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Abstract

B. thuringiensis is a Gram-positive bacterium that, while quite other-

wise closely related to the soil saprophyte Bacillus cereus, is unique in

producing a large variety of membrane-damaging, insecticidal protein

toxins. These toxins, which are widely used as biopesticides, fall into

two major structural families, named Cry and Cyt. This thesis reports

experiments that characterize the activity and membrane specificity of

Cyt2Aa1 toxin, which is a member of the Cyt family. This toxin is

shown to have a low degree of antibacterial activity against Gram-pos-

itive bacteria; the growth of the model organism Bacillus megaterium
is inhibited in the presence of approximately 700 µg/mL of the toxin.

The toxin readily binds to the bacterial cell surface, and marker release

experiments show that the bactericidal effect arises through perme-

abilization of the bacterial membrane. In contrast, the Gram-negative

organism E. coli is not inhibited by Cyt2Aa1, and the toxin fails to bind

to the bacterial cells.

Furthermore, it is shown that the cytolytic activity of the toxin is

inhibited by cholesterol. The extent of inhibition is greater on model

liposomes, in which virtually complete suppression is observed above

a molar fraction of 20% or greater of cholesterol, than with red blood

cells that were subjected to partial cholesterol extraction with methyl-β-

cyclodextrin. Since cholesterol inhibits rather than activates Cyt2Aa1,

its absence from bacterial membranes does not account for the low

susceptibility of bacterial cells to the toxin.

In previous studies, two different mechanisms have been proposed

for the permeabilization of membranes by Cyt2Aa1, namely, the forma-

tion of discrete, oligomeric transmembrane pores, and the diffuse dis-

ruption of the target membrane in a detergent-like manner. A series of

experiments that used both wild-type toxin and several point mutants
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with impaired hemolytic activity provides evidence for the formation of

toxin oligomers that precedes the permeabilization of the target mem-

brane. Moreover, osmotic protection experiments with polyethylenegly-

col suggest the formation of pores with limited, but possibly heteroge-

neous size. Collectively, these findings support the notion that Cyt2Aa1

acts through the formation of discrete oligomeric pores.
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Chapter 1

Introduction

This thesis deals with a specific protein toxin, Cyt2Aa1, of the Gram-

positive, endospore-forming bacterium Bacillus thuringiensis (B. thurin-
giensis; Bt). Cyt2Aa1 belongs to one of two major families of δ-endo-

toxins, which are expressed by B. thuringiensis during sporulation, and

both of which have powerful insecticidal activity. Toxin-enriched prepa-

rations of B. thuringiensis cultures are widely used in agriculture for

crop protection. Because of their economic significance, Bt toxins have

attracted considerable research interest. While much has been learned

about their molecular modes of action, many open questions remain.

Before discussing the particular questions that were addressed in this

thesis (see Section 1.4), I will first give an overview of the previous work

on B. thuringiensis and its insecticidal toxins.

1.1 Bacillus thuringiensis

In 1901, the soil bacterium Bacillus thuringiensis was discovered in

Japan by S. Ishawata, who also reported that this bacterium killed

1



1.1 Bacillus thuringiensis

1

Figure 1.1 Transmission electron micrographs of longitudinal sections of B. thurin-

giensis cells. Adapted from [5]. Left: a parasporal crystal shown at high magnifica-

tion. These protein crystals contain the δ-toxins. Right: entire cell with endospore

and parasporal crystal.

Bombyx mori, the silkworm [1]. Subsequently, in 1911, E. Berliner

identified B. thuringiensis as a pathogen of the caterpillars of Mediter-

ranean flour moths, in which the bacterium causes a disease known

in German as “Schlafsucht” (hypersomnia, that is, excessive sleep).

Berliner had isolated his specimen in the German province of Thuringia

[2], which gave rise to the bacterial species name. Soon after, Berliner

also discovered the inclusion bodies that form concomitantly with the

endospore (see Figure 1.1). In 1953, Hannay and Fitz-James reported

that these inclusion bodies consist of proteins and named them “para-

sporal crystals” [3]. This discovery marks an important milestone in the

development of B. thuringiensis as a biopesticide [4].

The first commercial biopesticide consisting of sporulated B. thu-
ringiensis cultures was produced in France in 1938; this preparation

was used to control flour moths. In 1961, Bt-based biopesticides were

approved for use in the United States by the U.S. Environmental Pro-

tection Agency. For approximately 20 years, various crop plants have

been genetically engineered to express Bt toxins. Such insect-resis-

tant transgenic crops provide an effective and inexpensive means for

2



1 Introduction

pest control, allowing for a significant reduction in the use of chemical

insecticides [6].

B. thuringiensis, like all Bacillus species, is aerobic; it is non-capsu-

lated and motile with peritrichous flagella. The species comprises nu-

merous subspecies or strains, each of which produces its own unique

combination of insecticidal δ-toxins, expressed within the parasporal

crystals during sporulation. Thus far, several thousand natural B. thu-
ringiensis strains have been isolated from diverse sources like soil,

plants and insects [7]. Examples of such strains are the subspecies

kurstaki [8], aizawai [9], galleriae [10], which was found to be active

against lepidopterans, as well as subsp. israelensis [11], tenebrionis
[12], kyushuensis, and Berliner [13].

Classification of B. thuringiensis strains has been carried out using

antisera to the strain-specific flagellar antigen (H serotyping) [14, 15].

At present, more than 70 H-serotypes and 82 serovars have been distin-

guished [14]. These serotypes and serovars can also be discriminated

based on 16S rRNA, gyrB and aroE gene sequence analyses [16].

B. thuringiensis shares common phenotypic and genotypic charac-

teristics with Bacillus anthracis and Bacillus cereus, and together they

are placed into the Bacillus cereus (BC) group [17]. Recently, there

has been some controversial discussion as to whether or not B. thurin-
giensis should be regarded as a species separate from B. cereus and

B. anthracis. Whether or not it we consider it a species, the formation

of the insecticidal parasporal is a specific feature that sets it apart from

B. cereus and B. anthracis [18].

1.1.1 The life cycle of B. thuringiensis

The life cycle of B. thuringiensis starts from the vegetative form of the

bacteria. Under typical culture conditions, it takes approximately 13

hours for the vegetative form to complete the process of sporulation.

This process occurs in successive stages, which are illustrated in Fig-

ure 1.2. At the outset (stage 0 in the figure), the growing vegetative cell

3



1.1 Bacillus thuringiensis

0: Vegetative cell 

 
I: Axial filamentation II: Asymmetric division  

 

 III: Engulfment 

 

IV: Cortex synthesis 

 
V: Coat synthesis 

 
VI: Maturation 

 

VII: Mature endospore  

in expired mother cell 

 

Figure 1.2 Schematic representation of the stages of Bacillus thuringiensis spore

formation. The rhomboid shapes represent the parasporal crystals that contain the

Bt toxins. The various stages are explained in the text.

has completed DNA replication and thus contains two complete chro-

mosomes. The cell undergoes the following morphological changes [19–

21]:

(I) The two chromosomes, which still hang together, form a stretched

axial filament across the cell.

(II) A membranous division septum is formed that asymmetrically

divides the cell into a large mother cell and a smaller prespore.

(III) After seven hours overall, the prespore is engulfed by the mother

cell and exists as a free-floating forespore within the mother cell.

At this stage, the formation of the parasporal crystal begins.

4
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(IV) After eight hours, the forespore is enveloped by a distinctive form

of peptidoglycan, which differentiates into two layers, the primor-

dial cell wall and the cortex.

(V) Two more protective proteinaceous layers, the spore coat and the

exosporium, are deposited around the prespore.

(VI) The spore is dehydrated and develops into a mature spore with its

characteristic thermal and chemical resistance properties. This

process occurs without morphological changes but is accompa-

nied by increased brightness in phase contrast microscopy.

(VII) Finally, formation of the parasporal crystals is completed. At this

stage, the mother cell has lost its viability.

Unlike other Bacillus species, the Bt mother cell does not undergo lysis

after sporulation is completed, and both the endospore and the para-

sporal crystal remain inside the mother cell. The last three stages take

3–4 hours to complete.

1.1.2 B. thuringiensis toxins and insecticidal activity

The insecticidal protein toxins of B. thuringiensis fall into three struc-

tural families, namely, the Cry, the Cyt, and the Vip families [22].

The acronym “Vip” stands for “vegetative insecticidal proteins,” indi-

cating that these toxins are expressed in the vegetative growth phase.

The acronyms “Cry” and “Cyt” are abbreviations for the characteristics

“crystalline” and “cytolytic”, respectively [23]. Note, however, that both

the Cry and the Cyt toxins are expressed within the parasporal crystals

in the sporulation phase [24], and moreover that both are cytolytic (see

below).

Commercial powdered preparations of B. thuringiensis that are used

as pesticides for crop protection contain the crystals, along with spores

[25]. A more recent strategy for the protection of crops such as cotton

and maize is the recombinant expression of various Bt δ-endotoxins in

the crop plants themselves, which renders them toxic to the feeding
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1.2 Cytolytic proteins and peptides

insects. The Bt toxins are expressed in insoluble form, but they dis-

solve and undergo proteolytic activation in the alkaline milieu of the

insect gut. Although at least some toxins are harmful to experimental

animals when applied parenterally, they are not toxic to them when ap-

plied orally, since they are rapidly destroyed in the acidic milieu of the

stomach [26].

While individual Bt toxins vary in activity against different insect

groups and species, collectively they affect many species from the or-

ders of Diptera (mosquitoes and flies), Lepidoptera (moths and butter-

flies), and Coleoptera (weevils and beetles) [27]. Moreover, the toxins

affect the orders of Hymenoptera (wasps and bees); and in addition to

insects, they also affect nematodes [28].

With both Cry and Cyt toxins, the most likely mechanism of mem-

brane damage is the formation of discrete pores, although other mech-

anism have been proposed. This will be discussed in more detail in

Section 1.3, following a brief general introduction to cytolytic proteins

and peptides.

1.2 CYTOLYTIC PROTEINS AND PEPTIDES

Cytolytic or membrane-damaging proteins and peptides are exceedingly

widespread in nature. They occur as toxins in bacteria and fungi,

as components of insect poisons, as effector molecules in the specific

and non-specific immune system, and within the repertoire of digestive

mechanisms of amoeba.

The mechanism of membrane damage can be chemical, as is the

case with phospholipases such as Clostridium perfringens α-toxin; more

commonly, however, it consists in the physical disruption of membrane

continuity. Here, we can further distinguish two major mechanisms.

Larger protein molecules typically form discrete pores, which can often

be directly observed with morphological methods such as electron mi-

croscopy. In most cases, these pores consists of oligomeric assemblies

6
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Table 1.1 Examples of cytolytic proteins and peptides.

Type Name Host organisms Target cells or
organisms

proteins complement mammals bacteria, viruses
perforin mammals mammalian cells (self)
α-hemolysin Staphylococcus aureus mammalian cells
δ-endotoxins B. thuringiensis insect larvae
colicin IA E. coli E. coli (different strains)

peptides defensins mammals bacteria, fungi
melittin Honey bee mammalian cells
alamethicin fungi (Trichoderma

viride)
fungi and bacteria

amoebapore Entamoeba histolytica bacteria

of the toxin molecules. In some cases, the oligomers are sufficiently

stable to allow their purification and crystallization; the first such crys-

tal structure was obtained for Staphylococcus aureus α-hemolysin (see

Figure 1.5A and B).

Smaller peptides often operate through more a more diffuse, deter-

gent-like mechanism, although formation of discrete pores occurs with

peptides such as melittin (see Figure 1.3). Some examples of cytolytic

proteins and peptides are listed in Table 1.1.

1.2.1 Bacterial pore-forming toxins

Unlike the Cry and the Cyt toxins, most other bacterial pore-forming

toxins do not accumulate intracellularly but are instead secreted from

the cell as water-soluble molecules.1 Typically, they bind to their target

cell membranes as monomeric molecules and then undergo oligomer-

1An exception is pneumolysin, formed by Streptococcus pneumoniae, which accu-
mulates intracellularly in soluble form.
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1.2 Cytolytic proteins and peptides

A

B

1

Figure 1.3 Mechanisms of membrane damage by antimicrobial peptides (adapted

from [29]). A: In the “barrel stave” mechanism, amphiphilic peptides orient aggre-

gate into clusters that orient perpendicularly to the lipid bilayers and surround dis-

crete transmembrane pores. This mechanism is exemplified by metlittin. B: In the

“carpet” or detergent-like mechanism, peptides bind and insert into the headgroup

layer of the membrane. Beyond a certain threshold of peptide coverage, the curva-

ture strain breaks up the membrane. An example of this mechanism is alamethicin.

ization, which sets the stage for membrane insertion and permeabi-

lization. This transformation often involves extensive conformational

changes [30]. Pore formation causes osmotic imbalance, loss of essen-

tial metabolites, and breakdown of ion gradients, which subsequently

leads to cell swelling, lysis and death [31]. With some bacterial toxins,

pore formation is not the main toxic mechanism by itself but primarily

serves to translocate toxic enzymes across the membrane and into the

cells; examples are diphtheria, cholera, and pertussis toxins, and also

8



1 Introduction

Pseudomonas aeruginosa exotoxin (see Figure 1.4). Toxins with such

a dual mode of action are collectively referred to as “A-B toxins;” they

tend to have much lower lethal dosages than pure pore-formers.

Binding of the toxin molecules to the target membranes is often, but

not always mediated by specific receptors. These receptors can be lipids

or proteins. Cholesterol, which is not found in bacterial cell membranes

(save those of mycoplasmas that live in association with animals), me-

diates binding of streptolysin O and homologous toxins, and also of the

structurally unrelated Vibrio cholerae cytolysin [32].2 Phosphocholine

headgroups of phosphatidylcholine and sphingomyelin likely form the

receptors for S. aureus α-hemolysin [33]. Cholera toxin binds to the

ganglioside GM1, while Shiga toxin binds to glycoproteins that bear ter-

minal β-1,4-linked N-acetylglucosamine residues [34], and the glycan

moieties of glycosyl-phosphatidylinositol-anchored (GPI-anchored) pro-

teins serve as receptors for Aeromonas hydrophila aerolysin [35] and

Streptococcus agalactiae CAMP factor [36].

A widely used classification of pore-forming toxins (PFTs) is based

on predominant features of secondary structure [30]. The α-PFTs are

mostly α-helical in structure. These toxins have pore-forming domains

consisting of a three-layer structure with up to ten helices sandwich-

ing a hydrophobic helical hairpin in the center of the structure (see

Figure 1.4), which is thought to drive the initial step of the insertion

process. The helical structure is retained after membrane insertion is

completed. The other major class are the β-PFTs, which tend to be rich

in β-sheets and insert into membranes to form a β-barrel. Represen-

tative structures of α- and β-PFTs are shown in Figures 1.4 and 1.5,

respectively.

2This toxin is unrelated to cholera toxin; it is responsible for the hemolytic pheno-
type of V. cholerae El-Tor.
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1.3 Cytolytic proteins and peptides

A

B C D

1

Figure 1.4 Representative α-PFT structures. Where spectral colors are used, the

N-terminus is shown in blue, and the C-terminus in red. A: Colicin Ia (rendered from

1CII.pdb, [37]). B: Colicin I receptor complex (blue) with receptor binding domain

of Colicin Ia (green; from 2HDI.pdb, [38]). C: Pseudomonas aeruginosa exotoxin

(from 1IKQ.pdb, [39]). The pore-forming domain consists of the green-shaded α-

helices at the top left. D: B. thuringiensis Cry3Bb1 insecticidal δ-endotoxin (from

1JI6.pdb, [40]).
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A B

C D

1

Figure 1.5 Examples of β-PFT structures. A and B: The heptameric pore formed by

Staphylococcus aureus (rendered from α-hemolysin 7AHL.pdb, [41]). Each of the

seven subunit is rendered in a different color. C: The soluble monomer of Clostrid-

ium perfringens perfringolysin, a cholesterol-dependent cytolysin (from 1PFO.pdb,

[42]); D: B. thuringiensis Cyt2Aa1 δ-endotoxin monomer (from 1CBY.pdb, [43]).
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1.3 Structure and function of Cry and Cyt toxins

1.3 STRUCTURE AND FUNCTION OF Cry AND Cyt TOXINS

While Cry and Cyt toxins differ in molecular size and predominant sec-

ondary structure (see Figure 1.4D and 1.5D, respectively), there are

commonalities in their modes of action and of activation. Both are

expressed as inactive protoxins, which are tightly packed inside crys-

talline inclusion bodies (the parasporal crystals; see Figure 1.1). These

crystals are stabilized by intermolecular disulfide bridges [44] and by

intramolecular salt bridges that render them insoluble at neutral pH

[45]. However, the crystals dissolve at an alkaline pH of 10.5–13. The

pH dependence of solubility explains why the Bt δ-endotoxin inclusions

are toxic to insects but not humans: an alkaline pH prevails in the

mid-gut juice of the insects, which contrasts with the acidic nature of

the stomach juice of humans.

After solubilization, both Cry and Cyt protoxins undergo proteolytic

activation, which involves the removal of a number of amino acids from

both the N-terminal and the C-terminal ends. Furthermore, Cry and

Cyt toxins are both considered to be pore-forming toxins, and both

are assumed to form oligomeric pre-pore structures containing several

monomeric activated molecules prior to membrane insertion [30]. After

insertion, the resulting pores cause colloidal osmotic lysis of the cells

in the mid-gut, which leads to an irreversible arrest of gut movement,

and the insect stops feeding. Once the insect’s digestive activity has

been disrupted, the B. thuringiensis spores may germinate, then reach

the hemolymph and cause septicemia, followed by death of the insect

[46].

Cry toxins and Cyt toxins differ with respect to the requirement for

macromolecular receptors. Activated Cry toxins bind to specific macro-

molecular receptors on the surface of the mid-gut epithelia. In contrast,

no specific receptors have been described for Cyt toxins. Moreover,

while the formation of discrete pores is widely assumed to be the mode

of action for both Cry and Cyt toxins, for the latter an alternative, de-
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tergent-like mechanism of action has also been advocated (see Section

1.3.3.2).

1.3.1 The Cry toxin family

The Cry toxins are a large family; more than two hundred members

have been identified that are divided into no less than 50 subgroups,

based on their amino acid sequences [28] (see Table 1.2). The number

of removed amino acids is variable according to the type and nature of

each δ-endotoxin. For the Cry toxins like Cry1, Cry4A and Cry4B, 3–70

amino acids are usually removed from the N-terminus during activa-

tion, while up to about half of the molecule may be removed from the

C-terminus [47].

X-ray structures have been determined for the activated forms of

various toxins, including Cry1Aa, Cry2Aa, Cry3Aa, Cry3Bb, Cry4Aa

and Cry4Ba. While all Cry toxin share a similar overall structure com-

posed of three domains, substantial differences are observed in detail

[48] (see Figure 1.6). The toxins also show substantial differences in

receptor binding specificity, as well as in spectrum and level of toxicity

[23].

In all Cry toxin structures, the N-terminal domain I is composed of a

central hydrophobic α5 helix, which is surrounded by six amphipathic

helices to form a seven-helix bundle. This arrangement resembles that

found in α-PFTs such as colicin IA (see Section 1.2.1), and accordingly

this domain is assumed to have a major role in pore formation, via

insertion of some or all of those helices into the cell membrane [37, 45].

Toxin binding to the receptors in the cell membranes of the gut ep-

ithelia is believed to be mediated by domains II and III [49]. Domain

II consists of three anti-parallel β-sheets. It is similar in structure to

various carbohydrate-binding proteins such as vitellin and the lectin ja-

calin. Domain III consists of a tightly packed β-sheet sandwich, and it

has been proposed that this dense and compact structure is important

to prevent excessive C-terminal proteolysis [45, 50].

13
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Table 1.2 The Cry toxin family and its subgroups

Cry toxin type Subgroups Molecular weight (kDa)

Cry I A(a), A(b), A(c), B–G 130–138
Cry II A–C 69–71
Cry III A–C 73–74
Cry IV A–D 73–134
Cry V–IX n/a 35–129

Activated Cry toxins bind to specific receptors on the gut epithelial

cell membranes of the insect. Cry1A toxins bind to four different re-

ceptors in lepidopteran insects: a GPI-anchored alkaline phosphatase

(ALP), a GPI-anchored aminopeptidase-N (APN), a cadherin-like protein

(CADR), and a 270 kDa glycoconjugate [51–53].

1.3.2 The Cyt toxin family

With nine known members, the Cyt toxin family is smaller than the

Cry family. The Cyt toxins fall into two major groups, Cyt1 and Cyt2

[23]. Two representative toxins, Cyt1Aa (previously CytA) and Cyt2Aa

(previously CytB), share 39% sequence identity, and they consist of

249 and 259 amino acid residues, respectively, in their protoxin forms.

Both also share the same tertiary structure [46] and are structurally

related to a cardiotoxic pore-forming toxin called volvatoxin A2, which

is produced by the straw mushroom Volvariella volvacea [56].

In contrast to the Cry toxins, proteolytic activation removes only

small peptide fragments from both the N-terminal and the C-terminal

ends; with the Cyt2Aa1 toxin, the N-terminal truncation amounts to 32

amino acid residues, and the C-terminal truncation to 15 residues [46,

57].

Each toxin consists of a single domain that comprises two outer

layers of α-helical hairpins, wrapped around a β-sheet (see Figure 1.7).
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A B C

1

Figure 1.6 Structures of three Cry family toxins. A: Cry1Aa (rendered from

1CIY.pdb, [54]). B: Cry2Aa (from 1I5P.pdb, [55]). C: Cry4BA 1W99.pdb, [50]).

The Cyt toxins are highly specific for the larvae of dipteran insects, even

though in vitro they have broad cytolytic activity against the cells from

a broad range of animal species, including mammalian ones. Unlike

Cry toxins, the Cyt toxins do not have any known cellular receptors,

and it is assumed that these are not required for toxin activity [30].

In keeping with this assumption, they can insert into pure liposomal

lipid bilayers, without any need for a protein or other macromolecular

receptor [57].

While Cyt toxins are widely believed to form discrete pores, an alter-

native mechanism of membrane damage has been proposed [58, 59].

According to this model, Cyt toxins do not form discrete oligomeric

pores but instead cause rupture of the cells by a detergent-like mode of

action, similar to the mode of action of defensins and other antimicro-

bial peptides (see Section 1.2).

15

http://www.rcsb.org/pdb/explore/explore.do?structureId=1CIY
http://www.rcsb.org/pdb/explore/explore.do?structureId=1I5P
http://www.rcsb.org/pdb/explore/explore.do?structureId=1W99
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1.3.3 Cyt2Aa1 toxin

Cyt2Aa1 is a member of the Cyt family and is the specific toxin that

was investigated in this thesis.

1.3.3.1 Structure. The Cyt2Aa1 toxin, previously known as CytB, is

produced in vivo as a 29 kDa protoxin, which is proteolytically cleaved

at both ends by gut proteases to generate the active 21–23 kDa toxin

[60]. The crystal structure of the toxin in its monomeric form is com-

posed of a single domain of αβ architecture with two outer helical layers

wrapped around a mixed β-sheet (see Figure 1.7). Cyt2Aa1 is produced

in the protoxin form as a dimer which is cross-linked by the interlaced

N-terminal strands from both monomers in a continuous, 12-stranded

β-sheet (see Figure 1.7) [43, 46, 61]. Proteolytic activation by proteinase

K cleaves the interlaced β-strands, removing 32 amino acid residues

from the N-terminus end and 15 amino acid residues from the C-ter-

minus to expose the three-layered core [46, 57, 61]. In contrast to Cry

toxins, Cyt toxins do not bind to protein receptors but interact directly

with membrane lipids [43, 57, 59].

1.3.3.2 Mode of action. Promdonkoy and coworkers characterized the

interaction of Cyt2Aa1 with membranes using a cysteine mutant (L189C,

in the 6th strand of the central β-sheet) that was labeled with acrylo-

dan. This fluorescent dye undergoes a pronounced emission blue-shift

upon transition from a polar to an apolar environment, such as that

prevailing inside lipid bilayers [62, 63]. The mutant indeed displayed

a strong blue-shift upon interaction with membranes, suggesting that

the labeled residue underwent membrane insertion; this was observed

at both at high (37°C) and low (4°C) temperature. Aside from this single

experiment, there is no detailed information on the specific residues of

Cyt2Aa1 that participate in membrane interaction.

The same study also attempted to characterize the oligomeric state of

Cyt2Aa1 on the target membrane; this was performed using SDS-PAGE

and Western blots. Several apparent oligomeric species were observed,
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α-Helix Residues β-Strand Residues

A 54–63 1 28–36

B 77–84 2 44–48

C 107–122 3 90–106

D 129–140 4 155–158

E 199–202 5 165–175

F 233–237 6 183–195

7 210–225

A

B

1

Figure 1.7 Structure of Cyt2Aa1 toxin, rendered from 1cby.pdb [43]. A: Secondary

structure elements in the monomer. The labels in the structure correspond to those

in the table. B: Intertwined β-sheet layers of two adjacent monomers in the crystal

structure.
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1.3 Structure and function of Cry and Cyt toxins

rather than a single one. This contrasts with observations made with

S. aureus α-hemolysin [64] or V. cholerae cytolysin [65], both of which

form pores with heptameric subunit stoichiometry, and it suggests that

the pores formed by Cyt2Aa1 may contain variable numbers of sub-

units.

Discrete pores with a diameter of approximately 1 nm were charac-

terized by Drobniewski and Ellar using both marker-release studies and

osmotic protection experiments using extracellular solutes with known

viscometric radii [66]. Ellar and coworkers suggested these pores to

be oligomeric, consisting of an estimated six monomers [43]. This con-

trasts with an earlier study by Chow and coworkers [67], who extracted

toxin aggregates from insect cell membranes using Triton X-100 and

characterized them by density gradient centrifugation. They found a

molecular mass of 400 kDa, which corresponds to a number of approx-

imately sixteen subunits.

Knowles and coworkers have shown the permeabilization of pla-

nar lipid bilayers toward potassium after incubation with the activated

toxin [68]. These authors also observed that the toxin induced the

release of glucose from liposomes. They raised the question whether

the cations and glucose passed through the same or through separate

kinds of openings in the target membranes.

Butko and coworkers have previously performed calcein release as-

says with Cyt1A (Cyt1Aa1) using large unilamellar PC liposomes [69].

Calcein was released at low toxin concentration. The same authors cal-

culated the number of toxin molecules required for the permeabilization

of one liposome to be 140. From this, they concluded the formation

of discrete pores to be unlikely, since in that case a single oligomer,

and accordingly a much smaller number of subunits, should suffice

to permeabilize a liposome. They therefore suggested a detergent-like

mechanism of action.

Manceva and coworkers used fluorescence photobleaching recovery

to measure the diffusion coefficient of fluorescently labelled Cyt1A and
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epifluorescence microscopy to monitor the size of liposomes after in-

cubation with Cyt1A (now calledCyt1Aa1) [59]. They found that, upon

addition of Cyt1A, liposomes were broken into smaller, faster diffus-

ing objects. They presented this as evidence of a detergent-like mode

of action of the toxin, because no change in size or morphology of the

liposomes is expected when discrete pores are formed.

It may be said, however, that their proposal would have more weight

if the experiments had been performed with biological membranes in

addition to liposomes. As it stands, the evidence in favour of pores has

been reached on red cell membranes, whereas the evidence in favour of

a detergent-like mode of action has been reached with liposomes. So,

the mode of action might be different on both membranes.

Finally, the possibility is that the Cyt2Aa1 toxin could work by both

mechanisms could be considered, because the evidence that supported

both mechanisms has been obtained with high and low concentration

of the toxin. So, the concentration could be the determining key to

switch between both mechanisms. Another possible explanation is that

both mechanisms could work with different time scale so that pores

could be first formed and then disintegration of membrane by the toxin

detergent-like action.

1.3.4 Antibacterial activity of B. thuringiensis δ-endotoxins

While the most widely known and practically important activity of the

B. thuringiensis toxins is that against insects, both Cyt and Cry tox-

ins have been shown to have antibacterial activity also. Expression

of Cyt1Aa toxin in E. coli inhibits growth of the host bacterium [70];

interestingly, this can be prevented by the co-expression of two other

proteins found in B. thuringiensis parasporal crystals (accessory pro-

teins P19 and P20, [71]). External application of Cry4B, Cry11A and

Cyt1Aa1 is toxic to Micrococcus luteus and several other Gram-positive

species, as well as the archaeal species Methanosarcina barkeri [72,

73].
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A B

1

Figure 1.8 Structures of VIP toxin (A; from 1qs1.pdb) and of parasporin (B; from

2d42.pdb).

The antibacterial action of Cry and Cyt toxins have been studied

by growth inhibition and by morphological methods such as electron

microscopy [72–76]. While it appears likely that the mechanism of cy-

totoxicity is similar between bacterial and eukaryotic cells, this has

not been clearly demonstrated. Moreover, the antibacterial effect of

Cyt2Aa1 toxin has not been investigated so far. These questions will be

addressed in Chapter 2 of this thesis.

1.3.5 Structures of other Bt δ-endotoxins

Bt δ-endotoxins other than Cry and Cyt include the VIP toxins (vege-

tative insecticidal proteins), which are produced by Bt vegetative cells

(see Figure 1.8). These toxins have a wide spectrum of activity against

lepidopteran insects [77]. Other strains of Bt serovar shandongiensis
(H22) have been reported to produce a non-insecticidal toxins named

parasporin [78, 79]. This toxin has no hemolytic activity but exhibits

dose-dependent in vitro cytotoxicity against leukemia T cells (MOLT-4)

and human uterus cervix cancer (HeLa) cells [80, 81].

1.4 AIM OF THE WORK

The tertiary structure of Cyt2Aa1 toxin is well known [43]. However,

functionally, Cyt2Aa1 is one of the less well characterized toxins of
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B. thuringiensis. The purpose of this study was to better characterize

the mode of action of Cyt2Aa1.

Some, but not all Cyt toxins have been shown to possess antibac-

terial activity (see Section 1.3.4). The molecular determinants of this

activity are not well understood, and it was therefore of interest to ex-

amine the antibacterial properties of Cyt2Aa1. These experiments are

described in Chapter 2.

Since the results showed that Cyt2Aa1 is much less active against

bacterial membranes than against mammalian membranes, the ques-

tion arose whether its preference for the latter might be related to the

presence of membrane cholesterol. This question was addressed with

both cells (erythrocytes) and liposomes as model membranes (see Chap-

ter 3). The outcome does not support the concept that Cyt2Aa1 requires

cholesterol for activity; rather to the opposite, the sterol turned out to

inhibit, not activate the toxin.

The original intention of the project described in Chapter 4 was to

use cysteine mutagenesis in conjunction with thiol-specific fluorescent

labelling to characterize the interaction of Cyt2Aa1 with membranes,

and potentially also the interaction of subunits within oligomers that

may form on the membrane. To carry out this plan, one would need

cysteine mutants that remain functionally active after labelling, so that

one may assume their behaviour to reflect that of the wild-type toxin.

The mutants that were constructed as part of this work, however,

turned out to be functionally inhibited or even entirely inactive. While

they thus could not be used as models of the native toxin, their altered

activity could nevertheless be analysed in order to gain insight in the

mode of action of Cyt2Aa1. The results of these experiments support a

model in which oligomers of heterogeneous subunit stoichiometry form

discrete pores of heterogeneous functional diameter.
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Chapter 2

Antibacterial activity of B. thuringiensis Cyt2Aa1 toxin

2.1 INTRODUCTION

While the δ-toxins of B. thuringiensis are most widely known for their ef-

fects against insect larvae, they are also active against other eukaryotic

cells; red blood cells, in particular, are often used as membrane models

for studying these toxins in vitro. Moreover, some δ-toxins also have an-

tibacterial activity. This was first shown by Yudina and coworkers (see

[72] and references cited therein). These researchers found that both

CytA (Cyt1Aa1) and two different Cry toxins inhibited the growth of Mi-
crococcus luteus and several other Gram-positive bacteria. The antibac-

terial effect required proteolytic activation of the toxins. A later study by

Yudina and coworkers [73] observed antibacterial activity of Cry toxins

also on clostridia and on the archaeal species Methanosarcina barkeri.
The antibacterial effect of Cyt toxin was addressed in studies by It-

sko and coworkers [74, 75]. Cyt1Aa1 has high antibacterial activity,

and the toxin even kills E. coli when recombinantly expressed in this

host. In an earlier study [71], another Bt protein (P20) was character-

ized that, when co-expressed, protects E. coli from this lethal action.
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2.2 Materials and methods

In contrast to Cyt1Aa1, the Cyt family member Cyt1Ca is apparently

inactive against bacteria, but introducing a few amino acid residues

from Cyt1Aa1—namely, valine to replace aspartate in position 115, and

alanine to replace asparagine in position 125—confers a degree of an-

tibacterial activity [74]. A high level of antibacterial activity of externally

applied Cyt1Aa1 against both Gram-positive and Gram-negative bacte-

ria (E. coli) was reported by Cahan and coworkers [76].

In our studies [82] that involved the expression of Cyt2Aa1 in sub-

stantial amounts in E. coli, we did not observe an appreciable impact

on bacterial viability, suggesting that Cyt2Aa1 may not have antibacte-

rial activity. We decided to investigate the activity of Cyt2Aa1 against

Gram-positive and Gram-negative model organisms.

2.2 MATERIALS AND METHODS

2.2.1 Plasmid construction, mutagenesis, and cloning

Plasmid pET-30a(+)Cyt2Aa1, which encodes the wild type toxin, was

constructed by inserting a synthetic Cyt2Aa1 gene, codon-optimized

for expression in E. coli (Integrated DNA Technologies; GenBank acces-

sion no. KM679365), into the expression vector pET-30a(+) (Novagen)

between the BglII and XhoI cleavage sites located downstream of the T7

promoter.

The mutant V186C, which has previously been shown to retain full

hemolytic activity after chemical modification [61] and was used here

for thiol-specific derivatization with fluorescein maleimide, was con-

structed by PCR mutagenesis, using the synthetic primer pair 5’-GCA-

GTCATCGCGTGTCTGCCGCTGGCG-3’ and 3’-CGCCAGCGGCAGACAC-

GCGATGACTGC-5’. The plasmid DNA of Cyt2Aa1 in the pET-30a(+)

vector was used as a template, and KOD (Thermococcus kodakaraen-
sis) DNA polymerase (Novagen, Madison, WI) and the accompanying

nucleotides and buffers were used as described by the manufacturer.

The reaction mixture was incubated at an initial hold temperature of
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95°C for 2 minutes, followed by 18 cycles of 95°C for 30 s, 55°C for

30 s, and 72°C for 60 s, followed by a final hold interval of 10 min at

74°C. PCR products were digested with the restriction enzyme Dpn1

(Fermentas) to destroy the template DNA before transformation.

The two plasmids containing the wild-type and the mutant cyt2Aa1

gene, respectively, were then transformed by electroporation into E. coli
BL21(DE3) cells [83] for expression.

2.2.2 Expression and purification of Cyt2Aa1 toxin

A fresh single colony of E. coli BL21(DE3) containing cyt2Aa1 wild type

gene or the V186C single cysteine mutant gene was grown at 37°C

overnight in 15 mL of 2×YT medium (5 g/L NaCl, 16 g/L tryptone,

10 g/L yeast extract) containing 30 mg/L kanamycin. The overnight

culture was then added to 1 liter of 2×YT medium containing 30 mg/L

kanamycin. The culture was shaken vigorously (200 rpm) at 37°C until

the OD600 reached 0.6. Expression of Cyt2Aa1 was induced by addition

of 1mM isopropyl-β-D-thiogalactoside (IPTG), and the culture was then

shaken slowly (150 rpm) overnight at 25°C.

The cells were harvested by centrifugation for 10 minutes at 4°C and

10,000×g. The cell pellet was resuspended in Tris 20 mM, NaCl 150

mM, pH 8.0 (TBS) and lysed using an emulsifier (Avestin Emulsiflex-

C5) at 15,000 psi [84]. The cell lysate was centrifuged for 20 min at

20,000×g and 4°C. The pellet was resuspended by vortexing with 150

mL of ice-cold distilled water and then centrifuged again as before; this

washing step was repeated three times. The pellet was then resus-

pended in 15 mL of phosphate-buffered saline (PBS; 8 mM Na2HPO4,

1.5 mM KH2PO4, 140 mM NaCl and 2.7 mM KCl, pH 7.4) and stored at

−80°C. After thawing, the pellets were solubilized by incubation for 1 h

at 37°C in 50 mM Na2CO3, pH 10.5. The solubilized toxin was separated

from remaining insoluble material by centrifugation at 13,000×g for 20

min and stored at −20 °C. Despite the lack of a chromatographic purifi-

cation step, the toxin produced by this procedure was pure as judged
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by SDS-PAGE; this result agrees with previous reports [57]. The resid-

ual contaminant bands were further reduced during the subsequent

proteolytic activation step (Figure 2.1A). Toxin concentrations were de-

termined by absorption at 280 nm using a NanoDrop 2000 absorbance

reader (Thermo Scientific, Wilmington, Del.).

The proteolytic activation of wild type and V186C mutant protoxin

was performed with proteinase K, using conditions similar to those re-

ported in [61] (1% w/w relative to protoxin, incubation at 37°C for 1h).

After incubation, proteinase K was inactivated by addition of phenyl-

methylsulfonyl fluoride (PMSF) to 2 mM, and the activated toxin was

transferred to PBS buffer (pH 7.4) using gel filtration on Sephadex G25.

The toxin was sterile-filtered immediately before use in experiments

with cells.

2.2.3 Hemolysis assay

Sheep red blood cells (RBCs, Cedarlane, Hornby, ON) were washed

three times with PBS buffer by centrifugation. The washed RBCs were

resuspended in PBS to a final concentration of 2% (v/v). 100 µL of the

RBC suspension was added to the wells of a 96-well microtitre plate

containing 100 µL of activated Cyt2Aa1 at the final concentrations in-

dicated in the Results section. Hemolysis was detected by measuring

the decrease in the optical density at 600 nm (OD600), which is outside

the absorption spectrum of hemoglobin and therefore simply represents

cell turbidity. Unless stated otherwise, time-based measurements were

performed at 25°C and were begun immediately after mixing the toxin

with the red blood cells. All measurements were performed with a Spec-

tramax 190 microplate reader (Molecular Devices, Sunnyvale, CA).

2.2.4 Labeling of Cyt2Aa1-V186C with fluorescein-5- maleimide

The proteolytically activated Cyt2Aa1-V186C mutant was mixed with

5 mM dithiothreitol (DTT) and incubated for 10 min at room tempera-

ture to reduce any disulfide bonds before labeling. The reduced protein
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was transferred to PBS buffer (pH 7.4) before labeling using a PD10

(Sephadex G25) column in order to remove the DTT. Fluorescein-5-

maleimide (Anaspec; 2 mM final concentration) was added to the pro-

tein, which was at 10 mg/mL (435 µM). The reaction mixture was incu-

bated for 2 hours at room temperature. Dithiothreitol (DTT) was added

to a final concentration of 2 mM to stop the labelling reaction. Excess

dye was removed by gel filtration on Sephadex G25 equilibrated with

PBS. The concentration of the labelled Cyt2Aa1-V186C was determined

by using a NanoDrop absorbance reader (NanoDrop 2000, ThermoSci-

entific, Wilmington, USA), using a molar extinction coefficient ε495 for

fluorescein-5-maleimide of 68,000/M×cm (as stated by the supplier).

2.2.5 Growth inhibition in liquid culture

Liquid cultures of Bacillus megaterium ATCC-14581, Bacillus thurin-
giensis subsp. kurstaki, strain YBT-1520, and Escherichia coli DH5α,

ATCC-67878 were grown in LB broth (10 g/L of tryptone, 5 g/L of yeast

extract, and 10 g/L of NaCl). The two Bacillus strains were grown at

30°C, whereas E. coli was grown at 37°C. For growth curves, fresh liquid

cultures were inoculated 1:1000 with an overnight culture, simultane-

ously with the addition of Cyt2Aa1 toxin and/or phenylmethylsulfonyl

fluoride (PMSF, 2mM final concentration) as indicated. For each set

of conditions, triplicate cultures were grown in separate wells of a mi-

crotitre plate. The microtitre plates were incubated without shaking at

the temperatures indicated above, and the optical density was deter-

mined at hourly intervals.

2.2.6 Cell viability assay

A freshly isolated colony of the bacterial test strain in question was

used to inoculate a fresh liquid culture in LB broth, which was grown

with shaking (200 rpm) at 30°C (B. megaterium and B. thuringiensis) or

37°C (E. coli) for four hours. Cells were centrifuged for 5 minutes at
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5000×g at 4°C. The cell pellets were resuspended in PBS and washed

three times by centrifugation. The final suspension in PBS was ad-

justed to an OD600 of 0.6. The cells were then mixed with proteolyti-

cally activated Cyt2Aa1 toxin at various concentrations (1–10 mg/mL)

and incubated for 1 hour at 37°C. Both toxin-treated and untreated

control cells were stained using the Live/Dead BacLight bacterial via-

bility kit (L7012, Molecular Probe, USA), which employs the two fluo-

rescent dyes propidium iodide and SYTO9, according to manufacturer’s

instructions. The fluorescence was observed using a fluorescence mi-

croscope (Nikon Eclipse E600FN) and a digital camera (Nikon Digital

Sight DS-U1).

2.2.7 Preparation of Bacillus megaterium protoplasts

A fresh colony of B. megaterium ATCC-14581 was used to inoculate a

fresh 50 mL liquid culture in LB broth, which was grown with shaking

at 30°C for four hours. Cells were centrifuged for 5 minutes at 5000×g

at 4°C, then resuspended in PBS and washed three times by centrifu-

gation. Cells were then suspended in PBS with 20% (w/v) sucrose and

adjusted to an OD600 of 0.6. Lysozyme (Fluka) was added to a final

concentration of 300 µg/mL and the cell suspension was incubated for

30 min at 37°C. Protoplasts were harvested by centrifugation for 5 min-

utes at 10,000×g at 4°C. The supernatant was discarded and the cell

pellets were rapidly resuspended in PBS with 20% (w/v) sucrose. They

were adjusted to an OD600 of 0.7 and used instantly for testing the lysis

by Cyt2Aa1 toxin.

2.2.8 Lysis of Bacillus megaterium protoplasts by Cyt2Aa1 toxin

Freshly prepared B. megaterium protoplasts were incubated with acti-

vated Cyt2Aa1 toxin at a final concentration of 700 µg/mL at room tem-

perature. Disintegration of protoplasts was monitored by the change in

OD600 for two hours.
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Figure 2.1 Preparation of activated Cyt2Aa1 toxin, and location of the V186C mu-

tation. A: SDS-PAGE of Cyt2Aa1 protoxin (lane 2) and proteinase K-activated toxin

(lane 3). Lane 1 shows a molecular weight standard. B: Location of the residue

V186 (shown in red), which was replaced here with a mutant cysteine residue for

the sake of thiol-specific modification with fluorescein maleimide. Structure ren-

dered from 1cby.pdb. Binding of the fluorescein-labelled mutant to cell membranes

is shown in Figure 2.5.

2.2.9 Calcein release experiments

Cells were grown, washed, and resuspended in PBS as described for the

cell viability assay and then incubated with calcein acetoxymethyl ester

(calcein AM, Sigma Aldrich) at a final concentration of 10 µg/mL for

1h at 37°C. The calcein-loaded cells were separated from excess calcein

AM by centrifugation for 1 min at 5000×g at 4°C and then washed

once more by centrifugation. They were resuspended in PBS and mixed

with activated Cyt2Aa1 toxin at various concentrations as indicated in

the Results section, incubated for 1 h at 37°C, and then observed by

fluorescence microscopy as described above.
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2.3 Results and discussion

2.3 RESULTS AND DISCUSSION

2.3.1 Preparation of wild type and V186C mutant Cyt2Aa1 toxin

The two toxin species were successfully obtained using previously es-

tablished methods [61]. Figure 2.1A illustrates an SDS-PAGE of the

protoxin and the proteinase K-activated form. Figure 2.1B indicates

the location of residue V186 [85], which was replaced with cysteine for

the sake of thiol-specific fluorescent labeling. In keeping with reference

[61], the hemolytic activity of the labelled mutant toxin was found to be

undiminished relative to that of wild type toxin (data not shown).

2.3.2 Bacterial growth inhibition by Cyt2Aa1 toxin

The antibacterial activity of Cyt2Aa1 was assayed by adding the ac-

tivated and sterile-filtered toxin to liquid cultures of the organism in

question, at the time of inoculation. Growth curves were obtained by

observing the change in the optical density at 600 nm.

Figure 2.2 shows typical growth curves for the Bacillus megaterium
strain ATCC-14581 (A), Bacillus thuringiensis subsp. kurstaki, strain

YBT-1520 (B), and Escherichia coli DH5α, ATCC-67878 (C). The growth

of B. megaterium is readily suppressed by Cyt2Aa1 at 0.69 mg/mL, but

gradually increases as the toxin is reduced toward 0.65 mg/mL; there-

fore, under these conditions, 0.69 mg/mL appears to be the minimum

inhibitory concentration.

In order to examine the effect of the cell wall on the antibacterial

activity of Cyt2Aa1, B. megaterium cells were converted to protoplasts

with lysozyme and exposed to the toxin. As illustrated in Figure 2.3, the

dosages of Cyt2Aa1 required to induce protoplast lysis were quite sim-

ilar to those required for growth inhibition of regular vegetative cells,

suggesting that the murein layer does not significantly augment or im-

pede the antibacterial effect of the toxin.

With B. thuringiensis, the producer species of the toxin, growth is

only weakly affected by Cyt2Aa1 even at 2 mg/mL (Figure 2.2B). B. thu-
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ringiensis produces multiple exoproteases, including both serine and

metalloenzymes [86], which might conceivably destroy the toxin before

it can inhibit the growth of the bacterial cells. This is supported by

the observation that bacterial growth is delayed by 2–3 hours when the

same amount of Cyt2Aa1 is combined with the serine protease inhibitor

phenylmethylsulfonyl fluoride (PMSF). The inhibitor alone had almost

no effect on the growth rate. Considering that metalloenzymes would

not respond to PMSF, and that PMSF in aqueous solution has a limited

lifetime, the partial restoration of inhibitory activity by PMSF suggests

that the cells are in principle susceptible to the toxin. This is also sup-

ported by the observation of calcein release from the cells (see below).

With E. coli, the toxin at 2 mg/mL is virtually inactive, both with and

without added PMSF (Figure 2.2C). Since E. coli DH5α is not known to

produce exoproteases, the lack of an effect of PMSF is not surprising.

Likewise, PMSF did not affect the activity of Cyt2Aa1 toxin on Bacillus
megaterium (data not shown).

The bactericidal activity of Cyt2Aa1 was also examined using a com-

mercially available fluorescence viability assay, which is based on the

exclusion of the DNA-intercalating fluorescent dye um iodide by viable

cells. The observations are illustrated in Figure 2.4 for B. megaterium.

The green fluorescence in panel A is due to a second DNA-intercalating

dye (SYTO 9) that enters both live and dead cells. Cells treated with

Figure 2.2 (preceding page) Inhibition of bacterial growth by Cyt2Aa1 toxin. Liquid

cultures in LB medium were inoculated in triplicates at t=0 with 1:1000 volume of

an overnight culture of the respective species. The toxin and PMSF were added

at t=0. The OD600 was measured at hourly intervals. Controls contained cells in

medium without toxin. Error bars represent standard deviations from three parallel

experiments. A: Bacillus megaterium ATCC-14581. B: Bacillus thuringiensis subsp.

kurstaki, strain YBT-1520. C: E. coli DH5α. In B and C, PMSF was used at a final

concentration of 2 mM, and the toxin concentration was 2 mg/mL. None of the

samples shown in A contained PMSF.
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Figure 2.3 Lysis of B. megaterium protoplasts by Cyt2Aa1 toxin. Freshly prepared

B. megaterium protoplasts were adjusted to an OD of 0.7 and then treated with

activated wild type Cyt2Aa1 at a final concentration of 700 µg/mL. The control sam-

ple contained B. megaterium protoplasts incubated without Cyt2Aa1. The bands

around each curve represent ± standard deviation from three separate concurrent

experiments.

Cyt2Aa1 exhibit red fluorescence, which indicates that propidium has

entered and also bound to DNA, resulting in the quenching of SYTO9

fluorescence. This is characteristic of dead bacterial cells [87].

2.3.3 Antibacterial mode of action of Cyt2Aa1

The Cyt toxins damage insect cells by binding and permeabilizing cell

membranes. We examined whether the same action mode also ap-

plies to susceptible bacteria. To detect binding, we used a single cys-

teine mutant (V186C), which, as has been shown previously, can be

labelled on the mutant cysteine residue without losing cytolytic activ-

ity [61]. The mutant was thiol-specifically derivatized with fluorescein

maleimide and incubated with B. megaterium (Figure 2.5A) or B. thurin-
giensis (Figure 2.5B), and the cells were then examined by fluorescence

microscopy. The cells were visibly stained, which confirms binding of

the toxin to the bacterial cells. Since there is no known mechanism for
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A B

1

Figure 2.4 Effect of Cyt2Aa1 on Bacillus megaterium using the BacLight viability

assay. B. megaterium ATCC-14581 cells were incubated with SYTO9 and propid-

ium iodide, without prior treatment with 10 mg/mL Cyt2Aa1 toxin for 60 minutes. A:

Control without toxin treatment. The intense green fluorescence is characteristic of

viable cells that admit SYTO9 but exclude propidium iodide. B: Toxin-treated cells.

Red fluorescence indicates penetration of propidium iodide into non-viable cells.

translocation of Cyt toxins across the membrane into the cytoplasm,

it seems likely that the labelled toxin is bound to the cell membrane.

No binding was observed with E. coli DH5α (Figure 2.5C), which agrees

with the absence of toxin activity against this species.1

In B. megaterium and B. thuringiensis, membrane permeabilization

by Cyt2Aa1 was confirmed with a calcein release assay. Calcein is a

negatively charged, membrane-impermeant fluorescein derivative that

can be loaded into living cells as its neutral and more hydrophobic acet-

oxymethyl ester. Inside the cell, the ester undergoes hydrolysis, caus-

ing the free dye to remain trapped within the cell. Both B. megaterium
(Figure 2.6A) and B. thuringiensis (Figure 2.6C) could be stained in this

manner. After incubation with Cyt2Aa1 (Figure 2.6B and D, respec-

1Figure 2.5D shows the binding of the labelled Cyt2Aa1 toxin to red blood cells,
which are intended as a positive control. In this sample, several cells appear non-
fluorescent. These may have failed to be lysed by the toxin, and the retained
hemoglobin may have quenched the fluorescence of the bound toxin.
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A B

C D
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Figure 2.5 Binding of fluorescein-labelled Cyt2Aa1 toxin to bacterial cells and red

blood cell ghosts. Cells of Bacillus megaterium (A), Bacillus thuringiensis (B), Es-

cherichia coli DH5α, as well as sheep red blood cells (D) were incubated for 60

minutes with fluorescein-labelled Cyt2Aa1 mutant V186C at 10 mg/mL final con-

centration, washed by centrifugation, and examined by fluorescence microscopy.

The toxin binds to the two Bacillus species but not to E. coli . It also binds to most

of the red blood cell membranes.

tively), most of the calcein is released from the cells, indicating that the

membranes have become permeabilized. This supports the notion that

the toxin permeabilizes bacterial cells, and therefore acts on bacterial

cell membranes in the same manner as on insect cells.

Overall, the findings of our studies support the previous conclusion

that Cyt toxins do have antibacterial activity. However, the antibacterial
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A B

C D

1

Figure 2.6 Release of calcein by Cyt2Aa1 toxin from bacterial cells. Cells of Bacil-

lus megaterium (A,B) or Bacillus thuringiensis (C,D) were loaded with calcein acet-

oxymethyl ester and then incubated without (A,C) or with (B,D) Cyt2Aa1 toxin at 5

mg/mL for 60 minutes. Green fluorescence indicates retention of the dye within the

bacterial cells.

activity of Cyt2Aa1 is several orders of magnitude lower than that of

Cyt1Aa1 [72, 76], and it has no detectable activity against E. coli. This

agrees with our observation that Cyt2Aa1 can be expressed at high

levels in E. coli cells, which is not possible with Cyt1Aa1 in the absence

of accessory proteins from B. thuringiensis that inhibit the antibacterial

effect [71].

Absence of activity against E. coli has previously been reported for

another Cyt toxin, Cyt1Ca; replacement of several amino acids so as
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to convert them to the homologous residues in Cyt1Aa1 introduced a

low degree of antibacterial activity [74]. Thus, there is precedent of

substantial differences in antibacterial activity between different mem-

bers of the Cyt toxin family. Creation of Cyt1Aa1/Cyt2Aa1 chimeras

might be worthwhile to identify the molecular determinants of the large

difference in antibacterial activity.

Our findings also suggest that the action mode on bacterial cells is

analogous to that on insect cells and red blood cells, and that it is medi-

ated by the formation of transmembrane pores. The toxin binds to the

cell surface in an apparently uniform manner, without causing their

outright disruption, as would be expected with an antimicrobial pep-

tide-like mechanism (Section 1.2). The toxin releases calcein from the

cells, and toxin-exposed cells fail to exclude propidium iodide, which by

analogy to ethidium bromide [88] is most likely a substrate for mem-

brane potential-dependent efflux pumps. All these observations point

to the formation of discrete membrane lesions, that is, transmembrane

pores, as the key mechanism of antimicrobial activity.
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Chapter 3

The role of cholesterol in the activity of Cyt2Aa1 toxin

3.1 INTRODUCTION

In Chapter 2, we examined the activity of Cyt2Aa1 toxin on bacterial

cells. While the toxin was found to be active on Gram-positive bacteria,

its specific activity on the bacterial cell membranes is orders of mag-

nitude lower than that reported for insect cells and for red blood cells

or other mammalian cells [57, 68]. Since no specific receptor for the

Cyt toxins is known, the pronounced differences in susceptibility are

currently unexplained.

A key difference between the membranes of animal cells—both insect

and mammalian—and those of bacterial cells is the presence of choles-

terol in the former but not the latter. With several families of pore-

forming bacterial toxins, membrane cholesterol is required for activity,

which provides a straightforward strategy for the bacteria in question to

protect themselves from their own toxins and to target them exclusively

to animal membranes. Examples of such cholesterol-dependent pore-

formers include streptolysin O and its homologues from Gram-positive
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bacteria, which are collectively referred to as the “cholesterol-depen-

dent cytolysins,” as well as the structurally unrelated Vibrio cholerae
cytolysin [32]. Since Cyt2Aa1 resembles these toxins in showing much

greater activity on animal cells than on bacterial cells, the possibility

arises that cholesterol facilitates the activity of this toxin also.

Another relevant observation is the difference in cholesterol con-

tent between mammalian and insect cell membranes. Insects are aux-

otrophic for cholesterol [89], and the concentration of the sterol relative

to phospholipids is roughly half as high as that typical of mammalian

cells [90]. Since insect cells and mammalian cells are similarly suscep-

tible to Cyt2Aa1, one might therefore expect that any effects of choles-

terol take hold already at fairly low concentrations in the membrane.

In light of these considerations, it appeared pertinent to examine the

effect of cholesterol on the activity of Cyt2Aa1 toxin. In this chapter, the

effect of cholesterol was investigated using sheep red blood cells and

liposomes as model systems.

3.2 MATERIALS AND METHODS

3.2.1 Expression and purification of Cyt2Aa1; hemolytic activity assay

These were performed as described before in Section 2.2.2.

3.2.2 Cholesterol extraction with methyl-β-cyclodextrin

Methyl-β-cyclodextrin (Sigma Aldrich, St. Lous, MO) was dissolved to

10 mM in PBS (8 mM Na2HPO4,1.5 mM KH2PO4, 140 mM NaCl, and 2.7

mM KCl; pH 7.4) and then sterilized by filtering through an Acrodisk

0.25 µm filter (Pall Corporation, MI). Sheep RBCs (1 ml, 50% v/v) were

washed three times with PBS and incubated in 1 mL of PBS containing

the desired final concentrations of methyl-β-cyclodextrin for 2 hours

at 37°C. The cells were then washed again twice with PBS and diluted

as required. All hemolysis experiments involving methyl-β-cyclodextrin

were done with freshly prepared cholesterol-depleted RBCs.
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3 The role of cholesterol in the activity of Cyt2Aa1 toxin

3.2.3 Cholesterol assay

To assess the extent of cholesterol depletion from red blood cells, 1 mL

of the methyl-β-cyclodextrin (1-10 mM) treated RBCs as well as con-

trol cells not treated with methyl-β-cyclodextrin were lysed osmotically

with a 5 mM potassium phosphate buffer, pH 7.4. The membranes

were washed with the buffer several times by centrifugation until the

hemoglobin pigment had completely disappeared. The cholesterol con-

centrations of the membranes were measured using a fluorescence-

based coupled enzymatic assay (using Amplex® Red Cholesterol Assay,

Invitrogen Molecular Probes, CA) according to the manufacturer’s pro-

tocol. The assay solution contains cholesterol esterase in addition to

cholesterol oxidase, and it therefore detects both free cholesterol and

cholesteryl esters. All fluorescence readings were taken using a 96-

well fluorescence microplate reader (Spectramax 190, Molecular De-

vices, Sunnyvale, CA).

3.2.4 Liposome preparation

Cholesterol, 1,2 dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and

1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) were purchased

from Avanti Polar Lipids (Alabaster, AL). The lipids were dissolved in

chloroform and mixed in various molar ratios. The cholesterol content

was varied as indicated in the Results section; DMPG accounted for 5

or 10% of the total, and DMPC made up the balance. The lipid solutions

were dried down under a stream of nitrogen in a round-bottom flask for

5 minutes and then dried under vacuum for an additional 4 hours to

remove any residual traces of chloroform. The dried lipids were resus-

pended by vortexing for 10 min with 1.5 mL of Hepes-buffered saline

(HBS; 10 mM Hepes, 150 mM NaCl, pH 7.4) containing 50 mM calcein

(Sigma Aldrich) at room temperature to a final total lipid concentration

of 10 mg/mL. The resulting suspensions of multilamellar liposomes

were sized down to unilamellar liposomes using a liposome extruder
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(Northern Lipids, Vancouver, BC) by extruding 10 times through a 100-

nm polycarbonate membrane filter (Whatman). Subsequently, non-en-

capsulated calcein was removed by chromatography using a Sepharose

6B (Sigma) column pre-equilibrated with HBS.

3.2.5 Calcein release assay

The calcein entrapped liposomes were diluted to 37.5 µg/mL (esti-

mated) with HBS, mixed with activated Cyt2Aa1 toxin (final concentra-

tions as indicated in the Results section), and then incubated for 1 hour

at 37°C. The calcein fluorescence intensity was then measured (excita-

tion, 470 nm; emission, 512 nm) on a QuantaMaster 4 spectrofluorime-

ter (PTI, London, ON). The extent of membrane permeabilization P was

then calculated using the following formula:

P = Fsample − F0

FTriton − F0
(3.1)

where F0 is the fluorescence of a liposome control without toxin, and

FTriton is that of a liposome sample solubilized with Triton X-100 at a

final concentration of 0.1%.

3.3 RESULTS

3.3.1 Hemolytic activity of Cyt2Aa1 toxin on native sheep erythrocytes

While hemolysis is often measured by the absorption of the released

hemoglobin, an even more straightforward methods uses the turbidity

caused by the remaining intact cells, which can be monitored in real

time. This can be accomplished by observing the optical density at 600

nm, which is outside the absorption spectrum of hemoglobin.

As can be seen in Figure 3.1, hemolysis sets in more rapidly with

increasing toxin concentrations; the acceleration is most pronounced
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Figure 3.1 Hemolytic titration of Cyt2Aa1 toxin. Sheep red blood cells at 1% were

supplemented at t=0 with the indicated concentrations of Cyt2Aa1 toxin. The OD600

at a given incubation time represents the fraction of cells remaining intact; a more

rapid decline in OD indicates more rapid hemolysis.

with low concentrations and decreases at higher concentrations. Es-

sentially complete hemolysis is achieved within one hour at toxin con-

centrations ≥2 µg/mL. This level of hemolytic activity is very similar to

that of a previously characterized preparation of the same toxin [57].

Moreover, it is more than two orders of magnitude higher than the an-

tibacterial activity characterized in the preceding chapter of this thesis,

which confirms the premise of this study.

3.3.2 Cholesterol depletion of sheep red blood cells

Cholesterol can be extracted from cell membranes using β-cyclodextrin

[91] and derivatives such as methyl- or hydroxypropyl-β-cyclodextrin

[92]. The extent of cholesterol extraction from sheep red blood cells

using different concentrations of methyl-β-cyclodextrin is depicted in

Figure 3.2. An approximately linear relationship is apparent between

the extent of depletion and the cyclodextrin concentration. While the

graph represents the level of extraction achieved after two hours of in-
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Figure 3.2 Cholesterol depletion of erythrocytes with methyl-β-cyclodextrin. The

cells were incubated for 2 hours at 37°C with methyl-β-cyclodextrin at the indicated

concentrations. The cells were lysed osmotically, and the membranes washed by

centrifugation. The amount of cholesterol remaining in the membranes was deter-

mined using a fluorescence-based coupled enzymatic assay. Error bars represent

± standard deviation of four independent experiments.

cubation, very similar data were observed after one hour (not shown),

indicating that the extraction has reached or approached equilibrium.

While the attainment of equilibrium after such periods of time is con-

sistent with earlier studies on the kinetics of cholesterol transfer to

methyl-β-cyclodextrin [92], the maximum extent of depletion is decid-

edly lower than reported previously with human erythrocytes [93] as

well as other cell types [94].

In the experiments shown, the cells began to become hemolytic at

methyl-β-cyclodextrin concentrations beyond 10 mM, indicating gen-

eral membrane destabilization, which may be related to the extraction

of not only cholesterol but also other membrane lipids [92]. In all ex-

periments reported below, we therefore used no more than 10 mM of

methyl-β-cyclodextrin.
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3 The role of cholesterol in the activity of Cyt2Aa1 toxin

3.3.3 Hemolytic activity of Cyt2Aa1 on cholesterol-depleted sheep erythro-

cytes

The activity of Cyt2Aa1 on red blood cells that had been partially de-

pleted of cholesterol to different degrees using methyl-β-cyclodextrin

was compared using the same assay as illustrated in Figure 3.1. The

results are shown in Figure 3.3A. It can be seen that the time course of

hemolysis is accelerated after exposure to low or intermediate concen-

trations of methyl-β-cyclodextrin. However, hemolysis slows again after

exposure of the cells to methyl-β-cyclodextrin concentrations greater

than 6 mM.

The effect is clearly observed only at Cyt2Aa1 concentrations up

to 1.25 µg/mL, whereas at higher toxin concentrations, any effect of

cholesterol depletion is hard to detect (Figure 3.3B and C). Overall, the

effect is small, considering that the maximal hemolytic activity observed

with 1 µg/mL, which occurs after cell treatment wit 3–6 mM methyl-β-

cyclodextrin, is approximately equal to the activity of 1.25 µg/mL on

native red blood cells. This may not be surprising in light of the fact

that the extent of cholesterol depletion under these conditions is limited

to 10–20% (cf. Figure 3.2).

3.3.4 Effect of membrane cholesterol content on liposome permeabilization

by Cyt2Aa1

Cyclodextrin-mediated cholesterol extraction from natural membranes

is incomplete and not entirely specific. A simpler and more readily

controlled model system is provided by liposomes, which can be pro-

duced from almost arbitrary mixtures of lipids. Permeabilization of li-

posomes by pore-forming proteins and peptides can be monitored using

entrapped fluorescent markers. One popular assay uses the release of

calcein, a derivative of fluorescein. Like carboxyfluorescein [95], the flu-

orescence of calcein is subject to concentration-dependent self-quench-

ing. When released by permeabilizing agents from the confined space

45



3.3 Results

 0

 0.3

 0.6

 0.9

 1.2

 1.5

10 20 30 40 50 60

O
D

6
0

0

Time (minutes)

A

B

C

M-β-CD (mM)

0

2

4

6

8

10

TX-100

 0

 10

 20

 30

 40

 50

 60

 70

0 2 4 6 8 10

t 1
/2

 o
f 

h
e

m
o

ly
s
is

 (
m

in
)

Methyl-β-cyclodextrin (mM)

A

B

C

Cyt2Aa (µg/ml)

1.0

1.25

1.5

 0

 20

 40

 60

 80

 100

0 2 4 6 8 10

%
 H

e
m

o
ly

s
is

 a
ft

e
r 

4
0

 m
in

Methyl-β-cyclodextrin (mM)

(Caption on following page)

46



3 The role of cholesterol in the activity of Cyt2Aa1 toxin

inside the liposomes into the larger buffer volume, calcein is diluted,

and its fluorescence increases.

In the experiments shown in Figure 3.4, it is seen that liposomes

containing ≥20% cholesterol are almost impervious to Cyt2Aa1, whereas

liposomes with no more than 10% cholesterol are quite susceptible;

permeabilization reaches a half-maximal level at 10–20 µg/mL of Cyt2Aa1

with liposomes containing 0 or 10% cholesterol, which is about ten

times higher than the toxin concentration required for hemolysis (cf. Fig-

ure 3.1). In contrast, liposomes with ≥20% cholesterol are virtually un-

affected even at 400 µg/mL of Cyt2Aa1 (see Figure 3.4B and C). Thus,

the effect of the sterol appears to be much stronger than that observed

with red blood cells.

A curious intermediate behaviour is observed at 15% cholesterol.

Liposomes with this composition are quite readily permeabilized at 60–

80 µg/mL of Cyt2Aa1, but surprisingly show a lower degree of perme-

abilization at Cyt2Aa1 concentrations above 80 µg/mL. While unusual,

such “prozone” phenomena have been reported with mutants of Staphy-
lococcus aureus α-toxin [96] and with the serum complement system,

[97], which are also proteins with pore-forming activity.

Figure 3.3 (preceding page) Effect of cholesterol depletion on the hemolytic activ-

ity of Cyt2Aa1. Sheep red blood cells, partially depleted of cholesterol with different

concentrations of methyl-β-cyclodextrin as shown in Figure 3.2, were incubated with

Cyt2Aa1. Hemolytic activity was measured as the decrease in OD600 as shown in

Figure 3.1. A: Time course of hemolysis with 1.25 µg/mL of Cyt2Aa1. Activity in-

creases up to 4 mM of methyl-β-cyclodextrin and then decreases again. B: Time

required for 50% of hemolysis, as a function of methyl-β-cyclodextrin concentra-

tion, for three different concentrations of Cyt2Aa1. C: Extent of hemolysis after 40

minutes under the same conditions as in panel B.
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3 The role of cholesterol in the activity of Cyt2Aa1 toxin

3.4 DISCUSSION

As discussed in Section 3.1, previous findings on the susceptibility to

Cyt2Aa1 toxin of bacterial, insect, and mammalian cell membranes

gave reason to expect a role of cholesterol in the activity of the toxin. In-

triguingly, as discussed in the introduction of this chapter, some of the

evidence suggested that the sterol might support the activity, whereas

other observations favoured an inhibitory effect.

The outcome of the experiments conducted here is somewhat diver-

gent. With liposomes, which provide a simple and clean, yet artificial

model system, cholesterol strongly inhibits Cyt2Aa1; as the mole frac-

tion of cholesterol is reduced to below 20%, the activity of Cyt2Aa1

increases greatly. In contrast, with sheep red blood cells, the partial

extraction of the sterol resulted in only minor effects on Cyt2Aa1 activ-

ity.

When comparing these two results, we need to consider that our pro-

cedure for cholesterol extraction removed only up to 30% of the sterol

contained in the cells; all observed functional effects therefore occurred

within a small range of residual cholesterol concentration. The ob-

served extent of cholesterol depletion is relatively low when compared

to previous studies that applied similar conditions to different cell types

Figure 3.4 (preceding page) Effect of cholesterol on the permeabilization of lipo-

somes by Cyt2Aa1. Liposomes containing variable amounts of cholesterol were

loaded with calcein and exposed to the toxin. Permeabilization causes an increase

in calcein fluorescence. A: Liposomes without cholesterol are permeabilized by

Cyt2Aa1. 100% calcein release is defined by solubilization with Triton-X100 (TX-

100). B: Liposomes containing 40% of cholesterol are not permeabilized. C: Cal-

cein release as a function of cholesterol. A steep transition from Cyt2Aa1 suscepti-

bility to resistance occurs between 10 and 20% cholesterol. Liposomes containing

15% cholesterol display a “prozone phenomenon”, that is, they are less susceptible

to very high than to intermediate Cyt2Aa1 concentrations.
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3.4 Discussion

[92, 94]. A possible explanation for this low degree of extraction relates

to the composition of the other membrane lipids. The red blood cells of

sheep and of other ruminants are exceptionally high in sphingomyelin,

which replaces phosphatidylcholine (PC) as the dominant phospholipid

in the cell membrane [98]. Like other sphingolipids, sphingomyelin has

a higher affinity for cholesterol than does PC [99], a circumstance that

is considered important in the formation and stabilization of lipid rafts

[100].

Lowering the cholesterol level in red blood cell membranes did not

only produce less of an increase in susceptibility to Cyt2Aa1 than in li-

posomes, but the trend even reversed altogether at methyl-β-cyclodex-

trin concentrations of ≥6 mM, an effect for which there is no parallel in

the liposome experiments. It is not possible, however, to ascribe this

observation with certainty to the variation in cholesterol concentration

alone. One has to keep in mind that the affinity of cyclodextrins is not

totally specific for individual lipid species. While β-cyclodextrin pref-

erentially extracts cholesterol and α-cyclodextrin phospholipids, these

preferences are not absolute, and at higher concentrations, β-cyclodex-

trin will begin to extract phospholipids also [91, 92, 101]. Such non-se-

lective lipid extraction might explain why at methyl-β-cyclodextrin con-

centrations above 10 mM the red blood cells became unstable and un-

derwent hemolysis even in the absence of any added Cyt2Aa1. There-

fore, we conclude that the results of this chapter prove only an in-

hibitory effect of cholesterol, whereas the activating effect suggested by

exposure of red blood cells to high concentrations of methyl-β-cyclodex-

trin remains uncertain.

The observed inhibition of Cyt2Aa1 activity by cholesterol obviously

does not offer any explanation for the low susceptibility of Gram-posi-

tive bacteria described in Chapter 2. Moreover, it also is not reflected

in any major difference in susceptibility to Cyt2Aa1 between insect

and mammalian cells. In contrast to mammalian cells, which syn-

thesize their own cholesterol as needed, insects are cholesterol aux-
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3 The role of cholesterol in the activity of Cyt2Aa1 toxin

otrophs [89], and insect cells thus contain only approximately half as

much cholesterol than mammalian cells [90, 102, 103]. On both in-

sect cells and mammalian cells, the activity of Cyt2Aa1 exceeds that

on even the most susceptible ones of the model liposomes examined

here. This shows that Cyt2Aa1 activity is more strongly influenced by

specific membrane constituents other than cholesterol. While nothing

is known yet about any such sensitizing membrane lipids or proteins,

our results indicate that they exist, and hence future research should

be directed at their characterization.

A curious phenomenon was observed with liposomes that contained

15% cholesterol: the extent of permeabilization by Cyt2Aa1 was lower

with high concentrations of the toxin than with intermediate ones (Fig-

ure 3.4). Such so-called “prozone” effects are fairly common in labora-

tory tests that use serum complement, such as the complement fixation

test. While the complement system produces an oligomeric transmem-

brane pore [104], the mechanism of prozone effects is not closely related

to the pore formation itself, but rather to the preceding step of antibody-

mediated complement activation: antibody isotypes that fail to activate

complement may compete with activating ones for the antigen [97, 105].

There is, however, another precedent that may be more apposite.

The study in question concerns Staphylococcus aureus α-hemolysin

(cf. Section 1.2.1), several point mutants of which exhibited a similar

prozone effect in a hemolytic titration assay [96]. While α-hemolysin

normally forms highly regular, heptameric pores [106], the oligomers

formed by those same mutants also exhibited irregularities and imper-

fections as judged by electron microscopy.

While there is thus precedent of prozone phenomena with pore-form-

ing toxins, it seems difficult to reconcile this observation with the pro-

posed detergent-like mechanism that has been proposed for the Cyt

toxins [59, 69]; the literature does not provide examples of any an-

timicrobial peptides or similar molecules that inhibit such an effect.

Therefore, our observation appears to favour the formation of discrete,
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3.4 Discussion

oligomeric pores as the action mechanism of Cyt2Aa1 and likely of other

Cyt toxins.
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Chapter 4

Studies on the mechanism of membrane
permeabilization by Cyt2Aa1

4.1 INTRODUCTION

With many pore-forming toxins, a successful strategy for correlating

structure and function has been the use of cysteine mutagenesis in

combination with thiol-specific labelling with environmentally sensitive

fluorescent dyes (for examples, see [107–109]). This approach is most

useful if the mutants are readily amenable to covalent modification and

remain functionally active after labelling, since spectral changes ob-

served with such active derivatives can be correlated with the behaviour

of the wild-type protein.

In the work that is described in this chapter, we attempted to ap-

ply this strategy to Cyt2Aa1. A series of cysteine mutants—S166C,

S194C, S210C, and Q224C—was generated, but as shown below, none

of these were fully functional. They were therefore not considered suit-

able models for the wild-type toxin, and we did not perform extensive
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4.2 Materials and methods

Table 4.1 Primers used for site-directed PCR mutagenesis

Mutant Orientation Sequence (5’→3’)

S166C forward GCCCACAACACCTGCTACTACTACAACATTCTGTTCAGC

reverse GCTGAACAGAATGTTGTAGTAGTAGCAGGTGTTGTGGGC

S194C forward CGCGGTTCTGCCGCTGGCGTTTGAAGTGTGCGTCG

reverse CGACGCACACTTCAAACGCCAGCGGCAGAACCGCG

S210C forward CCATCAAGGACTGCGCTCGCTACGAGG

reverse CCTCGTAGCGAGCGCAGTCCTTGATGG

Q224C forward GCTCACCCTGGTCTGCGCTCTGCACTCTTCTAACGCG

reverse CGCGTTAGAAGAGTGCAGAGCGCAGACCAGGGTGAGC

fluorescence studies on them. Instead, we examined their function-

ally deficient phenotypes and their interaction with wild-type Cyt2Aa1,

which produced some interesting insight into the action mode of the

toxin.

4.2 MATERIALS AND METHODS

Methods for protein expression, purification, and proteolytic activation

of Cyt2Aa1 and its mutant derivatives have been described in Section

2.2, and those for hemolytic assays and liposome preparation can be

found in Section 3.2.

4.2.1 Site-directed mutagenesis

The experimental protocol used has been described in Section 2.2.1.

Primer pairs for the mutants generated here are listed in Table 4.1.
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4 Studies on the mechanism of membrane permeabilization by Cyt2Aa1

1 2 3 4 5

116 kDa
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45 kDa

35 kDa

25 kDa

18 kDa

1

Figure 4.1 SDS-PAGE of single cysteine mutants after proteinase K activation.

Lane 1: molecular weight standard; 2: S166C; 3: S194C; 4: S210C; 5: Q224C.

4.2.2 Hemolysis experiments

Preparation of the red blood cell suspension and monitoring of OD600

were carried out as described in Section 2.2.3. In some of the experi-

ments describe here, the assay was modified by adding a preincubation

stage at 4°C, during which wild-type and mutant toxins were sequen-

tially added. The samples were then transferred to room temperature

to start the hemolysis reaction.

In a second series of experiments, the red blood cell suspension was

prepared in PBS containing PEG 1000 at 20% (v/v); the final concen-

tration of PEG in the hemolysis reaction was 10% (v/v).

4.3 RESULTS

4.3.1 Construction and expression of cysteine mutants

The mutants were generated, expressed, and activated with proteinase

K as described in Section 2.2. After limited proteolysis, all mutants

showed a molecular weight similar to that of wild-type toxin (see Fig-

ure 4.1). Proteinase K has broad amino acid specificity, and therefore

cleavage is likely limited by conformational rather than by chemical
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4.3 Results

S166
S194

S210

Q224

1

Figure 4.2 Positions of the mutant residues S166C, S194C, S210C and Q224C in

the Cyt2Aa1 monomer. The N-terminus of the polypeptide chain is shown in blue,

and the C-terminus in orange. The side chains of the mutated residues are shown

in stick representation. The side chains of all mutant residues are at the surface of

the molecule.

constraints. Therefore, the similarity of the products generated by lim-

ited proteinase K treatment suggests that the mutants are correctly

folded.

Figure 4.2 shows the positions of the mutant residues. All residues

are located at or close to the molecular surface, which should facilitate

covalent derivatization of the natively folded mutant molecules. In addi-

tion, three of the mutant residues are serines. Since serine differs from

cysteine by only one atom, it was expected that at least the unlabelled

mutants should retain hemolytic activity. As shown in the next section,

however, this expectation proved to be wrong.
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Figure 4.3 Hemolytic activity of the cysteine mutants S166C, S194C, S210C, and

Q224C. The mutant proteins, at various final concentrations as indicated, were in-

cubated with red blood cells, and the progress of hemolysis was monitored by the

decrease in cell turbidity (OD600).

4.3.2 Hemolytic activities

Figure 4.3 shows the hemolytic activity assays for the mutants S166C,

S194C, S210C, and Q224C. The assay format is the same as in Figure

3.1, that is, hemolysis is indicated by a time-dependent decrease in

sample turbidity. It is clear that mutants S166C, S210C, and Q224C

are devoid of any detectable activity even at very high concentrations.

The only mutant that retains some residual hemolytic activity is

S194C. Comparison with the wild-type toxin (see Figure 3.1) indicates

that the specific activity of the mutant is reduced by a factor of 8–16.

Interestingly, at very high concentrations (>256 µg/mL), the rate of he-
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Figure 4.4 Effect of cysteine mutants on the hemolytic activity of wild-type Cyt2Aa1.

Wild-type Cyt2Aa1 (16 µg/mL) was supplemented with each cysteine mutant at the

molar ratio indicated, and the hemolytic activity of the mixtures was measured using

the decrease in cell turbidity (OD600).

molysis drops again, which amounts to a prozone phenomenon similar

to that shown in Figure 3.4.

Overall, none of these mutants approach the activity of wild-type

toxin or of the previously characterized mutant V186C [110], and so

they are not good models of the wild-type toxin. Considering the con-

servative nature of these mutations, this outcome is surprising.

4.3.3 The interaction of inactive cysteine mutants with wild-type Cyt2Aa1

In both hypothetical action mechanisms of Cyt2Aa1—namely, discrete

pore-formation and the detergent-like effect—membrane damage comes
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4 Studies on the mechanism of membrane permeabilization by Cyt2Aa1

about through a cooperative action of multiple Cyt2Aa1 molecules. The

question therefore arises if and how the mutant proteins might interact

with wild-type toxin. In an initial experiment, a fixed amount of wild-

type Cyt2Aa1 was mixed with the mutant proteins at different molar

ratios, and the hemolytic activities of the mixtures were measured (see

Figure 4.4). The three mutants with no residual intrinsic activity—

that is, S166C, S210C, and Q224C—inhibited the activity of wild-type

toxin progressively in a dose-dependent manner. Low concentrations

of S194C also displayed a slight degree of inhibition, but the activity

increased again at higher proportions of the mutant.

4.3.4 Inhibition by S166C, S210C, and Q224C is not due to competition for

binding sites

The inhibition imposed on wild-type Cyt2Aa1 by the three inactive mu-

tants might arise at different stages of the cytolytic action mechanism.

The first of these stages consists in the binding of the monomeric toxin

molecules to the membrane.

It has been shown previously that Cyt2Aa1 can bind tightly to mem-

branes at low temperatures, but that under these conditions no oli-

gomer formation occurs [110]. We made use of this observation to

determine whether the inactive mutants exercise their inhibitory ef-

fect during membrane binding or at a later stage. With each mutant,

two parallel samples were prepared. Either the wild-type toxin or the

mutant was preincubated alone with red blood cells at 4°C. The other

protein was then added, and after a second incubation step at 4°C, the

sample was transferred to 37°C to initiate hemolysis, the time course

of which was recorded.

If the inhibition imposed by the inactive mutants were due to com-

petition for binding sites, then the samples exposed to wild-type toxin

first should be exempt from inhibition, since in these samples the active

species could occupy all binding sites before addition of the inhibitory

ones. On the other hand, addition of the mutants before the wild-

59



4.3 Results

 0

 0.5

 1

 1.5

30 45 60 75 90

O
D

6
0
0

wild type    mutant

S166C

t = 0           −   

t = 0         t = 15

t = 15       t = 0

 0

 0.5

 1

 1.5

30 45 60 75 90

O
D

6
0
0

Time (min)

S210C

 0

 0.5

 1

 1.5

30 45 60 75 90

Time (min)

Q224C

Figure 4.5 Temperature shift experiments to determine the mode of inhibition by

inactive cysteine mutants. Wild-type Cyt2Aa1 (16 µg/mL) and the mutant in ques-

tion (32 µg/mL) were added alone or sequentially at 0 or 15 minutes to red blood

cells and incubated at 4°C. After 30 minutes overall, the samples were transferred

to 37°C, and the time course of hemolysis observed using the decrease in OD600.

Reversing the order of addition has little effect on the extent of inhibition.

type toxin should increase the extent of inhibition, since the wild-toxin

would find the available binding sites already occupied.

Figure 4.5 shows that the degree of inhibition was very similar with

both types of samples; the rates of hemolysis of the samples exposed

to wild-type toxin first were only slightly higher than those preincu-

bated first with the mutants. In all cases, the extent of inhibition was

similar to that observed with samples in which the two protein species
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4 Studies on the mechanism of membrane permeabilization by Cyt2Aa1

had been mixed before addition to the cells (cf. Figure 4.4). From this,

it can be concluded that the inhibitory effect of these mutants arises

primarily downstream of membrane binding, most likely through some

non-productive mutual interaction between wild-type and mutant toxin

molecules.

4.3.5 Interaction of wild-type Cyt2Aa1 and S194C

The mutants S166C, S210C and Q224C are inactive, and their in-

hibitory effects on wild-type toxin may be expected. In contrast, mu-

tant S194C retains partial activity, and its inhibitory effect on wild-type

toxin is small or negligible, depending on the molar ratio (cf. Figure 4.4).

One might therefore wonder if the interaction between the two species

always results in inhibition of the wild-type, or if the latter may be able

to rescue the activity of the latter.

Figure 4.6 shows an experiment designed to detect such a possi-

ble transactivation of the mutant by wild-type Cyt2Aa1. In panel A,

the activity of S194C alone is measured at low concentrations. At 8

µg/mL and below, hemolytic activity is virtually absent. Panel B shows

the behaviour of wild-type toxin at 1 µg/mL, combined with different

concentrations of S194C. At 1 and 2 µg/mL, the mutant inhibits the

activity of the wild-type toxin. Higher, but still non-lytic amounts (4

or 8 µg/mL) of the mutant produce an earlier onset of hemolysis than

observed with the same amount of wild-type toxin alone. Thus, the ac-

tivity of the wild-type toxin is measurably amplified by the addition of

mutant toxin, at an amount that on its own lacks detectable activity.

This suggests that the wild-type Cyt2Aa1 can recruit some of the mu-

tant molecules into hybrid active oligomers. However, the effect is not

large and is observed only in a narrow concentration range. In sum, it

appears that, to a very limited degree, wild-type toxin can rescue the

activity of the S194C in hybrid supramolecular assemblies.
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Figure 4.6 Interaction of S194C and wild-type Cyt2Aa1. A: Time course of hemo-

lysis of S194C alone, at various concentrations. B: Time course of hemolysis of

the same concentrations of S194C as in A, supplemented with 1 µg/mL of wild-type

Cyt2Aa1.

4.3.6 The size of the functional membrane lesion

It has been discussed before that both a detergent-like mechanism and

the formation of discrete pores have been proposed to explain the mem-

brane-damaging activity of Cyt2Aa1. With a detergent-like mechanism,

the target membrane should disintegrate, and the permeability barrier

for solutes of all sizes should break down (cf. Figure 1.3B). On the other
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4 Studies on the mechanism of membrane permeabilization by Cyt2Aa1

hand, discrete pores would have a finite size and thus should exclude

solutes beyond a certain molecular weight.

One experimental approach to detect pores of limited size consists

in osmotic protection from hemolysis. An osmolyte of a certain molec-

ular size is added to the cell suspension before the cells are exposed to

the pore-forming agent. If the osmolyte is able to traverse the pores,

it will equilibrate between the extra-cellular and the intracellular space

and thus not balance the excess osmotic activity of hemoglobin; there-

fore, the cells will undergo lysis. On the other hand, if the osmolyte

is too large to traverse the pores, it will be excluded from the intracel-

lular space and maintain the osmotic balance to hemoglobin, thereby

preventing hemolysis.

Figure 4.7 shows the effect of the osmolyte polyethyleneglycol (PEG)

1000, which has an effective molecular radius of approximately 1 nm

[111], on the time course of hemolysis by wild-type Cyt2Aa1.

It is evident that PEG 1000 delays hemolysis, but does not entirely

prevent it. Moreover, the effect varies with the Cyt2Aa1 concentra-

tion. With Cyt2Aa1 at 1.5 µg/mL, the presence of PEG 1000 causes

a fairly pronounced delay of hemolysis, and the curve deviates from

the sigmoidal shape observed without PEG. Increasing the toxin dosage

further reduces the delay of hemolysis imposed by PEG.

A possible interpretation for the partial inhibition of hemolysis im-

posed by PEG is that the toxin indeed forms discrete pores, but that

these are heterogeneous in size. If this is the case, pore size might in-

crease with toxin concentration, which could account for the reduced

inhibitory effect of PEG.

While many pore-forming toxins form oligomers of uniform subunit

stoichiometry and functional diameter, there are exceptions to this rule,

including streptolysin O (see [108] and references therein) as well as

Streptococcus agalactiae CAMP factor [112].
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Figure 4.7 Hemolysis kinetics of wild-type Cyt2Aa1 in the absence and presence

of PEG 1000 at 10% (v/v). The toxin was used at different final concentrations as

indicated in each panel. OD600 traces were normalized to t=0, since the raw values

were approximately 20% lower with than without PEG, most likely due to the effect

of PEG on the refractory index of the solution.
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1 2 3 4 5 6

66 kDa

45 kDa

35 kDa

25 kDa

18 kDa

14 kDa

Sample PC PG Cholesterol

2 – – –

3 90% 10% 0%

4 85% 5% 10%

5 75% 5% 20%

6 65% 5% 30%

1

Figure 4.8 SDS-PAGE of Cyt2Aa1 after incubation with liposomes. Activated

Cyt2Aa1 (150µg) was incubated without (2) or with (3–6) liposomes (150µg total

lipid, molar composition as indicated). The samples were incubated at 37°C for

2 hours, solubilized with 1% SDS before SDS-PAGE. Lane 1 shows a molecular

weight standard.

4.3.7 Cyt2Aa1 forms SDS-resistant oligomers on sensitive and resistant li-

posome membranes

With many pore-forming toxins, the oligomers that form upon inter-

action with membranes are stable in the presence of non-denaturing

detergents; and some oligomers, such as staphylococcal α-toxin and

anthrax toxin protective antigen, also resist dissociation by SDS [64,

113].

Promdonkoy and Ellar have previously used SDS-PAGE followed by

Western blotting to characterize the oligomeric state of Cyt2Aa1 after

incubation with erythrocyte membranes [110]. They observed the toxin

in heterogeneous states of aggregation. We here carried out a similar

experiment, using SDS-PAGE on Cyt2Aa1 samples that had been in-

cubated with liposome membranes (since these membranes are free of

other proteins, it is possible to use simple protein staining for detec-

tion). Figure 4.8A shows that contact of the toxin with liposome mem-

branes transforms it to a variety of higher molecular weight species.
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4.4 Discussion

While several distinct bands are visible, most of the protein barely en-

ters the resolving gel and remains unresolved.

The fact that the Cyt2Aa1 oligomers persist upon exposure to SDS

implies that the monomers contained within them are not denatured,

and therefore that the molecular weights suggested by comparison to

the molecular weight marker cannot be taken at face value. Still, the

pattern of the observed bands suggests the formation of oligomers of

different sizes. If we assume that neighbouring bands differ by one

subunit, it would appear that most oligomers possess six or more sub-

units. This pattern resembles that observed previously observed by

Promdonkoy and Ellar on red blood cells, except that higher molecular

weights appear to be more prominent on liposomes, and it appears to

agree with the possibility of pores with different functional sizes sug-

gested by the osmotic protection experiments.

Another interesting observation is that oligomerization occurs on all

tested liposomes, regardless of cholesterol content and susceptibility to

permeabilization by Cyt2Aa1 (cf. Section 3.3.4).

4.4 DISCUSSION

As stated at the beginning of this chapter, the intended purpose of

the cysteine mutants characterized here was to obtain fluorescently

labelled, functionally active derivatives of Cyt2Aa1 that could then be

used as probes to study the toxin’s interaction with membranes. The

finding that none of these mutants were fully active even in unmod-

ified form, and that three out of four were entirely inactive, was un-

expected, the more so when considering mutating a serine residue to

cysteine amounts to no more than the replacement of a single oxy-

gen atom with sulphur. That these minimal structural changes would

result in such pronounced functional responses provides yet another

argument against a detergent-like mechanism of membrane damage.

Detergent-like properties depend on overall molecular shape and hy-
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4 Studies on the mechanism of membrane permeabilization by Cyt2Aa1

drophilic-lipophilic balance; small changes to a detergent molecule may

modify micelle size or critical micellar concentration, but would not be

expected to wholly disrupt the activity. In contrast, the strong func-

tional effects of minor structural changes observed here suggest highly

specific molecular interactions.

If we accept that Cyt2Aa1 forms discrete oligomeric pores, then the

question arises how many subunits may be contained in each oligo-

mer. Previous studies have provided estimates of six [43] and sixteen

[67] subunits. Our current results do not provide a definite number,

although they suggest that an oligomer can contain more than six sub-

units. They also suggest the existence of heterogeneous oligomers.

Such heterogeneity has been demonstrated with other pore-forming

toxins, including Streptococcus agalactiae CAMP factor [112] and Strep-
tococcus pyogenes streptolysin O. With the latter toxin, pores can be

formed even when the oligomers do not form complete rings but in-

complete arc-shaped assemblies [108]. Whether or not this applies to

Cyt2Aa1 also might possibly be determined using morphological tech-

niques, particularly electron microscopy, which has proven useful with

many different pore-forming proteins.

The observation of oligomers on both susceptible and resistant lipo-

some membranes indicates that oligomerization can occur in the ab-

sence of membrane permeabilization. With many pore-forming tox-

ins, it has been shown that oligomerization precedes membrane in-

sertion and permeabilization. Inactive “pre-pore” oligomers have been

observed on resistant cell types, for example with α-toxin on granulo-

cytes [114] and with streptolysin O on rodent erythrocytes [115]. Our

results thus suggest that Cyt2Aa1 resembles these toxin with respect to

the sequence of oligomer formation and membrane insertion. Further

analogies are provided by the behaviour of mutant S194C, the transac-

tivation of which by the wild-type toxin resembles that of an insertion

mutant of α-toxin [116], and by the dominant-negative phenotypes of

the other three cysteine mutants, which resemble those of various α-
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toxin [96] and streptolysin O [108] mutants. Overall, our study thus

reinforces the notion that Cyt2Aa1 functionally resembles other well-

characterized pore-forming toxins.
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Chapter 5

Summary and future work

5.1 SUMMARY

This thesis has addressed a number of questions that concern the

mode of action and the specificity of B. thuringiensis Cyt2Aa1 toxin.

In Chapter 2, it was shown that Cyt2Aa1 permeabilizes the membranes

of Gram-positive bacteria. The level of activity was found to be consid-

erably lower than that of the homologous Cyt1Aa1 toxin family, and at

the attainable toxin concentrations, Gram-negative bacteria were not

affected. This is consistent with the finding that Cyt2Aa1, but not

Cyt1Aa1 can be expressed in the absence of any inhibitory proteins

within E. coli cells. The molecular features that cause such a pro-

nounced difference in activity remain to be established.

In contrast to mammalian cell membranes, bacterial membranes do

not contain cholesterol. The sterol is known to activate several different

families of pore-forming toxins, and therefore the observed low suscep-

tibility of bacterial membranes suggested that Cyt2Aa1 might also be

cholesterol-dependent. This hypothesis was tested in Chapter 3 and
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rejected, as the sterol was found to inhibit Cyt2Aa1 rather than to ac-

tivate it. This effect was more clearly evident with synthetic liposomes

than with partially cholesterol-depleted red blood cells. The liposome

experiments provide simple models for both resistant and susceptible

membranes, which may be of use in future reconstitution studies to

identify and characterize natural membrane molecules that augment

or inhibit the activity of Cyt2Aa1.

Previous studies had proposed two alternative modes of action for

Cyt2Aa1, namely, the formation of discrete pores on the one hand, and

a detergent-like mechanism on the other. In Chapter 4 of this thesis,

we undertook some experiments to shed light on this question. On the

whole, our findings support pore-formation rather than a detergent-

like mode of action. The toxin does form oligomers upon contact with

membranes, which are stable to dissociation with SDS and also appear

to be heterogeneous in subunit stoichiometry. This appears to agree

with the partial osmotic protection observed with PEG 1000.

5.2 FUTURE WORK

While the studies on different natural and model membranes presented

here show substantial differences in susceptibility to Cyt2Aa1, it is still

unclear which individual membrane constituents—lipids or proteins—

or physical properties determine Cyt2Aa1 activity on membranes. It will

be worthwhile to try to identify these determinants. Chemical or enzy-

matic treatment of membranes to modify phospholipids, glycolipids, or

glycoproteins might provide preliminary clues. For definite identifica-

tion, sensitive membranes, such as those of red blood cells, could be

fractionated, and individual membrane lipids or proteins reconstituted

into model liposomes in order to determine their effect on Cyt2Aa1 ac-

tivity.

While Chapter 4 tentatively supports the notion that Cyt2Aa1 forms

pores of discrete sizes, with a functional diameter of approximately 2
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nm but possibly heterogeneous, this hypothesis should be tested more

rigorously using morphological methods. Pores with a diameter on the

order of 2 nm should be readily visible by electron microscopy, as has

been demonstrated for example with staphylococcal α-toxin [64]. Such

studies could help to determine if the size and, potentially, the shape

of the membrane lesions are indeed heterogeneous. It may also be pos-

sible to observe the structure of the oligomer at higher resolution using

cryo-EM. This approach has been very successful with the thiol-acti-

vated toxin pneumolysin [117], which, like streptolysin O, forms het-

erogeneous oligomers that are not amenable to X-ray crystallography.

With many pore-forming toxins, a useful approach to studying the

structure-function relationships has been the introduction of single

mutant cysteines, which can then be labelled with environmentally sen-

sitive fluorescent dyes. With Cyt2Aa1, only one such study has been

published, and this study reported the characterization of only a small

number of mutants [110]. In Chapter 4, it was shown that several new

cysteine mutants had low or entirely lacking hemolytic activity, which

makes them unsuitable as models of the wild-type toxin. Additional

mutations should be examined in order to identify functional domains

involved in membrane binding and insertion, as well as in the oligomer-

ization of the toxin.
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