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Abstract

The ability to perform quantum error correction (QEC) arbitrarily many cycles is a
significant challenge for scalable quantum information processing (QIP). Key requirements
for multiple-round QEC are a high degree of quantum control, the ability to efficiently char-
acterize both intrinsic and extrinsic noise, and the ability to dynamically and efficiently
extract entropy from ancilla qubits. Nuclear Magnetic Resonance (NMR) based quan-
tum devices have demonstrated high control fidelity with up to 12 qubits, and the noise
characterizations can be performed using an efficient protocol known as randomized bench-
marking. One of the remaining challenges with NMR systems is that qubit initialization is
normally only attainable via thermal equilibration. This results in very low polarizations
in reasonable experimental conditions. Moving to electron-nuclear coupled spin systems
in a single crystal is a promising solution to the ancilla qubit preparation problem. One
obvious advantage of incorporating electron spins comes from higher gyromagnetic ratio of
the electron which yields about three orders of magnitude larger thermal spin polarization
than that of nuclear spins in the same experimental condition. In addition, fast control
of nuclear spins is possible provided appropriate level of anisotropic hyperfine interaction
strength. The nuclear spins can be polarized even beyond the thermal electron spin tem-
perature using a technique Heat-Bath Algorithmic Cooling (HBAC). With theoretical ideas
in hand, the next step is to develop classical instrumentations to control electron-nuclear
coupled systems and accomplish high fidelity coherent control. Noise characterizations
are also necessary for benchmarking the quality of control over the electron-nuclear spin
system.

I first present example applications of NMR QIP with small number of qubits: Testing
a foundational question in quantum mechanics and measuring spectral density of noise
in a quantum system. Then I report on our home-built X-band electron spin resonance
(ESR) spectrometer and progress in achieving high fidelity coherent control of electron and
nuclear spins for QIP. We focus on implementing nuclear spin manipulation via anisotropic
hyperfine interaction and microwave (mw) control, but discussions also include electron
nuclear double resonance (ENDOR) control techniques. We perform realistic algorithmic
simulations to show that an experimental cooling of nuclear spins below electron thermal
temperature is feasible, and to present the electron-nuclear spin systems as promising test-
beds for scalable QIP.

iii



Acknowledgements

First and foremost, I thank my supervisor Dr. Raymond Laflamme, and it has been an
honor to be his student. He is an admirable scientist, leader, and teacher who I highly
respect. I am also deeply indebted to my co-supervisor Dr. Jonathan Baugh for his
dedicated work, guidance, unending ideas, and showing a life example of an outstanding
researcher. I must thank Dr. David Cory for his continuous support in the ESR project, and
allowing me to use his facilities and instruments. I am always amazed at and inspired by
his wealth of knowledge in magnetic resonance and quantum information. I also thank my
advisory committee Dr. Adrian Lupascu for his interest in my research, helpful comments
and support, and Dr. Xuedong Hu for agreeing to be the external examiner.

I would like to acknowledge the administrative team at the Institute for Quantum
Computing (IQC) and the Department of Physics and Astronomy that made my graduate
student life much easier and allowed me to focus on scientific research. I especially thank
Wendy Reibel, Carly Turnbull, Matt Cooper, and Judy McDonnell.

I thank Dr. Osama Moussa and Dr. Jingfu Zhang, great mentors, for teaching me
NMR QIP, and Dr. Urbasi Sinha for helpful discussions regarding three-paths interference
project. I must acknowledge Dr. Troy Borneman for sharing his expertise in ESR quantum
computing. His broad and in-depth knowledge in the field has been an invaluable resource
for this work. I would like to thank Roberto Romero for his help with building the ESR
probe, Ivar Taminiau for his technical support in the laboratory, and Hiruy Haile for help
in the student machine shop.

This work would not have been possible without my great colleagues and collaborators.
I thank Dr. Robabeh Rahimi Darabad and Dr. Guanru Feng for their hard work, stimu-
lating discussions, sharing their knowledge and ideas to push the project forward, and for
friendship. I thank Kyle Willick for his collaboration in the noise spectroscopy project,
and being so patient with me as I tried to understand simulation results. I also thank
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7.1 Molecular structure of ĊH(COOH)2 . . . . . . . . . . . . . . . . . . . . . . 89
7.2 ESR transition frequencies vs crystal orientation of the methylene 13C-

labeled malonic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 ESR transition frequencies vs crystal orientation of the per-13C-labeled mal-

onic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 ENDOR spectrum of the carboxyl 13C-labeled sample at a fixed orientation 94
7.5 ESR spectrum of the carboxyl 13C-labeled sample at a fixed orientation . . 94
7.6 Quantum circuit of 3-qubit HBAC using AHC . . . . . . . . . . . . . . . . 98
7.7 Simulation results for 3-qubit HBAC using AHC . . . . . . . . . . . . . . . 99
7.8 Quantum circuit of the 3-qubit HBAC using ENDOR . . . . . . . . . . . . 101
7.9 Simulated spectra for 13Cm-labeled malonic acid and microwave cavity trans-

fer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.10 Simulation results of the 3-qubit HBAC using ENDOR . . . . . . . . . . . 103
7.11 Quantum circuit for 5-qubit HBAC . . . . . . . . . . . . . . . . . . . . . . 104
7.12 Circuit for polarization transfer between the electron and C1,2 . . . . . . . 105
7.13 Theoretical target qubit polarization attainable in 5-qubit HBAC . . . . . 106
7.14 Estimated target qubit polarization in HBAC vs temperature . . . . . . . . 109

xiv



Chapter 1

Introduction

Quantum Information Processing (QIP) has the potential to perform exponentially faster
computation and revolutionize current technology by harnessing systems governed by the
laws of quantum mechanics. The power of QIP over its classical counterpart has already
been demonstrated through several examples such as simulating quantum phenomena [1],
factoring of large numbers [2], and increased speed in database searching [3], with more
breakthroughs of the quantum revolution yet to come. However, when theoretical ideas
are implemented in real physical systems the power of quantum computation can quickly
diminish due to both intrinsic and extrinsic error to which the quantum system is exposed.
Quantum error correction (QEC) is a theory that aims to protect quantum information
against the imperfections of realistic devices, enabling the scaling of quantum processors up
to many qubits. Although a well developed theory exists [4–9] and experimental realizations
at several qubit level are only recently emerging [10–12], there remain challenges for many
potential implementations.

Performing QEC arbitrarily many rounds requires a high degree of quantum control,
efficient noise characterization, and the ability to extract entropy from ancilla qubits effi-
ciently. Nuclear Magnetic Resonance (NMR) quantum information processing has demon-
strated a high control fidelity [13–15] (see [16, 17] for reviews on recent advances and
experiments in NMR QIP) and the ability to efficiently characterize the noise, both intrin-
sic and extrinsic, that affects the fidelity of a quantum processes [18–20]. These devices
are excellent test beds that are available in the lab today for exploring the ideas of quan-
tum control and error correction. A recent solid state NMR experiment has demonstrated
sufficient level of control for two rounds of QEC [10]. However, one piece has been missing:
the ability to efficiently polarize nuclear spin qubits on demand. The threshold theorem
for quantum computation tells us that a quantum circuit can be simulated with a given

1



precision using a polynomial amount of resources as long as the probability of error per
gate p is below a certain threshold value pth [5, 6, 21, 22]. The theorem relies on assuming
that ancilla qubits are in nearly pure states at the beginning of each cycle of fault-tolerant
QEC, and that the state cannot be more mixed than what the accuracy threshold permits.
For example, the first layer of concatenation of QEC typically reduces the effective error
rate from p to cp2, where c is a system-dependent constant. However, this theoretical gain
is not generally achieved for the impure ancilla qubits characteristic of real implementa-
tions [23]. Thus, an efficient and experimentally feasible method for cooling qubits to high
purity prior to each QEC cycle is desirable for all circuit implementations, including those
based on nuclear spins.

Purifying qubits in NMR can be obtained through Heat Bath Algorithmic Cooling
(HBAC) [24–28]. It is an efficient method for extracting entropy from qubits that interact
with a heat bath, allowing cooling below the bath temperature (i.e. beyond the closed-
system, or Shannon bound). In a nutshell, HBAC recurrently applies two steps: Given
n number of system qubits each with polarization ε0, cool n − m qubits by compressing
entropy into m qubits. The polarization of m qubits is exchanged with the heat bath
polarization εb. By repeating these steps, n − m qubits can attain a final polarization
εf that is greater than εb. There is an asymptotic limit for εf that depends on n and
εb. Solid state NMR experiments have demonstrated a sufficient level of coherent control
to iterate few rounds of algorithmic cooling, leading to spin polarizations exceeding the
thermal polarization [29, 30]. However, under typical experimental conditions, the nuclear
spin polarization at thermal equilibrium is very small and therefore precise control of tens
of nuclear spin qubits is required for reaching polarization of order unity on one qubit.

For practical HBAC and QEC, coupled electron-nuclear spin systems are more promis-
ing than conventional NMR Quantum Computing (QC). Due to the electron’s much larger
gyromagnetic ratio compared to nuclei, the electronic thermal spin polarization is about
103 times larger, and spin-lattice relaxation rates scale by a similar factor. Exploiting
the electronic spin-lattice relaxation as a reset operation, the electron can connect a set
of nuclear spins to heat bath with an effective temperature much lower than the initial
nuclear spin temperature. Moreover, when the hyperfine interaction between the electron
and a nucleus is larger than nuclear Zeeman interaction, fast manipulation of the nuclear
spin can be achieved via irradiating only the electron with microwave pulses and using the
anisotropic part of the interaction [31–33].

This thesis is focused on addressing two problems. First is to achieve high fidelity
quantum control of the electron spin. The progress towards achieving high fidelity coher-
ent control of the electron spin in the solid state using home-built electron spin resonance
spectrometer operating at X-band frequency is reported. The ESR spectrometer and a
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customized variable temperature probe are built and used for exploring and benchmark-
ing the coherent control of the electron spin. Second is to see whether the experimental
cooling of a nuclear spin below electron thermal equilibrium temperature can be realized
using HBAC with available electron-nuclear spin systems. We provide detailed studies on
the feasibility of HBAC in the physical system by determining the full spin Hamiltonian
of a five-qubit hyperfine coupled spin system and performing realistic simulations. The
primary aim is to achieve sufficient level of quantum control for cooling of nuclear spins
below electron thermal equilibrium temperature, but the instrumentation and control tech-
niques presented in the thesis can be adapted for implementing other quantum algorithms
requiring similar size of Hilbert space.

The rest of the thesis is organized as follows. Ch. 2 provides background information
relevant to the main theme of the thesis, such as a brief introduction to NMR QIP and
QEC with mixed ancilla qubits. The author contributed in writing reviews on the NMR
QIP that appeared in [16, 34]. Ch. 3 reports two NMR projects that serve as examples
of useful applications of NMR QIP. The first NMR project exploits high degree of con-
trol available in the liquid state NMR QIP and tests the validity of the Born rule, one of
the fundamental postulates of quantum mechanics. This work is published in [35]. The
second project is the on-going study of T1ρ noise spectroscopy, a useful technique for de-
signing a protocol for reducing system-environment interaction. Ch. 4 explains details of
electron-nuclear coupled spin systems and the electron spin resonance spectroscopy that
are relevant for QIP. Ch 5 describes the design of an X-band ESR spectrometer, a loop-gap
resonator, and a variable temperature probe custom-built for controlling electron-nuclear
spin systems. In Ch. 6, the randomized benchmarking is used as a tool to characterize
and improve the microwave control of the electron using the home-built instrumentation.
The benchmarking is performed on irradiated fused quartz, a single-qubit paramagnetic
sample in powder form. Lastly, realistic simulations of heat-bath algorithmic cooling using
a five-qubit electron-nuclear hyperfine coupled spin system is presented in Ch. 7. This
work is published in [36].
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Chapter 2

Backgrounds

2.1 Introduction to NMR quantum computing

In the presence of a static magnetic field, the ground state of a nuclear spin-1/2 undergoes
energy splitting into two spin levels, and quantum information can be encoded in this well-
defined two level system. Nuclear spin-1/2 particles in the presence of a strong magnetic
field are an excellent candidate for quantum information processors for several reasons: the
form of the Hamiltonian of the system is well known, fairly easy to characterize, and the
coherence times are reasonably long. Morever, NMR benefits from years of development
by scientists who used the technology to characterize molecules and proteins, or for med-
ical imaging. Fundamentals of NMR QIP can be expanded to other spin and magnetic
resonance based implementations, such as the electron-nuclear coupled system which is the
main focus of this work. In this section, we briefly introduce the basics of NMR quantum
computing. For further information on NMR QIP, there are excellent references [16, 37, 38].

2.1.1 Liquid state NMR

The natural spin Hamiltonian

Nuclear magnetic resonance arises from the interaction between the nuclear magnetic dipole
moment and an applied magnetic field. The magnetic moment of a nuclear spin whose
observable is described by a spin-1/2 operator I is given as

µ = g
q

2mI = γI, (2.1)
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where g is the g-factor, q is the charge, and m is the mass of the nucleus. In quantum
information science convention, Pauli matrices are often used and the spin-1/2 operator I
can be defined using Pauli matrices as Ii = σi/2, where i ∈ {x, y, z}. The external magnetic
fieldB0 induces currents in the electron clouds, which in turn induces a secondary magnetic
field at the nucleus site, shielding the nuclear spin from the external magnetic field. Hence
the local magnetic field can be written as the sum of the external field and a shift term δ
known as the chemical shift: Bn = (1+δ)B0. Then the magnetic energy of the interaction,
known as Zeeman interaction of the spin under the magnetic field B0 is

Hnz = −µ · (1 + δ)B0. (2.2)

We set ~ = 1 so that all Hamiltonians will appear in angular frequency unit. We define
our coordinate system such that the static magnetic field is applied along the z-axis, and
the spin is quantized along B0 = B0ẑ. In this frame, the Zeeman Hamiltonian for a
nuclear spin can be written as Hnz = −ωnIz, where ωn = (1 + δ)γB0 is the nuclear Larmor
frequency.

For N spin-1/2 nuclei, the relevant internal spin Hamiltonian is given by:

H0 =
N∑
k=1
Hk
nz + 2π

∑
i<j

JijI i · Ij, (2.3)

where Jij is known as J-coupling that induces magnetic interactions between nuclei medi-
ated by electrons that form chemical bonds. The dipole-dipole interactions in the liquid
state average to zero due to fast molecular tumbling. When the difference in chemical
shifts between coupled nuclei are much greater than their respective J-coupling strength,
the weak coupling approximation can be applied and the coupling term between nuclei i
and j becomes 2πJijI izIjz .

Universal control

A single nuclear spin rotation about a transverse axis, that is perpendicular to the quanti-
zation axis, can be realized by applying a radio frequency (RF) control field resonant with
the nuclear Larmor frequency. In the frame that is rotating at nuclear Larmor frequency
(rotating frame), the RF field appears to be static and can be described as

Hc(t) = ωR(t) (cos(φ(t))Ix + sin(φ(t))Iy) , (2.4)

where ωR is the nutation or Rabi frequency and φ is the phase that dictates the axis of ro-
tation in the transverse plane. The internal Hamiltonian in the weak coupling limit enables

5



single qubit rotations about the quantization axis and two qubit controlled-Z gates. Com-
bining the internal Hamiltonian with the control field, universal control can be achieved as
long as the chemical shift and J-coupling parameters allow selective control over all spins
in the system of interest.

Readout process

With today’s NMR technology, it is impossible to detect the magnetic moment of a single
nuclear spin directly. However, a sample with many copies of identical molecules dissolved
in a liquid solvent ideally experience the same field and hence undergo identical quantum
evolution. This is an example of the ensemble quantum computation model in which
the only measurable quantities are expectation values of certain observables. This means
that projective measurement is not available. Since nuclei have magnetic moments, a
nuclear spin that is Larmor precessing around the z-axis creates a magnetic field along the
xy-plane. Time-varying magnetic field in turn induces an oscillating current in the coil
that is positioned perpendicular to the static magnetic field. The detectable transverse
magnetizations can be expressed as:

Mx(t) = Tr (ρ(t)σx) , (2.5)
My(t) = Tr (ρ(t)σy) , (2.6)

where ρ(t) is the density matrix describing the spin and σi represents a Pauli operator. This
signal is called the free-induction decay (FID), and a Fourier transform of the FID produces
an NMR spectrum for further data analysis. The signal decays due to inhomogeneities in
the magnetic field and intrinsic relaxation processes.

2.1.2 Solid state NMR

Solid state NMR (SSNMR) QIP makes use of the techniques developed in LSNMR QIP, and
offers several advantages: the decoherence rates can be made slow using refocusing tech-
niques, while spin-spin couplings much larger than in LSNMR can be exploited to realize
faster quantum gates. Furthermore, SSNMR can be performed at cryogenic temperatures
for providing higher spin polarizations than that is available in the room-temperature liquid
state NMR. Features of the internal Hamiltonian of SSNMR that differ from LSNMR are
the anisotropic chemical shift and dipole-dipole couplings between nuclei. The anisotropic
chemical shift should be described by a second-rank tensor ∆ with 6 independent ele-
ments that represent the magnitude and direction of the chemical shielding. In the secular
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approximation (at large static magnetic field), the form of the dipole-dipole interaction
Hamiltonian depends on whether the interacting spins belong to the same isotopic species
or not, and can be written as follows:

Homonuclear: Hij
D = dij

(
3I izIjz − I i · Ij

)
, (2.7)

Heteronuclear: Hij
D = dij

(
2I izIjz

)
, (2.8)

dij = −~µ0

4π
γiγj
r3
ij

3 cos2 θij − 1
2 , (2.9)

where µ0 is the permeability of free space, γi is the gyromagnetic ratio of spin i, rij is the
distance between interacting spins, and θij is the angle between the vector connecting the
two spins and the external magnetic field. There are also J-couplings in SSNMR, which are
usually an order of magnitude smaller than the dipole-dipole couplings, and for which the
isotropic component cannot be distinguished from dipolar couplings. Nuclei with S > 1/2
interact with external electric field gradients, a phenomenon known as quadrupolar inter-
action. We limit our discussions to spin-1/2 systems, and hence quadrupolar interactions
do not appear in the internal Hamiltonian.

2.1.3 State preparation in ensemble quantum computation

As mentioned in the previous section, NMR QIP is one example of ensemble quantum
computation models, where a set of identical quantum systems is manipulated in parallel.
In this section, we review concepts related to spin polarization and present the challenge
in preparing nearly pure spin qubits.

Spin polarization

For a spin at temperature T , the occupancy of a state with energy E is calculated by the
Gibbs distribution n(E) = exp (−E/kBT ) /Z, where kB is the Boltzmann constant and Z is
the partition function. The polarization ε is defined as the population difference between
two energy levels normalized by the total number of spins. When the Zeeman energy
dominates the energy splitting, the polarization of a spin-1/2 system can be expressed as

ε = n(E0)− n(E1) = tanh
(

∆E
2kBT

)
= tanh

(
~γB0

2kBT

)
, (2.10)

where ∆E is the energy difference between the two levels, γ is the gyromagnetic ratio,
and B0 is the strength of the external magnetic field. The equation 2.10 establishes the
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relationship between polarization and gyromagnetic ratio, magnetic field strength, and
temperature.

When the direction of the applied static magnetic field is defined as z-axis, the density
matrix describing a spin ensemble at thermal equilibrium can be written in the eigenbasis
of σz as

ρ = 1
2

(
1 + ε 0

0 1− ε

)
= 1

2 (1l + εσz) , (2.11)

where 1l is the unit matrix.
The entropy of any single qubit density matrix that can be expressed in the form of

Eq. 2.11 is
S (ρ(ε)) = −1 + ε

2 log2

(1 + ε

2

)
− 1− ε

2 log2

(1− ε
2

)
. (2.12)

This is monotonically decreasing function in |ε|. Therefore, increasing polarization of a
single qubit is equivalent to decreasing the entropy of the single qubit system.

Moreover, the purity of a single qubit state is given by

Tr
(
ρ2 (ε)

)
= 1

2
(
1 + ε2

)
. (2.13)

This is monotonically increasing function in |ε|. Therefore, increasing polarization of a
single qubit is equivalent to increasing the purity of the single qubit system.

Pseudo-pure state

For n spin qubits, the thermal equilibrium state can be transformed to a pseudo-pure
state through non-unitary processes using standard NMR techniques of temporal or spatial
averaging [39, 40]:

ρnpps = (1− α) 1ln + α|ψ〉〈ψ|, (2.14)

α = (1 + ε)n − 1
2n − 1 , (2.15)

where |ψ〉〈ψ| is a pure state, 1ln is 2n × 2n normalized unit matrix, and α quantifies
the purity of the state. A typical NMR experiment operates at B0 ≈ 7 T and room-
temperature in which nuclear spin polarizations are extremely small (ε ≈ 10−5 for proton).
Moreover, preparation of a pseudo-pure state without methods like algorithmic cooling
that can compress entropy suffer from an exponential decrease of signal in the number of
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qubits. For example, the partner pairing algorithm [28] can boost the polarization of a
target spin to εb2n−2, given n number of system qubits and the spin bath with polarization
εb < 2−n [41]. Thus, the algorithmic cooling can compensate for the exponential signal loss
in the number of qubits.

2.2 QEC with mixed ancilla qubits

In [23], augmented error correction is introduced which partially compensates for the error
in ancilla qubits (i.e. in the presence of mixed ancilla qubits). The performance of QEC is
improved so long as the ancilla qubit polarizations are above certain values which depend
on the error correction code. For example, in the conventional 3-qubit QEC code for
phase flip error [22], one can imagine that two ancilla qubits in the NMR experiment are
in mixed states with polarizations ε1 and ε2, respectively. In this case, the probability
amplitude of the lowest energy state of the two qubit has to be greater than 0.5, i.e.
(1 + ε1)(1 + ε2)/4 > 0.5, in order for QEC to suppress the error rate and improve the
fidelity of a state exposed to the noisy channel. If ε1 = ε2 = ε, then ε >

√
2 − 1 ≈ 0.41

must be satisfied. This is far above what can be achieved in a usual NMR setup. One can
imagine having a solid state NMR setup in which the experiment can be carried out at
low temperature. However, in order to meet the polarization requirement given above, the
temperature must be below 17 mK for 1H at a field of 7 T. As the temperature is lowered,
the nuclear T1 relaxation time is increased and therefore the wait time for thermal state
initialization can become impractically long.
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Chapter 3

Example applications of few-qubit
NMR QIP

3.1 Introduction

Despite the difficulties in pure state preparation, NMR is one of the most successful QIP
platform for controlling few-qubit systems allowing developments of new ideas and meth-
ods for understanding and controlling quantum systems. This chapter reports two inter-
esting and useful applications of NMR QIP. The first section presents a liquid state NMR
(LSNMR) experiment designed to test Born’s rule, one of the foundational postulates of
quantum mechanics using three-qubit quantum register. This work demonstrates the ca-
pability of LSNMR QIP for testing fundamental laws of quantum theory. In the second
section, we investigate the strategies to design reliable T1ρ noise spectroscopy [42, 43]. In
the implementation of QIP, probing spectral density of noise is useful for the design and
optimization of protocols for suppressing unwanted qubit-bath interaction. When the noise
is reduced to below the threshold value for QEC, the quantum computation can be carried
out fault tolerantly. T1ρ noise spectroscopy has been studied and used by others [42, 43]
based on the filter function [42, 44–60] and generalized Bloch equation [61] formalism.
These approaches uses weak-coupling assumption between the system and the environ-
ment, and provide correct analysis only upto first order in the spectral density of noise.
Moreover, previous approaches does not include rigorous analysis on the effect of finite
probe bandwidth and inhomogeneous line broadening (T ∗2 ). In our work, we use numerical
simulations and perturbation series [62, 63] to study higher order effects and the finite
probe bandwidth effect to provide more detailed picture that aids one to design reliable T1ρ
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noise spectroscopy experiment. In addition, we examine the effect of the inhomogeneous
line broadening in the experiment.

3.2 Testing Born’s rule using liquid state NMR

Born’s rule is one of the fundamental postulates of quantum mechanics which states that
if a quantum mechanical state is described by a wavefunction ψ(r, t), then the probability
of finding a particle at r in the volume element d3r at time t is [64]

p(r, t)d3r = ψ∗(r, t)ψ(r, t)d3r = |ψ(r, t)|2d3r. (3.1)

Although many experimental results have been implicitly shown to be consistent with
Born’s rule, there have been no experimental efforts to test directly the validity of the
theory until the recent optical experiment by Sinha et al. [65, 66]. Thus, a deviation from
the theory, if there is any, might not have been evident. Therefore, it is very important to
take steps towards direct experimental verification of the Born rule. Here we utilize liquid
state NMR QIP techniques to test the Born rule. This work also shows that we have the
ability to control small number of qubits using LSNMR with high accuracy to directly test
fundamental laws of physics.

As a direct consequence of the Born rule, an interference pattern is produced when
even a single particle travels through two slits. Quantum interference can be stated as
a deviation from the classical interpretation of probability for mutually exclusive events
(e.g. paths, slits, eigenstates and etc.) [65, 66]. For instance, quantum interference of two
paths 1 and 2 is I12 = P12− (P1 + P2), where Pi is the probability for a path configuration
i. Similarly, quantum interference of three paths 1, 2 and 3 can be written as I123 =
P123− (P12 + P13 + P23−P1−P2−P3). According to Born’s rule, three paths probability
is

P123 = |ψ1 + ψ2 + ψ3|2
= P1 + P2 + P3 + I12 + I13 + I23

= P12 + P23 + P13 − P1 − P2 − P3. (3.2)

Therefore, the Born rule predicts that I123 = 0 [67]. Here we introduce P0 to denote the
probability of detecting particles when all paths are blocked (ideally zero). Non-zero value
of P0 may arise in the actual implementation due to experimental errors such as detector
noise. Thus, the measured quantity in the experiment is

I123 = P123 − P12 − P13 − P23 + P1 + P2 + P3 − P0. (3.3)
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The three path experiment tests whether Eq. 3.3 is zero by observing the probabilities
resulting from all possible combinations of independent paths being blocked and unblocked,
and hence validate the Born rule.

3.2.1 Encoding three paths in energy eigenstates

Here we describe how to translate the triple-slit experiment [65, 66] into a form that can
be implemented with NMR. When a photon travels through one of the eight possible slit
configurations, the initial single path (of the photon before arriving at the slits) state
evolves into another state which is determined by the slit configuration. Some photons
are lost (not detected) by arriving at a path that is blocked, and a superposition of the
unblocked paths is created. Due to this loss of photons, the overall transformation can be
described as a non-trace preserving map. We encode this non-trace preserving map by an
implementable unitary transformation on a larger Hilbert space.

Consider a four level system with energy eigenstates |0〉, |1〉, |2〉, |3〉. One can imagine
the basis states |1〉, |2〉, |3〉 as encoding the path taken by a photon in the triple-slit
experiment [65, 66] as it travels through slit 1, 2 and 3, respectively. We can construct a
superposition, |ψγ〉, of these four states to represent a particular slit pattern γ, as follows

|ψγ〉 = β|0〉+
3∑

k=1

γk√
3
|k〉, (3.4)

and γ is defined as

γ = γ1γ2γ3 ∈ {000, 001, 010, 100, 110, 101, 001, 111},

where
γk =

{
0 if path k is blocked
1 if path k is unblocked ,

and β is determined from the normalization condition. The amplitude, β, of the state
|0〉 captures the probability that a photon does not arrive at the detector due to any
blocked paths. For example, when all three paths are open, β = 0 and all photons reach
the detector. On the other hand, for β = 1, the state encoding the slit information
is |0〉. This state represents that all three slits are closed and is used for calculating
the background probability P0 which can be non-zero due to experimental imperfections.
Tab. 3.1 illustrates all possible slit patterns that match with the path configuration label
γ, and the corresponding superposition states |ψγ〉.
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Table 3.1: Table of all possible path arrangements that can be formed from three inde-
pendent paths and superposition states that encode each configuration. We first form the
equal superposition state |ψ111〉 to encode three slits, and then write other superposition
states for the rest of slit configurations according to Eq. 3.4 such that the amplitudes for
each states |j〉 with j ∈ {1, 2, 3} are either 0 (when the path is blocked) or 1/

√
3 (when

the path is open) for all |ψγ〉, and the amplitude, β, of the state |0〉 is chosen to satisfy the
normalization condition.

Moreover, we introduce τ to parameterize the evolution between the coherence creation
and detecting interference. τ is directly related to the position of the detector with respect
to some central position in the triple-slit experiment [65, 66]. Suppose the state |ψ111〉〈ψ111|
evolves under the Hamiltonian H0 = E0|0〉〈0|+ E1|1〉〈1|+ E2|2〉〈2|+ E3|3〉〈3| for τ . Then
the evolved state would have the following form:

|ψ111(τ)〉 =
3∑
j=1

e−i4jτ√
3
|j〉, (3.5)

where 4j = Ej − E0. Born’s rule for probability dictates that

Pγ(τ) = |〈ψγ|ψ111(τ)〉|2, (3.6)

where the subscript γ indicates the path configuration of which the probability is measured.
We can analytically calculate Pγ(τ) for all γ and confirm that Eq. 3.3 vanishes for all τ ,
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E0, E1, E2 and E3 if the Born rule holds:

I(τ) = P111(τ)− P110(τ)− P101(τ)− P011(τ) + P100(τ) + P010(τ) + P001(τ)− P000(τ)

= 1
3 + 2

9[(cos(42 −41) + cos(43 −41) + cos(43 −42))τ ]− 2
9[1 + cos(42 −41)τ ]

− 2
9[1 + cos(42 −41)τ ]− 2

9[1 + cos(42 −41)τ ] + 1
9 + 1

9 + 1
9 − 0 = 0. (3.7)

3.2.2 Experiment

The three path experiment with LSNMR can be illustrated as a quantum circuit in Fig. 3.1.
Two qubits are used for encoding three paths, and a third (probe) qubit is added for read

Figure 3.1: Quantum circuit for the three path experiment: The third (probe) qubit is
used to read out the information encoded in the first two qubits. PPS denotes the pseudo-
pure state [68] preparation procedure. A π pulse along x-axis (Xπ) applied to the third
qubit at τ

2 turns off unwanted interactions between the third read-out qubit and the two
computation qubits. The unitary gate Up prepares |ψ111〉, and the state evolves for τ
into |ψ111(τ)〉. Applying unitary Vγ and measuring the magnetization of the probe qubit
conditional on the first two qubits being in the |00〉 basis give the probability Pγ(τ).

out. As a part of the initial state preparation, we perform RF selection [37, 69, 70] in order
to reduce the inhomogeneity of the RF field strength experienced by our liquid sample.
Then a pseudo-pure state (PPS) [68] is prepared by an algorithm proposed in [71]. We
use magnetic gradient pulses along the z-axis (the direction of static magnetic field) for
labelling the coherence and decoding it to a pseudo-pure state. The output pseudo-pure
state is α(|00〉〈00| ⊗ X) where α is the initial reference spin polarization. The unitary
gate Up prepares |ψ111〉, then the state undergoes free evolution for a time τ . We apply a
refocusing π pulse along x-axis (denoted as Xπ in Fig. 3.1) at time τ/2 after Up in order
to average out unwanted interactions between the third qubit and the two computation
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qubits. Vγ transforms the amplitude of the interference from configuration γ to the state
|00〉 and yields the final state whose deviation (traceless) part [68] is ργf = α′γ(|00〉〈00|⊗X),
where α′γ = αPγ(τ). Then we measure the magnetization of the third qubit conditional on
the first two qubits being in the |00〉 state. In other words, the signal is the overlap of the
final state with the PPS, |00〉〈00| ⊗X:

Mf = Tr
(
ργf (|00〉〈00| ⊗X)

)
= α′γTr ((|00〉〈00| ⊗X)(|00〉〈00| ⊗X)) = α′γ. (3.8)

The final state magnetization is normalized by the PPS magnetization to calculate Pγ(τ).
The three path experiment was performed in LSNMR on a 700 MHz Bruker Avance

spectrometer at 293 K. A three qubit molecule was prepared from a sample of selectively
labelled 13C tris(trimethylsilyl)silane-acetylene (TTMSA) dissolved in deuterated chloro-
form (Fig. 3.2a). Natural Hamiltonian parameters that are relevant for the experiment are
shown in Fig. 3.2b. Two 13C’s are used to carry out the computation while the spectrum
of 1H is measured. In the experiment, we used the Gradient Ascent Pulse Engineering

(a) Schematic of TTMSA
(b) Natural Hamiltonian parameters, T1
and T2 of TTMSA

Figure 3.2: (a) Schematic of a three qubit molecule used for the experiment (not in scale):
A proton (1H) and two carbons (13C) are used for realizing qubits. (b) A table of natural
Hamiltonian parameters (Hz), T1 and T2 (s): The diagonal elements give the chemical shifts
with respect to the transmitter frequencies. The off-diagonal elements are the J-coupling
constants.

(GRAPE) [72] numerical optimization technique (see Sec. 4.4.2) to find RF pulse shapes
that implement Up, Vγ, and the unitary gates involved in the PPS preparation with above
99.95% Hilbert-Schmidt (HS) fidelity.

Fig. 3.3 illustrates an example of LSNMR spectra of 1H attained from an experiment
for measuring Pγ(τ). For this particular example, γ = 111 and τ = 0.
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(a) Thermal state (b) Pseudo-pure state

(c) State after Up (d) State after V111

Figure 3.3: 1H spectrum is used to gain information about the state of two 13C’s. Verti-
cal axis corresponds to magnetization amplitude and horizontal axis is frequency of spin
precession. (a) is the initial thermal state spectrum of 1H, and the four peaks are due to
four possible states of other two qubits. After applying PPS (Fig. 3.1), we obtain a three
qubits pseudo-pure state (b). (c) shows the equal superposition state |ψ111〉〈ψ111| of the
two carbons. Finally, (d) is the spectrum we obtain after applying V111.

In the experiment, we evaluate the quantity

κ = I(τ)
|I110(τ)|+ |I101(τ)|+ |I011(τ)| , (3.9)

where I(τ) is the three paths interference, and the denominator is the sum of magnitudes
of two paths interferences (e.g. I110(τ) = P110(τ) − P100(τ) − P010(τ) + P000(τ)). In this
way, one can assure that the experiment is dealing with a quantum phenomenon inasmuch
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as the denominator should vanish in the classical case [65, 66]. Moreover, the calculation
of such quantity is straight-forward in our experimental set-up. As mentioned in the
previous section, Pγ(τ) is obtained by normalizing the magnetization of the final state
measured after unitary gate Vγ with that of the initial pseudo-pure state. Thus we run
two experiments consecutively, first to measure the magnetization of the initial pseudo-
pure state and second to measure the magnetization of the state acquired from the full
quantum circuit (Fig. 3.1). These two measurements are separated by 25 s (about five
times larger than T1) in order for spins to re-thermalize.

We sample κ for various τ from 0 µs to 1900 µs with discretization δτ = 100 µs. For
each τ , we repeat the experiment ten times providing 200 data in total. We obtained
the weighted sample mean (WSM) κ = 0.007 ± 0.003. WSM is appropriate for the data
analysis since the size of standard deviation varies for different τ . The random error is the
standard error of the WSM of κ. The results are shown in Fig. 3.4. The red dots are the
average of ten repetitions of the experiment and the size of the error bars indicate standard
deviations of the average. The black circles represent simulation results. The simulation
assumes that the GRAPE and hard pulses designed for the experiment are implemented
with no error under the effect of T2 and uses Born’s rule to extract magnetization signal
of the final state.

3.2.3 Analysis of possible sources of error

As shown in Fig. 3.2b, the difference between Larmor frequencies of C1 and C2 is an or-
der of magnitude larger than the J-coupling and thus we are well into the weak coupling
approximation. A simulation of the neglected strong coupling terms shows that on our
time scale for τ , their contribution is negligible. Next, there are distortions in the imple-
mentation of shaped RF pulses [37, 38, 73]; the GRAPE pulses seen by the molecule in
the LSNMR spectrometer do not exactly match to what we desire. There are two compo-
nents to this deviation; random errors and a systematic portion that is primarily caused
by limitations of the probe circuit design. The systematic imperfection can be rectified
by placing a pickup coil at the sample’s place and closing a feedback loop to iteratively
correct the RF pulse shapes [37, 38, 73]. This method improves (yet, still not perfect) the
closeness of the actual pulse to the desired pulse. Random fluctuations of the RF field
are inevitable in the experiment. The RF variations for the 1H channel and the 13C chan-
nel are found to be 0.7% and 0.2%, respectively. The RF selection process mentioned in
Sec. 3.2.2 is very sensitive to this RF field variations since it is designed to select a subset
of the ensemble of spins at a specific nutation frequency [37, 38, 74]. Thus the RF selection
sequence in the presence of random RF fluctuations can introduce large fluctuations in
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Figure 3.4: Experimentally determined κ: The experiment is repeated ten times for each
τ , giving 200 data points in total. The red indicates the experimental outcomes and the
size of the error bars represents standard deviation. We acquired from the experiment the
weighted sample mean κ = 0.007 ± 0.003. The blue circles and error bars are obtained
by repeating the experiment (again, 200 data in total) with the different measurement
method explained in the following section. The results from the second method are κ =
0.009±0.003. The black squares are obtained from the simulation which assumes the Born
rule holds and perfect implementations of the GRAPE and hard pulses under the effect of
T2. Here κ = 0.004 ± 0.001, and its deviation from zero is due to the fildelity of GRAPE
pulses and T2. The green is the outcome of the simulation that takes systematic errors
such as distortions in the implementation of GRAPE pulses and RF field fluctuations into
account. This simulation gives κ = −0.002 ± 0.001. The systematic errors well explain
the small deviation of experimentally determined κ from zero; red and blue (experiment)
overlap with green (systematic errors simulation) for most of the τ ’s, with less than one
standard deviation away when there is no overlap.

the signal generated by pseudo-pure states. In other words, Mi obtained from a reference
pseudo-pure state deviates from Mi of the following experiment in which the spin state
goes through the full quantum circuit (Fig. 3.1) and only Mf is accessible. This leads

18



to error in the probability calculation. We prepared 100 pseudo-pure states following the
RF selection consecutively and observed 0.95% fluctuation in the integrated spin signal
on average with the worst case being about 2%. This kind of fluctuation translates to
κ ∼ 10−3 ± 10−4. The green rhombi and error bars in Fig. 3.4 show the systematic errors
due to distortions in the implementation of GRAPE pulses and the random fluctuation of
RF field. We performed another set of experiments with a different measurement method.
Instead of taking two experiments to find the probabilities as described earlier, we opened
the receiver at the end of the pseudo-pure state preparation for a short time, and opened
the receiver again after Vγ so that the reference magnetization and the final magnetization
are obtained from a single experiment. We hoped to see some improvement in this method
by removing slow RF fluctuations between two experiments. Nevertheless, there was no
significant improvement; we obtained κ = 0.009± 0.003. The results from this method is
indicated as blue in Fig. 3.4. There are other possible sources of error such as transient
effect from refocusing pulses due to their fast varying amplitude profile and disturbance
of static field due to gradient pulses used for pseudo-pure state preparation. Furthermore,
for the three qubit molecule TTMSA in LSNMR, the average error per gate is found to be
∼ 10−3 from randomized benchmarking in [74]. Such a gate error contributes to κ ∼ 10−4.

Finally, we conclude that our experiment bounded the deviation of the Born rule to
κ ∼ 10−3 ± 10−3. Furthermore, we have demonstrated the capability of LSNMR QIP
techniques for testing a fundamental postulate of quantum mechanics [75–79].

3.3 Qubit noise spectroscopy using NMR

The problem of a qubit interacting with a noisy environment is of fundamental importance
in the field of quantum information processing. For many solid-state qubits, single-axis
(phase) noise is dominant, and treating the noisy environment in a stochastic semi-classical
approximation suffices to describe the qubit dephasing process. For example, a system-
environment Hamiltonian of the form HSE = Sz

∑
m λmEmz , where S and E are spin-1/2 op-

erators for the system and the environment, respectively, and λm are the coupling strengths,
is approximated as HS(t) = f(t)Sz by tracing over the environmental degrees of freedom
[49, 61]. In the limit of many environment qubits forming a spin bath, with intra-bath
couplings strong compared to λm, f(t) can be treated as a random, Gaussian-distributed
function with zero mean.

In such a context, knowledge of the spectral density function S(ω), the Fourier trans-
form of the two-point correlation function for f(t), is useful for the design and optimization
of dynamical decoupling and error correction schemes. Recently, interest has developed
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in using dynamical decoupling to probe S(ω) [42, 43, 49, 51, 56, 57, 60, 80–82]. This can
be understood intuitively using the overlap integral approach [42, 44–60]. For example,
a series of equally spaced π pulses produces a time domain filter function that alternates
between +1 and −1 values at a period corresponding to the pulse spacing τ (Fig. 3.5a),
so that in the frequency domain the filter function is peaked at the corresponding probing
frequency ωp = 1/(2τ) (Fig. 3.5c). Under such a pulse sequence, the qubit is most sensitive
to the spectral density of the noise at this probe frequency, S(ωp), hence the qubit decay
rate measured as a function of ωp can approximate S(ω).

An exponential decay of qubit coherence is predicted [46–48],

〈Sx(T )〉 = 〈Sx(0)〉 exp (−χ(T )) , (3.10)

where
χ(T ) =

√
π

2

∫ ∞
−∞

dωS(ω)|F (ω,T )|2, (3.11)

is determined by the overlap of the noise spectral density with the frequency domain
filter function, |F (ω,T )|2, for a sequence of duration T . Note that F (ω,T ) is the Fourier
transform of the time domain filter. Also note that if the Hamiltonian does not commute
with itself at all times, Eq. 3.11 is an approximation taking only the first order component
of the filter function into account [44]. Here, χ(T ) = RT where R is the coherence decay
rate that in general depends on T , however will be constant in the cases of interest to us.
Eq. 3.11 can be rewritten in matrix form,

~χ = F · ~S, (3.12)

where ~χ and ~S are the vectorized decay function and spectral density corresponding to dis-
crete measurements in an experiment. The matrix F is a discretized version of |F (ω,T )|2.
Determining the noise spectrum amounts to inverting F, however strictly speaking F is
not invertible because it has at least one zero eigenvalue. This can be seen from the fact
that |F (ω,T )|2 = 0 for T = 0 regardless of the construction of the pulse sequence. The
non-invertibility of F implies that the problem is ill-posed: there does not in general exist a
unique solution ~S to a dataset ~χ. Intuitively, if the function |F (ω,T )|2 is spectrally broad
or peaked at many frequencies, extracting S(ω) with high accuracy becomes very difficult,
particularly if the functional form of S(ω) is not known a priori, which we will assume
throughout this work. In particular, |F (ω,T )|2 will be spectrally broad unless there are a
sufficient number of decoupling cycles, i.e. T >> 2τ where 2τ is the decoupling period.
Under the latter condition, the filter function approaches a delta function at the probing
frequency ωp, and at its higher harmonic frequencies (Fig. 3.5c) by the fact that the time
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domain filter is a square wave (Fig. 3.5a). As already mentioned, for the first order ap-
proximation with the higher harmonics neglected, Eq. 3.11 predicts an exponential signal
decay at a rate proportional to S(ωp). A method for taking these harmonics into account
in the extraction of S(ω) was developed and demonstrated experimentally by Gonzalez
et al [51]. The method requires that the number of decoupling cycle is large enough to
justify the approximation that the peaks in the frequency domain filter function are delta-
functions. The pulsed method becomes disadvantageous at high probing frequencies, when
finite pulse width effects cannot be ignored and limit the minimum practical pulse spacing.
Moreover, the experimental implementation of pulsed method can be cumbersome in some
cases owing to the harmonics of the frequency domain filter function. For example, even
for obtaining the noise strength at one particular frequency, the pulsed method requires
the noise information at the harmonic frequencies, and hence probing the noise spectrum
over the large range of frequency.

An alternate approach using continuous wave (CW) decoupling was first proposed, to
our knowledge, by Geva et al. in their seminal paper deriving the generalized Bloch equa-
tions (GBE) [61]. Note that spin-locking, or T1ρ experiments, using CW irradiation have
been used for decades in NMR to probe relaxation processes at frequencies intermediate
between T2 processes, dominated by S(0), and T1 processes, dominated by S(ωL) where ωL
is the Larmor frequency. For example, T1ρ experiments have probed slow atomic motions
that give rise to fluctuations in the dipolar field [83–86]. These studies link a mean hopping
time of nuclear spins between lattice sites with the magnetization decay rate. The NMR
literature, however, has not directly addressed the problem of quantitatively extracting an
unknown and arbitrary S(ω) from a series of T1ρ measurements. This was first addressed
in the context of the GBE formalism [61, 80]. It was later suggested in the context of the
overlap integral method as a possible means for noise spectroscopy [87], but the details
were not explicitly worked out. At first glance, a treatment based on filter functions would
appear difficult, since in the interaction frame of a CW field along Sx in the rotating frame,
the semi-classical noise Hamiltonian transforms with time t as

H̃(t) = exp(iωpSxt) (f(t)Sz + ωRSx) exp(−iωpSxt)
= f(t)(cos(ωpt)Sz + sin(ωpt)Sy). (3.13)

and it is not obvious how to correctly take into account the non-commuting Hamiltonian.
Nevertheless, qualitatively correct fidelity decay can be recovered from the overlap integral
method, correct to second order in the coupling f(t) [42], and hence to first order in
the spectral density S(ω). As expected, the first order filter function corresponding to a
driving field with many periods, n = ωpT/(2π) >> 1, is narrowly peaked around ωp, with
no harmonics (Fig. 3.5d). The result of the overlap integral method presented in [42] is
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Figure 3.5: Modulation of the system-environment interaction in the interaction frame
generated by (a) CPMG, and (b) continuous wave (CW) decoupling if one fictitiously
considers only the Sz component. The switches between±1 in (a) correspond to application
of a π-pulse. Frequency domain filter functions (c) and (d) correspond to the modulation
functions in (a) and (b), respectively. The CPMG frequency domain filter function consists
of sinc functions centered at kπ/τ , where k is an odd integer. The fictitious CW filter
function is a sinc-like function centered at ωp. In these examples, ωp/2π = 1 kHz, τ = π/ωp,
and n = {4, 6}, where 2n is the number of π pulses in CPMG and n = ωpT/2π is the
number of Rabi cycles for CW irradiation.

qualitatively consistent with the GBE prediction; in the case of a T1ρ (spin-locking) type
experiment, these predict an exponential decay of coherence 〈Sx〉 with a decay rate directly
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proportional to S(ωp). This idea was demonstrated experimentally in optically-trapped
ultracold atoms coupled to a collisional bath [42], and in the context of superconducting
qubit decoherence [43]. In the latter case, the analysis was based on the GBE and included
more general noise (relaxation) than considered here.

The T1ρ noise spectroscopy can be much simpler to implement compared to the pulsed
method, because the first order filter function in the frequency domain does not have
harmonics (Fig. 3.5d) and hence the noise spectrum at a particular frequency can be
approximated using a CW decoupling pulse only at the target probing frequency. Despite
the experimental simplicity, the T1ρ noise spectroscopy is more difficult to analyze owing
to non-trivial spin dynamics during the irradiation of the CW pulse. As mentioned above,
the GBE provides only the second order in f(t) (thus first order in S(ω)) description of
the spin dynamics under the application of the CW pulse, and the description is valid only
in the limit of large number of driving field periods, n >> 1. The T1ρ method additionally
suffers from a low excitation bandwidth at long probing times T . If the qubit linewidth is
broadened inhomogeneously, a spectrally narrow CW excitation will only be on resonance
for the central ‘spin packet’ and this will complicate analysis of the signal decay.

In this work, we present our on-going study on the effect of three issues mentioned
above to the problem of T1ρ noise spectroscopy of pure dephasing noise: (1) terms beyond
first order in S(ω) that may become significant in the strong system-bath coupling regime,
(2) violation of the delta function approximation, and (3) inhomogeneous line broaden-
ing. Numerical simulations and perturbation series are the main tools for investigaging
the aforementioned problems. Combining the results we have so far, we present a more
detailed picture of T1ρ noise spectroscopy than has been previously discussed [42, 43]. The
final goal of this analysis is to enable experimentalists to design a protocol, which may
involve both pulsed and T1ρ experiment, to reliably construct the spectral density of noise
over as wide frequency range as possible. Finally, we perform T1ρ and the pulsed noise
spectroscopy in both liquid and solid state NMR systems. The purpose of the liquid state
NMR experiment is for testing and developing ideas of the noise spectroscopy exploiting
a well-known single qubit system, while the solid state experiment is designed to estimate
the effective spectral density of noise on a 13C probe qubit due to a bath of dipolar cou-
pled proton spins. Excellent agreement between T1ρ and the pulsed methods is observed
in both liquid and solid state experiments. The agreement between the two noise spec-
troscopy methods suggests that the pulsed and T1ρ methods can complement each other
to extend the frequency range of the noise spectral density.
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3.3.1 Generalized Bloch equations

The generalized Bloch equations were derived in [61] to describe the relaxation dynamics
of a system simultaneously interacting with a heat bath and a driving field of arbitrary
intensity. The derivation uses the Dyson expansion for solving the evolution of the time-
dependant Hamiltonian [62], and it is based on the following assumptions: (1) the system
and the bath are weakly coupled, and are initially in a product state. The weak cou-
pling assumption allows the GBE to neglect terms beyond second order in f(t), which is
equivalent to the first order in S(ω) ; (2) the time scale of the relaxation of the system is
much slower than that associated with the decay of the bath correlation functions (Markov
approximation) and the period of the driving field 2π/ωp; (3) the bath-induced coherent
system dynamics are negligible compared to that induced by the system Hamiltonian. The
GBE show that the bath terms become dependent on the frequency and amplitude of the
driving field.

The GBE are easily applied to analyze the coherence decay in a T1ρ type experiment,
where the CW field is on resonance with amplitude ωp and the high temperature limit
kBT >> ~ωp applies. The transverse spin magnetization is then governed by

d

dt
Sx = −1

2C̃∆∆(ωp)Sx, (3.14)

where C̃∆∆ is the Fourier transform of the bath correlation function

C∆∆(τ) = TrE (∆(τ)∆ρE) . (3.15)

The notation ∆ in [61] is equivalent to the effective environment operator∑
m

λmEmz /
√∑

m

λ2
m (3.16)

in our notation, and ∆(τ) = exp (iHbτ) ∆ exp (−iHbτ) with the bath Hamiltonian Hb,
and ρE is the density matrix describing the environment. If f(t) is Markovian, S(ωp) =
C̃∆∆(ωp), and the GBE predict a signal decay

〈Sx(t)〉 = 〈Sx(0)〉 exp
(
−1

2S(ωp)t
)

. (3.17)

To measure a decay requires S(ωp)T ∼ 1, and to be in the delta-function approximation
regime requires n = ωpT/2π >> 1. These together imply ωp/2π >> S(ωp). Using the
definition of the spectral density of noise:

S(ω) =
∫ ∞
−∞
〈f(t)f ∗(t− τ)〉 exp (−iωτ) dτ , (3.18)
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where the brackets represent a time average over t in the limit of large T , it is easy to
see that the mean-square amplitude of the noise is 〈|f(t)|2〉 = 1

2π
∫∞
−∞ S(ω)dω. Therefore

S(ωp)∆ω = S(ωp)2π/T ≤ 2π〈|f(t)|2〉. Reliable noise spectroscopy is guaranteed if the
smallest driving field amplitude satisfies ωminp /(2πT ) >> 〈|f(t)|2〉, although this is not a
strictly necessary condition.

3.3.2 Overlap integral method

Almog et al. [42] derive a master equation for the density matrix evolution in the interaction
frame of Eq. 3.13 to second order in the noise function f(t). The assumptions made are
a weak coupling to the bath and that the noise function has zero mean. The fidelity of
the evolved state with respect to the initial state is written in terms of a spectral overlap
integral in order to derive a relationship between the signal decay and a filter function
describing the control field. For a CW on-resonance field and many decoupling periods,
n >> 1, the filter function consists of sinc functions centered at ±ωp. Integrating the filter
function yields

∫∞
−∞|F (ω,T )|2dω = T/2, so that in the limit T → ∞ the filter function

becomes a delta function at ±ωp and χ = RT = S(ωp)T/4. This result qualitatively
matches the GBE prediction, but curiously differs by a factor of two. We suspect that the
difference is due to not taking the higher order filter function effects into account properly.

In order to test the validity of the conventional T1ρ noise spectroscopy, we numerically
simulate the spin signal decay under the full spin Hamiltonian in the form Eq. 3.13 with
an input noise function and use Eq. 3.17 to extract the noise spectrum to see if the input
noise function can be accurately reconstructed. The input noise functions are chosen to
be in S(ω) = 2πc/ω, where c parametrizes the strength of the noise. Fig. 3.6 shows the
simulation results for c = 300 and c = 3000. The extracted noise spectrum matches
the input acceptably well in the regime ωp/(2πS(ωp)) ≥ 2. On the other hand, when
ωp/(2πS(ωp)) < 2, the extracted one underestimates the true noise spectrum. Hence from
the simulation results, we deduce that for 1/ω type of noise, ωp/(2πS(ωp)) ≥ 2 is the
necessary condition for the reliable T1ρ noise spectroscopy, which is consistent with the
intuitively guessed sufficient condition ωp/2π � S(ωp).

At this point, it is not clear what is the role of higher order terms in f(t), (or S(ω)) and
violation of the delta-function approximation in explaining the deviation shown in Fig. 3.6.
Moreover, we do not know whether the qualitative form of the deviation is true for general
noise or is only applicable to the example noise form we chose. Answering these questions
will be useful for designing a protocol which can correct the error in the extracted noise
spectrum to provide more accurate S(ω).
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Figure 3.6: Blue curve is an input noise spectrum in the numerical simulation. The sim-
ulation uses the input S(ω) = 2πc/ω for (a) c = 30 and (b) c = 3000, and the full spin
Hamiltonian to generate signal decay curves. As in the T1ρ noise spectroscopy, the signal
decay rate is used to reconstruct the noise spectrum shown in red. Substantial deviation
between the two is observed in the regime ωp/(2πS(ωp)) < 2.

3.3.3 Perturbation series

The system qubit in the interaction frame subject to the CW irradiation of length t can
be described using a density matrix in the integral form as

ρ̃(t) = ρ̃(0)− i
∫ t

0
dt1[H̃(t1), ρ̃(t1)], (3.19)

where we set ~ = 1 for convenience. By iterating, the perturbative series can be obtained:

ρ̃(t) =ρ̃(0)− i
∫ t

0
dt1[H̃(t1), ρ̃(0)]

−
∫ t

0
dt1

∫ t1

0
dt2[H̃(t1), [H̃s(t2), ρ̃(0)]]

+ i
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[H̃(t1), [H̃(t2), [H̃s(t3), ρ̃(0)]]] . . . , (3.20)

where ρ̃(0) = Sx in the T1ρ experiment. By imposing the condition that f(t) is Gaussian
distributed random variable and 〈f(t)〉 = 0, only even order terms in f(t) contribute to
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the signal decay (Isserlis’ Gaussian moment theorem). After calculating the commutators
using the initial condition and the form of Hamiltonian in Eq. 3.13, the signal decay can
be expressed as:

〈Tr(ρ̃(t)σx)〉

= 1 +
∑
n=1

(−1)n
∫ T

0
dt1 . . .

∫ t2n−1

0
dt2n〈f(t1) . . . f(t2n)〉

n∏
k=1

cos (ωp(t2k − t2k−1))

= 1 +
∑
n=1

(−1)nΩn (3.21)

Above equation can be rewritten by using the Fourier transform of f(t). For example, the
first order (n = 1) term can be written as:

Ω1 =
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2〈F(ω1)F(ω2)〉
∫ t

0
dt1

∫ t1

0
dt2 exp (−i (ω1t1 + ω2t2)) cos (ωp(t2 − t1)) ,

(3.22)
where F is the Fourier transform of f(t) and S(ω)T = π〈|F(ω)|2〉/2. Although analytical
evaluations are challenging, qualitative analysis shows that the time integral peaks sym-
metrically or anti-symmetrically around ω1,2 = ±ωp, and behaves like delta-functions in
the t → ∞ limit. In the delta-limit where the slope of F(ω) is assumed to be constant
over the width of the peaks, only the real components with ±ω1 = ∓ω2 = ωp contribute
to the signal decay. We studied qualitative behaviour of the time integral for the second
order term as well, and observed that in the delta-limit, only the real components with
±ω1,3 = ∓ω2,4 = ωp and ±ω1,4 = ∓ω2,3 = ωp contribute to the signal decay. Thus by
induction, we can approximate the nth order term in the delta-limit as:

Ωn ≈ αn〈|F(ωp)|2〉n ∝ (S(ωp)T )n , (3.23)

where αn is the normalization constant for the delta-like functions. Using Eq. 3.21 and
Eq. 3.23, we deduce that the signal decay in the delta-limit can be expressed as:

〈Sx(t)〉 = 〈Sx(0)〉 exp
(
−
∑
k=0

hk (S(ωp)T )k+1
)

, (3.24)

To get the feel of how the higher order terms in S(ω)T contribute to the signal decay,
we again simulate the spin evolution under the full spin Hamiltonian with the input noise
function S(ω) = 2πc/ω, and fit the signal decay curve to Eq. 3.24 upto k = 2 term,
and compare the higher order coefficients h1 and h2 to the zeroth order value h0. The
simulation results are shown in Fig. 3.7. The red and blue colors in the figure represent
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h1 and h2 terms normalized by h0, respectively, and the squares and crosses are used to
label different noise amplitudes c = 30 and c = 3000, respectively. The simulation shows
that the relative magnitudes of h1 and h2 compared to h0 is consistently smaller than 0.5
over the range of simulated values of ωp and S(ω), except at one outlier point where h1
is comparable to h0. However, at this point, it is not clear how the form of Eq. 3.24 will
break down in the violation of n >> 1 limit.
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Figure 3.7: Simulated signal decay curve fitting coefficients for higher order terms in
S(ω)T . The signal decay is simulated using an input noise function S(ω) = 2πc/ω where
c is chosen to be 30 (square) and 3000 (cross). The simulated signal decay is fitted to
exp(−∑2

k=0 hk(S(ωp)T )k+1, and the plot shows h1/h0 (red) and h2/h0 (blue).

Another useful perturbation approach is Average Hamiltonian theory (AHT) [63, 88–
90]. The system qubit evolves in the interaction frame by the unitary operator

Ũ(T ) = T exp
(
−i
∫ T

0
H̃(t)dt

)
, (3.25)

where T is the Dyson time ordering operator. The Magnus expansion [63, 91] is used to
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construct a time-independent effective Hamiltonian [92] such that

Ũ(T ) = exp
(
−iT

∞∑
k=0
H̄k

)
. (3.26)

The commutators generally do not vanish, [H̃(t1), H̃(t2)] 6= 0, and thus the higher order
Magnus terms will generally be non-zero. The first three AHT terms are given as follows:

H̄0T =
∫ T

0
dtH̃(t) (3.27)

H̄1T = −i2!

∫ T

0
dt1

∫ t1

0
dt2
[
H̃(t1), H̃(t2)

]
(3.28)

H̄2T = −1
3!

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

([
H̃(t1), [H̃(t2), H̃(t3)]

]
+
[
H̃(t3), [H̃(t2), H̃(t1)]

])
.

(3.29)

Similar to the perturbation series discussed previously, analytical evaluations of the
AHT terms beyond 0th order are difficult. In order to make use of the perturbation ap-
proaches in the study of T1ρ noise spectroscopy, we plan to run numerical simulations and
compare the spin evolution predicted by the GBE and the higher order perturbation series
(both Eq. 3.20 and Eq. 3.26) to examine under what conditions higher order perturbation
terms provide more accurate description. We also plan to use the numerical simulations to
search for ways to correctly take the higher order terms into account in the construction
of S(ω).

3.3.4 Experiment

In this section, we describe two NMR noise spectroscopy experiments, one in the solid
state and another in the liquid state aimed to answer two different questions. The solid
state NMR experiment is designed to probe the spectral density of noise that is due to
weak interaction of the environment formed by dipolar-coupled nuclei. In the liquid state
NMR, there is no dipolar-coupled spin bath that acts as a source of noise. Also, the single
spin Hamiltonian in the liquid state NMR is very simple, and the single qubit control can
be done in high precision. Thus the single spin dynamic in the liquid state NMR can be
simulated with high accuracy, and makes it an excellent system for testing and developing
ideas of the noise spectroscopy to build more robust noise probing protocol.

Both experiments demonstrate good agreement between the T1ρ and pulsed noise spec-
troscopy methods, suggesting that the two methods can be combined to provide more
complete noise spectrum.
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Solid state experiment

The low frequency noise spectrum is probed for a natural abundance 13C nucleus corre-
sponding to one of two carboxylic acid groups in single crystal malonic acid. The carboxylic
13C signal of interest is spectrally distinct from the other two 13C signals in the chosen
crystalline orientation [93]. The fraction of molecules having more than one 13C is neg-
ligible due to low natural abundance. The surrounding protons coupled to the 13C of
interest via the dipolar interaction act as the source of low frequency magnetic noise. We
choose one of the 13COOH nuclei since they experience weaker nearest-neighbor proton
couplings than the CH2 carbon, better approximating a qubit coupled weakly to a bath.
The NMR experiment was carried out at a 13C Larmor frequency of 75.4678 MHz, with
the two off-resonance carbon nuclei at offsets of +3.047 kHz and −5.977 kHz in the chosen
crystalline orientation. The on-resonance 13C had a linewidth π/T ∗2 ≈ 175 Hz with strong
proton decoupling on. All experiments began with 1H-13C cross-polarization to initialize
the 13C polarization; the proton T1 and recycle delay between scans were 30 s and 150 s,
respectively. For the noise spectroscopy experiments, a weak proton decoupling field was
applied in order to reduce the qubit-bath coupling, but not remove it entirely. The Rabi
frequency of the proton decoupling field was ≈ 20 kHz, whereas noise spectroscopy mea-
surements were carried out in the range 0.15-10 kHz, so that a peak in the noise spectrum
due to proton decoupling would not be present [51]. We first applied the CPMG sequence
to perform pulsed noise spectroscopy, choosing the pulse delays as τk = k−1 ·1280 µs, where
integer 1 ≤ k ≤ 10 and the number of π pulses in the kth sequence is 8k. This gives a noise
sampling frequency of wk = π/τk. We used three additional τ = {3200, 2134, 1600} µs to
extend the low frequency end of the noise spectrum. The NMR signal decay rates Rk are
measured and the noise spectrum, shown in blue in 3.8, is obtained by the method given
in [51]. The error bars result from the uncertainties in determining decay rates Rk, primar-
ily due to the experimental signal-to-noise ratio (with signal averaging) of only ∼ 10− 20.
Next, we turn to the T1ρ method. A CW field of amplitude 0.15 kHz ≤ wp/(2π) ≤ 10
kHz is applied along the rotating frame x-axis. The NMR signal is acquired after a T = 6
ms irradiation time for all amplitudes and is normalized by a reference signal obtained at
T = 0. The 6 ms pulse length corresponds to a filter function peak width of 0.17 Hz,
about 1.6 times broader than the filter function peak width for the CPMG data. The noise
spectrum obtained using CW method is shown in red in Fig. 3.8. S(ω) follows a roughly
a ω−1 power law in both cases, with fits to the data giving an exponent of −0.9± 0.1 for
CPMG and −0.8 ± 0.1 for CW. A scaling factor 1.6 was applied to the CPMG result to
properly account for the fact that

∫ |F (ω,T )|2dω was 1.6 times larger for the CPMG filter
function used here compared to the effective CW filter function. Since the CW decays were
only measured at a fixed time T , the total number of CW experiments was much less than
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Figure 3.8: (a) Spectral density of low frequency noise S(ω) obtained by the CPMG and
T1ρ methods for an ensemble 13C qubit in single crystal malonic acid. The CW and CPMG
results are shown by open circles (red) and open squares (blue), respectively. The inset
shows an example of the NMR signal decay versus time for both methods at a noise
sampling frequency 1.5 kHz. (b) Log-log plot of the same data shows that S(ω) follows a
power law decay, with fits yielding ω−0.9±0.1 and ω−0.8±0.1 for the CPMG and T1ρ methods,
respectively.

the number of pulsed experiments, yielding larger error bars in the CW data of Fig. 3.8.

Liquid state experiment

The single qubit system used in the liquid state NMR is a proton in chloroform (CHCl3)
dissolved in acetone-d6. T2 and T1 measured for this spin qubit are 9 s and 198 s, respec-
tively. A typical line width obtained after shimming is about 0.7 Hz. Long T1 compared
to T2, sharp line width, excellent signal to noise ratio and the ability to generate control
pulses with high precision makes this system an excellent test-bed for the ideas of noise
spectroscopy for dephasing noise. The liquid state NMR experiment was performed at a
proton Larmor frequency of 300.13 MHz.

For the pulsed method, we again used CPMG sequence. In both CPMG and T1ρ noise
spectroscopy, we attempted to extend the probing frequency range as broad as possible. For
the CPMG experiment, we intuitively guess that the decoupling period 2τ where τ is the
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(b) CPMG signal decay 1.6 kHz
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(c) CPMG signal decay 80 Hz
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(d) CPMG signal decay 500 Hz

Figure 3.9: Signal decay curve in the CPMG noise spectroscopy experiment obtained at
probing frequency (a) 0.25 Hz (b) 1.6 kHz (c) 80 kHz (d) 500 Hz. The probing frequency ωp
is adjusted by choosing the pulse spacing τ between π pulses using the relation ωp = π/τ .

time spacing between π pulses should be less than or comparable to T2. Since ωp = π/τ ,
we expect that ωp should be larger than 2π/T2. For the T1ρ experiment, the condition
ωpT/(2π) > 1 must be satisfied as discussed before, and the CW pulse duration T should
be less than or comparable to T2. Hence we impose the condition T2 > T > 2π/ωp, which
is equivalent to the condition imposed to the CPMG experiment for the lower end of the
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probing frequency. The high-end frequency for the CPMG experiment is limited by the
length of π pulses as the CPMG sequence requires the pulse spacing to be much larger
than the pulse length. The π pulse length was 20 µs, and we expect the highest probing
frequency for reliable noise spectroscopy is about 5 KHz which corresponds to the pulse
spacing of an order of magnitude larger than the pulse length.
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(a) T1ρ signal decay 2 Hz
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(b) T1ρ signal decay 80 Hz

Figure 3.10: Signal decay curve in the T1ρ noise spectroscopy experiment obtained at
probing frequency (a) 2 Hz and (b) 80 Hz. The probing frequency ωp is adjusted by
choosing the nutation frequency of the CW pulse.

In the CPMG experiment, the signal decay fits very well to a simple exponential curve
in the frequency range between 0.5 Hz to 1 kHz, as the examples in Figs. 3.9c and 3.9d
demonstrate. At outside of that frequency window, the decay curve starts to deviate from
the exponential fitting. Figs. 3.9a and 3.9b demonstrate such deviations at the frequencies
of 0.25 Hz and 1.6 kHz. The results shown in Figs. 3.9a and 3.9b are not too surprising
because 0.25 Hz probing frequency corresponds to 2 s pulse spacing which is comparable
to T2, and finite pulse lengths can start to contribute for 1.6 kHz probing frequency. The
spectral density of noise extracted from CPMG decoupling method in the range of 0.25 Hz
to 1 kHz is shown in red in Fig. 3.11. S(ω) follows roughly a power law decay, with fits to
the data giving an exponent of −0.044± 0.008.

In the T1ρ experiment, instead of taking the spin signal amplitude at a fixed T as was
in the case for the solid state experiment, we measure the full decay curve using at least
10 time points and fit it to an exponential function in order to extract the decay rate R.
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Figure 3.11: (a) Spectral density of low frequency noise S(ω) obtained by the CPMG and
T1ρ methods for an ensemble 1H qubit in chloroform dissolved in acetone-d6. The T1ρ and
CPMG results are shown by open circles (red) and open squares (blue), respectively. (b)
Log-log plot of the same data shows that S(ω) from the CPMG follows a power law decay,
with fits yielding ω−0.044±0.008. For CW data, the power law decay is observed upto roughly
1 kHz, then decay rate increases in the 2-4 kHz range. Fitting the data upto 1 kHz gives
ω−0.03±0.01.

Then S(ωp) is simply obtained by S(ωp) = 2R using Eq. 3.17. At low pulse frequency
and short pulse duration regime, we observe oscillations in the signal decay as shown in
the example case of ωp = 2 Hz in Fig. 3.10a. In the frequency window between 10 Hz to
4 kHz, spin signal decay curves fit very well to an exponential function. An example of
the decay function in the range demonstrating good fit to the exponential decay is shown
in Fig. 3.10b. In principle, the high-end frequency can be extended further. However, we
stopped at 4 kHz in order to prevent the sample heating and damaging the probe from
high-power CW irradiation. The spectral density of noise extracted from T1ρ decoupling
method in the range of 10 Hz to 4 kHz is shown in red in Fig. 3.11. The log-log plot in
Fig. 3.11b shows that S(ω) data in T1ρ experiment matches very well to the data obtained
in the CPMG experiment within the error bar upto 1 kHz. Fitting the T1ρ data upto 1
kHz gives an exponent of −0.03± 0.01.
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Figure 3.12: Numerical simulation of the spin signal decay to study the effect of inhomoge-
neous line broadening. The full spin Hamiltonian is simulated with an input noise function
that is obtained from the T1ρ noise spectroscopy experiment. The NMR line width of 0.7
Hz is added in the simulation by averaging the Larmor frequency over the Lorentzian dis-
tribution. The simulation reproduces oscillations in the signal decay curve at short pulse
durations as observed in the experiment. The oscillation period in the simulation for the
1.1, 2.2 and 4.4 Hz pulse amplitude matches very well to 1, 2, and 4 Hz pulse amplitude
experimental data. The small difference in the pulse amplitude can be explained by the
uncertainty in the pulse calibration in the experiment.

Numerical simulations of the full spin Hamiltonian including the inhomogeneous line-
broadening characterized by T ∗2 is carried out to examine the oscillatory behaviour of the
signal decay curve at low frequency regime in the T1ρ experiment. We used the noise
spectrum obtained in the T1ρ experiment shown in Fig. 3.11 as the input noise in the
simulation. In the simulation without T ∗2 noise, the signal decays as a smooth exponential
function without noticeable oscillation. However, the oscillation is reproduced as shown
in Fig. 3.12 when the Larmor frequency distribution is incorporated in the simulation.
The period of the oscillation in the simulated decay curve for the 1.1, 2.2 and 4.4 Hz
pulse amplitude matches very closely to the experimentals result at 1, 2, and 4 Hz pulse
amplitude. The small error in the pulse amplitude can be caused by the uncertainty in the
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pulse calibration in the experiment. Therefore, the oscillations at short pulse durations in
the low frequency regime can be explained by the effect of T ∗2 .

3.3.5 Summary and future work

In this section, we addressed the problem of designing a reliable noise spectroscopy protocol
over as wide frequency range as possible. The goal is to be able to quantitatively relate the
error in estimating an arbitrary spectral density of dephasing noise S(ω) to experimental
parameters such as CW pulse amplitude ωp and pulse duration T , and correct the error
as much as possible in order to provide more accurate noise spectrum. For the detailed
study, we wish to answer three specific questions: (1) when is delta-approximation valid
and what happens when it breaks down; (2) the violation of weak-coupling approximation
(effect of the higher order terms in S(ωp)); and (3) role of inhomogeneous line broadening
due to Larmor frequency distribution across the spin ensemble (T ∗2 effect). Our prelimi-
nary results from simulations show that given 1/ω type of noise, the T1ρ noise spectroscopy
underestimates the spectral density of noise when ωp/(2πS(ωp)) < 2. We have not fully
understood how (1) and (2) from above contribute to the underestimation of the noise
spectrum. We discussed about our on-going efforts on using perturbation series and nu-
merical simulations as tools to study the effect of higher order terms and the violation of
the delta-approximation. By understanding what causes the deviation, one may be able
to devise a method to correct and estimate the noise spectrum with better accuracy. The
T ∗2 effect produces oscillations in the signal decay function both in the experiment and the
simulation in the low CW amplitude regime. Finally, by running the pulsed (CPMG) and
T1ρ noise spectroscopy, we verified that these two methods agree within the experimental
error suggesting that the two techniques can be combined to provide noise spectrum over
wider frequency range.
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Chapter 4

Anisotropically coupled
electron-nulcear spins for QIP

4.1 Introduction

As introduced in 2, nuclear spin qubits in the liquid state are excellent candidates for
exploring the ideas of quantum information processing owing to their long coherence times
and long history of NMR technology. However, it has lacked the ability to prepare high
purity ancilla qubits that are essential for QEC, a crucial step towards scalable quantum
information processor. Nuclear spins in the solid state can attain higher polarization at
cryogenic temperatures, but then nuclear T1 relaxation time become undesirably long at
these temperatures, making desired quantum state preparation in a timely manner nearly
impossible. This naturally leads to incorporating electron spin ensemble since the electron
gyromagnetic ratio is much higher than that of nuclei which results in higher thermal
equilibrium polarization and faster T1 relaxation.

In this work, we focus on a solid state spin ensemble system in which a single localized
electron interacts with a few nuclear spins at nearby lattice sites. The fundamentals of
electron spin resonance (ESR) quantum computing (QC) are analogous to NMR QC, and
many of the techniques used for manipulating nuclear spins can also be applied to control
unpaired electrons. Coupled electron-nuclear spin systems are more attractive than NMR
systems for quantum information processing. As already mentioned, one obvious advantage
is that higher gyromagnetic ratio of an electron γe (about 660 times greater than that
of proton) leads to higher polarization. Also, the anisotropic hyperfine coupling allows
indirect control of nuclear spins by irradiating at electron spin transitions, and nuclear
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spin gates that are faster than conventional NMR can be realized in certain conditions.
Although electron spin-lattice (T1) and spin-spin (T2) relaxation times are much shorter
than that of nuclei, the information can be transferred to and stored in the nuclear spin
states while computations are done solely through electron spin manipulation and hyperfine
interactions [94]. The faster spin-lattice relaxation of the electron can be advantageous
in some situations, for example, in heat bath algorithmic cooling (HBAC). HBAC is an
efficient method for extracting entropy from a set of system qubits, allowing qubits to be
cooled below the bath temperature (i.e. beyond the closed-system, or Shannon, bound). In
practice, HBAC requires at least one reset qubit that thermalizes to the bath polarization
εb much faster than the relaxation rate of the system qubits. Exploiting the electronic
spin-lattice relaxation as a reset operation, the electron can connect a set of nuclear spins
to heat bath with an effective temperature much lower than the equilibrium nuclear spin
temperature. Another challenge in the ESR QIP is the complexity of microwave control due
to more severe bandwidth effects and the difficulty of engineering the ideal propagation of
microwave signals, and fast decoherence timescales of the electron spin. In the later chapter,
we present our efforts on improving the microwave control that allowed us to manipulate
a single-qubit system with above 99% accuracy. However, experimental demonstration of
high fidelity coherence control of more complex multi-qubit systems remains challenging.

4.2 System model

4.2.1 Electron spin resonance: Zeeman interaction

Electron spin resonance arises from the interaction between the electron magnetic dipole
moment and an applied magnetic field. Similar to the NMR convention, z-axis denotes the
direction of the static magnetic field, and the electron spin is quantized along B0 = B0ẑ.
The Zeeman Hamiltonian for a free electron spin can be written as Hez = µBβeB0Sz =
µBB0Sz, where ge is the g-factor of the free electron and µB is the Bohr magneton. Si is
spin-1/2 operator for the electron (recall that the symbol I denoted the spin-1/2 operator
for nuclei). Note the sign convention for the gyromagnetic ratio of different spin species:
γe > 0 and γn > 0 except for 15N .

For the unpaired electron in a single crystal molecule, there is an internal orbital contri-
bution to the magnetic field experienced by the electron. In this case, the electron g-factor
depends on the direction of the applied field. The Zeeman interaction of the unpaired
electron in the single crystal is

Hez = µBgµνSµBν , (4.1)
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where g is the second-rank tensor representing the electron g-factor, Bν is an element of the
external magnetic field. Here µ, ν ∈ {x, y, z}, and the repeated index implies summation
over all the values of the index (similar to the Einstein summation convention, except all
indices appear as lower indices). This summation convention will be used only for the
terms involving tensor elements. For general summation notation such as summation over
the number of nuclei, the symbol ∑ will be used instead.

4.2.2 Hyperfine Interaction

The hyperfine interaction between an electron and a nuclear spin is described by the
Hamiltonian

Hhf = 2πAµνSµIν . (4.2)
A is a second-rank tensor representing the hyperfine interaction. The hyperfine coupling
term can be written as the sum of the isotropic (Fermi contact) part:

Hiso = aisoSµIµ, (4.3)

where aiso ∝ γeγn|ψ(0)|2 and |ψ(0)|2 is the electron spin density at the nucleus, and
anisotropic (dipolar) part:

Haniso = DµνSµIν , (4.4)

where Dµν ∝ γeγn
〈
ψ
∣∣∣3rµrν−δµνr2

r3

∣∣∣ψ〉 is the tensor describing the dipolar interaction, and
|ψ〉 is the ground state wavefunction of the electron, and r is the vector connecting the
electron and the nuclear spin.

4.2.3 Spin Hamiltonian for 1 electron coupled to N nuclei

In 1 electron-N nuclear spin system, the nuclear dipole-dipole interaction is typically two
orders of magnitude weaker than the hyperfine coupling strength and can be neglected.
Then when the magnetic field B0 is applied, the spin Hamiltonian of an unpaired electron
spin and N nuclear spins can be written as

H = µBgµνSµBν +
N∑
k=1
−γkn(1 + ∆k

µν)IkµBν + 2πAk
µνSµIkν , (4.5)

where ∆k represents the nuclear chemical shift tensor. Similar summation notation as the
one shown before is also used here. µ and ν run over the tensor elements (x, y, z), while
k in the superscript is summed over the number of nuclei.
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When the nuclear Zeeman energy and the hyperfine interaction strength are comparable
in magnitude and much smaller than the electron Zeeman energy, the spin Hamiltonian
can be approximated as [95]:

H ≈ ωSSz +
N∑
k=1
−ωkIIkz + 2π

(
Ak
zzSzIkz + Ak

zxSzIkx + Ak
zySzIky

)
. (4.6)

Here, ωS = µB‖g‖B0 is the electron Larmor frequency, and ωkI = γkn‖(1 + ∆)‖B0 is the
Larmor frequency of the kth nuclear spin. Without loss of generality, we can define a new
x-axis of the nuclear spin subspace by applying a transformation around z-axis by an angle
φ = tan−1(Azy/Azx) such that the nuclear spin lies in the xz-plane of the laboratory frame.
In this frame, the Hamiltonian has the form

H = ωSSz +
N∑
k=1

(
−ωkIIkz + akSzIkz + bkSzIkx

)
, (4.7)

where ak = 2πAk
zz and bk = 2π

√
(Ak

zx)
2 +

(
Ak
zy

)2
. H is diagonalized by the unitary trans-

formation Hd = UdHU †d , with the operator

Ud =
N∏
k=1

exp(−i(ηk↑S↑Iky + ηk↓S↓Iky )). (4.8)

where ηk↑ = arctan
(
−bk

ak+2ωkI

)
and ηk↓ = arctan

(
−bk

ak−2ωkI

)
, and 1l is the unit matrix. S↑ =

1l/2 + Sz and S↓ = 1l/2 − Sz are projections in the spin-up and spin-down state of the
electron, respectively. The nuclear spin is quantized along the direction of an effective field

Bk
n =

(
B0 ±

ak

2γkn

)
ẑ ±

(
bk

2γkn

)
x̂ (4.9)

and the ± sign depends on whether the electron spin is parallel (spin up) or antiparallel
(spin down) to the external field. As a consequence, when b 6= 0, the direction of the
nuclear spin quantization axis is dictated by the electron spin state. ηk↑ and ηk↓ define
the directions of the nuclear quantization axes with respect to B0 in the electron spin-up
and spin-down manifolds, respectively. Also, when b = 0, the external microwave control
pulse applied at the electron resonance frequency can only induce single spin flip of the
electron. The single spin transition is usually called allowed transition. The electron-
nuclear double spin flip is usually called forbidden transition However, when b 6= 0, the
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microwave control pulse combined with the anisotropic part of the hyperfine coupling can
drive the forbidden transition with non-zero probability. Exploiting anisotropic hyperfine
interaction for controlling the nuclear spin will be explained in more detail in Sec. 4.4.1.

In the diagonal basis, the Hamiltonian is written as

Hd = ωSSz +
N∑
k=1

(
ωk12S↑Ikz + ωk34S↓Ikz

)
= ωsSz +

N∑
k=1

(
ωk+
2 I

k
z + ωk−

2 2SzIkz
)

, (4.10)

with nuclear frequencies

ωk12 =
(
ωkI + ak

2

)
cos(ηk↑)−

bk

2 sin(ηk↓), ωk34 =
(
ωkI −

ak

2

)
cos(ηk↑) + bk

2 sin(ηk↓) (4.11)

and ωk+ = ωk12 + ωk34 and ωk− = ωk12 − ωk34. The eigenstates of the kth nuclear spin are a
mixture of the nuclear Zeeman eigenstates as following:

|↑k0〉 = cos
(
ηk↑
2

)
|↑〉 − sin

(
ηk↑
2

)
|↓〉, (4.12)

|↑k1〉 = sin
(
ηk↑
2

)
|↑〉+ cos

(
ηk↑
2

)
|↓〉, (4.13)

|↓k0〉 = cos
(
ηk↓
2

)
|↑〉 − sin

(
ηk↓
2

)
|↓〉, (4.14)

|↓k1〉 = sin
(
ηk↓
2

)
|↑〉+ cos

(
ηk↓
2

)
|↓〉. (4.15)

The subscript 0 and 1 indicate that electron spin is either in the spin-up or spin-down
state.

4.3 System characterization: Hamiltonian determina-
tion

The spin Hamiltonian of the electron-nuclear coupled system is characterized by the hyper-
fine coupling parameters a and b in the lab frame (Eq. 4.7) or equivalently by the nuclear
frequencies ω12 and ω34 in the diagonal basis (Eq. 4.11).

The first step towards high fidelity control of the hyperfine coupled electron-nuclear
spin system is to precisely determine g- and hyperfine tensors. Given the tensors, one can
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(c) Schematic ESR spectrum

Figure 4.1: (a) Energy splittings due to individual terms of the 1 electron-1 nucleus isotropic
Hamiltonian where the anisotropic part of the hyperfine interaction is zero, i.e. b = 0. (b)
Energy level diagram. The double and single arrows represent allowed and forbidden ESR
transitions, respectively, and the broken arrows correspond to nuclear transitions. (c)
Schematic ESR spectrum corresponding to the energy level diagram shown in (b). These
figures correspond to strong coupling case, |a| > |2ÊI |.

4.3 System characterization: Hamiltonian determina-
tion

The spin Hamiltonian of the electron-nuclear coupled system is characterized by the hy-
perfine coupling parameters a and b in the lab frame (see Eq. 4.6) or equivalently by the
nuclear frequencies Ê12 and Ê34 in the diagonal basis (see Eq. 4.9).

The first step towards high fidelity control of the hyperfine coupled electron-nuclear
spin system is to precisely determine g-and hyperfine tensors. Given the tensors, one can
work out the optimal magnetic field orientation for desired quantum algorithm and control
method (See Sec. 7.2.2). The Hamiltonian parameters in the target crystal orientation can
be easily calculated by applying simple frame transformations to the known tensor. Once
the crystal is positioned in the target orientation with respect to the field, spectroscopic
techniques such as Electron Spin Echo Envelope Modulation (ESEEM) or pulsed ENDOR
[80] can be used to confirm that the Hamiltonian parameters are correct (within the error
acceptable for quantum control). Note that these measurement only provides the magni-
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Figure 4.1: (a) Energy splittings due to individual terms of the 1 electron-1 nucleus isotropic
Hamiltonian where the anisotropic part of the hyperfine interaction is zero, i.e. b = 0. (b)
Energy level diagram. The double and single arrows represent allowed and forbidden ESR
transitions, respectively, and the broken arrows correspond to nuclear transitions. (c)
Schematic ESR spectrum corresponding to the energy level diagram shown in (b). These
figures correspond to strong coupling case, |a| > |2ωI |.

work out the optimal magnetic field orientation for desired quantum algorithm and control
method (see Sec. 7.2.3). The Hamiltonian parameters in the target crystal orientation can
be easily calculated by applying simple frame transformations to the known tensor. Once
the crystal is positioned in the target orientation with respect to the field, spectroscopic
techniques such as Electron Spin Echo Envelope Modulation (ESEEM) or pulsed ENDOR
[95] can be used to confirm that the Hamiltonian parameters are correct (within the error
acceptable for quantum control). Note that these measurement only provides the magni-
tude of the nuclear frequencies, not the sign of the parameters. Thus ESEEM or ENDOR
spectroscopy is only used for checking the magnitudes of the Hamiltonian parameters of
interest; the sign has to be obtained from the tensors and the frame transformation.

In this section, we briefly review the electron g- and the hyperfine tensor determination
method based on the method given in [96].
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4.3.1 Electron g-tensor and hyperfine interaction tensor charac-
terization

First, we explain the g-tensor determination procedure. For a static magnetic field B0 =
B0(lx, ly, lz) where lx,ly and lz are direction cosines of the magnetic field in the axes of the
crystal satisfying l2x + l2y + l2z = 1, the electron Zeeman energy levels can be rewritten as

E± = ±1
2µBB0(lαΓαβlβ)1/2, (4.16)

where we introduce Γ = g · g. In the absence of nuclear spins, the magnetic resonance
condition ∆E = hν = µBgB0 leads to

g = hν

µBB0
= ∆E
µBB0

= E+ − E−
µBB0

= (lαΓαβlβ)1/2, (4.17)

where g is the experimentally observed value, ∆E is the difference between E+ and E−, and
ν is the frequency of the microwave field. For B0 = B0(cos θ, sin θ, 0), using the symmetry
Γαβ = Γβα, the dependence of g on θ can be written as

(g(θ))2 = lαΓαβlβ = Γxx cos2 θ + Γyy sin2 θ + 2Γxy cos θ sin θ. (4.18)

By measuring g(θ) at various θ and solving Eq. 4.18, Γxx, Γyy and Γxy can be determined.
Similarly, by orienting B0 within the x-z and y-z planes and measuring g(θ) for various θ
(where θ is the angle between B0 and z, or between B0 and y), Γzz, Γxz and Γyz can be
determined. Therefore full knowledge of Γ can be obtained.

Now we consider the electron-nuclear coupled spin Hamiltonian which containsHe, Hhf

and Hn. In this case, the 1st order approximation of the energy levels of the system gives

EMSMI
= gµBB0MS +

K∑
n=1
{4π2

g2 (lαΓAn
αβlβ) + γ2

nB
2
0

M2
S

− 4π
gMS

γnB0(lα(g · An)αβlβ)}1/2Mn
IMS,

(4.19)
where ΓA = g · A · A · g, and MS and Mn

I are quantum numbers for the electron spin
and the nth nuclear spin, respectively. As mentioned before, all ESR transitions can be
classified into two types: allowed and forbidden transitions. Allowed transitions refer to
an electron-only spin flips, while forbidden transitions refer to the flips of electron spin
along with one or more nuclear spins. In the absence of anisotropic hyperfine coupling, i.e.
bn = 0, forbidden transitions are completely suppressed and produce no observable ESR
signal. When bn 6= 0, these transitions can lead to signals comparable to, but typically
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smaller than, the allowed transitions. For the purpose of hyperfine tensor determination,
it suffices to track only allowed ESR transitions. [96] argues that nuclear Zeeman energy is
generally much smaller than hyperfine coupling strength and can be usually omitted in the
traditional process of determining hyperfine tensors using ESR spectra. After omitting the
nuclear Zeeman energy, the ESR allowed transition energy gap in the 1 electron-1 nucleus
system is

∆E = gµBB0 + 2π
g

(lαΓA
αβlβ)1/2MI , (4.20)

where the nuclear spin quantum numbers MI = ±1/2 represent spin up and spin down
states, respectively. The ESR spectrum then splits into two distinct peaks separated by a
frequency A = g−1(lαΓA

αβlβ)1/2. Similar to Eq. (4.18), when the static magnetic field is
B0 = B0(cos θ, sin θ, 0) we have

(g(θ)A(θ))2 = ΓA
xx cos2 θ + ΓA

yy sin2 θ + 2ΓA
xy cos θ sin θ, (4.21)

and, as before, expressions for B0 in the x-z and y-z planes relate the other tensor com-
ponents of ΓA to (gA)2. In our Hamiltonian determination work, after the procedure

x" 
y"

z"

sample"holder"

1"mm"

(b)"

Figure 4.2: Schematic of the crystal mounted on a sample holder for the orientation study.
Axes x, y and z indicate the lab frame in which measurements are taken. The curved green
arrow indicates rotation of the crystal for orientation studies.

presented in [96] as explained above, we implemented an optimization process which takes
the nuclear Zeeman energy into consideration. The optimization procedure provides more
accurate hyperfine tensors especially when the nuclear Zeeman energy is comparable to
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the hyperfine coupling. As discussed previously, we need only to detect the spectral po-
sitions of the allowed transitions, which can be distinguished from forbidden transition
peaks because of their larger intensities. Each measured ESR spectrum is fitted to a set of
allowed transition peaks defined by their amplitude, frequency and a common line width.
The nuclear Zeeman term is also included as the peak positions are calculated. The peak
positions for all measurements in one plane give a set of trajectories for that plane, from
which we obtained the dependence of g and An on θ. Doing this in three orthogonal planes
allows extraction of the g-factor tensor g and hyperfine tensors An by solving Eqs. (4.18)
and (4.21). After this, we used the method of least square fitting to optimize g and An by
minimizing the difference between the experimental peak trajectories and the simulated
trajectories.

Another method to determine hyperfine tensors is to make use of ENDOR experiments.
For ENDOR transitions that correspond to ∆MS = 0 and ∆MI = ±1, the energy gap in
the 1 electron-1 nucleus system can also be readily obtained from Eq. (4.19) and its square
is given by

∆E2 = γ2
nB

2
0 + 4π2M2

S

g2 (lαΓA
αβlβ)− 4πMSγnB0

g
(lα(g · A)αβlβ). (4.22)

Since MS = ±1/2, ENDOR spectral peaks also split into two. Denoting observed ENDOR
frequencies as ν± for MS = ±1/2, Eq. (4.22) can be rewritten as

ν2
± = ν2

I + 1
4g2 (lαΓA

αβlβ)∓ νI
g

(lα(g · A)αβlβ), (4.23)

where νI = γnB0/2π. An equation similar to Eqs. 4.18 and 4.21 can be obtained when the
static magnetic field is B0 = B0(cos θ, sin θ, 0):

g

2νI
(ν2
− − ν2

+) = (g · A)xx cos2 θ + (g · A)yy sin2 θ + 2(g · A)xy cos θ sin θ. (4.24)

Then the magnitude of A can be extracted by measuring the orientation dependence of
g(ν2
− − ν2

+)/2νI in three distinct rotation planes.

4.3.2 Hamiltonian determination at a fixed crystal orientation

ESEEM or pulsed ENDOR can be employed to measure the magnitudes |ω12|, |ω34|, |ω+|,
and |ω−| at a fixed crystal orientation. From these values, the magnitudes of the hyperfine
coupling constants a and b in Eq. 4.7 can also be calculated. For experimentally determined

45



values of g, A, and the orientation of the crystal with respect to the static field, these
spectroscopic techniques serve as useful tools for validating the Hamiltonian parameters.
Notice from Eq. 4.11 that the nuclear frequencies are invariant under the sign change of
b since cos (arctan(x)) and x sin (arctan(x)) are even functions with respect to x. Thus
the sign of b is irrelevant for the high fidelity control. Here we briefly review ESEEM and
pulsed ENDOR by using 1 electron and 1 nuclear coupled spins as an example. For further
details, [95] is an excellent reference.

(a) Two-pulse ESEEM (b) Three-pulse ESEEM

Figure 4.3: (a) Pulse sequence for two-pulse ESEEM. Non-selective π/2 and π pulse (de-
noted non-sel in the figure) separated by time T produces a spin echo (denoted ESE in the
figure) at time T after the π pulse. The echo is modulated as a function of T . (b) Pulse
sequence for three-pulse ESEEM. In this pulse sequence, the spin echo produced after three
non-selective π/2 pulses is modulated as a function of T while t is fixed.

In previous sections, we have seen that a microwave pulse can generate coherences
on both allowed and forbidden electron spin transitions when the anisotropic part of the
hyperfine interaction is non-zero. Here we denote the transition between eigenstates k and
l as (k,l). Due to the anisotropy in the hyperfine coupling, a π/2 microwave pulse can
excite allowed transitions (1,3) and (2,4), and forbidden transitions (1,4) and (2,3) in the
1 electron-1 nuclear spin system (see Fig. 4.1b) as long as the pulse has a wide enough
frequency bandwidth to excite all transitions (i.e. non-selective). From Eq. 4.35, one can
see that the non-selective π pulse transfers the coherence, for example, on (1,3) transition
to coherence on all transitions (1,3), (2,3), (1,4) and (2,4). Then at time T after the π pulse,
each coherence (k,l) gains a phase (ωkl − ω13)T . The time dependent phase appears as a
modulation in the spin echo as a function of T , and the modulation frequency corresponds
to nuclear frequencies and their sum and difference. The behaviour of the other coherences
at the incident of the π pulse and after is analogous. The pulse sequence for two-pulse
ESEEM is shown in Fig 4.3a. A sequence of three non-selective π/2 pulses separated by
certain time delays can also be used for observing the modulation of the spin echo as a
function of T (Fig. 4.3b). The advantage of the three-pulse ESEEM is that the spin echo
is modulated only by the nuclear frequencies unlike the two-pulse technique in which the
sum and difference of the nuclear frequencies also contribute to the modulation.
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Figure 4.4: Schematics illustrating the idea of pulsed ENDOR. A selective π pulse on
the electron spin flip transition denoted as (1) in the figure exchanges the populations of
the selected states. In the next step, a selective RF pulse denoted (2) in the figure is
applied with some frequency. If the RF pulse frequency is on-resonance with one of the
nuclear transition frequencies, the electron and nuclear polarizations are swapped and no
electron spin echo can be detected in step (3). In the pulsed ENDOR experiment, the RF
frequency is varied and the nuclear frequencies coincide with the pulse frequencies at which
the electron spin echo vanishes.

Pulsed ENDOR can be employed to measure nuclear spin frequencies even in the ab-
sence of the anisotropic hyperfine coupling. The pulsed ENDOR technique for 1 electron
and 1 nuclear coupled spins as an example can be explained using Fig. 4.4. For brevity,
here we assume the initial state can be written as Sz, meaning that the nuclear polariza-
tion is negligible. First, a selective microwave π pulse is applied to one of the ESR allowed
transitions, for example, to drive the transition |↑↑〉 ↔|↓↑〉 where the first state is for the
electron. In the product operator form, the selective pulse transforms Sz to −2SzIz. Next,
a selective RF π pulse is applied, for example, to the |↑↑〉 ↔|↑↓〉 transition. When the
RF pulse frequency is on-resonance with the nuclear frequency, the populations of the two
states |↑↑〉 and |↑↓〉 are exchanged. At this stage the density matrix is given as Iz. Sine
the electron polarization is swapped with that of the nuclear spin, the electron spin echo
can not be detected. On the other hand, if the RF pulse is off-resonance from the nuclear
frequency, the pulse induces some rotation of an angle smaller than π, meaning that the
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nuclear transition occurs with less probability. Then only part of the electron polariza-
tion is transferred to the nuclear spin, and the amount of polarization remaining on the
electron transition and thus the electron spin echo intensity varies as a function of the RF
frequency. Therefore, in the pulsed ENDOR experiment, the nuclear frequencies can be
found by sweeping the RF pulse frequency over some range and looking for the frequencies
at which the electron spin echo vanishes.

4.4 Closed system control

Given the density matrix ρ(t) that describes the state of a closed quantum system, the
time evolution of the system can be described by the differential Schrödinger equation:

ρ̇(t) = −i
~

[H0 +Hc(t), ρ(t)], (4.25)

where H0 is a time-independent natural Hamiltonian and Hc is the time-dependent control
Hamiltonian. [�,�] denotes commutator (and {�,�} is anti-commutator). Provided the
initial condition ρ(0), the differential equation can be integrated and the final state at time
τ is:

ρ(τ) = U(τ)ρ(0)U(τ)†. (4.26)
The unitary propagator U is defined as

U(τ) = T exp
(−i
~

∫ τ

0
dt (H0 +Hc (t))

)
, (4.27)

where T is the Dyson time ordering operator specifying the order of the non-commutivity of
H at different times. In NMR and ESR QC, the external control Hamiltonian is established
by applying an oscillating pulse transverse to the direction of the static magnetic field. For
the system of N spin qubits, the control Hamiltonian in the lab frame can be written as a
sum of all available control knobs:

Hc(t) =
N∑
k

ωk(t)
2

(
cos(Ωkt+ φk(t))σkx + sin(Ωkt+ φk(t))σky

)
(4.28)

=
N∑
k

∑
i∈{x, y}

uikσ
k
i , (4.29)

where uik denotes the control field with the amplitude ωk(t) and the phase φk(t) applied at
a transmitter frequency Ωk.
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There are two streams for achieving universal control in the electron-nuclear coupled
system. First method is irradiating oscillating magnetic fields resonant with certain spin
transition frequency to explore the full Hilbert space. This includes both electron and
nuclear spin transitions, much like the electron-nuclear double resonance (ENDOR) spec-
troscopic technique [95]. The addressability of single qubits, combined with two body inter-
action Hamiltonian, is sufficient for universal control. Second method is to use anisotropy of
the hyperfine interaction and manipulate nuclear spins solely by irradiating microwave con-
trol field at electron spin transitions. Hereinafter, we call the latter approach Anisotropic
Hyperfine Control (AHC). The control universality via anisotropic hyperfine interaction
was proved in [31], and demonstrated experimentally in [32] for a single nuclear spin qubit
gate and in [97] for a gate involving two nuclear spin qubits. The advantage of the indirect
control technique is that it simplifies the instrumentation as additional rf excitations are
not needed, and faster gate implementation relative to ENDOR can be achieved when the
hyperfine coupling strength exceeds the Larmor frequency of the nucleus in a given external
field. In the following section, we use 1 electron, 1 nuclear spin system as an example to
illustrate the idea.

4.4.1 Universal control via anisotropic hyperfine interaction

Consider 1 electron and 1 nuclear spins that are hyperfine-coupled as an example. The
eigenstates of this system are:

|1〉 = |↑〉 ⊗
(

cos
(
η↑
2

)
|↑〉 − sin

(
η↑
2

)
|↓〉
)

, (4.30)

|2〉 = |↑〉 ⊗
(

sin
(
η↑
2

)
|↑〉+ cos

(
η↑
2

)
|↓〉
)

, (4.31)

|3〉 = |↓〉 ⊗
(

cos
(
η↓
2

)
|↑〉 − sin

(
η↓
2

)
|↓〉
)

, (4.32)

|4〉 = |↓〉 ⊗
(

sin
(
η↓
2

)
|↑〉+ cos

(
η↓
2

)
|↓〉
)

, (4.33)

where the first state is for the electron. The electron spin control Hamiltonian in the
rotating frame is

Hc(t) = ω(t) (cos (φ(t))Sx + sin (φ(t)Sy)) , (4.34)
where ω and φ represent the microwave amplitude and phase, respectively. Without loss of
generality, we set ω = constant, and φ = 0. In the eigenbasis of the internal Hamiltonian,
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the rotating-frame control Hamiltonian becomes:

H̃c = ω

2


0 0 cos(η) − sin(η)
0 0 sin(η) cos(η)

cos(η) sin(η) 0 0
− sin(η) cos(η) 0 0

 , (4.35)

where η = (η↑ − η↓) /2. From Eq. 4.35, one can see that the control Hamiltonian is able
to induce all transitions between any eigenstates of the electron spin up manifold and the
electron spin down manifold provided η 6= nπ/2 where n is an integer and eigenstates
are non-degenerate. The energy level connectivity can be represented as a graph, and
the complete connectivity of the graph generated by the control Hamiltonian and non-
degenerate energy levels guarantee universal control of the system [32, 98, 99]. Since the
spin Hamiltonian does not consider nuclear-nuclear dipolar interactions, the idea presented
for 1 electron, 1 nuclear spin system can be easily extended to larger number of nuclear
spins, provided that suitable and distinct hyperfine couplings exist.

4.4.2 Pulse design

The goal of pulse design is to find the control parameters that realize a desired unitary
propagator Ud at some time T when combined with the natural Hamiltonian H0. Pulse
engineering techniques must minimize the effect of relaxation and experimental limitations
for practical applications. The experimental limitations include qubit selectivity due to
finite frequency bandwidth, time-independent incoherent errors such as static and RF field
inhomogeneities, miscalibration of pulse power or duration and frequency offset. Over the
last 30 years, numerous multi-pulse techniques have been developed for control in NMR
QIP. Traditionally, average Hamiltonian theory has been a powerful tool that provides
intuitive guidelines for constructing pulse sequences for simple cases [88]. In particular,
composite pulses [100], adiabatic pulses [101–104] and shaped pulses [105] were introduced
during the earlier development of NMR QIP to obtain selective operations by using low
pulse power and to better compensate for static and rf field inhomogeneities by increasing
the number of degrees of freedom in the pulse shape. However, the long pulse times required
by these techniques lead to greater decoherence and relaxation effects, and interference of
selective pulses simultaneously applied to different spins causes significant deviation from
desired operations [106].

Another pulse design method that aims to reduce decoherence effects is to constantly
modulate the system’s dynamics with high-power control fields to generate the desired
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unitary propagator [106]. A common strategy to the problem is to first discretize the total
evolution time T in M equal steps of duration ∆t = T/M in some rotating frame such
that in each step the control parameters are approximately constant. The approximation is
valid if ∆t� 1/‖Hj‖, where Hj is the time-independent total Hamiltonian in the rotating
frame during the time step j with a control set {ωjk, φjk}. Then the total unitary evolution
of length T can be approximated as the product of the propagators for each period,

U(T ) ≈
∏
j

Uj, (4.36)

where Uj = exp (−i∆tHj) is the unitary propagator of time step j. Using above approach,
the pulse design problem can be formulated as an optimization problem that is to maximize
a fitness function Φ(U(T ),Ud) = |Tr(U(T )†Ud)|2/D2 over the feasible parameters {ωjk, φjk},
where D is the size of the Hilbert space. For more than two qubits, the analytical approach
to the optimization problem becomes intractable, and numerical methods are required. For
larger systems, the majority of optimal control methods are based on a gradient approach,
such as the Gradient Ascent Pulse Engineering (GRAPE) algorithm [72]. The GRAPE
algorithm can be briefly summarized as follows. It begins with an initial guess for a set
of control parameters uk(j) = {ωjk cos(φjk), ω

j
k sin(φjk)} for all time step j ≤ M and for all

spin k ≤ N that are being manipulated. Then in each iteration, the algorithm calculates
δΦ/δuik(j):

δΦ
δuik(j)

= 1
M2

[
Tr
(
U †goalUN ...Uj+1

δUj
δuik(j)

Uj−1...U1

)
+ c.c

]
. (4.37)

To first order, the derivative of jth step unitary propagator with respect to the control
fields is calculated as

δUj
δuik(j)

≈ −i∆tσki Uj, (4.38)

which is valid as long as the discrete time step is chosen to be significantly smaller than
the inverse magnitude of the system Hamiltonian, i.e. ∆t � 1/‖Hj‖. For the gradient
calculation, the GRAPE algorithm requires calculating the matrix exponential only once
for each time step and storing it in the memory, and uses a few matrix multiplications.
This is computationally much less costly compared to a brute force approach which requires
the simulation of the entire dynamic for the change of control parameter in a single time
step. Once the derivative of the fidelity function with respect to the control parameters
are calculated, the algorithm updates uik(j) as

uik(j)→ uik(j) + ε
δΦ

δuik(j)
, (4.39)
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where ε is an adjustable step size. The iteration continues until the improvement in the
performance index Φ is smaller than a chosen threshold value. The GRAPE algorithm
can also design pulses robust to experimental imperfections such as static field and rf
inhomogeneities and miscalibration if the parameters are sampled over a range of discrete
values determined by the distribution. Then the total fidelity to be optimized can be
measured as Φtot = ∑

α Φ(xα), where xα is a particular value of some parameter seen
by a fraction of spins. However, just as with any optimal control method, the GRAPE
algorithm cannot deterministically locate global minima but instead finds local minima in
the search space. Therefore the ultimate fidelities that can be achieved are limited by the
initial guess, even if unit fidelity pulses are possible in principle.

4.5 Decoherence model

The dynamic of a quantum system described in Sec. 4.4 is formulated assuming that the
qubit is perfectly isolated from the environment. However, in physical implementations
of QIP, qubits of interest undergo unwanted interactions with environment and eventually
lose quantum coherence. In this section, we briefly review the representations of open
quantum system dynamics that are useful in designing and simulating the experiment as
a necessary step towards realizing complex quantum algorithms.

4.5.1 Kraus representation

A general dynamical map Λ acting on a system qubit ρs can be described as the effect of
a unitary operator on extended Hilbert space Hs ⊗He acting on an uncorrelated system-
environment initial state [22, 107]. The environment state in Hilbert space He can be
simply assumed to be |0e〉〈0e| without loss of generality. Then the system qubit obtained
after the transformation is

ρs(t) = Λ(ρs(0)) = Tre
(
U(t)ρs(0)⊗ |0e〉〈0e|U †(t)

)
=
∑
k

Akρs(0)A†k, (4.40)

where Tre is a partial trace operator acting on the environment and Ak = 〈k|U(t)|0e〉 is a
linear operator acting on Hs. This map preserves the trace of the output state:

Tr
(∑

k

Akρs(0)A†k
)

= 1, (4.41)
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and the linear operators Ak satisfy the following property:∑
k

A†kAk = 1ls. (4.42)

Note that by linearity, a decomposition of the same form is obtained in the case when the
environment is initially a mixed state.

Any linear map Λ taking linear operators to linear operators is called a superopera-
tor. A quantum dynamical superoperator Λq describing the evolution of a quantum state
over a time t must satisfy completely positive and trace-preserving (CPTP) conditions.
The complete positivity condition guarantees that probabilities are positive and real even
when the map is acting on part of an extended system if the initial state is composed of
uncorrelated two systems. The trace-preserving condition guarantees that probability is
conserved.

The expression in Eq. 4.40 subject to the condition in Eq. 4.42 is called a Kraus de-
composition of the map Λ, and Ak are called Kraus operators. The Kraus representation
of a given process is not unique, but all sets of operators are related through a unitary
transformation.

4.5.2 Liouville representation

The Liouville representation [108] is a practical way of describing the action of a superop-
erator on a given state. Using the Liouville representation, the evolution can be written
as vectorial multiplication between the state and the superoperator:

Λ(ρ) = Λ̂|ρ〉〉, (4.43)

where Λ̂ is a d2 × d2 matrix representation of Λ, |ρ〉〉 is a d2 × 1 vector constructed by
stacking the rows (or the columns) of ρ. If |ρ〉〉 is formed by stacking the rows, Λ̂ can be
expressed using Kraus operators as [109, 110]

Λ̂ =
∑
k

Ak ⊗ A∗k. (4.44)

Alternatively, if |ρ〉〉 is formed by stacking the columns,

Λ̂ =
∑
k

A∗k ⊗ Ak. (4.45)
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4.5.3 Lindblad equation

Another useful tool in the study of open quantum systems is the approach of master
equations. The master equation describes non-unitary time evolution of an open system
with a differential equation, and it can be written most generally in the Lindblad form
as [110, 111]

∂ρ

∂t
= −i [H, ρ] +

∑
j

(
LjρLj −

1
2{L

†
jLj, ρ}

)
= −i [H, ρ] +D(ρ), (4.46)

where Lj’s are called the Lindblad operators, D(�) is the dissipator. The derivation of the
master equation of the above form relies on assumptions that the system and environment
begin in a product state and the environment is Markovian, meaning that the environment
has no memory.

The solution to Eq. 4.46 can also be expressed in the Liouville representation using the
superoperator as

Λ̂ = exp
(
iĤ + D̂

)
, (4.47)

where

Ĥ = H∗ ⊗ 1l− 1l⊗H (4.48)

D̂ = −
∑
j

L∗j ⊗ Lj −
1
2
(
1l⊗ L†jLj − LTj L∗j ⊗ 1l

)
. (4.49)

4.5.4 Relaxations of a spin ensemble

Two main sources of noise in NMR and ESR are spin-spin relaxation also known as trans-
verse relaxation or dephasing characterized by T2, and spin-lattice relaxation also known
as longitudinal relaxation or amplitude dampling characterized by T1. In fact, T1 and T2
processes are dominating sources of decoherece in many other quantum devices as well.
In the following, Kraus and Lindblad operators for dephasing and amplitude damping are
listed as a reference. There terms are used for realistic simulations in later chapters.

Dephasing

The Kraus operators for dephasing are

Ad0 =
√

1− p1l, (4.50)
Ad1 = √pσz, (4.51)
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where p = (1− exp (−t/T2)) /2, and the Lindblad operator for dephasing is

Ld0 = 1√
2T2

σz. (4.52)

Amplitude damping

The Kraus operators for amplitude damping can be expressed as

Aa0 = √p
(
σ↑ +

√
1− ξσ↓

)
, (4.53)

Aa1 =
√
pξσ+, (4.54)

Aa2 =
√

1− p
(√

1− ξσ↑ + σ↓

)
, (4.55)

Aa3 =
√

(1− p)ξσ−, (4.56)

where σ↑,↓ = (1l± σz) /2 and σ± = (σx ± iσy) /2. Here p = (1− (p↑ − p↓)) /2 where p↑,↓
represent population of up and down states and ξ = 1 − exp (−t/T1). The Lindblad
operators are

La0 =
√
p

T1
σ+, (4.57)

La0 =
√

1− p
T1

σ−. (4.58)

4.5.5 Electron-nuclear cross relaxation

In a coupled spin system, if the probability of the forbidden two spin flip transition to
occur is non-zero, the spin-lattice relaxation of one spin species induces relaxation of the
other, the effect known as cross-relaxation. Typically, spin-lattice relaxation characteristic
time scales with similar factor to gyromagnetic ratio and therefore the nuclear T1 process
occurs in much longer time scale than that of an electron. However, in the electron-nuclear
spin coupled systems, the cross-relaxation can introduce fast relaxation of the nucleus
when anisotropic hyperfine interaction is strong. The effect of electronic T1 and anisotropic
hyperfine interaction on a nuclear spin can be analytically shown via Kraus representation.
Let us assume that the only source of noise acting on the electron-nuclear system is the
electron T1 process. Then the Kraus operators describing the relaxation are Aa0⊗1l, Aa1⊗1l,
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Aa2 ⊗ 1l, and Aa3 ⊗ 1l in the σz basis, where Aaj are showin in Eq. 4.53-4.56. Then we write
these terms in the eigenbasis of the electron-nuclear spin Hamiltonian shown in Eq. 4.7 to
obtain new Kraus operators Eq. 4.59-4.62.

Ãa0 = Aa0 ⊗ 1l, (4.59)

Ãa1 =
√
pξ (cos(η)σ+ ⊗ 1l− i sin(η)σ+ ⊗ σy) , (4.60)

Ãa2 = Aa2 ⊗ 1l, (4.61)

Ãa3 =
√

(1− p)ξ (cos(η)σ− ⊗ 1l + i sin(η)σ− ⊗ σy) , (4.62)
where η was defined in Sec. 4.4.1. The forbidden transition rate of the electron-nuclear
spin system scales as sin(η) (see Eq. 4.35). We can see from the Kraus terms above that
the strength of noise induced on the nucleus also scales with the strength of the forbidden
transition.

4.6 Crystal orientation selection for optimal control
Eq. 4.5 shows that the orientation the static magnetic field with respect to the molecular
crystal of electron-nuclear coupled spins alters the spin Hamiltonian. Hence the magnetic
field orientation must be chosen in a way that reduces the durations and optimizes the
fidelities of the quantum operations. AHC and pulsed ENDOR control schemes have very
different orientation selection criteria, which are discussed below.

4.6.1 Orientation Criteria for Anisotropic hyperfine control

Nuclear spin flips can occur via electron-nuclear flip-flip forbidden transitions driven at
a rate ω sin(η)/2, while the on-resonance allowed ESR transition is driven at ω cos(η)/2
(see Eq. 4.35). Depending on the nuclear isotope and the dc field orientation, sin(η)/2 can
be very small, preventing efficient control of the nuclear spins via microwave excitation.
Thus, we aim to have an orientation that yields a pair of hyperfine coupling constants
a and b (Eq. 4.7) that the ratio of forbidden to allowed transition rates are in the same
order of magnitude, i.e tan(η) ∼ 1. On the other hand, one desires to avoid strong
forbidden transition rate in order to minimize the nuclear spin cross-relaxation induced
by the electron T1 process as described in the previous section. Secondly, all allowed and
forbidden transition frequencies should be separated from each other by at least the ESR
line width in order to achieve universal control.
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4.6.2 Orientation Criteria for ENDOR control

In the ENDOR control scheme, nuclear spin rotations are implemented directly by applying
rf pulses on resonance with the nuclear transitions. Hence, tan(η) does not need to be large.
In fact, it is desirable to minimize tan(η) in order to suppress cross-relaxation. As before,
the allowed ESR transitions must be separated by at least the ESR linewidth, and the
NMR transitions must be separated by at least the NMR (ENDOR) linewidth. The latter
is determined by the nuclear dephasing time T n2 � T e2 , and is therefore much narrower
than the ESR line width.
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Chapter 5

Home-built instrumentation for
X-band pulsed electron spin
resonance

5.1 Introduction

This chapter describes our home-built pulsed electron spin resonance (ESR) spectrometer
and a variable temperature probe containing a loop-gap resonator specifically designed for
QIP applications using electron-nuclear spin systems. A pulsed ESR spectrometer operat-
ing at 8-12 GHz (X-band) provides acceptable thermal spin polarization and sensitivity for
QIP experiments with relatively low cost. At the corresponding static field (B0) strengths,
the nuclear Zeeman and hyperfine interaction terms can be comparable, allowing for uni-
versal quantum control of electron-nuclear systems to be achievable by microwave-only
control [31, 32, 97]. Most available commercial pulsed ESR spectrometers do not provide
the flexibility and precision of control necessary for QIP with optimal control pulses. Hence
we custom-designed and built an X-band ESR spectrometer, including a variable temper-
ature probe and specially designed loop-gap resonator (LGR). The author’s contribution
to the home-built system is designing and building the low temperature probe assembly
including the loop-gap resonator for about 10 GHz operating frequency. The probe is
designed to fit in CF935O continuous flow cryostat from Oxford Instruments which is pro-
vided by Dr. David Cory, and can be cooled to just below 2 K. The probe also includes a
sample holder which is used for positioning the ESR sample in a desired orientation with
respect to the static magnetic field for optimizing the control, and the ability to apply
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pulse implementation corrections.

5.2 Pulsed ESR spectrometer
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Figure 5.1: Schematic of the home-built X-band ESR spectrometer. A signal generated
from the microwave source is mixed at the I-Q modulator with 0◦ (X) and 90◦ phase-
shifted (Y) components of a shaped pulse from the arbitrary waveform generator. The
I-Q modulator outputs the shaped pulse at upconverted frequency, and the pulse phase
is accurately controlled (see text for details). TWT amplifier combined with a pre-amp
and an attenuator provides the maximum output of 500 W. The amplified control pulse
is transmitted to the sample placed in the loop-gap resonator, and the ESR signal is
downconverted with the reference carrier frequency at the receiver. The high-pass filter
removes IF transient produced by switching. The remaining IF signal is digitized by a fast
oscilloscope.

Our X-band ESR spectrometer for quantum information processing was custom-designed
and constructed by C. Ryan and J. Chamilliard [112]. The schematic of the home-built
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X-band pulsed ESR spectrometer is depicted in Fig. 5.1. Microwave source (Rohde and
Schwarz SMF100A) can provide a CW output of frequency ranging from 1 to 22 GHz,
and the system is typically operated at ω0 ∼ 10 GHz for our applications. The source
is equipped with options for enhanced phase noise performance and high output power
up to +25 dBm. In order to generate arbitrary pulse shapes required by QIP such as
Gradient Ascent Pulse Engineering (GRAPE) [72], we use single-sideband (SSB) upcon-
version technique [112, 113] and I-Q modulator as the SSB mixer. Arbitrary waveform
generator (AWG) provides both 0◦ (X) and 90◦ phase-shifted (Y) pulse inputs from two
output channels with ωIF = 150 MHz intermediate frequency (IF). Applying IF signals
of same amplitude but phase-shifted by π/2 at I and Q ports suppresses the phase error
of the output pulse due to non-linear power response of the I-Q modulator. The phase
of the output microwave pulse is then controlled by the phase of IF signal generated by
AWG, accurate upto 1 part in 16384. As the microwave CW signal with frequency ω0 is
mixed with the IF inputs with frequency ωIF at I and Q ports, the I-Q modulator outputs
only the upconverted signal at ω0 + ωIF , and the lower sideband is removed. The shaped
pulse must be amplified prior to being launched to the resonant sample cavity. Travelling
wave tube (TWT) amplifier used in the system has maximum output of about 1 kW at 10
GHz. Prior to the TWT, a variable attenuator and low-gain solid-state amplifier are used
in order to fully utilize the dynamic range of the TWT. The output microwave pulse from
the TWT amplifier is directed by a circulator and travels to the loop-gap resonator (see
Sec. 5.3) that surrounds the sample , where the pulse results in an oscillating magnetic
field B1. The circulator has a peak power limit of 500 W, hence the TWT input is adjusted
so that its output is limited to this value. The weak spin magnetization signal is directed
by the circulator to a low-noise preamplifier and then to the receiver, where it is mixed
with the reference frequency ω0 and downconverted to ωIF . The receiver includes a second
state of low-noise amplification. A diode switch (Advanced Technical Materials S1517D)
is used to protect the receiver from being damaged by high power pulses from circulator
leakage and reflection of signals from the loop-gap resonator. The switch is controlled by
a marker channel of AWG. In addition, a diode limiter is used to protect the switch, which
is also easily damaged by high microwave power. After the switch, a high-pass filter is
incorporated in order to remove transients at IF caused by switching. Finally, the spin
signal is digitized using a fast-digitizing and -signal-averaging LeCroy oscilloscope and is
recorded on a computer for further data processing and analysis.

For more details about the home-built spectrometer design, we point to the refer-
ence [112] that provides comprehensive explanations.
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5.3 Loop-gap resonator

In an ESR spectrometer, the resonator is used to convert input oscillating voltage to B1
field on the sample and also to detect weak spin signals. We designed a loop-gap resonator
(LGR) adapted from [114] in our home-built spectrometer with a resonance frequency of
about 10GHz. The advantages of the LGR compared to conventional cavity resonators in
the commercial spectrometers are large filling factors, large ‖B1‖ per square root watt,
good B1 uniformity and lower quality factor (Q) which leads to larger bandwidths and
shorter ringdown times [112, 115]. Fig. 5.2 shows the schematic of the two-loop, one-gap
resonator. The loops and the gap are cut by wire electric discharge machining from a 9.6
mm × 5.4 mm × 2.5 mm copper block. The loop radii are 1.2 mm and 0.6 mm, and the
gap is 0.1 mm wide and 3 mm long. The geometry of the LGR is chosen in order to have
around 10 GHz resonance frequency and the Q ∼150-300. The magnetic and electric field
directions are shown in red and blue in the figure, respectively. The electric field is the
strongest in the gap while the magnetic field is the strongest in the loop, and a sample is
placed inside the smaller loop.

Top$view$ Side$view$

E$field$

B$field$

xx x

xR1=1.2mm$ R2=0.6mm$

Sample$
space$

0.1mm$
A A

3mm$

Figure 5.2: Schematic of the loop-gap resonator. The resonator has two loops and one
gap, and it is made of copper. The geometry of the resonator is determined to yield about
10 GHz resonance frequency with Q ∼150-300. The magnetic and electric field directions
are shown in red and blue in the side view. The electric field is the strongest in the gap
while the magnetic field is the strongest in the loop, and an ESR sample is placed inside
the smaller loop.
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5.4 Variable temperature probe

The resonator is placed in a copper rectangular box of a dimension 9.4 mm × 9.6 mm ×
5.4 mm. For the given dimension, the lowest resonance frequency of this box is well above
12 GHz, and hence does not interfere with the LGR frequency. The inner conductor of a
coaxial cable is formed into a one-turn loop and brought close to the larger of the two LGR
loops, where it inductively couples the microwave signal to the LGR. The outer conductor
of the coaxial cable is copper, and the inner conductor is silver-plated copper. Tuning and
matching of the resonance is done by adjusting the position of the LGR relative to the
coupling inductor. Note that Fig. 5.3 also shows another inductor that is inserted near the
sample space above the smaller resonator loop for pulse implementation correction which
is explained later in Sec. 5.6.

Sample	  
Resonator	  

Pickup	  coil	  

Screw	  

Indium	  
wire	  

Coaxial	  
cables	  

Cryogen	  

Figure 5.3: Schematic of the home-built ESR probe. The two-loop, one-gap resonator is
placed in a copper rectangular box, and the box is placed in a cylindrical copper enclosure
which makes contact with liquid helium vapour during cryogenic cool down. The cylindrical
enclosure is sealed using indium wire and screws, and is evacuated during experiments. The
inner conductor of a coaxial cable at one end is used to create an inductive loop, and the
loop is placed near the larger LGR loop in order to couple the microwave input to the LGR.
Tuning and matching of the resonance can be done by adjusting the position of the LGR
relative to the coupling inductor. A second coaxial cable is used to pick up the microwave
field during a pulse in order to correct the input for pulse imperfections.
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In order to perform QIP with higher electron thermal spin polarization, we desire to
cool the sample to cryogenic temperatures. Hence we designed and built a low-temperature
probe that can be inserted in Oxford Instruments CF935O continuous-flow cryostat, and
can be cooled with liquid helium. The rectangular box is mounted in the home-built low-
temperature probe. The schematic of the probe is illustrated in Fig. 5.3. The resonator box
is held inside the cylindrical enclosure made of copper, and the cylinder has 27.7 mm inner
diameter and 85 mm inner depth. The probe is vacuum-pumped prior to and during the
cryogenic cool down, and is sealed using indium wire and screws. The cylindrical enclosure
makes contact with liquid helium vapour in order to cool the sample to cryogenic temper-
atures. Vacuum electrical feedthroughs are used to make coaxial connections between the
electronics outside at the atmosphere pressure to the resonator.
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(b) Rabi oscillation: irradiated fused quartz

Figure 5.4: (a) LGR S11 measurement taken using a vector network analyzer (VNA). The
measurement shows that the LGR’s resonance frequency is peaked at 10.16 GHz and the
Q value is about 240. (b) The result of Rabi oscillation of an irradiated fused quartz ESR
sample using the home-built spectrometer and the probe.

Fig. 5.4a shows typical resonator S11 (reflected microwave power) trace measured using
a vector network analyzer (VNA) at room temperature when the resonator is assembled
together with the probe. At the tuned frequency of 10.16 GHz, nutation frequency of
about 30 MHz can be obtained with about 5 W input power level. Fig. 5.4b shows the
result of Rabi oscillation of an irradiated fused quartz ESR sample using the home-built
spectrometer and the probe.
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Figure 5.5: Various temperatures that an ESR sample have reached during an actual cool-
down using liquid helium. A temperature sensor is mounted on the rectangular box and
the reading on the temperature monitor is given as resistance in Ω. The blue solid curve is
obtained by using the calibration data provided by the temperature sensor’s manufacturer
which converts the resistance reading to the temperature. The red circles are obtained
by comparing the integral of a Fourier-transformed ESR spectrum measured at various
temperatures to the integral of the room-temperature spectrum. The signal integrals nor-
malized by the room-temperature data allows one to match the various resistance readings
to temperatures on the y-axis of the plot.

Fig. 5.5 demonstrates various temperatures that an ESR sample have reached during an
actual cool-down experiment using liquid helium. A temperature sensor is mounted on the
rectangular box in order to estimate the sample temperature as precisely as possible. The
temperature monitor is connected to the sensor and displays the resistance measured by the
sensor. A calibration data table provided by the sensor’s manufacturer is used to convert
the resistance to temperature (blue solid curve in Fig. 5.5). The sample temperature can
also be calculated using Eq. 2.10, provided that a value of spin polarization at known
temperature is given. We measured spin polarization at various temperatures, and used
the value at room-temperature as a reference to calculate the sample temperature (red
circles in Fig. 5.5) and compared to the measurement obtained by using the temperature
sensor along with the calibration data. The results shown in Fig. 5.5 demonstrate good
agreement between the two measurement methods, meaning that the measurement by the
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temperature sensor is a good indication of the actual temperature of the ESR sample.

5.5 Sample holder

In Sec. 7.2.3, we discussed that the magnetic field needs to be oriented with respect to the
sample in a way that optimizes the control fidelity. Since the position of the electromagnets
of the spectrometer is fixed in the laboratory, one must be able to mount the sample in any
desired orientation with respect to the magnetic field direction. One can start this task by
selecting a clean surface of the target crystal, and measuring wanted hyperfine tensor in
the coordinate system defined by the selected surface and its two orthogonal axes. Then
the desired optimal orientation can be identified with respect to the selected surface of
the crystal. A sample holder shown in Fig. 5.6 can be used to fix the crystal orientation
in the resonator loop. The sample holder is cut from a cylindrical rod of rexolite. The
sample holder has a freedom to rotate along the axis perpendicular to the direction of B0
field by rotating the entire ESR probe. The selected crystal surface is glued on the surface
of the sample holder that makes an angle θ with respect to the direction of B0 as shown
in Fig. 5.6b, along an axis u (red arrow in Fig. 5.6a) in the plane perpendicular to the
rotating axis of the probe (green arrow in Fig. 5.6b). The freedom to select the direction
of u and θ allows one to orient the chosen surface of the crystal in any target orientation.

One drawback of using the sample holder is that it limits the size of the crystal, which
results in reduced detection sensitivity. Therefore, the surface of the crystal must be wisely
chosen so that when the crystal on the sample holder is inserted in the resonator loop it
fills as much space as possible. Moreover, the design of the sample holder must ensure that
the ESR sample is placed at the center of the cylindrical sample space as much as possible
for good B1 field homogeneity.

5.6 Pulse implementation correction

The control field seen by the paramagnetic sample does not exactly match the desired
pulse shape due to random noise in the electronics and systematic errors by non-linearities
in the pulse generation and amplification, and by the limited bandwidth (∼ ω0/ (2πQ))
of the probe circuit. To achieve high fidelity control, these errors must be minimized so
that the spin system is irradiated with the pulse shape as close as possible to the designed
one. The systematic portion of the errors can be reduced substantially by placing a pickup
coil to measure the pulse in the vicinity of the sample space and running a feedback loop
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Figure 5.6: (a) Schematic of ESR sample holder. The sample holder is cut from a rexolite
cylindrical rod, and the ESR sample is glued on the slanted surface whose angle is deter-
mined by desired crystal orientation. u is the axis of rotation for the slanted surface, and
the direction of u can be determined by rotating the probe around the axis perpendicular
to the direction of B0 field. The sample holder is placed in the resonator as shown in (b)

such that a new pulse form is calculated to compensate for the imperfections [37]. The
control field is adjusted based on the measured pulse shape. The feedback loop is repeated
until the measured new pulse is close enough to the desired shape. The closeness between
the actual and the ideal pulses can be defined as the sum of the squares of the residuals
normalized by the number of points.

The amplitude of the signal transmitted from the resonator is orders of magnitude
larger than that generated by the spin. Thus, a variable attenuator is used to reduce the
reflected signal amplitude. The amplification steps in the receiving train is also removed.
By omitting the amplification steps, distortions of the pulse as it is transmitted to the os-
cilloscope can be reduced. Instead of using the receiver front-end which included additional
amplification, a mixer is used for downconverting the measured signal to IF. The circulator
port that was used to output the spin signal reflected from the resonator is terminated with
a 50 Ω load since now the pulse is transmitted through the pickup coil. The spectrometer
modification for the pulse implementation correction is depicted in Fig. 5.7.

Fig. 5.8 shows a sample result of the pulse-fixing procedure. The top figure (a) com-
pares the actual pulse shape measured by the pickup coil (red solid) to the ideal one (blue
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Figure 5.7: Schematic of the spectrometer modified for the pulse implementation correc-
tion. The signal is transmitted from the resonator through the pickup coil that is connected
to a mixer for downconverting to IF. Then the IF signal is observed by the oscilloscope.
The circulator port that was used to transmit the spin signal is terminated with a 50 Ω
load. Since the amplitude of the pulse transmitted from the resonator is much larger than
the spin signal, a variable attenuator is used in between the pickup coil and the mixer.
Also, the pre-amplification in the receiving train is removed. Removing the amplification
steps also helps to prevent any pulse distortions that may arise in the amplification steps.

dashed) before applying pulse correction. The bottom figure (b) demonstrates that the
pulse implementation correction procedure adjusts the input pulse shape so that the mea-
sured pulse matches very close to the ideal one. The green dashed curve is the adjusted
input pulse shape obtained after running several cycles of pulse-fixing that outputs a mea-
sured pulse that is reasonably close to the intended shape. GRAPE pulse can be designed
to be robust to small pulse amplitude deviations (Sec. 4.4.2), and hence high fidelity con-
trol can be achieved as long as the difference between the measured and ideal pulses are
small.

Note that the pulse imperfections depend on the pulse power. Therefore, it is important
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Figure 5.8: (a) Pulse shape measured by the pickup coil (red) before pulse implementation
correction compared to desired pulse shape (blue dashed). The figure shows large disagree-
ment between the two which leads to large gate error. (b) After applying the pulse imple-
mentation correction several iterations, the input pulse shape is adjusted (black dashed)
such that the pulse measured in the vicinity of the sample (red) is very close to the de-
sired one (blue). The amplitude difference between the measured and ideal pulses is very
small that they are hard to be distinguished in the figure scale. The inset at the bottom
figure magnifies a part of the plot region to show small difference between red and blue
curves. GRAPE pulse can be made robust to small amplitude fluctuations to compensate
for remaining errors between the measured and ideal pulse shapes.
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that the pulse is corrected at the power level at which it will be used. Also, this procedure
assumes that the transfer function of the pickup coil is flat over the entire bandwidth of
the control field, which in practice is only approximately true.

5.7 Future work

The home-built spectrometer described in this chapter is capable of irradiating the param-
agnetic samples with only microwave pulses that induce electron spin transitions. Although
universal control can be achieved using AHC, and ESEEM allows measurement of the nu-
clear frequencies for spin Hamiltonian determination at given orientation, constructing a
pulsed ENDOR set-up can be beneficial. The pulsed ENDOR is particularly useful for
the spin Hamiltonian determination and optimal control when the anisotropic part of the
hyperfine interaction is weak. Some preliminary work towards implementing the pulsed
ENDOR feature is already done. The AWG used for creating IF in the microwave pulse
forming step can also be utilized for generating RF pulses at nuclear resonance frequen-
cies. The probe is equipped with extra coaxial cables on which an RF coil can be easily
mounted, and the coaxial cables are connected to vacuum electrical feedthroughs as well.
Moreover, our simulation code that runs on a classical computer already includes capa-
bility of simulating ENDOR experiments. The most important and challenging task that
remains is adding an RF amplifier to the spectrometer, and making sure that the RF pulses
are formed and delivered to the electron-nuclear system as desired.
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Chapter 6

Randomized benchmarking of
quantum gates as a tool for
characterizing and improving
microwave controll

6.1 Introduction

For the newly constructed instrumentation explained in the previous chapter, the first
natural experiment is benchmarking the performance, identifying issues, and then incorpo-
rating further improvements. This chapter presents our work on randomized benchmarking
of single qubit operations for characterizing and improving the microwave control available
in the home-built ESR spectrometer introduced in Ch. 5.

Characterizing how well an operation is implemented in a given quantum architecture is
of fundamental importance in the development of QIP. In Ch. 1, we mentioned that accord-
ing to the threshold theorem, arbitrarily long computation with given accuracy is possible
using a polynomial amount of resources, provided that the error per gate is below a certain
threshold value. The average gate error threshold for fault tolerant quantum computing is
in general thought to be around 10−4, although the tolerance to errors can be less stringent
given impractically large amount of resources [116], or in certain quantum computational
models [117]. Thus any quantum devices developed for QIP must be assessed to determine
whether the required level of control is reached. One way of characterizing the quantum
operation is quantum process tomography (QPT) [118], but the number of measurement
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necessary to completely map a process increases exponentially with the number of qubits
involved. Moreover, QPT is not able to distinguish between the state preparation and
measurement (SPAM) errors and control errors, restricting QPT from measuring control
errors that are smaller than or comparable to SPAM errors. Fortunately, one does not
require the complete knowledge of the quantum process, but rather a coarse grained pa-
rameter that accurately represents the computationally relevant average gate error suffices
in the context of fault tolerant quantum computing. Randomized benchmarking (RB) pro-
tocol [19, 119, 120] is a scalable approach to estimate average error probability, and has
been used to assess average gate fidelity in various quantum information processors such
as trapped ions [19, 121, 122], liquid state NMR [123], superconducting qubits [124, 125],
atoms in optical lattices [126], and 31P donor in silicon [127]. The basic idea of RB is
to randomize over a set of computational gate sequences followed by a reverse (recovery)
operation so that the entire evolution is the identity operation in the absence of error. The
computational gate set should be chosen such that it forms a depolarizing channel upon
averaging when each operation is subject to gate-independent error. Then the depolarizing
parameter d of the averaged channel Λ̄:

Λ̄ = (1− d)ρ+ d

D
1l (6.1)

is related to the average gate fidelity. Randomization over the unitary group provides a
benchmark over the complete set of quantum gates. However, since the unitary group is
a continuous set with a number of parameters increasing exponentially in the number of
qubits n, generating an arbitrary unitary operator is also exponentially hard in n. Tracking
the state through the computation in order to calculate the final state fidelity and the
recovery operation is also exponentially hard. Therefore, it is more practical to benchmark
a discrete set of gates that is useful in quantum computation. Also, it is desirable that the
operations are efficiently tractable and can be generated using a scalable number of known
one and two qubit gates. Clifford group, denoted as C, is one such set that is attractive
for benchmarking for several reasons. First, although the Clifford group itself is not a
universal gate set, the unitary group can be generated using C with an additional single-
qubit gate, such as π/8 gate. The π/8 gate can be implemented using a magic-state [128],
Clifford gates, and a measurement in the computational basis, meaning that there exists a
universal quantum computation model in which all necessary gates can be drawn from the
Clifford group [128]. Furthermore, benchmarking the Clifford gates is useful since most
encoding schemes for fault tolerant QIP are based on stabilizer codes, in which the error
correction is performed mainly using Clifford gates. Therefore, our experiment is focused
on quantifying the average gate fidelity of the single qubit Clifford operations.
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6.2 Single qubit protocol

The single qubit randomized benchmarking protocol used to quantify the error per gate
exactly follows the liquid state NMR version of the benchmarking experiment presented in
[123]. The single qubit Clifford twirling is equivalent to a twirling using the 48 operations
parametrized as [38, 123, 129]

C ∼= SP = exp
(
±iπ4Q

)
exp

(
±iπ2V

)
, Q ∈ {σx,σy,σz},V ∈ {1l,σx,σy,σz}. (6.2)

In this protocol, the π/2 pulses (denoted S in Eq. 6.2) are computational operations while
the Pauli operations serve only to redefine the Pauli frame which helps to depolarize the
noise. A natural choice for the known initial state is the thermal state, which can be simply
represented by its traceless part as ρi = σz since the identity part of the density matrix is
irrelevant in both unitary evolution and the measurement in ESR QIP. The initial state is
tracked through a sequence of Clifford operations (Eq. 6.2), and the sequence is truncated
at different lengths l ≤ L to measure the fidelity decay curve. At each truncation l, a
recovery gate is chosen at random to return the state to either ±σz. The spin echo is
detected for the measurement. In the experiment, we pre-calculated the final state prior
to the spin echo measurement, and chose the phase of the read-out pulse so that we always
measure the positive eigenvalue.

The quantum circuit implementing a particular series of Clifford operations is shown
in Fig. 6.1.

P1# S1# P2# S2# Pl# Sl# R# PR#⇢i … ESE$

Figure 6.1: A particular realization of Clifford sequence in the randomized benchmarking
protocol. P and S indicate Pauli and computational operations, respectively, and R is the
recovery gate that brings the state to either ±σz chosen at random with equal probability.
The sequence is truncated at some length l, and the final state is measured from electron
spin echo (denoted ESE in the figure).

The single qubit protocol can be summarized as follows:

1. Choose a maximum number of Clifford operations L, and a set of random integers l ∈
{l1 < . . . < L} that is the length of a truncated pulse sequence (i.e. a subsequence).
The number of elements in l is denoted Nl.
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2. Generate Ng random sets of L computational gates, and truncate each sequence at
length lk ∈ l.

3. For each subsequence of length lk (total Ng ×Nl subsequences), do the following:

(a) Generate Np random sets of Pauli gates of length lk + 2.
(b) Interleave computational gates with the lk + 1 Pauli gates.
(c) Calculate recovery operation and insert it after (lk + 1)th Pauli gate.
(d) Insert final Pauli randomization gate before the spin echo detection.
(e) Calculate the phase of the spin echo read-out pulse that yields the positive

eigenvalue of σz.

4. Evolve the known initial state under each of the Ng × Nl × Np number of random
pulse subsequences.

5. Measure electron spin echo integrated intensity at the end of each subsequence and
compare with a reference state.

6. For each lk where k = 1 . . . Nl, calculate the average remaining spin magnetization
along σz by averaging over Ng ×Np subsequences.

7. Plot the average remaining signal as a function of l, and fit the curve to fl = α(1−d)l,
where the average gate error is d/2. The SPAM error is absorbed in the constant α.

As indicated in steps 6 and 7, we calculate the average gate error from the decay rate
of 〈σz〉 as a function of the number of gates l.

6.3 Experiment

6.3.1 Simulations and initial experimental run

The single qubit system employed for the benchmarking experiment is irradiated fused-
quartz [130], a paramagnetic sample in powder form. We measured T1 = 160 µs, T2 = 5 µs,
and T ∗2 = 60 ns at room-temperature. T ∗2 is obtained from the linewidth of the thermal-
state ESR spectrum in the frequency domain. The T ∗2 broadening here is mainly due
to the anisotropy of the g-value, which produces a powder pattern of width of about 5
MHz, and also to non-uniformity of the static magnetic field. Different spins within the
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sample may also experience different nutation frequencies due to the inhomogeneity of the
applied microwave (B1) field in the resonator loop. By taking the Fourier transform of
the time-domain Rabi oscillations, we obtain the B1 distribution profile over the sample.
The ESR line-broadening due to T ∗2 noise and the B1 distribution profile are shown in
Fig. 6.6. Using the decoherence parameters and the B1 inhomogeneity data, we simulate
RB protocol with Ng = 7, Np = 14 giving a total of 98 sequences, and l = {1, 2, 7, 9,
10, 12, 14, 18, 20, 21, 25, 28, 32, 57, 60, 66, 74, 97, 110, 128}. Both computational and
Pauli gates are realized by 35 ns long Gaussian-shaped microwave pulses, yielding Clifford
operations that are 70 ns in total length. Figure 6.2 summarizes the simulation results
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Figure 6.2: Results of simulated randomized benchmarking on the single qubit (fused
quartz) spin system. (a) and (b) show the results plotted in the linear and semi-log
scale, respectively. The expectation value 〈σz〉 is measured after application of l random-
ized gates. The simulations used experimentally measured values of T1, T2, and T ∗2 at
room-temperature, which are 160 µs, 5 µs, and 60 ns, respectively. Green is obtained by
simulating with only T1 and T2 of the electron as the error source. Black curve includes
B1 field inhomogeneity, and the B1 distribution obtained from the Rabi oscillation exper-
iment is used for the simulation. Red curve shows the simulation result with T ∗2 , but no
B1 distribution, and blue is the result from simulating all noise sources, T1, T2, T ∗2 and B1
distribution.

under four different conditions: (1) no B1 inhomogeneity and no T ∗2 effect, (2) with B1
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inhomogeneity and no T ∗2 effect, (3) no B1 inhomogeneity and with T ∗2 effect, (4) with B1
inhomogeneity and T ∗2 effect. T1 and T2 processes are included in all four cases. In the
absence of any local field distributions, the error per gate is 0.37%. Since there are no pulse
implementation errors, the imperfection is solely due to T1 and T2 processes. As the local
field inhomogeneities are included, the error per gate increases to 0.45% for B1, 1.08% for
T ∗2 and 1.18% for both B1 and T ∗2 . It can be concluded that T ∗2 inhomogeneous broadening
more critically increases the error rate than B1 inhomogeneity in our case.

Without any optimization of the microwave pulses, randomized benchmarking was im-
plemented in the quartz single-qubit system. The error per gate was more than 6%,
indicating an insufficient level of control for QIP purposes. In the following section, we
discuss the modifications on the hardware configuration made to minimize the control
imperfections.

6.3.2 Hardware configuration optimization for high fidelity con-
trol

The pickup coil introduced in Sec. 5.6 is used to directly measure the microwave field in
the vicinity of the sample. The largest and most obvious pulse imperfection revealed by
the pickup coil was a phase transient error. The input testing pulse is 35 ns Gaussian
shape applied along the y-axis, meaning that the amplitude of the imaginary component
(x-axis component) of the pulse is zero everywhere. However, as shown in Fig. 6.3a, the
measured output pulse indicates a noticeable phase transient. This transient was found
to be present at the output of the I-Q modulator. The transient effect leads to undesired
spin dynamics as shown in Fig. 6.3b.

The figure shows the rotation of the spin magnetization vector as the power of the
input Gaussian pulse is varied. The pulse is applied along the y-axis, and solid and dashed
curves represent real (x) and imaginary (y) components of the measured spin signal. In
the absence of the pulse error, the imaginary part is zero at all power levels since the spin
magnetization vector remains within the x-z plane. However, the non-zero y-component
in Fig. 6.3b indicates that the spin is rotated out of the x-z plane by the phase transient.
In order to suppress this pulse error, we design an input pulse with an imaginary part of
equal amplitude but opposite sign to cancel the transient. The phase transient corrected
(PTC) pulse is designed as follows. First, we take the imaginary part of the measured
pulse shape, and digitize it so that the time resolution of the measured pulse matches
the AWG sampling rate. Then we multiply the imaginary part of the digitize pulse by
a factor of −1 to negate the phase error. However, the digitization step can introduce
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small unwanted scaling in the pulse amplitude, and thus the multiplication by −1 may not
exactly cancel the unwanted imaginary component. We found that introducing a scaling
factor of 1.07 to the PTC pulse yields the best result in minimizing the phase transient
effect. Fig. 6.4a demonstrates that using the modified input pulse, the phase transient
error is significantly reduced. The deviation of the spin evolution trajectory from the x-z
plane previously shown in Fig. 6.3b is significantly suppressed when the same experiment
is conducted using the PTC input pulse as shown in Fig. 6.4b. It should be noted that the
real component of the pulse is asymmetric in time, with a slowly decaying tail; this is due
to the finite bandwidth of the resonator. However, since the integrated pulse area of the
real part can be adjusted with high accuracy to yield desired spin rotation by the pulse
amplitude calibration, we only correct the distortion in the imaginary part of the pulse.
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Figure 6.3: (a) The shape of a 35 ns Gaussian pulse measured using the pickup coil shown
in Fig. 5.3. The pulse is applied along the y-axis. The solid curve represents the real
part (phase along +y) of the measured pulse and the dashed curve is the imaginary part
(phase along +x). Ideally, the imaginary component of the pulse is zero everywhere, but
a considerable phase transient is observed. (b) Spin magnetization signal measured as
a function of the pulse power of the 35 ns Gaussian pulse shown in (a). Without pulse
imperfections, only the real part (x-component) of the signal (solid) should oscillate as a
function of the pulse power while the imaginary part should be zero everywhere. However,
the phase transient leads to undesired spin rotation out of the x-z plane.

Another factor that significantly contributed to the large error per gate was the phase
and amplitude droop arising from the high power TWT microwave amplifier, and found
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Figure 6.4: (a) The shape of a 35 ns Gaussian pulse after implementing the phase transient
correction explained in the main text. The unwanted imaginary component (x-quadrature)
of the pulse is suppressed. (b) Spin magnetization signal measured as a function of the
pulse power of the corrected pulse. The unwanted deviation of the spin trajectory from
the x-z plane is much lower compared to the uncorrected pulse.

to be dependent on the pulse blanking time. Fig. 6.5a shows the shape of a series of the
phase transient corrected (PTC) 35 ns Gaussian pulses when the TWT blanking delay is
set to be 300 ns. It is clear from the figure that both amplitude and phase are not stable
until about 2 µs after the blanking switch is turned on. Use of the 300 ns blanking delay
is clearly problematic for any experiment involving a sequence of pulses or long pulses.
Therefore we configured the TWT blanking switch to be 2 µs prior to a pulse to allow
both amplitude and phase of the output pulses to stabilize. Fig. 6.5b shows that with the
2 µs TWT blanking delay, the pulse amplitude and phase stabilities are very good.

After the phase transient effect is corrected and the TWT blanking delay is set to 2
µs, the randomized benchmarking experiment was carried out again, and the error per
gate found to be 1.72 ± 0.25%. Nevertheless, the error per gate is still about an order of
magnitude larger compared to the error rate expected due to T1 and T2 effects. The error
probability can be further decreased by reducing local field inhomogeneities, which will be
discussed in the next section.
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Figure 6.5: (a) Series of the phase transient corrected 35 ns Gaussian pulses with 300 ns
TWT blanking delay. After the blanking switch is on, the amplitude and phase of the
pulse require about 2 µs to stabilize. (b) The same series of pulses with a 2 µs blanking
delay, indicating good stability of both phase and amplitude.

6.3.3 Selection sequence to reduce field inhomogeneities

The simulation results shown in Fig. 6.2 indicate that the average gate fidelity is notably
limited by local field inhomogeneities such as T ∗2 effect that is related to the uncertainty
in the Larmor frequency and the B1 field inhomogeneity that is related to the uncertainty
in the nutation frequency.

One approach to overcome such field inhomogeneities is to use composite pulses [131].
However, designing a composite pulse sequence typically involves many number of pulses.
For example, a composite pulse for the spin inversion (π-rotation) that is robust to the field
inhomogeneity requires at least three individual pulses [132], meaning that the total pulse
duration of either a Pauli or a computational gate in our implementation is 115 ns (three
gaussian pulses each with 35 ns). The minimum duration of the composite pulse sequence
is already longer than T ∗2 , and also when the benchmarking pulse sequence is composed of
such long composite pulses, T2 noise starts to contribute more significantly. Even in the
absence of the field inhomogeneities, simulating the randomized benchmarking protocol
using the 115 ns three-pulse composite pulses yields the error per gate of 1.08 ± 0.01%
where the error solely comes from T1 and T2. The error probability is as high as when the
system is exposed to the non-uniform field error, but no composite pulses are used. Thus,
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designing composite pulses does not help improving the average gate fidelity in our case
where the composite pulse duration is not sufficiently shorter than the decoherence time
scale.
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Figure 6.6: (a) Comparison of the ESR spectrum before (solid) and after (dashed) ap-
plying the spatial selection sequence explained in the main text. The signal intensity is
substantially reduced since only a small portion of the spin magnetization remains after the
sequence. However, the linewidth is significantly reduced, as shown in the inset where we
plot the two spectra normalized to the same amplitude. The sequence reduces spin magne-
tizations at larger frequency off-sets while selecting spin packets near zero off-set frequency.
Hence the center of the ESR spectrum shifts towards zero off-set frequency after the se-
lection sequence. (b) B1 distribution profile obtained by taking the Fourier transform of
the Rabi oscillation data without the selection sequence (red) and after implementing the
selection sequence (blue).

Another approach is to design a selection pulse sequence that leaves polarization on
only a subset of the spin ensemble with narrower inhomogeneous line-broadening, similar
to the idea of RF selection [37, 69, 70]. The selection sequence is constructed as follows.
First, a 400 ns GRAPE pulse with 1 ns discrete time step rotates spins that experience
exactly on-resonance local field by 2π around x-axis with 99.9% unitary fidelity. For the
spin packets seeing off-resonance local fields, the unitary fidelity quickly decreases. Hence
most of the spins pointing along the z-axis after the GRAPE pulse sees on-resonance field.
Next, we wait T2 in order to dephase the transverse component of the off-resonance spin
packets pointing along some other directions in the Bloch sphere. By repeating these two
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steps, one can reduce off-resonance portion of the spin ensemble. Although longer wait
time is desired for eliminating the transverse spin magnetization, the delay must be much
shorter than T1 in order to minimize the equilibration of the unwanted off-resonance spin
packets. We find that waiting for T2 is sufficient for effectively reducing the width of the
T ∗2 line-broadening. There is a trade off between the amount of signal and the width of the
distribution, and in our case, iterating the sequence four times provides the optimal result.
Despite the signal loss, after four cycles of the sequence, T ∗2 is extended to about 160 ns as
shown in Fig. 6.6a. Note that the selection sequence does not necessarily improve the B1
field inhomogeneity as shown in Fig. 6.6b. In order to reduce B1 field inhomogeneity, only
the spin packets from localized region of the sample needs to be selected. Although our
sequence selects a subset of the powder pattern, the selected spin packets are uniformly
distributed across the sample, and thus there is not much difference in the B1 distribution
before and after the sequence. Nevertheless, since the dominant source of the error is the
T ∗2 process, our current sequence significantly improves the average gate fidelity

6.3.4 Final results and discussions

Randomized benchmarking results under different conditions are plotted in Fig. 6.7. The
plot shows the expectation value of σz measured after applying l Clifford gates, in (a)
linear and (b) semi-log scale. The depolarizing constant as well as the error per gate can
be calculated from the decay rate of the expectation value as a function of the number of
Clifford operations. The initial experimental result before implementing control improve-
ments discussed in the previous sections is shown using × symbols. The triangle data
points demonstrate that some control improvement is gained by using 2 µs TWT blanking
delay. The semi-log plot shows that the two worst results (× and 4) deviate substantially
from a single exponential fit after about 30 gates. Since the expectation value is close
to zero after 30 gates, we only use first few points for fitting the data to the exponential
curve. Further control enhancement is achieved by designing phase transient corrected
(PTC) pulses, and the result is shown using diamond symbols. Combining longer TWT
delay with PTC pulses, the error per gate is reduced to 1.72±0.25%. Although the control
fidelity is improved, the non-exponential behaviour of the decay curve is still observed up
to this point. This non-exponential behaviour can be explained by the T ∗2 field distribution
over the spin ensemble which leads to the incoherent error (See Appendix). We can intu-
itively interpret the non-exponential decay as a sum of single exponential decay curves with
different decay rates due to different spin packets seeing different local field strengths. The
Appendix details on how the incoherent error results in the non-exponential decay. After
incorporating the selection sequence to increase T ∗2 timescale as described in the previous
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Figure 6.7: Summary of experimental results plotted in (a) linear scale and (b) semi-log
scale. The expectation value 〈σz〉 is measured after l randomized gates. Before incorpo-
rating the control improvement explained in the main text, the average error rate is above
6% (×). The triangles indicate the result obtained after setting the TWT blanking delay
to 2 µs, and the error probability is reduced to 3.95%. Using the phase transient corrected
pulses, the error rate is further reduced to 1.72% (�). Finally, after incorporating the se-
lection sequence for reducing T ∗2 noise, the error per gate is decreased to 0.81% (�). The
circles are the simulation results of the randomized protocol using T1, T2, T ∗2 values, andB1
inhomogeneity profile determined in the experiment that includes the selection sequence,
assuming perfect control. The size of the error bars represents standard error of the mean
averaged over 98 random sequences. In the plot legend, SEL, PTC and BD represent the
selection sequence for reducing the local field distribution, phase transient corrected, and
blanking delay, respectively.

section, the decay curve fits to a single-exponential curve very well. With the selection
sequence, the error per gate is reduced to 0.81±0.04%. This is a remarkable enhancement
compared to the initial result of 6.7%. The randomized benchmarking protocol including
the selection sequence is simulated with experimentally determined values of T1, T2, T ∗2 and
B1 distribution. The error per gate in the simulation is 0.76 ± 0.03% and the simulation
result is represented in circles in Fig. 6.7. The excellent agreement between the simulation
and experimental results suggest that the contributions from the intrinsic noise and the
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extrinsic control imperfections cannot be distinguished at the current level of control.
In the experimental results obtained before implementing the selection sequence for

reducing field distributions (green, red, and blue data in Fig. 6.7), non-exponential behavior
in the depolarizing curve is observed. In the following section, we show that the incoherent
errors such as the field inhomogeneities result in the non-exponential fidelity decay.

6.3.5 Effect of incoherent error on the fidelity decay

Incoherent error of a quantum process is caused by classical noise, for example, a distribu-
tion over external experimental parameters [133, 134] such as B1 inhomogeneity and T ∗2
line-broadening. In our system, after optimizing the TWT blanking delay and using the
phase transient corrected pulses, T ∗2 effect remains as the dominant source of the incoherent
error. B1 inhomogeneity is also present, but does not critically damage the control fidelity
at current level. Hence only the T ∗2 noise is considered in our incoherent error discussions.
In this section, we adapt the analysis presented in [15] that was used to describe B1 inho-
mogeneity effect on the fidelity decay to explain how T ∗2 gives rise to the non-exponential
decay observed in our experimental (Fig. 6.7) and simulated (Fig. 6.2) results.

Due to T ∗2 local field inhomogeneity across the sample, unitary errors with different
strengths arise on the spins experiencing off-resonance fields. Then the fidelity of the ap-
plied pulse is averaged over the distribution. Intuitively, since the spins at different Larmor
frequencies experience different unitary errors, the signal decay curve should contain mul-
tiple depolarization rates, which explains the non-exponential behavior. For more concrete
analysis, we consider a single step which consists of a computational gate (S) followed by
a Pauli gate (P ) in a randomized benchmarking sequence. The superoperator describing
the process can be expressed as:

Λ̂ =
∫
dεg(ε)Λ̂εPS. (6.3)

Here ε is off-resonance frequency, Λ̂ε is the superoperator describing the cumulative error of
PS for the fraction of the system with off-resonance frequency ε, and g(ε) is the distribution
of ε. g(ε) can be obtained from a frequency domain thermal state spectrum (Fig. 6.6a for
example).

The cumulative error strength can be defined as

ξ = 1− 1
4 |Tr(SPU †inh)|2, (6.4)
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where Uinh is the faulty implementation of S and P due to the local field inhomogeneity,
and 1

4 |Tr(SPU †inh)|2 is the gate fidelity (HilbertâĂŞSchmidt (HS) norm) of the faulty im-
plementation. There are 9 different error strengths ξ depending on S and P , and they are
labelled from 1 to 9 in Tab. 6.1 for different combinations of S and P .

X90 -X90 Y90 -Y90 Z90 -Z90
X180 1 3 4 2 7 7
-X180 3 1 2 4 7 7
Y180 2 4 1 3 7 7
-Y180 4 2 3 1 7 7
Z180 6 6 6 6 8 8

I 5 5 5 5 9 9

Table 6.1: Gate-dependent cumulative error types for different combinations of computa-
tional gates S (columns) and Pauli gates P (rows) labelled from 1 to 9. The errors are
grouped to 9 types according to their strengths defined in Eq. 6.4.
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Figure 6.8: Comparison between the numerically calculated prediction using Eq. 6.7 (solid)
and the realistic simulation averaged over 420 randomized benchmarking pulse sequences
(�). Excellent agreement between the two is observed. T1 and T2 processes are not taken
into account.

It is proven in [20, 119, 120] that the cumulative effect of the gate dependent errors in
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the randomized benchmarking can still be described as a depolarizing channel as long as the
gate dependence is weak enough. Consequently, the zeroth-order fitting model in [20, 120]
(equivalently, the single-exponential decay model) can be used for fitting the observable
fidelity decay. We will not discuss in detail the validity of using the zeroth-order fitting in
the present case, but from the simulation results shown in Fig. 6.8, we can conclude that
the zeroth-order fitting model is a very good approximation in our case. Therefore, upon
averaging over random gate sequences, Λ̂ε in Eq. 6.3 forms a depolarizing channel Λ̂ε,ave
with the depolarizing factor pε. pε is a weighted sum of the depolarizing factors of different
errors associated with ε. The depolarizing factors pi where i = 1, . . . , 9 labels different
error types ξ can be calculated as [119]:

pi = 4− |Tr(SPU †inh)|2
3 . (6.5)

Then the total depolarizing factor pε is the weighted sum of pi:

pε =
9∑
i=1

wipi, (6.6)

where wi is the probability for the error type i to occur, and their values are 1/9, 1/9,
1/9, 1/9, 1/9, 1/9, 2/9, 1/18, 1/18. Finally, by averaging over the distribution of ε, the
expression for the channel constructed from n random gates can be obtained as:

Λ̂ave(n) =
∫
dεg(ε)Λ̂n

ε,ave, (6.7)

where Λ̂n
ε,ave(ρ) = (1−pε)nρ and ρ is the deviation density matrix or the traceless part of the

full density matrix. Therefore, the fidelity decay (in our case, the decay of the expectation
value of σz) is the sum of multiple exponential decays weighted with the distribution
function g(ε).

Using experimentally measured values for g(ε), we compare in Fig. 6.8 the decay curve
numerically calculated from Eq. 6.7 with the curve obtained by simulating randomized
benchmarking sequences. The evaluation of Eq. 6.7 is carried out numerically since Uinh
is generated by a time-dependent Hamiltonian with two non-commuting terms, σz term
representing the off-resonance effect and σx,y terms for the external control. For the S and
P gates, 35 ns gaussian pulses with 1 ns time steps are used. Two decay curves agree very
well, indicating the T ∗2 incoherent error is responsible for the non-exponential behavior of
the fidelity decay. Furthermore, in the experimental data, the decay curve fits very well to
a single exponential function within the error bar when T ∗2 is extended using the selection
sequence (squares in Fig. 6.7). Therefore, we conclude that the non-exponential fidelity
decay can be explained by the T ∗2 error.
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6.4 Future work

The average gate fidelity can be further enhanced from current level by designing a new
selection sequence that is more effective at reducing the local field inhomogeneities, perhaps
both T ∗2 and B1 field distribution. The error per gate can also be further reduced by
applying the benchmarking protocol to an ESR sample with longer T ∗2 , T2, and T1. One
promising candidate is nitrogen-incarcerated fullerene (N@C60) dissolved in carbon di-
sulfide [112, 135] for which extremely long relaxation times of 80 µs T2 and 120 µs T1 have
been reported in room-temperature. Since the sample is in the liquid state, there is no
g anisotropy which contributed to having short T ∗2 of the quartz powder sample. On the
other hand, the quartz sample with less irradiation dose can possess longer T2 at the cost
of decreased signal to noise ratio. Once the relaxation errors are suppressed to the level
where the extrinsic control noise dominates, it will be interesting to study the performance
of different amplifier technologies for quantum control. The current TWT amplifier can
be replaced with a solid state amplifier and the randomized benchmarking protocol can be
carried out to compare and quantify their performances.
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Chapter 7

Testing the feasibility of heat bath
algorithmic cooling in the
electron-nuclear spin system

7.1 Introduction

Purification of quantum states is essential for realizing fault tolerant quantum informa-
tion processors. The procedure is needed not only for initializing the physical system for
quantum algorithms, but also to dynamically supply fresh pure ancilla qubits for error
correction. For quantum computation models that utilize an ensemble of identical systems
such as NMR or ESR, acquisition of nearly pure quantum states in a scalable manner is
extremely challenging. The polarization can be increased by decreasing temperature or
increasing the strength of the static magnetic field as suggested in Eq. 2.10, but this way
of achieving high polarization is experimentally costly. Moreover, as mentioned in Sec. 2.2,
at low temperature, the nuclear T1 relaxation time scale becomes undesirably long, making
the wait time for resetting to the thermal state impractically long. A potential solution
is algorithmic cooling (AC), a protocol which purifies qubits by removing entropy from
subset of them, while increasing the entropy of the rest [136, 137]. An explicit way to
implement this idea in quantum computations was given by Schulman et al. [138]. They
showed that it is possible to reach polarization of order unity using only a number of qubits
which is polynomial in the initial polarization. However, their method was limited by the
Shannon bound, which imposes a constraint on the entropy compression step in closed
systems. This idea was further improved by adding contact with a heat bath to pump
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entropy out of the system and transfer it into the heat bath [24], a process known as Heat
Bath Algorithmic Cooling (HBAC). Based on this idea, many practical cooling algorithms
have been designed [25, 28, 139]. In short, HBAC purifies qubits by applying alternating
rounds of entropy compression and pumping out entropy from the system of interest to a
thermal bath.

The Partner Pairing Algorithm (PPA) [28] is known to be an optimal way to implement
HBAC provided three or more qubits and when there is one reset qubit that thermalizes
to the bath polarization εb much faster than the relaxation rate of the rest of the system
qubits. In this scenario, polarizing 1 system qubit beyond εb can be achieved by recurrently
applying the entropy compression step and the refresh step. The compression is a permuta-
tion that rearranges the diagonal elements of the density matrix in non-increasing order so
that the polarization of the first (target) qubit increases while the reset qubit polarization
decreases. During the refresh step, the reset qubit thermalizes to the bath temperature
and the overall entropy of the system is reduced. Repeating the above procedure, the
polarization of the first qubit ε1 asymptotically approaches a threshold value. The general
expression for the maximum threshold polarization of the target qubit was worked out
recently in [140] by solving the polarization of the steady state in the cooling limit. The
cooling limit is reached when there is no operation that can compress the entropy of the
computational qubits, or equivalently, when the diagonal elements of the total state are
already sorted in non-increasing order [140, 141]. The maximum threshold polarization
derived in [140] is

εmax = (1 + εb)md − (1− εb)md
(1 + εb)md + (1− εb)md

, (7.1)

where m is the number of reset qubits that are brought to thermal contact with the heat
bath of polarization εb, and d is the dimension of the computational qubits onto which the
entropy is compressed during the unitary compression step. When m = 1, the threshold
polarization can be reduced to more compact form in certain cases: εmax = εb2n−2 if
εb � 2−n, and arbitrarily high polarization if εb � 2−n, where n is the number of system
qubits including the target qubit for cooling [28, 41].

In this chapter, we investigate experimental feasibility of HBAC using realistic electron-
nuclear coupled spin systems in single crystal form that can be readily prepared in the
laboratory. Moving to ESR from NMR provides the boost in the polarization of a nuclear
spin about three orders of magnitude (see Sec. 1). Next, through HBAC, the polarization
can be improved further. Demonstrating the experimental feasibility of HBAC in the
electron-nuclear system for achieving nuclear polarization beyond Shannon bound is a
significant milestone towards implementation of multiple rounds of QEC.
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7.2 Simulating HBAC using five hyperfine spin qubits

The stable malonyl radical ĊH(COOH)2 has been extensively studied by electron spin
resonance (ESR) studies of gamma-irradiated single crystals. The hyperfine tensors of
the α-proton and of the 13C-labeled methylene carbon were previously published [142–
144]. However, the hyperfine tensors of the 13C-labeled carboxyl carbons have not yet
been reported. The carboxyl tensors are in fact different from each other owing to differ-
ent dihedral angles of COOH relative to the C-C-C plane to accommodate the hydrogen
bonding network; the carboxyl group with a larger dihedral angle has a slightly weaker
carbon hyperfine coupling. Including these two carboxyl carbons and assuming they are
spectroscopically distinct, the molecule can in principle realize a 5-qubit ensemble quantum
information processor, with 1 electron and 4 nuclear spins. The nuclei are strongly hyper-
fine coupled to the electron and can be controlled either by exploiting the anisotropic part
of the hyperfine interaction (AHC) or by using pulsed ENDOR techniques. The electron
connects the nuclei to a heat-bath with a much colder effective temperature determined
by the electron’s thermal spin polarization.

By accurately determining the full spin Hamiltonian and performing realistic algorith-
mic simulations, we show that an experimental demonstration of heat-bath algorithmic
cooling beyond the Shannon bound is feasible in both 3-qubit and 5-qubit variants of
this spin system. Similar techniques could be useful for polarizing nuclei in molecular or
crystalline systems that allow for non-equilibrium optical polarization of the electron spin.

7.2.1 Sample preparation

Malonic acid, CH2(COOH)2, crystalizes with a triclinic unit cell and belongs to the P1̄
space group [145, 146] at temperatures above 47 K. At lower temperatures, a structural
phase transition occurs that has been discussed previously [147–149]. Above 47 K, there
are two molecules per unit cell related by inversion symmetry, making them magnetically
equivalent. We denote the methylene and carboxylic carbons as Cm and C1,2, respectively.
A schematic of the radical, obtained by removing one of the methylene protons, is shown
in Fig. 7.1. The unpaired electron is of p-orbital character [143, 150, 151]. Malonic acid
powder with all possible 13C isotopic labelling configurations was purchased either from
Sigma Aldrich or Cambridge Isotopes. Single crystals were grown by slow evaporation from
aqueous solutions at room temperature. To form radicals, crystals were irradiated to a dose
of about 2 kGy at room temperature with γ-rays from a cobalt-60 pencil. Annealing at
60◦ for 12-15 hours following the irradiation suppresses ESR signals from all other radical
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species except for the most stable radical, ĊH(COOH)2 [150]. Depending on the 13C
labelling configuration, 2, 3, 4 or 5 qubit samples are obtained as (e-H), (e-H-Cm), (e-H-
C1,2) and (e-H-Cm-C1,2) respectively, where e denotes the electron spin. The β-protons of
the carboxyl groups contribute to ESR line broadening and in some orientations can give
rise to observable splittings [152]. However, due to weak hyperfine coupling (< 6 MHz
isotropic coupling [152]) they are not useful as qubits.

Z"

X"

"

"

"φ"

θ"

c" a"
b"

Figure 7.1: Molecular structure of ĊH(COOH)2 with unpaired electron density distribution
schematically represented by the blue shaded region. x and z are two principal axes of
the α-proton hyperfine tensor, with z along the Cm–α-proton interatomic vector and x
along the cylindrical symmetry axis of the electronic p-orbital. The y axis, not shown, is
nearly parallel to the C1–C2 interatomic vector. The direction of the static field ~B0 can
be described using polar angle θ and azimuthal angle φ in the principal axis system of
the α-proton hyperfine tensor. The directions of the crystallographic axes a, b and c with
respect to the molecular structure are illustrated by the green axes [145, 153]. c lies very
close to the y axis of the α-proton principal axis system. The direction cosines of a, b
and c in the α-proton principal axis system are (0.1426, -0.6588, 0.7387), (-0.9729, -0.1888,
0.1335) and (0.0222, 0.9969, -0.0752), respectively.

7.2.2 Five-qubit malonic acid spin Hamiltonian determination

In this section, the electron g tensor and the hyperfine tensors for the α-proton and three
carbons in malonic acid is reported. The tensors are extracted using the method presented
in Sec. 4.3.
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Continuous-wave ESR results

The tensor extraction model relies on two assumptions: the three planes of measurement
are mutually non-parallel and the axis of the rotation to go from one to another belongs to
both planes. The orientation experiments were designed to ensure that both assumptions
are satisfied. In each of the three non-parallel planes, we took 24, 9 and 46 measurements
with 8◦, 20◦ and 4◦ angle steps for the methylene-labeled, carboxyl-labeled and fully-labeled
MA samples, respectively. The methylene-labeled data was used to extract the α-1H and
13Cm tensors; the carboxyl-labeled data was used to extract the 13C1,2 (average) tensor, and
the fully-labeled data was used to confirm all the tensors by fitting with simulated spectra.
As discussed previously in Sec. 4.3, we need only to detect the spectral positions of the
allowed transitions, which can be distinguished from forbidden transition peaks because
of their larger intensities. Each measured spectrum is fit to a set of allowed transition
peaks defined by their amplitude, frequency and a common line width. The peak positions
for all measurements in one plane give a set of trajectories for that plane, from which we
obtained the dependence of g and An on θ. Doing this in all three planes allows extraction
of the g-factor tensor g and hyperfine tensors An by solving Eq. 4.18 and Eq. 4.21. After
this, we used the method of least square fitting to optimize g and An by minimizing the
difference between the experimental peak trajectories and the simulated trajectories. It
should be noted that in X-band ESR the nuclear Zeeman energy for 1H is about 15 MHz,
which is comparable to the hyperfine coupling of α-1H in some orientations. Therefore, in
order to obtain more accurate An tensors, we took into account the nuclear Zeeman energy
when generating the simulated peak trajectories in the optimization procedure. The only
noticeable difference from including this energy was for the α-1H, as expected.

The g, AH, ACm and AC1,2 tensors were determined from continuous wave (CW) ESR
spectra as described above, and are listed in Tab. 7.1. The hyperfine tensors of C1 and
C2 are similar and require ENDOR measurements to be distinguished (see next section).
From the ESR data we obtained an average hyperfine tensor describing C1 and C2, denoted
as AC1,2 . Negative signs of the principal values for AC1,2 were determined by a quantum
chemical calculation using the Gaussian program [154]. Similar to the case of α-1H [143,
150, 151], the negative principal values are due to a negative spin density on C1 and
C2. The results for g, AH and ACm are consistent with the published results in [142–
144, 149, 150, 153]. The simulated ESR peak trajectories generated from the tensors in
Tab. 7.1 are in excellent agreement with the experimental data, as the examples in Fig. 7.2
and Fig. 7.3 demonstrate.
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Direction cosines to AH principal axis

X Y Z

gxx 2.00250 ± 0.00038 -0.1657 0.9779 0.1272

gyy 2.00373 ± 0.00037 -0.9811 -0.1766 0.0797

gzz 2.00417 ± 0.00036 0.1004 -0.1115 0.9887

AH
xx -26.6 ± 2.8 1 0 0

AH
yy -56.0 ± 0.7 0 1 0

AH
zz -91.5 ± 0.6 0 0 1

ACm
xx 24.5 ± 1.0 0.0696 -0.0019 0.9976

ACm
yy 43.0 ± 1.3 0.9962 0.0530 -0.0694

ACm
zz 212.3 ± 0.6 -0.0528 0.9986 0.0056

AC1,2
xx -36.1 ± 0.3 0.0627 0.0082 0.9980

AC1,2
yy -39.3 ± 0.3 0.9805 -0.1870 -0.0601

AC1,2
zz -40.6 ± 0.3 0.1862 0.9823 -0.0198

Table 7.1: Electronic g-factor and hyperfine coupling tensors determined from CW ESR
measurements (principal hyperfine values are given in MHz). Principal values are given in
the left column, while direction cosines relative to the principle axis system of the α-proton
are given in the three right columns. The uncertainties reflect a 90% confidence interval.
The tensor AC1,2 gives an estimate of the average of AC1 and AC2 .

Continuous-wave ENDOR results

In this section we describe the use of ENDOR, which has higher spectral resolution than
ESR, to extract the distinct tensors describing AC1 and AC2 . From Eq. 4.23 we see that for
each nucleus there are two resonant frequencies ν− and ν+. However, in experiments we
found that one or sometimes two of the four peaks of C1 and C2 were obscured by the large
peaks around 14.5 MHz that come from 1H spins which have small hyperfine couplings with
the electron radical (Fig. 7.4). The two higher frequency peaks (in the range of 20 − 25
MHz) were clearly resolved in all measured orientations. Judging from the sign of AC1,2 ,
we infer that these two peaks correspond to the νC1

+ and νC2
+ frequencies, with

(νn+)2 = (νnI )2 + 1
4g2 (lαΓAn

αβlβ)− νnI
g

(lα(g · An)αβlβ) = (νnI )2 + 1
g2 (lαKAn

αβlβ), (7.2)
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Figure 7.2: Comparison between the simulated ESR peak trajectories (red lines) and the
experimental data (blue dots) of the methylene 13C-labeled sample in one of the planes
measured. The direction cosines of the normal of this plane are (-0.3376, 0.9405, 0.0391)
in the principal axis system of AH.
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Figure 7.3: Comparison between the simulated ESR peak trajectories (red lines) and the
experimental data (blue dots) of the per-13C-labeled sample in one of the planes measured.
The direction cosines of the normal of this plane are (-0.3678, 0.9287, -0.0483) in the
principal axis system of AH.

where n = 1, 2 for C1 and C2 and KAn = ΓAn
/4 − νnI gg · An. Using only the ν+ frequen-

cies requires a different approach than directly using Eq. 4.24. Instead of measuring the
orientation dependence of g((νn−)2 − (νn+)2)/2νnI , we measured that of g2((νn+)2 − (νnI )2) in
three non-parallel planes to extract KAn using Eq. 7.2, and then used KAn to calculate AC1

and AC2 . In each plane, we took 9 measurements with 20◦ angle steps for the carboxyl-
labeled MA sample. It should be mentioned that by using Eq. 7.2 to obtain AC1 and AC2 ,
we neglected the anisotropy of g. For the hyperfine tensors, this approximation causes a
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difference in the principal values less than the experimental uncertainty of ∼ 0.1 MHz.
The experimentally determined AC1 and AC2 tensors are listed in Tab. 7.2.

Direction cosines to AH principal axis

X Y Z

AC1
xx -37.0 ± 0.1 -0.5310 -0.0010 0.8474

AC1
yy -40.5 ± 0.1 0.8452 -0.0724 0.5295

AC1
zz -43.6 ± 0.1 0.0608 0.9974 0.0392

AC2
xx -34.0 ± 0.1 -0.3477 -0.0449 -0.9365

AC2
yy -37.4 ± 0.1 -0.2478 0.9677 0.0456

AC2
zz -39.6 ± 0.1 -0.9043 -0.2479 0.3476

Table 7.2: Hyperfine coupling tensors for AC1 and AC2 determined from CW ENDOR
measurements (principal hyperfine values are given in MHz). Principal values are given in
the left column, while direction cosines relative to the principle axis system of the alpha-
proton are given in the three right columns. The uncertainties reflect a 90% confidence
interval.

Fig. 7.4 and Fig. 7.5 show the experimental ENDOR and ESR spectra, together with
the simulated spectra generated using the tensors given in Tab. 7.2, for the carboxyl-
labeled sample when the orientation of the magnetic field is (0.6156 -0.7179 -0.3249) in the
principal axis system of AH. In Fig. 7.4, we can see that in this orientation there are three
observable peaks of C1 and C2, while the peak with the lowest frequency is obscured by
the 1H peaks around 14.5 MHz. Excellent agreement between experiment and simulation
can be seen in these examples, and a similar level of agreement was found for spectra in
all measured orientations, indicating that the tensors in Tab. 7.2 are accurate.

7.2.3 Malonic acid orientation selection

Orientation criteria for AHC

The criteria for choosing the orientation for achieving optimal control in AHC scheme are
discussed in Sec. 4.6.1. For the optimal orientation search, B0 is fixed at 10 GHz/γe ≈ 3568
G and θ and φ that appear in Fig. 7.1 are varied at 1◦ angle steps. The maximum values
of tan(ηn) are 1.3, 0.14, 0.016, and 0.017 for H, Cm, C1, and C2, respectively. Roughly
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Figure 7.4: Comparison between the simulated ENDOR spectrum (red line) and the
experimental spectrum (black line) of the carboxyl 13C-labeled sample. The orientation of
magnetic field is (0.6156, -0.7179, -0.3249) in the principal axis system of AH. In the area
around 14.5 MHz, there are large peaks which come from the distant 1H spins that have
small hyperfine couplings with the electron radical. The ENDOR peak for C2 with the
frequency ν2

− = 14.9 MHz is obscured by these 1H peaks. The other three ENDOR peaks
for C1 and C2 with frequencies ν1

+ = 24.1 MHz, ν2
+ = 22.1 MHz and ν1

− = 16.8 MHz are
clear.
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Figure 7.5: Comparison between the simulated ESR spectrum (red line) and the experimen-
tal spectrum (black line) of the carboxyl 13C-labeled sample. The orientation of magnetic
field is (0.6156, -0.7179, -0.3249) in the principal axis system of AH. Using the tensors given
in Tab. 7.2, the ESR peak positions are reproduced well and the line broadening due to
the hyperfine couplings of the two carboxyl carbons fits well in all measured orientations.

speaking, since tan(ηH) . 1 and tan(ηC) � 1, the duration of a GRAPE optimal control
[72] pulse to accomplish an arbitrary unitary operation will scale as 1/ tan(ηn). We have
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measured a nearly temperature-independent electron spin dephasing time T e2 ∼ 5 µs in this
system, due to hyperfine coupling with distant protons, and their mutual dipolar interaction
induced dynamics. Given that the shortest GRAPE pulses for arbitrary gates involving H
require ∼ 500 ns, it is clear that high fidelity control of C1, and C2 via AHC is simply not
possible in this system. Moreover, the 5-qubit system contains 80 ESR resonances over a
maximum spectral range of 250 MHz, consisting of 16 allowed and 64 forbidden transitions.
Consequently, we find maxθ,φ{min(~δ)} = 1.4 MHz, where the elements of ~δ are the distances
between any two ESR transitions and maxθ,φ{} indicates the maximization over all sets of
{θ,φ} with 1◦ angle step. In practice, it only makes sense therefore to focus on the 3-qubit
sample (e-H-Cm) for optimizing AHC control. Nonetheless, for completeness we show in
Tab. 7.3 the best possible orientation for the 5-qubit system given these criteria.

For the 3-qubit sample, there are 4 allowed transitions and 8 forbidden transitions.
It is still not possible to find orientations where min(~δ) ≥ 12 MHz, rather we find that
maxθ,φ{min(~δ)} = 7.6 MHz. We focus on orientations that satisfy min(~δ) ≥ 6 MHz, and
then choose an orientation in which tan(ηH) and tan(ηCm) are both as large as possible.
The forbidden transition rates at this orientation are 0.1418 and 0.1203 for H and Cm,
respectively, and min(~δ) = 6.1 MHz. These results are summarized in the table below:

Anzz(MHz), Bn(MHz), tan(ηn)

θ,φ H Cm C1 C2 min(~δ)
(MHz)

5
qubit 54◦, 123◦

-
62.56,
23.67,
0.1948

121.23,
90.54,
0.0303

-
40.03,
3.27,
0.0161

-
37.29,
1.63,
0.0093

1.1

3
qubit 29◦, 13◦

-
76.60,
27.07,
0.1418

29.21,
17.78,
0.1203

6.1

Table 7.3: Optimal orientations for AHC experiment with the fully-labeled (5 qubit) and
Cm-labeled (3 qubit) malonyl radical, and corresponding values of hyperfine coupling con-
stants Anzz and Bn, and the quantity tan(ηn) characterizing the controllability of nuclear
spin n. min(~δ) represents the minimum separation between ESR transitions.
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Orientation criteria for ENDOR

The disadvantage of ENDOR control is that the RF pulses are typically of order γe/γn ∼
103 times slower than the microwave control of electron spin. This severely limits the ability
to perform arbitrary quantum algorithms within the electron T e2 , however, in algorithmic
cooling the electron spin is always in an eigenstate during the nuclear rotations so that
electronic dephasing is not an issue. Since the hyperfine tensors of C1 and C2 are very
similar, they cannot be separately addressed by microwave pulses, but only with RF pulses.
At first glance, this seems to forbid selective swap gates between the electron and C1 or
C2, which is an essential step for HBAC. Fortunately, we show in Sec. 7.2.5 that it is
possible to realize a pulse sequence combined with the electron refresh step in order to
polarize both C1 and C2 to the bath polarization, as long as all NMR transitions can be
addressed selectively, and the nuclei H and Cm are separately addressable by microwave
pulses. The RF pulse durations are typically on the order of tens of µs, corresponding to

Anzz(MHz), Bn(MHz), tan(ηn)

θ,φ H Cm C1 C2 min(~δ)
(MHz)

5
qubit 95.8◦, 86.3◦

-
56.36,
3.59,
0.048

209.48,
22.51,
0.0039

-
43.50,
0.70,
0.0029

-
37.56,
0.70,
0.004

6

3
qubit 90◦, 90◦ -56.0,

0, 0
211.83,
8.98,
0.0015

56

Table 7.4: Optimal orientations for the ENDOR control scheme with fully-labeled (5 qubit)
and 13Cm-labeled (3 qubit) molecules, corresponding values of hyperfine coupling constants
Anzz and Bn, and the quantity characterizing forbidden transition rates tan(ηn) for nuclear
spin n. In these orientations, the NMR transitions are well separated for high fidelity
control; the minimum distances between two NMR transition frequencies are 1.8 MHz and
7.6 MHz for the 5-qubit and 3-qubit systems, respectively. Here, min(~δ) represents the
minimum separation between allowed ESR transitions.

excitation bandwidths less than 100 kHz. Thus, for the 5 qubit sample, we search for an
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orientation in which all NMR transition frequencies are at least 500 kHz apart, and all
allowed ESR transition frequencies with the exception of the C1 and C2 resonances are at
least 12 MHz apart. Then among this set, we select one orientation in which tan(η) is
as small as possible for all nuclei. The optimal orientation for the fully-labeled molecule
and relevant parameters in that orientation is given in Tab. 7.4. The minimum distance
between ESR transitions in this orientation is 6 MHz due to C1 and C2. All other ESR
transitions are at least 13 MHz apart from each other. Some forbidden transitions may be
very close to the ESR allowed frequencies, but this is not a serious issue since the forbidden
transitions can be ignored when tan(η) is small.

For the 3-qubit molecule, it is relatively easy to find orientations in which the allowed
ESR transitions are separated by at least 12 MHz. Among that set, an optimal orientation
is chosen for which tan(η) is minimized for both H and Cm. The results are summarized
in Tab. 7.4.

7.2.4 Simulating 3-qubit HBAC

The quantum circuit for 3-qubit HBAC is shown in the top part of Fig. 7.6. Here, the
electron is chosen as the bath qubit whose polarization is εb ≈ 8×10−4 at room temperature
and at B0 = 10 GHz/γe ≈ 3568 G. Under these conditions, 1H and 13C equilibrium
polarizations are about 660 and 2620 times smaller than the electronic polarization. For
the 3-qubit PPA with completely mixed initial states, the first two entropy compression
steps are polarization transfers (swaps) from the reset qubit to the 1st (target) and the 2nd
qubits. After the 3rd gate operation (3-qubit compression), the target qubit polarization
is higher than the bath polarization. These steps complete one round of the 3-qubit PPA.
In theory, the first round of the 3-qubit PPA boosts the polarization of one nuclear spin
to 1.5εb − 0.5ε3b ≈ 1.5εb for small εb. By repeated application of these steps, the nuclear
spin is asymptotically polarized to 2εb. Note that starting from the 2nd round, only one
polarization swap gate is used since the target nucleus is already polarized above the bath
polarization.

Anisotropic hyperfine control

The crystal orientation used for the 3-qubit experiment using the AHC method is shown
in Tab. 7.3. In this orientation, the forbidden transition rate of Cm in the presence of
a resonant microwave field is weaker than that of the α-proton. Consequently, the Cm

polarization decays slower than that of proton during electron reset. Therefore Cm is chosen
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as the target qubit for cooling. The electron reset is done by waiting for 4.2 × T e1 (T e1,2
denotes the electronic T1,2 throughout the text) in order to bring the electron polarization
to about 98.5% its thermal polarization. A longer waiting time, e.g. 5 × T e1 , brings the
electron polarization to above 99%, however, we find that the wait time of 4.2 × T e1 is
optimal since nuclear spin polarizations decay during electron reset (due to the anisotropic
hyperfine interaction). The microwave field swap and compression gates are designed using
the gradient ascent pulse engineering (GRAPE) algorithm [72]. The GRAPE pulse lengths
are 840 ns for the swap gates and 900 ns for the 3-qubit compression gate. The pulses
are optimized over the electron Zeeman Hamiltonian distribution in order to be robust to
T ∗2 = 28 ns. The design fidelities averaged over this distribution are 99%, 98% and 96%
for the e-H swap, e-C swap, and 3-qubit compression, respectively. The bottom part of
Fig. 7.6 illustrates the implementation of controls necessary for the first round of 3-qubit
HBAC using AHC.

R" R"
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H
e" R" R"

…"

R"R"

C"

H
e"

4.2"x"T1e" 4.2"x"T1e"
mw"
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COMPRESSION"
GRAPE&

="Polariza3on"transfer" ="Compression"R" ="Reset"

Figure 7.6: Quantum circuit of 3-qubit HBAC using the AHC method. The electron
spin is the reset qubit, and it is refreshed by waiting for 4.2 × T e1 . In the optimal crystal
orientation for AHC, the forbidden transition strength of Cm is weaker than that of the
proton. Consequently, the Cm polarization decays more slowly during electron reset and
Cm is chosen as the target qubit. Two rounds of the algorithm are shown in the top
panel. The 3-qubit PPA iteratively applies polarization transfer (shaded in blue) and the
compression (shaded in yellow). All gates are designed in the microwave domain using the
GRAPE algorithm. The GRAPE pulse lengths are 840 ns for the swap gates and 900 ns
for the compression gate. A schematic of the AHC sequence for this circuit is shown in the
lower part.
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Figure 7.7: Simulation results for 3-qubit HBAC using AHC. The plot shows the ratio
of the Cm polarization (εc) and the electron bath polarization (εb) at the end of each
HBAC round, up to 9 rounds. The black dashed curve is the theoretical (ideal) value. The
red curve is obtained by incorporating all experimentally determined (room temperature)
relaxation parameters. The blue curve is obtained by allowing the T ∗2 of the electron to
equal T2. The green curve is obtained by allowing T e2 to be 20 µs, 4 times longer than the
measured value, in order to test the consequence of a longer T2.

Fig. 7.7 shows the polarization of Cm at the end of each round of 3-qubit HBAC. The
red curve is obtained when the simulation incorporates the experimentally determined,
room temperature electron relaxation effects. The Cm polarization exceeds the bath polar-
ization after the first round of HBAC, and increases further asymptotically as the HBAC is
repeated. Nevertheless, the polarization enhancement is below the theoretically calculated
value; after 9 HBAC rounds, the polarization of Cm is about 76% of the theoretical value.
The largest contribution to the error is the loss of nuclear polarization due to the electron
T1 process during the application of GRAPE pulses and the electron refresh steps. In the
absence of decoherence, the GRAPE pulses transfer 99.6% and 99.8% of the electron po-
larization to Cm and H, respectively. The compression gate polarizes the carbon to 1.49εb
at the end of the first round. However, when the T1 of the electron is introduced while
T2 and T ∗2 are still assumed to be infinite, the carbon and hydrogen polarizations prior to
the compression step are reduced to 94.4% and 94.3% of the electron polarization, and the
compression yields the carbon polarization of 1.39εb. Another source of the error is the
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finite ratio of the electron T2 to the pulse duration; T e2 is only about 5 to 6 times longer
than the GRAPE pulses. One can imagine another type of 3-qubit molecule whose electron
T2 is longer, for instance, 20 µs. Then the polarization of the carbon after 7 rounds of
HBAC is 1.66εb, which is 83% of the theoretical value (i.e. the green curve in Fig. 7.7).
Finally, we consider a scenario in which the ESR linewidth is much narrower and T2 lim-
ited, i.e. T ∗2 = T2 = 5 µs. This result is indicated in blue in Fig. 7.7. Although there is a
slight improvement by having a longer T ∗2 , the experimental value of T ∗2 does not pose a
significant problem since the GRAPE pulses are designed to be robust to inhomogeneous
line broadening.

ENDOR control

In a pulsed ENDOR control scheme, the crystal orientation is chosen as shown in Tab. 7.4.
In this orientation, the forbidden transition rates are both minimized, and it turns out the
rate for H is weaker than that of Cm. Thus, H is chosen as the target qubit for cooling.
The electron reset is done by waiting for 5× T e1 in order to bring the electron polarization
to 99.3% of the thermal polarization. The loss of nuclear polarization during reset and
control operations is negligible since the forbidden transition rates are both very weak. As
shown in the bottom part of Fig. 7.8, the swap and compression gates can be decomposed
into controlled-not (CNOT) gates and a toffoli gate. These operations can be realized
by selective microwave and RF π-pulses. For example, the CNOT gate that flips the H
spin if the electron is ‘spin down’ can be realized by RF pulses at frequencies that corre-
spond to |↑H↑C↓e〉 ↔ |↓H↑C↓e〉 and |↑H↓C↓e〉 ↔ |↓H↓C↓e〉 transitions. In the compression
step, a Toffoli gate that flips H spin if both Cm and electron are ‘spin down’ is required.
However, the Toffoli gate on the proton cannot be realized by this method because the
|↑H↑C↓e〉 ↔ |↓H↑C↓e〉 transition frequency is identical to the |↑H↓C↓e〉 ↔ |↓H↓C↓e〉 fre-
quency. On the other hand, a Toffoli gate that flips the electron spin when both H and
Cm are ‘spin down’ can be realized by applying a microwave pulse at the frequency of the
|↓H↓C↑e〉 ↔ |↓H↓C↓e〉 transition, which is distinct from all other allowed ESR transition
frequencies. Therefore, we modify the quantum circuit to extract the entropy from the
electron during the compression, and use an additional swap gate to transfer the final po-
larization to the proton (see Fig. 7.8).

This quantum circuit enables one to repeatedly apply HBAC for pumping the H polar-
ization. The compression step consists of four CNOT gates and a Toffoli gate, as shown in
Fig. 7.8. Since the goal of the compression is only to extract entropy from the electron, the
last two CNOT gates targetting the nuclear spins (shown in the red dashed box in Fig. 7.8)
are not necessary. Hence, the compression is reduced to two CNOT gates and a Toffoli gate
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as shown in the middle part of Fig. 7.8. The rectangular-shaped microwave and RF pulses
shown at the bottom of Fig. 7.8 represent selective π-pulses, and the different shading of
these pulses illustrate different frequencies.

R" R"
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C#
e# R" R"

…"

R"R"

H
C#
e#

5"x"T1e"

mw#
RF# 5"x"T1e"

="Polariza1on"transfer" ="Compression"R" ="Reset"

Figure 7.8: Quantum circuit of the 3-qubit HBAC using ENDOR control. The electron
is used as the reset qubit, and it is refreshed by waiting for 5× T1. In the crystal orienta-
tion optimized for ENDOR, the forbidden transition rates of H are weaker than those of
Cm, so H is chosen as the target qubit. The 3-qubit PPA iteratively applies polarization
transfer (shaded in blue) and compression (shaded in yellow). All gates are realized using
selective microwave and RF π-pulses. The compression step can only be implemented here
to boost the electron polarization (see text for explanation), so a swap gate between the
electron and proton is used to store the boosted polarization on the proton. The CNOT
gates in the red dashed box are not necessary and are left out of the simulated implemen-
tation. The quantum circuit in the middle shows the gate decomposition of the swap and
the compression into CNOT and Toffoli gates. The schematic of the microwave and RF
pulse sequence at the bottom shows that the CNOT and Toffoli gates can be realized by
transition-selective pulses. Shading illustrates different pulse frequencies.

The maximum power for microwave pulses is chosen such that the Rabi frequency is
25 MHz. In practice, the resonant microwave cavity has a finite bandwidth. This means
that more input power is needed in order to drive transitions whose frequency is offset
with respect to the cavity resonance frequency. Since the input power is limited in any real
experimental setup, the pulse length must increase in order to apply the π-pulse at the offset
frequency. Fig. 7.9 shows a simulated ESR spectrum centered at the resonator resonance
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frequency of 10 GHz (red), and the voltage transfer function for a resonator with quality
factor (Q) of 100 (blue). If the pulse is applied at a frequency at which the corresponding
value of the transfer function is x, then the pulse length must increase by a factor of 1/x to
compensate for the loss in transmitted power. This finite bandwidth effect must be taken
into account in simulations because the algorithm cannot be successful if microwave pulse
durations become comparable to the electron T2. In the present simulations, the resonator
quality factor Q is set to 100 and microwave pulse lengths are adjusted accordingly. The
RF π-pulses are realized using 15 µs (H) and 60 µs (Cm) square pulses, reflecting typical
RF amplifier output power levels and assuming an untuned (broadband) RF circuit.
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Figure 7.9: Simulated field-sweep spectra for the 13Cm-labeled malonic acid in the ori-
entation given in Tab. 7.4 (red), and voltage transfer function for a microwave cavity
with Q = 100 (blue). The y-axis represents the scaling factor of square root of the mi-
crowave power in the cavity a function of the microwave frequency. Given a fixed maximum
available microwave power, pulse durations for offset pulses must be increased relative to
cavity-resonant pulses.

Using the room temperature electron T1, the HBAC algorithm will not be successful
because RF pulse lengths are similar to T e1 . This can be solved by exploiting longer
T e1 values at lower temperatures. In unlabelled, irradiated malonic acid, we have found
experimentally a T e1 that grows roughly exponentially with temperature, e.g. with values
of 29 µs, 2.6 ms and 11 ms at room temperature, 43 K, and 22 K, respectively. For
simulating 3-qubit HBAC with ENDOR, we choose T e1 = 2.6 ms (ignoring the fact that
a structural phase transition occurs at 47 K, probably complicating the ESR spectrum).
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The selective microwave pulses must be designed with a care. While each pulse selectively
excites certain transitions, they must also be broad enough to cover the ESR linewidth
of about 12 MHz. First, we simulate 50 ns gaussian-shaped pulses with the full width at
half maximum of 20 ns in order to excite the entire ESR linewidth and remain selective on
the particular transition. The result is shown in Fig. 7.10 in red. The main source of the
error is the inability of the Gaussian pulses to uniformly rotate all spins across the ESR
linewidth; the pulse bandwidth must be close to 50 MHz in order to fully excite the entire
ESR line width, but the minimum distance between two ESR allowed transition frequencies
is about 56 MHz. Thus, even in the absence of T1 and T2 effects, each swap gate loses
8% polarization. For the improved microwave control, selective π-pulses are engineered
using the GRAPE algorithm and can be made robust to T ∗2 = 28 ns which corresponds to
the ESR line width of 12 MHz. Using this method, swap gates can transfer 98% of the
polarization from the electron to the target nuclear spin. The simulation results for HBAC
using GRAPE microwave pulses and rectangular RF pulses are shown in blue in Fig. 7.10.
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Figure 7.10: Simulation results of the 3-qubit HBAC using ENDOR control. The plot
shows the ratio of H polarization to the electron thermal polarization after each round of
the HBAC, up to 8 rounds. The black dashed curve is the theoretical value. The selective
microwave π-pulses are designed in two different ways: (i) 50 ns gaussian-shaped MW
pulses with 20 ns full width at half maximum (red), (ii) and GRAPE pulses (blue). In
both cases, RF transitions are applied using square transition-selective pulses with 15 ns
and 60 ns pulse lengths for H and Cm spins, respectively.
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7.2.5 Simulating 5-qubit HBAC

As discussed in Sec. 7.2.3, due to weak forbidden transition rates of C1,2 and frequency
overlap among ESR transitions, the AHC scheme cannot be implemented in the 5-qubit
sample. Therefore, we focus on ENDOR control techniques in the simulation of 5-qubit
HBAC. Here, we simulate one round of the 5-qubit HBAC as shown in Fig. 7.11, to
demonstrate that cooling beyond the Shannon bound is experimentally feasible in the 5-
qubit molecule. The quantum circuit we employ for 5-qubit HBAC is shown in Fig. 7.11.
The electron is the target qubit, but the circuit can be easily modified to cool a nuclear
spin by adding a swap gate after the compression step. Theoretically, by applying one
round of the quantum circuit, the target qubit is cooled to εb(15− 10ε2b + 3ε4b)/8 ≈ 1.875εb
for small εb. The orientation of the magnetic field used in the simulation is shown in
Tab. 7.4, and the electron polarization and relaxation parameters are the same as used in
the 3-qubit ENDOR HBAC simulation. The forbidden transition rates of the carbons are
weaker than those of the proton, so the polarization transfer to H is done just before the
compression gate, as shown in Fig. 7.11. Similar to the 3-qubit HBAC ENDOR circuit,
the last CNOT gates in the compression step (inside the red dashed box) are not necessary
since the electron is the target spin.

R" R" R" R"e
Cm$
C1$
C2$
H

="Polariza+on"transfer" ="Compression"R" ="Reset"

Figure 7.11: Quantum circuit for 5-qubit HBAC with the electron as the target spin. The
polarization can be transferred to a nuclear spin with an additional swap gate. The last
CNOT gates inside the red dashed box of the compression step are unnecessary, and are
left out of the simulation. The open circles in the controlled gates indicate that the target
spin is flipped if the control qubit is in the ‘spin up’ state. One round of the algorithm
shown.

The usual method for a swap gate between the electron and one of the carboxyl carbons
requires selective microwave control of C1 and C2. However, the hyperfine tensors of C1
and C2 are very similar and it is impractical to separately address two spins by microwave
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pulses due to spectral overlap. However, they can be separately addressed with RF pulses
(see Sec. 7.2.3). Therefore, the polarization transfer step for C1,2 is modified as shown in
Fig. 7.12, and theoretically polarizes both C1 and C2 to the electron thermal polarization.

e
C1$
C2$

R" R"

ϵe$

ϵe$

ϵe$
Figure 7.12: Circuit for polarization transfer between the electron and C1,2. The circuit
brings C1 and C2 to the bath temperature without selective microwave control, but requires
selective RF pulses. The open circles in the controlled gates indicate that the target spin
is flipped if the control qubit is in the ‘spin up’ state.

Note that the circuit shown in Fig. 7.11 is not the optimal cooling algorithm, i.e. the
PPA. Fig. 7.13 compares the PPA and our cooling algorithm by showing the target qubit
polarization εt compared to the bath polarization as a function of HBAC steps. Here, each
step consists of one refresh operation and one gate on the system qubits (in contrast to
the ‘round’ used previously). In the low bath polarization regime, the PPA asymptotically
increases the target qubit polarization to 8 times the bath polarization, while repeated
application of the algorithm shown in Fig. 7.11 yields an asymptotic enhancement of 4.
While it is possible to find sequences corresponding to the PPA, it is an open question
whether such sequences could be practically implemented in this system. For the PPA,
the gate decomposition of each system qubit operation depends on the input state, and
can result in a complicated pulse sequence. An advantage of the algorithm implemented
in our simulation is that the gate decomposition of each step is relatively simple and the
asymptotic limit can be reached by simply repeating the quantum circuit.

As seen already in the 3-qubit HBAC simulation, designing microwave pulses that uni-
formly rotate all spin across the ESR line width while remaining transition-selective is
a challenge. For the 5-qubit system, this problem is exacerbated since the ESR transi-
tions are more closely spaced in frequency. In order to obtain the maximum polarization
enhancement, GRAPE optimal control must again be used for designing the selective mi-
crowave pulses. GRAPE pulses that are robust to the experimentally determined value of
T ∗2 have been designed with at least 0.95 state fidelity and with 200 ns pulse lengths for the
microwave pulses applied to Cm and C2, 900 ns for C1 and 1H, and 100 ns for the 5-qubit
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Figure 7.13: Theoretical target qubit polarization εt normalized by the bath polarization,
as a function of the number of cooling steps, to show the difference between the 5-qubit PPA
and the algorithm in Fig. 7.11. Each step consists of one refresh operation and one gate on
the system qubits. The red curve is obtained by the PPA while the blue curve is obtained
by repeated application of the quantum circuit shown in Fig. 7.11. In the low polarization
regime, the PPA allows the target qubit polarization to asymptotically approach 8 times
the bath polarization, and 4 times the bath polarization with our algorithm.

compression. RF pulse lengths are chosen as 5 µs and 20 µs for 1H and 13C, respectively.
Including the effects of the electron T1, T2, and T ∗2 , the polarization enhancement after
one round of 5-qubit HBAC is 1.67εb. A major contribution to the error is the broad ESR
line width compared to the spacing between ESR resonances, which makes realizing high
fidelity transition-selective rotations on a time scale short compared to T e2 difficult. Despite
this, the simulation shows that a single round of 5-qubit HBAC with a realistic control
sequence and relaxation yields a polarization enhancement beyond the Shannon bound,
and also beyond the capability of a single round of 3-qubit HBAC. Another simulation
is performed assuming a much narrower ESR line width, i.e. T ∗2 = T2. In this case, all
microwave pulses can be designed with 99% unitary fidelity at 100 ns pulse length, and
all nuclei reach at least 97% of the electron polarization during the polarization transfer
steps. The polarization improvement after one round of 5-qubit HBAC is 1.79εb. This
is 95% of the polarization improvement predicted by the theory, similar to the result of
the 3-qubit HBAC simulation using ENDOR control with GRAPE microwave pulses. We
expect the single qubit polarization to reach above 3.6εb, 90% of the theoretical value, as
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the algorithm is repeated, similar to the 3-qubit case. The result shows that for HBAC
with many qubits it is crucial to have a sharp ESR linewidth, which motivates a search for
electron-nuclear spin systems having narrower ESR lines than the malonyl radical.

The 5-qubit HBAC results are summarized in Tab. 7.5.

Simulation
Theory T ∗2 = 5 µs T ∗2 = 28 ns

εt/εb 1.875 1.79 1.67

Table 7.5: Polarization of the target qubit compared to the bath qubit after one round of
5-qubit HBAC. The quantum circuit for one round of 5-qubit HBAC is shown in Fig. 7.11.
Results are shown for two different values of T ∗2 . The electron spin lattice relaxation time
is T e1 = 2.6 ms in this simulation.

Finally, we note two experimental caveats that are not taken into account in our simu-
lations, but do not invalidate the main results. In the simulation sections, we accounted for
a type of cross-relaxation in which the nuclear polarization decays due to a combination of
the electronic spin-lattice relaxation process and the anisotropic term in the spin Hamilto-
nian of the form Ŝz Îx. There is an additional cross-relaxation mechanism involving noise
acting directly on the nuclear operators, which we have not included in the Lindblad mas-
ter equation. In future work, we plan to experimentally measure the cross-relaxation rates
as a function of orientation and temperature to determine these additional contributions.
If the additional mechanism is dominant, going to lower temperatures may be required in
order to achieve sufficiently long nuclear T1 timescales. Secondly, a well known structural
phase transition takes place in malonic acid at 46 K [147–149], which we have not consid-
ered here. Below 46 K, the P1̄ crystal symmetry is broken and there are two magnetically
distinguishable molecules per unit cell. We have observed certain ENDOR transitions to
split into two below 46 K, consistent with this phase change. However, experiments may
be designed using phase-cycling techniques in order to cancel signal contributions from one
of the molecules in the unit cell, so this does not in principle prevent the proposed AC
experiments from being carried out.

7.3 Summary and future work

This chapter presented our work that accurately determined the full spin Hamiltonian of
a five qubit electron-nuclear hyperfine coupled system in single crystal, irradiated malonic
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acid. Using the hyperfine tensors, we determined the optimal magnetic field orientation
for achieving high fidelity control using two control methods: anisotropic hyperfine con-
trol (AHC) and pulsed ENDOR techniques. Computer simulations were carried out using
realistic experimental conditions and including the relevant electron spin relaxation pa-
rameters, demonstrating that the realization of 3-qubit and 5-qubit HBAC is feasible in
this system. Using the 3-qubit molecule with AHC, the polarization of a nuclear spin is
predicted to increase above 1.5εb after 9 rounds of the cooling algorithm. The ENDOR
simulation assumed a lower temperature in which the electron T1 = 2.6 ms, in order to
have the T1 sufficiently long compared to RF pulse lengths. Using GRAPE for selective
microwave pulse design, the polarization of a nuclear spin is predicted to increase above
1.8εb after 9 rounds of the cooling algorithm. There is a tradeoff here between experimental
simplicity and the achievable fidelity; the AHC experimental setup is simpler and can be
performed at room temperature, but in general yields lower fidelities than the ENDOR
approach at low temperature.

The carboxyl carbons in the 5-qubit sample have very weak forbidden transition rates
under an applied microwave field, which prevents them from being practically controllable
using AHC. Hence, for the 5-qubit HBAC simulation, we focused on the ENDOR control
scheme. The 5-qubit simulation was again carried out at low temperature for a longer T1,
and the selective microwave pulses were designed using the GRAPE method. After one
round of 5-qubit HBAC, the simulation predicts that the target qubit (the electron) would
reach a polarization of 1.67εb. The major obstacle to reaching the ideal value of 1.875εb
is the small spacing between certain allowed ESR transitions, similar in order to the ESR
line width. Another simulation was performed assuming T ∗2 = T2 to predict the outcome
of the algorithm given a molecule that is similar to the malonic radical but with much
sharper ESR transitions. Here, a target qubit polarization of 1.79εb is obtained after one
round of the algorithm.

We conclude that the experimental demonstration of 3- and 5-qubit algorithmic cooling
beyond the Shannon bound is feasible in the isotopically labelled malonyl radical. The 5-
qubit system can yield a larger polarization enhancement compared to the 3-qubit system,
as expected. The experimental value of T ∗2 is found to be a critical factor that limits the
fidelity of gate operations, and therefore the achievable polarization under HBAC. Nearly
ideal results are obtainable when T ∗2 = T2.

The simulation results show that about 92% and 76% of the theoretically achievable
polarization can be experimentally achieved after 8 rounds of 3-qubit HBAC using ENDOR
and AHC methods, respectively. For 5-qubit HBAC simulation, about 89% of the ideal
polarization value is obtained after 1 round. Assuming similar level of accuracy can be
achieved after 10 rounds of HBAC, we can estimate realistic target qubit polarization after
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applying 10 rounds of these HBAC as the temperature varies. This estimation gives us an
idea at what temperature, the X-band spectrometer needs to be operating in order to be
able to implement QEC using mixed ancilla qubits. In Sec. 2, we showed the result from [23]
that if two ancilla qubits in the 3-qubit QEC code have same polarization ε, then ε >√

2−1 ≈ 0.41 is to be satisfied in order to improve the fidelity of a quantum state exposed
to the dephasing channel. Fig. 7.14 shows the estimated values of the target spin qubit
polarization as a function of temperature. One can see that near 1 to 2 K, an ancilla spin
qubit can be polarized to the required value for QEC. Note that the improvement from the
AHC methods should be better at lower temperatures since cross-relaxation rate is reduced
as T1 of the electron increases at low temperatures. We expect that as the temperature is
reduced, the polarization improvement in the AHC scheme will be slightly higher since the
cross-relaxation effect during the GRAPE pulses are negligible. Nevertheless, the cross-
relaxation effect on the nuclear polarization during the electronic reset is expected to be
similar to the room-temperature case since longer T1 demands longer reset time.
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Figure 7.14: Estimation on the attainable target qubit polarization after 10 rounds of
HBAC at various temperatures. The estimated values are obtained by assuming 92%
and 76% of the theoretically achievable polarizations in the 3-qubit HBAC can be exper-
imentally achievable, and 89% for the 5-qubit HBAC. At around 1-2 K temperature, one
ancilla qubit can be polarized to above 0.41 that is required for the 3-qubit QEC code for
dephasing to improve the fidelity of a quantum state exposed to the noisy channel.

The next step is to experimentally realize HBAC and demonstrate the polarization
improvement predicted in the simulations. The first experiment is to apply the 3-qubit
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algorithmic cooling to 13Cm-labelled malonic acid using both AHC and ENDOR control
methods. We are currently testing our control to realize electron-nuclear two qubit gates
with high fidelity using AHC scheme as a necessary step towards experimental realization
of HBAC. The ENDOR experiment is currently undertaken by collaborators at the Osaka
City University in Japan. I contributed to the ENDOR experiment by finding the optimal
orientation for the given crystal shape, and by developing a simulation tool and obtaining
preliminary simulation results.
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Chapter 8

Conclusions and outlook

NMR quantum information processors are one of the best test beds to experimentally
implement and develop protocols for exploring quantum control techniques that are also
applicable in other platforms. High control fidelity has been shown in NMR quantum
computing in the few-qubit regime, and a scalable method for characterizing noise is well
developed. Nevertheless, for building a large scale quantum computer, the ability to imple-
ment quantum error correction is critical and still remains challenging for NMR quantum
processors as well as for many potential implementations. The major obstacle against ex-
perimental realization of multiple rounds of QEC in NMR QIP is the difficulty in supplying
highly polarized ancilla spin qubits on demand.

Moving to the solid state electron spin resonance systems where an unpaired electron is
hyperfine-coupled to nuclear spins is promising direction for the development of larger scale
quantum information processors. First, the electron’s higher gyromagnetic ratio compared
to that of nuclei can be exploited to provide about three orders of magnitude enhanced
spin qubit polarization. In addition, imbalance of the T1 relaxation time scale between
electron and nuclear spins opens the possibility for implementing open system cooling
such as heat bath algorithmic cooling for purifying spin qubits beyond electron thermal
equilibrium polarization. Also, fast gate operations can be realized by making use of strong
anisotropic hyperfine interaction between electron and nuclear spins. Furthermore, there is
a recent proposal of building a multi-node quantum computer containing about 100 qubits
employing electron and nuclear spins [155]. Engineering such a system permits testing
the ideas of quantum control and error correction in a setting unavailable to classical
simulations, opening a path to the development of future large scale quantum devices.

In the introduction, we stated the main questions to be addressed in this thesis as
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follows. The first goal was to achieve and demonstrate high accuracy in controlling the
electron spin for QIP. The second was to study whether experimental implementation
of heat bath algorithmic cooling is feasible with realistic electron-nuclear spin systems for
cooling a nuclear spin beyond electron thermal equilibrium polarization. As an interlude on
the way to answering these questions, we first demonstrated a liquid state NMR experiment
utilizing three nuclear spin qubits that was designed to directly test the validity of Born’s
rule, one the fundamental postulates of quantum mechanics. Utilizing the high control
fidelity available in the system, we experimentally bounded the deviation of the Born rule to
∼ 10−3±10−3. The experiment also serves to demonstrate that the control level in the liquid
state NMR in the few-qubit regime is precise enough for experimentally testing foundational
laws of quantum theory. Also, we reported our progress towards providing more detailed
analysis on the T1ρ noise spectroscopy protocol. The noise spectroscopy protocol can be a
useful tool to design a dynamical decoupling sequence to decrease the system-environment
interaction which in turn can be beneficial for QEC by reducing the error probability. Next,
we moved onto the electron-nuclear system and first described the home-built spectrometer
and the low temperature probe which enable quantum computations using electron and
nuclear spin registers. The single qubit randomized benchmarking protocol was applied
not only for measuring the average single qubit gate fidelity, but also for optimizing the
spectrometer configuration and improving the quantum control. The error per single qubit
Clifford gate on the electron in fused irradiated quartz was 0.81 ± 0.04%. From this, the
first goal is achieved; we built experimental tools for controlling the electron spin with
greater than 99% accuracy. We answered the second question in Sec. 7 by extracting the
full spin Hamiltonian of irradiated malonic acid ĊH(COOH)2 in single crystal, finding the
crystal orientation for optimal control, and carrying out realistic simulations. Our work
showed that both 3-qubit and 5-qubit HBAC can be realized in the electron-nuclear spin
system and cool a nuclear spin beyond the electron thermal equilibrium polarization.

The short term future goal is to experimentally implement 3-qubit HBAC. At present,
our collaborators in Japan are working on implementing 3-qubit HBAC using a pulsed
ENDOR set-up. Meanwhile, our home-built spectrometer is capable of implementing the
AHC scheme. The AHC simulation employed GRAPE pulses for implementing swap and
compression gates with 96% to 99% gate fidelity at room temperature, and still acquired a
nuclear polarization greater than 1.5 times the electron thermal polarization. Also, in the
AHC scheme the dominating source of error was the cross-relaxation effect which induces
nuclear relaxation via anisotropic hyperfine interaction and the electron T1 process. We
expect that if the gates required in the 3-qubit HBAC can be implemented with a similar
level of control that was demonstrated in the single qubit randomized benchmarking, ex-
perimental cooling of a nuclear spin beyond 1.5εb can be achieved. The polarization boost

112



can be slightly higher if the experiment is performed in cryogenic temperatures where the
cross-relaxation effect on the nuclear polarization during GRAPE pulses is negligibly small
due to longer electronic T1. Currently, we are working towards demonstrating high fidelity
two-qubit gates using the AHC method in our pulsed ESR spectrometer.

In the long run, it will be interesting to add the pulsed ENDOR capability to our home-
built spectrometer and to explore benefits of having direct nuclear control in addition to
the AHC scheme. It is even possible to add optical fibre in the current spectrometer that
allows one to study photo-excited triplet states that can provide highly polarized spins at
room-temperature by optical pumping and dynamic nuclear polarization [156, 157] for QIP
applications.
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