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Abstract

In recent years, superconducting circuits have come to the forefront of certain
areas of physics. They have shown to be particularly useful in research related
to quantum computing and information, as well as fundamental physics. This is
largely because they provide a very flexible way to implement complicated quantum
systems that can be relatively easily manipulated and measured. In this thesis we
look at three different applications where superconducting circuits play a central
role, and explore their classical and quantum dynamics and behavior.

The first part consists of studying the Casimir [20] and Casimir—Polder like [19]
effects. These effects have been discovered in 1948 and show that under certain
conditions, vacuum field fluctuations can mediate forces between neutral objects.
In our work, we analyze analogous behavior in a superconducting system which
consists of a stripline cavity with a DC-SQUID on one of its boundaries, as well as,
in a Casimir—Polder case, a charge qubit coupled to the field of the cavity. Instead
of a force, in the system considered here, we show that the Casimir and Casimir—
Polder like effects are mediated through a circulating current around the loop of
the boundary DC-SQUID. Using detailed analysis, we examine how the values of
these currents change as we vary different physical circuit parameters. We show
that for the set of physical parameters that can be easily obtained experimentally,
the Casimir and Casimir-Polder currents can be of the order of 1078 A and 107 A
respectively.

In the second part, we theoretically model an experiment which was performed
by Britton Plourde’s group at Syracuse University, and which studied the transient
dynamics of a nonlinear superconducting oscillator, based on a capacitively shunted
DC-SQUID. Such DC-SQUID oscillators are used in many areas of physics and en-
gineering, for example, as building blocks of amplifiers or qubits, qubit couplers,
or as sensitive magnetic field detectors. In many of these situations, their steady
state behavior is often considered, while in the experiment performed at Syracuse,
of specific interest, was the response of a DC-SQUID oscillator to a short radiation
that only briefly excited the system. In this thesis, we simulate this response at the
experimental temperature, by numerically solving a set of classical stochastic dif-
ferential equations that mimic the behavior of the circuit. This is done for different
settings of the flux that is threaded through the DC-SQUID as well as different
input pulse amplitudes. Furthermore, we briefly outline just how these kinds of
brief excitations could be useful when applied in flux measurement protocols. We
find that our simulations show good agreement with the experimentally obtained
data.

The final part considered in this thesis, looks at the dynamics of a qubit coupled
to a measuring probe, which is modeled as a harmonic oscillator. An example super-
conducting circuit, that could be used to implement such a setup, consists of a flux
qubit inductively coupled to a DC-SQUID. This measurement scenario has already
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been explored in [IT1], but there, the authors only consider very short interaction
times between the DC-SQUID and the qubit. Here, in contrast, we concentrate
our efforts on studying the evolution of qubit as the measurement takes place, by
solving the corresponding Lindblad master equation, but over longer measurement
times. This is done by calculating the measurement induced dephasing rate of the
qubit, as well as, discussing its sometimes present effective relaxation, in regimes
where the measurement is considered to not be quantum non-demolition (QND).
Finally, we briefly explore how well a potentially complicated evolution of the qubit
can be approximated as a very simple Kraus map.
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Chapter

Introduction

1.1 Motivation

The 20th century saw great changes in our understanding of the world around us,
in particular from the point of view of physics. One key area that has had a tremen-
dous impact, not just on our state of knowledge, but also on our everyday lives, has
been the discovery of quantum mechanics. Within the last few decades we have
started to learn not just how to observe the quantum behavior of nature, but how
to control it as well. One subfield of physics where this ability to control quantum
systems has become very useful is quantum computation. Quantum computers,
if ever built on a large scale, could potentially revolutionize how many everyday
things are currently done. They could factor numbers [113], search [55] databases
and even simulate physical systems [39] 115], all much more efficiently than their
classical counterparts. While many of these things are possible in theory, build-
ing a large scale quantum computer is however, a formidable challenge. There are
many physical systems that are potential candidates for implementation of quantum
computers and their key building blocks — qubits, ranging from nonlinear optics,
through NMR, to various proposals with atoms, and even more exotic systems such
as nitrogen—vacancy centers in diamonds. Another very promising system that has
gained a lot of momentum over the last few years, consists of electrical circuits
operated while in their superconducting state. These superconducting circuits’
key strengths lie in the fact that they provide a lot of freedom to construct fairly
arbitrary quantum systems. Furthermore, a lot of our knowledge and expertise
obtained from building classical computers and integrated circuits, directly caries
over, which makes them relatively easy to fabricate in a lab. Recent proposals have
also shown that the flexibility of superconducting circuits can be very useful when
studying fundamental physics [94], [128], or when modeling quantum behavior of
certain mechanical systems [64] — another area of active research.



1.2. Outline

Our motivation in this thesis, is therefore, to simply push the envelope further
when it comes to our understanding of the usefulness of superconducting circuits
in areas related to both fundamental physics, as well as applications related to
quantum computation. We do this through three different projects, which consist
of: looking at Casimir and Casimir—Polder like effects in a superconducting circuit
system, studying a transient response of a superconducting oscillator and finally by
studying a measurement process of a superconducting qubit coupled to a meter.

1.2 Outline

This thesis is organized as follows. The second chapter briefly outlines a couple
of basic concepts of superconductivity, and uses them to introduce the Josephson
effect. It then looks at a few superconducting circuits that are used throughout the
rest of the thesis, and describes means by which one can arrive at a Hamiltonian of
any arbitrary circuit. The third chapter starts with a short historical overview of
the Casimir and Casimi—Polder effects, after which, it presents a detailed mathe-
matical analysis of analogous phenomena in a superconducting circuit system. The
fourth chapter looks theoretical modeling of an experiment conducted at the Syra-
cuse University by the group of Britton Plourde, that studied a transient response
of a highly nonlinear, superconducting oscillator made out of a DC-SQUID. The
fifth chapter explores the measurement dynamics of a qubit coupled to a harmonic
oscillator, which similarly is modeled as a superconducting circuit consisting of a
flux qubit inductively coupled to a DC-SQUID. Finally, the final, sixth chapter,
presents conclusions and outlines possible future research directions.



Chapter

Superconducting Circuits

In this chapter, we briefly review some of the key concepts behind superconductivity
and attempt to justify why it has been so useful in recent developments related
to studies in quantum information and fundamental physics. We also provide a
discussion of a few widely used superconducting circuits and outline their properties.
We then list steps that have to be taken in order to mathematically describe such
circuits, and in particular how to obtain their quantum Hamiltonians. Finally, we
go through an explicit example of using these steps to write down a Hamiltonian of a
simple circuit consisting of a charge qubit coupled to an LC-oscillator, which shares
some of the properties of a more complicated system that is studied in Chapter [3]

2.1 Superconductivity — Basics

Superconductivity was first discovered in 1911 by a Dutch physicist named Heike
Kamerlingh Onnes [99]. He noticed that when mercury is cooled below 4.2K, its
resistivity to current disappears. The implications of this discovery play a very
important role in many aspects of modern physics to this day. While high temper-
ature superconductivity is not fully yet understood, physicists over the last century
made tremendous progress in understanding it at low temperatures, and more im-
portantly perhaps, even harnessing its effects to do useful things, ranging from
building less noisy electric circuits, to building large superconducting magnets that
are not just responsible for super fast trains [127] but also play a central role in our
studies of the true nature of the universe [126]. In the next couple of paragraphs,
we will briefly point out a few key concepts, however, for a detailed review of su-
perconductivity we refer the reader to texts such as [28] and [I17], or in a context
of superconducting circuits, articles such as [T01].

A central breakthrough in the efforts of understanding superconductivity came
in 1957, when Bardeen, Cooper and Schrieffer [2], proposed a microscopic theory
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2.1. Superconductivity — Basics

(BCS theory), which argued that under some conditions, the scattering between the
atomic lattice vibrations (phonons) and electrons, introduces an effective attractive
force between the electrons, which can overcome their Coulomb repulsion. This
leads to some of them teaming up and forming Cooper pairs. These Cooper pairs
are no longer fermions and do not need to adhere to the Fermi’s exclusion principle.
Instead, they are bosons, and hence their behavior is governed by the Bose-Einstein
statistics, which in turn means that they can condense into the same many-body
state. We will shortly see that a phase of the wavefunction associated with such a
sate, can be useful when describing the macroscopic behavior of electrical circuits
made out of superconducting materials. A further consequence of the pairing of
electrons, and an important piece of the puzzle of conventional superconductivity
that came along with the BCS theory, is the presence of an energy band gap,
often labeled as Ag,p,. It is typically defined as the energy between the ground
state of a superconductor and the energy of the lowest quasiparticle excitation.
The value of Ay, is typically highest at low temperatures and vanishes as the
temperature approaches the critical temperature of a given superconductor. The
presence of Ag,, has a profound impact on how a superconductor interacts with
an electromagnetic field — in particular since the energy has to be conservedli]7
an incoming photon can only be absorbed by a superconductor if its energy is
greater than 2A,,, — the factor of 2 comes the destruction of a Cooper pair in
order to create a pair of quasiparticles. In aluminum for example, Ag,, is of the
order of 75 GHz, which sets a limit on the frequency of radiation that we can use
in superconducting circuit experiments before the dissipative effects need to be
considered (assuming the temperature is low enough). We will come back to this
very point in Chapter |3| when discussing an energy cutoff of electromagnetic field
modes in a stripline cavity. In the next section, we will discuss an effect that is of
great importance when using superconductors to design and implement electrical
circuits.

2.1.1 The Josephson Effect

In this section we discuss a very important effect that will form the basis of many
practical applications of superconducting circuits — the Josephson Effect. In 1962,
Josephson made a theoretical prediction that a zero—voltage supercurrent should
flow in a junction composed of two superconducting electrodes, separated by a thin
insulating barrier [67]. He further postulated that such a current can be written as

I = Iysin g, (2.1)

!'The momentum needs to also be conserved of course. For a discussion on the implication of
Agap On momentum conservation, see for example [28].



2.1. Superconductivity — Basics

where [ is called the critical current of the junction, and ¢ the difference of the
superconducting phases associated with the wavefunctions of the Cooper pairs in
the superconductors on either side of the barrier. Moreover, he continued, a volt-
age across such a junction should be proportional to time derivative of the phase
difference ¢. Mathematically one can express this as
Do |

V= 5P (2.2)
where ®, = 2.07 x 107> Wb is referred to as the magnetic flux quantum. Equa-
tions and are often called the Josephson relations. This effect, in its simplest
form, can be attributed to the Cooper pairs located on either side of the junction,
being able to tunnel across the barrier. The key reason why Josephson junctions
are so important is that as long as they are driven with currents smaller than
their critical current and operated at cold enough temperatures (i.e., below the
critical temperature of the material they are constructed from), they are both non—
dissipative, and nonlinear! The fact that they are non-dissipative helps preserve
their quantum effects, while the nonlinearity leads to an anharmonicity of the junc-
tion’s energy structure, which in turn is critical to various qubit designs (as it allows
for selective addressability of particular energy level transitions), as well as in other
applications (for example in the design of various amplifiers [21], 58] [131]).

The most widely used material when it comes to fabricating Josephson junc-
tions in applications related to quantum information and fundamental physics, is
aluminum. The fabrication is typically done by a process called shadow evapo-
ration which consists of depositing two layers of aluminum on a substrate made
out of sapphire or silicon, with an oxidation step in between [33]. Figure [2.1]a)
shows a picture of such aluminum Josephson junction as viewed from the top. The
image shows two “fingers” which form the electrodes. The thin oxide layer (not
directly visible) between these fingers provides the necessary barrier through which
the Cooper pair can tunnel. By varying the area of overlap of the two layers of
aluminum, as well as the thickness of the oxide layer, the effective capacitance of
the junction as well as its critical current can be tuned to desired valued?]

2.1.2 RCSJ Model

In order to mathematically model Josephon junctions, it is useful to use the RCSJ
model [I17]. In it, a junction is described as a capacitor in parallel with a resistor, as
well as an inductive element called the Josephson element. Figure (b) shows this
schematically. The Josephson element is drawn as a rotated cross and it is assumed
that the current through it satisfies Egs. and 2.2] As was already briefly stated

’Increasing the overlap increases the junction’s capacitance, but decreases the its critical
current [T17].



2.2. Common Circuits

Figure 2.1: (a) A picture of a fabricated aluminum Josephson junction, as seen
from the top. The sample was prepared, as well as imaged by Jean-Luc Orgiazzi
and is being used with permission. (b) A Josephson junction described by the
RCSJ model as a resistor in parallel with a capacitor and a Josephson element,
which satisfies the Josephson relations shown in Egs. and 2.2 (c) A simpler
representation of the schematic in (b) where the resistance is assumed large enough
to be neglected.

above, in many applications the junctions are considered non—dissipative, and hence
the resistance is often assumed to be large enough to be neglected. In those cases,
as simpler schematic shown in Fig. [2.1c) is often used.

2.2 Common Circuits

Within the last couple of decades, many different superconducting circuits have
been studied for various purposes, ranging from applications to quantum informa-
tion, through metrology, to even fundamental physics. In this section we review a
few very important constructs that often come up in these different applications,
and that we will come back to in other chapters of this thesis. In practice, most
superconducting circuits consist of standard inductors, capacitors, resistors, as well
as nonlinear Josephson junctions (which were discussed in Sec. . These elements
are then arranged in various configurations to produce certain desired behavior. We
should stress that the noisy behavior which often is attributed to the coupling of
a superconducting circuit to the outside world, can be modeled using resistors or
transmission lines, which in turn are often described using large (infinite) arrange-
ments of lossless capacitive and inductive elements, that effectively couple a given
system to a large (infinite) number of degrees freedom.

In Fig. we present four different examples of very commonly used circuits.
Figure (a) shows a schematic of a DC Superconducting QUantum Interference

6
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Figure 2.2: (a) A DC-SQUID consisting of two parallel Josephson junctions,
threaded by a magnetic flux ®,. In this diagram we neglect the geometric induc-
tance of the DC-SQUID loop, which is often done when the Josephson inductance
associated with the junctions is much bigger. (b) A charge qubit controlled by
a biasing voltage V. The computational basis of such a qubit are often defined
in terms of the number of extra Cooper pairs that occupy the “qubit island” —
the node between the Josephson junction and the capacitor C,. (c¢) A flux qubit
consisting of a loop interrupted by three Josephson junctions and biased with a
magnetic flux ®,. One of the Junctions is typically smaller than the other two,
which leads to a potential energy landscape that lets us define computational ba-
sis in terms of currents circulating in opposite directions around the loop. (d) A
schematic of a stripline cavity composed of an arrangement of capacitors cxy and
inductors lxg, with ¢ (I) representing the capacitance (inductance) per unit length,
and xg the length of a unit cell. The structure of the field inside such as system
depends on the boundary conditions that are chosen — in the drawing above the
cavity is considered “closed” at x = 0 and “open” at x = x;.




2.2. Common Circuits

Device (DC-SQUID). It consists of two parallel Josephson junctions forming a
loop. In this particular case, each junction is assumed to have a capacitance C)
and the critical current Iy. An external flux @, is threaded through the loop. In
the regime where the loop is small (i.e., when its geometric inductance L, is much
smaller than the inductance associated with each Josephson junction L jg, namely
when L, < Ljo = ®¢/2rly), a DC-SQUID can be approximately treated as a
single junction with a flux—controlled critical current. This fact has been explored
in various applications ranging from metrology to quantum computing. A DC-
SQUID will play a lead role throughout the rest of this thesis, and will be discussed
in more detail in Chapters [3] and [4] as well as Appendix D]

Figure [2.2b) shows a circuit of a charge qubit [I0, @1]. It consists of a single
Josephson junction with capacitance Cj, and critical current I, in series with a
capacitor labeled Cy; and a voltage source V,. When V, is biased appropriately,
the qubit states can be associated with the excess number of Cooper pairs that
occupy the charge qubit “island” — the electrode between the Junction capacitor
Cjq, and C,. Such a qubit can be controlled by tuning the biasing voltage V,. A
more complicated variations of this design can include a shunt capacitor in parallel
with the junction, which limits the sensitivity of the qubit to the charge noise at
a cost of anharmonicity, and even a DC-SQUID that replaces the single junction,
which in turn allows for another means of controlling the qubit [72].

Next, in Fig. 2.2|c) we present a schematic of a flux qubit [100]. It consists
of a loop with three junctions, with one of the junctions slightly smaller than the
other two. In the diagram this is represented by the factor «, which scales the
capacitance and the critical current of the junction on the right arm of the loop. In
typical cases a = 0.7. In a flux qubit, the computational basis states correspond to
the currents circulating in the opposite direction around the loop. Such a qubit can
be both controlled, as well as coupled through the applied flux @, that threads the
circuit loop. As in the case of the charge qubit, there are variations to this general
design. The first incarnation of a flux qubit, for example, considered a loop with
only a single junction [44], however, that design required the physical size of the
qubit to be large, which in turn lead to more sensitivity to flux noise.

Finally, in Fig. 2.2(d) we show a schematic of a stripline cavity. It consists
of an arrangement of capacitors cxy and inductors lzg, where ¢ (I) represents the
capacitance (inductance) per unit length, and ¢ is the length of a unit cell. To
model the continuous nature of a stipline caivty, one takes the limit of zy — 0,
as will be shown in Chapter [3] The structure of the field inside such as system
depends on the boundary conditions that are chosen — in the drawing above, the
cavity is considered “closed” at = 0 and “open” at x = x;. When these devices
are coupled to qubits, they are mathematically similar to quantum electrodynamic
systems consisting of atoms inside cavities, except with often much more tunable
parameters, and many orders of magnitude larger coupling between the fields and
the atoms/qubits [7]. Besides opening doors for studies in fundamental physics,
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using stripline cavities have been shown to be very useful in applications to quantum
information. They provide a means to both couple as well as read out qubits much
more effectively than ever before [3, 23].

The key observation that could be made from our brief overview above, is that
superconducting circuits provide a lot of freedom when it comes to studying inter-
esting quantum behavior, mainly because they contain a lot of intrinsic flexibility.
After all, we have many different configurations in which circuits can be constructed,
generally leading to very different behavior. Moreover, the extensive amount of ex-
perimental expertise that scientists and engineers have gained through fabricating
integrated circuits and understanding the technology required for classical solid
state computing, can be often directly applied here.

2.3 Circuits and their Hamiltonians

Now that we have shown a few important circuits, we need to address the question
of how we can model their quantum behavior mathematically. In classical physics,
and electrical engineering applications in particular, in order to understand the
behavior of a given circuit, it is often enough to simply write down the corre-
sponding equations of motion (which can be done by following Kirchhoff’s rules)
and solve them for currents and voltages that we are interested in. When treating
these circuits as quantum objects however, it is useful to first find their effective
Hamiltonians, which can then be used in standard ways to solve the correspond-
ing Schrodinger equation. The procedures that describe how to do this, have been
discussed in various publications [16] B2, 132]. Here, for completeness, we provide
a brief summary of the main steps. It is assumed that the reader is familiar with
elementary circuit theory as presented in for example [34].

In the limit where the circuit can be divided into lumped elements, namely when
the wavelengths of the radiation in the circuit are longer than the dimensions of
the elements themselves, we can split the circuit into nodes that are connected by
two-terminal components, often called branches. Each branch has an associated
voltage across it, and a current through it. Knowing these voltages and currents,
lets us completely describe the behavior of a given circuit. A useful convention
that has been especially helpful when describing superconducting circuits (with
Josephson junctions in particular) is to use fluxes and charges instead of voltages
and currents as the degrees of freedom. This is because one can show that the flux
across a branch is proportional to the superconducting phase difference that we
have already investigated in Sec. 2.1} The general relationship that connects the
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two descriptions can be written as

t

(I)branch(t) :/ Vbranch(t/)dt, (23)
t

Qbranch(t) :/ Ibranch(t/)dtly (24)

where ®pranen and Vianen correspond the flux and voltage across a branch respec-
tively, while Qpranch and Iyranen the charge and current. We are now ready to outline
the steps that can be taken to arrive at a quantum Hamiltonian description of a
given circuit. It is worth stressing that there are slight variations in different ref-
erences that discuss this topic — for example, often explicitly writing down the
equations of motion can be skipped and the Lagrangian can be obtained directly.
For the most complete description that covers many details and nuances that one
can come across, we point the reader to [16].

For simplicity, let us assume that we are dealing with a circuit that consists of
no resistorsEL but only capacitors, inductors and Josephson elements. Furthermore
following [32], we stress that all the voltage (current) sources in the circuit can also
be modeled in terms of capacitors (inductors) with large initial charges (fluxes)f]

The first step in finding the Hamiltonian, consists of simply labeling the circuit
in a consistent way. To do this, we first arbitrarily chose one reference node, and
without loss of generality, associate with it zero flux. We then, starting at this
node, define a spanning tree of the circuit network, which consists of a loop—free
graph that includes all of its nodesﬂ Branches that belong to the spanning tree are
called tree branches, while branches outside of it, chords [16] or closure branches
[32]. Each of the closure branches defines a loop by joining its two end points by the
minimal path on the spanning tree. If a given branch is part of the spanning tree,
then its branch flux can be expressed as simply the difference between the fluxes
of the end nodes. Alternatively in a case of a closure branch, the total branch flux
also includes the applied flux through the loop which the closure branch defines.
Mathematically we can write this as

Dpranch = @, — D,/ if branch € spanning tree (2.5)
Dpranch = P, — Ppyy + Doy if branch ¢ spanning tree, (2.6)

3If dissipative elements such as resistors are present, they can be modeled as transmissions
lines (i.e., infinite sets of dissipation free capacitors and inductors), or in a related way, by using the
Caldeira—Leggett model, which treats each dissipative element as a bath of harmonic oscillators
that couple to the degrees of freedom of the circuit. We point the reader to [16], [132] and
references therein for more information on this topic.

4In practice this is often not necessary. One can directly substitute currents due to branches
with current sources into Eq. and similarly relate node fluxes at the end points of branches
that contain voltage sources to voltages, through Eq.

5Such a spanning tree is not unique.

10
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where n and n’ are the indices of the end nodes of the branch, and & the external
flux. Next, using Kirchhoft’s rules, and the means of converting between branch
and node fluxes we have just outlined, we write the current conservation relation
for each of the nodes, except the reference node. This leads to a set of equations
that read

Y L=o. (2.7)

i€connecting
branches
The sum is over the branches that connect to the node in question. The directions
of the currents can be defined in a arbitrary way, but need to be consistent for all
the nodes. Once we have the equation of motion for each node n, we treat it as a
Euler-Lagrange equation

oL oL
_ — 2.
20,8,  o®, (2:8)

for a Lagrangian L, which can be obtained by integration. The next step is to apply
the Legendre transformation and obtain the classical Hamiltonian. Mathematically
we have

H=> Q.. L (2.9)
where each (,, satisfies
oL
N = 2.10
@n =7 5. (2.10)

H is now a classical Hamiltonian that describes the electrical circuit. The final step
is to promote the classical degrees of freedom ®,, and (),, into quantum operators.
This is done by introducing standard commutation relationships between them,
which results in

(@, Q1] = iTidy . (2.11)

This procedure leads to a quantum description of the circuit, which we set out to
find. In practical applications, one can often go a step further, and rewrite the
newly obtained Hamiltonian in more easily usable forms: for example, in terms of
lowering and raising operators, or in the case where the circuit is operated as qubit,
in terms of Pauli operators (by first truncating the Hilbert space to two levels).

11
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Figure 2.3: A circuit diagram of a charge qubit coupled to an LC oscillator and
a voltage source. I, is the critical current of the Josephson junction, Cj, the
capacitance across the junction, and C, and Cy, the capacitances that couple the
qubit island to the oscillator and voltage source V; respectively. The blue numbers
represent node labels, while the red line, the circuit spanning tree (see Sec. for
details).

2.3.1 Example: Charge Qubit Coupled to an LC Oscillator

Let us apply the discussion from the previous section, to look at another example
circuit, this time in a bit more detail. Here we derive a Hamiltonian of a circuit
which has some of the features of a more complicated scenario that we will consider
in Chapter 2l In Fig. we show a circuit of a charge qubit coupled to an LC
oscillator and biased by a classical voltage source V,. Ly and Cj represent the
inductance and capacitance of the LC circuit, while C, and C,; couple the oscillator
and the voltage source to the qubit island respectively. Finally, Cj;, and I, are
the capacitance and critical current of the Josephson junction that makes up the
qubit. The red line shows an example spanning tree, although in this case, since
no external fluxes are considered, defining such a spanning tree explicitly is not
necessary.

We will treat the fluxes at nodes 1 and 2 as active degrees of freedom, while
the flux at node 3 will be treated as a classical parameter, and later related to

the voltage V;. Using Egs. 2.2 and standard descriptions for currents
across capacitors and resistors, we can utilize Kirchhoff’s current rule from Eq.

to write down the equations of motion for our circuit as

. 1 .
Coby + =, - C. (cbg - <1>1> —0, (2.12)
0
and

. (c'I'>2 _ c'I'>1> + Cy®y + I, sin (%) —c, (6153 _ 6152) —0, (2.13)

12
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where we have taken ¢y = ®¢/27. Integrating these to get a Lagrangian, gives

Crozo Coio Co . N2 O N2
=500+ 0+ 3 (da =) + 3 (1 - 8)
1

P,
+ ¢ol, cos (%) - Q—LOqD%

In the last step we have replaced @5 with Vy. The next step, is to calculate the
conjugate variables of ®; and ®5. These will correspond to effective charges at
nodes 1 and 2 respectively. Hence we have

(2.14)

0
Q1 = aTblL (2.15)
= Cosc®1 — C.Po, (2.16)
and for the case of ®,,
Q2 = C.dy — C.®, — C,V,. (2.17)
In the last two expressions, we have defined Cose = Cy + C¢, and temporarily

C, = Cjq+ Cy+ Cy. The next step is inverting these and solving for ®; and ®,,
which leads to

c,C

. C C
b, = = =< J—c 2.1
1 Cth + C’tQ2 + C Vy (2.18)
. C, C C,C.
@ — _C OSC g OSsC 2.1
2 C’th + C, Q2 + C, Vs, (2.19)

where we have introduced C; = C,C.+ Cy(C,+C,). Finally we are ready to write
the Hamiltonian of our simple circuit, which reads

H=,Q; + Q> — L
2
(C'ng + %Ql + Q2>

Py
= — I ¢ cos (—) 2.20
CE q%0 ¢0 ( )
| R 1 5, C
o7 — 2v2.
* 2COSCQ1 TR TR
Here for convenience we introduced yet another effective capacitance Cy~ = CCO Cjc +

C. + Cyq + Cy. Furthermore, anticipating the expression we want to obtain, we
completed the square in (). The terms containing charges @; (fluxes ®;) can be
interpreted as analogous to kinetic (potential) energies in a mechanical system.

The last step is to quantize our circuit. This is simply done by promoting the
variables which represent the degrees for freedom of the circuit into operators, and

13
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enforcing their commutation relations. In our case, it leads to
(D, Q] = 1Ay .- (2.21)

with n and m being 1 or 2. Hence we now have a quantum version of the Hamilto-
nian of the circuit shown in Fig. [2.3] In order to treat our system as a qubit coupled
to an oscillator, we would need to go a step further and truncate the Hilbert space
of the operators ®5 and ()5 to only two levels. This is something we will look at in
more detail in Chapter [3] in the context of the system presented there.

It is useful however, to make some observations about Eq. [2.20] The last term
on the third line corresponds to a voltage offset that comes from the biasing voltage
Vg, and when studying the dynamics of the circuit, can be neglected. The first two
terms on the third line represent a Hamiltonian of a simple harmonic oscillator
with a natural frequency of wyse = 1/4/CoscLo — the fact that the LC oscillator
couples to the qubit via the C, capacitor, results in its frequency being shifted, since
Cosc = Cop+C.. Finally, the second line of shows the effective Hamiltonian of the
qubit. Its kinetic energy (the first term) is affected by both the biasing voltage V
as well as by the presence of the LC oscillator, through (). These two contributions
can add or subtract to the net charge on the qubit island (node 2) and when the
parameters are chosen appropriately, can provide a means for qubit control. Finally,
we note that expanding the first term of the second line of Eq. will, among

. . 2 . . . .
other expressions, contain g Cé (Q?. This term represents a contribution that is
>

2
osc

often described as an analogous of the A% term in the Hamiltonian of a charged
particle in an electromagnetic field. We will discuss the general importance and
implications of this fact in more detail in Chapter [3]

2.4 Summary and Conclusions

In this chapter we have reviewed some of the key concepts of superconductivity,
discussed the Josephson effect, as well as shown a few widely used superconducting
circuits, while outlining their key properties. We then looked at how to obtain
Hamiltonians of such circuits, and ended with a Hamiltonian derivation of a spe-
cific circuit consisting of a charge qubit coupled to an LC-oscillator, which can be
thought of, as a simpler version of a circuit studied in more detail in Chapter

14



Chapter

Casimir-like Effects in a Superconducting
Circuit System

In this chapter, we look at Casimir and Casimir—Polder-like effects in a supercon-
ducting circuit system. We start with a brief review that introduces these topics in
a historical context. We then define a superconducting circuit that we use to model
a cavity as well an interacting qubit. Next, we derive the corresponding Hamiltoni-
ans and calculate the energy shift due to the presence of the coupling qubit, which
in turn lets us define a Casimir-Polder—like effect in a form of a Casimir—Polder
current. We then study the consequences that varying different physical circuit
parameters has on our newly derived results. Finally, we finish the discussion by
describing an analogous of a Casimir effect where we neglect the qubit and only
concentrate on the superconducting stipline cavity with a flux—dependent boundary.

3.1 The Casimir Effect — Historical Overview

Our brief historical overview of the Casimir and Casimir—Polder effects mainly
follows review papers [38, RS, [107] as well as [19] 20, [65].

Over the last century scientists have been trying to come to terms with the often
highly unusual predictions of quantum theory. One of its particularly fascinating
consequences, which was first discovered in the early 1900s by Max Planck while
studying black—body radiation, is the zero—point energy and more importantly per-
haps, the fluctuations associated with it. Planck looked at the average energy of
an electromagnetic field mode of frequency w, at temperature T. He arrived at an
expression

1
o+ . (3.1)
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He right away noticed the troubling fact, that in the limit of 7" — 0 this expression
reduces to %hw This was at odds with the conventional understanding at the time,
where it was believed that at zero temperature all motion ceased, and therefore
the average energy radiated should necessarily simplify to zero. This lead him to
initially assume that this result must have no physical significance. A few years
later, in 1913, Einstein along with Stern argued [37] that in the opposite limit of
high temperature, where kgT' > hw, the “extra” term is needed in order to recover
the classically known result [85]

U = kgT. (3.2)

This, among other reasons [85], lead to them to write “The existence of zero—point
energy is probable”. The paper started a heated discussion of just how physically
relevant this unusual term can be. The first possibly observable consequence of
the zero—point energy (or more specifically fluctuations associated with it) was
suggested by Debye [29] when he proposed that the zero—point energy fluctuations
in atomic motion should lead to a reduction in X-ray scattering from crystals.
Mulliken was able to experimentally confirm this prediction a decade later [90].

In 1916, Nernst further suggested that the zero—point energy fluctuations should
also exist for free electromagnetic fields [95], hence discovering what is now often
called the quantum vacuum. The analysis of the physical significance of this pre-
diction and its various implications, in particular on cosmology, continued on. An
important contribution came in 1948 in a proposal by Hendrik Casimir [20], even
though he originally did not frame his discussion explicitly in terms of the zero—
point fluctuations. He considered an idealized case of two parallel, conducting
plates, with perfect reflectivity (effectively mirrors) and at zero temperature. He
envisioned these plates to be separated by a distance d, as is shown in the schematic
of Fig. 3.1(a). His key realization was that even with no photons present, the two
mirrors will experience an attractive force. This was of particular importance be-
cause such a force could, in principle at least, be measured. By considering the
structure of the field modes both between the mirrors and on the outside, he cal-
culated this force as (here shown as pressure — force per area)

whe 1

PCasimir(d) - _%E (33)
Since Casimir’s original proposal, many variations have been discussed, with some
of initial constraints lifted. Experimental realizations have also been considered.
Initially, due to the technical complications associated with properly aligning two
plates in parallel, it was easier to consider a plate near lenses or spheres, but finally
in 2002 an experiment with the originally proposed setup was successfully conducted
[13]. It resulted in a confirmation of Casimir’s prediction from Eq. to within
%15.
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Another paper of Casimir that turned out to be very important in the study
of the zero—point energy fluctuations, was also written in 1948 with Polder [107].
There, the authors considered a single conducting plate, interacting with an atom.
Through similar arguments they were able to predict an attractive force between
the atom and the plate — this kind of a force, where neutral atoms are coupled
to neutral macroscopic objects through electromagnetic field fluctuations, is often
now referred to as the Casimir—Polder force. Other variations of such a force have
been explored over the years. One of particular interest to us is an atom within
a cavity, interacting with the cavity boundaries. A schematic of such a setup is
shown in Fig. B.1|(b), with the theoretical aspects studied in [1].

Although there have been multiple successful experiments that explored varia-
tions of both the Casimir—Polder as well as Casimir forces, they have shown to be
difficult. In the rest of this chapter we will describe a mathematically similar sys-
tems to both a standalone cavity as well as a cavity with an atom, but implemented
using a superconducting circuit. The key difference will be that instead of Casimir
forces, we will consider analogous electrical currents. It is possible that with all the
resent advances in superconducting circuit technology, in the future, experiments
with such systems will be substantially easier and will let us explore the Casimir
physics in more detail, and less effort.

Finally, let us briefly discuss another effect that builds on Casimir’s original
ideas — the Dynamical Casimir effect. The original proposal dates to 1970 [86]
where Moore noticed that if the mirrors of a cavity discussed earlier moved, the
mismatch between the structure of the vacuum modes at different points in time
could lead to generation of real photons. In 1976 this idea was also expanded to a
system with only a single mirror in free space [45]. Figs.[3.1)c) and [3.1(d) present a
pictorial representations of these two scenarios. In the case of a single mirror, it was
shown that radiation can also be generated, as long as the acceleration of the mirror
is nonuniform. The Dynamical Casimir effect has been very elusive experimentally
however, because in order for the physical mirrors to generate photons at a rate that
modern equipment could detect, the mirrors would have to move at speeds close to
the speed of light — a feat hard to implement with current technology. Nonetheless,
in 2011, a team at Chalmers University of Technology in Sweden observed results
consistent with a Dynamical Casimir effect, but in a system implemented using
superconducting circuits [128].

3.2 The A2 Term in Field—Atom Interaction

Before we move onto our particular superconducting circuit that we will analyze, let
us briefly discuss the relevance of the so called A2 term, and its importance to the
study of the field—atom interactions. Let us consider a two level atom coupled to a
single mode of the electromagnetic field. We can write down a general Hamiltonian
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Figure 3.1: (a) Two parallel, stationary mirrors that Casimir envisioned in his
original proposal from 1948. The structure of the field modes between the mirrors
is different from what it is outside, which in turn leads to an attractive force between
the mirrors. (b) Including an atom between the mirrors, can lead to either attractive
or repulsive forces, depending on the type of coupling between the field and the
atom as well as the boundary conditions of the field. (c¢) An example of a system
where a dynamical Casimir effect can be observed. Here, one only considers a single
mirror in free space, that is driven by a continuous signal. (d) A more elaborate
example of a dynamical Casimir effect, with a cavity consisting of two mirrors,
one stationary, and the other rapidly modulated. It is worth stressing that the
diagrams are not to scale — in these systems when physical mirrors are considered
(particularly in cases (a) and (b)), it is assumed that the length of the mirrors is
substantially larger than the separation between them.

18



3.3. Superconducting Circuit Implementation

for such a system as

1 e \2

Hatom—field = 5— (P - —A> ) (3.4)
2m c

where m is the atom’s mass, ¢ the speed of light, e its charge, and p and A are the

atom’s momentum and field’s vector potential respectively. In the Coulomb gauge,

the interaction contribution simply reduces to

2
€ 2

2A’

(&
Hatom—ﬁeld—int =——A" p + (35)

mc 2mc
with the first term, linear in A, often called paramagnetic and the second, A*-
dependent, diamagnetic (often also called the field self-interaction term). A math-
ematically analogous discussion can be made about superconducting qubits that are
coupled to a field inside a superconducting waveguide [92, 93], as will be shown in
some detail, in Sec[3.5] In those systems, since the term corresponding to the dia-
magnetic term above does not contain any operators acting on the qubit’s Hilbert’s
space, its contribution is often neglected — in particular when discussing the dy-
namics of the qubit. It has been shown, however, that in atomic systems, where
the Casimir—Polder effects are studied, under certain conditions, the diamagnetic
term can be of importance. In [I] for example, where a setup with a two—level atom
inside a cavity was explored in the context of the Casimir—Polder effect discussed in
the last section, it was theoretically shown that if the atom’s size is carefully con-
sidered, and it is small enoughﬂ the contribution of the diamagnetic term to the
interaction energy can be of the same order as the contribution of the paramagnetic
term, and hence should not be neglected.

3.3 Superconducting Circuit Implementation

The system we choose to study is a superconducting circuit, which consists of a
coplanar waveguide (often referred to as a cavity) of length x; with a DC-SQUID at
one of its boundaries and a coupling qubit at some position x,. We concentrate our
discussion on the case of a charge qubit, but other qubit types, such as a flux qubit
could provide an interesting research direction in the future. A circuit diagram
that shows our system in some detail, is presented in Fig. 3.2l The DC-SQUID
is located at = 0, the qubit centered around = = z,, and we take the boundary
at x = x; to be open. We assume that the DC-SQUID is operated in its linear
regime, and that its geometric inductance L, is much smaller than the Josephson
inductance of each of the junctions Lj;y — namely we will consider the limit of

IThe smaller the atom, the larger are the quantum field fluctuations that the atom coupels
to.
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L,/Ljo — 0. These assumptions and their consequences are studied in great detail
in Chapter [4 as well as in Appendix [D] with the key result being that in this limit,
the DC-SQUID can be treated as a simple LC circuit, with its effective inductance
(and hence the natural frequency) that depends on the flux threaded through the
DC-SQUID — labeled ®,. We can model this cavity in a standard way [105], as
a collection of infinitesimally small cells, each consisting of a capacitor cxg and
inductor lxg, with ¢ and [ representing the capacitance and inductance per unit
length of material used, and the z, the length of each cell (we later take the limit
xo — 0) [7, 105].

We can write a general Hamiltonian of our full system as
H :qu + Hcav + qu—cav + Hq + Hq—cava (36)

where we have taken Hg, as the Hamiltonian of the DC-SQUID, H,,, of the cavity,
Hgq—cav, the interaction Hamiltonian between the DC-SQUID and the cavity, H,,
the qubit’s Hamiltonian, and finally H_cay, the interaction Hamiltonian between
the qubit and cavity. In the Casimir—Polder effect treatment below, we will look at
each of those in more detail, but our ultimate goal will be to diagonalize H — H,_cay,
and treat Hy_cav as a perturbation dependent on the flux through the DC-SQUID,
and controllable through rotations of the qubit. In the Casimir effect treatment
shown in Sec. [3.10] it will be enough to only consider the Hamiltonians of the
stripline cavity, the DC-SQUID and their interaction.

3.4 Normal Modes and the Cavity Hamiltonian

We begin by initially neglecting the qubit, and concentrating on the DC-SQUID
and the cavity. As already mentioned, we will operate in the regime where the
DC-SQUID is modeled as a linear LC oscillator. Following the discussions in
Chapter [2] and Appendix [D| one can show that such an LC oscillator will have
the effective capacitance of Cj; = 2C'; and flux dependent inductance L j4(®s) =
Bo(2Iy cos(D/2¢0)) !, where C; and I, represent the capacitance and critical cur-
rent of the individual Josephson junctions that make up the DC-SQUID respec-
tively (as can be observed from Fig. [3.2(a)). Mathematically then, the physical
circuit consisting of such an LC oscillator on a boundary of a stripline cavity is
similar to a harmonic oscillator at an end of a string [130)].

In order to write down the Lagrangian and later the Hamiltonian of our system,
we turn to the circuit quantization rules discussed in Chapter 2 Namely, we divide
the circuit into nodes and branches. To each node n we assign a node flux ®,, that
is related to the voltage by the relation V,, = 0;®,,. Hence, assuming that the full
cavity contains a total of N flux nodes, we can write down the current conservation
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Figure 3.2: Diagram in (a) shows a schematic of a superconducting circuit that
depicts a coplanar waveguide of length z;, terminated at x = 0 by a DC-SQUID and
open at x = x;. The parameters ¢ and [ represent the capacitance and inductance
per unit length respectively, while C'; and I the capacitance and the critical current
of the Josephson junctions that make up the DC-SQUID, which is threaded with
a flux ®,. This cavity is coupled to a qubit which is centered around =z = z,. (b)
An example of a superconducting qubit that could be used — a charge qubit.
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equations in terms of node fluxes ®,,. For each node 1 < n < N this leads to

1 1
e (@1 — P,) = — (D, — Ppyy) + 100} P,,. (3.7)

In the case of the nodes that are on the boundaries, we have

1
D+ — (P — Py) + c2007®; =0 (3.8)

1
0P, + —
N T P

for n = 1, and

L @y~ By =0 (3.9)
l$0

for the case of n = N. We could directly rewrite these as a wave equation with
time dependent boundary conditions, but here we choose to proceed slightly differ-
ently, by calculating the corresponding Lagrangian, taking the limit of small cell
dimensions x(, and only then writing down the corresponding equations of motion.

Integrating Eqgs. and [3.9) leads to a Lagrangian

L= (%’ (0,8)? — mqﬁ) (3.10)
+3 (%(8@”)2 - %xo(cbn - c1>n+1)2> . (3.11)

n=1

In the continuum limit, where xqg — 0, the above expression can be rewritten in
terms of the Lagrangian density

£ = 5(x) (CQJ (0,8)? — mqﬂ) (3.12)
+6(x) (g(atcp)? - %(8@)2) , (3.13)

where we have taken ©(z) to represent the Heaviside function

1 ifz>0

O@@) =, if 2 <0,

(3.14)

and where the total Lagrangian for the system is equivalent to L = foxl dzL. Tt is
implicitly assumed that the now continuous flux ® is a function of both the coor-
dinate x and time t. We can use this expression to also calculate a corresponding
(classical) Hamiltonian. To do this, we define the canonical momentum conjugate
to the flux ® (which in our physical system can be thought of as charge density
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along the stripline cavity) as

oL
9 (0,9)
— (6(z)Cys + O(z)c) B

= w(x)0,®

Q=

(3.15)

where we have defined a weight function w(z) = (6(x)Cjs + O(z)c). Hence the
total Hamiltonian for the DC-SQUID and cavity circuit can be written as

Ty

qu + Hcav + qu—cav :/ dx(atq)>Q - L

—0o0

:/_Z dx [5(33) ((’;Js(atcb) m®2> (3.16)
+ () (g(atcpf + %(@@)2” |

Naturally the last two lines could be written in terms of ), but here, for later
convenience, we express them only in terms of the flux ®. Next, using Eq. we
can write down the Euler—Lagrange equation of motion (but this time not in terms
of node fluxes ®,,, but instead in terms of the continuous ®). This leads to

1o, (0)0,®) + 5(r) a0, (3.17)

2% 2P
@(l')cat + 5(x)CJsat l LJ5<(I)S)

It is clear that for = > 0, Eq. reduces to a standard wave equation
1
cO? P — 7éﬁcp =0, (3.18)

allowing us to define the propagation velocity as v = y/1/lc. In the case of z = 0,
we can integrate Eq. from z = —¢ to x = ¢ and take the limit of ¢ — 0, which
gives

1 1

o — -0,
Ljs(®y) la

C1,0°® +

=0. (3.19)
=0
This equation represents the dynamic property of the boundary condition, hinted
at earlier, which is a consequence of having a DC-SQUID located at a = 0. Since
we treat the other end of the cavity to be open, at x; we have a current node.
Mathematically we can represent it as

8,9 =0 (3.20)

=]
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3.4. Normal Modes and the Cavity Hamiltonian

Our goal is to find the normal modes of this system. To do this, first we note that
Eq. can be rewritten in a following form

® = —w(x)0rP. (3.21)

1

Next, we can decompose ® = ®(z, t) into yet to be determined normal modes, while
separating the dependence on x and t. Letting

O(x,t) = Py(x,t)

(3.22)
= Z on()un (),
and substituting it into Eq. we arrive at two differential equations
0/ pn(t) = —wnen(t), (3.23)
as well as
1 1 2
—=0, (O(x)0un(z)) + 0(x) Uun(x) = whw(x)u,(x), (3.24)
l LJS((PS)

where we have introduced a constant w?, which is an eigenvalue in both Egs. [3.23
and [3.24] Solutions to Eq. are easily determined to be proportional to e*™rt,
In order to calculate u,(z), we make the ansatz

U () = 1, cos (%x + 9n> , (3.25)

where n, and 6, are to be determined. We then substitute the ansatz into the
boundary conditions shown in Eqs. and [3.20l This leads to the equations that
describe the relationship between w, and 6,,, namely

2 _ P 2
6, = tan~" (CJSZOM) (3.26)
Wr,
Wp = 2 (nm—6,), (3.27)
)

with n integer. Here wy(®s) = 1/4/CrsLys(Ps) is the natural frequency of the
DC-SQUID (dependent on the applied flux @), and Zy = /l/c the impedance of
the waveguide.

Next, we need to ensure that each wuy is normalized with respect to the weight
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3.4. Normal Modes and the Cavity Hamiltonian

function w(x). This implies
x
/ Un () Uy (2)w(2)dT = 61y 10t (3.28)

noting that we have taken the lower limit to —oo, since the weight function w(x)
is zero outside of the cavity. Enforcing the equation above, leads to

[NIES

Cy
n=| = +Crs 2‘9n
g <2 s oSt

sin 20n) (3.29)

where we have defined C; = cx; to be the total capacitance of the cavity. A detailed
justification is shown in Appendix [A] Hence combining Eqgs. [3.22] and gives us
a full normalized spectrum of normal modes that satisfy Eq. [3.24] along with the
specified boundary conditions.

We are now ready to quantize the Hamiltonian presented in Eq.|3.16, The first
step, is to promote ¢ and () to operators and insist that the standard commutation
relations are satisfied. Namely

22,1, Q(a", ti] = ihd(x — a') (3.30)

[@(x,1), D(a',1)] = [Qa, 1), Q(',1)] = 0.
We stress that for the sake of brevity, we will neglect the operator notation (i.e. the
“symbol) from now on, and unless otherwise stated, both ® and ) will be assumed

to be quantum operators and not classical quantities. Next, expanding the flux
along the cavity in terms of the newly calculated normal modes, we can write

O(z,t) = Y Ny (wn(x)e M a, + 1 (x) e a})) (3.31)

where N, is a normalization constant and a, and af are lowering and raising op-
erators of the nth mode respectively. By defining an N,, = y/h/2w, and insisting
that the operators a,, satisfy

|:an, CLIL':| - 577/777/

[an, an] = [aT al } =0,

n’ “'n/

(3.32)

we note that our choice of the expansion in Eq. satisfies [3.30]

Our final step consists of rewriting the Hamiltonian presented in Eq. in a
more convenient form, in terms of a, and af. While we could directly substitute
Eq. 3.31] into [3.16] and simplify, it is more convenient to use a trick described in
[130]. First let us consider the last term of Eq. . Integrating it by parts leads
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3.5. Charge Qubit

to

1 [ 1 x 1 [

2 dzO(x) (896(1))2 =9 (PO(x)0,P) ‘ - 2_l/ dx®0, (0(2)0,P). (3.33)
The first term vanishes due to the boundary condition from Eq. and the fact
that h(0) = 0, while the second term can be rewritten using Eq. [3.17. Hence we
have

zy

L7 6 @) (0,0) = —% /

2l —0o0 —0o0

xy

da <w(x)c1>afc1> + 6(z) ! <1>2> : (3.34)

Js
Substituting this expression back into Eq. gives a much simpler form for the
Hamiltonian, namely

Hay+ Hoy + Hegcnv = / dr Sule) (0:0)? — 930) (3.35)
Finally, using the normalization condition from Eq. along with Eq. [3.31} we
can write down the Hamiltonian for the cavity and the DC-SQUID as a sum of
simple harmonic oscillators

1
Hyg + Heay + Hyqocay = 3 _ hw, (a;an + 5) : (3.36)

We stress that the normal mode structure that we have calculated in this section
is exact, as long as the DC-SQUID is operated in its linear regime (and treated
as a single degree of freedom). It is however important to note that the actual
functional form of the nth mode (i.e. u,(z)), can only be calculated numerically, as
for a set of fixed physical parameters (inductances, capacitances, flux ®;), in order
to obtain 6,, and w,, one needs to simultaneously solve Eqs. and [3.27] which do
not have a general, analytical solution. Furthermore, the expressions above could
be simplified in certain parameter regimes. For example, in typical experiments
the total cavity capacitance C; = lx;, is large relative to junctions capacitances,
namely C; > Cj,, which would let us simplify 7, from Eq.[3.29] We however, in
this current work make no approximations to the normal mode profiles used.

Our next step is to consider the addition of a qubit, which we cover in the next
section.

3.5 Charge Qubit

In this section, we consider a charge qubit centered around =z = z, and coupled
capacitively to the stripline cavity. A schematic that shows this setup is presented
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3.5. Charge Qubit

in Fig. [3.2(b). In our initial treatment we will neglect the spatial extension of
the qubit, and assume it couples to the cavity only at a single point. In Sec.
however, we will briefly discuss the consequences of this assumption and describe a
more realistic approach. The case of a charge qubit coupled to a superconducting
waveguide has been studied by various authors [7, [124], but we review it, as in
our case we will include the contributions of the A2-like term, which was already
discussed in Sec. 3.2

Using standard circuit analysis methods described in Chapter [2] and following
[7], we can write the Hamiltonian of a charge qubit coupling to the cavity depicted
in Fig. [3.2(b) as

1 @
Hy+ Hy oy e (CyVeay + Qq)? — Togbo cos <¢—§) : (3.37)

where, ®, and (), are respectively the flux and charge at the node labeled ¢ in
Fig. 3.2(b). Iy, and Cj, are the critical current and capacitance of the Josephson
junction, Cy is a capacitor that couples the qubit island (node “q”) to the stripline
cavity and ﬁnallyﬂ Csy, = Cy + Cjy. Veay represents the cavity voltage, for now
strictly at the center of the qubit, at © = z, (although as already outlined, we will
discuss the consequence of the qubit having finite size in Sec. . We assume that
Veav contains both an AC contribution coming from the fluctuations of the various
field modes inside the cavity, as well as a DC component that can be used to rotate
the qubit P}

It is convenient to rewrite this expression in terms of the excess Cooper pair

number operator n = 2—1qu and its conjugate phase ¢ = ®,/¢y. Also taking
Neay = —iC’chaV, E. = % and Ej, = Iog¢0 lets us write the Hamiltonian in a

standard form [7, 11, [125]

Hy + Hy cay =4F, (0 — Neay)” — Ejq4cos p. (3.38)

2A more detailed analysis presented (for example) in [76] or [103], shows that in reality the
presence of the stripline cavity changes the effective values of capacitors Cy and C, and therefore
Cs>. Likewise the presence of the qubit slightly renormalizes the effective value of ¢ — the
capacitance per unit length of the cavity. The final functional form of the Hamiltonian is however,
not affected, and is still as shown in Eq. Furthermore, in the limit of a long cavity (where
zic > Cy,Cyy), these expressions for the effective capacitances simply reduce back to actual C,
and Cj,. Since in our case, of particular interest is the ratio between C; and Cs~ (defined as
B in main text), as well as the resulting Cs~, which determines the charging energy E., as long
as we choose realistic values for those parameters we can safely neglect the minor effects of the
capacitance redefinitions.

3We could imagine a slightly more complicated setup with a separate DC voltage source to
control the qubit, as was shown explicitly in a case of a simpler circuit in Sec. as well
as studied in [124]. This is however not necessary as the Hamiltonian of such a circuit can be
reduced to Eq. by an appropriate choice of capacitance values. We therefore simply assume
that Veay = Ve + Vac, with V. treated as a quantum degree of freedom of the cavity field.
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3.5. Charge Qubit

It is worth stressing that ¢ and n satisfy the commutation relation [p,n] =i. The
first term in Eq. is equivalent to the momentum—vector potential coupling of
an atom in a magnetic field ﬁ (p — %A)z, with n analogous to p and ny analogous
to A. Following [7, [I1], we can truncate the Hamiltonian to two levels. Assuming
we operate the system in the regime 4F,. > Ej, it is convenient to work in the
Cooper pair number basis |n), the eigenstates of the n operator. Hence we can yet
again rewrite the Hamiltonian as

o0

Hy+ Hycoy =AE, ( S nlnnl - ncav|n><n|) — 5B () + 1+ [+ 1))

n=—oo

(3.39)

It is easy to see that the expression above, is block—diagonal. We concentrate on a
two consecutive energy levels, and without a loss of generality can chose those to
be n =0 and n = 1. This reduces Eq. to

n(Qzav 0 1
H,+ Hy oy =AE, ( 5 (1 nm)2) — 5B (3.40)

Following [7], and as was already discussed, we assume that the contributions to
Neay come from a DC bias as well as from the fluctuations inside the cavity. This
lets define ngay = Nge + Nae, With n,. representing an operator on the degrees of
freedom of the cavity — in particular n,. ~ Y (aIL — an). The Hamiltonian then
becomes

1
Hy+ Hy cov = — 5E 140z — 2E:(1 — 2ngc)o, — 4E. (1 — 2n4. — 0,) Nae + 4E.n2

ac)

(3.41)

where we have neglected constant terms, as well as terms that depend only on
nge, since for a fixed ng. their contribution to the energy shift will be the same
(even for varying boundary conditions of the stripline cavity, which will cause n,.
to change). Next, following [7], we do a change of basis, by diagonalizing the
first two terms (i.e. the qubit part) of Eq. . We chose new basis defined by
1) = cos(0,/2)|0) + sin(f,/2)|1) and |0') = —sin(6,/2)]0) + cos(d,/2)|1), with

tand, = E;,/(4E.(1 —2nq.)). Further taking w, = \/qu + (4E.(1 — 2n4.))? /b, we
can write (now in {|0"), [1")} basis)f]

Hy+ Hy—ca :%02 — 4B, (1 — 2nge + c08(0,)0- + sin(6,)0,) nae + AEn2,. (3.42)

We imagine operating the qubit near the DC bias of 1/2, and rewrite nq. = 1/2 +

4Qur choice of the qubit Hamiltonian digonalization transforms o, to — cos 040, — sinf,0,,
which is different from [7].

28



3.6. Energy Shift with Perturbation Theory

dnqc, which leads to 6, = arctan < SE 5nd ) \/ E2 + (8E ndc) /h and

H,+ Hy—cay :%az — 4E,. (—20nge + cos(8,)o, + sin(0,)0,) Nae + 4En2..  (3.43)

We note that when the qubit is at its optimal point, where dng. = 0, the Hamil-
tonian reduces to the typical case considered in atomic physics (for example in
[1]). However in a more general situation where dng. is nonzero, we have other
contributions which come from the dngcna. and o,n,. terms.

Next, we introduce f = C,/Cy, and note that 4E.n,. = —efV,., with e
representing the fundamental charge. Then, clearly 4E.n2. = (4E.n..)?*/(hy) =
(e8Vie)?/(hy), where we chose v = 4F,/h. Finally, combining results from Sec.
where we calculated the flux along the cavity, and using the fact that V,. = 9;®(x, t),
we arrive at

Hy+ Hy—cay :%O'Z + mz g, (aL — ak> (20n4. — cos(by)o, — sin(b,)o,)
k

. 2 (3.44)
H{psetien)

k
with
1
h C 1 2 n
g = % % ( 2t + Cygcos? by + o sin 29k) oS (%xq + 9k> . (3.45)

The “(—)” superscript on g is to stress that the qubit here couples to the operators
(a/,TC — ag). These expressions, along with Eq. ﬂ lead to a full description of our

system.

3.6 Energy Shift with Perturbation Theory

In this section we will look at a perturbative correction to the energy levels of our
system. While of particular interest will be the energy shift of the qubit’s ground
state, we will initially derive the energy correction for a general thermal state, and
only at the end consider that special case. Let us begin with a general Hamiltonian

H=Hy+V. (3.46)
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3.6. Energy Shift with Perturbation Theory

We treat the Hj as the nonperturbed contribution

thk (akak + ) + hZem|m (3.47)

and V' as a perturbation described by

V=hY Tmmaoy (Z g (GL + ak))
m k
- hz Zm|m)(m)| (Z g,ii)i% (al + ak)> (3.48)
m k
2
(Z g(i) 11 (CLL :I:ak)> .

For the sake of generality, we treat the qubit, as a more general qudit, occupying a d—
dimensional Hilbert space. We define 0" = o]'+0™ with ¢ = |m)(m+1| = (O’T)T
and ¢, as the frequency of the mth level of the qudit (with €,,11 > €,,). T my1 and
zm are treated as dimensionless quantities that allow for level dependent coupling
differences between levels m and m + 1, as well as varying scaling between different
energy levels (anharmonicity) respectively. We assume that @, i1 = Timi1m for
all m. ~ has units of frequency and ensures that the third term in Eq. has

the correct dimensions. Finally, we stress that using terms like g} i 5 <a£ + ak>

lets us easily study both cases of the qudit coupling to flux (i.e. ak + a) as well
as charge (i.e. i(az —ay) ) along the cavity simultaneously (although we only show
explicit results for latter scenario). It is clear from Eq. that the perturbation
will only couple neighbouring energy levels, both in the qudit’s as well as the cavity
oscillators” Hilbert spaces. In order to be consistent with the discussion in Sec. [3.2]
we label the first and second terms of Eq. as the paramagnetic, while the last
term as diamagnetic. We will later map this general Hamiltonian from Eq to

the one obtained in Sections [3.4] [3.5

The energy shift of a state |s) due to a perturbation V' can be written as

[(kIV]s)[*

0B, = As|V]s) + A 5
k

ks

+0(N), (3.49)

where A is a “small parameter”. This expression is valid when the various energy
levels are non—degenerate.
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3.6. Energy Shift with Perturbation Theory

Our initial goal is to calculate the energy shift of a mixed state described as
Wal [[@D P

Here, the qudit is assumed to be in a state |¢), while the oscillators in their respective

ni) (ng. (3.50)

hw; n;hw;

thermal state. Here P,, = (1 —e *sT)e *8T represents the probability that ith
mode is occupied with n photons.

In order to calculate the energy shift to a state p, we will first neglect the ef-
fects of temperature and consider a much simpler case with only two cavity modes
present. The resulting correction will then be easily generalized to the more elab-
orate scenario of Eq. [3.50] Hence let us begin with a state |g,ni,no). ¢ here
represents the gth level of the qudit, while n; and ny the nth levels of the cavity
modes 1 and 2 respectively.

Since the diamagnetic and paramegnetic terms are of dlfferent orders in g(i>
and we are only interested in corrections up to second order in g, we can easily
see that in the case of the first term of Eq. [3.49 only the diamagnetic term will be
relevant, while in the case of the second term of Eq. only the paramagnetic
terms will be of importance. This lets use calculate shift contributions separately.

The details of the following calculations are shown in Appendix [B], while in this
section, for brevity, we only present the key results. In the case of the diamagnetic
portion of the perturbation Hamiltonian, we have

SEg, =~ Z 92 (2my + 1). (3.51)

k12

The next step is to look at the paramagnetic terms and calculate how they
contribute to the energy shift. As before, using Eqgs. [3.48 and [3.49 we arrive at

ram 2 ()2 ng + 1 N,
5E£?Zin2 =h Z Z 1Zg.q+417 9, <( ~ + (c )

J=t 1,1 k=12 — €q+j) ¢ = Eatj) T Wk

(£)2

_ h\zq|2 Z 9

k=1,2

(3.52)

where we have assumed that g; is real. Hence the total shift to the state |g, n1, na)

5A more realistic scenario would be to consider a possibility of the qudit also being in a
thermal state. For the sake of simplicity however, we will assume that kT < fi(eg41 —&4), while
the energy of the lowest energy modes in the cavity may be of the order of kT, and hence the
nonzero temperature correction might be relevant.
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3.6. Energy Shift with Perturbation Theory

can be written as

§F gy my = OEPA 4 §pdiam (3.53)

q,n1,n2 q,n1,n2”

with §EP¥@m and §ES2™ - from Eqs. n and [3.51| respectively. Tt is easy to see
that this expression trivially generalizes to an arbltrary number of oscillators —
hence in order to consider all modes in the cavity, we can take k to vary between

1 and oo.

Next, we imagine that instead of a pure state where the kth mode has ny
photons, each mode is in a thermal state at temperature T. Hence the energy shift
for a given fixed set of n;s now gets a weight that corresponds to the probability
of it occurring. The generalized shift can then be written as

(6Bgmms) = > (PusPry - )0Eqm ... (3.54)

ni,mne,...

Noting that the average occupation of the kth mode can be written as (ng) =
> on, Dok, with > P, = 1, this expression reduces to

0By=h > S 4l g < e +(5q—$fj>)+wk>

(64— €quj) —w
j=+1,-1 k a+j) = Wi
()2

- S S et )

Here, we have simplified the notation, and defined 6E, = (0E,n, ny...). The first
two terms are due to the paramagnetic contributions in the coupling Hamiltonian,
while the last term is due to the diamagnetic term.

(3.55)

In summary, we now have a very general expression for the energy shift of the
state shown in Eq. [3.50, In the next section, we will concentrate on a particular
case where the qudit is assumed to be in its ground state.

3.6.1 Ground State Energy Shift

In Sec. 3.9 we will revisit the general energy shift expression just calculated to look
at a cavity boundary dependent Lamb shift, but in the context of the Casimir—
Polder effect, of particular interest, is the case where the qudit is its ground state,
namely where ¢ = 0. Combing Eq. along with the Hamiltonian calculated in
Sections and and further defining w, = ¢; — gy as well as x¢; = —sin(6,)
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3.7. Frequency Cutoff

and zyp = 20ng. — cos(d,), we can write

_ 2
5E, — _hzgl(j)z (sin2 5, ((nk> +1 N (ng) > N (20n4c — cosb,) B 2(ng) + 1) ‘
%

Wq + Wk Wy — Wk Wy, ¥
(3.56)

First, it is important to stress that the expression above is not defined when w;, =
w,. This is a possibility when the temperature is nonzero and hence (n;) # 0.
Furthermore, in order for the perturbative correction to be valid, we need to insist
that (ng)ge"/|w, — wi| < wi +w,. Hence, we need to keep this constraint in mind
in the following sections, when considering realistic values for the various circuit
parameters.

Finally it is important to stress that the sum we have just written down, not
surprisingly, does not converge — this is true even in the case of zero temperature
when all the ni, = 0. In a case of a charge qubit, in Sections and [3.5], we showed
thatﬂ g, scales like Vwi, with wy, ~ k, which clearly leads to both the paramagnetic
as well as the diamagnetic sum contributions diverging. In the next section we will
address this point, and discuss ways to remedy it, by accounting for the finite size of
the qubit, as well as considering the dissipative nature of superconductors beyond
certain energies.

3.7 Frequency Cutoff

In this section, we discuss two mechanisms which limit the total number of modes
that contribute to the energy shift described in Sec. [3.6.1], and therefore allow the
sum in Eq. to converge. The first is related to the size of the qubit, and
the second to the fact that at high energies, superconductors that make up the
stripline cavity are no longer superconducting, produce dissipation, and that in
turn can cause these high energy modes to decay. We furthermore stress that there
should be a yet another, higher cutoff, mediated by the bulk plasma frequency
of the superconductor, but we assume that it is much higher than the other two
candidates and hence do not discuss it explicitly.

3.7.1 Spatial Dimensions of the Qubit

So far we have envisioned that the qubit has a point-like spatial distribution. This
unrealistic assumption leads to a divergence when calculating the total contribution
to the energy shift that accounts for the many-mode field inside the cavity. To

5In the case of a flux qubit, which couples to the current in the stripline cavity, we would have
g,(:), which just like g7 scales as ,/wg, and hence also leads to divergence.
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Figure 3.3: (a) Qubit spatial profile function p(z) (scaled by p(0)) defined in Eq.
With Orect, OGauss = 100, 5 pum (red curve), Grect, Ogauss = 300, 15 um (green curve)
and Oyect, OGauss = 00,25 pm (blue curve). (b) P(w,) from Eq. — a Fourier
transform of the spatial profile function shown in (a). (c) P(w,)?, which is re-
sponsible in determining which cavity modes contribute to the energy shift due to
the qubit—cavity interactions. Even in the case of a very large qubit size, we find
that frequencies beyond 150 GHz could play a role. (d) A square of an alterna-
tive, phenomenological frequency cutoff function Py,,(w,) which is based on the
argument that beyond the frequencies associated with twice the superconducting
energy gap, the superconducting material used to build the circuit becomes dissi-
pative, and causes high energy mode to “decay away”. In this case, we assume the
superconducting material is aluminum, with the energy gap of A,,/27h ~ 75 GHz.
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3.7. Frequency Cutoff

model the qubit’s finite size, we imagine that the qubit is centered around z,
and has a spatial distribution governed by some function p(z — ;). The coupling
Hamiltonian we calculated in Sec. , which assumed the qubit interacts with
the cavity only at a single point z,, has to then be integrated along z. Doing so,
modifies Eq. such that ¢ is transformed to ¢ P(w,), where P(w,) defines
a spectral response function, and is the Fourier transform (with w, = k,, /v, and k,
representing the wave number of the nth mode) of the spatial distribution function
p(z). This leads to P(w,) playing a role of a “filter” which determines how much
the nth mode, at frequency w,,, contributes to the total qubit—cavity coupling. Let
us show this explicitly. In the case of charge qubit, from Sections and [3.5] we see
that the coordinate dependent term of the interaction Hamiltonian, for a given n,
is simply cos (‘%x + Hn). Hence the total contribution to the coupling Hamiltonian
is proportional tdﬂ

> 1 o0 . wn - wn
/ p(x — x,) cos <%x + 0n> dx = —/ plz — z,) (e—z(7m+0n) + 61(7x+9n)> dx

o0 2 oo

[ —i¥y

=3 n plr —xg)e v “dx
1 i0. - =g

+ 3¢ plr —xg)e v “dx
L b, visne, p (&) 4 Lontina, p <_ﬂ) ,
2 v 2 v

(3.57)

where we have used a change of variables, and a definition of Fourier transform
F(p(x)) = P(ky) = [72 p(x)e ™ *dx, with k, = w,/v. If the profile is symmetric
in frequency space (which we expect if we assume p(z) is real-valued), namely if

P (%) =P (—“’Tn), we can rewrite the above as

/OO p(x — x,) cos (%x + 9n> dx = cos (%xq + 0n> P <ﬂ> : (3.58)

oo v

Hence in frequency space, the effect of the nontrivial spatial profile function is to
scale the coupling strength g, (+) by a factor P (“;—") — from now we will refer to
this expression as only a function of w,, since we fix the speed of light in the cavity
in all the following calculations.

Let us next consider a particular form of the spatial function p(x) and calculate
the corresponding P(w,). In the case of a charge qubit for example, we can assume
that the coupling strength is mainly decided by the size of the coupling capacitor,

"The limits of integration in this integral should span over the full size of the cavity, namely
between 0 and x;. To simplify the calculation however, we will expand them to —oco and oo
respectively. This approximation can be justified by noting that away from =, +max(osigma; Trect)
the function p(z) is small, and hence only contributes weakly to the total coupling.
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3.7. Frequency Cutoff

and decays exponentially away from it. In a case where the qubit couples to the
stripline cavity inductively, we would similarly expect that the coupling strength is
largest for the portions of the cavity that is closest to the qubit loop and quickly
decays for portions further away. To model this kind of behavior, we conveniently
define p(z) as by a convolution of a rectangular function with a Gaussian. Namely
we take

p(aﬁ) = N/_oo grect(y)gGauss<x - y)dy, (359)

where N is a normalization constant and

Grect () = O <$ + ";’“) e (:g - "r;“) , (3.60)
952
gGauss(x) - 67 2U2Gauss7 (361)

with ©(x) defined in Eq. , and Opect and Tgauss constants that ultimately de-
termine the effective width of the qubit. We further choose the normalization
N to satisfy 1 = [ p(x)dz, which for the case of p(z) defined above leads to
N = -——L——_ Hence putting it all together, the effective function P(w,) can

Vv 27 Orect0Gauss
be written as

2v wlo? WnOrect
P (w,) = — 27 Cas ) iy (S0t ) 3.62
(wn) p— exp ( 52 ) sin ( —~ (3.62)

Next, we can look at a few cases, each characterized by specific values of o,e.¢ and
O Gauss- Flg 33(&) shows p(l’) for Orecty O Gauss — 1007 5 pm (red Curve); Orecty OGauss —
300,15 um (green curve) and Orect, Ogauss = 500,25 pm (blue curve). Fig [3.3(b)
shows the corresponding Fourier transforms presented in Eq. , and Fig. m(c)
P(w,)?, since we have already determined that the sum in the expression for d Ej
scales like g2 and hence like P(w,)?. From these plots, it is clear right away that
in even in the case of largest qubit size considered (o.ex = 500 pm), the modes of
frequencies greater than 150 GHz have an non negligible effect. In the case of the
smaller, more realistically sized qubits, the spread of P (w,) is even greater, and
in the case of the smallest qubit considered (~ 100 pm), from plot in Fig. W(c),
frequencies up to as much as ~ 1 THz seem relevant. This brings us to our discussion
of the second cutoff mechanism, which we consider next.

3.7.2 Dissipation of High Energy Modes

The arguments above, give an upper bound on the frequency cutoff, which puts a
limit on which modes interact with the qubit. Here we mention another possible
candidate that could have an impact on the shape of the spectral response function
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P(wy,). As was briefly discussed in Sec , beyond the frequencies associated with
the superconducting gap (in particular beyond frequencies of the order 2A,,,/27h),
the material used to fabricate the cavity stops behaving like a superconductor. The
result is that the high energy modes, beyond the gap, experience damping, which we
can in turn associate with a frequency cutoff. One way to model this effect, at least
classically, is analogous to what is considered in normal (non-superconducting)
cavities or transmission lines. There, one can modify the description of the cavity
shown in Fig. [3.2{a), and introduce series resistors along the inductors lxg, as well
as conductance shunting the capacitors cxq [78] [105]. The effect of such a change
introduces a complex wave number, which then scales the normal modes by factors
likdﬂ ~ exp (£px) (the plus or minus signs corresponds to waves are traveling in the
negative or positive directions respectively). The parameter § must clearly depend
on the mode frequency as needs to be dominant only at frequencies beyond twice
the superconducting gap. To our knowledge the precise structure of this dependence
is currently not very well understood. In order to still model this cutoff behavior
in our system however, we introduce a phenomenological version of the spectral
response function P(w,), and define it as

Pan(0) =06 = ) (0 (-2 ) 1) 1, 3oy

Ygap

with O, as before, the Heaviside function, wga, = 24, /R, and finally v, rep-
resenting a decay rate which governs how quickly higher energy modes stop be-
ing relevant. In the case of aluminum, we can take A, = 3.4 x 107*eV [71],
and conservatively approximate wg,,/2m = 150 GHz. Assuming that the cutoff is
“sharp”, but stressing that its exact form is not entirely known, we further take
Yeap/2m™ = 1.5GHz. Fig. |3.3(d) shows an example of P(w,)? from Eq. with
the parameters just outlined — we stress that the horizontal axis is in the units of
THz as before. The resulting cutoff is dramatic and hence we can expect that the
modes with frequencies beyond wg,;, will have negligible on the total energy shift.

It is important to stress that our exact numerical results for the effective Casimir—
Polder current discussed in the next section, will necessarily have a nontrivial de-
pendence on just how we model the frequency cutoff, and therefore effectively how
many cavity modes are considered to contribute to the qubit—cavity interaction.
Given that our phenomenological model for how to treat the cutoff may be rather
crude, an actual experimental realization of a measurement of a Casimir—Polder
current discussed in the next section could, in principle at least, be helpful in shed-
ding more light on how to best treat the frequency cutoff in superconducting circuit
systems such as the one used here.

8In Sec. we have written down the normal modes in terms of functions cos(k,x + 6,,), but
they could clearly be rewritten in terms of functions exp(+k,z).
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3.8. Casimir—Polder Current — Results

3.8 Casimir—Polder Current — Results

We are finally ready to use the results from previous sections to discuss the Casimir—
Polder current in our system. So far we have assumed that the flux through the
boundary DC-SQUID is a fixed parameter. Following Casimir and Polder [19] 20]
we now ask the question of what happens if this parameter is not fixed, but is
instead allowed to vary (the implicit assumption here, is however that it can vary
“slowly” on scales compared to dynamics of the cavity and qubit). In particular,
in this section, we are interested in the variation due to the interaction energy
between the stripline cavity and the qubit, which we have calculated in a form of
the perturbative energy shift § Ey. Hence, in a way analogous to [I], we can define
a Casimir—Polder current as a flux derivative of  Ey, namelyﬂ

0dEy
0P,

Iep = — (3.64)

Physically, Icp can be interpreted as a current that is circulating around the DC—
SQUID. In order to calculate the expression above, we need to sum all the mode
contributions that make up 0 Fy. No closed form of Eq. is known, but it can be
calculated numerically. Once that is done, again numerically, we can differentiate
it with respect to ®, in order to get Icp, we have set out to calculate.

The actual value of Icp that one obtains form our system is highly parameter—
dependent. Ideally we would like this current to be as large as possible. In the next
few sections we will look at how Icp varies as we change different quantities, while
keeping others fixed. Most of the discussion will also assume zero temperature,
however in Sec. [3.8.4] under certain conditions, we will briefly consider the effects
of this restriction being lifted.

There are certain sets of parameters that will stay constant for most of the
discussion. For example we will assume that the same superconducting material
is used in all cases. This fixes the values of inductance and capacitance per unit
length, and hence both the speed of light in the stripline cavity and its characteristic
impedance. We assume the material that makes up the circuit to be aluminum,

97To justify why the derivative shown in Eq. represents the current around the DC-SQUID
loop, we first note that the variable ®, is a flux that threads a particular circuit loop — namely
the one of the boundary DC-SQUID. Furthermore, in the limit of small geometric inductance
of the DC-SQUID (where L, < Ljg), ®; is close to the total threaded flux (i.e., we assume
that the small corrections due to the finite size of the geometric inductance, do not change the
total loop flux by “much”, meaning they do not change the structure of the normal modes in
the cavity). This, along with the Feynman—Hellmann theorem [40] [61], which shows how in a
quantum system, one can relate a generalized force (here a current) to an energy derivative with
respect to a parameter (here a flux), we can conclude that Eq. corresponds to the circulating
current around the boundary DC-SQUID loop.
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Figure 3.4: Profiles of the lowest four normal modes, ranging from n = 0 to

n = 3, plotted as a ratio of the total stripline cavity length x;. In the top row,
plots (a-b) show results for the case of f; = 0, in the middle row, plots (c-d)
show the case of f; = 0.45 and finally in the bottom row, plots (e-f) show the
special case of f; = 0.5. The left column shows the modes in terms of voltage

(namely +/fuw,/2u,(x)), while the right column the current (y/h/2w,l20,u,(x)).

The behavior of the modes is governed by the boundary conditions imposed on our

system. See main text for discussion.
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and take [ = 4.53 x 107" H/m and ¢ = 1.27 x 107! F/m, values experimentally
obtained in a similar system in [48]. These lead to v = 1/v/cl = 1.32 x 10%m/s and

Zo = /1]c = 59.712.

We will also mostly concentrate on a short stripline cavity, with z; = 0.01 m, as
is done many experimental setups. The main effect of z; is to define the fundamental
frequency of each mode, as can be observed from Eq. [3.27 Since we incorporate
a frequency cutoff in our model, as was discussed in Sec. [3.7 keeping z; small
will keep the fundamental frequencies large, which will in turn limit the number of
modes that contribute to the total energy shift § Fy. For example, with z; = 0.01 m,
with P(w,) as defined in Sec. , typically fewer than the lowest 30 modes end up
having an effect on d Ey.

Another important parameter that will play a crucial role in the results is the
plasma frequency of the DC-SQUID. It can be written as

Ws(q)s) = \/l COS(fSﬂ-M/LJSCJS) (365)

where as in other chapters, we have defined f; = ®,/®,. As was already hinted
at in Sec. [3.4] this quantity plays a central role in our system, since it brings
in the DC-SQUID flux dependence into the structure of the normal modes. We
will use parameters that lead to ws(0)/2m = 107 GHz, an experimentally easily
realizable value. Clearly as the flux through the DC-SQUID changes, this quantity
will decrease and be minimized at f, = 4+0.5. It is useful to understand just how
different values of the DC-SQUID flux affect the structure of the different mode
profiles. Fig.[3.4shows a few lowest energy modes, starting with n = 0 up ton = 3.
In the top row, plots (a-b) show results for the case of f; = 0, in the middle row,
plots (c-d) show the case of f; = 0.45 and finally in the bottom row, plots (e-f) show
the special case of f; = 0.5. The left column shows the modes in terms of voltage
(namely +/fw,/2u,(x)), while the right column the current (y/h/2w,[20,u,(x)).
The behavior of the modes is clearly governed by the boundary conditions imposed
on our system. In the case of f; = 0, the frequency of the modes shown is much
lower than the value of w,(0), and hence the left boundary, at x = 0 is seen by
these low energy modes as a (approximately) closed circuit, where the voltage is
close to zero. It is worth stressing however that as n increases we see that the mode
voltage at the left boundary tends to stray away from zero. This is because as n
increases, the mode frequency w, increases, and therefore gets closer to the DC—
SQUID plasma frequency w4(0), which results in the mode phase shift 6, moving
away from the value of —7/2 (see Egs. and . The boundary at z = z; on
the other hand, was assumed to be an open circuit, with the boundary condition
resulting in the current there being 0. This is fully consistent with the plots in the
top row.

As we start varying the flux towards fs; = 0.45 in plots (c-d) and further towards
fs = 0.5 in (e-f) the effective plasma frequency of the DC-SQUID is lowered, and
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therefore, for the same reasons just outlined (since the mode frequencies are now
of the same order as the effective plasma frequency) even the low frequency modes
do not see the boundary as simply a closed circuit, but instead each mode gets a
different phase shift, and hence sees the boundary differently. We will see in the
next few sections, that this dependence of the mode profile structure, in particular
near f, = 0.5, will play a central role in our calculations of I¢p.

3.8.1 Varying qubit position z,

The first set of results we will examine, consist of studying how the Casimir—Polder
current Icp changes as we vary the ratio between the position of the qubit in the
stripline cavity and the cavity length — namely x,/z;. The results, for the set of
parameters discussed in the last section, and with the qubit bias dng. set to zero,
is shown in Fig [3.5] Both plots (a) as well as (b) show the same dataset, but in
different formats, and the currents are presented in the units of nano Amperes. In
the figure, we vary x,/z; between values of 0.1 and 0.9. We stay away from cases
of z,/x; = 0 and x,/z; = 1 in order to safely neglect any potential boundary effects
and account for the qubit’s finite size. Furthermore, we stay away from the flux
|fs| = 0.5, in order to keep our 1d model description of the DC-SQUID valid.

From the plots, we see that in general, the magnitude of Icp tends to get larger
as the qubit gets closer to the boundary at x = 0 where the DC-SQUID is located.
It is observed the largest in fact, at z,/x; = 0.1 and in the case of f; = 0.48.
This could be expected from our discussion in the last section, where we showed
that near zy the voltage profile of the modes showed the greatest variation, in
particular when the flux was near f; = 0.5. Elsewhere along the stripline cavity,
we observe oscillating areas of high (low) values of Icp as z,/x; changes. We can
predict that these correspond to regions where the variation of the mode profiles
with respect to the DC-SQUID flux is largest (smallest) for a substantial number
of the contributing modes.

Another observation we should make, is that Icp is always anti-symmetric
around the flux f; = 0. This will be a recurring result throughout the rest of
this chapter, and can be attributed to the fact that the flux dependence in our
system is mathematically included through the expression for the effective plasma
frequency of the DC-SQUID w,, which is a function of the cosine of f,. Hence
the energy shift is always symmetric around f, while its derivative, the current,
anti-symmetric, as observed here.

3.8.2 Paramagnetic Vs Diamagnetic Contributions

We have already discussed in Sections [3.2] and [3.6] that the total value of Icp con-
sist of two main contributions — one coming from the paramagnetic qubit—cavity
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Figure 3.5: The Casimir-Polder current /cp as a function of the DC-SQUID flux
fs as well as the ratio x,/z;. Both plots (a) and (b) show the same data, but in
different formats. We can observe a general trend, that shows the magnitude of I¢p
increasing as the qubit’s position gets closer to the boundary containing the flux

dependent DC-SQUID.

coupling, and the other, from the diamagnetic, field self-energy interaction. In this
section, we again look at the case of a varying ratio of x,/x;, but now consider the
two contributions J3&™ and I%5* that make up the total Casimir-Polder current.
The results are shown in Fig. Plots shown in (a-b) depict Ida™ while in (c-d),
IER®. If we were to add both of these contributions together, we would reproduce

the plots shown in Fig. from the previous section.

It is clear that for the set of parameters used here, the two contributions are
similar in magnitude. This in general does not have to be the case. For example
looking at the general expression for the energy shift d £y shown Eq. and at
the expression we can conclude that one key set of parameters that has an
impact on the contributions of these two terms, consists of the capacitors that
define the qubit’s charging energy and the coupling energy between the qubit and
the stripline cavity. Both of these could in principle be varied at the fabrication
time of the circuit.

We also observe that the both I¢™ and IZ5™ have a complicated dependence
on the qubit position as well as the flux through the DC-SQUID. At least in the
set of parameters we have looked at here explicitly, Fig. shows that they are
often similar in magnitude but correspond to currents in different directions. This
is not beneficial to maximising the total Casimir-Polder current, since the two
contributions are often seen to cancel each other out.
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Figure 3.6: The Casimir—Polder current contributions I&8™, shown in plots (a-b)

and I8p", shown in plots (c-d). The total Casimir-Polder current composes of the

sum of Jg3™ and IZ5™ and is shown in Fig. 3.5]

43



3.8. Casimir—Polder Current — Results

/

Figure 3.7: The Casimir-Polder current /cp as a function of the DC-SQUID flux f;
as well as the qubit charge offset dng.. Both plots (a) and (b) show the same data,
but in different formats. A nonzero charge offset introduces an effective permanent
dipole moment, which in turn leads to a lack of symmetry around dng. = 0 — see
main text for more details.

3.8.3 Varying offset charge dng.

In this section we will look at the effect of varying the qubit charge offset dnge.
We have already discussed that changing dng., controls the effective coupling of
the qubit to the stripline cavity. In particular, from Eq. and the fact that
tanf, = —E;,/(8E.0nq.), we can deduce that at ong. = 0 only coupling to the
qubit via the o, term is relevant, while with dng. # 0, coupling of the field to the
0., qubit operator also contributes to the total energy shift. Furthermore, a nonzero
dng. introduces, what can be interpreted as, a permanent dipole moment of the
qubit through the second term of Eq. which in turn, leads to non-symmetry
around dng. = 0 in the calculated energy shift, and therefore the resulting Casimir—
Polder current. This can be seen directly from Fig. As before, both plots (a)
and (b) show the same data, but presented differently. We use the same set of
parameters as in the previous sections, except fix the qubit at z, = 0.001 m from
the left boundary where the DC-SQUID is located, which corresponds to the ratio
zg/x; = 0.1. The dng. is varied between values of —0.1 and 0.1, and the largest
magnitude of I¢p is observed at ddc = 0 and at f; = 0.48, the highest value of the
DC-SQUID flux considered.
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3.8.4 Finite Temperature

So far, in all the results we have presented, we have assumed that our system is
at zero temperature. In this section, we will look at a more realistic scenario, by
relaxing this condition and considering a small, but finite temperature. We should
stress, however, that as was already outlined in Sec. we will concentrate on
a regime of parameters where kT < hw,, and neglect any effects due to the
thermal occupation of the qubit’s Hilbert space beyond the ground state. We will,
however, allow for the degrees of freedom of the stripline cavity to be thermally
excited (which would lead to (ny) greater than zero in Eq. [3.56). In the previous
sections, we have also assumed that the length of the cavity is x; = 0.01 m. This
corresponds to the frequency of the lowest mode n = 0, of ~ 3.3 GHz — very much
of the order of the qubit’s frequency, which at dng. = 0 is assumed to be 7 GHz.
In this section, we will assume an increased cavity length of x; = 0.1 m, with the
frequency of the lowest mode of ~ 0.33 GHz, with the qubit still close to the DC—
SQUID boundary, at z, = 0.001m. Although the effect will be still small, this
change will allow for it to be greater than would have been before, as the mean
mode occupation numbers (ng) will be larger. This very point can be observed
directly from Fig. [3.§(a), where we plot the mean thermal occupation of a cavity
mode as a function of frequency and temperature. So for example at a realistic
experimental temperature of 7' = 0.040 K we can expect the lowest energy mode
to have on average around two photons (i.e ng ~ 2), with this number decreasing
for higher indexed modes. Hence repeating the calculation of I¢p leads to results
shown in Figures 3.§b) and [3.§(c). Both plots show the same data, with the plot
in (c) being a zoomed—in version of the plot shown in (b). We look at two cases
of zero temperature (solid curves) and of 7' = 0.040 K (dashed curves). Different
colors correspond to different qubit charge offset — in particular we have dngq. = 0.0
(in red), éng. = —0.08 (in blue), and dnq. = 0.08 (in green). It is clear from these
plots that the difference in results between the two different temperatures is minor
(at worst less than 10%), but is observable at high values of the DC-SQUID flux,
near f, = 0.5, and at the charge offset of dng. = 0.

3.8.5 Can the value of Icp be larger?

It is clear from the last few sections, and from looking at Egs. and that
this is a highly parameter—dependent system. In particular, since we do not have
an analytical expression for the energy shift 6y (i.e., a closed form for the sum)
and therefore the Casimir—Polder current, ensuring that we have the largest value of
Icp possible, for a set of physically realizable parameters, would require an involved
numerical optimization over the full parameter space. We have clearly not done
that, but instead discussed what happens when we vary certain selected parameters,
while keeping others constant. It is very likely that such an optimization could
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Figure 3.8: (a) Thermal occupation of a field mode, plotted as a function of fre-
quency and temperature. Plots in (b) and (c) show the Casimir-Polder current in
a circuit with 2; = 0.1 m and with the qubit placed at z;, = 0.001m, as a func-
tion of the qubit charge offset of dng. = 0.0 (in red), dnq. = —0.08 (in blue), and
dnge = 0.08 (in green). Solid curves represent results at the temperature 7' = 0,
while dashed curves at T" = 0.040 K. The difference in results between the two
different temperatures is very minor, and is only observable at high values of the
DC-SQUID flux, near f; = 0.5, and at the charge offset of dng. = 0. The plot
shown in (c) is a zoomed—in version of the plot shown in (b). The lack of symmetry
between curves corresponding to dng. = —0.08 and dng. = 0.08 is discussed in main

text.
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increase the Casimir—Polder effect we studied, perhaps even significantly.

One could also envision some changes to the physical system that could be
beneficial. For example it is likely that a more elaborate flux dependence of the
boundary conditions could be helpful. In particular one could imagine having a DC—
SQUID on both sides of the stripline cavity. This would allow for a larger effective
phase shift seen by different modes, which under right circumstances could likely
be engineered to increase the total flux dependence of the energy shift, and hence
the Casimir—Polder effect. The drawback would be that the normal mode structure
would become even more complicated. Following the discussion in Sec. even
in the same limits of a small size of the DC-SQUIDs, we would expect another
equation that would have to be solved simultaneously along with Eqs. and
in order to describe the normal modes w,(z) and their frequencies wy,.

Yet another approach could involve coupling the stripline cavity that the qubit
interacts with, to another cavity constructed out of left handed material (one
where the placement of the capacitors and inductors is inverted in a schematic
of Fig. 3.2(a)). It was shown in [36], that in such a system, the mode structure
is very different from what we discussed in this chapter. In particular, the mode
frequency is inversely proportional to the wave number, namely w,, ~ 1/k,. This
results in a mode profile u,(z) along the cavity that the qubit couples to, to be
very similar for a large range of modes. Strategically placing a qubit at a point cor-
responding to a voltage node for all these modes, would likely lead to an increased
value of the energy shift, and in some cases possibly Icp.

In summary, it is very likely that by both optimizing over the values of physical
parameters, and perhaps introducing some changes to the general circuit used,
would lead to an enhanced Casimir—Polder effect — perhaps making it large enough
that it could be more easily measurable.

3.9 Cavity Boundary Dependent Lamb Shift

While so far we have considered our superconducting circuit for the purpose of
studying the Casimir—Polder-like current, we now also have all the necessary in-
gredients to look at it in the context of a flux—controllable Lamb shift. Similarly
to the general Casimir-Polder effect, the Lamb shift is related to the changes in
atom’s energy level structure, due to its interactions with the electromagnetic field
(vacuum typically). It was first theoretically explained by Bethe [5] and experi-
mentally observed by Lamb and Retherford in 1947 [77]. In their setup, they used
spectroscopic methods to measure the difference in 25 1 and 2P1 energy levels of
the Hydrogen atom, and found that they are not degenerate as one would expect
from Dirac’s 1928 theory. This result was of great significance and was, partly at
least, responsible for a burst of activity in what would become the field of quantum
electrodynamics.
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3.9. Cavity Boundary Dependent Lamb Shift

Since then, many more experimental realizations in the atomic domain have
been studied [15 59, B2]. Furthermore, in 2008 an example of a Lamb shift was
also demonstrated in a superconducting circuiﬂ [43]. The authors considered a
transmon qubit embedded in a stripline cavity very similar to the one described in
Sec. In our discussion, we will use the results already obtained in the rest of
this chapter to present an expression of a Lamb shift that explicitly depends on the
property of a tunable boundary — namely the DC-SQUID flux.

We initially concentrate on a case of a qudit, and later the special case of a
qubit. Using the expression for the energy shift of the state shown in Eq. that
we have already calculated, we can write the total energy difference between the
qudit being in its 1st excited state and the ground state. Using Eq. [3.55] we arrive
at

AELO :<h€1 + (SEl) — (hgo + (5E0)
1
o) +h Y g ()
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The first term clearly corresponds to the qudit’s “bare” energy difference between
1st excited and ground states, while the subsequent terms represent the very Lamb
shift we setup to calculate. From now on let us call it d Epap. It is easy to see that
the third level of the qubit can be important as the expression above includes terms
that depend on both €5 and x; 5. We could follow the methods discussed in Sec.
to rewrite these variables in terms of physical circuit parameters, but instead here
for the sake of simplicity, we will treat the qudit as a two level system — a qubit.
Hence, with the help of Eq. we can simplify Eq. to

B w2 o 1 1 22— 22
5ELamb =h § 9. $O,1(2<nk> + 1) + + : (367)
k

Wy +WE Wy — W W

We can expect that the frequency cutoff mechanisms introduced in Sec. to still
apply, and assume that g~ can be replaced by g~ P(wy). Futhermore, as was the
case with the energy shift of the qudit’s ground state, it is clear that d Ep .y is not
defined when wy, = w,. Here however, this is true regardless of the temperature of
our system — this condition is true even when 7" = (ny) = 0. Hence in order for the

10We should stress that in [43], the authors considered a superconducting qubit interacting
with a single field mode. In more standard descriptions of the Lamb shift however, one typically
considers an atom interacting with a multi-mode field, as is done here.
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perturbative Lamb shift above to be defined (as calculated using non-degenerate

perturbation theory as above), we need for g\ /|w, — wi| < w, +wy to be satisfied.

Finally, in order to further rewrite this Eq. above, for the particular case
of the superconducting system considered in this chapter we note that (in the case
of the charge qubit for example) we can rewrite zo; = —sinf, and 2} — 22 =
8dnq. cos B;. We can also point out perhaps the most important observation of this
discussion. Since we have already shown that g,(+) depends on the DC-SQUID
flux, which can be easily varied in a real experimental system, we have an elegant
means to control the effective size of § Bt amp.-

3.10 Standard Casimir Effect

Besides the small digression of the last section, where we discussed a flux—dependent
Lamb shift, throughout most of this chapter, we have mainly concentrated on the
existence of the Casimir—Polder effect in a superconducting circuit. We showed
that under some circumstances, the presence of the qubit can induce a current in
the DC-SQUID located on the cavity boundary. In this section, we will consider
an effect analogous to the Casimir (not Casimir—Polder) effect already reviewed in
Sec. [3.1], where the system consisted of two large, parallel conducting plates, some
distance apart, and where the mere presence of the field vacuum fluctuations can
induce a force between the plates. The superconducting circuit that will model
the analogue of such an effect, will consist of the same stripline cavity as in the
previous sections, but this time, we will discard the qubit completely. The cavity
boundaries, DC-SQUID at = = 0 and open circuit at * = x;, will correspond to
the conducting plates that enforce the field boundary conditions in a traditional
system.

Before we look at the setting of our system in more detail, let us briefly review
the mathematical nature of the Casimir force, and outline one way in which it
can be calculated. In the case of two parallel plates, the general expression of the
force on the mirrors can be written as Frasimir = —0aU(d) = —04(Eo(d) — Ep(c0))
[85]. Here the Eg(z) = >, $hw,(x) represents the ground state energy of the field
with the plates distance x apart, while U(d) is the potential energy associated with
placing the plates into a configuration where they are distance d away from one
another. While clearly both Ey(d) as well as Ey(oco) are infinite, their difference
can be shown to be finite using the Euler-Maclaurin formula?l This leads to a well
defined expression for the Casimir force.

Let us next look at the case of the superconducting circuit shown in Fig. [3.2|(a).
We concentrate on a case of zero temperature, and neglect the qubit, while only

" One typically also needs to enforce various frequency cutoff mechanisms, based on physical
arguments. However it is important to stress that the final expression for Foagimir is independent
of these simplifications.
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consider the stripline cavity. We assume that the cavity length z; is a fixed pa-
rameter (in contrast to a case discussed above where the plates enforced the field
boundary conditions, and hence the force was defined in terms of the distance be-
tween them), however we treat the flux through the DC-SQUID as the classical
parameter that lets us define a generalized force (here a current). This, as in the
case of the Casimir—Polder discussion in the rest of this chapter, will allow us to
define a Casimir current, which we will denote as I.

In order to calculate I, we will follow the general procedure from above. First,
let us note that the energy of the field’s ground state, at a fixed value of the flux is

EO((I)S) = Z

with @, the flux through the DC-SQUID. Hence, we can define a quantity analogous
to the potential energy from the standard Casimir effect, call it AFE, as the difference
between FEj at different values of the flux. For convenience, let us chose one reference
value of &, = 0, while the other, an arbitrary &, = &, with ® # 0. Then we can
write

Fiw, (®s) (3.68)

N | —

AE(®) = Eo(P) — Eo(0)

1, & (3.69)

with Aw,, = w,(P) — w,(0). This lets us define a Casimir current as simply

0AFE
Io = ——. 3.70
A (370
For this expression to be valid, we need to ensure that AFE is finite. We will look
at this expression numerically shortly, but first, let us outline a brief sketch of an
analytical proof of convergence. While it would be reasonable to include a frequency
cutoff as in Sec. [3.7], based on physical considerations, it seems that this step here

is not necessary.

Since we have already calculated the normal modes of the field inside the
stripline cavity, let us start by reviewing the results from [3.4 The relationship
between w, and the phase shift that each modes sees, 6,,, can be written as

2 _ ) 2
0, = tan! (M) (3.71)
Weln,
Wp = wy (nm—6,), (3.72)
where for the sake of notational brevity, we have defined w. = (CjsZ)~' and

w, = v/x;. For a given n, these equations can be solved numerically, but in order
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3.10. Standard Casimir Effect

to show the convergence of Eq.[3.69, we only need to concentrate on their behavior
in a case of large n. First, using Eqs. [3.71| and we can rewrite Aw,, as

w, = arctan (wWs(0)* = wy(P)*)wewn
Aw, t <w3 F (W2 — wy (D)2 — wy(0)2) w2 + ws(CI))QwS(O)?)

C
w
= arctan <p1( ”)> ,
p4(wn)
where we have taken pi(w,) as the corresponding polynomials of degree k in w,.
Our next step is to see how w,, scales as n increases.

(3.73)

To do this, we first note that in a given physical system, w,, w. and wy are finite.
We can therefore always find a value of n large enough, so that w, > w,,w., ws.
This lets us expand Eq. in the limit of large w,. Keeping the first few terms,
leads to

T w Wi wiw 1
O,=-— 4+ 2210 =). 3.74
2w, * 3w W * (wg) (3:74)

Next, solving Eq. for 6,, and equating it with the expansion above, we arrive
at

w Y) w3 wiw 1
- 2= = c 240 —). 3.75
nr Wy 2 Wy * 3wy 3 " (Wfi) ( )
This lets us rewrite w,, as
1
Wy =T (n - 5) Wy + Owy,. (3.76)

dw, can only be solved for numerically, but we are only interested in its trend as
n — oo. In particular, as n increases, dw,, decreases, in the worst case, aﬂ@ (1/n).
Next, we note tha at large w,, 2n) ¢ O(w?). Hence, using the newly found

p1(wn)
expression for w, in terms of n, we can conclude that % € Q(n?), and hence for
a large enough n we find

Pa(wn) > n2,

P1(@n) (3.77)

12We are neglecting the fact that we have defined w, in terms of n as an infinite sum. A more
rigorous proof would have to take this into account.
13Here we stress that © represents the Big Theta notation.
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Figure 3.9: (a) AE as a function of mode number n for a fixed value of flux
ratio f, = 0.40 calculated numerically. Past n ~ 200 the value for AFE stops
changing, even as contributions from higher frequency modes keep being added.
This is consistent with the expectation that AE' is convergent. (b) The change of
6,, parameter, which corresponds to the phase shift seen by the nth mode, as a
function of mode number n, shown for two values of DC-SQUID flux ratio f,. The
red, solid curve corresponds to fs = 0, while the green, dashed curve, to f; = 0.40.
As n increases, in both cases 6, tends to 7, which physically corresponds to the
fact that in the limit of high n (and hence high w,) all the modes see the boundary
at x = 0 in the same way.

Therefore, since arctan(x) is a monotonically increasing functionE

arctan <p ! (“";) < arctan (%) , (3.78)

P4 (Wn

for n > ny, with n;, appropriately chosen. This finally lets write Aw,, as
Aw, = i arctan (P1 (wn)> (3.79)
e pa(wy)
nr—1 (wn
1
< t t . 3.80
Zarcan( wn) Zarcan( ) (3.80)

The first sum is clearly finite, as we are only summing over n;, elements, and the
second term can now be also shown to be convergent (by for example an integral
test). This lets us conclude that the series presented in Eq. converges, and
hence AF is finite.

We are now ready to look at a specific example of AE and I, in a system with

14We have assumed that p; (wy,) /pa(w,) > 0, for large enough n, and therefore w,, without
any loss of generality. This ratio could be negative (depending on which of ws(®) or w,(0) is
greater), and since arctan is an antisymmetric function, the minus sign could be simply taken
outside of the sum in Eq.
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Figure 3.10: (a) AF plotted as a function of the DC-SQUID flux ratio f;. AF is
calculated numerically by executing the sum shown in Fig.|3.69|over a finite number
of modes — enough to conclude convergence. (b) The Casimir current I plotted
as a function of DC-SQUID flux ratio fs (shown in the units of nA). I is obtained
by numerically differentiating results for AE from part (a). As expected, AFE is
symmetric, while [ is antisymmetric in f; — see main text for more details.

realistic physical parameters. In particular, we will consider the same numerical
values of various parameters as in the case of the Casimir-Polder discussion, in the
previous sections of this chapter. We will assume that x; = 0.01m, [ = 4.53 X
107"H/m and ¢ = 1.27 x 107°F/m. As before, these lead to v = 1/vel =
1.32 x 10®m/s and Z, = \/l/—c = 59.72Q. Furthermore, we will fix the plasma
frequency of the DC-SQUID at f, = 0 as 107 GHz — a realistic value for a DC—
SQUID in a circuit such as the one presented here.

These parameters let us numerically calculate AF from Eq. by summing
over the various contributions of the different modes. While we will only sum over
a finite set of modes, it is important to stress that we need to consider all the
modes that are required for the series to converge. Fig. [3.9(a) shows how for a
fixed value of f; = 0.4, AFE scales as the mode number n increases. It is clear that
in this case, past n ~ 200 the value for AFE stops varying, even as contributions
from higher frequency modes keep being added. In Fig.[3.9(b), we also look at how
the 0,, parameter, which corresponds to the phase shift seen by the nth mode, as a
function of mode number n, changes as the mode number n increases, here for two
different values of DC-SQUID flux ratio f,. The red, solid curve corresponds to
fs = 0, while the green, dashed curve, to f, = 0.40. At low values of n, the various
modes see a different relative phase shift, which depends on the DC-SQUID flux.
As n increases, however, in both cases 6,, tends to 7, which physically corresponds
to the fact that in the limit of high n (and hence high w,) all the modes see the
boundary at x = 0 in the same way.

We are now ready to see how both AFE as well as I vary as a function of
the DC-SQUID flux ratio f,, with I calculated by numerically differentiating AF
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with respect to ®. Fig. [3.10[a), shows results for AE, while Fig. [3.10|(b) for the
Casimir current Io. As we might expect, the results for AF are symmetric around
fs, while the Casimir current is antisymmetric. This is consistent with the results
we observed in a Casimir—Polder case, in the previous sections, and is a direct
consequence of the fact that the DC-SQUID flux dependence in our system is
included through the DC-SQUID plasma frequency, which in turn mathematically
scales through a symmetric cosine function. For the set of physical parameters
that we study here, the maximum of I is observed close to f, and reaches almost
~ 50nA. This number, while small, might be at the verge of being detectable.

3.11 Casimir and Casimir—Polder Current Mea-
surement Prospects

So far, we have shown how to derive both Casimir as well as Casimir—Polder—
like effects in a superconducting circuit system. A particularly important topic
to address, is whether the currents associated with these effects, can be actually
detected, and if so, how? In this section, we will briefly speculate on possible
answers to these questions.

Over a set of realistic, experimentally viable parameters, without optimization,
and subject to the cutoff mechanisms discussed in Sec. [3.7, we have shown that
in our system, the magnitudes of the currents associated with the Casimir and
Casimir-Polder-like effects, were of the orders 1078 A and 10713 A respectively.
In both cases, these numbers correspond to the currents circulating around the
DC-SQUID loop located on the boundary of the stripline cavity. These currents
are small, but with modern technology, should be detectable. We stress however,
that the Casimir—Polder current calculated here, is by definition, only due to the
presence of the qubit. In a system we have considered, one has to expect that the
total effective current that would be of importance in an experimental setting, would
necessarily consist of both the Casimir as well as the substantially weaker Casimir—
Polder currents simultaneously. Hence a good start as far as the experimental
realization is considered, would be to look at the case of a Casimir effect in our
circuit, and simply initially neglect the presence of the qubit altogether.

One way in which circulating currents can be measured, consists of inductively
coupling a SQUID amplifier [87,[89] to the loop around which the current circulates.
The natural frequency of the DC-SQUID that makes up the amplifier, depends
on the total flux through its loop, which in turn depends on the strength of the
circulating current being measured. A variety of flux discrimination approaches
that use this fact will be briefly described in Sec. [4.10] mostly in the context of flux
qubit measurement, but the principle behavior is similar here. The magnitudes of
currents that we expect to be detectable, could be as small as 107'* A, assuming
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3.11. Casimir and Casimir—Polder Current Measurement Prospects

long enough integration times and strong enough mutual inductance between the
amplifier loop and the boundary DC-SQUID in our circuit [50].

Although a DC measurement (where the flux through the boundary DC-SQUID
is kept constant) is likely possible, it might be beneficial to also consider slow AC
measurements instead, as they are less susceptible to low frequency noise. This
would lead to a scheme analogous to the standard Casimir forces detection mech-
anism shown in [I3], where the force was experimentally measured to within 15%
of the known theoretical value. The measurement procedure consisted of slowly
driving the two plates, and showing that the effective frequency of their result-
ing motion has a correction that is in agreement with a presence of a “drag—like”
force, which in turn scales as a function of separation between the plates exactly
as Casimir predicted in his 1948 paper.

An analogous version of this experiment in our setting, would be to slowly
modulate the flux through the DC-SQUID, for example around some constant value
where we predicted the magnitudes of the Casimir or Casimir-Polder currents to be
highest. The Casimir-like effects in our circuit, would introduce a correction to the
circulating current expected purely from the effects of the drive, and hence a small
shift to the effective frequency of its modulation. Of course various issues would
have to be worked out, such as the effects of the interaction with the measuring
DC-SQUID amplifier, the fact that in in our system we have neglected the effects
of the geometric inductance of the boundary DC-SQUID, which would have to be
accounted for, since they have an effect on the total circulating currents around the
DC-SQUID, and so on.

Yet another scheme of interest that would explore at least some of the physics
presented in this chapter, would be simply to perform a “standard” spectroscopic
qubit measurement as is often done in applications related to quantum information.
In the case of the charge qubit that we studied for example, this could either mean
a direct charge offset measurement by coupling a single Cooper pair transistor
directly to the qubit, or to use more modern techniques which consist of driving
the cavity with a probe field, and observing its qubit—state-dependent properties
(phase, magnitude). This kind of a measurement would help us confirm predictions
related to the Lamb shift that was described in Sec. where we were interested in
the difference between various energy levels of our system (say excited and ground
states of the qubit), but not necessarily the Casimir-Polder current we set out to
measure. One easy way to see this, is to point out that by looking at differences
between the energy levels we end up neglecting the diamagnetic coupling effects (the
A%-like term) that we have shown in Sec. can be of fundamental importance
to the total Casimir—Polder current. This is because the contributions of such a
term are independent of the state of the qubif’]

15This is not true when one calculates the higher order energy shift corrections, at which point
the field self-interacting contributions would be dependent on the qubit state that is considered.
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Hence to summarize, we believe a measurement of the effects calculated here
is likely be possible, but more research is still required to work out its details and
make it a reality.

3.12 Assumptions, Conditions and Model Limi-
tations Review

In this second—last section of this chapter, we review the major assumptions that
we have made throughout our discussion so far, and briefly touch on their various
consequences.

1. Series Convergence

In order to calculate the energy shift required to obtain the Casimir—Polder
current numerically, the series expansion for § Ey needs to be convergent. In
Sec. we discussed two physical mechanisms which ensure that to be the
case, and defined a corresponding spectral response function P(w) for each.
The first was a result of the finite physical size of the qubit, while the second
accounted for the fact that at frequencies beyond 2A,,,/h, the material that
makes up the stripline cavity is in general no longer superconducting, which
leads to damping of the high frequency modes. In a general case, the effective
cutoff may be different depending on which mechanism dominates, but in
our calculations, we have assumed that the qubit is small enough, and the
latter scenario provides the leading cutoff contribution. Furthermore, we used
P(w), along with the length of the cavity, to establish over how many modes
we actually have to sum in order to account for all of the non—mnegligible
contributions. From Eq. [3.27| we see that w,, ~ Iiz’ hence it is clear that as
x; increases, the lowest frequency of the cavity will decrease, and therefore
more modes will need to be accounted for. Finally, it is critical to reiterate
here that the results shown in the Sec. depend on just how we treat the
frequency cutoff. Changing the form of P(w,), changes the Casimir—Polder
currents that one would observe. Since a full understanding of the exact form
of P(w,) that one would expect in our system is still an open problem, an
actual Casimir—Polder experiment in a superconducting system such as the
one discussed here, could be helpful in providing some insight.

2. Perturbation theory validity
As shown in Sec. [3.6] we used non—degenerate perturbation theory to calculate
the energy shift § Fy. In order for the expression to be useful, we need to ensure
that it is valid over the range of parameters of interest. In particular, we

This, however, does not change the fact that the leading order term that is relevant in a Casimir—
Polder effect, does not play a role when looking at qubit’s energy differences.
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want to be certain that the kth term of the sum that makes up 6 Ey is smaller
than wy +w,. Looking at Eq. [3.56] at zero temperature (when (n;) = 0), this
condition is easily satisfied for reasonable physical parameters — in particular,
if we note that all the terms scale inversely with w,,, hence as k increases, the
contributions of higher frequency modes decrease. However in the case of
finite temperature, when (n;) > 0, the second term of Eq. is divergent
when the qubit is on resonance with a mode of the cavity field. Hence in
order for the sum to be valid we need to satisfy the following condition

(nk>g§€i)2 sin? o,

<L Wy + Wy (3.81)

|wg — wi| !
This condition implies that if the temperature is large, the energy of the
lowest cavity mode cannot be “too small”, and puts a limitation on how long
our cavity should be. In the discussion above, therefore, we concentrate our
discussion on cases of ether zero or very low temperatures.

3. Linearity of a DC-SQUID
In the derivation of the normal modes inside the stripline cavity, we treated
the, in general nonlinear DC-SQUID, as a linear LC circuit. Let us briefly
review the effects of this approximation. Using the notation from Sec.
where we defined the flux field along the cavity as ®(z,t), we can define the
flux across the DC-SQUID as ®(0,¢), or just ®, for notational convenience.
In the limit of small geometric inductance, we can write the full potential

energy of the DC-SQUID as
U= —E;s(Pg)cos(P/y), (3.82)

where Ej (®,) = ¢3/L;s(Ps). Since in our system, the DC-SQUID is not
biased with any DC current, we can expand this expression around &, = 0,
which leads to

1 Ejys(Ps
U~ —#@2 + O(dY). (3.83)
2 9
In order for this to be a valid representation of the DC-SQUID potential
energy in our system, we need the spread of the wavefunction to be small.

Mathematically, we can express this as

AD = /(02) — (B)2 < ¢y, (3.84)

This condition will clearly coincide with ®’s conjugate variable ) having a
wide distribution. In a standalone DC-SQUID these conditions are satisfied
as long as the Josephson energy FE;(®s) is much greater than the charging
energy Ec, = €?/2C; [101], however, since here the DC-SQUID is an integral
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part of the more complicated system consisting of the stripline cavity, we have
to be more careful. Using results shown in the Appendix [C| we can calculate
an explicit expression for A® assuming the full system is in its ground state.
This leads to

AP = \/Z zz u2(z = 0) (3.85)
h

cos2 0,
B zn: 2wy, (

, (3.86)
% + Cjgcos?6,, + m sin 20n>
where we have used the explicit expression for the cavity normal modes calcu-

lated in Sec. Substituting numerical values for various sets of parameters
used throughout this chapter, leads to condition being satisfied.

4. Finite geometric inductance of a DC-SQUID

Another implicit assumption that was made, was that the behavior of the DC—
SQUID is dominated by the Josephson inductance L;(®;), and the effects of
the geometric inductance L, of the DC-SQUID loop has been neglected. This
is usually a valid assumption as long as L;(®) > L,, which can in practice
be accomplished with appropriate choices of physical parameters. This as-
sumption, along with the linearity of the DC-SQUID, is analogous to the
claim that the “secondary” degree of freedom of the DC-SQUID (see Chap-
ter [4f and Appendix @ for a detailed discussion) can simply be approximated
by ®; — the flux through the DC-SQUID. A finite geometric inductance L,
however, leads to a correction to this term, which in a realistic setting, where
the DC-SQUID (and hence its geometric inductance) is not “small enough”,
might have to be considered.

3.13 Summary and Conclusions

In this chapter, we have studied Casimir and Casimir—Polder—like effects in a su-
perconducting circuit system. We have done that by considering a stripline cavity
with a boundary DC-SQUID, coupled to a superconducting qubit. For a set of
realistic parameters, we found that the magnitudes of the currents associated with
these effects, were of the orders 107% A in the Casimir case, and 107 A in the
Casimir—Polder case. We have furthermore used the obtained results to describe a
variable Lamb shift, that in principle could be controlled in situ by variations of the
magnetic flux through a boundary DC-SQUID. Finally, we have briefly outlined
prospects and difficulties related to the Casimir effect measurements in our system.
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Chapter

Transient Dynamics of a Superconducting
Nonlinear Oscillator

In this chapter, we study the finite temperature, transient dynamics of a circuit
consisting of a DC-SQUID shunted with a large capacitance. The motivation be-
hind this work, is an experiment performed by Britton Plourde’s group at Syracuse
University, where such a DC-SQUID was driven with short oscillatory pulses, and
the resulting ringdown oscillations were observed. This was done for a variety of
different applied flux values, as well as pulse amplitudes. Of particular interest,
was the behavior of the system when subject to pulses with amplitudes that ex-
plored the nonlinear regions of the DC-SQUID’s potential energy, as this is where
the response can differ widely from a linear RLC circuit. Furthermore, since the
experiment was performed at a temperature of ~ 0.300K, which corresponds to a
thermal energy higher than the energy associated with the natural frequency of the
oscillator, we also explore the important effects of thermal noise, and show that
it can have a substantial impact on the response of the circuit, in particular when
strong excitation pulses are applied. We end our discussion with a brief exploration
of the applicability of the studied system to flux measurements.

4.1 DC-SQUID as a Nonlinear Oscillator

Nonlinear oscillations have been a subject of research for a very long time, as
they can be found in a great variety of systems, both man-made and natural,
ranging from simple swings or pendula, through motions of interstellar systems, to
interacting atoms. Furthermore, within the past century, scientists and engineers
have managed to explore nonlinearity for practical gain — good examples of this,
are various amplifier designs in the study of electrical circuits. A subset of these
are in fact built using DC-SQUIDs, which were introduced in Chapter [2] These
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systems include the Josephson bifurcation amplifiers (JBAs) [114] [122], microstrip
superconducting quantum interference device amplifiers (MSAs) [62, 8], as well
the Josephson parametric amplifiers [21, B8, I3T]. Other useful applications of
DC-SQUIDs, within the last couple of decades have been explored in the field of
quantum information. There, DC-SQUIDs are used as building blocks for qubits
[73], qubit couplers [42] [54) 104], and even as measuring devices [120] — more on
this will be shown in Sec. [1.10} Once again the key feature that leads to their
usefulness, largely results from the nonlinearity of the Josephson junctions, which
DC-SQUIDs are built from.

In many applications presented above, the response of the DC-SQUIDs is often
studied under one of two scenarios. The DC-SQUID oscillator is either driven with
a continuous, sinusoidal drive, or biased with a simple DC current. In both of these
cases, the behavior of the DC-SQUID is typically explored in its steady state. In
the former scenario, at high enough drives, and when the drive frequency is near
the oscillator’s natural frequency, one can often observe a phenomenon known as
bifurcation. It consists of having multiple solutions, with usually a large discrepancy
in their amplitudes, that satisfy the system’s nonlinear equations of motion. This
very property of nonlinear oscillations is explored in some amplifier designs. A
DC biasing current on the other hand, can be used to alter just how nonlinear a
DC-SQUID’s behavior is. In particular, biasing with a DC current of strength near
the effective critical current of a DC-SQUID, and then applying a weak drive, will
lead to a nonlinear behavior, while applying the same weak drive to a system that
is biased with a small DC current (or no current at all), will lead to a largely linear
response.

In contrast to the situations just discussed, in the experiment done at the Syra-
cuse University and studied in the rest of this chapter, the behavior of the DC-
SQUID oscillator was explored while it was excited with a brief transient signal.
This meant the oscillator was pulsed with a short waveform with a cosine shape
and a Gaussian—like envelope. Two different lengths of these pulses were experi-
mentally looked at, the first of 1 ns, and the other of 5ns. The implications of these
numbers will be explored in Sec. and beyond, but in it is worth mentioning
that especially the shorter 1ns pulse was roughly of the order of inverse natural
frequency of the DC-SQUID oscillator.

In the next section, we will describe the actual experimental setup and explore
some of the implications that certain parameter choices had on the general behavior
of the system and subsequent theoretical modeling and simulations.

4.2 Experimental Setup

As was already mentioned, the experimental setup built at Syracuse, centers around
a DC-SQUID shunted by a large capacitor. An optical micrograph of the fabricated
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device is shown in Fig. [4.1](a), with a zoomed-in view that lets one see the geometry
of the complete system in more detail. Fig. (c), presents a schematic of the
corresponding circuit, which, along with the DC-SQUID and shunt capacitor, also
depicts the input and output capacitors, which will have an influence on the effective
quality factor of the full circuit oscillator. Finally, Fig. (b), outlines the general
path taken by the input pulses during an experimental run. The generation of
these fast bias microwave waveforms was achieved by employing a FPGA based
DAC board controlled by a computer. These pulses were then passed through a
Gaussian filter, and later mixed with a carrier tone, producing a short microwave
burst. The amplitude of the pulses could be controlled by varying extra attenuation
with a step attenuator, which is shown in the diagram. The signal was attenuated
even further, as it entered various stages of the fridge. It then interacted with the
sample, that was enclosed in an aluminum box for magnetic shielding, which in
turn was anchored to the cold plate of the 3He fridge. The transmitted signal was
then amplified by two High Electron Mobility Transistor (HEMT) amplifiers at the
4K stage of the fridge and another at room temperature, with a combined gain of
70dB, and finally measured at room temperature by a sampling scope.

The Josephson junctions that make up the DC-SQUID, were fabricated out
of Al-AlO,—Al, and formed by a double-angle shadow—evaporation method [33].
The junctions were sub—micron in size, namely 530 x 160nm?, and with a single
junction capacitance estimated to be 10{F. Furthermore, by measuring the normal
state resistance of a very similar junction, and through previous characterization of
other samples [30], the single junction critical current was estimated to be 0.4 pA.
A 150 nm film layer of SiOs formed a dielectric for both the shunt capacitor Cy, as
well as the output capacitor Cyy. The input capacitor C}, on the other, hand was
interdigitated and was formed along with the microwave feed line in a 200 nm layer
thick Al. While the standalone frequency of the DC-SQUID could be estimated
at more than 100 GHz, the shunt capacitor C; was chosen very large relative the
single junction capacitances, which was meant to lower the effective frequency of
the oscillator circuit to the much more manageable few GHz. The implications of
this, will be explored in detail in Sec. 4.3} Also, the final numerical values of all
the parameters that were used in circuit simulations will be discussed in Sec.
the DC-SQUID measurement and calibration procedures will be outlined. For an
ever more detailed discussion of the experimental setup, we point the reader to [6].

4.3 System Model

We are now ready to look at a more detailed picture of the circuit and discuss
how it can be modeled. We will start by analyzing a zero-temperature case, and
later consider the effect that the thermal noise has on the evolution of the various
degrees of freedom. A pictorial representation of our system is shown in Fig. (a).
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Figure 4.1: (a) Optical image of the fabricated circuit with a zoomed—in view of
the DC-SQUID with on chip flux lines. (b) Schematic of general measurement
setup. The network analyzer is used to measure the frequency response, while the
pulse generation setup is used to measure the ringdowns in the time domain. (c)
An equivalent schematic showing the input/output coupling capacitors, the DC—
SQUID oscillator biased by an applied flux ®, and a coupling capacitor C;. Figures
created by Pradeep Bhupathi for [6] and used with permission.
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Figure 4.2: (a) Full circuit model of the SQUID oscillator of Fig. and (b)
reduced circuit, valid for at amplitude pulses, where the DC-SQUID is treated as
an effective, flux—dependent inductance L;.

The circuit is divided into branches, each a simple lumped element. As already
mentioned in previous sections, the DC-SQUID is shunted by a large capacitor, and
a noisy resistor (at temperatures 7' > 0), and connected to the input and output
circuitry by capacitors C}, and C, respectively. The connecting transmission lines
are modeled as 50 €2 resistors. Our model assumes that the external flux is delivered
directly to the DC-SQUID loop, and other branches have no intrinsic geometric
inductance. We further neglect the mutual inductance in the system other than
the one that mediates the external flux ®,. Finally, it is worth stressing that
we assume the Josephson junctions that make up the DC-SQUID are themselves
lossless, although this point will be discussed further in Sec. [1.5]

4.3.1 Zero—temperature Equations of Motion

To obtain the equations of motion in the zero—temperature case, we follow the
methods shown in [I6], 2], that were already discussed in some detail in chapter [2|
With each node i, we associate a corresponding node flux ®; related to a node
voltage by ®; = ffoo dt'V (t'). We express the currents across elements in terms of
®,;, and using Kirchoff’s current conservation conditions at each node i, arrive at
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the equations of motion

1 . . .
(Vi = b1) =Cin(1 — &)
. .. 2 2
Cin(P1 — ) :L—(<I>2 — &, + D) + L—(<I>2 — O5)
g g
+ Cy Py + ﬁqb + Cout (P2 — D3)
t
3} . 1 .
Cout((I)Q - (I)S) :ECDS
2 21 1. .
—(Py — P d,) =Iysin | Py— —d C;d
Lg(z 4+ D) 081H<4(I)0)+Ri 4+ CyPy

[%(CI)Q — @5) :Io sin <q)5%7;) + %@5 + CJ(I)5
Next, taking the flux quantum ®; = 2.07 x 10~ 1Wb = 27¢,, we perform a change
of variables so that ®; = ‘%(pi = ¢op; — here, a difference ¢; — ¢; for some
i # j, corresponds to the superconducting phase difference. We further take oL =
% (ps £ ¢5), Cx = Ciy + Cou + Cy, Ly = ®g/2m1y and rewrite the external flux @,
in terms of the ratio f, = %;. After dividing all equations by ¢q, we have

1 1
0 :Cin D1 — C’in D — 1 — —‘/in
$1 P2 + R $1 o
. . . 1 . 4
0=—Cinp1 +Cxpr — CoutPs + 5 P2+ — (2 — o4 +7fs)
R, L,
.. .. 1.
0=— Cout()DQ + C'out§03 + 5(103 (41)
.. 2 . 4
0=2C;¢4 + ——sinpy cos o — — (p2 — oy +7f5)
Ly L,

2 4
0=2C;¢p_+ —sinp_cosp, — — (—p_ +7f5).
L, L,

Thus, we end up with equations of motion of five degrees of freedom.

Elimination of Fast Degrees of Freedom

In order to further simplify Eqgs. [4.1, we note that in our case, the capacitances
(or “effective masses”) of oscillators ¢, and ¢_ are two order of magnitude smaller
than that of ¢o. This is due to the large shunt capacitor C;, which in turn directly
affects ¢o. Furthermore, the Josephson inductance L; is much greater than the
geometric inductance L, — we can express this condition in terms of a parameter
Br, = Lgy/Ly, as simply 5, < 1. This allows us to apply a Born-Oppenheimer-like
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approximation and eliminate the fast-oscillating degrees of freedom ¢, and ¢_. To
do this, we first define a potential energy U that can be associated with our system.
Neglecting terms due to the external drive, we have

U 1 1
U cosprcosp b b (ol mE b (or— (et nf)? . (42)
2E; L Br

Next, we fix the slow variable @9, and note that since 5, < 1, the second and
third terms in Eq. will dominate. Hence the minima of U will be close to
i =py+7fs and p_ = 7w f,. By expanding U near these points, and minimizing,
we can calculate the corrections to the minimum points. Keeping terms up to
second order in [3;, we arrive at

sin (7 fs) cos (7 fs + ¢2)

(prfin Zﬂ-fs - BL 92

%COS(T(‘fz) sin(wfx)Llcos(Q(fo + ¢2)) 7 (4.3)
e =nfs + @2 — B os (nfs) Si; (). +ee)

%cos(wfm + p2) Sin(zfz + ) COS(27Tf$). (4.4)

These results are then substituted back into the expanded potential energy which
leads to

Uet = Uy + Uy + Uy, (4.5)

now only in terms of ¢o, and with

QLEOJ = —cos (mfs) cos (w2 + 7 f), (4.6)
U - _ Pu (sin2 (7 fs) cos?(mfs + @a) + cos® (m f,) sin® (7 fs + <P2)) ) (4.7)
2FE; 2
and finally
e 5L costn ) svn ) o'+ )

+ cos(T fr + @a) sin® (7 f, + p2) cos® (7 f) (4.8)

— 2 cos(mf,) cos(T fr + o) sin?(m f,.) sin®(7 f, + cpg)) .

We have distinguished between the various contributions to the effective potential
energy by specifying terms of different orders in g, namely with each U; showing
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the contribution of the ¢th order term in Sy. It is worth stressing that Us, for the
set of numerical parameters used in the experiment, will have very little impact on
the evolution of the system, and hence will be neglected in the simulations, but
is still shown here for completeness. Putting it all together, we can write a set of
effective equations of motion with U.g as the potential energy, while keeping terms
up to O(fBr) as

1 1
0 :Cin p1— Cin g — 1 — —‘/in 4.9
®1 P2 + i P1 k. (4.9)
. . . I 2 .
0=—Cinp1 + COspo — Conrps + T P2 + 7 cos (7 fs)sin (g + 7fs)
t J
in(4nf, + 2 in(2
g <sm( 7 fs + 2(22) + sin( @2)) (4.10)
J
. . 1.

0=-— out P2 + Cout(;DS + 5@3 (411)

These represent a “standard” (non—stochastic) set of nonlinear differential equations
and are valid when the effects of thermal noise are neglected. Our next step is to
account for the nonzero temperature of the system.

4.3.2 Thermal Noise

We find that the accounting for thermal noise is of particular importance when
reproducing the behavior of the experimental system in our simulations. In order to
model these effects, we assume white noise and use the thermodynamic dissipation-
fluctuation relation [98]. This consists of including a current noise source of strength

%pT
R;

T the temperature of the system, and each n;(¢) to represent a normally distributed
random variable. Furthermore we assume that it satisfies the following equations

(ni(t)) =0
(ni(t)n;(t')) =o(t —t')di ;.

Taking such noise into account, lets us write Eqgs. [4.11} now in vector form as

n; in parallel with each resistor R;. We take kg to be the Boltzman constant,

(4.12)

1

$oCP + R 1P +
%o

V o Ueir + Nii + Iy = 0. (4.13)

66



4.4. Measurement and Parameter Estimation

Here 85 = (9017 P2, 303)T7 ﬁ<,0 = (8/89017 8/69027 a/aSDS)Ta [_;ir = (_V;n/Rm 07 O)T and
il = (ny,n2,n3)7. The matrices corresponding to C and R™! can be written as

Co —Cw 0 z 0 0
C=|-Cn C —Cul|.R'=[0 5 0], (4.14)
0 — “Yout Cout 0 0 RLZ
and N as simply
N = /2kgTR1. (4.15)

Ut represents the effective (undriven) potential energy derived in Sec. [4.3.1] how-
ever with only terms up to order O(f},), since higher order terms have little observ-
able effects on the evolution. Hence we can write

0
6@(]0: 2E cos (mfs)sin (g2 +7fs) |, (4.16)
0
and
. 0
VUi = Bu | =5 (sin(drf, + 22) +sin(292)) | - (4.17)
0

The Egs. form a set of stochastic (often called Langevin) differential equations.
We can numerically solve them for any ¢;, but each solution only gives us a single
“realization”. In order to compare simulations to data obtained from the exper-
iment, we can average many such realizations, which will be shown explicitly in
the following sections. A discussion that presents the details of numerically solving

Eqgs. is shown in Appendix [E]

4.4 Measurement and Parameter Estimation

In order for us to be able to simulate the experimental system, we need to establish
numerical values of the different circuit parameters. This was done at Syracuse
through calibration procedures and axillary measurements, which will be discussed
in this section. As already mentioned, the full circuit diagram which labels all the
unknown variables, is shown in Fig. [£.2|(a). The geometric inductance of the circuit
was calculated via finite-element methods, using a program called FastHenry [6§].
It resulted in a value of L, = 43 x 10~'2H. Both the input and output load resistors,
which effectively modeled transmission lines that coupled the DC-SQUID oscillator
to the outside world were taken as R, = 50€). Furthermore, as already mentioned
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4.4. Measurement and Parameter Estimation

in Sec. [4.1] the critical current of each of the Josephson junctions that makes
up the DC-SQUID, was estimated to be 0.4 uA by separate room-temperature
measurements.

In order to obtain numerical values for the rest of the parameters, the 2—port
transmission function | Sg;| was obtained for our particular circuit. This was done by
sending a weak continuous signal with a typical power of —125dBm to the input of
the DC-SQUID oscillator, while measuring and recording the output. The transfer
function is defined as Sg; = 2V, /Vin, such that the matched load of R, = 502
would give a full transmission, meaning Ss; = 1.

To calculate |Sa;| that can be compared with the experimental measurements,
we used a simplified model circuit of our system, shown in Fig. [4.2(b). Here, it
was assumed that the drive is necessarily weak, and therefore the response of the
DC-SQUID will be linear. In this limit, and continuing with assumptions presented
in Sec. of f;, < 1, and dominating shunt capacitance C}, the DC-SQUID was
modeled as just an effective inductance L;, which was taken as time—independent,
but varied as a function of the applied flux ®,. One way to calculate such L;, is
to directly use the DC-SQUID potential energy shown in Eq. We can Taylor—
expand it around a minimum (i.e., a steady state value) of (s, call it 5" which
results inl]

2U.q
L =¢; =
' 0( 03

-1
) . (4.18)
pa=(piin

We assume that @™ can be calculated numerically for a given fixed value of the
applied flux @4 by minimizing the potential energy from Eq.[4.5] For brevity, we do
not explicitly show this expression, as it is long, but can be easily obtained. Hence
using Eq. [£.18) we can think the DC-SQUID along with the shunt capacitance
C;, and the resistance R;, which models the internal losses due to the DC-SQUID
shunt capacitance, as a simple parallel LCR circuit. The final step is to account for
the input and output capacitances C}, and Cy,; as well as the load resistances R,.
We once again stress that in our model we assume that the junctions were lossless.

Hence finally taking the || symbol to represent parallel impedance, we arrive at
an expression for Sp; which reads

_ 2Vout

W

R. (Zt || Zows)

Zouws (Z(®s) || Zowt) + Zin’

Sa1 (% (I)s)

=2 (4.19)

!There are various ways to approximate L;, and a detailed discussion on this topic is presented
in Appendix E
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where Z; is the combined impedance of the parallel LCR tank circuit,

1 1 -t
(D)= — 4+ ——— +1 4.2
+(Dy) (Rt + oL (@) + sz’t> (4.20)

and Z;, = <Rz + ﬁ), Lous = <RZ + —1 > are the input and output impedances

iwCout

respectively.

During the measurement, multiple |Ss;| traces were recorded for various values
of the applied flux through the DC-SQUID, which effect was to vary the natural
frequency of the circuit. A resulting density plot of |Sy| is shown in Fig. .

The horizontal axis represents the applied flux in the units of single flux quan-
tum @, the vertical axis the frequency of the applied signal, while the out—of—page
direction the amplitude of the resulting output pulse. The magenta symbols cor-
responds to peaks of the numerical fit to the S5 function shown in Eq. To
fit this resonance, Iy = 0.4pA, Ci, = 0.15pF and L, = 43pH were fixed while C},
Cous and R; were allowed to vary (for a given fixed applied flux ®). Measured S,
curves between +0.5®, were fit with the same fixed parameters and the best fit
parameters extracted. This resulted in the following: R, = 264.99Q), C; = 5.07pH,
Cout = 0.99pH, which could be used in the simulations discussed in the following
sections. A function of the form f(®;) = \/a + b| cos(c®; + d)| was also used to fit
these resonance peaks between +0.3 ®( to extract the periodicity and scale the flux
axis with the fit parameters a, b, ¢ and d. f(®;) is shown in grey dashed line on
top of the measured Sy; plot in Fig. 4.3 From the plot in Fig. 4.3] we observe that
the frequency is periodic in the applied flux ®,, highest at ~ 3.2 GHz at &, = n®,
with n integer, and lowest, close to zero, near ¢, = %n@o — the “arches” are fully
consistent with what one would expect in a system like this [117].

4.5 Model limitations

In our model, we neglect the resistance associated with each Josephson junction.
This is reasonable when the amplitude of the current applied to the junctions is
smaller than their critical current, as the resistance in those cases is large enough
that its effect on damping of the junction’s phase can be neglected. However, in
the instances when the driving current exceeds the critical current, each junction
feels a resistance that can be of the order of its normal-state resistance R,, [117],
which for the DC-SQUID oscillator studied here is 684 ). Nevertheless, in our
circuit, the dominant source of noise is the 50 ) outside load that couples to the
DC-SQUID oscillator via Cyy (as can be seen from Fig. . When this load is
mathematically transformed as an impedance parallel with the oscillator, over the
frequency ranges of the input pulses we apply, its resistive component is never more
than 100 €2, hence a few times smaller than all other sources of noise in the system
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Figure 4.3: Density plot of |Ss;| vs. flux, frequency of the DC-SQUID oscillator
as measured from a network analyzer at —125dBm input power and with the DC—
SQUID oscillator at 300 mK; The magnitude of |Sy;| in dB is shown in color bar to
the right. The dashed line and magenta symbols are from fits to the DC-SQUID
modulation as described in the text. The marker in black indicates the flux bias at
which the pulsed measurements were taken. Plot created by Pradeep Bhupathi for
[6] and used with permission.
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(and therefore its effect is by far the most dominant, since the amplitude of the
noise currents scales inversely with resistance).

Furthermore, we neglect any quantum corrections to the noise correlation func-
tion and treat it, just as the rest of the system, fully classically. This is typically
a reasonable assumption in the limit of Aiw < 2kpT" with w being the applied flux
dependent, natural frequency of the oscillator circuit. In the case of the experimen-
tal parameters used here, this limit is largely satisfied, although in the worst case,
when the flux through the DC-SQUID is close to integer multiple of flux quantum
(where the effective natural frequency of the oscillator is largest) we are slowly ap-
proaching a case where hw < 2kgT. Let us then estimate the next order correction
to the correlation function that one would get from considering quantum effects in
the noise, and hence see how that translates to the amplitude of the noisy current
in our model. To do this, we first write the noise correlation function that accounts
for the quantum behavior as

(NL(ON;(1)) :%hwcoth (QZ:T> 5(t — )5, (4.21)
with
(N(1)) =0. (422

We can next expand the second line in of Eq. in hw/2kgT to obtain

(N;(t)N; () ~ ZkgT <1 +% (2Z:T) +0 <<2£‘:T) )) S(t—t)6;,. (4.23)

In our case, w is largest when the applied flux ®, is near integral values of ®,
where it was shown to be w/2m ~ 3.2 GHz. Taking the experimental temperature
of T'= 0.300K then leads to % ~ i. Substituting these values into Eq. 4.23]
results in

(N;(t)N; () ~ ngT <1 + 4—18 +0 ((%) )) 5t —t)6; . (4.24)

The first term in Eq. 4.24] is equivalent to the classical white noise correlation

function shown in Eq. 4.12| (with N; = 4/ Q%Tni), while the second shows the first
order correction due to the quantum effects. The amplitude of the noisy current can
be though of as the square root of Eq. [£.24] and in the limit of the small correction
can be calculated as ~ 1/24th of the full classical contribution. Given that this
is the worst case, and this correction gets smaller as the flux that is threaded
through the DC-SQUID shifts away from integer multiple of ®,, we neglect it in

our simulations.
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Figure 4.4: Input pulses used to excite the DC-SQUID oscillator. Each consists of
a cosine with a Gaussian-like envelope (see main text for exact forms). The red
dots correspond to the experimental data, while the blue curves show a fit used in
simulations. (a) A short pulse represented by fyore from Eq. (b) Long pulse

represented by fiong from Eq. [4.26]

4.6 Input Pulses

In this section we briefly look at the input pulses that were used to excite the
DC-SQUID oscillator in the experiment. In all cases, the pulses consisted of a
cosine tone, at frequencies resonant with the DC-SQUID at a particular flux, and
with an envelope that shortened them to either a “short” 1ns or “long” 5ns time
frame. The experimental samples were fit with functions foort Or fiong, and the
resulting fits were then used in the simulations. In the case of the short pulses, the
fit function that works best, is simply

t—to)?
fshort(t) = Ad exp <_%> cos(wd(t - tO))? (425)
while the long pulses were fit to
o o
Jiong(t) = Ad (gd (t —to+ §> — 9d (t —to — 5)) cos(wa(t — to)), (4.26)

with g4 (z) = m, a Fermi function. In both of these, ¢, represents the center
of the pulse in time, o its “width”, wy the angular frequency of the underlying
cosine tone and Ay, the maximum pulse amplitude. The drive frequency w,/2m was
taken as either 2.4 GHz, which corresponded to the DC-SQUID being at resonance
near the applied flux of &, ~ 0.309¢, or as 3.2 GHz, which in turn corresponded
to the natural frequency near the integral values of the applied flux. Fig. 4.4
shows two example 2.4 GHz pulses, both in their short (part (a)) and long (part
(b)) forms. The red dots represent the experimental data, while the blue curves
the corresponding fits. In the following sections we will mostly concentrate the
discussion on the short 1ns, 2.4 GHz pulses obtained using finort, as arguably when
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Figure 4.5: An example of an output voltage rigndown (of variable ¢y¢3) when
the system is exited with a short 1ns pulse. The green lines in the background
represent a small subset of single realizations that are averaged in order to produce
the blue line, which in turn can be directly compared with the experiment. The
experimental data for the same set of parameters as the simulations is shown with
red dots.

they were used to excite the circuit, the response was most interesting, however, we
will also outline differences observed when the longer pulses generated with fiong
were used.

4.7 Voltage Ringdowns

While we can simulate the evolution of an arbitrary degree of freedom, of particular
interest is ®5 = D03, as it corresponds to the output voltage, which is precisely
what was measured in the experiment. As already mentioned, we have two controls
that can be varied in a given experimental run; the applied flux ratio f; = ®4/®o,
and the amplitude of the input pulse. The rest of the parameters are fixed and
their numerical values obtained through various calibration procedures, that were
already discussed in Sec. [£.4] Therefore for a given set of parameters, we can
obtain a single voltage ringdown, which corresponds to a time trace of the voltage
measured at the output of the circuit (at node 3 in Fig. [4.2[(a)). This can then by
compared to the simulations, which are repeated many times and later averaged.
An example of such a ringdown is shown in Fig. [£.5] Here, the system is excited
with the short 1ns pulse. The green lines in the background represent a small
subset of single realizations that we average over in order to produce the blue line,
which in turn can be directly compared with the experiment. The experimental
data for the same set of parameters as the simulations, namely applied flux ratio of
fs = 0.30, and input pulse amplitude of —20dB, is shown with red dots. To gain
some understanding of our system, it is therefore instructive to vary the control
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Figure 4.6: Density plots that show the amplitude dependence of ringdowns at a
non—-integer flux bias for the 1 ns input signal, at 2.4 GHz. (a) Experimental data.
(b) Simulations. The pulse strength on y-axis is shown in the units of dB with
negative numbers implying decreasing amplitude of the input pulse. The ringdown
time on the x-axis is in nanoseconds, with the ringdown amplitude shown in color
scale.

“knobs” — the applied flux and the amplitude of the input pulse, while measuring
the resulting ringdowns. The bulk of the following discussion will concentrate on
short 1ns pulses with the underlying drive frequency (i.e. wy/27 from Eq.
of 2.4 GHz. This frequency corresponds to the effective natural frequency of the
DC-SQUID circuit at the applied flux ratio of f; ~ 0.30, hence by simply varying
the flux around this value, we can observe the off-resonant circuit response for cases
of both above and below resonance. Later, in Sec[4.9] we will conclude with a short
discussion of results obtained when both longer input pulses were used, and where
their frequency was resonant with DC-SQUID oscillator at a flux ratio fs ~ 0.

4.8 Short Pulses

4.8.1 Amplitude Scans

We first look at amplitude scans, where we fix the applied flux ratio f,, and vary
the amplitude of the of the microwave burst, which pulses the DC-SQUID. Figure
displays density plots of such a case, obtained with experimental data (a) and
from simulations (b). The flux ratio f; is fixed at 0.30, which corresponds to the
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natural frequency of the DC-SQUID of ~ 2.4 GHz, satisfying a resonance condi-
tion. The y-axis, is the attenuation setting from the highest (—40dB) to the lowest
attenuation (0dB) corresponding to increasing burst amplitude and the x-axis is
the ringdown time in nanoseconds. The color scale indicates the amplitude of the
ringdown, darker color implying a smaller value. With increasing pulse strength,
the frequency of the ringdowns starts to decrease. This becomes particularly pro-
nounced for attenuation levels less than 20 dB. This shift to lower frequencies arises
because the fictitious particle, whose position coordinate can be described by the
o degree of freedom, begins to explore the nonlinear (flatter) part of the potential
energy landscape. Beyond the amplitude of ~ —12dB, we observe a sharp drop
in the resulting ringdowns. The effect is due to the fact that the strength of the
drive is now of the order of the critical current of the DC-SQUID. The stochastic
nature of the thermal noise causes different realizations to escape the potential well
at different times, which in turn causes a substantial decay in voltage ringdown
strength. This phenomenon is discussed in more detail in the next section.

4.8.2 Escape from the Potential Well

The problem of particle escape from a potential well due to thermal noise, has been
investigated both theoretically as well as experimentally in a variety of studies
[4, 53, 56l 57, [74]. In a case of a DC-SQUID, this rate can be approximated to be
proportional to Qexp (=U,/kgT) where U, represents the potential energy barrier
height that the particle has to overcome, and () the natural frequency along the
direction of escape. In our case, since we do not “tilt” the potential with a DC
biasing current, the escape time (inverse rate) can be shown to be much larger
than the typical experimental run time. This is true over almost all settings of the
applied flux ratio f,, except when f, ~ 0.5, where the potential barrier is close to
being flat.

Thermal fluctuations however, still end up playing an important role in the
evolution of the system. In particular, we find that during strong pulses that excite
the system to amplitudes in the vicinity of the DC-SQUID’s critical current, the
thermal fluctuations can cause a strong mixing in the phases of various realizations,
resulting in a damping of the ringdowns. To our knowledge, no detailed analytical
study of this effect, with strongly time depended pulses has been performed yet,
but we can still study the situation numerically. To do this, we once again fix
the applied flux ratio at f; = 0.30 as in the previous section, and concentrate on
two different pulses; the first at an amplitude of —16dB, and the other at the
amplitude of —9dB. From Fig. .6, we can see that these correspond to cases
where substantial ringdown voltage is observed (the former case) and where the
ringdowns are dramatically suppressed (the latter case).

In order to understand this behavior in more detail, we look at the evolution of
the individual realizations, that so far have been averaged to obtain results compa-
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Figure 4.7: Low and high drive response. Each column shows plots of s, @2
and ¢o3 (the output voltage) respectively. In plots (a, ¢, e) the amplitude of the
input pulse is low with respect to the effective critical current of the DC-SQUID,
whereas in (b, d, f) it is high. The green curves show (a small subset) of individual
realizations used to calculate the averages (blue curves). In the case of the third
row we also show the experimental data for the same parameters (red dots) and
how it compares to the simulation results. From the plots, one clearly sees how
when the drive amplitude is low, all the realizations stay within the same potential
well (see plot (a)), and their phase only varies slightly. In the case of high input
signal amplitude, we observe that different realizations tend to end up in different
wells at different times, as shown in plot (b), which introduces a relative phase shift
between them. This in turn leads to faster decay of the average voltage across the
DC-SQUID, as presented in plot (d), and at the output of the circuit, as shown in
plot (f).
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rable with the experiment. We should stress however, that while the behavior of the
full circuit is largely governed by the dynamics of the DC-SQUID, the experiment
only provides us access to the external voltage — voltage at node 3 in Fig.
— which in our simulations is represented mathematically as ¢g¢3. To directly
observe the stochastic nature of the escape from the potential well, we need to look
at the individual realizations of the full system. Of particular interest are simula-
tion variables o, which represents the phase (i.e. the effective “position”) of the
DC-SQUID degree of freedom that dominates the evolution of the system, ¢g¢o,
which represents the voltage across the DC-SQUID (or alternatively an effective
“velocity” of the particle in the well), and finally ¢q¢3, which is the voltage that we
can directly compare to the experimental data. Fig. shows plots that describe
the evolutions of these variables as a function of time. The left column shows data
for a case of the low amplitude, —16dB pulse, while the left column shows the
case of high amplitude, —9 dB pulse. The topmost row represents s (), the middle
row ¢oo(t), and finally the bottom row the output voltage, namely ¢ops(t). In
each case, the green curves represent (a subset of) realizations that are averaged
(curves in blue). The red dots in the plots from the bottom row, represent experi-
mental data for the same set of parameters as the simulations. The key signature
of the escape can be seen in the topmost row. Here, when the pulse amplitude is
low (plot (a)), virtually all the realizations stay within the same potential well —
one concludes this by noting that they all oscillate around the same value of o,
namely s ~ —0.307. In the case of the high amplitude pulse (plot (b)), different
realizations “jump out” to differ potential wells. The stochastic nature of the noise
causes these jumps to happen at different times, which leads to a randomly shifted
phase, as well as a different steady state value of ¢,. This has a substantial effect
on the “velocity” (or ¢5) of these realizations, as shown in the central row of figure
Fig. 4.7l The result is a randomization in the phase of ¢y, and as therefore, of
3, which is proportional to the output voltage of the circuit. As we see from the
experimental voltage (red dots), the agreement of the measured data with the sim-
ulations is good. Finally, we stress that including the stochastic effects of thermal
noise in our simulations has been crucial in reproducing this behavior.

4.8.3 Flux Scans

We explore the voltage ringdowns behavior further by studying their dependence
on the magnetic flux applied to the DC-SQUID. Here, the amplitude and frequency
of the microwave burst is fixed, while we vary the flux applied to the DC-SQUID
through one period of a flux quantum. Initially, we study a case where the pulse
frequency once again is chosen to correspond to resonance at the DC-SQUID flux
ratio fs ~ 0.30. The density plots of the flux modulated ringdown traces are shown
in Fig. 4.8 for three different pulse amplitudes. The left column (plots (a), (c¢) and
(e)) shows results obtained from experimental data, while the right column (plots
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Figure 4.8: Fixed amplitude flux scans with the applied flux ratio f, between
0 and 1, and with the 1ns at 2.4 GHz input pulse. The left column (plots (a),
(c) and (e)) shows experimental data, while the right column (plots (b), (d) and
(f)), uses data obtained by running stochastic simulations. The amplitude of the
input pulse increases from top to bottom, with the topmost row showing results for
—20dB pulses, the middle row for —15dB pulses and finally the bottom row for
—10dB pulses. As the amplitude increases, one clearly observes the effects of the
nonlinearity of the system. See main text for a detailed discussion.
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(b), (d) and (f)) shows the corresponding simulations. The topmost row has a “low”
input pulse amplitude of —20 dB, well below the critical current of the DC-SQUID,
the central row shows data for an input pulse of —15dB, while the bottom row for
a “high” amplitude of —10dB. As before, the darker areas correspond to lower
ringdown amplitudes. By varying the applied flux through the DC-SQUID, we
are changing its effective inductance, and hence its natural frequency. It is worth
stressing that this nonlinear dependence of the natural frequency on the applied flux
is true, even in the limit of small oscillations of the DC-SQUID (where |ps] < 1),
as was already discussed in Sec. [4.4] Let us first concentrate on the topmost row
of Fig. 4.8l Here the drive amplitude is still small and the nonlinearity of the
potential energy in ¢, is only beginning to play a role, yet as the applied flux
ratio f, varies between 0 and 1, the ringdowns tend to “fan out”. As expected,
the amplitude is largest near the flux ratio of f; ~ 0.30, since this is where the
DC-SQUID is resonant with the input pulse, and it is suppressed elsewhere. The
results are also consistent with the fact that the natural frequency (up to zeroth
order in fr), is proportional to y/cos(mfs). Hence, near f; ~ 0, the variations in
the ringdown structure are small, while at the same time, one sees a very abrupt
suppression near f; ~ 0.5. Here the effective natural frequency of the DC-SQUID
is very small and the short input pulse is just not able to induce strong oscillations.
This is an adiabatic regime, where the excitation of the circuit strongly follows the
input pulse. This ringdown suppression due to a highly off-resonant pulse can be
confirmed further by studying individual realizations, and showing that they stay
in the same potential energy well as they started in (in contrast to what is observed
during an escape — see Sec. [4.8.2). Furthermore, a very similar ringdown structure
can be obtained in a case where a simple harmonic oscillator, with the same flux
dependent form of natural frequency, is driven with the same pulse. The situation
is largely similar in the middle row of Fig. [£.8] The key difference here, is that
now not only is the natural frequency of the system nonlinear in the applied flux,
but the amplitude of the input pulse is large enough for the DC-SQUID degree of
freedom 9, to start exploring the nonlinear regions of the potential energy well,
in particular around the applied flux for which the DC-SQUID is resonant with
the input pulse (near fs ~ 0.30). This in turn affects the degree of variation of
the ringdown frequency with respect to fs, as can be seen in the plots. Finally,
in the bottom row we see a case of a strongly driven system. The resulting plots
show an overall suppression of ringdown oscillations across all values of f,, when
compared to the instances with smaller drive amplitudes. In this case, the reason is
two—fold. By once again studying the individual realizations as in Sec. [4.8.2] we can
conclude that for the applied flux away from f, = 0.5, the main contribution to the
suppression, is the randomization of the phase of ¢, due to the stochastic escape
from the potential well. Near f, = 0.5 however, as in the case of low amplitude
pulses, the main reason for the suppression is the off-resonance condition where the
frequency of the pulse is much greater that the natural frequency of the DC-SQUID.
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Figure 4.9: Flux scans due to fixed amplitude (at —15dB), 1ns, at 3.2 GHz input
pulses. Plot in (a) shows experimental results whereas (b) the corresponding simu-
lations. The response is largest near f; = 0 where the input signal is resonant with
the system.

Before we move onto longer pulses, let us also consider a case where the driv-
ing signal is still governed by Eq. but where the underlying drive frequency
wq/2m = 3.2 GHz. In this situation, the input signal is at resonance with the DC—
SQUID at the integral values of the applied flux — namely where f; = 0. The
resulting flux scans are shown in Fig. where once again the plot on the left,
in (a) shows data obtained experimentally and on the right, in (b) from simula-
tions. As we would expect, one sees the strongest response near resonance, and
the ringdowns are seen to decay away as the applied flux ratio f; approaches 0.5.
The associated decrease in the resulting frequency of the voltage ringdowns as the
applied flux changes from f, = 0 is still visible, but it happens at a slower rate than
in the case of Fig. where the pulse was resonant at f; = 0.30. Once again this
is because the natural frequency dependence of the DC-SQUID on the applied flux
is smallest near f, = 0.

4.9 Long Pulses

In this section, we can move onto a brief discussion of the longer pulses that were
studied in the experiment. As was outlined in Sec. the functional form of these
was slightly different from the short pulses that were used in the last section. In
fehort from Eq. the envelope is a Gaussian function, while in fio,, from Eq.
a combination of Fermi functions. Even so, the arguments describing the response
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Figure 4.10: A comparison of the amplitude dependence of ringdowns at a non—
integer flux bias for a “long” 5ns input signal, at 3.2 GHz. (a) Experimental data.
(b) Simulations. The pulse strength on the y-axis is shown in units of dB, with
negative numbers implying decreasing amplitude of the input pulse. The ringdown
time on the x-axis is in nanoseconds. The ringdown amplitude is shown in color
scale, with darker colors representing lower values.

of the DC-SQUID circuit are largely the same.

First, let us look at an amplitude scan of a 5ns input pulse at 3.2 GHz, that is
modeled in simulations using fiong from Eq.[4.26] As outlined in the last paragraph
of the previous section, this kind of pulse is resonant with the DC-SQUID circuit
at the applied flux ratio of f;, = 0. The general structure of the output signal is
similar to what was shown in Sec. but now the excitation lasts longer. We
also observe a significant reduction in the ringdown amplitude past a certain level of
attenuation — in this case this level is few dB larger than in the case of the 2.5 GHz
pulses shown earlier, namely near —9 dB. The mechanism here is identical to what
we studied in Sec. — the thermal noise causes different realizations to escape
the potential energy well at different times, which in turn leads to a randomization
of the phase across the DC-SQUID (¢5), and therefore the resulting voltage across
both the DC-SQUID (¢o¢2) and the output load resistor (¢op3). The reason why
in the case of short 2.4 GHz pulses studied earlier, this decay was observed at a
lower value of attenuation (weaker signal), can be attributed to the fact that when
the circuit was excited with 2.4 GHz pulses, the corresponding applied flux was set
at fs = 0.30, while in case of 3.2 GHz pulses, it was at f; = 0. This resulted in the
potential well being deeper in the latter scenario, which in turn required stronger
excitations before escape could be observed.

The final plots we present, are flux scans that are a result of long input pulses,
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Figure 4.11: Fixed amplitude flux scans with the applied flux ratio f, between
0 and 1, and with the 5ns at 2.5 GHz input pulse. (a) Experimental data. (b)
Simulations.

aﬂ 2.5 GHz, and applied at an amplitude of —21dB. The resulting ringdowns are
shown in Fig. [£.11] The actual input signal is active over the time range ~ 2 —
7ns, as can bee seen from Fig. [1.4b). As we would expect, results show excitations
with highest amplitudes near the flux of 0.30, where the circuit is resonant with
the driving signal. Furthermore, during the now longer drive we see substantial
oscillations even away from the resonance, but as soon as the drive is turn off, past
the time of ~ 7ns, one can observe a similar structure to that of Fig. [1.§(a) and

(b).

4.10 Application to Flux Measurements

The high sensitivity of DC-SQUIDs to magnetic flux makes them useful in appli-
cations related to precise flux detection. They have been played a central role in
various metrology experiments [25] 26| [35] [79] 83] and more recently in the field of
quantum computing, as measurement devices for flux qubits [22}, 27, 8T], 120, 123].
In these proposals, a flux qubit is typically coupled inductively to a DC-SQUID
and hence affects the net applied flux that is threaded through the device. The
two most widely used modes of operation in these approaches, have been to either

2The reason why the frequency of the drive in the input pulse used here is 2.5 GHz and not
2.4 GHz as in the case of short pulses, is simply that it was better fit of the input pulse fiong shown
in Eq. to the experimental data provide by the Syracuse team. The flux was still biased at
fs = 0.30, in order to stay consistent with the experiment.
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Figure 4.12: Root mean square voltage Vi,s as a function of the applied flux ra-
tio fs, calculated over a time range between 2.1 and 3.4ns. The plot uses data
obtained with the —20dB amplitude input pulses, and is the same as in top row
of the flux scans from Fig. [4.8] The red dots represent results calculated from the
experimental data (plot (a) in Fig. |4.8]), while the solid red line is produced using
the simulations (plot (b) in Fig. [4.8). By biasing the flux through the DC-SQUID
near a point where the slope is high, for example at f; ~ 0.36, one can have a
means to distinguish between various flux states.

bias a DC-SQUID with an appropriately selected DC current, such that the DC—
SQUID is put in a “running state” (where the voltage across is nonzero) with a
high probability if a qubit is in one state, and with negligible probability when the
qubit is the other state, or alternatively, instead of a DC current bias, to drive the
DC-SQUID with a continuous sinusoidal signal, and observing a resulting phase
shift that is qubit-state dependent. Yet another proposal [I11] (as of this writ-
ing, only theoretical) has been to very briefly, but strongly, pulse the DC-SQUID
and observe the produced ringdowns, which under the right conditions, will have
the amplitude and (possibly) phase differ depending on the qubit state. This is
somewhat analogous to what is presented in the experiment described here (al-
though clearly in our case the flux differences are due to a global flux biasing as
no qubit is actually present). Furthermore, the proposal outlined in [IT1], shows
a full quantum treatment of the qubit and DC-SQUID system, but only considers
an ultra short, much shorter than the inverse characteristic qubit frequency, DC
pulse, whereas here, due to high temperature, the experiment has been considered
to be classical and the pulses presented, time dependent.

Nevertheless, it is still useful to briefly explore just how the process of discrim-
ination between two (or more) different flux states could be accomplished. First,
one can expect that the total applied flux through the DC-SQUID, would consist
of some biasing flux fy;.s plus some source flux that is to be measured, say fsource
(with both terms described in terms of ratios of flux quantum ®;). One could then
imagine sending a pulse through the DC-SQUID, analogous to what was consid-
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ered here, and recording the corresponding ringdown voltage. Some post processing
of this ringdown signal, such as for example taking its root—-mean—squared value,
call it Vi, integrated over a well chosen time range, would provide a “signature”
of the source flux. As long as these signatures of various values of fy,uce Can be
distinguished, one has an effective flux meter. For a given input pulse, assuming
that V.. is a well behaved function of f, a way to find the best f;.s over a range of
flux where V5 is monotonic (for example), could be simply to look for the largest
slope of Vs with respect to fs, namely maximizing OVims(ting, fs)/O0fs over all pos-
sible flux fs between 0 and 0.5 (due to symmetry) and integration times ¢;,;. This
would give the greatest contrast between the cases of fiias + fsource a0d fiias — fsource-
Fig. shows an explicit example of this kind of flux discrimination, where we
calculate the Vi, over a time range between 2.1 and 3.4 ns. The data that is being
used corresponds to the input signal at —20 dB amplitude, and is the same as in the
flux—scans from Figs. 4.8(a) and (b). The dots represent results obtained from the
experimental data, while the solid line is produced from the evolution calculated
through simulations.

We can further make a crude calculation of the required sensitivity that one
would need with the data from Fig. to distinguish between two hypothetical
flux qubit states. Setting the bias flux at fii.s ~ 0.36 the slope is roughly 5 mV /®,.
If we assume a conservative noise temperature of 150 mK for a ~ 3 GHz amplifier
with a bandwidth of 100 MHz [31], [I0§], the rms voltage noise at the amplifier input
would be ~ 200nV. If we take the 5mV/®, slope for the signal at the output
extracted from Fig. [£.12] and divide by the net gain of the HEMT amplifiers (~
55dB), this becomes 9 1V /Py at the DC-SQUID oscillator output. We consider a
peak—to—peak qubit flux signal of 22 m®, which is reasonable, considering the back-
action on the qubit would also likely be significantly less compared to a switching
DC-SQUID measurement, since the DC-SQUID never enters the running state.
This then corresponds to a SNR of ~ 1. So, we would be right at the threshold
for reading out the ringdowns and distinguishing between the two qubit states in
a single shot. We should further stress that one could likely do better by both
using more sensitive amplifiers and optimizing various parameters. Of particular
importance would be integration time t;,, the pulse amplitude, as well as the
quality factor of the DC-SQUID oscillator, all of which the V., curves are highly
dependent on.

4.11 Summary and Conclusions

In conclusion, we have studied the transient behavior of a DC-SQUID operated
as a nonlinear oscillator under pulsed AC radiation. We have reproduced exper-
imental results obtained by Britton Plourde’s group at Syracuse University. We
theoretically applied signals of various amplitudes and biased the DC-SQUID with
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flux over the range of a single flux quantum, while observing the resulting voltage
ringdowns. In order to account for the nonzero temperature of the experiment, we
used the Johnson—Nyquist approach and modeled resistors as noisy current sources.
This let us numerically reproduce the stochastic escape dynamics observed when
the SQUID was driven with high-amplitude pulses. Finally, we briefly discussed
the potential applicability of the system, and in particular the observed ringdown
dynamics, to flux measurement. We found a good general agreement between the
experimental data and results obtained through numerical simulations.
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Chapter

Measurement Dynamics of a Qubit
Coupled to a Harmonic Oscillator

In this chapter we study the quantum dynamics of a qubit coupled to a harmonic
oscillator. While this kind of a system may be interesting in a variety of situations,
we consider it in the context of a measurement. In particular, following [1111 [116],
a one that describes a superconducting system consisting of a flux qubit being
measured by an inductively coupled DC-SQUID. We concentrate our discussion on
a special case where the interaction between the qubit and the probe commutes with
the free evolution of the qubit, and point out how in this regime the measurement
can be thought of as quantum non—demolition (QND). We furthermore, calculate
the effective dephasing rate of the qubit, which we relate to maximum rare at which
the observer can learn about the qubit’s state. By solving the corresponding master
equation of our system we also explore the more complicated cases where the qubit—
probe interaction no longer commutes with the free evolution of the qubit, and
provide numerical evidence of the effective relaxation process associated with such
a scenario. Finally, we conclude with a discussion that looks at how well, in some
regimes of parameters, specific Kraus maps representing rotations and dephasing
can mimic the often complicated evolution of the qubit.

We point out that the calculations shown in Sec. were aided by Jay Gam-
betta.

5.1 Open Quantum Systems and the Lindblad
Master Equation

We begin with a brief general discussion of open quantum systems, and in partic-
ular, introduce the Lindblad master equation, which will play an important role
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in modeling the process of a measurement presented throughout the rest of this
chapter. We do not provide detailed mathematical derivations here, as they can
be found in any text on open quantum systems — good examples are [14] [I§].
Instead, we briefly show the final form of a Lindblad master equation, and discuss
the various important assumptions that are needed in order to derive it.

In 1926 Schrédinger published a paper in which he introduced his famous equa-
tion, that has been been invaluable in explaining the quantum behavior of nature
[109]. The Schrédinger’s equation, written as

0
i | ¥) = H|V), (5.1)

with H the system’s Hamiltonian and |¥) its state, dictates how a quantum system
evolves in timeﬂ We typically assume that it is valid in cases where the system
in question is closed, meaning, it does not interact with the world outside of it-
self. This assumption is often not realistic when applied to real-world examples,
but in some rare instances, where the interaction energy of the system with its
environment is weak relative to the other energies involved, the effects of such an
interaction may be small enough to be neglected completely. There are also other
cases, where one needs to understand the effects of the environment on the main sys-
tem (but not necessarily the evolution of the environment itself). These instances
can be often described using master equations, which represent generalizations to
the Schrodinger’s original equation, which under certain conditions help us model
open quantum systems.

Mathematically, we can imagine that the combined state of both the system we
are interested in, as well as the environment that it couples to, can be described
by a density matrix pi., which spans over the combined Hilbert spaces of both the
system and environment, namely, pior € Heys @ Heny. Furthermore, let us assume
that the combined Hamiltonian can be written as

H = Hsys + Henv + Hinta (52)

with Hgyg, Heny and Hiye the Hamiltonians of the system, environment, and their
interaction respectively. We could write the Schrodinger’s equation for this system
(here in terms of the density matrix?) as

. 7
Prot = _ﬁ[Hsys + Heny + Hint, Prot), (5.3)

1'We stress that the Schrodinger equation is not the only way to understand the evolution of
quantum systems. Feynman’s path integral approach [4I] or Heisenberg’s matrix mechanics [60]
provide other ways.

2The Schrédinger equation written in this form is often called the Liouville-von Neumann
equation.
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and, in principle at least, solve it. Then by tracing out the degrees of freedom of
the Hilbert space He,y, obtain the solution for the evolution of the system’s density
Matrix Psys(t) = Treny(prot(t)) at any time of interest ¢. Of course this is usually not
practical. We regard the environment as “big”, with typically many more degrees
of freedom as the system, but also, as we have already outlined, we may have not
actually be interested in the dynamics of the environment, only its effects on the
evolution of the system.

Hence, there are methods of reducing Eq. to a differential equation for
only psys(t), which includes the environmental effects. We point the reader to
references [I8] or [14] for the details, and here only list the central assumptions in
the derivation:

1. Separable Initial State
This assumption implies that there are no correlations between the initial
states of the environment and the system. Mathematically, we can express
this condition as

Ptot(o) = PsyS<0) ® penV(O)' (5~4)

2. Born Approximation
We implicitly assume that the coupling between the system and environment
is “weak” and that the environment is “big’ﬂ Here, these conditions imply
that the environment does not change during the evolutionEL and therefore
(due to Assumption 1, above) the environment and the system remain sepa-
rable for all time.

3. Markov Approximation
Markov approximation assumes that the environment is (effectively) memo-
ryless, or more precisely, that the time scale for the decay of its correlations,
is much shorter than the time scale of the system’s dynamics.

Following the mathematics in the references, along with the assumptions above,
one can arrive the following general form of a Lindblad master equationﬂ

psyS(t) = _%[Hsyw psyS(t)] + Z dk:D[Ak]psys(t)a (5'5)

3For the mathematical definitions of “weak” and “big” in the context of this assumption, we
point the reader to, for example, [I§]

4Meaning its density matrix remains constant.

5The form of Eq. is not the only way to model the evolution of the reduced system.
Another widely employed method is to use the Bloch—Redfield master equation [, [106].
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with
DIA t)y=A AT+—1 Al A t) + AT A 5.6
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The left hand side, and the first term on the right hand side of Eq. clearly
correspond to the unitary evolution due to the Hamiltonian of the system Hgys.
The other terms, characterized by the sum, correspond to the effects that the envi-
ronment has on the system. The operators A are often called Lindblad operators,
and their form depends on both how one models the environment, as well as on the
type of system—environment coupling that is present (namely the form of Hi,).

Two important examples that will play a role in the following discussion, are a
qubit that through the interaction with its environment undergoes pure dephasing
at a rate I', and a harmonic oscillator that decays to its environment at a rate .
The full master equations for such systems can be written as

) 1
pa(t) = = [Ha, pa(t)] + I'Dlo:]pq(t), (5.7)

and
) i
Pose(t) = _ﬁ[Hosm Posc(t)] + KDlal pose(t), (5.8)
respectively. Hence the corresponding Lindblad operators associated with these
processes are o, and a, with appropriate prefactors I' and « respectively [14], and

with a representing a lowering operator.

5.2 Quantum Measurement

In this section we introduce the concept of measurement in quantum mechanics. As
was the case in Sec. [5.1] this is a very involved topic with many detailed resources
widely available. We will only touch on a few key points that are central to the
following discussion. For a much more complete presentation we point the reader
to references such as [12] 63, 96] or [129].

The quantum measurement postulate is arguably the most interesting of the
quantum postulates [96]. Tt states that quantum measurements can be described in
terms of a collection of operators M,,, which act on the system being measured, that
we can describe in terms of a state |¥). The index m corresponds to the outcome
of the measurement, with the corresponding probability of observing m, being

p(m) = (V| M), My |V). (5.9)
The state of the system right after the measurement resulting in m is expected to
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be

(5.10)

Finally, due to the fact that the sum of the probabilities of the individual outcomes
m must sum to 1 (since we always expect some outcome), we have a completeness
relation on the measurement operators M, that reads

> MM, =1, (5.11)

This postulate, as presented here, is clearly very general. A special class of measure-
ments that is often considered, consists of what are called projective measurements
or alternatively von Neuman measurements. A projective measurement can be
described by an observable M, a Hermitian operator, which has a spectral decom-
position

M=) mP,, (5.12)

with P,, being a projector onto the eigenspace of M, and m the corresponding
eigenvalue. The projectors P, can be associated with M, from Egs. and [5.10]
by simply insisting that each M, is a Hermitian operator, and that M,, M, =
M0 1t then follows that in a case of projective measurements the probability
of outcome m is simply

Pproj (1) = (V| P | ¥), (5.13)
and the state right after the measurement

Pn|9)

e (5.14)
Pproj(m)

Let us consider an example of a projective measurement on a single qubit. We
assume that the qubit is in some arbitrary state |¥) = a|0) + §]1) with |a|* +
|3]> = 1. We then imagine measuring the qubit’s orientation along the zfaxiﬂ,
which corresponds to the observable o,. The relevant projective operators are then
Py = 10){(0] and P, = [1)(1], with eigenvalue of +1 and —1 respectively. The
outcomes of such a measurement can be easily shown to be +1 with the of |a/?
and —1 with the probability of |3]2. We could rewrite this process in terms of the

SThere is no loss of generality here, since if the observable we wish to measure is along a
different axis, we can simply relabel those axis as the z—axis.
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5.2. Quantum Measurement

qubit’s density matrix and obtain

2 * 2
Psys = ’\Ij><‘lj| - |:|Oéoi|ﬁ ?65’2:| ——— PO(KJ ’50’2:| :

Hence the projective measurement process has eliminated the off-diagonal compo-
nents of the density matrix and turned it into a classical mixture. This kind of a
process can be described as a dephasing ma;:ﬂ, as it gets rid of the relative phase
between the |0) and |1).

(5.15)

A direct projective measurement is generally thought of as an idealization — it
tells us what happens to the quantum object being measured, but does not shed
much light on how the measuring device should operate in order to achieve a given
measurement [12]. In practice, it is often more realistic to model the measurement
process of a quantum system (a qubit in our case), by considering a scenario where
it couples to a detector (which we may alternatively call meter or probe) — such a
measurement is called indirect. The interaction between the probe and the qubit can
build up correlations between their respective states, and hence by observing only
the state of the detector, one effectively measures the qubit. Of course one could ask
the question of why stop at modeling the detector? There could be other systems
at play in getting the information to the observer — maybe the detector’s state
has to be interpreted or processed by a computer, which in turn has to display the
information on a screen for the observer to see, and so on. Such a chain of events
is called a von Neumann chain. The postulate of quantum mechanics, however,
states that at some point, before the measurement result reaches the mind of the
observer, one has to break this chain and apply the projective postulate. This
is regarded as the Heisenberg’s cut. The key reason why it often makes sense to
model the detector along with the qubit, and apply the projective postulate to the
detector and not the qubit being measured, is that detectors are typically treated
as macroscopic objects with decoherence rates much larger than those of the system
itself. For a much more detailed discussion on this topic, we point the reader to
reference [129].

Finally, let us outline the concept of a quantum non-demolition (QND) mea-
surement. QND measurements are a special class of quantum measurements, that
satisfy the following conditions [12]

1. No precision limit
There is no fundamental constraint on the precision of the measurement.

2. No perturbation necessary
There need not be any perturbation to the quantity being measured.

"We will discuss dephasing maps in much more detail in Sec.
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3. Standard perturbation to conjugate quantity
The quantity that is conjugate to the measured observable is perturbed in
accordance with the uncertainty principle.

These kinds of measurements are useful as they are usually considered least dis-
turbing to the system being measured.

A sufficient criteria that one can use to determine if a measurement is QND, is
to check if the measurement observable, say ¢, commutes with the Hamiltonian of
the system H, namely if

[H.q] = 0. (5.16)

Such a criteria is sufficient, but in fact not necessary. A weaker (but harder to work
with) criteria is that the observable ¢ commutes with unitary evolution operator
U, which generates the combined evolution of the object being measured as well as
the probe — for a detailed discussion of this topic, we point the reader to [12].

Let us mention a crude example that will be useful in the following sections. If
we choose the measurement process of a qubit, where the observable is ¢ = o, and
the full system’s Hamiltonian H = 0, ® Aprobe, With Apope SOme operator acting on
the Hilbert space of the probe. Such a measurement, by Eq. [5.16] is clearly QND.
On the other hand, if we were to choose H = 0, ® A ope instead, the criteria shown
in Eq. would not be satisfied. We note however, that if we were to choose
the measurement time to be very short (but yet the measurement strong enough
to fully dephase the qubit), much shorter than the time scale associated with the
evolution of the qubit due to H, one might still end up with an approximately QND
measurement — see for example [110].

5.3 System Hamiltonian and the Corresponding
Superconducting Circuit

We are now ready to discuss the particular measurement process that we study
throughout the rest of this chapter, in more detail. The system that we consider,
consist of a qubit coupled to a probe (detector) which we model as a harmonic
oscillator. While in the general setting one might envision both the qubit as well
as the probe interacting with their own environments, here we assume that the
coupling of the qubit to its environment (and hence the effect of that coupling) is
substantially less dominant than all the other energies in the system. This allows
us to mainly concentrate on the dynamics of the qubit due to only the measurement
process mediated through the coupling to the detector. A schematic representa-
tion of this scenario is shown in Fig. [5.I(a). The measurement process consists of
preparing a qubit in some state, and simply interacting the probe with the qubit
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5.3. System Hamiltonian and the Corresponding Superconducting Circuit

for some time. If the interaction time is long enough, or alternatively the qubit—
probe coupling strong enough, we expect the qubit to be fully dephased by the
interaction (i.e., its density matrix reduced to a classical mixture), mimicking the
behavior of the process shown in Eq. [5.15 Furthermore, due to this interaction,
the information about the state of the qubit gets imprinted in the degrees of free-
dom of the oscillator, which can be then extracted by the observer (by for example
studying the momentum observable of the probe). Of particular interest to us, is
to understand how quickly the dephasing process of the qubit occurs, relative to
the times associated with the free evolution of the qubit or probe.

Throughout most of this Chapter we consider a particular Hamiltonian that
could in principle describe many different physical systems, but it is worth describ-
ing at least one specific physical implementation. Therefore, as an example of a
physical system that can model the process just outlined, we consider a flux qubit
coupled to a symmetric DC-SQUID, which plays the role of the probe. A diagram
that shows this setup is presented in Fig. (b) The qubit shown here, has an
optional “extra” junction (shown in blue), which forms a secondary, smaller loop
— such a variation of a flux qubit provides another means of control, and allows
for a tunable tunneling energy [97]. Assuming that the geometric inductance of
the smaller loop, can be neglected, the coupling between the flux qubit and the
DC-SQUID is mediated by the mutual inductanceﬂ labeled M, while the envi-
ronmental degrees of freedom that the DC-SQUID interacts with are represented
by a general impedance Z,. This very setup has already been briefly discussed
in Chapter [4 Sec. [£.10, but for a more detailed analysis we point the reader to
[110, 111, 116]. As in Chapter |4 in the limit of small geometric inductance, and
with a large shunting capacitor C;, the DC-SQUID can be treated as a single degree
of freedom oscillator, with the minimum of its potential energy dependent on the
total flux threaded through the DC-SQUID as well as the biasing current I,,. As we
have already discussed in Chapter [2] the flux of through the DC-SQUID depends
on the state of the qubiff] Furthermore, it was shown in [L10, [I16], that in the
lowest order approximation, where the DC-SQUID is treated as a simple harmonic
oscillator, the qubit and the DC-SQUID only couple when the biasing current I,
is close to the effective critical current of the DC-SQUID. This, therefore, gives
us a physical means of controlling the measurement process (more specifically, the
measurement time and strength) on—demand by simply turning the biasing current
I, on and off. In contrast to the discussion in Chapter {4} here we assume that the

8Here, in order for the Hamiltonian derivation from [I10, 116] to hold, we assume that the
geometric inductance of the larger qubit loop is substantially greater than the inductance of the
smaller loop. The goal of discussing this scenario is only to provide a physical justification for a
limit where tunneling element A in the qubit’s Hamiltonian could be taken arbitrarily close to
Zero.

9This is because the qubit’s different computational states correspond to the currents circu-
lating around the qubit loop in different direction — these currents can be written as +1,,. This
in turn results in the contribution of the qubit’s flux through the DC-SQUID being £MI,,.
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probe
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Figure 5.1: (a) A schematic showing a qubit coupled to a measuring probe, along
with their respective environments. It is assumed that strength of the interaction
of the qubit and its environment is weak when compared to the other energy scales
in the problem. (b) An example system that could be used to implement a setup
from (a), consisting of a flux qubit coupled to a DC-SQUID which is shunted by
a large capacitance C;. The qubit presented here has an optional “extra” junction
(shown in blue), which forms a secondary, smaller loop — such a variation of a
flux qubit provides another means of control, and allows for a tunneling gap energy
[097]. Assuming that the geometric inductance of the smaller loop, can be neglected,
the key means of interaction between the qubit and DC-SQUID is the mutual
inductance, labeled M. The qubit as well as the DC-SQUID can be individually
threaded with fluxes ®,, ®,» as well as ®; respectively. Furthermore, the coupling
between the qubit and the DC-SQUID can be controlled by a biasing current [,,. Z
in the diagram represents the effective environment that the DC-SQUID is coupled
to. We assume that the qubit’s interaction with its own environment is weak and
therefore neglect its effects.
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5.4. Qubit Measurement Dynamics

biasing current, when turned on, is not oscillating but constant.

Following [110], 11T}, 116], we can write down the Hamiltonian of the full circuit
shown in Fig. 5.1|(b) as

H = Hq + Hosc + Hq—osc + Henv + HOSC—GHV (517)
with
h hA
Hq - ?60-2 70367 Hosc = hQaTCL, HQ*OSC = hfyaZ(aT + CL), (518)

where € is the qubit energy, A its tunneling element, €2 the frequency of the oscillator
and v the qubit—oscillator coupling strength. As we already noted, we assume that
~v has a form of a square pulse, but we will concentrate on the evolution of the
system when it is ﬁnit. a' and a represent the raising and lowering operators
acting on the Hilbert space of the probe. As in [111], we treat the environment of
the DC-SQUID as a bath of harmonic oscillators [17] with Ohmic spectral density,
which, following the discussion in Sec. 5.1} leads to the effective master equation
i

Poys(t) = = [Hy + Hose + Hyose, poys(t)] + KDlal peys (1), (5.19)

where we assume that pgs € Hy ® Hose, and s to represent photon loss in the
DC-SQUID. By solving this master equation, we can fully characterize the time
evolution of our system and in particular the qubit as it undergoes measurement.

5.4 Qubit Measurement Dynamics

Our main goal is to understand how the qubit evolves, as the measurement process
takes place. This can be done in principle by solving the full master equation shown
in Eq. and tracing out the degrees of freedom of the probe. There are two key
drawbacks to this approach however. The first consists of the fact that if we are
interested in understanding the qubit’s evolution, solving the full Eq. comes
with a substantial computational overhead. In some regimes of parameters, the
Hilbert space of the probe may be highly occupied, which would mean that many
energy levels have to be considered in order to obtain an accurate evolution, and
that can result in long computation times. The second, perhaps an even bigger
limitation, is that it may not be easy to gain intuition about the qubit’s dynamics
from the results, unless they are repeated for various parameter configurations. In
particular, since the probe decays at a rate x, we might guess that the qubit will

0For the relationship between these parameters and physical circuit parameters, we point the
reader to [I11].
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dephase at a rate dependent on x, but at this stage, the functional dependence of
such a rate on x and the other Hamiltonian parameters in unclear.

Hence our goal in the next section will be to simplify the master equation shown
in Eq. to one that only encompasses the degrees of freedom of the qubit. The
key result will be a derivation of a measurement induced dephasing rate I'y as
well as a brief mention of an effective relaxation rate. We will distinguish between
important regimes of parameters that lead to the measurement being either QND,
approximately QND, or non—QND.

The numerical solutions to the master equations presented throughout the rest
of this chapter are obtained using either an open source python solver called QUTIP
[66], or in the case of the plots shown in Fig. , using an in—house solver written
mostly by Jay Gambetta.

5.5 Polaron—type transformation

In order calculate the effective master equation for the evolution of the qubit, we
will take advantage of a polaron—type transformation. It has recently been shown to
be very useful in many studies [9, 46, 112]. The mathematical treatment presented
here, will closely follow discussions found in [9] 46], with the key difference being
the type of Hamiltonians that are considered. In those publications, the qubit
interaction is dispersive, and the qubit mainly couples to photon number operator
a'a, whereas in our case it couples to the oscillator’s displacement a' + a.

The key idea of a polaron transformation is to go into a frame in which it the
oscillator stays in its ground state. For example if we we consider a simple harmonic
oscillator that is in a time—dependent coherent state |¥) = |«(t)), we can imagine
applying a unitary transformation U = D(—a(t)), where D(a) = exp(aa’ — a*a)
is the standard displacement operator, to the state |¥). In is then clear that
UlW) = |0), and the oscillator in a frame defined by U will remain in its ground
state.

In the case of an oscillator coupled to a qubit, we consider a polaron—type
transformation that depends on the state that the qubit is in. In particular we
define

P = D(ac)le)(e| + D(ay)|g) (g, (5.20)

where [7)(j|, with j € {e, g}, representing the projective operators on the qubit’s
excited and ground states, and «; being complex numbers. In the next section we
apply this transformation to the full master equation shown in Eq. [5.19]
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5.6 Measurement Induced Dephasing Rate'!] in
the Regime Where A =0

We start with a special case, where we define the measurement process to be QND,
by the definition presented in Eq.[5.16] We accomplish this by setting A = 0 in the
full system Hamiltonian H = H, 4 Hose + Hy_osc defined in Eq. [5.18] Furthermore,
in Appendix [F] we explicitly show that in this special case, the evolution of the
probe can be described in terms of coherent states |a.(t)) and |ay(t)), with a.(t)
and oy (t), time-dependent complex numbers that correspond to the qubit being in
either excited or ground state respectively (we will shortly drop the explicit time
dependence for brevity). In particular we have

a;j(t) =af + (o;(0) — o) exp (—z’ (Q+)t— %) (5.21)

for j € {e, g}, with aj representing steady state solutions af = —%}r—n and oy =
—as.

Hence we start by transforming the full density matrix g into the polaron frame,
which gives

of =PTpP. (5.22)

Next, we rewrite the master equation in this new frame as

. 1
QP - _ ﬁ[HP> QP] 4 /{D[CLP]QP

— PTPQP — QPPTP7

(5.23)

with H® = PTHP and a® = P'aP. In order to aid further calculations, we define
an operator

Io = aglg){g| + acle)(el, (5.24)
that lets us write
a® =a+1l, (5.25)
(a")? = a +11; (5.26)
(a'a)? = a'a + all?, + a'T1, + |T1,|? (5.27)
(a' +a)f =a' + a+ ea (5.28)

Using these expressions and the fact that of = o, the transformed Hamiltonian

HCalculations in this section were aided by Jay Gambetta.
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can be written as

HP = hQ) (aTa +a'TI, + all’, + |ay|?|g){g| + |oze]2\e>(e|)
b T (5.29)

Next, noting that

d

—D(a(t)) = ((éz(t)aT —a(t)*a) +

dt ! (at)a(t)” — a(t)*d(t))) D(a(t))  (5.30)

2
we can write
_PIPP — PPIP = [naaf ~ITa, QP]

(5.31)
— i [Im(dca)le) (el + Im(dga;)|g) (9], 0" -

Finally, with the help of Eqs [5.25H5.28, we can also calculate the transformed
version of the Lindblad term, which reads

1 . Ll
D[CLP]&QP :D[G]QP - §[CLTHa - aHaa QP] + %D[UZ]QP ( )
5.32

* Imlo, o
+ %G[QP,JZ] + g[o_za 0 aT - Z%[Uza 0

where for convenience we have defined 8 = o, — ay. Finally, using Eqgs [5.29] [5.31}
and simplifying, we can rewrite [5.23 as

"] it

¥ =i |a'a, "] =i [2, 6] — i (e + 1) 0, 0

2 2
2 *
+ kD[a]o® + @D[@]QP + %a (0%, 0.] + ? 0., 0%] a (5.33)
kIm|agzal
emlog] [

2

This equation, while complicated, gives us the full evolution of our system in the
polaron frame. It is worth stressing that the raising (lowering) operator always acts
on the density matrix from the right (left), hence if the oscillator starts its evolution
in the ground state, it will continue in the ground state — this is precisely the reason
why the polaron transformation is useful here.

Ultimately we are interested in the evolution of the qubit, in an untransformed,
lab frame. We can therefore write

p? =Tt [P 0P PT], (5.34)

with p? representing the lab frame density matrix of the qubit only. Since we expect
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the oscillator to stay in its ground state, we rewrite of aﬂ

o® = Y onlin(il ®10)0]. (5.35)

i,j=e,g
Then substituting Eq. into leads to
Pq :ETI‘OSC[PQ P ]

-4 (Z 95<0|D*<aj>D<ai>|o>> (5.36)
=e~{0[D(5,7)[0) (@5 — ibgh — 2 dtw)

where we have taken f5;; = a; — a;; and 6;; = Im(c;a). To obtain the last line, we
used the fact that

(01" (aj) D(a)|0) =e~""+{0| D($3;;)|0) (5.37)

and

d 1 d 2
L 101D(35)10) = — 5 (01D(3,)10) 18, (5.38)

The g}, in the last line of Eq. can be rewritten in terms of g}, using Eq. [5.33,
by noting that QZ = (1,0[0%|7,0) (we skip the details of this for brevity). rinally,
noting from Eq. and that

pl = (ilp%5) = (0| D(8;)]0) ok, (5.39)

and rewriting all instances of . and «, in terms of the parameters of the Hamil-
tonian using Eq. [5.21], we arrive at a set of four differential equations for each of
pfj. Rewriting them in a more accessible form, leads to a simple master equation
for only the degrees of freedom of the qubit. It can be written as

. 1
p1 = =i5 00"+ 3Lal, 2 5 DI, (5.40)

12WWe could be more general here and instead choose to write oF =

D omm=0 2ij=e.q 0% il © |n)(m| and then explicitly show that the only relevant
case is when n = m = 0. This is done in [9], 46] for the dispersive system that is used there.
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with
8+2

La(v, €% K, t) R

(Ii — e T Rcos(Qt) +2e % Q) sin(Qt)) : (5.41)
Eq. tells us how the qubit evolves and how its evolution depends on the param-
eters associated with the full system — namely the probe frequency €2, the coupling
of the qubit to the probe v, as well as the probe decay rate k. I'y is the main result
of this section, and can be defined as a measurement induced dephasing rate of the
qubit. In the limit where A = 0, which we have considered, it is exact, as no ap-
proximation have been madeE|. Furthermore, since no other decay channels of the
qubit have been ConsideredEL I’y tells us the maximum rate at which information
about the qubit’s state can be transfered to the probe, and therefore the observer.

5.7 Qubit Dynamics Results with A =0

We can now explore how well the effective, reduced master equation we have just
calculated describes the qubit’s evolution. In order to do this, we can compare
results obtained from solving it, to the results obtained from solving the full master
equation shown in We reiterate that even though, due to the time dependence
of I'y, in general the Eq. is not trivial to solve analytically, it is substantially
easier to solve numerically over Eq. which in some regimes of parameters (for
example when v > Q) could require many more computational resources.

Figure [5.2| shows plots of the expectation values of o, (in red), o, (in blue), o,
(in green) and of the purity of the qubit’s state (in black), defined as Tr((p?)?) =
s (I + (04)? + (0y)? + (02)?). The plot shown in (a) presents results of an initial
qubit’s state |4,) = %(|O> + [1)), whereas in (b) of a state |+,) = \%UO) +i|1)).
In both cases the probe is assumed to be in its ground state at the start of the
evolution. Each plot shows two sets of results, the first of the full master equation
solution (solid lines), while the second of the reduced case (solid circle symbols).
The particular set of parameters used were E Q=27 v =Q e =Q/2 and
Kk = §/20.

As we would expect, the plots show excellent agreement between the reduced
and full master equation solutions. This is because in the case where A = 0,

13Beyond the approximations related to the fact that the master equation shown in is a
good representation of the true evolution of the system.

14 As one could expect, including a for example pure dephasing channel into the qubit’s own
environment via a Lindblad operator I'q_deph P[0 ]psys in Eq. would lead to the same term
being added to Eq. acting on p? instead of pgys.

15The numerical values of the various parameters are written in terms of €2, and Q is chosen so
that its period is 1 — these of course could be trivially scaled to more realistic values one would
see in an experiment.
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(a)1 o Initial state |+.) ® |0) (b) Lo Initial state |+,) © [0)
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Figure 5.2: Evolution of the qubit in the limit where A = 0. The plots show the
expectation values of o, (in red), o, (in blue), o, (in green) as well as purity (in
black). (a) presents results with an initial qubit state |+,) = \%(\O) + 1)), whereas
(b) the state |+,) = \/Li(|0) +7|1)). In both cases the probe is assumed to be in
its ground state at the start of the evolution. Solid (circle symbol) curves show
the evolution obtained by solving the full (reduced) master equation. The other
parameters used are set at 0 =27, v =, e = /2 and k = Q/20.

Eq. is an exact representation of the qubit’s dynamics. From both of the plots
we observe that as the qubit evolves, it is being dephased. This can be seen from
the purity curves, but also by noting that as time advances, both (o,) as well as
(0,) tend to get closer to zero. For the set of parameters we have chosen, we observe
that shortly after the evolution starts, the qubit’s purity goes down a value of %,
which implies the qubit is in a perfectly mixed state, but later on, near the time
that is a multiple of 27r/€2, it jumps up again, although to a lower value than at the
time 27/Q earlier. The qubit gains back some of its coherent information at the
cost it being temporarily “erased” from the probe — i.e. at this point in time, just
by looking at the state of the probe, one cannot distinguish what state the qubit
is inm. The reason why the purity is lower with every consecutive period of the
oscillator, is that the state of the oscillator decays to its environment at a rate k.

5.8 Qubit Dynamics Results with A # 0, Large «

Let us now allow A to be finite, but consider a special case where « is large relative
to all the other energies of the system. In such a situation, a (slightly modified)

16Gince we do not explicitly study the evolution of the probe here, we do not show this, but
this effect is discussed in [I10].
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Figure 5.3: Evolution of the qubit with A = 27 and x = 30A. The plots show the
expectation values of o, (in red), o, (in blue), o, (in green) as well as purity (in
black). (a) presents results with an initial qubit state |[+,) = \%(|O) +11)), whereas
(b) the state |0). In both cases the probe is assumed to be in its ground state at
the start of the evolution. Solid (circle symbol) curves show the evolution obtained
by solving the full (reduced) master equation. The other parameters used are set
at Q@ =271, vy=Q and e = 0.

reduced master equation from Eq. still provides a very good description of the
evolution of the qubit. In general, when A # 0, the coherent states that we have
calculated in Appendex [F] are no longer a good description of the evolution of the
degrees of freedom of the oscillator — and therefore the polaron transformation is
not useful, since in the polaron frame, an oscillator that starts in a ground state,
will not stay stay there as the time evolves. In [46] however, it has been shown that
in the limit of § < 1, which in our case can be accomplished with a large x, up to
the lowest order in 3, the correction of a finite A to Eq. is simply —z'% [0, p1].
This case of small (3, effectively means that the coherent states of the oscillator a,
and a4, do not have the time to separate during the system’s evolution. Or put
another way, the state inside the oscillator decays out to the environment before it
has a chance to evolve.

In Fig. [5.3| we present the time—dependent expectation values of the qubit Pauli
operators as well as the purity of the density states. In Fig. |5.3(a) we look at an
initial state of |+,) as before, but in plot (b) we show the case of the initial state
|0). This is particularly interesting as in this regime, the combination of finite A
as well as a large k also leads to decay of (0,). The numerical values of all the
parameters are taken as Q2 =27, A =Q, v=Q, e =0 and x = 301).

In Fig. (a) we observe the purity of the qubit approach % as before, but
without recurring spikes. This is due to the fact that as soon as the state gets
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transfered into the degrees of freedom of the probe, it decays right away — the
oscillator is always close to being in its ground state. In (b), by studying (o) (%),
and due to the finite size of A, we now observe a population loss. The rate of
this (o,) decay, could in principle be approximated from Eq. as in the regime
where k is large relative to the other energies in the system, the last two terms of
[y quickly tend to zero. This leads to an effective (and constant) depahsing rate of

eff 872"{

=—" 42

and therefore an easily obtainable analytic solution the qubit’s master equation
(although this is not done here).

Lastly, we stress that this regime of operations does not lead to a good mea-
surement. In the indirect measurement scheme discussed in Sec. [5.2] in order for
the observer to be able to extract the state of the qubit, it has to imprint its infor-
mation on the probe, and more importantly the corresponding state of the probe
has to differ depending on what state the qubit is in. Here, with the very large
decay rate out of the oscillator, the probe has no time to provide the observer
with distinguishable enough scenarios, and hence provides no information about
the measurement result.

5.9 Qubit Dynamics Results with A # 0, Small &

The final situation we consider is one where A is finite but the decay rate x is not
large, as it was in Sec. 5.8 Here, we expect the effective reduced master equation to
not be valid except in the limits of very small A relative to the other energies, and at
very short times. As was already mentioned, the presence of finite A causes a more
complicated interaction as it mixes the various coefficient of the decomposition of
the qubit’s density matriy"} We can however consider a case of a short time and a
very large qubit—oscillator coupling. In this case, we ad—hoc treat the contribution
due to A, in the reduced master equation, is as in Sec. by simply —iA [0, p?)].

Figure. [5.4] shows the corresponding results. The parameters used are Q0 = 2,
v =100, k = /20 and € = 0. Plot (a) shows results with an initial state |+,),
while plot (b) with |0). Because 7 is so much larger than all the other energies
in the problem, it dominates the evolution. The qubit is now dephased at a very
fast rate (note different x—axis range from previous plots). From (b) we observe
that the evolution causes the loss of population, which along with a nonzero k,
could be interpreted as a 17 process. We stress that the ad—hoc use of the reduced
master equation here has very limited success. Again from plot (b), we observe

17So for example in Appendix [F| Egs. and would get extra contributions from Py
and P4 respectively — this dramatically complicates the resulting solutions.
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Figure 5.4: Short time evolution of the qubit with A = /5 and v = 207. The
plots show the expectation values of o, (in red), o, (in blue), o, (in green) as well as
purity (in black). (a) presents results with an initial qubit state |+,) = \%(|O>+|1>),
whereas (b) the state |0). In both cases the probe is assumed to be in its ground
state at the start of the evolution. Solid (circle symbol) curves show the evolution
obtained by solving the full (reduced) master equation. The other parameters used
are set at 1 =27, ¢ =0, and k = 7/10.

that past the time of 0.01, the full numerical solution starts to diverge from the
approximate solution obtained with the reduced master equation. The key point
to make about this scenario is that as long as the v is very large, one could still
arrive at an approximately QND-like measurement. In particular if we were to turn
off the qubit-oscillator coupling v at time ~ 0.025, the qubit would be in a fully
mixed state, and yet only a small portion of its population would be lost. Since
in this case k is not overly large relative to the energy of the probe 2, we could
expect that it could oscillate for long enough so that its signal could be used to
distinguish between the states of the qubit. This very scenario is studied in detail
in [T10] although with a smaller .

5.10 Evolution of the Probe — Potential Future
Research Direction

Our goal in this chapter has been to discuss the behavior of the qubit as it evolves
together with the coupled probe. In order to fully study the setup presented here as
a measurement, however, we would also need to more closely look the behavior of
the probe. In particular, we would need to show that any kind of evolution that de-
phases the qubit and produces a maximally mixed state, also displaces the oscillator
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enough so that the two pointer states, each associated with a different qubit state,
can be actually distinguished. This kind of study in an identical system has been
done in [T10], but concentrated on the case where A is small and the qubit—probe
coupling large. We consider a more detailed discussion of other parameter regimes
a potential future research direction that could build on the results presented here.

In the next section we keep on discussing the dynamics of the qubit, but now
in terms the Kraus map representation.

5.11 Kraus Maps Approximations of the Master
Equation Evolution

Let us now switch gears for a while. So far we have studied the dynamics of the
qubit’s evolution by a means of solving the master equation. We considered two
cases, the first where we have treated the full system of the qubit as well as the
oscillator, only to trace out the degrees of freedom of the oscillator at the end, and
the second, where we have attempted to account for the effects of the presence of the
oscillator (and its environment) by calculating an expression for a reduced master
equation, only for the degrees of freedom of the qubit, and solving it directly.

In this section, we discuss another means of describing a quantum evolution
through linear maps defined in terms of Kraus operators. We compare the evolution
obtained through solving the (full) master equation to two different Kraus maps —
the first representing a dephasing map, and the other a combination of dephasing
and rotation. The motivation behind this kind of comparison is to see how well
a crude guess at an evolution map, resembles the real evolution. Our guesses for
the two different Kraus maps are motivated by the form of the Hamiltonian of the
system.

5.11.1 Kraus Map Representation and the y—Matrix

As already hinted in the last couple of paragraphs, we can describe the evolution
of a quantum system by means of linear maps, which in turn can be expressed in a
convenient way using the Kraus representation (often also called the operator—sum
representation), which we describe here. Mathematically, we consider an operator
A, which transforms a density matrix p to another density matrix, namely p — A(p).
We assume that A obeys the following constraints [96]. It needs to be:

1. Linear
If p=api + (1 —a)pz, then A(p) = aA(p1) + (1 — a) A(p2).
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2. Trace preserving
If Tr(p) = 1, then Tr(p') = 1, where p’ = A(p).

3. Hermiticity preserving
If p=p', then p' = p'f, where p’ = A(p).

4. Complete positivity preserving
First we note that a map A is positive if A(p) is nonnegative, when p is
nonnegative. In order to satisfy complete positivity, we first assume that p is
acting on the Hilbert H 4. A can be considered completely positive (CP), if
for any extension of the Hilbert space of H 4, such as H ® Hp, the extended
map A ® 1 is positive.

The Kraus theorem[75] tells us that the effect of A on p can be expressed as

N
Ap) = KnpK], (5.43)
n=1

where each K, is referred to as a Kraus operator. Furthermore, it is required that
each K, satisfies

N
Y KIK, =1 (5.44)
n=1

We stress that such a representation is not unique. In a Hilbert space of dimension
d, one can show that N < d. An important assumption that one is required to
make when describing A using Eq. [5.43] is that the input state p needs to be in
a product state with the rest of the world, or in other words, the initial state of
the system described by p should not be correlated with the degrees of freedom
outside of its own Hilbert space. We will assume this to be the case in the following
discussions.

One important Kraus map that we will use is the phase—flip map. It is defined
as

Aaz(p) = plpl + (1 — p)o.po., (5.45)

with 0 < p < 1. Its effect is to remove information about the relative phase between
the |0) and |1) states. In particular, it contracts state vectors that are not aligned
along the z—axis on the Bloch sphere. It can be easily seen that in the special case,
when p = % the result of applying Ay, is in fact equivalent to a measurement of the
o, operator, with the result of the measurement kept unknown. This map is often
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also called the phase damping mapﬁ, or alternatively a dephasing map. We will
use the latter expression, and generalize it, by instead of using o, as the operator
acting on p in the second term of Eq. we will use an operator that defines
an axis through a Bloch sphere specified by some arbitrary angles 6 and ¢. For a
more complete outline of other common Kraus maps, we point the reader to [96]
and [69].

A very convenient extension to Eq. [5.43] is to rewrite each K, in terms of a
set of linearly independent B;, which form an operator basis on the state space.
Mathematically this leads to

N
K,=> byB, (5.47)

J

with each b,,; being a complex number. This lets us rewrite Eq. as

Alp) = ba;BipBli, (5.48)

Jig'n

= BjpBL > byl (5.49)
g3’ n

= BjpBl ;. (5.50)
J.J’

where we have defined
Xig = D bniblin. (5.51)

X is often called the process matriz or even simply the y—matriz [96]. Assuming
that B; are fixed, the complex number matrix x above, uniquely describes the map
A. In general, it contains d* — d? independent real parameters.

Now that we have general description of a map A in terms of its y—matrix, we
can look at calculating it explicitly.

18 An alternative, but very common way to express it, is with the following choice of Kraus
operators

P I R 540

with 8 = 2p(p —1).
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5.11.2 y—Matrix for an Evolution of a Single Qubit

In the next few paragraphs, we will outline a procedure of characterizing a map A
in terms of its y—matrix representation, that satisfies the conditions 1-4 shown in
the last section, for a case of a single qubit. We will follow the discussion presented
i [24] as well as [96]. The key assumption of the method shown, is that we can
prepare the qubit in a few specific physical input states, apply the map, and later
obtain the resulting density matrix through, for example, process tomography.

Given that we have already established that A can be described using Eq. [5.43]
and therefore through the y—matrix, our first step is to define the operator basis
that span a 4-dimensional Hilbert space of a single qubit. Following [24] as well as
[96] we chose

By =1
By =0,
LT (5.52)
By = —ioy,
B3 = 0.

Next we need to understand how A acts on four different initial states p;, with
i = 1..4. Namely we need to find p, = A(p;). In general we have some freedom
in choosing the initial states p;, with arguably the most obvious choice being the
standard matrix basis

P [(1) 8] , (5.53)

as well as po = p10,, p3 = 0.p1 and py = 0,p10,. We stress however, that p, and
p3 defined in such a way, are not physical. In order to remedy this, we can expand
these operators in terms of physically accessible states, constructed out of |[4,) and
|+,), the eigenvectors of o, and o, respectivelym This lets us summarize all the
transformations as

= A Chal) + A ) = 50+ )6+ ) (559
o = Al (hel) — A () (hal) = 50— )6k + )

9The reference [24] contains many typos and should not be used directly without double—
checking the mathematical details. Reference [96] on the other hand, seems to have most of the
typos fixed, although there is still a problem with Eqs 8.175 and 8.176 (in 10th edition). The
corrected expressions equivalent to those equations are shown in this section as Eq.

*'We define |+5) = —5(|0) + [1)) and |+,) = 5(|0) +[1)).
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In an experimental setting, where A would correspond to a real physical process,
each p; would have to be measured through process tomography. Having obtained
all the p}, we are finally ready to write down the y—matrix of the map. It our case
of a single qubit, it can be shown to be

o} /)/2}
- T, 5.55
X [pg ol (5.55)
with
111 o,
T_§[az _ﬂ]. (5.56)

Hence by applying A to four different states and measuring the outcomes, we have
a means to completely characterize it mathematically. In the next section, we will
use the method just outlined to compare maps obtained through different means.

5.11.3 Map Comparisons

In this section we will compare the evolution obtained through solving the master
equation of our system, to that of two different maps — the first, that of dephasing
about an arbitrary axis on the Bloch sphere, and the second, a combination of X—
rotation and Z—dephsaing. Each of these maps will be described by their respective
x—matrix, which will be expressed in terms of three free parameters. By minimizing
the distance between the y—matrices of these maps and the ones obtained through
solving the master equation over the free parameters, we will study how well these
(overly simplistic) maps can approximate the “true” (i.e., as calculated by the
master equation) evolution of our system.

The calculate the distance between the different y—matrices, we will consider
the trace distanceEf], which mathematically can be defined as

1
D(Xme’ Xmap) - §|Xme - Xmapll' (557)
Xme 18 Mmeant to represent the y—matrix obtained from the master equation evolution

of the system, while xmap one obtained from the definition of a map we are trying
to compare to. Operationally, we calculate D(Xme, Xmap) as

D(Xmes Xmap) = % Z VA (5.58)

2IThere are many other distance measures that we could use to compare two matrices. Our
choice of the trace distance shown in Eq. comes from the fact that it can be shown to be
equivalent to process fidelity. Another widely used distance measure that can also be assigned a
relevant physical meaning and would likely be effective here, is the diamond norm [70].
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where )\; is the ith eigenvalue of the matrix (Xme — Xmap) (Xme — Xmap) -

We would naturally expect that the evolution of our system should closely de-
pend on the total Hamiltonian (along with any relevant Lindblad operators that
we have assumed model the effect of the environment) as well as time. In order to
explore the interplay between the size of the qubit splitting energy at zero flux A,
as well as the strength of the qubit—oscillator coupling ~, on the measurement pro-
cess, we concentrate on a special case where ¢ = 0 in the expression of the system
Hamiltonian shown in Eq. [3.16] Furthermore, we fix A = 7, and the total evolu-
tion time to t = 0.1A, while varying v between values of 0 and 20A. The oscillator
decay rate is taken as k = 0.01A. Just from looking at the Hamiltonian, we can
predict existence of two regimes. When A >> ~, the evolution will be dominated by
rotation of the qubit around the x—axis and when A < ~, and the decay rate out
of the oscillator x large enough, the qubit will dephase. In the next few paragraph
we will see if this simplistic description can be in fact made more concrete by the
map comparisons.

Dephasing About Arbitrary Axis

We start with a case of a map that represents dephasing about an axis on the Bloch
sphere, defined by three parameters 6, ¢ and p. The effect of such a map can be
written as

Aar(p) = pUpl + (1 = p)R(0,9)pR(0. )", (5.59)

where we have taken R(6,¢) = cos(¢)sin()o, + sin(¢) sin(#)o, + cos(f)o.. The
corresponding Kraus operators are easily calculated to be Ky = /pll and K, =
V1 —=pR(0,¢). If we assume natural ranges of the parameters such that 0 < 6 <,
0<¢<2mand 0 <p<1,itis easy to check that Eq. is satisfied. Following
the procedure outlined in Sec. we can calculate the y—matrix for the map
Ag4r, which reads

— 0 0 0
(-1 pO -2 COS2<¢) sin?(9) isin®(0) cos(2¢)  —sin(26) cos(¢)
Xar(6:6,p) = 2 0 —isin®(f)cos(2¢) —2sin’(¢)sin®() —isin(20)sin(¢)
0  —sin(260)cos(¢)  isin(20)sin(¢) —2cos?(6).
(5.60)
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One can verify that this matrix satisfies obvious boundary cases. For example when
9—0—7Tandp— , we end up with

Xdr<97¢7p) = ) (561)

o O OO
o O OO
_ o O O

N | —
o OO

which corresponds to perfect dephasing about the z—axis.

Z—Dephasing and X—Rotation

Next, let us consider a map which consist of a combination of a rotation about
the x—axis as well as dephasing about the z—axis. The effect of such a map can be
written as

Adz+rx<p) = ¢Adz(p) + (1 - ¢)A1‘X(p)7 (562)
where
Aa,(p) = plpl + (1 — p)opo.., (5.63)
and
Anxlp) = U(0)pU(6)', (5.64)
with

U(0) = exp (—@'g%) , (5.65)

a standard rotation about the x—axis by an angle #. The Kraus operators corre-
sponding to this map can be shown to be

Ki=vepl, Ky =+/6(1-p)os, Kzzx/l—¢[ 2 ”mg]

—1 SlH 5 COS 5

Do

5.66)

/\

We stress that the parameters 0, ¢ as well as p play a different role here than they
did when we considered a purely dephasing map Ag,. Their domains are 0 < 6 < 27,
0 < ¢ <1and 0 < p < 1. Once again, we calculate the y—matrix for the map
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Agzi1x, Which reads

(1 :qb) cos? (g) +¢p —3i(¢ — 1) Sing(&) 0 0
I - G é) sin(0) (1= ¢)()Sln (2) 8 8 . (5.67)
0 0 0 ¢(1—p)

We are now ready to compare the behavior yg, and yg,1:x to the evolution
obtained through solving the master equation.

Map Comparison Results

The results are presented in Fig.|5.5 Figure (a) shows the distance between the
map obtained from the full master equation evolution and A4, (blue curve) as well
as Nay4x (red curve), as a function of the ratio v/A. Figures [5.5(b), b.5(c) and
5.5(d) show the optimal values of 6, ¢ and p respectively, again as a function of
v/A. As we already discussed, these values are obtained through the process of
minimization of the trace distance between the maps, that was defined in Eq.[5.57]

In the limit where v < A, the evolution of the system is dominated by the
A term in the Hamiltonian from Eq. [3.16] which translates to a simple rotation
around the x—axis. From Fig. [5.5(a) we see that Aqg,4.x is in very good agreement
as its trace distance to the true evolution in this limit is near zero. Furthermore, the
optimization leads to the optimal value of § ~ /5 as can be seen from Fig. [5.5(b).
This is consistent with the fact that the total rotation angle that we would expect
from the evolution for the parameters we have chosen, should be 2At = /5.
Finally, having both p ~ ¢ ~ 0 implies that only the A, portion of the map shown
in Eq. is playing a role. Next, looking at the data for the case of the Aq,
map (blue curves), still in the regime where v < A, we see that its agreement
with the master equation evolution is poor. This is mainly because there is no set
of parameters that can be chosen where this simple rotation could be mimicked.
We stress that the situation would be different if, for example, the total evolution
time were such that At = 7/2, as this case the effective transformation of the
density matrix of our system could be written as simply p — o,po,, which could
be emulated with Ay, by choosing ¢ =p =0 and 0 = 7.

In the opposite regime, where v > A, we find that both maps approach a
good agreement with the evolution of our system. This is exactly what we would
expect. Here, even though A is nonzero, the evolution is dominated by the ~ ~o,
term in the Hamiltonian that couples the qubit to the oscillator. The fact that the
oscillator decays to the environment, causes the qubit to dephase (we can verify
this by studying the density matrix obtained from the master equation evolution,
which is not explicitly shown here). Both maps Ag, .« as well as Ay, are dephasing
maps by construction, and in both cases the optimization over 6, ¢ and p simply
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Figure 5.5: Map comparisons between the evolution calculated through solving
the master equation for our qubit-oscillator system and simple maps consisting
of dephasing about arbitrary axis around the Bloch sphere (blue curves) and a
combination of x—axis rotation and dephasing about the z—axis (red curves). Plot
(a) shows the trace distance between the corresponding xy—matrices as a function of
the ratio X, while plots (b-d) show the optimal values of the parameters ¢, ¢ and
p. We observe good agreement (small trace distance) of both of the maps to the
master equation evolution in the regime where v > A, as well as the combination
of x—axis rotation and z—axis dephasing in the limit where v << A. See main text

for discussion.
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chooses the right parameters to mimic dephasing specifically around the z—axis. In
the case A,qirx this leads to ¢ =~ 1/2, p ~ 0 and 6 ~ 0. We stress that this is not
the most obvious choice, but it works, because with § < 1, U(f) ~ 1. Clearly a
more obvious solution (to a human!), might be to simply pick ¢ = 1, in which case
the rotation around 6 would not play any role at all. In the case of Aq,, the angles
are simply chosen so that the R(6,¢) ~ o,, which means # = 7 (although 6§ = 0
would also clearly work) along with p = 1/2. The value of ¢ is irrelevant here,
because having 6 = m gets rid of all the off-diagonal entries in R(0, ¢).

Finally, in the intermediate region where v ~ A, and where the evolution can-
not be thought off as a simple rotation or dephasing, we see that our maps are
not as good at approximating the outcome of the simulations. More elaborate
examples could be chosen that we could optimize over. It is worth pointing out
however, that while these kinds of “map guesses” might be instructive in quickly
assessing the general behavior of a given system based on data obtained through
process tomography, their real world applications, where the data may come from
experiments, might be limited. Since in most situations one usually has at least
some understanding of the system’s Hamiltonian, often solving the master equation
directly may be more desirable.

5.12 Summary and Conclusions

In this chapter we studied the dynamics of a qubit coupled to a harmonic oscillator,
in the context of a quantum measurement. Using a polaron—type transformation,
we calculated an effective qubit dephasing rate, valid in the QND measurement
limit, where qubit—probe interaction commutes with the free evolution of the qubit
itself. We also numerically explored regimes where this was not the case, and briefly
discussed the related consequences. Finally, we concluded with a study of Kraus
maps consisting of rotations and dephasing, and looked at how well they can model
the evolution of the qubit in different parameter regimes.
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Chapter

Conclusions and Outlook

In the last few years, superconducting circuits have shown to play an important role
in many research areas, particularly in fields related to quantum computation and
information, but also in subfields of physics that explore fundamental effects which
have been hard or even impossible to study otherwise. This is largely due to the
remarkable flexibility and experimental accessibility that they offer — from a small
subset of simple circuit elements we can construct a variety of Hamiltonians, and
therefore model many different behaviors, but more importantly perhaps, physicists
are becoming better than ever at building circuits that are much less susceptible to
outside noise, and provide means of precise control over their behavior.

The main theme of this thesis therefore, has been to study the dynamics as
well as general quantum behaviour of a few superconducting circuit systems, that
might at least slightly advance our understanding of this quickly evolving field. In
the first part, we looked at Casimir and Casimir—Polder like effects that could be
realized in a circuit consisting of a charge qubit coupled to a stripline cavity with a
tunable boundary, which was constructed out of a DC-SQUID. These effects were
mediated by the boundary DC-SQUID circulating currents, which, for a realistic
set of physical parameters, have been calculated to be of the orders of 107® A in
the Casimir case, and 107 A in the Casimir-Polder case. In the second part,
we theoretically studied the classical dynamics of a highly nonlinear DC-SQUID
oscillator and showed that our model closely agrees with experimentally produced
results obtained by the Britton Plourde’s group at Syracuse University. Finally,
in the last part, we discussed, in the context of a measurement, the dynamics
of a system consisting of a qubit coupled to a harmonic oscillator that could be
implemented using a flux qubit inductively coupled to a DC-SQUID. While all of
the three projects are fairly different in nature, each hopefully sheds some light on
a small aspect of the applicability of a superconducting circuit systems in these
various scenarios.

As is usually the case in science, there are many facets of of these projects
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that could be explored further. In the case of the Casimir and Casimir—Polder
discussion, the central peace of the puzzle that still needs to be studied in detail, is
how a measurement of these effects could be implemented. Related to this, it would
be also instructive to explore some ideas that would let us make these currents large
so that they are easier to observe. Both of these topics were briefly discussed in
Secs. [3.17] and [3.8.5 but there is a lot of potential for future exploration. In the
second project, we only scratched the surface of how a nonlinear oscillator operated
in a transient regime could be used as a simple flux detector. Both experimental as
well as theoretical work is needed to explore the optimal properties, such as input
pulse shape, integration time, and even most reasonable flux biasing in order to
maximize the contrast of a readout. Finally, in the last project that looked at at
dynamics of qubit undergoing a measurement, we concentrated our discussion on
the evolution of the qubit only. In order to complete the picture and discus the full
measurement process, we would need to also study the corresponding dynamics of
the probe, and more importantly, show over what kind of system parameters can
an observer learn about the qubit, by only directly observing the probe. All of
these issues are interesting, and may be explored further in the future.
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Appendix A

Normalization of Stripline Cavity Normal
Modes

In this appendix we explicitly show the calculation involving the normalization of
the normal modes of the cavity open at x = x;, and with a DC-SQUID at x = 0,
as described in Chapter [3

In Sec. we used an ansatz that the cavity normal modes have a form

up () = My cOS (%x + Qn) , (A.1)

with 6,, and w, satisfying
0, = tan~! (CJSZOM) (A.2)
Wy = x% (nm—0,), (A.3)

and with 7, to be determined. We chose to normalize u, (x) subject to the weight
function w(z) = (0(z)Cys + O(z)c), with O(z) representing the Heaviside function,
and the other parameters as defined in Chapter [3] Hence, in order to calculate 7,,
we need to ensure that

/ (@) ()0 (@) d = Sy (A4)

—0o0

Let us begin by first considering

/Il U (2) Uy (x)dx = /xz Ny COS (%x + 9n> cos (ﬂx + Hn/) dx. (A.5)

—00 —00 v

118



In the case of n = n’, we have

x] zy
_ 2 2 (%
/ U (2)up (x)dr = / 7;, COS ( _— + 9n> dx

h 7 x v 2w (A-6)
=n? (—l + (sin (—n:v + 20n) — sin 29n>) .
2 dw, v

Using Eq. we have sin (2222 4 26,,) = sin(2n7) = 0, which leads to

/ (@) () = 72 (% ~ Y sin20 ) (A7)

o 4w,

When n # n’,
z
/ U () Uy () dx = =1y vC 55 Zg cOS B, COS O, (A.8)

Using these results we can then write

/_wz U () Uy (2)w () d = /_rz Un () Uy () (0(2)Cys + O(x)c) da

xy
= C MMy cos 0,, cos O, + c/ O(2)tp () Uy (x)d.

(A.9)

When n # n/, as required, this expression simplifies to zero, since

C 15NN €08 0,, cos O, + ¢ /xl O(z)up (z)uy (x)dx
h = (1 — vcZy)Cysnunny cos O, cos O,y (A.10)
=0,
as 1 —wveZy = 1—— \/t
When n = n’ on the other hand, Eq. simplifies to
/xz U () Uy () w () dx = /Il U (T) U () (6(2)Cys + O(z)c) do

= Oy cos® O, + cn? <% - ﬁ sin(20,, )) (A.11)

2 Wn

C
=n? < L+ Cjycos?b, — 4—5111(26 ))
where we have defined the total stripline cavity capacitance C; = cx;. Equating this
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expression to 1, and solving for 7,, leads to the normalization shown in Eq. |3.29,
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Appendix B

Details of the Perturbative Energy Shitt
Calculation

In this appendix we show the details of the perturbative energy shift calculations
presented in Sec. [3.6l The material shown here is meant to complement that dis-
cussion, and we point the reader to that section for the definitions of parameters
and the general problem setup. We explicitly show the calculation for the case of
a cavity with two field modes, but this result is generalized to an arbitrary mode
number in Sec. 3.6

First, we show the expression for the diamagnetic contribution to the energy
shift, 5Ed1am

q,n1,n2

2
5Eglﬁinn2 = (q,n1,na|— (Z gDi's 1L (alj:ak)> lg, 1, n2)

k=1,2

i 2
= i‘(% ni, n2| <gii) <GI + @1) + géi) (ag + a2>> |q, nl,n2>

> 2

=+—(q,n1,n9| £ 9(i>2 <a1a1 + a1a1> + 9(i>2 (CL;az + 6261;) lg, 1, n2)

| =t |

=+ (q, ni1,ne| £ g(i)Q <2aJ{a1 + 1) + gu[)2 <2a£a2 + 1) lg, 1, n2)

Z g(i>2 (2ny + 1).

k12

(B.1)
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Next, we look at the details of obtaining the paramagnetic contribution 6 EP57

1F1
pa]17]2|hzxmm+10— Z g,(f)z 2 (aL:l:ak>

k=1,2

§ Eparam 1
g,ni,n2 — E .
p7j1’j2 q,n1,n2 P,J1,J2
D.J1,J27#¢n1,12

—i—hz Zm|m) (m] Z g = ((L;TC iak) g, n1,n2)

k=1,2
p7]17]2‘ Z Z xmm+10m ) (a]t iak) |Q7nlan2>

m k=1,2

2

h2
—F

D,J1,J2

 padrige PTLT2
P,J1,J27#q,n1,n2

+(p, J1, J| Z Z Z|m)(mlg” (GL + ak) g, 1, n2)

2

m k=12
(B.2)
Let us consider this expression term—by—term. First we have
(D, J1: J2| Z Z T 105 G (agt * Gk) g, 11, n2)
m k=1,2
=D D Tmms18pmOmi1g (i, Jalgi” (aL = ak) |71, 12)
m  k=1,2
+ Z Z l’m+1,m5p,m+15m,q<j1=j2|gl(<:i) (a;rc + ak) |n1,n2> (B.3)
m k=1,2
=Tpg0pt1q Z <J'1;J'2|g/(j) (GL + Cbk) 11, 12)
k=1,2
+ Tpg0p-1,4 Z <j17j2|9/ii) (GL + ak) 11, m2).
k=1,2
Next, we look at the last term from Eq.
(D, J1. Jo| Z Z Zm|m) (mg;” <CLL + ak) ¢, 1, n2)
m k=1,2 (B4)

=2p0p,q Z (J1, J2lg;” (GL + ak) |1, ng).

k=1,2
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Finally, in order to simplify the last two expressions further, we note that

> Ginsdalat” (af = an) Iy, ma) =

k=1,2
=(j1, j2| (91" (vm + 1lny + 1,n9) £ /na|ng — 1 n2>)
+ (g1, dalgs” (Vg + 1lna, ng + 1) £ \/nglny, ng — 1)) (B.5)
=01 (Vn1 + 185, m 41012 m0 £ /1181 0y -1043,n)
(i)(\/ N2 + 104, 1y 0js,na+1 £ V/N20j1 0,03 m0—1)-

Substituting Egs. [B.3] [B.4] and [B.5] into [B.2] and simplifying leads to

52
param __
5Eq nine E : E —_FE ‘ (TpaOp+1,g T TpgOp—1,4 T 2p0pg) X
p7j17j2 q,n1,n2 P,J1,72
D.j1,J27q,n1,n2

( <i)< Vi + 5]1 n1+15]2 ng + ALl 5]1 ni— 1(5]2,712)
2
(i)(\/ ng + 6]17n1 J2,n2+1 + Al 6]1:"1 J2,n2— 1)) |

o Eq,nhnz - Eq+1,n1+1,n2 Eq,nl,nz - Eq+17n1—1,n2
L e Plet D) R )

Equth - E(I+1,m,n2+1 Eq,m,nz - Equl,m,nz 1 (B6)

2 2 |9§i)|2(”1 +1) ’g(i)P
+h |Iq,q—1| +

Eq,nhnz - Eq—l,m-i—l na Eq,m,nz - Eq—17n1—17n2

. 957 [P (n2 + 1) n |95~ |*n2 >

Eq7n17”2 - qul7n1,n2+1 Eq,m,nz - qul ni,n2—1
e (UE D o

! Eq,n1,n2 - Eq,n1+1,n2 Eq ni,ne Eq7n1—1,n2
()2 (+) 2
ny + 1

L g Pt |92 ) .

Eq,m,nz - Eq,m,anrl Eq,m,nz - Eq,m,nz 1

We now need to evaluate the denominator terms containing the energy differences
between various energy levels. Let us look at a couple of cases explicitly

Eq,n1,n2 — Eq—i—l,nl-‘,-l,nz = h{fq + <n1 + ) hw1 + (TLQ + ) hu)g (B?)
1 1

— (h€q+1 + (’fll + 5 + 1) hwl + (ng + 5) FMUQ) (B8)

= h((eq = €g+1) —wi), (B.9)

123



and

E%nl,nz - Eq+1,n171,n2 =h ((Eq - 81]+1> + wl) : (BlO)

Performing similar calculations for the other terms leads to

ng + 1 23
SER™ =hlx > g ( + )
pyn1,m2 ’ qq+1| | — €q+1) — Wg (5q - €q+1) + Wk

k=1,2
le—i-l N
+ Bz 2 g<i)2( . )
’ q,9— 1‘ kzl2| _gqfl)_wk (€q—€q71)+wk
nk—i-l Ny
+h’2q‘2z ‘g(i)Q( +_)
k=12 Wk Wk

ng + 1 T
- 1667 . )
Z Z LTI K (eg = €qti) =Wk (8¢ = €q4j) + Wi

j=+1,—-1k=1,2

_hl q|2 Z |g

k=1,2

(i>|2

(B.11)

Combining the expressions obtained in this way, leads to the total shift as shown

in Eq.
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Appendix C

Moments of the Stripline Cavity Field in
the Ground State

In this appendix, we calculate the moments of the field inside the stripline cav-
ity introduced in Chapter when the system is assumed to be in its ground
state — namely expressions of the form (0|®*(x,#)|0). These results are partic-
ularly useful when analyzing the effective spread of the field’s wavefunction, and in
Sec. let us describe the validity of approximating the DC-SQUID as a linear,
flux—dependent LC oscillator. In order to simplify the calculations, we follow the
technique presented in [130].

In Seq[3.4) we calculated the expression for the flux—field inside the cavity as
O(z,t) = Z \/ iun(yz;)(ane’i“’"lt + al e™nt). (C.1)
’ — V2w, "

For convenience, let us define operators A = Y \/5e—u,(z)ae ™" and A =
n

>0 A/ 5= tn(z)al e, which allow us to describe the field in a more concise form,
n

ad]
®(z,t) = A+ A (C.2)
Taking |0) = |0,0,...), it is easy to see that
A|0) =0, (C.3)

and therefore (0|AT = 0. Furthermore, we can now define helpful commutation

1Our naming convention differers from the one used in [130].
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relations. We note that since [a,,, aL,] = 0/, WE can write

4, At = ZZ%@@:”(WWH

CcA4
O h (C.4)
= 2—%%(1’)»
and hence
[®, A = [A+ AT, AT
B h (C.5)
- 2Wn n(x)>

Next, using the notation (e) = (0| e |0), and dropping the explicit = and ¢
dependence for notational convenience, from Eq. it follows that
(®) = {4+ A)

. (C.6)

Similarity, using that fact that for two operators B and C we can write BC =
CB + [B, (], for the second moment, we have

(®%) = (P(A+ AT))
= (DA) + (DA
= (AT®) + ([®, AT]) (C.7)

h
= Z ﬂui(ﬂﬁ)

A higher kth moment can be calculated noting that for two operators B and C,
that satisfy [B, C] = d, with d € C, we have [B*,C] = kdB*~'. Hence

(C.8)

This shows how the expression for kth moment depends on the value of the (k—2)th
moment. In the case of k£ being odd, inductively, we can trace this result back to
k = 1 and using Eq. conclude that all the odd moments will be necessarily
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zero. Mathematically we can write this as
(@741 =, (C.9)

for k =0,1,2.... In the case of even powers on the other hand, using Eq.[C.8| and
inductively tracing back to the result for the second moment shown in Eq. [C.7] we
see that

(@) = (2k — 1)1(D)*

= (2k — )N (Z %ui(x)) :

for k = 1,2,.... In this last expression, the “!'” symbol represents the double
factorial, which is defined as

(C.10)

n/2 o _ . . .
ol — { per 2k =n(n—2)(n—4)...2 if n is even (C.11)

(mD209) 1) =nn—2)(n—4)...1 ifnis odd.

Hence Egs. and let us calculate the kth moment of the flux operator in
the ground state of the filed, described by the normal modes w,(z).
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Appendix D

Derivations of an Effective DC-SQUID
Inductance

In this appendix we will discuss various ways of approximating the inductance of
a DC-SQUID. It is well known that due to the Josephson relations [67], in a case
of just a single Josephson junction, the inductance can be thought of as L o/ cos ¢,
with Ljo = ®¢/27ly, and ¢ a superconducting phase across the junction. Such
inductance is clearly time dependent, however it is often useful to approximate it
by simply taking the steady state value of ¢ — let us call it ™. The value of
™1 depends on the strength of the biasing DC current that is passed through the
junction and it can be calculated by minimizing the junction’s potential energy.
Such an approximation is typically valid in the limit of small excitations of the
DC-SQUID, namely when || < 1. An analogous treatment can be performed for
a DC-SQUID, and in Chapter [2] it was shown to be useful during characterization
of the various circuit parameters.

For the sake of concreteness, let us consider a single DC-SQUID shown in
Fig/D.Ip. Everything follows from the discussion from Chapter [2| and in particular
Sec. except we neglect all the “other” circuit components, and furthermore, for
the sake of generality, assume that the DC-SQUID is driven by some biasing current
Iy (in Sec the AC signal excited the circuit through the input capacitor C},,
but no other biasing current was present). We label the flux nodes as 2, 4, and 5, to
stay consistent with the previous discussion. We can use this setup to discuss three
slightly different, but analogous ways of calculating the effective inductance of a
DC-SQUID. The first way (Method 1) will review the discussion already presented
in Sec. [£.3] which consists of reducing the system to a single degree of freedom and
minimizing a 1D potential energy. In the second way (Method 2) we will use the fact
that in the limit of the junctions preforming linearly, and small 5;, = L,/ L o, it will
be possible to decouple two degrees of freedom in the DC-SQUID potential, and
hence obtain an effective inductance by only looking at a single degree that couples
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D.1. Method 1

(a) (b)
Ly/2 | Ly/2 ——
4 7 5 ] C,TD Zg I I

Iin C’[‘ CJ—I:|2< ¢S>EI——I—CJ N Zl Zz
| i

Figure D.1: (a) DC-SQUID driven by a current source. The flux nodes are labeled
by numbers 2, 4 and 5 in order to stay consistent with Fig. and the overall
discussion in Sec. (b) An equivalent circuit drawn in terms of impedances due
to the Josephson and geometric inductances. See text for details.

to input current. Finally the last way (Method 3) will use standard circuit analysis
techniques and combine all the involved impedances in Fourier space. We will
conclude by providing a numerical comparison of the three methods just outlined.

D.1 Method 1

In this section we will review the results obtained in Sec. k.3l There we started
with the potential energy for the DC-SQUID in terms of three degrees of freedom,
Y2, 1, and ¢_, and given the fact that they evolve on different time scales, using
a Born—-Oppenheimer like treatment, we reduced the system and expressed the
effective potential energy U.g only in terms of o, which in turn represents the
total phase across the DC-SQUID. In Sec. we assumed that there is no biasing
DC current to be consistent with the experiment, but here, to preserve generality
we can include the effects of having a nonzero I, (see Fig.[D.1h), which would result
in an extra term —¢q/li,po added to Eq. 4.5l While the resulting potential energy
was shown to be still nonlinear in ¢, at small excitations it could be expanded
near o, that minimized U, namely o5, which we could calculate numerically
(for a given applied flux ratio f;). The last step was then just to conclude that this
would let us write an effective inductance, which we called L;, as

—1
0*U,
L, :qsg( il ) . (D.1)
pa=piin

03
Ueg here is shown in detail in Eq. and in what follows. Clearly by including
higher orders corrections in 3, we could get a more accurate value.
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D.2. Method 2

D.2 Method 2

In this section we will provide an analogous treatment to what was shown in
Sec. [D.1], however we will start with a reduced potential energy of only two de-
grees of freedom — this kind of description is more common, particularly in circuits
where the DC-SQUID is not shunted by other components. As was done in Chap-
ter [4] for the full experimental circuit, we can write down the equations of motion
of our simplified system consisting only of a DC-SQUID as

2C ¢0p4 + 21gsing, cosp_ = Iy, (D.2)
4
2C¢op— + 21psinp_ cosp, = % (—p-+7fs), (D.3)
g
along with

4¢
I = L—O (2 — o1+ +7fs) (D.4)

9

Once again we have taken the flux-phase relationship as ®;, = ¢;¢9, with ¢g =
Oy /271 as well as o1 = (@4 = p5)/2. fs is the applied flux ratio ®4/Pg, with P,
representing the external flux through the DC-SQUID loop. It is worth stressing
that while the equations of motion consist of three degrees of freedom, the dynamics
of the DC-SQUID can be well understood by only considering ¢_ and ¢, . This is
because ¢, is fully determined by [, ¢, and ¢_, as can be easily observed from
Egs. and [D.4] Let us then for now eliminate , and integrate Eqgs. to
obtain a potential energy. This leads to

U

1 2
= Lo, — b (nfe— ), D.
o, P+ — COS P COS P + (nfs—¢-) (D.5)

with I, = I,/21,. Temporarily, we will assume that I, is a DC current, and
therefore I, is a constant.

Next, let us expand this expression around points associated with a minimum
min min

of U, namely ¢ and ¢™". Introducing translated variables ¢ = oy — @' and
neglecting constant terms, lets us write an approximate potential energy Uyyp, as

Uapp BL min min =2 1 min min —2
—— = | —=— +cos CoS + = cos €oS
2, 5 Yy Y- 2 9 Py YL
2 min min _: min . min _: min ,— — D6
+ (B—(—wfs—l—go )—l—cosngr Sin " — S, Sin @ gp+) O ( )
L

+ (sin P cos QM [b) D

It is clear that in this form, the two degrees of freedom ¢, and @_ are coupled.
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D.2. Method 2

We can however show that in the case of |¢_|, [¢4| < 1, which we have assumed to
be true, when we expanded U in Eq.[D.5] and only kept terms up to second order,
and having f; < 1, leads to these two degrees of freedom being approximately
decoupled. Hence, we complete the square in ¢_, which gives

% :1 COS SOmin Cos gOmin . 5L sin? QOIilin sin? gpr_’r_lin @2
2E; 2 B T Brcospmitcospmin 42 ) 7T

. . cos M gin MM 4 2pmin _ o7 £
+ | cos ™™ sin M — I + (BL L cp SO / ) Dy
B, cos ™™ cos P + 2

+ (% + cos ™ cos gpmm> @ (D.7)

Here we have introduced a new variable @’ | which can be written as

@/ :@ . /BL Sin Qprilin(@+ Sin @Tin — CcOoS gDiﬁn) + 2(7Tfs . gprfin)

. D.8
B, cos ™" cos " 4 2 (D.8)

While it clearly depends on ¢, it does so only weekly. Since 5, < 1, we can think
of the variable ¢_ as fast relative to ¢,. Hence on the time scale of ¢_ one can
expect @1 to be roughly constant. From Eqs. [D.7 and [D.§ it is clear that in this
new uncoupled “frame”, the ¢_ gets a translation that depends on the “slow” ¢, ,
while the degree of freedom ¢, sees a shift in its natural frequency. Hence after
simplifying the potential further, we can now write down the effective inductance,
associated with the ¢, (and hence ¢ ) degree of freedom — let us call it L. It is
simply the inverse of twice the coefficient of the g3 multiplied by 2E; in Eq. .
Therefore after simplifying we arrive at

Lo B, cos ™™ cos @ + 2
2 fr(cos? M 4 cos? e — 1) + 2 cos ™ cos PN

L= (D.9)

Next, we need to account for the fact that the total voltage across the DC—
SQUID is not ¢pp, but instead ¢gp2. So far we have assumed that [, is constant,
but let us now treat it as consisting of a constant DC bias, as well as an AC
component. Then differentiating Eq. [D.4] with respect to time, and assuming that
the applied flux is time-independent (which is consistent with the experiment),
gives

L

dopr = —LIin + G0+ (D.10)

We can now use the expression derived in Eq. [D.9] to rewrite the above equation
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D.3. Method 3

as

L. .
Do = Zglin + L. Iy,

I )

= Leﬁjim
Hence we can define the effective inductance of a DC-SQUID to be

L, N Lo B, cos ™™ cos PP 4 2
4 2 Br(cos? M 4 cos? o™ — 1) + 2 cos ™" cos @

Log = (D.12)

Lastly, since many DC-SQUID experiments are operated in the limit where 5, < 1,
as was the case here, it is useful to expand the effective inductance in powers of 5.
So for example, neglecting terms of order O (/32) or higher, leads to

L L tan2 min t&Il2 min
Leff = + mir{O min + BL = = SOJF

4 2cos ™ cos T 4

(D.13)

A variation of this form is used in different publications — often in fact only the
second term is considered as one takes the limit of 8, = L,/Ljo — 0 [118| [119].
Furthermore while we have assumed that 7" are “exact” (calculated by a numer-
ical minimization), in some cases it may be useful to simply use an approximation,
which can be obtained through informative guesses. For example in the case where
the biasing DC current through the DC-SQUID is zero, and in the limit of L, = 0,
one can approximate @™ as fyr, and set 7™ = 0, which lets us rewrite Eq
as Ljo/2cos(fsm). Therefore in this limit, the DC-SQUID behaves like a single

junction with an applied, flux—controlled critical current.

D.3 Method 3

In this section, let us briefly outline a calculation of the effective inductance using
standard linear circuit analysis techniques, where we simply add impedances in
Fourier space. In the limit of small junction capacitances C';, we can neglect them,
and using Josephson relations [67] treat the effective inductance of the ith junction
as L; = Ljy/coso™ with o; representing the phase across the ith junction, as
before (here the label i is 4 or 5). In general ¢; is time dependent but here we will
assume we take a steady state value (or the minimum of the corresponding potential
energy). In the limit of junctions behaving linearly, this lets us redraw our DC—
SQUID circuit as four individual impedances arranged as shown in Fig. [D.Ip. The
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D.4. Comparison
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Figure D.2:  Effective inductance of a DC-SQUID calculated via Method 1 (red
curve) and Methods 2 and 3 (blue curve) in units of L ;o and as a function of the
flux ratio f;. The parameter S is taken as 0.05, which is consistent with the
experiment discussed in Chapter . Furthermore, the plot in (a) uses the current
ratio [, = 0.0 as in the experiment, while (b) shows results for I, = 0.25. We
observe good agreement between the various methods.

total impedance of the whole circuit, can therefore be written as
Zet = (Z1+ Zy)||(Z2 + Zy), (D.14)

where || represents that the impedances are to be taken in parallel, Z, = iwL,/2,
and finally Z; = iwL;. As before, applying a change of variables o1 = (¢4 £ ©5)/2
(and assuming that this holds for their minima as well) and simplifying, leads to

Zeff = iwLeﬁ, (D15)

where Leg is identical to the expression shown in Eq.[D.12] As in Sec.[D.2] in order
to obtain a numerical value for this expression, one would have to either numerically
minimize Eq. or use other means to arrive at some estimates for the steady
steady state values of ¢ and ¢_. Hence we conclude, as might be expected, these
various approaches to deriving an approximate effective inductance, let us arrive at
equivalent answers.

D.4 Comparison

As a last step, we can numerically compare the results from Sections [D.1], as well as
and[D.3| Let us reiterate that while the expressions for the effective inductance
from Sections and agree exactly with each other, the variation from Sec.
is slightly different. This is because there, we have estimated the values of ¢, and
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D.4. Comparison

@_ that correspond to the minimum of potential energy via a Taylor expansion
and not assumed them to be “exact” (i.e. obtained via a numerical minimization).
Nevertheless, the resulting values of L.g agree quite well for the parameters used in
the experiment, as long as we keep terms at least up to first order in ;. Fig.
shows a couple of plots that compare the effective inductance calculated via Method
1 (red curve) and Methods 2 and 3 (blue curve) in units of Lo and as a function
of the flux ratio f,. In both plots, the parameter §; is taken as 0.05, as in the
experiment outlined in Chapter [4f The plot in (a) uses the current ratio I, = 0.0,
while in (b) shows results for I, = 0.25. We observe good general agreement between
all the methods discussed.
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Appendix E

Numerical Integration of the Langevin
Fquations

In chapter 4| we studied the transient response of a DC-SQUID oscillator circuit at
finite temperature. We derived an effective set of stochastic differential equations
(Langevin equations) [80, 102, 121] that govern the behavior of our system. In this
appendix, we briefly outline how these equations were numerically integrated. We
stress that the material shown here is meant to complement that discussion, and we
point the reader to Sec. for definitions of parameters and the general problem
setup.

Through elimination of the fast degrees of freedom, in Sec. we wrote down
the equations of motion, in a vector form, as

1
o

Here 95 = (‘;017 P2, (;03>T7 64,0 = (8/89017 8/69027 a/agpd)T’ I_;ir = (_V;n/Rm 07 O>T and
i = (ny,n2,n3)7 is a vector of Gaussian random variables representing white noise
as described in Sec. 4.3, The matrices corresponding to C and R~ can be written
as

$CE + poR 1 + —V,Ueg + Nii + I, = 0. (E.1)

C —Cn 0 7z 0 0
C=|-Cn Cs —Cul|.R'=[0 5z 0], (E.2)
0 _Cout C(out 0 0 RLZ
and N as simply
N = /2kgTR-1. (E.3)

In order to solve the system shown in Eq. numerically, we first transform it into
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a system of first order equations. This is done by introducing

X1 ©1
Xo $1

% X3 2]

X = =1 E.A4
Xy P2 ( )
X5 ©3
X6 3

Next, we write it as a standard form of a multivariate Langevin equation [51], [52],
which reads

X(t+dt) = X(t) + fidt + o NVdt, (E.5)
with
Xo
_ (Cint+Ct)Xo _ 2cos(mfs)sin(nfs+X3) B sin(4nfs+2X3)+sin(2X3) _ X4 _ Xg + (Cin+Ct)Vin
CinR- L, L 2L, R, ~ R. 60Cin Rz
L 1 X4
Hn= a _ Xo _ 2cos(nwfs)sin(nfs+X3) -8 sin(4m fs+2X3)+sin(2X3) X4 _ Xg + Vin )
R. Ly L 2L, Ry R. ' $oR.
Xe
_ Xo _ 2cos(mfs)sin(nfs+X3) -8 sin(4mfs+2X3)+sin(2X3) ~ X4 _ (Ci+Cout)Xe + Vin
R. L L 2L, Ry Cout Rz doRz
(E.6)
and
0 0 0O 0 O 0
0 (Cin+Ct) 0 1 0 1
C1in\/Rz VRt VRz
V2kgT 10 0 0O 0 O 0
o = _—C’ 0 1 0 1 0 1 (E?)
Cb() t \/Rz vRt sz
0 0 0O 0 O 0
1 1 (Cout+ct)
0 —— 0 = 0 =—r=
\/E \/E Cout\/E

N represents a vector of temporally uncorrelated unit normal variables, with N; €
N(0,1). The form of is particularly convenient, since it is presented as an up-
date formula for the random variables described by X (t). In other words, it tells us
how X (t) changes as we increase time by a small increment dt. Such an update for-
mula can be easily programmed in a computetﬂ The results presented throughout
chapter [4, are calculated with Maple, which uses the open source QuantLib library
(version 0.3.11 as of this writing) implementation of the integration procedureﬂ

IThe method of directly using the update formula to generate single realizations of X (t)
by splitting the time range of of interest into small time increments dt and generating a sample of
random variables described by N at each time step, is often called the Fuler—-Maruyama method.

2At the initial stages of this project, some of the results were also obtained using a direct
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In our simulations we chose the initial conditions to satisfy

0
X =| "7 (E.8)
0
0

This is a convenient choice as it sets the @y (or X3) near the potential energy
minimumﬂ We then let the system thermalize by evolving Eq. without an
external drive present, with only the thermal noise influencing the evolution. In
the final step, one of the input pulses described by Egs. or is applied,
which in turn excites the system and prodcues rigndown oscillations.

The simulations are repeated many times to gather statistics about trajectories
of individual realizations, which are later averaged. For example, the average of
X (multiplied by ¢g) corresponds to the circuit’s output voltage and hence can be
compared to the data that was measured in the Syracuse experiment.

implementation of Eq.
3Tt is not exactly at the minimum, due to the fact that 37, is small but not exactly zero.
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Appendix F

Coherent State Evolution of a Decaying
Harmonic Oscillator Coupled to a Qubit

In this appendix, we calculate the time dependent evolution of the coherent states
of a harmonic oscillator decaying to its environment at a rate x and coupled to
a qubit. The results of this calculation are used in Sec. We closely follow
the procedure used in [47]. The key difference between our discussion and the one
presented in [47] is the Hamiltonian — in the paper, it is dispersive and the qubit
couples to the photon number operator a'a, whereas in our case, the qubit couples
to oscillator displacement operator a! + a instead.

We consider a special case of the Hamiltonian shown in Sec. [5.3] with A = 0,
namely

h
H = hQa'a + 5602 + hyo.(a' + a) (F.1)
where € and 2 are the frequencies of the qubit and oscillator respectively, and

the coupling between the two. We further assume that the evolution of our system
is subject to a Lindblad master equation

(t) = 7 [H, p(0)] + KDlalp(r). (F.2)
with
Dlalp(t) = apal + 5 (alap(t) + p(t)a'a) (F.3)

and k representing the decay rate out of the oscillator.
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We begin by noting that we can rewrite the density matrix p(t) as

=Y pu®{l, (F.4)

i=eg

J=eg
where e and ¢ are the indices of excited and ground states of the qubit respectively.
We stress that each p;;(t) is an operator in a Hilbert space of the oscillator only, not
the qubit, and it is precisely the evolution that we wish to calculate. Substituting
Eq. [F.4] into the master equation [F.2] leads to four differential equations for each
of p;; (neglecting explicit time dependence for the sake of brevity)

= —iQ[a'a, pee] — igla’ + a, pee] + KD[a]pec (F.5)
= —iQla'a, Pagl + i gla' +a , Pgg] + £Dlalpyg (¥.6)
= —iQfala, Peg] — i€peg — igla' + a , Peg] + KDalpeg (F.7)

| (F3)

+ZQ[0’TGa Pge| + 1€pge + Zg[a +a pge] + "{D[a]pge-

Next, following [47], we introduce a positive-P representation [84] defined as

_ / Lo / PBAP,(a, ) (F.9)

A= 05 (F.10)
(5*|er)
Each of o and (8 is a complex number, hence the integral in Eq. is four dimen-
sional. The positive-P representation is particularly useful in this case (as opposed
to say Winger representation [84]), as we will be able to write P; in terms of -
functions — this is because we expect the degrees of freedom of the oscillator to
evolve like a time dependent coherent states [49].

The next step involves substituting Eq. into Egs. —[F.8 Using the
following identities

where

ale) = afa), a'la) = (0a + a”/2)|a)

(F.11)
(B*|a" = B(5"], (Ba = (05 + B/2)(B"],
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one can show that

[a pij] = —0 PZ] (F.12)

[a, pij] = 03P, (F.13)

[a’ + a, pi;] = =0 PU + 03Py (F.14)
[ata , pij] = —ada Py + BOs Py, (F.15)

which then lets us rewrite Egs. — in terms of P;; as
. k , , kB
Po=0,i1Qa+ig+ —— | Pee + 05 | =125 —ig + - P.. (F.16)
. . , ka , , k3
Py = 04 | 1Qa —ig + - Py, + 05 | —iQ6 +ig + - P, (F.17)

P,y =0, (@'Qa +ig + %O‘) Py + 05 (—mﬁ —ig+ %) P., —i€P,, (F.18)

k
Py =0, (—ma —ig+ 70‘) P, + 05 (mw +ig+ ﬁ) P, +ieP.,. (F.19)

2

These equations can be solved, by making a simple ansatz [47]
Py = 0o — a;()]0°[8 — o (t)] (F.20)
and assuming ¢;;(t) are time-dependent functions,
Pyj = cij(t)0%[o — oi(1)]0°[B — o (1)), (F.21)

with i # j. Each a4(t), for i,5 € {e, g}, describes the very coherent states we want
to calculate — they tell us how the degrees of freedom of the oscillator evolve in
time.

We can substitute Egs. [F.20/ and [F.21] into Eqgs. [F.16] - [F.19]and simplify, which
finally leads to expressions

Go(t) = — iy — (Q + g) () (F.22)
g (8) =iy — (Q + g) oy (1), (F.23)

with easily obtainable solutions

. Kt
a;(t) = + (o;(0) — o) exp (—z (Q+v)t— 5) (F.24)
for j € {e, g}, and with o representing steady state solutions where af = —%gln
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e

and of = —af. Hence, using Eq. along with Eq. gives the qubit-—state
dependent evolution of the oscillator, subject to the master equation
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