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Abstract 

A need exists for rapid, low-cost, and accurate infectious viral quantification method in the 

bio-pharmaceutical field for the production of vaccines and virus-based therapeutics. Two of 

the most common and traditionally employed methods to quantify infectious viruses are 

plaque assays and cell culture infectious dose 50 (CCID50); both are relatively inexpensive, 

however they can be time consuming and demonstrate significant variability, between 

experiments and operators. More recently developed methods use fluorescence to quantify 

viral components (e.g. DNA, protein, mRNA, etc), which allows for earlier enumeration, but 

cost and complexity are the major tradeoffs with respect to these techniques. Presented in this 

thesis is a novel method to quantify infectious viruses that is aimed at resolving the 

limitations of the aforementioned techniques; namely, marrying the traditionally mutually 

exclusive parameters of rapidness, economics, and variability. The proposed method seeks to 

quantify the infectious virions through the use of post-infection physiological changes within 

the cell using flow cytometry.  

To validate this method, a complementary Vero cell line was infected with a replication-

deficient herpes simplex virus type 2 mutant and monitored over a 72 hour period for 

changes in intracellular complexity, also known as granularity, using flow cytometry. 

Granularity can be measured using flow cytometry by recording the amount of light that bent 

at approximately 90° from the incident beam. This bending of light is most commonly caused 
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by light being reflected or refracted against internal cellular structures such as proteins or 

vesicles.  

It was found that, between 16-20 hours post infection (hpi), the percentage of the infected 

cell population displaying an increased degree of granularity could be correlated with the 

viral titers obtained through a traditional plaque assay with R2 values greater than 0.9 using a 

semi-logarithmic scale. To further demonstrate that this as a universal method, the technique 

was applied to Japanese quail muscles fibroblast cells (QT-35) infected with a highly 

attenuated canarypox virus (ALVAC). A similar increase in granularity corresponding to 

infection was detected in the infected population, thereby giving credence to the utility of this 

viral enumeration technique across a potentially broad virus-host cell range. Given the high 

level of correlation between the proposed and traditional methods of viral quantification, the 

use of flow cytometry could deliver cost savings and increase the throughput for use in the 

bio-pharmaceutical industry.   
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Chapter 1 

Introduction 

In recent years, increasing global demand has driven bio-pharmaceutical companies 

to endeavor to produce larger quantities of vaccines and other virus-based therapeutics while 

decreasing costs and improving efficiency of production and purification. Also, they must 

continue to adhere to strict government regulations to ensure the safety and efficacy of their 

products1. Some vaccines consist of live attenuated viruses or recombinant viral vectors to 

stimulate a patient’s immune system to provide continuing immunity from a plethora of 

devastating diseases and infections, such as measles, mumps, rubella, smallpox, and hepatitis 

B and C2. The production and use of viruses is not limited to vaccines; viruses can be used as 

a delivery vehicle for therapeutics such as gene3 and cancer4,5 therapies and for production of 

therapeutics and other important biological molecules6. Currently, adeno-associated virus 

(AAV) has been approved for use in a gene therapy application (Glybera) by the European 

Medicines Agency (EMA) to treat lipoprotein lipase deficiency, and there are more than 

1800 clinical trials ongoing for various gene therapies using viral vectors3. Similarly, viral 

vectors are important tools for production of biological molecules, such as the baculovirus 

expression vector system (BEVS) which has applications in human and animal vaccines6. 

With the ever increasing human population, the ability to produce large quantities of vaccines 

and therapeutics is of utmost importance to ensure the health of future generations.  

In order to meet these needs, biopharmaceutical companies continue to search for 

improved methods to decrease cost and increase efficiency of production and purification. 
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Virus enumeration techniques are heavily relied upon to assess the efficiency of the 

production process, however they also often represent a significant bottleneck of production 

due to the time requirement to complete plaque assays or CCID50 assays. Unlike small 

molecule drugs, which are often well-defined, chemically synthesized compounds having 

uniform molecular structure, viruses can be large, dynamic, multi-component bio-molecules 

with variable conformations and compositions, making them difficult to quantify7. To 

facilitate the optimization of virus production processes, it is necessary to have rapid, 

sensitive, and accurate methods to quantify and monitor the amount of viruses produced and 

retained during each step of the production process8.  

Currently, diagnostic testing for viruses can be divided into 3 main categories: assays 

for detection of 1) viral antigen; 2) viral DNA or RNA, and 3) infectious virus titer9,10. Viral 

antigen detection assays, such as the enzyme-linked immunosorbent assay (ELISA), detect 

the average level of viral antigen in a population using a highly specific antibody. Although 

very sensitive and specific, ELISAs yield qualitative data; the results cannot be accurately 

extrapolated to determine infectious titer due to the possibility of free-floating antigens in the 

sample solution. Viral genome measurement uses polymerase chain reaction (PCR) to 

amplify viral DNA or RNA in a sample of cells or the virus itself which offers advantages of 

speed and sensitivity, however the quantification of viral DNA cannot be used to determine 

an accurate infectious titer due to non-constant levels of viral DNA produced by cells. 

Antigen and DNA/RNA detection assays are ideal for quantifying DNA-based and subunit 

(protein) therapeutics and vaccines, but both suffer from their inherent lack of ability to 
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measure infectious viruses. Infectious titer is, therefore, the only method to accurately 

quantify infectious viruses because it quantifies successful infection events caused by mature 

virions. As stated, viruses are complex bio-molecules composed of protein components that 

undergo intricate and concerted assembly pathways to form mature virions that infect, 

replicate, and produce mature progeny viruses to extend infection. As such, measuring the 

amount of viral DNA/RNA or protein content in a sample quantifies only a fraction of the 

components that make up a virus, and gives limited information pertaining to infectious titer. 

 Previously, the methods employed to determine the infectious titer of viral particles 

have consisted of either the plaque assay or cell culture infectious dose (CCID50) assay, 

which measures the number of plaques formed (i.e. cell lysis) or cytopathic effect of viral 

infection (i.e. abnormal cellular morphology), respectively. Both of these methods are 

labour-intensive, prone to operator bias and are time-consuming11. Furthermore, the 

methodology is crude, as the operator must manually count the number of infection “events” 

in multi-well plates, which offers significant opportunities for bias and error, leading to 

operator-to-operator variability.  

Flow cytometry, on the other hand, has been identified as an appropriate tool for 

effectively estimating viral titer as an alternative to traditional methods12–15. It can be used to 

measure light scattering and emission of light using lasers to excite reporter molecules, such 

as fluorescent proteins, to provide qualitative and quantitative information about individual 

cells in a sample. Moreover, flow cytometry allows for rapid and sensitive measurement of 
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large numbers of “events”, allowing robust and powerful analysis of data of thousands of 

cells in a single sample.  

Previous flow cytometric studies have used recombinant viruses that contain the 

green fluorescent protein (GFP) encoding gene16,17, complementary cell lines that produce 

GFP upon infection17,18, and immunostaining of viral glycoproteins to fluorescently label 

infected cells. These fluorescent cells can then be analyzed using flow cytometry to quantify 

the amount of the sample population that displays fluorescence which corresponds to 

infection14,15. Although these methods can be used to accurately estimate infectious viral 

titer, they involve additional staining steps or, in the case of viral-encoded GFP systems, are 

not favorable for use in vaccines. To circumvent the challenges associated with fluorescence 

detection, studies aimed at deducing and correlating the natural physiological effect of viral 

infection on host cells has shown great promise. Specifically, changes in granularity or 

intracellular complexity of cells has been observed during the course of infection with 

baculovirus and adenovirus19–21.  

1.1 Purpose of Work  

The main goal of this work is to develop a method to quantify infectious viral 

particles using a high throughput method that requires less time than the plaque assay and 

CCID50 while also reducing the potential for operator bias.  

 

 



 

 5 

1.1.1 Hypothesis 

We believe that a flow cytometric based method can be used to measure the granular 

changes in the cells post infection that can then be correlated to the initial infectious titer of 

the viral sample.  

1.1.2 Objectives 

The main goal of this work can be divided into smaller objectives: 

1) demonstrate physical changes occur in the cells after exposure to the virus using flow 

cytometry; 

2) identify the optimal parameters and time points to correlate granularity to initial viral 

infectious titer;  

3) determine the accuracy and precision of the correlation and compare to the predicted 

titer obtained from traditional methods 

4) determine if the assay can easily be transferred to another virus/cell system. 

 

Described herein, we present a technique for quantification of infectious virus titer 

using flow cytometry.  
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Chapter 2 

Literature Review 

2.1 Herpes Simplex Virus 

Herpes simplex virus type 2 (HSV-2) is among the most common sexually transmitted 

infections worldwide, and is the primary cause of genital and neonatal herpes, as well as 

genital ulcer disease22. An estimated 536 million people are infected worldwide. In the 

United States, an estimated 16% of adults test seropositive for HSV-2; however, only 10-

20% of individuals diagnosed as infected with HSV-2 exhibit associated symptoms such as 

genital herpes23. There is also a growing body of evidence suggesting a link between HSV-2 

and Human Immunodeficiency Virus Type 1 (HIV-1) infection, wherein the lytic-stage 

genital lesions caused by HSV-2 may serve as a portal for entry of HIV-124, with several 

epidemiological studies suggesting a 2- to 4- fold increase in risk of HIV-1 infection in HSV-

2 positive individuals25. Clearly, there exists a need for an effective vaccination strategy to 

protect uninfected individuals from exposure to HSV-2 and recently there have been efforts 

made to produce a vaccine against HSV-2 which include subunit, live attenuated, DNA and 

single replication cycle vaccines26–29. 
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2.1.1 Virus Structure 

HSV-2 is an 150 nm enveloped virus encapsulating a single 155kbp linear double-stranded 

DNA (dsDNA) genome encoding approximately 74 genes30,31. The virus consists of a 

nucleus surrounded by an icosapentahedral capsid, a tegument layer and an envelope 

obtained from the host cell’s membrane (Figure 1). The viral genome consists of two 

covalently linked segments, unique short (US) or unique long (UL) sequences that are flanked 

by long inverted repeats and encode for at least 84 different polypeptides32. Many of the 

polypeptides have multiple functions, for example, the infected cell protein 27 (ICP27, 

encoded by UL54) is an immediate early protein that is required for the transition from early 

to late viral gene expression, optimal DNA replication and inhibits pre-mRNA splicing33. 

The entire replication cycle of HSV takes approximately 22-24 hours. 
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Figure 1- Structure of herpes simplex virus 

The linear double-stranded DNA is encapsulated in an icosapentahedral capsid which is then 

surrounded by a layer of tegument proteins. The tegument layer is then surrounded by a lipid 

envelope which is taken from the host’s plasma membrane and contains viral glycoprotein spikes that 

stick out and play numerous important functions. 
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2.1.1.1 Capsid 

The 125 nm capsid of the herpes virus is made in the nucleus of the infected cell and consists 

of five conserved proteins: the major capsid protein, pUL19, which forms 162 capsomers 

(150 hexons and 12 pentons); two proteins, pUL18 and pUL38, which form the triplexes that 

interact and stabilize the capsomers; pUL35, which is found on top of all hexons; pUL6 

which forms a portal for DNA packaging and release from the capsid34–36. 

2.1.1.2 Tegument 

The capsid is coated with a tegument layer of at least 18 proteins that are obtained from the 

nucleus and cytoplasm of the cell. This layer is very complex and not completely understood 

at this point in time37. The tegument can be divided into inner and outer parts that are 

grouped together based on their association with the capsid7,35,38. Some of the most important 

tegument proteins include VP16, the virion host shutoff (VHS) protein, and VP 1-237. VP16, 

also known as the α-trans-inducing factor (α-TIF), is an essential late-expressed protein that, 

upon infection is released into the cytoplasm with the other tegument proteins and induces 

early gene expression through the interaction with cellular proteins. It is also required for 

viral assembly and, in a complex with VP22, blocks mRNA degradation by UL4137.  VHS 

degrades cellular mRNAs as the virus enters the cell, suppressing expression of cellular 

proteins (including antiviral response) and allows the virus to maximize its own protein 

production39. 
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VP 1-2 along with pUL37 binds directly to the surface of the capsid and possibly aids in the 

binding to microtubule motors during the transport of the capsid to the nucleus38. It has also 

been shown that the tegument proteins (pUL11, VP16, VHS, and VP22) aid in secondary 

envelopment by promoting the association of the capsid with the surface of the trans-Golgi 

network (TGN) that contains the viral glycoproteins38. 

2.1.1.3 Secondary Envelope 

The outer envelope of the virus is a lipid bilayer acquired from the host and contains up to 10 

glycoproteins (gB, gC, gD, gE, gG, gH, gI, gK, gL and gM) as well as at least two (UL20 and 

US9) nonglycosylated intrinsic membrane proteins37. Glycoproteins J and N have not been 

found on the secondary envelope of the virus although there are two viral gene that code for 

them (Us5 and UL49.5 respectively) 37. 

2.1.2 Infection Cycle 

2.1.2.1 Viral Entry 

In humans, genital mucosal epithelial cells are the target for primary infection and replication 

of HSV-240. The virus attaches itself onto the cell by using three different types of cell-

surface receptors (HVEM, nectin-1 and nectin-2) and then fuses its envelope to the cell’s 

plasma membrane32,41,42. The initial binding is accomplished by glycoproteins C and B (gC 

and gB) which bind with heparan sulfate proteoglycans (HSPGs) that are on the cell 

surface42,43. It has been found that if gC and gB are deleted from the virus, binding to the cell 
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is greatly reduced and infectivity is eliminated. However, if only gC is absent, infectivity is 

greatly reduced, but not completely abolished, due to the reduced binding efficiency44,45. 

Although virus binding can happen anywhere on the surface of the cell, it has been recorded 

that the virus can attach onto F-actin rich membrane protrusions called filopodia via the gB-

heparan sulfate interaction and connects the viruses to the retrograde actin flow which 

shuttles the virus to the cellular membrane (Figure 2)46,47. This process is called ‘viral 

surfing’ and the filopodia may provide an easy route for the virus to reach the cell body43. 

After the virion has been bound to the cell’s surface it still must penetrate the cell, which it 

does by the fusion of the viral envelope to the plasma membrane (Figure 2)43,48. The virus 

can also enter the cell via endocytosis, which is when the cell takes up the virus into a 

vesicle. The virus can then escape the endosome by fusing with the endosome membrane 

after acidification41,48. 

There are four glycoproteins that are used to penetrate to the cell’s surface: gB, gD, and the 

gH/gL heterodimer43,49.  After the initial attachment, gD is required to bind with an entry 

receptor which causes a conformational change in gD which then triggers conformational 

changes in gH/gL and gB that lead to the fusion of the viral envelope to the cell membrane42. 

Once the membranes of the host cell and virus have fused, there is a release of the tegument 

proteins along with the capsid into the cytoplasm. One of the major roles of the inner 

tegument proteins is to recruit and bind to microtubule motors to transport the capsid to a 

nuclear pore in order to release HSV’s DNA into the nucleus37. When the capsid has reached 

a nuclear pore VP1-2 and nucleoporins Nu358 and Nup214 create a complex such that the 
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portal on the capsid (pUL6) sits on top of the nuclear pore and the DNA is subsequently 

released into the nucleus where gene expression and viral replication can begin 49. 
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Figure 2- Herpes simplex virus entry into the cell 

The virus can attach onto the cell’s filopodia which are arm-like extensions of the cell which contain 

F-actin rich regions that the virus can initially bind onto and then ‘surf’ towards the main body of the 

cell where the virus will fuse membranes with the cell’s plasma membrane through interactions 

between gB, gD, gH/gL and HSPGs on the cell’s surface. The alternate mechanism of infection is the 

virus being engulfed by the cell and transported into the cell through an endosome where then virus 

then fuses membranes with the endosome41. Both methods of entry result in the tegument proteins 

being released into the cytoplasm and the capsid being transported to the nucleus where the viral 

DNA is discharged. 
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2.1.2.2 Viral Gene Expression 

After the viral DNA has entered the nucleus of the cell it circularizes and the virus begins 

harnessing the cellular machinery (specifically host RNA polymerase II) to begin translating 

viral DNA at localized replication sites37. HSV has three main phases of gene expressions, 

immediate early (α), early (β), and late phase (γ) which regulate each other in a cascade 

fashion37. The α genes are the first to be transcribed with the aid of the tegument protein 

VP16 which is a γ protein. The expression of α genes is autoregulated by the accumulation of 

α proteins such as the infected cell protein 4 (ICP4) and ICP0. These two products of the 

immediate early phase also serve to up-regulate the expression of β and γ1 (leaky-late) genes. 

β proteins are enzymes and DNA-binding proteins that are involved in viral DNA replication 

which then lead to the activation of γ genes37. The γ genes code for the glycoproteins and are 

involved with the assembly of the final virus progeny. 

2.1.2.3 Replication 

The transcription of the viral DNA, replication of DNA and capsid assembly all occur inside 

localized replication sites within the nucleus of the cell. The first step of HSV-2 replication is 

the duplication of its DNA, which is believed to be conducted through a two-stage process 

where it is initiated by binding to UL9 and then the formation of a replication complex37. The 

viral proteins that are involved include a viral DNA polymerase catalytic subunit and its 

processivity factors (UL30, UL42), the origin binding protein (UL9), a single stranded DNA 

binding protein (UL29), and the helicase-primase complex (UL5, UL8, UL52)37. It is also 
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presumed that host cell factors are also involved in the replication, which could include such 

proteins as DNA polymerase α-primase, DNA ligase, and topoisomerase II37. The DNA 

replication process begins as UL9 and UL29 (also known as infected cell protein 8 (ICP8)) 

bind to the viral DNA inside the nucleus of the cell at specific origin binding sites (OriL and 

OriS), separating the two strands of DNA50. Then the viral helicase-primase complex and 

polymerase bind at the replication forks and it is thought to begin replication through theta 

replication, but then switches to rolling circle replication through an unknown mechanism 

(Figure 3). The rolling circle mechanism produces long concatamers which are later cleaved 

before being packaged into the capsid37. More recent studies have hypothesized that HSV 

DNA replication is very complex and involves recombination-dependent replication like that 

of lambda phage50–52. 

One of the methods for creating a vaccine against HSV-2 is to create mutants that are unable 

to replicate their DNA. The HSV-2 mutant called ACAM529 has both the UL5 and UL29 

(ICP8) deleted from the virus’ genome. Therefore the virus cannot replicate its DNA in a 

non-complementary cell line. It is important to note that ICP8 does not solely act as a single 

stranded DNA binding proteins, but also stimulates several other viral DNA replication 

proteins such as UL9 and the helicase/primase complex37. ICP8 is also required for 

localization of viral and cellular proteins in nuclear compartments or ‘prereplicative sites’ 

within the nucleus as well as possibly playing a scaffold role for HSV DNA replication 

complexes37. 
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Figure 3- Model of herpes simplex virus DNA replication 

1. After being released into the nucleus, the viral DNA quickly circularizes and then 2. UL9 (the 

origin binding protein) binds to one of three specific viral origins of replications sites (one OriL or 

two OriS) and begins to unwind the DNA and recruits ICP8 (the single-stranded DNA binding 

protein) onto single stands of unwound DNA to prevent the DNA from reannealing50. 3a-c. The 

remaining 5 proteins are then recruited (UL5, UL8, UL52, UL30, UL42) to form a helicase/primase 

complex at the replication forks and theta replications is used to replicate the viral DNA. 4a. The 

replication changes from theta replication to a rolling circle mechanism through an unknown 

mechanism by removing UL9 and making a nick37. The helicase/primase complex will unwind the 

DNA and begin replicating the DNA from the 3’  5’ end while ICP8 binds to the single stranded 

DNA that is displaced by the leading strand. 4b. As the replication continues the displaced strand 

rolling circle replication will produce concatamers of viral DNA which will be cleaved before they 

enter the capsid. 
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2.1.2.4 Viral Assembly and Egress 

After the production of the capsid components (γ proteins), viral DNA and glycoproteins, the 

capsid components autocatalytically begin to form the capsid in the nucleus which involves 

the hexons, pentons, triplex proteins, pUL26 and an additional pUL26.5 scaffold protein35. 

The DNA is then packaged into the capsid by cleaving the concatamers before they enter the 

capsid. It has been shown that 3 different types of capsids form; capsids without DNA or 

scaffold proteins (type A), capsids that only have the scaffold proteins (type B), and capsids 

that have both the DNA and scaffold proteins (type C)37. 

There are three proposed mechanisms of how the mature capsid exits the nucleus; 1) an 

envelopment-deenvelopment model, 2) nuclear pore model and 3) a single envelopment 

model37,38,53,54 (Figure 4). The envelopment-deenvelopment pathway was first suggested by 

Stackpole in 1969 and hypothesizes that the capsid buds through the inner nuclear membrane 

into the perinuclear space and then fuses membranes with the outer nuclear membrane to 

release the capsid and tegument proteins into the cytoplasm55. The nuclear pore model has 

recently been proposed by Wild et al. in which capsids could exit the nucleus by passing 

through enlarged nuclear pores. Through electron microscopy, they demonstrated that during 

early infection the number of nuclear pores decreases and enlarged nuclear pores (140 nm in 

diameter) form in which capsids could exit through53,56. The single envelopment pathway is 

credited to Johnson and Spear in 1982 and theorizes that the capsid buds through both the 

inner and outer nuclear membrane into the cytoplasm57. 
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Although there is evidence to support and oppose each pathway, there is greater support for 

the envelopment-deenvelopment pathway in the scientific community due to a growing body 

of evidence in favour of it38,54.  The consequences of these different pathways are the number 

of membranes the capsid contains after it exits the nucleus as well as where the tegument 

layer is formed. For example, in the envelopment-deenvelopment pathway the tegument 

layer is initially added in the nucleus, then further modified in the cytoplasm, and then the 

glycoproteins and outer membrane is added by the Golgi apparatus before the virus exits the 

cell. In contrast, the single envelopment pathway states that the tegument layer is solely 

added in the nucleus, and the outer membranes and glycoproteins are obtained from the inner 

nuclear membrane and then the immature glycoproteins are further processed through 

interactions with the Golgi apparatus57,58.  

An interesting aspect of HSV is its ability to spread via cell-to-cell. Studies have shown that 

in polarized epithelial cells, the herpes virus has the ability to direct its budding to the 

basolateral surface of the cell and more specifically to cell-cell tight junctions37,38. 

Glycoproteins gE and gI are believed to accumulate in parts of the TGN that are destined for 

the basolateral surface of the cell and promote secondary envelopment at these sites59–61. One 

benefit of cell-to-cell spread is evasion of the innate and adaptive immune defenses such as 

antibodies and phagocytes that target viruses in extracellular space62. 
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Figure 4- Proposed mechanisms of viral egress 

There are three proposed modes of viral egress through the cell. 1. The envelopment-deenvelopment 

model states that the capsid along with some of the tegument proteins are enveloped by the inner 

nuclear membrane (INM) and then become deenveloped by the outer nuclear membrane (ONM). The 

capsid with the tegument proteins are then released into the cytoplasm, where more tegument proteins 

are added in the cytoplasm and the capsid becomes enveloped by cytoplasmic vesicles. The vesicles 

are then released from the tans-Golgi network (TGN). The virus then fuses membranes with the 

plasma membrane and is released outside of the cell. 2. The nuclear pore model proposes that the 

capsid exits the nucleus through enlarged pores to approximately 140 nm and then follows the same 

path as the envelopment-deenvelopment pathway53,56 3. The last mechanism proposes that the capsid 

will obtain two membranes by budding through both the INM and ONM and as it travels through the 

cytomplasm it joins with the Golgi, where the glycoproteins can be modified. The membrane 

obtained from the ONM will then fuse with the plasma membrane and release the virion outside the 

cell. 
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2.2 Canarypox Virus Vectors 

Canarypox virus (CNPV) is an avipoxvirus that has the ability to infect and strongly express 

heterologous antigens in mammalian cells, but it is unable to complete its replication cycle in 

primate cells which has made it a very attractive vaccine candidate (Table 1)63,64. In addition 

to being unable to complete its replication cycle in non-permissive cell types, prior exposure 

to other orthopoxviruses does not neutralize CNPV and therefore does not reduce the 

immunogenicity of the virus. Furthermore, CNPV does not elicit high levels of neutralizing 

antibodies, and consequently this viral vector can be used multiple times without reduced 

efficacy65. ALVAC, a plaque isolate of the canary vaccine Kanapox, has previously been 

developed for veterinary medicine to treat avian and equine influenza65. Although currently 

there is no commercially available vaccine using CNPV available for humans, vaccines 

against HIV, metastatic colorectal cancer and malaria are being developed and are in various 

phases of clinical trials (Table 1)63,65–70. 
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Table 1-ALVAC vector based vaccines 

Target 

Pathogen 

Target 

Species 

Insert Commercial 

Use 

Reference 

Rabies virus Cats Glycoprotein G Yes 71 

Canine 

distemper 

virus 

Dogs, 

ferrets 

Fusion protein, 

hemagglutinin 

Yes 72 

West-Nile 

virus 

Horses Pre-membrane and 

envelope proteins 

Yes 73,74 

Feline 

leukemia virus 

Cats Envelope glycoprotein Yes 75,76 

Equine 

influenza 

Horses Hemagglutinin Yes 77 

Hepatitis B Chimpanzee Surface antigen No 78 

HIV-1 Humans gp160 and gp120, LIPO-5 No 68,69 

Malaria Humans Circumsporozoite protein No 66 

Melanoma Humans gp100, Mage 1, Mage 3 No 4 

Hepatitis C Humans Structural and non-

structural proteins 

No 79 

Colorectal 

Cancer 

Humans Carcinoembryonic 

antigen, p53 

No 4,67 
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2.2.1 Virus Structure 

CNPV is a large enveloped brick-shaped virus that has dimensions of 270 x 350 nm and 

contains a single linear double-stranded DNA that contains 365 kbp, surrounded by a core 

membrane, lateral bodies (function unknown) and a surface membrane (Figure 5)80,81. The 

genome contains approximately 328 possible genes81. It has two distinct infectious forms: 

extracellular enveloped virus (EEV) and intracellular mature virus (IMV). These two forms 

differ by their lipid membranes and surface proteins that have yet to be fully characterized65. 

The IMV is the most abundant form of infectious virus produced from the host cell. There is 

limited research on CNVP which has resulted in very little information available about this 

particular virus. 
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Figure 5- Canarypoxvirion structure 

CNVP is a large virus (270 x 350 nm) with a relatively large genome (365 kbp). The linear double-

stranded DNA and viral proteins such as transcription factors and RNA polymerases are encapsulated 

in the core which has a dumbbell shape with two lateral bodies on either side65. The difference 

between IMV and EEV is the lipid membrane and the surface proteins. The IMV can be released 

through cell lysis and therefore only has the internal membrane, while the EEV gains a second double 

membrane from the TGN and buds through the host cell’s plasma membrane to exit the cell82. 
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2.2.2 Infection Cycle 

To begin infection, the virus binds to the cell membrane and then must enter the cell, which 

is accomplished through direct membrane fusion to the outside of the cell, or endocytosis64. 

Unlike HSV, CNPV replicates in the cytoplasm of the host cell. Upon entry, the viral core, 

which contains the viral RNA polymerase and transcription factors, begins to synthesize viral 

mRNA as early gene expression begins65. The core then degrades, and the viral DNA is free 

in the cytoplasm and the intermediate viral gene transcription occurs triggering genomic 

DNA replication65,82. Late gene expression produces all the structural protein, and the 

progeny virions begin to assemble in ‘virus factories’ which are inclusion bodies formed in 

the host cell65,82. It is believed that the inclusion bodies are the sites of active viral replication 

and assembly at these sites act to concentrate proteins, nucleic acids and other molecules 

essential for virus production65,83. From the viral factories, circular immature viral particles 

are produced and mature through a series of unknown maturation steps. The mature virions 

exit the cell through three different methods: cytolysis, virus-induced exocytosis or by 

budding65. Cytolysis occurs when the cell lyses after sustained cytopathic effect (CPE) and 

IMVs are released into the supernatant. Virus-induced exocytosis does not destroy the cell, 

but rather the IMVs are packaged into vesicles and are transported to the plasma membrane 

and are released into the extracellular space65. Viral budding is the only method that produces 

EEV, since the virus obtains a secondary double membrane from the TGN and then the outer 

side of the membrane can fuse with the plasma membrane, releasing the virion into the 

extracellular space65. One complete viral replication cycle takes approximately 3-4 days64.  
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2.3 Virus Enumeration Techniques 

There exists a multitude of methods for the quantification of viruses. During the 

amplification of viruses and viral vectors for commercial or large scale production, it is 

important to quantify virus yield after each step to assess the efficiency of the process. The 

quantification of the virus is often a slow process due to the complex nature of viral particles. 

Currently, rapid quantification methods for viruses include viral antigen detection assays, 

viral DNA assays, and flow cytometry based methods84. The oldest and most commonly used 

assays to determine the infectious titer are infectious virus titer assays such as the plaque 

assay and cell culture infectious dose (CCID50) assay, which are both labour-intensive and 

time-consuming11. Methods for the quantification of HSV and ALVAC are discussed along 

with a general overview of other commonly used viral quantification methods. 

2.3.1 Quantification Methods for HSV 

2.3.1.1 Plaque Assay 

The plaque assay is one of the oldest and most commonly used methods to titer virus and it 

relies on the virus’ ability to cause cell lysis which is visually observed as clear plaques in a 

confluent monolayer of cells. To perform this assay a healthy, a confluent layer of cells is 

infected with a serially diluted solution of virus. After the virus has attached to the cell, a 

viscous overlay media is added to ensure that the infection can only spread to adjacent cells. 

The viral stock must be sufficiently diluted such that it results in 50-200 plaques formed per 

well so the observer can accurately score the plate (Figure 6). If the concentration of virus is 
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too high, then the plaques will be indistinguishable from each other and a proper count 

cannot be recorded, as can be seen in Figure 6. 

Once the plate has been scored the initial viral titer can be estimated by the following 

equation: 

𝑉𝑖𝑟𝑎𝑙 𝑇𝑖𝑡𝑒𝑟 =
𝐷 × 𝑃

𝑉
 Equation 1 

where: 

D is the dilution of virus 

P is the average number of plaques counted 

V is the volume of diluted virus sample added to the monolayer of cells 

 

This is a powerful method because it directly quantifies the number of infectious viral units 

since one plaque forming unit (PFU) correlates to a single virion that has lysed and spread to 

adjacent cells in the culture, creating a single plaque. However, this assay is prone to operator 

bias due to the dependence on the operator’s ability to distinguish single plaques, which are 

not always perfectly circular or unattached. Another major problem with this assay is that in 

order for visible plaque to form, an incubation time of 2-9 days (depending on the life cycle 

of the virus) is required before accurate results can be obtained13. For continuous processing 

or optimization of the manufacturing process, these time delays can seriously hinder the 

progress of the process development. 
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Figure 6- Sample plaque assay 

A plaque assay was performed with a serially diluted virus sample. Each plaque represents one 

infectious virion, but if the sample is too concentrated there will be too many plaque to count, or 

individual plaques will be difficult to identify. Also some plaques are irregularly shaped or can be 

along the edge of the well which makes them difficult to identify. It is up to the technician to properly 

prepare the plate such that the cells do not get washed away, and there are approximately 50-200 

plaques per well. The technician also must be able to accurately distinguish and count individual 

plaques which will affect the calculated initial concentration of the virus stock. 

  

Over washed Too many to count Readable 
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2.3.1.2 Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) has been used to estimate 

the infectious viral titer of HSV based on the viral RNA content of cells that have been 

infected with serially diluted virus9,85,86. This method involves seeding a 96-well plate with 

cells and then infecting the monolayer of cells with serially diluted virus, along with assay 

standards and controls, after a certain length of time, the viral RNA is extracted from the 

cells. A reverse transcription reaction is done to convert the RNA into complementary DNA 

(cDNA) using a reverse transcriptase and then this cDNA is amplified using specific primers, 

deoxyribonucleotides and a thermo stable DNA polymerase along with a fluorophore that 

will fluoresce upon binding to  dsDNA (for example SYBR Green or TaqMan®). The cDNA 

will be amplified using a thermal cycler and the relative fluorescence will be monitored. 

Using a standard set of viral dilutions, the fluorescence obtained at a specific cycle number 

can be correlated to the viral concentration of the sample. 

Aziz et al. developed an infectious titer assay using RT-qPCR for ACAM529 by seeding a 

96-well plate and infecting with 50 μL of viral dilution and then collecting the RNA after 16 

hpi and performing one-step RT-qPCR. They found that there was a linear relationship 

between the logarithm of viral titer and cycle number using the gD2 gene for time points 12-

16 hpi. 

This method is preferred for sensitive and quick analysis and it also has the added benefit of 

detecting virus in clinical samples, since primers are designed to target select genes that can 
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be unique to a particular virus. The disadvantages of this method is that it has a higher cost 

and complexity than the plaque and CCID50 assays since it requires specialized equipment, 

costly reagents and numerous processing steps9. 

2.3.2 Quantification Method for Canrypoxvirus 

2.3.2.1 Endpoint Dilution Assay 

The 50% Cell Culture Infectious Dose (CCID50) is a method developed by Reed and Münch, 

that calculates the titer where 50% of a cell culture demonstrates CPE87. Monolayers of cells 

are cultured on 96-well plates and infected with serially diluted virus and incubated until 

CPE can be observed (5-8 days)13. The plates are then scored based on the number of wells 

per dilution that display CPE and the 50% infectious dose is calculated by the following 

equation 87,88: 

𝑀 = 10
[𝑥1−((

𝑦1−50
𝑦1−𝑦2

)×𝑙𝑜𝑔ℎ)]
 

Equation 2 

where: 

y1 is the viral dilution in which the percent of wells that display CPE is ≥50% 

y2 is the viral dilution in which the percent of wells that display CPE is ≤50% 

x1 is the log of the dilution of the viral dilution of y1 

h is the log of the dilution factor 

M is the CCID50 titer 

 

The CCID50 titer is the amount of virus required for 50% of the wells to become infected, 

given a certain volume, dilution and incubation time. To translate the CCID50 titer to plaque 



 

 30 

forming units (PFU), M is multiplied by 0.6988. This value is based on the Poisson 

distribution which calculates the probability of the number of viruses entering a cell, 

occurring in a fixed time interval and volume. Therefore, the probability (P) that a cell will 

become infected with n virions with a titer of M is 50% and can be calculated as follows: 

General Poisson Distribution: 

𝑃(𝑛) =
𝑀𝑛 × 𝑒−𝑀

𝑛!
 

CCID50 predicts that at a certain volume of viral sample and over a 

certain amount of time, 50% of cells will be uninfected (n=0, 

P(n)=0.5) 

0.5 = 𝑒−𝑀 

−ln(0.5) = 𝑀 

0.69 = 𝑀 

 

Equation 3 

Therefore titer calculated from the CCID50 overestimates the infectious titer by 31%, since 1 

CCID50 equates to approximately 0.69 plaque forming units. To correct for this, when one is 

calculating the MOI, the following equation is used: 

𝑀𝑂𝐼 =
0.69 × 𝑀 × 𝑉

𝐶
 Equation 4 

where: 

C is the number of cells in the monolayer 

M is the viral titer 

V is the volume of diluted virus sample added to the monolayer of cells 
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This method is especially useful for viruses that are not able to form easily visible plaques 

such at canarypox. Additionally this assay is easier to perform than the plaque assay, 

although many replicates (at least 9) must be performed in order to increase the accuracy of 

this assay. The use of reporter genes or immunostaining against viral proteins89 has been used 

to aid in the identification of CPE that is difficult to detect, which also increases the accuracy 

of this assay. 

This method of infectious virus quantification suffers from similar problems as the plaque 

assay (technician bias and long incubation times), and thus this can slow the process 

optimization of a vaccine candidate. 

 

2.3.3 Other Quantification Methods 

2.3.3.1 Transmission Electron Microscopy (TEM) 

A direct method of counting viral particles is by using TEM which allows scientist to 

visualize the viral particles and directly count the number of viruses. TEM passes a beam of 

electrons through a virus sample that has been negatively or positively stained in order to 

visualize the virus size or structure. The number of viral particles can then be counted by an 

operator and correlated to a viral titer. Although this method allows scientists to physically 

count the number of viral particles, the particles are not necessarily infectious, and this 
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method requires time consuming staining steps, along with expensive equipment and 

training8. 

2.3.3.2 Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISAs are a rapid method to determine levels of viral proteins and rely on the binding of 

viral antigens onto antibodies. In order to perform an ELISA, a specific antibody must bind 

to the target antigen and then a secondary detection antibody conjugated to horseradish 

peroxidase or alkaline phosphatase are used to label the primary antibody. A substrate will 

then be added which the enzyme cleaves in order to produce a colour change which can be 

measured using a spectrophotometer. The colour change can be compared to a calibration 

curve to quantify the amount of viral antigens in solution.  

While this method is specific and rapid, it only measures the quantity of viral protein, 

which cannot be accurately correlated to an infectious viral titer or even a complete viral 

particle. In the case of subunit vaccines which consists of highly immunogenic viral proteins, 

such as the vaccine that contains gD protein mixed with adjuvant90, an ELISA that uses 

antibodies against gD would be an effective method to measure protein concentrations. Many 

ELISAs are used to detect the presence of a virus in clinical samples due to their specificity 

and sensitivity.  
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2.3.3.3 Flow Cytometry 

Previous work has identified flow cytometry as an appropriate tool for quickly and 

effectively estimating viral titer12–15,21. A flow cytometer passes individual particles single 

file through a beam of light, records the level of fluorescence or light scattering of the 

particle and has the ability to quantify thousands of particles per second that allows scientist 

to obtain a large sample size of a population. The large volume of data can then be used to 

analyze the physical characteristics of the particles based on the light scattering or 

fluorescence levels of the particles.  

Most systems use fluorescence to detect infection either by using recombinant viruses that 

will cause a fluorescent protein to be produced by the cell or using immunofluorescent 

staining of viral glycoproteins on the surface of infected cells16,91,92. Systems have also been 

developed in which complementary cell lines harbor a gene for fluorescence that is activated 

once infected with a particular virus17,18. Although these methods can be used to accurately 

estimate infectious viral titer, they involve additional staining steps, which can have lengthy 

incubation times, as well as expensive reagents or require that stable mutants be created, a 

process that is labour intensive and time consuming. On the other hand, the granularity of 

cells, or intracellular complexity, has been previously reported to change during the course of 

infection for Sf-9 cells infected with baculovirus, HEK293 cells infected with a replication 

deficient adenovirus, and MNA cells infected with rabies19,20,93. This change in granularity 

can be measured using flow cytometry by observing the shift in side scatter (SSC) of an 

infected cell population19,21.  
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2.3.3.3.1 Tracking Infection Using Fluorescence 

Scientists have used fluorescent proteins in many different ways in attempts to measure and 

track the infection of cells. One of the methods is to stain viral proteins with a fluorescently 

tagged monoclonal antibody to confirm infection and then measuring the fluorescence of 

each individual cells by flow cytometry15. The population of fluorescent cells represents the 

number of successful infections and can be correlated to an infectious viral titer. This method 

can be prone to error if there is unspecific binding of antibodies, or if there is poor viral 

protein production in the cell.  

Another method to obtain fast fluorescent readings is to insert a gene for a fluorescent protein 

into the virus that is expressed when the virus infects a cell94,95. This is a useful method to 

quantify infectious viral particles, but it requires the engineering of the virus, and may not be 

acceptable if the virus is the desired end product. 

A further method for detection of infectious virus is to have a “reporter” cell line. Kung et al. 

have designed a Vero cell line for the detection of HSV by stably transfecting cells with a 

plasmid encoding the green fluorescent protein (GFP) under the control of the ICP10 

promoter17. ICP10 (UL39, called ICP6 in HSV-1) is a large subunit of the ribonucleotide 

reductase that is anchored in membranes and has protein kinase activity, but is nonessential 

and expressed in the early phase of gene expression (approximate 6-8 hpi)37,96. Kung et al. 

reported low levels of basal GFP expression in the Vero-ICP10-EGFP mutants, which would 
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make this an excellent reporter cell line to test clinical samples for HSV and as a rapid 

method to test the susceptibility of HSV antiviral drugs97. 

2.3.3.3.2 Tracking Infection Using Side Scatter 

It is known that there is an increase in granularity of infected cell populations, but few 

articles attempt to explain or hypothesize as to why there is such an increase19–21,93. In flow 

cytometry, side scatter refers to the light that is scattered at large angles (15° to 150°) to the 

incident beam98. This bending of the light is commonly caused by granular internal structures 

within the cell. In the case of viral infection, this could be due to the restructuring of the host 

cell’s cytoskeleton and organelles caused by the virus, or it could be caused by the additional 

viral components inside the cell. Increase in granularity has been noted in Sf-9 cells after 

infection with baculovirus, HEK293 cells infected with a replication deficient adenovirus 

containing the EGFP gene (Ad5GFP)19–21. A small increase in the population of MNA cells 

with high side scatter after 72 hpi with rabies virus has also been reported93. In Sf-9 cells 

infected with baculovirus, the side scatter could be correlated to recombinant protein 

production as well as monitoring the progression of baculovirus infection19,99,100.  In 

adenovirus, the increase in granularity was found to be useful for the amplification of viral 

vectors, as the accumulation of viral genomes and viral proteins was thought to give rise to 

the increase in granularity in the cells20. 
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2.3.4 Summary 

The enumeration of viruses is a crucial step in the optimization of virus-based products. 

There exists a plethora of virus quantification techniques that each possess their own unique 

set of advantages and disadvantages which may limit their use (Table 2). Older methods such 

as the plaque assay and CCID50 are traditional methods that are widely accepted, but these 

are simple methods that rely on the ability to visually detect signs of infection. Newer 

methods avoid the need of visual detection of CPE by employing dyes to stain viral 

components and sophisticated equipment to enumerate the number of cells which have been 

infected. The ideal quantification method would be rapid, sensitive and high throughput in 

order to aid in the optimization of viral production processes.    
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Table 2- Common viral quantification methods  

 Plaque Assay CCID
50

 RT-qPCR Infectivity Antigen Detection Flow Cytometry TEM 

Time 5-9 days 5-12 days 1 day 3-5 hours 1 day 1 day 

Sensitivity  High High Medium High Low High 

Measure Infectivity, 

absolute 

Infectivity, 

absolute 
Genome relative Antigen relative Infectivity, absolute  

Viral particles,  

absolute 

Need of 

Standard 
No No Yes Yes No 

No 

Specific 

Equipment 
-- -- 

RT-PCR (expensive 

machine and reagents) 
Spectrophotometer 

Flow cytometer (expensive 

machine, cheap reagents) 

Transmission electron 

microscope 

Reproducibility Low Low Excellent Good Excellent Low 

Cost $ $ $$$$ $$$ $$$ $$$$ 

Human Labour High High Medium Medium Low High 

Disadvantages 
Prone to operator 

biases 

Time consuming 

Requires virus 

forms plaques 

Time consuming 

Requires large 

number of 

replicates 

Replication cycle 

dependent 

Difficult for viruses 

with high mutation 

rate 

Cannot be extrapolated to an 

infectious viral titer 

Requires highly specific 

antibodies 

Difficult for viruses with high 

mutation rate (influenza) 

Limited sensitivity 

Replication cycle 

dependent  

Cannot be extrapolated to an 

infectious viral titer 

Time consuming staining  

Expensive equipment and 

staining reagents 

Advantages 
High sensitivity High sensitivity Rapid Rapid 

Rapid 

Very low variability 

High sensitivity 

Prerequisites 

None None 

Primer choice 

PCR Settings 

Calibration of 

infectious units 

Specific antibody must be 

available 

Time of single viral 

infection cycle needs to be 

determined 

Highly trained technician 
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Chapter 3 

General Materials and Methods 

3.1 Cell Lines and Virus 

The HSV-2 viral stock used in this study was ACAM529, a monoclonal mutant that is 

replication-deficient in non-complementary cells due to the absence of UL5 and UL29 genes 

101–103. ACAM529 was stored at -80ºC, thawed in a 37oC water bath immediately before use, 

and then diluted with ice-cold cell media prior to infection of HSV2013-121, HSV2012-121 

or Vero cells (ATCC, Manassas,VA). HSV2013-121 is a complementing Vero cell line 

designed specifically to contain the UL5 and UL29 genes of HSV-2 missing from ACAM529. 

HSV2012-121 is a complementing Vero cell line that contains the UL5 and UL29 genes of 

HSV-2 as well as a GFP gene that is stably transduced under the control of a HSV-2 ICP10 

promoter. All Vero-based cells were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) with F12 (Corning Cellgro, Manassas, VA) supplemented with 10% heat 

inactivated fetal bovine serum (FBS) (Gibco Life Technologies, Burlington, Canada), and 

4mM L-glutamine (Sigma-Aldrich, Oakville, Canada) at 37oC in 5% CO2 in T-flasks.  

The ALVAC.gfp virus is a highly attenuate canarypox virus that contains a GFP gene as well 

as two HIV-1 genes (Gag and Env)104. ALVAC.gfp was stored at -80ºC, thawed in a 37oC 

water bath immediately before use, and then diluted with ice-cold cell media prior to 
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infection of QT-35 cells (ECCAC, Salisbury, United Kingdom). QT-35 cells were 

maintained in Eagle’s Minimum Essential Media (Sigma-Aldrich, Oakville, Canada), 

supplemented with 10% FBS (Gibco Life Technologies, Burlington, Canada), 1% Non-

Essential Amino Acids (Sigma-Aldrich, Oakville, Canada), and 2mM L-glutamine (Sigma-

Aldrich, Oakville, Canada).  

All cultures were grown in surface tissue culture flasks (Thermo Scientific, Waltham, MA) 

with vented caps. The complementary GFP Vero (HSV2012-121), complementary non-GFP 

Vero (HSV2013-121) cells and ACAM529 and ALVAC.gfp were generously provided by 

Sanofi Pasteur. 

3.2 Plaque Assay 

Multiplicity of infection (MOI) for each experiment was determined by performing plaque 

assays with complementary non-GFP Vero cells. Cells were plated on 12-well tissue culture 

plates at a concentration of 3x105 cells per well and incubated overnight. The next day, the 

cells were washed once with Dulbecco’s Phosphate Buffered Saline (D-PBS) (Life 

Technologies, Burlington, Canada) and incubated with 200 µL of virus serially diluted in ice 

cold DMEM. The cells were incubated at 37°C for 1 hour, with gentle rocking every 15 

minutes. After 1 hour, 1 mL overlay media (DMEM, 200mM L-glutamine, 10% heat 

inactivated FBS, 10% Penicillin/Streptomycin, 7.5% methyl cellulose) was added and the 

cells were incubated for an additional 48 hours. After incubation, the overlay media was 

removed and the plates were stained with a 300 µL of 1% crystal violet solution for 30 
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minutes. The crystal violet solution was removed, and the plate was rinsed with DI water and 

the plates were scored based on the number of visible plaques. 

3.3 Infection of Cells Prior to Flow Cytometry 

Complementary non-GFP Vero or complementary GFP Vero cells were plated onto 12-, 48-

and 96-well plates at a concentration of 3.0x105 cells/mL and incubated overnight. The next 

day, the spent media was aspirated using a vacuum pump and the cells were washed once 

with D-PBS. Virus samples were serially diluted in ice cold DMEM media just prior to 

infection. The cells were subsequently incubated with 200 µL, 100 µL or 50 µL of diluted 

virus for 1 hour to allow for viral particle adhesion and infection of the cells. After the 

incubation period, 1 mL, 200 µL or no cell culture media was added and the cells were 

incubated for an additional 0, 12, 16, 20, 24, 36, 48 or 72 hours. 

3.4 Flow Cytometry 

Following infection and detachment, cells were either filtered using a 40nm nylon mesh or 

treated with Accumax (Innovative Cell Technologies, San Diego, CA) and then exposed to 

2% formaldehyde for 1 hour at 4ºC. Samples were then transferred into round bottom culture 

tubes (VWR, Mississauga, Canada) for flow cytometric measurements. A FACSCalibur flow 

cytometer (BD Biosciences, San Jose, CA) equipped with a 15 mW air-cooled argon-ion 

laser with an excitation frequency of 488nm, was used in this work. Full technical 

specifications of the flow cytometer can be found on the BD Biosciences website 

(http://www.bdbiosciences.com/documents/FACSCalibur_Flow Cytometry_TechSpec.pdf). 

http://www.bdbiosciences.com/documents/FACSCalibur_FlowCytometry_TechSpec.pdf
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Forward scatter (FSC) photomultiplier tube (PMT) voltage was 6.00 mV with the amplifier 

set to E01, side scatter (SSC) PMT voltage was set to 280 mV, the FL1 was set to 580 mV 

and, the FL3 was set to 800 mV. Samples were run for 10,000 events at the high flow setting 

(60 μL/min). 

3.4.1 Data Visualization and Analysis 

Data from the FACSCalibur flow cytometer was analyzed using FlowJo software (FlowJo, 

Ashland, OR). Initial gating was conducted on a SSC versus FSC scatter plot using cells that 

were not exposed to any virus to separate debris from whole cells. Three histograms were 

made based off the whole cell population; SSC, green fluorescence (FL1), and red 

fluorescence (FL3). For the SSC histogram, a gate was placed using a sample that was not 

exposed to virus such that the negative control contained 5% of highly granular cells. This 

gate was then applied to all samples. The count of events in the high granular region (the 

SSC-H+ region in Figure 7B) was used as an indicator of the cellular response to infection. 

To calculate the operating limits of the assay, the limit of detection (LOD) and limit of 

quantification (LOQ) were calculated based off the variance of the blank as described in 

references 32 and 33. Briefly, the LOD was calculated by adding 3*SDBlank to the average of 

the blank (n=47) and LOQ was calculated by adding 10*SDBlank to the average of the blank.  
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Chapter 4 

Tracking Infection using Flow Cytometry 

4.1 Chapter Objective 

Flow cytometry has previously been shown as a viable tool in identifying and quantifying 

infection in cells such as baculovirus and adenovirus19,20. A flow cytometer has the ability to 

collect large amounts of data in a short amount of time which allows scientists to observe 

changes in cell populations and distinguish different populations based on side scatter, 

forward scatter and fluorescence markers. Here, flow cytometry is used to observe changes in 

the complementary GFP Vero and complementary non-GFP Vero cell lines after infection 

with a replication deficient HSV-2 virus (ACAM529). Each cell line contains the UL5 and 

UL29 genes that have been deleted from ACAM529, the complementary GFP Vero cell line 

additionally has a GFP encoding gene that is under the control of the ICP10 promoter which 

should be activated after infection with HSV-2.  

The goal of these experiments was to identify the optimal parameter that could be correlated 

to the initial titer of virus by observing the levels of green fluorescence, side scattered light 

and forward scattered light using flow cytometry. 
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4.2 Materials and Methods 

4.2.1 Cell Line and Virus 

Complementary GFP Vero and  complementary non-GFP Vero cells were maintained as 

previously specified and then plated onto 48-well plates, incubated overnight and washed 

once with D-PBS prior to infection with ACAM529. The infectious titer of the virus was 

calculated by using a plaque assay described in Chapter 3. 

4.2.2 Flow Cytometry Sample Preparation 

After the specified infection time, the wells were aspirated to remove the media and the 

remaining cells were treated with 200 μL trypsin and strained through a 40 nm mesh to 

remove cell clumps. The recovered cells were treated with an equal volume of 4% 

formaldehyde before being transferred to 5 mL polystyrene culture tubes and stored at 4°C 

for 1 hour. The final volume for a 48-well plate was 400 μL. After the cells were fixed, the 

samples were run through the FACScalibur using the settings described in Chapter 3. 

4.2.3 ImageStreamX Mark II 

Images and additional flow cytometry data were collected using an ImageStreamX Mark II 

(Amnis, Seattle, WA) equipped with 488 nm, 642 nm and 785 nm lasers, and a CCD camera 

with 20x, 40x, and 60x magnification potential. All images were taken with 40x 

magnification. To collect images of cells, gating was set before data acquisition using the 

INSPIRE (Amnis, Seattle, WA) software. Approximately 300 images were collected per 
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sample.  The images and flow cytometer data were analyzed using the IDEAS software 

(Amnis, Seattle, WA) and final gating was completed as previously stated. Cell size was also 

calculated by the IDEAS software which measures the number of pixels in the mask applied 

to particle and then the number of pixels is converted to area in units of square microns. 

4.2.4 Immunostaining 

To confirm infection, 6.0x105 cells were grown on 6-well plates overnight, washed once with 

D-PBS and infected. After 20 hpi, the media was aspirated and the cells were treated with 

trypsin for 10 minutes. The infected cells and uninfected control were stained for 1 hour at 

room temperature with 100µL of rabbit polyclonal anti-HSV-1 and HSV-2 antibodies 

(Abcam, Cambridge, MA; used at a 3:1000 dilution) washed two times using D-PBS, and 

then incubated for 1 hour with 100 µL of goat anti-rabbit IgG H&L Alexa Fluor® 647 

(Abcam, Cambridge, MA; used at 3:1000 dilution). Samples were then transferred into round 

bottom culture tubes for flow cytometric measurements using the FACSCalibur flow 

cytometer and ImageStreamX. 

4.2.5 Data Analysis 

FlowJo was used to gate and analyze the flow cytometry data. Initially a gate was placed on 

the uninfected cells (blank) to identify the region with whole cells (Q2 region) based on the 

FSC and SSC scatterplot (Figure 7). Then the Q2 region of Figure 7A was used to make 

histograms of FL1 (green fluorescence) in Figure 7C, SSC (side scatter) in Figure 7B and 

FSC (Figure 7D). The gate for histograms was placed such that there was 2-%5% overlap 
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between the positive and negative regions (Figure 7). These gates were then applied to the 

infected samples for the respective time point.  

For the FL3 histogram (Figure 7E), which was used to measure the amount of bound Alexa 

Fluor® 647, a gate was placed using a sample that was not exposed to virus such that there 

was 3% false positives for infection. The count of events in the high fluorescent region (H-

FL3+) was used to confirm the number of infected cells based on immunofluorescent 

staining. The positive region from the FL3 histogram (FL3+) was then further gated using the 

gate from the SSC histogram. This was used to determine the level of granularity in infected 

cells. 

A count was then taken of the number of cells that were in the positive (+) or negative (-) 

region of the gate. The number of cells or percent of the population in the positive region 

were plotted over time to determine trends in response when cells were exposed to various 

levels of virus. 

1Wilcoxon rank sum was used to compare two distributions since they were non-normal. This 

test is a non-parametric hypothesis test used to compare two non-normal samples. 
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A. 

 

B. 

 

C. 

 
D. 

 

E.

 

 

Figure 7-Sample gating on raw plots of uninfected complementary GFP Vero cells at 0 

hpi  

A. A scatter plot of FSC vs SSC was used to identify whole cells from cellular debris. The Q2 region 

from plot A was then used to make the histograms. B. A histogram of the side scatter values (SSC) 

for the Q2 population of an uninfected sample with a gate placed such that 5.14% of the population is 

in the highly granular region. C. A histogram of FL1 which measures the amount of green 

fluorescence of the Q2 population. D. A histogram of forward scattered light (FSC) of the Q2 

population with a gate placed on the right end of the distribution that is set such that 5.07% of the 

population has a large amount of forward scattered light. E. A histogram of FL3 to demonstrate the 

red fluorescence of the Q2 population with the gate set so that 3.12% of the population has a high 

amount of red fluorescence. 
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A. 

 

B. 

 

C. 

 
D. 

 

E. 

 

 

Figure 8- Sample gating on raw plots of infected complementary GFP Vero cells at 20 

hpi 

A. The gate from the uninfected cell population is applied to the infected cell population to remove 

cell debris. The Q2 region from plot A was then used to make the histograms. B. A histogram of the 

side scatter values (SSC) for the Q2 population of an infected sample with a gate made from the 

uninfected cell population. C. A histogram of FL1 which measures the amount of green fluorescence 

of the Q2 population. D. A histogram of forward scattered light (FSC) of the Q2 population with a 

gate from the uninfected population. E. A histogram of FL3 to demonstrate the red fluorescence of 

the Q2 population of an infected cell population that has also been stained from HSV-2 late structural 

proteins. 

 

 



 

 48 

4.3 Results 

4.3.1 Tracking infection of the complementary GFP Vero cells using FSC, SSC and FL1 

Three different parameters were tracked over time (FSC, SSC and GFP) to observe the 

changes in the cells after they were exposed to various dilutions of virus. No increase in the 

forward scattered light could be observed as the infection progressed over 48 hours (Figure 

9A). There was no significant increase in the FSC levels in any of the populations, instead 

the amount of cells in the population with a high amount of forward scattered light decreased 

over time.  

Alternatively, the amount of cells with high levels of side scatter did increase with time, 

and increases could be seen as soon as 12 hpi (Figure 9B). After 12 hours, the percentage of 

cells with a high level of intracellular complexity increased with time. A significant 

difference can be seen between the various MOIs, although the lowest MOI of 0.005 was not 

significantly different from the uninfected sample even at 48 hpi. In fact, the number of cells 

with high granularity for the uninfected, MOI 0.005 and MOI 0.05 samples decreased over 

time.  

Figure 10 demonstrates an increase in the number of cells with high levels of GFP over a 

48 hour time period. After 8 hpi, there is no significant difference between the uninfected 

population (Blank) and the highest MOI of 5. It is not until 20 hpi that there is a modest 

increase in the number of cells that have a high level of GFP (8%). At the lower MOIs, there 

was no increase in GFP expression levels over 48 hours, which demonstrates a lack of 
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sensitivity of the ICP10 promoter in the cell line to demonstrate infection. Unlike the 

previous two parameters (FSC and SSC), there is no decrease in the basal level of 

fluorescence in any of the samples. 
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Figure 9- Forward scattered light and side scattered light levels in the complementary 

GFP Vero cells infected with ACAM529 tracked over 48 hours 

A. The percent of the sample population that demonstrates high levels of forward scattered light 

(FSC) for 5 different MOIs (0, 0.005, 0.05, 0.5, 5). B. The percent of the sample population that 

demonstrates high levels of side scattered light (SSC) for 5 different MOIs (0, 0.005, 0.05, 0.5, 5).  
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Figure 10-GFP levels in the complementary GFP Vero cells infected with ACAM529 

tracked over 48 hours 

The percent of the sample population that demonstrates high levels of green fluorescence for 

5 different MOIs (0, 0.005, 0.05, 0.5, 5).  
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4.3.2 Tracking infection of complementary non-GFP Vero cells using FSC and SSC 

To determine if the increase in side scatter was just an artifact of the complementary GFP 

Vero cell line, the complementary non-GFP Vero cells were infected with an MOI of 0.1 and 

the SSC and FSC values were measured over 36 hours. Figure 11A visually demonstrates the 

progression of the infection of the cells over 36 hours. During the first 12 hours of infection, 

little CPE can be observed. At 20 hpi, it can be seen that syncytial cells are forming along 

with cell rounding and detachment. At 36 hpi, the entire culture is infected, which shows that 

the virus has spread to all the surrounding cells. Similarly, these changes can be observed in 

the SSC histograms, where an increased CPE correlates to a shift of the cell population to 

greater SSC values (Figure 11B). There was no change in the median of forward scatter 

values of the cells, which would indicate that the relative opaqueness of the cells remains 

relatively constant throughout the infection. The gates for Figure 11B&C were placed such 

that 5% of the uninfected population would have a high SSC or high FSC score. The gate 

provides a threshold that distinguishes between cells that have a high enough level of 

granularity to be considered ‘infected’ and cells that are ‘uninfected’. 

In order to compare the complementary GFP Vero cells and complementary non-GFP Vero 

cells, a time course over 48 hours was conducted under the same conditions as with the 

complementary GFP Vero cells and similar results were seen (Figure 12). The number of 

cells with high granularity increased with increasing MOI and time, until 48 hpi where the 

cells infected with an MOI 5 or MOI 0.5 had approximately the same number of cells with 

high granularity. A significant difference can be seen between MOIs as early as 12 hpi in the 



 

 53 

SSC plot and at 20 hpi in the FSC plot. From 20 to 24 hpi, there was no change in the amount 

of cells that displayed high granularity for MOI 5, this plateau is also seen in the FSC graph 

(Figure 12B). At 36 hpi, both parameters (FSC and SSC) reach a maximum and a decline is 

seen at 48 hpi.   

In order to validate that these results are not an artifact of a single flow cytometer, another 

flow cytometer (ImageStreamX) was used to measure the granularity of infected cells at 20 

hpi. In addition to granularity, the cell size was also investigated. It was found that there was 

an increase in both the number of cells with a large cell size and increased granularity post-

infection (Figure 13).  The large cells appear to increase the range of distribution of the 

histogram and the ‘large cell’ events appeared more likely to be clumps of cells, instead of 

large single cells. To test if the granularity is linked to large cell clumps, the granularity of 

each event was divided by the cell area (High Average Granularity). The cells with high 

average granularity are marked in teal on the histograms for cell size and side scatter (Figure 

13B). It can be seen these cells all have high granularity, but their sizes vary greatly, 

indicating that granularity is not necessarily linked to cell size.  
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Figure 11- Complementary non-GFP Vero cells were infected at an MOI of 0.1 over 36 

hours 

A. The progress of the infection under 10x magnification. B. A histogram of SSC that shows the 

general increase in granularity overtime. C. The histogram of FSC for the cell population over time. 

A 
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Figure 12- FSC and SSC levels in complementary non-GFP Vero cells infected with 

ACAM529 tracked over 48 hours 

A. The percent of the sample population that demonstrates high levels of side scattered light (SSC) 

for 5 different MOIs (0, 5, 0.5, 0.05, 0.005). B. The percent of the sample population that 

demonstrates high levels of forward scattered light (FSC) for 5 different MOIs (0, 5, 0.5, 0.05, 0.005).  
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Figure 13- Cell size and granularity comparison for complementary non-GFP Vero cells 

Complementary non-GFP Vero cells were infected with a MOI of 5 or mock treated with media containing no 

virus. The samples were fixed after 20 hpi and the cells size (μm2), granularity and average granularity per cell 

area were calculated using the ImageStreamX. 
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4.3.3 Evidence indicating granularity caused by infection and replication 

To support the idea that the increase in granularity of cells is caused by successful infection 

and viral replication, cells were stained for viral proteins for an infected cell sample (MOI 

25) and an uninfected cell sample (Uninfected) (Figure 14). Infected cells were tagged using 

an antibody against HSV1/2 late structural proteins and then the antibody was stained using 

an Alexa Fluor® 647 to determine if the cells had been successfully infected. The cells that 

were successfully infected should have produced late structural viral proteins and therefore 

should have had high levels of red fluorescence due to the staining. The curves for the 

histogram were determined to be non-normal, therefore the medians were compared using 

the Wilcoxon rank sum test1 to determine significant differences between the populations. It 

was found that there was a significant (p<0.001) difference in the median granularities 

between the positively and negatively stained cells (FL3+ and FL3-). The infected cell 

population (FL3+) had a higher median for the SSC than the uninfected samples. There 

appears to be a small subset of cells in the infected sample that had a low amount of 

fluorescence, indicating that they were not infected or that they had not produced adequate 

amounts of late structural proteins at 20 hpi.  

As another means to assess if the increase in granularity is caused by successful replication 

of the ACAM529 virus, non-complementary Vero cells (cells do not contain HSV-2 UL29 or 

UL5 genes) were infected. After 20 hpi, it was found that there is no significant difference for 

MOIs below 0.5 and that the increase in granularity is much smaller than that seen using the 
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complementary non-GFP Vero cells which do include the UL29 and UL5 HSV-2 genes 

(Figure 15).  

To ensure that the increase in granularity is not caused by other factors in the virus sample, 

such as cytokines or other cell signaling molecules, the virus was removed from solution 

through 0.1 μm filtration and the cells were exposed to the virus-free solution. The virus-free 

solution maintained approximately the same level of highly granular cells as the Blank 

sample over 48 hours of incubation (Figure 16). Samples infected with virus-containing 

solution showed an increase in the number of cells with high granularity over time.   
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Infected (MOI 25) Uninfected (No Virus) 

  

 

Figure 14- Granularity of infected cells and immunostained cells  

Complementary non-GFP Vero cells were infected at an MOI of 25 or 0, incubated for 20 hpi and 

stained using an HSV-1/HSV-2 late structural protein primary antibody and Alexa secondary 

antibody to identify infected cells. The samples were then run through the flow cytometer to analyze 

their granularity. The infected cells were identified based on the amount of red fluorescence (FL3+) 

as compared to the fluorescence of the stained MOI 0 sample. The median of the infected (FL3+=222 

IU) and uninfected (FL3-=93.5 IU) samples are significantly different (α=0.001, p<0.001), as well as 

the median of the infected (FL3+=222 IU) and MOI of 0 (119 IU) (α=0.001, p<0.001), as calculated 

by the Wilcoxon rank sum test.  
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Figure 15- Granularity of Vero cells at 20 hpi 

Non complementary Vero cells (Vero) and complementary non-GFP Vero cells were infected with 5 

different concentrations of ACAM529 for 20 hpi in triplicate to assess the levels of granularity (SSC) 

of the cells. Error bars are one standard deviation and the experiment was conducted three times. 
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Figure 16 Complementary non-GFP Vero cells infected with supernatant of virus 

sample 

Complementary non-GFP Vero cells were infected with a sample of virus that had been passed 

through a 0.1 μm filter to remove any viral particles from the solution. The cells were then exposed to 

the filtered supernatant for 20 hours. As a comparison, cells were also infected with 3 different 

dilutions of an unfiltered virus sample.  
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4.4 Discussion 

ACAM529 infection induced a continuous increase in green fluorescence and cell granularity 

in the complementary GFP Vero cells as well as increased granularity in the complementary 

non-GFP Vero cells. To confirm if physiological changes could be used as a robust criterion 

for quantifying the ACAM529 virus, a combination of microscopy and flow cytometry were 

evaluated.  

4.4.1 Identifying indicators for infection 

The complementary GFP Vero cell line contains a GFP gene under the control of the ICP10 

promoter from HSV-2. The promoter has a maximum expression 6-8 hpi. It was found that 

there was no discernable difference between infected samples until 20 hpi (Figure 10). The 

lack of the increase in the GFP signal could be due to a large amount of noise due to basal 

levels of GFP expression in uninfected cells coupled with weak expression of GFP in 

infected cells which masks the signal of the GFP produced due to infection. It was previously 

described by Kung et al. with a Vero-ICP10-GFP reporter cell line that a significant GFP 

signal could be detected as early as 6 hpi and with a large level of expression after 48 hpi17. 

Our data did not show significant difference until 20 hpi, with a maximum level of 

expression at 48 hpi. The high levels of basal GFP expression seen in our work is most likely 

due to the activation of the ICP10 promoter by activator protein 1 (AP-1) in the 

complementary GFP Vero cell line. ICP10 is the only HSV promoter that has AP-1 cis-

response elements107. AP-1 refers to many heterodimeric transcription factors composed of 
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Jun, Fos or activating transcription factor (ATF) subunits that bind to common DNA sites to 

regulate gene expression in response to cytokines, growth factors, stress and viral 

infections108. Zhu and Aurelian found that basal expression of chloramphenicol 

acetyltransferase (CAT) under the control of the ICP10 promoter in Vero cells was 

significantly higher with 10% serum than with 0.5%108. In our studies, 10% FBS was used to 

maintain the cell line which would have increased the basal level of GFP expression. Zhu and 

Aurelian also found that there were low levels of expression in F9 cells which lack AP-1 

transcriptions factors, compared to Vero cells which have some endogenous AP-1 (even with 

0.5% serum levels)108. This indicates that the use of the ICP10 promoter in a Vero cell line 

was a poor design choice when the complementary GFP Vero cell line was created due to the 

endogenous expression of AP-1 transcription factors in Vero cells, and that basal expression 

of GFP is to be expected.  

Due to the high levels of basal expression and the slow response time of the ICP10 promoter 

(20 hours), the change in SSC was seen as a more viable indicator of infection. Furthermore, 

tracking the number of cells with increased side scatter required a shorter incubation time to 

observe a significant difference (12 hpi) (Figure 9). At 20 hpi, the percent of cells with high 

granularity infected with an MOI of 5 was 3.5 times greater than the uninfected population, 

compared to the GFP levels which was only 1.5 times higher than the uninfected cells. The 

granularity only increased in cells that were exposed to virus. Because of this, the 

complementary non-GFP Vero cell line, which does not contain a reporter protein, was tested 

to determine if the same trend in granularity could be observed after infection.  
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It was found that the same trend occurred with the complementary non-GFP cell line, which 

indicates that the increase in granularity is not dependent on the ICP10-GFP genes. There 

was an increase in the right side of the distribution of cells with high SSC values overtime 

which correlates with the CPE that can be seen in the microscope images (Figure 11). This 

supports the idea that successful infection and viral replication in the cell gives rise to the 

increase in the intracellular complexity. At 36 hpi, it can be seen that almost all of the cells 

display CPE, while at 20 hpi there still appears to be some cells with healthy morphology 

(Figure 11). Conversely, the SSC histograms for both 20 and 36 hpi are almost identical, 

signifying that there exists a maximum number of cells that have high granularity in the 

population. This maximum value could be due to an equal number of cells being lysed from 

infection, and therefore not recorded, and the number of cells that are reaching the final 

stages of infection. Since the infection is not synchronous, or occurs at the same time for all 

cells, it is likely that the viruses are at various stages of their infection cycle at any one time. 

For example, a subset of virions could infect within the first 30 minutes of being exposed to 

cells, while other virions could take up to 2 hours to successfully enter the cell and begin 

replicating.  

Regardless of the maximum number of cells with high granularity achieved, 36 hpi appeared 

to be the time point when the maximum is reached for both the GFP and non-GFP 

complementary Vero cells. The maximum percent of the population with high granularity 

was 17% for complementary GFP Vero cells and 35% for complementary non-GFP Vero 

cells. The discrepancy between the two cell lines could be due to the additional GFP 
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encoding gene under the control of the ICP10 promoter in the complementary GFP Vero 

cells. The additional burden on the cell to produce GFP could pull resources away from the 

production of the granular structures. The complementary non-GFP Vero cells do not have 

this burden; therefore, less of the cellular resources are being channeled away from the cause 

of the increase in granularity. To maximize the number of cells that display high levels of 

granularity, the complementary non-GFP Vero cells are used in further quantification 

experiments.  

4.4.2 Evidence indicating granularity caused by infection and replication 

To confirm that the cells which display CPE are in fact the cells that have high granularity, 

cells were stained for HSV-2 late structural proteins at 20 hpi and their granularity was 

compared to an uninfected sample (Figure 14). It was found that the medians were 

significantly different for the two non-normal distributions. The cells which stained 

positively for viral structural proteins had a distribution curve with a long right tail which 

was the same trend observed in the histograms seen in Figure 11B. The histogram for cells 

infected with an MOI of 25 also shows a small population of cells that do not have late 

structural HSV-2 proteins, this is mostly likely due to a non-synchronous infection, where the 

virus has not reached the late (γ) phase of gene expression which occurs after 15 hpi. This 

experiment demonstrates that there is significant difference in the average level of granularity 

in infected cells as opposed to uninfected cells. To verify that this response was not caused 

by cytokines or other cell signaling molecules in the supernatant of the virus sample, a viral 

sample filtered with a 0.1 μm filter was exposed to cells (average diameter of HSV-2 is 150 
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nm). It was found that there was no significant difference between the filtered sample and the 

uninfected sample demonstrating that the factors present in the viral media did not induce an 

increase in granularity in the cells (Figure 16).  

As a final measure to ensure that the increase in granularity was caused by infection of the 

cell, Vero cells that do not contain the UL29 and UL5 HSV-2 genes were infected. It was seen 

that there was no increase in the number of cells with high granularity with increasing MOI 

at 20 hpi. Since ACAM529 cannot successfully replicate in Vero cells that do not contain the 

missing genes, very low levels of viral proteins can be expressed by the cell (Figure 15). This 

indicates that the successful replication of the virus in cells is one of the factors that causes 

the increase in granularity.  

From these last set of experiments, there is strong evidence to support the idea that the 

increase in granularity is caused by the infection and replication of ACAM29 in 

complementary non-GFP Vero cells.  
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Chapter 5 

Modelling Increase of Side Scatter 

5.1 Chapter Objective 

The objective of this series of experiments was to determine the best sampling time that will 

yield the most accurate and consistent results for predicting the initial titer of the virus stock 

solution. To evaluate this, a 72 hour time course was used to identify the key time points 

during the first phase of infection. The results were analyzed and the correlation between the 

MOI and percent of population with high granularity was established. The motivation for 

these experiments was to determine the shortest and most convenient incubation time to 

establish an accurate infectious titer.   
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5.2 Materials and Methods 

5.2.1 Cell Line and Virus 

Complementary non-GFP Vero cells were maintained as previously specified and then plated 

into 48-well plates and infected as previous stated in Chapter 5. The infectious titer of the 

virus was calculated by using a plaque assay. 

5.2.2 Flow Cytometry Sample Preparation 

After the specified infection time, the wells were aspirated and the cells were treated with 

Accumax to prevent cell aggregates. Once the cells were detached, an equal volume of 4% 

formaldehyde was added to the wells for a final volume of 400 μL and then the sample was 

transferred in to 5 mL polystyrene culture tubes and stored at 4°C for 1 hour. After the cells 

were fixed, the samples were run through the FACScalibur with the settings described in 

Chapter 3.4. 

5.2.3 Data Analysis 

Data was analyzed as described in Chapter 3.4.1. 
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5.3 Results 

To determine the optimal sampling time to measure the side scatter, a 72 hour time course 

was conducted to study the effect of virus exposure on the granularity of the cells. In Figure 

17, the infection of complementary non-GFP Vero cells using various MOIs was tracked 

over time.  

As it can be seen, the amount of cells with high granularity increases dramatically from 0 to 

16 hpi, where after from 16 to 20 hpi a plateau can be seen for all the viral dilutions. As the 

second round of infection begins after 20 hpi, it can be seen that there is another sharp 

increase in the number of cells with high granularity from 20 hours to 36 hours where the 

three highest MOIs reach the same maximum point at 36 hours (56%). The number of cells 

with a high amount of granularity decreases after 36 hpi, most likely due to cell death. The 

lowest MOI of 0.05 does not follow the same trend as the other three MOIs, it peaks at 48 hpi 

and then declines. This is most likely because the low amount of virus initially added, 

required more replication cycles to produce enough virus to infect the entire population of 

cells.  

Since we are interested in the relationship between MOI and the percent of the population 

with high granularity, each time point was individually plotted (Figure 18). A logarithmic 

trend can be seen prior to 36 hpi in Figure 17. Therefore, the data was fitted to the 

logarithmic model: 
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% 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ 𝑠𝑖𝑑𝑒 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 = 𝑏2 ln 𝑀𝑂𝐼 + 𝑏1 
Equation 5 

Prior to 24 hpi, the R2 value of the fitted model remains above 0.93 which demonstrates that 

the model is a good fit for those time points. It is not until 24 hpi where the slope (b2) begins 

to decrease, and the R2 value drops below an acceptable level (0.9). Therefore, the time 

points 16-22 hpi were chosen for more in depth analysis since they had the best fit to the 

model (R2=0.95). Four time points were chosen (16, 18, 20 and 22 hpi) and 8 different viral 

dilutions were used to test the relationship between granularity, time and concentration of 

virus (Figure 19). It was found that at 22 hpi the R2 value was below 0.9 indicating that the 

model is not a good fit for time points past 20 hpi.  

The constants from Equation 5 (b1 and b2) both increased over time until after 20 hpi, where 

b2 decreased (Table 3 andTable 4). For the two different trials seen in Figure 18 andFigure 

19, the values for b1 and b2 were very different, even though the same type of cells, media 

and virus from the same bioreactor run were used. This indicates that there are some other 

factors that are not being controlled during the experiment that affects the response from the 

cells.   
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Figure 17- 72 hour time course of infection of the complementary non-GFP Vero cells 

with 5 different viral dilutions 

Cells were plated onto 48-well plates overnight before being treated with viral dilutions 

corresponding to MOIs of 0, 0.05, 0.1, 0.5 and 1 at time points 0, 12, 16, 20, 24, 36, 48, 72 hpi. Error 

bars are the standard deviation of the blank over 72 hours. 
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Figure 18- 72 hour time course data fitted to semi-logarithmic model demonstrating a 

direct relationship between the logarithm of MOI with the fraction of cells displaying 

high granularity 

The data points (‘o’) are plotted on a semi-logarithmic axis for a single time point with the fitted 

model (Equation 5, solid black line) and a 95% confidence interval (dashed red line). There is a direct 

correlation between the logarithm of the MOI and the fraction of cells with high granularity prior to 

24 hpi.  
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Table 3- Values of the b1 and b2 constants calculated for Equation 5 for 12-24 hpi. 

The table displays the values for the constants (b1 and b2) at each time point from Figure 17, along 

with the R2 value. 

 

hpi b2 b1 R2 

12 0.04 0.14 0.93 

16 0.07 0.32 0.95 

20 0.07 0.34 0.95 

24 0.05 0.46 0.44 
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Figure 19- Correlation of MOI to fraction of the population with high granularity at 16, 

18, 20 and 22 hpi 

The data from each time point are plotted on a semi logarithmic plot to demonstrate the direct 

correlation with logarithmic trend lines. The error bars are the standard deviations obtained from 

triplicates.  
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Table 4- Values of the b1 and b2 constants calculated for Equation 5 for 16-22 hpi. 

The table displays the values for the constants (b1 and b2) at each time point from Figure 18, along 

with the R2 value. 

 

hpi b2 b1 R2 

16 0.03 0.16 0.97 

18 0.04 0.18 0.95 

20 0.06 0.29 0.91 

22 0.05 0.29 0.88 
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5.4 Discussion 

The assessment of the 72 hour time course study revealed that there is a maximum percent of 

cells in the population that have high granularity at 36 hpi. This peak corresponds to 100% 

CPE which was previously seen in the microscopy study (Figure 11A), indicating that all the 

cells in the well have been infected. This is most likely caused by a second round of infection 

which produced enough virus to spread to the entire culture. Since all the cells in the well 

have been infected at that time, later time points will only track the death of the population. 

This time point also exposes that all the MOIs are indistinguishable from each other at 36 

hpi. For future assays, sampling times should occur before this time point to avoid 

inconclusive results.  

The time points from 0 hpi to 20 hpi demonstrate a logarithmic trend, and prior to 24 hpi 

displayed a good fit using a logarithmic model (Figure 18). The 16 hpi to 20 hpi time points 

correlate when viral assembly occurs and viruses begin to travel to the basolateral side of the 

cell or tight junctions between cells, in preparation to exit the cell to begin a second round of 

infection. This plateau could be when the virus halts the replication of its components37, and 

begins to assemble itself. Sandhu et al. theorized that the rise in granularity of HEK293 cells 

after infection with adenovirus is due to the accumulation of viral genomes and viral 

particles20, which matches what is being observed with ACAM529 infection of the 

complementary non-GFP Vero cells. It is probable that the accumulation of ACAM529 

components in the cells attribute to the increased levels of intracellular complexity that is 

being observed prior to 16 hpi. Azizi et al. demonstrated through RT-qPCR that the cycle 
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threshold value could be correlated with the logarithm of the infectious viral titer of 

ACAM529 for gD gene, but not for the ICP27 gene or thymidine kinase gene from 6 hpi to 

20 hpi9. This provides some evidence that the rise in granularity in our work could be due to 

the accumulation of late expressed genes. After 20 hpi, a correlation could no longer been 

seen with the gD gene9 or in granularity. This is most likely caused by progeny viruses 

infecting new cells which would increase the granularity in newly infected cells from 24 hpi 

to 36 hpi. 

A closer look was taken at the 16 to 20 hpi time range to obtain more detailed results. It was 

found that the model yields a satisfactory fit for 16, 18 and 20 hpi, while 22 hpi proved to 

have a less good fit. The R2 value decreased for 22 hpi which indicates that there is less of a 

correlation between the number of cells with high granularity and MOI. This supports the 

hypothesis that after 20 hpi the virus has stopped replicating itself and exits the cell to begin 

a second round of infection17. This study also demonstrates the large difference between the 

time points 16, 18 and 20 hpi. The addition of 2 hours between the time points reveals a large 

difference in the values for the constants in the model. This highlights the importance of 

infecting the entire 96-well plate in the shortest time possible. If the first and last well are 

infected 2 hours or more apart, the sampling time for the plate will not be a constant, and the 

model equation will have to take into account variable time and MOI. Thus, in order for the 

assumption of constant time to be made, all samples must be platted within 2 hours (or less) 

of each other. 
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Given that the constants for the model depend highly on the timing, there are also other 

factors such as cell passage number (Appendix A), quality of reagents, and many other 

variables that this model does not take into account. As such, if this method were to be used 

to quantify an unknown sample, it would have to be compared to a standard curve that was 

exposed to the same set of conditions. Consequently, a calibration curve should be made with 

a virus sample with known concentration to calculate the constants in the model for the 

specific set of conditions.   

The strong correlation between the logarithm of the MOI and percent of cells with high 

granularity demonstrates a direct relationship prior to 24 hpi. From these studies, it can be 

shown that any time from 16 to 20 hpi will yield an accurate fit to the model in Equation 5. 

The sampling time point of 20 hpi will be used for further studies because it represents the 

time when there is a maximum granularity in the cells with an acceptable fit to the model.  
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Chapter 6 

Validating Assay 

6.1 Chapter Objective 

The goal of this chapter is to demonstrate that the logarithmic model from Equation 5 can be 

used to predict the titer of unknown samples that will yield results comparable to a traditional 

plaque assay. The assay is translated into a 96-well format in order to achieve a higher 

throughput. Five samples of unknown titer donated by Sanofi were quantified using both the 

flow cytometric-based assay, which will be further referred to as the granularity-based flow 

assay, and plaque assay. The five samples differed by the length of time they were exposed to 

sonication. The granularity-based flow assay was conducted by creating a calibration curve 

to calculate the constants for the model and then this model was used to predict the infectious 

titer of the unknown samples.  
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6.2 Materials and Methods 

6.2.1 Cell Maintenance 

The complementary Vero cells (HSV2013-121) were maintained in Dulbecco’s Modified 

Eagle Medium (DMEM) with F12 (Corning Cellgro, Manassas, VA) supplemented with 10% 

heat inactivated fetal bovine serum (FBS) (Gibco Life Technologies, Burlington, Canada), 

and 4mM L-glutamine (Sigma-Aldrich, Oakville, Canada) at 37oC in 5% CO2 in T-flasks.  

Viruses were stored at -80°C until infection. Virus sample A was exposed to 2 minutes of 

sonication, sample B was 4 minutes, sample C was 6 minutes, sample D was 8 minutes and 

sample E was produced by using a new extraction technique (undisclosed by Sanofi). All 

samples were titered using a plaque assay. 

6.2.2 Infection of Cells Prior to Flow Cytometry 

Complementary Vero cells were plated onto 96-well plates at a concentration of 

3.0x104 cells/well and incubated overnight. The next day, the spent media was aspirated and 

the cells were washed once with D-PBS. Virus samples were serially diluted (1:2 ratio) 8 

times in ice cold cell maintenance media just prior to infection. The cells were subsequently 

incubated with 50 µL of diluted virus samples for 20 hpi.  

6.2.3 Flow Cytometry Sample Preparation 

After the specified infection time, the wells were aspirated and then the cells were treated 

with trypsin to detach cells from the surface of the plate. Once the cells were detached, an 

equal volume of 4% formaldehyde was added to the wells for a final volume of 200 μL and 
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then the sample was transferred in to 5 mL polystyrene culture tubes and stored at 4°C for 1 

hour. After the cells were fixed, the samples were run through the FACScalibur to collect 

2,000 events with the SSC photomultiplier tube (PMT) voltage set to 280 mV, the FL1 was 

set to 580 mV and, the FSC was set to E01 at the high flow setting (60 μL/min). 

6.2.4 Data Analysis 

The gating was conducted as previously described and a trend line was calculated using the 

data obtained from the ‘Standard’ virus sample. MATLAB’s nlmfit function was used to 

calculate the constants for Equation 5 and the then MOIs of the unknown samples could be 

calculated based off the percent of the population with high granularity. The average was 

taken for all the serial dilutions to obtain the final titer and a variance between the dilutions.  
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6.3 Results 

Samples with unknown viral titer were quantified using both the plaque assay and the new 

granularity-based flow assay to compare the two methods. A sample with known titer was 

used to produce a calibration curve (trend line in Figure 20) to correlate the percent of cells 

with high granularity with the concentration of virus. The constants calculated by the trend 

line were used to predict the viral titers for the unknown titers seen in Table 5. Each viral 

titer obtained from the granularity-based flow assay was calculated by taking the mean of the 

titer predicted from 7 viral dilutions (each dilution contains 3 replicates) for each sample. 

The data points in Figure 20 appear very close together at lower concentrations, and then 

vary farther from the trend line at the higher concentrations. This indicates that at very high 

MOI the results will have a larger variance.  

The plaque assay used the average from three dilutions, and each dilution had triplicates. 

Although the granularity-based flow assay has a larger standard deviation (calculated from 

the variance of the dilutions) than the plaque assay, all the results are within the same 

magnitude with the highest percent difference being 52.67% (Table 5).  

To determine the minimum levels of virus that are detectable using this new method, the 

lower limits of detection and quantification were calculated using the variation of the blank 

(n=47). The limit of detection (LOD) represents the lowest signal that can be reliably 

distinguished from the blank and can be detected105. It was calculated by taking the average 

of the blank (𝑥𝑏̅̅ ̅ =0.055) and then adding three times the standard deviation of the blank 
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(𝑆𝑏 = 0.0041). The limit of quantification (LOQ) is the lowest concentration of virus that 

can be determined with acceptable precision and accuracy106. This was calculated by taking 

the average of the blank and then adding ten times the standard deviation of the blank. These 

two limits provided the granularity-based flow assay with the lower detection limits of 8,360 

PFU/mL (MOI 0.01) for the LOD and 13,940 PFU/mL (MOI 0.02) for the LOQ (Figure 20). 

This indicates that this assay requires a concentration higher than 13,940 PFU/mL (MOI 

0.02) in order to precisely and accurately predict the titer of sample.  

A concordance plot was made to compare the viral titers predicted by using the plaque and 

granularity-based flow assays.  At lower concentrations of virus, the granularity-based flow 

assay tends to underestimate the viral titer, but these values (1.3x104 PFU/mL) are around the 

limit of quantification. The range where there is the highest agreement, or where the results 

are relatively similar, between the two assays is between 6.0x104 PFU/mL and 1x106 (MOI 

of 2 to 33, respectively) (Figure 21). The correlation coefficient was calculated to be 0.70 

with a p-value<0.001. 
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Figure 20- 5 samples with unknown titers quantified using plaque and granularity-

based flow assay 

A standard sample of known titer was used as a calibration curve to produce the trend line that relates 

the logarithm of the MOI to the percent of the sample population with highly granular cells with the 

following relationship:  

% High Granular Cells = 0.05464 ln(MOI) + 0.3106 

The unknown samples were diluted serially 7 times (in triplicate) and sampled after 20 hpi. Plaque 

assays were also conducted for samples A-E and their results are plotted here to demonstrate the 

deviation of the plaque assay results to the standard curve. 
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Table 5- Comparison of viral titer between plaque assay and granularity-based flow 

assay 

The percent difference was calculated relative to the plaque assay. 

Sample Plaque Assay 

(106) 
Coefficient 

of Variance 

Granularity-

based flow 

assay (106) 

Coefficient 

of Variance 

Difference 

between 

assays 

A 6.00±0.691 11.52% 9.16±4.53 49.42% -52.67% 

B 6.33±2.05 32.41% 8.94±3.00 33.52% -41.32% 

C 6.34±0.586 9.24% 4.13±1.33 32.17% 34.85% 

D 6.28±0.827 13.17% 4.96±1.50 30.23% 21.01% 

E 61.7±11.3 18.32% 90.3±39.1 43.26% -46.45% 
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Figure 21- Concordance plot comparing the granularity-based flow assay and plaque 

assay 

The data points from 6 different samples with 7 separate dilutions are plotted demonstrating the 

concordance between the natural logarithm of the plaque assay results to those of the granularity-

based flow assay. The solid line is the line representing perfect concordance and the ‘x’ are the 

individual data points. 
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6.4 Discussion 

The assay developed here uses the natural increase in granularity in infected complementary 

non-GFP Vero cells by ACAM529 to predict the infectious titer. In order to evaluate the 

accuracy of this method, 5 unknown samples were titered using the granularity-based flow 

assay and the plaque assay. For the granularity-based flow assay, a calibration curve had to 

be created using a standard viral sample with known titer. From this calibration curve the 

amount of granular cells could be correlated to an infectious viral titer. It was found that the 

granularity-based flow assay was able to obtain similar results as the plaque assay. The 

accuracy was evaluated by calculating the percent difference between the two samples which 

had a maximum difference of -52.67%, indicating a suitable closeness to the true value. The 

coefficient of variance (CV) was also calculated to demonstrate the dispersion of data for 

both assays. The plaque assay has a lower variance than the granularity-based flow assay. 

This indicates that the granularity-based flow assay is less precise than the plaque assay. 

Precise measurements are not necessarily accurate, since precision refers to the relative 

agreement of the samples, while accuracy is used to describe the closeness to the true value. 

It is possible that due to operator bias, the results from a plaque assay can be precise, but not 

necessarily accurate.  

The titers calculated from the plaque assay are within one standard deviation of the 

granularity-based flow assay, so a 95% confidence interval of the granularity-based flow 

assay would contain the correct titer but there would be a greater amount of uncertainty 

associated with the result.  
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Due to the requirement of having greater than 13,940 PFU/mL (MOI 0.02) in solution due to 

the LOQ, this assay will only be relevant in applications that require the enumeration of virus 

stocks of high concentration, such as in the manufacturing of viruses in the 

biopharmaceutical industry. The benefit of this assay is that it can be translated into a high 

throughput method that takes a maximum of 20 hours incubation time, and also reduces the 

potential for operator bias which is present in plaque assays. While it does offer the 

advantage of speed, the higher cost of the equipment and need for specialized training are 

two major drawbacks to this new method.    
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Chapter 7 

Infection of QT-35 Cells with ALVAC.gfp 

7.1 Chapter Objective 

The aim of this chapter is to illustrate that the flow cytometric-based assay could be used for 

other cell-virus systems. Here, we used QT-35 cells infected with ALVAC.gfp virus which 

contains the GFP gene. Once the cells became infected they began to produce GFP, which is 

an indicator of successful infection of the cell. The cells which produce GFP are positive 

indicators of infection, and the change in granularity of the cells was investigated. A time 

course was conducted to observe the optimal time point to measure the level of granularity. 

Then at the optimal time point, a range of MOIs were tested to investigate if Equation 5 was 

still a valid model to correlate infectious titer to the percent of the population with high 

granularity.  
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7.2 Materials and Methods 

7.2.1 Cell Line and Virus 

The ALVAC.gfp virus was stored at -80ºC and thawed in a 37oC water bath immediately 

before use. The QT-35 cells were maintained as previously stated in Chapter 3. 

7.2.2 Flow Cytometry Sample Preparation 

Cells were plated on a 96-well plate at a concentration of 3.0x104 cells per well and 

incubated overnight. The infection was complete as previously stated. After the specified 

infection time, the wells were aspirated and then the cells were treated with trypsin to detach 

cells from the surface of the plate. Once the cells were detached, an equal volume of 4% 

formaldehyde was added to the wells and the sample was transferred into 5 mL polystyrene 

culture tubes and stored at 4°C for 1 hour. The final volume for a 96-well plate was 200 μL. 

After the cells were fixed, the samples were run through the FACScalibur to collect 2,000 

events with the SSC photomultiplier tube (PMT) voltage set to 280 mV, the FL1 was set to 

580 mV and, the FSC was set to E00 at the high flow setting (60 μL/min). 

7.2.3 Data Analysis 

Data was analyzed as previously stated. 
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7.2.4 Cell Culture Infectious Dose 50 (CCID50) 

QT-35 cells were plated into a 96-well plate at a concentration of 3x104 cells per well and 

infected with serially diluted ALVAC.gfp virus with 10 replicates. After 5-8 days, the plate 

was scored for cytopathic effect and the titer was calculated. To score the cytopathic effect, 

each well was visually inspected for signs of infection in the cells. The wells are score 

Yes/No for infection and then the 50% infectious dose can be calculated using the formula 

for the end point dilution assay as reviewed on page 29.  

7.2.5 Immunostaining 

To confirm infection, 6.0x105 cells were grown on 6-well plates overnight, washed once with 

D-PBS and infected. After 24 hpi, the media was aspirated and the cells were treated with 

trypsin for 10 minutes. The infected cells and uninfected control were stained for 30 minutes 

at room temperature with 100µL of CytoPainter (Abcam, Cambridge, MA; used at a 1:1000 

dilution) washed two times using D-PBS. Samples were then transferred into 1.5 mL 

microcentrifuge tubes for flow cytometric measurements and imaging using ImageStreamX. 

CytoPainter is used to stain actin filaments in the cell. By staining the cytoskeleton of the cell 

we can obtain a better idea of the structure of the cell. 
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7.3 Results 

QT-35 cells were infected with ALVAC.gfp virus to assess the change in granularity of the 

cells 24 hours post infection. Upon successful infection, cells began to produce GFP which 

could be monitored using a flow cytometer (Figure 23A&B). The maximum levels of GFP 

production could be seen at 24-28 hours after infection (Figure 22). The levels of intensity of 

the green fluorescence produced by the QT-35 cells after 24 hours was assessed for 

uninfected and infected cells (MOI 3) using an imaging flow cytometer and used as an 

indicator of successful infection in the cells (Figure 23). A histogram of the side scatter 

values of the infected and uninfected populations demonstrates that there is significant 

increase in the number of cells with high granularity (Figure 23D).  

To assess whether the increase in the number of cells with high granularity can be correlated 

to the initial MOI, serial dilutions of ALVAC.gfp were used to infect QT-35 and incubated 

for 24 hours. The percent of the sample population with high levels of side scatter was 

plotted versus the MOI, calculated by a CCID50 assay. A direct correlation between the two 

variables was observed beyond MOI 4.6 (Figure 24). To obtain a range of accurate 

measurement for this assay the LOD and LOQ were calculated based on the variability of the 

blank (n=94). It was found that the limit of detection was 450 PFU/mL and the limit of 

quantification was 990 PFU/mL (or in terms of MOI 0.14 and 4.6 respectively). 
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Error bars are the standard deviation obtained from triplicates.   
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Figure 22- Tracking the increase in the fraction of the population of QT-35 cells infected with 

ALVAC.gfp with increased granularity over 48 hours  
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A.  

 

B.  

 

C.

 

D.

 

Figure 23- Confirmation by GFP production that infected QT-35 cells have increased 

granularity 24 hpi  

QT-35 cells were infected at a MOI of 3 and incubated with the virus for 24 hours. A. An uninfected 

cell stained with CytoPainter shows no GFP production. B. An infected cell stained with Cytopainter 

has relatively the same size as an uninfected cell, but is producing GFP after infection with 

ALVAC.gfp. C. A histogram of the green fluorescence where the infected (blue) and uninfected 

(pink) are shown. There is a distinct difference in the levels of GFP in the two populations. D. The 

uninfected (pink) and infected (blue) regions are shown on a side scatter histogram. Here the two 

regions overlap, but a bimodal curve can still be seen. The median of the infected (1.42x106 IU) and 

uninfected (5.68x105 IU) samples are significantly different (α=0.001, p<0.001), as calculated by the 

Wilcoxon rank sum test. 
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Figure 24-The percent of QT-35 cells displaying high granularity after 24 hpi fit to 

same model as ACAM529 infection in complementary non-GFP Vero cells 

A sample of ALVAC.gfp was diluted 7 times in triplicate to demonstrate a logarithmic relationship 

between the MOI and percent of the population with high granularity. The blue data points represent 

the data from the experiment that is below the limit of quantification, and this data is not included in 

the trend line. The purple data points represent the data that is above the limit of quantification  and 

were used to make the trend line (dashed purple line). 
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7.4 Discussion 

An increase in granularity in QT-35 cells after infection was positively correlated with time 

and MOI. The increase in granularity of an infected population was significantly different 

than that of an uninfected population, demonstrating the principle that was seen with the 

ACAM529 virus in the complementary non-GFP Vero cell line. The increase in the 

granularity of the infected cells was most likely caused by inclusion bodies that canarypox 

forms during viral replication. These inclusion bodies are produced in the cytoplasm and are 

believed to function as viral replication sites where the necessary components for replication 

are concentrated to hasten viral assembly and maturation83. Although, it is equally likely that 

the increase in granularity could be attributed to the increase of the total amount of viral 

proteins in the cell causing an increase in the intracellular complexity. The maximum amount 

of cells in the population which displayed high levels of granularity occurred at 

approximately 28 hpi, which is earlier than what was seen for ACAM529. The replication 

cycle for canarypox is estimated to be 3-5 days which is much longer than that of the herpes 

simplex virus which takes approximately 20-24 hours. Therefore, it seems unlikely that the 

true maximum occurs at 28 hpi, but rather this is a plateau, such as the one seen from 16-20 

hpi with ACAM529. This plateau could suggest that the virus has finished one phase of its 

replication such as producing viral components, or the formation of the inclusion bodies, 

before it begins the next steps.  

Nevertheless, the goal of the granularity-based flow assay is to decrease the time required to 

quantify the infectious titer of the virus, which is accomplished here. The time required to 

obtain a titer using the CCID50 is 5-8 days, and the time for the granularity-based flow assay 
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is 24 hours. As previously noted with the ACAM529/Vero cell system, the granularity-based 

flow assay is limited since it requires a high concentration of virus due to the LOQ (990 

PFU/mL or MOI 4.6). This limit of quantification is less than the one calculated for 

ACAM529, which indicates that the sensitivity of the assay is dependent on the particular 

cell/virus system.   
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Chapter 8 

Conclusions 

8.1 Herpes/Vero System 

Three parameters (green fluorescence, granularity and forward scatter) were tested to 

determine a relationship between a parameter and infectious titer of the virus. It was found 

that the complementary GFP Vero cell line which contains GFP encoding genes, produced a 

large amount of basal level of GFP such that green fluorescence was not an optimal 

parameter to use to measure infectivity of the virus. For forward scattered light, the mean of 

the histogram for the population of infected cells did not change over time. Alternatively, the 

median for the side scattered light did increase over time. The increase in side scattered light 

(i.e. granularity) was also seen in complementary non-GFP Vero cells. Changes in 

granularity of the cells were not found to be caused by cytokine or other cell signalling 

molecules in the virus sample, and the increase in granularity was found to be dependent on 

viral replication. It was also confirmed that it was indeed infected cells that had a higher 

average level of granularity (through the use of immunostaining). 

To determine the optimal time point to measure the granularity of infected cells, a 72 hour 

time course was done to track the levels of granularity of cells using 5 different MOIs. An 

incubation of 16 and 20 hpi resulted in the best relationship between the number of cells with 

increased granularity and MOI. At these times a logarithmic model relating the percent of the 

population with elevated levels of granularity and the infectious titer of the virus. It was also 
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seen, however, that the assay was time sensitive and therefore much care needed to be taken 

to rapidly infect the cells so that the assumption of a uniform incubation held. 

Five unknown samples were titered using both the granularity-based flow assay and the 

plaque assay. It was found that the granularity-based flow assay had a larger variance than 

the plaque assay, but obtained accurate results. The coefficient of concordance was found to 

be 0.7, which demonstrates that the granularity-based flow assay had the tendency to 

underestimate the infectious titer of the virus. This assay also required that there was at least 

13,940 PFU/mL (MOI 0.02) due to the limit of quantification. This restricts the use of this 

new assay to applications that produce high concentrations of virus, which does not make it 

ideal for clinical applications which requires the assay to be sensitive enough to detect a 

single infectious virion. This is appropriate for process analysis for the biopharmaceutical 

industry where a high concentration is desired and diluting the virus stock is an additional 

step which could increase the error in the quantification process.  

While the granularity-based flow assay had a greater amount of variance and requires high 

concentrations of virus, this new assay reduced the time by a maximum of 32 hours and has 

been developed for a 96-well format. This allows users to quantify several samples of virus at 

once and will decrease the time necessary to calculate the efficiency of a production process.  

8.2 ALVAC/QT-35 System 

A second cell line and virus were used to test the extension of the assay with other systems. 

An increase in granularity was also seen in QT-35 cells infected with ALVAC.gfp, with 

positive correlations with time and MOI. It was confirmed that the population that displayed 
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green fluorescence (proof of infection) also had an elevated level of granularity. The percent 

of the population that displayed an increased amount of granularity was correlated to MOI 

using a logarithmic relationship similar to that of the Vero/ACAM529 system. Together, 

these findings suggest that the ALVAC.gfp virus can be titered using the granularity-based 

flow assay. By using this new assay, the time required to obtain an infectious titer would 

decrease from 5-8 days to 24 hours. As previously stated, this will aid in process 

improvement by decreasing the time it takes to quantify the efficiency of each production 

step.  
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Chapter 9 

Recommendations 

 

The assay that is proposed in this thesis demonstrates the possibility of using naturally 

occurring changes in the cell to identify infection. It has shown that through the use of flow 

cytometry, the physiological changes in cells post-infection can be modelled using a 

logarithmic relationship to relate the percent of the population with high granularity to MOI. 

It also gave evidence that these changes occur in multiple cell lines after infection. Although, 

the increase in granularity has been noted by previous authors in HEK29320 and Sf919,21 cells 

lines, none have investigated the reason for the change. As such, there are still questions to 

be answered, such as the root cause of the increase in granularity and why the maximum 

amount of cells displaying high granularity only reaches 57% and not 100% for very high 

MOIs.  Therefore, in order to complete the story of this assay, these subjects should be 

investigated to elucidate the true cause for the increase in granularity of cells post-infection.  

In order to improve upon the logarithmic model used in this thesis, incubation time should 

be included as one of the parameters. From the data, it was seen that the difference of two 

hours produced a very large change in the amount of granularity seen in the cells from 16 to 

20 hours. A new logistic model should be used to include the effect of time along with MOI 

to model the percent of the population with high granularity. By including the variable of 

time in the model, there will no longer be a need to make the assumption of instantaneous 

infection of the 96-well plate. Also, to ensure that there is synchronous infection, after 1 hpi, 
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the cells should be washed with D-PBS to remove any unattached virions. This will remove 

some of the variability associated with virus infection time. 

Furthermore, to provide more evidence for the reliability of this method, more concordance 

studies should be done using multiple operators and flow cytometers to demonstrate that the 

correlation between infectious titer and amount of cells displaying high granularity is not an 

artifact of a single operator and flow cytometer. Concordance studies with multiple operators 

will allow the operator-to-operator variability to be determined, which is a known 

disadvantage of the plaque assay.  

The work presented in this thesis provides a first step in developing an enumeration 

technique that uses the change in granularity of cells to estimate the viral titer. The 

recommendations stemming from this work focus on elucidating the causes for the increase 

in granularity and further improving the model that estimates viral titer as well as the 

variances associated with this model.              
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Appendix A  

Cell Age Study 

It was found that the passage number of the cells had a significant effect on the total number 

of HSV2013-121 cells which demonstrated an elevated level of granularity. It was previously 

known that cell growth slowed after approximately 20 passages, but nothing else was known 

of consequence of the cells after n+20.  Here, it is demonstrated that as the age of the cell 

increases, the maximum number of cells displaying high granularity diminishes. 
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