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Abstract 

Magnetic sensors are widely used in nearly all engineering and industrial sectors, including high-

density magnetic recording, navigation, target detection, anti-theft systems, non-destructive testing, 

magnetic labeling, space research, and bio-magnetic measurements in the human body. Miniature 

magnetic sensors with high sensitivity are particularly advantageous in biomedical and specialized 

industrial applications. 

Amongst the various extant magnetic sensors, Micro-Electro-Mechanical System (MEMS) and Giant 

Magneto impedance (GMI) sensors have the ability to sense low levels of magnetic field in the order 

of 10 millitesla as well as the space to be further miniaturized. In this thesis, MEMS and GMI sensors 

are studied in detail both theoretically and experimentally. Multiphysics analyses have been 

developed to provide a path to further investigate these two types of sensors for various sensor 

configurations. Several prototype units are successfully developed, fabricated and tested to verify the 

validity of these models.     

MEMS reed sensors consist of tri-layer beams of Au/Ni/Au. The actuation of these sensors is initiated 

by the magnetic force to maintain the continuity of magnetic field streamlines. The Ni layer is 

deployed as the main magnetic core, and the gold layers are used to enhance the contact quality of the 

switches. In this work, a unique fabrication process is developed that significantly reduces the number 

of masking and lithography steps. As well, a detailed finite element method is presented to study the 

behavior of these sensors and to optimize the device performance.  The FEM study considers various 

magnetic environments, providing a performance map for the sensors. Having a performance map is 

essential for a system’s operation and for tracking its operational behavior. The study also considers 

the effects of various device formations and packaging for these types of sensors. The generated 

magnetic force is observed to be much higher than the required mechanical force for device actuation.  

The GMI sensors exhibit many advantages over their conventional counterparts. In particular, thermal 

stability and high sensitivity make GMI sensors attractive candidates for a wide range of applications. 

The GMI sensors are based on concepts different from those for conventional giant magneto 

resistance (GMR) sensors. GMI sensors have been under active research only in the past decade. In 

this thesis, thin film multilayer GMI sensors are realized using microfabrication technology. The 

fabricated sensors are tri-layers of Co73Si12B15 /Au./ Co73Si12B15 The thin film GMI sensors are 

studied in detail using FEM simulation, and several sensors are developed, fabricated and tested to 

work in the millitesla range. A post-processing step is proposed to optimize the performance of GMI 
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sensors and to enhance their magnetic sensitivity.  The post-processing characterization shows that 

annealing the devices with a specific annealing cycle has the optimal effect of enhancing the magnetic 

characteristics of CoSiB. The sensors are treated with this post-processing recipe, demonstrating a 

considerable increase in their magneto impedance (MI) ratio. The research has made a contribution to 

establishing the engineering foundation toward the development of low-cost miniature GMI magnetic 

sensors for low field intensity applications.  
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 1 

Chapter 1 

Introduction 

For decades, magnetic sensors have helped humans analyze and control thousands of applications. 

Computers have nearly unlimited memory through the use of magnetic sensors in magnetic storage 

disks and tape drives. Airplanes experience enhanced levels of safety because of the reliability of 

noncontact switching employing magnetic sensing. Factories have improved productivity because of 

the precise stability and low cost of magnetic sensors. There are many ways to sense magnetic fields, 

most of which are based on the intimate connection between magnetic and electric phenomena. A 

common priority of magnetic sensors in all applications is that magnetic sensors provide a stronger, 

more reliable, and more maintenance-free technology compared to other sensor technologies [1-4].  

A magnetic sensor is a system or device that can measure the magnitude of a magnetic field or each 

of its vector components. Magnetic sensors can be classified into scalar magnetometers and vector 

magnetometers according to whether they measure the magnitude or the vector components of the 

magnetic field. The techniques usually encompass many aspects of physics and electronics. 

Magnetic sensing techniques exploit a broad range of ideas and phenomena from the fields of 

physics and material science. The common technologies used for magnetic field sensing include 

induction coil sensors, fluxgate, optically pumped nuclear precession, superconducting quantum 

interference device (SQUID), Hall Effect, giant magnetoresistance, magnetic tunnel junctions, giant 

magnetoimpedance,  magnetodiode and magnetotransistor, fiber optic and magneto-optic, and 

microelectromechanical systems (MEMS)-based magnetic sensors. A list of the most commonly used 

magnetic sensor technologies is given in Fig. 1.1, in which the sensitivities of these sensors are 

indicated [1]. 
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Magnetic Sensor 
Technology 

Detectable Field (gauss) 

10−10 10−6 10−2 102 106 

1 
Coil 

Magnetometers                     

2 Fluxgate                      

3 Optically Pumped                      

4 Nuclear-Precession                     

5 SQUID                     

6 Hall Effect                     

7 Magnetoresistive                     

8 Magnetodiode                     

9 Magnetotransistor                     

10 Magneto Optical                     

11 
Giant Magneto 
Impedance                     

12 
MEMS Reed 
Switches                     

Figure  1-1 Comparison between magnetic sensors working range [1]. 

As can be seen, magnetic sensors have a broad range of applications (Table 1.1) [1]. For example, 

ultra-sensitive magnetic sensors are able to detect tiny magnetic fields produced outside the brain by 

neuronal currents, which can be used for diagnostic applications. High reliability non-contact 

switching with magnetic sensors leads to enhanced safety standards in aircraft, and magnetic sensors 

are also used in automobiles to detect positions in the engine crank shaft and wheel braking. 

Computers have nearly unlimited memory through the application of magnetic sensors in magnetic 

storage hard drives and tape drives. 
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Table  1-1 Category of Magnetic Sensor Applications [1] 

1E-9T 1E-4T 
            

Category 1 Category 2 Category 3 

High Sensitivity Medium Sensitivity Low Sensitivity 

Definition: Definition: Definition: 

Measuring field gradients 
or differences due to 
induced (in Earth's field) 
or permanent dipole 
moments 

Measuring  perturbations in the magnitudes and/or direction 
of Earth's fields due to induced or permanent dipoles 

Measuring fields 
stronger than Earth's 
magnetic field 

Major Applications: Major Applications: Major Applications: 

Brain function mapping Magnetic compass Noncontact switching 
magnetic anomaly 
detection Munitions fusing 

Current 
measurement 

  Mineral prospecting 
Magnetic memory 
readout 

  
 

  

Most Common Sensor: Most Common Sensor: Most Common Sensor: 

SQUID Coil magnetometer Coil magnetometer 
Optically pumped  Flux-gate Hall-Effect Sensor 

    Magnetoresistive Magnetoresistive 

1.1   Motivation 

In light of magnetic sensors’ nearly limitless applications, a magnetic sensor with a working range 

in millitesla would be in high demand. This magnetic field range has applications in various 

industries, such as biomedical devices, communication systems, and automobile and airplane 

industries [1], [21], [27].  Indeed, the high demand for this range has been the driving motivation for 

this thesis, the intent of which is to generate new magnetic sensors and applications in the millitesla 

range. As shown in Figure 1-1 and discussed in Chapter 2, MEMS technology magnetic sensors and 

GMI (giant-magneto impedance) magnetic sensors are able to perform well and accurately in this 

range.  

MEMS technology magnetic sensors normally use a mechanical moveable part to sense the 

magnetic field, while the GMI type show a change in their impedance based on their materials and are 
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fabricated using thin film technology. In this study, both MEMS and GMI sensors are designed, 

fabricated, and tested.  

1.2   Objectives 

The major objectives of this Ph.D. thesis work are: 

 The development of miniature MEMS reed magnetic sensors. 

There is a limited number of publications about MEMS reed magnetic sensing. Moreover, those 

MEMS reed magnetic sensors have a minimum length of 1000 microns and their beams have a 

relatively large width of hundreds of microns. Based on the simulation results generated, their 

sensitivity can increase by changing the beams’ thicknesses. Hence, the size of the devices was 

reduced by an order of 5 to 10, and the devices were fabricated as small as 20 to 80 um in width and 

100 to 400 um in length. This reduction in size will ultimately help us offer an array of magnetic 

sensors with the same area as conventional magnetic sensors. The finite element (FE) simulations for 

this study are conducted in COMSOL Multiphysics. The simulations are done in 2D and 3D, and take 

into consideration the packaging effects. 

 The development of thin film GMI magnetic sensors using CoSiB/Au/CoSiB GMI 

multilayer: Proposing a new method of magnetizing the ferromagnetic layer. 

Very few publications have, to date, reported on GMI magnetic sensors. The reported GMI 

magnetic sensors have been fabricated using a costly sputtering system, which prepares a high 

magnetic field around the sample during the fabrication process. Preparing this magnetic field is 

essential in order to direct (orientation and magnetization) the GMI. However, because of the physics 

inherent in sputtering devices and their architecture, only a few research groups have access to the 

equipment. Based on our preliminary research, we determined that the fabrication of ferromagnetic 

material can be done in a normal conventional sputtering system. A new post-processing step is 

proposed in which the sample needs to be annealed in an oven with the presence of a magnetic field. 

During this annealing step, the magnetic domains of ferromagnetic material should lose their 

magnetic walls and become oriented in the same direction as the exerted magnetic field. Applying 

this process will reduce the cost and workload of the fabrication process.  

 The study of the thermal and magneto-thermal treatment on CoSiB and metallic glass GMI 

materials.  
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In this study, various mechanical and material characterization tests are used to understand the 

effects of thermal and magneto-thermal treatment on GMI materials. These tests are followed by 

detailed magnetic characterization tests, which offer us conclusions on optimal treatment.  

1.3 Thesis Outline 

In the second chapter of this thesis, popular sensor technologies are described in detail. In Chapter 

3, work on magnetic MEMS reed sensors is explained. The theory of these sensors is reviewed and 

verified using finite element multiphysics COMSOL simulations. Two different types of 2D and 3D 

simulations with and without the packaging effects are studied, and a sensor performance map is 

generated. Various types of devices are designed, and a fabrication process is developed for them. As 

well, devices are fabricated and a test setup developed. At the end of the chapter, the test results are 

discussed and compared to simulations.  

Chapter 4 demonstrates some recent work on GMI magnetic sensors. In the first section, the theory 

of GMI sensors is reviewed and the design of our sensors is discussed. A general 3D simulation is 

presented for these sensors. Throughout the rest of the chapter, a custom-made test setup is designed 

and the experimental results of the fabricated sensors are reviewed. 

Chapter 5 focuses on the material characterization and study of the effects of thermal and magneto-

thermal treatments on CoSiB and metallic glass GMI materials. In the chapter, various GMI samples 

are prepared and undergo annealing with different situations. A comparison and study of the results of 

both material and magnetic test show us how to optimize the post-processing treatment to reach 

optimal performance of GMI sensors. 

At the end of this thesis, Chapter 6 summarizes the results and discusses the study’s conclusions. 

Finally, future work and future challenges are presented.  
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2 Chapter Two  

Literature Survey 

2.1 Conventional Magnetic Sensors 

2.1.1 Induction Sensors 

The principal of induction sensors is Faraday’s law of induction, i.e., if the magnetic flux through a 

coiled core changes, a voltage proportional (emf) to the rate of change of the flux (Φ) is generated 

between its leads: 

𝑒𝑚𝑓 = −
𝑑𝜙

𝑑𝑡
= −

𝑑(𝑁𝐴µ0µ𝑟(𝑡)𝐻(𝑡))

𝑑𝑡
 

(1.1) 

 

where N is the turns of the coil, A is the core cross-section area, H is the magnetic field in the sensor 

core, and µr(t) is the sensor core relative permeability (the core may be ferromagnetic or air). 

Thus, we can write the general equation for induction sensors as [2]: 

𝑒𝑚𝑓 = −[
𝑁𝐴µ0µ𝑟𝑑(𝐻(𝑡))

𝑑𝑡
+

𝑁𝐻µ0µ𝑟𝑑(𝐴(𝑡))

𝑑𝑡
+

𝑁𝐴µ0𝐻𝑑(µ𝑟(𝑡))

𝑑𝑡
] 

(1.2) 

 

Basic induction coils are based on the first term of Eq. 1.2. The middle term describes rotating coil 

sensors, where A(t) is the effective area in the plane perpendicular to the measured field. The last 

term is the basic fluxgate equation (fluxgate sensors are covered in next section). 

To improve the sensitivity, a rod of a ferromagnetic material with a high magnetic permeability is 

typically inserted inside the coil to gather the surrounding magnetic field and increase the flux density 

B (Φ = BA). The sensitivity depends on the permeability of the core material, the area of the coil, the 

number of turns, and the rate of change of the magnetic flux through the coil. 

In geophysics, these types of sensors serve to measure micropulsations of the Earth’s magnetic field 

(1 mHz-1 Hz frequency range); in audio frequency applications, they are also used in magnetic 

recording techniques. However, limitations in sensitivity and size prevent them from being used in 

applications that require high resolution and small volume. 
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2.1.2 Fluxgate Sensors 

The last term of Eq. 1.2 is the basis for fluxgate sensors. Fluxgate sensors measure the magnitude 

and direction of the DC or low-frequency AC magnetic field in the range of approximately 10-9 to 

10-4 T. The frequency response of the sensor is limited by the excitation field and the response time 

of the ferromagnetic material. The basic sensor principle is illustrated in Fig. 2-1 [2]. 

 

Figure  2-1 The basic fluxgate principle. The ferromagnetic core is excited by the ac current Iexc of 

frequency f into the excitation winding. The core permeability μ(t) is therefore changing with 2f 

frequency. If the measure dc field B0 is present, the associated core flux Φ(t) is also changing with 2f, 

and voltage Vind is induced in the pickup (measuring) coil having N turns. 

The soft magnetic material of the sensor core is periodically saturated in both polarities by the AC 

excitation field, which is produced by the excitation current Iexc through the excitation coil. Thus, the 

core permeability changes, and the DC flux associated with the measured DC magnetic field B0 is 

modulated. The “gating” of the flux that occurs when the core is saturated gives the device its name. 

Figure 2-2 shows simplified corresponding waveforms [2]. The device output is usually the voltage 

VI induced into the sensing (pickup) coil at the second (or even higher) harmonic of the excitation 

frequency. This voltage is proportional to the measured field. 
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Figure  2-2 Simplified fluxgate waveforms (a) in the zero field and (b) with measured field H0. 
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2.1.3  Magnetoresistors 

Magnetoresistive magnetometers use a change in resistance ΔR caused by an external magnetic 

field H. A giant magnetoresistive (GMR) could be achieved by using a four-layer structure that 

consists of two thin ferromagnets separated by a conductor (Fig. 2-3) [1]. 

 

 

Figure  2-3  Orientation of the magnetization of the ferromagnetic layers in a GMR spin valve 

for different external fields H. (a) H = 0, the magnetization of the free ferromagnetic layer is 

perpendicular to the magnetization of pinned ferromagnet, R = R(0). (b) Low resistant state, H 

parallel to the magnetization of the pinned ferromagnet, R < R(0). (c) High resistant state, H 

directed opposite to the magnetization of the pinned ferromagnet, R > R(0). (d) H large enough 

to unpin the pinned ferromagnet, R < R(0). 

Magnetoresistive magnetometers are very attractive for low-cost applications. So far, GMR sensors 

can detect from 10-8 T at 1 Hz to as large as 0.1 T. 
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2.1.4 Hall Effect Sensors 

As shown in Fig. 2-4, Hall Effect sensors are a widely-used, low-cost sensor [1]. In the Hall Effect, 

a voltage difference appears across a thin rectangle of conductor placed in an external magnetic field 

perpendicular to the plane of the rectangle when an electric current is sent along its length. The 

principal of Hall Effect is the Lorentz force, which is proportional to the velocity of the particles, 

𝐹 = 𝐵𝑞𝑣 (1.3) 

 

An electric field produced by the accumulated charges is built to balance the Lorentz force, 

𝐹 = 𝐸𝑞 (1.4) 

 

If the velocity of the moving charges and the built electric field are known, the magnetic field can 

be obtained. 

The Hall Effect is quite small in metallic conductors but significantly larger in semiconductors. This 

discrepancy in sizing arises from the density of carriers being much lower in semiconductors and the 

velocity of carriers being much faster in semiconductors in obtaining the same current. The silicon 

devices have a sensitivity range of 10-3 T to 0.1 T, and the sensitivity of indium anti-monide sensors 

can reach as low as 10-7 T. 
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Figure  2-4  (a) Schematic of Hall Effect sensors and (b) examples of Hall Effect products. 
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2.1.5 SQUID Sensors 

Superconducting quantum interference devices (SQUIDs) are the most sensitive of all instruments 

for measuring a magnetic field at low frequencies (<1 Hz). An example of a SQUID is illustrated in 

Fig. 2-5 [1]. The principle is based on the remarkable interactions of observed electric currents and 

magnetic fields when certain materials are cooled below a superconducting critical temperature. 

Below this critical temperature, the materials become superconductors and lose all resistance to the 

flow of electricity. The critical current of the SQUID is related to the external magnetic field (Fig. 2-

5). 

 

Figure  2-5 Schematic of SQUID sensor. 

The typical sensitivity of SQUIDs is in the order of 10 fT. However, both the maintaining fee and 

the instrument are very expensive, which prevents their popular application. Figure 2-6 shows a 

SQUID setup. 
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Figure  2-6 Schematic of a SQUID magnetometer. 

2.1.6 Magnetodiode and Mangetotransistor Sensors 

A magnetodiode is essentially a semiconductor diode, or pn junction. In a magnetodiode, however, 

the p region is separated from the n region by an area of undoped silicon. The device is fabricated by 

depositing silicon and then silicon dioxide on a sapphire substrate. If a metal contact on the p-doped 

region is given a positive potential and a metal contact on the n-doped region is given a negative 

potential, holes in the p-doped material and electrons in the n-doped material will be injected into the 

undoped silicon [1,3]. The current is the sum of the hole current and the electron current. Some of the 

carriers, particularly those near the interface between the silicon and the silicon dioxide or near the 

interface between the silicon and the sapphire, will recombine. The loss of charge carriers increases 

the resistance of the material. In the absence of a field, recombination at both interfaces contributes to 

the resistance. 

Perpendicular to the direction of travel of the charge carriers, a magnetic field deflects them either 

up or down, depending on the direction of the field. Both holes and electrons are deflected in the 

same direction because they are traveling in opposite directions. Charge carriers near the interface 

between the silicon and the sapphire have a greater tendency to recombine than those near the 

interface between the silicon and the silicon dioxide. Thus, if the magnetic field deflects the charge 

carriers down, the resistance of the material is increased; if it deflects them up, the resistance is 

decreased. The response of a magnetodiode to a magnetic field is about ten times larger than the 
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response of a silicon Hall Effect device [1-3]. Devices in this method are normally used as 

magnetically actuated (amplified) diodes rather than sensors [1].  

A magnetic field sensor was introduced at 1983 having a lateral bipolar magnetotransistor with a 

single emitter region and whose base region is incorporated as a well in the surface of a silicon 

substrate of the reverse material conduction type [58]. A magnetotransistor is an ordinary bipolar 

transistor so optimally designed that its electrical output characteristics, e.g. its collector current Ic or 

its current amplification factor, are highly sensitive to the strength and orientation of a magnetic 

field.[58] Known magnetotransistors have a voltage sensitivity ranging from 10 Volts/Tesla to 500 

Volts/Tesla or a relative-current sensitivity ranging from 20%/Tesla to 30%/Tesla and preferably 

employ lateral bipolar transistors.[58] 

 

2.1.7 MEMS-Based Magnetic Sensors 

Many of the earliest designs of magnetic sensors utilized simple magnetic attraction to ferrous 

objects. The resulting motion was then measured to record or detect metal objects. A structure similar 

to a compass needle was the first magnetic field-triggered fuse for mines. With the development of 

micro-electromechanical systems (MEMS), the idea of using movement to sense magnetic fields is 

being reexamined, but fabricating these devices is challenging [44-52]. This is especially true if the 

fabrication process requires the use of different technologies that are not naturally compatible. For 

example, the use of HF that is often required to perform the release step needed to fabricate the 

MEMS structure can damage other parts of the sensor. Most of these sensors use the Lorentz force. 

An example of this is a magnetometer based on detecting the motion of a miniature bar magnet [12]. 

The hard magnetic material used was deposited by electro-deposition. The choice of materials for the 

hard magnet was limited by the need to use HF in the release step, and the bar magnetic responded to 

the field without drawing any power. Fields as small as 200 nT have been detected optically. 

A similar approach was employed by DiLella et al. [13], who also used the rotation of a MEMS 

structure containing a permanent magnet. In this case, the field was determined by measuring the 

feedback required to maintain a constant tunneling current. They achieved a resolution of 0.3 nT 

/√Hz at 1 Hz, but the accuracy of the sensor was limited by air pressure fluctuations. 

An alternative approach uses a xylophone resonator [14], where an AC current whose frequency is 

adjusted to be equal to resonant frequency 𝑓0 of a MEMS beam is sent through the length of the 

beam. A DC field applied perpendicular to the axis of the beam will energize the motion of the beam 
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at a frequency of 𝑓0. The amplitude of the motion that can be detected optically is proportional to the 

field. 

MEMS technology can improve magnetic sensors by minimizing the effect of 1/f noise. The 

concept for a device that can accomplish this (the MEMS flux concentrator [15]) is shown in Fig. 2-7. 

In this device, the flux concentrators composed of soft magnetic material are placed on MEMS flaps. 

The flux concentrators enhance the field, and decreasing the separation between the flaps increases 

the enhancement. The two MEMS flaps are forced to oscillate by applying an AC voltage to the 

electrostatic comb drives. By tuning the frequency, the normal mode in which the distance between 

the flaps oscillates can be excited. The resonant frequency for the MEMS structure is designed to be 

about 10 kHz. The oscillation of the MEMS flaps modulates the field at the position of the sensor and 

thus shifts the operating frequency of the sensor above the frequency where 1/f noise dominates. 

Depending on the type of magnetic sensor used, this shift in operating frequency should increase the 

sensitivity of magnetometers by one to three orders of magnitude. 

 

Figure  2-7 Picture showing the concept of the MEMS flux concentrator. Note that there is a 

space between the substrate and the flux concentrators on the MEMS flaps [15]. 

Tang and his colleagues [9-12], who are among only a few researchers studying magnetic micro 

reed switches/sensors, have proposed using nickel-based MEMS beams to fabricate a magnetic 

MEMS sensor/switch. In their recent work, they attempted to employ both magnetic torque and 

magnetic inertia to keep magnetic flux lines connected [10-12]. Their switches are a new sensing 

element in the millitesla range. One of the drawbacks of their research is the size of their devices, all 

of which are in the order of millimeters [9-12]. Figure 2-8 illustrates a sample of their devices. 
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Figure  2-8 (a) SEM microphotograph of a magnetic switch, (b) zoomed-in view of the contact 

part [10]. 

In 2013, Hui and colleagues [40] developed a MEMS magnetic sensor using a MEMS multilayer 

resonator. The multilayer plates were a combination of a magneto-restrictive material and a piezo-

electric material. The sensors could achieve a performance frequency of 200 MHz and were designed 

to sense magnetic field of 0 to 150 Oe.  

In recent years, some groups have started to refabricate the previously reported MEMS 

magnetometers employing CMOS-MEMS technology [41, 42], which allows them to integrate an on-

chip actuation magnetic coil to the devices. Moreover, CMOS-MEMS sensors have the advantage of 

using an existing foundry service, electrical routing compatibility, and monolithic integration of 

MEMS structures and sensing circuits. This enables them to achieve the same sensors with a better 

quality of fabrication.  
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Figure  2-9 CMOS-MEMS magnetometer systems with integrated magnetic coil [41] 

2.1.8 Giant Magneto-Impedance Sensors 

When a soft ferromagnetic conductor is subjected to a small alternating current (AC), a large change 

in the AC complex impedance of the conductor can be attained when a magnetic field is applied. This 

is known as the giant magneto-impedance (GMI) effect [21]. The GMI effect was first observed in 

1994 by Panina in her Ph.D. work [25], [34]. This was followed by experiments performed by other 

researchers, during which GMI was employed in wires and single thin films [25-38, 43]. Figure 2-10 

shows an example of these sensors [43]. As we can see from the picture, the bulky nature of these 

sensors makes them unfavorable for miniature applications. Although some researchers did attempt to 

make multilayer GMI devices as well [33], [37], [38], the basic thrust of the GMI effect is to change 
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the impedance under the magnetic field. It occurs mostly in the millitesla range of the magnetic field 

and in frequencies of tens of MHz [30]. Since GMI changes as a function of the external DC magnetic 

field or applied DC/AC current, it is possible to design GMI-based sensors that can measure either 

magnetic fields or DC/AC currents. GMI is also sensitive to applied stress, and this provides a new 

opportunity for developing stress sensors. These sensors will be briefly described and evaluated 

below [21]. 

 

Figure  2-10 A Co-wire GMI sensor reported in [43] 

A magnetic sensor based on the GMI effect (or the so-called GMI sensor) was designed and 

produced by Mohri et al. [34]. Continuous efforts have been devoted to improving the sensitivity of 

the sensor by optimizing the processing parameters and/or the design of the electrical circuit [30-38]. 

Detailed investigations of how the processing parameters can be controlled, as well as the influences 

of these parameters on the performance of a designed GMI sensor, can be found in [27] and [38]. In 

these sensors, the sensing elements can be amorphous wires [25-29 and 33-35], thin films [37-38], or 

ribbons [21]. They can be used for measuring or tracking the presence of both homogeneous and 

inhomogeneous magnetic fields. While GMI sensors provide numerous advantages (e.g., low power 

consumption, small dimension) over conventional magnetic, their high sensitivity is the most 

important advantage. Indeed, the resolution is even higher than that obtained from the flux gate (FG) 

sensor. In addition, the GMI sensor has better thermal stability compared to conventional sensors [27-

35]. A general schematic of GMI sensors is shown in Figure 2-11. 
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In addition to GMI sensors designers, some researchers started to investigate applications of these 

sensors in real life. In 2014, Li[50] offered a study of surface acoustic wave (SAW) GMI sensors. 

Using the SAW element, they achieved a wireless GMI sensor.  

Although there are many publications on GMI sensors, this field currently suffers from a lack of 

material characterization and FEM simulations of this phenomenon. A few publications [47-49] on 

simulation are attempting to solve GMI-related equations numerically for a GMI single ribbon. GMI-

related equations and analytical models are discussed in detail in Chapter 4.  

 

 

Figure  2-11 Schematic view of GMI element (a) top view (b) cross sectional view [38]. 
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3 Chapter Three 

Multilayer MEMS Reed Sensors 

3.1 Introduction 

For portable electronics with battery operation, a passive switch is more favorable compared to an 

active switch. The conventional reed switch is a typical passive switch, which includes a glass 

package containing two metal reeds. The metal reeds can be actuated to make a contact using an 

external magnetic field. When the external magnetic field is removed, a spring restores the reed to its 

original position. This approach is ideal for applications where conserving battery power is critical, as 

the device does not consume power in the off state [8-10]. 

For portable electronics applications such as cellular phones, hearing aids and laptops, further 

miniaturization, higher shock resistance, and better integration of switches are desirable. The micro-

electromechanical (MEMS) magnetic switch can meet these requirements. It mimics the operations of 

the reed switch, but is fabricated using microfabrication technology. Therefore, it can drastically 

reduce the size of the device, lower the fabrication cost, and improve shock resistance [2-3]. 

In this chapter, a preliminary design for a nickel-based magnetic reed switch is introduced. The 

design is fabricated in several dimensions and shapes, ranging in length from 100 to 500 microns and 

in width from 20 to 80 microns.  

Unfortunately, the fabricated micro switches with nickel beams failed during testing. There are two 

main reasons for this failure. First, as nickel is sensitive to EKC solution, it was not possible to wet 

release the nickel structures. All the attempts to wet release it failed, as the nickel was etched away 

before the sacrificial layer (polyamide). Second, the dry release of the nickel beams was adversely 

affected by the residual polyamide under the beams, which prevented switch electrical contact. Even 

the mechanically actuated switches failed to show contact resistance.  

In order to overcome these issues, we suggested and designed a new fabrication process consisting 

of a tri-layer of Au-Ni-Au beams. The new beams allowed us to wet release the structure and achieve 

successful MEMS switches. Using Electro-less plating (ELP) for both nickel and gold layers resulted 

in only 4 masks for this 7-layer MEMS structure. The low number of masking and lithography steps 

effectively improves the microfabrication quality. 

A review of governing equation in magnetostatic MEMS is first conducted, after which the required 

FEM equations are presented and solved using the finite element software, COMSOL 4.2. By 

utilizing COMSOL’s built-in modules for magnetostatic physics, the nickel switch is fully simulated 
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and the resulting magnetic force is determined for numerous system configurations. Next, mask 

designing steps are reported and a quick review of fabrication process is done, including brief 

descriptions of each step of the fabrication. Then, the challenges of these switch/sensors are discussed 

and the tri-layer MEMS Reed sensors are introduced in the same order as the preceding. Finally, an 

experimental setup for measurement is presented, along with the results and conclusion. Any 

perceived errors and problems are listed here, as along with further improvements and suggestions to 

overcome the challenges.  

3.1.1 Theory  

A physical-level analysis of magnetostatic MEMS requires a self-consistent solution of the coupled 

mechanical and magnetic equations.. The basic reed switch consists of two ferromagnetic nickel-iron 

beams encapsulated in glass. The two reeds act as magnetic flux conductors when exposed to an 

external magnetic field from either a permanent magnet or an electromagnetic coil. Poles of opposite 

polarity are created at the contact gap, with the contacts closing when the magnetic force exceeds the 

spring force of the reeds. The contacts open when the external magnetic field is reduced so that the 

magnetic attractive force between the reeds is less than the restoring spring force of the reeds. 

The basic reed switch is a Single Pole Single Throw Normally Open (SPST-NO) switch. By 

including an additional nonmagnetic contact that is electrically closed with no magnetic field present, 

a Single Pole Double Throw (SPDT) switch (also known as a changeover switch) can be made. This 

is a break-before-make switch, in that the closed contact opens before the open contact closes. 

Generally, in MEMS magnetic reed switches, the goal is to make contact between the beams by the 

force generated to maintain magnetic flux continuity. The magnetic flux is confined to the permanent 

magnet and switch beams due to their high magnetic permeability. As the magnetic flux and magnetic 

field require continuity, a force will be generated to lower the gap between the two beams and enable 

contact. 

The magnetic field gives rise to a magnetostatic body force which deforms the cantilever beam from 

its initial position. When the beam deforms, the magnetic field changes, and the resultant 

magnetostatic force and beam deformations also change. Figure 3-1(b) shows the deformation of the 

cantilever at any given point in time and the forces acting on it. The magnetostatic force causes the 
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beams to deform to a state where they are balanced by internal stiffness; at that time, the inertial 

forces are instantaneous (see Figure 3-1(b)).  

 

Figure  3-1 Schematic view of undeformed magnetic switch and a deformed one [8]. 

The mechanical restoring force arises due to the stiffness of the structure and depends on the 

displacement of the beam/structure at that instant in time, whereas the inertial force depends on beam 

acceleration. The governing equations for each of the energy domains and their Lagrangian 

formulations are discussed below. For details on the theory deployed in this thesis, please refer to [8] 

and Appendix A.  

Based on this approach, magnetostatic governing equations are derived from Maxwell’s equations. 

Equations 1 and 2 show the derived magnetostatic equations.  

𝑩 = {
𝐵𝑋

𝐵𝑌
} = 𝑭−𝑻 {

𝜕𝐴𝑧
𝜕𝑌

−
𝜕𝐴𝑧
𝜕𝑋

} = [
1 +

𝜕𝑢

𝜕𝑋

𝜕𝑢

𝜕𝑌
𝜕𝑣

𝜕𝑋
𝟏 +

𝜕𝑣

𝜕𝑌

]

−𝑻

{

𝜕𝐴𝑧
𝜕𝑌

−
𝜕𝐴𝑧
𝜕𝑋

} 

 

 

(1) 

𝒇𝒎𝒂𝒈 = 𝑴.𝜵𝒙𝑩 = 𝑴.𝑭−𝑻𝜵𝑿𝑩 (2) 

where A is the magnetic field’s potential vector, F is the deformation gradient tensor, and M is the 

magnetization vector. Equation 2 represents the magnetostatic body force acting on the microstructure 

in the deformed configuration. 
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In a mechanical resorting force, one can calculate the spring constant of the beams based on 

mechanical strength equations and beam dimensions. There are different equations for different kinds 

of beams. For instance, for a simple cantilever beam, the spring constant is: 

𝐾 =
3𝐸𝐼

𝐿3
 

(3) 

where E is the Young’s modulus of the beam material, L is beam length, and I is the moment of 

inertia of the corresponding beam. A cantilever beam can be calculated by (31): 

 

𝐼 =
𝑤𝑡3

12
 

(4) 

where w is beam width and t is beam thickness. After calculating the spring constant of the beam, the 

mechanical restoring force can be calculated using Hooks law: 

Fmech = ky (5) 

Once the magnetic body force fmag is sufficiently high to overcome the Fmech value in the y=gap, 

the switch will be actuated. It should be noted that more complicated beam models can be employed 

to calculate mechanical forces, but response errors are negligible between various models. It is also 

important to note that the spring constant equation will change by varying the beam and support 

shapes. The above-mentioned equations are governing equations for magnetic reed switches/sensors, 

which will be solved by finite element software. We have employed COMSOL multiphysics to solve 

these equations and simulate the design. These results are discussed in the next sections. 

3.2 Nickel-based Magnetic MEMS Reed Sensors 

A magnetic MEMS reed switch/sensor is designed and fabricated on silicon. The reeds are 

multilayer nickel beams with dimensions of 300*60 microns. Several types of switches with different 

configurations have been designed and successfully fabricated, and a FEM COMSOL 4.2 simulation 

is implemented to simulate the switch/sensor. Based on the simulation results, a magnetic body force 

of 3.75µN is achieved at a 10 mT magnetic field. This force exceeds what is required to actuate the 

switch. The switches have been tested in the lab under a constant magnetic field. 

 

3.2.1 Modeling and FEM Simulation 

In order to conduct a simulation of the magnetic reed switches/sensors, COMSOL Multiphysics 4.2a 

is employed.  Using COMSOL’s built-in physics (AC/DC module and structural mechanics), all of 
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the above equations have been solved. As well, a beneficial new feature of the AC/DC module is 

magnetostatic force calculation, which makes simulation more straightforward for our case study.  

As mentioned in the Introduction, we chose nickel as our beam material. Nickel’s permeability is 

400, meaning it is a good ferromagnetic material that is less prone to oxidization than iron. Also, 

nickel is conductive, so the beam itself can make electrical contact.  

Because the MEMS switches are fabricated on wafers, the bottom electrode is fixed to the substrate 

(first-level layer) and cannot have any movement and displacement. Therefore, the only moving part 

in our design is the upper beam. Using the simulation results, and based on fabrication restrictions, 

the bottom electrode thickness is chosen to be 3 microns. The resultant thickness of the upper beam is 

then investigated for 3 microns and 1 micron. Based on the results in step 1, the micron thickness 

beam has more magnetic body force and also has less mechanical restoring force due to being thinner. 

The gap in our design is assumed to be 1 micron, but larger gaps have also been studied. 

The beam lengths in the simulation portion of our work are assumed to be 100 microns, with a 50-

micron overlapping length between the two beams. The gap is assumed to be 1 micron.  A permanent 

magnet with different magnetization vectors has been placed in various positions and distances with 

respect to the switch.  Finally, the magnetic body force calculated in the AC/DC module is coupled to 

a structural mechanic module, as the load and movement of the beam is investigated. 

 A brief review of simulation steps, along with the results of each step, is discussed and shown 

below: 

A) Choosing the physics 

As our first step, a 2D analysis system was chosen in COMSOL, after which a model navigator 

window, the AC/DC module, was selected. In the AC/DC module, we used magnetostatic fields with 

no current. Later on, we will add Plane strain analysis from a structural mechanics module. By 

selecting stationary analysis as our solving method, we proceed to the design portion in a GUI 

window. 

B) Drawing system in GUI  

The second step is drawing the model in the model builder wizard. Objects of the system are 

sketched as follows: 



 

 25 

A large square of 2*2 mm is sketched and its boundary restricted to be magnetically insulated. This 

large square is assumed to be our working environment with the whole system within it. The material 

of this object is defined to be air. From henceforth in this report, we will refer to it as the 

‘environment’. 

A 20*25 µm rectangle is drawn as a permanent magnet within the environment, with a corner 

(130µm, 50µm) in a Cartesian plane. From this point onward, we will refer to it as a ‘permanent 

magnet’. 

The upper beam is sketched with a 1-micron thickness, a 100-micron length, and a corner of (0,0). 

The bottom electrode is then sketched with a 3-micron thickness, 100 micron-length, and a corner of 

(-4µm, 48µm). 

The gap in our design is assumed to be 1 micron, but larger gaps have been also studied. Figure 3- 2 

shows the modeled structure in GUI. 

 

Figure  3-2 Modeled magnetic MEMS switch in COMSOL 4.2 GUI. 

C) Subdomain settings 
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In our subdomain settings, the material properties of each object have been defined and their 

properties regarding magnetic calculation are clarified as follows. 

 Environment is defined as air, with  µr = 1.  

 A permanent magnet is assumed to be magnetized iron with µr = 4000. The 

magnetization vector of a magnet is assumed to be (20000,0) A/m. Other directions and 

values of magnetization have also been studied. 

 Two beams are defined as nickel with  µr = 400. The Young’s modulus of nickel is 

defined as 180 GPa. 

In the environment and two beams, the magnetic field is calculated as B = µ0µrH. In the permanent 

magnet, the magnetized vector is defined by B = µ0(M + H).  

 

D) Boundary settings 

All boundaries are assumed to have magnetic continuity except for environment boundaries, which 

are defined as magnetically insulated.  

For mechanical boundaries, a bottom electrode and permanent magnet are fixed in place to preclude 

any movement of these two objects. The upper beam is fixed at one side as x=0, and the other 

boundaries are defined as being free to move. The body force generated by the magnetic flux is 

assumed to apply to the tip of the upper beam. 

E) Mesh settings 

As we do not have any preferred shape of meshing, we chose the free triangle meshing method. 

However, due to the small gap and small feature size of beams with respect to the rest of the objects, 

the meshing is refined for these areas. Thus, we have an increased number of elements in critical parts 

to obtain more accurate answers from our simulation. 
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Figure  3-3 Meshing of modeled magnetic MEMS switch. 

A) Magnetic force calculation 

A recently added feature to COMSOL 4.2a is the magnetostatic force calculation option. This 

feature will solve the mentioned equations in the theory section for the system and calculate the 

magnetic body force for each of the desired objects. In our case, an upper beam is selected to 

ascertain the magnetic body force on it. Note that this body force is a vector, so its sign and 

components will determine its direction. 

In our simulation, we achieve magnetic forces as high as -3 µN at 10mT magnetic field between the 

two. In our case, using the given dimensions of the upper beam, we need about 0.3 µN of magnetic 

force to overcome the mechanical restoring force. Thus, the generated body force is sufficiently far to 

actuate the system. 

Case study a) 

M= (0, 20000) 

Permanent magnet corner= (130, 50) microns 

The simulated plot is shown below. Here we can see the magnetic flux density and the contour plot 

of the magnetic flux in Figures 3-5 and 3-6, respectively.  
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Figure  3-4 Shows the magnetic flux density in Tesla for case a). 

As is clear in Figure 3-6, the maximum flux in between and around the magnetic switch is 0.012 T, 

which is the actuation needed field with this configuration. Moreover, the achieved force here is -3.2 

µN, which far exceeds the required force for switch actuation.  The shape of magnetic flux contours 

are shown in Figure 3-5.  
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Figure  3-5 Shows magnetic flux density contours for magnetic switches. 

 

As can be seen in the above figure, the magnetic field lines are trying to connect to each other and 

maintain continuity. This is the reason for the force generation, which will make the flux continuity 

easier. Figure 3-6 shows the magnetic flux streamline between two beams to better clarify this 

phenomenon. 
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Figure  3-6 Magnetic flux density streamlines between the beams for case a). 

Figure 3-7 shows the position of the system in the environment.  

 

Figure  3-7 Whole magnetic model of the switches in the environment. 
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Case study b) 

M=(20000,0) 

Permanent magnet corner=(100,50) microns 

In case b), a simulation has again been done. The maximum force was -3.75µN at 10mT. The 

resultant plots are shown in Figures 3-8 to 3-10. 

 

Figure  3-8 Shows the magnetic flux density in Tesla for case b). 

As is clear in Figure 3-8, the maximum flux in between and around the magnetic switch is 0.008 T, 

which is the actuation required for this configuration. Furthermore, the achieved force here is -3.75 

µN, which is significantly more than is needed for switch actuation.  The shape of the magnetic flux 

contours are shown in Figure 3-9.  
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Figure  3-9 Magnetic flux density contours for case b). 

 

Figure  3-10 Magnetic flux density streamlines between the beams for case b). 
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In the future, research should focus on investigating the working positions of the permanent magnet 

around the switches in order to ascertain the graph of actuation position for the switches.   

Assuming that we have this body force as the load in the structural mechanic module, we can see 

the actuation of the switch, as below. 

 

Figure  3-11 Actuation of switch at 10 mT. 

As can be seen in the figure’s legend, the displacement is expected to be much higher than a 1- 

micron gap. The upper beam will make contact with the lower one and will not go any further. Hence, 

the plot has been rescaled to show a correct answer.  

3.2.2 Design and Mask-Making 

The thickness of the beams is determined according to simulation results. A minimum length of 100 

µm has been shown to work well within the designated conditions. Increasing the length will reduce 

the spring constant, making actuation of the devices easier. In the design step, several types of 

switches/sensors have been developed, each with three different lengths (500, 400 and 300) µm and 
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three different widths (40, 60 and 80) µm. Excluding the size differences, the designs can be 

categorized into five types: 

 Switches with simple cantilever beam and simple fixed supports (type 1). 

 Switches with minder hinge cantilevers; the support has a minder shape with two 

connection widths of 15 microns each. Using minder shape supports greatly reduces the 

spring constant of the beam, which makes actuation easier and less forceful, thus lowering the 

magnetic field (type 2). 

 Switches with simple cantilever beam and simple fixed supports, with a 20-micron 

width but a wider tip of 60 microns (type 3). 

 Two-way arrays of switches with widths of 60 microns, designed in all three lengths. 

Two arrays are perpendicular to each other and are of equal length. This design will help in 

sensing the direction of the magnetic field (type 4). 

   Four-way arrays of switches. This is a multi-output switch with 4 outputs of various lengths. 

It can be used to actuate systems that require different amounts of sensitivity to magnetic fields 

(type 5). 

Each layer of the four-layer mask is described below. 

 Layer 1 is a light field mask for patterning the bottom electrodes and conductive pads 

for the test. This layer will be masked with positive photoresist. 

 Layer 2 is a light field mask for patterning the anchor. It will be patterned with 

negative photoresist.  

 Layer 3 is a dark field mask for dimples. It is patterned with positive photoresist. 

 Layer 4 is also dark field, but it is for patterning upper beams using negative 

photoresist. 
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Table  3-1 Lithography mask layers 

 

Table  3-2 Layer Names, Thicknesses, and Mask Levels 

 

Figure 3-12 shows the final 4-layer mask in a single view (note: small features may not be visible). 

The design rules, which include all the physical limitations and fabrication process limitations that 

have been considered in the mask design process, are discussed in detail in Appendix B.  
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Figure  3-12 Final mask printed on glass. 

3.2.3 Fabrication Process 

The fabrication is carried out on four 4-inch silicon wafers. Following the RCA cleaning of the 

wafer, a 0.5 micron of PECVD silicon oxide is deposited on three of the wafers, and a 0.5-micron of 

PECVD silicon nitride is deposited on the last one. This dielectric deposition has been done to ensure 

that the substrate is fully insulated.  
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Figure  3-13 The passivation dielectric layer above silicon substrate. 

Next, an evaporated 400Å chromium /100nm gold bilayer is deposited as a seed layer for electroless-

plating of Ni. A positive PR(AZ3330) is spin-coated on top of this layer, and the first mask layer is 

patterned on it. The patterned seed layer is then etched using gold and Cr etchants. After 50 sec of 

gold etchant and 30 sec of Cr etchant, the gold seed layer is fully patterned. The chromium is applied 

as an adhesion layer for the gold. 

 

Figure  3-14 Cr/Gold seed layer after patterning. 

In the next step, an electroless solution of Ni (Caswell ink) is prepared and heated to 90 ͦ C. The 

wafers are then placed into the solution for nine minutes. The rate of deposition was previously tested 

and verified to be 0.33µm/min. Note that the wafers are first put into oxygen plasma for about 1 min 

before being put into the EL solution. The reason for doing this is to create some free electrons in 

order to initiate the electroless plating; otherwise, the plating will not be initiated. 

 

Figure  3-15 Bottom electrode fabricated on top of the substrate. 

Spin-coated Polyimide is used as the sacrificial layer for this process. It is initially coated to a 

thickness of 1.5μm, cured in an oven, and then subjected to 75nm of Au sputtering. Next, the Au is 

patterned by Mask3 (anchor mask) in order to make a hard mask for the PI etch. After that, patterned 
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gold is used as a mask for PI, and the anchor is etched using the EKC wet etch of PI to fully clear the 

anchor holes. 

 

Figure  3-16 Patterned anchor (the gold layer on top of PI is not shown to prevent 

misunderstanding). 

Following the patterning procedure, AZ330 is again used to pattern the anchor dimple mask by 

removing the gold layer in the gold etchant. The wafers are then placed in RIE to remove dimples 

with 1-micron thickness. After patterning dimples on the PI, the covering gold layer is removed using 

a gold etchant. The resultant state is shown in Figure 3-17. 

 

Figure  3-17 Wafer after patterning anchor and dimples on PI. 

Afterward, the wafers are sputtered in 50 nm of gold and the final layer is patterned on the gold 

using NLOF2550. Then the same process that was done for the first EL plating is repeated in order to 

create upper nickel beams. The final structure, prior to release, is shown in Figure 3-18. 
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Figure  3-18 Final structure before release. 

The wafers are diced into individual dies to do the release. In order to release the devices, a first 

attempt was made using EKC wet release. Although the speed of the wet release was good and it had 

less residual stress than the other methods, EKC attacks EL nickel, and almost all of the Ni was 

etched by the release time. In our next attempt, we used RIE dry release. This method works well, but 

it is very time-consuming and takes days for RIE release, which makes it unsuitable for our purposes. 

The final suggested way was using an oven and annealing the devices at 450 ͦ C in the air. It was 

hoped that by increasing the temperature, PI would chemically react with oxygen in the air and thus 

be removed from the substrate. The devices were successfully released by applying this method, but 

the high temperature release led to residual stress, which caused some beam deformations.  

The optical images of fabricated magnetic switches are shown in Figures 3-19 to 3-24. 

 

Figure  3-19 Optical image of switch type 1 – simple cantilever. 
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Figure  3-20 Optical image of switch type 2 – minder hinge switches. 

 

Figure  3-21 Optical image of switch type 3 – narrow cantilever with wider tips. 

 

Figure  3-22 Optical image of switch type 4 – two-array switches. 
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Figure  3-23 Optical image of switch type 4 – four-arrays switches. 

 

Figure  3-24 Optical image of tip of one cantilever showing the position of the upper beam with 

respect to the lower one; dimples and release holes are shown here. 
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Figures 3-25 to 3-29 illustrate some SEM images of fabricated devices. The quality of the 

fabrication is clear in these figures. 

 

Figure  3-25 Magnetic Reed SW- a) minder shape support SW – width 60um and length 380 um 

b)SW – width 80um and length 400 um. 
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Figure  3-26 An Array of 2 Magnetic Reed SW – width 60um and length 370 um. 
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Figure  3-27 An Array of 2 Magnetic Reed SW – width 60um and length 370 um (side view). 

 

 

 

Figure  3-28 Magnetic Reed SW type 2 – width 60um and length 270 um. 
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Figure  3-29 Magnetic Reed SW with wide tip type 3 – width (w1: 20um, w2:60um) and length 

500um. 

3.2.4 Experimental Setup and Measurements 

In order to do the measurements, an experimental set up is prepared, which consists of: 

 Helmholtz coil 

 Custom-made stage 

 DC Probes 

 Microscope 

 Permanent magnets of various field strength 

 

A custom-built stage, fabricated in the machine shop, takes the measurements. The stage stands at the 

middle height of the coil, and its opening can be controlled in order to accept various dies of devices. 

The entire stage is made of aluminum, which will not affect the magnetic field in our measurements. 

A photo of the fabrication setup is shown in Figure 3-30. 
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Figure  3-30 Photo of measurement setup and stage. 

As shown above, a high magnification microscope is employed in this setup. The microscope has a 

small lens, so it can be placed directly above the sample. The picture is shown in the monitor 

connected to the microscope. In this study, measurements are done simply to test if the switches are 

actuated or not. In order to test this, a multimeter is used to measure the contact resistance of the line. 

In an unactuated switch, the resistance should be infinite and the multimeter should not show us 

anything. However, as soon as the switch is actuated and contact occurs, the multimeter should show 

some resistance, which is related to the contact resistance of the switch. 

In the first set of fabricated switches, no results occurred using this method. Even the upper beam 

was actuated mechanically by a microprobe, and no contact resistance was observed. The problem is 

caused by the imperfect release of the device. Most likely, some photoresist remains underneath the 

upper beam, which will isolate the upper beam from the lower one. In order to solve this problem, a 

new fabrication process is attempted, as discussed section 3.3.   

3.3 Tri-layer Magnetic MEMS Reed Sensors 

In order to overcome the fabrication problems of Ni-based MEMS sensors, we use a tri-layer of 

Au/Ni/Au magnetic MEMS reed switch/sensors, designed and fabricated on silicon. The reeds are 

multilayer nickel beams covered with gold, with dimensions of 300*60 microns. Several types of 

switches with different configurations are designed and successfully fabricated. A 2D and 3D FEM 

COMSOL 4.2 simulation is implemented to simulate the switch/sensor. Based on simulation results, a 

magnetic body force of 5 µN is achieved in a 10 mT magnetic field. This force is more than is 
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required to actuate the switch. The switches are tested in the lab under a constant magnetic field, and 

the test results discussed at the end of this section.  

 

 

3.3.1 Modeling and FEM Simulation 

COMSOL Multiphysics 4.2 is employed to simulate the tri-layer MEMS sensors.  Using COMSOL 

built-in physics (AC/DC module and structural mechanics) the magnetic physics is coupled to te 

mechanical force and displacement.   

As in the previous section, the MEMS switches are fabricated on wafers. The bottom electrode is 

fixed to the substrate (first-level layer) and cannot have any movement and displacement. Therefore, 

the only moving part in our design is the upper beam. Using the simulation results, and based on 

fabrication restrictions, we chose the bottom electrode thickness to be 4 microns. The resultant 

thickness of the upper beam is investigated for 3 microns and 1.2 micron. Based on the results in step 

1, the micron thickness beam shows more magnetic body force and has less mechanical restoring 

force due to being thinner. The gap in our design is assumed to be 1 micron, but larger gaps have also 

been studied. In order to maximize the actuation force and also reduce the effect of gold on the 

mechanical performance of switches, the gold thickness was chosen to be 100 nm in thickness.  

The beam lengths in the simulation portion of our work are assumed to be 100 microns, with a 50-

micron overlapping length between the two beams. The gap is assumed to be 1 micron.  A permanent 

magnet with different magnetization vectors has been placed in various positions and distances with 

respect to the switch.  Finally, the magnetic body force calculated in the AC/DC module is coupled to 

a structural mechanic module, and the beam’s load and movement are investigated. 

3.3.1.1 2D FEM simulation  

 A brief review of simulation steps, along with the results of each step, is discussed and shown 

below: 

A) Choosing the physics 

As our first step, we chose a 2D analysis system in COMSOL, and then selected the AC/DC module 

as a model navigator window. In the AC/DC module, we used magnetostatic fields with no current, 
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but later on added Plane strain analysis from a structural mechanics module. By selecting stationary 

analysis as our solving method, we can proceed to the design portion in a GUI window. 

B) Drawing system in GUI  

The second step is drawing the model in the model builder wizard. Objects of the system are 

sketched as follows: 

A large square of 2*2 mm is sketched and its boundary restricted to be magnetically insulated. This 

large square is assumed to be our working environment with the whole system within it. The material 

of this object is defined as air. From this point onward, we will refer to it as the ‘environment’. 

A 20*25 µm rectangle is drawn as a permanent magnet within the environment, with a corner of 

(130µm, 50µm) in a Cartesian plane. From this point onward, we will refer to it as the ‘permanent 

magnet’. 

The upper beam is sketched with a 1-micron thickness, a 100-micron length, and a corner of (0,0). 

The bottom electrode is then sketched with a 3-micron thickness, a 100 micron-length, and a corner 

of (-4µm, 48µm). 

The gap in our design is assumed to be 1 micron, but larger gaps have been also studied. Figure 3- 

31 a-c shows the modeled structure in GUI for the case of without packaging, with glass packaging, 

and gold beams with nickel tips with packaging. 
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Figure  3-31- The COMSOL geometry 2D sketch of MEMS read switches, for a a)tri-layer 

without packaging, b) tri-layer with glass packaging and c) nickel tip gold beams with the 

packaging 

By implementing the simulations in these conditions, we see that glass packaging and gold cover do 

not have much of an effect on device performance. The reason for this is that the H field passes 

through all non-magnetic material and does not see them in the way. Hence, they cannot have any 

effect on the H field interaction with a magnetic material.  
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Figure  3-32 the 2D COMSOL simulation for a tri-layer MEMS without packaging, this 

graph illustrates the vertical displacement of sensors beams in actuated condition (10 mT 

magnetic field). As shown above, the upper beam is experiencing a 4 um downward 

displacement which is 4 times greater than our 1 um designed gap.   
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As shown in Figure 3-35, the tri-layer MEMS sensor shows promising behavior in the desired 

magnetic field. The packaged sensors are discussed in greater detail in order to fully study the case in 

a real environment. In the study, the actuator permanent magnet is swept in the X, Y and Z directions. 

The performance map of the device is concluded and sketched using the results of this step. The 

schematic geometry of the full model sensor with packaging is shown in Figure 3-34 b. Figures 3-36 

to 3-37 show the coupled simulation of the full model sensors.  

 

 

Figure  3-33 Surface plot of magnetic field on Tri-layer MEMS Reed switch with packaging, as 

shown above, the sensing magnetic field for the actuation is 9-11 mT.  

As shown in Figure 3-36 the sensing magnetic field for the sensor actuation is around 10 mT. The 

surface plot of upper beam displacement and magnified projected out of place displacement of both 

beams are illustrated in Figures 3-37 and 3-28, respectively.  
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Figure  3-34 the surface plot of upper beam vertical displacement. 

 

The values in Figure 3-37 show the absolute displacement, disregarding the movement direction. 

Figure 3-38 shows a full displacement model with displacement direction. In Figure 3-38, the blue 

displacement corresponds to the upper beam, and the red one corresponds to the bottom electrode. 

Under real experimental conditions, the bottom electrode is fixed to the substrate and the upper beam 

is the only moving element in the sensor/switch. It should be noted that in all of the simulations, the 

glass packaging and beam supports are considered as fixed constraints.  
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Figure  3-35 magnified projected out of place displacement of both beams. The blue color is 

corresponded to upper beam with the downward movement whereas the red on is corresponded 

to the upward movement of the bottom electrode 

 

3.3.1.2 3D simulation of the MEMS Sensors 

To finalize the full model simulation a 3D simulation is implemented on the same sensor with the 

same dimensions and materials. The results are shown below. 
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In the simulation, the magnetostatic physic from AC/DC module is coupled to mechanical body force 

calculations. Thus, the total generated force on the upper beam can be tracked while the permanent 

magnet is sweeping in different direction. To get a 2D surface plot of the simulations, slicers are 

added in a post-processing module. The general solution of the simulation is presented in Figure 3-37. 

Figure 3-38 shows the generated force on the upper beam when moving the permanent magnet in the 

X direction.  

 

 

 

 

 

 

 

Figure  3-36 Simulation setup and 3D geometric design of MEMS read sensors.  
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Figure  3-37 Magnetic field distribution over sensor in an actuation step. 
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Figure  3-38 Generated force eon the upper beam. In the positions with negative value the 

actuation will happen. In this figure x axis represents x direction and the unit is micro meter.  

3.3.1.3 Performance Map of Sensors 

The working map of the sensors is achieved by moving the permanent magnet in X, Y, and Z 

directions. The generated forces are tracked in different positions and the one conducting to an 

actuation is picked. A summary of these results is presented in Figure 3-42. Note that this figure 

illustrates the general trend, and that the values will change based on the magnetic field of the 

permanent magnet and the size of the sensor beams. In Figure 3-39, the state in which the generated 

magnetic force is higher (with consideration of a safety factor) than the required mechanical force to 

actuate the switch is the CLOSED position. This region will always demonstrate the actuated 

sensor/switch condition. In the same figure, OPEN is the unactuated state of the switch, which 

contains regions with small generated magnetic force that cannot actuate the switch. Finally, HOLD 

is the distance range in which the generated magnetic force is in the same order as the required 

mechanical force. The sensor/switch in this region maintains the state of its previous region. 

Therefore, when sweeping from a CLOSED state to this region, the sensor/switch will maintain the 
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CLOSED condition, whereas it will maintain an OPEN condition in the opposite moving direction. 

The size of these regions will change according to sensor dimensions and external magnet intensity, 

but the performance trend will remain the same. 

  

 

 

Figure  3-39 Working map of the MEMS Reed sensors, a) when the poles of permanent magnet 

are in line with longitude direction of the sensor and its moving in that direction, b) when the 

pole of permanent magnet are perpendicular to the longitude direction of sensors and c) when 

the permanent magnet is in line with the sensor but it’s moving out of the plane far from sensor.  

3.3.2 Design Rules and Fabrication Process 

The same design rules as section 3.2.2 are applied here to design the samples. In order to reduce the 

fabrication complexity and increase the quality of the lithography and masking, a non-cyanide 
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Electroless plating (ELP) of gold is employed here. The ELP layer forms over the top of the copper 

and nickel. As the base layer here is nickel, ELP gold was successfully used to cover the nickel 

layers. Using ELP reduces the masking and lithography steps. Hence, in the 7-layer microfabrication 

of this work, only 4 masks are used, as reported in section 3.2.2.  

The fabrication is carried out on three 4-inch silicon wafers. After the RCA cleaning of the wafer, a 

0.5 micron of PECVD silicon oxide is deposited on three of the wafers (step a). This dielectric 

deposition has been done to ensure that the substrate is fully insulated. As the fabrication steps are 

similar to section 3.2.3, all steps are summarized in Figure 3-43, and the extra steps are discussed.  

 

Figure  3-40 Fabrication steps of trilayer MEMS Reed switches 

As shown in Figure 3-43, following Step A, a seed layer of Cr (50 nm)/Au (100nm) is deposited on 

the substrate. The Cr layer serves as an adhesive between the gold and the oxide (step b). In Step B, 

the first masks are patterned on the substrate using positive photoresist, after which the extra Cr/Au is 

wet-etched. Next, in Step C, 3 micro meters of nickel are electroless plated on top of the gold. Similar 

to section 3.2.3, the gold layers had to be agitated with oxygen plasma RIE before plating. The 
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substrate is then dipped into a gold ELP solution to form 100 nm of gold on top of the nickel. 

Afterwards, polyimide is spin-coated as the sacrificial layer and cured in the oven at 330 ͦ C for 2 

hours. After curing the polyamide, mask 2 (anchors) is patterned, followed by dry etching of the PI 

layer in RIE. Similarly, mask 3 (dimples) is dry etched in RIE. Finally, the upper beam is fabricated 

on top using the same steps as the bottom electrode. The only difference is that, after deposition of the 

gold seed layer, the final mask (mask 4) is patterned on it. Detailed fabrication steps with parameters 

are reported in Appendix C. The wafers are diced into individual die to ensure their release. EKC wet 

release is used to release the devices. As the nickel layers are covered by gold so they will not be 

damaged by EKC. After 15 minutes of release in EKC at 60  ͦC, the dice are moved and dipped 3 

times in IPA, each time for 15 minutes. At the end of third IPA dipping the dice are moved to the Co2 

critical dryer to prevent stiction. Figures 3-44 to 3-46 show the optical microscopic images of various 

devices made in this stage.  
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Figure  3-41 Optical microscopic image of trilayer MEMS Reed sensors a) 
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Figure  3-42 Optical microscopic image of trilayer MEMS Reed sensors b) 
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Figure  3-43 Optical microscopic image of trilayer MEMS Reed sensors c) 

3.3.3 Test and Experiment 

In order to do the measurements, an experimental set up is prepared, which consists of: 

 Helmholtz coil 

 Custom-made stage 

 DC Probes 

 Microscope 

 Permanent magnets of various field strength 

 

A custom-built stage, fabricated in the machine shop, will do the measurements. The stage will 

stand at the middle height of the coil, and its opening can be controlled in order to accept various dies 

of devices. The entire stage is made of aluminum, which will not affect the magnetic field in our 

measurements. As shown in Figure 3-33, a high magnification microscope is employed in this setup. 
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The microscope has a small lens, so it can be placed directly above the sample. The picture will be 

shown in the monitor connected to the microscope. In this study, measurements are done simply to 

test if the switches are actuated or not. In order to test this, a multimeter is used to measure the 

contact resistance of the line. In an unactuated switch, the resistance should be infinite and the 

multimeter should not show us anything. However, as soon as the switch is actuated and contact 

occurs, the multimeter will show some resistance, which is related to the contact resistance of the 

switch. The multimeter shows an open circuit in ‘off’ mode, but while we have 10 mT of magnetic 

field, a contact resistance of 20 ohm is measured. Figure 3-47 illustrates a schematic summary of this 

measurement. 

 

Figure  3-44 Summary of MEMS reed sensor actuation test 
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4 Chapter Four 

Giant Magneto-Impedance Thin film Magnetic Sensors 

4.1 Introduction 

Magnetic sensors play an essential role in modern technology. They are widely used in nearly all 

engineering and industrial sectors, such as high-density magnetic recording, navigation, military and 

security, target detection and tracking, antitheft systems, nondestructive testing, magnetic marking 

and labelling, geomagnetic measurements, space research, measurements of magnetic fields onboard 

spacecraft and biomagnetic measurements in the human body [16–20].  

A magnetic sensor directly converts the magnetic field into a voltage or resistance with, at most, a 

dc current supply, and the field sensitivity of a magnetic sensor plays a key role in determining its 

operating regime and potential applications. For instance, SQUID gradiometers with a high sensitivity 

of 10
-10

–10
-4

 Oe have been used for measuring field gradients or differences due to permanent dipole 

magnets in major applications of brain function mapping and magnetic anomaly detection. Induction, 

fluxgate and GMR sensors with a medium sensitivity of 10
-6

–10
2
 Oe have been used for measuring 

perturbations in the magnitudes and/or direction of Earth’s field due to induced or permanent dipoles 

in major applications of magnetic compasses, munitions fuzing and mineral prospecting. Hall-Effect 

sensors with a low sensitivity of 1–10
6
 Oe have been used for applications of non-contact switching, 

magnetic memory readout and current measurements. In addition to the sensitivity requirement, other 

factors affecting the practical uses of magnetic sensors include processing cost and power 

consumption. When comparing the processing costs and power consumption of existing magnetic 

sensors, the GMR sensor shows the lowest cost and power consumption. However, the field 

sensitivity of the GMR sensor is rather low (~1%/Oe). 

Recently, the development of high-performance magnetic sensors has benefited from the discovery 

of a new magnetic phenomenon – the giant magnetoimpedance (GMI) (i.e., a large change in the ac 

impedance of a magnetic conductor with an ac current when subjected to an applied dc magnetic 

field), in metal-based amorphous alloys [21[,[22]. It has been demonstrated that magnetic sensors 

based upon the giant magnetoimpedance (GMI) effect offer several advantages over conventional 

magnetic sensors. The decisive factor is the ultra-high sensitivity of GMI sensors. When compared 

with a GMR sensor that has a sensitivity of ~1%/Oe, the field sensitivity of a typical GMI sensor can 

reach a value as high as 500%/Oe [17],[20]. Though the development of GMI sensors is still at an 
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early stage, it is likely that their low prices and high flexibility will warrant wide-ranging application 

in the near future. 

Historically, GMI has attracted particular interest in the scientific community only since Panina and 

Mohri for the first time announced their discovery of the so-called GMI effect in Co-based 

amorphous wires in 1994 [15],[19]. In actual ferromagnetic materials, the maximum value of the GMI 

effect experimentally obtained to date is much smaller than the theoretically predicted value [18]. 

Consequently, research in this field has focused mainly on special thermal treatments and/or on the 

development of new materials for properties improvement [15],[24-34]. In order to design and 

produce novel GMI sensors, a thorough understanding of the GMI phenomena and the properties of 

GMI materials, with an emphasis on how a magnetic sensor utilising the GMI effect can be best 

designed for technological applications, is indispensable. The next section aims to provide a 

comprehensive analysis on the theory, design and fabrication of GMI Thin film magnetic sensor and 

its potential applications. 

4.2 Theory  

Based on the frequency (f) of the driving ac, the giant magnetoimpedance can generally be 

classified into the following frequency regimes:  

(i) Low-frequency regime (up to a few kHz), where the changes in voltage at the sample’s ends are 

mainly due to the so-called magnetoinductive effect [21]. The skin effect is very weak in this case. 

The change in the impedance of the sample upon application of the applied field (Hdc) results mainly 

from the contribution of inductance (L), which is proportional to the circumferential permeability (l/) 

for a cylindrical magnetic conductor (i.e., a magnetic wire) or the transverse permeability (lT) for a 

planar magnetic film (i.e., a magnetic ribbon) [21],[30]. 

(ii) Intermediate frequency regime (between _100 kHz and a few MHz), where GMI originates 

mainly from the variation of the skin depth due to strong changes of the effective magnetic 

permeability caused by the applied dc magnetic field. It is noted here that, depending on sample 

geometry, the GMI profile can reach its peak in the intermediate frequency range (e.g., 100 kHz to 10 

MHz), as a consequence of the contribution of the permeability from both domain wall motion and 

magnetization rotation to GMI. Reduction in GMI at higher frequencies is related to the domain walls 

becoming strongly damped by eddy currents and only magnetization rotation contributes to GMI. 

(iii) High-frequency regime (several MHz up to GHz), where the origin of GMI is believed to be 

related to the gyromagnetic effect and ferromagnetic relaxation. The maxima in GMI profiles are 
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shifted towards higher fields, where the samples are already saturated magnetically [21],[29],[34]. 

Strong changes in skin depth are caused by the same mechanism as in the ferromagnetic resonance. 

There are theoretical various models of GMI representing each of the above-mentioned frequency 

ranges. In this research, we employed and modified one famous and one generic model.  

The advantageous features of the MI effect in a multilayer film can be illustrated by considering the 

simplified three-layer structure shown in Fig. 4-1. A film of a width b (y-axis) and a length l (z-axis) 

is composed of an inner conductive lead (M) of a thickness 2d1 and two outer ferromagnetic layers 

(F) of a thickness d2. An AC current I = I0 exp(−jωt), flowing in the length direction mainly along 

the conductive lead if its conductivity (σ1), is much larger than the conductivity of the ferromagnetic 

layers (σ2). The F-layers are assumed to have a transverse in-plane magnetic anisotropy. A DC 

magnetic field 𝐻𝑒𝑥 is applied parallel with the current. For 𝐻𝑒𝑥smaller than the anisotropy field 𝐻𝐾, a 

transverse stripe exists as the main structure, as shown in Fig. 4-1b. Magnetic anisotropy is the 

dependence of the magnetic properties on the direction of the applied field with respect to the crystal 

lattice. It turns out that depending on the orientation of the field with respect to the crystal lattice one 

would need a lower or higher magnetic field to reach the saturation magnetization. The effect of this 

anisotropy field is studied further in chapter 5.  

 

Figure  4-1 Schematic drawing of multilayer MI element, a) cross sectional view b)top view [37]. 

First, we consider a case where the film width, b, is sufficiently large and the edge effect can be 

neglected [14], which is valid if b ≫ 2λ, λ2 = d1d2µt, µt is the transverse permeability. Within this 
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approximation, all of the variables depend on the thickness in the film (x) only. The permeability 

tensor, µ̂, averaged over domains, has a quasi-diagonal form withµyz = µzy = 0. Maxwell’s equation 

can be satisfied by considering the electric field (ez), and the magnetic field (hx, hy) with the 

condition for the magnetic induction bx = 0, and the boundary condition hy(±d) = ±
2πI

cb
    (d =

d1 + d2). The impedance can be written in a general analytical form as: 

 

Z = Rf(x1, x2)(ξx1 + x2), 

 

f(x1, x2) =
coth x1 coth x2 + ξ

coth x1 + ξ coth x2
       x1 =

(j − 1)d1

2δ1
,     x2 =

(j − 1)d2

δ2
, 

 

 ξ2 =
σ1µt

σ2
,   δ1

2 =
c2

2πωσ1
,    δ2

2 =
c2

2πωσ2µt
 .      

    

 

 

(33) 

  

 

Here, R is the DC resistance and will be defined by (34)  µt = µyy + µyx
2/µxx [31]: 

R =
l

2b(d1σ1 + d2σ2)
 

 

(34) 

 

C is the velocity of light (Gaussian units are used). A low frequency (x1, x2 ≪ 1) expansion of 

Equation (33) together with the condition d1σ1 ≫ d2σ2 yields a simple form for the impedance: 

Z = Rm (1 − 2jµt

d2d1

δ1
2 ),           Rm =

l

2bd1σ1
. 

(35) 

 

In this approximation, the contribution of the magnetic layers to the sandwich impedance is 

described by the external inductance with respect to the inner layer. For the sandwich of a submicron 

thickness, this is a reasonable approach for frequencies up to several gigahertzes. It may be compared 

with MI in a single magnetic layer in which a large magnetic response of Z is possible only in the 

case of a strong skin effect (x2 ≫ 1), when Z ∝  1 σ2
⁄ ∝ √ωµt. 
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On the other hand, the MI effect in a sandwich film can be very large even at relatively low 

frequencies when the skin effect is not essential, having a linear dependence on µt. 

According to rotational magnetization model [32], µt will define as: 

 

µt = 1 + (
4πMs

Hk cos2Φ + Hext sin 2Φ
) sin2 Φ 

sinΦ = {

Hext

Hk
, Hext ≤ Hk

1,                Hext > Hk

 

 

 

(36) 

 

At moderate frequencies (ω <  ωK  =  γHK, γ is the gyromagnetic constant), the field dependence 

of µthas a maximum at Hex = HK.  

 

 For a frequency of 10 MHz, taking d1 = d2 = 0.5 µm and σ1 = 2 × 1018  s−1 (conductivity of 

copper), the parameter 
d1

δ1
=

d2

δ1
= 0.045.  

A typical low frequency change in µt(having a rotational mechanism) under application of Hex ≅

HK = 10 Oe is from1 to 103. Thus, according to Equation (35), the impedance varies over 400%. 

The MI characteristics are found in Equation (33), where the transverse permeability µt is 

considered to be due to the magnetization rotation only, assuming that the wall motion is already 

strongly damped. The tensor of the rotational permeability is obtained from the linearized Landau–

Lifshitz equation [20]. Figure 4-2 shows the MI ratio for Hex = HK defined as 
∆Z

Z
=

|Z(H)−Z(0)|

|Z(0)|
 as a 

function of reduced frequency v = ω
ωδ⁄   (ωδ =

c2

2πd2σ2µk
     µk =

4πMs

HK
), for various values of the 

structure parameter d1/d in (a) and the conductivity ratio σ1/σ2 in (b) (calculations for d1 =

0.5 µm,0.15 µm, and 0.05 µm; d2 = 0.01d1 − 100 d1 

Min b = 20λ, Max d2  = 
d1σ1

50σ2
).  

Figure 4-2a is related to CoSiB/Cu/CoSiB sputtered films. In the case of two identical magnetic 

layers (d1 = 0), a large MI is seen at frequencies of a strong skin effect v ≅ 1 (about 60 MHz for d = 

1 μm.) with the maximal value of 67% at v ≅ 2.7. For the same total thickness, 2d, utilization of a 

Cu-layer considerably improves the MI performance: the impedance changes of more than 50% are 
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seen for frequencies of an order of magnitude smaller (v ≅ 0.1), and the maximum of 
∆Z

Z
 is several 

times larger. For 
d1

d
= 0.3 and v = 0.28, the impedance change reaches a maximum of 470%. 

 

Figure  4-2 Plots of the MI ratio vs. reduced frequency 𝐯 = 𝛚
𝛚𝛅⁄  for a number of parameters 

𝐝𝟏/𝐝 in (a) and 𝛔𝟏/𝛔𝟐 in (b).Typical parameters used for calculation 

are:𝟒𝛑𝐌𝐬 = 𝟔𝟎𝟎𝟎 𝐆,𝐇𝐊 = 𝟗 𝐎𝐞, 𝛔𝟐 = 𝟒. 𝟓 × 𝟏𝟎𝟏𝟔 𝐬−𝟏  . To avoid the divergence of 𝛍𝐭 at 

𝐇𝐞𝐱 = 𝐇𝐊𝐚𝐧𝐝 𝛚 = 𝟎 , a small anisotropy deviation in 5° from y-axis is introduced, the spin 

relaxation constant is taken to be 0.2. These magnetic parameters are used for all of the 

calculations [32]. 

The plots of 
∆Z

Z
 for various conductivity ratios, shown in Figure 4-2a, demonstrate that the maximum 

value of 
∆Z

Z
 increases considerably even for σ1 just several times higher than σ2, but a giant MI effect 

occurring at low frequencies v ≤ 0.1 requires σ1/σ2 > 10.  

If the film thickness is further decreased (< 0.1 𝑢𝑚), the MI ratio considerably drops to about 15-

20%, since the MI effect even for a sandwich structure shifts to higher frequencies where the 

sensitivity to the field of the rotational permeability decreases. Figure 4-3 shows the theoretical field 

dependencies of 
∆Z

Z
 for d=0.1um, with a reduced frequency as a parameter. They exhibit a maximum 

for Hex of the order of HK, reflecting the field behavior of the transverse permeability. For a 

frequency v=0.16 (about 300 MHz), the largest for this case, MI ratio of 14.3%, is obtained at 

Hex = 1.3HK. 
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Figure  4-3 The MI ratio as a function of 𝐇𝐞𝐱 for two frequencies v=0.04 and v=0.16, d=0.1um, 

𝛔𝟐 = 𝟏. 𝟕 × 𝟏𝟎𝟏𝟕𝐬−𝟏and 
 𝛔𝟏

𝛔𝟐
= 𝟏𝟐(related to NiFe/Cu/NiFe) [32]. 

 

4.2.1.1 Dependency to width of the strip (b) 

Figure 4-4 shows the plots of the MI ratio vs. frequency with the film width as a parameter, while its 

thickness is fixed at d=0.5 um and 
d1

d
= 0.5. The calculation corresponds to CoFeSiB/Cu/CoFeSiB 

films[32]. For a sandwich 100um wide, the result is very close to that obtained from the exact 

solution Equation (33) for an infinite film. With decreasing b, the MI ratio drops and its maximum 

shifts to higher frequencies. At frequency v=1 (around 250MHz), 
∆Z

Z
 of a 100um-wide film has a 

maximum of 360%, whereas a 10um-wide film shows only 75%. For these dimensions and 

frequencies, and Hex ≅ HK, the characteristic parameter λ is estimated to be about 3um. Hence, 

b=10um is comparable to 2λ. In general, the AC demagnetizing effect in the multilayer structures 

essentially reduces the MI ratio if the film width but does not satisfy the condition of b ≫ 2λ.[32] 
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Figure  4-4  Plots of the MI ratio vs. frequency with the film width as a parameter: d=0.5 um 

and d_1=d_2. The calculation is related to CoFeSiB/Cu/CoFeSiB films [37]. 

Based on the theoretical model, a simulation has been done to design samples with pick impedance 

change at 10 Gausses. According to the simulation, two types of samples were designed, as follows: 

 Meander type structures 

1 mm × 0.5 mm dimensions 

Metal trace width: 10, 20, 50, and 100 μm 

CoSiB overlap over the metal trace: 10, 20, and 30 μm 

 Straight wire test structures 

10 mm length 

Metal trace width: 10, 20, 50, 100, and 200 μm 

CoSiB overlap over the metal trace: 10, 20, 50, 100, 200, 400, and 1400 μm 

Simulation results for 1 mm x 0.5 mm resistors:  

0.6 um Ag thickness, 200 um line pitch, R = 0.1 ohm, delta(Z) = 90% f = 10MHz. 

60 nm Ag thickness, 40 um line pitch, R = 200 ohm, delta(Z) = 1% at f = 10MHz. 

It should be noted that changing Ag to Au will have the same results and will even improve the MI 

ratio.  
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4.3 COMSOL FEM Simulation 

In 2002, Dong [46] presented an analytical model for the permeability change in Giant magneto-

impedance metallic glass materials over a frequency and external magnetic field. This analytical 

model is derived from the Launda-Liftshitz equation. In order to set up the COMSOL simulation, we 

used the permeability equations to calculate the real and imaginary permeability factors. The results 

are shown in Figure 4-5 and Figure 4-6.  

 

Figure  4-5- The calculated dependence of μ’; the real part of effective permeability, on applied 

external magnetostatic field Hext 
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Figure  4-6 The calculated dependence of μ”; the imaginary part of effective permeability, on 

Hext 

After calculating these two variables in MATLAB, the data of these two graphs was fed to COMSOL 

to solve the GMI equations. In the COMSOL simulation, an AC/DC module is employed with the 

magnetic and electrical field activated. In order to make it easier for simulation, the meander-shaped 

devices were assumed to be linear and their total length projected in a linear multilayer GMI 

structure. A frequency range of 200 kHz to 40 MHz is simulated in this work. In the simulation setup, 

the AC current is passing the conductive layer (Au) from the upper and lower planes, while the other 

boundaries are set to insulation. The simulation results are illustrated in the following figures. Figure 

4-7 shows the circumferential magnetic flux of the sensor at 1 MHz. This magnetic flux is a result of 

the current density inside the device.  
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Figure  4-7 Circumferential magnetic flux of the sensor at 1 MHz 

In order to see the current density inside the device and study its distribution, the current density on a 

cross session area is plotted in Figure 4-8. The figure reveals the skin effect in this structure. It is 

obvious that the current tends to pass through the edges of the cross section area. Another interesting 

point in this graph is the leakage of the current from the conductive material to the magnetic one. This 

leakage and accumulation of portion of the current on the edges of the magnetic layer causes the 

increase in the impedance in higher magnetic fields and frequencies. This leakage is the cause of MI 

phenomena in multilayer structures.  
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Figure  4-8 Current density distribution along the cross section under the external field of 2400 

A/m 

Figures 4-9 to 4-14 show the calculated impedance for different frequencies.  
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Figure  4-9 Simulation results for impedance of the GMI sensor at 200 kHz 
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Figure  4-10 Simulation results for impedance of the GMI sensor at 500 kHz 
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Figure  4-11 Simulation results for impedance of the GMI sensor at 1 MHz 

 

 

Figure  4-12 The impedance of sample for different ac frequencies under various external 

magnetic fields. 
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4.3.1 Study the effect of thickness 

 

 

 

Increasing the length has a significant effect on increasing the MI ratio. However, increasing or 

decreasing the width does not have any effect, as long as the overlap remains constant. 

Figure  4-13  Left) impedance of R-50-30 GMI sensor with 2 um thickness at 1 MHz, Right) 

impedance of R-50-30 GMI sensor with 1 um thickness at 1 MHz, 

 

Figure  4-14 Left) impedance of GMI sensor with 2 um thickness at 500 kHz, Right) impedance of GMI sensor with 1 um thickness at 500 kHz, 
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4.4 Fabrication Process 

4.4.1.1 Material Research 

The GMI layer used in this research is CoSiB, and the deposition of this material was done using a 

sputtering process. As fabrication of this material is new to CIRFE and UWATERLOO, a 

characterization process was done to develop the fabrication process. The characterization process is 

reported below: 

Deposition rate determined for 2 recipes 

o DC Sputtering Recipe #1: 1.67 Å/s   

o Pressure = 1.5 mTorr (15 SCCM Ar flow) 

o Power = 300 W 

 

o DC Sputtering Recipe #2: 3.1 Å/s   

o Pressure = 1.5 mTorr (15 SCCM Ar flow) 

o Power = 600 W 

Adhesion properties 

o No adhesion layer is required 

o The samples survived the adhesive tape test on both glass and Si wafers 

 

Etching process developed 

o Less than 1 um undercut 

o Features as small as 10 um can be fabricated 

o Etchant: Ni Etchant Type I Transene + BHF dip 

 

Etchant selectivity is very poor 

o Etch rate in gold etchant: > 12 nm/s 

o Etch rate in Cr (CR14) etchant: > 12 nm/s 
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Electrical resistivity determined: 18.7 µΩ.m 

4.4.1.2 Fabrication Process 

The fabrication sequence is illustrated in Figure 4-15: 

 

Figure  4-15 Fabrication process sequence of GMI samples. 

GMI thin film magnetic sensors were fabricated on 3-inch glass wafers. At the outset of the 

fabrication process, the wafers were placed for RCA cleaning, after which the deposition of CoSiB 

using the intelvac deposition system was done. The deposition is performed as a DC sputtering in 

1.5mTorr (15 SCCM Ar flow) pressure and with 600W of power. The measured deposition rate was 

3.1 Å/s. In the next step, the deposited CoSiB layer was patterned using positive photoresist; 

unwanted parts were etched away using a Ni etchant. The accuracy of the patterning step yielded a 

10-um feature size. Following the characterization of the wafers in this step, 2um of undercut was 

observed, as shown in Figure 4-16.  



 

 82 

 

Figure  4-16 Undercut of CoSiB sample. 

 

A thin film adhesive layer like Ti needs to be deposited on top of the wafers. This layer is also 

needed to save the CoSiB layer from etching by an Au etchant; otherwise, the wet-etching of the layer 

will be unsuccessful, as the CoSiB layer is attacked by Au etchants at rates faster than Au. A thicker 

Ti barrier/stiction layer is required that will undermine the potential performance of the device. 

Therefore, in this step, a Ti/Au/Ti metal layer is deposited and patterned. Afterwards, Gold 

resistivity, measured by the Van der Pauw method and with a sheet resistance equal to 92 mΩ. 

Ti/Au/Ti, is patterned, using the lift-off process. It should be noted that the kwik strip solution mildly 

but negligibly attacked the CoSiB layer.  

Optical images of fabricated GMI samples are shown in Figures 4-17 and 4-18. In Figure 4-17, the 

two different types of samples are illustrated. These devices have the following design rules: 

o Meander type structures 

 1 mm × 0.5 mm dimensions 

 Metal trace width: 10, 20, 50, and 100 μm 

 CoSiB overlap over the metal trace: 10, 20, and 30 μm 

o Straight wire test structures 

 10 mm lenght 

 Metal trace width: 10, 20, 50, 100, and 200 μm 
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 CoSiB overlap over the metal trace: 10, 20, 50, 100, 200, 400, and 1400 μm 

 

Figure  4-17 A view of one batch of fabricated sensors. Two categories of devices are shown in 

this figure. 

 

Figure  4-18 Various types of minder shape GMI sensors. 

 

 

 



 

 84 

4.4.2 Test Setup and Measurement 

The devices are tested using a custom-made experimental setup. An external magnetic field is 

exerted, employing a Helmholtz coil. The custom-made setup is fabricated with aluminum which, 

because it is not a magnetic material, will not affect the magnetic flux streams of coil. The other 

instruments employed as setup components are 4 DC probes with micro-positioners and an optical 

microscope. Figure 4-19  shows the setup components. 

 

Figure  4-19 DC probes and measuring the variation of impedance under magnetic field in GMI 

samples. 

The impedance is measured with two different methods and systems and the results are compared at 

the end. The first method is a 4 point probe measurement using oscilloscope and second one is using 

an advance precision impedance analyzer from Agilent.  
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4.4.2.1 Impedance measurement with Oscilloscope  

The impedance measurement setup includes a function generator, an oscilloscope, and one known 

resistor in the order of DUTs (device under test) resistance. Figures 4-20 and 4-21 illustrate a 

schematic of the measurement setup and a picture of the measurement setup, respectively. 

 

Figure  4-20 Schematic of measurement setup. 

 

Figure  4-21 The measurement setup. 



 

 86 

To measure the impedance of the system, a known resistor is connected in series with the DUT, and 

the voltage drop over the sample and the resistor is measured. (Note that the DUT and resistor 

currents can be calculated from the voltage drop over the resistor.) The DUT impedance is 

subsequently calculated from the device’s voltage and current. Using this setup, 𝑉𝐷𝑈𝑇 and 𝑉𝑅  are 

captured and then processed in MATLAB to calculate the impedance and phase of the signal. The 

impedance of DUT is calculated using Equation (37): 

 𝑍𝐷𝑈𝑇 = 𝑅
𝑉𝐷𝑈𝑇

(𝑉1 − 𝑉𝐷𝑈𝑇)
 

 

(37) 

 

4.4.2.1.1 Experimental results 

Some of the samples were tested under the magnetic field and various frequencies. The results are 

shown in Figures 4-12 to 4-14. 

 

Figure  4-22 Impedance magnitude and phase of Device R10-40-1. 
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Figure  4-23 Impedance magnitude of Device R10-40-1 at1 and 10 MHz. 

 

Figure  4-24 Impedance magnitude of Device 50-30 at1 and 10 MHz. 
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4.4.2.1.2 Discussion and Conclusion 

o The measured impedance and phase of the devices increases with signal frequency 

due to enhanced inductance of the line. 

o At f = 1 kHz, the impedance of the devices does not increase with applied magnetic 

field. 

o When the impedance and phase are calibrated (using short and open measurements), 

the same trend is observed in impedance magnitude but not in the phase. 

o The measured / calibrated impedance of the device at 10MHz is not valid, as after the 

calibration, negative impedance is achieved for the phase. This is due to the parasitic 

inductors of the measurement setup having higher impedances values compared to 

the device.   

I- Slight increase of the impedance magnitude is observed at the 5-10 G external magnetic field 

o The impedance change is less than 1% for R10-40-1 design at 1 MHz. 

o The impedance change is less than 5% for R5030 design at 1 MHz. 

o The impedance measurement may not be valid at 10 MHz due to measurement setup 

parasitics. 

II. To find an alternative way to magnetize GMI material, we started some preliminary tests. Our 

preliminary test with ferromagnetic materials showed that we can make them like a 

permanent magnet by annealing them under magnetic field. Thus, we studied the effect of 

thermal and magento thermal treatment on our fabricated samples, the results of which are 

reported in Chapter 5. As a result of the characterization study, we ended up performing a 

magneto-thermal treatment on our samples. The treatment parameters time, temperature and 

magnetic field all have a corresponding effect on the device performance. During high 

temperature annealing, the magnetic domains in ferromagnetic material were expected to lose 

their walls and fall in line with the external exerted magnetic field. A schematic of the 

magnetization the occurred in the annealing step is shown in Fig 4-25. One of the main 

challenges here would be protecting the thin films from becoming oxidized in the hot 

temperatures. This challenge has been overcome by performing the annealing in nitrogen 

ambient. An Energy-dispersive X-ray spectroscopy (EDX) confirms the negligible oxidation 

after the process. Applying this process will reduce the cost and workload of the fabrication 

process. 
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Figure  4-25 Schematic of magnetization process in magneto-thermal annealing step 

 

The fabricated set of sensors was first annealed in a nitrogen environment furnace at 300 °C for 

three hours, with two 1000-G high temperature permanent magnets located under the samples. By 

performing the same measurement in these samples, and as reported in Figures 4-24 and 4-26, there is 

a marked improvement in the change of impedance. The preliminary measured results after annealing 

are illustrated in Figure 4-26.  Here, it can be seen that the GMI R-50-30 samples at 200 kHz and 500 

KHz measurement frequencies exhibit increased impedance magnitudes of 36% and 45%, 

respectively; in contrast, R-40-10 shows increases of only 17% and 21% at these frequencies. These 

data show promising improvements from the measured data before the post-processing step.  



 

 90 

 

Figure  4-26 Measured impedance of two different GMI devices with different dimensions. As 

expected, the sensor demonstrates a substantial increase in impedance at higher excitation 

frequencies. 

 

We propose developing the annealing process and optimizing its parameters for GMI magnetic 

sensors. The detailed study on this optimization and characterization can be found in the next chapter. 

The intended function of these sensors is to enable or disable a logic circuit. 

The fabricated device will be mounted on a Wheatstone bridge. Exposure to a magnetic field of 10 

G will cause the sensor impedance to change and the Wheatstone bridge to assume an unbalanced 

position. As a result of this instability, an On/Off circuit will be activated. The Wheatstone bridge and 

the DUT in its system are shown in Fig. 4-27. To achieve better sensing accuracy, the circuit can be 
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designed as unstable by default. Thus, by inserting a magnetic field when the sensor is sensing the 

desired amount of field, its impedance will increase and the bridge will achieve a stable condition, 

which will cause the current G to become zero. The reported results show a satisfying range of 

impedance change for the Wheatstone bridge’s proper performance. 

 

Figure  4-27 Wheatstone bridge and DUT in final sensor. 

 

The integration will help create a 0/1 digital sensor for a narrow band of the magnetic field. The result 

will yield two types of sensors: one with high sensitivity, and one with low sensitivity. In a high 

sensitivity sensor, the bridge is normally unstable and the circuit is off; when the GMI sample reaches 

the desired impedance (which is a function of the magnetic field), the bridge will go to stable mode 

and the circuit will be on. When the device is turned on, a logic circuit will run and let us know that 

our exact desired field is sensed. In low sensitivity mode, the bridge will be normally stable and 

therefore the circuit normally on. After sensing a known amount of magnetic field and above, the 

impedance will change and break the stable mode. At this point, the circuit will go off and we will be 

notified of the existence of a measurable range of magnetic field around the sensor.  

In order to ensure the quality of the measurement in this section, an Agilent precision impedance 

analyzer E4990A is employed. A detailed study of measurements using this device is reported in the 

next section. 
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4.4.2.2  Impedance Measurement Using Agilent Precision Impedance Analyzer 

E4990A 

 Agilent E4990A is a precision impedance analyzer with the ability to do measurements in a sweep 

frequency range of 20Hz to 120 MHz. This device empowered us to do the measurements in different 

frequencies and compare the results with the old measurements. Below, a summary of measurement 

results is presented.  

 

 

 

In order to see the effect of frequency at a constant magnetic field, one can slice the graph at the 

desired magnetic field. To see the impedance changes at a constant frequency, the same slicing can be 

done on a 3D graph at the desired frequency. Figure 4-29 shows the changes in impedance at a 

constant magnetic field. As shown in the figure, frequency increases result in impedance increases. It 

is also notable that the frequency effect on impedance has almost the same trend for different 

magnetic fields. From this graph, if we cross a vertical line at 500 kHz, the data from Table 4-1 can 

be captured.   

Figure  4-28 Impedance of GMI sample, R-50-30, measured in different magnetic fields in a frequency sweep of 

150 Hz to 10 MHz 
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Figure  4-29 Measured impedance for R-50-30 (this is the same sample as previous section) at 

constant external magnetic fields over a frequency sweep 

 

Table  4-1 Impedance Values for GMI R-50-30 at 500 kHz Measured with Agilent Impedance 

Analyzer 

Frequency 0 G 5 G 8 G 10G 15 G 20 G 

5.00E+05 16.95 

ohm 

17.76 

ohm 

22.46 

ohm 

27.07 

ohm 

24.91 

ohm 

19.30 

ohm 

 

It should be noted that in order to compare the measured value with the previously measured data 

from the other method, the same sample is tested here. Table 4-2 shows the measured value of this 

sample with Oscilloscope measurement. Using the data in these two tables, Figure 4-30 illustrates the 

impedance graph of this sample measured in each method. 
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Table  4-2Measured Values for GMI R-50-30 in Oscilloscope Measurement of Impedance 

 R-50-30  500khz   

B R(ohm) V1(V) V2(V) V1-V2(V) R short (ohm)t Z (ohm) 

0 20 3.6 1.98 1.62 7.75 16.69444 

5 20 3.6 2.02 1.58 6.36 19.20962 

10 20 3.32 2.06 1.26 6.36 26.33841 

15 20 3.32 1.98 1.34 6.5 23.05224 

20 20 3.6 1.98 1.62 6.44 18.00444 

short condition:  2.32 0.56 1.76 6.363636  

 

 

 

 

 

 

 

 

 

 

 

 

To make a better comparison, both of these graphs are depicted in the same graph in Figure 4-25, 

along with simulation data for the same sample in the same frequency. As shown in the figure, the 

simulation results are in a good agreement with the measured values of the two methods.  
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Figure  4-30 The measured impedance for GMI R-50-30 which suing both measurement methods. 
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Figure  4-31 A comparison of 3D simulation for GMI R-50-30 and the measured impedances 

captured with Impedance analyzer (Blue) and Oscilloscope (Red)  

After characterizing the post-processing (the details of which are reported in next chapter), sample R-

50-30 was processed in the optimal treatment condition. This optimal processing is a magneto-

thermal treatment of sample at 550 ͦ C for 3 hours in nitrogen ambient. Two ultra-high temperature 

permanent magnets with magnetic field of 1000 G were place under the die of sample.  Figures 4-26 

and 4-32 show the new measured values for the impedance of this sample.   
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Figure  4-32 Measured impedance for R-50-30 (this sample is post process at the optimal 

processing condition) at constant external magnetic fields over a frequency sweep 

 

 

Figure  4-33 Impedance of R-50-30 sample annealed in optimized condition 
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Figure 4-33 shows an MI ratio of 141%. This is a tremendous improvement in impedance value of the 

sample with respect to the unprocessed sample and the previously processed samples. Figure 4-34 

shows a comparison of measured impedance and MI ratio for R-50-30 in respect to simulations 

results for higher frequencies.  

 

Figure  4-34 Comparison of experimental measurement and simulation results for frequency 

range of 1 MHz to 10 MHz.  

 

Figure 4-35 shows the dependency of MI ratio and impedance to frequencies in higher frequencies.  
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Figure  4-35 Maximum GMI as a Function of frequncy 
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5 Chapter Five 

Characterization of GMI material- CoSiB 

In this chapter, CoSiB alloy is developed to enhance the performance of multilayer thin film GMI 

sensors. The material is investigated for several different post-processing thermal and magneto-

thermal treatments, which are categorized to study the effect of temperature, time, and the existence 

of an external magnetic field. The prepared samples are tested with various magnetics and material 

characterization tools in order to obtain a detailed understanding of the process and its effects. The 

post-processing shows a significant impact on the magnetic properties of the material. The causes of 

this impact are studied in detail. It is shown that CoSiB with enriched magnetic properties has some 

nano-clusters of cobalt in its amorphous matrix structure. The post-process technique can be 

employed to facilitate cost-effective fabrication of GMI structures in conventional micro-fabrication 

facilities.  

5.1 Introduction 

Sensor technology is one of the most attractive topics to scientists today, both in academia and in 

the industry [1]. Magnetic sensors are widely employed in various technological fields such as 

geology, aeronautics, maritime navigation, and the automobile and medical sectors [1-6]. The keen 

interest in developing reliable, accurate, and miniature sensors makes giant magnet-impedance (GMI) 

sensors an ideal solution. A giant magneto-impedance phenomenon is the change in impedance of a 

high-permeability material with a DC magnetic field. This occurs due to the skin effect and skin depth 

changes in different frequencies [5-10]. 

The GMI effect has been extensively studied in ferromagnetic wires and ribbons because of the 

main applications of sensing [6-8]. Recently, some multilayer GMI sensors that take advantage of 

thin film technology were introduced [3, 9-13]. Because of the dimensions of the thin films, the recent 

multilayered sensors have enhanced sensitivity to the skin effect and could show better results even at 

lower frequencies [9-12]. 
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In a multilayer GMI structure, a conductive layer is sandwiched with layers of GMI material and 

will exhibit changes in the impedance upon sensing an external magnetic field. The GMI material in 

these structures is magnetized toward the easy axis of the device. The fabrication process of the layers 

and devices is a unique and highly expensive process that prevents the use of normal microfabrication 

machines [5, 6, and 8]. This makes them unattractive from an industry perspective. 

On the other hand, beyond the study of giant magneto-resistive sensors from a materials point of view 

[14, 15], many studies have been carried out on the characteristics of GMI material, with the end goal 

of discovering an alternate (i.e., less ‘exotic’ and thus more cost-effective) fabrication method for 

these structures. In our previous work [44 and 45], we fabricated and reported on a multilayer GMI 

sensor with conventional microfabrication, and did a post-process procedure on devices to expose the 

GMI phenomenon. In this study, an extensive post-processing study has been implemented on the 

GMI material CoSiB, and the characterization results are reported and discussed.  

5.2 Fabrication and Post-Processing 

In this study, a CoSiB amorphous metallic alloy is deposited and investigated. The alloy employed 

in this study is Co73S12B15, but we later find that the same behavior is expected for the same family 

of material. The alloy has been sputtered in a DC magnetron sputtering system. Sputtering was 

performed in Ar plasma at a pressure of 1.5 mTorr and 600 W of DC power at a rate of 3.1 Å/s. 

Three-hundred nm of material was deposited on a glass wafer, after which the wafer was diced to 1 

by 1 cm dies. 

In order to perform a meaningful study on post-processing effects, we examined the effects of 

thermal treatment versus those of magneto-thermal treatment. We also studied the effects of 

annealing dwell time and temperature on the structure: The post-processing was carried out in two 
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main categories: a) thermal treatment, and b) magneto-thermal treatment. In each category, the 

samples are processed over two different dwell times: 3 and 4 h. Furthermore, in each category, the 

thermal treatments include annealed samples in 300 to 700 °C, with 100 °C increments. The 

annealing process was done in a clean room using a high-temperature oven with nitrogen ambient. 

The detailed processes of the samples are as follows: 

a) thermal treatment: 

In the thermal treatment, the samples are annealed in the oven with nitrogen ambient in dwell 

temperatures of 300, 400, 500, 600, and 700 °C. The rise time of all annealings was 1 h, and the dwell 

times were 3 and 4 h. The samples were then cooled to room temperature. 

 

b) magneto-thermal treatment: 

In the magneto-thermal treatment two 1000 G high-temperature permanent magnets were placed 

under the dice of the samples in the oven provided with the external DC magnetic field during the 

annealing process. With this DC magnetic field, the same thermal process as discussed in a) was 

implemented on a batch of samples.  

5.3 Magnetic Characterizations 

After the post-processing, all the samples were characterized to identify their magnetic properties. 

Permeability and AC susceptibility (in-phase component X' (m³/kg)) was measured with a model 

KLY-2 Kappabridge, and hysteresis loops were measured with a Princeton Measurements model 

3900 MicroMag vibrating sample magnetometer (VSM) using a maximum field of 1 T.  
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5.3.1 Permeability Measurement 

The relative permeability was measured for both categories of samples, and the results are illustrated 

in Figures 5-1 and 5-2.  

 

 

 

 

 

 

 

Figure  5-1 The relative permeability of samples thermally treated for 3 h; (b) the same for 

samples annealed for 4 h. 

 

 

 

 

 

 

 

 

 

 

Figure  5-2 (a) The relative permeability of samples treated magneto-thermally for 3 h; (b) the same for 

samples annealed for 4 h. 
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Figures 5-1 and 5-2 confirm enhancement of the relative permeability under the thermal treatment. 

Based on the measurements, the existence of an external magnetic field does not have a significant 

effect on the permeability improvement of the alloy. It is worth noting that except for the high peaks, 

the measured points for the magneto-thermal samples have a higher general average of relative 

permeability than the thermal ones.  

Moreover, the results also show a high peak of relative permeability forming around 600 °C. The high 

peaks of permeability for all four conditions are reported in Table 1: 

 

Table  5-1 High Peaks of The Relative Permeability for Different Post-Processing Conditions 

Type of Post-

process 

Dwell Time  

(h) 

Dwell 

Temperature 

(°C) 

Peak of 

Relative 

Permeability 

(μr) 

Thermal 3 600 3615.56 

Thermal 4 500 2868.37 

Magneto-thermal 3 600 3551.82 

Magneto-thermal 4 600 2446.96 

 

Based on the achieved results, we can see that samples could reach a higher permeability of 

approximately 3500 μr in 3 h of treatment for both thermal and magneto-thermal processes. We think 

the local minimum captured in the relative permeability graph of 4 h of magneto-thermal processing 

could be an error. If the local minimum in Figure 5-2 is assumed to be a measurement error, it can be 

concluded that the longer annealing dwell time of 4 h leads to a broader relative permeability peak, 

which allows the user to achieve higher permeability in lower annealing temperatures. As shown in 

Figure 1, for samples treated for 3-h the recorded permeability of thermal process was 2025 μr at 400 
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°C, whereas it was 2425 μr for the same temperature and 4 h of annealing. Similarly, Figure 2 also 

shows 1876 μr for samples treated for 3 h at 300 °C, whereas the relative permeability was 2411 μr 

for the same temperature but 4 h of treatment. This can prove beneficial for devices with high-

temperature limitations in their structures. 

The reason for permeability enhancement in the alloy is the formation of nano-clusters of Co within 

the entire amorphous metal structure. These nano-clusters, which are discussed later in this work, 

have the main impact on permeability change without changing the morphology of the whole alloy.  

5.3.2 Hysteresis Loop and Magnetization 

Samples are measured for magnetic hysteresis loop, and the results show mass normalized values. 

The samples are given a nominal mass of 1 g and a nominal volume of 1 cm3 in order to ease the 

calculations. Hysteresis is present in ferromagnetic materials and materials with magnetization ability. 

As soon as a magnetic field is applied, the material becomes magnetic until all the Weiss domains of 

the material have the same orientation and directions. This state is the maximum magnetization of 

material. When the external magnetic field is removed, some materials retain a considerable amount 

of magnetization and remain magnetic. This is the main feature in forming a hysteresis shape [4], and 

thus a larger loop area represents better magnetization. The hysteresis loop and magnetization curve 

of the studied post-processed CoSiB are presented below: 
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Figure  5-3 (a) The hysteresis loop of samples thermally treated for 3 h; (b) the same samples 

annealed for 4 h. The square marker shows the loop for the process with the highest 

permeability, and the triangle marker is for the after fabrication (AF) sample. 

 

 

Figure  5-4 (a) The hysteresis loop of samples magneto-thermally treated for 3 h; b) the same 

annealed for 4 h. The square marker shows the loop for the process with the highest 

permeability, and the triangle marker is for the after fabrication (AF) sample. 
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Based on Figures 5- 3 and 5-4, the post-processing improves the magnetizability of the GMI material. 

The higher magnetizability leads to better magnetization of the GMI layer in a multilayer sensor, 

which is done by a magneto-thermal process. 

5.3.3 Magnetization of CoSiB Layer in a layered structure 

After the magnetic properties of the GMI material are improved, the material should be magnetized 

in order to show the GMI phenomenon and be employed in a multilayer GMI structure. As 

demonstrated in section III-b, the material has a high potential of magnetization in some known post-

processes conditions. A magneto-thermal treatment in specified temperature and time will result in 

breaking the Weiss domains’ walls. Upon losing the magnetic walls, the magnetic domains of 

material will align in the direction of the exerted magnetic field. This process bypasses the need for a 

special and expensive sputtering system for GMI material fabrication. Figure 5-5 shows a schematic 

of this process.  



 

 107 

 

Figure  5-5 Schematic of annealing magnetization under a magneto-thermal post-process. It is 

shown how the Weiss walls are breaking up and letting the domains be aligned to the external 

field. 

5.4 Material Characterizations 

For material characterization, the material is tested using Raman spectroscopy, X-ray diffraction, 

and energy dispersive X-ray spectroscopy. In the following sections, measurements for each test are 

illustrated. 

5.4.1 Raman Spectroscopy 

A Raman test is done on the CoSiB before and after the annealing step to see whether or not the 

crystallization of material changes during this step. The narrowing and increasing in the intensity of 
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the Raman band, as well as the shifting in the bands to higher wave numbers, can be attributed to an 

increase in particle size and improved crystallinity. The Raman test is implemented using Raman 

spectroscopy and a microscopy machine, Bruker Senterra Confocal Microscope (with 532 and 785 

nm lasers). The result of Raman spectroscopy supports the preliminary expectations for higher 

crystallinity after the treatment. It also shows high quality small-sized crystals of Co in the spectrum. 

Figures 5-6 and 5-7 give the Raman spectroscopy results for thermal and magneto-thermal samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-6  Raman spectroscopy for thermal post-processed samples. 

Figure  5-7 Raman spectroscopy for magneto-thermal post-processed samples. 
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In Figures 5-6 and 5-7, the condition which had the highest permeability is bolded in the graphs. It 

is interesting to note that the condition corresponding to the highest permeability has higher intensity 

and better quality peaks in the Raman spectroscopy results as well, which confirms the formation of 

nano-crystals in the entire metallic glass structure of CoSiB. Another interesting fact in the Raman 

test is that the treatment of samples at higher temperatures makes a better quality of nano-crystallines 

until the highest permeability point, after which the crystals lose their quality and vanish. This is due 

to the probable formation of equilibrium phases of material at temperatures higher than 650 °C. 

Among those phases, it is probable that boride phases such as Co3B and Co2B will be formed. Boride 

phases normally decrease the relative permeability of materials [4, 16]. Figures 5-1 and 5-2 verify the 

assumption of boride formation in temperatures above 650 °C, as they confirm the decreasing of 

permeability at this temperature.  

5.4.2 X-Ray Diffraction 

X-ray diffraction (XRD) is done on samples using a bruker d8 advance X-Ray diffractometer 

system with the capability of testing thin films. The XRD parameters for the experiment are reported 

in Table 5-2. 

Table  5-2 X-Ray Diffractometer Parameters 

Parameter Value 

Current intensity of X-ray tube 40 mA 

Voltage of X-ray tube  40 kV 

Beam wavelength 0.154 nm 

Time of counting in one measurement point 5 s 

Step between measurement points 0.05 ° 

Range of scan 20-80 ° 
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Figures 5-8 and 5-9 illustrate the XRD measurement for thermally treated and magneto-thermally 

treated samples, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-8 XRD graphs of samples thermally treated for 3 and 4 h. 

Figure  5-9 XRD graph of samples magneto-thermally treated for 3 and 4 h. 
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In Figures 5-8 and 5-9, some peaks can be detected in specified angles. Checking these peaks with 

X'Pert Highscore Plus software (provided with the XRD diffractometer) and comparing the peaks 

with those found in other research reports reveals that they are all showing -Co crystalline. The fact 

that only Co crystalline is detected in XRD supports the idea of the formation of Co nano-clusters in 

the matrix of an amorphous metallic alloy. Normally in an XRD graph, a higher intensity of baseline 

is related to a higher quality of amorphous structure. As is shown in Figure 5-8 and 5-9, the baselines 

of captured streams have high intensity values; even the stream with the crystalline shows a general 

amorphous structure. For the above data, and using the Scherrer method [17] in the software, the 

crystallite size of the Co nano-clusters is calculated at around 2.5 nm. In this method, the size is 

calculated using the Scherrer equation, which relates the size of a crystallite to the beam wavelength, 

peak angle, and full width at half maximum (FWHM) of the peak [17]. 

5.4.3 Energy Dispersive X-Ray Spectroscopy 

In order to determine the elemental composition of specimens and ensure that the samples have the 

same alloy ratio as the sputtering target, energy dispersive X-ray spectroscopy (EDX) is performed on 

samples. The measurement is done using a TEAM EDS analysis system for SEM. EDX 

measurements for all of the samples are the same, and the same results are captured. The results 

indicate that annealing does not change the alloy structure and that no external chemical reaction 

occurs in the main material. Figure 5-10 shows the EDX of a sample thermally treated for 3 h at 600 

°C.  
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Figure  5-10 EDX graph of a sample magneto-thermally treated for 3 h at 600 °C. It should be 

noted the same graph is captured for all other samples. 

Table 5-3 shows the quantitative measured values for this experiment. 

Table  5-3 EDX Captured Quantitative Results. The Main Elements are Highlighted 

Element Weight% Atomic% 

B K  11.31 20.99 

C K 1.69 2.01 

O K 2.44 3.14 

Co L 72.85 57.52 

Si K 10.28 12.98 

Al K 0.6   0.72 

Ca K 0.83 2.64 

 

 As can be observed from Table 5-3, the main captured elements are Co, Si and B, with almost the 

same weight distribution in the alloy as the source of the sputtering. Some other elements with 
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negligible amounts are also detectable, but these correspond to sample contamination and test 

environment. 

5.5  Results and Discussion 

Based on the achieved results for the various magnetic and material characterization tests, it can be 

concluded that CoSiB GMI material keeps its elemental composition and amorphous shape in post-

processing treatments. Furthermore, the results show that some nano-crystallines of Co formed in the 

amorphous matrix of material. These nano-crystals are congregated together as nano-clusters of Co in 

the matrix. The formation of Co nano-clusters is the main reason for permeability enhancement in the 

material. Experiments also indicate the critical temperature at which the highest permeability can be 

reached. A detailed study of the material properties of the CoSiB confirms the formation of small 

nano-crystallines of -Co in the structure. 

Moreover, the tests show that the high level of background baseline in XRD measurements 

confirms the morphology of the material as metallic glass. According to the Raman spectroscopy of 

the material, the quality of nano-crystals decreases after a critical temperature is reached. This occurs 

due to the formation of equilibrium phases of material in the alloy, e.g., boride phases. The probable 

boride phases have a reverse influence on magnetic enhancement, which results in a decrease in 

permeability. This reduction in permeability can be verified in Figures 5-1 and 5-2 for samples treated 

at 700 °C. 

When viewing this research work, a misconception may arise regarding the source of enhancing 

magnetic properties of CoSiB. Specifically, it might be assumed that thermal treatment is the sole 

significant process in enhancing CoSiB’s magnetic properties and that a magneto-thermal process 

will have exactly the same effect, but this would be an inaccurate assumption. To resolve this 

misconception, note that in order to be able to use CoSiB as a GMI material, especially for a 
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multilayer structure, the material not only should have high permeability but also must be 

magnetized. A magneto-thermal post-process leads to both of these properties. At a high temperature, 

after removing the magnetic domain walls, the domains are all magnetized in the direction of the 

external magnetic field and cool down in the same magnetic environment, ensuring layer 

magnetization by the end of process. 

In previous publications [3, 10], the authors reported fabrication and testing of multilayer GMI 

sensors with a magneto-thermal post-process. The reported sensors indicate an impedance increase of 

16.69 to 26.33 Ω, and 102 to 123.75 Ω for two different sensors. Since different elemental ratios of 

CoSiB can be employed as GMI material with the same material morphology and behavior, the above 

conclusions and qualitative patterns are valid for all CoSiB amorphous metallic alloys.  

.  

5.6  Experimental Tests on Tri-Layer Thin Film GMI Sensors 

A batch of tri-layer thin film GMI sensors is fabricated using the same fabrication recipe. The 

sensors consist of CoSiB(400nm)/Au(200 nm)/CoSiB(400 nm). The schematic of the fabrication 

steps and an optical image of the batch of sensors are illustrated in Figure 5-11. Details of the 

fabrication of these sensors can be found in the authors’ previous works [9 and 10]. 
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Figure  5-11 GMI thin film samples fabrication process flow a) sputtering and patterning of 

CoSiB b) Deposition and patterning of Metal trace layer c) sputtering and patterning of CoSiB 

d) A 1-inch to 1-inch die of glass wafer, containing the thin film GMI samples. 

 

The devices are tested using a custom-made experimental setup and employing Agilent E4990 

precision impedance analyzer. Using a Helmholz coil [19], an external magnetic field is exerted on 

the samples. The sample stage is made of aluminum that is not a magnetic material and will not affect 

the magnetic flux streams of coil. The test results of one of the samples R-50-30 is reported below. In 

this sample, the width of CoSiB layer is 50 μm and the width of the Au layer is 30 μm. Three R-50-30 

are tested in 3 different phases: immediately after fabrication; after 300  ͦC magneto-thermal after 600  ͦ

C magneto-thermal treatment and 500 kHz of AC current. The results are shown in Figure 5-12. 
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Figure  5-12 Measurement results of GMI R-50-30  in 500 kHz ac current. 

 

As illustrated above, the magneto thermal treatment has drastically increased the impedance change 

in the tested thin film GMI sensor. 
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6 Chapter Six 

Conclusions and Future Plans  

The main focus of this work was realising miniature magnetic sensors. Miniaturizing sensors makes 

it easier to integrate them with conventional industrial systems and also makes them useful for 

biomedical applications. Due to high industrial demand for digital 0/1 magnetic sensors in the 

millitesla range (also known as low field intensities), the goal spec of the sensors was set to this 

working range. This magnetic field is not harmful to the human body and is in the range of fields 

generated by biomedical devices. A main application of these devices is hearing aids. Typically when 

using hearing aid devices, the user cannot speak on a phone or cellphone because a beeping noise 

occurs in their ears. This problem arises from the conflict between the magnetic field in the hearing 

aid and that in the speaker. In these cases, cutting one of the fields will resolve the problem. By 

integrating a miniature magnetic sensor, the hearing aid’s magnetic field will be cut when it senses a 

threshold field of noise generation.  

After conducting a broad literature review on the recent advancements of magnetic sensors, we 

chose two different types of sensors which we deemed well-suited to the scope of the research:  

1- MEMS reed sensors 

2- Giant Magneto Impendence (GMI) sensors 

As reported in the thesis, both of these sensor types were studied in detail, and a miniature version of 

them was successfully fabricated and tested. Contributions 

1- Development of tri-layer MEMS Reed sensors: 

A tri-layer MEMS reed sensor was designed, fabricated and tested in this thesis. The multilayer 

beams were comprised of a Ni layer (3 μm bottom electrode, and 1 μm bottom electrode) sandwiched 

between two gold layers (75 nm each). These sensors were studied and designed in COMSOL 

Multiphysics, and were simulated in detail. Using the simulation results, the general working map of 

these sensors was investigated and presented. The achieved sensors of this study were fabricated 

using microfabrication technology. The full sensor size was around 300 μm * 100 μm, which is the 

smallest fabricated MEMS reed sensor so far. The previously reported smallest MEMS reed sensor 

was 1 mm * 1 mm, which is larger than our sensor by a factor of 10. The final fabricated sensors are 

normally open switches that provide a 30 ohm contact upon actuation.  

.  
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2- Development of multilayer Giant Magento-impedance thin film sensors: 

 In addition, this study presented the design and microfabrication of multilayer GMI thin film sensors. 

The GMI multilayer is comprised of an Au layer (200 nm) sandwiched between two magnetic layers 

(400 nm). GMI materials need an expensive sputtering system, which provides a magnetic field 

during their deposition. A new post-processing treatment was investigated and tested that enabled the 

fabrication of these materials using conventional microfabrication facilities. Moreover, a complete 3D 

COMSOL simulation of GMI phenomena for multilayer thin film structures was presented. This 

simulation was among the frontier efforts for simulating sensors using FEM simulation software. 

Devices were designed based on the simulation results, and these were tested with two different 

measurement methods. All of the captured results from the simulations and measurements were in the 

acceptable range and verified each other. The GMI thin film sensors fabricated in this thesis showed 

an MI ration of up to 100%. 

3- Characterization of CoSiB material for GMI applications 

CoSiB was studied and developed to be employed as a GMI material and enhance the performance 

of multilayer GMI structures. This study is a complimentary investigation of post-processing 

treatment and concludes the optimal post-processing treatment to achieve the best performance of the 

GMI sensors. The characterization consists of various material characterization tests as well as 

magnetic characterization tests. The tested samples were each treated at various dwell times and 

temperatures. The characterizations show the formation of Co nano-clusters in the matrix of GMI 

amorphous material as a result of the post-treatment. The formed Co nano-clusters were responsible 

for the magnetic performance enhancement of these materials. To the best knowledge of the authors, 

this thesis represents the first general study of the characterization of CoSiB as a GMI material.  

6.1 Future Works 

This thesis has carried out extensive research and investigations into a wide range of topics, aiming 

to advance the development of miniature magnetic sensors and giant magneto-impedance phenomena. 

There are several related research problems in this area that could potentially be explored in the 

future. Below is a small sample of them: 

 Developing an array of MEMS sensors in order to sense multilevel threshold magnetic fields. 

This can be helpful in applications sensitive to various levels of magnetic fields.  
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 Integrate an on-chip magnetic coil in order to make the systems testable on-chip and 

compensate the external magnetic field in necessary cases.  

 A more extensive study on the effect of time on the post-processing of GMI materials would 

be beneficial. This study of time should be related to both the dwell time of treatments and 

the cooling time of samples. 

 Ultimately, a GMI material could be employed as the core magnetic material of MEMS reed 

sensors, and their performance enhanced with thermal treatment (as addressed in Chapter 5). 

This integration could result in highly sensitive MEMS reed sensors that can be employed for 

sensing lower magnetic fields. This could also be an initiative to futher miniaturize the 

structures ͦfrom the size achieved in this thesis. 
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Appendix A 

Theory and mathematical equations for MEMS REED Sensors 

 

Hybrid BIE/Poisson approach for magnetostatic analysis 

The magnetostatic governing equations are derived from Maxwell’s equations and can be written as 

[8]: 

 

∇ × 𝑯 = 𝑱 (1) 

∇.𝑩 = 0 (2) 

 

where H is the magnetic field intensity, B is the magnetic flux density, and J is the current density. B 

and H are related by the constitutive relation: 

 

𝑩 = µ𝑯 = µ0µ𝑟𝑯 = µ0(𝑴 + 𝑯) (3) 

 

where µ = µ0µr is the permeability of the magnetic material, µ0 is the permeability of the vacuum 

and µr is the relative permeability of the magnetic material. M is the magnetization [8] of the 

magnetic material and can be written as: 

 

𝑴 = (µ𝑟 − 𝟏)𝑯 = 𝜒𝑯 =
𝜒

µ
(𝑩) 

(4) 

where χ is the magnetic susceptibility. The magnetic material is considered linear when µr is constant 

and nonlinear when 

µr is a function of the magnetic field. As the magnetic field, B, is divergence-free (Equation (2)), the 

magnetostatic equations can be expressed using a vector potential, A, as [8]: 

 

∇ × (
1

µ𝑟  
∇ × 𝐀) = µ0𝑱 

(5) 

 

where  
 

B = ∇ × 𝑨 (6) 

 

For two-dimensional (2D) analysis of a linear homogeneous magnetic material, Equation (5) can be 

simplified as: 
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∇2𝐴𝑧 = −µ𝐽𝑧 (7) 

 

where the scalars Az and Jz are the z-components of A and J, respectively, and when the 2D analysis 

is performed in the X-Y domain. Magnetostatic analysis will be performed by solving Equation (7) in 

the magnetostatic domain to compute the magnetic field, B, from which the magnetostatic body force 

(needed in the mechanical analysis) can be computed. 

 

Magnetostatic MEMS switches and relays typically operate in the linear region of magnetic 

materials [4-5], where µr is constant and attractive forces are present. Hence, the linear analysis can 

be applied for those cases assuming no magnetic dispersion, hysteresis and anisotropy in the magnetic 

materials. However, the nonlinearity in the magnetic material property µr = µr(H) can easily be 

incorporated into the hybrid Lagrangian framework, like what COMSOL is doing in the FEM 

analysis of magnetostatic forces. In this case, Equation (7) would be nonlinear in nature and can be 

solved using a Newton method. 

 

Figure  0-1 The three basic subdomains typically present at magnetic MEMS [8]. 
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Figure 3-2 shows the three basic subdomains typically present in magnetostatic MEMS at any 

instant in time in their deformed configuration. All magnetic cores and deformable magnetic 

beams/microstructures (generally, they are ferromagnetic materials with high permeability µ) are 

denoted by ωm (Jz = 0 in these domains), γm is the boundary of ωm, ωs represents all the current 

carrying coils/conductors (Jz ≠ 0 in these domains), γs is the boundary of ωs, and ω0 represents the 

surrounding medium (air or vacuum) whereJz is zero. ω0 also includes any nonmagnetic materials 

present in the device, such as the substrate shown in Figure 1. Equation (7) is valid in each subdomain 

and the interface conditions (derived from the integral form of Maxwell’s equations) on the 

boundaries between the subdomains are given by [8]. 

 

𝐴𝑧⃓ 𝜔𝑚
= 𝐴𝑧⃓ 𝜔0

       𝑎𝑛𝑑          
1

µ𝑚  

𝜕𝐴𝑧

𝜕𝑛
 ⃓ 𝜔𝑚

=
1

µ0 

𝜕𝐴𝑧

𝜕𝑛
 ⃓ 𝜔0

             𝑜𝑛  𝛾𝑚 
(8) 

𝐴𝑧⃓ 𝜔𝑠
= 𝐴𝑧⃓ 𝜔0

       𝑎𝑛𝑑            
1

µ𝑠 

𝜕𝐴𝑧

𝜕𝑛
 ⃓ 𝜔𝑠

=
1

µ0 

𝜕𝐴𝑧

𝜕𝑛
 ⃓ 𝜔0

               𝑜𝑛  𝛾𝑠 
(9) 

 

where, for example, Az⃓ ωm
= Az⃓ ω0

 on  γm means that the value of Az obtained by solving the 

Poisson equation in  ωm and the value of Az obtained by solving the BIE in  ω0 should be the same 

on the interface/boundary between  ωm and  ω0, which is γm. n is the unit normal in the outward 

direction, as shown in Figure 2, andµm , µs and µ0 are the magnetic permeabilities of the subdomains 

 ωm,  ωs and  ω0, respectively. The key idea in a hybrid approach for magnetostatic analysis is to 

solve a boundary integral form of Equation (7) for Jz = 0, i.e., ∇2Az = 0 , for the unbounded/exterior 

subdomain,  ω0 , and the Poisson equation (i.e., Equation (7) with Jz ≠ 0) for the interior 

subdomains,  ωm and  ωs (see [8] and [39] for details). The subdomains are then coupled to each 

other using the interface conditions Equations (8) and (9). The boundary integral form of the Laplace 

equation ∇2Az = 0 for  ω0 is given by [8] (and many basic FEM books): 

 

𝑐𝐴𝑧(𝑥) = ∫ 𝐴𝑧(𝑥
′)

𝜕𝐺(𝑥, 𝑥′)

𝜕𝑛′

𝛾

𝑑𝛾(𝑥′) − ∫
𝜕𝐴𝑧(𝑥

′)

𝜕𝑛′
𝐺(𝑥, 𝑥′)

𝛾

𝑑𝛾(𝑥′) + 𝐴𝑧
𝑟𝑒𝑓   

(10) 

 

∫
𝜕𝐴𝑧(𝑥

′)

𝜕𝑛′

𝛾

𝑑𝛾(𝑥′) = 0   

(11) 
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where x is the source point and x’ is the field point on the boundary of the subdomains γ = γm ∪ γs. c 

is the corner tensor (c = 1/2 for smooth boundaries [1]), n’ is the unit normal in the outward direction 

at the point x’, and G is Green’s function. In two dimensions, G(x, x′) = − ln|x − x′| /2π, where 

|x − x′| is the is the distance between the source point x and the field point  x’, and Az
ref  is the 

reference potential (it is the potential at infinity in this case). 

 

At the boundaries γmand γs, the value of Az obtained from the BIEs (Equations (10) and (11), 

solved for the subdomain  ω0) serves as a boundary condition for solving the Poisson equation 

(Equation (7)) in the subdomains  ωm and  ωs. On the other hand, the normal derivative of Az, i.e., 

∂Az

∂n
, on the boundaries γmand γsobtained by solving Equation (7) in the 

subdomains  ωm and  ωs , respectively, gives the value of  
∂Az

∂n
 in the BIEs (Equations (10) and (11), 

solved for the subdomain ω0) through equations (8) and (9). A self-consistent solution for the 

magnetic vector potential, Az, is obtained by solving the coupled BIE/Poisson problem. As the value 

of  Az is not specified at any point in the magnetostatic domain, the value of Az obtained by solving 

Equations (7), (10) and (11) along with the interface conditions equations (8) and (9) is not unique, 

although the value of the magnetic flux density, B, obtained is unique [8],[14]. A unique solution of 

Az is obtained by fixing the value of Az at some points in the magnetostatic domain. 

 

Lagrangian formulation 
 

One of the drawbacks of the approach described above and also of the conventional tools for 

magnetostatic analysis is that the magnetostatic equations are written in the deformed configuration of 

the domains (Figure 3-3 shows the subdomains in the deformed configuration). As a result, when the 

microstructure deforms under the application of the magnetostatic force, the geometry has to be 

updated, rediscretized and the numerical interpolations recalculated before any analysis can be 

performed. This significantly increases the computational cost. In this report, a Lagrangian 

formulation of the hybrid magnetostatic equations under arbitrary deformation is presented for 

efficient analysis of magnetostatic MEMS. 
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Figure  0-2 Various configurations of a deformed body [8]. 

When a material body is subjected to a force, either internal or external, its geometrical shape 

undergoes a change. As shown in Figure 3, the initial or the undeformed configuration of a body is 

denoted by B (all quantities in the initial configuration are denoted by capital letters) and the 

deformed configuration of the body is denoted by b (all quantities in the deformed configuration are 

denoted by lower case letters). Consider an infinitesimal segment on the boundary of B. Let P be the 

point where the infinitesimal boundary segment is directed from, X be the position vector of P, dX be 

the vector representing the infinitesimal boundary segment, and N be the unit outward normal at P. 

When the body deforms from B to b, point P moves to p and its position changes to x. The boundary 

segment, dX, and the unit outward normal, N, in the initial configuration deform to dx and n in the 

deformed configuration, respectively. Note that the boundary segment changes not only in length but 

also in direction when it deforms. The displacement from P to p is denoted by vector u. The physical 

quantities in the deformed configuration can be expressed by the corresponding physical quantities in 

the initial configuration (Lagrangian description), as described below [8]: 

 

𝑥 = 𝐗 + 𝐮 (12) 

𝑥 = 𝑭𝑑𝑿 (13) 

𝐗 = 𝑭−𝟏𝑑𝑥 (14) 
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where F is the deformation gradient tensor [8]. The relation between the unit outward normal at the 

point x in the deformed configuration, n, and the unit outward normal at the point X in the initial 

configuration, N, is given by Nanson’s law [8]: 

 

𝐧dγ = 𝐽𝑭̅−𝑻𝑵𝑑Γ (15) 

 

where dΓ is the length of the infinitesimal boundary segment, dX, in the initial configuration and dγ 

is the length of the boundary segment, dx, in the deformed configuration (see Figure 3), and J̅ =

det (F). Further, using Nanson’s law, the following relation between dΓ and dγ can be derived [8]: 

 

dγ = 𝐽|̅𝑭−𝑻𝑵|𝑑Γ = (𝐓. 𝐂𝐓)
1
2𝑑Γ 

(16) 

 

where C = FTF is the Green deformation tensor and T and N are the unit tangential and the normal 

vectors in the undeformed configuration, respectively. By using the chain rule and Equation (14), the 

gradient of a physical quantity φ in the deformed configuration can be expressed as [8]: 

 

∇𝑥𝜙 = 𝑭−𝑻∇𝑋𝜙 (17) 

where ∇Xϕ and ∇xϕ denote the gradient of ϕ in the initial and the deformed configurations, 

respectively. Equation (17) 

shows that the differential operator ∇x in the deformed configuration can be rewritten in the initial 

configuration as 

∇𝑥= 𝑭−𝑻∇𝑋 (18) 

 

The normal derivative of a physical quantity ϕ in the deformed configuration can also be rewritten 

as [8]: 

 

∂𝜙

∂n
= ∇𝑥𝜙. 𝐧 = 𝑭−𝑻∇𝑋𝜙 .

𝑭−𝑻𝑵

|𝑭−𝑻𝑵|
= ∇𝑋𝜙 .

𝑭−𝟏𝑭−𝑻𝑵

|𝑭−𝑻𝑵|
 

(19) 

 

 

By using the above relations, the geometry of a deformed structure and the differential operators 

defined on the deformed structure can be expressed in terms of the geometry and the differential 

operators in the initial configuration and its deformation information. 
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The Poisson equation (Equation (7)), which is stated in the deformed configuration, can be 

transformed into the initial configuration by substituting Equation (18) into Equation (7), which can 

then be rewritten in the Lagrangian form as: 

 

(𝑭−𝑻∇𝑋). (𝑭−𝑻∇𝑋𝐴𝑧) = −𝜇𝐽𝑧 (20) 

 

Note that, in Equation (20), all of the quantities are mapped to the initial or the undeformed 

configuration. Next, Equations (10) and (11) are mapped to the initial configuration by representing 

each component in Equations (10) and (11) by its counterpart in the initial configuration. Using 

Equation (12), Green’s function in two dimensions, G(x, x′), can be rewritten as 

 

𝐺(𝑥, 𝑥′) = 𝐺(𝑥(𝑿), 𝑥′(𝑿′)) =
1

2𝜋
𝑙𝑛|𝑋 − 𝑋′ + 𝑢 − 𝑢′| 

(21) 

 

where X and X’ are the source and the field points in the initial configuration corresponding to the 

source and the field points x and x’ in the deformed configuration, x(X) denotes x in the deformed 

configuration mapped to X in the initial configuration with the mapping x = X + u, and u and u’ are 

the displacements of points X and X’, respectively. 

For magnetostatic MEMS analysis, these displacements are computed by a mechanical analysis. 

The normal derivative of 

Green’s function can be rewritten as [8]: 

 

𝜕𝐺(𝑥, 𝑥′)

𝜕𝒏′
= ∇𝑥′𝐺(𝑥, 𝑥′). 𝒏′ = {

−
𝑋 − 𝑋′ + 𝑢 − 𝑢′

2𝜋|𝑋 − 𝑋′ + 𝑢 − 𝑢′|2

−
𝑌 − 𝑌′ + 𝑣 − 𝑣′

2𝜋|𝑋 − 𝑋′ + 𝑢 − 𝑢′|2

} . 𝒏′

= ∇𝑋′𝐺(𝑥(𝑿), 𝑥′(𝑿′)). 𝒏′ 

(22) 

 

 

 

where u and u’ are the X-displacements of the points X and X’, respectively, and  v and v’ are the Y-

displacements of the points X and X’, respectively. By using Equations (16) and (19), the Lagrangian 

form of the second term on the right-hand side of Equation (10) can be written as 
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∫
𝜕𝐴𝑧(𝑥

′)

𝜕𝑛′
𝐺(𝑥, 𝑥′)

𝛾

𝑑𝛾(𝑥′)

= ∫[∇𝑋′𝐴𝑧(𝑥
′(𝑿′))

Γ

.
𝑭−𝟏(𝑿′)𝑭−𝑻(𝑿′)𝑵(𝑿′)

|𝑭−𝑻(𝑿′)𝑵(𝑿′)|

× 𝐺(𝑥(𝑿), 𝑥′(𝑿′))(𝐓(𝑿′). 𝐂(𝑿′)𝐓(𝑿′))
1
2𝑑Γ(𝑿′) 

(23) 

 

 

 

where Γ is the undeformed configuration of the boundary 𝛾 , which is in the deformed configuration. 

By using equations (15) and (22), the Lagrangian form of the first term on the right-hand side of 

Equation (10) can be rewritten as 

 

∫ 𝐴𝑧(𝑥
′)

𝜕𝐺(𝑥, 𝑥′)

𝜕𝑛′

𝛾

𝑑𝛾(𝑥′) = ∫ 𝐴𝑧(𝑥
′(𝑿′))

𝛾

. ∇𝑥′𝐺(𝑥(𝑿), 𝑥′(𝑿′)). 𝒏′𝑑𝛾(𝑥′)

= ∫ 𝐴𝑧(𝑥
′(𝑿′))

Γ

∇𝑋′𝐺(𝑥(𝑿), 𝑥′(𝑿′)). 𝐽(̅𝑿′)𝑭−𝑻(𝑿′)𝑵(𝑿′)𝑑Γ(𝑿′) 

(24) 

 

 

 

Substituting Equations (23) and (24) into Equation (10), the Lagrangian form of Equation (10) is 

given by 

𝐶𝐴𝑧(𝑥(𝑿)) = ∫ 𝐴𝑧(𝑥
′(𝑿′))

Γ

∇𝑋′𝐺(𝑥(𝑿), 𝑥′(𝑿′)). 𝐽(̅𝑿′)𝑭−𝑻(𝑿′)𝑵(𝑿′)𝑑Γ(𝑿′) + 𝐴𝑧
𝑟𝑒𝑓  

− ∫[∇𝑋′𝐴𝑧(𝑥
′(𝑿′))

Γ

.
𝑭−𝟏(𝑿′)𝑭−𝑻(𝑿′)𝑵(𝑿′)

|𝑭−𝑻(𝑿′)𝑵(𝑿′)|

× 𝐺(𝑥(𝑿), 𝑥′(𝑿′))(𝐓(𝑿′). 𝐂(𝑿′)𝐓(𝑿′))
1
2𝑑Γ(𝑿′) 

(25) 

 

 

 

The Lagrangian form of equation (11) is given by: 
 

∫[∇𝑋′𝐴𝑧(𝑥
′(𝑿′))

Γ

.
𝑭−𝟏(𝑿′)𝑭−𝑻(𝑿′)𝑵(𝑿′)

|𝑭−𝑻(𝑿′)𝑵(𝑿′)|
× (𝐓(𝑿′). 𝐂(𝑿′)𝐓(𝑿′))

1
2𝑑Γ(𝑿′) = 0 

(26) 

 

 

 

In the hybrid full-Lagrangian BIE/Poisson technique for magnetostatic analysis presented in this 

thesis, Equation (20) is solved in the undeformed configuration of the magnetostatic 

subdomains ωm and  ωs  and equations (25) and (26) are solved for the subdomain ω0 on the 
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undeformed configuration of the boundaries γmand γs. Equations (8) and (9) can be written in the 

Lagrangian form using Equation (19) in a straightforward manner and are applied as boundary 

conditions on the undeformed configuration of the boundaries γmand γs. 

 

Once A is computed from the magnetostatic analysis, the magnetic field, B, can be computed using 

the relation B = F−T∇X × A (derived from Equation (6)). In the case of 2D analysis performed in the 

X-Y domain, the magnetic field, B, consists of the terms BX and BY (as BZ = 0), which can be 

computed as 

 

𝑩 = {
𝐵𝑋

𝐵𝑌

} = 𝑭−𝑻
{

𝜕𝐴𝑧
𝜕𝑌

−
𝜕𝐴𝑧
𝜕𝑋

} =

[
 
 
 1 +

𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑌

𝜕𝑣

𝜕𝑋
𝟏 +

𝜕𝑣

𝜕𝑌]
 
 
 
−𝑻

{

𝜕𝐴𝑧
𝜕𝑌

−
𝜕𝐴𝑧
𝜕𝑋

} 

(27) 

 

The magnetostatic body force fmagacting on the microstructure in the deformed configuration can 

be computed as [8] 

 

𝑓𝑚𝑎𝑔 = 𝑴.∇𝑥𝑩 = 𝑴.𝑭−𝑻∇𝑋𝑩 (28) 

where M can be computed from B using Equation (4). In the Lagrangian formulation, the force is 

mapped back to the undeformed geometry using [8]: 

𝐹𝑚𝑎𝑔 = 𝐽̅𝑓𝑚𝑎𝑔 = 𝐽̅𝑴.𝑭−𝑻∇𝑋𝑩 (29) 

where Fmag is the magnetostatic body force in the undeformed configuration.  

For mechanical resorting force, one can find out the spring constant of the beams based on 

mechanical strength equations and beam dimensions. The equations for various kinds of beams are 

different. For instance, for a simple cantilever beam, the spring constant is: 

𝐾 =
3𝐸𝐼

𝐿3
 

(30) 

where E is Young’s modulus of beam material, L is beam length and I is moment of inertia of 

corresponding beam. A cantilever beam can be calculated by (31): 

 

𝐼 =
𝑤𝑡3

12
 

(31) 

where w is beam width and t is beam thickness. After calculating the spring constant of the beam, 

mechanical restoring force can be calculated using Hooks law: 
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Fmech = ky (32) 

Once the magnetic body force is sufficiently high to overcome Fmech value in y=gap, the switch will 

be actuated. It should be noted that more complicated beam models can be employed to calculate 

mechanical forces, but response errors are negligible between various models. It is also important to 

note that the spring constant equation will change by altering beam and support shapes. 
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Appendix B 

The design has been developed based on UW-MEMS rules and is briefly described below: 

Design rules identify the physical limitations of individual process steps. These rules are extremely 

important and need to be considered at the design stage. If the guidelines are not respected, the device 

will not meet the specifications and thus will most likely fail or malfunction. 

Generally there are two types of rules. The first type of rule specifies minimum feature and gap 

sizes. Minimum feature size refers to the minimum width of a trace that will be feasible using the 

current process. In other words, if this rule is violated, there is no guarantee that the feature will be 

produced on the wafer. In the same way, the minimum gap specifies the shortest separation distance 

between two adjacent features. Failure to follow this rule results in a merged feature consisting of the 

later patterns. The second type of rules specifies crossovers and inter-level spacing. This relates to the 

alignment of the layers and will be detailed shortly. Both rule types are considered in our study and 

are reported below.  

 

1-Nickel- bottom electrode 

 

Figure  0-1 Bottom electrode design rules. 

Description  Rule Label  Value(μm) 

Minimum width/length Ni1   

Minimum distance Ni2 
  

 

2-Anchors 

Description  Rule Label  Value(μm) 

≥ 60 

≥ 60 
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Minimum width/length anch   

Layer 1 overlap with anchor Ni-anch 
  

 

3-Dimples 

Description  Rule Label  Value(μm) 

Minimum width/length Dimp   

Minimum distance Dimp1 
  

 

4-Upper beam 

Description  Rule Label  Value(μm) 

Minimum width/length Beam1   

Layer 1 overlap with layer 4 Beam2 
  

Layer 4 overlap with anchor Beam-anch  

 

 

  

≥ 20 

≥ 15 

≥ 10 

≥ 15 

≥ 15 

≥ 10 

≥ 15 
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Appendix C 

Detailed Microfabrication recipe used for MEMS Reed sensors 

 
 

1. Create Alumina/Glass/Silicon Superstrate 2.5” square wafers 

 Naming: #1, #2, #3, #4  

2. RCA 

o Ratio = 650:130:130 H2O:NH4OH:H2O2 

o Temperature = Bubbling! 

o Time = 15:00 

3. Dehydrate 

o Time = 04:00 

o Temperature = 120 ⁰C 

4. INTLVAC Cr/Au 

o 40 nm Cr (e-beam) 

o 70 nm Au (e-beam) 

5. Mask “L1” 

o AZ 3330 

 FT = 2 µm 

 Step 1 of 3: 100 RPM for 10 sec. 

 Step 2 of 3: 500 RPM for 10 sec. 

 Step 3 of 3: 3000 RPM for 30 sec. 

o Soft Bake at 110 ⁰C for 60 sec. 

o Exposure: 

 Intensity at 365 nm = 26 mW.cm
-2

 

 Time = 4 sec. 

o Post Exposure Bake at 110 ⁰C for 60 sec. 

o Develop in AZ 300 MIF for 60 sec. 

o Hard Bake at 110 ⁰C for 120 sec. 

6. Wet Etch Cr/Au: 
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Cr etchant: 

W2: 20S+10S+5S. All with agitation. Wash the wafer every time before immersing in the 

etchant.  

Au Etchant for 30 S 

 

7. ELP Ni 

o ELP solution heat to 92C with steering 

o A dommy gold wafer has been placed in oxygen plasma RIE for 1 min (pres:30, 

O2:30, RIE:50, ICP:50, time:60) 

o Then put in EN plating solution(seems that free electrons resulted from RIE will help 

initiating of palting) for one minute, plating was done for 0.6 um and roughness was 

good 

o Total 3um has been deposited. 

o A dektak measurement of thickness is done after deposition each layer.  

 

Figure  0-1 Dektak of first layer (Ni) with 0.5KÅ tip, in the above fig , 6 units are covered which 

results to 3 um 
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8. Gold Electroless 

o Heating the solution to 70-75 degree the rate is 25nm per min(2 min I used) 

9. Polyimide Preparation {W1, W2, W3, W4} 

o Spinning: 

 ADD Aluminum Foil 

 FT =  2.7 µm 

 Step 1 of 3: 100 RPM for 10 sec. 

 Step 2 of 3: 500 RPM for 10 sec. 

 Step 3 of 3: 1300 RPM for 40 sec. 

o First Bake at 90 ⁰C for 2:00 

o Second Bake at 150 ⁰C for 2:00 

o Cure in furnace: 

 25 ⁰C - 150 ⁰C 

 Time = 40:00 

 150 ⁰C - 350 ⁰C 

 Time = 50:00 

 350 ⁰C - 350 ⁰C  

 Time = 30:00 

 350 ⁰C - 150 ⁰C 

 Time = 40:00 

 150 ⁰C - 25 ⁰C 

 Time = 2:00:00 

10. Patterning Anchor 

o AZ nLOF 2035 

 FT = 2.6 µm 

 Step 1 of 3: 100 RPM for 10 sec. 

 Step 2 of 3: 500 RPM for 10 sec. 

 Step 3 of 3: 2500 RPM for 30 sec. 

o Soft Bake at 110 ⁰C for 60 sec. 

o Exposure: 

 Intensity at 365 nm = 26 mW.cm
-2

 

 Time = 3 sec. 
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o Post Exposure Bake at 110 ⁰C for 60 sec. 

o Develop in MIF 300 for 120 sec. 

o Hard Bake at 120 ⁰C for 120 sec. 

11. Dry Etch PI to pattern anchor 

RIE O2 plasma on W1, W3 and W5 

o Pressure = 50 

o ICP = 150 

o RIE = 50 

o O2 = 30  

o Wafers needed some O2 plasma to clean them from sturdy resist spots 

o Time = 30 sec. 

o Wafers look BETTER. 

12. Dry etch Dimple like step 10 

 

13. Gold Sputtering 

Intelvac 0.1um GOLD, SPUTTERING 

14. Final mask patterning 

15. Wet etch gold 25 Sec 

16. ELP Ni for 3 min  

17. ELP Gold for 2 min 

18. PR coating BEFORE dicing 

o Spin AZ 3330 using 500 RPM for 15 sec. then 2000 RPM for 45 sec. 

o Bake at 110⁰C for 3 min. 

19. EKC of devices 

o 30 min. (more than 20 min. to guarantee the release) 

o 60 C 

20. IPA of W3 devices 

o Total time = 3*8:00 min. 

21. CO2 CPD of devices 

o The whole chamber, glass, carrier and lid are cleaned with IPA 

o A new cylinder is being used 

o 4 different designs of W3 devices are inside the chamber for CPD release 
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o CPD process was successful 
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