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Abstract

Protein crystals populate diverse conformational ensembles. Despite much evidence that
there is widespread conformational polymorphism in protein side chains, most of the x-
ray crystallography data are modelled by single conformations in the Protein Data Bank.
The ability to extract or to predict these conformational polymorphisms is of crucial im-
portance, as it facilitates deeper understanding of protein dynamics and functionality.
This dissertation describes a computational strategy capable of predicting side-chain poly-
morphisms. The applied approach extends a particular class of algorithms for side-chain
prediction by modelling the side-chain dihedral angles more appropriately as continuous
rather than discrete variables. Employing a new inferential technique known as particle
belief propagation (PBP), we predict residue-specific distributions that encode informa-
tion about side-chain polymorphisms. The predicted polymorphisms are in relatively close
agreement with results from a state-of-the-art approach based on x-ray crystallography
data. This approach characterizes the conformational polymorphisms of side chains us-
ing electron density information, and has successfully discovered previously unmodelled
conformations.

Furthermore, it is known that coupled fluctuations and concerted motions of residues
can reveal pathways of communication used for information propagation in a molecule
and hence, can help in understanding the “allostery” phenomenon in proteins. In order
to characterize the coupled motions, most existing methods infer structural dependencies
among a protein’s residues. However, recent studies have highlighted the role of cou-
pled side-chain fluctuations alone in the allosteric behaviour of proteins, in contrast to a
common belief that the backbone motions play the main role in allostery. These studies
and the aforementioned recent discoveries about prevalent alternate side-chain conforma-
tions (conformational polymorphism) accentuate the need to devise new computational
approaches that acknowledge side chains’ roles. As well, these approaches must consider
the polymorphic nature of the side chains, and incorporate effects of this phenomenon
(polymorphism) in the study of information transmission and functional interactions of
residues in a molecule. Such frameworks can provide a more accurate understanding of the
allosteric behaviour.

Hence, as a topic related to the conformational polymorphism, this dissertation ad-
dresses the problem of inferring directly coupled side chains, as well. First, we present a
novel approach to generate an ensemble of conformations and an efficient computational
method to extract direct couplings of side chains in allosteric proteins. These direct cou-
plings are used to provide sparse network representations of the coupled side chains. The
framework is based on a fairly new statistical method, named graphical lasso (GLASSO),
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devised for sparse graph estimation. In the proposed GLASSO-based framework, the side-
chain conformational polymorphism is taken into account. It is shown that by studying
the intrinsic dynamics of an inactive structure alone, we are able to construct a network of
functionally crucial residues. Second, we show that the proposed method is capable of pro-
viding a magnified view of the coupled and conformationally polymorphic side chains. This
model reveals couplings between the alternate conformations of a coupled residue pair. To
the best of our knowledge, this is the first computational method for extracting networks
of side chains’ alternate conformations. Such networks help in providing a detailed image
of side-chain dynamics in functionally important and conformationally polymorphic sites,
such as binding and/or allosteric sites. This information may assist in new drug-design
alternatives.

Side-chain conformations are commonly represented by multivariate angular variables.
However, the GLASSO and other existing methods that can be applied to the aforemen-
tioned inference task are not capable of handling multivariate angular data. This disserta-
tion further proposes a novel method to infer direct couplings from this type of data, and
shows that this method is useful for identifying functional regions and their interactions in
allosteric proteins. The proposed framework is a novel extension of canonical correlation
analysis (CCA), which we call “kernelized partial CCA” (or simply KPCCA). Using the
conformational information and fluctuations of the inactive structure alone for allosteric
proteins in the Ras and other Ras-like families, the KPCCA method identified allosteri-
cally important residues not only as strongly coupled ones but also in densely connected
regions of the interaction graph formed by the inferred couplings. The results were in good
agreement with other empirical findings and outperformed those obtained by the GLASSO-
based framework. By studying distinct members of the Ras, Rho, and Rab sub-families,
we show further that KPCCA is capable of inferring common allosteric characteristics in
the small G protein super-family.
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Chapter 1

Introduction

1.1 Background and Scope

The bioinformatics field comprises three main areas, as follows: Theory and methods that
include algorithms, machine learning approaches, statistical analysis, etc. Applications,
such as drug discovery, sequence analysis, protein structure prediction, etc., and Data,
such as gene expression profiles, structure of biological molecules (protein, DNA, RNA,
...), phylogenetic data, etc. Structural bioinformatics is a sub-discipline that has emerged
due to an increase in the number of 3D macromolecular structures. Hence, it is defined
as a combination of the methods and applications (first two aforementioned areas) for the
biological structure data [8]. Relying on the availability of high resolution structural data,
this sub-field aims to obtain a more precise understanding of the function of the systems
and molecules and the effects of perturbations and modifications. Revelation of DNA’s
structure and the first protein structures created a need for computational methods that
can examine and model these molecules, as well as fitting the electron densities (resulting
from x-ray crystallographic data), and processing NMR-based distance constraints to pro-
duce more manageable and accessible formats for describing and storing the molecules’ 3D
structures.

The focus of this dissertation is solely “protein” structural data. The nature of struc-
tural data causes specific challenges in handling and computation with these data. Some
of the challenges are as follows:

• Non-linearity of structural data and relationships between atoms, i.e., non-linear
forces between the atoms, such as electrostatic, van der Waals, etc. This usually

1



leads to either very expensive computations or approximations in modelling.

• Continuity of the data that leads to computationally intractable search spaces for
structural problems. The structural information is represented by either atom co-
ordinates in the 3D space or dihedral angles. Many computational methods apply
simplifications, such as discritization of these search spaces. In this dissertation, at-
tempts have been made to tackle this issue by selecting appropriate computational
tools and techniques that recognize the nature of conformational data.

• Scarcity of the data. Although the number of protein structures deposited in the
Protein Data Bank (PDB [5]) has grown rapidly during the recent years, the struc-
tures of many important classes of non-globular and water-insoluble proteins such
as, membrane proteins are still unavailable. This lack of data prevents us from per-
forming any statistical inference or analysis about these proteins, and leads to lack
of knowledge about them.

• Noisy data. In-spite of obtaining very high resolution structural data for some pro-
teins, flexibility and dynamics of molecules may lead to noisy data and structural
disorder. Understanding flexibility of the structure assists in obtaining insights about
the proteins’ functions. Therefore, handling such partial information must be accom-
modated by appropriate computational models and tools.

Furthermore, the scientific challenges in structural bioinformatics have created the need
to design computational and informatics methods to support findings of experimental struc-
tural biology, to explain biological phenomena and to obtain new insights from the data.
Some of the major topics in structural biology that need to be addressed by informatics
are as follows:

• Analysis of x-ray crystallographic data. Algorithms for automation of some phases
of the x-ray crystallography procedure have existed in structural bioinformatics for
a long time. A widely-used class of such algorithms assist in deconvolving the x-ray
diffraction pattern by computing an inverse Fourier transform [8] [40]. Another useful
class of algorithms assists in fitting and refinement of the structures after obtaining
the electron densities so that they can be accessible as the known format (deposited
in the PDB). We address a topic related to this challenge in this dissertation.

• Analysis of NMR data. NMR experiments provide us with distance constraints be-
tween atoms of a molecule. Computational and optimization methods are required
to obtain 3D structures that satisfy these constraints.
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• Evaluation of the 3D structures. Computational methods are required to assess the
quality of the obtained structures from x-ray crystallography or NMR according to
basic chemistry of the structures. Furthermore, the field is in need of automated
methods to identify and annotate the functionally crucial regions such as the binding
and active sites in the molecules.

• Study structure to understand function. As a fundamental principle, it is known
that protein structure leads to protein function. Therefore, the promise of structural
bioinformatics is to devise useful computational tools and apply them to structural
data to gain insights about the function of molecules, their dynamics and the mech-
anisms via which they function. The main bottleneck here is the lack of sufficient
structural information to create such a possibility. Therefore, simulation methods
have been proposed and frequently used to generate such data. Another section of
this dissertation is dedicated to addressing aspects of the function inference challenge.

According to the aforementioned aspects, one of the major challenges of structural
biology for informatics is the demand for computational methods capable of “prediction”,
e.g., protein structure prediction (given protein sequence with(out) structural information
about its backbone), predicting function from structural data, etc. As mentioned before,
in-spite of recent growth in the PDB size, the number of deposited and high quality 3D
structures is still far behind the available sequence data, due to the expensive and time-
consuming procedure of extracting these structures. Hence, the need for accurate prediction
methods that can support the current findings from experimental data becomes more
significant and accentuated. Such prediction models and methods can be applied to predict
future unknown 3D structures of proteins, given their sequences. The scientific studies
in this regard comprise a well-established category of research endeavors in structural
bioinformatics. Furthermore, world-wide competitions such as CASP (Critical Assessment
of Structure Prediction) have been held since 1994 so that research groups can present
capability of their structure prediction models in predicting structure of completely new
proteins (3D structures cannot be found in the PDB). In addition, many attempts have been
made to address an important sub-problem of the structure prediction problem. This sub-
problem concerns predicting conformations of a protein’s side chains, while the backbone is
assumed to be fixed. Traditionally this problem is called the “side-chain prediction” (SCP)
problem, and the goal is to predict the conformation of each residue so that the entire
molecule achieves its lowest-energy. Hence, this problem is approached as an optimization
problem. Since each side-chain conformation is parameterized by a sequence of dihedral
angles (see Figure 1.1), the search space of this optimization problem is an infinite set
of points representing the settings for all possible dihedral angles for all residues. Many
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Figure 1.1: Illustration of dihedral angles, courtesy of http://www.ccp14.ac.uk/ccp/web-
mirrors/garlic/garlic/ commands/dihedrals.html.

current computational approaches have reduced the problem to a combinatorial search
problem by discretizing this search space and considering only the most likely conformations
for the side chains. Despite all these attempts, the problem remains as a well-known
NP-hard problem [2]. Therefore, a group of methods that address side-chain prediction
have been concerned with finding the optimal solution (see Section 2.2). However, it
is known that protein crystals populate diverse conformational ensembles. Very recent
investigations have shown that further examination of x-ray crystallography data reveals
more information about the residues’ alternate conformations than previously thought. The
phenomenon is called “conformational polymorphism”. Despite much evidence that there
is widespread conformational polymorphism in protein side chains, most (≈ 95%) of the
residues in x-ray crystallography data are modelled by single conformations in the Protein
Data Bank. The ability to extract or to predict these conformational polymorphisms
is of crucial importance, as it facilitates deeper understanding of protein dynamics and
functionality. This is a missing aspect from all of the existing methods devised to predict
side-chain conformations. This dissertation extends a group of efficient methods already
devised for the SCP problem so that the final framework can both recognize continuity of
the changes in the dihedral angles, i.e., avoids descretization of the dihedral angles’ search
space, and can predict side-chain polymorphism. This problem and its importance will be
discussed in Chapter 2 of this dissertation.

Moreover, predicting function from structural information is another major goal in the
structural biology. Understanding function and its correlation with structure can assist in
generating new structures with desirable functionalities. This is specifically useful in phar-
maceutical studies and designing new drugs. It was traditionally believed that similarity
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in protein sequences infers similarity in structure and function. This has been confirmed
for the structure; but not for the function. In 2001, Todd et al. [104] showed that function
is conserved for proteins with above 40% sequence identity (homologous proteins), and not
for those below this threshold. However, there are homologous families in which function
divergence has been observed [104] [1]. In contrast, there are protein families (such as the
globin family) that have been subjected to mutations in their sequences; but their func-
tions have been conserved [8]. Furthermore, some proteins share structural similarity with
no sequence similarity; but converge to the same function. These proteins are called ana-
logues. Therefore, the abundant sequence data cannot solely assist in inferring proteins’
functions. This emphasizes the importance and necessity of models that can obtain such
information from structural data.

In this dissertation, an important function-related topic is discussed that addresses how
information is propagated in specific proteins from one site to another (distant) site. In
other words, the topic concerns changes in structure or function occurring at one site of
a protein as a consequence of a fluctuation at another site. This phenomenon is named
“allostery”. It has been proposed that conformational changes can propagate through
altered fluctuations of protein, even if its average structure does not change [16] [23].
Many empirical observations, such as binding of Calmodulin to its ligand, supported this
model and approved the allosteric effects of fluctuations in proteins. This led to the idea
that allostery uses intrinsic long-range correlations and interactions in proteins. Hence,
many attempts have been made to reveal and quantify those interactions, correlations and
coupled motions through statistically correlated conformational changes of residues. These
methods are mainly based on generation of a dataset of protein structures via Molecular
Dynamics (MD), and application of a statistical method to extract correlations between
the residues. However, the applied statistical methods such as mutual information or
sample-based correlation cannot disentangle direct from indirect (transitive) dependencies
or couplings between residues. In contrast, uncovering interaction pathways and networks
along which information is propagated requires extracting “direct” couplings between the
residues. Furthermore, traditionally backbone motions have been considered as the main
source of allosteric behaviour in the proteins, recent studies have highlighted previously
neglected allosteric effects of side-chain fluctuations. Furthermore, the functional roles of
side-chain fluctuations become of more importance due to the discovered evidence regarding
prevalent alternative conformations (conformational polymorphism) for the side chains.
However, the commonly used MD simulations are solely capable of capturing very quick
movements. Therefore, the slow motions of side chains are not captured by MD simulations.
Hence, the recent findings and the deficiencies related to the currently existing methods
emphasize the need for devising frameworks that carefully take the neglected effects of
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the side-chain fluctuations into account in allostery-related studies. For this purpose, this
dissertation proposes two frameworks for inferring direct couplings between side chains and
generating sparse networks of the coupled residues in Chapters 3 and 4.

In summary, the essential goal of this dissertation is characterizing the effects of the
side-chain conformational polymorphisms and functional roles of the side-chain fluctuations
in frameworks that facilitate modelling the conformational variables (dihedral angles) as
continuous angular variables. To substantiate this thesis:

• Section 1.2 of this chapter briefly describes the key contributions of this dissertation.

• Chapter 2 presents a framework that extends a particular class of algorithms for
SCP by modelling the side-chain dihedral angles more appropriately as continuous
rather than discrete variables. The proposed method applies the Particle Belief
Propagation (PBP) inferential method to predict residue-specific distributions that
provide information about side-chain conformational polymorphism. By employing
PBP integrated with multivariate von-Mises distributions, the framework is capable
of modelling the dihedral angles as continuous angular variables.

• Chapter 3 proposes a framework to extract sparse networks of directly coupled side
chains in allosteric proteins. The proposed framework, based on the application of
Graphical Lasso (GLASSO), is capable of extracting couplings between alternate
conformations of side chains, as well. While GLASSO is an efficient method to
extract direct dependencies between variables, its application is restrictive and the
conformational variables must be encoded as binary variables.

• Chapter 4 further extends the allostery-related study and presents a novel framework
to extract directly coupled side chains. This framework facilitates direct modelling
of the conformational variables as angular multivariate variables. It is based on in-
tegration of the following three concepts: partial correlation, Canonical Correlation
Analysis (CCA), and the von-Mises kernel function. This chapter contains a com-
parison between this framework and the GLASSO-based (Chapter 3) framework, as
well.

• Chapter 5 provides conclusion remarks, critical assessment of the key results, and
discusses future research directions.

It is worthwhile to note that the material in Chapters 2, 3, and 4 have been published
as journal articles [96] [97] [98].
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1.2 Key Contributions

This dissertation proposes new algorithms to classic problems in structural bioinformatics
with respect to major and recent state-of-the-art discoveries in the field. The following is
a summary of the key contributions of this dissertation:

• The first computational framework capable of predicting side-chain conformational
polymorphisms without requiring any discretization of the side-chain conformations
in contrast to almost all of the existing methods for the SCP problem. The results
are in good agreement with empirical results obtained from x-ray crystallography.

• The first computational framework for extracting direct couplings between fluctu-
ating side chains in order to study interaction paths and sparse networks between
residues in allosteric proteins. The results are in good agreement with both empirical
findings and results of a model-free computational method. An interesting aspect of
the framework is relying on the information of the inactive structure alone to infer
critical functional residues. As well, the framework is capable of extracting couplings
between alternate conformations of the side chains. This is an important aspect with
respect to the recent findings about side-chain conformational polymorphism.

• Last but not least, a novel framework and also the first one that facilitates extracting
direct couplings between continuous and angular multivariate variables. The frame-
work facilitates modelling of the side chains’ conformational variables directly. This
is an improvement over the first proposed framework that requires discretization and
encoding of the side-chain conformations. This novel framework can be considered
the most significant contribution of this dissertation, since it can be adapted and ap-
plied to other problems in bioinformatics (see Section 5.3). The novel framework, as
well as the previous framework, relies on the information of inactive structure alone
and improved the previous framework’s results for a set of small G proteins.
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Chapter 2

Conformationally Polymorphic
Side-Chain Prediction

2.1 Introduction

Due to the wide range of its motions, e.g., as shown by many studies using nuclear magnetic
resonance (NMR) spectroscopy [47, 10, 79], a protein molecule can appear in many differ-
ent conformations [30, 111]. As a result, it is insufficient to describe a protein molecule
by a single model [67, 68]. One idea is to model the structure of such dynamic molecules
as proteins more properly with conformational ensembles [7]. Capturing alternate con-
formations of a protein is of crucial importance for many applications, e.g., drug design,
understanding disease mechanisms, etc; undoubtedly, doing so will bring crucial insight
as well as deepen our understanding of how proteins fold, function, and bind to ligands
[109, 31]. An important step in this direction is the ability to predict and describe the
conformational polymorphism of each residue.

Since most residues belonging to structures in the Protein Data Bank (PDB; http:
//www.rcsb.org/pdb/) [5] are modeled by a single side-chain conformation, the majority
of computational approaches for making side-chain predictions have focused on finding a
single “best” conformation (more on this in Section 2.2 below). However, a few recent
studies have started to reinvestigate crystallographic data, and to explore the phenomenon
of side-chain polymorphism.

For example, van den Bedem et al. [108] developed a method to identify and model
the conformational heterogeneity of proteins from electron density data. The output of
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their method is a co-called “multi-conformer model”, or “an occupancy-weighted set of
main-chain and side-chain conformations that collectively best represents the electron den-
sity” [108]. The word “occupancy” refers to the relative frequency of occurrence for each
conformer in the crystal. The method first generates, in a sampling step, a large set of
candidate conformations. In a subsequent selection step, the method fits the occupancies
of this set of samples to the electron density map.

Recently, the Alber Lab at the University of California, Berkeley released a program
called Ringer [56], which investigates side-chain conformational polymorphisms by sam-
pling the electron density maps around the side-chain dihedral angles of each residue be-
low the usual “1.0 sigma” threshold. Using Ringer, they uncovered evidence suggesting
the presence of alternate, hitherto-unmodeled side-chain conformations, many of which are
characterized by weak electron density features that were traditionally overlooked when
building 3D models of proteins. They showed that their newly identified conformers are
nonrandom and are biased towards low-energy rotational isomers. They also discovered,
e.g., in Calmodulin, alternate side-chain conformations “not only on the surface but also
within the structure” [73], where the protein is tightly packed and side-chain polymor-
phisms were rarely expected.

2.1.1 Our Contribution

We have developed a computational approach capable of predicting and describing side-
chain polymorphisms — one that does not require experimental inputs such as electron
density maps. Our approach is an extension of a particular class of algorithms for side-chain
prediction that are based on belief propagation (BP) [85].

The conformation of a protein side chain is commonly represented by its dihedral angles.
Each side chain may rotate flexibly about its dihedral angles, as long as there are no
steric collisions. These dihedral angles are continuous in nature, but most computational
approaches discretize them. Our primary extension was to model these dihedral angles
more appropriately as continuous variables rather than discrete ones. Straight-forward as
such an extension may sound, it would have remained difficult within the BP framework
if a variation called “particle belief propagation” (PBP) [46] had not become available.

Using PBP, we were able to make inferences about residue-specific distributions in the
continuous domain, and it is clear that these distributions encode information about the
conformational polymorphism of each residue. We then compared the polymorphisms that
we predicted with the ones extracted from crystallography data by Ringer [56]. Overall, we
found the two sets of results to be in reasonably good agreement with each other. Ringer
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has successfully uncovered side-chain conformations that were formerly considered mere
artifacts of (or noise from) electron density data. While Ringer found these alternate con-
formations by re-evaluating electron density maps, we can predict them with an improved
— and, in fact, fundamentally different — side-chain prediction algorithm, one that works
in a continuous domain.

2.1.2 Outline

The rest of this chapter is organized as follows. In Section 2.2, we quickly review com-
putational approaches for side-chain prediction. In Section 2.3, we describe our inference
method. We first give a very brief review of belief propagation (Section 2.3.1), and then
describe a recent variation, called particle belief propagation, that drives our main al-
gorithm (Section 2.3.2). In Section 2.4, we review the von-Mises (VM) distribution for
angular data, and explain how we have used mixtures of VM distributions to speed up our
algorithm. In Section 2.5, we report some empirical experiments and their results. Finally,
in Section 2.6, we summarize our main contributions and discuss some future work.

2.2 Background and Related Work

As mentioned in the first chapter, while our goal is to address SCP problem by using
strategies that recognize the continuity of the changes in the dihedral angles, many current
computational approaches have reduced the problem to a combinatorial search problem
by discretizing the allowed settings of the dihedral angles in the residues. This strategy
capitalizes on the phenomenon of rotamericity. Even though a side chain has an infinite
number of possible three dimensional conformations, it has been observed that a side
chain will typically have a tendency to adopt a conformation that can be approximated by
dihedral angles chosen from a small set of empirically observed settings. Each such possible
conformation is called a rotamer. A rotamer library contains a discrete set of conformations
for each residue type. For instance, the backbone-dependent rotamer library provided by
the Dunbrack Lab [25] has been used by many researchers. Algorithms relying on these
rotamer libraries essentially apply different heuristics to search for the optimal combination
of rotamers, one for each residue.

A state-of-the-art heuristic is the SCWRL algorithm [9]. The main steps in SCWRL 3.0
[13] are as follows: first, a dead-end elimination procedure is applied to reduce the number
of candidate rotamers for each residue; next, a graph is created by treating residues as
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nodes and by drawing edges between all nearby residues; then, the graph is clustered into
many bi-connected components; finally, the optimization problem is solved separately on
each subgraph, before the solutions are combined.

Another highly competitive heuristic is the TreePack algorithm [117]. It also models
the protein molecule as a graph. However, loops are removed and the graph is decomposed
into clusters and modeled as a tree. The problem of assigning an optimal rotamer to each
residue is then solved efficiently by traversing the tree. TreePack is as accurate as, but
significantly faster than, SCWRL 3.0.

Other standard optimization techniques such as linear programming (LP) and inte-
ger programming (IP) also have been applied to solve the side-chain prediction problem.
Yanover and Weiss showed that finding the minimum energy configuration of a protein’s
side chains is equivalent to finding the maximum-a-posteriori (MAP) configuration of an
undirected graphical model, or a Markov random field (MRF) [118, 120]. This meant the
side-chain prediction problem could be formulated as a MAP estimation problem, which
could be solved using belief propagation (BP). They also considered a relaxed version of
the IP problem and solved the resulting convex problem with BP [119].

Besides these optimization approaches, Li et al. [61] recently showed that side-chain
conformations also can be decided from backbone information without optimization.

2.3 Main Method of Inference

We have extended the class of side-chain prediction algorithms that are based on BP. To
model a protein molecule with a graphical model, the backbone is regarded as being fixed
and the residues r1, r2, ..., rn are regarded as nodes. The side chain at each node is described
by a sequence of dihedral angles, collectively stored as a vector, e.g., ri = (χi1, χi2, ..., χi4).
The exact number of dihedral angles depends on the type of amino acid. The objective is
to find the minimal-energy conformation,

min
r1,r2,...,rn

[
n∑
i

El(ri) +
n∑
i

∑
j>i

Ep(ri, rj)

]
, (2.1)

where El is the (local) intrinsic energy of a residue, Ep is the pairwise energy between
two residues, and n is the total number of residues. The optimization algorithm itself
is independent of the choice of the energy function. We will say more about the energy
function later in Section 2.4.3.
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Consider a graphical model G, with a set of vertices V and a collection of edges E . If ri
denotes the random variable associated with node i, then the joint probability distribution
of r = (r1, r2, ..., rn) can be factorized as follows:

P (r) =
∏
i∈V

ρi(ri)
∏

(i,j)∈E

ρij(ri, rj). (2.2)

The functions, ρi(ri) and ρij(ri, rj), are called node- and edge-potentials, respectively.
Suppose we are given an energy function represented by Econf , the Boltzmann distribution
is given by

Pconf (r) =
1

Z
exp

[
−Econf (r)

T

]
(2.3)

where T is a temperature parameter and Z is a normalizing constant. Clearly, using the
energy function (2.1), the distribution (2.3) can be expressed in the form of (2.2), with

(2.4)
ρi(ri) ∝ exp

[
−El(ri)
T

]
,

ρij(ri, rj) ∝ exp

[
−Ep(ri, rj)

T

]
.

2.3.1 Belief Propagation (BP)

Belief propagation (BP) is an efficient local message-passing algorithm [85] for making
inferences on graphical models. It performs exact inference if the graph G is a tree, and
approximate inference for general graphs. If the graph contains cycles, the algorithm is
often referred to as “loopy BP” and there is no convergence guarantee, but many groups
have reported excellent results nonetheless, e.g., [33, 81, 34]. Indeed, loopy BP has been
applied to the side-chain prediction problem, and the results have been comparable to such
state-of-the-art software as SCWRL 3.0 [118, 120].

Given potential functions as defined by (2.4), messages (see Eq. 2.5) are computed
along the edges of the graph. The sum-product BP algorithm is used to compute marginal
distributions; its recursive message updating equation is as follows:

m
(t)
i→j(rj) =

∑
ri∈Ri

ρi(ri)ρij(ri, rj)× ∏
k∈N (i)\j

m
(t−1)
k→i (ri)

 , (2.5)
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where Ri is the (discrete) state space of ri, and m
(t)
i→j represents the message from node i

to j at iteration t. The notation, N (i), denotes the set of nodes that are neighbours of i.
For proteins, the discrete state space Ri is simply the set of rotamers for residue ri.

The max-product BP algorithm is used for finding MAP estimates; its recursive updat-
ing equation is given by

m
(t)
i→j(rj) = max

ri∈Ri

ρi(ri)ρij(ri, rj)× ∏
k∈N (i)\j

m
(t−1)
k→i (ri)

 (2.6)

2.3.2 Particle Belief Propagation (PBP)

For many applications, e.g., in bioinformatics, computer vision, and other fields, the state
space is continuous rather than discrete, or it can be discrete but very large so that enu-
merating all possible states at each iteration becomes very inefficient. Particle belief prop-
agation (PBP) has been developed recently to address precisely such difficulties [46]. Our
goal is to model the conformation of side chains more appropriately as continuous rather
than discrete random variables. Hence, PBP is a crucial piece of technology for our work.

The key idea for PBP is the following: At iteration t, if we draw ri from a certain
trial distribution W

(t)
i , then (2.5) can be written as an “importance-sampling corrected

expectation” [46]:

m
(t)
i→j(rj) = E

ri∼W
(t)
i

 ρi(ri)

W
(t)
i (ri)

ρij(ri, rj)×
∏

k∈N (i)\j

m
(t−1)
k→i (ri)

 . (2.7)

It is generally not possible to express the expectation E
ri∼W

(t)
i

(·) in analytic form, but it

can be obtained using Monte Carlo techniques [22, 63]. Thus, for each node ri, the idea is

to sample a set of L particles {r(1)
i , r

(2)
i , ..., r

(L)
i } from W

(t)
i , typically using a Markov Chain

Monte Carlo (MCMC) technique such as the Metropolis-Hastings algorithm [63], and then
approximate (2.7) by

m̂
(t)
i→j(rj) =

1

L

L∑
l=1

 ρi

(
r

(l)
i

)
W

(t)
i

(
r

(l)
i

)ρij (r(l)
i , rj

)
×

∏
k∈N (i)\j

m̂
(t−1)
k→i

(
r

(l)
i

) . (2.8)

In the simplest case, the particles’ locations may remain unchanged [46] but, generally,
each particle’s location is updated at the end of each BP iteration. This is what allows

13



PBP to explore a continuous state space and not be restricted to a fixed set of choices
specified a priori, such as a rotamer library; and it is accomplished by re-sampling the
particles at each iteration from the distribution, W

(t)
i , e.g., using the Metropolis-Hastings

algorithm. At iteration t, a natural choice of W
(t)
i is the current belief of node i,

W
(t)
i (ri) ∝ ρi(ri)×

∏
k∈N (i)

m̂
(t−1)
k→i (ri). (2.9)

The max-product version for PBP was first given by Kothapa et al. [54]:

m̂
(t)
i→j(rj) = max

l=1,...,L

ρi (r(l)
i

)
ρij

(
r

(l)
i , rj

)
×

∏
k∈N (i)\j

m̂
(t−1)
k→i

(
r

(l)
i

) . (2.10)

Their paper [54] explains in more detail why the factor W
(t)
i does not appear in the square

brackets of (2.10).

2.4 Fast Approximation of ρi, ρij

We used mixtures of von-Mises distributions as a fast way to approximate the potential
functions ρi(ri) and ρij(ri, rj). It is well-known that mixture densities can be used to
approximate any arbitrary distribution. For example, in nonparametric belief propagation
[102], mixtures of Gaussians are used to model and/or approximate ρi(ri) and ρij(ri, rj).
Since we are working in the space of dihedral angles, the von-Mises distribution is more
appropriate than the Gaussian distribution (see Section 2.4.1 below).

2.4.1 The von-Mises (VM) Distribution

The univariate von-Mises (VM) distribution is a probability distribution on a circle. The
multivariate generalization was introduced by Mardia et al. [70]. In particular, θ ∈ Rd is
said to follow the multivariate von-Mises distribution, MVM(µ, κ,Λ), if its density function
is given by

f(θ;µ, κ,Λ) =
1

Z(κ,Λ)
× exp

[
κT c(θ) +

sT (θ)Λs(θ)

2

]
(2.11)

where
cu(θ) ≡ cos(θu − µu), su(θ) ≡ sin(θu − µu)
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for u = 1, 2, ..., d, and Z(κ,Λ) is a normalizing constant.

The parameter µ ∈ Rd describes the location, i.e., the mean (or center), and the param-
eter κ ∈ Rd > 0 describes the scale, i.e., the spread (or concentration). The parameter,
Λ = [λuv] ∈ Rd×d is a matrix whose diagonal elements are zero (Λuu = 0) and whose
off-diagonal elements Λuv capture the correlation between θu and θv. It is clear from the
definition above that the VM distribution is well suited for modeling angular data, and
why it is sometimes referred to as the “Gaussian” distribution on the sphere.

2.4.2 Use of VM Distribution in Bioinformatics

The von-Mises distribution has been used to model dihedral angles in protein molecules.
For example, Mardia et al. [69] used the EM algorithm to fit a mixture of bivariate von-
Mises distributions to the two dihedral angles (φ, ψ) that describe protein backbones. To
model higher-dimensional angular data (e.g., the dihedral angles for side chains), Mardia
et al. [70] introduced the more general, multivariate von-Mises distribution (2.11) by
extending the bivariate model of Singh et al. [95]. More recently, Mardia et al. [71] have
extended single MVM distributions to mixtures of MVMs. For example, they fitted a 4-
dimensional mixture of MVMs to model the two backbone dihedral angles (φ and ψ) and
the first two side-chain dihedral angles (χ1 and χ2) of the amino acid, ILE.

In our work, we also used mixtures of MVMs (see Section 2.4.4 below). However,
our work differs fundamentally from those of Mardia et al. [71]. While they fitted a single
mixture to model the conformation of a given amino acid using data from different proteins,
we used mixtures of MVMs to approximate the node- and edge-potential functions, and
different mixture models were specified for each ρi and ρij on a protein-by-protein basis.

2.4.3 Energy Functions

We now give more details about the energy function (2.1). We used a very simple energy
function that essentially acted as a collision detector. This simple energy function was first
popularized by SCWRL [25] and later adopted by TreePack [117] as well.

Given two atoms, a1 and a2, SCWRL approximates the van der Waals pairwise potential
energy between them by

Eapprx.vdw(a1, a2) =


0, if d > R0;

−k2
d
R0

+ k2, if k1R0 ≤ d ≤ R0;

Emax, if d < k1R0,

(2.12)
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where d is the distance between a1 and a2; R0 is the sum of their radii; Emax = 10;
k1 = 0.8254; and k2 = Emax/(1 − k1). For Carbon (C), Nitrogen (N), Oxygen (O), and
Sulfur (S), fixed radii of 1.6, 1.3, 1.7, and 1.7 were used, respectively.

Treating each residue simply as a set of atoms, the pairwise energy function, Ep(ri, rj)
in (2.1), is merely calculated by summing over all atom-pairs:

Ep(ri, rj) =
∑

a∈ri,b∈rj

Eapprx.vdw(a, b).

The intrinsic energy El(ri) in (2.1) is computed by

El(ri) = −K log
p(ri|φ, ψ)

pmax(ri|φ, ψ)
+
∑
j<i−1
j>i+1

Ep(ri, bj), (2.13)

where p(ri|φ, ψ) is the rotamer probability specified by the rotamer library, which depends
on the two backbone dihedral angles φ and ψ; pmax(ri|φ, ψ) is the probability of the most
probable rotamer among the rotamers listed in the library for residue i; and bj represents
the backbone part of residue j. The Dunbrack Lab [25] has suggested that the parameter
K be set to 3. In order to calculate Ep(ri, bj), ri and bj are again treated simply as two
sets of atoms, and Ep(ri, bj) is computed in the same fashion as (2.12) over all pairs of
atoms in ri and bj.

2.4.4 Approximation of Potential Functions

Notice that the energy functions El and Ep given in the previous section — and hence the
implied potential functions ρi and ρij, given by (2.4) — depend on inter-atomic distances,
whereas our state space is a set of dihedral angles that describe the conformation of each
residue. Therefore, a conversion must take place every time the potential functions are
evaluated. This is not difficult in principle, and there is existing, standard software for
performing such a conversion, e.g., BALL [41]. In order to speed up our computation,
however, we used a mixture of von-Mises distributions as a crude approximation to these
potential functions.

For example, for residues described by four dihedral angles (e.g., the amino acid LYS),
the approximation to the node potential function would be:

ρ̂i(ri) =
∑
τ

wτfτ (χi1, ..., χi4), (2.14)
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where fτ ∼ MVM(µτ , κτ ,Λτ ) is a (multivariate) von-Mises density function, given by
(2.11), and wτ denotes the weight of the mixture component τ such that

∑
wτ = 1.

We used simple spherical or radial basis mixtures, that is, we set Λτ = 0. This is
the same as treating the dihedral angles as being locally independent — in the future, we
plan to generalize this by modeling the local correlations among the χ-angles. We chose
κτ = (10, 10, ..., 10) for all τ . For each residue i, the set of discrete rotamers from the
(backbone-dependent) rotamer library were used as mixture centers, µτ . We specified the
weight of each component τ to be

wτ = α p(µτ |φ, ψ) + (1− α)
1

#(mixture components)
,

where α was chosen to be 0.1, and p(µτ |φ, ψ) is the rotamer probability for rotamer µτ
from the rotamer library.

For the edge potential, our approximation was:

ρ̂ij(ri, rj) =
∑
τ

∑
τ ′

wτ,τ ′ × fτ,τ ′(χi1, ..., χidi , χj1, ..., χjdj), (2.15)

where di and dj are the number of dihedral angles for ri and rj, respectively; fτ,τ ′ is, again,
a spherical MVM density function, with κτ,τ ′ = (10, 10, ..., 10) and Λτ,τ ′ = 0 for all τ, τ ′

as before. If the pairwise edge potential between two rotamers — one for residue ri and
another for rj — exceeded 0.05, their dihedral angles were concatenated together and used
as a mixture center, µτ,τ ′ , with wτ,τ ′ ∝ ρ(µτ , µτ ′).

The expressions (2.14) and (2.15) can be viewed as approximations of ρi and ρij using
a crudely specified single-layer radial basis function network (RBFnet) in angular space.

2.5 Experiments and Results

We used a data set containing 362 diverse proteins that were previously analyzed by the
Alber group [56] with their Ringer program (http://ucxray.berkeley.edu/ringer.htm).
The protein data files were retrieved from the PDB. We used functions and modules from
the Biochemistry Algorithms Library (BALL) [41] to read and process the PDB files. The
electron density maps for the proteins, which were required to run the Ringer program,
were downloaded from the Electron Density Server [53]. All experiments were performed
on the Sharcnet system (http://www.sharcnet.ca/).
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2.5.1 PBPMixVM

To reflect the fact that we used PBP for inference and mixtures of (multivariate) VM
distributions for approximating the potential functions, from this point on we shall refer
to our algorithm as PBPMixVM. We implemented it in C++, using the overall architecture
provided by GraphLab (http://select.cs.cmu.edu/code/graphlab/) [65].

2.5.2 The Kolmogorov-Smirnov (KS) Test

For each residue, we used a two-sample Kolmogorov-Smirnov (KS) test [15] to compare
the results from Ringer with those from PBPMixVM. The KS-test is a widely used non-
parametric test for determining whether two distributions are significantly different from
each other. The significance level for the KS-test was set to be 0.05.

Fig. 2.1 provides some visual illustrations of what the KS-test does. Based on the p-
values from individual KS-tests, we selected four residues, whose corresponding p-values
from the aforementioned KS-tests were 0.99, 0.77, 0.53, and 0.25, respectively. Such a
selection is meant to illustrate varying levels of agreement between the PBPMixVM results
and the Ringer results — larger p-values indicate higher levels of agreement.

The four selected residues are: residue ASN23, 1A2P, Chain C [72], p-value=0.99;
residue HIS88, 1F41, Chain B [43], p-value=0.77; residue GLU134, 1B67 [19], p-value=0.53;
and residue LYS87, 1F4P [88], p-value=0.25. For these four residues, the polymorphisms
in their respective χ1-angles as characterized by Ringer and predicted by PBPMixVM are
displayed next to each other in Fig. 2.1, ordered by p-values from top to bottom.

2.5.3 Comparative Results

From the individual KS-tests, we computed two summary statistics to evaluate the overall
agreement between our results from PBPMixVM and those given by Ringer: (i) percent
in agreement — the fraction of residues for which the KS-test failed to show a statistically
significant difference; and (ii) mean p-value — the average p-value from individual KS-tests.
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(a) 1A2P, Ringer (b) 1A2P, PBP

(c) 1F41, Ringer (d) 1F41, PBP

(e) 1B67, Ringer (f) 1B67, PBP

(g) 1F4P, Ringer (h) 1F4P, PBP

Figure 2.1: Illustration of results from Ringer (left) and those from PBPMixVM (right;
simply labeled as “PBP” in the plots): four specific residues, whose polymorphisms in χ1

differed to varying degrees as characterized by Ringer and predicted by PBPMixVM. (a) &
(b) Residue ASN23, 1A2P, Chain C; KS-test p-value=0.99. (c) & (d) Residue HIS88, 1F41,
Chain B; KS-test p-value=0.77. (e) & (f) Residue GLU134, 1B67; KS-test p-value=0.53.
(g) & (h) Residue LYS87, 1F4P; KS-test p-value=0.25. Larger p-values indicate better
agreement between Ringer and PBP.
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Table 2.1: Comparison of PBPMixVM and Ringer results: χ1 and χ2, average results over
all residues, across all proteins in the data set.

Dihedral Percent in Mean

angle agreement (%) p-value

χ1 57 0.19

χ2 56 0.17

Table 2.2: Comparison of PBPMixVM and Ringer results: χ1 only, average results over all
residues of the same amino acid type, across all proteins in the data set.

Amino Total Percent in Mean

acid No. agreement (%) p-value

ARG 4067 57 0.18

ASN 3613 67 0.24

ASP 5072 63 0.21

CYS 1342 62 0.21

GLN 3180 67 0.24

GLU 5466 71 0.26

HIS 2080 52 0.16

ILE 4894 52 0.17

LEU 8250 64 0.22

LYS 4890 53 0.16

MET 1348 69 0.23

PHE 3675 48 0.14

PRO 4097 42 0.09

SER 4776 77 0.29

THR 4749 77 0.29

TRP 1259 54 0.16

TYR 3044 50 0.15

VAL 6422 66 0.23
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Table 2.3: Comparison of PBPMixVM and Ringer re-
sults: χ1 only, average results over all residues of the
same amino acid type and having the same secondary
structure, across all proteins in the data set.

Amino acid Secondary structure Total No. Percent in agreement (%) Mean p-value

ARG Helix 1774 60 0.19
Strand 815 56 0.17
Loop 1478 56 0.17

ASN Helix 1070 64 0.21
Strand 541 64 0.23
Loop 2002 69 0.25

ASP Helix 1764 62 0.21
Strand 571 59 0.19
Loop 2737 65 0.22

CYS Helix 423 63 0.22
Strand 409 57 0.20
Loop 510 66 0.20

GLN Helix 1573 71 0.26
Strand 546 66 0.22
Loop 1060 61 0.20

GLU Helix 2854 73 0.27
Strand 861 66 0.24
Loop 1751 70 0.25

HIS Helix 679 53 0.16
Strand 456 52 0.17
Loop 945 51 0.16

ILE Helix 1804 51 0.16
Strand 1885 52 0.17
Loop 1205 52 0.18

LEU Helix 3947 71 0.26
Strand 2107 57 0.18
Loop 2195 60 0.20

LYS Helix 2203 54 0.17
Strand 870 54 0.17
Loop 1817 50 0.15

MET Helix 581 68 0.24
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Strand 318 67 0.22
Loop 449 70 0.24

PHE Helix 1383 51 0.14
Strand 1179 42 0.13
Loop 1112 50 0.15

PRO Helix 841 44 0.09
Strand 363 44 0.10
Loop 2893 42 0.09

SER Helix 1462 78 0.30
Strand 884 74 0.28
Loop 2430 77 0.29

THR Helix 1450 78 0.29
Strand 1255 75 0.27
Loop 2043 76 0.29

TRP Helix 487 58 0.18
Strand 392 48 0.14
Loop 380 55 0.17

TYR Helix 1122 51 0.15
Strand 1009 46 0.13
Loop 913 52 0.16

VAL Helix 2087 72 0.26
Strand 2736 63 0.21
Loop 1599 65 0.24

Table 2.1 shows the overall results for the first two dihedral angles, χ1 and χ2, averaged
over all residues across all proteins in our data set. Table 2.2 shows results for χ1 only,
averaged over residues of the same amino acid type across all proteins in our data set. Based
on the KS-tests, these proteins’ side-chain polymorphisms as predicted by PBPMixVM and
as described by Ringer agreed for well over 50% of all the residues, and the average p-value
from these KS-tests was about 0.20, much higher than the typical cutoff value of 0.05.

We can observe from Table 2.2 that, for some residue types, including not only those
having just one χ-angle, e.g., Serine (SER), Threonine (THR), Valine (VAL), but also
those having relatively large structures and hence, multiple χ-angles, e.g., Asparagine
(ASN), Glutamine (GLN), Glutamic Acid (GLU), Methionine (MET), the agreement be-
tween PBPMixVM and Ringer can be noticeably higher than the overall average (Table 2.1)
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— the percent in agreement for some residue types was close to 70% and 80%, and the
corresponding mean p-value was close to 0.25 and 0.30. To the extent that the Ringer pro-
gram can discover alternate side-chain conformations, PBPMixVM can be seen to have the
ability to predict alternate side-chain conformations for these residues as well. The agree-
ment with Ringer for large residues having multiple χ-angles, in particular, are indications
that using mixtures of locally independent VM distributions in our approximation of the
potential functions (see Section 2.4.4) has not had a significant impact on our algorithm.

Table 2.3 further groups the results by the secondary structures of the residues, which
we obtained using the DSSP software [50, 49]. Here we easily can see that the agree-
ment between PBPMixVM and Ringer was generally better for residues whose secondary
structures are helices. This is not surprising, since helices typically are more stable.

Earlier, we mentioned in Section 2.1 that, using Ringer, Lang et al. [56] had uncovered
interesting polymorphisms in the protein, Calmodulin (CaM) [114]. An interesting residue
in that protein is SER38. The currently modeled χ1-angle for SER38 changes conformation
from 80◦ in the unbound form of CaM (PDB ID: 1EXR) to 295◦ in the complex form (PDB
ID: 2O5G). By analyzing crystallography data for 1EXR (the unbound form of CaM),
Ringer successfully recognized the 295◦ conformation — often detectable only from 2O5G
(the complex form of CaM) — as a secondary peak. This result was scientifically significant
because, previously, such conformational changes could not have been easily identifiable
without a complete structural refinement of both the bound and the unbound proteins, but
Ringer was able to detect this conformational polymorphism from the unbound molecule
alone. We also analyzed 1EXR with PBPMixVM. Our predicted polymorphism for the
χ1-angle of SER38 agreed well with the result from Ringer (Fig. 2.2; KS-test p-value =
0.64). In particular, PBPMixVM also predicted the secondary conformation near 295◦

from the unbound form of CaM (1EXR).

2.5.4 Some Computational Details

The PBPMixVM algorithm was deemed to have converged when the Kullback-Leibler (KL)

divergence between W
(t)
i (ri) and W

(t−1)
i (ri) fell below 10−8 for each residue i, where W

(t)
i

denotes the belief function of node i at iteration t, given previously in (2.9). For all proteins
in our data set, PBPMixVM converged in < 50 iterations.

At the moment, PBPMixVM is relatively slow, compared with some other side-chain
prediction algorithms such as SCWRL. Whereas the running time of SCWRL is on the
order of seconds or minutes, that of PBPMixVM is on the order of hours. This is mainly
because, within each PBP iteration, we must run a separate MCMC to update the particles
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(a) Ringer (b) PBP

Figure 2.2: Calmodulin (1EXR), residue SER38: polymorphism in χ1 as extracted by
Ringer from crystallography data (left) and predicted by PBPMixVM (right).

for each residue! To speed up the computation, we used a relatively small number of
particles and relatively short MCMC chains to analyze all the proteins.

However, we did examine, using a small subset of 20 proteins, how much the perfor-
mance of PBPMixVM could be affected by these computational parameters. On this small
subset at least, increasing the length of the MCMC chains and the number of particles per
residue had little effect on the overall level of agreement between PBPMixVM and Ringer.

2.6 Chapter Summary

Proteins in crystals undergo a lot of large- and small-scale motions. Hence, studying a
protein molecule with a single conformational model is not adequate. We have developed
a computational approach capable of predicting residue-specific conformational polymor-
phisms. We modeled side-chain dihedral angles as continuous random variables in an
MRF, and used PBP as our main inference technique. To speed up the computation, we
approximated the (continuous) node- and edge-potential functions by mixtures of VM dis-
tributions. For each node in the MRF, a set of particles were sampled at each iteration
to represent its distribution. After convergence, these node-specific marginal distribu-
tions could be seen to encode information about alternate side-chain conformations. To
the best of our knowledge, this work is the first to address the prediction of side-chain
polymorphisms from a purely computational point of view, without relying on additional
experimental inputs such as electron density data.
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A distinct feature of our method is the treatment of side-chain dihedral angles as
continuous variables. We think it constitutes an important (and necessary) step toward
being able to provide an accurate description of side-chain ensembles, and to discover
low-occupancy conformers.

We used SCWRL energy function that is a linear approximation of the van der Waals
(see Section 2.4.3) energy function. An advantage of our method is that it is independent
from the choice of energy function. Therefore, more complex energy functions can be
integrated into the framework easily.

As mentioned earlier (Section 2.5.4), PBPMixVM is relatively slow at the moment, due
to the need to update the particles for each residue by a separate MCMC within each PBP
iteration. Although we haven’t yet done so, the running time of our algorithm could be
improved significantly by parallelizing some of these updates. For local message passing,
we are currently using a synchronous schedule, but there have been suggestions that using
an asynchronous schedule could further accelerate BP-types of algorithms [27].

We are also considering some other refinements to our algorithm, for example, im-
proving our approximation of the potential functions by modeling the local correlations
among the dihedral angles. We also think that combining the results from PBPMixVM
with those from state-of-the-art side-chain prediction algorithms, such as SCWRL [55] and
TreePack [117], can further enhance the accuracy and reliability of the predicted side-chain
polymorphisms.
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Chapter 3

Inferring Direct Couplings between
Polymorphic and Functional Side
Chains via Graphical Lasso

3.1 Introduction

A key component of information conveyance and communication in a protein molecule is its
allosteric behaviour. Allostery is defined as any change in a protein’s function or structure
at one site in response to a modification or perturbation at another site [23]. Ligand-
binding information or other modifications can be propagated in a protein from one site
to another through the protein’s altered conformational fluctuations. The observed role
of correlated motions in allosteric behaviour of proteins has led to the idea that allostery
occurs through pre-defined correlations and interaction networks in a protein [23]. Hence,
studying correlated conformational changes of residues is of significant importance for
understanding allostery.

Common methods to examine a protein’s allosteric behaviour include NMR spec-
troscopy techniques or simulation-based methods such as molecular dynamics (MD) [74],
Monte Carlo (MC) simulations [23] and Rosetta-based analysis [52]. Recently, using Monte
Carlo simulations, DuBay et al. [23] demonstrated and emphasized the contribution of cor-
related side-chain fluctuations alone in transmitting intra-protein communications, whereas
backbone motions used to be considered the key element of these communications. DuBay
et al. [23] performed the experiments on proteins previously shown to have a relatively
rigid backbone but significantly variable side-chain conformations, specifically in the core
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area [115]. The authors verified their results by comparing to previous NMR experiments
that had shown mutation in a residue can influence conformation of residues distant from
the mutation site. Such observation had previously suggested presence of virtual networks
of correlated residues [62].

Studying correlated motions of side chains in order to understand a protein’s allosteric
behaviour becomes more crucial considering recent investigations by Lang et al. [56] and
Van den Bedem et al. [108] on alternate conformations of side chains. These studies suggest
that despite the fact that about 90% of the side chains are modelled uniquely, more careful
examination of x-ray crystallography data reveals undiscovered conformations, and hence,
alternate side-chain conformations are more prevalent than previously assumed. This phe-
nomenon is known as side-chain conformational polymorphism. Furthermore, very re-
cently, Van den Bedem et al. [107], have extended their study and proposed an application,
named CONTACT, to determine correlated displacements of conformationally polymorphic
residues. Applying CONTACT to the results of their polymorphic/multi-conformer model
(qFit [108]), they identified contact networks of conformationally polymorphic residues that
collectively respond to perturbations. Their results were in agreement with the findings
of NMR experiments, and thus, highlighted the importance of considering conformational
polymorphism in studying residue couplings.

The observed role of side-chain motions in information propagation and the newly ob-
tained polymorphism data from x-ray crystallography suggest that studying interaction
networks of conformationally polymorphic residues may reveal key insights to the infor-
mation transmission within the molecule and the molecule’s dynamics and functionality.
It may provide clearer explanations of some unknown characteristics and mechanisms of
a protein’s allosteric behaviour. To the best of our knowledge, CONTACT is the only
application that provides interaction networks based on information about side-chain con-
formational polymorphism. The field still lacks methods that take such information into
account. Furthermore, currently, the proposed approaches to study or predict side-chain
conformational polymorphism [56] [108] [96] lack a component capable of extracting the
dependencies among alternate conformations of polymorphic side chains. Such depen-
dency information can provide a complete understanding of side-chain dynamics during an
allosteric and/or a ligand-binding event.

In this chapter, we propose an efficient computational approach to the aforementioned
problems. While simulation-based techniques can be time-consuming, and not completely
capable of capturing the slower rearrangements of protein side chains, developing a fast
and efficient computational technique to extract correlations can be very helpful. In this
study, we first predict directly correlated side chains by applying a sparse graph estimation
technique, and generate intuitive network representations from the couplings (please see
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Section 3.2). As done in CONTACT [107], we take side-chain conformational polymor-
phism into account, and characterize dependencies between each pair of residues based on
the computed couplings for the alternate conformations of the two (for more information,
see Section 3.2.3). By applying our method to the inactive structure of an allosteric protein,
we reveal directly coupled side chains in allosterically important regions. Hence, we show
that our method is capable of inferring interaction networks of functional residues. More-
over, our method is capable of revealing possible co-occurrences of alternate conformations
of a side-chain pair as well, via the computed couplings of alternate conformations. We
can provide such information as networks and/or lists of coupled alternate conformations
for any coupled residue pair of a protein.

This chapter is organized as follows. First, we describe the proposed computational
methods in Section 3.2, including the generation of a conformational ensemble and the
application of a sparse graph estimation technique (GLASSO) to quantify the strengths
of pairwise side-chain couplings. Then, we describe our experiments and main results in
Section 3.3. Finally, we discuss some observations from our experiments, summarize our
contributions and discuss some future work in Sections 3.4 and 3.5, respectively.

3.2 Methods

Our method consists of two phases. First, for a given protein, we generate a diverse
conformational ensemble. Then, we estimate direct residue-residue dependence from the
ensemble with the graphical LASSO (or simply GLASSO) algorithm [32].

3.2.1 Generation of a Conformational Ensemble

As mentioned in the Section 3.1, we are interested in a newly extended perspective concern-
ing allostery, which states that the absence of backbone conformational changes does not
imply the absence of allosteric behaviour [16] [105]. Tsai et al. [105] categorized allosteric
proteins into three types: I, II, and III, according to the types of backbone conformational
changes that a protein undergoes during an allosteric event — type I proteins undergo no
change or subtle changes; type II proteins undergo minor changes; and type III proteins
undergo larger domain changes.

A recent study has highlighted the role of side-chain fluctuations alone in information
propagation within proteins, with subtle or no backbone conformational changes [23]. To
conduct such a study, one would focus on type I proteins and require a heterogeneous
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dataset (or ensemble) of protein structures, in which the source of diversity among the
different structures comes from alternate side-chain conformations alone, since the back-
bone is held fixed. Commonly used methods for generating such datasets include Monte
Carlo (MC) simulations and molecular dynamics (MD). The common practice is to intro-
duce a fluctuation or structural change that in a real environment may be caused by heat
or other environmental factors. The introduced change can be an amino acid mutation
or a small change in dihedral angles. The fluctuation stimulates the response of the sys-
tem (molecule) accordingly. The simulation techniques approximate the final stabilized
structure that would be a candidate member for the ensemble of conformations.

We apply a different approach to generate the required protein ensembles for our study,
by using two state-of-the-art and fast side-chain prediction (SCP) algorithms, namely,
SCWRL 4.0 [55] and TreePack [116] [117]. Although this approach is different from the
commonly used simulation methods, it follows the same principles. For a protein with m
residues, we repeatedly generate an ensemble consisting of n ≡ [m(m−1)]/2 structures, as
follows. First, we randomly select 20% of the side chains and set each of their conformations
to a randomly chosen rotamer from the backbone-dependent rotamer library provided by
the Dunbrack Lab [25]. In this step, we basically fluctuate the system. Then, the rest
of the side chains are packed by SCWRL or TreePack, and the final structure is added
to the ensemble. Essentially, this amounts to solving the side-chain packing problem (a
complex optimization problem known to have many local solutions) with many different
initial values in order to create a diverse ensemble. In this step, we simulate the response
of the system to the introduced fluctuations. We choose n = [m(m − 1)]/2 because the
parameters we are trying to estimate are pairwise coupling strengths, and there are a total
of [m(m − 1)]/2 such parameters for a protein with m residues. We want our ensemble
to contain at least the same number of structures as the number of parameters we are
estimating.

We think using SCP methods is a reasonable and efficient alternative for data (en-
semble) generation, as long as we focus on allosteric effects caused mainly by side-chain
fluctuations alone (as opposed to backbone movements), since these SCP methods assume
that the backbone is fixed and predict energy-optimal side-chain conformations given the
backbone.

3.2.2 The GLASSO Algorithm

The GLASSO algorithm [32] is concerned with the following problem: given a dataset of n
observations in Rd from a multivariate Gaussian distribution with mean µ and covariance
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matrix Σ, we would like to estimate the inverse covariance matrix, Θ ≡ Σ−1, also referred
to as the concentration or precision matrix. The reason why Θ is more interesting than Σ
for Gaussian data is that Θij = 0 implies the variables i and j are conditionally independent
given the other variables, whereas Σij = 0 does not. Even though the “conditional inde-
pendence” interpretation holds only for Gaussian data, in practice the GLASSO algorithm
is often applied for various exploratory purposes, even if the data are not Gaussian.

Let S be the empirical (sample) covariance matrix computed from the observations.
The GLASSO algorithm estimates Θ under extra sparsity constraints by solving the convex
optimization problem,

max
Θ

log det(Θ)− tr(SΘ)︸ ︷︷ ︸
(I)

−λ
d∑

i,j=1

|Θij|︸ ︷︷ ︸
(II)

, (3.1)

where λ > 0 and tr(A) denotes the trace of matrix A. The term (I) in Eq. (3.1) is
the Gaussian log-likelihood function, and the term (II) is an L1 penalty function which
forces the solution to be sparse (i.e., containing many zeros) [77][122][4][32]. The positive
parameter λ controls the “degree” of sparsity. Generally speaking, sparsity increases (more
zero entries) as the value of λ is increased. Please see Section 3.3 for more information on
how we select λ.

Direct Coupling via GLASSO

Recently, Jones et al. [48] have applied GLASSO to infer residue-residue contacts using
available multiple sequence alignment information within a family of proteins. Two residues
are defined to be in contact if the distance between their β-carbons (or α-carbons, in case
of glycine) is less than a certain pre-specified value [28] [48]. A common approach for
predicting contacts is to identify correlated mutations from multiply aligned sequences by
calculating the mutual information (MI) between pairs of residues [48]. This is considered
a local approach [80], in the sense that each residue pair is considered independent from
the rest of the residues — that is, the impact of other residues is not considered. But a few
recent studies have shown that global approaches, such as maximum entropy techniques
that consider effects of all other residues, performed more accurately than purely local
statistical analyses for predicting direct contacts [11][80]. Local methods cannot disentangle
“causal” (or direct) correlations from “transitive” (or indirect) ones [80]. If variable A is
correlated with variable B, and B with C, a transitive correlation requires A to be correlated
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with C. While studying residue contacts in protein-protein interactions, Weight et al. [112]
have emphasized the importance of being able to disentangle direct couplings from indirect
ones. Indirect couplings do not require large conformational changes, and may occur as
a result of having accumulated small effects from a number of direct interactions [112].
Due to the “conditional independence” interpretation of zeros in the inverse covariance
matrix, Jones et al. [48] saw the GLASSO as an effective tool for extracting direct coupling
information.

We use the GLASSO for the same reason, that is, to avoid unwanted transitive cor-
relations and to focus on side chains that have direct correlations with each other. But,
in our study, the information about direct correlations is obtained by tracking how con-
formational changes at one side-chain location affect conformational changes at another
location within a single protein, whereas, for Jones et al. [48], the information is obtained
by tracking correlated mutations of amino acids at different side-chain locations within a
protein family.

3.2.3 Applying the GLASSO to the Conformational Ensemble

We now explain how we use the GLASSO algorithm to extract direct coupling information
from our conformational ensemble (see Section 3.2.1).

Binary Encoding of Side-chain Conformations

Given a protein, let m denote its total number of residues. For each residue 1 ≤ i ≤ m, the
SCWRL backbone-dependent rotamer library [9][25] provides a set of discretized candidate
conformations, called rotamers, ranked according to their occurrence frequencies. For each
protein, we first generate an ensemble of n heterogeneous structures (see Section 3.2.1).
For each structure l ∈ {1, 2, ..., n} in the ensemble, we use a set of binary random variables
to encode its conformation:

b
(l)
ik =

{
1, if the conformation of residue i in structure l is “closest” to rotamer k;

0, if not,

where “closeness” is measured in terms of the root mean squared deviation (RMSD). It
should be noted, however, that since the rotamer library does not define rotamers for
alanine and glycine, we exclude these two types of residues from our analysis.
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Calculation of the Sample Covariance Matrix

For each residue i, let |Ri| denote the total number of different rotamers that appear in our
ensemble. Entries of the sample covariance matrix S (to be used as input to the GLASSO
algorithm) are computed directly from the definition of covariance.

For each residue pair (i, j), we compute an |Ri|×|Rj| sub-covariance matrix, whose
entries are

Sik,jt ≡ Cov(bik, bjt)

= E(bikbjt)− E(bik)E(bjt), (3.2)

where each expectation E(·) is estimated empirically by the corresponding weighted
sample averages,

Ê(bik) =
n∑
l=1

wlb
(l)
ik , Ê(bjt) =

n∑
l=1

wlb
(l)
jt , and Ê(bikbjt) =

n∑
l=1

wlb
(l)
ik b

(l)
jt , (3.3)

over the heterogeneous structures l = 1, 2, ..., n within the ensemble. Respectively, these
quantities measure how often rotamer k occurs at residue i, how often rotamer t occurs
at residue j, and how often rotamers (k, t) co-occur at residues (i, j) — over the entire
conformational ensemble. The weight wl in Equation 3.3 above is chosen to be inversely
proportional to the total energy of each structure l so that the more stable structures in
our ensemble will contribute the most information to our covariance calculation and overall
procedure.

For i = j, the expression (3.2) can be simplified further. Within such a sub-matrix,
the non-diagonal entries correspond to two different rotamers k 6= t for the same residue
i. Since two different rotamers can never occur simultaneously at a single residue site, we
have bikbit ≡ 0. For the diagonal entries (k = t), we have E(bikbik) = E(bik), since b2

ik = bik
when bik is either zero or one. Therefore, for i = j, the expression (3.2) simply becomes

Sik,it =

{
−E(bik)E(bit), if k 6= t;

E(bik)− [E(bik)]
2, if k = t,

(3.4)

where each expectation E(·) is again estimated by the corresponding (weighted) sample
averages, given above (Eq. 3.3).
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Thus, the dimension of our sample covariance matrix S is d× d, where

d =
m∑
i=1

|Ri|.

Notice that our Ri is not always equal to the total number of rotamers available for residue
i in the rotamer library, because some (low-probability) rotamers may never appear in our
(finite) ensemble. Fig. 3.1 contains a schematic illustration of the matrix S and its block
structure.

Figure 3.1: Schematic illustration of the sample covariance matrix, with four residues
(m = 4). Each coloured block is a covariance sub-matrix. Each diagonal block (Sii,
1 ≤ i ≤ m) (red) is a size |Ri|×|Ri| covariance sub-matrices for residue i. Each non-
diagonal block (Sij, 1 ≤ i, j ≤ m ) corresponds to an |Ri|×|Rj| covariance sub-matrices for
the residue pair (i, j). Within a block, each row (and column) corresponds to a rotamer
of the given residue. In the figure, residues i = 1 and j = 3 are shown with |Ri|= p
and |Rj|= q. The covariance sub-matrices corresponding to the pair of residues have been
coloured in light green.

Calculation of the Coupling Score

Using the d × d matrix S as input, we apply the GLASSO to obtain a sparse estimate of
Θ by solving (3.1). Of course, the matrix Θ has the same block structure as S (Fig. 3.1),
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consisting of sub-matrices for each residue pair (i, j). The final coupling score for each
residue-pair is obtained by conducting a two-step post-processing on the estimated Θ
matrix, Θ̂.

First, we aggregate over each sub-matrix:

Θ̂A
ij =

|Ri|∑
k=1

|Rj |∑
t=1

|Θ̂ik,jt| for each 1 ≤ i, j ≤ m. (3.5)

This gives us an m ×m matrix, Θ̂A, where the superscript “A” stands for “aggregated”.
The entry Θ̂A

ij can be seen to contain information about the overall strength of direct
coupling between residues i and j.

Next, we correct for the so-called “entropic bias” [48][24][60], using the “average product
correction” formula proposed by Dunn et al. [24]:

Θ̂AC
ij ≡ Θ̂A

ij −
Θ̂A
i· × Θ̂A

·j

Θ̂A
··

, (3.6)

where

Θ̂A
i· =

1

m

m∑
j=1

Θ̂A
ij, Θ̂A

·j =
1

m

m∑
i=1

Θ̂A
ij, and Θ̂A

·· =
1

m2

m∑
i=1

m∑
j=1

Θ̂A
ij.

The superscript “AC” stands for “aggregated and corrected”. The basic idea behind the
“entropic bias” is as follows. There is an intrinsic upward bias in the estimate Θ̂A

ij for larger
residues, simply because they have more “choices” in their conformations — a reality also
reflected in the fact that the rotamer library contains a larger number of available rotamers
for such residues as well. As such, these residues’ conformations have higher variability, or
entropy [60].

We use these corrected estimates Θ̂AC
ij as the final coupling scores to rank all residue-

residue pairs in terms of their direct coupling strengths.

Information about Alternate Side-chain Conformations

Finally, we notice that the matrix Θ̂ itself also contains valuable information about the
couplings between pairs of alternate side-chain conformations (rotamers) for each residue

pair. Such information is contained in the corresponding sub-matrices of Θ̂ — for example,
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the entry Θ̂ik,jt contains coupling information between the k-th (rotamer) conformation at
side chain i and the t-th (rotamer) conformation at side chain j. This information can be
used to obtain a more detailed view of coupled conformational changes in various critical
regions of an allosteric protein. We will show an example below in the Section, 3.3.2.

3.3 Experiments and Results

We implemented the dataset generation phase (Section 3.2.1) and the covariance ma-
trix calculation (Section 3.2.3) in C++ using APIs from the Biochemical Algorithms Li-
brary (BALL[41]), SCWRL 4.0 [55] and TreePack [116] [117]. This phase was run on
Sharcnet (http://www.sharcnet.ca/). Furthermore, we adapted MATLAB code (http:
//statweb.stanford.edu/~tibs/glasso/) to run the GLASSO. The parameter λ (see
Eq. 4.3.2) was set to an initial value of 0.001, and it was adjusted iteratively to obtain a
target density of 3% for the precision matrix. This target density was suggested by Jones
et al. [48].

We selected a few previously studied allosteric proteins of Type I (for more informa-
tion, please see Section 3.2.1), and performed our experiments on the inactive or unbound
molecules (Table 3.1) in order to test the capability of our method in identifying function-
ally crucial regions by studying the correlated motions of the side chains alone.

3.3.1 Coupled Side-Chain Pairs

For each test case, our results (Table 3.1) basically formed a list of side-chain couplings
ranked according to the coupling strength. We examined the lists to determine whether
our computed couplings corresponded to known correlated motions of the functionally im-
portant residues for each protein. For each case, we generated the corresponding ‘Contact
Rearrangement Networks’ (CRN) [17] to compare with our results. Generating CRN re-
quires both inactive and active structures for each test case [18] (Table 3.1). We used our
own implementation of the method and applied the suggested parameters used by Daily
et al. [17].

We performed a quantitative comparison of our results against the CRN’s lists of cou-
plings using the receiver-operating characteristic (ROC) curve. Treating the list of CRN
results as “ground truths”, the Area Under the ROC Curve (AUC) is a numeric summary
of how well our ranked list matched the CRN findings (see Table 1). These AUC values
show quite conclusively that our detection of allosteric couplings is significantly better than
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Table 3.1: Set of Proteins Used for Experiments: the 2nd and 3rd columns show the
PDB [5] IDs of inactive and active structures of each protein, respectively. The 4th and
5th columns contain the area under the ROC curve (AUC) for comparing the performance
of our method (using only the inactive structure) against that of the CRN, and against
that of our method using only the active structure, respectively.

Protein Inactive/Unbound Active/Bound Inactive (AUC Inactive (AUC
PDB ID PDB ID against CRN) against Active)

Ras 4Q21 6Q21 0.776 0.792
UPRTase 1XTU 1XTT 0.774 0.874

CheY 3CHY 1F4V (& 1FQW) 0.675 0.874
FixJ 1DBW 1D5W 0.723 0.768
rheb 1XTQ 1XTS 0.711 0.788

hemoglobin 4HHB 1HHO 0.724 0.823
arg repressor 1XXC 1XXA 0.675 0.690

AraC 2ARA 2ARC 0.725 0.756
rhoA 1FTN 1A2B 0.719 0.789
YsxC 1SVI 1SVW 0.755 0.764
rap2a 1KAO 2RAP 0.677 0.847

tet repressor 2TRT 1QPI 0.788 0.796

random, and that there is a good deal of agreement between our results and those from
the CRN.

Furthermore, we constructed 3D networks by superimposing the couplings on the 3D
structure of the proteins. Network nodes are commonly located at the α carbons of the
residues, and edges are drawn between the nodes corresponding to the coupled residue
pairs1. To visualize our results as networks, we needed more than just a ranked list of
couplings; we needed to make an active decision as to how many couplings to include in
the network. To this effect, we generated a few different networks, rather than committing
to any particular one of them. First, we generated a network including only the top K
couplings, where K is the number of couplings identified by the CRN. We then created
a scree plot of our coupling scores — ranked from the highest to the lowest, chose a few
more cut-off thresholds along the scree plot, and generated a network graph for each of
the chosen thresholds. These sets of networks for four selected proteins (see Sections Ras,
UPRTase, CheY, and FixJ below) are displayed in Figures 3.2 (page 43), 3.5 (page 46), 3.8

13D molecular visualizations and graphs in this chapter have been produced using the StructBio pack-
age [12] (in Python) for Chimera applications [86]
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(page 49) and 3.11 (page 52), as well as the aforementioned scree plots and the ROC curves,
that are displayed in Figures 3.3 (page 44), 3.6 (page 47), 3.9 (page 50) and 3.12 (page
53).

Examining the networks revealed subregions formed by strongly correlated residues.
The subregions usually contain residues that are close in the 3D structure. Relying on
GLASSO’s feature in extracting direct couplings (see Section 3.2.2), we think that we can
obtain the underlying pathways formed by direct interactions between the key residues
responsible for allosteric behaviour in proteins. We picked four cases (Ras (PDB ID:
4Q21 [78]), UPRTase (PDB ID: 1XTU [3]), CheY (PDB ID: 3CHY [110]) and FixJ (PDB
ID: 1DBW [37])) from the test set to analyse further in the subsequent Subsections (3.3.1
to 3.3.1), respectively. A summary of comparisons is given in Table 3.2.

Ras

Milburn et al. [78] identified two regions named switches I and II (residues 30-38 and 60-
73, respectively) to exhibit the major motions in Ras. Switch II is known to be directly
involved in switching the protein from inactive to active status [52]. Examining the 3D
structure of this protein, we determined that the residues located in the binding site are
as follows: 28-35 (has overlap with switch I), 12-19, 145-147, 116-120 (Fig. 3.2). Kidd
et al. [52] reported strong correlations in switch II, and the area of the hydrophobic core
which is conserved in the Ras family. The authors did not report connectivity between the
switches.

The generated CRN revealed a connected component of 75 correlations in and between
the two switches (Fig. 3.2 (a)). The component was also connected to a few binding site
residues: GLY 12, GLY 13, SER 17 and LYS 16. A few correlations were also seen in the
β-sheet close to the switches.

The top 75 correlations of our results revealed strong correlations in the switch II region
(Fig. 3.2 (b), and the coupling (GLU 37, ARG 68) connected switches II and I. We captured
the couplings (PHE 28, ASP 30) and (ASP 30, GLU 31) in switch I as well. Furthermore,
couplings among residues of certain secondary structures (especially α-helices) and the
β-sheet close to the switch II were observed.

Considering the top 150 couplings, connectivity within the switch regions improved.
Moreover, interesting couplings in the binding site region emerged; the involved residues
were 147, 116, 117, 119, 120 and 19 (Fig. 3.2 (c)). Interestingly, couplings among these
residues (the binding site) were not observed in the CRN.
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Except for the correlations in and among the α-helices, the noticeable difference between
our results and those of the CRN was that the CRN captured correlations in the binding site
only partially: in the area close to the switches, i.e., among residues in switch I and the α1-
β1 loop. In contrast, we obtained correlations among other residues in the binding site as
well. The α1-β1 loop contains alanine and glycine residues (GLY 10, ALA 11, GLY 12 and
GLY 13), which have been excluded from our model, due to lack of rotameric conformations
(more information in Section 3.2.3). Therefore, we did not retrieve correlations for this
segment. A 2D network2 is presented in Figure 3.4 (b) (page 45). The discovered couplings
in the binding site may not be directly related to the allosteric behaviour of Ras; but the
binding site is categorized as an important functional region of the molecule. Therefore,
extracting couplings between residues within and close to this site can be very helpful,
especially if the method can extract the couplings between alternate conformations of
these residues, as well (see Section 3.3.2 for more information).

2The 2D networks in this chapter are produced by the software, Cytoscape [92]
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Uracil Phosphoribosyltransferase (UPRTase)

UPRTase is categorized as an enzyme and, as a drug target, it has attracted attention.
Sequence identities in this family range from 20% to 45% [3] [91]. Hence, the sequences are
rather dissimilar; but the residues at the active site are strongly conserved. The regulatory
behaviour of this enzyme differs in different organisms [3]. We studied UPRTase from
Sulfolobus solfataricus. The inactive UPRTase (PDB ID = 1XTU) is in complex with
uridine 5′-monophosphate (UMP) and has the allosteric effector cytidine 5′-triphosphate
(CTP). The presence of both UMP and CTP improves the inhibition in UPRTase, because
they are not strong inhibitors individually [3].

Arent et al. [3] designated functionally important regions in UPRTase that play an
important role in the binding of 5-phosphate-α-1-diphosphate (PRPP): first, a flexible
loop between β5 and β6 (residues 106-118); second, a loop region between β4 and α3
(residues 78-80); third, a highly conserved region of the PRPP recognition motif which
includes β7 and residues 135-150 of α4; finally, another conserved characteristic in the
protein family, named the hood region, which contains β10, β11 and α6, i.e., residues 196-
216. Furthermore, the allosteric binding site comprises a few residues on the surface of α2
and α3.

The CRN of this protein consists of 40 couplings (Fig. 3.5 (a)- page 46) that are con-
centrated in the flexible loop region, α6, and the loop between β4 and α3. Almost no
connection between the allosteric effector’s binding site and the main binding site can be
recognized in the CRN. By looking at the top 40 couplings in our result, a noticeable
difference between our results and the CRN was that we obtained strong correlations in
the binding site of the allosteric effector, i.e., α2 and α3 (Fig. 3.5 - page 46). We identified
strong couplings in the important regions such as the flexible loop, the PRPP recognition
motif and the hood region; but these couplings did not form a connected component. Con-
nectivity within each of the allosteric and main binding sites increased when we considered
the top 100 couplings, and interesting couplings emerged in the aforementioned crucial re-
gions (Fig. 3.5(c)- page 46). By going further down our ranked list to include the top 175
couplings, the coupling (GLN 25, ARG 80) emerged and we discovered that the two sub-
networks of allosteric site and main binding site (consisting of the four segments mentioned
above) are connected. Observing this connected component in the set of 175 top-ranked
couplings of the protein is significant for two reasons. First, the connected component can
explain how the communication between these two sites occurs during allostery through
side-chain interactions. Second, the set of 175 couplings approximately contains 0.8% of
the total possible couplings for this protein. Therefore, the set consists of very highly
ranked and strong couplings extracted for UPRTase. A 2D network of these 175 couplings
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is shown in Figure 3.7 (page 48) to clearly demonstrate the connection between the two
sites.

CheY

Several studies have noted the allosteric behaviour of CheY [57] [14] [26] [58] [52]. In the
presence of Mg2+, a phospohrylation happens at ASP 57. Upon this phosphorylation event,
CheY undergoes conformational changes that allows the molecule to bind to the flagellar
motor switch protein FliM. This conformational changes starts with a hydrogen bond
formation and displacement of THR 87 which allows isomerization of TYR 106 [29] [57] [14].
The main conformational changes between the active and inactive structures of CheY are
known to be: motions of the β4-α4 loop (ALA 88 - LYS 91) with isomerization of TYR
106, and small changes in the β5-α5 loop (LYS 109 - THR 112) with side-chain motions
of LYS 109 and PHE 14 [58] [66] [76].

We generated the CRN for CheY using two different active structures (PDB IDs: 1F4V
and 1FQW). The networks contained 33 and 21 correlations, respectively. Both networks
contained a connected component that connected ASP 57, ASP 13, and residues of the
α4-β4 loop. We picked the first 33 correlations from our list, and produced a network
representation (Fig. 3.8 (b)- page 49). Our first observation was that, in addition to the
common correlations between the two CRNs, our list contained correlations that were
exclusively found in each CRN, e.g., couplings (ARG 19, ARG 22) and (LEU 46, MET
78) were only found in the CRN for 1FQW, whereas (ARG 18, GLU 37), (LYS 122, LYS
126) and (ASP 57, MET 60) were found only in the CRN for 1F4V. This showed that our
method can capture a wider range of correlations, in contrast to the CRN which captured
correlations by studying two different structures of a molecule.

Furthermore, we noticed that, in higher thresholds (100-120), which still contain a very
small portion (less than 1.5%) of all possible couplings, interesting connections started
to emerge, such as a connected component of residues ASP 13, MET 60, ASP 57, ASP
12, PHE 14, MET 17, LYS 109, and VAL 86, at a threshold of 100. These residues
reside in the Mg+2 binding site. With the same threshold, another connected component
containing residues TYR 106, MET 85, TRP 58, ASN 59, ASN 94, LYS 91, and GLU 89
is observed. As mentioned above, this set contains residues known to be involved in the
CheY’s allostery. By increasing the threshold to 120, coupling between 57 and 58 (at rank
118) emerged and connected the two sub-networks. In addition to this coupling, (THR 87,
TYR 106) emerged at rank 106 (Fig. 3.8 (d)- page 49). These connections are in agreement
with the new findings of McDonald et al. [76] who proposed an extended and previously
undescribed allosteric network for CheY consisting of residues ALA 88 (excluded from our
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study; see Section 3.2.3), THY 87, TRP 58, MET 85, GLU 89, and TYR 106. We think the
network connecting the binding and allosteric sites through top-ranked direct couplings is a
significant finding of our method, which can explain the side-chain interactions of important
residues in these two sites. A 2D network representation of top 120 couplings is presented
in Fig. 3.10 (page 51).

Furthermore, examining the list of couplings, we made an interesting observation about
interactions between LYS 109 and PHE 14. The couplings (MET 17, LYS 109) and (PHE
14, MET 17) were ranked 4th and 51st, respectively, while (PHE 14 , LYS 109) was in a
lower position in the list. The capability of GLASSO in extracting direct couplings suggests
that the correlated motions between LYS 109 and PHE 14 occurs indirectly through MET
17.

FixJ

FixJ is an example of response regulator proteins that control different cellular processes.
Birck et al. [6] analysed the structural displacements of the receiver domain of FixJ in its
unphosphorylated and phosphorylated states. Phosphorylation happens in the active site
at ASP 54. Major motions are the phosphorylation-induced conformational changes that
have been noticed in the β4-α4-β5 region, especially in the β4-α4 loop (GLY 83- GLY 85)
whose motion leads to a reorientation of α4, and in the region between the C-terminal of
β1 (VAL 9) and the first turn of α1 (VAL 15). The hydrophobic core of the protein is
formed by strands β1, β3 and β4. The C-terminal of the β strands and the β3-α3 (also
known as γ loop: LEU 55- MET 60), β1-α1 and β4-α4 loop regions constitute the active
site of the protein [37].

The generated CRN for this protein contained 63 couplings and showed a connected
component concentrated in β4, α4, β5, and the intermediate loop regions. The connectivity
expanded to the β3-α3 and β1-α1 loop regions of the active site (Fig. 3.11- page 52).
Among the top 63 couplings from our results, we recognized strong correlations among the
active site residues, and some correlations within α7. By increasing the cut-off threshold,
we noticed that connection between the β4-α4 loop and the active site was established
through the coupling (HIS 84, LYS 104), which emerged at rank 71. The results are also
presented as a 2D network in Figure 3.13 (page 54). The revealed interaction path can
explain how the phospohrylation at ASP 54 induces a cascade of conformational changes
through the side chains’ interactions.
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3.3.2 Coupled Alternate Side-Chain Conformations

Emphasizing the prevalence of side-chain polymorphism that has recently been revealed
from x-ray crystallography data [56] [108], we modelled alternate conformations by var-
ious rotamers obtained from the rotamer library at each residue site (Section 3.2.3). As
mentioned in Section 3.2.3, we computed the inverse covariance matrix (Θ) which contains
correlations between the alternate conformations of a protein’s residues. This information
can facilitate the prediction of alternate conformations of residues that tend to co-occur
during an event that requires conformational changes, e.g., ligand-binding. This capability
is another contribution of our method, i.e., providing a magnified view of a coupled residue
pair and revealing details about the couplings between the alternate conformations of the
pair.

The couplings between alternate conformations can be represented as a network and/or
by a ranked list. For example, we selected two residues ASP 119 and LYS 147 at the bind-
ing site of Ras (Section 3.3.1). These residues are highlighted in magenta in Fig. 3.14
(a) (page 55). In order to retrieve the correlations between the alternate conformations,
we extracted the sub-matrix corresponding to the residue pair from the matrix (Θ) (for
more information, please see Section 3.2.3). A network (hierarchical layout) of correlated
alternate conformations for this residue pair is displayed in Fig. 3.14 (b) (page 55). The
rotamer library provides 9 and 81 rotamers for ASP 119 and LYS 147, respectively. Our ap-
proach identifies 89 non-zero interactions between the rotamers of this pair. The strongest
coupling occurs between the first rotamers of residue 119 and residue 147. We denote this
coupling as (1,1) in which the first and second number correspond to the rotamer number
of residues 119 and 147, respectively. The next 9 correlations (sorted in descending order
of coupling strength) are: (7,30), (5,52), (7,64), (2,1), (5,12), (5,22), (7,51), (7,80), and
(7,68). We can extract useful information about the dynamics of the residues from the
graph or the list, e.g., all of the strong couplings involve rotamers 1, 5, 7 and 2 of residue
119 (see Fig. 3.14- page 55). Rotamer 3 of residue 119 is the highest-degree node in the
graph, i.e., this rotamer of residue 119 may co-occur with many rotamers of residue 147,
although none of the corresponding couplings are strong. Furthermore, the graph shows
that rotamer 8 of residue 119 only co-occurs with rotamer 11 of residue 147.
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(a) (b)

(c)

Figure 3.2: 3D network representations of the couplings for Ras. The switch I and II
regions are coloured in blue. The binding site residues are coloured in red.(a) CRN results:
75 couplings that are observed in and between the switches. The cluster is connected to a
couple of the binding site residues. (b) & (c) 3D network representation of our method’s
results using the 75, and 150 strongest couplings, respectively.
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(a)

(b)

Figure 3.3: Ras: (a) Plot of the coupling score computed by our method vs. number of
couplings, cut-offs 75 and 150 have been marked. (b) ROC plot: comparison with CRN’s
list of couplings. AUC = 0.776.
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(a)

(b)

Figure 3.4: Ras: Important residues that appear in the top 150 couplings of Ras have been
annotated in (a) a 3D model and (b) a 2D network. The coloured/annotated regions in dark
and light blue correspond to switch II and I, respectively. The residues coloured/annotated
in red are located in the binding site that overlaps with switch I residues. Nodes degrees
are coded by different shades of gray (black: largest, white: smallest).
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(a) (b)

(c) (d)

Figure 3.5: 3D network representation of the couplings for UPRTase. The main binding
site contains: the flexible loop between β5 and β6 (red), the loop region between β4 and α3
(green), β7 and a part of α4 (cyan), and the ‘hood’ region formed by β10, β11 and α6 (blue).
The allosteric effector’s binding site is coloured in yellow. (a) CRN contains 40 couplings,
mostly concentrated around the main binding site. (b)-(d) 3D network presentation of our
method’s results using the 40, 100, and 175 strongest couplings, respectively.
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(a)

(b)

Figure 3.6: UPRTase: (a) Plot of the coupling scores computed by our method vs. number
of couplings. Chosen cut-off thresholds used in Fig. 3.5 (b)-(d) are designated on the plot.
(b) ROC plot: comparison against CRN’s list of couplings. AUC = 0.774.
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(a)

(b)

Figure 3.7: UPRTase: Important residues that were observed in the top 175 couplings
have been annotated in (a) a 3D model and (b) a 2D network. The two binding sites can
be recognized from the computed couplings: the coloured regions in yellow correspond to
the allosteric effector’s binding site. The residues coloured in light green, cyan, red, and
blue correspond to residues in the main binding site. The edge in red connects the two
sub-networks of main and allosteric binding sites.
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(a) (b)

(c) (d)

Figure 3.8: 3D network representation of the couplings for CheY. Residues in blue are
crucial to allostery. (a) CRN applied to the active structure 1F4V. (b)-(d) Our results —
top 33, 60 and 120 couplings, respectively.
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(a)

(b)

Figure 3.9: CheY: (a) Plot of the coupling score computed by our method vs. number of
couplings, with cut-offs 33, 60 and 120 marked. (b) ROC plot: comparison against CRN’s
list of couplings. AUC = 0.675.
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(a)

(b)

Figure 3.10: CheY: Important residues that were observed in the top 120 couplings have
been annotated in (a) a 3D model and (b) a 2D network. The coloured regions in yellow
correspond to the allosteric site and the Mg2+ binding site. Node degrees are coded by
different shades of gray (black: largest, white: smallest)
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(a) (b)

(c)

Figure 3.11: 3D network representation of the couplings for FixJ. The active-site residues
(except for β4-α4 segment) and the residues of β4-α4-α4 region are coloured in red and
blue, respectively. (a) CRN contain 63 correlations; crucial regions are connected.(b)&(c)
Our results — top 63 and 100 couplings, respectively.
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(a)

(b)

Figure 3.12: FixJ: (a) Plot of the coupling score computed by our method vs. number of
couplings, with cut-offs 63 and 100 marked. (b) ROC plot: comparison against CRN’s list
of couplings. AUC = 0.723.
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(a)

(b)

Figure 3.13: FixJ: Important residues in the top 100 couplings have been annotated in (a)
a 3D model and (b) a 2D network. The region coloured in blue corresponds to the residues
of α4 and HIS 84 from the β4-α4 loop. The active site (γ loop and the conserved residues
10, 11 and 12) are coloured in red. The phosphorylation site (ASP 54) and the conserved
residue 104 are coloured in green and yellow, respectively. The active site and the β4-α4
loop are connected through the coupling between LYS 104 and HIS 84. Node degrees are
coded by different shades of gray (black: largest, white: smallest)
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(a)

(b)

Figure 3.14: (a) Molecular visualization of Ras (4Q21). Residues ASP 119 and LYS 147 at the binding site
are highlighted. (b) A hierarchical representation of coupled alternate conformations for the residue pair
(119, 147). Rotamers for residues 119 and 147 are shown as cyan diamonds and blue circles, respectively.
The labels of the nodes denote the rotamer number for each residue. The edge colours show coupling
strengths (red: strongest, green: weakest).



3.3.3 Comparison with Statistical Coupling Analysis (SCA)

SCA was initially proposed by Lockless and Ranganathan [64] and used to extract groups of
co-evolved residues, called a sector in a family of proteins. The method relies on sequence
data from the family. We compared our results to the results of the SCA method for the Ras
and PDZ families [39] [101] using the ROC. We noticed that neither our results nor those
of the CRN are in good agreement with the SCA results, with AUCs around 0.50. Similar
results have been reported by Demerdash et al. [20]. This lack of agreement might be due
to the different sources of data used by our method and by the SCA, i.e., structural data vs.
sequence data. Furthermore, initially the SCA was developed to distinguish conserved and
co-evolved residues in a protein family. It was not specifically devised to extract allosteric
sites. Additionally, we use data obtained from only one (inactive) structure to infer our
results, while the SCA uses a large amount of data from all sequences in a family to infer
the results.

3.4 Discussion

Quantitative and qualitative comparison to the computational and empirical methods (Ta-
ble 3.2) indicated that our proposed method can obtain networks of functional residues
and possible interaction paths among them in allosteric proteins. It should be noted that a
meaningful comparison with the existing computational methods was difficult, since these
methods mostly rely on information from both active and inactive allosteric structures,
whereas we assumed that only the inactive structure was accessible.

Another notable point is that, while our results showed good agreement with the corre-
sponding CRNs, our results covered a larger range of functional residues. This became clear
by visualizing and comparing the obtained networks. We often obtained more couplings
between residues in the main binding site of the protein than those obtained by CRN, e.g.
in the Ras case. Although the binding-site residues are implicated as important functional
residues of a protein, some of them may not necessarily be directly involved in the allosteric
event. Furthermore, we noticed that in the case of CheY which had two active structures,
our obtained network captured the specific couplings that were found exclusively by each of
the generated CRNs for this protein. The two sets of results demonstrated by our method
and by the CRN are not contradicting, and we think that both CRNs and our networks
can be used as complementary tools.
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3.4.1 Residue Couplings in the Active Structure Are Obtainable
from the Inactive Structure

We ran further experiments (data not shown) on the active structures (Table 3.1) to com-
pute the sets of directly coupled residues for these structures as well as the inactive ones, so
that we can study and compare the two sets of couplings in the active and inactive struc-
tures and possibly achieve more insights about the transition of the molecule from inactive
to active state. We applied the same cut-off thresholds, used for the inactive structures
(Section 3.3), to pick the top-ranked couplings for the active structures. Comparison of
the two sets (inactive and active), at the same cut-offs, revealed that we can categorize
each set into two subsets of common and specific couplings. The former subset refers to
the couplings that were common between the two sets, and the latter subset refers to the
couplings specific to either the inactive or the active set. Our calculations showed that,
on average, about 70% of the couplings detected within the active structure were also de-
tected within the inactive structure (using the same cut-off threshold). Furthermore, we
noticed that the remaining 30% of the couplings from the active compound often could be
detected within the inactive compound at slightly lower thresholds. Despite appearing at
lower ranks, most of these couplings were still among the top 0.5% to 16% of the ones from
the inactive structure. The last column of Table 3.1 contains AUC values measuring how
well our ranked list of couplings (detected within the inactive structure alone) matched
couplings that could be identified in a similar fashion from the corresponding active struc-
ture. These relatively high AUCs (∼ 0.70 − 0.90) seem to suggest that transitions from
inactive to active structures can be characterized by changes in the relative strengths of
couplings detected within the inactive structure alone. That is, during the transition from
inactive to active structure, some highly-ranked couplings in the inactive structure become
even higher-ranked couplings in the active structure. Therefore, it seems that the set of
couplings for the inactive structure contains significant information about couplings in the
other (active) structure. This may open a door to predicting functional regions and residue
couplings for the active structure by studying the inactive structure only.
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Table 3.2: Summary of Results: the critical re-
gions/residues revealed by different methods for each test
case have been provided.

Protein Methods:
type of method observations

Ras
Milburn [78] Empirical Major motions in switches I (residues

30-38) and II (residues 60-73). Switch II
is directly involved in switching the
protein from inactive to active status.

Kidd et al. [52] Computational Strong correlations in switch II, and the
area of the hydrophobic core (conserved
in the Ras family). No connectivity was
reported between the switches.

Daily et al. [17] Computational A connected component was formed by
residues in the two switches and a few
binding site residues (12, 13, 17 and 16).

Our Approach Computational Strong correlations in the switch II region
and a couple of correlations connecting
the switches II and I (cut-off threshold
75). Couplings were noticed between the
binding site residues (residues 19, 116,
117, 120 and 28, 30, 31, 147, and 119).

UPRTase
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Arent et al. [3] Empirical Four critical regions: flexible loop region
between β5 and β6 (residues 106-118),
loop region between β4 and α3 (residues
78-80); highly conserved region including
β7 and residues 135-150 of α4, and the
β10, β11 and α6 (residues 196-216)

Daily et al. [17] Computational Interactions mostly in the flexible loop
region, α6, and the loop between β4 and
α3. Connectivity between the allosteric
effector’s binding site and the main
binding site could barely be recognized.

Our Approach Computational Couplings were found in all the critical
regions (identified by the empirical
approach) and in the the binding site of
the allosteric effector (α2 and α3). A
sparse network connects the two binding
and allosteric sites.

CheY
Lee et al. [57] Empirical Conserved residues (57, 12, 13, 87, and

109) involved in a phosphorylation event.
Consecutive major conformational
changes in α4-β4 loop (residues 88-91).
Isomerization of TYR 106 is caused by
phosphorylation and coupling between
residues 87 and 106. The isomerization is
correlated with the binding affinity to
FliM.
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McDonald et al. [76] Empirical An extended and previously undescribed
signalling network was recognized that
involves residues 88, 87, 58, 85, 89, and
106.

Daily et al. [17] Computational Residues 57, 13, and residues in the
α4-β4 loop were connected.

Our Approach Computational Our set of couplings contains couplings
from either CRNs generated from two
different active structures of CheY. Using
the top 1.5% of all couplings, our graph
revealed a sparse network between the
allosteric and Mg2+ binding sites.

FixJ
Birck et al. [6] Empirical Upon phosphorylation at residue 54,

major motions occur in β4-α4-β5 and
residues 9-15. The active site is formed
by the C-terminal of the β strands and
the β3-α3, β1-α1 and β4-α4 loop regions.

Daily et al. [17] Computational A component connected residues in β4,
α4, β5, and the intermediate loop
regions, and the β3-α3 and β1-α1 of the
active site.

Our Approach Computational Residues within the active site region and
within α7 were connected through strong
couplings. Increasing the threshold to
100 resulted in connectivity between
β4-α4 loop and the active site via HIS 84.



3.5 Chapter Summary

In this chapter we studied the previously undermined role of side-chain fluctuations in
allostery via a computational approach. We focused on the recently extended view of
allostery emphasizing that the presence of allostery does not require significant backbone
conformational changes [105] [23].

We have presented an efficient method for extracting direct couplings of protein side
chains applying a sparse graph estimation technique named GLASSO. We modelled the
problem according to another important recent finding which places emphasis on the preva-
lence of alternate side-chain conformations (conformational polymorphism) [56] [108]. We
explicitly took polymorphism into account in our modelling and correlation computations
by using rotamers to represent different conformations.

The predicted residue pair couplings indicated correlated motions in critical regions
of previously studied allosteric proteins. This suggests that our method is capable of
extracting useful correlation information by studying the inactive structures alone. Sparse
network representations of the couplings show the underlying correlation pathways that
may be used to propagate information in a protein during an allosteric event.

Another contribution of this work is the capability of zooming into the residue-residue
couplings to extract the couplings of alternate conformations. We think this step helps to
provide a clearer and more detailed image of conformational changes during an allosteric
event such as ligand-binding.

We are currently developing a direct coupling detection algorithm, that can be applied
in the continuous space of alternate conformations, rather than being restricted to the
discretized (rotamer) conformations. We think that avoiding discretization will lead to
higher accuracy and more flexibility of the model, and will facilitate the integration of
continuous and conformationally polymorphic models, such as Ringer [56], qFit [108], or
PBPMixVM [96], when studying allosteric effects of side chains.
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Chapter 4

A Novel Algorithm to Infer Direct
Couplings between Continuous
Multivariate Angular Variables

4.1 Introduction

Predicting allosteric regions in proteins and understanding their interaction mechanisms
are challenging problems in bioinformatics. It is common to mainly identify backbone
motions responsible for the allosteric behaviour of proteins. However, recent studies have
not only highlighted the commonly neglected role of side-chain fluctuations in informa-
tion transmission within a molecule [23], but also emphasized the presence of allostery
in proteins with minimal backbone motions [105]. Moreover, recent discoveries by x-ray
crystallography reveal that alternate side-chain conformations are more prevalent than pre-
viously thought [56] [108]. These findings further accentuate the importance of a thorough
study of the role played by side-chains in allostery [107] [23].

Intrinsic networks of correlated residues are known to play an important role in the prop-
agation of information during an allosteric event. Identifying networks of directly coupled
allosteric residues is thus of crucial importance for understanding the allosteric mechanism
and interaction paths in a molecule. Common correlation-based analyses, however, can-
not disentangle causal (or direct) correlations from transitive (or indirect) ones [80]. To
this effect, the statistical concept of partial correlation, a conditional dependence measure
between two variables given all other variables, is more appropriate for inferring direct
couplings. Existing methods based on the partial correlation such as the GLASSO [32]
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Figure 4.1: Superimposed 3D structures of active and inactive H-Ras. Major conforma-
tional changes are known to occur in the Switch I and Switch II regions during an allosteric
event.

(see Section 3.2.2), on the other hand, often assume that the data are generated from a
multivariate normal distribution — although Jones et al. [48] also applied it to binary
variables. This is a restrictive assumption for many applications such as the one discussed
in this chapter and Chapter 3. In particular, side-chain conformations are commonly mod-
elled by multidimensional angular variables, for which the normal distribution is not a
good fit. Another challenge is the quantification of correlations between two multidimen-
sional random variables. Here, a useful statistical tool is canonical correlation analysis
(CCA) [44]. We developed a novel extension of CCA by incorporating partial correlation
and by using a multivariate von-Mises kernel function [70] to capture similarities between
two multidimensional angular variables.

We tested our method on a number of well-studied allosteric proteins from the Ras, Rho,
and Rab sub-families of the small G protein super-family. While the sequence similarity
within a sub-family may be relatively high (50-55%), members of two different sub-families
tend to share low (∼30%) sequence identity [103]. Despite the low similarity and having
distinct functions, 3D structural analysis of these proteins has revealed common charac-
teristics. For example, they cycle between two inter-convertible forms [103] [87] [113] –
the inactive form [bound to guanosine diphosphate (GDP)] and the active form [bound to
guanosine triphosphate (GTP)]. Furthermore, during this cycle, all of the small G proteins
undergo major conformational changes in two common regions, referred to as Switch I and
Switch II (see Figure 4.1) in the literature [78] [38] [93].
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Our method successfully identified the aforementioned allosteric regions in these test
cases. In each case, residues belonging to these regions are specifically involved in the
strongest couplings and are among the highest-degree nodes in the interaction graph formed
by the inferred couplings. Furthermore, allosteric and binding sites in these test cases are
connected in the interaction graphs as well. This means that, by studying side-chain
fluctuations, our method can infer pathways between these sites and shed light on how
information propagates between these functionally important residues.

It is worthwhile to note that we obtained our results by using information from only
the inactive (GDP-bound) structure of each allosteric protein. Most methods for studying
allostery use both the active and the inactive structures. However, in many situations,
both structures are not readily available. We think our method can provide especially
valuable information in these types of situations.

4.2 Methods

Our method for inferring direct couplings comprises a few fundamental components. First,
we rely on the mathematical notion of partial correlation to measure direct couplings (Sec-
tion 4.2.1). Second, we use canonical correlation analysis (CCA) to quantify the notion
of correlation (more specifically, partial correlation) for multivariate data (Section 4.2.2).
Third, we use a specific kernel function — the von-Mises kernel — to measure similarity
between two sets of conformational variables expressed in terms of dihedral angles (Sec-
tion 4.2.4, Section 4.2.5).

4.2.1 Direct Coupling and Partial Correlation

If variable x is correlated with a set of variables z = (z1, z2, ..., zd)
T and so is y, a transitive

correlation requires that x be correlated with y. For direct couplings between residues,
we are interested in the direct correlation between x and y, not the kind of transitive
correlations between them. In many applications, computing direct couplings between
residues is crucial [48] [80].

The “partial correlation” between x and y is a measure of their dependence after having
removed the effect of z. It can be computed as follows. First, we respectively regress both
x and y onto z, that is, we fit the following models to x and y:

x = β0 + β1z1 + ...+ βdzd + εx,

y = γ0 + γ1z1 + ...+ γdzd + εy.
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Let β̂j and γ̂j denote the estimated regression coefficients, for j = 0, 1, 2, ..., d. Let rx and
ry denote the residuals from these regression models, i.e.,

rx = x− (β̂0 + β̂1z1 + ...+ β̂dzd),

ry = y − (γ̂0 + γ̂1z1 + ...+ γ̂dzd).

The partial correlation between x and y is the usual Pearson correlation between rx and
ry.

4.2.2 Canonical Correlation Analysis (CCA)

As indicated above, if both x and y are univariate random variables, we can use their
usual Pearson correlation to measure their marginal association, or their partial correlation
to measure their direct association. But what if both of them are multivariate random
variables? Moreover, what if they have different dimensions, e.g., x = (x1, ..., xp)

T and
y = (y1, ..., yq)

T for some p 6= q?

One way to come up with a single numeric measure of the association between two
multivariate variables x ∈ Rp and y ∈ Rq is to compute the quantity,

ρ(x,y) ≡ max
u∈Rp,v∈Rq

Corr(uTx,vTy), (4.1)

sometimes referred to as the canonical correlation coefficient between x and y. More
specifically, since

Corr(uTx,vTy) =
Cov(uTx,vTy)√
Var(uTx)Var(vTy)

=
uTCov(x,y)v√

[uTVar(x)u][vTVar(y)v]
,

the maximization problem in Eq. (4.1) is equivalent to

max
u∈Rp,v∈Rq

uT[Cov(x,y)]v, (4.2)

subject to the constraints

uT[Var(x)]u = 1 and vT[Var(y)]v = 1. (4.3)
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Given a data set, {(xi,yi) : i = 1, 2, ..., n}, where xi ∈ Rp and yi ∈ Rq, let

X =

 x
T
1
...
xT
n


n×p

and Y =

 y
T
1
...
yT
n


n×q

be the usual data matrices, respectively stacking n samples of x and y as row vectors. If
both X and Y are centered so that each column has mean zero, then the sample estimates
of Var(x), Var(y) and Cov(x,y) are simply

V̂ar(x) =
1

n

n∑
i=1

xix
T

i =
1

n
XTX,

V̂ar(y) =
1

n

n∑
i=1

yiy
T

i =
1

n
Y TY ,

̂Cov(x,y) =
1

n

n∑
i=1

xiy
T

i =
1

n
XTY .

Hence, the empirical estimate of the canonical correlation coefficient given in (4.1) can be
obtained by solving the maximization problem (4.2)-(4.3) using the three sample estimates
above, i.e.,

ρ̂(x,y) = max
uTXTXu=1
vTY TY v=1

uTXTY v. (4.4)

The maximization problem in Eq. (4.4) is well-known to be a generalized eigenvalue prob-
lem (see, e.g. Shawe-Taylor and Cristianini [94]), and can be solved in many scientific
computing platforms, including MATLAB.

4.2.3 Partial CCA

If, instead, we are interested in a single numeric measure of the direct association between
x and y, we can use the same idea as that of the partial correlation (Section 4.2.1). That
is, we can first remove the effect of z from both of them, before computing their canonical
correlation coefficient. More specifically, let

Z =

 z
T
1
...
zT
n


n×d

.
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We simply compute (4.4) using

X̌ = X −Z(ZTZ)−1ZTX and

Y̌ = Y −Z(ZTZ)−1ZTY

instead of the original data matrices X and Y . We refer to the resulting estimate,

ρ̂(x,y|z) = max
uTX̌

T
X̌u=1

vTY̌
T
Y̌ v=1

uTX̌
T
Y̌ v, (4.5)

as the partial canonical correlation coefficient between x and y.

4.2.4 Kernelization of CCA and Partical CCA

It is easy to see that, if we reparameterize u = XTα and v = Y Tθ for some α,θ ∈ Rn,
the sample canonical correlation coefficient [Eq. (4.4)] can be computed as

ρ̂(x,y) = max
αTXXTXXTα=1
θTY Y TY Y Tθ=1

αTXXTY Y Tθ. (4.6)

Let KX = XXT =

 x
T
1
...
xT
n

 [ x1 . . . xn
]

=


xT

1x1 xT
1x2 . . . xT

1xn
xT

2x1 xT
2x2 . . . xT

2xn
...

...
. . .

...
xT
nx1 xT

nx2 . . . xT
nxn


be an n × n matrix whose (i, j)-th entry is equal to xT

i xj, the inner-product between
observations xi and xj, and likewise for KY . Then, Eq. (4.6) can be written as

ρ̂(x,y) = max
αTK2

Xα=1

θTK2
Y θ=1

αTKXKY θ. (4.7)

This shows that CCA can easily be “kernelized” (see, e.g. Shawe-Taylor and Cristian-
ini [94]) — simply replace the inner-products, xT

i xj and yT
i yj, withK(xi,xj) andK(yi,yj),

for some kernel function K(·, ·).
When a different kernel function is used in Eq. (4.7) other than the usual inner-product,

we will use the notation, ρ̂K(x,y), to refer to the quantity in Eq. (4.7). Clearly, the
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Table 4.1: Summary of Notations
Notation Meaning Section

ρ̂(x,y) CCA 4.2.2

ρ̂(x,y|z) Partial CCA 4.2.3

ρ̂K(x,y) Kernelized CCA 4.2.4

ρ̂K(x,y|z) Kernelized Partial CCA 4.2.4

same argument applies to sample estimate of the partial canonical correlation coefficient
[Eq. (4.5)] as well, that is, the quantity ρ̂(x,y|z) can be obtained from Eq. (4.7), too, by

simply letting KX = X̌X̌
T

and KY = Y̌ Y̌
T
. Similarly, when a different kernel function is

used other than the usual inner-product, we will use the notation, ρ̂K(x,y|z), to distinguish
it from ρ̂(x,y|z). Table 4.1 summarizes our notations.

A technical detail, which we largely have suppressed in our exposition here, is that, in
Eq. (4.7), it is necessary to add a regularization term such as λI to both K2

X and K2
Y in

the constraints to avoid an otherwise degenerate solution.

4.2.5 Application of KPCCA to the Study of Allostery

In this study, we use Kernelized Partial CCA (or simply KPCCA) to quantify the direct
coupling between pairs of residues and study the allosteric behaviour of proteins. Let m
denote the number of residues in a given protein. For any given pair of residues 1 ≤ a, b ≤
m, we let

• x be the vector of p dihedral angles describing the side-chain conformation of residue
a;

• y be the vector of q dihedral angles describing the side-chain conformation of residue
b; and

• z be the vector of d dihedral angles describing the side-chain conformations of all
other residues.

In general, 0 ≤ p, q ≤ 4, depending on the type of amino acids for the two residues, whereas
d is much larger. When we say that we use KPCCA, we mean that we use the quantity,
ρ̂K(x,y|z) (see Table 4.1), to quantify how strongly the two residues a and b are directly
coupled. We do this for all m(m− 1)/2 pairs of residues. In order to compute ρ̂K(x,y|z),
we need
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• multiple observations for x, y and z, that is, different conformations of the same
protein; and

• an appropriate kernel function K(·, ·) for measuring the similarity of two different
conformations (expressed in terms of dihedral angles).

In the next three subsections, we explain in more detail how we addressed these specific
issues.

Generation of a Conformational Ensemble

As explained previously in Chapter 3, Section 3.2.1, inferring the couplings requires a
heterogeneous dataset. We applied the same method for generating a conformational
ensemble as used in Section 3.2.1.

Weighted Von-Mises Kernel Function

For xi,xj ∈ Rp, we used the following kernel function to perform KPCCA (see Sec-
tion 4.2.4),

K(xi,xj) = wiwj

p∏
t=1

exp [κt cos(xit − xjt)] , (4.8)

and likewise for yi,yj ∈ Rq. This is based on the multivariate von-Mises distribution [70]
and treating the dihedral angles as if they were independent.

An angular random variable x ∈ Rp is said to follow the multivariate von-Mises distri-
bution if it has density function,

f(x;µ,κ,Λ) =
1

Z(κ,Λ)
exp

[
κTc(x) +

sT(x)Λs(x)

2

]
,

where
ct(x) ≡ cos(xt − µt) and st(x) ≡ sin(xt − µt)

for t = 1, 2, ..., p, and Z(κ,Λ) is a normalizing constant. The parameter µ ∈ Rp describes
the location, i.e., the mean (or center), and the parameter κ ∈ Rp (κ > 0) describes the
scale, i.e., the spread (or concentration). The parameter, Λ = [λst] ∈ Rp×p is a matrix
whose diagonal elements are zero (Λss = 0) and whose off-diagonal elements Λst capture the
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correlation between xs and xt. Setting Λst = 0 ignores the correlation between xs and xt.
The multivariate von-Mises distribution frequently has been used as an appropriate tool
for modelling angular variables that describe residue conformations in proteins [69] [71].

We also introduced weights wi, wj in our kernel function [Eq. (4.8)]. These weights
were set to be inversely proportional to the energies of the two structures, i and j, in our
ensemble (Sections 4.2.5 and 3.2.1). This allows structures with lower energies — i.e., the
ones that are more stable in our ensemble — to contribute more information to our overall
procedure.

Choice of κt

The kernel function (4.8) contains p concentration parameters, κ1, ..., κp, one for each
dihedral angle. An advantage of the von Mises kernel is that these concentration parameters
can be set to reflect the intrinsic nature of side-chain dihedral angles. For example, the first
two dihedral angles are known to undergo more restricted motions, while the 3rd and 4th
have more freedom of movement. Hence, we assigned higher concentration parameters to
the first two angles (κ1 = κ2 = 8) to allow less freedom in motion, and lower concentration
parameters to the 3rd and 4th angles (κ3 = 4;κ4 = 2) to allow more freedom of movement.
The reason to select these values for the concentration parameters will be explained later
in this subsection.

The von-Mises kernel can be thought of as the Gaussian kernel (or radial basis kernel) for
angular data. To see this, notice that, using the Taylor approximation, cos(x) ≈ 1− x2/2,
we can write

exp [κt cos(xit − xjt)] ≈ exp

[
κt −

κt(xit − xjt)2

2

]
= (eκt) exp

[
−(xit − xjt)2

2/κt

]
. (4.9)

On the other hand, the corresponding Gaussian (or radial basis) kernel is given by

K(xit, xjt) = exp

[
−(xit − xjt)2

2σ2
t

]
.

Since eκt is a constant not depending on either input to the kernel function, we can see
that Eq. (4.9) is equivalent to a Gaussian (or radial basis) kernel with “standard deviation
unit”

σt =

√
1

κt
or σt =

√
1

κt
× 360◦

2π
. (4.10)
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Table 4.2: Conversion Between κt And σt [Eq. (4.10)]
Dihedral Angle σt (degrees)

(t) κt One Decimal Nearest 10-th
1st 8 20.3◦ 20◦

2nd 8 20.3◦ 20◦

3rd 4 28.6◦ 30◦

4th 2 40.5◦ 40◦

Therefore, our choices of κ1 = κ2 = 8, κ3 = 4 and κ4 = 2 roughly correspond to using
“standard deviation units” of 20◦, 30◦ and 40◦ in the corresponding Gaussian kernel (see
Table 4.2). A side-chain prediction is often deemed successful if the predicted dihedral angle
is within 40◦ of the true angle [55]. Thus, our choice of κ4 agreed with this convention, and
we used larger values for κ3, κ2, κ1 to permit less movement for the lower dihedral angles.

4.3 Results and Discussion

We tested our method on a number of well-studied Ras and Ras-like proteins (see Table 4.3).
They have been of special interest due to their diverse range of functions. The inactive
and active structures of many family members have been crystallized and are known.

We performed both quantitative and qualitative comparisons of our results with those
obtained by the Contact Rearrangement Network (CRN) [17] and by the GLASSO [97].
For an allosteric protein, the CRN method generates networks of allosteric pathways by
calculating significant differences in the residue-residue contact network derived from the
inactive structure and that derived from the active structure. Therefore, it provides a
direct and model-free analysis of both structures [17]. The GLASSO is a relatively new
statistical method, which we have used in an earlier study (see Chapter 3) to extract
direct couplings between residues, but its application required that we work with discrete
conformation variables rather than angular variables that describe the conformations more
directly (more details in Section 4.3.2). We implemented the KPCCA in MATLAB using
the Kernel Methods Toolbox [106].

All three methods’ outputs consisted of a list of coupled residues, each ranked by a score
indicating their coupling strength. The quantitative comparison was performed using the
receiver-operating characteristic (ROC) curve. Treating the list of CRN results as “ground
truths”, the Area Under the ROC Curve (AUC) is a numeric summary of how well the
ranked list produced by the KPCCA or by the GLASSO matched the CRN findings (see
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Table 4.3). These AUC values show quite conclusively that KPCCA’s detection of allosteric
couplings is significantly better than random, and that there is a good deal of agreement
between our results and those from the CRN. This is a significant finding considering that
the CRN relies on structural information of both the inactive and the active structure of
an allosteric protein, while we have analysed the dynamics of the side chains in the inactive
structure alone.

Furthermore, we evaluated our results qualitatively (see Section 4.3.1 below) by visual-
izing them as interaction graphs, and comparing them to the interaction graphs generated
by the CRNs and by the GLASSO. The inferred couplings for each test case were visual-
ized as a 3D network graph superimposed onto the 3D structure of the protein itself. All
3D molecular visualizations and graphs were produced using the StructBio package [12]
for the software, Chimera [86]. For each coupling, nodes were placed at the α-carbon for
each of the involved residues and edges were drawn between them. We used two different
cut-offs to threshold the top-ranked couplings when generating the interaction graphs, and
studied a small subset of these couplings in more detail. The first threshold was equal to
the number of couplings identified by the CRN [17] for each individual test case, so that
we could make a fair comparison. The second threshold was 100 for all test cases, and used
for generating 2D graphs (Figures 4.3, 4.4 and 4.5), so that connections between residues
in important regions could be shown more clearly. It should be noted that both types of
cut-offs allowed only a small subset of all the couplings (≈ 0.6%-1%) to be shown. From
these graphs, we noticed that the top-ranked couplings often involved allosterically crucial
residues (more details in Section 4.3.1). Moreover, these allosterically important residues
often appeared as high-degree nodes in the graphs; sometimes, they could be seen to act as
hubs connecting the allosteric region to other functionally important parts of the protein,
such as the binding site.

Both our quantitative and qualitative results indicated that the KPCCA outperformed
the GLASSO in that it was able to capture couplings that correspond to more significant
connections in the crucial regions of the test cases. This confirms that, to infer direct
residue-residue couplings from the same conformational data, the KPCCA – which facil-
itates data modelling by continuous, multivariate angular variables — is more accurate
than the GLASSO. In some cases, such as Rheb (Table 4.3), although we noticed a smaller
AUC value for the KPCCA (indicating that the GLASSO had slightly better agreement
with the CRN), the interaction graphs still showed that the KPCCA identified the crucial
residues more effectively (see, e.g., Figures 4.6-4.7 and more discussions in Section 4.3.2).
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Table 4.3: Allosteric Proteins from Three Sub-families of the Small G Protein Super-family
with PDB IDs of Active and Inactive Structures. Active structure: bound to GTP. Inactive
structure: bound to GDP.

Sub PDB ID AUC against CRN
Family Protein Inactive Active KPCCA GLASSO
Ras H-Ras 4Q21 6Q21 0.796 0.776

Rap2A 1KAO 2RAP 0.693 0.677
Rheb 1XTQ 1XTS 0.699 0.711

Rho RhoA 1FTN 1A2B 0.750 0.719
Rac1 1HH4(A) 1MH1 0.672 0.594
Cdc42 1AN0 1NF3 0.681 0.675

Rab Sec4 1G16 1G17 0.676 0.683
Ypt7p 1KY3 1KY2 0.717 0.666
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4.3.1 Small G Proteins

The members of this super-family are structurally categorized into five sub-families: Ras
(Section 4.3.1), Rho (Section 4.3.1), Rab (Section 4.3.1), Sar1/Arf and Ran. Both NMR
and crystallographic analyses have shown that members of different sub-families act as
molecular switches that cycle between on (active) and off (inactive) states [87], and that
they share a common topology in the GDP/GTP binding domain [103]. In this section,
we highlight our findings for a few representative and well-studied members of these sub-
families.

Ras Sub-Family

Members from the Ras subfamily are the primary members of the super-family; they
play a critical role in human oncogenesis [113]. When activated, they regulate cell pro-
liferation and survival through gene expression [113] [103]. We experimented with three
members of this sub-family: H-Ras, Rap2A, and Rheb (see Table 4.3). We used the soft-
ware, Blastp (protein-protein BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi), to
perform pairwise sequence alignment between the test cases. The sequences of Rap2A
and Rheb respectively shared 49% and 36% amino-acid identity with H-Ras. The regions
that undergo major conformational changes in H-Ras have been identified [78] as Switch
I (residues 30-38) and Switch II (residues 60-73); see Figure 4.1. Switch II is known to
be directly involved in switching the protein from inactive to active status [52]. Residues
residing in the binding site are residues 28-35, 12-19, 145-147, and 116-120. Using the
Rosetta software for structural prediction [89] [52] obtained strong correlations in Switch
II and the hydrophobic core, which is conserved in the Ras family, though they did not
report connectivity between the two Switches. The CRN for H-Ras generated using both
active and inactive structures contained 75 couplings [Figure 4.2(a)]. The interaction graph
based on the top 75 couplings inferred by the KPCCA is shown in Figure 4.2(b); it clearly
shows that strong couplings connect the two Switches to each other and to the binding
site. In addition, the residues in these two regions are among the highest-degree nodes
in the interaction graph — e.g., the node with maximum degree of 21 (see Table 4.4) in
the 2D interaction graph [Figure 4.3(a), based on the top 100 couplings] is associated with
residue 34 in the Switch I region.
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(a) CRN, H-Ras (b) KPCCA, H-Ras

(c) CRN, Rac1 (d) KPCCA, Rac1

(e) CRN, Sec4 (f) KPCCA, Sec4

Figure 4.2: 3D interaction graphs of H-Ras (top), Rac1 (middle), and Sec4 (bottom),
showing the top 75, 63, and 112 couplings, respectively. The couplings are mostly seen in
the Switch I and Switch II regions (blue) and the nearby β-sheets.
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Rho Sub-Family

The best-studied members of this sub-family are RhoA, Rac1 [38], and Cdc42 (Table 4.3).
Sequence alignment results from Blastp showed that RhoA, Rac1 and Cdc42 shared 30%,
29% and 32% amino-acid identity with H-Ras, respectively, whereas the amino-acid iden-
tity is higher within the sub-family, e.g., 58% between RhoA and Rac1, and 69% between
Rac1 and Cdc42. Like the Ras family, the Rho proteins are involved as regulators in cell
cycle progression (cell polarity, movement, shape, and so on) and gene expression [113].
The three aforementioned members are known to be involved in very diverse cellular pro-
cesses [113] [103]. The CRN for Rac1 consisted of 63 couplings [Figure 4.2(c)]. The edges
were mostly concentrated in the classic Switch regions of this super-family. Figure 4.2(d)
shows a 3D interaction graph based on the top 63 couplings inferred from the KPCCA;
this network included residues 29, 32, and 34 from Switch I as well as residues 69 and 73
from Switch II. The set of top-ranked couplings also included residues in the C-terminus
(residues 179, 180 and 182) and those from a loop segment (residues 106-110). These re-
gions were also identified by the CRN. Figure 4.4(a) shows a 2D interaction graph formed
by the top 100 couplings from the KPCCA; we can see that it is a highly connected and
concentrated network consisting of a single connected component with only 15 residues
(see also Table 4.4).

Rab Sub-Family

The Rab proteins constitute the largest sub-family in the small G protein super-family [35].
They are involved in the regulation of intracellular vesicular trafficking, vesicle formation,
budding and fusion [113] [99] [75]. For our experiments, we selected the inactive structures
of a few well-known members, such as Rab7, Sec4, Ypt7p, Rab11b, Rab11a, and Rab6b
(PDB IDs: 1VG1, 1G16, 1KY3, 2F9L, 4LWZ, and 2FE4). The PDB structures for many
members of this family are incomplete in the critical and functional regions, i.e., the two
Switches. To perform our experiments, we used the software, MODELLER (http://
toolkit.tuebingen.mpg.de/modeller), to complete their structures [90]. By comparing
the active and inactive structures, we noticed that, except for Sec4 and Ypt7p, the others
underwent a secondary structural change (from loop to helix, or vice versa) in the Switch
II region during the transition from inactive to active form. We excluded them from the
current study, which focuses on proteins with minor backbone motions [105]. The common
amino acids shared between H-Ras and (Sec4, Ypt7p) are about (35%, 32%), respectively.
The CRN for Sec4 consisted of 112 couplings [Figure 4.2(e)]. The interaction graph based
on top-ranked couplings by the KPCCA [Figures 4.2(e) and 4.5(a)] showed connections
between the two Switches through the edges, (47,87) and (83,56).
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Ran and Arf/Sar1 Sub-Family

The Ran proteins [93] [84] [100] are best known for their involvement in nucleocytoplasmic
transport of macromolecules (e.g., RNAs, proteins), whereas members of the Arf family
function as regulators of vesicular transport [113] [103], like the Rab proteins. Comparing
the active and inactive structures of the best studied members from these families, we
noticed that they underwent drastic conformational changes during the activation proce-
dure. Calculated RMSDs between the GDP- and GTP-bound pairs for Ran (PDB IDs:
1BYU-1RRP, 1BYU-1IBR, 3GJ0-1WA5), Arf1 (PDB ID: 1HUR-1O3Y) and Arf6 (PDB
ID: 1E0S-1HFV) were in the range of approximately 4-14Å. Hence, these proteins do not
belong to the category characterized by “minor backbone motions” [105] and we excluded
them from the current study.

4.3.2 KPCCA and GLASSO

In the Chapter 3, application of the GLASSO to infer direct couplings between side chains
was explained [96]. The GLASSO is incapable of handling multivariate angular variables.
The GLASSO-based method was also applied to the same set of proteins and a thorough
comparison between the overall features and final results of the two methods is provided.
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(a) KPCCA, H-Ras (b) Glasso, H-Ras

Figure 4.3: 2D interaction graphs of H-Ras, showing the top 100 couplings. For nodes
shaded in grey, darkness is proportional to node degree. For edges, thickness is proportional
to coupling strength. Residues in Switch I are coloured yellow and those in Switch II,
blue. The binding site residues (which do not overlap with Switch I) are highlighted in
pink and the phosphate-binding loop, orange. The KPCCA produced more connected
networks whereas, for the GLASSO, the inferred couplings are more “spread out” within
the molecule.
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(a) KPCCA, Rac1 (b) Glasso, Rac1

Figure 4.4: 2D interaction graphs of Rac1, all showing the top 100 couplings. For nodes
shaded in grey, darkness is proportional to node degree. For edges, thickness is proportional
to coupling strength. Residues in Switch I are coloured yellow and those in Switch II,
blue. The binding site residues (which do not overlap with Switch I) are highlighted in
pink and the phosphate-binding loop, orange. The KPCCA produced more connected
networks whereas, for the GLASSO, the inferred couplings are more “spread out” within
the molecule.
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(a) KPCCA, Sec4 (b) Glasso, Sec4

Figure 4.5: 2D interaction graphs of Sec4, all showing the top 100 couplings. For nodes
shaded in grey, darkness is proportional to node degree. For edges, thickness is proportional
to coupling strength. Residues in Switch I are coloured yellow and those in Switch II,
blue. The binding site residues (which do not overlap with Switch I) are highlighted in
pink and the phosphate-binding loop, orange. The KPCCA produced more connected
networks whereas, for the GLASSO, the inferred couplings are more “spread out” within
the molecule.
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Table 4.4: Statistical Features of Interaction Graphs (based on graphs formed by the top
100 inferred couplings)

No. of
No. of Connected Max. Node Avg. Node

Protein Method Nodes Components Degree Degree
H-Ras GLASSO 91 12 5 1.176

KPCCA 70 7 21 2.829
Rac1 GLASSO 97 12 7 2.062

KPCCA 15 1 14 13.333
Sec4 GLASSO 100 14 5 2.000

KPCCA 64 9 17 3.125

Comparison

Based on our observations, the KPCCA has the following advantages over the GLASSO:

(i) The KPCCA models side-chain conformations more appropriately with continuous
rather than discrete variables. As we stated above, one main disadvantage of the
GLASSO algorithm was the need to encode side-chain conformation information us-
ing a discrete rotamer library. By contrast, the KPCCA algorithm facilitates a more
realistic modelling approach, consistent with the intrinsic nature of conformational
data, by allowing us to use continuous, multidimensional angular variables to char-
acterize side-chain conformations.

(ii) The KPCCA identifies allosteric regions more effectively. Quantitatively, Table 4.3
showed that the KPCCA results agreed well with those of the CRN, and that, in this
respect, it either compared favourably to the GLASSO or obtained similar results.
The superiority of the KPCCA becomes more evident from the qualitative compar-
isons based on interaction graphs. In particular, the strongest couplings inferred by
the KPCCA are concentrated in the allosteric regions, whereas couplings inferred
by the GLASSO are more “spread out” within the entire molecule. The GLASSO
often identified couplings between residues that may undergo concerted motions in
the inactive structure but do not necessarily reside in allosteric regions. Some of
these residues are located in semi-rigid secondary structures such as helices; they
may reside in or close to the binding site but do not necessarily participate directly
in allosteric events. This can be seen more clearly in Figures 4.3, 4.4, and 4.5 which
contain 2D interaction graphs formed by the top 100 couplings identified by each
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method for a few representative test cases. For Rheb and Sec4, although it is the
GLASSO that appeared to be in better agreement with the CRN (see Table 4.3, the
AUC values), their respective interaction graphs lead to the same qualitative conclu-
sion as that in other cases. Even for these two cases, the KPCCA can be seen to
have identified more dependencies specific to coupled motions during allosteric events
(see Figure 4.6). In addition, couplings in important functional regions also tend to
emerge earlier (i.e., at higher positions) in the ranked list of the KPCCA than in
that of the GLASSO, another indication that the KPCCA is better at identifying
regions crucial to function. For example, Figure 4.7 contains 2D interaction graphs
for Rheb using a cut-off threshold < 100, and shows that the KPCCA has identified
more residues in the functionally crucial regions at the top of its ranked list than has
the GLASSO.

(iii) The KPCCA’s interaction graphs tend to show better connectivity among function-
ally important regions. Another important observation was that the GLASSO ob-
tained significantly sparser clusters of residues (see Figures 4.3, 4.4 and 4.5). The
increased connectivity among couplings inferred by the KPCCA was a notable advan-
tage; these connections can potentially explain the mechanism of information prop-
agation within the molecule. If interaction pathways between the allosteric and/or
binding sites can be discerned using an interaction graph based on K top-ranked
couplings from the GLASSO, using top-ranked couplings from the KPCCA it often
can be done with much fewer than K couplings. Table 4.4 contains various statistical
features showing the overall connectivity of the interaction graphs produced by the
GLASSO and by the KPCCA for H-Ras, Rac1 and Sec4.

(iv) The KPCCA is less prone to entropic bias. One drawback of using discrete rotamers
to encode conformations is that the results produced by the GLASSO were biased
towards larger amino acids that naturally have more diverse rotamer conformations.
This is referred to as the “entropic bias” in the literature, e.g., Jones et al. [48], Dun
et al. [24] who also suggested techniques for its correction. By contrast, the KPCCA
does not appear to suffer from such biases. Figure 4.8 shows the average number of
available rotamer conformations for residues involved in the top 1-5, 2-6, ..., up to
the top 300-305 paired couplings, as computed by the KPCCA and by the GLASSO
for H-Ras, Rac1 and Sec4. For the GLASSO, the rankings were based on scores after
bias correction. Although no correction was introduced for the KPCCA, its results
do not show significant bias.
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(a) KPCCA, Rheb (b) Glasso, Rheb

Figure 4.6: 2D interaction graphs for Rheb, using the top 100 couplings. Residues in Switch
I (II) are coloured yellow (blue). (a) KPCCA: The two Switch regions are directly connected
(residue 37 from Switch I with residues 73 and 77 from Switch II); moreover, Switch I is
indirectly connected to Switch II by residue 15 in the phosphate-binding loop [121]. (b)
GLASSO: No connection between the Switches is identified.
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(a) KPCCA, Rheb (b) Glasso, Rheb

Figure 4.7: 2D interaction graphs for Rheb, using the top 47 couplings (the same num-
ber as identified by the CRN). Residues in Switch I (33-41), Switch II (63-79) and the
phosphate-binding loop (p-loop) are coloured yellow, blue and orange, respectively. The
p-loop residues are connected to the Switches in the CRN. Crucial couplings emerge at
higher positions in the ranked list of the KPCCA than in that of the GLASSO.
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(a) H-Ras (b) Rac1

(c) Sec4

Figure 4.8: X-axis: Rank order of the inferred couplings (x = 1, 2, ..., 300). Y-axis: Aver-
age number of available rotamers for residues involved in couplings ranked at positions x,
x + 1, ..., x + 4. Red: GLASSO (with bias correction). Blue: KPCCA (without bias cor-
rection). The KPCCA does not show significant bias towards residues with more rotamer
alternatives; in fact, the average number of rotamers is lower for the KPCCA than for the
GLASSO in general.
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4.4 Chapter Summary

We have proposed a novel extension of CCA, namely KPCCA, to quantify direct cor-
relations between multidimensional angular data. Existing methods for inferring direct
correlations do not handle data of this type, which are common in structural bioinformat-
ics, where side-chain conformations of proteins are characterized by a number of dihedral
angles. Using information about side-chain fluctuations in the inactive structure alone, we
are able to identify common, allosterically crucial regions (e.g., Switch I and Switch II)
in the Ras, Rho, and Rab sub-families of small G proteins. Residues in these allosteric
regions appear in the strongest couplings inferred by our method and in the densest regions
of the corresponding interaction graph. Furthermore, allosteric sites and binding sites are
connected in these graphs, which may explain the mechanism with which allostery occurs
in these proteins.

Our analytic framework is modular. In principle, ensembles generated by other tech-
niques such as MC simulations and/or MD can be used as well. But currently they are
much less efficient. For instance, in one of our test cases (Rap2A; PDB ID: 1KAO, 167
residues), SCWRL took about 1 second to generate a structure whereas an MC method in
Rosetta, like that described by [51], took as much as 40 seconds. Hence, for an ensemble
of size [167 × (167 − 1)]/2 ≈ 14, 000, our current method took about 4 hours but an MC
method would have taken 160 hours, almost a full week, for a single protein!

In future studies, our proposed analytic framework can be extended to include backbone
dihedral angles as well. This will allow us to study allosteric behaviours of all protein
types, even those that may undergo drastic backbone motions. The method also can be
applied to other problems in bioinformatics, e.g., for revealing the “hot spot” residues in
protein-protein interactions by using only the fluctuation information of the “unbound”
protein [82].
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Chapter 5

Concluding Remarks and Future
Work

This chapter presents closing arguments for this dissertation. A summary of contributions,
conclusive remarks, and potential directions for future research work are presented.

5.1 Highlights of the Thesis

This dissertation has addressed two recent crucial findings about side-chain conformations
in new computational frameworks. The findings are as follows:

First, the prevalence of alternative conformations for the side chains in the x-ray crys-
tallography data (more than previously thought). The phenomenon is referred to as con-
formational polymorphism. Despite this new discovery, the fact that still more than ≈ 95%
of the side chains in the PDB are uniquely modelled shows that the conformational poly-
morphism topic requires more attention from the scientific community in order to devise
computational methods capable of precisely characterizing this phenomenon for protein
residues. This dissertation’s proposal can be considered as the first step towards achieving
such goal.

Second, significant effects of concerted side-chain fluctuations in information trans-
mission within protein molecules. Backbone conformational changes were traditionally
considered to play the main role for allosteric behaviour of molecules. By contrast, sev-
eral studies have shown the necessity of re-assessing the side chains’ roles in allostery.
For this purpose, this dissertation proposes two different computational frameworks that
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avoid transitive dependencies between side-chain conformational variables and extract di-
rect couplings. One of the frameworks is novel and can contribute to other applications in
bioinformatics (See 5.3).

A common characteristic of the proposed algorithms in this dissertation is recognizing
the nature of side-chain conformational data and handling them as continuous angular
multivariate data, i.e., avoiding any discretization or encoding.

5.2 Concluding Remarks

We successfully applied the particle-based inferential technique, PBP, to design the first
computational method that obtains residue-specific conformational distributions and pre-
dicts conformational polymorphisms for the side chains. The final results were in good
agreement with results of direct analysis of the x-ray crystallography data. However, the
proposed framework is computationally expensive due to the use of MC sampling from the
conformations.

Furthermore, the successful application of the direct-coupling concept in the identifica-
tion of functional residues, for the first time in this dissertation, demonstrated that:

• In proteins with minor backbone changes, strongly coupled side chains alone can
reveal functional regions known to be involved in allosteric events.

• Disentangling direct from indirect couplings can help in finding meaningful interac-
tion paths between crucial regions of a protein, and the obtained paths or networks
can reveal how information is propagated from one site to another.

• Relying on information from inactive structure’s fluctuations alone, we can infer a
lot about the functional regions of the molecule. This finding implies that these
functional regions exist intrinsically in the inactive structure’s dynamics. This is a
significant observation since in many cases we do not have access to the active struc-
ture of an allosteric protein. Interestingly, similar conclusions were recently drawn
by studying dynamics of unbound structures involved in protein-protein interactions
(PPI) in order to identify the functional residues named as “hot-spots” [82].

Moreover, as explained in Chapters 3 and 4, the task of direct coupling inference requires
a conformational dataset or ensemble that can represent many fluctuated conformational
states of a protein’s side chains. The common methods to generate a conformational

88



ensemble are MD and MC simulations. However, the MD-based techniques cannot capture
slow re-arrangements of the side chains, and the MC techniques are computationally very
expensive. The dissertation proposes and successfully applies a new and efficient method
based on SCP applications.

The coupling results obtained for the G family proteins (Chapter 4) showed an overlap
(not a complete agreement) with the results of the popular SCA (see Section 3.3.3) that
relies on extracting couplings from sequence information of an entire protein family. The
method has been applied to the G family to identify allosteric sites/residues [101]. However,
a lack of agreement has been reported by other groups that rely on protein’s structural
information rather than the sequence information in their allostery-related studies. Possible
reasons for the lack of full agreement between the results of SCA and those reported in
this dissertation may be the following:

• Methodological differences: SCA is based on calculating sample covariance (or marginal
dependence) for the amino acid positions in a given sequence alignment, while the
proposed methods in this dissertation extract direct couplings or conditional depen-
dence between the side-chain pairs. As mentioned before, the covariance calculation
does not remove transitive relationships between variables (amino acid positions);
but direct coupling does.

• Different sources of data: SCA uses sequence data, while we rely on structural data.

• Amount of data: SCA uses sequences of a whole family; we only use information of
side chains’ fluctuations obtained from the inactive structure alone.

• Purpose of method: Initially, SCA was not developed for extracting allosteric sites;
but it was devised to discover groups of co-evolved residues in a protein family, while
the allosteric characteristics might not necessarily be conserved in all sub-families
of a super-family. “In principle, SCA is also limited to detecting correlated changes
in residues during evolution, presumably highlighting only correlation networks with
a selected function and can therefore say little about presence or absence of other
correlation”[23]. Furthermore, as pointed by Ranganathan and co-workers [101], the
co-evolution might occur due to different reasons, such as, maintaining the stability
of a protein fold and not solely due to its allosteric functionalities.

The proposed methods in the allostery-related study section of this dissertation obtain
more protein-specific results than what SCA obtains, because they are inferred from each
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individual protein’s structural fluctuations. However, the remarkable findings of SCA sug-
gest that an integration between the two types of methods (structure-based and sequence-
based) may be the key to reveal and characterize allosteric behaviour in proteins.

5.3 Future Research

In the very recent years, after initiation of this thesis, several interesting studies related
to the topics discussed in this dissertation have appeared. These studies may help in
improving the reported results in this dissertation or assist in extending the proposed
frameworks and algorithms to be applicable to other problems in the bioinformatics field.

In the following, we present several interesting directions for future work moving beyond
the current scope of the research efforts of this thesis:

• The proposed PBP-based framework for conformational polymorphism (Chapter 2)
is currently computationally expensive. Furthermore, unless we use a very large
number of particles, the stochastic re-sampling applied in the algorithm may result
in instabilities and degeneracies [83]. Recently, Pacheco et al. [83] have proposed an
improved version of Max-PBP, named diverse particle max-product (D-PMP). In the
new algorithm, the particle set is kept diverse and within a computationally tractable
size by avoiding the original stochastic re-sampling and employing an optimization
perspective to the particle generation and message approximation. As reported, the
new modifications lead to computation speed-ups and prevent common degeneracies.
Hence, applying the D-PMP to the polymorphism prediction may improve the current
results by revealing more diverse modes in the final residue-specific conformational
distributions.

• The novel framework (KPCCA) proposed in Chapter 4 was originally devised to
extract the directly coupled side chains; but the framework is extendable to infer
coupled fluctuations of both side chain and backbone. The extended framework can
obtain more comprehensive insights about allosteric behaviour in different categories
of proteins (not only those with minor conformational changes in the backbone).
However, this inference task will require the following: first, a comprehensive dataset
containing conformational fluctuations for both side chains and backbone. This may
be achieved by applying MC sampling techniques integrated to the protein design
frameworks such as Rosetta [51], second, a modification in the kernel function to
include the backbone dihedral angles, as well as the side chains’.
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• Recently, a study by Ozbek et al. [82] showed for the first time that relying on
the fluctuation information of “unbound” structure of proteins that are involved in
protein-protein interactions, can reveal functional residues or the “hot spots”. Since
PKCCA is also a framework to extract functional residues based on the confor-
mational fluctuations of the side chains, one future direction can be to investigate
application of this framework to the PPI problem.

• This dissertation has addressed the side-chain conformational polymorphism in Chap-
ter 2. However, calculating the residue-specific conformational distributions does not
completely characterize the polymorphism, and an important sub-problem still re-
mains unresolved. The field is still in need of efficient methods that can compute pair-
wise or joint conformational distributions between the conformationally polymorphic
side chains. This topic has roughly been touched upon in Chapter 3 (Section 3.3.2)
by calculating and discussing the coupling scores between alternate conformations of
a selected pair of coupled side chains; but computing joint distributions for a pair of
coupled side chains remains a challenging task that can be a direction for significant
future research.
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