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Abstract

We introduce the finger aware cursor operator for relational join queries. It scans a list of
tuples in a finger enabled manner when a nested loop join operation is performed. Using
this scan operation, we improve the performance of nested loop join when compared to
when compared to conventional scan. To quantify the improvement in performance using
fingered scan, a statistic named runs that quantifies the degree of randomness in a list
of records is introduced. This statistic is vital in assessing the performance improvement
achieved using fingered scan. Using runs statistic as a key ingredient, we develop a cost
model that can assign a cost value to the join operation based on underlying fingered
scan. We then develop a cost formula and evaluate the cost model against a simulated
data set. We show that conventional System R cost model is not sufficient to capture the
performance improvement. We then evaluate using the new cost formula and show that it
predicts the cost of join operation correctly.
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Chapter 1

Introduction

Query optimization is a prominent issue in relational database management systems(DBMS)
with over forty years of research behind it [0, 1]. Join and join like operators, being the
most expensive of relational algebra operators to optimize, has been at the forefront of this
research. The renowned System R [3] paper, the pioneer in the field, laid the foundation of
query optimization and presented one of the first notion of cost based query plan selection.

System R paper considers Nested Loop and Sort Merge as two major join methods
and build a way to estimate the cost for these two methods. Over the years, various
join algorithms have evolved and several cost optimization techniques have been proposed
adding to the original System R cost model. As the database research currently stands, the
most common join algorithms used in the industry are variants of Hash, Nested loop and
Sort merge joins. It would be oversimplification to classify the algorithms into these three.
However, it is safe to say that these three and their various derivatives are widely used in
most DBMS engines in industry. While the relevancy of some of them have reduced and
some of them have adapted to changed requirements of modern network and disk/memory
access speeds, there is at least one scenario in which one outperforms others.

The objective of this thesis is to build a cost model for an alternate approach which
brings out the features of both sort merge and nested loop algorithms by measuring the
degree of randomness in data forehand. First, we introduce the Fingered Scan Operation
which is a new method of scanning records from the disk or memory. The scan occurs
through two APIs exposed by the operator, getNext() and getFirst(). Similar to a database
cursor, it returns the next record and first record in the list respectively. The additional
and essential feature of this scan is that it remembers the value of last scanned record. This
allows it to compute the change in ordering from the last scanned record to the current



Table 1.1: Statistics used by System R Cost Model

Statistic Description
NCAD(T) | The cardinality of relation T
TCARD(T) | The number of pages in the segment that holds tuples of relation T
P(T) The fraction of data pages in the

segment that hold tuples of relation T
ICARD(I) | Number of distinct keys in the index I
NINDX(I) | Number of pages in Index I

record. The operator makes improved decisions on where to move the scan pointer based
on this change in ordering.

This fingered scan operation results in a performance improvement for a join operation.
This improvement can be attributed to the reduction in the number of records that need
to be scanned because of the improved decisions made by the operator. But the list of
tuples involved in the join operation needs to confirm to a set of constraints for the finger
enabled scan to attain this performance improvement. The main constraint is that it
required a completely sorted inner relation; like a join on the key column of a table in
relational database. This improvement, which results in a reduced cost for join, can be
either captured in terms of the reduced time required to complete the operation or in terms
of the reduced overall number of records read in the process. In this thesis, the second
method is selected to highlight the performance improvement achieved.

Once the improvement in performance is shown, we need to quantify this improvement.
This is necessary because existing System R style cost model doesn’t have enough infor-
mation about ordering in data to capture the performance improvement. The first step in
assessing the new cost is collecting all the required statistics about the data. In addition to
the statistics used by System R, 1.1 we also need additional information that can be used
as a metric to measure the decisions made by the fingered scan operator in response to
change in ordering. These decisions depend on the degree of ordering in the list of records
being scanned. An effective way of measuring the degree of ordering is by using a statistic
called runs. Previously introduced by Bradley et. al [2], runs is a distribution free statistic
which measure the total number of subset of observations in a list of observations where
each of such subset is totally ordered.

The runs statistic, along with the other statistics used by system R, are sufficient to
build up a cost model to predict the cost of finger enabled scan accurately. Using this
additional information, we build a cost formula which calculates the total cost of finger
enabled join. In addition, we also calculate runs for result sets of other operators like
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Figure 1.1: System R Architecture

union, sort, subtraction etc taking the number of runs in the origination relations as input.

Once the cost model is built, we evaluate it using simulated data set containing runs
and show that it achieves the predicted performance. A data set generator engine generates
two files, outer and inner, with a given size, runs and key attributes. An implementation
of finger enabled join algorithm takes these two files as input and produces a cost output
along with results. An implementation of conventional nested loop join also does the same
in an identical environment. The result sets are compared for accuracy before comparing
the costs. The cost predicted by System R cost model is plotted against the cost output by
nested loop join to show that they conforms. Then, the System R cost is plotted against
cost of finger enabled join to show that there is a large gap between predicted cost and
actual cost. Then, we plot the cost of finger enabled join with the predicted cost with the
new cost formula to show that the gap is covered and the new cost formula can predict the
performance improvement well.

System R has two subsystems, a storage subsystem named Relational Storage Subsyste
(RSS) and a data subsystem named Relational Data Subsystem (RDS) as mentioned in
table 1. As quoted in the original paper [1], storage subsystem handles devices, space al-
location, storage buffers, transaction consistency and locking, deadlock detection, backout,
transaction recovery, and system recovery. RDI provides authorization, integrity enforce-
ment, and support for alternative views of data. Fingered scan belongs to the storage



subsystem which reads the files from disk and returns tuple by tuple.

1.1 Contributions Summary

Major contributions of this work are:

e Introduce join operation with underlying fingered scan as an alternative for existing
access paths.

e Provide a generic cost model for finger join that enables the optimizer to evaluate
the cost against other query plans.

e Apply the generic cost formulae for two real world situations. One, a linked list of
records in memory. Second, a file stored in disk loaded into memory as pages.

e Evaluate the approach with a generated data set to see that cost formula is effective.
Here we,
— Show that fingered scan improves cost of join operation over nested loop join

— Show that System R cost model is inadequate for capturing this improvement
attained using fingered scan.

— Show that the new cost model introduced in this thesis adequately captures this
improvement



1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we lay out the basic background
concepts required to appreciate this work along with some of the previous work done in the
area. This covers a preview of System R cost model relevant to this work. This includes
a quick coverage of relevant join algorithms and use cases. We also understand the notion
of cost when applied to join operator and look at the cost of relevant join algorithms. In
Chapter 3, we explain the notion of fingered scan and runs statistic that can capture the
randomness in data. We also explain some necessary conditions required in the data set so
that the subject handled in this thesis is applicable to the data. In Chapter 4, we introduce
the cost formula built assuming that a join operation is performed with underlying fingered
scan in play. We then apply the formula for a single level store as well as a disk and memory
model. In Chapter 5, we first evaluate the model prerequisites explaining the simulator,
data generator and experiment overview. Then we analyze the results to validate the cost
formula. In chapter 6, we look at some inferences and future work.



Chapter 2

Review

2.1 The Basic Join algorithms

Though there are several modifications applied on them on various contexts, the core three
join algorithms are,

e Nested Loop Join
e Sort Merge Join
e Hash Join

2.1.1 Nested Loop Join

The oldest yet widely popular join algorithm works on the idea that every record in the
outer file needs to be scanned for every record in the inner file. For every such pair, the
qualifying records are picked up based on the Join predicate.

foreach record r; in Outer R do
foreach record s; in Inner S do
if r;, == s; then
‘ add < r;, s; > to result;
end

end

end
Algorithm 1: Pseudo code for simple nested loop join
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This simple algorithm considerably sped up using a block based nested loop, where
instead of records, a buffer consisting of many pages containing the records of outer are
loaded and compared at once with the records in a page of inner relation.

foreach page po in block Bo in Outer R do
foreach page pi in Inner S do
foreach record r; in po do

foreach record s; in pi do
if T, == 8; then
‘ add < r;, s; > to result;
end
end
end
end

end
Algorithm 2: Pseudo code for block nested loop join

2.1.2 Sort Merge Join

In sort merge join, both inner and outer relation is sorted and then a merge is performed
to match the join predicate hence picking up the qualifying records. It is widely used when
the records are already sorted or only a minimal effort is needed to be spent for sorting
purposes.

The gain in using sort merge over nested loop is in situations where the effort needs
to be spent on sorting is minimal. In such cases, both the files are only scanned once.
The component that affects the cost is the effort spent on sorting [7] and therefore, this
component often becomes the decisive factor.

2.1.3 Hash Join

While the actual working of hash join vary depending on the size of inputs, the general
idea is that one of the relations are converted into a hash table with the join attribute as
key. And then for every record in the outer table, a hash look up is performed to match
the join predicate. Due to its nature, hash based algorithm is typically used for equi-joins.



2.2 Review of System R cost model

System R was the seminal work in the field of relational queries and optimization. It
introduces a subsystem, a cost model and proves that relational queries can work with
guarantees in a real world system. It built up the theory that most modern DBMS engines
still use today. Since our cost model can be viewed as an additional component on top of
System R cost model, we give a preview of System R cost model focusing on sections that
are relevant to this thesis.

Sellenger [12] introduced the very first cost model for the IBM system R in 1976. She
introduced the concept of calculating the cost of a query based on disk reads and CPU
time within the storage subsystem used by System R.

This storage subsystem uses RSS scan, a disk scan which returns tuples one by one
from the disk. The scan supports OPEN, NEXT and CLOSE calls, primarily meant to
read the relation sequentially. The NEXT operation is similar to the getNext() operation
when using fingers. There are two ways of doing the scan, a segment scan which reads all
the pages occupied by the relation and an index scan which reads through the leaves of
the B-tree style index getting the tuple references. In the scope of this thesis, we are not
considering an index scan. Segment scan is basically reading pages one after other. During
the evaluation phase of this work, we adapt segment scan to a record level reading records
one by one from disk.

System R uses search arguments(SARGS) to filter an index scan before returning to
predicates. The selectivity of these search arguments predicts the approximate amount of
tuples returned after the filter process as a function of total size of relation. The cost of
scan for a single relation is determined as a weighted measure of number of pages read and
CPU calls. Once the cost of scanning a single relation is determined, the cost of a nested
loop join can be determined using the formula,

CnestED—LoOP—J0IN (Pathl, path2) = Courgr(pathl) + N x Ciyngr(path2)  (2.1)

where Courer and Crynygegr refers to the cost of scanning individual relation considering
the predicates.

The cost equation used in the evaluation of this thesis is an adaptation of equation 2.1.
Even though we haven’t considered an index scan, it is necessary to predict the estimated
size of the relation and other parameters that would be the outcome of an operation. Such
an estimate would help optimizer to make decisions on the various operator nodes in the
query plan. Hence, we predict a list of estimates for relevant statistics based on a single
relation scan.



System R deals with more literature than that is have covered in this review. It talks
about cost of sort merge join, dynamic programming to do the join ordering, cost of nested
queries and more. But for the scope of this work, the literature we have covered on System
R is sufficient.

2.3 Understanding the Cost of Join

Every Join algorithm perform better than others in at least one scenario. Nested loop is
picked when relation is quite small, sort merge is picked when cost of sorting is minimal
and hash join is picked when the type is equi-join with a hash table that fits in the memory.
Optimizer picks the right one that can minimize the I/O operations in a particular scenario.
In system R, this is done by first building up a search space with all possible query plans.
Then cost for each of the plan is calculated by summing up the costs for individual operators
involved in the query plan. The one with net lowest cost is picked. Hence, the cost is
traditionally counted as a function of number of pages accessed from disk and CPU time.
Let’s discuss a simple nested loop Join without paged or block access to understand the
idea.

2.3.1 Cost of nested loop

The cost of naive nested loop, as mentioned in Algorithm 1 is relatively straight forward.
The cost as a rough estimate of complexity is the size of outer relation multiplied by the
size of inner relation. We will build up from a simple in memory nested loop.

Cost of In Memory Nested Loop

This algorithm assumes that the basic unit of cost is accessing each record of the list from
memory. Outer relation is read once and inner is read once per one record in outer relation.
Hence,

Cost = Size(O) + Size(O) x Size(l) (2.2)

Here, cost is measured in terms of number of records read. Many existing systems
ignore this CPU cost as we are more concerned about the cost when data becomes larger
and doesn’t fit in memory. In such a case, the cost of /O from disk far outweighs this cost



of CPU cycles.

Cost of Disk Based Nested Loop

Blocked nested loop, as mentioned in Algorithm 2, is an improvement over conventional
nested loop in which files can be read as blocks containing groups of records. And nested
loop join is performed per block instead of per record. The differences in cost between
reading from disk and reading from memory means that the cost mentioned in 2.2 is no
longer relevant. The blocks containing outer relation is read once and blocks containing
inner relation is read once per number of blocks in outer.

Cost = B(O) + B(O)  B(I) (2.3)

This is the cost measured in terms of blocks. The block size is usually determined
by the available memory as calculated by optimizer. Since this is done dynamically, the
statistic optimizer keep is the number of pages occupied by both O and I. Number of blocks
per file is then calculated by,

_ Pages(R)

"~ Blocksize

B(R) (2.4)

For the purposes of this thesis, we take pages as the basic unit of access and do not
dive into statistics associated with blocked access.
2.3.2 Cost of merge

The worst case cost and complexity of sort merge join is same as nested loop. But there
are a couple of cases where the optimizer doesn’t need to resort to this high cost. If the
sort is performed either somewhere else down in the query plan, we get a sorted relation.
It may be the case that the relation is already sorted as well. In these cases, we are able to
save upon this cost and the overall cost then becomes the cost of merge alone. Which is,

Cost = Size(R) + Size(S) (2.5)

which is negligibly low compared to sorting.
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Query optimization as a research topic is one of the oldest topics in Computer Science
research. Generic cost models for SQL queries have been extensively researched since
1980’s. Codd [4] laid down the relational basis for database query languages. System
R paper introduced the first cost model based on access paths [12]. Join ordering still
works on the basic algorithm devised by System R paper [3] [1]. Since then, several other
works [13] [9] [L0] talk about statistic based query optimization and the different kinds
of statistics to be used for the purposes.

In this thesis we use a new such statistic called runs. Runs as a statistic to detect the
degree of randomness was introduced even earlier by Bradley [2]. While runs test has been
used in several fields including quality control [I15] and detecting virus infections [15], an
attempt to use runs as a statistic in query optimization engines is novel. Our work focuses
on using runs to detect the degree of ordering and use the measure to use a finger based
join operation.

Using fingers for faster look ups was first introduced in by Guibas et. el. [5]. Even
though it serves a similar purpose, fingers in this thesis are used in a different context with
different fields and different methods operating over it. We have getNext() and getFirst()
calls operating over a finger. getNext() is very similar to FETCH next record operation on
a database cursor [11] and getFirst() is similar to resetting the cursor to beginning.

We build upon all the aforementioned past works, however, the core theme of this
thesis is unique. But our work may only be a step towards this direction. There are
several inferences that could directly relate to this work. We give a brief look at these
future works in the inferences section.
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Name

Explanation

field /column
record

file

List (L)
Column (N)

r,s

0)

Size(R)
Pages(R)
B(R)
Page;(R)

A single item of information, such as email id or employee name.
A single implicitly structured data item composed of fields.

A regular disk based file containing a series of records that exposes
APIs to read, write and seek the records

A list of records. Used in a context where a disk based file is

not relevant. Such as an in memory list of records

The list of values of Nth field in all records in the file

variables used to represent individual records

Outer file. The file used in the outer loop of a typical nested loop
join or finger enabled join

Inner file. The file used in the inner loop of a typical nested loop
join or finger enabled join

A generic file that could be O or I containing a series of records
The total number of records in file R.

Total number of pages occupied by R on disk.

Cost of reading a block of file R

A list of observations read from N column, i** run.

i'" page occupied by file R

It can be observed from the review that sort merge join would be the obvious choice,
provided every relation is already sorted. But unfortunately, in reality, the query optimizer
would have to choose either sorting and merge approach or to choose one of the other
join algorithms. Typically, query optimizers choose sort merge join when the resultant
algorithm achieves near linear run time, which means that the effort that needs to be
spent in sorting is minimal. And Nested loop when there is a larger effort involved in
sorting. In the next chapter we introduce finger aware cursors which can remove the
process of choosing altogether, when only one of the relations involved in the process is

Table 2.1: Terminology Used in this Thesis

sorted on the join field.

12



Chapter 3

Finger Aware Cursors and the Runs
Statistic

In this section, we define the concept of runs statistic and examine how a finger aware
cursor would work in real scenario.

3.1 Runs in a List of Tuples

Runs Assertion

(R, L, A, B, N, Runs(R) ): For a linked list L of instances of record type R, and columns
A&B € R encoding intervals (A < B and C < D), there are Runs(R, A, B) runs.

Explanation

We will build up to a generic record type with two fields A, B and a generic runs definition
from a simpler case of a linked list of positive integers. Such a list is sufficient to explain
the two key ideas we are considering in this section, namely, the finger aware cursor and
runs statistic.

Consider the array of positive integers given in Figure 3.1. This list not sorted in the
classical sense of total ordering. Figure 3.1 shows the same array of positive integers in
a graph plotted against their index in the array on y-axis. From the graph, you can see
that elements with indexes 0 to index 4 are sorted. So are the indexes 5 - 10, 11-15 and

13
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Figure 3.1: List of integers with runs

Ty

10 L

Figure 3.2: Runs distribution in the list of integers

16-18. Even though the complete array is not sorted, there are ordered units within the
array. The areas marks in red are the points where a change in the ordering occurs in an
otherwise regularly sorted-ascending array of integers.

This array can be treated as a list of values from an employee_id field from an employee
database which is read sequentially using a cursor. An attempt is made to capture the
degree of ordering in such a list of integers (records in a broader sense) where breaks are
often observed in the ordering. Runs, is a good measure of this degree of ordering. In this
context, our definition of runs is very similar to what is defined by Bradley [2] in 1968. He
defines a single run as,

An unbroken sequence of increasing or decreasing observations.

The total number of runs in Figure 3.1 is 4. It is calculated by adding one to total
number of changes in the ordering in the list. Number of runs in list of integers is an
effective way to capture the partial ordering in data. In order to fulfill the requirements of
the work we cover in this thesis, a more comprehensive definition of runs based on a two
field record is required. Such a definition of Runs() is given in Chapter 4.

Programmatically, number of runs for a list of positive integers is defined and collected

14



like this,

foreach Integer r in R do
if Ty < Tigt1 then
runs++;
end
end

The characteristics observed on a list of integers here can be extended to a list of records
with column / field names. The notation Runs(R, N) is used to denote number of runs in
field N if the list of records are scanned successively from the disk in the order of storage.
Table 3.1 shows the various cases and explanations for the values assumed by Runs(R, N).

Runs(R,N) | Explanation

1 List of records is fully ordered with respect to column N.

Size(R) List of records is reversely ordered with respect to column N.

I Indicates the degree of partial sorting among the records. Higher the k,
lower the average length of individual sorted chunks

Consider a record r € L with structure as shown in Structure 3.1, and that a scan
operation takes place on this list of records on employee_id predicate.

struct record

{
int employee_id; //N=0
int salary; //N=1
struct record xnext;

When the records containing employee_id gets scanned one by one, the order in which
this scanning takes place determines the number of runs for that field. The value for
Runs(R, employee;d) is pre-calculated as a statistic for field employee_id. Similarly,
Runs(R, salary) is calculated for salary.

By this definition, number of runs is the number of times a partially ordered series
of records go out of order. Runs() statistic along with the size of records are the two
parameters optimizer base its decision regarding the choice of a finger based join or other
types.

Runs(R, employee;d) forms an important component of the cost formula. It works as
a statistic to incorporate the advantage incurred by fingered scan. DBMS engines already

15



collects statistics such as histogram [8] which essentially gives meaningful information
about data distribution. Currently, they are used for the purposes of selectivity estimation
[11], approximating query results [10] and several others. Runs() is a distribution free that
talks about the degree of randomness in data.

Runs Statistic with Two fields

For the purpose of building a generic model which can capture more than a list of records
or integers as observed till now, we use a different definition of runs. Two fields in the
record contribute to a singles runs statistic as opposed to one field we considered till now.
Consider a record r € R with structure shown below.

struct record
{
int A;
int B;
struct record xnext;

Our definition of runs on a set of records changes from what we have seen till now. Runs
statistic is now denoted by Runs(L, A, B) and computed slightly differently as explained
in Section 4. The two fields A and B are representative fields used in a join operation with
both fields contributing to the definition of run. There are special cases attached to them.
For instance, in first case, it could be database fields like employee id or salary. In another
one, each record would stand for statistics on a page where A and B could be the min()
and max() of the page for a particular record. The latter is used to generalize the cost
formula in this thesis for a two level store. And in the case of former, the formula gets
converted to the one we have seen in previous section.

3.2 Introduction to Finger Aware Cursor

The relatively straightforward idea behind fingered scan can be quickly summarized for
two lists of positive integers,

In a join operation on two linked lists of integers O and I, by keeping a pointer to the
currently read item in O, we can avoid the need for full scan of I if I is completely ordered.
If I is completely ordered, a merge can be performed between every run in O and entire I
to achieve same result set as a complete nested loop join.

16
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Figure 3.3: A Representation of Finger Aware Cursor on a list of Integers

An inevitable condition is that I has to be completely ordered. If O contains 4 runs and
I is fully ordered (1 run), four merges, one each with every run of O need to be performed
with I. To do this, two pointers, one each in O and I that scans through the lists are
required. The pointer in O also needs to trigger a reset of pointer in I at the end of every
run in O.

An simple finger with getNext() and getFirst() attached to it is given in figure 3.3.
A finger is basically an extension to the concept of these two pointers. They work on
records instead of integer lists. And the scan operation could take place in disk or memory.
It scans, remembers the records and facilitates the join operation using Runs(O) merges
between O and I. To explain this better, we will see possible representations of a finger
enabled scan in two different scenarios,

Simple Finger Aware Cursor

At its simplest form, a finger aware cursor is simply a pointer which keeps track of the
currently seen record in a linked list of records. Two operations work on them,

1. getFirst() - Gives the very first record in the list and resets the finger to beginning.

2. getNext() - Gives the next record in the list and moves the finger to the next record.

This is an in memory linked list that completely fits in memory from the first to last
record. In this case, it is analogous to a database cursor. A database cursor is a mechanism
which allows to perform operations on the result set returned from a query in a row by
row manner. It always point to the current row being processed and exposes an API like
getNext() which returns the next row in the result set. A finger can be thought of as an
extension to this concept which works on list of records. In addition to returning rows only
when required, a finger ensures that the row is scanned and computed only when required,
providing an additional level of performance improvement.

17



A Disk and Memory Model

When the concept of finger is further extended to a two-level store with a disk and memory;,
a linked list that completely resides in memory is no more a suitable term. The new data
structure is a file that resides on disk. It contains records that are partially read into
memory when required. This requirement more often comes as a db scan operation which
reads records in sequence. We assume that DBMS has complete control of number of pages
to be read from disk and loaded in to memory whenever required.

In such a file, fingers that work in record level and the ones that work in page level
need to be introduced to account for speed difference. This is because the cost of loading
a page to memory often far outweighs the cost of in memory getNext() or getFirst() calls.
Even though there are two different costs associated with it, the APIs exposed by them
namely, getFirst() and getNext() remain same and does not deviate from the functionality
mentioned in section 3.2.

For convenience, the finger that operates on pages are referred as a major finger and
that operates on records are referred as minor finger. When a list of pages is considered in
this manner, the speed difference between major and minor finger in any real scenario will
be so large that operational cost of minor finger can be ignored. Such a finger that scans
for records will be placed in the leaves of the operator tree where the scan operation is a
segment scan on files located in disk.

3.2.1 Representation of Finger

A C-like representation of finger data structure is quite useful to visualize the concept. A
list of records declared in C like the following,

record* list = malloc(size * sizeof(xrecord));

will have finger pointing to its very first record as a regular C pointer.
struct record xfinger = list ;

and two methods getNext() and getFirst() operating over it which returns the next
record in the list and the first record in the list respectively.

struct record getNext () {
finger = finger .next;
return finger;
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struct record getNext () {
finger = list;
return finger;

3.3 Finger Enabled Join

3.3.1 Prerequisites for a Finger Enabled Join

The following two prerequisites should be met by two files O and I that are involved in a
finger enabled join operation.

1. The records in I should be completely ordered with respect to the corresponding term
in join predicate.

2. The number of runs in the O should be reasonable enough to justify the use of fingers.

Th first condition that mandates complete ordering for I, is required to perform the
merge between individual run in O and the inner relation. Second condition is not a
mandatory prerequisite. Nonetheless, the query optimizer should be able to chose when
to use a finger enabled join from the statistics we have available as opposed to another
join method. It is possible build enough tools to evaluate the second prerequisite. A cost
formula is the first step towards it. However, for the scope of this thesis, we are not dealing
with the second condition. We assume that, with any number of runs, finger enabled join
is justified.

Such situations are not a rarity. In a typical relational schema, the tables containing
a key is always fully ordered which would make up a perfect inner relation. A join on
the key as inner relation with any other table satisfies the prerequisite that inner should
be completely ordered. The number of runs in a typical column will vary between 1, if
fully sorted, and Size(R) if completely unordered. Our tests suggest that any number of
runs less than Size(R) is good enough except when it begin to approach the proximity of
Size(R). When it does, the overhead associated with fingered scan tends to outweigh its
benefits, otherwise, satisfying prerequisite 2.
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Figure 3.4: Simple Join using Fingered Scan on two lists of Integers

3.3.2 Working of Finger Enabled Join

Consider the initial state where both the fingers are just initialized in a simple join as
shown in Figure 3.3.2. The file with a column Runs(R, A, B) = 1 is labelled to be the
inner (I) while the other one is labelled outer (O). Fingers are reset and rests on the first
record.

1. A getFirst() is called on the join node in the operator tree (As indicated in the Figure
3.3.2) to obtain the first join result. The join operator node then issues a getFirst()
call on the leaf O and I to obtain the first set of records . At this point,

e Fingers in both the leaf nodes O & I are reset to first position. Records in that
position is read and passed on to the Join operator

e In the leaf of the operator tree that represents a file (Inner and Outer), the finger
reads next record. Finger is incremented and record is passed to the operator.
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e In the join operator node, operator checks if the two records in hand matches the
join predicate. If so, the results are appended to a result set. It calls getNext()
on the leaf which returned lower value of the two. But the old records are not
discarded yet.

2. As a result, in a leaf, (O & I) getNext() operation continues until either of these
conditions are met

(a) End of file is reached.
(b) A getFirst() request is received.

Once either of the two conditions are met, the finger resets to first record.
3. Steps 1 and 2 are repeated until a run is encountered in the outer file O.

4. Join operator node detects a run using the record that was retained when getNext()
was issued. A comparison with this record is made to see if fetching this particular
value resulted in encountering a run.

5. Once a run is encountered, the join node issues a getFirst() to the inner file.

6. These steps are repeated until all results are fetched.

As you can see, the change in ordering in the outer file is the only event that triggers a
finger reset in the inner file. There is considerable savings in not reading every record each
time. Hence it captures the optimization using partial ordering in data effectively.

Duplicate Handling

Apart from the working described above, duplicate values in both O and I need to be
handled separately. To do this, we place a second finger in O in the same place as first
finger. For all the practical purposes, the second finger moves together with the first.
Except when the value being compared is a duplicate. To handle duplicates, we keep it a
rule that when the value being compared by the finger in I and the finger in O is same,
the finger in I is the one that moves forward. The rules makes it easy to detect duplicates.
On occurrence of a duplicate in I, the second finger in O stays in its place and stays as
a reference pointer to the beginning of duplicates. The first finger moves ahead as usual.
The finger which stays in its place is reset back to the position of first finger on occurrence
of a non duplicate value.
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Once we encounter a non duplicate value in I, (which is higher than the value finger in
O points to as Runs(I, N) =1 ), we move the finger in O forward. At this point, three
cases ensue:

1. A non duplicate, higher value.

2. A duplicate value

3. A lower value, ie, a run.

In case 1, we move both fingers together, considering it as a single finger. If the record
being currently pointed to has only one finger (Already encountered duplicates), we reset

both the fingers to this position. In case 2, we keep the second finger intact and move only
the first finger. In case 3, we reset the finger in I as usual.
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Chapter 4

Estimation of Cost for Finger Aware
Joins

4.1 Introduction

The cost model introduces a method to calculate cost of the finger enabled join operation.
The end result of our cost analysis is formula what calculates a numerical cost value for
join using the statistics already available to the optimizer.

We first derive a generic cost formula considering a list of records with certain properties
without being concerned about the placement of finger. The properties include two fields
A and B and a calculation of runs statistic based on these two fields. This generic formula,
once derived can be applied to two possible finger placements as two special cases. First,
an in memory linked list of records. Second, a two level disk and memory based system
where pages containing the records are first loaded into memory. Once loaded, records are
read one by one in-memory. In the second case, we consider the in memory operations
as free, allowing us to use the same formula there. Hence, this record-by-record case and
page-by-page case, both can be fit into the same formula as two special cases.

4.2 A Generic Cost Formula

To build a generic cost formula, we first define a more general definition of a run as promised
in Section 3.1.
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Consider a record r € L with Size(L) records, each record r; with two fields A and B,
denoted by tuple (A, B). This type of record with two fields serves as the record type used
in the derivation of generic cost formula.

We first define the interval criteria that is an essential prerequisite for the record r with
two fields A and B to work as a generic record type. Then we define runs based on the two
fields. We use this information and other statistics shown in 4.1 build the cost formula.
The process of building cost formula take place in two sections, one each for the costs
incurred by O and I. While cost incurred by O is relatively straightforward to calculate,
cost incurred by I has to consider duplicates, boundary corrections, etc.

Interval Criteria for A and B

The fields (A, B) meets the criteria, for every record r; € L,

That is, B succeeds or equals A in terms of ordering and hence (A, B) forms an interval.

Definition of Runs

Now, consider another such record r;,; which has similar fields and follows interval criteria
4.1. A record 7;1; is ordered with respect r; if the pair of records (r; , 7i11),

riyiA > B (4.2)

That is, the second field of first record should precede the first field of second record.
Unlike the definition of run we have encountered till now, a violation to this rule in a list
of records is considered to be the end of a run. Hence, a Runs() is defined as the total
number of occurrences in a list of tuples in which this condition is violated. That is, for
all r € L the violations of, equation 4.3 is a run.

Ti—i—l-A S TZ‘.B (43)

Into Cost Formula

Consider two files outer and inner with equi-join on columns (A,B) & (C, D) as follows.



(A, B) and (C, D) are the fields that form an interval. The join condition (A, B) == (C,
D) degenerates into A == C in a single column scenario when A == B and C == D. This
case is considered as a special case later in this chapter. For now, the file I with Size(I)
records (71...7siz¢(1)) contains these two fields and forms an interval. Additionally, let the
property 4.1 be true for 1. Hence,

Runs(1,C,D) =1 (4.4)

File O with Size(O) records meets the property 4.1 as well. Additionally, the file O also
contains a fixed number of runs indicated by Runs(O, A, B). Runs(O, A, B) is an arbitrary
number greater than or equal to 1.

Table 4.1 shows all the required statistics available for the optimizer for files I and O.

Name Symbol

Number of records in file Size(I), Size(O)

Cost of getNext() on file CN(I), CN(O)

Cost of getFirst() on file CF(I), CF(O)

Number of runs in file I for columns (A, B) Runs(I,A,B) =1

Number of runs in file O for columns (A, B) Runs(0O, A, B)

Average runlength of columns (A, B) runlength(R, A, B)

Average runlength of columns (A, B) runlength(R, A, B) = Size(I)

Number of unique values in columns A, B, C,; D U(R,A), U(R,B), U(R,C), U(R, D)

Table 4.1: Statistics Available for the Optimizer for Files I and O

Now, we split down the individual cost components of various actions involved in the
Fingered Join process.

Cost of Scanning O

Placing the finger in the beginning of O needs a getFirst() which costs,

CF(0) (4.5)
The outer file is issued a getNext() once for every record which costs,
CN(O) x Size(O). (4.6)

This sums up the costs involved for accessing outer file, ie. the sum of 4.5 and 4.6,

Couter = CF(O) + CN(0) x Size(O) (4.7)
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Cost of Scanning I

Calculating cost for I is not trivial as it involves several back and forth finger movements
between records. Placing the finger in the beginning of I needs one getFirst() call, costing,

CF(I) (4.8)
For every run in O, there is another getFirst() call for I, resulting in the cost component,
CF(I) x Runs(O, A, B) (4.9)

However, an important ingredient in the cost formula is the cost for total of getNext() calls
issued to I. For every run in the outer, we have to scan the inner up to a certain k" record
rr < Size(I) in order to perform the merge. Hence we are looking at cost component,

Runs(O, A, B) X kqyg x CN(I) (4.10)

where k,,, = average of all such k values in I for every run in O. The value of k,,, depends
on the distribution of data. But we later consider a reasonable approximation of this value
based on a uniform data distribution assumption.

Next significant cost component originates from accounting for duplicates. This com-
ponent is the result of getNext() calls on I for every duplicate value in O. Refer 3.3.2 for
detailed explanation. For a record in O, the number of getNext() calls in I will be equal
to the number of consecutive duplicate values in I for that particular record. This com-
ponent is non-trivial to calculate because we are considering two fields per record. For a
join involving only one field, definition of duplicates refers to the conventional definition
of duplicates where values being same and being able to be compared with an equal to
(=) operator. But when considering two fields forming intervals, an interval (A, B) is
considered duplicate of another interval (C, D) only if,

A<C&B>Dor A<C&B>D (4.11)

That is, the duplicate statistic for two fields A and B is incremented by one, if one interval
encloses another. The total number of such values, is collected as a statistic, by either
empirically or by calculating an average using the probability of one interval randomly
picked from a list enclosing another interval picked from same list (A. Here, we continue
assuming that the statistics of U(O, A, B) and U(I, C, D) are precomputed and available.
This cost component is roughly equal to total duplicate values in O that occur consecutively,
multiplied by average number of duplicate values per record in I.
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Average number of duplicates per record in I,
Size(I) —U(I,C, D)

4.12
U(7.C.D) 2
An approximation for consecutive duplicate records in O,
A, B
(runlength(O, A, B) — RZESO(’O,;L%)) X Runs(O, A, B) (4.13)

So our final cost component is a product of 4.13 and 4.12.
Size(l)—U(I,C, D) U(O, A, B)
U(Il,C,D) Runs(O, A, B)
A component yet to be figured out is k.. Finding kg, is a challenge we will solve in next

subsection. For now, the overall the cost component for I is the sum of eq 4.10, eq 4.8 eq
4.9 and eq 4.14.

x (runlength(O, A, B) — ) X Runs(O, A, B) (4.14)

Cinner = CF(I) 4+ CF(I) x Runs(O, A, B) + Runs(O, A, B) X kgpy x CN(I)
Size(I) —U(I,C, D)

U(l,C,D)
U(O, A, B)
A B) — A B 4.1
X (runlength(O, A, B) Runs(O,A,B))XRuns(Q ,B) (4.15)

Summing up the Costs

Hence, the formula for total cost is a summation of Cipper (4.15) and (Coyger) 4.7,

CF(0)+ CN(0) x Size(O) + CF(I) + Runs(O, A, B) X kgyg x CN(I)
+ CF(I) x Runs(O, A, B)
U(O, A, B)
Runs(O, A, B)

Size(I)—U(I,C, D)

0(.C.D) x (runlength(O, A, B) —

) X Runs(O, A, B)
(4.16)

Finding £k,

We know that the cost component in equation 4.10 should meet the criteria that the record
r should be greater than or equal to the last record in the corresponding run in O. To put
it mathematically,

Vi, Mazx(Run;(Oy)) > (4.17)
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for i in range(i = 0 to Runs(I,C, D)). Now, it may be the case that,
r = Maz(Iy) (4.18)

which means that r may well be the last record (k = Size(I)) in I. This means that the
inner relation has read up to its last record for every run in O. Even though this is not a
required condition, we will now see how an assumption makes our cost calculation better.

Uniformity of Runs Assumption

We have made an assumption regarding the distribution of records in outer file. It doesn’t
affect the end result or the cost formula. But construction of cost model and evaluation is
significantly easier, because the required data set with the assumed distribution is easier to
build and analyze. The assumption is that runs in O are distributed uniformly. It means
a couple of things

e Each end of run occur in regular intervals after C records where C is a constant for
the file. This constant is referred to as runlength. For example, a distribution of
hundred numbers have uniformly distributed runs if a change in ordering happens
only after 10 ordered numbers. Here, the average runlength is 10.

e An average run is a representative of the file itself in terms of the values. That is
the first record in run is min(O) and last record is max(O). This need not hold true
for every single run, but this is an attempt to estimate the distribution of an average
run.

An approximation of runlength for in relation R is as follows,

runlength(R, A, B) = wa;?;(i) B) (4.19)

But the assumption takes this a step forward and states that the runlength is also fixed for
every run, rather than being an average value as a whole. As a consequence of our uniform
runs assumption, we assume that equation 4.18 is true. In other words, according to our
uniformity of runs assumption, the distribution of each run in O is a representative of the
distribution of inner file I itself. Hence the inner will be scanned down until the end of the
I for every run in O. Now, the cost component from equation 4.10 can be rewritten as

Runs(O, A, B) x Size(I) (4.20)
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Note that, this assumption need not be true for the cost formula to be correct. But an
extension of the cost formula takes advantage of this assumption and substitutes for k.4
although are ways by which we can evaluate k,,, without this assumption. Assuming
uniformity runs assumption to be true is beneficial in another sense. The calculation of
kqug using the assumption would result in the cost formula calculating the worst case cost.
But the true cost without the assumption is lower than the cost in 4.10.

Using equation 4.20, the overall cost in 4.16 is changed to,

Ciotar = CF(O) + CN(O) x Size(O) + CF(I)
+ Runs(O, A, B) x Size(I) x CN(I) + CF(I) x Runs(O, A, B)
Size(I)—-U(I,C, D)
U(l,C,D)
U(O, A, B)
Runs(O, A, B)

x (runlength(O, A, B) — ) X Runs(O, A, B) (4.21)

Table 4.2 shows the cost components involved. To sum up, this cost formula is a sum
of total number of times the records in O and I accessed when underlying fingered scan is
in play factoring in repeated accesses due to multiple merges and duplicates.

Component Cost

Finger Reset for O and I
getNext() costs for O
getNext() issued for I per run in O

CF(O)+ CF(I)
0) x Size(O)
x runlength(O, A, B)

CN(
CN(I)

CN(I) x runlength(O, A, B) x Runs(O)
CF(I) x Runs(O, A, B)

Size)_UULED) o (rynlength(O, A, B)

0,A,B
_—Rurfs(O,A,)B)) X Runs(O, A, B)

Total getNext() issed for I
Number of getFirst() called on I
Unique elements

Adjustment factor Kavg

Table 4.2: Cost Components in the Formula

4.2.1 About Special Cases

Now, we use the general formula we derived in 4.21 in two special cases. The two cases
consists of a join operation on,
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1. Two linked lists of records in memory

2. Two files in a disk and memory store where records are stored in files and files are
accessed in pages loading them into memory

4.2.2 Cost of join on Two In-Memory Lists

Two in-memory linked lists present the simplest special case for the generic formula. The
list of records now form a c-style linked list with a next field pointing to the address of
next record. The generic formula can be converted this case if the two fields A and B in

records are the same
A=2RB (4.22)

for each record in both O and I. Hence the set (O, R, O.A, O.A, Runs(O)) and (I, R,
LA, I.A, Runs(I)) is involved in join. ie, the two fields we picked for the generic formula
converges to one and that field forms part of join predicate. The cost formula remains
exactly same, but the components involved in the formula, especially runs acquires the
conventional meaning as Bradley explained in his work [2] in the light of equation 4.22.

Reduction to Sort Merge

A key criteria for the robustness of our cost formula when considered as an in-memory join
is that, it should reduce down to the cost of a sort merge join in a situation where sort
merge join would be picked by the optimizer. Optimizer picks sort merge join over others
when both the tables involved in the join operation are sorted. This condition is simulated
in our cost formula when the number of runs in the outer is 1. Inner is already totally
ordered. Hence we have two totally ordered lists if,

Runs(0, A, A) = 1 (4.23)

Substituting this in eq 4.21. The cost becomes,
= CF(0) + ON(0) x Size(O) + CF(I) + 1 x Size(I) x ON(I) + CF(I) x 1 (4.24)
= CF(0) + CN(O) x Size(0) + CF(I) + Size(I) x CN(I) + CF(I) (4.25)

CF(O) and CF(I) are insignificant terms in the equation as it is a constant. You can see
that the equation reduces to

— ON(0) x Size(O) + CN(I) x Size(I) (4.26)
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This equation is similar to equation 2.5 which is the cost of merge. This equation also
contains more CN terms. However, CN terms are simply a way to calculate the cost of a
next operation which should essentially be included in equation 2.5 as well if calculated
our way. Hence, the eq 4.21 has been reduced to cost sort merge join.

Reduction to Nested loop

Similarly, optimizer would pick a nested loop join over sort merge if the tables are com-
pletely unordered and our equation should be able to reduce to cost for nested loop in
such a scenario. The worst case scenario in our case where O is totally unordered can be
simulated if

Runs(0O, A, B) = Size(O) (4.27)

Let us substitute this in eq 4.21. The cost becomes,
CF(O)4+CN(0)xSize(O)+CF(I)+Size(O)x Size(I)x CN(I)+CF(I)xSize(O) (4.28)
removing the insignificant terms as in previous equation,
CN(O) x Size(O) + CF(I) x Size(O) + Size(O) x Size(I) x CN(I) (4.29)

Note that the first two terms are also not significant as we have a term with Size(O) x
Size(I) in it which outweighs lower powers, which results in the following equation,

Size(O) x Size(I) x CN(I) (4.30)

This is the major component in the cost for nested loop join as mentioned in eq: 2.2.

4.2.3 Cost of Finger Enabled Join in a Disk and Memory Model

On calculating cost in terms of pages for a two level store involving a high speed memory
and a low speed disk, we take certain liberties with the fields in records to conform it to
our model. Consider a Join operation on two files (I & O) stored in a disk as pages and
records per page. The operation works as follows:

1. A getFirst() is issued to the root of the operator tree.

2. A getFirst() is issued at the first page of the first column of the I. A finger (fi) is
being initialized on the first page.
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3. Page is loaded into memory.

4. A getFirst() is called on the first record of the page. A finger(fil) is initialized on
the first record in the page.

5. Steps 1-4 is repeated for outer file with another major finger (fo) on first record and
a minor finger (fol) on the first record.

6. As records are read from the first page of O, the minor finger successively moves
to next records. Major finger points to the pageid. As long as records satisfy the
condition 4.1, no attempt is made to reset the finger.

7. There are two possible outcomes in this scenario,

e End of page occurs on O. The next page is loaded into memory and major finger
is placed at the beginning of it. Minor finger is reset to the beginning of first
record of second page.

e A run occurs, ie, the condition referred in 4.1 is broken. In this case, the first
page of I is loaded and hour hand of I is reset to the first page of 1.

e End of page occurs on I. Next page is loaded into memory and scanning proceeds.

Consider the page-wise join algorithm which is a slightly modified version of the algorithm
mentioned in section 2.

foreach page po in O do
foreach page pi in I do
foreach record r in po do

foreach record s in pi do
if ry == 3S8; then
add < r,s > to result;
end
end
end
end

end
Algorithm 3: Pseudo code for paged nested loop join

The two outer loops operate on a low speed disk and the two inner loops operate high
speed in-memory. Compared to the cost of reading pages from disk, the cost of inner loop
is free. Our model can capture this difference in speed and still use the finger optimization.
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The same algorithm that was written above can be split into a two level join. Two inner
loops that operate in memory can be considered as a fingered scan operation from memory.
Two outer loops which essentially reads the pages from disk can be thought of as a ”fingered
page scan” operation from disk.

Cost Formula in terms of getNext() and getFirst() cost

The algorithm 4 is a page-by-page look at the data compared to a record-by-record look.
The cost formula we derived for a record-by-record can be modified to suit the page by
page version with a few tweaks. To facilitate this fingered page scan operation, we need
additional statistics and a few assumptions about the optimizer. If we consider the two
inner loops of the algorithm 4 as free, what remains is the double nested loop on pages.
Such an algorithm looks like this,

foreach page po in O do
foreach page pi in I do
res = page_join(po, pi) ;
add res to result;
end
end
Algorithm 4: Pseudo code for paged nested loop join ignoring CPU cost

where page_join(po, pi) is considered as a free in-memory operation. You can see that
this algorithm resembles our simple record-by-record join algorithm form section 1. This
enables us to see this as a special case of our generic join.

The property of a run can be extended beyond individual in-memory list of records.
But it is not just sufficient to think of pages as linked list. We need some kind of ordering
within the pages. To facilitate this property in the linked list of pages, we store the min()
and max() record of each page. A = Min() and B = Max() respectively as given in Figure
4.1. (Min(), Max()) naturally forms an interval. These two new statistics per page per field
in the record helps to apply the generic formula to this special case. For a file R containing
Size(R) records stored in i pages and each record containing N fields out of which two fields
are (A, B), Let,

A =miny(pr) (4.31)

B = mazy(pr) (4.32)
indicate the minimum and maximum value of N** field of all the records contained in page

R.These two new statistics is substituted for (A, B) fields. Hence, join operates on the sets,
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Figure 4.1: Fingered Join on a Disk and Memory Model

(O, R, O.Min(), O.Max(), Runs(0O)) and (I, R, I.Min(), I.Max(), Runs(I)). The definition
of run remains same as defined in equation 4.2. That is, we detect a run only if,

miny (poiy1) < maxy(po;)Vi (4.33)

Hence, Runs(R) statistic is the total number of runs satisfying this criteria. Similarly
others are slightly modified to reflect this. Table 4.3 shows the refined statistics.

Symbol Name

Size(R) Total number of pages occupied by file R

CN(R) Cost of loading the next page in sequence

CF(R) Cost of loading the first page in sequence

runlength(R, min,max) Average runlength of Ny, column in terms of number of pages
miny(Page;(R)) The minimum value of Ny, field of all records in Page;(R)
maxy(Page;(R)) The minimum value of Ny, field of all records in Page;(R)

Table 4.3: Statistics Available for the Optimizer for Fingered Page Scan

At this point, we can use the exact same equation 4.21 for calculating cost.

CF(0O) 4+ CN(O) x Size(O) + CF(I) + Runs(O,miny(Page;(R)), maxy(Page;(R)))
x Size(I) x CN(I) 4+ CF(I) x Runs(O, miny(Page;(R)), maxy(Page;(R))) (4.34)
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Table 4.4: Selectivity Estimates of Various Operators

Operator Type | Selectivity Factor(F)
Cross Product Binary | 1

Union-All Binary | N/A

o Column = Value Binary | 1/U(O, N)

o Columnl = Column?2 Binary | 1/Max(U(O,N), U(I,N))

Maz N (R)—value
Mazxn (R)—Miny (R)
value2—valuel
Maxn(R)—Miny (R)

Column >value Unary

Column in range(valuel, value2) | Unary

Projection Unary | N/A

Duplicate elimination Unary | U(R,N) / Size(R)

Sort Ascending Unary | 1

Sort Descending Unary | 1

Difference Binary | ( U(O, N) - U(I, N) ) / U(O, N)

4.3 Calculating Other Statistics in the Join Node

The previous section includes a calculation of overall cost for the operation. For a generic
query optimizer with a cursor based implementation, a measure of overall cost for join is
not sufficient. The situation considered above calculates cost for a simple join operation
which is essentially a simple tree with two nodes and a root node. In order to generalize
this, we need this tree to grow larger with more operations connected to it.

Every query plan presented in the form of such a tree with a cursor based implemen-
tation will have the equivalent of getFirst() and getNext() executed at various times in all
nodes in the tree. This would also mean that, instead of having an overall cost in the root
node, we need the same statistics defined in the join node in terms of statistics we have
in the leaf nodes. The statistics we assumed that the optimizer will have are summarized
in Table 4.1. In essence, we have to calculate the resultant size of the relation after join,
resultant number of runs and a value for cost component CF() and CN() on the join node.
Table 4.5 shows the resultant runs statistic and size of the output for various operators.
Table 4.4 shows the corresponding selectivity estimates.

The statistics we still need to calculate include a value for CF() and CN() in the
root node. We know that the overall cost calculated is a function of CF() and CN()
costs on the root node. The total cost is comprised of exactly one getFirst() call and
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(Size( x ) — 1) getNext() calls.
(4,B)=(C,D)
— ) — —
Ciotar = CF( X )+ (Size( X )—1) x ON( X ) (4.35)
(A,B)=(C,D) (A,B)=(C,D) (A,B)=(C,D)
Considering an even distribution of cost,
C ola
CF( w )= total (4.36)
(A4,B)=(C,D) Size( X
(A,B)=(C,D)
- Ctotal . -
CN( x )= = x (Size( wx  )—1) (4.37)
(A,B)=(C,D) Size( N (A,B)=(C,D)
(A,B)=(C,D)

CF, CN costs along with the estimates mentioned in table 4.4 completes the cost cal-
culation process giving us every tool required for estimating the cost. This information is
sufficient for the optimizer to pick the right join method for the scenario.

37



Chapter 5

Evaluation

5.1 Introduction

The evaluation goal is to see if the cost predicted by new cost formula conforms to the
empirically measured cost. We create two files O and I containing a list of records and
perform a join operation between them. The join predicate is an equality on a key field
and non key field. The presence of a key field in the operation ensures that we meet the
criteria of having a completely ordered inner relation. Section 5.2 explains how the data
generator create files to suit these requirements.

The output of data generator is passed through a join simulator which can perform
both nested loop and finger enabled joins. Join simulator takes five inputs and returns two
outputs. It takes paths to O and I and the field names on O and I to perform the join on
along with the type of join that is required to be performed as input. Type of join can
either be nested loop or finger enabled join. As output, the result set containing a list of
items and a numerical cost value is returned.

We calculate two costs and plot them against each other. Empirical cost, returned by
the join simulator and predicted cost is calculated using the cost formula. Conventionally,
the empirical cost of join operation quantifies some form of disk I/O. One way of measuring
it is by counting the number of disk pages read, assuming a constant number of records per
page. There are a few other methods of assessing the cost, but the defining criteria is that
cost should be directly proportional to the relative time various query plans takes to run.
Such a measure would enable the optimizer to pick the fastest plan. We use sum of every
accesses to every single record as such a measure of cost. A cost calculator module returns
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the number of times every record is read by incrementing a cost counter on every access
to a record. As the join operation progresses, the cost calculator module keeps global cost
counter that gets incremented on each read operation. However, the cost calculator module
is oblivious to the type of join being performed. This independence is important because a
separation of cost calculation process and join process removes the possible tight coupling
which could result in a false or a biased cost.

Second, we calculate the predicted cost from cost formula. The basic elements in the
cost formula, the CF and CN variables, are substitutable to calculate the cost based on
disk access speeds as well as a simulated cost for a single level store. Since we use a
simpler evaluation model that uses the number of records as the unit of cost, the goal of
substituting for CF and CN variables should be to arrive at number of records as cost.

Once both the costs are calculated, they are plotted against the product of record size
of O and I for both predicted and empirical determined values. Both are plotted side
by side in same graph to show the correlation between costs. The purpose of plotting
against the product of cost is two fold. First, it removes the quadratic nature of nested
loop costs from the graph. This removal makes easier to visualize the difference between
predicted and empirical cost. Second, it ensures that both Size(I) and Size(O) are involved
in visualization process.

5.2 Dataset Generation

Dataset generator takes a set of constraints as arguments and returns a file containing
records that meets these constraints. The synthetic file generated this way contains a
sequence of records each containing fixed number of user specified fields with positive
integers as values. User can specify the following constraints as parameters passed down
to the constructor of dataset generator.

e Number of fields per record

Names of each field used as the identifier

Number of runs in each field

Size of file (number of records in the file)

The fields to be finger enabled
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e Primary key

e Total number of keys in every field

Every join process is preceded by a dataset generation phase which creates two files O
and I meeting two user specified criteria mentioned above. The resultant dataset can be
saved on disk for later joins.

5.3 Evaluation Overview

The files O and I are passed through a join simulator along with the type of join to
be performed. For a standard experiment, we calculate four costs for two hundred join
operations as data points. The four costs calculated per data point are,

costl: Empirical cost of nested loop join by passing nested loop join as join type argument
to simulator.

cost2: Predicted number of records scanned according to System R cost formula.

cost3: The same dataset is used to the empirical cost for finger enabled join to see the
improvement.

cost4d: Predicted number of records scanned after introducing runs statistic and fingered
scan.

These four costs are plotted against each other in a predetermined order to show a
sequence of steps,

1. costl is plotted against cost2 to show that a cost model inspired by System R ade-
quately measures the cost of a nested loop join.

2. We then introduce fingered scan operator. Here, cost2 is plotted against cost3 to
show that,

e There is an improvement in performance as indicated by experimental cost of
finger enabled join.

e Due to the wide gap between the line segments, it is evident that the improve-
ment in performance indicated by experimental cost is not adequately captured
by System R style cost model.
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3. Finally, cost3 is plotted against cost4 to show that the newly introduced statistic
Runs(), when used as a function of cost equation can effectively capture the im-
provement in performance .

While a direct measurement of cost from our generic formula is non trivial due to the
presence of CF and CN terms, there are ways in which total cost can be approximated
by assigning a fixed cost to these operations. As mentioned earlier, we can decide what is
returned by the cost formula by substituting appropriate values in place for CF and CN
terms in the formula. Since we decided to go with number of records as the measure of
cost, we substitute cost of getNext() (CN) as 1 unit and cost of getFirst() (CF) as 0 units
to obtain a cost in terms of number of records read.

5.4 Experiments and Results

5.4.1 Experiment Overview

There are several variables in the cost formula. The variables that are relevant to us are
the ones that show the comparison between predicted and actual cost at scale. We varied
the record sizes of O and I sampling randomly from 200 - 10000 values for sizes. Number
of runs in O was varied between 10% to 60% records. 200 samples are plotted in three
graphs showing the cost against the product of Sizes of relations. Figure 5.4.1 shows the
conventional System R cost formula plotted against observed cost of nested loop join. It
can be seen that they conforms to each other as the line showing predicted cost closely
follows the line showing empirical cost. Due to lack of index scan, scanning of individual
files is equivalent to a segment scan in System R style. This results in a straight line
segment in Figure 5.4.1 as predicted cost for System R.

In Figure 5.4.1, we plot the cost for fingered scanning of records. This results in a
performance improvement and the empirical cost has gone down compared to previous
graph. This reduction is significant as you can see from the graph. It is plotted against
the predicted cost from System R to show that the System R cost model is incapable of
predicting the cost advantage incurred using fingered scan. This is evident from the wide
gap between both line segments in Figure 5.4.1. At this point, we introduce the runs
statistic and build up a cost equation based on the formula studied in this thesis. The
cost predicted by new formula using runs statistic is given in Figure 5.4.1. The experiment
confirms that the new cost formula incorporates the improvement in performance as you
can see that both the line segments closely follow each other.
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Figure 5.3: Experimental(Fingered Scan) vs Predicted(New cost model) values

5.4.2 Verifying and Explaining Anomalies

As observed from the graph, the result of experiment (actual value) closely corresponds to
the predicted value. However, there are a couple of notable points from the Figure 5.4.1:

e The actual value is always slightly lesser than the predicted value.

e There is a divergence between the line that follows actual value and the one that
follows predicted value as number of records gets higher an higher as the size of
records grows.

Both of these two properties of graph can be attributed to the kg, attribute we had
considered during the construction of cost formula. £,,, stands for average records to be
read in I per run in O. The disparity occurs as a consequence of the uniformity assump-
tion we had discussed earlier. We had assumed that every run uniformly spans between
minimum and maximum value of join field from I. That is,

Vi Min(I) = Min(Run;(O)) (5.1)
Vi Max(I) = Max(Run;(O)) (5.2)
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However, this is not true in reality for every single run. While Equation 5.1 is not of
consequence here; equation 5.2 needs to be fine tuned to work with edge cases. Maximum
value of each run in O will fall short of maximum value of join field from I. That is,
Maz(Run(O, A, B)) will be less than Maxz(I,C, D) for a large number of runs in O. This
results in the finger in O never reading the last few records of I several times. This
happens more and more as the number of runs increases and resulting in the widening
lines. Fortunately, we don’t need an exact answer to this question as picking a query plan
is about approximation and our estimates without this approximation still estimates the
cost reasonably well.
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Chapter 6

Inferences and Future work

In this thesis, we study the cost model for fingered scan, a newly introduced method of
scanning records. We show that fingered scan improves performance of join operation and
this improvement in performance can be captured using a cost formula which incorporates
runs statistic as a component.

6.0.3 What’s not Covered?

We have not dealt with index scans which should ideally form an immediate future work.
The finger based scans on B+tree style indexes would incur a different cost than segment
scans of records. The cost considered in this model is more related to a segment style scan
where records are scanned based on their consecutive positions in disk.

We also haven’t dealt with finer details of query cost calculation like calculating the
cost for nested queries, multiple joins, group by and order by clauses etc. Although such a
calculation forms an important part of an overall cost plan, this work is only a first step in
that direction. However, we do calculate various cost parameters for the join node which
can be used for cost analysis in other places where finger enabled join is not used.

Although, the cost model studied in this thesis deals with the definition of runs that
incorporates two fields A and B in a record, there are several other ways to add more
information about the records. Even though those scenarios aren’t dealt with in this thesis
in detail, they are a good candidate for future work.
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6.0.4 Knowing Other Information

In a DBMS system, there are different kinds of information that we can utilize in such a
setting. This thesis lays out the basics of the idea, but applying this to some of the other
statistics and constraints can produce better results. For example in the disk and ram cost
model we discussed, if we know that,

Ti+1.A > ’f‘i.A (61)

while encountering a run, resetting the minor finger to the beginning of the page would be
sufficient instead of loading from first page. Some such information we can use are,

e Functional dependencies
e Primary keys
e Number of unique elements

e Probability of an interval falling in another

More work is required to take better advantage of the fingered scan based on this new
information and map it in to a cost formula.

Placing Multiple Fingers in I

Placing a third finger (other than regular and for handling duplicates) finger in I may
enable us to go back only a certain number of records instead of rewinding to beginning of
I on encountering a run in O. Knowing where to place the second finger requires collection
of more distribution oriented statistics. In general, multiple fingers in I can improve the
performance, but at higher cost of maintenance.
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Appendices
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Appendix A

Derivation of Probability of One
Interval Falling in Another

Low and high values of A have the same probability, but high values of B are much more
likely than low values) we have

1ol 1 1
p:/ / / / f(a,b,c,d)dddbdcda
0 0 l—a a l—c c

1 fa<e<d<borec<a<b<d

0 otherwise

where

fla,b,c,d) = {
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We can rewrite this as

Lol L b
// / /1dddbdcda
0 a l1-a c I1—-c c
1 1 1
/ L /b € dbdeda
s 1—a /. 1—c
2 deda
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