
=

∫ b

a

(x− a)
1√

2πσx
e
− (x−µx)2

2σ2x dx

y=x−µx
σx=

∫ b−µx
σx

a−µx
σx

(µx − a+ σxy)
1√
2π
e−

y2

2 dy

= σx[φ

(
a− µx
σx

)
− φ
(
b− µx
σx

)
]

+(µx − a)[Φ

(
b− µx
σx

)
− Φ

(
a− µx
σx

)
]. (5A.96)

E
(
(b− a)I{X≥b}

)
= (b− a)[1− Φ

(
b− µx
σx

)
]. (5A.97)

E(L[a,b]) = (b− a) + (µx − b)Φ
(
b− µx
σx

)
− σxφ

(
b− µx
σx

)
−(µx − a)Φ

(
a− µx
σx

)
+ σxφ

(
a− µx
σx

)
. (5A.98)

Therefore, the reinsurance premium under the expectation premium principle is

Πe = τ(1 + θ)E(L[a,b])

= τ(1 + θ)

{
(b− a) + (µx − b)Φ

(
b− µx
σx

)
− σxφ

(
b− µx
σx

)
−(µx − a)Φ

(
a− µx
σx

)
+ σxφ

(
a− µx
σx

)}
. (5A.99)

5A.2 Proof of Proposition 5.7.2

Note that E
(
(L[a,b])

2
)

= E
(
(X − a)2I{a≤X<b}

)
+ E
(
(b− a)2I{X≥b}

)
, hence,

E
(
(X − a)2I{a≤X<b}

)
=

∫ b

a

x2 1√
2πσx

e
− (x−µx)2

2σ2x dx− 2a

∫ b

a

x
1√

2πσx
e
− (x−µx)2

2σ2x dx

+a2

∫ b

a

1√
2πσx

e
− (x−µx)2

2σ2x dx.
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Specially,∫ b

a

x2 1√
2πσx

e
− (x−µx)2

2σ2x dx = (µ2
x + σ2

x)

{
Φ

(
b− µx
σx

)
− Φ

(
a− µx
σx

)}
+σx(a+ µx)φ

(
a− µx
σx

)
− σx(b+ µx)φ

(
b− µx
σx

)
,(5A.100)∫ b

a

x
1√

2πσx
e
− (x−µx)2

2σ2x dx = µx

{
Φ

(
b− µx
σx

)
− Φ

(
a− µx
σx

)}
−σx

{
φ

(
b− µx
σx

)
− φ
(
a− µx
σx

)}
. (5A.101)

Therefore,

E
(
(X − a)2I{a≤X<b}

)
=

(
(µx − a)2 + σ2

x

){
Φ

(
b− µx
σx

)
− Φ

(
a− µx
σx

)}
+φ

(
b− µx
σx

)
(2a− b− µx)σx + φ

(
a− µx
σx

)
(µx − a)σx,(5A.102)

and hence,

E
(
(L[a,b])

2
)

=
(
(µx − a)2 + σ2

x

)
Φ

(
b− µx
σx

)
+ σx(µx − a)φ

(
a− µx
σx

)
+ (b− a)2

−
(
(µx − a)2 + σ2

x + (b− a)2
)
Φ

(
a− µx
σx

)
+ σx(2a− b− µx)φ

(
b− µx
σx

)
.(5A.103)

For notation simplicity, let us denote L1 = E(L[a,b]) and L2 = E
(
(L[a,b])

2
)
, then Var(L[a,b]) =

L2− (L1)2, and combining Equation (5A.98) and (5A.103), we can see that Equation (5.81)

holds.

5A.3 Proof of Proposition 5.7.3

Recall that

Πess = τ
E
(
exp(θτL[a,b])L[a,b]

)
E
(
exp(θτL[a,b])

) , (5A.104)
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where θτ = θτ . We calculate the two parts in the fraction separately.

E
(
exp(θτL[a,b])L[a,b]

)
=

∫ b

a

(x− a)eθτ (x−a) 1√
2πσx

e
− (x−µx)2

2σ2x dx+ (b− a)eθτ (b−a)E
(
I{X≥b}

)
,

E
(
exp(θτL[a,b])

)
= E

(
I{X<a}

)
+

∫ b

a

eθτ (x−a) 1√
2πσx

e
− (x−µx)2

2σ2x dx+ eθτ (b−a)E
(
I{X≥b}

)
.

Specially, consider
∫ b
a
(x− a)eθτ (x−a) 1√

2πσx
e
− (x−µx)2

2σ2x dx =

∫ b

a

(x− µx)eθτ (x−a) 1√
2πσx

e
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2σ2x dx+

∫ b
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2πσx

e
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2σ2x dx
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σx
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(
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2
x)
) 1√

2π
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(y−θτ σx)2
2

+ 1
2
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2
xdy

= σxe
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2
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2
x
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v
1√
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2
x)e
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2
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2
x
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1√
2π
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2 dv

where v = y − θτσx, a1 =
a− µx − θτσ2

x

σx
and b1 =

b− µx − θτσ2
x

σx
,

= eθτ (µx−a)+ 1
2
θ2τσ

2
x
[
σx
(
φ(a1)− φ(b1)

)
+ (µx − a+ θτσ

2
x)
(
Φ(b1)− Φ(a1)

)]
, (5A.105)

and similarly∫ b

a

eθτ (x−a) 1√
2πσx

e
− (x−µx)2

2σ2x dx = eθτ (µx−a)+ 1
2
θ2τσ

2
x
(
Φ(b1)− Φ(a1)

)
. (5A.106)

Therefore,

E
(
exp(θτL[a,b])L[a,b]

)
= eθτ (µx−a)+ 1

2
θ2τσ

2
x

{
σx
[
φ

(
a− µx − θτσ2

x

σx

)
− φ
(
b− µx − θτσ2

x

σx

)]
+(µx − a+ θτσ

2
x)
[
Φ

(
b− µx − θτσ2

x
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)
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1− Φ

(
b− µx
σx
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, (5A.107)

E
(
exp(θτL[a,b])

)
= eθτ (µx−a)+ 1

2
θ2τσ

2
x
[
Φ

(
b− µx − θτσ2

x

σx

)
− Φ

(
a− µx − θτσ2

x

σx

)]
+Φ

(
a− µx
σx

)
+ eθτ (b−a)

[
1− Φ

(
b− µx
σx

)]
. (5A.108)

Combining Equaitions (5A.104), (5A.107) and (5A.108), we can get the expression of the

premium as in Equation (5.84).
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5A.4 Proof of Proposition 5.7.4

Since Y ∼ N(µY ,ΣY ), obviously,

E(wl(Y )) = α0 +αTµY . (5A.109)

Also note that E(wl(Y )L[a,b]) = E(wl(Y )(X−a)I{a≤X<b})+E(wl(Y )(b−a)I{X≥b}), we consider

the two parts separately. To proceed, let us first consider the distribution of Y conditional

on X = x. It is not difficult to show that Y |X = x∼ N(µ̆, Σ̆), where µ̆ = µY + σY X
σ2
x

(x−µx)
and Σ̆ = ΣY − σY XσY X

T

σ2
x

. Therefore, α0 + αTY |X = x ∼ N(µ̃, Σ̃), where µ̃ = α0 +

αT µ̆, Σ̃ = αT Σ̆α. Also note that α0 + αT µ̆ = α0 + αTµY + αTσY X
σ2
x

(x − µx), for notation

simplicity, we denote β0 = α0 +αTµY − αTσY X
σ2
x

µx and β1 = αTσY X
σ2
x

, and hence µ̃ = β0 +β1x.

Therefore,

E(wl(Y )(X − a)I{a≤X<b}) = E
(
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)
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Also note that the expressions of E
(
(X−a)I{a≤X<b}

)
and E

(
(X−a)2I{a≤X<b}

)
can be obtained

from Equations (5A.96) and (5A.102), hence,
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)
− Φ

(
b− µx
σx

)]
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)
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Therefore,
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)
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. (5A.110)
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Also note that β0 + β1µx = α0 + αTµY , Combining Equations (5A.109) and (5A.110), we

can show that

Πwl(X, Y ) = σx

{
φ

(
a− µx
σx

)
− φ
(
b− µx
σx

)}
+ (µx − a)

{
Φ

(
b− µx
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)
− Φ

(
a− µx
σx

)}
(b− a)

{
1− Φ

(
b− µx
σ

)}
+

σ2
xβ1

α0 +αTµY

{
Φ

(
b− µx
σx

)
− Φ

(
a− µx
σx

)}
,(5A.111)

and hence Equation (5.92) holds.

5A.5 Proof of Proposition 5.7.5

Since αTY ∼ N(αTµY ,α
TΣYα)

E
(
we(Y )

)
= E

(
eα0+αTY

)
= exp

(
α0 +αTµY +

1

2
αTΣYα

)
. (5A.112)

Additionally, from the proof of Proposition 5.7.4, we have

E
(
we(Y )|X

)
= exp

(
β0 +

1

2
Σ̃ + β1X

)
= κeβ1X ,

where
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(
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Also note that E
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)
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)
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)
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Equation (5A.105), we have
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+ (µx − a+ β1σ

2
x)
(
Φ(b̃)− Φ(ã)

)]
E
(
wl(Y )(b− a)I{X≥b}

)
= κ(b− a)eβ1µx+ 1

2
β2
1σ

2
x(1− Φ(b̃)),
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where ã =
a− µx − β1σ

2
x

σx
, b̃ =

b− µx − β1σ
2
x

σx
, hence,

E
(
we(Y )L[a,b]

)
= κeβ1µx+ 1

2
β2
1σ

2
x

{
σx
[
φ

(
a− µx − β1σx

σx

)
− φ
(
b− µx − β1σx

σx

)]
+(µx − a+ β1σ

2
x)
[
Φ

(
b− µx − β1σx

σx

)
− Φ

(
a− µx − β1σx

σx

)]
+(b− a)

[
1− Φ

(
b− µx − β1σx

σx

)]}
. (5A.113)

Also note that κeβ1µx+ 1
2
β2
1σ

2
x = E

(
we(Y )

)
, therefore,

E
(
we(Y )L[a,b]

)
E
(
we(Y )

) = σx
[
φ

(
a− µx − β1σx

σx

)
− φ
(
b− µx − β1σx

σx

)]
+(µx − a+ β1σ

2
x)
[
Φ

(
b− µx − β1σx

σx

)
− Φ

(
a− µx − β1σx

σx

)]
+(b− a)

[
1− Φ

(
b− µx − β1σx

σx

)]
,

and Equation (5.93) holds.
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Chapter 6

Conclusions and Future Work

Directions

6.1 Review and Conclusions

The main objective of this thesis is to propose actuarially sound ratemaking frameworks

for pricing agricultural insurance. This is one of the key elements in ensuring the long-

term sustainability of the agricultural insurance and reinsurance programs. In general, this

thesis develops and evaluate three high dimensional approaches for agricultural insurance

pricing and risk management, including two credibility approaches, a LSHAC approach, and

a multivariate weighted distribution approach.

In order to enhance the crop (re)insurance pricing framework, we provide systematic discus-

sion on the issues associated with small sample on yield distribution modeling and overcome

this obstacle by extending the classic Bühlmann-Straub credibility model and proposing a

credibility-based Erlang mixture model to improve the goodness-of-fit and reinsurance pric-

ing. Following this work, we also propose a new credibility estimator, by expanding the

traditional regression credibility model, to improve crop yield forecasting and crop reinsur-

ance pricing. It is shown theoretically that this new credibility estimator has some appeal-

ing statistical properties including unbiasedness and smaller mean quadratic loss. Within

this framework, high dimensional spatially correlated weather variables are integrated into

the pricing system by developing comprehensive model selection algorithms that combine

Cross-validation (CV) and principle component analysis (PCA) so that the in-sample and

out-of-sample forecasting abilities are improved substantially.
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Copula models are commonly used in high-dimensional modelling and have been studied

extensively empirically in agricultural insurance modelling. However, most research has

typically focused on linear correlation dependence involving the Gaussian copulas. In this

thesis, we improve the dependence modeling of temperature processes in Canada with Lévy

subordinated Archimedean copula (LSHAC) models. We develop a three-stage estimating

procedure for LSHAC with special attention on the estimation of the hierarchical structure

of the data. The empirical analysis shows that compared to traditional Gaussian copulas,

LSHAC has better fitting ability and more flexibility in modeling the tail dependence. To

capture the heavy tail property of the regional temperature data, non-Gaussian distributions

(such as Variance Gamma (VG), Normal-Inverse Gaussian (NIG), etc.) are employed. This

is the first time that LSHACs are used to model weather risk. Several hedging strategies

are developed and compared. Some important findings of this research include: (1) optimal

hedging strategies can be achieved by choosing an appropriate geographical level of aggre-

gation; (2) using a basket of derivatives from diverse locations could lead to more efficient

hedging strategies.

Previous research indicates that it is necessary to integrate auxiliary variables in to the

ratemaking process to refine the pricing framework. This thesis proposes a new premium

principle based on multivariate weighted distribution to provide a methodology of weighting

other variables in the historical loss experience. We derived some desirable properties of the

premium based on multivariate weighted distributions. In addition, the economic premium

principle discussed in Bühlmann (1980), and the Esscher principle are special cases of the

framework proposed in this thesis. An application to the reinsurance experience in Manitoba

from 2001 to 2011 reveals that including liability and economic variables into the pricing

framework will redistribute premium rates, assigning higher loadings to more risky layers of

contracts and hence achieve more sustainable profits in the long term.

6.2 Areas of Future Work

6.2.1 Factor Models for Crop Yields Forecasting

A good crop yield forecasting model is essential for achieving an accurate loss predicting,

hence an actuarially fair premium, therefore, it is of critical importance to construct a

sustainable agricultural insurance and reinsurance programs. One important future work

direction is to investigate efficient and accurate crop yield forecasting model using factor

models.
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High dimensional static and dynamic factor models have been widely utilized in macroe-

conomics, especially in the data rich environment where the data are over short period of

time but have a large cross section. Therefore, factor models are promising for crop yield

prediction since the agricultural data have many variables to be considered including crop

types, soil, temperature, rainfall, etc (Borman et al., 2013). Yet there are very limited lit-

erature investigating these models in crop yield forecasting. Therefore, in order to improve

the forecasting abilities, rich volume of weather data will be integrated into the model with

high-dimensional static and dynamic factor models for crop yields modeling. In particular,

the identification theory for high-dimensional static and dynamic factor models through lin-

ear and non-linear restrictions by Bai and Wang (2014) will be used to facilitate structural

analysis of factor models with a large number of parameters.

6.2.2 Utility-based Credibility Pricing Model

The utility premium measures risks by imposing a corporate utility function in risk premium

to specify the risk preference and rate levels. Let us assume that U(w) is the utility function

of an insurer with current wealth level w, and let X be the random variable representing the

loss, then the utility premium π can be calculated according to the principle

U(w) = E[U(w + π −X)]. (6.1)

Obviously, if we define a new wealth level, ω = w + π, then equation (6.1) can be rewritten

as

U(ω − π) = E[U(ω −X)]. (6.2)

Given the risk aversion assumption which implies the monotonicity and convexity of the

utility function, we have:

U(ω − π) = E(U(ω −X)) ≤ U(E(ω −X)) = U(ω − E(X)), (6.3)

which leads to

π ≥ E(X). (6.4)

Therefore, premiums constructed from the utility theory satisfy the risk loading prop-

erty.
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From the definition in Equation (6.2), we are interested in finding an estimator π̂ such that

U(ω − π̂) is as close to U(ω − π) as possible. Arising from this objective, we calculate

the premium by estimating a vector of parameters α = (α0, α1, . . . , αn)′ from the following

optimization problem

argmin
α
E[U(w − π̂)− U(w − π)]2 (6.5)

where

π̂ = α0 +
n∑
i=1

αiXi.

We can see in this set-up, the traditional credibility theory is combined with the utility theory.

We call the resulting premium Utility-Credibility Premium. There are several advantages in

doing so. First, the risk preference of the insurer is considered in the ratemaking procedure.

Since different insurers have diverse preference of misspecification of the insurance premiums

(both over pricing or under pricing), there exist systemic pricing risk without taking this into

consideration. Second, binding the utility function into rating system potentially providing

more economic interpretation of the inherent loss random variables. For example, assume

the individual utility function has an exponential form, i.e., U(W ) = e−ρW , where ρ is

defined as the risk aversion of the individual, then we can see that higher moments of

the loss distribution are considered since basically we are considering the MGF of the loss

distribution.

6.2.3 Basis Risk Decomposition for Index-based Insurance (IBI)

A lot of recent research has focused on weather index-based insurance (IBI) as an alterna-

tive to traditional indemnity-based insurance in order to avoid the moral hazard and adverse

selection. However, a major difficulty for IBI is the basis risk, which is referred to the imper-

fect correlation between the risk exposures and instruments used to hedge the corresponding

risks. Basis risk is cited as a primary concern in agricultural risk management (Brockett

et al., 2005; Turvey et al., 2006). There are three key resources of basis risk in agricultural

IBI.

• Variable Basis Risk: When weather variables used for hedging and the loss exposures

are from the same geographic region, the basis risk exists because of the imperfect

correlation between the hedging instrument and liability being hedged. Therefore, it

is critical to come up with a good model that describe the correlation between crop

yields and weather variables.
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• Contract Basis Risk: In theory, the insurer needs to design an optimal index insur-

ance product (we refer to this contract as “local contract”) for every farmer/producer

in the business, in order that every contract sold protects the actual loss of the client.

However, in practice, it is unrealistic and costly, hence, insurers usually provide a uni-

form contract to all farmers within a geographical region (we refer to this contract

as “global contract”). The difference contract designs between the local contract and

global contract will result in contract basis risk.

• Spatial Basis Risk: Spatial basis risk arises when the underwriting risk exposures

locate differently from where the weather indices are tabulated (Brockett et al., 2005).

For example, the standardized weather indices listed at CME include 18 US cities and

6 Canadian cities, meaning that participants of these derivatives face basis risk when

their exposures locate in other areas.

Using a comprehensive and detailed loss experience data set in Manitoba, Canada, it is

possible to study the basis risk from a unique perspective by providing the basis risk decom-

position. Assume that the insurer has a business that contains d farms. Let Yi be crop yield

of farm i and Li be the loss of certain indemnity contract, where i = 1, 2, . . . , d. An example

of the indemnity contract can be Multiple Peril Crop Insurance (MPCI), a broad-based crop

insurance program regulated by the U.S. Department of Agriculture (USDA) and subsidized

by the Federal Crop Insurance Corporation (FCIC). Since the loss of an indemnity contract is

a function of crop yield, we denote it as Li(Yi). We also assume that the insurance company

provides all the farmers the same IBI contract, which is claimed based on the records from

the reference weather stations. To be more specific, the insurance company provides farm

i a global contract I(W r; θg), where W r is the weather record from the reference weather

station, and θg is the parameters of the global contract design. Therefore, the basis risk of

the insurer can be expressed as

BR =
d∑
i=1

||Li(Yi)− I(W r; θg||, (6.6)

where BR is the total basis risk of the insurance company and || · || is the norm used to

quantify the basis risk.

Suppose now that the insurance company has an optimal contract design for each farmer,

Ii(W
l
i ; θ

l
i), then the variable basis risk of the insurer can be expressed as

BRVariable =
d∑
i=1

||Li(Yi)− Ii(W l
i ; θ

l
i||. (6.7)
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In addition, the contract basis risk is

BRContract =
d∑
i=1

||Ii(W l
i ; θ

l
i − I(W l

i ; θ
g)||, (6.8)

and the spatial basis risk is

BRSpatial =
d∑
i=1

||I(W l
i ; θ

g −W r; θg||. (6.9)

Therefore, we have the following basis risk decomposition:

BR = BRVariable +BRContract +BRSpatial + ε, (6.10)

=
d∑
i=1

||Li(Yi)− Ii(W l
i ; θ

l
i||+

d∑
i=1

||Ii(W l
i ; θ

l
i − I(W l

i ; θ
g)||

+
d∑
i=1

||I(W l
i ; θ

g −W r; θg||+ ε, (6.11)

where the error term ε represents other resources of basis risk not contained into this de-

composition.

My Ph.D. research in actuarial ratemaking in agricultural insurance stimulates many other

interesting future work directions. For example, it is appealing to investigate more efficient

estimation procedure for the LHSAC model and apply it in the crop insurance pricing and

risk management. In addition, based on the weather system and model selection algorithms

in Chapter 3, it is promising to develop novel index-based insurance (IBI) products, which

are able to reduce basis risk and moral hazards at the same time. It is also interesting

to develop the optimal reinsurance allocation strategy and an effective public-private risk

sharing partnership, in order to provide a scientific decision making baseline for both insurers

and governments.
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