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Abstract 
Automotive battery models, compared with personal electronics, are more complex as they 

experience a larger range of current discharge/charge rates.  Electronics have a constant power 

demand, and thus a constant current is demanded from the battery.  Vehicles have fluctuating 

power demands, dependent on the acceleration rate, and thus a non-constant current is 

demanded.  There are many different classifications of automotive battery models depending on 

the fidelity required. 

Most automotive battery models can be attributed to one of two classifications: electrochemical 

and equivalent circuit, although there are some exceptions (e.g. neural network, linear, etc.).  

Electrochemical models incorporate individual particle interactions with great detail, resulting in 

high accuracy and simulation time.  It follows that electrochemical models are frequently used in 

the design of new battery technologies.  In a contrast equivalent circuit models (ECMs) simplify 

complex chemical interactions as circuit components consisting of limited parameters, trading 

model accuracy for speed and computational simplicity.  Equivalent circuit models are 

frequently used when the battery is a component of a larger comprehensive model or when real-

time convergence is essential.  For this reason, equivalent circuit models are the preferred model 

for vehicle simulation, design, and control systems. 

The internal resistance (Rint) equivalent circuit model is currently dominant within the literature.  

Consisting of a single parameter (Rint), the Rint model is easy to characterize and implement.  

This model is often expanded by expressing the resistance as a function of temperature and 

relative capacity (i.e. state of charge or SOC), as well as current direction.  This model can be 

found in industrial vehicle modeling software such as Autonomie.  However the Rint model does 

not capture the nature of the battery voltage response which displays a hysteresis, or time lagged, 

effect.  This effect includes, but is not limited to, faradic charge-transfer resistance (SEI 

interface), double-layer capacitance, lithium-ion diffusion, or kinetic faradic impedance. 

The Thevenin equivalent circuit model accounts for this effect by introducing two additional 

parameters, a resistor and capacitor (R2 and C1) in parallel, in series with the internal resistance 

(Rint).  This adaptation allows the model to capture the hysteresis effect, as the voltage across the 

secondary resistor (R2) is a function of the energy stored within the capacitor (C1).  It has been 

shown that, despite its simplicity, the Thevenin model displays a large improvement in 

prediction accuracy relative to the Rint model.   

In this work the impact of the hysteresis effect, and need for higher fidelity battery models, is 

investigated.  To this end, the Rint and Thevenin models are characterized with the hybrid pulse 

power characterization (HPPC) test scaled to the current demands exhibited in the UDDS and 

US06 drive cycles using a LiFePO4 battery.  The characterized models are then validated with 

the measured battery voltage response to simulated UDDS and US06 drive cycle representative 

current profiles.  The two models are then compared across the US06, HWFET, and UDDS drive 
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cycles in Autonomie software.  The model simulation results, expressed in terms of electrical 

consumption (Wh mi-1), are given context with reference to 2014 commercial electrified 

vehicles. 
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1 Introduction 
This work discusses the importance of modeling the hysteresis effect within equivalent circuit 

models (ECM) for lithium-ion batteries used within electrified vehicles.  This section details 

governmental influence (s. 1.1.1), fuel economy and energy loss (s. 1.1.2), lithium ion batteries 

(s. 1.2), types of battery models (s. 1.3), and vehicle simulation software (s. 1.4).  A significant 

portion of this section simply provides “background” information prevalent to those interested in 

the industry, and while not required to implement this research, it is necessary to understand the 

implications, scope, and methodology.  

The experimental procedure (s. 2) includes: measuring battery voltage response (s. 2.1) which 

details equipment and the HPPC and drive cycle test procedures; parameter characterization (s. 

2.2), which details the parameterizing or “fitting” methods of the Rint or Thevenin equivalent 

circuit models to the HPPC test measured voltage response; and model validation (s. 2.3), which 

details the validation of the fitted models by reproduction of simulated drive cycle voltage 

responses.  The remaining sections, which discuss vehicle simulation results (s. 3), electrical 

efficiency of 2014 commercial vehicles (s. 4), impact on vehicle design (s. 5), and concluding 

remarks (s. 6) detail the importance of modeling the hysteresis effect when designing an 

electrified vehicle.  Additionally there are recommendations (s. 7) for researchers who wish to 

continue this work to a broader scope. 

The objective of this work is to determine the impact of high accuracy battery models within the 

scope of vehicle modeling software.  It focuses on battery voltage drop and varying resistance 

profiles, which influence effective range and discharge/charge efficiency.  To quantify these 

effects the Thevenin equivalent circuit model, a high fidelity model, and the Rint equivalent 

circuit model, a low fidelity model, were characterized using a lithium iron phosphate (LFP) cell.  

These models were then imported into comprehensive vehicle modeling software to determine 

the impact of improved battery model accuracy. 

1.1 The Next Generation of Vehicles 
Increasing economic, environmental, and political pressures drive the development for more 

efficient vehicles.  Whereas reduced fuel cost is inherently desirable to the consumer (s. 1.1.2), 

localized pollution and energy security are predominately governmental concerns (s. 1.1.1).  

Automotive manufacturers have developed battery electric (BEV), hybrid electric (HEV), and 

plug-in hybrid electric (PHEV) vehicles to improve fuel economy and curb greenhouse gas 

emissions by reallocating a portion of the petroleum energy demand to the electrical grid. 

1.1.1 Governmental Influence 

Governments are promoting more efficient vehicle development to reduce pollution and 

dependence on foreign oil.  Local governments tend to offer rebates, vouchers, or perks to 
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consumers with the purchase of an electric or hybrid vehicle (e.g. Ontario, CA [1]; Quebec, CA 

[2]; British Columbia, CA [3]; California, USA [4]) however this can also extend to federal 

governments (e.g. China [5], UK [6]).  These subsidies are in the range of 3,500 to 7,500 U.S. 

dollars and benefits may include free electrical charging and priority access to parking and roads.  

Some federal governments (e.g. Germany [7]) prioritize research over subsidies. The United 

States, the largest adopter of electric vehicles, has been a leader in the new generation of vehicle 

design [8]. 

1.1.1.1 Partnership for the New Generation of Vehicles 

In 1993, eight U.S. government agencies and three major automotive corporations launched The 

Partnership for the New Generation of Vehicles (PNGV), a cooperative research program 

concerning the advancement of the automotive industry.  The program end goal was “to 

conceive, develop, and implement new technologies of significantly reducing the fuel 

consumption and carbon dioxide emissions of the U.S. automobile fleet” which is often 

referenced as “increasing the fuel efficiency of existing vehicles to 80 mpg, without sacrificing 

size, utility, cost of ownership, or customer appeal” by 2003 [9].  The agencies and corporations 

involved in PNGV were the U.S. Department of Commerce, Energy, Defense, Interior, 

Transportation, the National Science Foundation (NSF), the National Aeronautics and Space 

Administration (NASA), the Environmental Protection Agency (EPA), General Motors (GM), 

Ford Motor Company (Ford), and Daimler Chrysler (Chrysler) respectively [10].  The program 

was cancelled in 2001 at the request of automakers, where it was replaced by the FreedomCAR 

program. 

The program is considered a success with the production of three vehicles which demonstrated 

the technical feasibility of the efficiency requirement: the Chrysler Dodge ESX3 (72 mpg), Ford 

Prodigy (72 mpg), and the General Motors Precept (80 mpg).  Program engineering 

developments include, decreasing drag coefficients and vehicle weight, incorporating 

regenerative breaking technology, improving engine efficiency, utilizing diesel engines, 

improving automatic transmission efficiency, and fuel cell production cost reduction [10] [11].  

1.1.1.2 FreedomCAR and Vehicle Technologies 

After PNGV was decommissioned in 2001, it was replaced by with the FreedomCAR and 

Vehicle Technologies (FCVT) program which focused on hydrogen based fuel alternatives and 

plug-in hybrid electric vehicles (PHEV).  FCVT was met with opposition, as it was funded by 

allocating resources from other energy minded programs [12].  In 2010, the Department of 

Energy (DOE) reduced funding for FCVT emphasizing that it will allocate funds “to 

technologies with more immediate promise,” suggesting that adoption of lithium-ion batteries 

should predate fuel cell research [13]. 

1.1.1.3 Vehicle Comparison and Drive Cycles 

It is desired by manufactures and consumers to compare vehicle performance.  Because vehicle 

performance is not constant (e.g. engine efficiency, transient effects, etc.), it is impossible to 



3 

 

relate data between vehicles without predetermined standards.  These standards, often referred to 

as “drive schedules” or “drive cycles,” are vehicle speed vs. time relationships that represent 

expected driver behavior.   

The dominate standards within the United States and Canada are the UDDS (Urban 

Dynamometer Driving Schedule) and HWFET (Highway Fuel Economy Test) drive cycles.  

These tests are used to determine the effective gas efficiency recorded on the EPA label (Figure 

1, Table 1 [14]) which is required on all new vehicles as of May 2011 [15].  Test results may also 

be reviewed online at fueleconomy.gov [16]. 

The EPA produces these ratings based on a weighted average of two drive schedules (UDDS and 

HWFET) performed at a regulated facility in Ann Arbor, Detroit USA.  The EPA performs the 

tests using 48” single roll dynamometers for light duty vehicles and trucks. The dynamometers 

are set to the equivalent test weight, defined as the curb weight plus 300 lbs. which represents the 

weight of the driver and one passenger [17].  The dynamometer simulates wind and rolling 

resistance through drag coefficients reported by the production company determined by SAE 

practices Road Load Measurement Using Onboard Anemometry and Coastdown Techniques 

(J1263 & J2263) and Chassis Dynamometer Simulation of Road Load Using Coastdown 

Techniques (J2264) with the addition of a guidance letter [18].  In addition to the vehicle 

performance, other parameters of interest such as battery size, curb weight, and all electric range 

are also included in the EPA report. 

Transport Canada’s Fuel Consumption Program (FCP) independently verifies Canadian 

automotive manufacturer vehicles using the US federal test procedures (FTP).  The tests are 

functionally similar to those of the EPA, and involve mounting the automobile on a weighted 

dynamometer with reference to vehicle aerodynamic drag, curb weight, and rolling resistance.  A 

trained driver then runs the vehicle through driving cycles that simulate trips within the city and 

highway [19]. 

 



4 

 

 

Figure 1: Example of EPA label [14] 

Table 1: EPA label details [14] 

# Name Description 

1 Vehicle Technology and Fuel Describes vehicle type and fuel options 

 Diesel 

 Compressed Natural Gas 

 Hydrogen Fuel Cell 

 Flexible Fuel: Gasoline-Ethanol (E85) 

 Plug-in Hybrid: Electricity-Gasoline 

 Electric 
2 Fuel Economy Combined fuel economy is a weighted average of the city (UDDS, 55%) and highway 

(HWFET, 45%) drive schezdules 

3 Comparative Fuel Economy Compares this vehicles fuel economy with others in its class (e.g. SUV, lightweight 
truck, station wagon, etc.) 

4 Estimated Savings Compared to Avg. Estimated fuel cost savings when compared to the average vehicle of the same make for 
that year, calculated on a 15,000 miles/year and $3.70/gal of gasoline basis 

5 Fuel Consumption Rate Fuel efficiency in terms of consumption (gal per 100 miles) rather than economy (miles 

per gallon) 
6 Estimated Annual Fuel Cost Projected annual fuel cost on a 15,000 miles/year and $3,70/gal of gasoline basis 

7 Fuel Economy/Greenhouse Gas Rating Gasoline vehicles share the same rating for fuel economy and greenhouse gas emissions 

(carbon dioxide emitted is directly linked to fuel consumed), on a metric of 1 to 10 
8 CO2 Emission Information Amount of CO2 emitted per mile (tailpipe only) 

9 Smog Rating Rating for tailpipe emissions related to the production of smog and other local air 

pollution (e.g. nitrogen oxide, carbon monoxide, formaldehyde, etc.), a metric of 1 to 10 
10 Fine Print Reminder that mpg is a factor of driving conditions and technique 

11 QR Code Smart phone integration for additional information 

12 Website Link Directs to a website with vehicle comparison information and energy saving techniques 
(e.g. local gas prices, driving strategies, etc.) 

 

Care should be taken when comparing vehicles solely on their fuel economy (i.e. mpg) as, 

although a standardized and required metric, it can be misleading.  For example, consider the 

fuel required for a 10 and a 15 mpg vehicle to travel 1,000 miles.  The 10 and 15 mpg vehicles 

will require 100 and 66 gallons of fuel, respectively for a net difference of 33 gallons.  However 

on the traditional mpg or “economy” scale, the difference is only 5 miles per gallon (Figure 2) 

[14].  The amount of fuel required to transverse a fixed distance increases exponentially as fuel 

economy decreases. 
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Figure 2: "MPG illusion," gallons/1000 miles vs. miles/gallon 

While the EPA label mentions two drive cycles, there are many others.  These cycles aim to 

compare other aspects of the vehicle, such as the efficiency while using accessories such as air 

conditioning (SC03) or during low speed stop-and-go traffic conditions (NYCC).  UDDS and 

HWFET remain dominate with US06 as a possible addition, which is described as a “high 

acceleration and aggressive” driving schedule.  The trace speed and time correlation for these 

cycles (UDDS, HWFET, and US06) are shown in Figure 3 through Figure 5 respectively [20].   

 

Figure 3: UDDS drive schedule [20] 
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Figure 4: HWFET drive schedule [20] 

 

Figure 5: US06 drive schedule [20] 

1.1.2 Fuel Economy and Energy Loss 

Fuel economy and energy loss are directly correlated: as energy loss decreases, fuel economy 

increases.  While there have been attempts of negating external losses, the majority of 

development involves improving the vehicle power train [10] [21] [22].  New technologies such 

as plug-in hybrid (PHEV), hybrid (HEV), battery (BEV), and fuel cell (FCEV) electric vehicles 

are capable of drastically increasing power train efficiencies, and consequently, vehicle fuel 

economy (Figure 6) [23]. 

 

Figure 6: Vehicle fuel consumption, economy, and power train efficiency of 2011 models [23] 
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This increased efficiency is limited to domestic or city driving (Figure 7) [23], which can be 

attributed to regenerative breaking and idle-off technology (Vehicle Electrification, s. 1.1.2.3).  

Thus internal combustion engine (ICE) vehicles compete relatively well with electric 

architecture vehicles in highway applications, where these technologies see limited use. 

 

Figure 7: City and highway powertrain efficiency of 2011 models [23] 

In an ICE vehicle used for urban driving, approximately 13% of the fuel is used for vehicle 

propulsion.  Energy losses occur within the engine and drivetrain (e.g. waste heat, vibration, 

mechanical losses, etc.) are known as internal loads (Figure 8) [24].  Additional that losses occur 

when outside forces oppose vehicle motion (e.g. aerodynamic drag, rolling resistance, etc.) are 

known as external loads.  These values can further decrease by using energy consuming 

accessories (e.g. air conditioning, heating, and lighting) which are known as parasitic loads [21].   

 

Figure 8: Expected internal combustion engine energy losses within urban driving [24] 

Increasing energy efficiency can be viewed as removing these energy losses.  In this mindset, the 

supplied fuel represents 100% of the total energy available with each conversion impairing this 

value.  Therefore to increase energy efficiency it is imperative to remove, or recover, energy 

losses.  Some of these losses can be reduced or recovered by vehicle electrification.  These 

losses, specifically the engine and transmission, will be discussed before transitioning to vehicle 

electrification.   
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1.1.2.1 Engine Efficiency 

ICEs are relatively inefficient at converting chemical potential energy into mechanical work, as 

most of the energy produced from fuel combustion is in the form of heat.  Excess heat must be 

removed to protect the mechanical stability of the engine, and facilitates additional energy loss 

(e.g. engine cooling systems).  This energy loss is approximately 63% on average for domestic 

driving [24], but net engine efficiency is speed and torque dependent (Figure 9) [25].  

Traditionally, the highest yields are obtained in the 1,500 to 3,500 rpm range [26].   

While a heat gradient is potentially a valuable energy resource, there are few options for 

capturing, storing, or recovering this energy in the form of useful work [21].  Waste heat can, 

however, be discharged to the cabin in cold environments alleviating the need to exert additional 

resources for passenger temperature control. 

 

Figure 9: Example of a traditional engine efficiency map [25] 

Idling, or engine standby, presents an additional energy loss.  To clarify, while the vehicle 

remains stationary at an intersection or during congested traffic, the engine continues to consume 

fuel in order to sustain parasitic loads and to be able to meet post-standby energy demands.  The 

necessity of standby, combined with heat generation, compose the majority of ICE energy losses 

[21]. 

1.1.2.2 Transmission Efficiency 

As previously mentioned, engine efficiency is dependent on engine speed and torque (Figure 9).  

A transmission facilitates engine operation within its maximum efficiency range.  To do this, it 

acts as a translator between the crankshaft (engine) and driveshaft (wheels) relating speed and 

power by a series of gears.  Small and large gears are used for high (e.g. accelerating from rest, 

inclines) and low (e.g. cruising speed) power applications respectively.  Although the 

transmission allows the engine to operate more efficiently, there are mechanical losses associated 

with its operation.  These mechanical losses account for approximately 5.6% of energy produced 

in ICE vehicles [21]. 



9 

 

There are two types of transmission systems, manual and automatic.  Manual transmissions are 

controlled by the driver through a “stick shift,” which is in direct contact with the transmission 

through a clutch.  To shift between gears, the driver disengages the engine from the transmission 

via the clutch, makes the shift, then re-engages the transmission to bring power back to the 

driveshaft.  Automatic transmissions shift gears without driver intervention through a fluid-

coupling device known as a torque converter.  Automatics tend to be less efficient than manual 

transmissions because they contain fewer gears (which allow the engine to operate in its most 

efficient region more frequently), are heavier, and produce an additional energy loss within the 

torque converter (fluid inertia). 

Electronically shifted manual transmissions (ESMAT) are identical in operation to manual 

transmissions, with the exception that an onboard computer controls the instrumentation instead 

of the driver.  Shift ‘points’ can be preprogrammed for power or fuel efficiency.  ESMAT and 

other forms of computer aided transmission can approach the benefits of full manual, or 

approximately a 5% reduction in fuel consumption [21]. 

1.1.2.3 Vehicle Electrification 

In conventional vehicles, many important subsystems are powered by the crankshaft.  These 

include oil and coolant pumps, power steering and breaking, as well as air conditioning.  Each of 

these parasitic subsystems is attached to the crankshaft, and consumes additional energy.  

However, even when not in use, their connection to the crankshaft is not 100% efficient which 

results in energy loss.  This loss can be minimalized by connecting this load to the battery instead 

of the crankshaft as electrical devices utilize energy more efficiently (i.e. they require less energy 

to run and do not require energy while not in use).  The amount of electrification, or electricity 

dependent loads, a vehicle can support is dependent on battery size.  For example, 12 and 42 volt 

batteries can support power steering and air conditioning respectively [21]. 

Moving to higher power electric architecture provides more opportunities for fuel saving 

systems.  Increased electric power can support technologies such as idle-off and launch assist, 

which provide increased fuel economy [27].  Idle-off suspends engine activity during breaking 

and standby, preserving fuel during otherwise idle operation.  Increased electrical power can 

support a motor, which allows the vehicle to accelerate immediately from an idle position – 

without the need to wait for the engine to restart [21].   

These features require electrical power to run, which must be supplied by the battery.  The 

battery thus must be recharged when excess energy permits.  This energy, provided in part by the 

engine, can also be acquired through regenerative breaking [27].  While in regenerative breaking 

mode, when the break is applied, the vehicle uses the electric motor in reverse to reduce speed.  

This functions as a generator, which produces energy allowing for the battery to be recharged.  

Electrification of vehicle architecture is the design principle of battery and hybrid electric 

vehicles [21]. 
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1.1.2.3.1 Hybrid Vehicle Drivetrains 

Hybrid electric vehicles (HEVs) are defined as vehicles that utilize an on board motor, powered 

by a battery, to aid the engine [28].  In a restrained definition, hybrids are limited to regenerative 

breaking, idle-off, launch assist, and reduction of parasitic loads.  However, with an increased 

power supply (e.g. larger or more advanced battery pack) the electric motor can provide 

additional support to the engine.  With the engine and motor working together in concert, the 

engine can operate within its efficient region more frequently (Figure 10) [29].  Additionally, the 

extra power provided by the motor allows the engine to be downsized, reducing vehicle weight 

and increasing fuel economy.   

 

Figure 10: Hybrid and traditional engine efficiency map comparison [29] 

Furthermore, with high motor efficiencies (80% or higher) [30], it becomes enticing to utilize 

engine to support the motor, rather than the opposite.  This lends to a distinction regarding the 

“degree” of hybridization, ranging from mild to strong.  A “mild” hybrid uses a motor for 

regenerative breaking, idle-off, and launch assist only, whereas a “strong” hybrid uses the motor 

to supplement or replace the engine powertrain in addition to these benefits.  This observation 

lead to multiple vehicle architectures, or powertrains, with varying methods of supplying power 

to the crankshaft.  Some of these architectures are discussed below, notably parallel, series, and 

power-split. 

1.1.2.3.1.1 Parallel Architecture 

In parallel architecture (Figure 11), the motor and engine can power the wheels independently or 

simultaneously through a coupled drive shaft.  The location of this coupling varies, and can be 

located before or after the transmission, depending on the original equipment manufacturer 

(OEM) design.  This architecture can be seen in the Honda Civic, GM Saturn Vue and Aura 

Green Line, and Volkswagen Golf [21]. 
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Figure 11: Parallel architecture 

1.1.2.3.1.2 Series Architecture 

In series architecture (Figure 12), the wheels are powered entirely by the electric motor.  The 

engine exists solely to fuel an onboard generator to recharge the battery pack, and runs as needed 

independently of the drivetrain.  This architecture can be seen in the GM EV1 or Fisker Karma 

[31]. 

 

Figure 12: Series architecture 

1.1.2.3.1.3 Series-Parallel Architecture 

Series-parallel is a combination of the previous two architectures (Figure 13).  As seen in the 

series architecture, the engine can power an onboard generator for recharging the battery pack.  

Additionally, as in the parallel architecture, the engine can power the wheels directly 

independently or with the electric motor.  This architecture is permitted by the use of a planetary 

gear system, which connects the engine and motor(s).  This architecture can be seen in the Ford 

C-Max Energi, Fusion, Escape, and Mariner; Toyota Prius and Camry; GM Chevrolet Tahoe, 

Volt, Cadillac ELR, and Sierra; Mitsubishi Outlander; BYD F3DM; Honda Accord; and Audi 

A3 E-Tron [21]. 
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Figure 13: Series-parallel architecture 

1.1.2.4 Origin of Plug-in Hybrid Electric Vehicles 

As propulsion with a motor is considerably more efficient than the engine it is reasonable to 

operate in these conditions for as long as possible.  Motor operation is limited by the battery pack 

capacity, therefore, increasing the size of the battery pack will increase motor use and improve 

vehicle efficiency.  This is the logic that created plug-in hybrid electric vehicles (PHEV), 

vehicles with high capacity batteries that are recharged between journeys. 

PHEVs utilize two different types of fuel, and capture benefits of each.  They provide an 

efficiency rivaling that of an electric vehicle by use of the motor, although hampered by the 

weight of the engine and related components.  However, once the battery capacity has been 

depleted, the vehicle functions identically to a traditional HEV using the engine to produce 

additional range.  The battery pack capacity is sufficiently large such that the engine powertrain 

supplements motor operation.  For this reason, PHEVs are sometimes referred to as extended 

range electric vehicles (EREV) placing additional emphasis on the battery and related 

components.   

This emphasis extends to terminology involving engine and motor powertrain interactions.  For 

example, charge depleting (CD) mode refers to depleting battery capacity by using the motor 

powertrain.  Similarly, charge sustaining (CS) and mode refers to maintaining battery capacity at 

a set point with the assistance of the engine.   

Additional terminology exists in the form of all-electric and blended modes.  In all-electric 

mode, the battery is depleted exclusively by operation of the motor powertrain.  Blended mode 

refers to operation of both the engine and motor powertrains. 

1.1.2.5 Electrified Vehicle Electrical Efficiency 

As electrified vehicles utilize different fuels than internal combustion engine vehicles, it is useful 

to introduce a metric for comparison.   The Department of Energy in combination with the 

Environmental Protection Agency have produced such a metric, and equates one gallon of 

gasoline to 33.7 kWh of electricity.  For electrified vehicles, the rating mpge, indicative of miles 
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per gallon equivalent, is substituted for mpg on required publications and references (Vehicle 

Comparison and Drive Cycles, s. 1.1.1.3).   

The EPA provides an energy/distance metric which can be useful for vehicle comparison, e.g. 27 

kWh 100 mi-1.  Alternative units are sometimes used, e.g. 3.7 mi kWh-1, for their similarity with 

the conventional metric mpg.   

1.1.2.6 All Electric Range 

A concern regarding electrified vehicles is their all-electric range (AER), defined as the distance 

the vehicle can travel utilizing the on board battery.  For BEVs, AER is synonymous with the 

effective range of the vehicle.  For PHEVs, AER denotes the maximum distance the vehicle can 

travel before an alternative resource, typically gasoline, is required. 

1.1.2.7 Energy Density 

Although electrified power trains are more efficient in conversion of chemical to kinetic energy 

than their traditional counterparts, there are complications with energy storage.  The medium for 

electric energy storage is non-standardized, Mercedes, BMW, Mitsubishi, Renault / Nissan, and 

Tesla are fully invested in batteries whereas Hyundai and Toyota are exploring fuel cell 

alternatives [32]. 

While batteries have been used in automobiles since their introduction in the form of lead-acid or 

starting-lighting-ignition (SLI) batteries, new material compositions can increase their energy 

density (i.e. energy stored per unit mass or volume).  The first commercial electrified vehicles, 

such as the Toyota Prius, initially used nickel-metal hydride batteries.  However most 

automakers have since adopted lithium-ion technology [33].  This appears to be the dominant 

chemistry for battery-type energy storage (Figure 14), and is a vast improvement over lead-acid 

batteries [34].  The referenced chemistries in Figure 14, left to right, are lead – hydro sulfuric 

acid, nickel – cadmium, nickel – metal hydride, lithium – ion, plastic lithium – ion, and lithium – 

metal.  

 

Figure 14: Energy density of competing battery technologies [34] 
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However, battery energy density is orders of magnitude smaller than conventional fuels: gasoline 

and diesel (Figure 15) [35].  While the majority of this energy cannot be converted into useful 

work (Engine Efficiency, s. 1.1.2.1), conventional vehicles stand to benefit from this energy 

density dissimilarity.  In addition to a larger range, conventional vehicles can be smaller and 

lighter than their electrified equivalents due to their increased energy density. 

 

Figure 15: Energy density of batteries relative to gasoline and diesel  

1.2 Batteries 
The term lithium-ion (Li-ion) battery refers to an entire family of battery chemistries.  However, 

these chemistries are an active area of research, and new materials are being constantly 

developed.  This work aims to provide an overview, rather than a comprehensive report, of 

battery designs and components (s. 1.2.1), how lithium-ion cells operate (s. 1.2.2), and pack 

architecture (s. 1.2.3). 

1.2.1 Cell Design 

Cell architecture is determined by the internal electrode structure.  If the anode and cathode are 

stacked in alternating layers, the cell structure is known as “prismatic” – typically used for 

machinery and hybrid/battery powered electric vehicles (Figure 17).  Alternatively, if the 

electrodes are wound in a ‘jelly roll’ configuration it is known as “cylindrical” – typically used in 

laptops, cameras, and other commercial electronics (Figure 16) [36] [37]. 
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Figure 16: Example of 18650 cylindrical cells (left) and “jelly roll” winding (right) [36] [37] 

The cells are enclosed in a protective casing to isolate and protect them from the working 

environment.  Enclosures can be grouped into two sections, hard and soft.  Hard enclosures 

employ laser-welded or gasket-fitted metal exteriors, whereas soft enclosures are heat-sealed foil 

pouches (Figure 17) [36].  Hard enclosures are used when the cell is directly exposed to the 

working environment (Casing, s. 1.2.1.3.1).  Soft, or pouch, enclosures are used when the cell is 

protected by the installation device (e.g. cell phones, laptops), or when provided the protection of 

a battery pack enclosure (Battery Pack Architecture, s. 1.2.3).   

 

Figure 17: Examples of prismatic cell hard case (left) and pouch (right) [36] 

The International Electrochemical Commission (IEC) Standard 61960 designates nomenclature 

for most battery cells.  For cylindrical cells, the first two digits define the cell diameter in 

millimeters and the next three define the length in tenths of millimeters (e.g. an 18650 cell is 18 

mm in diameter and 65.0 mm in length).  For prismatic cells, the six digit code is separated into 3 

sections of 2 digits: the first representing height in tenths of millimeters and the following pair 

representing width and length in millimeters (e.g. a 305050 cell is 3.0 x 50 x 50 mm).  It should 

be noted that the IEC nomenclature concerns only the external dimensions, not the chemistry, of 

a cell [38]. 
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1.2.1.1 Components and Materials 

A battery is composed of primary and secondary components.  Primary components are 

necessary for the cell to function, and comprise of the basic electrical elements.  Secondary 

components increase the durability and safety of a cell by enhancing the mechanical resilience of 

the battery or by providing protection against abnormal pressure, temperature, and abuse. 

1.2.1.2 Primary Components 

The three functional components of a lithium ion cell consist of the electrodes, electrolyte, and 

separator. 

1.2.1.2.1 Electrodes 

A cell contains two types of electrodes, positive and negative, which are referred to as the 

cathode and anode respectively.  Both electrodes are composed of a metal current collector 

coated with a thin layer of a conductivity enhancing compound applied with a binder, although 

the materials of construction of the anode and cathode differ. 

Electrode material of construction has a direct effect on battery characteristics.  Electrode 

variation historically occurs within the cathode, whereas the anode is traditionally composed of 

graphite.  Battery manufacturers weigh the benefits of cost, specific power, performance, 

lifespan, and safety during battery design (Figure 18) [39].   

 

Figure 18: Comparison of lithium-ion battery chemistry performance parameters [39] 

1.2.1.2.1.1 Anode  

The most common material is carbon, usually graphite.  The carbon can vary considerably: 

source (natural or synthetic), purity, particle size and distribution, particle shape and porosity, 

degree of compaction, etc.  Although non-graphite have been produced and tested, they are 

rarely implemented [36].  Tests regarding anode material specific capacity and energy density 

are shown in Figure 19 [40].  Besenhard et al. discusses the expectations and shortcomings of 

these anode materials with respect to particle size [41]. 
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Figure 19: Anode material vs. specific capacity (left) and energy density (right) [40] 

1.2.1.2.1.2 Cathode 

The most common cathode material is lithium cobalt oxide, or “cobalt oxide”.  Additionally, 

other materials include LiFePO4, LiMn2O4, and mixed metal oxides including Co, Ni, and Al 

(e.g. LiNi1/3Mn1/3Co1/3O2). Like the anode, the purity, particles, shape, etc. can vary [36]. 

1.2.1.2.1.3 Current Collectors 

Current collectors transfer current to the active material, provide mechanical support, and 

provide a point of connection for leads into the cell.  The most common current collectors are 

copper (anode) and aluminum (cathode).   

Copper current collectors pose a safety concern at low cell voltages.  At a voltage of 

approximately 1 V, the copper begins to oxidize creating copper ions which diffuse into the 

electrolyte.   Upon charging, the ions react with the electrode surface to form a sheet of copper 

metal – reducing permeability, making the cell susceptible to lithium plating, and capacity loss 

[36]. 

1.2.1.2.2 Electrolyte 

The electrolyte is typically a mixture of organic carbonates, lithium salts, and additives.  The 

organic carbonate mixture composition can be varied to provide different cell properties (e.g. 

viscosity, thermal stability, etc.).  Lithium salts provide solvated lithium-ions, most commonly 

lithium hexafluorophosphate (LiPF6).  Additives may be added to improve performance 

characteristics (e.g. overcharge resistance, cycle life, calendar life, etc.) and may include gelling 

agents which can increase cell stability (e.g. mitigate effects of pouch puncture, physically bind 

the electrodes together).  The influence of electrolyte additives with regards to cell capacity and 

lifetime is discussed by Dahn et al. [42].  
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1.2.1.2.3 Solid Electrolyte Interface  

An important observation is the addition of the solid electrolyte interface, or SEI, layer produced 

by an undesirable side reaction between the electrolyte and anode (Figure 20).  The mixture of 

organic carbonates (electrolyte) and lithiated carbon (electrodes) is exothermic and produces the 

SEI layer (C-H, C-O, CH2, C=O, CO3, CF2), CO2 and gas (Table 2) [43].  The formation of the 

SEI layer is temperature dependent, and follows Arrhenius behavior.   

 

Figure 20: SEI layer formation 

The SEI layer inhibits ionic transfer.  Cell performance decreases with SEI formation, which acts 

as internal impedance (diminishing capacity and increased heat generation).  Although the SEI 

layer inhibits performance, it disables layer expansion by blocking the electrolyte – electrode 

interface.  For this reason, in addition to prevent potentially flammable gas emissions, producers 

cycle the cells to create a stable and uniform SEI layer after assembly.  This significantly reduces 

SEI formation during commercial operation. 

Table 2: Gas composition of punctured cells [44] 

Cell Type Fresh Cell at 100% SOC Aged Cell at 100% SOC 

  Max Sample Temperature 25 °C 45 °C 

   

Gas Species Volume Percent 

  H2   8.2%   0.3% 

  Argon 44.0% 27.8% 

  N2   6.2%   9.6% 

  O2   0.1%   1.7% 

  CO   4.2% 11.3% 

  CO2 12.6% 26.3% 

  CH4 13.5% 11.5% 

  C2H4   3.1% None Detected 

  Propane None Detected 0.06% 

  Electrolyte Solvent (EC/EMC mixture) 11.2% 11.5% 

 

1.2.1.2.4 Separator 

The separator inhibits contact between the positive and negative electrodes, preventing a short 

circuit.  Separators are porous to ionic transfer, through which the electrolyte is free flowing.  

Separators are typically 20 µm thick (10 – 40 µm range) and are commonly composed of 

polyethylene and/or polypropylene films [36].   



19 

 

Separators are a necessary component of battery cells because of their safety characteristics; 

however they do not contribute to cell performance.  One method of increasing battery capacity 

is to select a smaller separator, allowing for more electrode material.  However, safety is 

endangered by this method as thinner separators are more susceptible to damage and prone to 

failure. 

Separators may also function as a safety mechanism in the event of cell failure; including 

shutdown and local separators.  A shutdown separator decreases porosity at elevated 

temperatures (130 – 150 °C), impeding ionic transport and preventing charge/discharge of the 

cell (Figure 21, left).  Upon cooling, the pores reopen allowing ionic transport to resume.  A 

local separator selectively disables a cell in the event of an internal short by melting the pores 

(Figure 21, right & Figure 22) in the event of abnormal temperature increase (130 °C).  This 

control method is irreversible, and will destroy the cell to prevent thermal runaway [36].   

 

Figure 21: Shutdown separator (left) and local separator (right) mechanics 

 

 

Figure 22: Photograph of a local separator operation [36] 

1.2.1.3 Secondary Components 

The secondary components which protect the cell from abuse consist of: casing, which impede 

mechanical damage; pressure controls, which inhibit overpressure; temperature controls, which 

prevent high excess heat; and battery monitoring circuitry, which avert overcharge/discharge. 
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1.2.1.3.1 Casing 

Hard case cells are composed of metal (e.g. nickel coated – steel or aluminum).  Generally the 

case functions as one of the electrodes: the anode for nickel coated – steel (18650 cells) and 

cathode for aluminum (many prismatic cells) casing respectively.  Because the case is polarized, 

shrink wrap is used to provide electrical isolation.  To maximize mechanical stability, designers 

use a single seam to contain the cell.  Cylindrical cells are often sealed with a gasket, whereas 

prismatic cells utilize laser welding (Figure 23) [36]. 

 

Figure 23: Gasket seal (left) and laser weld (right) [36] 

Soft pouch cells (also referred to as pouch, polymer, and Li-Po cells) are enclosed in polymer 

coated aluminum foil.  Pouches are not as durable as their hard case counterparts, but are smaller 

and lighter in comparison and rely on the host device for protection.  The casing is electrically 

neutral, and all connections must attach to leads protruding outside the pouch.   

1.2.1.3.2 Pressure Relief Devices 

Pressure relief devices provide a safety mechanism in the event a cell becomes over pressurized 

(e.g. during thermal runaway).  Relief devices vary, including rupture disks (common in 

cylindrical cells), score marks (common in prismatic cells), or weld strength.  These devices 

provide a predetermined ‘weak point’ for controlled pressure relief, a safer alternative to pressure 

buildup and involuntary release.  Soft cells do not utilize relief devices, as the seams are prone to 

fail at relatively low temperatures and pressures. 

1.2.1.3.3 Pressure Equalizing Tubing 

Under normal operation, pressure along the cell is normalized by the open core.  However, 

during thermal runaway, high temperature and pressure can cause the core to collapse – isolating 

sections of the cell.  These isolated sections are unable to relieve their excess pressure through 

venting, and pressure will continue to build until gasket seal failure.  Upon gasket failure, the cell 

contents are ejected from the cell as the pressure is relieved (Figure 24, left). 

However, stiff tubing may be implemented which preserves the open core.  This prevents 

pressure build up by providing a pressure equalizing pathway to the relief vents, averting 

ejection of cell components into the environment (Figure 24, right). 
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Figure 24: Overpressure of cylindrical cell (left), over pressure of cylindrical cell with relief tubing (right) 

1.2.1.3.4 Positive Temperature Coefficient Devices 

Positive temperature coefficient (PTC) devices, resettable thermistor devices, or “polyswitches” 

consist of an electrical material that becomes very resistive above a threshold temperature 

(Figure 25).  Unlike charge interrupt devices (CIDs), PTC devices are reversible, and the 

resistance will decrease when the temperature resumes normal operating range.   

1.2.1.3.5 Charge Interrupt Devices 

Charge interrupt devices (CIDs) physically and irreversibly sever the cell from the electrical 

circuit when the cell pressure exceeds a threshold value (Figure 25).  Although CIDs are 

described as overcharge protection devices, activation could be caused by overcharge, over 

discharge, overheating, electrolyte breakdown, or internal short-circuit.  CIDs are not 

recommended for large parallel arrays of cells as it is unlikely that they will activate 

simultaneously, rather a cascade will disable individual cells, causing high current to be applied 

to cells where the CID has not yet activated.  This application of high current may drive a cell to 

thermal runaway before CID activation [36] [45]. 

 

Figure 25: Location of CID and PTC on cylindrical cell [45] 

1.2.1.3.6 Pack Protection Electronics 

Battery management units (BMUs) monitor the battery and provide additional protection from 

voltage/current overcharge, external short circuit, charging/discharging outside a given 
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temperature range, and imbalance protection (Table 3).  In electric vehicles, the battery pack 

electronics are often referred to as the battery management system (BMS) [36]. 

Table 3: Abuse scenarios prevented by BMU 

Abuse scenario Result Prevention Technique 

Over voltage overcharge 
Excess heat generation of cells Disable charge 

Over current overcharge 

Over discharge Damage current collectors and electrodes, increased 

risk of thermal runaway 

Disable discharge,  

“low power sleep mode” 
External short circuit Massive heat generation, possible thermal runaway Disable battery 

Operation outside temperature 

range 

Increased risk of gas generation, swelling, trigger of 

CID or thermal runaway 

Disable battery 

Battery pack imbalance  

(non-uniform aging) 

Divergent cell capacities, which can lead to 

overcharge/discharge 

Internally short cells to maintain constant 

capacity.  Permanently disable pack if severe 

imbalance 

1.2.2 Cell Operation 

The fundamental lithium-ion battery is a battery where the negative (anode) and positive 

(cathode) materials serve as hosts for lithium-ion transport.  During discharge, ions move from 

the anode, through the electrolyte, before being intercalated into the cathode (Figure 26).  

Electrons, in the form of current, unable to travel through the electrolyte are discharged from the 

battery and return through the positive terminal.  The reverse actions (ion and electron 

movement) occur during charging. 

In a lithium-ion cell, alternating cathode/anode layers are separated by a porous film (separator).  

An electrolyte composed of an organic solvent and dissolved lithium salt provides the media for 

lithium transport. 

 

Figure 26: Lithium ion cell operation during discharge 

The cell operational voltage range is determined by the cell chemistry.  Most commercial 

lithium-ion cells have voltage ranges of 2.8 V (discharged) to 4.2 V (charged) [36].  Because of a 

“flat” discharge profile, the nominal voltage of a Li-ion cell is relatively constant (typically 3.6 – 

3.7 V) (Figure 27) [36] [46].  Over charging or discharging (charge/discharge above/below the 

manufacturer’s limits) can cause degradation of the electrodes, which can potentially lead to cell 
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failure and thermal runaway.  For this reason, overcharge/discharge prevention devices are 

included in electronic protection packages for battery packs (Pack Protection Electronics, s. 

1.2.1.3.6).   

 

Figure 27: Discharge profile of a typical Li-ion cell [46] 

1.2.3 Battery Pack Architecture 

A lithium-ion battery is composed of one or more individual cells packaged with protection 

electronics (Figure 28) [36].  Battery pack designers can increase battery capacity and voltage by 

connecting cells in parallel and series respectively (Figure 29).  Most battery packs are labeled 

with a nominal voltage (V) and capacity (Ah) that can be used to infer the number of series and 

parallel elements.  United Nations regulations require that a battery pack be labeled in terms of 

Watt hours (Wh), defined as the cell nominal voltage multiplied by the rated capacity. 

 

Figure 28: Example of laptop Li-ion battery pack packaged with protection electronics [36] 

For example, the battery pack above (Figure 28) contains two series of four cells in parallel.  The 

inferred voltage and capacity of the battery pack are 14.4 V (3.6 V x 4) and 4.4 Ah (2.2 Ah x 2) 

respectively.  Alternatively, the battery pack is rated for 63.4 Wh (14.4 V x 4.4 Ah). 
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Figure 29: Schemes of cells connected in parallel (left) and series (right) 

1.3 Battery Models 
The main opposition to widespread adoption of electrified vehicle architecture is a financial one.  

The addition of an electrical drivetrain adds four to sixteen thousand U.S. dollars to the final 

vehicle price [47] [48].  Up to 81% of this expenditure originates from the battery pack [48].  

Intuitively, in order to increase the adoption of electrified vehicles, battery costs must become 

smaller. 

As with other vehicle components, models are a great asset in hardware selection and design 

[49].  Most battery models can be classified into two groups, electrochemical and equivalent 

circuit [50].  Equivalent circuit models (ECM) are relatively simple empirical models which 

represent the battery as electrical components [51] and require limited processing power [52].  

For this reason, ECMs are used for battery simulation within vehicle models [49].  

Electrochemical models are rigorous mathematical models which account for multiple physics-

based phenomena.  These high fidelity, but complex, models are limited to battery design 

applications due to processing power and simulation time requirements.  The battery models 

discussed here are predominantly ECMs, however an overview of competing models is included 

for context. 

1.3.1 Equivalent Circuit Models 

ECMs estimate the battery voltage (Vmodel) as the difference between the open circuit (VOC) and 

equivalent circuit (Vcirc) voltages (Eq. 1), where VOC is a function of SOC and temperature and 

Vcirc is determined by the equivalent circuit.  For a given battery, circuit parameters are functions 

of SOC, State of Health (SOH), and temperature [53].   

𝑉𝑚𝑜𝑑𝑒𝑙 =  𝑉𝑜𝑐 −  𝑉𝑐𝑖𝑟𝑐           (Eq. 1) 

The simplest ECM is the internal resistance, or “Rint,” model (Figure 30).  This model consists 

of a single parameter R1, from which Vcirc is linearly defined with reference to the applied current 

(i1) (Eq. 2) [54].  In this fashion, the model estimates the battery voltage response as the open 

circuit voltage with a current dependent offset. 
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Figure 30: Internal resistance ("Rint") model 

𝑉𝑐𝑖𝑟𝑐 (𝑅𝑖𝑛𝑡) = 𝑉1 =  𝑖1𝑅1          (Eq. 2) 

The Department of Energy (DOE) utilizes a modified Rint model for plug-in hybrid electric 

vehicle (PHEV) battery testing (Figure 31) [54].  This modification uses a different resistance for 

charge and discharge currents by use of perfect diodes.   

 

Figure 31: Expanded Rint model 

The DOE proposes the hybrid pulse power characterization (HPPC) test for parameterization of 

the Rint model (i.e. R1 & R2).  This test consists of three components: a 10 s constant current 

discharge pulse, a 40 s rest period, and a 10 s constant current charge pulse.  The typical 

measured voltage response, Rint model prediction, and HPPC applied current is shown in Figure 

32.  Additional information regarding the HPPC test can be found in HPPC Test Procedure, s. 

2.1.2. 

 

Figure 32: HPPC Rint model linear voltage response 

The voltage response is shown to have a hysteresis effect [55], or time lagged response, at 

constant current (Figure 32).  The Rint model cannot capture this phenomenon and minimizes 

error by assuming an average value during discharge/charge.  During the rest period, error 

gradually decreases as the battery voltage resumes VOC. 

Other equivalent circuit models build upon the Rint model by adding additional circuit 

components, attempting to capture the hysteresis effect.  A common component is the “R|C pair” 
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or a resistor and capacitor in parallel, as seen in the Thevenin model (Figure 33).  Similar to the 

Rint model, V1 is defined by R1 and the applied current.  Dissimilar to the Rint model, the 

current across R2 is dependent on the applied current and the energy stored within the capacitor, 

C1 (Eq. 3).  The charging/discharging of the capacitor provides a time dependent voltage 

response. 

 

Figure 33: Thevenin equivalent circuit model 

𝑉𝑐𝑖𝑟𝑐 (𝑇ℎ𝑒𝑣𝑒𝑛𝑖𝑛) = 𝑉1 + 𝑉2 = 𝑖1𝑅1 + 𝑖2𝑅2        (Eq. 3) 

While a single R|C component is capable of modeling the hysteresis effect, the hysteresis effect 

appears to be induced by multiple independent phenomena [53].  The Dual Polarization (DP) 

model (Figure 34), isolates “fast” and “slow” hysteresis with an additional R|C element, resulting 

in increased accuracy.  Additional R|C elements may be added in series to further separate 

speeds, but provides limited improvement [56]. 

 

Figure 34: Dual Polarization equivalent circuit model 

𝑉𝑐𝑖𝑟𝑐 (𝐷𝑃) = 𝑉1 + 𝑉2 + 𝑉3 = 𝑖1𝑅1 + 𝑖2𝑅2 + 𝑖3𝑅3       (Eq. 4) 

The “true” equivalent circuit of the cell is often considered to be the Dual Polarization with 

Warburg (DPW) model (Figure 35), although its presented form is inconsistent in literature.  The 

capacitors are interchangeable with constant phase elements (CPE) [57], additionally the location 

of the Warburg element may shift from replacing C2 in the DP model (shown [58]) to in series 

with existing components [59].  Regardless of its position, ECMs which include a resistor in 

series with at least one R|C pair and include a Warburg element are collectively referred to as 

“DPW” models. 
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Figure 35: Dual Polarization with Warburg equivalent circuit model 

𝑉𝑐𝑖𝑟𝑐 (𝐷𝑃𝑊) = 𝑉1 + 𝑉2 + 𝑉3 = 𝑖1𝑅1 + 𝑖2𝑅2 + 𝑖3𝑅3       (Eq. 5) 

Other models include the SAFT and PNGV circuits.  The SAFT battery model, often referred to 

as the RC model, has seen results through Advisor software and is composed of three resistors 

and two capacitors (i.e. R1-[R2-C2]|[R3|C3]) [60].  The Partnership for the New Generation of 

Vehicles (PNGV) model adds a capacitor in series to the Thevenin model (i.e. R1-C1-R2|C2) [53].   

Equivalent circuit model parameters may also be characterized by alternating current through 

electrochemical impedance spectroscopy (EIS) tests.  Circuit components derived through EIS 

are often attributed to electrochemical phenomena.  Within the DPW model: R1 corresponds to 

the bulk resistance, or conductivity of the electrolyte, separator, and electrode; R2|C1 corresponds 

to faradic charge-transfer resistance (SEI interface) and double-layer capacitance; and 

R4|Warburg element corresponds to lithium ion diffusion, or faradic impedance relating to 

kinetics [61] [62] [63] [64] [65].  These relationships are often accompanied by a Nyquist plot 

(Figure 36): where R1, R2, R3, and W relate to the initial gap, first semi-circle, second semi-

circle, and “tail” respectively [61]. 

 

Figure 36: DPW model components correlated with EIS results [61] 

1.3.2 Electrochemical Models 

The first electrochemical modeling approach to porous electrodes with battery applications was 

presented by Newman and Tiedemann in 1975 [66].  In the porous electrode theory, the electrode 

is treated as a superposition between the electrolytic solution and solid matrix, the matrix itself is 

modeled as microscopic spherical particles where lithium ions diffuse and react on the sphere 
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surface.  This approach was expanded to include two composite models and a separator by Fuller 

et al. in 1994 [67]. In order to account for electrode porosity, a micro-macroscopic model was 

presented by Wang et al. in 1998 [68]. This model was later adapted for Ni-MH batteries [69], 

and then lithium-ion batteries [70].  Further expansions include accounting for capacity decay 

[71] and porosity changes [72] in 2004.   

Recently, there has been increased effort to use electrochemical models to estimate lithium-ion 

battery SOC [73].  These attempts evolve from the model introduced by Smith et al. [74], or a 

simplified model introduced by Haran et al. [75], and typically include a Kahman filter to 

estimate an average value of the bulk solid concentration.  The primary application of 

electrochemical models is to predict physical phenomena, such as cell degradation [76] [77] [78] 

[79].  Due to model complexity, and thus simulation time, electrochemical models are limited to 

research rather than real-time applications. 

Recent contributions of the University of Waterloo electrochemical modeling group include: 

Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State 

Diffusivity [80], a mathematical physics based model with respect to variable solid state 

diffusivity, particle simulation, and diffusion; Full-Range Simulation of a Commercial LiFePO4 

Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis [81]; which added 

porous electrode theory, diffusion limitation, and particle contact resistance to the previous work; 

Simulations of lithium iron phosphate lithiation/delithiation: Limitations of the core-shell model 

[82], examines the core shell model and exposes inconsistency with observed physical effects 

and unnecessary mathematical complexity; Simplified electrochemical multi-particle model for 

LiFePO4 cathodes in lithium-ion batteries [83], introduces a simplified multi-particle model; 

Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to 

lithium iron phosphate [84], introduces mesoscopic or many-unit modeling which highlights 

interaction between lithiating units; and Model-Based Prediction of Composition of an Unknown 

Blended Lithium-Ion Battery Cathode [85], which relates cell characteristics to cathode 

composition. 

1.3.3 Other Models 

Other battery models include neural networks and linear models.  Neural networks are complex 

computer generated and operated models which are limited to a ‘trained’ data set.  Linear models 

are applicable to limited applications but are computationally simple. 

1.3.3.1 Artificial Neural Network 

Neural networks establish relationships between input and output data of any kind and have been 

developed for lithium-ion batteries [86] [87].  While neural networks are historically accurate, 

their accuracy is burdened by a large number of required parameters, complex formulae, and 

calculation time.  Additionally, neural networks are estimation limited within the trained data 

range, severely limiting immediate applications. 
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1.3.3.2 Linear Models 

A linear relationship has been established relating the previous SOC value, intermediate 

electrical measurements, and SOC variation for lead acid batteries [88] and is imposed that a 

similar relationship may be applied to other battery chemistries [89].  These models were 

developed for photovoltaic applications (i.e. low current and small SOC gradients), and are not 

suited for vehicles (i.e. high current and large SOC gradients). 

SOC is often determined by ampere, or coulomb, counting.  Remaining capacity directly 

corresponds to the amount of current withdrawn or supplied. Thus if an initial starting point and 

maximum capacity are known, and a reliable method of measuring current into/out of the cell 

exists, then the SOC of the cell can be estimated.  As batteries are non-ideal, another term 

accounting for inefficiencies or losses is frequently included.  An example of an ampere counting 

technique is detailed in Eq. 6. 

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 +
1

𝐶𝑁
∫ (𝐼𝑏𝑎𝑡𝑡 − 𝐼𝑙𝑜𝑠𝑠)𝑑𝑡

𝑡

𝑡0
        (Eq. 6) 

Where CN is the cell capacity, Ibatt is the battery current, and Iloss is the current consumed by loss 

reactions. Error is associated with lost or ‘missing’ current, thus precise current measurement 

and inefficiency accountability are essential for model accuracy.  While precise measurements 

can be achieved with enhanced equipment, there are multiple approaches for approximating 

energy losses [89].  An example of using ampere counting for vehicle battery SOC estimation is 

presented by Alzieu et al. [90].  

1.4 Vehicle Models 
With the increasing importance, demand, and advancement of hybrid architecture, vehicle design 

is becoming more complex and demands additional hardware testing before passing products to 

the consumer. Unfortunately, vehicle hardware is costly in both manufacturing capital and 

production time.  For this reason, automotive engineers are incorporating model based design in 

the fabrication of the next generation of vehicles.   

1.4.1 Feasibility of Vehicle Models 

Two criteria must be met for vehicle models to be feasible: the computer model must accurately 

portray the physical world and the model must be economically justifiable.  Autonomie, vehicle 

simulation software developed by Argonne National Laboratory, was able to precisely model a 

Toyota Prius and obtain an estimated gas efficiency within 5% of the accepted value (Figure 37) 

[91].  Other software such as the Powertrain System Analysis Toolkit (PSAT), a precursor 

program to Autonomie, has been used to simulate and validate other vehicles [92]. 
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Figure 37: UDDS and HWFET cycles, test and simulation [91] 

It is estimated that production costs can be reduced by up to 40 and 60% in the development and 

validation phases respectively by using model based design [93].  Although the largest benefit of 

simulation development that cannot be directly correlated with costs, is development time.  It is 

significantly faster to test vehicles through simulation than to construct and test physical 

prototypes.  Therefore, companies that adopt and implement testing through simulation have a 

competitive edge. 

1.4.2 Types of Vehicle Models 

There are two approaches to vehicle models, forward and backward design.  In a forward model 

(Figure 38), the driver desires a predetermined speed and will adjust the accelerator or brake 

pedals which affect the powertrain and component controllers (e.g. throttle, displacement, gear 

number, mechanical breaking) in an attempt to meet that requirement.  The driver will then 

modify this command depending on how closely the requirement was met.  Because the model 

simulates what occurs in reality, it can be used to implement advanced components, account for 

transient effects (e.g. engine starting, shifting, clutch engage/disengagement), or develop control 

strategies [94]. 

 

Figure 38: Forward vehicle model 
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By contrast, a backward model (Figure 39) initially adjusts the powertrain and component 

controllers to meet the desired speed.  After the speed has been reached, it backward calculates 

the accelerator/brake pedal position required.  Because of the model architecture, transient 

effects and control systems cannot be implemented.  However, backward working models are 

less computationally intensive than their forward looking counterparts and can quickly identify 

and define vehicle trends which may be useful in vehicle design (e.g. powertrain configuration). 

 

Figure 39: Backward vehicle model 

1.4.3 Multiple Models 

As vehicles become more complex, individual components are designed by a specialist team.  

Each team is responsible for developing that component and the associated models.  A team may 

have different versions of the same model as the component progresses through development.  

Additionally, the team may have simple and complex models for differing levels of 

computational time and accuracy (Figure 40). 

 

Figure 40: Tree diagram showing the branching of models 

1.4.4 System Analysis Using Multiple Tools 

A fundamental requirement for enterprise-wide simulation is a framework for integrating models 

that are developed in different languages/tools.  Because different tools excel at modeling 

specific phenomena, numerous tools are used within a single company, such as original 

equipment manufacturers (OEMs).   However, the task to relate these models into a single 

environment is often time consuming and difficult.  Thus, it is rare that models associate with 

each other, and a comprehensive model often assumes components work at a steady state or 

utilizes look up tables. 

While lookup tables are easy to use and develop, they cannot replace component simulation for 

control system development or component physical interaction within the vehicle model.  Thus, 

it is important to maintain these more detailed models in order to evaluate new technology.  
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While it is possible to rebuild each model in a common language (e.g. Simulink), it is more 

practical to develop an architecture that supports communication between individual models in 

their native environment. 

Because most models are created within the Matlab domain, it is the inferred common 

architecture.  However, input and output functions are hardly uniform, as each model utilizes 

syntax most convenient to their subject matter (e.g. units, significant parameters, etc.).  

Therefore, the implied solution is to develop a “wrapper” which acts as a translator that filters 

information as it enters/leaves individual models allowing them to combine and form a complete 

simulation.  This “wrapper” solution is possible within the Matlab domain, and is the 

predominating advantage of Autonomie modeling software.  An illustration detailing the 

“wrapper” method is shown in Figure 41. 

 

Figure 41: Model import into Autonomie from native environment [94] 

Autonomie, which supports quick integration of foreign models, is an example of “plug and 

play” architecture.  Plug and play systems allow tools to be linked together in order to form more 

detailed vehicle models.  Autonomie has been shown to be able to link multiple tools together 

such as the GT-Power engine model, AMESim transmission model, and the CARSim vehicle 

dynamics model into a single vehicle simulation (Figure 42) [22]. 

 

Figure 42: Multiple models related through Autonomie “plug and play” architecture [22] 
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Through this method, multiple models may be combined.  This negates the limitations produced 

by using simplified models or lookup tables for external components to determining the net 

result of component testing.  Additionally, it allows for a broader range of simulation scenarios 

while preserving the integrity of the original models. 
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2 Experimental 
This section details the process of parameterizing equivalent circuit models from measured cell 

voltage response generated with the assistance of a time vs. current profile. Necessary equipment 

includes: a battery cycler, for applying current profiles; a host computer, for data logging and 

supervising the battery cycler; and a thermo chamber, for monitoring cell temperature.  An 

overview of the model parameter fitting process is shown in Figure 43. 

 

Figure 43: Overview of model parameter fitting process 

Simulated current profiles were generated representative of the UDDS and US06 drive schedules 

by Autonomie software.  These current profiles were then used to scale the HPPC test current.  

The cell voltage response was then measured with respect to these current profiles (Measuring 

Cell Voltage Response, s. 2.1).  The measured HPPC voltage response was used to characterize 

the Rint and Thevenin models (Parameter Characterization, s. 2.2).  The characterized models 

were then validated by the UDDS and US06 drive cycle voltage response profiles (Model 

Validation and Comparison, s. 2.3) before integration into Autonomie vehicle simulation 

software to estimate the importance of modeling the hysteresis effect (Simulation Results, s. 3). 

2.1 Measuring Cell Voltage Response  
The initial data provided within this work was collected by Joshua Lo and Leonardo Gimenez 

Paez, and is presented with their permission.  Lo provided vehicle modeling services for the 

University of Waterloo Alternative Fuels Team (UWAFT) during the EcoCAR2 competition and 

generated simulated current profiles for the UDDS and US06 drive cycles [95].  Paez continued 

Lo’s work and used the simulated current profiles, including a scaled hybrid pulse power 

characterization test [58], to measure the voltage response of a lithium-ion battery.  Because of 

the origin of the data, the current profiles are representative of the EcoCAR2 Malibu model.   

The experimental setup and procedures are written with reference to Paez’s methods and 

descriptions [96]. Additional, simulated, current profiles are original work and were generated by 

Autonomie vehicle modeling software. 
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2.1.1 Test Bench Equipment & Configuration  

The test bench schematic and test bench used to supply the current profile and measure the 

voltage response are shown in Figure 44 and Figure 45 respectively.  The pictured battery cycler 

is the Maccor 4200TM, which has 16 channels and a current control range of 0.1 – 15 A and a 

voltage control of 0.0 – 5.0 V per channel [97]. Eight channels are combined in parallel to 

achieve a maximum current of 120 A using a 4-wire parallel connection, where two low gauge 

wires deliver current and two high gauge wires measure voltage. The accuracy of the eight 

combined channels for each battery is ±0.1 A and ±1.0 mV. The current-voltage data is logged 

each second and every change equal to or exceeding 1 mV.   

 

Figure 44: Test bench schematic 

The pictured thermo chamber is the SubZero MicroClimate® 1.2 (Figure 45), which maintained 

the ambient temperature within ±0.5 K of the set point (23.75 °C) [98].  While inside the thermo 

chamber, the battery is enclosed in a vice that simulates a pack enclosure (two 4 mm thick inner 

aluminum plates, which simulate pack fins that distribute heat across the battery surface, inserted 

between two 5 mm thick acrylic plates, which simulate battery casing).   

 

Figure 45: HPPC test bench 

The pictured host computer (Figure 45) communicates with the battery cycler via LabView 

software [99].  All interactions between the test battery and battery cycler are orchestrated 

through this interface.  The thermo chamber is not controlled by the host computer, and is 

externally monitored.  Details of the test battery, designed for EREVs, are given in Table 4. 

Maccor Cycler 

CSZ Thermal 
Chamber 

Host Computer 
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Table 4: Battery specifications 

Parameter Entry 

Cathode Material LiFePO4 (LFP) 

Anode Material Graphite 

Electrolyte Liquid organic 

Capacity range  18-21 Ah 

Nominal Voltage  3.3 V 

Dimensions  7.25×160×227 mm3 

Weight  496 g 

 

2.1.2 HPPC Test Procedure 

The hybrid pulse power characterization (HPPC) test normally consists of a 10 s discharge pulse 

at 1 C, a 40 s rest period, and a regenerative pulse at ¾C.  The discharge and charge pulses 

represent the battery current profiles during normal operation and regenerative breaking 

respectively, with a smaller charge pulse depicting energy losses.  Additional information 

regarding the standardized HPPC test procedure recommended by the Department of Energy can 

be found in their battery test manual [54]. 

The standardized test procedure was modified to represent for the current profiles experienced by 

the EcoCAR2 Malibu model within Autonomie software, scaling the discharge pulse to 5C and 

the regenerative pulse to 3 ¾ C.  The Malibu US06 drive cycle current demand is overlaid with 

the scaled HPPC test current profile in Figure 46.  The current magnitude exhibited by the US06 

drive cycle greatly exceed 1C and ¾C recommended by the test, and were deemed unrealistic of 

drive cycle behavior.  For this reason, the modified test procedure was used. 

 

Figure 46: Modified HPPC test overlaid with Autonomie generated US06 current profile 
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The battery is initially characterized by a full charge/discharge cycle.  The battery is charged at 

1C constant current, followed by a constant voltage charge until the current decreases to C/20.  

The battery is then rested until equilibrium is reached, defined as a change in voltage smaller 

than 5 mV over a ½ hour period or a rest period exceeding two hours.  The battery is then 

discharged at 1C constant current until the cut-off voltage is reached, then at constant voltage 

until the current reaches C/20. 

The modified HPPC current profile (10 s discharge pulse at 5C, followed by a 40 s rest period, 

and then a 10 s 3.75C charge pulse) is performed at 10% SOC intervals, where the voltage 

response is recorded by the host computer. To reach the desired SOC between tests, the battery is 

discharged to the cutoff voltage (i.e. manufacturer defined 0% SOC) by the above method, and 

then charged to the desired SOC by coulomb counting at constant current (1.25C).   

2.1.3 Drive Schedule Procedure 

Simulated drive schedule current profiles were generated through Autonomie software using the 

EcoCAR2 Malibu model.  These current profiles were modified in the event that a regenerative 

pulse would result in cell overcharge, defined as a voltage exceeding the maximum rated battery 

voltage.  This is assumed to be similar operation to an automotive battery controller, which 

would avoid self-inflicted harm to the on-board battery pack.  Therefore, these profiles are 

expected to be representative of a real-world hybridized vehicle.   

Before applying the simulated current profile to the cell, the battery is initially characterized by a 

full charge/discharge cycle (see previous section).  As capacity is expected to change during 

discharge, the drive schedule is repeated until the cutoff voltage is reached.  Upon completion of 

the drive schedule, the cell is rested until equilibrium, and re-characterized before application of 

the next drive schedule (UDDS, US06, etc.).  Battery current and voltage throughout the UDDS 

profile is displayed in Figure 47. 

 

Figure 47: UDDS profile current and voltage 
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2.2 Parameter Characterization 
The Rint and Thevenin equivalent circuit model parameters were characterized with reference to 

the aforementioned voltage response and current profiles.  The characterization was performed 

by changing the circuit parameters to minimize the sum of time-weighted voltage response 

deviations with a generalized reduced gradient (GRG) non-linear solver.  Equivalent circuit 

model equations are reintroduced and detailed before presenting the time-weighted solver 

objective function. 

2.2.1 Model Equations 

ECMs estimate the battery voltage (Vmodel) as the difference between the open circuit (VOC) and 

equivalent circuit (Vcirc) voltages (Eq. 1).  VOC is influenced by SOC and temperature.  Vcirc is 

determined by model parameters, and may be externally influenced depending on equivalent 

circuit complexity [53].   

𝑉𝑚𝑜𝑑𝑒𝑙 =  𝑉𝑜𝑐 −  𝑉𝑐𝑖𝑟𝑐           (Eq. 1) 

2.2.1.1 Rint Model 

The Rint model is composed of a single resistor (Figure 30), and Vcirc is defined by a single term 

V1 (Eq. 2).  The model predicted voltage is the open circuit voltage with an offset (V1) that is 

defined as the internal resistance (R1) scaled by current (i1).  The internal resistance is often 

abbreviated as Rint, from which the name is derived [54].  Because of the lack of capacitors (or 

inductors), the Rint model cannot capture hysteresis, or transient, effects. 

 

Figure 48: Internal resistance ("Rint") model 

𝑉𝑐𝑖𝑟𝑐 (𝑅𝑖𝑛𝑡) = 𝑉1 =  𝑖1𝑅1          (Eq. 2) 

2.2.1.2 Thevenin Model 

The Thevenin model is composed of a resistor and a resistor and capacitor in parallel (Figure 

33), and Vcirc is defined by two terms V1 and V2 (Eq. 3).  Similar to the Rint model, current is 

linearly scaled with a resistance to determine V1.  V2 is determined by the current across R2 (i2), 

which is influenced by the energy stored within the capacitor (C1) and creates a time dependent 

voltage response.  In order to characterize the model parameters, it is of interest to express the i3, 

in terms of i1.  Details of this substitution are provided in Eq. 7 – 12.  
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Figure 49: Thevenin circuit model 

𝑉𝑐𝑖𝑟𝑐 (𝑇ℎ𝑒𝑣𝑒𝑛𝑖𝑛) = 𝑉1 + 𝑉2 = 𝑖1𝑅1 + 𝑖2𝑅2        (Eq. 3) 

As R2 and C1 are in parallel, their respective voltages are identical (Eq. 7).   

𝑉2 = 𝑖2𝑅2 =
1

𝐶1
∫ 𝑖3

𝑡2

𝑡1
𝑑𝑡 + 𝑉2(𝑡1)         (Eq. 7) 

By Kirchhoff’s laws, Eq. 7 can be transformed to express the current across C1 as a function of 

the initial current (i1), circuit elements R2 & C1, and preceding voltage (Eq. 8 – 9). 

𝑖1 = 𝑖2 + 𝑖3           (Eq. 8) 

𝑖3 = 𝑖1 −
1

𝑅2𝐶1
∫ 𝑖3

𝑡2

𝑡1
𝑑𝑡 −

𝑉2(𝑡1)

𝑅2
         (Eq. 9) 

The integral term in Eq. 9 can be expressed by trapezoidal approximation with sufficiently small 

time steps.  The capacitor current can be simplified by defining the limits of integration, t2 and t1, 

as the present and previous time steps respectively (i.e. i3(t2) = i3) (Eq. 10). 

𝑖3 = 𝑖1 −
(𝑡2−𝑡1)

𝑅2𝐶1
[

𝑖3

2
+

𝑖3(𝑡1)

2
] −

𝑉2(𝑡1)

𝑅2
         (Eq. 10) 

Collection and isolation of i3 (Eq. 11) produces the Thevenin model with i1 as the sole input (Eq. 

12). 

𝑖3 =
[𝑖1−

𝑡2−𝑡1
2𝑅2𝐶1

𝑖3(𝑡1)−
𝑉2(𝑡1)

𝑅2
]

1+
𝑡2−𝑡1
2𝑅2𝐶1

          (Eq. 11) 

𝑉𝑚𝑜𝑑𝑒𝑙 = 𝑉𝑂𝐶 − 𝑖1𝑅1 − (𝑖1 − 𝑖3)𝑅2         (Eq. 12) 

Alternatively i2, instead of i3, can be isolated by substitution in Eq. 3.  This approach requires 

two integral approximations (i.e.∫ 𝑖1 − 𝑖3 𝑑𝑡), but provides alternative initial conditions (i.e. i2 = 

0 vs. i3 = i1).  This form is useful in situations where the initial condition i3 = i1 cannot be met as 

it defines an initial value with a variable. 

𝑖2 =
[

𝑡2−𝑡1
2𝑅2𝐶1

(𝑖1+𝑖1(𝑡1)−𝑖2(𝑡1))−
𝑉2(𝑡1)

𝑅2
]

1+
𝑡2−𝑡1
2𝑅2𝐶1

         (Eq. 13) 

2.2.2 Circuit Parameter Characterization 

Model parameters (i.e. Rint, R1, R2, and C1) are characterized to set the objective function, 

defined as the difference between the measured and modeled sum of deviations, to a minimum 
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value (Eq. 14) using a GRG non-linear solver within Microsoft Excel software.  Because the 

measurement intervals are inconsistently spaced, the measured and modeled values are weighted 

to provide an equal representation with respect to time (Eq. 15-16).   

∑ |𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑| = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒        (Eq. 14) 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑡1 = 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑡2 − 𝑡1)         (Eq. 15) 

𝑀𝑜𝑑𝑒𝑙𝑒𝑑𝑡1 = 𝑉𝑚𝑜𝑑𝑒𝑙(𝑡2 − 𝑡1)         (Eq. 16) 

Alternative methods of calculating model deviations were considered, such as the common 

statistical “least squares” technique (Eq. 17).  While the least squares method avoids theoretical 

complications for further statistical analysis (i.e. it is difficult to integrate an absolute value) 

[100], it propagates model error.  By squaring the differences, a single large deviation is more 

impactful than multiple smaller deviations – which yields a net increase in model deviations 

relative to Eq. 14.  Improved model accuracy was deemed paramount to simplified statistical 

analysis, and thus Eq. 14 selected over Eq. 17. 

∑(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑)2 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒        (Eq. 17) 

The following subsections detail solver constraints, characterization intervals, assumptions, and 

parameter influence. 

2.2.2.1 Solver Constraints, Characterization Intervals, and Assumptions 
The GRG non-linear solver constraints chosen for characterization of the model parameters were: a constraint 

precision of 1x10-13, a forward convergence of 1x10-17, and a multi-start population size of 1x104 with 0 random 

seeds.  The required boundaries on the solver parameters were 0 < R1 < 4.0x10-2 Ω, 0 < R2 < 4.0x10-2 Ω, and 0 < C1 

< 2.5x103 F.  The Rint and Thevenin model parameters were characterized in 10% SOC intervals. 

Cell relative capacity (SOC) was assumed constant throughout each HPPC test.  Linear 

interpolation of circuit parameters (R1, R2, and C1) and open circuit voltage (VOC) was assumed 

sufficiently accurate with the characterization intervals. 

2.2.2.2 Parameter Influence 

It is beneficial to interpret the parameter influence with reference to their respective models.  

With respect to the Rint model, R1 represents the deviation from the open circuit voltage (Figure 

50).  With constant current, increasing or decreasing R1 provides a larger or smaller deviation 

respectively.   
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Figure 50: Rint model parameter correlation 

As the deviation is non-constant with respect to time, model error can be minimized by characterizing R1 with 

reference to the average deviation.  A representative Rint model fit, which emphasizes estimation limitations for 

transient effects, is shown in Figure 51.  

 

Figure 51: Rint model error originates from hysteresis effect 

With respect to the Thevenin model, R1 influences the initial deviation from the open circuit 

voltage identically to the Rint model, and R2|C1 influence the magnitude and rate of the final 

deviation respectively (Figure 52).  Additionally, provided the absence of current, R2 and C1 

determine how quickly the cell resumes open circuit voltage from rest. 

 

Figure 52: Thevenin model parameter correlation 
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In both models, error originates from the inability to perfectly capture the hysteresis effect.  

However, while the Thevenin model predicts this effect with limited curvature, error is 

significantly decreased compared to the Rint model (Figure 53).  The Thevenin model can be 

further improved by additional R|C parameters in series (Equivalent Circuit Models, s. 1.3.1).  

The significance of the Thevenin to Rint model improvements, with commentary regarding 

higher fidelity models, is provided in Model Validation, s. 2.3. 

 

Figure 53: Thevenin model error originates from imperfect capture of the hysteresis effect 

2.2.3 Fitted Circuit Parameters 

The Rint and Thevenin model parameters were characterized by minimizing the objective 

function, defined as the sum of the absolute voltage difference between the modeled and 

measured values, by varying the circuit parameters (Circuit Parameter Characterization, s. 2.2.2).  

The fitted parameters and relevant discussion are provided within this section. 

The characterized Rint model resistor values are shown in Figure 54.  The resistance is shown to 

have an inverse relationship with capacity, and decreases with increasing SOC.  The resistance 

increases drastically at SOC < 10% as the cell approaches full discharge.  This sudden resistance 

increase indicates that the cell exhibits new, or more pronounced, electrochemical phenomena at 

low SOC. 

 

Figure 54: Fitted Rint model resistor values 
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The Rint model error encapsulated by the objective function (Eq. 14, s. 2.2.2) is shown in Figure 

55.  Similar to the resistor values, the error follows an inverse relationship with capacity, and 

decreases with increasing SOC.  Additionally, the error drastically increases at SOC < 10%, 

suggesting that the Rint model is a poor choice for estimating cell voltage in this region. 

 

Figure 55: Rint model objective value w.r.t. increasing SOC 

The characterized Thevenin model resistor and capacitor values are shown in Figure 56.  

Thevenin resistor R1 exhibits trends similar to the Rint model, and exhibits an inverse 

relationship with SOC.  From a theoretical perspective, R1 characterizes the “cell bulk 

resistance” and should be a constant value where R2 captures SOC dependent chemical 

interaction.  This does not match the empirical results, and it is implied that some of the chemical 

interaction is “masked” in R1, implying that model accuracy may be improved with additional 

R|C components.  The resistor (R2) and capacitor (C1) exhibit an inverse and direct relationship 

with SOC respectively.  This indicates that not only does the hysteresis effect increase in 

magnitude at lower SOCs, but it applies at a faster rate. 

 

Figure 56: HPPC fitted parameters R1 & R2 (left) and C1 (right) 

The Thevenin model error encapsulated by the objective function (Eq. 14, s. 2.2.2) is shown in 

Figure 57.  Figure 57 experiences similar trends to Figure 55, suggesting that the Thevenin 

model also has difficulty predicting low SOC phenomena.  Figure 57 is also “steadily 
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increasing” in sections (i.e. < 10% and < 60%) rather than distinct curvature, again suggesting 

that additional R|C elements may further increase model accuracy.  An overlooked distinction 

between the Figures is the ordinate units, the absolute sum of errors for the Thevenin model is an 

order of magnitude lower!   

 

Figure 57: Decreasing objective value w.r.t. increasing SOC 

The model objective functions displaying a similar curvature and difference in magnitude is 

convenient for determining hysteresis significance.  As both models display similar curvature 

with reference to SOC it is intrinsically implied that both models will experience similar errors in 

these regions i.e. the error associated with each model originates from the same phenomena, 

therefore differences in the simulation results can be attributed to differences in model accuracy.  

Additionally, as the objective function for the Thevenin model is an order of magnitude less than 

the Rint model, the difference between the simulated results is expected to be significant. 

It is important to emphasize the smooth curvature of both the Rint and Thevenin parameters, as 

this curvature allows for interpolation between points.  This is necessary for implementation into 

vehicle simulation software, as interpolation is used to determine circuit parameters for 

unrecorded SOC values.  Because of the smooth curvature of the plots, the interpolated values 

can be assumed to be accurate. 

 

2.3 Model Validation and Comparison 
The Rint and Thevenin characterized models were used to reproduce the voltage response of the 

aforementioned battery cycles: the HPPC test standardized current profile, and current profiles 

representative of the UDDS and US06 drive cycles (Experimental, s. 2).  To illustrate the 

difference of the models, and their ability to capture the hysteresis effect, the Rint and Thevenin 

predictions are aligned with the measured voltages from the HPPC test in Figure 58.  The model 

predictions are then compared with the measured voltage from the simulated drive cycles, the 
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Figure 61 & Figure 62 respectively.  Enlarged versions of these figures are available within 

Appendix G – Model Validation. 

By inspection of the Rint HPPC test results (Figure 58, left), it is clear that model deviations 

originate from, and are proportional to, the hysteresis effect.  Prediction error peaks with current 

shifts, notably at 10 and 50 s.  There is also a comparably large deviation during the relaxation 

period (10 – 50 s), where the model assumes open circuit voltage and the battery slowly 

dissipates the hysteresis offset.  During phases of constant current, 0-10 and 50-60 s, prediction 

error approaches and then deviates from zero.  This error pattern again originates from the 

hysteresis effect, as the Rint model is characterized to predict the “average” voltage during this 

period as time dependent prediction is impossible with a simple resistance based model. 

Inspection of the Thevenin HPPC test results (Figure 58, right) shows improvement in modeling 

the hysteresis effect.  Model prediction error during constant current (0 – 10, 10 – 50, and 50 – 

60 s), is greatly reduced with an offset less than 0.02 V.  Similar to the Rint model, the Thevenin 

model exhibits error during current shifts notably at 10 and 50 s.  However the magnitude of this 

error is greatly diminished when compared to the Rint model, with prediction errors of 1.5 vs. 

0.8 V and 0.8 vs. 0.4 V respectively.   

 

Figure 58: HPPC Rint vs. measured (left), HPPC Thevenin vs. measured (right) 

The Rint model predicted voltage for the UDDS cycle, a smooth drive cycle with gradual current 

shifts, is shown in Figure 59.  The UDDS modeled offset increased relative to the HPPC tests, 

0.2 vs. 0.1 V respectively.  This is expected as the HPPC test 40 s rest period allows the battery 

to resume open circuit voltage between current shifts, and the drive cycle “rest periods” are 

encountered less frequently and for shorter duration.  Because of this, Rint model voltage 

prediction deviates from the measured values until 300 s where the hysteresis voltage drop 

terminates with a consistent offset of 0.2 V for the remainder of the cycle. 
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Figure 59: Rint predicted voltage vs. measured voltage for current profile representative of UDDS cycle 

The Thevenin model captures this hysteresis effect, matching the measured voltage (Figure 60).  

The Thevenin model lacks a constant offset, and prediction error originates from current shifts 

similar to the HPPC test current profile. 

 

Figure 60: Thevenin predicted voltage vs. measured voltage for current profile representative of UDDS cycle 

The Rint model predicted voltage for the US06 cycle, an aggressive drive cycle with large 

current shifts, is shown in Figure 61.  Similar to the UDDS cycle, the Rint model accrues an 

offset from the measured voltage.  Dissimilar to the UDDS cycle, the rate at which this offset is 

obtained is significantly increased reaching a terminal value at 100 s.  The decreased number of 

rest periods, and increased current demands, both increase the rate of hysteresis – the cause of 

the offset.   

The decreased magnitude of largest model error can be attributed to the vehicle controller 

monitoring the “aggressiveness” of the drive cycle.  In rapid deceleration applications the 

controller does not take advantage of regenerative breaking for safety concerns, as it prioritizes 

stopping the vehicle over recharging the battery.  For this reason the size of current shifts is 

diminished, i.e. discharge to charge becomes discharge to rest.  As the largest model error occurs 

during current shifts, it is natural that error decreases when large current shifts become less 

prevalent.   
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Figure 61: Rint predicted voltage vs. measured voltage for current profile representative of US06 cycle 

The Thevenin model captures the hysteresis effect of the US06 cycle and shows improvement 

over the Rint model (Figure 62), but has difficulty with the increased frequency of current shifts.  

An interesting observation is the model predicted voltage decays relative to the measured voltage 

over the duration of the cycle, with an over/under prediction before/after 200 and 300 s 

respectively.  This implies that the hysteresis effect is caused by multiple different phenomena 

that occur at different rates.  This conclusion is supported by observations in Nyquist plots 

obtained through electrochemical impedance spectroscopy (EIS) tests [58] [101] and by the 

increased accuracy of dual capacitance models [53]. 

 

Figure 62: Thevenin predicted voltage vs. measured voltage for current profile representative of US06 cycle 
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3 Simulation Results 
The following simulation results were obtained using Autonomie vehicle modeling software 

version Rev13SP1.  The simulation vehicle was the “BEV FixedGear 2wd Midsize” vehicle 

utilizing the software defaults for all components excluding the energy storage system (ess).  The 

energy storage system components were modified to the Rint and Thevenin control schemes 

(ctrl) and models (plant).  This modification created two identical vehicles with the exception of 

their energy storage system (i.e. Rint vs. Thevenin).  A simplified representation of the simulated 

vehicle powertrain is shown in Figure 63, a comprehensive representation including a list of all 

model related files, can be found in Appendix A – Simulated BEV Powertrain.  Simulation 

results are presented in a style consistent with Autonomie software, i.e. table and figure 

formatting is retained, to assist in result replication. 

 

Figure 63: Autonomie high level view of Simulink simulated BEV powertrain 

For each simulation, the vehicle propulsion controller (VPC) attempts to trace the drive cycle 

speed.  Significant deviation from the trace, defined as a difference exceeding 2 mph for more 

than 2% of the total simulation time, can be indicative of simulation error.  Upon reaching the 

end of the drive cycle simulation time, or all energy related resources (e.g. battery capacity, gas, 

etc.) are exhausted, the VPC will terminate the simulation.  For battery electric vehicles (BEVs), 

the default terminal SOC is 10% and was used for these simulations.  Additional information 

regarding vehicle models can be found in Vehicle Models, s. 1.4.   

Simulation results are composed of these vehicles completing the US06, HWFET, and UDDS 

standardized drive cycles (Table 5).  The deviations from the trace are sufficiently small (less 

than 2%) which indicates the simulation completed without error. 

The Thevenin model predicts increased electrical consumption and decreased bidirectional 

energy storage efficiency across all simulated drive cycles.  This relates to a decreased travel 

distance in the US06 and HWFET drive cycles and a decreased terminal SOC in the UDDS drive 

cycle.  Deviations from the speed trace in the US06 drive cycle originate from the inability of the 

battery pack to meet the motor power demands.  The marginally increased error within the 

Thevenin simulation (0.24 vs. 0.23%) suggests the Thevenin battery pack has a relatively 

diminished power output which hinders high acceleration and top speed applications. 
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Table 5: Rint & Thevenin Simulation Results 

Drive Schedule  US06 HWFET UDDS 

Model Type  Rint Thevenin Rint Thevenin Rint Thevenin 

%Time Trace Missed by More Than 2 mph % 0.23 0.24 0 0 0 0 
Distance Traveled mi 5.81 5.52 10.25 9.74 7.44 7.44 

Simulation Time s 390.9 375.9 764.0 716.1 1369 1369 

Electrical Consumption Wh/mi 478.33 512.94 259.52 290.65 272.44 274.49 
Initial SOC % 70 70 70 70 70 70 

Final SOC % 10.01 10.01 13.67 10.01 27.21 26.89 

Delta SOC % -59.99 -59.99 -56.33 -59.99 -42.79 -43.11 
Bidirectional Energy Storage Efficiency % 81.43 78.72 93.74 90.29 94.62 94.17 

 

The results of Table 5 are illustrated by Figure 64 - Figure 69, which compare the model 

simulated drive cycle battery capacity (SOC) and voltage.  When viewing the figures, remember 

that the Rint model assumes open circuit voltage (OCV) whenever there is an absence in current 

demand.  This allows coasts (i.e. V = OCV during the coast to V > OCV during regenerative 

breaking) and stops (i.e. V = OCV during the stop to V < OCV during acceleration) to be easily 

identified.  In both cases, the Thevenin model voltage gradually resumes OCV during the rest 

period due to the hysteresis effect. The remainder of the section is comprised of sections 

disserting the significance of simulation convergence or divergence. 

The UDDS simulation Rint and Thevenin model SOC with respect to simulation time is 

illustrated in Figure 64.  The two models begin to diverge at 100 s and the rate of divergence 

increases rapidly after 300 s.  Prior to 150 s, SOC tends to increase after depletion from the 

effects of regenerative breaking.  This behavior is absent in the later sections of the cycle, 

suggesting the rate of deceleration was too high to safely operate the generator and it was 

disabled by the VPC.  The Rint and Thevenin vehicles reach terminal SOC at 390.9 and 375.9 s 

respectively. 

 

Figure 64: Simulated Rint and Thevenin ECM SOC for the US06 drive cycle 
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Inspection of the US06 drive cycle with respect to battery voltage explains these divergences 

(Figure 65).  Before the 150 s mark the drive cycle is relatively relaxed, and consists of small 

voltage fluctuations.  There are stops located at 42 and 142 s (indicated by a constant Rint model 

voltage) which align with the regenerative breaking observed in Figure 64.  The drive cycle 

becomes more aggressive post 150 s as the voltage begins to fluctuate rapidly to accommodate 

the power demands.  The vehicle decelerates too rapidly for the controller to enable regenerative 

breaking, and the energy is lost.  With the battery in constant discharge, the hysteresis effect 

accumulates and the Rint and Thevenin voltage predictions diverge.  The Thevenin model 

predicts decreased battery voltage which enables an increased current demand to meet the motor 

power requirements.  This increased current draw, coupled with increased resistance, increases 

electrical consumption relative to the Rint model as displayed in Table 5. 

 

Figure 65: Simulated Rint and Thevenin ECM voltage for the US06 drive cycle 

The HWFET simulation Rint and Thevenin model SOC with respect to simulation time is 

illustrated in Figure 66.  The two models gradually deviate, especially after the 300 s.  The 

magnitude of the regenerative periods, which occur at 120 and 280 s, are smaller than those 

observed in the US06 cycle suggesting the decrease in speed was lesser in magnitude.  The Rint 

vehicle completes the cycle at 764 s with 13.67% SOC remaining, whereas the Thevenin vehicle 

reaches terminal SOC at 716 s and ends the cycle prematurely. 
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Figure 66: Simulated Rint and Thevenin ECM SOC for the HWFET drive cycle 

Inspection of the HWFET drive cycle with respect to battery voltage explains this performance 

(Figure 67).  The regenerative breaking, shown at 120 and 280 s, occur to a momentary decrease 

in speed, rather than a complete stop, and is supported by the voltage profile.  The HWFET cycle 

voltage profile shows a consistent constant discharge that cannot easily be parsed into segments 

dissimilar to the US06 cycle.  This is expected highway performance, and mirrors SOC behavior 

(Figure 66).  Again, the Thevenin model predicts a lower battery voltage due to the hysteresis 

effect exalted by the sustained rate of discharge.  This results in an increased current draw, faster 

capacity depletion, and decreased range.   

It is of interest to note that this increase in electrical consumption prohibits the Thevenin vehicle 

from completing the drive cycle and ceases forward movement at 716 s.  Because of this early 

termination, the Thevenin model does not benefit from the regenerative breaking displayed at the 

end of the cycle at 750 s.  
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Figure 67: Simulated Rint and Thevenin ECM voltage for the HWFET drive cycle 

The UDDS simulation Rint and Thevenin model SOC with respect to simulation time is 

illustrated Figure 68.  The Rint and Thevenin model predictions are almost indistinguishable, 

with a gradual deviation occurring throughout the cycle.  Across the 1369 s cycle, the relative 

capacity difference is 0.31%. 

 

Figure 68: Simulated Rint and Thevenin ECM SOC for the UDDS drive cycle 

Inspection of the UDDS drive cycle with respect to battery voltage reveals comparable 

convergence (Figure 69).  There are many “stops” throughout the cycle that allow the hysteresis 

effect to dissipate similar to the first 150 s of the US06 cycle.  During each “stop” the voltage 
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prediction converges, and the significance of modeling the hysteresis effect decreases.  For this 

reason, a larger difference is shown in the US06 and HWFET cycles relative to the UDDS cycle. 

 

Figure 69: Simulated Rint and Thevenin ECM voltage for the UDDS drive cycle 

The models contrast when the battery is provided aggressive or sustained current profiles.  The 

UDDS drive cycle is representative of a leisurely drive in an urban environment, and exhibits the 

smallest model prediction difference of 2.05 Wh mi-1.  The HWFET drive cycle is representative 

of a highway scenario, and exhibits an increased prediction difference of 31.13 Wh mi-1.  The 

US06 drive cycle is representative of “aggressive” or high acceleration drive, and exhibits the 

largest prediction difference of 34.61 Wh mi-1.  This is expected as the hysteresis effect, which is 

captured by the Thevenin – but not the Rint – model, is more prevalent in the current profiles 

exhibited by the HWFET and US06 drive cycles. 
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4 Effect of Electrical Losses on Range  
While an electrical consumption metric is readily applicable from a design perspective, it is 

useful to express the model differences in more tangible quantity – All Electric Range, s. 1.1.2.6.  

Similar to traditional internal combustion engine vehicles which transform stored chemical 

energy into mechanical movement, all electric range is limited by the amount of energy available 

and the ratio that energy is converted into useful work.  Within the context of an electrified 

vehicle powertrain, battery capacity (kWh) is the amount of energy available and electrical 

efficiency (mi kWh-1) is the work to energy ratio. 

It is of interest to determine the electrical efficiency of modern vehicles to provide context to the 

simulation results.  By using the 2014 fuel economy test results collected by the EPA (Vehicle 

Comparison and Drive Cycles, s. 1.1.1.3), it is possible to construct a plot of all-electric range 

(AER) vs. battery capacity (Figure 70).  Within Figure 70, the grey and black markers indicate 

2014 commercial PHEVs and BEVs respectively, and the average electrical efficiency is 

indicated by the slope.  A larger version of Figure 70, which includes vehicle names, is included 

in Appendix E – AER for 2014 Vehicles.  

 

Figure 70: Increasing AER w.r.t. battery capacity for 2014 commercial electrified vehicles 

An inspection of vehicles with a battery capacity of 0 to 35 kWh, the enclosed section within 

Figure 70, reveals an interesting observation – PHEVs display a lower electrical efficiency than 

BEVs.  This enclosed section is enlarged Figure 71.  The displayed electrical efficiencies for 

PHEVs and BEVs, 2.656 and 3.189 mi kWh-1 respectively, and differs by approximately 20%.  

An enlarged version of Figure 71, which includes vehicle names, is included in Appendix E – 

AER for 2014 Vehicles. 
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Figure 71: Implied PHEV electrical efficiency deficit 

This offset is not caused by the added weight of the ICE powertrain, rather is produced by the 

PHEV battery controller.  When the battery reaches a critical capacity, the vehicle enters charge 

sustaining (CS) mode to prevent irreparable degradation to the battery.  In CS mode the vehicle 

utilizes the engine, instead of the motor, to avoid discharging the battery below the critical 

threshold.  The critical capacity varies depending on the controller, and values between 10 and 

20% maximum capacity are common, and exists to preserve the lifespan of the battery [102] 

[103] [104] [105] [106] [107].  This control is absent in BEVs, as it is preferable to degrade the 

battery when the alternative is a motionless vehicle without a secondary resource.  Modifying 

effective battery capacity of PHEVs to account for this control scheme, with an estimated critical 

capacity of 20%, produces the new PHEV mi kWh-1 relationship shown in Figure 72.  An 

enlarged version of Figure 72, which includes vehicle names, is included in Appendix E – AER 

for 2014 Vehicles. 

 

 
Figure 72: Normalized PHEV battery results in similar trend shown in BEVs 

The BMW i3 REX is a PHEV modification of the i3 BEV, and shares the same frame, motor, 

battery, etc. as the original production car.  However the PHEV AER decreases by 11%, instead 

of the suspected 25%, suggesting that the REX does not utilize the 20% SOC control assumed 

for the other hybrid vehicles.  For this reason, a 10% threshold was assumed for the BMW i3 

REX which is in alignment with the other commercial vehicles.  It is of interest to clarify that the 
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i3 REX PHEV would exhibit a greater electrical efficiency than the i3 BEV if a 20% SOC cutoff 

was used (Table 6).   

Table 6: Electrical efficiency of the BMW i3 BEV and i3 REX 

Model Make Range Capacity Critical SOC Effective Capacity, Electrical Efficiency 

BMW 
i3 BEV 81 mi 22 kWh 0% 22.0 kWh 3.68 mi kWh-1 

i3 REX 72 mi 22 kWh 
20% 17.6 kWh 4.09 mi kWh-1 

10% 19.8 kWh 3.63 mi kWh-1 

 

The Toyota RAV4 also requires modification.  Although RAV4 is a BEV, the battery controller 

does not fully discharge the battery under normal operation and utilizes an effective capacity of 

35 kWh.  An average of the normal and full discharge modes was used to determine the reported 

value [108].  This modification is emphasized in Figure 73. 

 

Figure 73: RAV4 effective battery capacity modification 

The electrical efficiency of PHEV and BEV vehicle architectures can be shown to be equivalent 

through a confidence interval assuming a normal distribution.  A normal probability plot which 

supports this assumption, shown by a linear relationship of observed vs. expected values, is 

included in Appendix E – AER for 2014 Vehicles. 

The confidence interval for comparing two means of equal, but unknown, variance is shown in 

equations 18 – 20.  Related values, BEV & PHEV electrical efficiency, standard deviation, 

variance, and sample population are provided in Table 7. 

(𝑥1 − 𝑥2) ± 𝑡α

2
,𝑣𝑠𝑝√

1
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1

𝑛2
         (Eq. 18) 

𝑠𝑝
2 =

(𝑛1−1)𝑠1
2+(𝑛2−1)𝑠2

2

𝑣
          (Eq. 19) 

𝑣 = 𝑛1 + 𝑛2 − 2           (Eq. 20) 
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Table 7: BEV and PHEV preliminary statistics 

Architecture 
Efficiency 

Standard 

Deviation 
Variance Population Size 

(x) (s) (s2) (n) 

BEV 3.205 0.539 0.290 17 

PHEV 3.121 0.385 0.148 14 

Pooled 3.199 0.476 0.226 31 

 

BEV and PHEV efficiency can be shown to have equivalent variance through an F-test, with the 

null and alternate hypotheses H0: s1
2/s2

2 = 1 and H1: s1
2/s2

2 ≠ 1 respectively.  The observed and 

critical F values are provided in Table 8.  As Fobserved is less than Fcritical, the variance between the 

samples is not statistically significant, and therefore the sample variances may be pooled. 

Table 8: Pooled variance F values 

Test Statistic Value 

Fobserved 1.9592 

Fcritical (α = 0.05) 2.3973 

 

By equation 18, the vehicle efficiencies are shown to be equal by residing within the 95% 

confidence interval (0.084 ± 0.168).  A plot of normalized capacity for all sampled 2014 

electrified vehicles is shown in Figure 74.  An enlarged version of Figure 74, which includes 

vehicle names, is included in Appendix E – AER for 2014 Vehicles. 

 

Figure 74: AER vs. normalized capacity for sampled 2014 electrified vehicles 

As there are point deviations from the expected electrical efficiency, it is influenced by other 

factors.  This is not surprising, as within the scope of traditional vehicles it is expected the 

energy required to move a SUV to be exceed that of a sports sedan.  Similarly, there are factors 

that influence the energy required to move different makes of electric vehicles. 

Regression analysis was performed to determine the statistical significance of the following 

vehicle characteristics on electrical efficiency, curb weight (lbs.), drive location (e.g. front), 
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motor size (kW), and manufacturer suggested retail price ($, USD).  Analysis of variance and 

regression results are provided in Table 9 and Table 10 respectively. 

Table 9: Efficiency analysis of variance table 

Variable 
Degrees of Freedom Sum of Squares Mean Square F Test Significance 

df SS MS F P 

Regression 4 3.256 0.814 7.235 0.0004 

Residual 26 2.925 0.112   

Total 30 6.182    

 

Table 10: Efficiency regression coefficients 

Variable Coefficient Std. Error t-Stat P-Value 

Intercept 4.74826 0.31517 15.06553 0.00000 

Curb. Wt. -0.00037 0.00013 -2.77036 0.01020 

Drive -0.11228 0.08161 -1.37569 0.18065 

Motor 0.00144 0.00178 0.81036 0.42509 

MSRP -0.00001 0.00000 -1.97003 0.05957 

 

The regression is significant with a p-value of 0.0004 (Table 9) with a significant parameter: 

curb weight (Table 10).  Brief commentary is provided for each parameter: curb weight, drive, 

motor size, and manufacturer suggested retail price (MSRP), detailing the significance and 

implications of the regression results. 

Curb weight is a significant parameter with a p-value of 0.0102 (Figure 75).  This is expected, as 

vehicle weight influences dynamometer resistance (Fuel Economy and Energy Loss, s. 1.1.2).  

Dynamometer resistance is also influenced by drag coefficients, which were not provided, and 

may offer an explanation for smaller vehicles such as the Honda Fit or Chevrolet Spark as minor 

outliers.  Another explanation is the controller aggressiveness with respect to regenerative 

breaking or non-uniform critical capacity control values.  An enlarged version of Figure 75, 

which includes vehicle names, is included in Appendix E – AER for 2014 Vehicles. 
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Figure 75: Decreasing efficiency with increasing weight 

Drive location is insignificant with a p-value of 0.1806.  While front-wheel drive is regarded as 

more efficient, it is attributed to a decrease in component weight [109].  Therefore, any 

efficiency gains associated with drive classification are encompassed in the curb weight 

parameter. 

Motor size is insignificant with a p-value of 0.4251.  While smaller engines equipped with a 

turbocharger are more efficient than their larger counterparts [110], the trend is not present 

within electric motors.  Work presented by Zulkifli et al. suggests that size does not influence 

motor efficiency [111]. 

MSRP is on the verge of significance with a p-value of 0.0596.  However additional analysis 

with the removal of luxury vehicles (i.e. MSRP exceeding $70,000) yields a regression 

coefficient of -9.1x10-6 with p = 0.2460, presenting strong evidence against the relationship.  

Luxury vehicles, by definition, are limited in number and therefore weigh the regression in favor 

of correlation.  A comforting observation is MSRP exhibits a negative relationship, indicating 

that if the regression were significant a luxury car is less efficient than a more affordable vehicle. 

The electrical efficiency regression results can be related to AER and produce an empirical 

model through substitution (Eq. 21 – 22).  This transformation is preferred over a traditional 

regression (i.e. y = b0 + b1x1 + b2x2 + b3x1x2), as it does not assume erroneous relationships (i.e. 

with the traditional model, a non-zero b0 would suggest an electric vehicle can travel a constant 

distance without the aid of a battery pack). 

𝐴𝐸𝑅

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
= 𝑏1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏2         (Eq. 21) 

𝐴𝐸𝑅 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑏1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏2)        (Eq. 22) 

The proposed empirical model was characterized using the normalized vehicle battery capacities 

(Table 11 & Table 12).  There is a high correlation between the model predicted and production 

vehicle values. 
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Table 11: Model analysis of variance (ANOVA) table 

Variable 
Degrees of Freedom Sum of Squares Mean Square F Test Significance 

df SS MS F P 

Regression 2 257,030 128,515 2,176 2x10-31 

Residual 29 1,712 59   

Total 31 258,743    

 

Table 12: Model regression coefficients 

Variable Coefficient Std. Error t-Stat P-Value 

Capacity (kWh) 3.141306 0.101947 30.81299 1x10-23 

Wt.*Capacity 

(lbs.*kWh) 
0.000590 0.000823 0.71665 0.479319 

 

The overall regression (p = 2x10-31) and battery capacity coefficient (p = 1x10-23) are highly 

significant.  The weight*capacity term displays a p-value of 0.479, indicating that although curb 

weight is a strong indicator of electrical efficiency, it is insignificant when relative to battery 

capacity in estimating electrified vehicle all-electric range.  Comparing the model R2 with the 

capacity-only R2 statistic (0.9717), it is expected that the weight term would provide little 

significance (Table 13). 

Table 13: Capacity & weight model vs. capacity only comparative regression statistics 

Statistic Model Value Capacity-Only 

R2 0.9967 0.9717 

Adjusted R2 0.9587 0.9717 

 

The model predicted all-electric ranges are plotted against the reported production vehicle values 

in Figure 76.  There is consistent agreement between the predicted and produced values. An 

enlarged version of Figure 76, which includes vehicle names, is included in Appendix E – AER 

for 2014 Vehicles. 

 

Figure 76: Model predictions vs. produced vehicle all-electric ranges 
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5 Discussion & Impact on Vehicle Design 
It is of interest to determine the significance of modeling the hysteresis effect for the purposes of 

vehicle design.  In this work it is assumed that the Thevenin model results are representative of 

cell behavior which implies that any difference between the simulated model results can be 

attributed to the hysteresis effect.  Observations which validate these assumptions can be found 

in Model Validation and Comparison, s. 2.3. 

The Thevenin model is non-ideal, and there is prediction error related to current shifts.  

Additionally, as the frequency of current shifts increases, the Thevenin model has been shown to 

be unable to capture all hysteresis effects (Model Validation and Comparison, s. 2.3).  It has been 

shown that the accuracy of the Thevenin model can be improved by adding additional R|C 

elements in series by He et al. who compared many equivalent circuit models for SOC estimation 

[53].  An excerpt of He et al.’s work, which relates average prediction error and model relative 

improvement for each successive R|C element, is provided in Table 14. 

Table 14: Relative improvement of R|C elements 

# R|C Elements Model Name 
Avg. ∆V 

(measured – modeled) 

Relative Improvement  

(
𝑹|𝑪#∆𝐕−𝑹|𝑪#+𝟏∆𝐕

𝑹|𝑪#∆𝐕
) 

0 Rint 0.3945 - 

1 Thevenin 0.0455 88.46% 

2 Dual Polarization 0.0429   5.71% 

 

While it is shown that while a single R|C element is a vast improvement to the Rint model, the 

effectiveness of successive R|C elements is greatly diminished.  Adding the first R|C element, or 

upgrading from the Rint to the Thevenin model, decreases voltage prediction error by 88.46%.  

However adding the second R|C element, or upgrading from the Thevenin to the Dual 

Polarization model, decreases voltage prediction error by only 5.71%.   

An inspection of the work by Zhang et al. [56], who compares R-(R|C)n equivalent circuit 

models in terms of accuracy and convergence time, suggests that it would be desirable to 

compare the two most similar models with the greatest prediction improvement.  Not only does 

this assist in the ability to fit equivalent circuit parameters, but isolates the model element that 

can be attributed with improvement if one is detected (i.e. the difference in the simulation results 

can be attributed to the R|C element). 

The Thevenin ECM is different than the Rint ECM results, indicating that the hysteresis effect 

does influence vehicle simulations (Simulation Results, s. 3).  Furthermore, it does not influence 

simulations uniformly.  In a smooth, low acceleration, drive cycle (UDDS) the impact was small 

– with a difference in electrical consumption of 2.05 Wh mi-1.  In a sustained power demand or 

aggressive drive cycle (HWFET or US06) the impact was large – with a difference in electrical 

consumption 31.13 – 34.61 Wh mi-1.  Therefore the importance of utilizing more advanced, 
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hysteresis inclusive, battery models is dependent on the complexity and magnitude of current 

demands. 

A factor that is not easily shown by the simulation results is that the importance of modeling the 

hysteresis effect is also SOC dependent.  As the cell discharges, the magnitude of hysteresis 

gradually increases as shown in Figure 77.  This trend can also be seen in Figure 56 (s. 2.2.3) 

which indicates the Thevenin hysteresis modeling components, resistor R2 and capacitor C1, have 

increased influence at lower SOCs.  This has increased significance for plug-in hybrid vehicles 

which operate at low SOCs for extended periods during charge sustaining operation.  It may also 

be applicable to vehicle controllers and related coulomb counting operations. 

 

Figure 77: Commercial LiFePO4 battery HPPC voltage response at different SOCs 

Applying the EPA fuel economy weighting of the UDDS and HWFET drive cycles yields an 

average electrical consumption increase of 15.136 Wh mi-1.  In the context of the average 2014 

electrified vehicle electrical efficiency of 3.225 mi kWh-1 (Effect of Electrical Losses on Range, 

s. 4), a decrease in electrical consumption of 15.136 Wh mi-1 during the simulation stage would 

estimate an electrical efficiency of 3.391 mi kWh-1, or a 5.1% increase from the actual value!   

The importance of using the Thevenin over the Rint model depends on the drive cycle.  For “stop 

and go” traffic with low current demands, the Rint model provides comparable results.  

However, for high acceleration traffic or high current demands, the Thevenin model provides 

increased accuracy.  The Rint model is estimated to over-predict all-electric range by over 5% 

when compared to the Thevenin model in the context of 2014 electrified vehicles. 
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6 Conclusions 
The Thevenin equivalent circuit model was imported into Autonomie vehicle modeling software.  

It was used, in combination with the Rint model, to estimate the impact of the lithium-ion battery 

hysteresis effect on simulated vehicles.  The creation of an Autonomie based Thevenin 

equivalent circuit model was completed in three independent processes: collection of commercial 

battery data, equivalent circuit model characterization, and software import. 

The UDDS and US06 current profiles were generated as a byproduct of previous work, which 

modified Autonomie Rint model initialization file parameters to estimate the effect of 

temperature on electric vehicle range [95].  A commercial lithium iron phosphate (LFP) battery 

was cycled with these simulated drive cycle current profiles and a scaled hybrid pulse power 

characterization (HPPC) test profile (Experimental, s. 2). 

The Rint and Thevenin models were characterized using the scaled HPPC test profile using a 

generalized reduced gradient (GRG) algorithm.  Trapezoidal approximation for small time steps 

was used for the integral term within the Thevenin model to relate the current across the resistor 

and capacitor elements to the total current (Thevenin Model, s. 1.3.1).  The “sum of absolute 

differences” method was used in place of the popular “sum of squares” method to decrease 

model prediction error (Circuit Parameter Characterization, s. 2.2.2).   

The stepwise Thevenin model was then imported into Autonomie vehicle modeling software 

(Appendix B – Thevenin Simulink Model). Reference files were created that enabled Autonomie 

to operate the new model, previously unavailable within the workspace.  Initialization files, 

representative of the characterized parameters, were then created for both the Rint and Thevenin 

equivalent circuit models (Appendix C – Rint Autonomie Code & Appendix B – Thevenin 

Simulink Model).  This fulfilled all requirements to model the hysteresis effect within 

Autonomie software. 

Simulations were performed using a generic battery electric vehicle (Appendix A – Simulated 

BEV Powertrain).  The only modification to the vehicle defaults were the aforementioned 

changes to the energy storage system (ess) to utilize the Rint and Thevenin models and related 

initialization files.  This composed two otherwise identical vehicles with different battery 

models.  These vehicles were used to complete simulation trials of the UDDS, HWFET, and 

US06 drive cycles (Simulation Results, s. 3) 
The Thevenin model predicts an increased electrical consumption of 2.05, 31.13, and 34.61 Wh 

mi-1 across the simulated drive cycles UDDS, HWFET, and US06 respectively.  Additional 

analysis was performed to relate the effects of increased electrical consumption to modern 

electrified vehicles (Effect of Electrical Losses on Range, s. 4). The increase in electrical 

consumption is relative to the complexity of the drive cycle current demand, and directly related 

to the modeled hysteresis effect.  Accurate modeling of the hysteresis effect is of interest to 
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automotive engineers where high current profiles are present, such as high way or aggressive 

driving, or high accuracy is required, such as coulomb counting or SOC estimation (Discussion 

& Impact on Vehicle Design, s. 5) 
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7 Recommendations 
The following recommendations are suggested with reference to future researchers or innovators 

who wish to continue this work: expand characterized Thevenin model parameters to include a 

range of temperatures, characterize model parameters with drive cycle current profiles in place of 

the hybrid pulse power characterization (HPPC) test, and to implement more advanced 

equivalent circuit models into the Autonomie workspace. 

Expanding the characterized Thevenin parameters is the easiest of these tasks, as no 

modifications to the source code are required.  Although this work does not consider thermal 

effects and assumes a constant temperature of 23 °C, indexes were written with consideration to 

future work and it will be relatively simple to add thermal indexing to the existing model.  As 

temperature has been shown to influence electrical consumption, it would be an interesting study 

to determine the effects of temperature on vehicle range with reference to hysteresis effects [95]. 

By characterizing model parameters with drive cycle current profiles instead of the HPPC test, 

additional insight may be gained regarding model nature.  For example, if the Thevenin and Rint 

model parameters were characterized using a current profile representative of the HWFET drive 

cycle instead of the HPPC test, it would be expected that their simulation results would align 

more closely.  Furthermore, it would be an interesting study to determine how closely the HPPC 

derived parameters align with the drive cycle current derived parameters.  This analysis was 

originally intended to be included in this work, but was omitted due to complications regarding 

the SOC parsing of drive cycle data.  It is strongly recommended that the drive cycle trials be 

collected in 10% SOC increments rather than full discharge cycles.  The latter introduces non-

uniform current profiles for each SOC interval, and renders parameter characterization 

impossible. 

While the hysteresis effect was shown to be significant in vehicle simulation by use of the 

Thevenin model in this work, the extent to which it is significant was not.  More complex battery 

models which include additional resistor-capacitor (R|C) elements have been shown to be better 

estimators of voltage than the Thevenin model (Discussion & Impact on Vehicle Design, s. 

5).While it is expected that the increase in model accuracy will have limited influence on 

simulation results based on prior work [53] [56], this has not been proven within the context of a 

comprehensive vehicle model.   
A recommendation that is related to, but tangential, to this work is to incorporate electrochemical 

impedance spectroscopy (EIS) into the characterization of model parameters alongside the 

hybrid pulse power characterization (HPPC) test.  While the HPPC test is sufficient for relatively 

simple models, such as the Rint and Thevenin models, it becomes difficult to distinguish 

different electrochemical phenomena.  With EIS, it is possible to isolate and identify these 

phenomena with alternating current, but it becomes difficult to infer the extent they influence a 

voltage response under direct current applications [58].  Therefore each method provides 
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validation for the shortcomings of the other: alternating current (EIS) provides insight to 

phenomena otherwise invisible to HPPC, and direct current (HPPC) provides justification 

regarding the existence of the phenomena and their significance.  As low frequency alternating 

current approximates direct current, it is suspected that witnessed phenomena at low frequencies 

pose greater significance relative to high frequencies [101]. 
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Appendix A – Simulated BEV Powertrain 
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P. Train Element Component File Type File Name 

Energy Storage Controller Model ess_ctrl_Thevenin_map 

   ess_ctrl_generic_map 

 Plant Model Thevenin Model - WWS 

   Battery Model with Open Circuit Voltage, 

Charge and Discharge resistance 

  Initialization  ess_plant_li_LFP_A123_UWAFT.m 

  Pre-Processing  ess_plant_preproc.m 

  Post Processing ess_postprocess,  

ess_state_scalar_postprocess, 

ess_state_signal_postprocess,  

ess_summary_postprocess 

    

Motor Controller Configuration ctrl_with_cstr_cmd 

 Constraint B. Model mot_ctrl_cstr_map_Pelec_funTW_volt_in 

 Command B. Model mot_ctrl_cmd_map_Pelec_funTW_volt_in_no_trs 

 Plant Model mot_plant_map_Pelec_funTW_volt_in 

  Initialization  mot_plant_id_62_62.m 

  Scaling  mot_plant_pwr_scale.m 

  Pre-Processing  mot_plant_preproc_init.m, 

mot_plant_preproc.m 

  Post Processing  mot_postprocess, 

mot_state_scalar_postprocess, 

mot_state_signal_postprocess, 

mot_summary_postprocess 

    

Torque Coupling Plant Model tc_plant_map_trqloss_funTW 

  Initialization  tc_plant_16.m 

  Post Processing  tc_postprocess, 

tc_state_scalar_postprocess, 

tc_state_signal_postprocess, 

tc_summary_postprocess 

    

Final Drive Plant Model fd_plant_map_trqloss_funTW 

  Initialization  fd_plant_444_accord.m 

  Post Processing  fd_postprocess,  

fd_state_scalar_postprocess, 

fd_state_signal_postprocess, 

fd_summary_postprocess 

    

Wheel Controller Model whl_ctrl_regen 

 Plant Model Wheel Plant 

  Initialization  whl_plant_0317_P195_65_R15.m 

  Pre-Processing  whl_plant_preproc.m 

  Post Processing  whl_postprocess, 

whl_state_scalar_postprocess, 

whl_state_signal_postprocess, 

whl_summary_postprocess 

    

Chassis Plant Model chas_plant_veh_equation_losses 

  Initialization  chas_plant_990_225_03_midsize.m 

  Post Processing  chas_postprocess, 

chas_state_scalar_equation_losses_postprocess, 

chas_state_signal_postprocess, 

chas_summary_postprocess 

    

Power Converter Plant Model Power Converter with voltage input and voltage 

output and constant efficiency 

  Initialization  pc_plant_095_12.m 

  Post Processing  pc_post_process,  

pc_state_scalar_postprocess, 

pc_state_signal_postprocess, 

pc_summary_post_process  

    

Elec. Accessory Plant Model accelec_plant_const_pwrloss_volt_in 

  Initialization  accelec_plant_200.m 

  Post Processing  accelec_postprocess, 

accelec_state_scalar_postprocess, 

accelec_state_signal_postprocess, 

accelec_summary_postprocess 
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Appendix B – Thevenin Simulink Model 
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Appendix C – Rint Autonomie Code 
%% File description 

% Name:  ess_plant_li_LFP_A123_UWAFT   

% Author: William Scott          

% Model:  ess_plant_generic_map (Rint)     

% Technology: Li-ion         

% Vehicle Type:Light, Heavy 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% Disclaimer %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%The following code is truncated to include the fitted parameters only. 

%The truncated code is composed of initialization file defaults. 

%Truncation was performed to protect the integrity of the source and to preserve space. 

 

ess.plant.init.design_num_module_parallel  = 1; 

ess.plant.init.soc_init                    = 0.7;    

ess.plant.init.element_per_module          = 96;    

ess.plant.init.num_module                 = 1;  

ess.plant.init.design_num_cell_series  = ess.plant.init.num_module * 

ess.plant.init.element_per_module; 

ess.plant.init.volt_nom                   = 3.20; 

ess.plant.init.volt_min         = 2.00; 

ess.plant.init.volt_max   = 3.65; 

ess.plant.init.packaging_factor        = 1.25; 

ess.plant.init.mass_module = 

198/ess.plant.init.packaging_factor/(ess.plant.init.

num_module*ess.plant.init.design_num_module_parallel

);          

ess.plant.init.mass_cell  = 

ess.plant.init.mass_module/ess.plant.init.element_pe

r_module; 

ess.plant.init.soc_min    = 0.1; 

ess.plant.init.soc_max    = 0.9; 

 

% LOSS AND EFFICIENCY parameters    

ess.plant.init.soc_index            = [0 : .1 : 1];  

ess.plant.init.temp_index              = [20 25 30];    

ess.plant.init.cap_max.idx1_temp  = ess.plant.init.temp_index;  

ess.plant.init.cap_max.map             = [15 15 15]; 

ess.plant.init.eff_coulomb.idx1_temp   = ess.plant.init.temp_index; 

ess.plant.init.eff_coulomb.map         = [1 1 1]; 

 

% cell's open-circuit (a.k.a. no-load) voltage, indexed by ess.plant.init.soc_index 

ess.plant.init.voc.idx1_temp    = ess.plant.init.temp_index; 

ess.plant.init.voc.idx2_soc    = ess.plant.init.soc_index; 

ess.plant.init.voc.map    =  

[3.041 3.207 3.243 3.274 3.293 3.294 3.2965 3.314 3.336 3.338 3.347;                                   

 3.041 3.207 3.243 3.274 3.293 3.294 3.2965 3.314 3.336 3.338 3.347; 

 3.041 3.207 3.243 3.274 3.293 3.294 3.2965 3.314 3.336 3.338 3.347]; % V 

 

% cell's resistance to being discharged, indexed by ess.plant.init.soc_index 

ess.plant.init.rint_dis.idx1_temp   = ess.plant.init.temp_index; 

ess.plant.init.rint_dis.idx2_soc   = ess.plant.init.soc_index; 

ess.plant.init.rint_dis.map   =  

[0.00622 0.00411 0.00373 0.00358 0.00340 0.00335 0.00322 0.00312 0.00301 0.00291 0.00285; 

 0.00622 0.00411 0.00373 0.00358 0.00340 0.00335 0.00322 0.00312 0.00301 0.00291 0.00285; 

 0.00622 0.00411 0.00373 0.00358 0.00340 0.00335 0.00322 0.00312 0.00301 0.00291 0.00285]; % ohm 

     

% cell's resistance to being charged, indexed by ess.plant.init.soc_index 

ess.plant.init.rint_chg.idx1_temp   = ess.plant.init.temp_index; 

ess.plant.init.rint_chg.idx2_soc   = ess.plant.init.soc_index; 

ess.plant.init.rint_chg.map   =  

[0.00213 0.00123 0.00101 0.00090 0.00093 0.00097 0.00107 0.00106 0.00115 0.00128 0.00135; 

 0.00213 0.00123 0.00101 0.00090 0.00093 0.00097 0.00107 0.00106 0.00115 0.00128 0.00135; 

 0.00213 0.00123 0.00101 0.00090 0.00093 0.00097 0.00107 0.00106 0.00115 0.00128 0.00135]; % ohm 
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Appendix D – Thevenin Autonomie Code 
%% File description 

% Name:  ess_plant_li_LFP_A123_UWAFT     

% Author:  William Scott                             

% Model:  Thevenin – WWS (Thevenin) 

% Technology: Li-ion         

% Vehicle Type:Light, Heavy 

 

%% File content 

ess.plant.init.design_num_module_parallel  = 1; 

ess.plant.init.soc_init                    = 0.7;    

ess.plant.init.element_per_module          = 96;    

ess.plant.init.num_module                 = 1;  

ess.plant.init.design_num_cell_series  = ess.plant.init.num_module * 

ess.plant.init.element_per_module; 

ess.plant.init.volt_nom                   = 3.20; 

ess.plant.init.volt_min         = 2.00; 

ess.plant.init.volt_max   = 3.65; 

ess.plant.init.packaging_factor        = 1.25; 

ess.plant.init.mass_module = 

198/ess.plant.init.packaging_factor/(ess.plant.init.

num_module*ess.plant.init.design_num_module_parallel

);          

ess.plant.init.mass_cell  = 

ess.plant.init.mass_module/ess.plant.init.element_pe

r_module; 

ess.plant.init.soc_min    = 0.1; 

ess.plant.init.soc_max    = 0.9; 

 

% LOSS AND EFFICIENCY parameters    

ess.plant.init.soc_index                   = [0 : .1 : 1];   

ess.plant.init.temp_index                  = [20 25 30]; 

ess.plant.init.cap_max.idx1_temp   = ess.plant.init.temp_index;  

ess.plant.init.cap_max.map                = [15 15 15]; 

ess.plant.init.eff_coulomb.idx1_temp   = ess.plant.init.temp_index; 

ess.plant.init.eff_coulomb.map             = [1 1 1]; 

 

% cell's open-circuit (a.k.a. no-load) voltage, indexed by ess.plant.init.soc_index 

ess.plant.init.voc.idx1_temp    = ess.plant.init.temp_index; 

ess.plant.init.voc.idx2_soc    = ess.plant.init.soc_index; 

ess.plant.init.voc.map    =          

[3.041 3.207 3.243 3.274 3.293 3.294 3.2965 3.314 3.336 3.338 3.347; 

 3.041 3.207 3.243 3.274 3.293 3.294 3.2965 3.314 3.336 3.338 3.347; 

 3.041 3.207 3.243 3.274 3.293 3.294 3.2965 3.314 3.336 3.338 3.347]; % V 

 

% cell's R1, indexed by ess.plant.init.soc_index 

ess.plant.init.r1.idx1_temp    = ess.plant.init.temp_index; 

ess.plant.init.r1.idx2_soc    = ess.plant.init.soc_index; 

ess.plant.init.r1.map    =           

[0.00321 0.00276 0.00271 0.00268 0.00272 0.00249 0.00249 0.00250 0.00249 0.00240 0.00241; 

 0.00321 0.00276 0.00271 0.00268 0.00272 0.00249 0.00249 0.00250 0.00249 0.00240 0.00241; 

 0.00321 0.00276 0.00271 0.00268 0.00272 0.00249 0.00249 0.00250 0.00249 0.00240 0.00241]; % ohm 

    

% cell's R2, indexed by ess.plant.init.soc_index 

ess.plant.init.r2.idx1_temp    = ess.plant.init.temp_index; 

ess.plant.init.r2.idx2_soc    = ess.plant.init.soc_index; 

ess.plant.init.r2.map    =           

[0.02176 0.00426 0.00517 0.00519 0.00541 0.00196 0.00197 0.00285 0.00289 0.00208 0.00232; 

 0.02176 0.00426 0.00517 0.00519 0.00541 0.00196 0.00197 0.00285 0.00289 0.00208 0.00232; 

 0.02176 0.00426 0.00517 0.00519 0.00541 0.00196 0.00197 0.00285 0.00289 0.00208 0.00232]; % ohm 

                              

% cell's C1, indexed by ess.plant.init.soc_index 

ess.plant.init.c1.idx1_temp    = ess.plant.init.temp_index; 

ess.plant.init.c1.idx2_soc    = ess.plant.init.soc_index; 

ess.plant.init.c1.map    =           

[4680.02 9620.50 13733.3 15899.6 17166.3 18002.1 18223.4 18580.8 18469.8 18218.1 17997.0; 

 4680.02 9620.50 13733.3 15899.6 17166.3 18002.1 18223.4 18580.8 18469.8 18218.1 17997.0;                                  

 4680.02 9620.50 13733.3 15899.6 17166.3 18002.1 18223.4 18580.8 18469.8 18218.1 17997.0987]; % F  
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% Max current and power when charging/discharging 

ess.plant.init.curr_chg_max       = -max((ess.plant.init.volt_max- 

ess.plant.init.voc.map)./ess.plant.init.r1.map); 

ess.plant.init.curr_dis_max       = max((ess.plant.init.voc.map-

ess.plant.init.volt_min)./ess.plant.init.r1.map); 

 

%check the ess.plant.init.pwr_chg & ess.plant.init.pwr_dis because they're a vector  

ess.plant.init.pwr_chg.idx1_soc        = ess.plant.init.soc_index;   

ess.plant.init.pwr_dis.idx1_soc      = ess.plant.init.soc_index; 

ess.plant.init.pwr_chg.map             = -max((ess.plant.init.volt_max-

ess.plant.init.voc.map).*ess.plant.init.volt_max./es

s.plant.init.r1.map);%per cell 

ess.plant.init.pwr_dis.map = max((ess.plant.init.voc.map-

ess.plant.init.volt_min).*ess.plant.init.volt_min./e

ss.plant.init.r1.map);%per cell 

ess.plant.init.pwr_chg.map  = 

ess.plant.init.pwr_chg.map.*double(ess.plant.init.so

c_index <= ess.plant.init.soc_max); 

ess.plant.init.pwr_dis.map             = ess.plant.init.pwr_dis.map.* 

double(ess.plant.init.soc_index >= 

ess.plant.init.soc_min); 

ess.plant.init.pwr_chg_at_min_soc     = 

interp1(ess.plant.init.soc_index,ess.plant.init.pwr_

chg.map,ess.plant.init.soc_min); % (0->1) Power at 

which battery is charged when SOC is at its minimum 

ess.plant.init.pwr_dis_at_max_soc      = 

interp1(ess.plant.init.soc_index,ess.plant.init.pwr_

dis.map,ess.plant.init.soc_max); % (0->1) Power at 

which battery is discharged when SOC is at its 

maximum 

ess.plant.init.pwr_chg_max             = -max(max((ess.plant.init.volt_max-

ess.plant.init.voc.map).*ess.plant.init.volt_max./es

s.plant.init.r1.map));%per cell 

ess.plant.init.pwr_dis_max             = max(max((ess.plant.init.voc.map-

ess.plant.init.volt_min).*ess.plant.init.volt_min./e

ss.plant.init.r1.map));%per cell 

 

% battery thermal model  

ess.plant.init.therm_on               = 0; % 0=no ess thermal calculations, 1=do calc's 

ess.plant.init.therm_cp_module  = 521;                             

ess.plant.init.temp_reg               = 35;                         

ess.plant.init.dia    = 0.0322; 

ess.plant.init.length    = 0.374;                                     

ess.plant.init.area_module   = pi*ess.plant.init.dia*ess.plant.init.length; 

ess.plant.init.flow_air_mod           = 0.01;               

ess.plant.init.therm_flow_area_module  = 2*0.00317*ess.plant.init.length;       

ess.plant.init.case_thk                 = .1/1000;                 

ess.plant.init.mod_case_th_cond          = 0.20;                 

ess.plant.init.speed_air = 

ess.plant.init.flow_air_mod/(1.16*ess.plant.init.the

rm_flow_area_module); % m/s  ave velocity of 

cooling air 

ess.plant.init.therm_air_htcoef         = 30*(ess.plant.init.speed_air/5)^0.8;         

ess.plant.init.therm_res_on              = 

((1/ess.plant.init.therm_air_htcoef)+(ess.plant.init

.case_thk/ess.plant.init.mod_case_th_cond))/ess.plan

t.init.area_module; 

ess.plant.init.therm_res_off = 

((1/4)+(ess.plant.init.case_thk/ess.plant.init.mod_c

ase_th_cond))/ess.plant.init.area_module;% K/W  tot 

thermal res key off (cold soak) 

ess.plant.init.flow_air_mod              = max(ess.plant.init.flow_air_mod,0.001); 

ess.plant.init.therm_res_on             = 

min(ess.plant.init.therm_res_on,ess.plant.init.therm

_res_off); 

 

% Battery density 

ess.plant.init.pwr_dis_nom       = max((ess.plant.init.volt_nom-

ess.plant.init.volt_min).*ess.plant.init.volt_min./e

ss.plant.init.r1.map);%per cell 
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ess.plant.init.pwr_density        = 

ess.plant.init.pwr_dis_nom/ess.plant.init.mass_cell; 

ess.plant.init.energy_density  = 

(ess.plant.init.volt_nom*ess.plant.init.cap_max.map)

/ess.plant.init.mass_cell; 

 

%Values should only be used to calculate the number of cells 

ess.plant.init.num_cell_series   = ess.plant.init.design_num_cell_series; 

ess.plant.init.num_module_parallel  = ess.plant.init.design_num_module_parallel; 

ess.plant.init.num_cell  = 

ess.plant.init.num_module_parallel.*ess.plant.init.n

um_cell_series; 

ess.plant.init.energy  = 

max(ess.plant.init.cap_max.map).*ess.plant.init.volt

_nom; 
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Appendix E – AER for 2014 Vehicles 
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Appendix F – HPPC Sample Data & Fit 
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Characterize equivalent circuit 

parameters by minimizing objective 

function using GRG nonlinear solver 
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Appendix G – Model Validation 
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Appendix H – Related Contributions 
Comparison of Equivalent Circuit Model Parameters Derived from AC and DC Sources 

64th Canadian Chemical Engineering Conference – October 22, 2014 

William Scott 

Equivalent Circuit Model (ECM) parameters can be derived through two independent methods, 

AC and DC current.  Direct current, often by Hybrid Pulse Power Characterization (HPPC) test, 

is often cited by industry.  Alternating current, often by Electrochemical Impedance 

Spectrography (EIS), is the preferred method for academia.  This presentation discussed the 

shortcomings and assumptions of both techniques [101]. 

Thermal Behavior of Two Commercial Li-ion Batteries for Plug-in Hybrid Electric Vehicles 

SAE World Congress – April 9, 2014 

William Scott 

Detailed thermal modeling of Li-ion batteries is time and resource intensive.  However, it is 

possible to accurately estimate the temperature of pouch cells with heat conductive aluminum 

casing by a simple linear regression model.  This presentation details the accuracy of a regression 

based modeling approach of two independent lithium-ion batteries within a test rig enclosure 

simulating the plug-in hybrid vehicle operating conditions [112]. 

Internal Resistance Optimization Utilizing “Just in Time” Control 

SAE International – April 14, 2014 

Patrick Ellsworth, William Scott, Michael Fowler, Roydon Fraser, Ben Gaffney, Daniel VanLanen 

Inspection of cell internal resistance (Rint) derived by the hybrid pulse power characterization 

(HPPC) tests indicates that Rint is a function of relative capacity (state of charge, or SOC), thus 

some SOC ranges are more efficient than others. Therefore energy losses can be minimized by 

placing charge sustaining operation in a more efficient SOC range. This creates three operational 

stages; the initial charge depleting stage to an efficient SOC, a charge sustaining stage until a 

recharge station is within reach, and a final charge depleting stage until arrival. 

When coupled with a known drive distance, this three segment Internal Resistance Based (IRB) 

control strategy increases the extended range electric vehicle (EREV) net battery efficiency from 

96.8 to 97.3 % with an associated 14 % decrease in energy losses across the urban domestic 

drive schedule. Indirect benefits include an increased active SOC range, decreased urban 

emissions, and decreased waste heat generation, meeting the goals of Advanced Vehicle 

Technology Competitions [113].  

Thermal Behavior of Two Commercial Li-Ion Batteries for Plug-in Hybrid Electric Vehicles 

SAE International – April 1, 2014 

Ehsan Samadani, Leonardo Gimenez Paez, William Scott, Siamak Farhad, Michael Fowler, Roydon Fraser 

In electrified vehicle applications, the heat generated of lithium-ion (Li-ion) cells may 

significantly affect the vehicle range and state of health (SOH) of the pack. Therefore, a major 
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design task is creation of a battery thermal management system with suitable control and cooling 

strategies. To this end, the thermal behavior of Li-ion cells at various temperatures and operating 

conditions should be quantified. In this paper, two different commercial pouch cells for plug-in 

hybrid electric vehicles (PHEVs) are studied through comprehensive thermal performance tests. 

This study employs a fractional factorial design of experiments to reduce the number of tests 

required to characterize the behavior of fresh cells while minimizing the effects of ageing. At 

each test point, the effects of ambient temperature and charge/discharge rate on several types of 

cell efficiencies and surface heat generation is evaluated. A statistical thermal ramp rate model is 

suggested which enables fast and accurate determination of cell surface temperature and heat 

generation where the vehicle is started from cold or warm environments at a range of constant 

currents over the entire state of charge (SOC) range [114]. 

Empirical Modeling of Lithium-ion Batteries Based on Electrochemical Impedance Spectroscopy Tests 

Electrochemica Acta – April 1, 2015 

Ehsan Samadani, Siamak Farhad, William Scott, Mehrdad Mastali, Leonardo Paez, Michael Fowler, Roydon Fraser 

An empirical model for commercial lithium-ion batteries is developed based on electrochemical 

impedance spectroscopy (EIS) tests. An equivalent circuit is established according to EIS test 

observations at various battery states of charge and temperatures. A Laplace transfer time based 

model is developed based on the circuit which can predict the battery operating output potential 

difference in battery electric and plug-in hybrid vehicles at various operating conditions. This 

model demonstrates up to 6% improvement compared to simple resistance and Thevenin models 

and is suitable for modeling and on-board controller purposes. Results also show that this model 

can be used to predict the battery internal resistance obtained from hybrid pulse power 

characterization (HPPC) tests to within 20 percent, making it suitable for low to medium fidelity 

powertrain design purposes. In total, this simple battery model can be employed as a real-time 

model in electrified vehicle battery management systems [58].  


