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Abstract

In this thesis we address three topics of open quantum systems theory. The first con-
cerns the operational characterization of an open quantum system. We develop a graphical
calculus for open quantum systems and use it to review the operational representation and
characterization of noisy evolution using completely-positive maps, or quantum channels.
These graphical techniques facilitate an intuitive unification of the various representations
of CP-maps, and the transformations between these representations. We generalize the
channel formalism by introducing quantum superchannels — effective quantum channels
which take another channel as input. Superchannels may be constructed using graphical
techniques to rearrange the tensor network for a sequence of channels, and these construc-
tions allow for the description of a strictly greater set of dynamics than is possible with the
standard formalism. We demonstrate this by providing a method for the complete char-
acterization of an open system initially correlated with its environment. In doing so we
introduce and develop several novel quantitative measures for characterizing the strength
and presence of initial correlations in a quantum system. These techniques may be im-
plemented using measurement of the system alone, and do not require any access or prior
knowledge about the environment.

The second topic we discuss is the parallel initialization of an ensemble quantum system
into a high purity state. We describe a dissipative state engineering technique where an
ensemble of identical spins may be prepared in its ground state by coupling the spins to the
resolved sidebands of a high-Q resonator. This allows for parallel removal of entropy from a
large number of quantum systems, enabling an ensemble to achieve a polarization greater
than thermal equilibrium, and in principle on a time scale much shorter than thermal
relaxation processes. This is achieved by the collective enhancement in coupling strength
of the coupled angular momentum subspaces which behave as larger effective spins. Cavity
cooling is shown to cool each of these subspaces to their respective ground state, however
by including a local T2 dephasing dissipator on each spin we show how one may use this
to break the identical spin degeneracy and couple the subspaces to enable cooling to the
full ground state of the joint system.

The third topic concerns quantum correlations between the momentum and spin sub-
systems of a neutron in a neutron interferometer. We explore the robustness of these
correlations in the presence of dephasing noise due to randomized phase differences be-
tween interferometer paths. We demonstrate that even in the presence of strong noise
quantum correlations persist and can be detected by introducing post-selected spin mea-
surements at the output of the interferometer. We relate these post-selected experiments
to which-way measurements and a quantum eraser.
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Chapter 1

Introduction

1.1 Noise in Quantum Systems

In the last several decades the field of quantum information processing has grown from a
largely theoretical endeavour to see the application of quantum enhanced technologies for
tasks such as quantum key distribution [SMWF+07] and high sensitivity measurements of
quantities ranging from small magnetic fields using single spins [MSH+08] through to the
proposed detection of gravitational waves using quantum squeezed states of light [AAA+13].
Future developments promise to be one of the most revolutionary technological advance-
ments of the 21st century, with the eventual goal being a large scale quantum processor
that can implement quantum algorithms that offer a superpolynomial speedup over the
equivalent classical algorithms for certain tasks [Mos09, NIS]. There are several promis-
ing experimental implementations of small scale quantum processors consisting of multiple
two-dimensional quantum systems, or qubits, that have the potential to scale to 10s to 100s
of qubits in the near future. These include superconducting qubits [BHW+04], quantum
dots [LD98], defects in silicon [SST+12], nitrogen vacancy centres in diamond [WJ06] and
trapped ions [KMW02].

All of these real-world quantum devices are inevitably open quantum systems in the
sense that they experience unwanted interactions with their environment [PB02]. The
environment can abstractly be thought of as representing all the degrees of freedom that
interact with the system, but are either inaccessible to the experimenter, or outside their
ability to control. Typically these unwanted interactions manifest as noise processes on
the quantum system, and one of the major challenges facing quantum information pro-
cessing is limiting the influence of noise processes which inhibit or destroy quantum effects
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such as coherence and entanglement, which are required for the successful operation of
most quantum devices. Accurately characterize noise sources in a quantum system is
thus a critical task for the design and operation of quantum devices. Once these noise
sources are known work can then be done to suppress their influence, whether through
new design and engineering advancements, or though application of quantum error cor-
rection methods [NC00]. In some situations noise can also be harnessed as a resource
for example in initializing a quantum system in a state that may be otherwise unobtain-
able [PHBK99, BKPV99, CBHP13, LGR+13].

1.2 Thesis Outline and Main Results

The focus of this thesis is describing and developing the theory of open quantum systems
for modelling, characterizing, and exploiting noise processes in these systems. We break
this up into three main topics:

1. The first topic concerns the characterization of open quantum systems in the quantum
channel formalism and is contained in Chapters 2 to 5. These chapters are focused
on the representation and characterization of the evolution of open quantum systems
in the quantum channel formalism, and on generalizations of the quantum channel
formalism to characterize open quantum system dynamics which lie outside the scope
of the standard formalism.

2. The second topic concerns the initialization of an ensemble quantum system into a
high purity state and is contained in Chapter 6. This chapter considers applying
cavity cooling techniques to an ensemble spin system by using the collective coupling
of the ensemble to a cold high-Q resonator to enable dissipation to the ground state
of the ensemble.

3. The third topic concerns quantum correlations in a neutron interferometer and is
contained in Chapter 7. This chapter considers the role of correlations between the
momentum and spin degrees of freedom of a neutron in an interferometer, and the
robustness of these correlations in the presence of noise arising from randomized
phase differences between the interferometer beams.

In Chapter 2 we describe a graphical calculus for completely positive maps and in
doing so review the theory of open quantum systems and other fundamental primitives
of quantum information theory using the language of tensor networks. In Section 2.3 we
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demonstrate the construction of tensor networks to pictographically represent the Liouville-
superoperator, Choi-matrix, process-matrix, Kraus, and system-environment representa-
tions for completely positive (CP) maps, or quantum channels, which describe the evolution
of quantum states. In Section 2.4 we review how these representations interrelate, and illus-
trate how graphical manipulations of the tensor networks may be used to concisely trans-
form between them. To further demonstrate the utility of the presented graphical calculus
in Section 2.5 we include several examples for how graphical techniques can simplify the
composition and contraction of multipartite channels, and in Section 2.6 we demonstrate
how linear matrix operations may be represented as channels themselves.

In Chapter 3 we review several common techniques for characterizing open quantum
systems using the quantum channel formalism. In Section 3.2 we review the completely-
bounded (CB) trace norm, entanglement fidelity and average gate fidelity, which may be
used to compare noisy quantum channels to an ideal target channel. Here we prove a
new result for the upper bound of the CB trace norm in terms of the Choi-matrix of a
Hermitian preserving channel, and further prove a sufficient condition for this bound to be
tight. We also use the graphical techniques developed in Chapter 2 to provide arguably
simpler graphical proofs of entanglement fidelity and average gate fidelity in terms of each
of the channel representations discussed in Section 2.3. In Section 3.3 we review the use
of Clifford twirling and randomized benchmarking for computing the average gate fidelity
of an unknown channel, and in particular we demonstrate how unitary 2-designs, used to
represent these operations, may be constructed and applied to channels using the graphical
techniques from Chapter 2. In Section 3.4 we present an overview of ideal quantum state
tomography and show how standard linear inversion and maximum likelihood estimation
(MLE) can be related to a least squares fitting problem, with typical linear inversion
corresponding to the unconstrained least squares fit and MLE to a constrained fit that
enforces the positivity of the reconstructed state. In Section 3.5 we show how the presented
formalism for quantum state tomography can be applied to quantum process tomography
and several other generalizations by considering process tomography as a special case of
quantum state tomography of the Choi-matrix representation of a quantum channel. Using
graphical techniques we also derive a new condition for whether an arbitrary bipartite state
may be used for ancilla assisted process tomography which is equivalent to known results,
but which we believe is conceptually simpler and easier to check.

In Chapter 4 we introduce a generalization of quantum channels we call quantum super-
channels, and discuss the properties and some applications of these constructions. These
are effective quantum channels which can be thought of as linear maps from quantum
channels to quantum channels defined by their action on the Choi-matrix representation
of the input channel. In Section 4.2 we define quantum superchannels as a special type
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of quantum channel with a bipartite input and output space and discuss their properties
in relation to the properties of standard quantum channels introduced in Chapter 2. In
Section 4.3 we describe how to construct quantum superchannels from an underlying com-
position sequence of channels acting on a Hilbert space, and discuss their conditions for
these effective channels to be completely-positive, trace preserving, and Hermitian pre-
serving. In particular we show how to construct superchannels for a single input, and how
to compose superchannels to form channels for multiple inputs. We also describe how to
post-select the output of the superchannel on a fixed input state or measurement outcome
on the underlying physical system. These constructions are achieved by manipulating the
tensor networks for the graphical representation of the channels. In Section 4.4 we describe
how to generalize quantum process tomography to quantum superchannel tomography and
discuss the limitations of performing tomography when the input channels do not include
projective measurements. In Section 4.5 we give a simple example of a superchannel in
terms of the Clifford twirling operation introduce in Section 3.3. Following this we show
how one may use the twirling superchannel to consider the action of twirling a number of
subsystems of a quantum channel acting on a composite system. These techniques enable
a description of a strictly greater range of dynamics than the quantum channel formalism
and in principle could be used to model and characterize effects such as non-Markovian
evolution of a quantum system.

In Chapter 5 we introduce a quantum superchannel for fully characterizing the dynam-
ics of a quantum system initially correlated with its environment. In Section 5.2 we describe
the construction the initial correlation (IC) superchannel which takes a Choi-matrix cor-
responding to a state preparation procedure as its input, rather than the resulting state.
The resulting superchannels describes the subsequent evolution of the system including
the interaction between the joint system-environment dynamics and the initial environ-
ment state that may be altered in the presence of initial correlations conditional on the
choice of preparation procedure. We discuss properties of the IC superchannel, and in par-
ticular show that is a CP-map even in the presence of initial correlations, and also how one
may perform a tomographic experiment to fully reconstruct the superchannel description
of the dynamics, and thus experimentally characterize an initially correlated quantum sys-
tem. Critically this reconstruction does not rely on access to the environment and is done
entirely with measurement of the system alone. In Section 5.3 we introduce quantitative
measures for determining the strength of initial correlations in terms of an initial corre-
lation (IC) norm. We also introduce a fidelity measure called preparation fidelity which
quantifies how an experiment may be optimized while taking into consideration the effect
of initial correlations with the environment. In Section 5.4 we consider several theoretical
examples of an initially correlated system. In particular we consider controlled-unitary
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and swap system-environment interactions with both classically correlated and entangled
initial system-environment states. We find that for the case of a controlled-unitary SE in-
teraction there is no quantitative difference between a classically correlated and entangled
unital state with respect to the IC-norm, however for the case of the swap interaction the
entangled case displays strictly strong correlations under this measure. In Section 5.5 we
present an experimental demonstration of these techniques using a photonic qubit coupled
to a simulated environment. We tomographically reconstruct the IC superchannel and
compute the resulting IC-norm as a function of the initial correlations in the input state
and find good agreement with our theoretical predictions. We also demonstrate how prepa-
ration fidelity may in principle be used to improve the implementation of a target operation
in the presence of initial correlations by exploiting the action of these correlations.

In Chapter 6 we describe how sideband cooling techniques may be applied to large spin
ensembles in magnetic resonance to enable active cooling to a high purity ground state
at a rate potentially faster than thermal relaxation processes. In Section 6.2 we review
the mathematical description of the state space of collective two-level quantum systems in
terms of the irreducible representations of SU(2) and SU(4) for the collective state vectors
and density matrices respectively. In Section 6.3 we introduce the Tavis-Cummings model
for describe the dynamics of a spin-ensemble interacting with a single mode cavity in the
presence of a Rabi drive and describe how to adiabatically eliminate the cavity in the
Markovian regime to obtain a reduced Markovian master equation for the dynamics of
the spin-ensemble. In Section 6.4 we solve the spin-ensemble Markovian master equation
to derive cooling rates for the coupled angular momentum subspace of the ensemble as
a function of ensemble size. Our calculations indicate that the Dicke subspace of a spin
ensemble containing roughly 1011 electron spins may be polarized in a time many orders
of magnitude shorter than the typical thermal relaxation time. We also discuss cavity
cooling dynamics in the full Hilbert space and derive approximate expressions for the final
magnetization and cooling rate of the full Hilbert space which scale with the square root
of the ensemble size. In Section 6.5 we include the effect of local dephasing on the spin
ensemble and show that this couples the collective subspaces to enable cooling to the
ground state of the ensemble. To solve the dynamics of the ensemble system we introduce
a method for dissipative perturbation theory that applies average Hamiltonian theory in
an imaginary-time dissipative interaction frame to find an average effective dissipator for
the system dynamics. We use SU(4) algebra generators to analytically solve the first
order perturbation for an arbitrary number of systems in the ensemble. We find that to
first order the effective dissipator describes local thermal relaxation to the ground state of
each qubit in the ensemble at a rate equal to the collective cavity cooling dissipation rate.
The described techniques should permit the parallel initialization of high purity states in

5



large ensemble quantum systems based on solid state spins. The proposed application
of a standard technique in quantum optics to magnetic resonance also serves to reinforce
the connection between the two fields, which has recently begun to be explored in further
detail due to the development of hybrid designs for manufacturing noise-resilient quantum
devices.

In Chapter 7 we investigate quantum coherences in the presence of noise by entangling
the spin and path degrees of freedom of the output neutron beam from a noisy three-blade
perfect crystal neutron interferometer. In Section 7.2 we introduce a quantum informa-
tion description of a three blade neutron interferometer treating it as a bipartite system
where one subsystem is represented by the path, or momentum, degree of freedom of neu-
trons travelling through the interferometer crystal, and the other subsystem is the spin
of the neutron. In Section 7.3 we show that in the presence of dephasing noise on the
path degree of freedom the entanglement of the output state reduces to zero, however
the quantum discord remains non-zero for all noise values. Hence even in the presence
of strong phase noise non-classical correlations persist between the spin and path of the
neutron beam. This indicates that measurements performed on the spin of the neutron
beam will induce a disturbance on the path state. We calculate the effect of the spin
measurement by observing the changes in the observed contrast of the interferometer for
an output beam post-selected on a given spin state. In doing so we demonstrate that these
measurements allow us to implement a quantum eraser, and a which-way measurement
of the path taken by the neutron through the interferometer. While strong phase noise
removes the quantum eraser, the spin-filtered which-way measurement is robust to phase
noise. We experimentally demonstrate this disturbance by comparing the contrasts of the
output beam with and without spin measurements of three neutron interferometers with
varying noise strengths. This demonstrates that even in the presence of noise that sup-
presses path coherence and spin-path entanglement, a neutron interferometer still exhibits
uniquely quantum behaviour.

Acknowledgement of Contributions

• Chapter 2 and Chapter 3 contains results published in [WBC15] with additional
unpublished results of the author. The work in [WBC15] was done in collaboration
with Jacob D. Biamonte and David G. Cory.

• Chapter 4 contains unpublished results of the author.

• Chapter 5 contains results published in [RWM+15] with additional unpublished re-
sults of the author. The work in [RWM+15] was done in collaboration with Martin

6



Ringbauer, Kavan Modi, Alexei Gilchrist, Andrew G. White, Alessandro Fedrizzi.
The theoretical work was done by Modi, Gilchrist and the author, and the exper-
imental work was done by Ringbauer, Fedrizzi, and White, with the tomographic
reconstruction of experimental data done by Ringbauer and the author.

• Chapter 6 contains results published in [WBC14] and [WC15] with additional un-
published results of the author. The work in [WBC14] was done in collaboration
with Troy W. Borneman and David G. Cory.

• Chapter 7 contains results published in [WAH+14] which was done in collaboration
with Mohamed O. Abutaleb, Michael G. Huber, Arif, David G. Cory Dmitry A.
Pushin. In particular the experimental work was implemented by Abutaleb, Huber
and Pushin.

1.3 Introduction to Open Quantum Systems

1.3.1 Mathematical Preliminaries

We now introduce the basic mathematical notations and conventions that will be used
throughout this thesis. We use the notation that script letters X ,Y ,Z represent finite
dimensional complex Euclidean vector spaces or Hilbert spaces Cd.

We use Dirac notation for vectors |v〉 ∈ X ∼= Cd

|x〉 ∈ X ∼= Cd → |x〉 =
d−1∑

j=0

xj|j〉 =




x0

x1
...

xd−1


 , (1.1)

where xj ∈ C and {|j〉} is the standard or computation basis. Each element of the com-
putation basis |j〉 can be represented as a unit column vectors with a 1 in the jth + 1 row,
and 0’s elsewhere.

Euclidean vector spaces come equipped with a Euclidean norm and inner product.
Euclidean inner product (or dot product) is given by

〈x|y〉 =
d−1∑

i,j=0

x̄iyj〈i|j〉 =
(
x̄0 x̄1 . . . x̄d−1

)




y0

y1
...

yd−1


 =

d−1∑

j=0

x̄jyj (1.2)
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where x̄j denotes complex conjugation of xj ∈ C.

The Euclidean norm ‖ · ‖ is given by

‖|x〉‖ =
√
〈x|x〉 =

√√√√
d−1∑

j=0

x2
j for |x〉 ∈ X (1.3)

In terms of the Euclidean inner product, we may think of the object 〈x| · 〉 as a row
vector

(
x̄0 x̄1 . . . x̄d−1

)
in the dual vector space X † ∼= Cd, hence they are sometimes

called dual vectors or effects.

The set of linear operators A : X → Y mapping between two vector spaces form their
own vector space L(X ,Y). In the case where the operator maps to the same vector space
we use the notation L(X ) ≡ L(X ,X ). We can define several useful norms on operators.
The Schatten p-norm of an operator A is defined as

‖A‖p ≡
(

Tr
[(
A†A

)p/2])1/p

(1.4)

where 1 ≤ p. The most common Schatten norms are p = 1, 2 and the limiting case of
p =∞. In these cases Eq. (1.4) reduce to the following expressions:

1. The trace norm or 1-norm

‖A‖1 ≡ Tr |A| where |A| ≡
√
A†A (1.5)

2. The Frobebius norm or 2-norm

‖A‖2 ≡
√

Tr[A†A] (1.6)

3. The Spectral norm, operator norm or ∞-norm

‖A‖∞ ≡ max {‖A|v〉‖ : ‖|v〉‖ = 1} (1.7)

An alternate expression for the Schatten norm is the result of the maximization

‖A‖p = max
{∣∣Tr[B†A]

∣∣ : B ∈ L(X ,Y), ‖B‖p∗ ≤ 1
}
, p∗ =

p

1− p. (1.8)

The Schatten p-norms satisfy

‖A‖p = ‖A‖p = ‖AT‖p = ‖A†‖p (1.9)
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where A denotes element wise complex conjugation with respect to the standard basis, AT

denotes transposition, and A† denotes Hermitian-conjugation A† ≡ A
T

. For tensor product
operators these norms reduce to norms on the corresponding subsystem operators:

‖A⊗B‖p = ‖A‖p ‖B‖p. (1.10)

The operator norms also bound each other in the following manner:

‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖1. (1.11)

For a square operator A ∈ L(X ) the trace of A is given by

Tr[A] =
d−1∑

j=0

〈j|A|j〉. (1.12)

For operators on a bipartite vector space A ⊗ B ∈ L(X ⊗ Y), the partial trace over Y of
A⊗B is given by

TrY [A⊗B] = A Tr[B]. (1.13)

Similarly TrX [A⊗B] = Tr[A]B. The 1-norm has the useful property that it is decreasing
with respect to the partial trace. For any operator A ∈ L(X ⊗ Y) we have

‖A‖1 ≥ ‖TrY [A]‖1. (1.14)

An important class of operators are positive semidefinite operators. An operator A ∈
L(X ) is positive-semidefinite, denoted by A ≥ 0, if and only if all the eigenvalues of A are
non-negative. By the spectral decomposition such an operator can be written as

A =
r∑

i=1

λi|vi〉〈vi| (1.15)

where λi ≥ 0, {|vi〉 : i = 1, ..., dim(X )} is an orthonormal basis, and 1 ≤ r ≤ dim(X )
is called the rank of A. For such operators the previously mentioned operator norms are
given by

‖A‖1 =
r∑

i=1

|λi|, ‖A‖2 =

√√√√
r∑

i=1

|λi|2, ‖A‖∞ = max{|λi| : i = 1, ..., r} (1.16)

Two other common used classes of operators are Hermitian operators, and unitary
operators. A linear operator A ∈ L(X ) is

• Hermitian if and only if A† = A.

• Unitary if and only if A†A = AA† = 1.
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1.3.2 Closed Quantum Systems

Closed quantum systems are ideal quantum systems which are perfectly isolated from the
environment. In quantum information theory we are often interested in systems where the
base subsystem is a 2-dimensional system called a qubit. Larger systems are then formed
as composite systems of multiple qubits. The behaviour of closed quantum systems are
governed by the postulates of quantum mechanics [NC00]:

1. States are represented as unit vectors |ψ〉 ∈ X , ‖|ψ〉‖ = 1, where X ∼= Cd is called
the state space of the system.

2. Transformations are represented by unitary matrices U ∈ L(X ) that act on states:
|ψ′〉 = U |ψ〉.

3. Measurements are represented by a projective valued measures (PVM). A PVM is
an orthonormal set of projectors {|aj〉〈aj| := 1, ..., d}, ∑j |aj〉〈aj| = 1. The proba-

bility of a measurement outcome j is given by pj = |〈aj|ψ〉|2, and the state of the
system after observation of outcome j is |ψ〉 7→ |aj〉.

4. Composite quantum systems may be formed by taking the tensor product of the
state spaces of multiple quantum systems. A composite state is separable if it may be
written in the form |Ψ〉 = |ψ1〉⊗|ψ2〉. If a state is not separable it is called entangled.

These postulates describe the discrete time, or circuit description, of closed quantum
systems. They allow us to break any experiment involving quantum systems into three
components: State preparation, where we initialize a quantum system in a known state
|ψ〉; Transformations, where we apply a unitary to the state |ψ〉, and finally measurement
of the final state. Measurements are how we extract classical information from a quantum
system, for example to determine the output of an algorithm, or to determine properties
of a quantum state.

For considering the specific dynamics of transformations of a quantum system, the time
evolution of a closed quantum systems is governed by Shrödinger’s equation:

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉. (1.17)

The operator H(t) is a Hermitian operator called the Hamiltonian of the system. For
the remained of this thesis we will work in energy units where ~ = 1. The solution of
Schrödinger’s equation is unitary evolution

|ψ(t)〉 = U(t)|ψ(0)〉 where U(t) = T exp

(
−i
∫ t

0

dsH(s)

)
(1.18)
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and T is the time-ordering operator.

1.3.3 Open Quantum Systems

Open quantum systems describe real world quantum systems which interact with an envi-
ronment. In such systems the postulates of quantum mechanics must be modified as the
observable dynamics on the system may no longer appear unitary. One may always think
of an open quantum system as a subsystem of a larger closed quantum system consisting
of a system which represents all the degrees of freedom accessible to an experimenter, and
an environment which represents all the degrees of freedom that are inaccessible. The
postulates for quantum mechanics that describe closed quantum systems can be modified
to describe open quantum systems as follows [NC00]:

1. States are represented by density matrices ρ ∈ D(X ), where D(X ) = {ρ, ρ ∈
L(X ),Tr[ρ] = 1}. We refer to density matrices of the form ρ = |ψ〉〈ψ| as pure
states. While density matrices of the form

ρ =
∑

i

pi|ψi〉〈ψi|, pi > 0,
∑

i

pi = 1 (1.19)

are called mixed states. Operationally mixed states represent our uncertainty about
a given quantum state. We may interpret a mixed state of the form in Eq. (1.19) as
describing a system that we believe may be in a state |ψj〉 with probability pi. The
purity of a quantum state is defined as Tr[ρ2] and is measure of how close a density
matrix is to a pure state. Pure states satisfy Tr[ρ2] = 1, while the lower bound is
given by the most mixed state, the maximally mixed state ρ = 1/d, which has purity
1/d.

2. Transformations are represented by completely positive trace preserving (CPTP)
maps E : D(X ) 7→ D(X ). Informally CPTP maps can be thought of as the most
general operation which will always map a valid density matrix to a valid density ma-
trix. These operations are also called quantum operations, superoperators or quantum
channels and we will discuss these in detail in Chapter 2.

3. Measurements are represented by a positive operator valued measure (POVM). A
POVM is a set of positive operators {Ej : Ej > 0,

∑
iE
†
jEj = 1}. The probability

of a measurement outcome j is given by pj = Tr[Ejρ]. To consider the state of a
system after a measurement we must decompose each POVM element into effects
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Ej =
∑

kM
†
j,kMj,k. In this case the state of the system after observation of outcome

j is given by

ρ 7→ ρj =
∑

k

Mj,kρM
†
j,k

Tr[Ejρ]
. (1.20)

Note that the decomposition of a POVM into effects is not unique, and depends on
the description of the measurement being performed.

4. Composite quantum systems may be formed by taking the tensor product of the
state spaces of multiple quantum systems. A composite state is called simply separa-
ble or a product state if it may be written in the form ρ = ρ1⊗ρ2. It is called separable
if it may be written as a convex sum of simply separable states ρ =

∑
i piρ1,i ⊗ ρ2,i.

If a state is not separable it is called entangled.

The time evolution of a closed quantum system in the density matrix picture is governed
by the von-Neuman equation

d

dt
ρ(t) = −i[H(t), ρ(t)] (1.21)

where [A,B] ≡ AB −BA is the commutator of A and B. The solution of this equation is
the usual unitary evolution:

ρ(t) = U(t)ρ(t)U(t)†, U(t) = T exp

(
−i
∫ t

t

dsH(s)

)
. (1.22)

To include the effects of noise acting on the system one can modify the von-Neuman
equation into a quantum master equation which governs the dynamics of open system
evolution [PB02]. The simplest quantum master equation is a Markovian master equation
describing interaction with a memoryless environment. Informally we can think of this
as stating that any information transferred from the system to the environment is lost
and can have no influence on the dynamics of the system at later times. The simplest
markovian master equation is called the Lindblad equation which is a generalization of the
von-Neuman equation by including an additional term called a dissipator.

d

dt
ρ(t) = −i[H(t), ρ(t)] +

∑

j

γjD[Aj]ρ(t) (1.23)

where D[Aj] is called the Lindblad dissipator and is given by

D[A]ρ(t) = Aρ(t)A† − 1

2

{
A†A, ρ(t)

}
, (1.24)
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where {A,B} ≡ AB + BA is the anti-commutator of A and B. The Lindblad dissipator
generates dissipative evolution described by a Lindblad operator Aj at rate γj. Unlike
unitary dynamics, the dynamics generated by a dissipator are not in general reversible, and
hence are used to describe decoherence mechanisms in a system. Just as the solution to the
von-Neuman equation is unitary evolution, the solution to a Lindblad master equation is
a CP-map which describes the discrete time evolution of an open quantum system. These
CP-maps that govern the evolution of an open quantum system are also refereed to as
quantum channels.

1.3.4 Measures to Compare Quantum States

There are two widely used operational measures for comparing two quantum states. These
are the trace distance and the fidelity [GLN05].

The trace distance between two states ρ1, ρ2 ∈ D(X ) is defined as

Dtr(ρ1, ρ2) =
1

2
‖ρ1 − ρ2‖1. (1.25)

The operational interpretation of this quantity is related to the probability of successful
distinguishing state ρ1 from ρ2 in a single shot measurement. If an experimenter is given
a state that they know is either ρ1 with probability λ, or ρ2 with probability 1 − λ their
optimal strategy for distinguishing the two states with a single measurement will succeed
with probability

p =
1

2
+Dtr(λρ1, (1− λ)ρ2) =

1

2
+

1

2
‖λρ0 + (1− λ)ρ1‖1. (1.26)

The fidelity between two quantum states ρ1, ρ2 ∈ D(X ) is defined as

F (ρ1, ρ2) = ‖√ρ1
√
ρ2‖2

1 =

(
Tr
√√

ρ1ρ2
√
ρ1

)2

(1.27)

If one of the states is a pure state the fidelity reduces to

F (|ψ〉〈ψ|, ρ) = 〈ψ|ρ|ψ〉 (1.28)

Hence for pure states fidelity is given by F (|ψ〉, |φ〉) = |〈ψ|φ〉|2. This has the operational
interpretation of the probability of distinguishing the two states, where the probability of
successfully distinguishing |ψ〉 for |φ〉 succeeds with probability 1−F (|ψ〉, |φ〉). For mixed
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states an operational interpretation is that the fidelity is as an upper bound of the overlap
of two pure input states that were mapped to ρ1 and ρ2 by some quantum channel [DN02].
Note that in many places in the literature fidelity is defined as the square root of the
definition in Eq. (1.27). We adopt the squared convention as advocated for in [GLN05]
due to its generalization to fidelity measures on quantum channels which we discuss in
Chapter 3.

The fidelity and trace distance are related via the Fuchs-van de Graff inequality [FvdG99]:

1−
√
F (ρ1, ρ2) ≤ Dtr(ρ1, ρ2) ≤

√
1− F (ρ1, ρ2). (1.29)

1.3.5 Measures of Correlations

A unique property of quantum theory is that when two or more quantum systems are
allowed to interact they may exhibit correlations that cannot be explained classically. In
the field of quantum information science protocols harnessing these correlations can exceed
classical efficiencies for certain metrology applications and information processing tasks
[NC00]. One of the most studied classes of correlated quantum states are entangled states.
There are numerous measures for quantifying entanglement in a quantum state (for a
review of entanglement see [HHHH09]). A convenient measure for a two-qubit mixed-state
is the entanglement of formation (EOF) [Woo98] which is given by

EOF (ρAB) = h

(
1 +

√
1− C(ρAB)2

2

)
(1.30)

where h(x) = −x log x − (1 − x) log(1 − x), and C(ρAB) is the concurrence of a bipartite
state ρAB:

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4} (1.31)

where λj are the eigenvalues of the Hermitian matrix

√√
ρAB(Y ⊗ Y )ρ†AB(Y ⊗ Y )

√
ρAB (1.32)

sorted such that λ1 ≥ λ2 ≥ λ3 ≥ λ4, where Y is the Pauli-Y matrix.

The class of states of interest to quantum computation however is broader than purely
entangled quantum states, as certain non-entangled quantum states may still posses cor-
relations that cannot be accounted for classically. There are many proposed measures
for quantifying the distinction between classical and quantum states which are based on
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entropic quantities, and one of the most widely used measures is quantum discord (for a
review of quantum discord and related measures see [MBC+12]). Quantum discord is a
non-symmetrical quantity defined by the difference between quantum generalizations of two
classically equivalent expressions for mutual information. Let ρAB be a bipartite density
matrix over two quantum systems A and B. One expression for the mutual information of
ρAB is given by

I(A : B) = S(ρA) + S(ρB)− S(ρAB) (1.33)

where S(ρ) = −Tr(ρ log ρ) is the von-Neumann entropy of the density matrix ρ, ρA =
trB(ρAB) is the reduced density matrix on subsystem A taken by performing the partial
trace over system B, and similarly ρB = trA(ρAB). An alternative expression for mutual in-
formation is formed by considering a quantum generalization of conditional entropy which
accounts for possible measurement induced disturbances. Consider performing a measure-
ment on subsystem B, this is most generally described by POVM E consisting of a set of
measurement operators {Eb} satisfying Eb ≥ 0,

∑
bEb = 1. Measurement outcome b will

occur with probability pb = Tr(EbρAB), and the post-measurement state of subsystem A,
conditioned on outcome b, is given by

ρA|b =
1

pb
TrB(EbρAB). (1.34)

We may define a generalization of conditional entropy for a given POVM E as

S(ρA|E) =
∑

b

pbS(ρA|b). (1.35)

This gives us an alternative expression for mutual information by maximizing over all
possible POVMs:

J(A|B) = max
E

[
S(ρA)− S(ρA|E)

]
(1.36)

Quantum discord is defined to be the difference between expressions Eq. (1.33) and
Eq. (1.36):

D(A|B) = I(A : B)− J(A|B) = min
E

[
S(ρA|E) + S(ρB)− S(ρAB)

]
(1.37)

Similarly one may define the quantum discord D(B|A) where one optimizes over POVMs
on subsystem A. In general to compute the quantum discord of a state one must minimize
Eq. (1.37) over all extremal rank-one POVMs, however it has been shown that for rank-two
states orthogonal projective valued measurements (PVMs) are optimal [GGZ11].

15



Chapter 2

Quantum Channels

2.1 Introduction

A complete description of the evolution of quantum systems is an important tool in quan-
tum information processing. In contrast to closed quantum systems, for open quantum
systems the evolution need no longer be unitary. The linear operator describing the evo-
lution over a fixed time period of the density operator of an open quantum system called
a quantum operation or quantum channel. This is defined mathematically by a completely
positive map (CP-map) [NC00]. Let X , Y be complex Euclidean spaces and let T (X ,Y)
be the Hilbert space of operator maps E : L(X )→ L(Y). A map E ∈ T (X ,Y) is

1. Positive if and only if it preserves the positivity of an operators spectrum, that is for
all ρ ∈ L(X ) with ρ ≥ 0 we have E(A) ≥ 0.

2. Completely positive if and only if it further satisfies the condition that the composite
map I ⊗ E is positive, where I is the identity map on a space of density operators
with dimension greater than or equal to the dimension of the space on which E acts.

3. Trace preserving if and only if Tr[E(ρ)] = Tr[ρ] for all operators ρ.

Analogously to how unitary operators are the most general operation which will map a
quantum state vector to another quantum state vector, it can be shown that a completely
positive map is the most general mathematical object that will map a density operator to
another density operator. Since density operators are positive operators ρ with unit trace,
the requirement that E be complete-positive and trace-preserving ensures that the output
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state of the map will always be a valid density operator. Such maps are called completely
positive trace preserving maps (CPTP-maps).

There are numerous representations for completely-positive maps [JS61, Cho75, Kra83],
and in Section 2.3 we review and describe the properties of the main representations used
in quantum information theory. These are the system-environment, and closely related
Stinespring, representations, the Kraus or operator-sum representation, the Choi-matrix
representation and its change of basis to the proves-matrix of χ-matrix, and the super-
operator. In Section 2.4 we describe how to transform between these representations, in
doing so we will use the graphical calculus methods which we present in Section 2.2. This
graphical approach facilitates an intuitive unification and interoperability between these
representations, the outcome of which is depicted in Fig. 2.1. In doing so we provide a
compact review of the properties and transformations of CP-maps.

Choi-Matrix 
(Χ-Matrix)

Liouville
Superoperator

Kraus / 
Operator-Sum

System-Environment
(Stinespring)

Jamio�kowski Isomorphism

R
es

h
u
ff
lin

g

Vectorization

Spectral Decomposition

Stin
esp

rin
g D

ilatio
nVe

cto
riz

ati
on

Jamio�kowski Isomorphism

Figure 2.1: The main mathematical representations for completely positive maps and how
one may transform between them. Solid arrows represent linear operations which we prove
can be done by “wire bending” transformations in our graphical calculus. Dashed arrows
represent non-linear transformations. Reshuffling and Stinespring dilation are bijective
transformations, vectorization and the Jamio lkowski isomorphism are surjective transfor-
mations, and the spectral decomposition is an injective transformation.
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Graphical calculi have been used to great benefit in several areas of modern physics
with the most prolific example being the use of Feynman diagrams to calculate scatter-
ing amplitudes in quantum field theories [BL11]. In the context of quantum information
theory there has been recent interest in employing graphical techniques more general than
standard quantum circuits, with two popular approaches being based on tensor networks
and category theory. The approach presented here casts the theory of open quantum sys-
tems into the framework of tensor networks, which comes equipped with a graphical means
to represent and reason about the contraction of sequences of tensors [Pen71]. The use
of tensor networks dates back to earlier work by Penrose, who’s graphical notation is a
useful starting point [Pen71]. They have been used as computational tools for simulating
certain many-body quantum systems efficiently [Vid08, EV09, VMC08], as a tool for ma-
nipulating tensor networks [BCJ11] and to generalize quantum circuits [BB11]. Although
it is straightforward to translate equations into so-called tensor string diagrams, a missing
piece has been a graphical calculus for open systems theory which provided new results,
and hence enhanced the potential for diagrammatic reasoning.

The category theoretic approaches for quantum information theory are based on so-
called dagger-compact monoidal categories which were used by Abramsky and Coecke to
abstractly describe quantum teleportation [AC04]. This approach was then extended to
include CP-maps by Selinger in the CPM-construction [Sel07]. The graphical language of
these approaches are built upon well established graphical calculi for compact closed cat-
egories [KL80] and symmetric monoidal categories [JS91]. A key result is that Selinger’s
calculus for CP-maps is complete for finite-dimensional Hilbert spaces [Sel11a]. This means
that any identity which can be represented graphically is true if and only if it is is alge-
braically true, which is important for diagrammatic proofs. Subsequent work based on these
constructions has been used to graphically depict quantum protocols [CPP09, BH12] and
Bayesian inference [CS12]; and for the axiomatic formulation of quantum theory [CH11].
For a review of graphical calculi for monoidal categories see [Sel11b]. Other alternative
graphical approaches have also been used in the axiomatic formational of quantum the-
ory [CDP11, Har11].

There have been at least two graphical calculi previously presented for CP-maps:
Selinger’s aforementioned category theoretic approach, and a graph-theory approach by
Collins and Nechita which was used to compute ensemble averages of random quan-
tum states [CN11, CN10]. Selinger’s CPM-construction bears some similarities to our
approach, however there are important and practical differences between the two. The
CPM-construction is most closely related to our superoperator representation in the row-
vectorization convention which we present in Section 2.3.3. In the presented graphical
calculus we tailor the tensor string diagrams of Penrose to unify several mathematical
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representations used in open quantum systems and to transform freely between them. In
accomplishing this, we express our graphical tensor calculus in the Dirac notation familiar
in quantum information theory instead of the abstract index notation used by Penrose,
or the category theoretic notation used by others. This provides a toolset which can be
used for the manipulation, visual representation, and contraction of quantum circuits and
general open quantum system equations.

To demonstrate the utility of the presented graphical calculus we provide examples
where we use these tools to derive several common quantities used in quantum informa-
tion theory. We emphasize that these are not new results, but rather it is the application
of the graphical methods that we are aiming to highlight. In particular, in Section 2.5
we demonstrate the construction of composite channels involving the composition of sev-
eral subsystem channels, and also the contraction of multipartite channels to an effective
subsystem channel. In Section 2.6 we show how matrix operations may be represented
graphically as superoperators, these expressions will be used in later chapters for several
graphical proofs. In Chapter 3 we also use graphical techniques to derive several quantities
used for the channel characterization.

2.2 Tensor Networks and Graphical Calculus

Tensors can be thought of as indexed multi-dimensional arrays of complex numbers with
respect to a fixed standard basis. The number of indices is called the order of a tensor,
and the concurrent evaluation of all indices returns a complex number. For example,
consider the Hilbert space X ∼= Cd, where as is typical in QIP, we choose our standard
basis to be the computational basis {|i〉 : i = 0, ..., d−1}. Then in Dirac notation a vector
|v〉 ∈ X is a 1st-order tensor which can be expressed in terms of its tenor components
vi := 〈i|v〉 with respect to the standard basis as |v〉 =

∑d−1
i=0 vi|i〉. Similarly one can

represent linear operators on this Hilbert space, A ∈ L(X ), as 2nd-order tensors with
components Aij := 〈i|A|j〉 as A =

∑d−1
i,j=0Aij|i〉〈j|.

Hence, in Dirac notation the number of indices of a tensors components are what we
refer to as the order of the tensor. Vectors |v〉 ∈ X refer to tensors which only have ket
“|i〉” basis elements, vectors in the dual vector space 〈u| ∈ X † refer to those with only bras
“〈i|”, and linear operators on A ∈ L(X ) refer to tensors with a mixture of kets and bras
in their component decomposition.

The idea of representing states, operators and maps (etc.) diagrammatically dates back
to several works by Penrose and is often referred to as Penrose graphical notation or string
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diagrams. We adopt Penrose’s notation of representing states (vectors) and effects (dual-
vectors) as triangles, linear operators as boxes, and scalars as diamonds, as illustrated in
Fig. 2.2. Here each index corresponds to an open wire on the diagram and so we may
define higher order tensors with increasingly more wires. The number of wires is then the
order of the tensor, with each wire acting on a separate vector space Xj.

v

(a) Vector |v〉 ∈ X

v

(b) Dual-vector 〈v| ∈ X †

A

(c) Linear Operator A ∈ L(X )

Λ

(d) Scalar λ ∈ C

v

(e) Vector |v〉 ∈⊗n
i=1 Xi

v

(f) Dual-vector 〈v| ∈⊗n
i=1 X

†
i

A

(g) Linear operator A :
⊗n

i=1Xi →⊗m
j=1 Xj

Figure 2.2: Graphical depiction of elementary tensors. We represent vectors (states) and
dual-vectors (effects) as triangles, linear operators as boxes, and scalars as diamonds, with
each index of the tensor depicted as an open wire on the diagram. The orientation of the
wires determines the type of tensor, in our convention the open end of the wires point to
the left for vectors, right for dual-vectors, and both left and right for linear operators.

We also insist that the orientation of these wires, rather than the number of wires,
specifies whether they represent multi-partite vectors, dual-vectors, or linear operators.
We have a freedom in choosing our orientation for the tensors, top-to-bottom, bottom-to-
top, left-to-right or right-to-left. In this paper we will choose the right-to-left convention
(the opposite of most orthodox quantum circuits) so that the graphical representation will
most closely match the underlying equations. Thus we use the terms vector, dual-vector
and linear operator to refer to tensors of any order, not just 1st-order and 2nd-order, based
on the orientation of their wires as follows:

1. Vectors |v〉 ∈⊗n
j=1Xj are tensors with n ≥ 1 wires oriented to the left.

2. Vectors in the dual space 〈v| ∈⊗n
j=1X †j are tensors with n ≥ 1 wires are oriented to

the right.

3. Linear operators A :
⊗n

i=1Xi →
⊗m

j=1Xj are tensors which have n ≥ 1 wires going
to the right and m ≥ 1 wires to the left.
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4. Tensors with no open wires are scalars λ ∈ C.

The graphical depictions of these tensors are also illustrated in Fig. 2.2. In the present
paper, we will generally be interested in the case where each wire indexes Xj ∼= Cd for
fixed dimension d, though one may generalize most of what follows to situations where the
dimensions of each wire are not equal. Note that we represent scalars as tensors with no
open wires, this could either be a contracted tensor λ = 〈v|u〉, or a multiplicative factor λ
acting on the tensor A as λA.

The mathematical rules of tensor network theory assert that the wires of tensors may be
manipulated, with each manipulation corresponding to a specific contraction or transfor-
mation. We now introduce some tools which we have tailored for manipulations common in
open quantum systems. Transposition of 1st-order vectors and dual-vectors, and 2nd-order
linear operators is represented by a bending of a tensors wires as follows:

vv � �v v

(a) Vector transposition: (b) Dual-vector transposition:

|v〉T = 〈v| 〈v|T = |v〉

(2.1)

AT � � AA

(c) Linear operator transposition

(2.2)

Complex conjugation of a tensor’s coefficients however is depicted by a bar over the
tensor label in the diagram:

v v

(a) Complex conjugation of |v〉 (b) Complex conjugation of 〈v|

(2.3)

A

(c) Complex conjugation of A

(2.4)
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Hence we may represent the transformation of a vector to its dual vector, or the her-
mitian conjugation of a linear operator as the combination of these two operations:

�v vv �v v

(a) Hermitian conjugation (b) Hermitian conjugation

of a vector : |v〉† = 〈v| of a dual-vector : 〈v|† = |v〉

(2.5)

A† � � AA

(c) Hermitian Conjugation of an operator A

(2.6)

We stress that under this convention a vector |v〉 =
∑

i vi|i〉 and its hermitian conjugate
dual-vector 〈v| = ∑i vi〈i| are represented as shown in Figs. 2.2a and 2.2b respectively.

Tensor contraction is represented by joining the wires corresponding to the indices to
be contracted. In the case of matrix multiplication A ·B is represented by connecting the
corresponding wires of the tensors representing the matrices:

A BAB := (2.7)

To form multi-partite tensors we denote the tensor product of two tensors A ⊗ B by
the vertical juxtaposition of their tensor networks:

A

B
AÄB := (2.8)

The trace, Tr[A], of an operator A is depicted by connecting the corresponding left and
right wires of a linear operator:

A

A
= (2.9)
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We represent summation in our variant of graphical calculus adapted to open systems
by introducing shading or coloring of the tensors being summed over. We call this the
color summation convention. Tensors corresponding to the same summation index will be
shaded the same color, and we use different colors for different summation indexes. For
example, consider the spectral decomposition of a normal operator A with eigenvalues λi
and eigenvectors |ai〉. The graphical depiction of the spectral-decomposition A =

∑
i λi|ai〉

using the color summation convention is given by:

(2.10)

In our color summation convention, we will represent the sum over the standard basis
as a shaded vector (or dual-vector) tensor with an empty label. This is demonstrated for
the graphical resolution of the identity 1 =

∑d−1
i=0 |i〉〈i| as follows:

i i: i (2.11)

Using this convention we represent summation over a Kronecker delta,
∑

i,j δij =
∑

i,j 〈i|j〉as
shown:

�� � �ij�∆ij (2.12)

This expression will be useful in graphical proofs.

The unnormalized maximally entangled Bell-state |Φ+〉 =
∑d−1

i=0 |i〉 ⊗ |i〉 ∈ X ⊗ X is
represented graphically as the curve:

: (2.13)

Similarly the unnormalized Bell-effect 〈Φ+| is represented as:

: (2.14)
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As will be shown in Section 2.2.2, our choice of graphical notation for |Φ+〉 is due to its
equivalence to the vectorization of the identity operator.

As a simple example of graphical proof techniques we may use this to prove the tensor
network in Eq. (2.9) for the trace of an operator A:

A
� A

A�

� �
i
 A

ii

(2.15)

For illustrative purposes, to prove this algebraically we note that the tensor networks for
trace correspond to the algebraic expressions 〈Φ+|A⊗1|Φ+〉 and 〈Φ+|1⊗A|Φ+〉, and that

〈Φ+|1⊗ A|Φ+〉 =
∑

i,j

〈i|j〉〈i|A|j〉 =
∑

i,j

δijAij

=
∑

i

Aii (2.16)

= Tr[A].

Similarly we get 〈Φ+|A⊗ 1|Φ+〉 = Tr[A].

Using the graphical definition for |Φ+〉 we can compose the unnormalized Bell-state
and its dual to form an identity element [Pen71]. This is known as the snake equation or
zig-zag equation and is given by:

= = (2.17)

To prove the snake equation we must first make the following equivalence for tensor prod-
ucts of the elements |i〉 and 〈j|:

〈j| ⊗ |i〉 ≡ |i〉 ⊗ 〈j| ≡ |i〉〈j| (2.18)

This is illustrated diagrammatically as

� �

j

ij

i
ji (2.19)
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With this equivalence made, the proof of the snake-equation for the “S” bend is given by

�

�

�

�

(2.20)

The proof for the reflected “S” snake-equation follows naturally from the equivalence de-
fined in Eq. (2.19). The snake equations have several uses and provide an equivalence class
of diagrams. Anytime we have a curved wire with two bends we can “pull the wire” to
straighten it out into an identity. Anytime we bend a wire, transforming between say a
bra and a ket, we can bend the wire to transform back again.

By combining the snake-equation with the wire-bending operation for transposition, we
find that “sliding” a linear operator around an unnormalized Bell-state is also equivalent
to transposition of the operator:

=
A

A
T

(2.21)

Note that due to the orientation of the wires this graphical representation of the operator
A is actually a vector. This is called the vectorization of a matrix and we discuss this in
more detail in Section 2.2.2.

The graphical proof of Eq. (2.21) follows from the tensor network for transposition in
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Eq. (2.1):

AT

A

�

A

�

(2.22)

In order to prove Eq. (2.1) itself we have

A
�

A

A�

� AT

� AT

(2.23)

We can also prove this algebraically to demonstrate the correspondence between a tensor
network and the underlying algebraic equation. This is given by

A

= 1⊗ 〈Φ+|(1⊗ A⊗ 1)|Φ+〉 ⊗ 1 (2.24)

=
∑

i,j

〈j|A|i〉 |i〉 ⊗ 〈j| (2.25)

=
∑

i,j

〈j|A|i〉|i〉〈j| (2.26)

=
∑

i,j

〈i|AT |j〉|i〉〈j| (2.27)

=
∑

i,j

|i〉〈i|AT |j〉〈j| (2.28)

= AT . (2.29)
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The proof for transposition by counter-clockwise wire bending follows from the equivalence
relation in Eq. (2.18) and Eq. (2.19).

Another important operation is the graphical SWAP which exchanges the position of
two Hilbert spaces in a composite system. Let X and Y be complex Hilbert spaces of
dimensions d1 and d2 respectively, then the SWAP operation is the map

SWAP : X ⊗ Y → Y ⊗X (2.30)

SWAP : |x〉 ⊗ |y〉 7→ |y〉 ⊗ |x〉, (2.31)

for all |x〉 ∈ X , |y〉 ∈ Y .

Given any two orthonormal basis {|xi〉 : i = 0, . . . , d1− 1} and {|yj〉 : j = 0, . . . , d2− 1}
for X and Y respectively, we can give an explicit construction for the SWAP operation as

SWAP =

d1−1∑

i1=0

d2−1∑

j2=0

|yj〉〈xi| ⊗ |xi〉〈yj|. (2.32)

The SWAP operation is represented graphically by two crossing wires as shown:

:= (2.33)

The basis decomposition in Eq. (2.32) is then an application of the resolution of the iden-
tity to each wire. In Section 2.2.2 we will see that the SWAP operation is the natural
transformation between the row-stacking and column-stacking vectorization conventions.

Using the above primitives one may represent any linear equation involving the compo-
sition and contraction of tensors by a tensor network diagram. In the reverse case, given
a tensor network diagram one may always write down an equivalent equation by labelling
each wire by an index, and then writing down the corresponding tensor components and
summing over contracted indices. By manipulating the tensor diagrams and making use of
the primitives introduced one may obtain equivalent expressions, however these manipu-
lated forms may have a more convent equational form that is not inherently obvious from
simply looking at the original equation. We gave several simple examples of this in our
explicit proofs of the tensor networks for trace, transposition and the snake equation.
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2.2.1 Bipartite Matrix Operations

Bipartite matrices are used in several representations of CP-maps, and manipulations of
these matrices will be important in the following discussion. Consider two complex Hilbert
spaces X , and Y with dimensions dx and dy respectively. The bipartite matrices we are
interested in are then d2

x×d2
y matrices M ∈ L(X ⊗Y) which we can represent as 4th-order

tensors with tensor components

Mmµ,nν := 〈m,µ|M |n, ν〉 (2.34)

where m,n ∈ {0, ..., dx − 1}, µ, ν ∈ {0, ..., dy − 1} and |n, ν〉 := |n〉 ⊗ |ν〉 ∈ X ⊗ Y is the
tensor product of the standard bases for X and Y . Graphically this is given by

MMmΜ,nΝ

m n

Μ Ν

(2.35)

We can also express the matrix M as a 2nd-order tensor in terms of the standard basis
{|α〉 : α = 0, . . . , D−1} for X ⊗Y where D = dxdy. In this case M has tensor components

Mαβ = 〈α|M |β〉 (2.36)

This is represented graphically as

MMΑΒ Α Β MΑ Β (2.37)

We can specify the equivalence between the tensor components Mαβ and Mmµ,nν by making
the assignment

α = dym+ µ (2.38)

β = dyn+ ν, (2.39)

where dy is the dimension of the Hilbert space Y .

The bipartite matrix operations which are the most relevant for open quantum systems
(see Fig. 2.1) are the partial trace over X (TrX ) (and TrY over Y), transposition (T ),
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bipartite-SWAP (S), col-reshuffling (Rc), and row-reshuffling (Rr). The corresponding
graphical manipulations are:

M

M M

(a) Partial Trace (b) Partial Trace (c) Transpose

TrX [M ] TrY [M ] MT

M
M M

(d) Bipartite-Swap (e) Row-Reshuffle (f) Col-Reshuffle

MS MRr MRc

(2.40)

In terms of the tensor components of M these operations are respectively given by:

Partial trace over X TrX : L(X ⊗ Y)→ L(Y), Mmµ,nν 7→
∑

mMmµ,mν

Partial trace over Y TrY : L(X ⊗ Y)→ L(X ) Mmµ,nν 7→
∑

µMmµ,nµ

Transpose T : L(X ⊗ Y)→ L(X ⊗ Y), Mmµ,nν 7→Mnν,mµ

Bipartite-SWAP S : L(X ⊗ Y)→ L(Y ⊗ X ), Mmµ,nν 7→Mµm,νn

Row-reshuffling Rr : L(X ⊗ Y)→ L(Y ⊗ Y ,X ⊗ X ), Mmµ,nν 7→Mmn,µν

Col-reshuffling Rc : L(X ⊗ Y)→ L(X ⊗ X ,Y ⊗ Y), Mmµ,nν 7→Mνµ,nm

The reshuffling operations are used for transforming between the Choi-matrix and super-
operator representations of CP-maps which is described in Section 2.4.1. Note that we will
generally use reshuffling R to refer to col-reshuffling Rc. Similarly we can represent the par-
tial transpose operation by only transposing the wires for X (or Y), and the partial-SWAP
operations by only swapping the left (or right) wires of M .

2.2.2 Vectorization of Matrices

We now recall the concept of vectorization which is a reshaping operation, transforming a
(m×n)-matrix into a (1×mn)-vector [HJ85]. This is necessary for the description of open
quantum systems in the superoperator formalism, which we will consider in Section 2.3.3.
Vectorization can be done with using one of two standard conventions: column-stacking

29



(col-vec) or row-stacking (row-vec). Consider two complex Hilbert spaces X ∼= Cm,Y ∼= Cn,
and linear operators A ∈ L(X ,Y) from X to Y . Column and row vectorization are the
mappings

col-vec: L(X ,Y)→ X ⊗ Y : A 7→ |A〉〉c (2.41)

row-vec: L(X ,Y)→ Y ⊗X : A 7→ |A〉〉r (2.42)

respectively, where the operation col(row)-vec when applied to a matrix, outputs a vector
with the columns (rows) of the matrix stacked on top of each other. Graphical represen-
tations for the row-vec and col-vec operations are found from bending a wire to the left
either clockwise or counterclockwise respectively:

:=
A

Ar
:=

A
Ac

(a) Row-vec (b) Col-vec

(2.43)

Vectorized matrices in the col-vec and row-vec conventions are naturally equivalent under
wire exchange (the SWAP operation)

A

Ac

A

Ar� � � (2.44)

In particular we can see that the unnormalized Bell-state |Φ+〉 ∈ X ⊗ X is in fact the
vectorized identity operator 1 ∈ L(X )

|Φ+〉 = |1〉〉r = |1〉〉c. (2.45)

We may also define a vectorization operation with respect to an arbitrary operator basis
for L(X ,Y). Let X ∼= Cdx ,Y ∼= Cdy , and Z ∼= CD where D = dxdy. Vectorization with
respect to an orthonormal operator basis {σα : α = 0, ..., D − 1} for L(X ,Y) is given by

σ-vec: L(X ,Y)→ Z : A 7→ |A〉〉σ. (2.46)

This operation extracts the coefficients of the basis elements returning the vector

|A〉〉σ :=
D−1∑

α=0

Tr[σ†αA]|α〉 (2.47)
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where {|α〉 : α = 0, ..., D − 1} is the standard basis for Z ∼= CD. This is depicted in our
graphical calculus as

Σ
†

A
AΣ (2.48)

To distinguish between these different conventions we use the notation |A〉〉x to denote
the vectorization of a matrix A, were the subscript x = c, r, σ labels which convention we
use; either c for col-vec, r for row-vec, or σ for an arbitrary operator basis.

For the case X ∼= Y ∼= Cd, we can define row-vec and col-vec in terms of Eq. (2.47) by
taking our basis to be the elementary matrix basis {Ei,j = |i〉〈j| : i, j = 0, ..., d2 − 1}, and
making the assignment α = di+ j and α = i+ dj respectively. Hence we have

|A〉〉r =
d−1∑

i,j=0

Aij |i〉 ⊗ |j〉 (2.49)

|A〉〉c =
d−1∑

i,j=0

Aij |j〉 ⊗ |i〉. (2.50)

Using the definition of the unnormalized Bell-state |Φ+〉 and summing over i and j one
can rewrite Eqs. (2.49) and (2.50) as

|A〉〉r = (A⊗ 1)|Φ+〉 (2.51)

|A〉〉c = (1⊗ A)|Φ+〉 (2.52)

which are the equational versions of our graphical definition of row and col vectorization
shown in Eq. (2.43).

When working in the superoperator formalism for open quantum systems, it is some-
times convenient to transform between vectorization conventions in different bases. Given
two orthonormal operator bases {σα} and {ωα} for L(X ,Y), the basis transformation op-
erator

Tσ→ω : Z → Z : |A〉〉σ 7→ |A〉〉ω (2.53)

transforms vectorized operators in the σ-vec convention to the ω-vec convention. Graphi-
cally this is given by

AΩ AΣTΣ®Ω= (2.54)
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The basis transformation operator Tσ→ω is given by the equivalent expressions

Tσ→ω =
∑

α

|α〉〈〈ωα |σ =
∑

α

|σα〉〉ω〈α|, (2.55)

and the corresponding graphical representations are:

(2.56)

The proof of Eq. (2.55) is as follows:

Tσ→ω|A〉〉σ =

(∑

α

|α〉〈〈ωα |σ

)
|A〉〉σ (2.57)

=
∑

α

|α〉〈〈ωα|A〉〉σ (2.58)

=
∑

α

|α〉Tr[ω†αA] (2.59)

= |A〉〉ω. (2.60)

The inverse of Tσ→ω is given by

T−1
σ→ω = T †σ→ω = Tω→σ (2.61)

and hence Tσ→ω is unitary.

For the remainder of this paper we will use the col-vec convention by default, and drop
the vectorization label subscripts unless referring to a general σ-basis. The main trans-
formation we will be interested in is then from col-vec to another arbitrary orthonormal
operator basis {σα}. Tensor networks for the change of basis Tc→σ and its inverse Tσ→c are

Tc Σ
Σ
†

TΣ c

Σ

(a) Col-vec to σ-basis (b) Row-vec to σ-basis

(2.62)

In the case where one wants to convert to row-vec convention, as previously shown the
transformation is given by

Tc→r = Tr→c = SWAP. (2.63)
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One final important result that often arises when dealing with vectorized matrices is
Roth’s Lemma for the vectorization of the matrix product ABC [HJ85]. Given matrices
A,B,C ∈ L(X ) we have

|ABC〉〉 = (CT ⊗ A)|B〉〉 (2.64)

The graphical tensor network proof of this lemma is as follows:

(2.65)

2.3 Representations of Completely Positive Maps

In this section we review several common mathematical descriptions for completely-positive
trace-preserving maps, and show how several key properties may be captured graphi-
cally using the diagrammatic notation introduced in Section 2.2. The representations
we will consider are the Kraus (or operator-sum) representation, the system-environment
(or Stinespring) representation, the Liouville superoperator description based on vector-
ization of matrices, and the Choi-matrix or dynamical matrix description based on the
Choi-Jamio lkowski isomorphism. We will also describe the often used process matrix (or
χ-matrix) representation and show how this can be considered as a change of basis of the
Choi-matrix. Following this, in Section 2.4 we will show how the graphical framework
facilitates transformations between these representations as illustrated in Fig. 2.1.

2.3.1 Kraus Representation

One of the most commonly used representations of of CPTP-maps is the Kraus [Kra83]
or operator-sum [NC00] representation. This representation is particularly useful in phe-
nomenological models of noise in quantum systems. Kraus’s theorem states that a linear
map E ∈ T (X ,Y) is CPTP if and only if it may be written in the form

E(ρ) =
D∑

α=1

KαρK
†
α where

D∑

α=1

K†αKα = 1X . (2.66)

33



The operators {Kα : α = 1, ..., D}, Kα ∈ L(X ,Y) are called the Kraus operators.The
Kraus representation of E in Eq. (2.66) has the graphical representation

E(ρ) = K ρ K† (2.67)

The maximum number of Kraus operators needed for a Kraus description of E is equal
to the dimension of L(X ,Y). For the case where X ∼= Y ∼= Cd the maximum number of
Kraus operators is d2, and the minimum number case corresponds to unitary evolution
where there is only a single Kraus operator.

It is important to note that the Kraus representation of E is not unique as there is
unitary freedom in choosing the Kraus operators. We can give preference to a particular
representation called the Canonical Kraus Representation [BZ06] which is the unique set
of Kraus operators satisfying the orthogonality relation Tr[K†αKβ] = λαδαβ. The canoni-
cal Kraus representation will be important when transforming between representations in
Section 2.4.

2.3.2 System-Environment Representation

The second representation of CPTP-maps we consider is the system-environment model [NC00],
which is typically considered the most physically intuitive description of open system evolu-
tion. This representation is closely related to (and sometimes referred to as) the Stinespring
representation as it can be thought of as an application of the Stinespring dilation theo-
rem [Sti55], which we also describe in this section. In this model we consider a system of
interest X , called the principal system, coupled to an additional system Z called the envi-
ronment. The composite system of the principal system and environment is then treated
as a closed quantum system which evolves unitarily. We recover the reduced dynamics
on the principal system by performing a partial trace over the environment. Suppose the
initial state of our composite system is given by ρ⊗ |v0〉〈v0| ∈ L(X ⊗Z), where |v0〉 ∈ Z is
the initial (pure) state of the environment. The joint evolution is described by a unitary
operator U ∈ L(X ⊗Z) and the reduced evolution of the principal system’s state ρ is given
by

E(ρ) = TrZ [U(ρ⊗ |v0〉〈v0|)U †] (2.68)

For convenience we can assume that the environment starts in a pure state |v0〉 as one can
always purify an initial mixed state, and in practice one only need consider the case where
the Hilbert space describing the environment has at most dimension d2 for X ∼= Cd [NC00].
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The system-environment representation of the CP-map E may then be represented graph-
ically as

E(ρ) =

ρ

U U †
v0 v0 (2.69)

The system-environment model is advantageous when modelling the environment as a phys-
ical system. However, care must be taken when ascribing physical reality to any particular
model as the system-environment description is not unique. This is not surprising as many
different physical interactions could give rise to the same reduced dynamics on the principal
system. This freedom manifests in an ability to choose the initial state of the environment
in the representation and then adjust the unitary operator accordingly. In practice, the
system-environment model can be cumbersome for performing many calculations where the
explicit dynamics of the environment system are irrelevant. The remaining descriptions,
which we cast into diagrammatic form, may be more convenient in these contexts.

Note that the system-environment evolution for the most general case will be an isom-
etry and this is captured in Stinespring’s representation [Sti55]. Stinespring’s dilation
theorem states that a CP-map E ∈ C(X ,Y) can be written in the form

E(ρ) = TrZ
[
AρA†

]
(2.70)

where A ∈ L(X ,Y ⊗Z) and the Hilbert space Z has dimension at most equal to L(X ,Y).
The map E is trace preserving if and only if A†A = 1X [Sti55].

In the case where Y ∼= X , the Hilbert space X ⊗ Z mapped into by the Stinespring
operator A is equivalent to the joint system-environment space in the system-environment
representation. Hence one may move from the system-environment description to the
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Stinespring representation as follows:

E(ρ) =

ρ

v0 v0
U U †

(2.71)

=

ρ

A A†
(2.72)

where |v0〉 ∈ Z is the initial state of the environment, and we have defined the Stinespring
operator

A = U · (1X ⊗ |v0〉), . (2.73)

This close relationship is why these two representations are often referred to by the same
name, and as we will show in Section 2.4.5, it is straight forward to construct a Stinespring
representation from the Kraus representation. However, generating a full description of the
joint system-environment unitary operator U from a Stinespring operator A is cumbersome.
It involves an algorithmic completion of the matrix elements in the unitary U not contained
within the subspace of the initial state of the environment [BZ06]. Since it usually suffices
to define the action of U when restricted to the initial state of the environment, which by
Eq. (2.73) is the Stinepsring representation, this is often the only transformation one need
consider.

A further important point is that the evolution of the principal system E(ρ) is guar-
anteed to be CP if and only if the initial state of the system and environment is sepa-
rable; ρXZ = ρX ⊗ ρZ . In the case where the physical system is initially correlated with
the environment, it is possible to have reduced dynamics which are non-completely posi-
tive [WHE+04, CTZ08], we discuss this situation in greater detail in Chapter 5.
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2.3.3 Superoperator Representation

We now move to the superoperator representation of a CP-map E ∈ C(X ,Y). This rep-
resentation is also referred to as the Liouville representation and the linear representa-
tion. The superoperator representation is based on the vectorization of the density matrix
ρ 7→ |ρ〉〉σ with respect to some orthonormal operator basis {σα : α = 0, ..., d2 − 1} as in-
troduced in Section 2.2.2. Once we have chosen a vectorization basis (col-vec in our case)
we define the superoperator for a map E ∈ T (X ,Y) to be the linear map

S : X ⊗ X → Y ⊗ Y : |ρ〉〉 7→ |E(ρ)〉〉 (2.74)

This is depicted graphically as

E(ρ) = S ρ (2.75)

We note that in situations where there may be ambiguity in what map the superoperator
represents we may use the notation SE to represent the superoperator for a specific channel
E . This will be useful when we are dealing with expressions involving multiple channels.

In the col-vec basis we can express the evolution of a state ρ in terms of tensor compo-
nents of S as

E(ρ)mn =
∑

µν

Snm,νµρµν . (2.76)

For the case where E ∈ T (X ), it is sometimes useful to change the basis of our super-
operators from the col-vec basis to an orthonormal operator basis {σα} for L(X ). This is
done using the basis transformation operator Tc→σ introduced in Section 2.2.2. We have

Sσ = Tc→σ · S · T †c→σ (2.77)

=
∑

αβ

Sαβ |σα〉〉〈〈σβ |. (2.78)

where the subscript σ indicates that Sσ is the superoperator in the σ-vec convention. The
tensor networks for this transformation is given by

Sσ = Tc→σ S T †c→σ (2.79)
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Note that for a general map E ∈ T (X ,Y) we could do a similar construction but would
need different bases for the initial and final Hilbert spaces L(X ) and L(Y).

The structural properties the superoperator S must satisfy for the linear map E to be
hermitian-preserving (HP), trace-preserving (TP), and completely positive (CP) are [BZ06]:

E is HP ⇐⇒ S = SS (2.80)

⇐⇒ S = S (2.81)

E is TP ⇐⇒ Smm,nν = δnν (2.82)

⇐⇒ S = (2.83)

E is CP ⇐⇒ SI⊗E |ρAB〉〉 ≥ 0 ∀ρAB ≥ 0 (2.84)

Note that there is not a convenient structural criteria on the superoperator S which specifies
if E is a CP-map. To test for positivity or complete positivity one generally uses the closely
related Choi-matrix representation.

Superoperators are convenient to use for many practical calculations. Unlike the
system-environment model the superoperator S is unique with respect to the choice of
vectorization basis. Choosing an appropriate basis to express the superoperator in can of-
ten expose certain information about a quantum system. For example, if we want to model
correlated noise for a mutli-partite system we can vectorize with respect to the mutli-qubit
Pauli basis. Correlated noise would then manifest as non-zero entries in the superoperator
corresponding to terms such as σx ⊗ σx. We discus in more detail how this may be done
in Section 2.5.2.

2.3.4 Choi-Matrix Representation

The final representation shown in Fig. 2.1 is the Choi matrix [Cho75], or dynamical ma-
trix [BZ06]. This is an application of the Choi-Jamio lkowski isomorphism which gives a
bijection between linear maps and linear operators [Jam72]. Similarly to how vectorization
mapped linear operators in L(X ,Y) to vectors in X ⊗Y or Y ⊗X , the Choi-Jamio lkowski
isomorphism maps linear operators in T (X ,Y) to linear operators in L(X⊗Y) or L(Y⊗X ).
The two conventions are

col-Λ : T (X ,Y)→ L(X ⊗ Y) : E 7→ Λc (2.85)

row-Λ : T (X ,Y)→ L(Y ⊗ X ) : E 7→ Λr. (2.86)
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For X ∼= Cd, the explicit construction of the Choi-matrix is given by

Λc =
d−1∑

i,j=0

|i〉〈j| ⊗ E(|i〉〈j|) (2.87)

Λr =
d−1∑

i,j=0

E(|i〉〈j|)⊗ |i〉〈j| (2.88)

where {|i〉 : i = 0, . . . , d− 1} is an orthonormal basis for X .

We call the two conventions col-Λ and row-Λ due to their relationship with the vec-
torization conventions introduced in Section 2.2.2. The Choi-Jamio lkowski isomorphism
can also be thought of as having a map E ∈ T (X ,Y) act on one half of an unnormalized
Bell-state |Φ+〉 =

∑
i |i〉 ⊗ |i〉 ∈ X ⊗ X , and hence these conventions corresponding to

which half of the Bell state it acts on:

Λc = (I ⊗ E)|Φ+〉〈Φ+| (2.89)

Λr = (E ⊗ I)|Φ+〉〈Φ+| (2.90)

where I ∈ T (X ) is the identity map. In what follows we will use the col-Λ convention and
drop the subscript from Λc. We note that the alternative row-Λ Choi-matrix is naturally
obtained by applying the bipartite-SWAP operation to Λc. In addition, as with the super-
operator, we will sometimes use the notation that ΛE to represent the Choi-Matrix for a
specific channel E .

As will be considered in Section 2.4.3, if the evolution of the CP map E is described
by a Kraus representation {Ki}, then the Choi-Jamio lkowski isomorphism states that we
construct the Choi-matrix by acting on one half of a bell state with the Kraus map as
shown:

Λ =

K K†
= K K† (2.91)

Note that in general any tensor network describing a linear map E , not just the Kraus
description, may be contracted with one-half of the maximally entangled state |Φ+〉〈Φ+| to
construct the Choi-matrix.

With the Choi-Jamio lkowski isomorphism defined, the evolution of a quantum state in
terms of the Choi-matrix is then given by

E(ρ) = TrX
[
(ρT ⊗ 1Y)Λ

]
(2.92)
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or in terms of tensor components

E(ρ)mn =
∑

n,m

Λµm,νnρµν . (2.93)

The tensor network for Eq. (2.92) is given by

L
ΡT

L

Ρ

=EHΡL = (2.94)

The graphical proof of Eq. (2.94) for the case where E is described by a Kraus representation
is as follows:

!!Ρ#$

%

Ρ

Ρ! !
!$

Ρ

! !
!$

(2.95)

The structural properties the Choi-matrix Λ must satisfy for the linear map E to be
hermitian-preserving (HP), trace-preserving (TP), and completely positive (CP) are [BZ06]:

E is HP ⇐⇒ Λ† = Λ (2.96)

⇐⇒ =L L (2.97)

E is TP ⇐⇒ TrY [Λ] = 1X (2.98)

⇐⇒
=

L (2.99)

E is CP ⇐⇒ E is CP ⇐⇒ Λ ≥ 0. (2.100)
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The Choi-matrix for a given map E is unique with respect to the isomorphism con-
vention chosen. We will provide tensor networks to illustrate a close relationship to the
superoperator formed with the corresponding vectorization convention in Section 2.4.1.
The Choi-matrix finds practical utility as one can check the complete-positivity of the map
E by computing the eigenvalues of Λ. It is also necessary to construct the Choi-matrix for
a given superoperator to transform to the other representations.

Due to the similarity of vectorization and the Choi-Jamio lkowski isomorphism, one
could then ask what happens if we vectorize in a different basis. This change of basis of the
Choi-matrix is more commonly known as the χ-matrix which we will discuss next. However,
such a change of basis does not change the eigen-spectrum of a matrix, so the positivity
criteria in Eq. (2.100) holds for any basis. Another desirable property of Choi matrices is
that they can be directly determined for a given system experimentally by ancilla assisted
process tomography (AAPT) [DLP03, ABJ+03]. This is an experimental realization of the
Choi-Jamio lkowski isomorphism which we discuss in detail in Section 3.5.1.

2.3.5 Process Matrix Representation

As previously mentioned, one could consider a change of basis of the Choi-matrix analogous
to that for the superoperator. The resulting operator is more commonly known as the χ-
matrix or process matrix [NC00]. Consider Hilbert spaces X ∼= Cdx , Y ∼= Cdy and let D =
dxdy, and Z ∼= CD. If one chooses an orthonormal operator basis {σα : α = 0, ..., D−1} for
L(X ,Y), then a CPTP map E ∈ C(X ,Y) may be expressed in terms of a matrix χ ∈ L(Z)
as

E(ρ) =
D−1∑

α,β=0

χαβσαρσ
†
β (2.101)

where the process matrix χ is unique with respect to the choice of basis {σα}.
The process matrix with respect to an orthonormal operator basis {σα} is related to

the Choi matrix by the change of basis

χ = Tc→σ · Λ · T †c→σ (2.102)

⇒ Λ =
∑

α,β

χαβ|σα〉〉〈〈σβ| (2.103)

where Tc→σ is the vectorization change of basis operator introduced in Section 2.2.2. Thus

41



evolution in terms of the χ-matrix is analogous to our Choi evolution as shown below:

!!Ρ#
ΧTc%Σ

† Tc%Σ

Ρ

'

(2.104)

Starting with the expression for process matrix evolution in Eq. (2.101), the graphical
proof asserting the validity of Eq. (2.102) is as follows

��Ρ� Σ†Σ Ρ

Χ

Ρ

ΧΣ Σ†

Χ ΣΣ

Ρ

ΧTc�Σ
†

Tc�Σ

Ρ

�

�

�

�

�
�

Ρ

(2.105)

42



We also see that if one forms the process matrix with respect to the col-vec basis σα = Ej,i
where α = i+ dj and d is the dimension of H, then we have χ = Λ.

Since the process matrix is a unitary transformation of the Choi-matrix, it shares the
same structural conditions for hermitian preservation and complete-positivity as for the
Choi-matrix given in Eq. (2.96) and Eq. (2.100) respectively. The condition for it to be
trace preserving may be written in terms of the matrix elements and basis however. These
conditions are

E is TP⇐⇒ TrY
[
T †c→σχTc→σ

]
= 1X (2.106)

⇐⇒
∑

α,β

χα,βσ
T
ασβ = 1X (2.107)

E is HP⇐⇒ χ† = χ (2.108)

E is CP⇐⇒ χ ≥ 0. (2.109)

To convert a process-matrix χ in a basis {σα} to another orthonormal operator basis
{ωα}, we may use the inverse transformation to the superoperator change of basis from
Section 2.3.3. That is

χω = Tσ→ω · χσ · T †σ→ω (2.110)

=
∑

αβ

χσαβ |σα〉〉ω〈〈σβ |ω (2.111)

where the superscripts σ, ω denote the basis of the χ-matries. This is illustrated as

Χ
Ω

Χ
Σ T ΩT Ω

†
(2.112)

2.4 Transforming Between Representations

We now proceed to the task of describing how one may transform between the representa-
tions of completely-positive trace-preserving maps depicted in Fig. 2.1. In particular, the
transformations depicted as solid arrows in Fig. 2.1 have succinct descriptions in the graph-
ical calculus we introduced in Section 2.2. These transformations are based on the wire
bending dualities for reshuffling, vectorization, and the Choi-Jamio lkowski isomorphism.
While the remaining transformations depicted as dashed lines are not based on dualities,
but rather non-linear decompositions, or constructions, they also have diagrammatic rep-
resentations in our graphical calculus for completely positive maps.
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2.4.1 Transformations Between the Choi-Matrix and Superoper-
ator

The Choi-matrix and superoperator are naturally equivalent under the reshuffling wire
bending duality introduced in Section 2.2.1. In the col (row) convention we may transform
between the two by applying the bipartite col (row)-reshuffling operation R introduced
in Section 2.2.1. Let E ∈ T (X ,Y) be an operator map, and let Λ ∈ L(X ⊗ Y), and
S ∈ L(X ⊗ X ,Y ⊗ Y) respectively be the corresponding Choi-matrix and superoperator
for E . Then we have

Λ = SR S = ΛR (2.113)

The tensor networks for these transformations using the col convention are

� S� S �� (2.114)

In terms of tensor components we have Λmn,µν = Sνn,µm, where m,n and µ, ν index the
standard bases for X and Y respectively. Graphical proofs of the relations ΛRc = S and
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SRc = Λ are given below

��Ρ�

�

�

�

Ρ

�

Ρ

�
�

Ρ

�
��Ρ�

�
��Ρ�

� Ρ�

S

Ρ

S
Ρ�

S
Ρ

S Ρ

��Ρ�

��Ρ�

�

�

�

�

�

�

Ρ

�

(2.115)

To transfer between a χ-matrix with respect to an arbitrary operator basis, and a
superoperator with respect to an arbitrary vectorization basis, we must first convert both
to col-vec (or row-vec) convention and then proceed by reshuffling.

Note that reshuffling is it’s own inverse, ie (ΛR)R = Λ, hence the solid bi-directional
arrow connecting the Choi-matrix and superoperator representations in Fig. 2.1. This is
the only transformation between the representations we consider which is linear, bijective,
and self-inverse.

2.4.2 Transformations to the Superoperator

Transformations to the superoperator from the Kraus and system-environment represen-
tations of a CP-map are also accomplished by a wire-bending duality, in this case vector-
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ization. However, unlike the bijective equivalence of the Choi-matrix and superoperator
under the reshuffling duality, the vectorization duality is only surjective.

If we start with a Kraus representation for a CPTP map E ∈ C(X ,Y) given by {Kα :
α = 0, ..., D − 1}, with Kα ∈ L(X ,Y), we can construct the superoperator S ∈ L(X ⊗
X ,Y ⊗ Y) by

S =
D−1∑

α=0

Kα ⊗Kα. (2.116)

The corresponding tensor network is

K

K
S (2.117)

and the graphical proof of this relationship follows directly from Roth’s lemma:

!!Ρ#
ΡK K† ΡK

K
Ρ"$ $$

(2.118)

Starting with a system-environment (or Stinespring) representation of a map E ∈
C(X ,Y) with input and output system Hilbert spaces X ∼= Cdx and Y ∼= Cdy respec-
tively, and environment Hilbert space Z ∼= CD with 1 ≤ D ≤ dxdy, we may construct
the superoperator for this map from the joint system-environment unitary U and initial
environment state |v0〉 by

S =
∑

α

〈α|U |v0〉 ⊗ 〈α|U |v0〉, (2.119)

where {|α〉 : α = 0, ..., D − 1} is an orthonormal basis for Z. The corresponding tensor
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network is

v

v

U

U

S �
0

0

(2.120)

As with the Kraus to superoperator transformation, the proof of Eq. (2.119) follows from
Roth’s lemma.

Note that while the vectorization wire bending duality is invertible, these transforma-
tions to the superoperator from the Kraus and system-environment representations are
single directional. In both cases injectivity fails as the superoperator is unique, while
both the Kraus and system-environment representations are not. Hence we have solid
single directional arrows in Fig. 2.1 connecting both the Kraus and system-environment
representations to the superoperator. The inverse transformation from a superoperator to
the Kraus or system-environment representation requires a canonical decomposition of the
operator S (via first reshuffling to the Choi-matrix), which is detailed in Sections 2.4.4
and 2.4.5.

2.4.3 Transformations to the Choi-Matrix Representation

Transforming to the Choi-matrix from the Kraus and system-environment representations
is accomplished via a wire-bending duality which captures the Choi-Jamio lkowski isomor-
phism. As with the case of transforming to the superoperator, this duality transformation
is surjective but not injective.

Given a set of Kraus matrices {Kα : α = 0, ..., D − 1} where Kα ∈ L(X ,Y) for a
CPTP-map E ∈ C(X ,Y), one may form the Choi-Matrix Λ as was previously illustrated
in Eq. (2.91) in Section 2.3.4. In terms of both Dirac notation and tensor components we
have:
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Λ =
∑

i,j

(
|i〉〈j| ⊗

∑

α

Kα|i〉〈j|K†α

)
(2.121)

=
∑

α

|Kα〉〉〈〈Kα| (2.122)

Λmn,µν =
∑

α

(Kα)µm(Kα)νn. (2.123)

where {|i〉} is an orthonormal basis for X , m,n index the standard basis for X , and µ, ν
index the standard basis for Y .

Given a system-environment representation with joint unitary U ∈ L(X⊗Z) and initial
environment state |v0〉 ∈ Z we have

Λ =
∑

i,j

(
|i〉〈j| ⊗ TrZ

[
U |i〉〈j| ⊗ |v0〉〈v0|U †

])
(2.124)

Graphically this is given by

v v

U†U
0 0

(2.125)

The proof of these transformations follow directly from the definition of the Choi-
matrix in Eq. (2.87), and the tensor networks for the evolution via the Kraus or system-
environment representations given in Eq. (2.67) and Eq. (2.69) respectively. As with the
vectorization transformation to the superoperator discussed in Section 2.4.2, even though
the Choi-Jamio lkowski isomorphism is linear these transformations are single directional
as injectivity fails due to the non-uniqueness of both the Kraus and system-environment
representations. Hence we have the solid single-directional arrows connecting both the
Kraus and system-environment representations to the Choi-matrix in Fig. 2.1.

This completes our description of the linear transformations between the representations
of CP-maps in Fig. 2.1. We will now detail the non-linear transformations to the Kraus
and system environment representations.

48



2.4.4 Transformations to the Kraus Representation

We may construct a Kraus representation from the Choi-matrix or system-environment
representation by the non-linear operations of spectral-decomposition and partial trace
decomposition respectively. To construct a Kraus representation from the Superoperator
however, we must first reshuffle to the Choi-matrix.

To construct Kraus matrices from a Choi matrix we first recall the graphical Spec-
tral decomposition we introduced as an example of our color summation convention in
Eq. (2.10). If E is CP, by Eq. (2.100) we have Λ ≥ 0 and hence the spectral decomposition
of the Choi-matrix is given by

Λ =
∑

α

µα|φα〉〈φα|, (2.126)

where µα ≥ 0 are the eigenvalues, and |φα〉 the eigenvectors of Λ. Hence we can define
Kraus operators Kα = λαAα where λα =

√
µα and Aα is the unique operator satisfying

|Aα〉〉 = |φα〉 as illustrated:

ΦΑ ΛΑKΑ = (2.127)

The number of Kraus operators will be equal to the rank r of the Choi-matrix, where
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1 ≤ r ≤ dim(L(X ,Y)). The graphical proof of Eq. (2.126) is as follows:

��Ρ� �
�

Ρ

ΡK K
†

Φ ΦΛ�

Ρ

�

Ρ

Λ

A A†

Λ

�

�

(2.128)

The proof that Kraus operators satisfy the completeness relation follows from the trace
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preserving property of Λ in Eq. (2.98):

� Λ Φ ΛΦ

��

KK
†

�

�

ΦΛ�Φ

�

(2.129)

Note that since Λ, and the χ-matrix are related by a unitary change of basis, the Kraus
representations constructed from their respective spectral decompositions will also be re-
lated by the same transformation. Each will give a unitarily equivalent Canonical Kraus
representation of E since the eigen-vectors are orthogonal. Thus we have described the
arrow in Fig. 2.1 connecting the Choi-matrix to the Kraus representation. It is represented
as a dashed arrow as it involves a non-linear decomposition, and is single directional as
this representation transformation is injective, but not surjective. Surjectivity fails as we
can only construct the canonical Kraus representations for E . The reverse transformation
is given by the Jamio lkowski isomorphism described in Section 2.4.3.

Starting with a system-environment representation with joint unitary U ∈ L(X ⊗ Z)
and initial environment state |v0〉 ∈ Z, we first choose an orthonormal basis {|α〉 : α =
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0, ..., D−1} for Z. We then construct the Kraus representation by decomposing the partial
trace in this basis as follows

E(ρ) = TrE
[
U (ρ⊗ |v〉〈v|)U †

]
(2.130)

=
D−1∑

α=0

〈α|U |v0〉ρ〈v0|U †|α〉 (2.131)

=
D−1∑

α=0

KαρK
†
α. (2.132)

Hence we may define Kraus matrices

Kα = 〈α|U |v0〉 (2.133)

leading to the tensor network

v

U

�KΑ

Α
�

(2.134)
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The graphical proof of Eq. (2.133) and Eq. (2.134) is as follows

K†K Ρ

�

�

��Ρ�

U†U

Ρ

Ν� Ν�

�

U†U

Ρ

Ν� Ν�

�

Ρ

U
Ν�

U†
Ν�

(2.135)

Though the Kraus and system-environment representations are both non-unique, for
a fixed environment basis this partial trace decomposition is an injective transformation
between the Kraus and Stinespring representations (or equivalently between the Kraus and
system-environment representations when the joint unitary is restricted to a fixed initial
state of the environment). To see this let {Kα} and {Jα} be two Kraus representations
for a CPTP-map E ∈ C(X ,Y), constructed from Stinespring representations A and B
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respectively. We have that

Kα = Jα ⇔ (Kα)ij = (Jα)ij (2.136)

⇔ Aiα,j = Biα,j (2.137)

⇔ A = B. (2.138)

Since the Stinespring operators satisfy A = U |v0〉 and B = V |v0〉 for some joint unitaries
U and V , we must have that U0 = V0 where U0 and V0 are the joint unitaries restricted to
the subspace of the environment spanned by |v0〉.

This transformation can be thought of as the reverse application of the Stinespring
dilation theorem, and hence for a fixed choice of basis (and initial state of the environment)
it is invertible. The inverse transformation is the Stinespring dilation, and as we will show
in Section 2.4.5, since the inverse transformation is also injective this transformation is a
bijection. However, since the partial trace decomposition involves a choice of basis for the
environment it is non-linear — hence we use a dashed bi-directional arrow to represent the
transformation from the system-environment representation to the Kraus representation
in Fig. 2.1.

2.4.5 Transformations to the System-Environment representa-
tion

We now describe the final remaining transformation given in Fig. 2.1, the bijective non-
linear transformation from the Kraus representation to the system-environment, or Stine-
spring, representation. The system-environment representation is the most cumbersome
to transform to since it is it involves the unitary completion of a Stinespring dilation of
a Kraus representation. Thus from a superoperator one must first reshuffle to the Choi-
matrix, then from the Choi-matrix description one must then spectral decompose to the
canonical Kraus representation, before finally constructing the system-environment as fol-
lows.

Let {Kα : α = 0, ..., D − 1}, where 1 ≤ D ≤ dim(L(X ,Y)), be a Kraus representation
for the CP-map E ∈ T (X ,Y). Consider an ancilla Hilbert space Z ∼= CD, this will model
the environment. If we choose an orthonormal basis for the environment, {|α〉 : α =
0, ..., D − 1}, then by Stinesprings dilation theorem we may construct the Stinespring
matrix for the CP map E by

A =
D−1∑

α=0

Kα ⊗ |α〉. (2.139)
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Recall from Section 2.3.2 that the Stinespring representation is essentially the system-
environment representation when the joint unitary operator is restricted to the subspace
spanned by the initial state of the environment. Hence if we let |v0〉 ∈ Z be the initial
state of the environment system, then this restricted unitary is given by

U0 =
∑

α

Kα ⊗ |α〉〈v0|, . (2.140)

The tensor networks for Eq. (2.139) and Eq. (2.140) are:

K

AU
Ν�

� �

Ν�

K

U0
�

(a) Stinespring operator (a) Restricted unitary

(2.141)

The graphical proof that this construction gives the required evolution of a state ρ is as
follows

U†U

Ρ

Ν� Ν�

K†

Ν�

K

Ν�

Ρ

Ν�

�

K†K Ρ

K†K Ρ

��Ρ�

�

�

�

Ν�

0 0

(2.142)
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In principle, one may complete the remaining entries of this matrix to construct the full
matrix description for the unitary U , however such a process is cumbersome and is unnec-
essary to describe the evolution of the CP-map E [BZ06].

We have now finished characterizing the final transformations depicted in Fig. 2.1 con-
necting the Kraus representation to the system-environment representation by Stinespring
dilation. As previously mentioned in Section 2.4.4, for a fixed choice of basis and ini-
tial state for the environment, the transformation between Kraus and Stinespring rep-
resentations is bijective (and hence so is the transformation between Kraus and system-
environment representations when restricted to the subspace spanned by the initial state
of the environment). Though both these representations are non-unique, by fixing a ba-
sis and initial state for the environment we ensure that this transformation is injective.
To see this let U0 and V0 be unitaries restricted to the state |v0〉 constructed from Kraus
representations, {Kα} and {Jα} respectively, for E ∈ C(X ,Y). Then

U0 = V0 ⇔
∑

α

Kα ⊗ |α〉〈v0| =
∑

α

Jα ⊗ |α〉〈v0| (2.143)

⇔
∑

α

Kα〈β|α〉 =
∑

α

Jα〈β|α〉 (2.144)

⇔ Kβ = Jβ (2.145)

Bijectivity then follows from the injectivity of the inverse transformation — the previously
given construction of a Kraus representation by the partial trace decomposition of a joint
unitary operator in Eq. (2.134).

2.5 Composite Channels

We have now introduced all the basic elements of our graphical calculus for open quan-
tum systems and shown how it may be used to graphically depict representations, and
transformations between representations, for CP-maps. In this section we move onto more
advanced applications of the graphical calculus. We will demonstrate how to apply vec-
torization to composite quantum systems, and in particular how to compose multiple su-
peroperators together, and construct effective reduced superoperators from tracing out a
subsystem. We also demonstrate the superoperator representation of various linear trans-
formations of matrices. These constructions will be necessary for Chapter 3 where we use
them for succinct proofs of several common quantities used in quantum information theory.
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2.5.1 Vectorization of Composite Systems

We now describe how to deal with vectorization of the general case of composite system of
N finite dimensional Hilbert spaces. Let Xk ∼= Cdk be a dk-dimensional complex Hilbert
space, and let {|ik〉 : ik = 0, ..., dk − 1} be the standard basis for Xk. We are interested in
the composite system of N such Hilbert spaces,

X = X1 ⊗ ...⊗XN =
N⊗

k=1

Xk (2.146)

which has dimensions D =
∏N

k=1 dk. Let {|α〉 : α = 0, ..., D−1} be the computational basis
for X . We can consider vectors in X and the dual space X † as either 1st-order tensors where
their single wire represents an index running over α, or as a Nth-order tensor where each
of the N wire corresponds to an individual Hilbert space Xk. The correspondence between
these two descriptions is made by the concatenation of the composite indices according to
the lexicographical order

α =
N∑

k=1

c(k) ik where c(k) :=
D∏k
j=1 dj

. (2.147)

Note that one could also consider the object as any order tensor between 1st and Nth by
the appropriate concatenation of some subset of the the wires.

We define the unnormalized Bell-state on the composite system X ⊗X to be the state
formed by the column (or row) vectorization of the identity operator 1X ∈ L(X )

|1X 〉〉 =
D∑

α=0

|α〉 ⊗ |α〉

= align

d1−1∑

i1=0

....

dN−1∑

iN=0

|i1, ..., iN〉 ⊗ |i1, ..., iN〉. (2.148)

where |i1, ..., iN〉 := |i1〉 ⊗ ...⊗ |iN〉. The tensor network for this state is

�

���
����

�N

N
(2.149)
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As with the single system case the column vectorization of a composite linear operator
A ∈ L(X ,Y), where Y =

⊗N
k=1 Yk, is given by bending all the system wires upwards, or

equivalently by the identity
|A〉〉 ≡ (1⊗ A)|1〉〉. (2.150)

Graphically this is given by

A
A

���
����

�

���

���
���

�

� �
��

�
� (2.151)

Note that the order of the subsystems for the bent wires is preserved by the vectorization
operation.

In some situations it may be preferable to consider vectorization of the composite system
in terms of vectorization of the individual component systems. Transferring between this
component vectorization and the joint-system vectorization can be achieved by an appro-
priate index permutation of vectorized operators [GTW09] which has a succinct graphical
expression when cast in the tensor network framework.

Suppose the operator A ∈ L(X ,Y), where X =
⊗N

k=1Xk, Y =
⊗N

k=1 Yk, is composed
of subsystem operators such that

A = A1 ⊗ ...⊗ AN (2.152)

where Ak ∈ L(Xk,Yk) for k = 1, ..., N . As previously stated the vectorized composite
operator |A〉〉 is a vector in the Hilbert space X ⊗ Y .

We define an operation VN called the unravelling operation, the action of which unravels
a vectorized matrix |A〉〉 = |A1 ⊗ . . .⊗ AN〉〉 into the tensor product of vectorized matrices
on each individual subsystem Xk ⊗ Yk [GTW09]

VN |A1 ⊗ . . .⊗ AN〉〉 = |A1〉〉 ⊗ . . .⊗ |AN〉〉 (2.153)

The inverse operation then undoes the unravelling

V−1
N

(
|A1〉〉 ⊗ . . .⊗ |AN〉〉

)
= |A1 ⊗ . . .⊗ An〉〉. (2.154)
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More generally the unravelling operation VN is given by the map

VN : |xX 〉 ⊗ |yY〉 7−→
N⊗

k=1

(|xk〉 ⊗ |yk〉) (2.155)

where |xX 〉 ≡ |x1〉 ⊗ . . .⊗ |xN〉, |yY〉 ≡ |y1〉 ⊗ . . .⊗ |yN〉. Hence we can write VN in matrix
form as

VN =
∑

i1,...,iN

∑

j1,...,jN

|i1, j1, . . . , iN , jN〉〈iX , jY |. (2.156)

where |iX 〉 ≡ |i1〉 ⊗ . . .⊗ |iN〉, |jY〉 ≡ |j1〉 ⊗ . . .⊗ |jN〉, and |ik〉, |jl〉 are the standard bases
for Xk and Yl respectively.

We can also express VN as the composition of SWAP operations between two systems.
For the previously considered composite operator A ∈ L(X ,Y) we have that |A〉〉 has
2N subsystems. If we label the SWAP operation between two subsystem Hilbert spaces
indexed by k and l by SWAPk:l, where 1 ≤ k, l ≤ 2N , then the unravelling operation can
be composed as

VN = WN−1...W1 (2.157)

where

Wk =
k−1∏

j=0

SWAPN−k+2j+1:N−k+2j+2. (2.158)

For example

W1 = SWAPN :N+1 (2.159)

W2 = SWAPN−1:NSWAPN+1:N+2

WN−1 = SWAP2:3SWAP4:5 . . . SWAP2N−2:2N−1.

While this equation looks complicated, it has a more intuitive construction when depicted
graphically. The tensor networks for the unravelling operation in the N = 2, 3 and 4 cases
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are shown below

(a) V2 (a) V3 (a) V4

(2.160)

We also present a graphical proof of this for the N = 3 case:

A1

A2

A3

A1

A2

A3

A1

A2

A3

A1

A2

A3

A
A ! !

! !

!

(2.161)
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2.5.2 Composing Superoperators and Choi-Matrices

We now discuss how to compose superoperators and Choi-matrices on individual subsys-
tems to form the correct operators on the composite system. As motivation for this we
first consider the case of combining two superoperators S1, and S2. If we construct a joint
system superoperator via tensor product (S1 ⊗ S2) this composite operator acts on the
tensor product of vectorized inputs |ρ1〉〉 ⊗ |ρ2〉〉, rather than the the vectorization of the
composite input |ρ1 ⊗ ρ2〉〉. To construct the correct composite superoperator for input
|ρ1 ⊗ ρ2〉〉 we may use the unravelling operation VN from Eq. (2.157) and its inverse.

Consider a set of channels {Ek : k = 1, ..., N} where Ek ∈ T (Xk,Yk) with superoperator
and Choi-matrix Sk and Λk respectively. The composite channel E ∈ T (X ,Y), where
X =

⊗N
k=1Xk, Y =

⊗N
k=1 Yk may be constructed in terms of the composite superoperator

S and Choi-matrix Λ as

S = V†N (S1 ⊗ . . .⊗ SN)VN (2.162)

Λ = V†N (Λ1 ⊗ . . .⊗ ΛN)VN . (2.163)

The reason that the transformation is the same for both superoperators and Choi-matrices,
is that the Choi-matrix may be defined in terms of vectorization as was shown in Eq. (2.91).
The tensor networks for these transformations in the N = 2 case are

S =

S1

S2
(2.164)

Λ =

Λ1

Λ2

(2.165)
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For the N = 3 case they are

S =

S1

S2

S3

(2.166)

Λ =

Λ1

Λ2

Λ3

(2.167)

Composing channels from individual subsystem channels is useful when performing the
same computations for multiple identical systems. For an example we consider vectoriza-
tion in the Pauli-basis for an N -qubit system. While it is generally computationally more
efficient to perform vectorization calculations in the col-vec (or row-vec) basis, as these may
be implemented using structural operations on arrays, it is often convenient to express the
superoperator in the Pauli basis, or the Choi-matrix in the χ-matrix representation, when
we are interested in determining the form of correlated errors. However, transforming from
the col-vec to the Pauli-basis for multiple (and possibly arbitrary) number of qubits is
inconvenient. Using our unravelling operation we can instead compute the single qubit
change of basis superoperator Tc→σ from Eq. (2.55), where σ = {1, X, Y, Z}/

√
2 is the

Pauli-basis for a single qubit, and use this to generate the transformation operator for
multiple qubits. In the case of N -qubits we can construct the basis transformation matrix
as

T (N)
c→σ = V†N · T⊗Nc→σ · VN . (2.168)

The composite system superoperator and χ-matrix in the Pauli-basis are then given by

Sσ = T (N)
c→σ · S · T (N)†

c→σ (2.169)

χ = T (N)
c→σ · Λ · T (N)†

c→σ (2.170)
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The same transformation can be used for converting a state ρ = ρ1 ⊗ . . . ⊗ ρN to the
Pauli basis: |ρ〉〉σ = T

(N)
c→σ|ρ〉〉c. These unravelling techniques are also useful for applying

operations to a limited number of subsystems in a tensor network as used in many tensor
network algorithms.

2.5.3 Reduced Channels

We now discuss the inverse case of Section 2.5.2 and show how to construct reduced chan-
nels from channels on composite systems. We define a reduced channel to be a channel
acting on a subsystem or some set of subsystems by removing the part of the channel
acting on the remainder of the subsystems of a composite system. This removal may be
achieved in several ways and we consider the following:

1. Pre-selection: Involves taking the action of a channel when a removed subsystem is
preselected to be in a certain known state. This channel will be CPTP if the original
composite channel is CPTP.

2. Averaging over inputs: Involves averaging the action of the channel over all possible
input states of the removed subsystems. This can represent a lack of knowledge of the
subsystems and can be written as a special case of pre-selection where we pre-select
on the maximally mixed state.

3. Post-selection: Involves taking the action of a channel when a removed subsystem is
measured and post-selected to be in a certain known state. This reduced channel will
be CP if the composite channel is CP, however, since this involves a measurement
the resulting channel will not generally be TP, and we may not simply renormalize as
the probability of the post-selection succeeding will in general depend on the reduced
channels input state.

4. Averaging over outputs: Involves averaging the action of the channel over all possible
output states of the removed subsystems. As with averaging over inputs this can
be written as a special case of post-selection where we post-select on the maximally
mixed state, however unlike general post-selection, if the original channel is TP the
reduced channel will be TP if multiply it be the dimension of Y2. This is equivalent
to performing a partial trace over the output.

We will now discuss how to implement each of these cases, and how to combine them to
combine them. For simplicity we will restrict ourselves to the bipartite case where we have
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a channel E ∈ T (X ,Y) across two subsystems with input and output spaces X = X1 ⊗X2

and Y = Y1 ⊗ Y2 respectively.

We start with the case of pre-selection. Suppose the second subsystem can be assumed
to initially be in the state ρ2 ∈ D(X2). We may construct the superoperator and Choi-
matrix for the resulting effective channel Epre

ρ2
∈ T (X1,Y) as follows

Spre

ρ2 =
ρ2

S (2.171)

Λpre

ρ2 =

ρ2

Λ
(2.172)

In terms of equations these are given by

Spre
ρ2

= S V†2 |ρ2〉〉′ (2.173)

Λpre
ρ2

= TrX2 [(1X1 ⊗ ρT2 ⊗ 1Y)ΛE ] (2.174)

where we have assumed the identity on the first subsystem in |ρ2〉〉′ ≡ 1X1 ⊗ 1X1 ⊗ |ρ2〉〉.
If is easy to verify via the construction in Eq. (2.172) that the channel E is a CPTP map,
then the pre-selected reduced channel Epre is also CPTP.

In the case of constructing a post-selected channel we suppose that we measure the
output state of second subsystem, and post select on finding it to be in the state τ2 ∈ D(Y2).
We may construct the superoperator and Choi-matrix for the resulting effective channel
Eprost
τ2
∈ T (X ,Y1) as follows

Spost

τ2 =
τ2

S (2.175)
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Λpost

τ2 =

τT2

Λ
(2.176)

In terms of equations these are given by

Spost
τ2

= 〈〈τ2 |′ V2 S (2.177)

Λpost
τ2

= TrY2 [(1X ⊗ 1Y1 ⊗ τ2)ΛE ] (2.178)

where we have assumed the identity on the first subsystem in 〈〈τ2 |′ ≡ 1Y1 ⊗ 1Y1 ⊗ 〈〈τ2 |.
We note that in general this effective channel Epost

τ2
is not properly normalized as per the

conventions in Section 2.3. Hence while Epost
τ2

will be CP if E is CP, it will in general be
trace deceasing due to the probability of the post-selection succeeding. For it to be able
to be renormalized to TP channel we would require TrY [(1X ⊗ 1Y1 ⊗ τ2)ΛE ] = p 1X .

For averaging over the inputs or outputs we use the result that for a state space Z ∼= Cd,
since density matrices form a convent set, averaging over states ρ ∈ D(Z) is equivalent to
averaging over pure states |ψ〉ψ ∈ D(Z) with

∫
dρ ρ =

∫
dψ |ψ〉〈ψ| = 1

d
. (2.179)

If we average over input states ρ2 ∈ D(X2) over the second subsystem we may construct
the superoperator and Choi-matrix for the resulting effective channel Epre

ave ∈ T (X1,Y) as
follows

Spre

ave = Sd−1
x2 (2.180)
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Λpre

ave = Λ

d−1
x2

(2.181)

In terms of equations these are given by

Spre
ave =

1

dx2
S V†2 |1X2〉〉′ (2.182)

Λpre
ave =

1

dx2
TrX2 [ΛE ] (2.183)

where X2
∼= Cdx2 , and we have assumed the identity on the first subsystem in |1X2〉〉′ ≡

1X1 ⊗ 1X1 ⊗ |1X2〉〉.
Finally, if we average over output states τ2 ∈ D(Y2) of the second subsystem we may

construct the superoperator and Choi-matrix for the resulting effective channel Epost
ave ∈

T (X ,Y1) as follows

Spost

ave = S (2.184)

Λpost

ave =
Λ

(2.185)
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In terms of equations these are given by

Spost
ave = 〈〈1Y2 |′ V2 S (2.186)

Λpost
ave = TrY2 [ΛE ] (2.187)

and we have assumed the identity on the first subsystem in 〈〈1Y2 |′ ≡ 1Y1 ⊗ 1Y1 ⊗ 〈〈1Y2 |.
Combining the above constructions we may construct various reduced channels by aver-

aging, pre-selecting or post-selecting channels. For more than two systems we may combine
these with the results from Section 2.5.2 to construct reduced channels from an arbitrary
number of subsystems. We finish this section with two important cases of reduced channels.

2.5.4 Partial Trace of a Channel

We now formally define what we mean by the partial trace of a channel. This is a reduced
channel where we average over both the input and output states of a subsystem. For a
channel E ∈ T (X ,Y), with X = X1 ⊗ X2,Y = Y1 ⊗ Y2 the partial trace over subsystem 2
result is the effective channel E1 ∈ T (X1,Y1)

ΛE1 =
Λ

d−1
x2 (2.188)

SE1 = Sd−1
x2

(2.189)

In terms of equations these are given by

SE1 =
1

d2

〈〈1Y2 |′ V2 SV†2 |1Y2〉〉′ (2.190)

ΛE1 =
1

d2

Tr2[ΛE ] ≡
1

d2

TrX2,Y2 [ΛE ] (2.191)
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where dy2 = dim(Y2) and Tr2 is short hand for TrX2,Y2 . This is simply a combination of
the reduced channels for averaging over inputs and outputs of the second subsystem.

For the general case of a channel E ∈ T (X ,Y), with X =
⊗N

k=1Xk,Y =
⊗N

k=1 Yk we
have that the partial trace over subsystem j is given by

ΛEj =
1

dyj
Trj[ΛE ] ≡

1

dyj
TrXj ,Yj [ΛE ] (2.192)

where dyj = dim(Yj), and we use the notation j = 1, . . . , j − 1, j + 1, . . . , N , so that Ej is
the effective channel with subsystem j removed.

Equivalently we can define an effective channel Ej ∈ T (Xj,Yj) acting only subsystem j
by tracing over the remaining subsystems

ΛEj =
1

Dj

Trj[ΛE ] (2.193)

where Dj ≡
∏N

k=1,k 6==j dyk .

2.6 Matrix Operations as Channels

We now show how several common matrix manipulations can be written as channels in
the superoperator and Choi-matrix representations. The superoperators are obtained by
simply vectorizing the transformed operators, and the Choi-matrices can be obtained ei-
ther by reshuffling or directly by wire bending manipulations. We begin with the trace
superoperator STr which implements the trace of a matrix STr|A〉〉 ≡ Tr[A] for a square
matrix A ∈ L(X ). This operation is simply given by the adjoint of the Bell-state:

STr ≡ 〈〈1X |. (2.194)

If X is itself a composite system, we simply use the definition of the Bell-state for composite
systems from Eq. (2.148). This is illustrated in our graphical calculus as

STr|A〉〉 = A ⇔ STr = (2.195)

In terms of the Choi-matrix, the trace operation is simply an identity ΛTr = 1, where the
output space is the trivial vector space C, ΛTr ∈ L(X ⊗ C).

ΛTr = (2.196)
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where the dotted wire is added for conveniency to represent the identity 1 of trivial output
space C.

For a rectangular matrix B ∈ L(X ,Y), the transpose superoperator ST which imple-
ments the transpose ST |B〉〉 =

∣∣BT
〉〉

is simply a swap superoperator between X and Y .

ST = SWAP (2.197)

SWAP : X ⊗ Y 7→ Y ⊗ X (2.198)

The tensor network for the swap superoperator is

ST|B〉〉 = B ⇔ ST = (2.199)

If X and Y are composite vector spaces we may simply split the crossed wires into their
respective subsystem wires.

By applying the reshuffling transformation to ST one can see that the Choi-matrix for
transposition is also the SWAP operator.

ΛT = (2.200)

Next we give the superoperator representations of the bipartite matrix operations in
Eq. (2.40) acting on vectorized square bipartite matrices M ∈ L(X1 ⊗ X2). These are
the partial trace over X1 (STrX1

) (and STrX2
over X2), transposition ST , and col-reshuffling

(SRc).

STrX1
:X1 ⊗X2 ⊗X1 ⊗X2 7→ X2 ⊗X2 (2.201)

STrX2
:X1 ⊗X2 ⊗X1 ⊗X2 7→ X1 ⊗X1 (2.202)

SRc :X1 ⊗X2 ⊗X1 ⊗X2 7→ X1 ⊗X1 ⊗X2 ⊗X2 (2.203)

SS :X1 ⊗X2 ⊗X1 ⊗X2 7→ X2 ⊗X1 ⊗X2 ⊗X1 (2.204)

ST :X1 ⊗X2 ⊗X1 ⊗X2 7→ X1 ⊗X2 ⊗X1 ⊗X2 (2.205)
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The graphical representation of the superoperators for these operations are

STrX1
= , STrX2

= ,SRc = , (2.206)

SS = , ST = ≡ (2.207)

Algebraically they are given by

STrX =
[
〈〈1X | ⊗ 1Y ⊗ 1Y

]
V2 (2.208)

STrY =
[
1X ⊗ 1X ⊗ 〈〈1Y |

]
V2 (2.209)

SRc = V2 (2.210)

SS = SWAP1:2 SWAP3:4 (2.211)

ST = SWAP1:3 SWAP2:4 (2.212)

where V2 is the unravelling operation from Eq. (2.157).

In terms of Choi-matrices we have

ΛTrX1
:L(X1 ⊗X2) 7→ L(X2) (2.213)

ΛTrX2
:L(X1 ⊗X2) 7→ L(X1) (2.214)

ΛRc :L(X1 ⊗X2) 7→ L(X1 ⊗X1,X2 ⊗X2) (2.215)

ΛS :L(X1 ⊗X2) 7→ L(X2 ⊗X1) (2.216)

ΛT :L(X1 ⊗X2) 7→ L(X1 ⊗X2) (2.217)

The graphical representation of these Choi-matrices are

ΛTrX1
= ,ΛTrX2

= ,ΛRc = ,ΛS = ,ΛT =

(2.218)
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While these Choi-matrices have succinct graphical representations their algebraic forms
are cumbersome and so we refrain from listing them.

In the general multipartite case for a composite matrix A ∈ L(X ) where X =
⊗N

k=1Xk,
we can trace out or transpose a subsystem j by using the unravelling operation in Eq. (2.157)
to insert the appropriate superoperator for that subsystem with identity superoperators
on the remaining subsystems:

SOj = V−1
N−1

[(
j−1⊗

k=1

SIk

)
⊗ SO ×

(
N⊗

k=j+1

SIk

)]
VN

where SO ∈ T (Xj) is the superoperator acting on system j and SIk ∈ T (Xk) is the identity
superoperator for subsystem L(Xk). Similarly by inserting the appropriate operators at
multiple subsystem locations we can perform the partial trace or partial transpose of any
number of subsystems.

2.7 Summary

In this chapter we have reviewed the description of evolution of an open quantum sys-
tem using the channel formalism, and in doing so we have cast it into the tensor net-
work formalism the graphical calculus. The various representations of CP-maps reviewed,
the transformation between them, and the graphical manipulations used to facility these
transformation will be of use in later chapters. In addition we have also demonstrated the
application of the graphical calculus for describing the vectorization of composite quantum
systems to allow one to freely transform between a description of the vectorized com-
posite system, and the composite system of individually vectorized systems. These tools
are useful for constructing composite system superoperators and effective reduced system
superoperators, and for applications where we wish to update or modify a subset of a com-
posite system, and will be of particular use in Chapter 3 where we discuss channel fidelity
measures and unitary designs, and in Chapter 4 where we develop a generalization of the
quantum channel formalism.

The study of completely-positive trace-preserving maps is an old topic, so it is perhaps
surprising that there are still new insights to be gained by investigating their structure
using new techniques. Further, while the application of CPTP-maps to describing the
evolution of open quantum systems is well understood, it is a surprisingly difficult task
to find a concise summary of the properties of, and transformations between, the various
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mathematically equivalent representations used in the quantum information processing lit-
erature. The graphical calculus for open quantum systems presented in this paper has
enabled us to unify, and hence transform freely between, the various common representa-
tions of CPTP-maps by performing diagrammatic manipulations of their respective tensor
networks. A summary of these transformations between the different representations was
given in Fig. 2.1.

We found that many of these transformations between representations of CPTP-maps
corresponded to wire bending dualities in our graphical calculus, which have a particularly
succinct tensor network description. These transformations are depicted by solid arrows
between two boxes labelling representations in Fig. 2.1. Of these duality transformations,
only the reshuffling operation connecting the Choi-matrix and Liouville-superoperator is
bi-directional — the reshuffling operation is bijective and self-inverse, and hence the same
transformation takes the Choi-Matrix to the superoperator as taking the superoperator to
the Choi-matrix. The two other wire bending dualities are vectorization, which transforms
both the Kraus and system-environment representations to the superoperator representa-
tion, and the Choi-Jamio lkowski isomorphism, which transforms the same two represen-
tations to the Choi-matrix. These duality transformations are only single directional as
they are not injective, and hence depicted by a one-way arrow connecting the appropriate
boxes labelling these representations in Fig. 2.1. The reason these transformations are sin-
gle directional, as apposed to the bi-directional transformation between the Choi-matrix
and superoperator, is due to the non-uniqueness of the Kraus and system-environment
representations of a CPTP-map. The transformation is a many-to-one (surjective) map-
ping and not strictly invertible without first specifying some form of decomposition of the
superoperator or Choi-matrix.

The transformations we presented for converting from the Choi-matrix to the Kraus
representation, and between the Kraus and system-environment representations, were not
based solely on wire bending dualities. These transformations are depicted by dashed
arrows in Fig. 2.1, where the dash is meant to indicate that they are non-linear transfor-
mations. This non-linearity arose from the decompositions and constructions involved, for
example the spectral decomposition of a positive-semi definite operator in the Choi-matrix
to Kraus representation transformation. In our case, these non-linear transformations were
all also one directional due to the non-uniqueness of the representation being transformed
to. There is unitary freedom in constructing them — for the Choi-matrix to Kraus repre-
sentation transformation, one could change the basis of the eigenvectors with respect to a
vectorization convention and still arrive at a valid Kraus representation; for Kraus to the
system environment representation one may choose any orthonormal basis in the construc-
tion of the joint system-environment unitary in Eq. (2.140); and for the system environment
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to Kraus representation one may decompose the partial trace over the environment in any
orthonormal basis.
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Chapter 3

Characterization of Open Quantum
Systems

3.1 Introduction

The quantum channel formalism provides an operational description of the evolution of
an open quantum system. In the real world however, this description is often not known
a priori and must be reconstructed from experiments which characterize the noise and
behaviour of a physical system. In this chapter we review several common methods and
measures for the experimental characterization of the evolution of an open quantum sys-
tem. While this aims to be a pedagogical overview of known techniques for characterizing
channels, the summary presented here is clearer than what was found in the literature and
collects together several different approaches under a unified framework. In particular we
make use of the graphical calculus developed in Chapter 2 to simplify several proofs of
known expressions.

There are numerous measures for characterizing a quantum channel by comparing a
noisy quantum channel to some ideal target. A good measures should have an operational
interpretation related to evaluating the performance of an experiment, but in practice this
must be balanced with a requirement that the measure be easy to compute and satisfy use-
ful properties for theoretical reasoning as discussed in [GLN05]. Three which we describe
are the completely bounded (CB) trace norm [Kit97], entanglement fidelity [Sch96], and
average gate fidelity [Nie02]. The CB trace norm, which we review in Section 3.2.1, is often
also referred to as the diamond norm and has seen wide spread use in studies of quan-
tum error correction and fault-tolerance [Kit97]. This norm has several useful properties
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including its stability with respect to the tensor product which makes it useful for reason-
ing about errors in many quantum information applications that involve reasoning with
composite channels; it has an operational interpretation in terms of channel discrimination
analogous to how the trace norm on states has an operational interpretation in terms of
state discrimination [RW05, Wat08]; it may also be efficiently computed as the optimal
value of a semidefinite program (SDP) [Wat09, VB96] which a class is a convex optimiza-
tion problem for which there exist efficient methods for solving [VB96, GB08, GB14]. We
prove a new upper bound on the CB trace norm for Hermitian preserving operator maps
which is defined in terms of the Choi-matrix. We also prove that this upper bound is tight
for a class of operator maps where the canonical Kraus decomposition satisfies a condition
that K†αKα is diagonal while K†αKβ for α 6= β has no diagonal components with respect to
some orthonormal basis for the input Hilbert space.

Entanglement fidelity, which we review in Section 3.2.2, can be thought of as quantifying
how well a channel preserves entanglement with an ancilla [Sch96, NC00]. Entanglement
fidelity has closed form expressions given in terms of the Kraus representation [NC00] and
Choi-matrix [FSW07]. In Section 3.2.2 we present a simple equivalent derivation in terms of
the Choi-matrix representation of the channel using graphical techniques from Chapter 2.
By applying the channel transformations of Section 2.4 we obtain expressions in terms of
the other representations. Average gate fidelity, which we review in Section 3.2.3, is a
widely used figure of merit for comparing a noisy channel to a target unitary channel. It
has the nice property that it is simple to compute and gives a single parameter by which
to evaluate the performance of a channel E , regardless of the dimension of the input state
space. Expressions for average gate fidelity have previously been given in terms of the Kraus
representation [HHH99, Nie02], the superoperator [EAŻ05] and the Choi-matrix [JK11].
Using the graphical calculus developed in Chapter 2, we present an equivalent graphical
derivation of the average gate fidelity in terms of the Choi-matrix which we believe is
simpler than previous derivations.

One of the reasons that average gate fidelity is so widely used is because it can be
efficiently estimated using an experimental partial characterization procedure known as
twirling [EAŻ05, GAE07], and its robust generalization randomized benchmarking [MGE11,
MGJ+12]. We briefly discuss these partial characterization schemes in Section 3.3 though
without mention of error analysis and performance which can be readily found in the
literature [WF14, GFC15]. In particular we present a simple derivation of twirling and
RB as a unitary 2-design [RS09] using the graphical calculus developed in Chapter 2. A
unitary design is a set of unitary operators which when summed over in a certain way
returns the same result as averaging over the entire unitary group with respect to the
uniform Haar measure [RS09]. In particular, the Clifford group is a unitary 2-design. This
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is useful as the Clifford group has many nice properties for quantum information processing:
it stabilizes the Pauli group, elements have a quadratic length representation, and there
exist fast decomposition algorithms for these representations. In particular this means
that approximate and exact unitary 2-design can be efficiently sampled and implemented
[DCEL09, KS14, CLLW15].

In the absence of a partial characterization scheme to directly estimate a property of
an unknown channel it is generally required to first obtain a complete description of the
channel by reconstructing the Choi-matrix, or other representation of the channel, from
the measurement outcomes of suitably chosen set of experiments. The first step of such a
procedure is the reconstruction of a description of an unknown density operator by per-
forming a set quantum state tomography which we describe in Section 3.4. This involves
preparing many copies of a quantum state and subjecting each to one of a chosen set of
tomographically completely set of measurements which span the state space of density ma-
trices. The resulting count statisticans can then be inverted to recovered an estimation of
the unknown state [NC00]. There are many variants of quantum state tomography in the
literature including adaptive schemes [MRD+13], methods such as maximum liklihood es-
timation [Hra97, JKMW01], hedged maximum likelihood estimation [BK10a], compressed
sensing [SKM+11, FGLE12], Bayesian mean estimation [HH12, BK10b], and other ap-
proaches have may have improved performance or error scaling in certain situations. In
Section 3.4 we consider the simple case of linear inversion [NC00] and show how this is
just a least squares fitting maximum likelihood estimation problem. We also consider the
constrained MLE problem where one also adds the constraint that the density matrix is
positive, and show how this optimization problem can be solved as a SDP. We believe is
presentation of quantum state tomography is clearer than is currently currently presented
in the literature, and in particular it unifies most tomographic protocols as special cases
of this formalism.

In Section 3.5 we describe quantum process tomography [NC00, DLP01] which is the
standard method of reconstructing a quantum channel by subjecting a tomographically
complete set of input states to the unknown channel, and then performing state tomog-
raphy on each of the outputs. We show how this can be interpreted as a special case of
state tomography where the “state” being reconstructed is the positive semidefinite Choi-
matrix of the known quantum channel. We also discuss two variants of quantum process
tomography: ancilla assisted process tomography (AAPT)[Leu03, DLP03, ABJ+03], and
randomized benchmarking process tomography [KdSR+14]. AAPT is related to a physical
realization of the Choi-Jamio lkowski isomorphism where an experimenter prepares a joint
state on the system and an ancilla, subjecting this state to the channel I ⊗ E , where I is
the identity channel on the ancilla, and then performing state tomography to determine
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the resulting output state. In the ideal case, if the input state is the maximally entan-
gled bell state then the output state will be a normalized Choi-matrix for the unknown
channel. However, the input need not be maximally entangled. A necessary and sufficient
condition for the recovery of the channel is that the joint input state state has maximally
Schmidt-number [ABJ+03, DLP03]. In Section 3.5.1 we present an equivalent though sim-
pler to check condition on the input state, and a method of reconstructing the channel
in terms of the reshuffling transformation between Choi-matrices and superoperators. Fi-
nally, randomized benchmarking process tomography is a recently proposed combination
of interleaved randomized benchmarking and quantum process tomography which aims to
be more robust to state preparation an measurement errors than standard quantum pro-
cess tomography. In Section 3.5.2 we show how this also nicely within our framework as a
special case of quantum state tomography.

3.2 Measures for Comparing Quantum Channels

There are numerous measures for characterizing a quantum channel by comparing a noisy
quantum channel to some ideal target. The goal of a good measures is one which has
a useful operational interpretation and significance for evaluating the performance of an
experiment, but in practice this must be balanced with a requirement that the measure
be easy to compute and satisfy useful properties for theoretical reasoning as discussed in
[GLN05]. In this section we review three common measures, the completely bounded trace
norm [Kit97], which has an operational interpretation in terms of channel discrimination;
entanglement fidelity [Sch96], which can be thought of as quantifying how well a channel
preserves entanglement with an ancilla; and average gate fidelity [Nie02], which is an
easily computed figure of merit for comparing a channel to a target unitary channel which
can be directly estimated using experimental protocols such as twirling and randomized
benchmarking.

3.2.1 Completely Bounded Trace Norm

A widely used measure of distance between quantum channels used in quantum information
theory is the completely bounded (CB) trace norm, often also referred to as the diamond
norm, which has seen wide spread use in studies of quantum error correction and fault-
tolerance [Kit97]. CB norms are defined in terms of induced norms, which are induced
operator norms on channels analogous to operator norms induced by vector norms. The
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induced p-norm of a channel E ∈ T (X ,Y) is given by

‖E‖p = max {‖E(X)‖p : X ∈ L(X), ‖X‖p ≤ 1} . (3.1)

The CB p-norm of a quantum channel E ∈ T (X ,Y) is then defined as the stabilized induced
p-norm

|||E|||p = sup
k≥1
‖1Ck ⊗ E‖p (3.2)

where the stability property ensures that

|||E ⊗ F|||p = |||E|||p |||F|||p. (3.3)

which in general does not hold for the induced p-norm. The stability property of CB norms
makes them preferable to induced forms for many quantum information applications that
involve reasoning with composite channels.

The CB trace norm is the p = 1 case of Eq. (3.2) and we use the notation

‖E‖♦ = |||E|||1 = ‖1X ⊗ E‖1. (3.4)

where the supremum over Ck in Eq. (3.2) is obtained for Ck ∼= X for p = 1 [Kit97]. The
CB trace norm is closely related to the completely bounded norm (CB norm) which has
been studied extensively in operator theory [Pau02]. This norm corresponds to the p =∞
case in Eq. (3.2):

‖E‖cb ≡ |||E|||∞ = ‖1Y ⊗ E‖∞. (3.5)

where this time the supremum is obtained for Ck ∼= Y [Pau02]. The relationship between
the CB trace norm and CB norm is given by [JKP09]

‖E‖♦ = ‖E†‖cb (3.6)

where E† ∈ T (Y ,X ) is the adjoint-channel of E ∈ T (X ,Y).

The CB trace norm has several useful properties. The first is that it has an operational
interpretation in terms of channel discrimination analogous to how the trace norm on states
has an operational interpretation in terms of state discrimination [RW05]. If we are given
access to a copy of a quantum channel that we know is either E1 or E2 with probability λ
and 1−λ respectively, the optimal single shot strategy for distinguishing E1 and E2 succeeds
with probability

p =
1

2
+

1

2
‖λE1 − (1− λ)E2‖♦. (3.7)
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If we know nothing about the probability of being given channel E1 or E2, then the
least biased choice for λ is 1/2 and we have an operationally relevant measure for the
distance of channel E1 from E2 as ‖E1 − E2‖♦, corresponding to a probability of successful
discrimination of

p =
1

2
+

1

4
‖E1 − E2‖♦. (3.8)

A second useful property of the CB trace norm is that while it looks difficult to compute
due to the maximization, it can be computed as a semidefinite program (SDP), which is a
special class of convex optimization problem for which sophisticated numerical algorithms
exist for finding the optimum value [VB96]. SDPs are formally stated in terms of a primal
and dual optimization problem, though sophisticated software packages exist which can
convert an intuitive minimization problem with a convex constraint into and SPD and
then solve the problem [GB08, GB14]. For certain classes of SDPs which satisfy a property
called strong duality, the optimum value of the primal and dual problems are equal, and
the solution is a global optimum [Wat09].

Computing the CB trace norm

Consider an operator map E ∈ T (X ,Y) which has Stinespring representation

E(X) = TrZ [AX B†]. (3.9)

with two Stinespring operators A,B ∈ L(X ,Y⊗Z). The fact that there are two Stinespring
operators is because we do not assume that E is CP, as in general we will be interested in
the CB trace norm of an operator map defined in terms of the difference of two CP-maps:
E = E1 − E2. The square of the CB trace norm ‖E‖2

♦ is given by the optimal value of the
SDP [Wat09]

Primal Problem Dual Problem
maximize: Tr[BB†W ] minimize: ‖A†(1Y ⊗ Z)A‖∞
subject to: TrY [W ] = TrY [AρA†], subject to: 1Y ⊗ Z ≥ BB†,

ρ ∈ D(X ) Z ∈ L(Z), Z ≥ 0.
W ∈ L(Y ⊗ Z),W ≥ 0.

Bounding the CB trace norm

The CB trace norm can be upper and lower bounded by the operator trace norm of the
Choi-matrix representation of the channel. Consider an operator map E ∈ T (X ,Y) then
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we have [WF14]
‖E‖♦ ≤ ‖ΛE‖1 ≤ d‖E‖♦ (3.10)

or equivalently
1

d
‖ΛE‖1 ≤ ‖E‖♦ ≤ ‖ΛE‖1 (3.11)

where d = dim(X ).

We now prove a tighter upper bound on the CB trace norm, and also a special case
where this bound is equal to the value of the CB trace norm.

Theorem 3.2.1. Let E ∈ T (X ,Y) be a HP operator map. Then the CB trace norm of E
is upper bounded by

‖E‖♦ ≤ ‖TrY |ΛE |‖∞ (3.12)

where |A| ≡
√
A†A.

Theorem 3.2.2. Let E ∈ T (X ,Y) be HP operator map with Choi-matrix

ΛE =
∑

α

λα|Kα〉〉〈〈Kα| (3.13)

where λα ∈ R, and {|Kα〉〉 : α = 1, ..., dim(X ⊗ Y)} is an orthonormal basis for X ⊗ Y
satisfying

K†αKα =
∑

i

sαi |xi〉〈xi| (3.14)

and that for all |xi〉, and for all α 6= β,

〈xi|K†αKβ|xi〉 = 0 (3.15)

where {|xi〉} is an orthonormal basis for X . Then the CB trace norm of E is given by

‖E‖♦ = ‖TrY |ΛE |‖∞ = max

{∑

α

sαi |λα| : i = 1, ..., dx

}
. (3.16)

The upper bound in Theorem 3.2.1 if tighter than the bound in Eq. (3.11):

‖TrY |ΛE |‖∞ ≤ ‖TrY |ΛE |‖1 ≤ ‖ΛE‖1 . (3.17)
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In practice it is often much tighter, and for the cases covered by Theorem 3.2.2 is tight. One
of the cases covered by Theorem 3.2.2 is a Choi-matrix, or Chi-matrix, which is diagonal
in some seperable basis:

ΛE =
dx∑

i=1

dy∑

i=1

λij|xi〉〈xi| ⊗ |yj〉〈yj|. (3.18)

where {|xi〉}, {|yj〉} are orthonormal bases for X and Y respectively.

Proof of Theorem 3.2.1. The CB representation theorem [JKP09] states that for any oper-
ator map E ∈ T (X ,Y), there exists a generalized Kraus representation E(X ) =

∑
αAαXB

†
α

such that the CB norm is given by

‖E‖2
cb =

∥∥∥
∑

α

AαA
†
α

∥∥∥
∞

∥∥∥
∑

α

BαB
†
α

∥∥∥
∞

(3.19)

As a corollary of the CB representation theorem we have [JKP09]

‖E‖cb = inf

{∥∥∥
∑

α

AαA
†
α

∥∥∥
1/2

∞

∥∥∥
∑

α

BαB
†
α

∥∥∥
1/2

∞

}
. (3.20)

Hence for any Kraus representation

‖E‖cb ≤
∥∥∥
∑

α

AαA
†
α

∥∥∥
1/2

∞

∥∥∥
∑

α

BαB
†
α

∥∥∥
1/2

∞
. (3.21)

Now to prove our claim. Let E ∈ T (X ,Y) be a HP map, this implies that the Choi-
matrix ΛE is Hermitian. Hence by the spectral theorem we have that there exists an
orthonormal basis {|Kα〉〉} for X ⊗ Y and real numbers λα such that

ΛE =
∑

α

λα|Kα〉〉〈〈Kα|. (3.22)

Thus we have |ΛE | =
∑

α |λα||Kα〉〉〈〈Kα|, and

TrY |ΛE | =
∑

α

|λα| TrY
[
|Kα〉〉〈〈Kα|

]
=
∑

α

|λα|KT
αKα. (3.23)

We can define a canonical generalized Kraus representation for E as

E(X) =
∑

α

λαKαXK
†
α =

∑

α

AαXB
†
α (3.24)
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where

Aα =
λα√
|λα|

Kα, Bα =
√
|λα|Kα. (3.25)

The Choi-matrix of the adjoint channel E† is then given by

ΛE† =
∑

α

λα|K†α〉〉〈〈K†α| (3.26)

E†(ρ) =
∑

α

λαK
†
αρKα =

∑

α

A†αρBα (3.27)

Now, from Eq. (3.21) we have that

‖E‖♦ = ‖E†‖cb ≤
∥∥∥
∑

α

A†iAα

∥∥∥
1/2

∞

∥∥∥
∑

α

B†iBα

∥∥∥
1/2

∞
=
∥∥∥
∑

α

|λα|K†αKα

∥∥∥
∞

(3.28)

Noting that ‖A‖∞ = ‖A‖∞ we have

‖TrY |ΛE |‖∞ =
∥∥∥
∑

α

|λα|KT
αKα

∥∥∥
∞

=
∥∥∥
∑

α

|λα|K†αKα

∥∥∥
∞

(3.29)

and hence
‖E‖♦ ≤ ‖TrY |ΛE |‖∞ . (3.30)

Proof of Theorem 3.2.2. Let E ∈ T (X ,Y) be an operator map with Choi-matrix satisfying
the conditions of Theorem 3.2.2. Then

TrY |ΛE | =
∑

α

|λα|K†αKα =
∑

i

(∑

α

sαi |λα|
)
|xi〉〈xi| (3.31)

and hence

‖TrY |ΛE |‖∞ = max

{∑

α

sαi |λα| : i = 1, ..., dx

}
. (3.32)

Since E is HP, from Theorem 3.2.1 we have ‖E‖♦ ≤ ‖TrY |ΛE |‖∞. We now work to prove
that we also have ‖E‖♦ ≥ ‖TrY |ΛE |‖∞. We do this using the primal problem of the SDP
for the CB trace norm.
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We can define a generalized Stinespring representation for E , E(ρ) = TrZ [AρB†] where
Z ∼= X ⊗ Y and A,B ∈ L(X ,Y ⊗ Z) are given by

A =
∑

α

λα√
|λα|

Kα ⊗ |Kα〉〉 (3.33)

B =
∑

α

√
|λα| Kα ⊗ |Kα〉〉 (3.34)

(3.35)

Now we define operators Wi ∈ L(Y ⊗ Z) and ρi ∈ D(X )

Wi =
∑

α,β

√
|λα| |λβ| Kα|xi〉〈xi|K†β ⊗ |Kα〉〉〈〈Kβ| (3.36)

ρi = |xi〉〈xi| (3.37)

in particular W ≥ 0 and ρ is a density operator, and

TrY [W ] =
∑

α,β

√
|λαλβ| TrY [Kα|xi〉〈xi|K†β]|Kα〉〉〈〈Kβ| (3.38)

(3.39)

=
∑

α,β

√
|λα| |λβ| 〈xi|K†βKα|xi〉 |Kα〉〉〈〈Kβ| (3.40)

=
∑

α

sαi |λα| |Kα〉〉〈〈Kα| (3.41)

Now we note

TrY [AρiA
†] =

∑

α,β

λαλβ√
|λα| |λβ|

〈xi|K†βKα|xi〉 |Kα〉〉〈〈Kβ| (3.42)

=
∑

α

sαi
λ2
α

|λα|
|Kα〉〉〈〈Kα| (3.43)

= TrY [Wi] (3.44)

So Wi is primal feasible for the CB trace norm SDP, and hence

‖E‖2
♦ ≥ Tr[BB†Wi] (3.45)
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for all i = 1, .., dim(X ). Now to compute the value we have

Tr[BB†Wi] =
∑

α,β,γ,δ

√
|λα| |λβ|

√
|λγ| |λδ| Tr[KαK

†
βKγ|xi〉〈xi|K†δ ] 〈〈Kβ|Kγ〉〉〈〈Kδ|Kα〉〉

(3.46)

=
∑

α,β

|λα| |λβ| 〈xi|K†αKαK
†
βKβ|xi〉 (3.47)

=
∑

α,β

|λα| |λβ| sαi sβi (3.48)

=

(∑

α

sαi |λα|
)2

(3.49)

Now choose i such that

i = arg max

{∑

α

sαi |λα| : i = 1, ..., dim(X )

}
. (3.50)

Then we have
Tr[BB†Wi] = ‖TrY |ΛE |‖2

∞ (3.51)

and hence ‖E|♦ ≥ ‖TrY |ΛE |‖∞. Since we have

‖TrY |ΛE |‖∞ ≤ ‖E‖♦ ≤ ‖TrY |ΛE |‖∞ =⇒ ‖E‖♦ = |TrY |ΛE |‖∞ . (3.52)

3.2.2 Entanglement Fidelity

When characterizing the performance of a noisy quantum channels a useful fidelity quantity
is the entanglement fidelity which quantifies how well a channel preserves entanglement
with an ancilla [Sch96, NC00]. For a CPTP map E ∈ C(X ) and density matrix ρ ∈ L(X )
the entanglement fidelity is given by

Fe(E , ρ) = inf
{
F (|ψ〉〈ψ|, (IZ ⊗ E)(|ψ〉〈ψ|)) : TrZ [|ψ〉〈ψ|] = ρ

}
(3.53)

where |ψ〉 ∈ X ⊗ Z is a purification of ρ over an ancilla Z. Entanglement fidelity turns
out to be independent of the choice of purification |ψ〉, and a closed form expression has
been given in terms of the Kraus representation [NC00] and Choi-matrix [FSW07]. Here
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we present a simple equivalent derivation in terms of the Choi-matrix representation of the
channel E using graphical techniques. Then by applying the channel transformations of
Section 2.4 we obtain expressions in terms of the other representations.

The resulting expressions for entanglement fidelity are:

Fe(E , ρ) = 〈〈ρ |Λ|ρ〉〉 (3.54)

= Tr
[
(ρT ⊗ ρ)S

]
(3.55)

=
∑

j

|Tr[ρKj]|2 (3.56)

=
∑

i,j

χij Tr[ρ σi] Tr[ρσ†j ] (3.57)

= TrX [ρA†] · TrX [Aρ] (3.58)

where S, Λ, {Kj}, χ, A are the superoperator, Choi-matrix, Kraus, χ-matrix and Strine-
spring representations for E respectively. In the case of the χ-matrix representation, χ is
defined with respect to a basis {σj} satisfying Tr[σj] =

√
dδj,0.

For the graphical proof in terms of the Choi-representation we start with Section 3.2.2
and perform the following tensor manipulations

=

=

=

(3.59)

Now since the infimum is over all |ψ〉 ∈ Z ⊗ X satisfying TrZ [|ψ〉〈ψ|] = ρ the result is
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independent of the specific purification ψ and we have:

=

=

=

(3.60)

The transformations to the other representations are given by the tensor networks

=

=

(3.61)

! K

!

K

K K†
(3.62)

! Χ ΣΣ (3.63)

! A A†

! AA†

(3.64)

86



3.2.3 Average Gate Fidelity

Perhaps the most widely used metric for the performance of a quantum channel is Gate
Fidelity, which characterizes the closeness of a CPTP map E ∈ C(X ) to a desired quantum
channel F ∈ C(X ). Gate fidelity is defined to be

FE,F(ρ) = F (F(ρ)E(ρ)) (3.65)

where F is the fidelity function for quantum states given in Eq. (1.27).

In general we are interested in comparing a E to a unitary channel U ∈ C(X ) where
U(ρ) = UρU †. In this case we have

FE,U(ρ) =

[
Tr

√√
UρU †E(ρ)

√
UρU †

]2

(3.66a)

=

[
Tr
√√

ρU †E(ρ)U
√
ρ

]2

(3.66b)

=

[
Tr
√√

ρU †(E(ρ))
√
ρ

]2

(3.66c)

= FU†E,I(ρ) (3.66d)

where I is the identity channel and U †(ρ) = U †ρU , is the adjoint channel of the unitary
channel U . Thus without loss of generality we may consider the gate fidelity FE(ρ) ≡
FE,I(ρ) comparing E to the identity channel, where we simply define E ≡ U †F if we wish
to compare F to a target unitary channel U .

We note that gate fidelity is equivalent to entanglement fidelity for pure states. This
can be shown graphically as follows

=

=

=

(3.67)
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Alternatively we can also define the average gate fidelity in terms of the entanglement
fidelity with the identity operator

F E =
d+ Fe(E , 1)

d(d+ 1)
. (3.68)

.

The most often used quantity derived from the gate fidelity is the average gate fidelity
taken by averaging FE(ρ) over the the Fubini-Study measure. Due to the concavity of
quantum states we need only integrate over pure states, which satisfy

FE(|ψ〉〈ψ|) = 〈ψ|E(|ψ〉〈ψ|)|ψ〉. (3.69)

Hence, the average gate fidelity is defined by

F E =

∫
dψ 〈ψ|E(|ψ〉〈ψ|)|ψ〉. (3.70)

Average gate fidelity is a widely used figure of merit in part because it is simple to
compute. The expression in Eq. (3.70) reduces to explicit expression for F E in terms of a
single parameter of the channel E itself. This has previously been given in terms of the
Kraus representation [HHH99, Nie02], superoperator [EAŻ05] and Choi-matrix in [JK11].
We now present an equivalent graphical derivation of the average gate fidelity in terms of
the Choi-matrix which we believe is simpler than previous derivations. We start with the
tensor network diagram corresponding to Eq. (3.70) and perform graphical manipulations
as follows

=

=

=

(3.71)
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For the next step of the proof we use the result that the average over ψ of a tensor product
of states |ψ〉〈ψ|⊗n is given by

∫
dψ |ψ〉〈ψ|⊗n =

Πsym(n, d)

Tr[Πsym(n, d)]
(3.72)

where Πsym(n, d) is the projector onto the symmetric subspace of X⊗n. This projector may
be written as [MBKE11]

Πsym(n, d) =
1

n!

∑

σ

Pσ (3.73)

where Pσ are operators for the permutation σ of n-indices. These permutations may be
represented as a swap type operator with n tensor wires. For the case of n = 2 we have
the tensor diagram:

= ( + ( (3.74)

Here we can see that
Tr[Πsum(2, d)] = (d2 + d)/2, (3.75)

and hence we have that

Πsym(2, d) =
1

2
(1⊗ 1 + SWAP) (3.76)

Tr[Πsym(2, d)] =
d2 + d

2
(3.77)

⇒
∫
dψ |ψ〉〈ψ|2 =

1⊗ 1 + SWAP

d(d+ 1)
(3.78)

where X ∼= Cd, 1 ∈ L(X ) is the identity operator, and SWAP is the SWAP operation on
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X ⊗ X . Substituting Eq. (3.74) into Eq. (3.71) completes the proof:

=

(3.79)

Using the fact that the Choi-matrix is normalized of a CPTP map is normalized such that
Tr[Λ] = d, we have that the average gate fidelity in terms of the Choi-matrix is given by

F E =
d+ 〈〈1 |Λ|1〉〉
d(d+ 1)

. (3.80)

From this proof one may derive expressions for the other representations using the channel
transformations in Section 2.4, as was done in Section 3.2.2 for entanglement fidelity and
then using Eq. (3.68). The resulting expressions are

F E =
d+ Tr[S]

d(d+ 1)
(3.81)

=
d+ 〈〈1 |Λ|1〉〉
d(d+ 1)

(3.82)

=
d+

∑
j |Tr[Kj]|2

d(d+ 1)
(3.83)

=
d+ dχ00

d(d+ 1)
(3.84)

=
d+ TrX [A†] · TrX [A]

d(d+ 1)
(3.85)
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where S, Λ, {Kj}, χ, A are the superoperator, Choi-matrix, Kraus, χ-matrix and Strine-
spring representations for E respectively. In the case of the χ-matrix representation, χ is
defined with respect to a basis {σj} satisfying Tr[σj] =

√
dδj,0.

Similar techniques can be applied for tensor networks that may be graphically manipu-
lated into containing a term

∫
dψ |ψ〉〈ψ|⊗n for n > 2. This could prove useful for computing

higher order moments of fidelity functions and other quantities defined in terms of averages
over quantum states |ψ〉. In this case there are n! permutations of the tensor wires for the
permutation operator Pσ in Eq. (3.73), and these can be decomposed as a series of SWAP
gates. For example, in the case of n = 3 we have

Πsym(3, d) =
1

6

(
1⊗3 + SWAP1:2 + SWAP1:3 + SWAP2:3

+ SWAP1:2SWAP2:3 + SWAP2:3SWAP1:2

)
(3.86)

Tr[Πsym(3, d)] =
d3 + 3d2 + 2d

6
. (3.87)

3.3 Partial Characterization of Quantum Channels

One of the reasons that average gate fidelity as discussed in Section 3.2.3 is a widely used fig-
ure of merit for comparing a noisy quantum channel to an ideal channel is because it can be
efficiently estimated using an experimental procedure known as twirling [EAŻ05, GAE07],
and its robust generalization randomized benchmarking [MGE11, MGJ+12]. These are
partial characterization protocals which, rather than trying to obtain a complete descrip-
tion of an unknown quantum channel, simply return a single parameter which is propor-
tional the average gate fidelity. In this section we briefly describe these protocols without
any regard to error analysis and performance which can be readily found in the litera-
ture [WF14, GFC15].

3.3.1 Unitary Designs for Average Gate Fidelity Estimation

Twirling and randomized benchmarking can be defined in terms of a unitary 2-design.
A general unitary t-design for an operator Hilbert space L(X ) is a finite set of unitary
operators

Ut = {U1, ...., U|U| : Uj ∈ L(X )} (3.88)
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which satisfy
1

|Ut|
∑

U∈Ut

U
⊗t ⊗ U⊗t =

∫
dη(U) U

⊗t ⊗ U⊗t. (3.89)

where η(U) is the uniform Haar measure. We define the following notation for a unitary-t
design

SUt ≡
1

|Ut|
∑

U∈Ut

U
⊗t ⊗ U⊗t. (3.90)

noting that it has the same form as a superoperator

SUt |A〉〉 =
1

|Ut|
∑

U∈Ut

U⊗tA(U⊗t)†. (3.91)

Intuitively a set Ut being a t-design means that summing over all elements of Ut is
equivalent to integrating over the uniform Haar measure η(U). This is particular relevant
for quantum information experiments, as it means that protocols which involve a uniform
average over the Haar measure can in principle be performed by summing over a finite set
of unitary operators. In quantum information theory the most used cases are the 1-design,
where U1 is the generalized Pauli proup, and the 2-design, where U2 = C is the Clifford
Group. Both of these groups have many nice properties for quantum information theory
with an important one being that both approximate and exact unitary 2-design can be
efficiently implemented [DCEL09, CLLW15]. By explicitly computing the Haar integral
we can evaluate the form of the SUt for a t-design [CŚ06]. The expressions for t = 1 and
t = 2 are well known and given by [RS09]

SU1 =
1

d
|1〉〉〈〈1| = 1

d
(3.92)

SU2 =
1

d2 − 1

(
1∑

j=0

|sj〉〉〈〈sj|
)
− 1

d(d2 − 1)

(
1∑

j=0

|sj〉〉〈〈sj+21|
)

(3.93)

=
1

d2 − 1


 +


− 1

d(d2 − 1)


 +


 (3.94)

where s0 = 1⊗ 1 = , s1 =
∑d

i,j=1 |i〉〈j| ⊗ |j〉〈i| = .

We now show how average gate fidelity can be estimated by a unitary 2-design, which
is a protocol sometimes referred to as twirling a channel. It involves averaging a channel
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E ∈ T (X ) over the uniform Haar measure of unitary channels. Starting from Eq. (3.70)
we may rewrite the expression for average gate fidelity as

F E =

∫
dU〈ψ0|UE(U †|ψ0〉〈ψ0|U)U †|ψ0〉 (3.95)

for some arbitrary state |ψ0〉. In terms of superoperators this is given by

F E =

∫
dU 〈〈ρ |SU SE S†U |ρ〉〉 = 〈〈ρ |SW(E)|ρ〉〉 (3.96)

where we have generalized Eq. (3.95) to allow for a mixed state input and output, and
defined a twirling channel W defined by

SW(E) ≡
∫
dU SU SE S†U . (3.97)

For a TP channel E the action of this twirling operation is given by

W(E) = λ I + (1− λ)D (3.98)

where I is the identity channel, D is the completely depolarizing channel, and

λ =
Tr[SE ]− 1

d2 − 1
=
dF E − 1

d− 1
. (3.99)

This follows as a result of Proposition 4.5.1 in Section 4.5. Hence for an arbitrary state ρ,

Tr
[
ρW(E)(ρ)

]
= λ+

1− λ
d

(3.100)

=
(d− 1)

d
λ+

1

d
(3.101)

=

(
dF E − 1

d− 1

)(
d− 1

d

)
+

1

d
(3.102)

= F E . (3.103)

3.3.2 Randomized Benchmarking

Using twirling to estimate average gate fidelity assumes one can accurately prepare and
measure a fixed initial state ρ, which makes it sensitive to state preparation and measure-
ment (SPAM) errors. In addition one also needs to consider any errors in implementing
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the actual gates of the 2-design. Randomized benchmarking is a generalization of twirling
which has built in robustness to SPAM errors, and allows for an estimating of gate errors
in implementing the 2-design. In this section we briefly show how, in the exact case one
can consider RB as a sequence of twirling operations.

Consider a sequence of unitary operators U1 ∈ L(X ), and a recovery unitary operator
R ∈ L(X ) given by R = U †k . . . U

†
1 . Randomized benchmarking of k copies of a channel E

is given by

RBk(E) =
1

|U2|k
∑

U1,...Uk∈U2

RE Uk E Uk−1 . . . E U2 E U1 (3.104)

SRBk(E) =
1

|U2|k
∑

U1,...Uk∈U2

SR SE SUk SE SUk−1
. . .SE SU2 SE SU1 (3.105)

To see the action of the ideal case we define unitaries

V1 = U †1 (3.106)

V2 = U †2 V1 = U †2 U
†
1 (3.107)

V3 = U †3 V2 = U †3 U
†
2 U
†
1 (3.108)

... (3.109)

Vk =
k∏

j=1

U †j = U †k . . . U
†
1 (3.110)

Then we may rewrite

RBk(E) =
1

|U2|k
∑

V1,...,Vk

(
VkEV†k

)(
Vk−1EV†k−1

)
. . .
(
V1EV†1

)
=W(E)k (3.111)

Using the expression for the twirled channel in Eq. (3.98) we have

W(E)k = λkI + (1− λk)D (3.112)

where I is the identity channel, D is the completely depolarizing channel, and

λ =
Tr[SE ]− 1

d2 − 1
=
dF E − 1

d− 1
. (3.113)
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In the ideal case of preparing and measuring a state ρ we have that the probability of
success of the measurement is given by

pk =
1

d
+

(
d− 1

d

)
λk (3.114)

so by measuring pk for many values of k we may fit to an exponential decay to estimate λ,
and then in turn estimate F E .

As previously mentioned, one benefit of RB over twirling is that it works even in the
presence of SPAM errors. To see this suppose instead of preparing and measuring ρ, we
actually prepare a state ρ1 and perform a measurement of whether the state is ρ2 or not.
In this case we have

pk =
1

d
+ A0λ

k (3.115)

for some parameter unknown A0 = Tr[ρ2ρ1]− 1
d
. Further, if we don’t implement a perfect

twirl W(E) then we will not in general have perfect identity and depolarizing channels.
Hence for RB the zeroth order approximation is to fit the data to a model

pk = A0λ
k +B0 (3.116)

where A0 and B0 are unknown parameters.

3.4 Quantum State Tomography

Quantum state tomography is an experimental procedure to reconstruct an unknown den-
sity operator for a open quantum system by repeated measurements. Let X ∼= Cd be
the pure state Hilbert space for a d-dimensional quantum system, and let P = {Πj :
j = 1, ...,M} be a set of rank-1 projectors corresponding to pure quantum states Πj =
|ψj〉〈ψj| ∈ DX . In quantum state tomography, an experimenter performs measurements
of each Πj on many copies of an unknown quantum state ρ, and attempts to reconstruct
a description of ρ from the observed measurement counts. We can loosely classify the
usefulness of the set P for tomography in the following way

1. Tomographically complete: The set P has |P| = d2 elements and spans D(X ).

2. Tomographically over-complete: The set P has |P| > d2 elements and spans D(X ).
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3. Tomographically incomplete: The set P does not span D(X ).

In principle it is possible to completely reconstruct an unknown quantum state via mea-
surements of a tomographically complete or over-complete set of measurements P.

The first method of reconstruction we present is called linear inversion. If we per-
form a measurement of a projector Πj ∈ P on a state ρ the probability of success of the
measurement is given by Born’s rule

pj = Tr[Πjρ]. (3.117)

If we wish to infer pj from experimental data, the most naive approach given Nj identical
copies of ρ is to measure Πj on each of the copies. If we observe nj positive outcomes then
our naive estimate of pj is

p̂j =
nj
Nj

. (3.118)

This is the essence of linear inversion.

To reconstruct an estimation of the state ρ from these observed probabilities is slightly
more complicated as a set P, even if tomographically complete, is not an orthonormal basis
for D(X ). The standard way to reconstruction of the state ρ from the linear inversion of
probabilities pj is done using a dual basis [DMP00], and is generally only done for a
tomographically complete set. The derivation we present however holds for any set of
measurement projectors P, tomographically complete and overcomplete ones will simply
have some desirable properties.

The superoperator for the projector onto the subspace spanned by P is given by

SP =
M∑

j=1

|Πj〉〉〈〈Πj|. (3.119)

We define a dual basis D = {Dj : j = 1, ..,M} for P by the construction.

|Dj〉〉 = S−1
P |Πj〉〉 (3.120)

where S−1
P refers to the Moore-Penrose pseudo inverse of the square matrix SP [Pen56].

If the matrix is invertible (non-singular) this will be equal to the standard matrix inverse.
Our estimate of ρ via linear inversion may then be reconstructed as

ρ̂L =
∑

j

nj
Nj

Dj. (3.121)
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To prove this we note that

| ρ̂L〉〉 =
∑

j

nj
Nj

|Dj〉〉 (3.122a)

=
∑

j

p̂jS−1
P |Πj〉〉 (3.122b)

=
∑

j

S−1
P |Πj〉〉〈〈Πj|ρn〉〉 (3.122c)

= (S−1
P SP)|ρn〉〉, (3.122d)

where ρn is the operator that generated an observed sequence of counts nj = Nj Tr[Πjρn].
We see here that for an arbitrary state our linear inversion estimate will be equal to the
state ρ̂ consistent with the measured counts if and only if

S−1
P SP = 1, (3.123)

which is only the case if the matrix SP is invertible. This is true for any tomographically
complete or overcomplete set P. If the set P is tomographically incomplete the pseudo-
inverse will be the identity matrix for states which may be completely specified by the
support of the set

ρ =
M∑

j=1

λjΠj. (3.124)

Otherwise we will recover the projection onto the support of P.

For states entirely outside of the support of P the pseudo inverse will return a maximally
mixed state on the subspace spanned by these states. That is to say if Tr[Πjρ] = 0 for all
Πj ∈ P then

S−1
P SP|ρ〉〉 =

∣∣ 1
d

〉〉
(3.125)

If we have a state with partial support on P,

ρ = p ρΠ + (1− p)ρ⊥ (3.126)

then (under perfect counting statistics) the linear inversions estimate would be given by

ρ̂L = p ρΠ + (1− p)1
d
. (3.127)

Note that due to finite count statistics the operator ρn that generated an observed sequence
of counts nj may not necessarily be positive semidefinite nor have unit trace, and hence
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need not be a valid density matrix. One can always renormalize the recovered operator
to have the correct trace, but if one adds the additional constraint that ρ ≥ 0 then we
are doing a form of constrained MLE rather than linear inversion which we discuss in
Section 3.4.1, but first we consider unconstrained MLE in terms of least squares fitting.

3.4.1 Maximum Likelihood Estimation

We now show how to formulate linear inversion as a maximum likelihood estimation (MLE)
problem. Let P(nj|ρ) be the probability of observing nj counts (successes) from measuring
Πj on Nj copies of a state ρ. The probability of observing a a vector n = {n1, n2, ..., nM}
counts from N = {N1, . . . , NM} trails for the set P is then the product of the individual
distributions

P(n | ρ) =
M∏

j=1

P(nj | ρ). (3.128)

In an experiment the initial state ρ is unknown and it is the measured counts n that
are known. We may rewrite Eq. (3.128) as a likelihood function

L(ρ |n) = P(n | ρ), (3.129)

which quantifies the likelihood of the state ρ to have generated the observed set of counts.
We may then maximize the likelihood function over ρ to find the state ρ̂mle with the highest
probability of generating the observed counts:

ρ̂mle = arg max
ρ

L(ρ |n). (3.130)

This procedure called maximum likelihood estimation. In practice maximizing L(ρ) is often
numerically unstable due to the product of exponentials for normally distributed variables
as in Eq. (3.132). Instead, what is usually done is to minimize the negative log-likelihood
function:

ρ̂mle = arg min
ρ

[
− log L(ρ |n)

]
. (3.131)

The Moore-Penrose pseudo-inverse of a matrix is the solution to a least squares fitting
optimization problem [Pen56]. We will now show how one may phrase quantum state
tomography as a weighted least squares fitting, with linear inversion corresponding to
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case of uniform weights for all measurements. In the limit of large Nj the probability
distributions in Eq. (3.128) for nj can be approximated by the normal distribution

P(nj | ρ) =
1√

2πσ2
j

exp

(
−(Nj Tr[Πjρ]− nj)2

2σ2
j

)
. (3.132)

For a normal distribution the negative log-likelihood function for a given set of counts n
is proportional to

log L(ρ |n) =
M∑

j=1

log P(nj | ρ) (3.133a)

=
N∑

j=1

(
−1

2
log
[
2πσ2

j

]
− (Nj Tr[Πjρ]− nj)2

σ2
j

)
(3.133b)

= −C −
N∑

j=1

(Nj Tr[Πjρ]− nj)2

σ2
j

, (3.133c)

where C =
∑M

j=1 log
[
2πσ2

j

]
/2. If we make a further approximation that the variance σj

does not depend on Tr[Πjρ] and instead is the variance of the observed counts nj, then C
is constant and our MLE of ρ becomes

ρ̂mle = arg min
ρ

N∑

j=1

(Nj Tr[Πjρ]− nj)2

σ2
j

. (3.134)

If we place no constraints on the operator ρ we may solve this minimization exactly. To
show this we define the following operators and vectors

S =
M∑

j=1

|j〉〈〈Πj |, |f〉 =
M∑

j=1

nj
Nj

|j〉, W =
M∑

j=1

Nj

σj
|j〉〈j|, (3.135a)

where S is similar to a vectorization change of basis operator in Section 2.2.2 (although P
is not an orthonormal basis), |f〉 is a column vector of the observed probabilities, and W
is a diagonal matrix of the weights given by the number of samples divided by the variance
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σj. Using this we may then rewrite Eq. (3.134) as

ρ̂mle = arg min
ρ

N∑

j=1

(Nj Tr[Πjρ]− nj)2

σ2
j

(3.136a)

= arg min
ρ

N∑

j=1

(
〈〈ρ|Πj〉〉 −

nj
Nj

)
N2
j

σ2
j

(
〈〈Πj|ρ〉〉 −

nj
Nj

)
(3.136b)

= arg min
ρ

N∑

i,j,k,l=1

(
〈〈ρ|Πi〉〉〈i| −

ni
Ni

〈i|
)
W †W

(
|l〉〈〈Πl|ρ〉〉 −

nl
Nl

|l〉
)

(3.136c)

= arg min
ρ

(
〈〈ρ |S† − 〈f |

)
W †W

(
|ρ〉〉 − |f〉

)
(3.136d)

= arg min
ρ

∥∥W
(
|ρ〉〉 − |f〉

)∥∥2

2
. (3.136e)

Since the norm is always positive we can drop the square root and our MLE estimate of ρ
is given by the weighted least squares fitting problem

ρ̂mle = arg min
ρ

∥∥W
(
|ρ〉〉 − |f〉

)∥∥ . (3.137)

If we place no constraints on ρ this has an analytic solution

| ρ̂mle〉〉 = (S†W †WS)−1S†W †W |f〉. (3.138)

We further note that if we define an operator ρn which is the ideal operator to generate an
observed set of counts n via nj = Nj Tr[Πjρn], then

〈〈Πj|ρn〉〉 =
nj
Nj

=⇒ |f〉 =
∑

j

|j〉〈〈Πj|ρ′〉〉 = S|ρn〉〉, (3.139)

and hence we may rewrite Eq. (3.138) as

| ρ̂〉〉 = (S†W †WS)−1S†W †WS|ρn〉〉. (3.140)

The linear inversion reconstruction in Eq. (3.122d) is a special case of Eq. (3.140) where
we set the variance to be σj = Nj so that W = 1, and

| ρ̂〉〉 = (S†S)−1S†S|ρn〉〉 = S−1
P SP|ρn〉〉, (3.141)
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where SP = S†S. Hence we may also do weighted linear inversion reconstruction of ρ by
Eq. (3.138), which corresponds to defining

SP =
∑

j

w2
j |Πi〉〉〈〈Πi|, (3.142)

with weights wj = Nj/σj.

While least squares fitting is a special case of unconstrained MLE, in practice what is
usually referred to as MLE quantum state tomography is the case of constrained MLE.
Due to finite count statistics, detector dark counts, and other sources of experimental
measurement error, for any real experiment data the ideal operator ρn which generates a
sequence n of observed counts will not actually be the true state ρ, and indeed need not
even be a valid density matrix. If the true state is very close to a pure state, the operator
ρ̂L reconstructed from linear inversion will often have a small negative eigenvalues. Hence
the standard usage of MLE-tomography refers to weighted linear inversion where we add
an additional constraint that ρ must be positive semidefinite and normalized to trace 1.
The cost of doing this is that there is no longer an analytic solution to the optimization
problem in Eq. (3.137).

Formally we define MLE state tomography to be the following optimization problem

minimize ||W (S|ρ〉〉 − |f〉)||2
subject to: ρ ≥ 0, Tr[ρ] = 1

Since the objective function being minimized is convex we may solve it using powerful the
techniques of convex optimization. In particular since the constraint ρ ≥ 0 is a semidefinite
constant this optimization problem may be phrased as a semidefinite program (SDP), for
which sophisticated algorithms exist to find a global optimum [VB96].

There has been a large body of literature on variations of the likelihood function to
be minimized for MLE quantum state tomography. We briefly mention two here that
serve opposite purposes. Hedged maximum likelihood estimation (HMLE) [BK10a] is the
optimization problem

minimize
1

2
||W (S|ρ〉〉 − |f〉)||22 − β log det(ρ)

subject to: ρ ≥ 0,Tr[ρ] = 1.

Trace constrained maximum likelihood estimation (TCMLE) [FGLE12], also known as
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compressed sensing or matrix-lasso, is the optimization problem

minimize
1

2
||W (S|ρ〉〉 − |f〉)||22 + µ ||ρ||1

subject to: ρ ≥ 0,Tr[ρ] = 1

HMLE can be thought of as a skeptics fit which penalizes low rank fits to the data, while
in contrast, TCMLE can be thought of as an optimists fit and favours low rank fits to the
data. Both of these are still convex optimization problems with semidefinite constraints,
and so can still be solved numerically as SDPs. The parameters β and µ quantify the
degree to which we penalize low rank or high rank fits in hedged and trace constrained
MLE respectively. Note that in both of these definitions we minimize 1

2
||W (S|ρ〉〉 − |f〉)||22

instead of ||W (S|ρ〉〉 − |f〉)||2, as once we add an additional cost term the specific value of
the expression is relevant when minimizing the objective function, not just the value of ρ
at the minimum.

3.4.2 Tomography with Two Outcome Measurements

In many experimental situations our measurements will be two two outcomes, given by a
POVM {Πj, 1−Πj}, where we either measure the unknown quantum state to be in Πj or
we don’t. Let P(nj|ρ) be the probability of obtaining exactly nj successful measurement
outcomes from from POVM {Πj, 1 − Πj} on Nj copies of ρ. For a two outcome POVM
this is given by a binomial distribution

P(nj|ρ) =

(
Nj

nj

)
p
nj
j (1− pj)Nj−nj (3.143)

where pj = Tr[Πjρ] is the probability of success. To make this more computationally
tractable it is general practice to approximate the binomial distribution by a normal dis-
tribution with mean µj = Nj pj and standard deviation σ2

j = Njpj(1 − pj). With this
approximation the MLE objective function in Eq. (3.134) function has a particular simple
form

ρ̂mle = arg min
ρ

(− lnL(ρ|{mj})) (3.144)

= arg min
ρ

∑

j

Nj

(
(fj − pj)2

pj(1− pj)

)
(3.145)
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where fj = nj/Nj are the probabilities obtained by the observed number of counts nj. To
further simply the problem one may assume that the observed fj are close to the true pj,
which is valid for large Nj. Under this approximation we may take a second order Taylor
series expansion in pj about fj to obtain

ρ̂ ≈ arg min
ρ

∑

j

Nj(Tr[Π†jρ]− fj)2

fj(1− fj)
(3.146)

In effect this is assuming that the standard deviation of each measurement σ2
j = pj(1− pj)

is approximately equal to the observed standard deviation fj(1− fj).
We can see that the above reconstruction is ill defined if the observed probabilities fj

are either 0 or 1. If we trust our estimate completely either of these two values would
completely determine the state ρ = Πj. If we allow that this may not be the true value
due to finite statistics we can circumvent this issue by adding a small amount of noise to
our data. One way to do this is to define our observed probabilities to be [FBK12]

fj =
nj + β

Nj + 2β
. (3.147)

rather than nj/Nj, where β is a real number that incorporates our uncertainty. In practice
β ≈ 1/2 is useful for many situations, though if we are confident that the true state is pure
and our number of samples Nj is large it may be better to set it to a smaller value.

Another point to note is that in many experimental situations the total number of copies
of a state being measured is not known in advance, only the resulting measurement count
statistics are known. In this case, if for each two outcome measurement of an operator Πj

the failure corresponds to a measurement of another rank-1 projector, Qj = 1−Πj, one can
estimate the total number of counts of counts by summing the observed counts for Πj and
Qj. For example if for a qubit one measures the Pauli operators X, Y , Z, each operator
corresponds to a two outcome measurement {Πα+,Πα−} where α = x, y, z, where Πα± are
the ± eigenstates of the operator. Let the number of outcomes for measurement of the
+1 and −1 eigenstates of Z be nz+ and nz− respectively. The total number of counts for
measurements of the two Z projectors are Nz+ = Nz− = nz+ +nz−, and similarly for X and
Y . Hence we may phrase this as state tomography with the tomographically overcomplete
set with six elements

Pσ = {Πx+,Πx−,Πy+,Πy−,Πz+,Πz−} (3.148)

with observed counts n = {nx+, nx−, ny+, ny−, nz+, nz−}, and total numbers of copies per
measurement of Nα± = nα− + nα+.
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3.5 Quantum Process Tomography

Quantum process tomography is a procedure for reconstructing the description of an ar-
bitrary quantum channel E ∈ T (X ,Y) through measurement statistics. The ful charac-
terization of all parameters of an unknown channel E requires a tomographically complete
input states Q = {ρj} for D(X ), and a tomographically complete set of measurements
P = {Πj} for D(Y). Many copies of each input state ρj ∈ Q are then sent through the
unknown channel E , and state tomography using P is performed on the output E(ρj). This
procedure is often referred to as standard quantum process tomography (SQPT) [DLP01]
as other variants exist.

Quantum process tomography can be succinctly phrased as a special case of quantum
state tomography, where the unkown state is the Choi-matrix of the channel. This is
because, as was described in Section 2.3.4, a Choi-matrix ΛE for a CP-map E is isomorphic
to a bipartite quantum state ρE ∈ L(X ⊗ Y) where ρE = Λ/dx. We will now detail how
one may implement quantum process tomography in this way.

Let E ∈ C(X ,Y) be a channel with Choi-matrix ΛE . Let Q = {ρ1, ..., ρK} be a set of
states on D(X ), and let P = {Π1, ...,ΠM} be a set of rank one projectors acting on D(Y).
Recall from Eq. (2.92) that he evolution of a state ρ is given by

E(ρi) = TrX [(ρT ⊗ 1)Λ] (3.149)

Hence if we measure a projector Πj ∈ P, the probability of success is given by

pij = Tr[Π†jE(ρi)] (3.150a)

= Tr[Π†j Tr1[(ρTi ⊗ 1)Λ]] (3.150b)

= Tr[(ρTi ⊗ Π†j)Λ]] (3.150c)

= 〈〈ρi ⊗ Πj|Λ〉〉 (3.150d)

This can be interpreted as a measurement of ΛE with measurement operator

Πij = ρi ⊗ Πj. (3.151)

Hence we may define a set of measurement operators on L(X ⊗ Y) by

PE = {Πij : i = 1, ..., K, j = 1, ...,M}, Πij ≡ ρi ⊗ Πj (3.152)

Let Nij the number of copies of Λ measured with Πij, or equivalently the number of copies
of E(ρi) measured with Πj, and nij the number of successes for these measurements. We
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can then implement process tomography by defining the operators

fij =
nij + β

Nij + 2β
|f〉 =

∑

ij

fi,j|i, j〉 (3.153a)

S =
∑

ij

|i, j〉〈〈Πij | W =
∑

ij

wij|i, j〉〈i, j|, (3.153b)

where for a binomial distributed measurement outcome we have

wij =

√
Nij

fij(1− fij)
, (3.154)

and we have incorporated the hedging of the frequencies fij as described in Section 3.4.2.
We then reconstruct the Choi-matrix by either linear inversion:

∣∣∣Λ̂
〉〉

= (S†W †WS)−1S†W †W |f〉 (3.155)

Or the constrained MLE:

minimize ||W (S|Λ〉〉 − |f〉)||2
subject to: Λ ≥ 0, Tr[Λ] = d. (3.156)

Similarly one may also implement the other variants of MLE mentioned in Section 3.4.1.

3.5.1 Ancilla Assisted Process Tomography

An alternative procedure for perform quantum process tomography is for an experimenter
to perform state tomography on the Choi-matrix directly by using a method known as
ancilla assisted process tomography (AAPT) [Leu03, DLP03, ABJ+03]. The simplest case
of AAPT is entanglement assisted process tomography(EAPT) which is an experimental
realization of the Choi-Jamio lkowski isomorphism from Eq. (2.87).

Let E ∈ C(X ,Y) be an unknown channel to characterized, and suppose an experimenter
has access to an ancilla system Z ∼= X . To impliment EAPT an experimenter prepares a
a maximally entangled input state ρΦ ∈ D(Z ⊗ X )

ρΦ =
1

d
|1〉〉〈〈1| (3.157)
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across the system of interest X and the ancilla Z, and then subjects the system part of
the state ρΦ to the unknown channel E , and the ancilla part of ρΦ to an identity channel
I. The output of this joint system-ancilla channel is the rescaled Choi-matrix:

ρ′φ = (I ⊗ E) (ρΦ) =
Λ

d
. (3.158)

where d = dim(X ). Hence the experimenter may perform EAPT by performing state
tomography on the output state ρ′Φ ∈ D(Z ⊗ Y).

General AAPT may also be implemented with an input state ρA ∈ D(Z⊗X ) that is not
the maximally entangled state. Indeed, AAPT has been demonstrated experimentally with
a state which does not have any entanglement at all, though this comes with the cost of an
increase in the estimation error of the reconstructed channel [ABJ+03]. A necessary and
sufficient condition for a general state ρA to allow complete recovery of the Choi-matrix
of an unknown channel via AAPT is that it have a Schmidt number equal to d2 where
d is the dimension of the state space X [ABJ+03]. This conditions has previously been
called faithfulness of the input state, and one can recover the original Choi-matrix for the
unknown channel E by applying an appropriate inverse map to the output state in post-
processing [DLP03]. We now provide an arguably simpler derivation of this condition, and
the explicit construction of the inverse recovery operator, which makes use of the graphical
techniques introduced in Chapter 2.

Proposition 3.5.1 (AAPT). Let E ∈ C(X ,Y) be a channel, and consider a state ρA ∈
D(Z ⊗ X ) where Z ∼= X is an an ancilla. Let ρ′A = (I ⊗ E)(ρA) where I ∈ C(Z) is the
identity channel. If we define a superoperator SA = ρRA by reshuffling the input state, then

1. We may recover the Choi-matrix Λ for an arbitrary channel E if and only if reshuffled
density matrix SA is invertible.

2. If SA is invertible, we may recover the Choi-matrix via Λ = (R⊗I)(ρ′A) where R is
the recovery channel with superoperator SR = (STA)−1.

Proof. The essence of this proof is that we can treat the bipartite state ρA ∈ D(Z ⊗X ) as
a Choi-matrix for an effective channel via the Choi-Jamio lkowski isomorphism (but with
trace normalization of 1 instead of d), hence we can apply the reshuffling superoperator
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from Eq. (2.207) to transform this state to a superoperator

ρ′A =

S
ρA =

S
SA (3.159a)

where SA = ρRA. Next we rearrange the tensor diagram by sliding this super operator
around the wires two swap the roles of state SA and the channel super operator S:

ρ′A =

S
SA =

S SA
(3.159b)

=
STA

S
=

STA
S (3.159c)

Finally, we may reapply the reshuffling operator to convert S to its Choi-matrix Λ

ρ′A =
STA

S =
STA

Λ (3.159d)

Hence we see that we may completely recover Λ if and only STA is invertible.

In particular, we note that if the initial state ρA is maximally entangled, then it can
be expressed as ρA = |V 〉〉〈〈V | for some unitary V ∈ L(X ). In this case the reshuffled
superoperator of the state corresponds to a unitary channel SA = V ⊗ V , and hence is
invertible with S−1

A = S†A. If the input state is not maximally entangled, then the closer it is
to a singular matrix, the larger the condition number and hence the larger the amplification
in error when inverting the matrix.
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3.5.2 Robust Quantum Process Tomography

The twirling protocol described in Section 3.3.1 can also be used to perform quantum
process tomography, albeit with a tomographically under complete set. While in the ideal
case there isn’t any real advantage to implementing tomography this way, we illustrate it
for pedagogical purposes as it provides a clear and intuitive justification for implementing
a randomized benchmarking based tomographic protocol such as was recently described
in [KdSR+14]. Unlike the twirled case, the randomized benchmarking has distinction of
being much more robust to state preparation and measurement errors, which may make
standard tomographic protocols unreliable.

Suppose we may accurately prepare a single state ρ ∈ D(X ) with X ∼= Cd, and further
that we can perform a measurement of this state corresponding using POVM M = {ρ, 1−
ρ}. Consider an unknown channel E ∈ C(X ), a let C be the set of Clifford channels.

The twirling procedure involves implementing the channel

F j =
1

|C|
∑

Ci∈C
Tr[ρ Ci C†j EC†i (ρ)] (3.160)

=
d+ Tr[S†CjSE ]
d(d+ 1)

. (3.161)

Now,

Tr[S†CjSE ] = 〈〈SCj |SE〉〉 = 〈〈ΛCj |ΛE〉〉. (3.162)

Hence the probability of measuring ρ for the twirled channel C†jE is given by

pj = F j =
1

d+ 1
+
〈〈ΛCj |ΛE〉〉
d(d+ 1)

. (3.163)

Next, we define a measurement set of Clifford channels

PC =

{
Πj =

ΛC
d

: C ∈ C

}
. (3.164)

We define a number p′j to be the “probability” of successful measuring Πj for a state given
by the Choi-matrix ΛE :

p′j = 〈〈Πj|ΛE〉〉 = (d+ 1)pj − 1. (3.165)
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We may then reconstruct ΛE via linear inversion or MLE fitting with the set of projectors
PC and observed probabilities {p′j}.

Generalizing twirled tomography to randomized benchmarking based tomography as
described in [KdSR+14] follows the exact same procedure as used above, but with ran-
domized benchmarking used to estimate the average gate fidelity. Once this has been
estimated one can then compute the estimate of p′j and proceed in the same manner as
with the twirling reconstruction.

We now mention some caveats of this approach. For a d-dimensional system we need d4

linearly independent rank-1 states Πj to have a tomographically complete set. However, the
only channels which have rank-1 Choi matrices are projective measurements and unitary
operations. If we restrict ourselves to unitary operations then we cannot span the full
Hilbert space and hence will have a tomographically undercomplete set. To show this, we
note that the superoperator of a unitary is SU = U⊗U . The subspace of L(X⊗X ) spanned
by these tensor-product superoperators has dimension d4 − 2d2 + 2 [RS09]. The span of
Clifford channels {SC : C ∈ C(d)} is however equal to the span of all unitary channels,
and the the support of this set is all unital CPTP maps. Hence it in principle allows one
to reconstruct the unital part of any unknown CPTP map E . In an actual experimental
implementation there is a significant issue that could arise due to finite sampling statistics
or other count errors. The mean E and variance σ of the derived probabilities p′j used from
the reconstruction are given by

E[p′j] = (d+ 1)E[pj]− 1 (3.166)

σ[p′j] = (d+ 1)σ[pj] (3.167)

and so the minimum average number of counts observed in an ideal twirling experiment is
pj = Nj/(1 + d). If our experimentally observed number of counts is below this threshold
then the estimated mean of our reconstruction of p′j will be negative. Hence we see that
our reconstruction of p′j does does not correspond to a probability.

3.6 Summary

In this chapter we reviewed several common methods and measures for characterizing
quantum channels and presented several new results including a new proof and condition
for a state being suitable for AAPT, and tighter upper bounds on the CB trace norm,
that are exact for certain classes of channels. In particular this bound is tight for the CB
trace norm of the difference of two channels with Choi-matrices that are diagonal in the
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same basis. The CB trace norm and these new bounds will be of use when we use it to
characterize generalizations of quantum channels in Chapters 4 and 5. In the average gate
fidelity example we were able to give a shorter proof of the average gate fidelity of a quantum
channel by using the graphical representation of the average over states

∫
dψ|ψ〉〈ψ|⊗n in

terms of the projector onto the symmetric subspace of X⊗n. This projector can be expressed
as the sum of n! permutation operators which have a natural representation as tensor
network diagrams consisting of a series of SWAP operations corresponding to all left-to-
right permutations of n wires. The power of tensor network framework was to manipulate
the string diagram for a given expression to form the tensor product |ψ〉〈ψ|⊗n irregardless
of where the n copies of |ψ〉〈ψ| appear in the original expression. After substituting in the
projector onto the symmetric subspace we can contract the n! resulting diagrams to arrive
at the final value. Similar techniques could prove useful for calculating other quantities
such as higher order moments of fidelity functions and other quantities defined in terms of
averages over quantum states.

Our presentation of quantum tomography showed that many forms of quantum process
tomography can be interpreted as special cases of quantum state tomography where the
quantum state being reconstructed is the unknown channels Choi-matrix. This formalism
will be especially useful in Chapter 4 where we introduce a new formalism for generalized
quantum channels and show how tomography of these more general objects can again be
stated as a form of quantum state tomography. We also demonstrated a use of graphi-
cal calculus for quantum channels which allowed us to derive a succinct expression for a
necessary sufficient condition for a bipartite state to be usable for ancilla assisted process
tomography. By vectorizing bipartite matrices and their bipartite matrix transformations
we found that we could consider a bipartite density matrix over a system and ancilla as
a type of Choi-matrix via the Choi-Jami lkowski isomorphism. By applying the reshuffling
transformation we can convert this into an effective superoperator channel which must be
invertable to recover the Choi-matrix. While this is equivalent to the perviously known
result we believe it is a simpler proof, and the resulting recovery channel is simpler to
construct using the presented method.

Our presentation of partial characterization via unitary 2-designs and randomized
benchmarking will be useful in Chapter 4 where we consider the twirling procedure as
type of generalized channel and show how to generalize this to describe randomized bench-
marking and twirling of multiple subsystems which are related to other proposed char-
acterization techniques [ESM+07, GCM+12]. While quantum process tomography and
randomized bencharmking are two of the most widely used characterization techniques,
there exist many proposals for alternative characterization techniques aiming to address
various issues which arise with these protocols [ESM+07, MGS+13, BK13]. The main prob-
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lem with quantum process tomography is that it requires a number of experiments scaling
exponentially with the number of qubits which makes it impossible to implement for more
than a couple of qubits, and is also highly susceptible to SPAM errors. The latter issue
has been addressed to some extent in recent generalizations such as gate-set tomography
and randomized benchmarking tomography [MGS+13, BK13, KdSR+14]. RB on the other
hand is a scalable protocol that is robust to certain SPAM errors, however average gate
fidelity is usually too coarse grained a parameter for honestly estimating fault-tolerance
thresholds, or if one is interested in more general properties of the noise on a system. For
example, sometimes a channel description is not sufficient and one needs to characterize the
parameters of a Hamiltonian or dissipator which generates the resulting dynamics rather
than the resulting dynamics themselves, for which there exist characterization schemes
based on Bayesian parameter estimation methods [GFWC12, WGFC14].
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Chapter 4

Quantum Superchannels

4.1 Introduction

In this chapter we introduce a generalization of quantum channels which we call quantum
superchannels — effective quantum channels which take regular quantum channels as their
inputs, rather than a density matrix describing the quantum state of a specific system.
In practice superchannels will arise as effective channels constructed from a given channel
sequence by a tensor rearrangement that changes the effective input and outputs of the
map. This rearrangement is done by using graphical tensor manipulations introduced in
Chapter 2. Our choice of naming is analogous to how superoperators are operator maps,
so we use the name superchannel for channel maps. The abstract description of super-
channels has previously been introduced under the name quantum supermaps [CDP08].
The approach presented here generalizes this formalism further and introduces several new
applications.

The benefit of this approach is that it provides natural description of many realistic
experimental situations that lead to dynamics strictly broader than those that can be
described by CP maps acting on density matrices for a quantum system. In particular
the standard CP-map formalism of quantum channels breaks down in the presence of
initial system-environment correlations or non-markovian noise process between and in this
case the evolution of the system may appear to be non-completely-positive [Pec94, JSS04,
WHE+04, Zim06, KMRRS07, CTZ08, Woo08, MS10, BGTW11, Mod12]. There have been
numerous proposals com how to treat “physical” non-CP which can arise in the presence of
initial correlations [ŠB01, SSGF04, JSS04, SS05, SL09, RRMAG10, Mod12, DL15], while
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for non-markovian environments one generally has to resort to a continuous time master-
equation description of the system and environment [WECC08, RHP10, RHP14].

An operational approach for describing experiments performed on a quantum system
with initial system-environment correlations by an effective channel was proposed by Modi
in the M-map construction which is motivated by explicitly considering the role of state
preparation in device characterization [Mod12]. The M-map is an effective map which takes
the channel corresponding to the state preparation procedure as the input, and allows
for an operational description of the dynamics of the initially correlated system. The
superhcannel formalism we develop here is a direct generalization of the M-map approach,
and we return to the example of describing an initially correlated system in Chapter 5.

Since superchannels are themselves quantum channels, they have all the same proper-
ties, representations, and transformations as discussed in Chapter 2. Consider two Hilbert
spaces of operator maps T (X1,Y1) and T (X2,Y2) for Hilbert spaces X1,X2,Y1,Y2. We
define the space of super channels to be maps of the formM : T (X1,Y1)→ T (X2,Y2). Let
E1 ∈ T (X1,Y1),

M :L(X1 ⊗ Y1)→ L(X2 ⊗ Y2) (4.1)

M :E1 7→ E2 =M(E1) (4.2)

ΛE2 =M(ΛE1) (4.3)

Hence we can see that the set of superchannels can be considered as a set of regular quantum
channels, but where the input and output Hilbert spaces are bipartite tensor product
spaces: M ∈ T (X1 ⊗ Y1,X2 ⊗ Y2). If we want the output space to be density matrices,
this is achieved by setting Y2

∼= C as the trivial output space. In effect density matrices
are a class of channels which map density matrices to complex numbers via Tr[ρTρE ].

Superchannels can also be used to describe other common protocols in quantum infor-
mation processing such as clifford twirling by a unitary 2-design [TDL01, Cha05, GAE07,
RS09, DCEL09], symmetrized characterization [ESM+07], randomized benchmarking [MBKE11,
MGE12, MGJ+12] and its recently proposed generalization of simultaneous randomized
benchmarking [GCM+12]. We present a description of twirling as a superchannel, and
show how ideal interleaved randomized benchmarking can also be considered by taking
the kth power of this superchannel. We then generalize this to the n-twirling superchannel
which is the simultaneous twirling of n subsystems of a composite channel. This is closely
related to the characterization schemes of symmetrized characterization and simultaneous
randomized benchmarking. Symmetrized characterization is an example of twirling all in-
dividual subsystems of a bipartite quantum system, and then performing a performing a
permutation of subsystems to estimate the average errors strength of all weight-k Pauli
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errors over the subsystems. Simultaneous randomized benchmarking, which is equivalent
to applying k rounds of twirling to each subsystem of a bipartite subsystem, in principle al-
lows for an estimation of correlated errors between subsystems and was originally presented
as a partial characterization protocol to assess addressability and estimate cross-talk errors
for the control of superconducting qubits. In Section 4.5.1 we present a superchannel for
subsystem twirling which describes how in principle this may be applied to any number of
subsystems of a multipartite channel.

The outline of this chapter is as follows. In Section 4.2 we formally define a quantum
superchannel. In Section 4.3 we give several examples of how to construct superchannels
from an underlying sequence of channels, and we discuss the properties of these chan-
nels in terms of the properties of the underlying channels. In particular we prove several
propositions for when the constructed superchannels will be trace-normalized, hermitian
preserving, completely-positive and trace-preserving. In Section 4.4 we develop a gener-
alization of quantum process tomography to describe how in principle an experimenter
may completely characterize an unknown quantum superchannel. Finally in Section 4.5
we introduce the twirling and n-twirling superchannels.

4.2 Definition of Quantum Superchannels

A quantum superchannel is itself a quantum channel — a completely positive operator
map. Superchannels, however, are in general effective channel that we construct out of a
sequence of quantum channels which describe a physical process in order to change what
we regard to be the input and output of this description. Formally we define a quantum
superchannel as follows:

Definition 4.2.1 (Quantum Superhchannel). A quantum superchannel is a completely
positive operator map M ∈ T (X1 ⊗ Y2,X2 ⊗ Y2) which maps bipartite positive operators
Λ1 ∈ T (X1 ⊗ Y1) to bipartite positive operators Λ2 ∈ T (X2 ⊗ Y2). Let E ∈ C(X1,Y1) be a
quantum channel. We define the action ofM(E) acting on this channel by ΛM(E) ≡M(ΛE).

Since superchannels are simply channels they have all the same representations and
transformation for channels as described in Chapter 2. We will only make use of the
Choi-matrix and superoperator representations, and we will only consider these operators
defined in terms of the col-stacking vectorization convention.

Consider a superchannel M ∈ T (X1 ⊗ Y1,X2 ⊗ Y2). The Choi-matrix ΛM ∈ L(X1 ⊗
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Y1 ⊗X2 ⊗ Y2) is represented graphically as an 8-index tensor

ΛM =

X1 X1

Y1 Y1

X2 X2

Y2 Y2

ΛM (4.4)

where the top 4 indices correspond to the input Hilbert space L(X1 ⊗ Y1), the bottom
4 indices the output Hilbert space L(X2 ⊗ Y2), and we have labelled the corresponding
Hilbert spaces of the wires. Evolution is given by

M(ΛE) = Tr12[ΛT
E ⊗ (1X2⊗Y2)ΛM] (4.5)

where Tr12 ≡ TrX1,Y1 refers to tracing over the first 2 indices. This is illustrated as

ΛM(ρE) =

ρE

ΛM
. (4.6)

The Choi-matrix has the usual properties as discussed in Section 2.3.4. In particular it is
defined in terms of the Choi-Jamio lkowsi isomorphism

ΛM = (1⊗M)(|1X1⊗Y1〉〉〈〈1X1⊗Y1|). (4.7)

A superchannel M satisfies the following the properties:

Tr[ΛM] = dx1dy1 (4.8)

M is HP ⇔ Λ†M = ΛM (4.9)

M is CP ⇔ ΛM ≥ 0 (4.10)

M is TP ⇔ TrX1,Y2 [ΛM] = 1X1⊗Y2 (4.11)

where dx1 and dy1 are the dimensions of X1 and Y1 respectively.
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The superoperator representation SM ∈ L(X1 ⊗Y1 ⊗X1 ⊗Y1 ⊗X2 ⊗Y2 ⊗X2 ⊗Y2) of
the superchannel M is an 8-index tensor represented graphically as

SM =

X2 X1

Y2 Y1

X2 X1

Y2 Y1

SM (4.12)

where the right 4 indices correspond to the vectorized input space, and the left 4-indices
to the vectorized output space. As shown in Section 2.4 it is defined in terms of the
Choi-matrix by the reshuffling operation SM = ΛR

M. The output states are vectorized
channels

∣∣ΛM(E)

〉〉
= SM|ΛE〉〉 (4.13)

which is depicted graphically as

ΛM(ΛE) = SM ΛE (4.14)

4.3 Constructing Quantum Superchannels

We now describe how superchannels may be constructed from a sequence of quantum
channels by rearranging the corresponding tensor network to change the object that is the
input. The basic element is a superchannel which takes a single channel E as input, where
E one channel from a given sequence describing the open system evolution of a quantum
system:

Definition 4.3.1 (Single Input Superchannel). Consider the composition of three operator
maps F2 E F1 ∈ T (X ,Y) where F1 ∈ T (X ,X1), E ∈ T (X1,Y1),F2 ∈ T (Y1,Y). We define
the single input superchannel M∈ T (X1 ⊗ Y1,X ⊗ Y) by the map

M(E)(ρ) ≡ F2 E F1(ρ) (4.15)

for all E ∈ T (X1,Y1), ρ ∈ L(X ).
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We can derive the properties of the single input superchannel in terms of the proper-
ties of the underlying channels it is constructed from. These are given by the following
proposition:

Proposition 4.3.1. Let M ∈ T (X1 ⊗ Y1,X ⊗ Y) be a single input superchannel as per
Definition 4.3.1. Then M satisfies the following properties:

1. M = FT1 ⊗F2.

2. Tr[ΛM] = Tr[ΛF1 ] Tr[ΛF2 ].

3. M is HP if and only if F1 and F2 are HP.

4. M is CP if and only if F1 and F2 are CP.

5. M is TP if and only if F1 is a unital and F2 is TP.

Note that while the output space of the single input superchannel can be thought of as
the space of channels T (X ,Y), in terms of the underlying physical system it is actually the
tensor product of the input and output Hilbert spaces L(X )⊗ L(Y) ∼= L(X ⊗ Y). Hence,
for example, we can’t use this superchannel to produce an entangled output in L(X ⊗ Y)
unless we entangle both the input and output physical spaces with an ancilla system.

We can also compose superchannels to construct bipartite superchannels which act on
a bipartite input state space using the same techniques discussed for bipartite channels in
Section 2.5. A more interesting case is where the output of ones superchannel feeds into
the other which would arise, for example, if we construct a superchannel to describe the
sequence of channels

F3 E2F2 E1F1 ∈ T (X ,Y) (4.16)

where we want to have E1 ⊗ E2 be the input to an effective superchannel description. We
make the following definition for composition superchannels:

Definition 4.3.2 (Composition Superchannel). Consider two superchannels

M1 ∈ T (X1 ⊗ Y1,X ⊗ Z), M2 ∈ T (X2 ⊗ Y2,Z ⊗ Y).

We define the composition superchannel M12 ∈ T (X1 ⊗X2 ⊗Y1 ⊗Y2,X ⊗Y) by the map

M12(E1 ⊗ E2) ≡M2(E2) ◦M1(E1) (4.17)

Where
M2(E2) ◦M1(E1)(ρ) =M2(E2)

(
M1(E1)(ρ)

)
(4.18)

for all E1 ∈ T (X1,Y1), E2 ∈ T (X2,Y2), ρ ∈ L(X ).
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The properties of the composition superchannel are similar to those for single-input
superchannel. However if we explicitly assume that the two channels being composed are
themselves single-input superchannels we may deduce the following properties for M12:

Proposition 4.3.2. Consider two single input superchannels M1 ∈ T (X1 ⊗ Y1,X ⊗
Z),M2 ∈ T (X2 ⊗ Y2,Z ⊗ Y) where M = FT1 ⊗ F2 and M2 = GT1 ⊗ G2. The compo-
sition superchannel M12 satisfies the following properties:

1. ΛM12 =

ΛFT
1

ΛG1F2

ΛG2

= ΛFT
1 ⊗G1F2⊗F3

2. Tr[ΛM12 ] = Tr[ΛF1 ] Tr[ΛG1F2 ] Tr[ΛG2 ].

3. M12 is HP if and only if F1,G1F2 and G2 are HP.

4. M12 is CP if and only if F1,G1F2 and G2 are CP.

5. M is TP if and only if F1 is unital, G2 is TP, and ΛG1F2 = 1X2⊗Y1.

We see here that we can construct a superchannel for the sequence of channels F3E2F2E1F1

with inputs E1, E2 by setting G1 = I, and G2 = F3 in Proposition 4.3.2. We further note the
channel constructed in Proposition 4.3.2 can never be TP as the condition ΛG1F2 = 1X2⊗Y1
would require that G1F2 be trace increasing. We now sketch proofs of these propositions.

Proof of Proposition 4.3.1. We begin by provingM = FT1 ⊗F2. We may do this in terms
of the Choi-matrix representation by the following tensor network manipulations.

ΛF1

ΛE

ΛF2

=

ΛE

ΛF1

ΛF2

=

ΛE

ΛM
(4.19)
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where we have defined a superchannel M∈ T (X1 ⊗ Y1,X ⊗ Y) by

ΛM =

ΛF1

ΛF2

(4.20)

=

ΛT
F1

ΛF2

= ΛFT
1 ⊗F2 (4.21)

and henceM = FT1 ⊗F2. Alternatively we can also see this using vectorization identities:

|ΛF1 E F1〉〉 = V2|SF2SESF1〉〉 (4.22a)

= V2(STF1
⊗ SF2)|SE〉〉 (4.22b)

= V2(STF1
⊗ SF2)V†2 |ΛE〉〉 (4.22c)

= SFT1 ⊗F2
|ΛE〉〉 (4.22d)

= SM|ΛE〉〉 (4.22e)

where the superoperator representation of M is given by

SM =

STF1

SF2

= SFT
1 ⊗F2 (4.23)

Properties 2, 3 and 4 follow directly from the fact that M = FT1 ⊗F2, and that FT1 is
CP if and only if F1 is CP, and similarly for HP.
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For property 5 we have

ΛM is TP⇔
ΛM

= (4.24)

⇔

ΛF1

ΛF2 = (4.25)

⇔
ΛF1

ΛF2

= (4.26)

Now Tr1[ΛF1 ] = 1X if and only if F1 is unital, and Tr2[ΛF2 ] = 1Y if and only if F2 is
HP.
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Proof of Proposition 4.3.2. To prove property 1 we have

ΛM12 =

ΛM1

ΛM2

=

ΛT
F1

ΛF2

ΛT
G1

ΛT
G2

(4.27)

=

ΛT
F1

ΛF2

ΛG1

ΛT
G2

=

ΛFT
1

ΛG1F2

ΛG2

(4.28)

Properties 2,3,4 follow directly from the construction ofM12 in property 1. For property
5 we have that partial tracing over the last two indices of ΛM12 is

Tr56[ΛM12 ] = Tr1[ΛF1 ]⊗ ΛG1F2 ⊗ Tr2[ΛG2 ] (4.29)

Hence we have Tr56[ΛM12 ] = 1X1⊗X2⊗Y1⊗Y2 if and only if

Tr56[ΛM12 ] = 1X1⊗X2⊗Y1⊗Y2 ⇔Tr1[ΛF1 ]⊗ ΛG1F2 ⊗ Tr2[ΛG2 ] = 1X1⊗X2⊗Y1⊗Y2
⇔Tr1[ΛF1 ] = 1X1

ΛG1F2 = 1X2⊗Y1
Tr2[ΛG2 ] = 1Y2

and so we have M12 is TP if and only if F1 is unital, G2 is TP, and ΛG1F2 = 1X2⊗Y1 .

4.3.1 Post-Selected Superchannels

As previously mentioned the output space of a superchannel M is actually the tensor
product of the input and output Hilbert spaces for the underlying physical system for
which we constructed the superchannel from a composition sequence of channels. If we
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wish to include a fixed input or measurement so that we are post-selecting (technically
pre-selecting for the fixed input) on the system to be in a fixed state ρ we can do this by
contracting with the appropriate index of M. We define a pre and post selected reduced
superchannel as follow:

Definition 4.3.3 (Input Post-Selected Superchannel). Consider a superchannel M ∈
T (X1 ⊗ Y1,X⊗Y) and an operator A ∈ L(X ). We define the input post-selected super-
channel Min

A ∈ T (X1 ⊗ X2,Y) to be the channel satisfying Mpre
A (E) = M(E)(A) for all

E ∈ T (X1,Y1).

Definition 4.3.4 (Output Post-Selected Superchannel). Consider a superchannel M ∈
T (X1 ⊗ Y1,X⊗Y) and an operator B ∈ L(Y). We define the output post-selected super-
channel Mout

B ∈ T (X1⊗X2,X ) to be the channel satisfyingMpost
B (E)(A) = Tr[B†M(E)(A)]

for all A ∈ L(X ) and E ∈ T (X1,Y1).

The Choi-matrix for Min
A and Mout

B are given by

ΛMin
A =

A

ΛM
(4.30)

ΛMpost
B =

B

ΛM
(4.31)

IfM is a single input superchannel, then the properties of these post-selected channels
follow from Proposition 4.3.1. We detail them with the following corollaries:

Corollary 4.3.1. Let M ∈ T (X1 ⊗ Y1,X ⊗ Y) be a single input superchannel given by
M = FT1 ⊗F2, and let A ∈ L(X ). Then Min

A has the following properties:

1. ΛMin
A

= F1(ρ)⊗ ΛF2.
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2. Tr[ΛMin
A

] = Tr[F1(ρ)] Tr[ΛF2 ].

3. Min
A is HP ⇐= F1,F2 are HP and A is Hermitian.

4. Min
A is CP ⇐= F1,F2 are CP and A ≥ 0.

5. Min
A is TP ⇐= F2 is TP and F1(A) = 1X1.

Corollary 4.3.2. Let M ∈ T (X1 ⊗ Y1,X ⊗ Y) be a single input superchannel given by
M = FT1 ⊗F2, and let B ∈ L(Y). Then Mout

B has the following properties:

1. ΛMout
B

= W2:3(ΛF1 ⊗F †2(B)
)
W †

2:3.

2. Tr[ΛMout
B

] = Tr[ΛF1 ] Tr[F †2(B)].

3. Mout
B is HP ⇐= F1,F2 are HP and B is Hermitian.

4. Mout
B is CP ⇐= F1,F2 are CP and B ≥ 0.

5. Mout
B is TP ⇐= F1 is unital and F †2(B) = 1Y2.

Proof. The proof of Corollaries 4.3.1 and 4.3.2 follow straight forwardly from the graphical
representations of the post-selected channels, and M.

We comment that our definition of our definition for post-selected superchannels is
similar to reduced channels in Section 2.5.3, however the difference being the index that
is contracted for the pre- and post-selected superchannel is the first and last index of the
bipartite output Hilbert space respectively. We can also consider tracing over the output
of the superchannel by setting B = 1 in Definition 4.3.4. We make a point that these pre-
and post-selected superchannels need not be normalized in the usual convention as per
Eq. (4.8). To see this suppose ΛM has trace Tr[ΛM] = dx1dy1 . Now suppose we construct
the pre-selected channel by contracting with the maximally mixed state ρ = 1/dx, where
dx = dim(X ). In this case we have

Tr[ΛMpre
ρ

] =
dx1dy1
d

. (4.32)

Similarly we have the same for the post-selected channel. Of particular note is that the
input post-selected channel can never to TP if F1 is trace non-increasing and the operator A
is a density matrix, as the output will have trace dx2 . This is because pre and post selecting
can be thought of as condition on a measurement outcome which has some probability of
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success 0 ≤ p ≤ 1. Hence if p is less than one this will be a trace decreasing channel. If
we wish to preserve this property we can always renormalize by this probability to ensure
the desired trace.

Our final type of superchannel we discuss is when the input and output Hilbert space
are themselves composite vector spaces. In this case the single input channel in Defini-
tion 4.3.1 takes as input channels E = E1⊗E2 and the physical input and output spaces will
themselves be bipartite spaces. Similarly all the other classes of superchannels straightfor-
wardly generalize to this situation. We note that post-selected superchannels can be useful
for describing interesting dynamics when the underlying physical system is a composite
system, as in this case we can pre or post select on a specific input channel or physical
input or output state on subset of subsystems only. In the bipartite case, these kinds of su-
perchannels can describe situations where one of the subsystems is a physical system, and
the other is is an environment system which is not directly accessible to an experimenter.
In Chapter 5 we give an explicit construction of a superchannel of this type that generalizes
the quantum channel formalism to also describe a system that is initially correlated with
its environment. In this case it can be useful to define a superchannel where we preselect
on a channel input for one of the subsystems. In this case the subsystem preselected on
will simply contract to a fixed channel between its underlying physical input and output
space.

4.4 Characterizing Superchannels

In principle many measures and techniques for characterizing channels can also be used
to characterize superchannels. In practice however, some measures such as average gate
fidelity don’t really make sense for a single input superchannel as defined in Proposi-
tion 4.3.1 as the input and output state spaces are not really equivalent, even when they
are of equal dimension. To see this consider that if the input is a unitary channel it will
have a Choi-matrix isomorphic to a maximally entangled state ΛU = |U〉〉〈〈U |. While the
output Hilbert space corresponds to tensor products of input and output density matrices
ρin⊗ρout. In general any measures we develop will be specific to the particular application
the superchannel was constructed for such as the case of a superchannel for characterizing
initial system environment correlations which we introduce in Chapter 5. Regardless of
the specific choice of characterization measure it is essential that it is, at least in princi-
ple, possible to experimentally reconstruct a complete description of an superchannel via
a generalization of quantum process tomography, which is the main consideration of this
section.
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4.4.1 Quantum Superchannel Tomography

Let X1, Y1, X2 and Y2 be complex Hilbert spaces with dimension x1, y1, x2 and y2 respec-
tively. Consider a quantum superchannel M ∈ T (X2 ⊗ Y2,X1 ⊗ Y1) constructed as per
Proposition 4.3.1, so thatM is a CPTP map. The Choi-matrix forM is an 8-index tensor
and hence in general has x2

1×y2
1×x2

2×y2
2 unknown parameters which must be determined.

If all Hilbert spaces are of dimension d this corresponds to d8.

In order to completely specify these parameters we require that a tomographically
complete input set of input channels E which has minimum size |E| = x2

2 y
2
2, and a to-

mographically complete set of output channels M which has minimum size |M| = x2
1 y

2
1.

In practice the output set can be taken to be the tensor product of a tomographically
complete set of input states Q1 and measurements P1 in the underlying physical systems:

M = {Pij : ΛPij = ρi ⊗ ρj, ρi ∈ Q1, ρj ∈ P1}. (4.33)

where the measurement is a 2 outcome measurement of {ρj, 1− ρj}.
Suppose for now that the dimensions of the input channel are equal x2 = y2 = d. If

we restrict ourselves to unitary input channels U ∈ T (X2,Y2) such that ΛU ≡ |U〉〉〈〈U |,
than we cannot span the full input Hilbert space of the superchannel. This is because the
dimension of the subspace of superoperators spanned by the set of unitary channels is of
dimension d4 − 2d2 + 2 [RS09, KdSR+14].

Thus to completely characterize a superchannel we must has access to input channels
which are not unitary. This can be done, for example, by using input channels corre-
sponding to a preparation procedure or projective measurement [MBC+12]. A projective
preparation procedure Pij ∈ T (X1,X2) consists of an initial projection (or postselection)
onto the state ρi followed by a rotation to the state ρj, so that

Pij(ρ) = ρj Tr[ρ†iρ]. (4.34)

The corresponding preparation map on the system is described by the Choi matrix

ΛPij = ρi ⊗ ρj. (4.35)

Hence we can define a tomographically complete set of projective preparation channels

E = {ΛPij : ρi ⊗ ρj, ρi ∈ Q2 ρj ∈ P2}. (4.36)

where Q2,P2 are tomographically complete sets of input states and measurements on
D(X2) and D(Y2) respectively. We see here that this is a trace decreasing channel as
Tr[Λij] = 1 rather than d, and in particular the trace of the output is given by

Tr[Pij(ρ)] = Tr[ρ†iρ] ∈ [0, 1]. (4.37)
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The intuition for this is we can think of the preparation procedure being a two outcome
measurement {ρi, 1 − ρi} where we are throwing away our results corresponding to the
“failure” outcome 1 − ρi. We note that in practice one need only a single projective
measurement onto a fixed state ρ, and then can obtain the full set E by combining this
measurement with appropriate unitary rotations both before and after the measurement.

For the case of projective preparation procedures the probability of observing a count
for a single input superchannel M for input Pij ∈ E and output measurement Pkl ∈M is
given by

pijkl = Tr
[
(ΛT
Pij ⊗ Λ†Pkl)ΛM

]
(4.38)

= Tr
[
(ρ†i ⊗ ρTj ⊗ ρTk ⊗ ρ†l )ΛM

]
(4.39)

= Tr
[
(ρi ⊗ ρj ⊗ ρk ⊗ ρl)†ΛM

]
(4.40)

= 〈〈Πijkl|ΛM〉〉 (4.41)

where Πijkl ≡ ΛEα⊗ρi⊗Mj. From here one may then reconstruct the Choi-matrix using any
of the methods described in Section 3.4. In the case of MLE tomographic reconstruction
we cans use the SDP from Section 3.4.1 for the reconstruction ofM. This is equivalent to

minimize:
∑

i,j,k,l

Nijkl(Tr[Π†ijklΛM]− pijkl)2

pijkl(1− pijkl)
subject to: ΛM ≥ 0, Tr[ΛM] = x2y2

(4.42)

where we have assumed a normal approximation for the distribution of the observed prob-
abilities pijkl defined by

pijkl =
nijkl + β

Njikl +Kβ
(4.43)

where nijkl is the observed number of counts out of Nijkl trials for a given projector Πijkl,
K is the number of possible outcomes of a given measurement configuration, and β is a
small hedging parameter used to overcome the problem that the normal approximation
is not well-defined for pijkl = 0, 1 [BK10a]. We note that for a single input superchannel
with a tomographic input set of projective preparations and two outcome measurements
the value of K is 4 — two outcomes for the measurement involved in preparation, and two
outcomes for the final measurement of the output physical state.

To perform quantum process tomography on composition superchannels, or superchan-
nels on composite systems we can simply take tensor products of the corresponding tomo-
graphically complete measurement sets E and M. For the case of post-selected superchan-
nels tomographic we simply drop the index in Eq. (4.41), Eq. (4.42) and Eq. (4.43) for the
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fixed input our output post selected state and reconstruct the corresponding reduced rank
tensor.

4.5 Twirling Superchannel

We now give an explicit example of a quantum superchannel that is frequently used in
quantum information theory, though not usually thought of in these terms. The Clifford
twirling operation discussed in Section 3.3.1 is actually a quantum superchannel which can
be thought of as the map which sends a channel E to the twirled channel W(E).

Let E ∈ T (X ) be a channel, the twirling superchannel W ∈ T (X ⊗ X ) defined by
Eq. (3.97)

SW(E) ≡
∫
dU SU SE S†U . (4.44)

is a single-input superchannel as defined in Definition 4.3.1. Hence by Proposition 4.3.1
we have

W =

∫
dU (U †)T ⊗ U =

∫
dU U ⊗ U (4.45)

We can generalize this further for comparing E to a target unitary channel U0 be setting
E 7→ U †0E and defining this twirling superchannel by

WU0 =

∫
dU U ⊗ (U U †0) (4.46)

To evaluate an explicit representation for the superchannel W and its action on a
channel E we prove the following results:

Proposition 4.5.1 (Twirling Superchannel). The twirling superchannel WU ∈ T (X ⊗X ),
where U ∈ C(X ) is a unitary channel, has superoperator and Choi-matrix representations

SWU = |ΛI〉〉〈〈ΛRU |+ |ΛD〉〉〈〈ΛD| − |ΛD〉〉〈〈ΛRU | (4.47)

ΛWU = ΛRU ⊗ ΛI + (ΛD − ΛRU )⊗ ΛD (4.48)

where I is the identity channel D is the completely depolarizing channel, and RU is defined
as

RU =
U − D
d2 − 1

(4.49)
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Proposition 4.5.2 (Twirled Channel). Let E ∈ T (X ) be a channel, let W ∈ T (X ⊗ X )
be the twirling superchannel, and let k be a positive integer. Then we have

WU(E)k = λk I +
(
pk − λk

)
D (4.50)

p = Tr[ΛDΛE ] =
1

d
Tr[ΛE ] (4.51)

λ = Tr[ΛRUΛE ] =
Tr[S†USE ]− p

d2 − 1
=
〈〈U |ΛE |U〉〉 − p

d2 − 1
(4.52)

where I is the identity channel, D is the completely depolarizing channel, and ΛU =
|U〉〉〈〈U |.

We can recover the standard twirling channel W by setting U = I to be the identity
operation. Note that Proposition 4.5.2 is related to the generalization of the twirling chan-
nel used in defining the RB channel in Section 3.3.2. The basic twirling case is recovered
by setting k = 1. We also note that in the case where E is a TP channel we have p = 1.

We now prove these results.

Proof of Proposition 4.5.1. First we note thatWU0 =W(I⊗U0), and then from Eq. (4.45)
we have

SW =

∫
dU V†2(SU ⊗ SU)V2 =

∫
dU (U ⊗ U ⊗ U ⊗ U) (4.53)

If we just consider the where V2 is the unravelling operator. To explicitly evaluate this
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operator we use our definition of the unitary 2-design SU2 in Eq. (3.94):

SW =

∫
dU

U

U

U

U

=

∫
dU

U

U

U

U

=
U

U

SU2 (4.54)

SW =

∫
dU

U

U

U

U

=

∫
dU

U

U

U

U

=
U

U

SU2 (4.55)

=
1

d2 − 1


 +


− 1

d(d2 − 1)


 +


 (4.56)

=

(
1

d2 − 1

)(
|ΛI〉〉〈〈ΛI |+ d2|ΛD〉〉〈〈ΛD| − |ΛI〉〉〈〈ΛD| − |ΛD〉〉〈〈ΛI |

)
(4.57)

= |ΛI〉〉
(〈〈ΛI | − 〈〈ΛD |

d2 − 1

)
+ |ΛD〉〉

(
d2〈〈ΛD | − 〈〈ΛI |

d2 − 1

)
(4.58)

= |ΛI〉〉〈〈ΛR|+ |ΛD〉〉 (〈〈ΛD | − 〈〈ΛR |) . (4.59)

where 〈〈ΛR | = (〈〈ΛI | − 〈〈ΛD |)/(d2 − 1), and the Choi-matrices for the identity and com-
pletely depolarizing channels are given by

ΛI = ⇒ |ΛI〉〉 = ΛI = (4.60)

ΛD = 1
d

⇒ |ΛD〉〉 = ΛD = 1
d

(4.61)
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Finally we note that

ΛI SI⊗U† =

S†
U

= SU = ΛU (4.62)

and

ΛD SI⊗U† = 1
d

S†
U

= 1
d

= ΛD (4.63)

as U † is TP implies that 〈〈1 |S†U = 〈〈1 |.
Hence we have

SWU = |ΛI〉〉〈〈ΛRU |+ |ΛD〉〉〈〈ΛD| − |ΛD〉〉〈〈ΛRU | (4.64)

ΛWU = ΛRU ⊗ ΛI + (ΛD − ΛRU )⊗ ΛD. (4.65)

Proof of Proposition 4.5.2. We start with the case for k = 1. Let E ∈ T (X ) be a channel
and let W ∈ T (X ⊗ X ) be the twirling superchannel. Then we have

∣∣ΛWU (E)

〉〉
= SWU |ΛE〉〉 (4.66)

= |ΛI〉〉〈〈ΛRU |ΛE〉〉+ |ΛD〉〉
(
〈〈ΛD|ΛE〉〉 − 〈〈ΛRU |ΛE〉〉

)
(4.67)

Now using

〈〈ΛD|ΛE〉〉 =
1

d
Tr[ΛE ] = p (4.68)

〈〈ΛU |ΛE〉〉 = 〈〈SU |SE〉〉 = Tr[S†USE ] (4.69)

we have

〈〈ΛRU |ΛE〉〉 =
Tr[S†USE ]− p

d2 − 1
= λ (4.70)

and hence WU(E) = λ I + (p− λ)D
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Now to prove Eq. (4.50) we proceed by induction. Assume that WU(E)n = λn I +
(pn − λn)D. Noting that for channels I and D we have

SISI = SI (4.71)

SDSD = SDSI = SISD = SD (4.72)

and hence

W(E)n+1 =W(E)W(E)n (4.73)

=
(
λ I + (p− λ)D

)(
λn I + (pn − λn)D

)
(4.74)

= λn+1 I +
[
(p− λ)(pn − λn) + λ(pn − λn) + (p− λ)λn

]
D (4.75)

= λn+1 I +
[
p(pn − λn) + pλn − λn+1

]
D (4.76)

= λn+1 I + (pn+1 − λn+1)D. (4.77)

and hence is true for k = n + 1. Thus by induction this is true for all positive integers
k.

4.5.1 Subsystem Twirling Superchannel

Treating the twirling operation as a superchannel naturally allows us to consider the case
where we only twirl a subsystem, or several subsystems, of a channel acting on a composite
system. This is closely related to the proposal for symmetrized characterization [ESM+07],
and can be readily generalized to subsystem randomized benchmarking, which has been
discussed in the case of a bipartite system [GCM+12].

Definition 4.5.1 (Subsystem Twirling). Consider a bipartite Hilbert space L(X1 ⊗ X2)
and channels E1 ∈ T (X1), E2 ∈ T (X2). We define the subsystem twirling superchannel on
the first subsystem to be the map W1,U satisfying

W(1)
U (E1 ⊗ E2) =WU(E1)⊗ E2 (4.78)

for all E1 ∈ T (X1), E2 ∈ T (X2).

From this definition it is straightforward to generalize to subtwirling any number of
subsystems of a multipartite channel. To compute the action of W(1)

U on a channel E ∈
T (X1 ⊗X2) that is not necessarily a tensor product we prove the following result.

131



Proposition 4.5.3 (Subsystem Twirling). Consider a bipartite Hilbert space L(X12), and
a channel E ∈ T (X12) where X12 −X1 ⊗X2. The action of twirling the subsystem channel

T (X1) with W(1)
U is given by

W(1)
U (E) = I ⊗R(1)

U (E) +D ⊗ (Q(1)
D (E)−R(1)

U (E)) (4.79)

and for a sequence of k copies of E we have

W(1)
U (E)k = I ⊗R(1)

U (E)k +D ⊗ (Q(1)
D (E)k −R(1)

U (E)k) (4.80)

where we have defined superchannels

Q(1)
F ,R

(1)
F ∈ T (X12 ⊗X12,X2 ⊗X2) (4.81)

with

R(1)
F =

1

d2 − 1

(
Q(1)
F −Q

(1)
D
)

(4.82)

and Q(1)
F is defined by the superoperator

SQ(1)
F

= (〈〈ΛF | ⊗ SI)V2. =

ΛF

(4.83)

where F ∈ T (X1).

The operators Q(1)
F (E) and R(1)

F (E) are reduced channels in T (X2). We see here we can
recover the twirling superchannel case by setting X2

∼= C to be a trivial subsystem. In this
case the reduced channels are numbers: Q(1)

F (E) = 〈〈ΛF |ΛE〉〉, and in particular Q(1)
D (E) = p

and R(1)
U (E) = λ in Proposition 4.5.1.

We can twirl multiple subsystems by composing the subsystem twirling superchannel.
For example, consider a tripartite subsystem where we wish to twirl subsystems 1 and 2
separately. Then we have

W(2)
U2W

(1)
U1 (E1 ⊗ E2 ⊗ E3) =WU1(E1)⊗WU2(E2)⊗ E3. (4.84)

We will now prove the general expression for twirling n-subsystems, where we allow the
possibility of an (n+ 1)th subsystem which is not twirled.
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Proposition 4.5.4 (n-Twirling). Consider a bipartite Hilbert space L(X ) where X =⊗n+1
j=1 Xj and a channel E ∈ T (X ). The action of individually twirling the first n subsystems

channel T (Xj) with W{n}U =W(1)
U1 . . .W

(n)
Un is given by

W{n}U (E) =
∑

b

Ob ⊗
(∑

b′≤b
(−1)w(b)+w(b′)Gb′(E)

)
(4.85)

where b = b1, ..., bn and b′ = b′1, ..., b
′
n are bit-strings of length n (bi, b

′
j ∈ {0, 1}), w(b) =∑n

j=1 bj is the Hamming weight of b, and b′ ≤ b⇔ b′j ≤ bj ∀ j, and we have defined channels

Ob =
N⊗

j=1

(
δbj ,0 I(j) + δbj ,1D(j)

)
(4.86)

Gb =
N⊗

j=1

(
δbj ,0R(j) + δbj ,1Q(j)

D

)
. (4.87)

For n-Twirling each of a sequence of k copies of E we have

W{n}U (E)k =
∑

b

Ob ⊗
(∑

b′≤b
(−1)w(b)+w(b′)Gb′(E)k

)
(4.88)

Proof of Proposition 4.5.3. The case for k = 1 in Eq. (4.79) follows from the definition
of the twirling superchannel SW in Proposition 4.5.1 and using the composite system
superoperator SW⊗I . To prove the expression for arbitrary k in Eq. (4.80), we use proof
by induction as for Proposition 4.5.1, with the only difference been that now the quantities
are channels rather than numbers, and hence do not commute. We have

W(1)
U (E)k+1 =W(1)

U (E)kW(1)
U (E)

=
[
I ⊗R(1)

U (E)k +D ⊗ (Q(1)
D (E)k −R(1)

U (E)k)
]

×
[
I ⊗R(1)

U (E) +D ⊗ (Q(1)
D (E)−R(1)

U (E))
]

= I ⊗R(1)
U (E)k+1 +D ⊗

(
R(1)
U (E)kQ(1)

D (E)−R(1)
U (E)k+1

)

+D ⊗
(
Q(1)
D (E)kR(1)

U (E)−R(1)
U (E)k+1

)

+D ⊗
(
Q(1)
D (E)k+1 −R(1)

U (E)kQ(1)
D (E)−Q(1)

D (E)kR(1)
U (E) +R(1)

U (E)k+1
)

= I ⊗R(1)
U (E)k+1 +D ⊗

(
Q(1)
D (E)k+1 −R(1)

U (E)k+1
)

(4.89)
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So Eq. (4.80) is true for k + 1 if true for k. Hence by induction it is true for all positive
integer k.

Proof of Proposition 4.5.4. The proof of this expression can be seen by construction. Each
twirled subsystem will have a tensor product of an identity I or a depolarizing channel
Dwith the corresponding contraction superoperator, RU or (QD−RU) respectively, which
acts on the input channel.

We then have all permutations of I and D on the twirled subsystems which are labeled
by the bitstring b. For a given bit string we can expand out the right hand side of the
tensor product of the corresponding operators. For two subsystems we have

b = 00⇒ G00 = R(1)
U R

(2)
U (4.90)

b = 01⇒ G01 = R(1)
U (Q(2)

D −R
(2)
U ) = R(1)

U Q
(2)
D −R

(1)
U R

(2)
U ) (4.91)

b = 10⇒ G01 = (Q(1)
D −R

(1)
U )R(2)

U = Q(1)
D R

(2)
U −R

(1)
U R

(2)
U ) (4.92)

b = 11⇒ G11 = (Q(1)
D −R

(1)
U )(Q(2)

D −R
(2)
U )

= Q(1)
D Q

(2)
D −R

(1)
U Q

(2)
D −Q

(1)
D R

(2)
U +R(1)

U R
(2)
U (4.93)

It is easy to see that this gives the expression in Eq. (4.85). The expression in Eq. (4.88)
then follows by induction as with the proof for Proposition 4.5.3, noting that the terms in
bit strings 01, 10 have alternating signs to the corresponding terms in 11.

4.6 Summary

In this chapter we have introduced the superchannel formalism and given explicit defini-
tions and methods for constructing and composing general superchannels that can then
be applied to specific problems of interest. To demonstrate this we gave the example of
the twirling and n-twirling superchannels. We have also proved conditions for the compete
positivity, trace preserving and Hermicity preserving properties of these constructed super-
channels in terms of the underlying physical channels and states used in the construction.
The superchannel formalism generalizes quantum channels to describe a strictly greater
set of dynamics by treating channels themselves as the input. As we will describe in Chap-
ter 5 a superchannel allows for an operational description of the dynamics of a system
initially correlated with its environment, without having to resort to trying to justify the
physicality of a non-CP description of the dynamics. In principle generalizations of this
approach could be used for an operational description of certain types of non-Markovian
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interactions, in particular where the environment has a long correlation time. The outline
of this approach would be that we can consider a superchannel with two inputs, channels
E1 and E2, where there is some time τ between these gates in the underlying circuit. By
characterizing the superchannel one could look to quantify the memory of the environ-
ment between these operations. In particular if the inputs are preparation procedures as
required for superchannel tomography, for an uncorrelated environment we would expect
the outcome after the second preparation to be independent of the first preparation. If this
is not the case then we have an indication of a non-Markovian environmental correlations.

In regards to characterization of superchannels, an open question is what sort of dynam-
ics can be characterized by unitary input channels. In regards to doing standard quantum
process tomography with interleaved randomized benchmarking, the set of unitary chan-
nels only spans the unital subspace of the channel to be reconstructed. In terms of a
superchannel where the input and output states of the underlying physical system are set
to be ρi and ρj, this corresponds to characterizing the unital part of the the Choi-matrix

Λi,j = F1(ρi) ⊗ F †2(ρj). If we assume that F1 is TP, then the action of this map on an

identity matrix outputs the state F †2(ρj) which is in general not the identity. Thus we
see that superchannels are generally highly non-unital the non-unital subspace is likely
contains the most important parameters to be characterized. A final comment is that
in general quantum process tomography is unscalable for large systems as the number of
experimental configurations required to completely sample all parameters of an arbitrary
channel is d4 for a d dimensional system. Superchannel tomography only makes matters
worse due to the increase in dimension of the object being reconstructed, nevertheless it
is important to consider when in principle it is possible and is an important first step to
considering partial characterization schemes.
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Chapter 5

Characterization of Initially
Correlated Open Quantum Systems

5.1 Introduction

The quantum channel formalism reviewed in Chapter 2 provides a complete operational
description of reduced dynamics of an open quantum system in the case where the initial
system-environment state is uncorrelated [PB02]. This was made explicit in the formulation
of the system-environment representation of CP-maps in Section 2.3.2. However in many
situations this central assumption is at best an approximation [RRMK+08, MS10]. In
this chapter we demonstrate how one may describe the evolution of an open quantum
system initially correlated with its environment using the quantum superchannel formalism
introduced in Chapter 4.

A typical quantum experiment can be split into three steps: state preparation, evolu-
tion, and measurement. State preparation takes a system from a generally unknown initial
state to a desired input state. This state is then subjected to some dynamical process for
a fixed time—the state evolution– the output of which may be finally measured. If the
initial system state is correlated with the environment, the system preparation procedure
in general will also affect the state of the environment. We illustrate this with a simple
example: Consider the extreme case of a maximally entangled initial SE state:

|ψSE〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). (5.1)

where the first and second subsystems correspond to the system and environment re-
spectively. If the experimenter attempts to prepare an input state by an ideal projec-
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tive measured which leaves the system in the eigenstate corresponding to the observed
output, then a projective preparation of the system into |0〉 or |1〉 for example leaves
the environment in orthogonal states. Hence, if the subsequent system evolution is not
perfectly isolated it is coupled to different environment states which may lead to drasti-
cally different reduced dynamics of the system conditional on the used preparation proce-
dure [Woo08, BGTW11, Mod11]. If the experimenter attempts to characterize this chan-
nel using standard tomographic characterization techniques, the reconstructed descrip-
tion of the reduced system dynamics may appear unphysical and be given by a non-CP
map [KMRRS07, Zim06, CTZ08, Woo08, MS10, BGTW11, Mod12]. This highlights the
importance of accounting for initial SE correlations to reliably characterize the system
dynamics.

While the environment is typically inaccessible to the experimenter, recent results sug-
gest that at least partial information about the initial joint SE state can be extracted
from measurements of the system alone. Initial correlations can be witnessed through the
distinguishability [WLB13, LPB10, RRMMAG12, GB11] and purity [RWC+11] of quan-
tum states, which has also been explored experimentally [SBC+11, LTLG11, GRP+13].
A more operationally complete characterization can be obtained by explicitly treating the
system’s preparation procedure, rather than the prepared state, as the input to the reduced
description as was proposed in [Mod12]. This approach fits naturally in the quantum su-
perchannel formalism presented in Chapter 4, where the preparation procedure is the input
of an effective superchannel that takes into account the initial system environment state,
and subsequent evolution. Hence it captures not just the system evolution, but also the
dynamical influence of the environment, even in the presence of initial SE correlations.

(a)

-1 +1

kii

-1 +1

(b)
UU

Figure 5.1: System dynamics in the presence of an environment. (a) Special case: with
no initial SE correlations the reduced dynamics of the system, which interacts unitarily
(U) with an environment, can be completely reconstructed from tomographically complete
sets of input states {ρi} (resulting from preparation procedures {Pi}), and measurements
{Mj}. (b) General case: the joint SE state may be initially correlated before the state
preparation procedure. The superchannel approach encompasses this situation by treating
the preparation procedure Pki as the input state to a more general description of the
reduced system dynamics.
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The main differences between standard QPT and the superchannel description of the
tomography experiment is illustrated in Fig. 5.1. Recall from Section 3.5 that the Choi
matrix of an unknown quantum process can be reconstructed through QPT from the
outcomes of a finite set of measurements {Mj}d2j=1, performed on a finite set of system

input states {ρi}d2i=1 as shown in Fig. 5.1(a). Crucially, this assumes that the channel E
being characterized is independent of the system’s preparation. In the presence of initial
SE correlations, this assumption is in general not satisfied. The joint SE state is then
ρse ∈ L(X ⊗ Y), as illustrated in Fig. 5.1(b), where X and Y are the state spaces of the
system and environment, respectively. In the first step of the experiment the system is
prepared in the state ρs by applying a preparation map Pi to S alone. Such a preparation
will typically leave the environment in a state conditional on P

ρe|P = TrX [P(ρse)], (5.2)

which in turn leads to a conditional evolution EP and QPT would return a map which is a
combination of the partial reconstructions of the possible EP . In the following we consider
the case of a fully de-correlating preparation procedure:

(P ⊗ I)(ρse) = ρs ⊗ ρE|P (5.3)

where I is the identity map on E. Denoting by U the channel that describes the subsequent
joint evolution, the final output state is given by

ρ′s = TrE
[
U
(
(P ⊗ I)(ρse)

)]
. (5.4)

To characterize the system in the presence of possible initial correlations we describe
the dynamics by means of a superchannel

M : P → ρ′s. (5.5)

The output is given by
ρ′s =M(ΛP) (5.6)

where ΛP is the Choi matrix for the preparation map P [Mod12].

In Section 5.2 we explicitly show how to construct the IC superchannel and discuss
its properties, thus incorporating [Mod12] within the general framework of superchannels
introduced in Chapter 4. In Section 5.3 we introduce operational measures to quantify
the presence and strength of initial correlations. These measures may be computed from
the tomographic reconstruction of an unknown superchannel. We explore these measures
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using several theoretical examples in Section 5.4. In particular we consider both classically
correlated, and entangled initial SE states, and interactions consisting of controlled-unitary
dynamics, and a swap gate, which can be used to model several common error modalities for
channels. Finally in Section 5.5 we present the results of an experimental demonstration
of these characterization techniques performed using photonic qubits. This experiment
characterizes the dynamics of a single-photonic qubit that is initially correlated with a
simulated single-photon environment.

5.2 Initial Correlation Quantum Superchannel

Consider a system with Hilbert space X1, and an environment with Hilbert space Y1. Let
the system and environment initially be in a ρse ∈ D(X1 ⊗ Y1). Consider the case where
we first apply to this state a preparation procedure

P = Ps ⊗ Ie ∈ T (X1 ⊗ Y1,X2,⊗Y2) (5.7)

where Y2 = Y1 and Ps ∈ T (X1,X2) acts only on the system to prepare it in a desired
input state. This is followed by coupled evolution of the joint system-environment state,
described by a CPTP map U ∈ T (X2⊗Y2,X3⊗Y3) as depicted in Fig. 5.1. In the typical
system-environment formalism of CP maps the channel U will be a unitary channel on
the joint system-environment, however this property isn’t necessary in our derivation, and
for now we only assume that U is a general CPTP-map. The reduced output of the joint
evolution is given by

ρ′s = TrY3
[
U(Ps(ρse))

]

= TrX2,Y2,Y3

[(
P(ρse)

T ⊗ 1se
)
ΛU
]

= TrX2,Y2,Y3

[(
TrX1,Y1

[(
ρTse ⊗ 1se)ΛP

]T ⊗ 1se

)
ΛU
]

(5.8)

Note that ΛU and ΛP have each 4 subsystem indices, which correspond to S-input, E-input,
S-output and E-output, respectively.

The action of the preparation channel may be represented graphically as:

P(ρSE) =

ρse

ΛP
(5.9)
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Hence the graphical representation of Eq. (5.8) is given by

ρ′s =

P(ρse)

ΛU
=

ρse

ΛPs

ΛU

=

ΛPs

ρse

ΛU

(5.10)

Hence we may define the IC quantum superchannel Mic ∈ T (X1 ⊗ X2,X3) in terms of
the initial system-environment state ρse and the interaction Choi matrix ΛU as the tensor
network:

ΛMic
=

ρse

ΛU
(5.11)

so that

ρ′s =

ΛPs

ΛMic

(5.12)

Thus the IC superchannel Mic ∈ T (X1 ⊗ X2,X3) takes the system-preparation procedure
ΛPs ∈ L(X1 ⊗X2) as an input and produces an output quantum state ρ′ ∈ L(X3) given by

ρ′ =Mic(ΛPs)

= TrX1,X2 [(ΛPs ⊗ 1X3)ΛU ].

We note that the IC superchannel is an example of input post-selected superchannel form
Definition 4.3.3.
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In terms of index contractions we have

(ρse)i1i2;j1j2 = 〈i1i2|ρse|j1j2〉
(ΛU)i1i2i3i4;j1j2j3j4 = 〈i1i2i3i4|ΛU |j1j2j3j4〉

(ΛPs)i1i2;j1j2 = 〈i1i2|ΛPs|j1j2〉
(ΛIe)i1i2;j1j2 = 〈i1i2|ΛIe|j1j2〉

= δi1i2δj1j2 .

Hence we can write the action of the preparation map in Eq. (5.9) as

P(ρse)i1i2;j1j2 =
∑

n,m

(ρse)ni2;mj2(ΛPs)ni1;mj1 , (5.13)

and ΛMic in Eq. (5.11) is given by

(ΛMic)i1i2i3;j1j2j3 =
∑

n,m,l

(ρse)i1n;j1m(ΛU)i1ni3l;j1mj3l. (5.14)

In the absence of initial correlations (ρse = ρs ⊗ ρe) the Choi-matrix for Mic takes the
form

ΛMic = ρs ⊗ ΛE (5.15)

where ΛE is the Choi-matrix corresponding to the sys-env representation of the joint unitary
U with the environment initially in state ρe. In this case the action on a preparation
procedure Ps is given by

Mic(Ps) = E(Ps(ρs)). (5.16)

5.2.1 Properties of the IC Superchannel

We may deduce the properties of an IC superchannel Mic from the properties of super-
channels derived in Section 4.3. The first point we make is thatMic is a CP-map whenever
the SE interaction U is a CP map, regardless of initial SE correlation. This is an important
consideration for process tomography experiments as it means that even in the presence
of initial correlations we may use constrained MLE methods in good faith the closest fit
should be a CP map. The second point we note is that sinceMicis an input-post selected
superchannel it is not normalized with respect to the standard convention for a quantum
channel. In particular

Tr[ΛMic ] = d (5.17)

141



where d = dim(X1) is the dimension of the system input Hilbert space . Since the in-
put channel Hilbert space for Mic is d2 dimensional the superchannel is sub-normalized.
The intuition for this is because the IC superchannel by construction takes Choi-matrices
as inputs, which have trace d rather than states, this extra factor of d is accounted for
elsewhere. This is worth keeping in mind when using definitions of operator and channel
norms, in particular the CB trace norm, on Mic.

Further, regardless of normalization,Mic is not trace preserving. With the normaliza-
tion convention used in Eq. (5.17), for Mic to be TP we require

TrX3 [ΛMic ] = 1X1 ⊗ 1X2 . (5.18)

However, assuming that the SE interaction is TP, we have

TrX3 [ΛMic ] = TrY1 [ρse]⊗ 1X2 . (5.19)

HenceMic can never be TP as TrY1 [ρse] will have trace equal to 1 not d. The superchannel
can be pseudo-TP in the sense that it decreases all states by a constant factor 1/d. This
condition holds if and only if

TrY1 [ρse] =
1X1

d
. (5.20)

Two examples of initial state which do satisfy this quantity are if the system and environ-
ment are initially in a maximally entangled initial state, or a completely mixed state. In
both these cases the reduced state of the system appears maximally mixed, and hence any
measurement used as a preparation procedure will succeed with constant probability. In
all other cases different preparation procedures would in general lead to different overall
count rates.

Finally we comment that by only considering preparation procedures of the form in
Eq. (5.7) we assumed that the preparation channel only acts on the system, and hence acts
trivially on the environment. We may relax this condition however for the case where the
preparation procedure has some constant action on the environment of the form

P = Ps ⊗ E or P = (Ese)(Ps ⊗ I) (5.21)

for example, where E is fixed for all considered preparation procedures P . In this case
we may simply incorporate the action of the the preparation procedure into our joint SE
interaction channel U . However, in the case where the term E varies with different prepa-
ration procedures we have returned to the original problem where the environment where
the object we are trying to characterize (in this case the superchannel M) is conditional
on our choice of preparation procedure.
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5.2.2 IC Quantum Superchannel Tomography

In order to experimentally characterize an unknown IC superchannel we can use the method
of superchannel quantum process tomography detailed in Section 4.4.1. For a projective
preparation procedure Pij ∈ T (X1,X2) which consist of an initial projection (or post-
selection) onto the state ρi followed by a rotation to the state ρj and a final measurement
of the output being in state ρk we have that probability of observing a count is given by
pijk = 〈〈Πijk|ΛMic〉〉 where Πijk ≡ ρi ⊗ ρ∗j ⊗ ρk. From here one may then reconstruct the
Choi-matrix using any of the methods described in Section 3.4.

Since the IC superchannelMic will always be CP-map under the assumptions that the
state preparation channel only acts on the system, we can use constrained MLE estimation
methods in good faith to ensure a CP fit. This is in contrast to the conventional QPT
reconstruction of an initially correlated channel which may return a genuine non-CP result.
Hence constrained MLE methods in the standard tomographic protocol cannot distinguish
between a non-CP result due to initial correlations, and those from statistical error, and
in the former case will return a CP description that may greatly differ from the true
description of the reduced dynamics.

We note that if an experimental implementation does not have access to a projective
preparation procedure, the set of unitary channels only spans a d4 − 2d2 + 2 dimensional
subspace, and can only characterize the unital part of Mic. However, in the case of the
IC superchannel the unital subspace is not suitable for characterizing initial correlations,
as in the absence of initial correlations Mic is highly non-unital.

5.3 Initial Correlation Measures

The IC superchannel Mic contains information about initial SE correlations that are
visible through their effect on the subsequent experiment, and how different preparation
procedures may influence the resulting system dynamics. In this section we introduce
two quantitative measures to extract this information: the Initial Correlation norm (IC
norm) which quantifies the distinguishability of a IC superchannel from one without initial
correlations, and preparation fidelity which quantifies the quality of a given preparation
procedure for implementing a desired quantum channel and can be used to assess the
influence of state preparation on the the reduced system dynamics.
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5.3.1 Initial Correlation Norm

For an IC superchannelMic ∈ T (X ⊗X ,X ) where dim(X ) = d, we can define an average
initial system state

ρs,av =
1

d
Tr23[ΛMic ] (5.22)

and an average effective map for the evolution of the system as

ΛEav= Tr1[ΛMic ]. (5.23)

From Eq. (5.11) we see that for a product initial state (ρse=ρs⊗ ρe) the superchannelMic

is given by the tensor product
ΛMic=ρs ⊗ ΛE (5.24)

In this case ρS,av=ρs, and ΛEav=ΛE is the Choi matrix of the channel E describing the
open evolution of the system alone. In this case the channel E is the one that would be
reconstructed from conventional QPT.

For an IC superchannelMic we can now define the corresponding separable superchan-
nel Msep by

Definition 5.3.1 (Average Separable Superchannel). Let Mic ∈ T (X ⊗ Y ,Y) be an IC
superchannel. We define the average separable superchannel Msep by

ΛMsep = ρS,av ⊗ ΛEav =
1

d
Tr23[ΛMic ]⊗ Tr1[ΛMic ]. (5.25)

In general M 6=Msep and the distance between M and Msep can be used to quantify
the strength of the initial SE correlations. We thus define the initial correlation norm:

Definition 5.3.2 (IC Norm). LetMic ∈ T (X ⊗X ,X ) be an IC superchannel. The initial
correlation norm of Mic is given by

‖Mic‖ic =
1

2
‖Mic −Msep‖♦. (5.26)

The matrix Λ∆Mic = ΛMic − ΛMsep was introduced as correlation memory matrix in
[Mod12] since it describes how the dynamics is affected by initial correlations. Using the
bounds on the CB-trace norm from Theorem 3.2.1 we have that the IC-norm is upper and
lower bounded by

1

2d2
‖Λ∆Mic‖1 ≤ ‖Mic‖ic ≤

1

2

∥∥Tr3 |Λ∆Mic|
∥∥
∞. (5.27)
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where d = dim(X ) is the dimension of the input Hilbert space. Note that the IC-norm is
not technically a norm acting on the superchannel Mic, as it is not zero when Mic = 0.
It is actually a norm acting on the difference Mic −Msep, and hence a technically an
IC-measure comparing Mic to Msep.

Our choice of the CB trace norm allows for an operational interpretation of the IC-
norm in terms of channel discrimination as discussed in Section 3.2.1. When ‖Mic‖ic = 0,
there is no operational difference between Mic and Msep, which means that there are
no observable SE correlations. This can either mean that the initial SE state is indeed
uncorrelated, or that the environment is Markovian and initial correlations do not affect the
subsequent dynamics. The initial correlation norm thus provides a necessary and sufficient
condition for the decoupling of the future state of the system from its past interactions
with the environment. When ‖Mic‖ic > 0 there in principle exists an optimal preparation
channel that can be used as a witness for initial correlations, and the specific value of the
norm is related to the single shot probability of success for this witness.

For an operational interpretation we first define a renormalized version of the IC-norm,
which we call the IC-value:

Definition 5.3.3 (IC Value). LetMic ∈ T (X ⊗Y ,Y) be an IC superchannel. The initial
correlation value of Mic is given by

IC(Mic) =
‖Mic‖ic
‖ρs,av‖∞

=
‖Mic −Msep‖♦

2‖ρs,av‖∞
. (5.28)

Like the IC-norm, the IC-value is 0 if and only if Mic = Msep. Further the IC Value
and IC Norm are related by the following bounds

‖Mic‖ic ≤ IC(Mic) ≤ r ‖Mic‖ic. (5.29)

where r is the rank of ρs,av. We can bound the probability of successful discriminating an
initially correlated channel from the average uncorrelated channel in terms of the IC value
by the following theorem:

Theorem 5.3.1 (IC Distinguishability). Let Mic ∈ T (X ⊗X ,X ) be an IC superchannel.
The optimal single shot strategy for distinguishing the IC superchannel from the average
separable superchannel Msep succeeds with probability p which is bounded by

1

2
(1 + IC(Mic)) ≤ p ≤ 1

2
(1 + r‖Mic‖ic) . (5.30)

where r is the rank of the reduced system state ρs,av.
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The reason for the difference between Theorem 5.3.1 and the usual probabilistic inter-
pretation of the CB trace norm for channel discrimination arises because the IC super-
channel is not trace preserving. We now prove this theorem.

Proof of Theorem 5.3.1. From the definition of the CB trace norm we have

‖Mic‖ic = max

{
1

2

∥∥(I ⊗ (Mic −Msep)
)(
|V 〉〉〈〈V |

)∥∥
1

: V ∈ L(X ⊗X ), ‖V ‖2 = 1

}
.

(5.31)
If we define operators for the output of the superchannel

P0 =
(
I ⊗Mic

)(
|V 〉〉〈〈V |

)
(5.32)

P1 =
(
I ⊗Msep

)(
|V 〉〉〈〈V |

)
(5.33)

then for a probabilistic interpretation of the IC-norm we require these operators to be renor-
malized to density matrices ρj = Pj/Tr[Pj] and we may use that the best single shot strat-
egy for distinguishing states ρ0 and ρ1 succeeds with probability p = 1

2

(
1 + 1

2
‖ρ0 − ρ1‖1

)
.

Using tensor rearrangements one can show

(
I ⊗M

)(
|V 〉〉〈〈V |

)
= (V T ⊗ 1X )ΛM(V ⊗ 1X ). (5.34)

(5.35)

Now, since for the IC superchannel we assume the SE interaction is TP we have Tr3[ΛM] =
ρs,av ⊗ 1, and hence

Tr[
(
I ⊗M

)(
|V 〉〉〈〈V |

)
] = Tr[(V T ⊗ 1X )ΛM(V ⊗ 1X )] (5.36)

= Tr[V V T (ρs,av ⊗ 1)]. (5.37)

Thus for the IC-norm we have that the two output operators have the same normalization

Tr[P0] = Tr[P1] = Tr[V V T (ρs,av ⊗ 1)] = pV (5.38)

and so
‖Mic‖ic = max

{pV
2
‖ρ0 − ρ1‖1 : V ∈ L(X ⊗X ), ‖V ‖2 = 1

}
. (5.39)

Now consider the operator V that maximizes the expression in Eq. (5.39). In terms of
the corresponding normalized output density matrices ρj = Pj/pV we have

1

pV
‖Mic‖ic =

1

2
‖ρ0 − ρ1‖1 (5.40)
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and hence the probability of correctly distinguishing ρ0 from ρ1 using the optimal single
shot strategy is given by

p =
1

2

(
1 +

1

pV
‖Mic‖ic

)
. (5.41)

Now we look to bound the normalization factor pV . From the definition in Eq. (5.38) we
have

pV = Tr[V V T (ρs,av ⊗ 1)] = Tr[B†(ρs,av ⊗ 1)] (5.42)

where B = V V T ≥ 0 and satisfies ‖B‖1 = Tr[V V T ] = 1. Hence we have

pV ≤ max
{

Tr[B†(ρs,av ⊗ 1)] : ‖B‖1 = 1
}

(5.43)

= ‖ρs,av ⊗ 1‖∞ (5.44)

= ‖ρs,av‖∞ (5.45)

For the lower bound, we consider the case where the reduced system state is a rank r, and
has all r eigenvalues equal and given by 1/r. In this case ‖ρs,av‖∞ = 1

r
. Any maximization

over input V should beat this lower bound, as there is always another eigenvalue of the
reduced system state which greater than or equal to this value. Hence we have

1

r
≤ pV ≤ ‖ρs,av‖∞ ⇒ ‖ρs,av‖−1

∞ ≤
1

pV
≤ r. (5.46)

Thus we have that the optimal value that satisfies the IC-norm gives

‖Mic‖ic
‖ρs,av‖∞

≤ 1

2
‖ρ0 − ρ1‖1 ≤ r‖Mic‖ic (5.47)

So by the definition of state discrimination in terms of the trace distance (Helstrom’s The-
orem) we have that the optimal single shot strategy for distinguishing initial correlations
succeeds with probability

1

2
(1 + IC(Mic)) ≤ p ≤ 1

2
(1 + r‖Mic‖ic) . (5.48)

5.3.2 Preparation Fidelity

The information contained in the IC superchannelMic can be used to optimize against the
influence of the environment. We introduce the measure of preparation fidelity Fprep for
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the case where high-fidelity projective preparation procedures are readily available, such as
in photonic experiments, noting that similar measures could be defined for other scenarios.
Consider a system preparation via initial post-selection on the state ρ. The subsequent
evolution is then described by the effective map Eρ given by

ΛEρ =
1

pρ
Tr1

[
(ρ†1 ⊗ 123)ΛMic

]
, (5.49)

where

pρ =
1

d
Tr
[
(ρ† ⊗ 123)ΛMic

]
(5.50)

is the probability of success for the post-selection on ρ. Studying these effective maps for
different ρ allows us to find the optimal preparation procedure for any desired evolution of
the system. We define the average preparation fidelity for post-selection in the state ρ as
follows:

Definition 5.3.4 (Average Preparation Fidelity). Consider an IC superchannel Mic ∈
T (X ⊗X ,X ), a density matrix ρ ∈ D(X ), and a target channel Us ∈ C(X ). We define the
average preparation fidelity for implementing Us via a post-selected preparation procedure
into the state ρ as

Fprep(Mic, ρ, Us) =
1

d2
F (ΛEρ ,ΛUs) =

1

d2
Tr[ΛEρΛUs ]. (5.51)

where Eρ is the effective channel form Eq. (5.49) after projective preparation of the system
into the state ρ.

Fprep quantifies the process fidelity between the implemented effective map Eρ and the
desired target unitary channel Us for initial projection onto ρ. The average preparation
fidelity over all initial projections can be obtained from

∫
dρΛEρ = ΛEav = Tr1[ΛMic ]. (5.52)

On the other hand, maximizing Fprep over all states ρ for a given target unitary Us finds
a preparation which allows for the highest quality implementation of Us. Note that this is
not equivalent to minimizing the impact of the environment, since the optimal preparation
might harness some of the environmental correlations to improve the gate performance.

We note that we could have defined this expression analogous to average gate fidelity
in Section 3.2.3 by renormalizing Eq. (5.51) according to

1 + dFprep(Mic, ρ, Us)

1 + d
. (5.53)
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5.4 Example IC Superchannels

In this section we demonstrate the construction of IC superchannels for a classically cor-
related and an entangled initial system-environment state. We will also restrict ourselves
to considering joint SE unitaries between the system and a subspace of the environment
that is the same dimension as the the system. We note that while for full generality
the dimension of the environment should be modelled as the square of the system di-
mension [Sch96, Nar07], the case of equal dimension case is sufficient to illustrate the IC
superchannel techniques [SBC+11, CGM+12]. In particular, the subspace of the environ-
ment that may be initially correlated with the system cannot be of dimension greater than
the system.

In the following we will consider two specific examples of SE interactions for arbitrary
system dimensions. The first where we model the joint SE unitary as a swap-gate:

Usw =
∑

i,j

|zj〉〈xi| ⊗ |xi〉〈zj|. (5.54)

where {|xj〉}, {|zj〉} are any orthonormal bases for the system and environment respectively.
For this interaction we have that the partial trace over the environment output is given by

ΛUsw = = . (5.55)

Hence, from the definition in Eq. (5.11), for an arbitrary initial SE state the IC superchannel
for the swap unitary Msw is given by the Choi-matrix

ΛMsw =
ρse

(5.56)

In some sense this can be thought of as modelling the one of the worst errors that can
happen to the system: no matter what preparation procedure one attempts to apply, the
environment may replace the desired state with a different one. The actual state it is
replaced with will depend greatly on the correlations in the initial state, and hence if
properly characterized could potentially be used as a resource for state preparation.
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The second interaction we consider is a controlled-unitary

Ucu =
∑

i

Ui ⊗ |zi〉〈zi|. (5.57)

for some specific choice of orthonormal basis {|zi〉} for the environment, and where we
assume for simplicity that each of the unitaries Ui’s are orthogonal (Tr[U †i Uj] = dδij). For
this interaction we have the partial trace over the output joint unitary is given by the
Choi-matrix

ΛUcu =

U U

=
U U

. (5.58)

Thus for an arbitrary initial SE state the IC superchannel Mcu is given by

ΛMcu
=

ρse

U U

(5.59)

This type of interaction can capture a Pauli-type error channel. If we wish to implement
a target unitary U1 this will succeed if the environment is in state |z1〉. However, if
the environment for some reason is in a state |zj〉 j 6= 1 then a different unitary may be
implemented resulting in an error. In an initially uncorrelated case setting the environment
to a mixed state

∑
j pj|zj〉〈zj|, where pj is the error probability, models this Pauli-channel

type failure modality.

5.4.1 Classically Correlated Environment

For our first example of initially correlated SE state we consider a classically correlated
state of the form

ρse =
r∑

i=1

pi|xi〉〈xi| ⊗ ρi, 1 ≤ r ≤ dim(X ) (5.60)
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where 1 ≤ r ≤ dim(X ), pi > 0,
∑r

i=1 pi = 1, and {|xi〉} is an orthonormal basis for X .
Note that this state is classically correlated in the sense that it is a 1-sided zero quantum
discord state with respect to measurements performed on the system [MBC+12]. If we
assume that the joint SE interaction is described by a joint unitary Use then we have that
the IC superchannel is given by

ΛMic =
r∑

i=1

pi |xi〉〈xi| ⊗ AiA†i (5.61)

where

AiA
†
i

=

ρi

ΛU
(5.62)

is a positive semidefinite operator satisfying TrY [AiA
†
i ] = 1. Hence the average initial

system state and channel is given by

ρs,av =
r∑

i=1

pi |xi〉〈xi| (5.63)

ΛE,av =
r∑

i=1

piAiA
†
i (5.64)

and so the correlation memory matrix is given by

Λ∆Mic =
r∑

i=1

pi |xi〉〈xi| ⊗
(
AiA

†
i −

r∑

j=1

pjAjA
†
j

)
(5.65)

=
r∑

i=1

pi |xi〉〈xi| ⊗
(

(1− pi)AiA†i −
r∑

j=1,j 6=i
pjAjA

†
j

)
(5.66)

=
r∑

i=1

pi(1− pi) |xi〉〈xi| ⊗
(
AiA

†
i −BiB

†
i

)
(5.67)

where

BiB
†
i =

r∑

j=1,j 6=i

pj
1− pi

AjA
†
j (5.68)
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is a positive semidefinite operator satisfying TrY [BiB
†
i ] = 1.

Now we can compute

|Λ∆Mic| =
r∑

i=1

pi(1− pi)|xi〉〈xi| ⊗
√(

AiA
†
i −BiB

†
i

)2

(5.69)

Hence an upper bound for the IC-norm is

1

2

∥∥Tr3 |Λ∆Mic |
∥∥
∞ =

1

2

∥∥∥∥∥
r∑

i=1

pi(1− pi)|xi〉〈xi| ⊗ TrY

√(
AiA

†
i −BiB

†
i

)2

∥∥∥∥∥
∞

(5.70)

≤ 1

2

∥∥∥∥∥
r∑

i=1

pi(1− pi)|xi〉〈xi| ⊗ TrY
[
AiA

†
i +BiB

†
i

]∥∥∥∥∥
∞

(5.71)

=
1

2

∥∥∥∥∥
r∑

i=1

2pi(1− pi)|xi〉〈xi| ⊗ 1

∥∥∥∥∥
∞

(5.72)

=

∥∥∥∥∥
r∑

i=1

pi(1− pi)|xi〉〈xi|
∥∥∥∥∥
∞

(5.73)

= max {pi(1− pi) : i = 1, ..., r} . (5.74)

where equality holds when AiA
†
i BiB

†
i +BiB

†
i AiA

†
i = 0. The maximum value of Eq. (5.74)

is 1/4 obtained when r = 2, and p1 = p2 = 1/2. Hence we have

‖Mic‖ic ≤
1

4
(5.75)

For bounding the IC-Value we note that for a maximally classically correlated state pi = 1/r
for all i and hence the IC value is maximized by

IC(Mic) ≤ r − 1

r
(5.76)

We also derive an expression for the preparation fidelity for a classically correlated
input states. Suppose we consider post-selection on a pure state ρ = |ψ〉〈ψ| where |ψ〉 =∑

j λj|xj〉. Then we have that the effective channel after projective preparation is given by

ΛEρ =
1

pρ

∑

i,j,k

λiλjpk〈xj|xk〉〈xj|xi〉AkA†k =
1

pρ

∑

i

pi |λi|2AiA†i (5.77)
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where pρ =
∑

i pi |λi|2. Hence we have that the average preparation fidelity for ρ with
respect to a target unitary Us is given by

Fprep(Mic, |ψ〉〈ψ|, Us) =

∑
i pi|λi|2 〈〈Us |AiA†i |Us〉〉

d2
∑

j pj|λj|2
. (5.78)

Let us now consider the specific example of the swap gate and controlled-unitary SE
interactions for a fully classically correlated initial state. By fully classically correlated
we mean that the state has zero quantum discord with respect to measurements on both
the system and environment [MBC+12]. This is achieved by setting ρi = |zi〉〈zi| for some
orthonormal basis {|zi〉} for the environment. For the two interactions we have that the
operator AiA

†
i in Eq. (5.61) is given by

Usw : AiA
†
i = 1⊗ |zi〉〈zi| (5.79)

Ucu : AiA
†
i = |Ui〉〉〈〈Ui| (5.80)

Hence by Theorem 3.2.2 we have that for this case the upper bound of the CB trace norm
is tight and in both cases

‖Mic‖ic = max {pi(1− pi) : i = 1, ..., r} (5.81)

IC(Mic) =
max {pi(1− pi) : i = 1, ..., r}

max {pi : i = 1, ..., r} (5.82)

Thus if we have a maximally classically correlated initial state with r = d and pi = 1/d for
all i, we have

IC(Mic) =
d− 1

d
(5.83)

which approaches 1 for d� 1. We see here that this is tight with the upper bound for the
one-sided discord state originally considered in Eq. (5.60), and hence the addition correla-
tions that one may have when there is non-zero discord with respect to measurement on the
systems do not have any operational difference with respect to the IC value. The fact that
we can still experience different reduced system dynamics, as quantified by the IC-value,
even with classical initial correlations is not surprising as it has been shown previously that
having a zero quantum discord state is not sufficient for obtaining CP description reduced
dynamics from a standard tomographic experiment [Woo08, BGTW11].

If we consider preparation fidelity for these examples we have that for the swap inter-
action 〈〈Us |AiA†i |Us〉〉 = 〈zi|zi〉 = 1, and hence

Fprep(Msw, |ψ〉〈ψ|, Us) =
1

d2
. (5.84)
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so changing our initial projection does not change the average fidelity of the resulting
channel for subsequent local rotations for preparing other states. For the controlled gate,
suppose the target unitary we are trying to implement is U1, then we have

Fprep(Mcu, |ψ〉〈ψ|, Us) =
p1|λ1|2∑
j pj|λj|2

(5.85)

hence in this case we can obtain perfect average preparation fidelity by selecting λ1 = 1
and performing the initial post-selection in the state ρ = |x1〉〈x1|, which also post-selects
the correlated environment into the state that ensures U1 is the reduced system operation.

5.4.2 Maximally Entangled Environment

Now we consider the swap gate and controlled unitary SE interactions in the case of a
maximally entangled initial SE state

ρse =
d∑

i,j=1

1

d
|xi〉〈xj| ⊗ |zi〉〈zj| (5.86)

for some choice of orthonormal bases {|xj〉}, {|zj〉} for the system and environment respec-
tively. Note that here we assume that the basis for the environment is the same as the
control basis for the controlled unitary in Eq. (5.57). Using the swap gate SE interaction
in Eq. (5.54) we have the Choi-matrix for the IC superchannel is given by

ΛMsw =
d∑

i,j=1

1

d
|xi〉〈xj| ⊗ 1⊗ |zi〉〈zj| (5.87)

Hence the reduced average system state and average channel are given by

ρs,av =
1
d
, ΛE,av =

1

d
1⊗ 1⇒ ΛMsep =

1

d2
1⊗ 1⊗ 1. (5.88)

This gives correlation memory matrix of the form

Λ∆Msw =
d∑

i,j=1

1

d
|xi〉〈xj| ⊗ 1⊗ |zi〉〈zj| −

1

d2
1⊗ 1⊗ 1 (5.89)

= V

[(
|B1〉〉〈〈B1| −

d2∑

α=1

1

d2
|Bα〉〉〈〈Bα|

)
⊗ 1

]
V † (5.90)

(5.91)
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where V is a unitary that swaps the second and third subsystems, and {|Bα〉〉} is an
orthogonal basis for X ⊗Y consisting of vectorized unitaries with B1 =

∑d
j=1 |zj〉〈xj|. This

basis satisfies

Tr2[|Uα〉〉〈〈Uα|] = 1,
d2∑

α=1

|Uα〉〉〈〈Uα| = d1⊗ 1 (5.92)

and so we have that

TrY |Λ∆Msw| =
1

d
Tr2

[(
d2 − 1

d2
|B1〉〉〈〈B1|+

d2∑

α=2

1

d2
|Bα〉〉〈〈Bα|

)]
⊗ 1 (5.93)

=
1

d

(
d2 − 1

d2
+

d2∑

α=2

1

d2

)
1⊗ 1 (5.94)

=
2

d

(
d2 − 1

d2

)
1⊗ 1 (5.95)

Now since the correlation memory matrix for the swap gate satisfies the conditions for
Theorem 3.2.2 we have

‖Msw‖ic =
d2 − 1

d3
(5.96)

IC(Msw) =
d2 − 1

d2
(5.97)

For the case of the controlled unitary SE interaction in Eq. (5.57) we have

ΛMcu =
d∑

i=1

1

d
|xi〉〈xi| ⊗ |Ui〉〉〈〈Ui| (5.98)

which gives an average separable IC superchannel of

ρs,av =
1
d
, ΛE,av =

d∑

i=1

1

d
|Ui〉〉〈〈Ui| ⇒ ΛMsep =

d∑

i=1

1

d2
1⊗ |Ui〉〉〈〈Ui| (5.99)
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Hence the correlation memory matrix is given by

Λ∆Mcu =
d∑

i

1

d

(
|xi〉〈xi| −

1
d

)
⊗ |Ui〉〉〈〈Ui| (5.100)

=
d∑

i

1

d

[(
d− 1

d

)
|xi〉〈xi| −

d∑

j=1,j 6=i

1

d
|xj〉〈xj|

)
⊗ |Ui〉〉〈〈Ui| (5.101)

=
d∑

i

1

d

[(
d− 1

d

)
|xi〉〈xi| −

d∑

j=1,j 6=i

1

d
|xj〉〈xj|

)
⊗ |Ui〉〉〈〈Ui| (5.102)

(5.103)

Hence

TrY |Λ∆Mcu | =
d∑

i

1

d

[(
d− 1

d

)
|xi〉〈xi|+

d∑

j=1,j 6=i

1

d
|xj〉〈xj|

)
⊗ TrY [|Ui〉〉〈〈Ui|] (5.104)

=
d∑

i

1

d

[(
d− 1

d

)
|xi〉〈xi|+

1

d
(1− |xi〉〈xi|)

)
⊗ 1 (5.105)

=
2

d

(
d− 1

d

)
1⊗ 1 (5.106)

Since Λ∆Mcu satisfies the conditions of Theorem 3.2.2 we have

‖Mcu‖ic =
d− 1

d2
(5.107)

IC(Mcu) =
d− 1

d
(5.108)

Here we see that for a maximally entangled initial SE state the IC-norm and IC-value for
the swap interaction is strictly greater than for for the controlled interaction. This is in
contrast to the classically correlated initial state where the IC-norm and value were equal
for the swap and controlled-unitary SE interactions.

If we consider preparation fidelity for the two interaction with an entangled input state
we find that the effective channels after post-selection on a pure state ρ = |ψ〉〈ψ| where
|ψ〉 =

∑
j λj|xj〉 are given by

ΛEρ,sw =
∑

i,

λiλj1⊗ |zi〉〈zj| (5.109)

ΛEρ,cu =
∑

i

|λi|2|Ui〉〉〈〈Ui|. (5.110)
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Hence we have that the average preparation fidelity for ρ with respect to a target unitary
Us is given by

Fprep(Msw, |ψ〉〈ψ|, Us) =
1

d2
(5.111)

Fprep(Mcu, |ψ〉〈ψ|, Us) =
∑

i

|λi|2|〈〈Us|Ui〉〉|2. (5.112)

This means that we can maximize the average preparation fidelity to be 1 for the controlled-
unitary interaction so long as Us = Ui for some i. The average preparation fidelity for the
swap interaction is ,however, is independent of our choice of initial projection. These
results agree with those for the classically correlated initial state. We make the comment
that while the swap interaction leads to terrible average preparation fidelity, if one didn’t
care about the average case, but only on the fidelity of returning a given output state ρ
from the channel, then the swap interaction could actually be used as a resource if the
system was sufficiently correlated with the environment. In this sense one could engineer
the output state by projecting the system into the state that leaves the environment in the
state closest to the desired output.

5.4.3 Qubit System

We now consider an explicit example of d = 2 qubit case where we parameterize the
strength of the initial correlations for two classes of initial SE states considered in Sec-
tions 5.4.1 and 5.4.2. We consider a class of initial states which may display purely classical
correlations defined by

ρcse(θ) = cos2(θ) |0〉〈0| ⊗ |0〉〈0|+ sin2(θ) |1〉〈1| ⊗ |1〉〈1| (5.113)

The class of initial states we consider which may display entanglement are given by

ρqse(θ) = |Ψ(θ)〉〈Ψ(θ)| (5.114)

(5.115)

where |Ψ(θ)〉 = cos(θ) |0〉 ⊗ |0〉+ sin(θ) |1〉 ⊗ |1〉. (5.116)

In both cases the parameter θ determines the strength of initial correlations, with the
minimum and maximum correlated state corresponding to θ = 0 and θ = π/4 respectively.
We also consider the two SE interactions given by a swap gate and a controlled-unitary in
Eqs. (5.54) and (5.57) respectively.

157



For the classically correlated initial state using our results in Eqs. (5.82) and (5.82) we
have

max {pi(1− pi) : i = 1, ..., r} = sin2(θ) cos2(θ) =
1

4
sin2(2θ) (5.117)

and
max {pi : i = 1, ..., r} = max{cos2(θ), sin2(θ)} (5.118)

Hence for both SE unitaries have the IC-norm and IC-value are given by

‖Mc
sw‖ic = ‖Mc

cu‖ic =
1

4
sin2(2θ) (5.119)

IC(Mc
ic) = min{sin2(θ), cos2(θ)} (5.120)

In the case of the entangled state we must solve the norm explicitly as we only considered
the maximally entangled initial state in Section 5.4.2. For the swap interaction we have

ΛMq
sw

(θ) = V (|Ψ(θ)〉〈Ψ(θ)| ⊗ 1)V † (5.121)

where V is a unitary which swaps the second and third subsystems ofM. We can compute
the upper and lower bounds using Mathematica. We find them to be

1

8
‖Λ∆Mq

sw
‖1 =

1

2
‖TrY |Λ∆Mq

sw
|‖∞ =

1

8

(
sin2(2θ) + 2| sin(2θ)|

)
(5.122)

Hence we have that the IC-norm and IC-value are given by

‖Mq
sw(θ)‖ic =

1

8

(
sin2(2θ) + 2| sin(2θ)|

)
(5.123)

IC(Mq
sw(θ)) =

sin2(2θ) + 2| sin(2θ)|
8 max{cos2(θ), sin2(θ)} (5.124)

Fig. 5.2 shows the comparison between the IC-value and IC-norm for the classically corre-
lated, and the entangled initial state as a function of the θ. Here we have normalized the
IC-norm by the rank of the initial state, so that it obtains the same maximum value as
the IC-value in the maximally correlated case. We see that the entangled state leads to a
strictly greatly measure of initial correlations for all values of θ.

For the controlled-unitary interaction we have

ΛMq
cu

(θ) = cos2(2θ)|0〉〈0| ⊗ |U0〉〉〈〈U0|+ sin2(2θ)|1〉〈1| ⊗ |U1〉〉〈〈U1|. (5.125)
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Figure 5.2: Comparison of the IC-Value and rank-normalized IC-norm for an initially
correlated qubit state interacting with the environment by a swap-gate. The Mc

sw,Mq
sw

correspond to the classically correlated and entangled initial SE states in Eqs. (5.113)
and (5.114) respectively. θ parameters the degree of correlation with θ = π/4 corresponding
to the maximally correlated configuration for each state. We see that the measure of initial
correlations via the IC-norm and IC-value is strictly greater for the entangled state than
the classically correlated state.

where, as before, we assume that Tr[U †0U1] = 0. By computing the upper and lower bounds
using Mathematica and we find them to be

1

8
‖Λ∆Mq

cu
‖1 =

1

2
‖TrY |Λ∆Mq

cu
|‖∞ =

1

4
sin2(2θ) (5.126)

Hence we have that the IC-norm and IC-value are given by

‖Mq
cu(θ)‖ic =

1

4
sin2(2θ) (5.127)

IC(Mq
cu(θ)) = min

{
sin2(θ), cos2(θ)

}
. (5.128)

We see here that this is the same for the classical correlated initial state. Both these values
also correspond to the same values as for the classically correlated initial state with the
swap interaction in Fig. 5.2.
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5.5 Experimental Demonstration

We now demonstrate the characterization of initial correlations using an IC superchan-
nel for the case of a system and environment each consisting of a single photonic qubit.
The experimental setup is given in Fig. 5.3 and the experiment was implemented by M.
Ringbauer, A. G. White and A. Fedrezzi at the University of Queensland [RWM+15].
In the following we will use polarization basis notation for the states of the system and
environment. These are defined in terms of the computational basis as:

|H〉 ≡ |0〉 |D〉 ≡ 1√
2

(|0〉+ |1〉) |R〉 ≡ 1√
2

(|0〉+ i|1〉)

|V 〉 ≡ |1〉 |A〉 ≡ 1√
2

(|0〉 − |1〉) |L〉 ≡ 1√
2

(|0〉 − i|1〉) .

where |H〉, |V 〉, |D〉, |A〉, |R〉|L〉 correspond to horizontal, vertical, diagonally, anti-diagonally,
right-circular, and left-circular polarization respectively.

PBS

QWP

HWP

PPBS

FC

APD

Environment

System

UP
ik

source

Figure 5.3: Experimental setup. System and environment photons are created in the state
ρse with controllable degree of entanglement, using the source of Ref. [FTP+07]. Arbitary
preparations Pij on the system and measurements {Mj} are implemented by means of
polarizers (PBS), quarter- and half-wave plates (QWP, HWP) and single-photon detectors
(APD). The joint SE evolution U is implemented as a CZ gate between a set of HWPs
and QWPs. In the case of no initial correlations this setup implements the target system
evolution Us. The CZ gate is based on non-classical interference at a partially polarizing
beam splitter (PPBS) with reflectivities of rH = 0 (rV = 2/3) for horizontally (vertically)
polarized light [LWP+05].

Our model for the system-environment interaction is that of a controlled unitary oper-
ation as was discussed Section 5.4. Suppose an experimenter aims to implement the target
system evolution described by the unitary operator Us which is one of the following three
gates:
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1. Pauli-Z gate: Us = Z.

2. Hadamard gate: Us = H = RyZR
†
y.

3. Rotation gate: Us = ZRy.

where Ry = exp
(
−iπ

4
σy
)
, denotes a π/4-rotation around the σy-axis. Due to coupling

to the environment the reduced dynamics of the system will in general deviate from that
described by Us. We simulate this influence by replacing the Z operations in the above
decomposition of Us by controlled-Z (CZ) operations

Ucz = 1s ⊗ |H〉〈H|e + Zs ⊗ |V 〉〈V |e. (5.129)

This means the interaction of the first subsystem is switched on and off conditional on
the state of the environment, which is modelled as another photonic qubit. In the case of
target Z and H gates the environment might thus cause a failure of the system unitary
(i.e. the identity operation is implemented), while in the case Us = ZRy it can introduce a
phase error.

The initial SE state was generated via spontaneous parametric down conversion in the
form

|ψ〉se = cos(2θ) |H〉s ⊗ |V 〉e + sin(2θ) |V 〉s ⊗ |H〉e, (5.130)

where |H〉, |V 〉 correspond to horizontally and vertically polarized photons respectively. In
this case the strength of the initial correlations is parametrized by the tangle:

τ = sin2(4θ) (5.131)

and can be tuned from uncorrelated (θ = 0) to maximal correlation (θ = π/8) [FTP+07].
We prepared states with tangle

τ = {0.012, 0.136, 0.423, 0.757, 0.908} (5.132)

with an average fidelity of F = 0.96(1) with the corresponding ideal state in Eq. (5.130).
The system was then subjected to the preparation procedure Pij from Eq. (4.35), which
prepared it in the state ρj by first projecting onto the state ρi followed by a unitary rotation.
Here for each index we select the state from the tomographically over-complete set

P = {|H〉, |V 〉, |D〉, |A〉, |R〉, |L〉}. (5.133)

State tomography of the output state was also implemented using measurement of P. The
description of the Choi-matrix ΛM was then reconstructed using the SDP in Section 5.2.2.
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Since our experiment had good counting statistics (Nijk > 5000) we used a small value of
β = 0.1 for our hedging parameter in Eq. (4.43) for the observed probabilities pijk. We
note, however, that the reconstruction is not particularly sensitive to the value of β.

Further, since the total number of counts Nijk is unknown a priori, we define it for
our experiment by totalling the observed counts for measurement configurations that sum
to identity (eg. for |H〉 and |V 〉). Since the second index of Πijk corresponds to the
rotated state for the initial projective preparation procedure, only the first and third indices
correspond to true measurements and so we have K = 4 in Eq. (4.43).

5.5.1 Reconstructed IC Superchannels

Since separable IC superhcannels have the product form ρs ⊗ ΛE we will express the re-
constructed Choi-matrices using the polarization basis for the index corresponding to the
effective initial state, and the Pauli basis for the indices corresponding to the effective
channel. This is equivalent to to expressing a separable IC superchannel as ρs⊗χE , where
χE is the χ-matrix. This is achieved by a partial change of basis of the Choi-matrix by
applying the Pauli vectorization change of basis operator to the second two indices of ΛM.
The real part of the reconstructed Choi-matrix ΛM for nominal unitary Us = H and Z for
increasing tangles of the initial state are shown in Fig. 5.4a and Fig. 5.4b respectively. In
both these plots as the tangle of the initial state we see the emergence of a peak correspond-
ing to the identity operation (shown in yellow). This is characteristic for the simulated
increased tendency of the nominal single-qubit operation Us (shown in green) to fail in the
presence of stronger initial correlations. For these reconstructions the imaginary part is
negligible and not shown. The real and imaginary parts of the Choi-matrix for Us = ZRy

are shown in Fig. 5.5a and Fig. 5.5b respectively. Here the emerging peaks for increased
initial correlation correspond to a phase error acting on the system.

To contrast the reconstruction of the IC superchannel with standard quantum process
tomography, the show the reconstruction of the χ-matrix for the channel Us for different
preparation procedures and low initial correlation of τ = 0.136 in for the case of nominal
Us = H in Fig. 5.6. We see here how different choices of system preparation procedure can
lead to vastly different reconstructed channels with fidelities varying between 0.853 and
0.683. The superchannelM in Fig. 5.4a clearly illustrates the reason for this discrepancy:
a term that corresponds to the identity operation and increases with the strength of initial
correlations. This is exactly the simulated environment-induced failure mode of the system
evolution.
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(a) Re(ΛM) for Us = H

(b) Re(ΛM) for Us = Z

Figure 5.4: Real parts of ΛM for (a) Us = H and (b) Us = H in the ideal, uncorrelated case
and experimental results for increasing strength of initial correlations. The matrices ΛM are
shown in a polarization-Pauli basis, with the elements from left to right corresponding to
{|H〉, |V 〉}⊗{I, X, Y, Z} and from front to back corresponding to {〈H|, 〈V |}⊗{I, X, Y, Z}.
The emergence of a peak corresponding to the identity operation (shown in yellow) is
characteristic for the simulated increased tendency of the single-qubit operation Us (shown
in green) to fail in the presence of stronger initial correlations. The negligible imaginary
parts are not shown.
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(a) Re(ΛM)

(b) Im(ΛM)

Figure 5.5: (a) Real and (b) imaginary parts of ΛM for an intended U = RyZ operation
on the system in the ideal, uncorrelated case and experimentally for increasing strength of
initial correlations. The matrices ΛM are shown in the same basis as in Fig. 5.4.

5.5.2 Initial-Correlation Norm and Preparation Fidelity

The computed value if the IC norm ‖M‖ic for the reconstructed channels in Section 5.5.1
plotted against the correlation strength τ of the simulated initial SE states are shown
in Fig. 5.7, here we have rank-normalized the IC-norm by multiplying by rank of the
input state. For all three SE interactions Us the maximum obtained value of 2‖M‖ic is
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Figure 5.6: Real parts of the χ-matrices χU (shown in the Pauli basis) for Us obtained
via QPT for different choices of preparation procedure in the case of low initial correlation
τ = 0.136. Cases (i) and (ii) correspond to a fixed ρk in Fig. 5.1(b), (iii) corresponds
to ρk = ρi, and (iv) is the case where 1 ≤ k ≤ 4. The information contained in the
superchannel M can be used to identify the optimal preparation procedure.

approximately 0.5, which is in agreement with theoretical expectations in Section 5.4.2.
For a maximally correlated initial state the simulated SE coupling would cause a failure
of the evolution with probability 1/2.

To demonstrate the use of preparation fidelity to optimize an experiment we use our ex-
perimentally obtainedM to optimise for maximum fidelity for the target Us = Z and target
Us = RyZ. The computed preparation fidelity for these targets are shown in Fig. 5.8(a)
and Fig. 5.8(b) respectively. The measured value for the IC-norm in these cases was
‖M‖ic = 0.062(5) and ‖M‖ic = 0.034(2) for Fig. 5.8(a) and Fig. 5.8(b) respectively. In
Fig. 5.8(a), the effect of the environment is minimized for initial projection onto the state

cos(φ)|H〉+ eiϕ sin(φ)|V 〉 (5.134)

with φ ≈ 0.658 and ϕ ≈ 0.252. This demonstrates that even for nearly uncorrelated SE
states, the chosen preparation procedure affects the achieved fidelity. In this example, the
projection on the optimal state instead of the basis state |H〉 improved the fidelity by 0.2%.
Similarly, minimizing Fprep finds the worst-case preparation, which could give insight into
where and why an experimental setup fails.

5.6 Summary

In this chapter we demonstrated that the superchannel formalism can be used to charac-
terize the dynamics of a system that is initially correlated with its environment, a situation
which in general cannot be described as a CP-map in the standard quantum channel for-
malism. In contrast to some previous work on open system dynamics in the presence of
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Figure 5.7: Initial correlation norm of the IC superchannel Mic vs correlation strength of
the initial state ρse. The correlation strength is given by the tangle τ from Eq. (5.131) and
Mic is formed from a controlled unitary SE interaction with target unitary U = σz (blue
circles), U = H (yellow squares) and U = Ry (green diamonds). The values of τ were
obtained from state tomography of ρse for each experiment. The measured real parts of
the states with weakest and strongest initial correlations are shown in the respective insets.
The solid line corresponds to the IC-norm in the ideal case. Error bars from Poissonian
counting statistics are on the order of the symbol size.

initial correlations these characterization techniques operationally significant and experi-
mentally accessible. Notably, the reconstruction ofMic is a direct generalization of QPT,
based on subjecting the system to d4, rather than d2 linearly-independent preparation
procedures Pij, which need not all be fully de-correlating. Therefore, tools developed to
improve the efficiency of QPT, such as compressive sensing [SKM+11, FGLE12] can also
be applied to the reconstruction of M.

Since the output of a channel is determined solely by the input and the channel it-
self, it can be thought of as a Markovian two-point connection. The presence of initial
correlations, however, demands the use of the superchannel approach, which is thus an im-
portant step towards understanding non-Markovian quantum processes. Along these lines,
the superchannel approach has recently been used to derive the lower bound on entropy
production in a generic quantum process [VM14].

Our technique is most useful in quantum architectures which are strongly coupled to
their environment, such as spins in local spin baths. Another application is in quantum
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Figure 5.8: Optimization of the preparation procedure. The average preparation fidelity
Fprep(M, ρ1, Z) for (a) Us = Z and (b) Us = RyZ is shown as a density plot on the surface
of the Bloch sphere of the initial-projection state ρ1. In both cases, we chose the lowest
strength of initial correlation realized in the experiment to visualize the effect even for very
weak SE correlations.

control, where control timescales can be much faster than environmental reset times. Fi-
nally, it has been suggested that non-Markovianity can be exploited as a resource [BCM13];
we showed how the superchannel formalism can be used to that extent in our gate opti-
mization.
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Chapter 6

Parallel State Initialization in an
Ensemble Quantum System

6.1 Introduction

A fundamental challenge to implementing quantum information processing on a physical
device is the efficient removal of entropy to rapidly and repeatably initialize a quantum sys-
tem in a high purity state. This is necessary for the application of quantum error correcting
codes to suppress and mitigate the effects of noise and errors that naturally occur in quan-
tum information processors, sensors, and communication devices [Ter15]. Additionally, in
spectroscopic applications the signal-to-noise ratio increases significantly with state purity,
allowing for the detection of small spin ensembles. A variety of techniques for removing en-
tropy from a quantum system are commonly used, including dynamic nuclear polarization
[Abr61, Ram08], strong projective measurements or filters [KLM01], algorithmic cooling
[SV99, SMW05, BMR+05, RMBL08], optical pumping [WKV+10, GPR+14], laser cooling
[WI79, MMK+95, VC00], microwave cooling [VOB+06, WRLZ08], and dissipative state
engineering [VWC09, LGR+13] among others.

As the number of qubits in quantum devices increases initialization methods that can
be implemented in parallel across many qubits are necessary to enable scalability. In the
case of spin ensembles, thermal relaxation processes at low temperature naturally initialize
all spins in parallel and can be used for state preparation, however to achieve high purity
at thermal equilibrium very low temperatures and strong magnetic fields are needed so
that thermal excitations are not energetic enough to cause significant transitions out of
the ground state. A significant issue is that at low temperatures the time required for the
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spin system to reach thermal equilibrium with the environment – the energy relaxation
time, T1 – often becomes very long thus limiting the rate at which spin resets and signal
averaging may be applied [Abr61].

Recently, it was demonstrated that a superconducting qubit may be prepared in an
arbitrary pure state through sideband cooling by a high quality factor (high-Q) cavity
[MVZ+12, GLP+13]. In Sections 6.3 and 6.4 we discuss how similar microwave cooling
techniques should also be applicable to ensemble spin systems in magnetic resonance, de-
spite the relatively small coupling between the cavity and a single spin. In particular, we
present a theoretical model for how a high-Q resonator (cavity) may be used to actively
drive the coupled angular momentum subspaces of an ensemble spin system to a highly
pure, non-thermal equilibrium state on a timescale that is significantly shorter than the
thermal T1. The ability to reduce the effective T1 time of a spin ensemble by simply apply-
ing a detuned microwave drive provides an important tool for error correcting spin-based
quantum information processors (for example [BGC12, CJHL09, MTB+08] and references
therein), and should also find applications in spectroscopy by permitting faster signal av-
eraging. Similar work has also been been considered for cooling an ensemble of nuclear
spins by coupling to a mechanical resonator [BW11].

We now provide an illustrative sketch of how a spin ensemble may be actively driven to
its ground state via interaction with a dissipative cavity. The coupling of the spins to the
cavity allows for the exchange of excitations between the spin and cavity system, and if
the cavity is placed in a refrigerator, excitations transferred to the cavity will be dissipated
into a larger environment ensuring that the cavity stays close to its ground state, so long
as the excitations don’t exceed the cooling power of the fridge.

1. Driving the spins with an r.f. field stimulates coherent exchange interactions between
the spins and the cavity. If the cavity is initially cold there are no photons.

r. f.

(6.1a)

2. An excited spin may flip releasing a photon into the cavity. Due to the two spins
being identical particles, the spins will be in a superposition of the cases where either
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spin flips.

+
r. f.

(6.1b)

3. If the interaction strength between the spins and cavity is weaker than the dissipation
rate of the cavity, the photon will be removed from the cavity before it can interact
with the spins again.

+
r. f.

(6.1c)

4. The remaining excited spin may then flip releasing another photon to the cavity and
putting both spins in the ground state.

r. f.

(6.1d)

5. Once this photon is dissipated, both the spins and cavity are both cooled to their
ground states and no further exchange interactions take place.

r. f.

(6.1e)
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The cavity induced dissipation of a spin ensemble can be engineered to actively cool
all the coupled angular momentum subspaces of a spin ensemble to their corresponding
low temperatures states. In this context the coupled angular momentum subspaces are
the irreducible representations of the Hilbert space for N two-dimensional systems which
preserve a global SU(2) symmetry which we discuss in more detail in Section 6.2.1. Un-
der this symmetry the state space has a block diagonal structure with each block cor-
responding to an irreducible representation of SU(2) that behaves as an effective spin-J
particle [WM02, BCG10]. The largest effective spin subspace has J = N/2 and is called
the totally symmetric subspace, or Dicke subspace [Dic54], and contains all states which
are permutation invariant across all N spins. The cavity cooling dissipator we derive in
Section 6.4 acts collectively on the spin ensemble, hence preserving the global SU(2) sym-
metry, and so does not couple these subspaces. Hence if cooling from a maximally mixed
initial state, the population in each subspace will be trapped in that subspace’s ground
state and the final state will be a mixed state consisting of the sum of all ground states,
which we discuss in Section 6.4.4. A challenge with solving the dynamics of cavity cooling
an ensemble quantum system while including an interaction which couples between these
subspaces, the goal of which is to enable cooling to the true ground state of the Dicke
subspace. The challenge is that once such an interaction is included, in principle the full
Hilbert space for N spin-1/2 particles must be included which has dimension 4N .

In Section 6.5 we present a new method for cavity cooling to the ground state of the
Dicke subspace by introducing a local dephasing (T2) noise process on each spin in the
ensemble. This acts to distinguish each spin and thus breaks the collective symmetry
of the ensemble. In practice dephasing is a phenomenological description that can arise
from several different physical processes, for example in solid-state spin systems it can
be caused by inhomogeneous broadening, or spurious coupling to neighbouring spins or
a local spin bath [Abr61]. The effects of local dissipation on collective dynamics has
been considered previously, where it was shown to rapidly decohere coherent states in the
Dicke subspace [BCG10]. Decoherence of the Dicke subspace has also been studied for an
inhomogeneously broadened ensemble of qubits coupled to a cavity [KWM11]. Unlike these
previous studies we are able to use local dissipation as a resource for dissipative quantum
state engineering to the ground state of the Dicke subspace – the dissipative term breaks
the SU(2) symmetry of the spin ensemble and couples subspaces, but does not inhibit the
cavity cooling dissipative process.

Similar theoretical results have been presented for cooling an ensemble of nuclear spins
by coupling to the motion of a nanoscale mechanical resonator [BW11]. There it was shown
that the addition of a chemical shift to each spin was in principle sufficient to break the
symmetry and achieve exponential relaxation to the ground state and this was numerically

171



demonstrated for five spins. A similar result was found numerically in [TW05] where su-
perradient (Dicke subspace) and subradient (non-Dicke subspaces) relaxation rates were
simulated for 10 inhomogeneous broadened qubits. Our work differs from the approaches in
[TW05, BW11] by including the symmetry breaking mechanism as a dissipative term lead-
ing to a Lindblad master equation that we can solve perturbatively to derive an analytic
expression for the cooling dynamics in the regime where the first order perturbation term
dominates the dynamics. In order to solve the master equation we develop a novel new
perturbation theory technique for dissipative evolution. This involves applying the Magnus
expansion [Mag54, BCOR09], or Average Hamiltonian Theory [HW68, Hae76, EBW+87],
in an imaginary time dissipative interaction frame to the superoperators describing the
open system evolution. There is a long history in nuclear magnetic resonance of apply-
ing average Hamiltonian theory in the superoperator picture, called Average Liouvillian
Theory [LDB92, GEB99, Gho00], and also the related cumulant expansion approach for
stochastic noise processes [Kub62, CHHC06]. In both these cases the relevant interaction
frame is defined by a Hamiltonian, which typically corresponds to a sequence of control
pulses, and the average affect of a dissipative term in this frame is assessed. Our approach
extends these formalisms by providing a procedure to apply these techniques in purely
dissipative (non-periodic) interaction frame. The utility of this method is that in a system
with multiple decoherence mechanisms one can find the average effective dissipation of one
mechanism in the presence of another. As we demonstrate, this may then be used for
finding the equilibrium state of the system for dissipative state engineering applications.

To analytically solve the lowest order term in the Magnus expansion we use recently in-
troduced techniques for describing the local superoperators on spin ensembles using SU(4)
algebra generators [Har12, XTH13]. In this representation the dynamics preserve a global
SU(4) symmetry and any thermal state of Hamiltonian with SU(2) symmetry will be en-
tirely contained in the totally symmetric subspace of SU(4). By considering the explicit
matrix representation of the N qubit totally symmetric subspace of SU(4), this approach
allows us to numerically simulate the reduced dynamics of the spin ensemble for up to
N = 100 spins on a desktop computer.

6.2 Collective Representations of Ensemble Quantum

Systems

In many applications of quantum information we are interested in the dynamics of moderate
to large size ensembles of identical quantum systems. For example, in NMR and ESR we
have ensembles of the order of 103 to 1018 identical spins. In other proposals based on

172



solid-state spin ensembles, such as nitrogen-vacancy centres in diamond and phosphorus or
bismuth defects in silicon, experiments are interested in ensembles of tens to hundreds of
spins. Even for a modest number of spins it becomes impossible to model or simulate the
full range of dynamics on the ensemble system on a classical computer due to the dimension
of the Hilbert space. For an ensemble of N d-dimensional quantum systems, pure states
are specified by dN − 1 complex numbers, while density matrices require d2N − 1 complex
numbers.

In many situations it is not necessary to consider the full Hilbert space of the system.
In particular, if the Hamiltonians or dissipators generating the system dynamics have a
global symmetry the state space can be decomposed into a direct sum structure where
each of these subspaces can be treated independently. In this case for states that have a
block diagonal structure with respect to the subspace decomposition, the dynamics of each
block can be considered independent of the others and treated separately. In this section
we detail how this may be done for the case of SU(d) symmetries, and in particular for
permutation invariant states and operations.

Consider an ensemble of N d-dimensional quantum systems. The joint state space of
the ensemble is given by the tensor product space

X =
N⊗

j=1

Xj ∼= CdN (6.2)

where each Xj ∼= Cd. Note that to model the state space of density matrices rather
than state vectors, we can consider the joint state space as the tensor product of N d2

dimensional vector space by working in the vectorized representation from Section 2.2.2.

The tensor product Hilbert space in Eq. (6.2) is isomorphic to a direct sum decompo-
sition where each vector space in the direct sum is an irreducible representation (irrep) of
SU(d). This decomposition is given by

X ∼=
⊕

J

(
mJ⊕

k=1

ZJk

)
(6.3)

where J = J1 . . . Jd−1 is a list of d− 1 quantum numbers which index the irrep ZJ ∼= CdJ ,
and k is a label to index the mJ copies of a given irrep. For a given N and d, the values
of J , the dimension dJ , and number of copies mJ of the irrep ZJ can be computed using
Young tableaus [Ful97]. We discuss specific cases for two and four-dimensional subsystems
in Sections 6.2.1 and 6.2.2 respectively. The largest dimension representation is called
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the totally symmetric subspace. This subspace consists of all permutation invariant states
on the N systems and in quantum optics and atomic physics is often called the Dicke
subspace [Dic54, Gar11]. We discuss representations of this subspace in Section 6.2.3.

The utility of this decomposition is that any operators acting on X which preserve a
global SU(d) symmetry also preserves the structure of the direct-sum representation in
Eq. (6.3). Let ΠJ

k be the projector onto the subspace ZJk . If we have a density matrix
ρ ∈ D(X ) which is block diagonal with respect to the decomposition in Eq. (6.3) then it
may be written as

ρ =
⊕

J

(
mJ⊕

k=1

pJkρ
J
k

)
(6.4)

where
ρ
~A
j = ΠJ

kρΠJ
k , pJk = Tr[ΠJ

kρ]. (6.5)

Any operator acting on X with a SU(d) symmetry will not couple between the different
ZJk subspaces. Hence each ρJk can be treated as an isolated system on D(CdJ ) thus greatly
reducing the dimensionality of calculations and computations.

In practice the presence of a SU(d) symmety can be inferred from the Hamiltonians and
dissipators of the system. This is done by determining whether or not they can be written
in terms of the collective operators of SU(d). Recall that the group SU(d) is generated
by d2 − 1 traceless and hermitian matrices {tα : α = 1, .., n2 − 1}. In the case of d = 2

these are the familiar Pauli matrices tα ≡ σα. Let t
(j)
α be the generator matrix acting on

subsystem j. We define the collective operator Tα acting on the joint N -partite system by

Tα =
N∑

j=1

t(j)α (6.6)

Any Hamiltonian or Lindblad dissipator acting on the joint system that can be written in
terms of collective operators

H =
∑

α

ωαTa, D =
∑

α

γαD [Ta] , (6.7)

will preserve the subspace structure of Eqs. (6.3) and (6.4). In this case we can simulate
each subspace independently by choosing an explicit dJ dimensional representation for the
operators Tα acting on the irrep ZJ . In the following sections we given explicit constructions
for these representations for the case of the totally symmetric subspace of a d-dimensional
system, and for SU(2).
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6.2.1 Dicke Model

We now discuss the so-called Dicke model, which arrises when one considers an ensemble of
N identical spin-half particles. In this case the Hilbert space (C2)⊗N can be decomposed
as per Eq. (6.3) into irreps of SU(2), which may be indexed by a single quantum number
J . This number can be thought of as the total spin of the irrep, and thus each irrep is
isomorphic to the state space of a spin-J particle. Hence the dimension of the irrep is given
by dJ = 2J + 1, with allowed values of J

J ∈
{
N

2
,
N

2
− 1,

N

2
− 2, . . . , Jmin

}
(6.8)

where Jmin = 0 if N is even, and Jmin = 1
2

if N is odd.

The multiplicity of a given irrep is given by

mJ =
2J + 1

N
2

+ J + 1

(
N

N
2

+ J

)
(6.9)

For example, we list the decomposition of XN = (C2)⊗N for N = 2, 3, 4, 5 using short-
hand ZJ = J we have

X2
∼= 1⊕ 0 (6.10)

X3
∼= 3

2
⊕ 1

2
⊕ 1

2
(6.11)

X4
∼= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0 (6.12)

X5
∼= 5

2
⊕ 3

2
⊕ 3

2
⊕ 3

2
⊕ 3

2
⊕ 1

2
⊕ 1

2
⊕ 1

2
⊕ 1

2
⊕ 1

2
(6.13)

The total spin operators on the full Hilbert space are given by the sum of the spin
operators on individual subsystems:

Jα =
N∑

j=1

1

2
σ(j)
α , J± =

N∑

j=1

σ
(j)
± (6.14)

for α = x, y, z where σα are Pauli matrices. These operators preserve the SU(2) symmetry
of the state space and hence do not couple irreps in the decomposition of the state space
given by Eq. (6.3). In this case we may consider each irrep seperately and represent these
as the spin operators on that subspace.
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Consider an irrep ZJk , we can label the eigenstates of this subspace in terms of the
eigenstates of 2J + 1 dimensional representation of the Spin-Z operator |J,mz〉 where
mz = −J, ..., J . When we need to distinguish between multiple copies of irreps with the
same J value we can add the subscript k to the basis: |J,mz, k〉. An explicit representation
for spin operators is then given by

Jz =
J∑

mz=−J
mz |J,mz〉〈J,mz| (6.15)

J± =
J∑

mz=−J

√
J(J + 1)−mz(mz ± 1) |J,mz ± 1〉〈J,mz|. (6.16)

Sometimes it is convenient to work in the excitation number basis of the system. In
this case we define the excitation number to be s ≡ mz + J, |s〉 ≡ |J, s− J〉, and we have
that |s〉 is the computational basis for a 2J + 1 dimensional system:

Jz =
2J∑

s=0

(−J + s) |s〉〈s| (6.17)

J+ =
2J∑

s=0

√
(2J − s)(s+ 1) |s+ 1〉〈s| (6.18)

J− =
2J∑

s=0

√
(2J − s+ 1)s |s− 1〉〈s|. (6.19)

One may also write the action of these operators on the full Hilbert space, however to
do so involves finding an explicit representation for the basis vectors |J,mz, k〉 in terms
of the computational basis |i1, ..., iN〉. This is rather tedious for all but the largest of the
subspaces and involves computing Clebsch-Gordan coefficients. However in many cases it is
not necessary as we are interested in dynamics which preserve the irrep subspace structure.

In the case of the Dicke subspace one may construct a basis for this subspace by
considering all symmetric combinations of states with m excitations in the spin ensemble.
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For example, in the case of N = 4 we have

|2,−2〉 = |↓↓↓↓〉 (6.20)

|2,−1〉 =
1√
4

(
|↑↓↓↓〉+ |↓↑↓↓〉+ |↓↓↑↓〉+ |↓↓↓↑〉

)
(6.21)

|2, 0〉 =
1√
6

(
|↑↑↓↓〉+ |↑↓↑↓〉+ |↑↓↓↑〉+ |↓↑↑↓〉+ |↓↑↓↑〉+ |↓↓↑↑〉

)
(6.22)

|2, 1〉 =
1√
4

(
|↑↑↑↓〉+ |↑↑↓↑〉+ |↑↓↑↑〉+ |↓↑↑↑〉

)
(6.23)

|2, 2〉 = |↑↑↑↑〉 (6.24)

We discuss the symmetric subspace in more detail (and for arbitrary dimension) in
Section 6.2.3.

Open System Evolution in the Dicke Model

If we consider mixed states of a spin ensemble which are block diagonal with respect to
the SU(2) decompositions then we have

L(XN) 7→
⊕

J

(
mJ⊕

k=1

L(ZJk )

)
(6.25)

where in this representation we have thrown out all elements of the density matrix corre-
sponding to coherences between different ZJk . In this case a block diagonal density matrix
may be written as

ρ =
⊕

J

(
mJ⊕

k=1

pJkρ
J
k

)
(6.26)

where

ρJk =
J∑

n,m=−J
〈J,m, k|ρJk |J, n, k〉 |J,m, k〉〈J, n, k| (6.27)

pJk =
J∑

m=−J
〈J,m, k|ρJk |J,m, k〉. (6.28)
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Suppose we have a system with internal Hamiltonian given by H0 = ω Jz at some
temperature T so that the thermal state of a single spin is given by

ρth = p|↑〉〈↑|+ (1− p)|↓〉〈↓|, where p =
1

1 + e
ω
kbT

. (6.29)

The thermal state of the ensemble will be block diagonal with respect to the SU(2) subspace
structure. The population of a state ρJ,mz = |J,mz〉〈J,mz| is given by [WM02]

pJ,m = MJ p
N
2

+mz(1− p)N2 −mz (6.30)

where Mj is the multiplicity of a subspace with total spin J given in Eq. (6.9). In particular,
for a given value of p the population contained in the Dicke subspace is

pN
2

=
1

2p− 1

(
pN+1 − (1− p)N+1

)
. (6.31)

Using the probabilities pJ,m, and the decomposition of the spin operators in Eq. (6.16)
we can simulate the evolution of each subspace independently for operators that preserve
the irrep structure. This includes any Lindblad equations of the form

dρ(t)

dt
=
∑

α

(
−iωα[Jα, ρ(t)] + γα

(
Jαρ(t)J†α −

1

2
({J†αJα, ρ(t)})

))

Note that local Lindblad dissipators, such as each individual spin experiencing a local
T1 or T2 process, do not satisfy this form. In these cases we have dissipators of the form∑N

j=1 D[σ
(j)
α ], which do not preserve the Block diagonal structure of the SU(2) decompo-

sition. In fact, these operators preserve an SU(4) symmetry in terms of the vectorized
states space that superoperators act on which we discuss in Section 6.2.2.

6.2.2 Generalized Dicke Model

Just as the Dicke model is the decomposition of the state space of N spin-half particles
into irreps of SU(2), we can consider a generalized model where we do this for the Liouville
space of the density matrices for N spin-half particles. Recall from Section 2.2 that we can
vectorize density matrices ρ ∈ L(Cd) to form column vectors |ρ〉〉 ∈ Cd2 . In the case of d = 2
this corresponds to |ρ〉〉 ∈ C4. Hence we can decompose the tensor product space (C4)⊗N

into irreps of SU(4). This decomposition is more complicated that the case of SU(2) as
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there are 3 quantum numbers which specify each of the irreducible representations, rather
than the single number for SU(2) irreps. Rather than explicitly derive this in terms of
irreps, we simply give a constructive method for representing each of the generators of
SU(4) in terms of superoperators acting on the N subsystems. This approach has been
used by [Har12, XTH13] and we use their notation for the SU(4) algebra here.

There are 15 generators for SU(4), which each belong to one of 6 SU(2) subalgebras.
Let O = {Q,Σ,M,N ,U ,V} be the set of sub algebra operators. For O ∈ O:

[O+,O−] = 2O3, [O3,O±] = ±O± (6.32)

Also the pairs of operators (Q,Σ), (M,N ), and (U ,V) each commute:

[Qα,Σβ] = [Mα,Nβ] = [Uα,Vβ] = 0 ∀α, β ∈ {±, 3} (6.33)

The remainder of the SU(4) commutation relations are shown in Table 1. Note that
only 15 of these operators are linearly independent. In particular N3 = Q3 + Σ3 −M3,
U3 =M3 − Σ3 and V3 = Q3 −M3.

The SU(4) generators may be given an explicit matrix representation in the full Hilbert
space in terms of superoperators acting on the vectorized density matrices of N two-
dimensional subsystems. This is analogous to how the spin operators, or SU(2) algebra,
can be given a 2J + 1 dimensional matrix representation in terms of the spin operators
acting on a spin-J particle. A superoperator acting on N subsystems can be written
as SE =

∑
j B

(j)∗ ⊗ A(j), and in particular the SU(4) operators may be represented in

terms of our single spin operators σ
(j)
± , σ

(j)
z , E

(j)
± = 1

2
(1 + σ

(j)
z ), and collective spin operator
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M+ M− M3 N+ N− N3

Q+ 0 −V+ −1
2
Q+ 0 U+ −1

2
Q+

Q− V− 0 1
2
Q− −U− 0 1

2
Q−

Q3
1
2
M+ −1

2
M− 0 1

2
N+ −1

2
N− 0

Σ+ 0 U− −1
2
Σ+ 0 −V− −1

2
Σ+

Σ− −U+ 0 1
2
Σ− V+ 0 1

2
Σ−

Σ3
1
2
M+ −1

2
M− 0 1

2
N+ −1

2
N− 0

U+ U− U3 V+ V− V3

Q+ 0 −N+ −1
2
Q+ 0 M+ −1

2
Q+

Q− N− 0 1
2
Q− −M− 0 1

2
Q−

Q3
1
2
U+ −1

2
U− 0 1

2
V+ −1

2
V− 0

Σ+ −M+ 0 1
2
Σ+ N+ 0 1

2
Σ+

Σ− 0 M− −1
2
Σ− 0 −N− −1

2
Σ−

Σ3 −1
2
U+

1
2
U− 0 −1

2
V+

1
2
V− 0

U+ U− U3 V+ V− V3

M+ 0 −Σ+ −1
2
M+ Q+ 0 1

2
M+

M− Σ− 0 1
2
M− 0 −Q− −1

2
M−

M3
1
2
U+ −1

2
U− 0 −1

2
V+

1
2
V− 0

N+ −Q+ 0 1
2
N+ 0 Σ+ −1

2
N+

N− 0 Q− −1
2
N− −Σ− 0 1

2
N−

N3 −1
2
U+

1
2
U− 0 1

2
V+ −1

2
V− 0

Table 6.1: Commutation relations for SU(4) algebra.
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Jz =
∑N

j=1
1
2
σ

(j)
z , as follows:

Q± =
N∑

j=1

(
σ

(j)
± ⊗ σ(j)

±

)
Q3 =

1

2
(1⊗ Jz + Jz ⊗ 1)

S± =
N∑

j=1

(
σ

(j)
∓ ⊗ σ(j)

±

)
Σ3 =

1

2
(1⊗ Jz − Jz ⊗ 1)

M± =
N∑

j=1

(
E

(j)
+ ⊗ σ(j)

±

)
M3 =

1

2

N∑

j=1

(
E

(j)
+ ⊗ σ(j)

z

)

N± =
N∑

j=1

(
E

(j)
− ⊗ σ(j)

±

)
N3 =

1

2

N∑

j=1

(
E

(j)
− ⊗ σ(j)

z

)

U± =
N∑

j=1

(
σ

(j)
± ⊗ E(j)

+

)
U3 =

1

2

N∑

j=1

(
σ(j)
z ⊗ E(j)

+

)

V± =
N∑

j=1

(
σ

(j)
± ⊗ E(j)

−

)
V3 =

1

2

N∑

j=1

(
σ(j)
z ⊗ E(j)

−

)

Note that care must be taken when ordering the tensor product of subsystems in this sum
to keep track of whether we are working in the vectorized Hilbert space which acts on
d
∣∣ρ(1) ⊗ . . .⊗ ρ(n)

〉
or the unravelled Hilbert space which acts on d

∣∣ρ(1)
〉
⊗ . . .⊗

∣∣ρ(n)
〉〉

as
discussed in Section 2.5.1.

The utility of this approach is we can express many useful open system dynamics of
collective spins in this representation, and it allows us to analytically compute certain
properties that may be difficult otherwise. In particular local T2 and T1 process dissipators
may be expressed as

N∑

j=1

D[S(j)
z ] =M3 −

1

2
Q3 −

1

2
Σ3 −

N

4
I (6.34)

N∑

j=1

D[S
(j)
± ] = 2Q± + 2Q3 −NI (6.35)

181



and collective T2 and T1 process may be expressed as

D [Jz] = −2Σ2
3 (6.36)

D[J±] = (U± + V±)(M± +N±)

− 1

2
(U∓ + V∓)(U± + V±)

− 1

2
(M∓ +N∓)(M± +N±). (6.37)

Further, to do simulations we can write the reduced dimensional representations of
these operators acting only on a given irrep. In practice we will only need to consider the
totally symmetric subspace, as all thermal state of operators with drift Hamiltonians of
the form H =

∑
α ωα Jα are within this subspace. This is useful as the dimension of the

totally symmetric subspace for N four-dimensional subsystems is

dsym =
1

6
(N + 1)(N + 2)(N + 3) (6.38)

and hence scales as O(N3) rather than 4N , which enables simulation of open system dy-
namics preserving this symmetry with up to 100 spins on a typical desktop computer. We
describe how one can construct explicit representations of these operators in Section 6.2.3.

6.2.3 Symmetric Subspace

The totally symmetric subspace consists of all permutation invariant states on the N d-
dimensional vector spaces. In this section we describe how one may construct a basis for
this subspace in terms of the basis for the full tensor product Hilbert space, and also how
to construct projections of operators on the tensor product Hilbert space into operators
acting only on the subspace.

Let X =
⊗N

j=1Xj ∼= CNd be the joint vector space of N copies of Xj = Cd, and let
π ∈ SN be a permutation of a set with N elements. We can define a unitary Wπ ∈ L(X )
which swaps the subsystems of X according to the permutation π. These permutations
have an intuitive represented in terms of the graphical calculus in [CGB+10] as a tensor
network of N wires which connect the respective input and output locations of the vector
spaces. For example for N = 2 we have that π ∈ {12, 21} which corresponds to either an
identity (12) or a SWAP gate (21)

W12 = , W21 = (6.39)
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The projector into the symmetric subspace is given by the sum over all permutations π:

Πsym =
1

N !

∑

π∈SN
Wπ (6.40)

Let Xsym be the totally symmetric subspace of X . We can construct a basis for Xsym
by constructing all permutation invariant combinations of the basis vectors for Xj.

For example, if we have N = 3, d = 2, we can construct a permutation invariant vector
from the multipartite basis element |0, 0, 1〉 by

Πsym|0, 0, 1〉 =
1√
3

(|0, 0, 1〉+ |0, 1, 0〉+ |1, 0, 0〉) (6.41)

In particular we have that the ordering of the index {0, 0, 1} doesn’t matter:

Πsym|0, 0, 1〉 = Πsym|0, 1, 0〉 = Πsym|1, 0, 0〉 (6.42)

Hence we can label the basis elements |sj〉 of Xsym by the sorted sequences of the basis
element to be projected:

|s0〉 ≡ Πsym|0, 0, 0〉 = |0, 0, 0〉 (6.43)

|s1〉 ≡ Πsym|0, 0, 1〉 =
1√
3

(|0, 0, 1〉+ |0, 1, 0〉+ |1, 0, 0〉) (6.44)

|s2〉 ≡ Πsym|0, 1, 1〉 =
1√
3

(|0, 1, 1〉+ |1, 0, 1〉+ |1, 1, 0〉) (6.45)

|s3〉 ≡ Πsym|1, 1, 1〉 = |1, 1, 1〉 (6.46)

In general we can construct the basis elements Xsym by Πsym|j1, ..., jN〉. Let j denote
the sequence j1, ..., jN , and let IN be the set of all sequences i satisfying j1 ≤ j2 ≤ . . . ≤ jN .
The requirement that jk ≤ jk+1 ensures that we don’t over count sequences that project
to the same basis element. To write out a specific function for converting a sequence j to
the integer ζ(j) ∈ N for the symmetric subspace basis vector we can count the number of
orderings to arrive at the formula

ζ(j1, ..., jN) =
N∑

i=1

[
ji−ji−1∑

k=1

(
N − i+ d− ji−1 − k

d− ji−1 − k

)]
(6.47)

=
N∑

i=1

1

(N − i+ 1)!

[
(N − i+ d− ji−1)!

(d− ji−1 − 1)!
− (N − i+ d− ji)!

(d− ji − 1)!

]
(6.48)

(6.49)
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where we define j0 ≡ 0.

With this ordering we can define the basis vector for the sequence j = j1, ..., jN as

∣∣∣sζ(j)
〉

=
1√
n(j)


 ∑

perm(j)

∣∣j
〉

 (6.50)

where we sum over all unique permutations of the indicies j1, ..., jN . The number of ele-
ments of these permutations is given by the multinomial

n(j) =

(
N

j(0), ..., j(d− 1)

)
=

N !

j(0)! . . . j(d− 1)!
(6.51)

where j(l) is the number of l’s in the sequence j1, ..., jN where l = 0, ..., d− 1.

Using this ordering we can calculate the dimension of the symmetric subspace by

dsym = dim(Xsym) (6.52)

= 1 + ζ(d− 1, ..., d− 1) (6.53)

=
(N + d− 1)!

N !(d− 1)!
(6.54)

=

(
N + d− 1

d− 1

)
(6.55)

States and Operators in the Symmetric Subspace

Let |ψ〉 ∈ X be a state in X , and let A ∈ L(X ) be an operator acting on X . |ψ〉 is a
state in the symmetric subspace if and only if Πsym|ψ〉 = |ψ〉, and the operator A is in the
symmetric operator subspace A ∈ D(Xsym) if and only if ΠsymAΠsym = ρ.

Two useful classes of operators are permutation invariant tensor products of the form
|ψN〉 = |ψ〉⊗N and AN = A⊗N . We now describe how to construct explicit representations
for these operators in Xsym in terms of the basis {|sj〉} without explicitly computing the
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projection of the full vector or matrix with Πsym. We have

|ψN〉sym =

dsym−1∑

j=0

|j〉〈sj|Ψ〉 (6.56)

=
∑

j∈IN

∣∣ζ(j)
〉〈
j
∣∣Πsym|ψN〉 (6.57)

=
∑

j∈IN

∣∣ζ(j)
〉
〈j|ψN〉 (6.58)

=
∑

j∈IN

∣∣ζ(j)
〉
(

N∏

k=1

〈jk|ψ〉
)

(6.59)

(6.60)

Similarly for tensor product operators AN = A⊗N we have

AN,sym =

dsym−1∑

i,j=0

|i〉〈j|〈si|ρN |sj〉 (6.61)

=
∑

i,j∈IN
|ζ(i)〉

〈
ζ(j)

∣∣〈i|ΠsymρNΠsym

∣∣j
〉

(6.62)

=
∑

i,j∈IN
|ζ(i)〉

〈
ζ(j)

∣∣〈i|ρN
∣∣j
〉

(6.63)

=
∑

i,j∈IN
|ζ(i)〉

〈
ζ(j)

∣∣
(

N∏

k=1

〈ik|ρ|jk〉
)

(6.64)

(6.65)

Symmetric Subspace Preserving Operators

For an arbitrary operator A ∈ L(X ), we have that A preserves the symmetric subspace
structure of X if and only if it does not take any state in the symmetric subspace out of
the subspace. This is true if and only if A commutes with the projector onto Xsym. To see
this let |ψ〉 ∈ Xsym, then

[A,Πsym] = 0⇒ A|ψ〉 = AΠsym|ψ〉 (6.66)

= ΠsymA|ψ〉 ∈ Xsym (6.67)
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and

A|ψ〉 ∈ Xsym ⇒ AΠsym|ψ〉 = A|ψ〉 = ΠsymA|ψ〉 (6.68)

⇒ [A,Πsym] = 0. (6.69)

One useful type of operator which preserves the symmetric subspace is the symmet-
ric sum operator Σ[A] =

∑N
k=1A

(k), where A(1) ≡ A ⊗ 1 ⊗ . . . ⊗ 1, and similarly for
A(2), ..., A(N). Unlike the symmetric product operators, this operator also has support on
the other subspaces. Hence if we wish to simulate the evolution of the symmetric subspace
alone we must project this operator onto this subspace. The projection of this operator
onto L(Xsym) is given by

Σ[A]sym =
N∑

k=1

dsym−1∑

i,j=0

|i〉〈j|〈si|A(k)|sj〉 (6.70)

(6.71)

Since the basis vectors |sj〉 consist of all permutations of a sequence of indices j they act
on each A(k) identically. Hence

Σ[A]sym = N

dsym−1∑

i,j=0

|i〉〈j|〈si|A(k)|sj〉 (6.72)

for any k = 1, .., N . Hence we have

Σ[A]sym = N

dsym−1∑

i,j=0

|i〉〈j|〈si|A(k)|sj〉 (6.73)

= N
∑

i,j∈IN
〈i|ΠsymA

(k)Πsym

∣∣j
〉
|ζ(i)〉

〈
ζ(j)

∣∣ (6.74)

= N
∑

i,j∈IN

N∑

k,l=1


 〈ik|jl〉√

n(i)n(j)
〈ik|A|jl〉


 |ζ(i)〉

〈
ζ(j)

∣∣ (6.75)
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Symmetric Subspace Representation of SU(4)

Of particular use will be the symmetric subspace representations of the SU(4) generators
given in Section 6.2.2. We have that

Q± = Σ [S± ⊗ S±] Q3 = Σ

[
1

2
(1⊗ Sz + Sz ⊗ 1)

]

S± = Σ [S∓ ⊗ S±] Σ3 = Σ

[
1

2
(1⊗ Sz − Sz ⊗ 1)

]

M± = Σ [E+ ⊗ S±] M3 = Σ [E+ ⊗ Sz]
N± = Σ [E− ⊗ S±] N3 = Σ [E− ⊗ Sz]
U± = Σ [S± ⊗ E+] U3 = Σ [Sz ⊗ E+]

V± = Σ [S± ⊗ E−] V3 = Σ [Sz ⊗ E−]

Note that by construction these operators act on the unravelled vectorized density
matrices.

6.3 Spin-Cavity Master Equation

Now that we have described the state space structure of ensemble quantum systems we
return to the physical system of interest, that of an ensemble spin system coupled to a
single mode cavity. The mathematical model we use to describe this quantum system is
called the Tavis-Cummings (TC) Hamiltonian [TC68, TC69]

HTC =
N∑

j=1

g(σ
(j)
+ a+ σ

(j)
− a

†) = g(J+a+ J−a
†) (6.76)

which is the N -spin generalization of the Jaynes-Cummings Hamiltonian. Where J± =∑N
j=1 σ

(j)
± are the total angular momentum spin raising and lowering operators for an

ensemble of N spins. The TC Hamiltonian is also known as the Dicke model [Dic54] and
has been studied extensively for quantum optics (for a recent review see [Gar11]). In the
following section we show how one may derive an effective TC-interaction for an inductively
driven ensemble of non-interacting spin-1/2 particles quantized in a large static magnetic
field and magnetically coupled to a high-Q cavity as illustrated in Fig. 6.1.
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Figure 6.1: Illustration of the driven Tavis-Cummings Hamiltonian for an ensemble of spins
identically coupled to a single mode cavity represented as a quantum harmonic oscillator.

In the presence of the drive the ensemble of spins interact with the cavity via coherent
radiative processes and may be treated quantum mechanically as a single collective mag-
netic dipole coupled to the cavity [BP70]. The driven spin-cavity system is described by
the Hamiltonian H = H0 +HR(t) +HI , with

H0 = ωca
†a+ ωsJz (6.77)

HR(t) = 2Ω cos(ωst)Jx (6.78)

HI = 2g(a† + a)Jx, (6.79)

where a†(a) are the creation (annihilation) operators describing the cavity, Ω is the strength
of the drive field (Rabi frequency), ωc is the resonant frequency of the cavity, ωs is the
Larmor resonance frequency the spins, and g is the coupling strength of the cavity to a
single spin in the ensemble in units of ~ = 1.

The HamiltonianH preserves a global SU(2) symmetry on the spin-ensemble, and hence
preserves the subspace structure of any block diagonal state with respect to the decompo-
sition in terms of the irreps of SU(2) discussed in Section 6.2.1. Under this decomposition
we may treat each subspace separately as an effective spin-J particle independently inter-
acting with the cavity as illustrated in Fig. 6.2. Let us consider a single irrep of the SU(2)
decomposition with a total spin value of J . The eigenstates of H0 are the tensor product
of photon-number states for the cavity and spin states of collective angular momentum in
the Jz direction:

|n〉c|J,mz〉s where n = 0, 1, 2, . . .

mz = −J,−J + 1, . . . , J − 1, J
(6.80)

The collective excitation number of the joint system is given by Nex = a†a+ (Jz + J).
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Figure 6.2: Illustration of the effective interaction of the Tavis-Cummings Hamiltonian
after the state space of the spin ensemble has been decomposed into irreducible represen-
tations of SU(2).

The interaction term HI commutes with Nex, and hence preserves the total excitation
number of the system. It drives transitions between the state |n〉c|J,mz〉s and states

|n+ 1〉c|J,mz − 1〉s and |n− 1〉c|J,mz + 1〉s at a rate of
√

(n+ 1)(J(J + 1)−mz(mz − 1)

and
√
n (J(J + 1)−mz(mz + 1), respectively.

If we move into a rotating frame defined by H1 = ωs(a
†a+ Jz), the spin-cavity Hamil-

tonian is transformed to

H̃(1) = eitH1Hsc e
−itH1 −H1 (6.81)

= δωa†a+ ΩJx + g(a†J− + aJ+) (6.82)

where δω = ωc − ωs is the detuning of the drive from the cavity resonance frequency,
and we have made the standard rotating wave approximation (RWA) to remove any time-
dependent terms in the Hamiltonian [Abr61]. We note that the interaction term g(a†J− +
aJ+) in Eq. (6.82) is what is typically referred to as the TC Hamiltonian. The rotating-
wave approximation (RWA) used here is valid when the resonant frequencies of the cavity
and spin ensemble, ωc, ωs, are larger then the inverse time scale we are interested in. In
our case this time scale will be dictated by the dissipation rate for the cavity κ, and the
interaction Hamiltonian frequency g. Hence we require ωc, ωs � κ, g.

By appropriately choosing the detuning δω, we can define an effective interaction that
in the drive frame is equivalent to the exchange interaction in Eq. (6.82), but in the Jx
eigenbasis rather than the Jz eigenbasis. To do this we first move into the interaction frame
of H2 = δωa†a+ ΩJx, the Hamiltonian transforms to
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H̃(2)(t) = eitH2H(1) e−itH2 −H2 (6.83)

= g eitH2(a†J− + aJ+)e−itH2 (6.84)

= g eiδωta†
(
eiΩJxtJ−e

−iΩJxt
)

+ h.c. (6.85)

= g eiδωta†
[
Jx − i

(
eiΩJxtJye

−iΩJxt
)]

+ h.c. (6.86)

Next we use the Baker-Campbell-Hausdorf expansion with

Ad0
Jx(Jy) ≡ Jy (6.87)

Ad1
Jx(Jy) ≡ [Jx, Jy] (6.88)

AdnJx(Jy) ≡
[
Jx,Adn−1

Jx
(Jy)

]
(6.89)

to get

eiΩJxtJye
−iΩJxt =

∞∑

n=0

(iΩt)n

n!
AdnJx(Jy) (6.90)

=
∞∑

n=0

(iΩt)2n

(2n)!
Ad2n

Jx(Jy) +
(iΩt)2n+1

(2n+ 1)!
Ad2n+1

Jx
(Jy) (6.91)

= cos (Ωt) Jy + i sin (Ωt) Jz (6.92)

=
1

2

[
cos (Ωt) (J

(x)
+ + J

(x)
− ) + i sin (Ωt) (J

(x)
+ − J (x)

− )
]

(6.93)

=
1

2

(
eiΩt J

(x)
+ + e−iΩt J (x)

−

)
(6.94)

where J
(x)
± ≡ Jy ± iJz are the spin-ladder operators in the x-basis. Hence we have

H̃(2)(t) = g eiδωta†
[
Jx −

i

2

(
eiΩt J

(x)
+ + e−iΩt J (x)

−

) ]
+ h.c. (6.95)

which may be broken up in terms of frequency components

H̃(2)(t) = H0Ω(t) +H−Ω(t) +H+Ω(t) (6.96)

H0Ω(t) = g
(
e−iδωta+ eiδωta†

)
Jx (6.97)

H−Ω(t) =
i g

2

(
e−i∆−taJ (x)

+ − ei∆−ta†J (x)
−

)
(6.98)

H+Ω(t) =
i g

2

(
e−i∆+ta J

(x)
− − ei∆+ta†J (x)

+

)
(6.99)
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where ∆± = δω ± Ω.

In analogy to Hartmann-Hahn matching in magnetic resonance cross-relaxation exper-
iments [BS58, HH62, BBGP+13] for δω > 0 we may set the cavity detuning to be close to
the Rabi frequency of the drive, so that ∆ = δω −Ω is small compared to δω. By making
a second RWA in the interaction frame of H2, the interaction Hamiltonian reduces to the
H−Ω flip-flop exchange interaction between the cavity and spins in the x-basis:

HI(t) =
i g

2

(
e−i∆ta J (x)

+ − ei∆t a†J (x)
−

)
. (6.100)

This allows for the transfer of population between eigenstates of constant excitation value,
while cavity dissipation will act to reduce the excitation number by removing cavity exci-
tations from the system as illustrated in Fig. 6.3. The RWA is valid in the regime where
the detuning and Rabi drive strength are large compared to the inverse time scale, tc, of
interest (δω,Ω� 1/tc). From here we will drop the (x) superscript and just note that we
are working in the Jx eigenbasis.

|0ic |�Jx + 3is |1ic |�Jx + 2is |2ic |�Jx + 1is |3ic |�Jxis

|0ic |�Jx + 2is |1ic |�Jx + 1is |2ic |�Jxis

|0ic |�Jx + 1is |1ic |�Jxis

|0ic |�Jxis

g
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Figure 6.3: Energy level diagram of the joint spin-cavity system with coherent transitions
denoted by a solid line and cavity dissipation rates denoted by a curved line. States are
labelled as |n〉c|−Jx +m〉s, where m is the number of spin excitations and n is the number
of cavity excitations.

This resonant coupling is analogous to a collective version of the Purcell effect, which
has been previously noted for magnetic resonance systems and is normally small enough to
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be neglected. Isolating the spin-cavity exchange interaction allows efficient energy transfer
between the two systems, permitting them to relax to a joint equilibrium state in the
interaction frame of the control field. The coherent enhancement of the ensemble spin-
cavity coupling – similar to the enhancement of the vacuum Rabi frequency for atomic
ensembles, but not restricted to the single-excitation manifold [YI99] – enhances spin
polarization at a rate that may exceed the thermal relaxation rate.

We note that the spin-cavity exchange coupling also exists in the absence of the Rabi
drive, and theoretically permits cooling of the spin system by matching the resonance fre-
quency of the spin system to the cavity resonance. However, in the low-Q case typical
in traditional magnetic resonance this process is thermally driven, and thus corresponds
to a set of incoherent radiative processes that may not be described by a single Hamilto-
nian [BP70]. This Purcell effect in magnetic resonance systems has been previously noted
and is normally small enough to be neglected [Pur46, Mol69]. However, if one can treat
this process using cavity QED [CGB+10, MSM+12] one may consider Eq. (6.82) in the
absence of the drive term (Ω = 0), where our Hamiltonian is then given by the spin-cavity
Hamiltonian is given by

HI(t) = H̃(1) = g
(
e−i∆ta J+e

i∆t a†J−
)

(6.101)

so our exchange interaction occurs in the Z eigenbasis rather than the X eigenbasis of the
driven model.

6.3.1 Adiabatic Elimination of a Dissipative Cavity

In this section we consider the master equation of an arbitrary system exchange coupled to a
dissipative cavity and show how one may derive an effective master equation for the system
by adiabatically eliminating the cavity. This effective master equation can be thought of
as the reduced description of a system that is coupled to an environment consisting of
a single mode cavity. This follows the approach originally used by [Aga74], however, we
phrase it in the modern language of a time-convolutionless (TCL) master equation [PB02].
The cavity cooling master equation introduced in Section 6.4 will then be a special case of
this general description.

Suppose that the unitary part of the joint system-cavity dynamics is described by the
Hamiltonian H0 +HI ,where

H0 = ωsHs,0 + ωca
†a (6.102)

HI = Hs,1(a+ a†) (6.103)
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and that after moving into the interaction frame defined by H0 we may make a rotating
wave approximation so that our interaction frame Hamiltonian is of the form

HI(t) ≈
∑

α

Hα(t) (6.104)

Hα(t) = Aα(t)† a+ Aα(t) a† (6.105)

We define the following superoperator for the Liouvillian L describing the unitary por-
tion of the system evolution

L[H] = −i
(
1⊗H +HT ⊗ 1

)
(6.106)

L[H] : ρ(t) 7→ −i[H, ρ] (6.107)

and Lindblad dissipator D[A] describing the non-unitary evolution:

D[A] = A⊗ A− 1

2
(1⊗ A†A+ ATA⊗ 1) (6.108)

D[A] : ρ 7→ AρA† − 1

2
{A†A, ρ}, (6.109)

The open system evolution of the system and cavity is then described by the Lindblad
master equation

d

dt
|ρ(t)〉〉 = (LI(t) +Dc) |ρ(t)〉〉 (6.110)

where LI(t) = L[HI(t)] is the superoperator describing evolution under the Hamiltonian
H(t), and Dc describes the quality factor of the cavity phenomenologically as a photon
amplitude damping channel[Aga74]:

Dc =
κ

2

(
(1 + n)D[a] + nD[a†]

)
, (6.111)

where
n = Tr[a†aρeq] (6.112)

characterizes the equilibrium temperature of the bath, and κ is the cavity dissipation rate
(∝ 1/Q). The expectation value of the number operator at equilibrium is related to the
temperature, Tc, of the bath by

n =
(
eωc/kBT − 1

)−1 ⇔ Tc =
ωc
kB

[
ln

(
1 + n

n

)]−1

(6.113)
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where kB is the Boltzmann constant.

We now wish to eliminate the cavity from our description of the dynamics and find an
effective Lindblad master equation describing the reduced evolution of the system alone.
We may do this using the TCL master equation formalism [PB02]. First we move into the
interaction frame defined by the dissipator Dc. The interaction superoperators and density
matrices in this frame are given by

S̃(t) = e−tDcS(t) etDc (6.114)

| ρ̃(t)〉〉 = e−tDc|ρ(t)〉〉. (6.115)

Hence we have that the joint system-cavity master equation in the dissipator interaction
frame is

d

dt
| ρ̃(t)〉〉 = L̃I(t)| ρ̃(t)〉〉 (6.116)

We then define a projection operator P onto the relevant degrees of freedom for our
reduced system

P|ρ(t)〉〉 ≡ |ρs(t)⊗ ρeq〉〉 (6.117)

where

ρs(t) = Trc [ρ(t)] (6.118)

⇒ |ρs(t)〉〉 = STrc|ρ(t)〉〉 (6.119)

Dc|ρeq〉〉 = 0. (6.120)

ρeq is the equilibrium state of the cavity under the dissipator Dc. In the case of weak
coupling between the system and cavity with respect to the cavity dissipation rate, the
second order TCL master equation is given by [PB02]

d

dt
P| ρ̃(t)〉〉 =

∫ t−t1

0

dτ P L̃I(t)L̃I(t− τ)P| ρ̃(t)〉〉. (6.121)

We now explicitly consider the interaction frame of the dissipator. To do this we use
the definition of the adjoint channel D†c:

D[A]† = AT ⊗ A† − 1

2
(1⊗ A†A+ ATA⊗ 1). (6.122)

The adjoint channel has the following useful properties:

D†c|1〉〉 = 0, D†c|a〉〉 = −κ
2
|a〉〉, D†c

∣∣a†
〉〉

= −κ
2

∣∣a†
〉〉

(6.123)

etD
†
c |1〉〉 = |1〉〉, etD

†
c |a〉〉 = e−

κ
2
t|a〉〉, etD

†
c
∣∣a†
〉〉

= e−
κ
2
t
∣∣a†
〉〉
. (6.124)
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Hence we have that

e−tD
†
cS†Trc

= S†Trc
⇒ P| ρ̃(t)〉〉 = STrce

−itDc |ρ(t)〉〉 (6.125)

= STrc |ρ(t)〉〉 (6.126)

= Pρ(t). (6.127)

In addition, DcP|ρ(t)〉〉 = 0, and so the reduced dynamics of the spin-ensemble in the
interaction frame of the dissipator, Eq. (6.111), is given to 2nd order by the TCL master
equation [Bul87]:

d

dt
|ρs(t)〉〉 =

∫ t−t0

0

dτ STrcLI(t)eτDcLI(t− τ)|ρs(t)⊗ ρeq〉〉. (6.128)

The partial trace superoperator acting on the joint Hamiltonian has cavity terms pro-
portional to 〈〈a |,

〈〈
a†
∣∣. Hence

STrcLI(t)e
τDc ∼=

(
eτD

†
cLI(t)

†|1c〉〉
)†

(6.129)

has terms eτD
†
c |a〉〉 = e−κτ/2|a〉〉, and similarly for

∣∣a†
〉〉

. Thus, we have

d

dt
|ρs(t)〉〉 =

∫ t−t0

0

dτ e−κτ/2STrcLI(t)LI(t− τ)|ρs(t)⊗ ρeq〉〉 (6.130)

⇔ d

dt
ρs(t) = −

∫ t−t0

0

dτ e−κτ/2 Trc

[
HI(t),

[
HI(t− τ), ρs(t)⊗ ρeq

]]
. (6.131)

We now expand this in terms of the component Hamiltonians Hα(t). Define

Cα,β(t, s) = Trc

[
Hα(t),

[
Hβ(s), ρs(t)⊗ ρeq

]]
, (6.132)

then we have
d

dt
ρs(t) = −

∑

α,β

∫ t−t0

0

dτ e−κτ/2 Cα,β(t, t− τ). (6.133)

Using the properties of our cavity equilibrium state

Tr[aa†ρeq] = n+ 1, Tr[a†aρeq] = n, Tr[a2ρeq] = Tr[a†2ρeq] = 0, (6.134)
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we have only two contributing terms for each C. Cα,β(t, s) is then given by

Cα,β(t, s) = Trc

[
Aα(t)†a,

[
Aβ(s)a†, ρ⊗ ρeq

]]
+ Trc

[
Aα(t)a†,

[
Aβ(s)†a, ρ⊗ ρeq

]]
(6.135)

= (n+ 1)
(
Aα(t)†Aβ(s) ρ+ ρAβ(s)†Aα(t)− Aβ(s) ρAα(t)† − Aα(t) ρAβ(s)†

)

+ n
(
Aα(t)Aβ(s)† ρ+ ρAβ(s)Aα(t)† − Aβ(s)† ρAα(t)− Aα(t)† ρAβ(s)

)
(6.136)

To calculate the dissipator for these terms we assume the Markovian limit and take the
upper limit of the integral to infinity

∫ t−t0
0

dτ →
∫∞

0
dτ . We also define the superoperator

generators

Gα(t) = −
∫ ∞

0

dτ e−κτ/2Cα,α(t, t− τ) (6.137)

Gα,β(t) = −
∫ ∞

0

dτ e−κτ/2
(
Cα,β(t, t− τ) + Cβ,α(t, t− τ)

)
(6.138)

Our reduced system master equation is then given by

d

dt
ρs(t) =

(∑

α

Gα(t) +
∑

α<β

Gα,β(t)
)
ρs(t). (6.139)

We refer to Gα(t) and Gα,β(t) as the diagonal and cross-terms of the master equation,
respectively. Generally we need not consider the cross-terms explicitly as we may remove
them under certain parameter regimes with an appropriate RWA.

Suppose that the time dependence of the operators Aα(t) is such that Aα(t) = eiωαtAα.
Hence Aα(t− τ) = e−iτωαA(t), and we have

∫ ∞

0

dτ e−κτ/2e±iτωα =
2

κ∓ i2ωα
= 2

(
κ± 2iωα
κ2 + 4ω2

α

)
= γα ± iλα (6.140)

where

γα =
2κ

κ2 + 4ω2
α

λα =
4ωα

κ2 + 4ω2
α

. (6.141)

In this case the cross-terms Gα,β will still have time dependence of e±i(ωα−ωβ)t. Thus, if
we have that |ωα − ωβ| � κ for all α, β, we may make a RWA and disregard these high
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frequency terms, yielding

Gα(t)ρ =−
∫ ∞

0

dτ e−κτ/2Cα,β(t, t− τ)ρ (6.142)

=−
∫ ∞

0

dτ e−κτ/2
[

(n+ 1)
(
e−iωατ (A†αAα ρ− Aα ρA†α) + eiωατ (ρA†αAα − Aα ρA†α)

)

+ n
(
eiωατ (AαA

†
α ρ− A†α ρAα) + e−iωατ (ρAαA

†
α − A†α ρAα)

)]
(6.143)

=(n+ 1)
(

(γα − iλα)(A†αAα ρ− Aα ρA†α) + (γα + iλα)(ρA†αAα − Aα ρA†α)
)

+ n
(

(γα + iλα)(AαA
†
α ρ− A†α ρAα) + (γα − iλα)(ρAαA

†
α − A†α ρAα)

)
(6.144)

=γα

(
(n+ 1)D[Aα] + nD[A†α]

)
− λα L

[
(n+ 1)A†αAα − nAαA†α

]
. (6.145)

Since the time dependence of Aα(t) drops out in the dissipator and Liouvilians we finally
obtain the master equation generator

Gα(t) = Gα = γα

(
(n+ 1)D[Aα] + nD[A†α]

)
− λα L

[
(n+ 1)A†αAα − nAαA†α

]
. (6.146)

6.4 Cavity Cooling Master Equation

We now apply the general derivation of the 2nd order TCL reduced system master equation
in Section 6.3.1 to the Rabi-driven TC-Hamiltonian. The Rabi-driven TC-Hamiltonian has
three spectral components, a ”center-band” rotating with angular frequency δω, and side-
bands with angular frequencies ∆± = δω ± Ω:

HI(t) =H0Ω(t) +H−Ω(t) +H+Ω(t) (6.147)

H0Ω(t) =g
(
e−iδωta+ eiδωta†

)
Jx (6.148)

H−Ω(t) =
i g

2

(
e−i∆−taJ (x)

+ − ei∆−ta†J (x)
−

)
(6.149)

H+Ω(t) =
i g

2

(
e−i∆+ta J

(x)
− − ei∆+ta†J (x)

+ .
)

(6.150)

In this case the cross-terms for the 2nd order TCL master equation will be of frequencies
Ω and 2Ω, hence our RWA is valid in the regime where the Rabi drive strength is much
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stronger than the dissipation rate (Ω� κ). In this case we have have three contributions
to the master equation for the spin-ensemble:

d

dt
ρs(t) =

(
G0Ω + G−Ω + G+Ω

)
ρs(t) (6.151)

where

G0,±Ω = −Ω0,±L0,± +
Γ0,±

2
D0,± (6.152)

and

Γ0 = 4g2κ
κ2+4δω2 Ω0 = 4g2δω

κ2+4δω2

Γ− = g2κ
κ2+4∆2

−
Ω− = g2∆−

κ2+4∆2
−

Γ+ = g2κ
κ2+4∆2

+
Ω+ = g2∆+

κ2+4∆2
+

D0 = (2n+ 1)D[Jx] L0 = L[J2
x ]

D− = (n+ 1)D[J
(x)
− ] + nD[J

(x)
+ ] L− = L[(n+ 1) J

(x)
+ J

(x)
− − nJ (x)

− J
(x)
+

]

D+ = (n+ 1)D[J
(x)
+ ] + nD[J

(x)
− ] L+ = L[(n+ 1 J

(x)
− J

(x)
+ − nJ (x)

+ J
(x)
−
]

To achieve cooling to the ground state of each irrep subspace of the ensemble we require
that the G−Ω term be dominant, which implies Γ− � Γ+,Γ0. If we assume that our Rabi
drive and cavity detuning are matched, (Ω ≈ δω), then in the regime where our RWA is
valid (Ω� κ), we have

Γ+

Γ−
=
κ2 + 4∆2

−
κ2 + 4∆2

+

≈ κ2

κ2 + 16Ω2
� 1 (6.153)

and
Γ0

Γ−
= 4

κ2 + 4∆2
−

κ2 + 4δω2
≈ 4

κ2

κ2 + 4Ω2
� 1 (6.154)

and so G−Ω will be the dominant dissipative term. We also have that Ω0 ≈ g2/δω �
1,Ω+ ≈ g2/∆+ � 1 since δω,∆+ � g.

Thus, we arrive at the Markovian master equation

d

dt
ρs(t) =

(
Ωs Ls +

Γs
2
Ds
)
ρs(t) (6.155)

where

Ωs = − g2∆

κ2 + 4∆2
, Γs =

g2κ

κ2 + 4∆2
. (6.156)

Here Ωs is the frequency the effective Hamiltonian, and Γs is the effective dissipation rate
of the spin-system.
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6.4.1 Subspace Equilibrium State

Let us consider the evolution of an initial spin state which is block diagonal in the SU(2)
state space decomposition of the Dicke model discussed in Section 6.2.1. Since we can
consider each block of the density matrix separately, suppose for a given subspace with
total spin J , that the spin state is diagonal in the angular momentum basis:

ρJ(t) =
∑

m

PJ,m(t)ρJ,m (6.157)

PJ,m(t) = 〈J,m|ρ(t)|J,m〉, (6.158)

where PJ,m(t) is the probability of measuring the system in the collective spin state ρJ,m =
|J,m〉〈J,m| at time t. In this case the master equation, Eq. (6.155), reduces to a rate
equation for the populations of the angular momentum states:

d

dt
PJ,m(t) = Γs

(
AJ,m+1PJ,m+1(t) +BJ,mPJ,m(t) + CJ,m−1PJ,m−1(t)

)
(6.159)

where

AJ,m = (1 + n)
[
J(J + 1)−m(m− 1)

]
(6.160)

CJ,m = n
[
J(J + 1)−m(m+ 1)

]
(6.161)

BJ,m = −(AJ,m + CJ,m) (6.162)

and Γs is the cavity cooling rate given in Section 6.4. Defining ~PJ(t) = (PJ,−J(t), . . . , PJ,J(t)),
we obtain a matrix differential equation

d

dt
~PJ(t) = ΓsMJ

~PJ(t), (6.163)

where M is the tridiagonal matrix

MJ =




BJ,−J AJ,−J+1 0 0 0 . . . 0
CJ,−J BJ,−J+1 AJ,−J+2 0 0 . . . 0

0 CJ,−J+1 BJ,−J+2 AJ,−J+3 0 . . . 0
...

. . .
...

0 . . . 0 CJ,J−1 BJ,J




(6.164)

For a given subspace initial state specified by populations ~PJ(0), Eq. (6.163) has the
solution

~PJ(t) = exp (tΓsMJ) ~PJ(0). (6.165)
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The equilibrium state of the spin subspace satisfies MJ · ~PJ(∞) = 0, and is given by
ρJ,eq =

∑J
m=−J PJ,m(∞)ρJ,m, where

PJ,m(∞) =
nJ+m(1 + n)J−m

(1 + n)2J+1 − n2J+1
. (6.166)

It corresponds to the non-thermal state

ρeq =
1

Z exp

(
− ωs
kBTeq

Jx

)
, Teq =

ωs
kB

[
ln

(
1 + n

n

)]−1

. (6.167)

where Jx is the spin-J representation of theX-spin operator. By comparing with Eq. (6.113),
we have that the final effective temperature reached by the spin ensemble in the interaction
frame of the Rabi drive is

Teq =
ωs
ωc
Tc (6.168)

where Tc is the temperature of the cavity. The total spin expectation value for the equi-
librium state of spin-ensemble subspace is

〈Jx〉eq = −J + n− (2J + 1)n2J+1

(1 + n)2J+1 − n2J+1
. (6.169)

In the limit of Ns � n, we have that the ground state population at equilibrium is given
by

PJ,−J ≈
1

1 + n
(6.170)

and the final expectation value is approximately

〈Jx〉eq ≈ −J + n. (6.171)

Thus, the final spin polarization in the spin-J subspace will be roughly equivalent to the
thermal cavity polarization.

We note that if the detuning δω were negative, matching Ω = δω would result in the
H+Ω term being dominant in Eq. (6.151), leading to a master equation of the form in
Eq. (6.155) but with the operators J− and J+ interchanged. The dynamics of this master
equation would drive the spin ensemble subspaces towards the 〈Jx〉 = J state rather than
to the −J state. Thus, the detuning must be larger than the cavity linewidth to prevent
competition between the H−Ω and H+Ω terms, which would drive the spin system to a high
entropy thermally mixed state.
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6.4.2 Simulation of Subspace Cooling Rate

The tridiagonal nature of the rate matrix in Eq. (6.164) allows Eq. (6.165) to be efficiently
simulated for relatively large numbers of spins. For simplicity we will consider the ideal
case where the cavity is cooled to its ground state (n = 0), and the spin-ensemble is taken
to be maximally mixed:

PJ,m(0) =
1

2J + 1
for m = −J, . . . , J. (6.172)

The simulated expectation value of 〈Jx(t)〉 for the Dicke subspace of ensemble sizes
ranging from Ns = 103 to Ns = 105 is shown in Fig. 6.4, normalized by −Ns/2 to obtain a
maximum value of 1. At a value of −〈Jx(t)〉/J = 1 the total angular momentum subspace
of the spin ensemble is completely polarized to the Jx ground eigenstate

∣∣Ns
2
,−Ns

2

〉
. The

Ns
102

103

104

105

0.002 0.004 0.006 0.008
Gst0.0

0.2

0.4

0.6

0.8

1.0

-XJx\êJ

Figure 6.4: Simulated evolution of the normalized expectation value of −〈Jx(t)〉/J for the
Dicke subspace of a cavity-cooled spin ensemble containing Ns spins. The time axis is
scaled by the effective dissipation rate, Γs, for the spin-ensemble given in Section 6.4.

expectation value 〈Jx(t)〉 may be fit to an exponential to derive an effective cooling time-
constant, T1,eff, analogous to the thermal spin-lattice relaxation time, T1. A fit to a model
given by

− 〈Jx(t)〉
J

= 1− exp

(
− t

T1,eff

)
(6.173)

yields the parameters T1,eff = λNγ
s /Γs with λ = 2.0406 and γ = −0.9981. An approximate

expression for the cooling time-constant of the spin-J subspace as a function of J is given

201



by

T1,eff(J) ≈ 1

ΓsJ
=
κ2 + 4∆2

g2κ J
, (6.174)

Hence, for the symmetric Dicke subspace with J = Ns/2, we have

T sym
1,eff (Ns) ≈

2

ΓsNs

=
2(κ2 + 4∆2)

g2κNs

. (6.175)

From Eq. (6.174) we find that the cooling efficiency is maximized when the Rabi drive
strength is matched to the cavity detuning (∆ = 0). In this case the cooling rate and
time-constant simplify respectively to

Γs =
g2

κ
, T1,eff(J) =

κ

g2 J
. (6.176)

To achieve this result experimentally, one must choose parameters that adhere to the
two RWA’s used to isolate the spin-cavity exchange term in Eq. (6.100). Under the condi-
tion that δω ≈ Ω, this requires that

g
√
N � κ � Ω, δω � ωc, ωs. (6.177)

For example, assuming an implementation using X-band pulsed electron spin resonance
(ESR) (ωc/2π ≈ ωs/2π = 10 GHz), with samples that typically contain from roughly
Ns = 106 spins to Ns = 1017 spins [BSS+12, EEQ+10], experimentally reasonable values
are Ω/2π = 100 MHz, Q = 104 (κ/2π = 1 MHz)[BC12, BMT+13], and g/2π = 1 Hz
[BMT+13]. For these parameters, the range of validity of the Markovian master equation
is Ns � κ2/g2 = 1012 and the Dicke subspace of an ensemble containing roughly 1011

electron spins may be polarized with an effective T1 of 3.18 µs. This polarization time
is significantly shorter than the thermal T1 for low-temperature electron spin ensembles,
which can range from seconds to days [Abr61].

In the case where the cavity is thermally occupied, the final spin polarization is roughly
equal to the thermal cavity polarization in Eq. (6.167), and the fitted effective cooling
constant of the Dicke subspace of the spin ensemble as a function of the thermal cavity
occupation number is shown in Fig. 6.5.

We find that for cavity temperatures corresponding to n <
√
Ns the effective cooling

constant T1,eff is approximately equal to the zero temperature value. However when n >√
Ns the effective cooling constant is reduced, and approaches a value of

T1,eff =
1

2nΓs
(6.178)
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Figure 6.5: Effective cooling time-constant, T1,eff, of the spin ensemble as a function of
the equilibrium excitation number of the cavity, n, for Ns = 10, 102, 103, 104 spins in the
ensemble.

This effect appears to originate from the fact that the final spin system polarization will
be equal to the cavity polarization. Thus, cooling to a spin temperature that is not fully
polarized requires removing fewer photons from the spin system. Given that the spin
dissipation rate is independent of the cavity temperature, it takes less time to drive the
spins to a state that is not fully polarized. An example of the simulated normalized spin
expectation value −〈Jx〉/J as a function of temperature is shown in Fig. 6.6. Here we are
considering a cavity with resonant frequency of ωc/2π = 10 GHz.

6.4.3 Assumptions and Validity of the Markovian Approxima-
tion

Several assumptions were made in the presented theoretical model for cavity cooling of a
spin ensemble. Firstly, we have assumed that the spin ensemble has no dipolar coupling
between spins. This assumption is valid for magnetically dilute samples. Dipolar coupling
breaks the degeneracy in the Dicke states and reduces the cooling efficiency by reducing
the number of spins effectively interacting with the cavity. Secondly, we have neglected
the effects of thermal relaxation of the spin system. As the cooling effect of the cavity on
the spin system relies on a coherent spin-cavity information exchange, the relaxation time
of the spin system in the frame of the Rabi drive – commonly referred to as T1,ρ – must be
significantly longer than the inverse cavity dissipation rate 1/κ. Thirdly, we have assumed
that the spin-cavity coupling and Rabi drive are spatially homogeneous across the spin

203



0.2 0.4 0.6 0.8 1.0
Gst0.0

0.2

0.4

0.6

0.8

1.0
-XJx\êJ Ns=10

T=10mK

T=50mK

T=100mK

T=200mK

T=500mK

T=1K

0.02 0.04 0.06 0.08 0.10 0.12
Gst

0.2

0.4

0.6

0.8

1.0

-XJx\êJ Ns=100

T=10mK

T=100mK

T=500mK

T=1K

T=4K

T=10K

0.002 0.004 0.006 0.008 0.010 0.012 0.014
Gst0.0

0.2

0.4

0.6

0.8

1.0
-XJx\êJ Ns=1000

T=10mK

T=1K

T=4K

T=10K

T=50K

T=100K

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014
Gst0.0

0.2

0.4

0.6

0.8

1.0
-XJx\êJ Ns=10,000

T=10mK

T=4K

T=10K

T=50K

T=100K

Figure 6.6: Normalized spin expectation value −〈Jx〉/J of the spin ensemble as a function
of time for various equilibrium temperatures of the cavity. We consider the case of Ns =10,
100, 1000 and 10,000 spins in the ensemble, and a cavity with resonant frequency ωc = 10
GHz, and a Rabi drive on resonance with the detuning ∆ = δω − Ω = 0.
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ensemble. Inhomogeneities would lead to an incoherent distribution of cooling rates over
the sample that reduces the cooling efficiency.

The derivation of the Markovian master equation (6.155) assumes that no correlations
between the cavity and spin system accrue during the cooling process, such that there
is no back action of the cavity dynamics on the spin system. This condition is enforced
when the cavity dissipation rate, κ, exceeds the rate of coherent spin-cavity exchange in
the lowest excitation manifold by at least an order of magnitude (κ � 10g

√
Ns). In this

Markovian limit, the rate at which spin photons are added to the cavity is significantly
less than the rate at which thermal photons are added, meaning the cooling power of the
fridge necessary to maintain the thermal cavity temperature is sufficient to dissipate the
spin photons without raising the average occupation number of the cavity.

From Eq. (6.174) we see that, in principle, the cooling efficiency could be improved by
adding more spins to make κ closer to g

√
Ns, but in this regime the cooling power of the

fridge is no longer sufficient to prevent back action from the cavity and non-Markovian
effects significantly lower the cooling rate. The validity of the derived cooling rate in
Eq. (6.174) depends on the validity of the Markov approximation used to derive the cavity
cooling master equation in Eq. (6.155). More concretely, from the spin-cavity energy level
diagram for the Dicke subspace shown in Fig. 6.3, the rate of transfer between states

|n〉c|−Jx +m〉s ←→ |n+ 1〉c|−Jx +m− 1〉s (6.179)

is given by
g
√
m(2Jx + 1−m)(n+ 1). (6.180)

At the same time, the cavity dissipator of strength

κ
√
n+ 1 (6.181)

is acting to drive the spin-cavity system to the state

|n〉c|−Jx +m− 1〉s. (6.182)

To satisfy the Markov condition, we require the cooling dynamics to always drive the spin-
cavity system toward states of low excitation number (bottom left of Fig. 6.3), without
significantly populating states of high excitation number (top right of Fig. 6.3). This will
occur if the maximum rates for coherent transfer and cavity dissipation obey the following
relationship:

κ
√
n+ 1� g

√
m(2Jx + 1−m)(n+ 1)⇐⇒ κ� g

√
m(Ns + 1−m). (6.183)
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This transfer rate is greatest for a maximally excited spin system with m = 2Jx = Ns. In
this case we recover our condition that

κ� g
√
Ns. (6.184)
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Figure 6.7: Comparison of the cooling dynamics by the Markovian master equation (pink
dotted curve) and a full spin-ensemble cavity simulation with RWA (blue dashed curve).
The normalized expectation value of −〈Jx(t)〉/J is plotted for Ns = 10 spins with κ =
0.5, 1, 5, 10g

√
Ns, a cavity temperature T = 0K, and Rabi-drive matched to the detuning

∆ = δω − Ω = 0. When κ ≥ 10g
√
Ns the Markovian master equation calculation agrees

very well with the full simulation. Also, as predicted by eqn. (29), the cooling rate increases
for larger κ, until the point where strong coupling effects take over.

To numerically investigate where the Markovian approximation breaks down we sim-
ulated the full evolution for the spin cavity system for Ns = 10 spins at zero cavity
temperature (n = 0) with δω = Ω in the parameter regime where the RWA is valid and
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compared it to the derived master equation for the spin ensemble. For the full evolution
we consider

|ρ(t)〉〉 = exp (t (L[HI ] + κD[a])) |ρ(0)〉〉 (6.185)

where

HI =
Ig

2

(
aJ

(x)
+ + a†J (x)

−

)
(6.186)

ρ(0) = ρs(0)⊗ ρeq (6.187)

=
1

2Ns
⊗ |0〉〈0| (6.188)

where ρs(0) is the maximally mixed state, and ρeq is the ground state of the cavity. For
simulation we truncate the cavity dimension to be Ns + 1, the dimension of the spin-
ensemble Hilbert space.

As shown in Fig. 6.7, when κ = 0.5g
√
Ns a full non-Markovian simulation of the

cooling procedure yields dynamics that are much richer than predicted by the Markovian
model. In particular, coherent transfer of spin photons deposited in the cavity back to the
spin system are seen as oscillations in the expectation value of Jx. These memory effects
reduce the cooling efficiency such that the cooling rate is initially fast when the cavity
occupation is low, then slows down significantly as higher excitations of the cavity are
transferred back to the spin system. As κ becomes larger the oscillations are damped out,
but the Markovian master equation still does not fully agree with the full non-Markovian
simulation until we have κ ≈ 10g

√
Ns. When κ = 10g

√
Ns, the oscillations are critically

damped and the Markovian master equation captures the full cooling dynamics. Thus,
if the cavity dissipation rate, κ, exceeds the rate of coherent spin-cavity exchange in the
single excitation manifold by at least an order of magnitude — i.e. κ ≥ 10g

√
Ns — the

Markovian master equation is valid.

6.4.4 Cavity Cooling in the Full State Space

The cavity cooling rate in Eq. (6.174) and final magnetization obtained in Eq. (6.169) are
valid for each spin-J subspace in the decomposition of the Dicke model into the irreps of
SU(2) decomposition. Since the effective T1 time of a given subspace is inversely propor-
tional to J , larger spin subspaces will be cooled more rapidly. We now explore the average
dynamics of the ensemble when the collective cooling of each subspace is taken into account
for a maximally mixed initial state on the spin ensemble which has population in every
subspace.
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Recall that for the Dicke model we have that the state space can be factorized as

C2N ∼=
Jmin⊕

J=N/2

(
λJ⊕

k=1

C2J+1
k

)
(6.189)

where the multiplicity of representations with total spin J is

λJ =
2J + 1

N
2

+ J + 1

(
N

N
2

+ J

)
. (6.190)

In the case that N is even, the lowest value of J is Jmin = 0; if N is odd instead, the
lowest value of J is Jmin = 1

2
. For the remainder of this section we will assume that N is

even so that Jmin = 0 for convenience. Since the cavity cooling dissipator does not couple
subspaces we may simulate each of these resulting rate equations separately, and sum them
to obtain the final magnetization of the spin ensemble. In the ideal case of n = 0, the final
magnetization of a spin-J subspace is given by 〈Jx〉J,eq = −J . We may include the cooling
dynamics in this picture by using the cooling rate derived in Section 6.4.2. Let us assume
that the subspace is initially in a maximally mixed state. In this case the expectation of
magnetization under cavity cooling is given by

〈Jx(t)〉J = −J
[
1− e−tΓs J

]
. (6.191)

Hence we see that subspaces with a higher J value are cooled to their ground state at a
faster rate then lower J subspaces.

To find the final magnetization and cooling rate of the full spin ensemble we may sum
all the subspaces weighted by the initial population in that subspace. In this case we have

〈Jx(t)〉 =

N/2∑

J=0

−PJ J
[
1− e−tΓs J

]
, (6.192)

where for the case of a maximally mixed initial state

PJ =
(2J + 1)

2N
λJ . (6.193)

Hence,

〈Jx(t)〉 =

N/2∑

J=0

−J(2J + 1)

2N
λJ
[
1− e−tΓs J

]
(6.194)

=

N/2∑

J=0

−J(2J + 1)2

2N
(
N
2

+ J + 1
)
(

N
N
2

+ J

)[
1− e−tΓs J

]
., (6.195)
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and the final magnetization is given by

〈Jx〉eq =

N/2∑

J=0

−J(2J + 1)2

2N
(
N
2

+ J + 1
)
(

N
N
2

+ J

)
. (6.196)

Let us consider an example for N = 10 spins. In this case the allowed values of J for
the subspaces are J = 5, 4, 3, 2, 1, 0. With corresponding multiplicities

λ5 = 1, λ4 = 9, λ3 = 35, λ2 = 75, λ1 = 90, λ0 = 42. (6.197)

In Fig. 6.8 we plot the subspace magnetization under cavity cooling from a maximally
mixed initial state as given by Eq. (6.191). This illustrates that higher J value subspaces
are cooled faster. We also plot the expectation value for Jx in the full Hilbert space
according to Eq. (6.195) and see that the final magnetization and rate is greatly reduced
from that of the J = 5 Dicke subspace.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-5

-4

-3

-2

-1

0

〈J
x
〉

Subspace Cooling N=10

Full Space

J=5

J=4

J=3

J=2

J=1
J=0

Figure 6.8: Simulation of 〈Jx(t)〉 for cavity cooling of individual coupled angular momen-
tum subspaces for N = 10 spins. The subspaces have J values ranging from 5 for the Dicke
subspace, to 0 for the smallest singlet subspaces. We see that the cooling time decreases
as the J value of the subspace increases. The black line shows the simulation of 〈Jx〉eq in
the full Hilbert space by summing over all subspace values weighted by the multiplicity of
each J value.

We now derive an approximate expression for the cooling dynamics of the full Hilbert
space. If N is large then the only term of Eq. (6.195) that will contribute is the one
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proportional to J3 in the numerator. In this case we have Eq. (6.195) may be approximated
by

〈Jx(t)〉 ≈
N/2∑

J=0

−4J3

2N
(
N
2

+ J
)
(

N
N
2

+ J

)[
1− e−tΓs J

]
. (6.198)

We can set further bounds on this approximation by noting that N
2
≤ N

2
+J+1 ≤ N+1 ≈

N . Hence

〈Jx(t)〉 ≥
−8

2N N

N/2∑

J=0

J3

(
N

N
2

+ J

)[
1− e−tΓs J

]
(6.199)

〈Jx(t)〉 ≤
−4

2N N

N/2∑

J=0

J3

(
N

N
2

+ J

)[
1− e−tΓs J

]
. (6.200)

If we consider the first term, ignoring the exponential piece for now, we have

N/2∑

J=0

J3

(
N

N
2

+ J

)
=
N

4

(
N

2
+ 1

)(
N

N
2

+ 1

)
≈ N2

8

(
N
N
2

)
≈ 2N

N

4

√
N

2π
(6.201)

where in the step we have used the asymptotic approximation of the binomial coefficient
for large N : (

N
N
2

)
≈ 2N

√
2

πN
. (6.202)

Hence, we have that −
√

2N
π
≤ 〈Jx〉eq ≤ −

√
N
2π

, so a lower bound on the magnetization is

given by

〈Jx〉eq ≤ −
√
N

2π
. (6.203)

To estimate the cooling rate we must consider the exponential decay term in Eq. (6.195).
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Using the same approximations as before this term is given by

Jmin∑

J=N/2

−J(2J + 1)2

2N
(
N
2

+ J + 1
)
(

N
N
2

+ J

)
e−tΓJ ≤ − 4

2NN

N/2∑

J=0

J3

(
N

N
2

+ J

)
e−tΓJ

=
∞∑

k=0

(−tΓ)k

k!


− 4

2NN

N/2∑

J=0

J3+k

(
N

N
2

+ J

)


= −
√
N

2π

∞∑

k=0

(−tΓ)k

k!


 4
√

2π

2NN3/2

N/2∑

J=0

J3+k

(
N

N
2

+ J

)


(6.204)

where we have factored out the equilibrium magnetization in the last line. We now compute
the sum

Ck =
4
√

2π

2NN3/2

N/2∑

J=0

J3+k

(
N

N
2

+ J

)
(6.205)

for the first few values of k. Using the approximation in Eq. (6.202), and only keeping the
term of the highest power of N , we have

C0 ≈ 1 C1 ≈
3
√
π

4

√
N

2

1

(6.206)

C2 ≈ 2

√
N

2

2

C3 ≈
15
√
π

8

√
N

2

3

(6.207)

C4 ≈ 6

√
N

2

4

C5 ≈
105
√
π

16

√
N

2

5

(6.208)

C6 ≈ 24

√
N

2

6

C7 ≈
945
√
π

32

√
N

2

7

(6.209)

C8 ≈ 120

√
N

2

8

C9 ≈
10395

√
π

64

√
N

2

9

(6.210)

We see here that all terms are proportional to
√

N
2

k

, and hence we will have a cooling rate

proportional to
√

N
2

. The coefficients are given by the gamma function:

Ck ≈ Γ

(
k

2
+ 2

)√
N

2

k

(6.211)
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where

Γ(k) =

∫ ∞

0

dxxk−1e−x. (6.212)

Hence we have

〈Jx(t)〉 =

Jmin∑

J=N/2

−J(2J + 1)2

2N
(
N
2

+ J + 1
)
(

N
N
2

+ J

)(
1− e−tΓsJ

)
(6.213)

≈ 〈Jx〉eq


1−

∞∑

k=0

1

k!
Γ

(
k

2
+ 2

)(
−tΓs

√
N

2

)k

 . (6.214)

Now let γ = tΓs

√
N
2

, and define

Θ(γ) =
∞∑

k=0

1

k!
Γ

(
k

2
+ 2

)
(−γ)k (6.215)

=

∫ ∞

0

dx
∞∑

k=0

1

k!
x e−x

√
x
k

(−γ)k (6.216)

=

∫ ∞

0

dx
∞∑

k=0

x e−xe−γ
√
x (6.217)

=
1

8

(
2
(
γ2 + 4

)
−√πe γ

2

4 γ
(
γ2 + 6

)
erfc

(γ
2

))
(6.218)

where erfc is the complementary error function

erfc(z) = 1− 2

π

∫ z

0

dxe−x
2

. (6.219)

The complicated expression for Θ(γ) in Eq. (6.218) is reasonably approximated by a single

exponential. We can see this in Fig. 6.9 where we compare Θ(γ) with e−γ and e−γ
√

π
2 ,

yielding

Θ(γ) ≈ e−γ
√

π
2 . (6.220)

Hence we have derived an approximate expression for the cavity cooling dynamics of a
maximally mixed state on the full subspace:

〈Jx(t)〉 ≈ −
√
N

2π

[
1− exp

(
−tΓs

√
π

2

√
N

2

)]
. (6.221)
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Figure 6.9: Comparison of the function Θ(γ) from Eq. (6.218) (solid blue line) with expo-

nential approximations e−γ
√
π/2 (dashed yellow line), and e−γ (dotted green line).

This shows that the effect of the cavity cooling dissipator in an initially maximally mixed
state is to cool the ensemble to a final state with magnetization

〈Jx〉 ≈ −
√
N

2π
∼ O

(√
N
)

(6.222)

with an effective cooling time constant of

T1,full ≈
2

Γs
√
πN
∼ O

(
1√
N

)
. (6.223)

6.5 Cavity Cooling with Local Dephasing

The cavity cooling dissipator derived in Section 6.4 acts collectively on the spin ensem-
ble, and hence it does not couple the irreps of SU(2) in the coupled angular momentum
decomposition of the state space. Thus, if the spin-ensemble is initially in a maximally
mixed initial state, under ideal cavity cooling any population in a given subspace will be
driven to the ground state of that subspace. The final state of the ensemble will be a mixed
state consisting of the sum of all subspace ground states, as shown in Section 6.4.4. In
this section we show how one may couple the subspaces by including the effect of a local
dephasing dissipator on each spin in the ensemble, which in turn enables cavity cooling to
the true thermal ground state of the spin ensemble.
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Before we consider the general model for N spins we begin with an illustrative example
of the simplest case of N = 2 spins. In this case dephasing can arise from a difference in
the resonant frequencies of the two spins. Consider the Hamiltonian

HI =
∆ω

2

σ
(1)
z

2
− ∆ω

2

σ
(2)
z

2
+ g

(
σ

(1)
+ a+ σ

(1)
− a†

)
+ g

(
σ

(2)
+ a+ σ

(2)
− a†

)
(6.224)

corresponding to the TC Hamiltonian for 2 spins with the resonant frequencies of the spins
given by ωc + ∆ω/2 and ωc−∆ω/2 for spin 1 and 2 respectively, where ωC is the resonant
frequencies of the cavity. If the detuning is zero, then the two-spins may be treated as a
spin-1 (triplet) and spin-0 (singlet) subspace which do not interact with each other under
cavity cooling. However if ∆ω > 0 we expect coupling between the singlet and triplet,
which should allow cooling to the ground state of the triplet subspace.

In Fig. 6.10 we simulate the evolution under Eq. (6.224) in the presence of cavity
dissipation at a rate κ for values of g = 10, κ = 10g, and with detuning ∆ω = 0, g/10, g, 10g.
The values of g and κ were chosen so that the cavity cooling dissipation rate in the absence
of detuning is Γs = g2/κ = 1. As expected, we see that when ∆ω = 0 there is no
coupling between the single state and the triplet. In this case populaiton initially in the
singlet is trapped, while population in the triplet is cooled to the triplet ground state.
For ∆ω > 0 we see that the population of the singlet is cooled to the ground state of
the triplet. For ∆ω = g/10 we are limited by the detuning which is shown as a strong bi-
exponential in the population of the triplet ground state. The initial increase in population
corresponds to cavity cooling in the triplet subspace which is quickly saturated, and then
the slower second rate corresponds to the leakage from the singlet into the triplet by the
detuning. Increasing the detuning to ∆ω = g we see an increase in the transfer rate and an
approximate exponential curve for the transfer of population to the triplet ground state.
However, as we increase the detuning further this rate slows down again. This is because
for very large detuning, both spins are very far off-resonance with the cavity, which inhibits
the exchange of energy between the spins and cavity.

Treating a similar detuning mechanism for N spins is in general intractable for large
N . Instead we approximate this situation by considering the phenomenological effect on
each spin as local dephasing. As before, we consider an ensemble of N identical spin 1/2
particles interacting with a high-Q single mode cavity. If the spins are on-resonance with
the cavity, or are driven to be on-resonance with a side-band of the cavity as was considered
in Section 6.4, then the spin-cavity interaction is well described by the TC Hamiltonian
in Eq. (6.76). The cavity will also experience photon-loss dissipation at a rate inversely
proportional to Q, which may be described by a Lindblad dissipator Dc in Eq. (6.111). By
adiabatically eliminating the cavity using the same technique as in Section 6.3.1 we obtain
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Figure 6.10: Simulation of cavity cooling under Eq. (6.224) for an ensemble of N = 2
spins, detuned to ±∆ω from the cavity resonant frequency. We find that as the detuning
increases from zero we couple the singlet and triplet subspaces allowing population transfer
from the single to the triplet, and full cooling to the ground state of the triplet. However,
as the detuning increases further the cooling rate is reduced, as a large detuning reduces
the coupling strength between the spins and cavity thus preventing efficient transfer of
energy.
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the cavity cooling master equation for the spin ensemble related to Eq. (6.155), but in the
Z eigenbasis

d

dt
ρs(t) = Dccρs(t) (6.225)

where
Dcc = Γ (1 + n)D[J−] + ΓnD[J+] (6.226)

is the cavity cooling dissipator with rate Γ = 4g2/κ.

To enable cooling to the ground state of the ensemble we require introducing an in-
teraction which breaks the SU(2) symmetry of the ensemble without inhibiting the cavity
cooling dissipator. The model we will consider to achieve this goal is a dissipation term
D(j) which acts locally on each spin in the ensemble so that Ds =

∑N
j=1D(j). The par-

ticular model of dissipation we consider is local dephasing, or T2 dissipation, which is a
phenomenological model of noise which acts on spin systems that over time causes the off
diagonal elements of the density matrix to decay exponentially to zero. The intuition for
this interaction is that dephasing causes a mixing of states across different spin-J subspaces
that have the same Jz value. Since the cavity cooling dissipator drives each subspace to
the lowest Jz value state, population trapped in the ground state of a spin-J subspace will
be leaked by a T2 process into the kth excited state of a spin-(J + k) subspace. This leaked
population will then be cooled to the ground state of the new subspace, and in the ideal
case this eventually leads to the ground true thermal state of the spin ensemble.

A T2 process on a single spin-half system is generated by the Lindblad dissipator

D[σz/2] =
1

4
(σz ⊗ σz − 1⊗ 1) (6.227)

D[σz/2] : ρ 7→ 1

4

(
SzρS

†
z − ρ

)
(6.228)

The dissipator for identical local dephasing dissipators on each spin in the ensemble is then
given by

DT2 =
N∑

j=1

γD[σ(j)
z /2]. (6.229)

Thus, the goal is to solve the dynamics of the spin master equation

d

dt
|ρ(t)〉〉 = (Dcc +DT2)|ρ(t)〉〉, (6.230)

and show that this can enable cavity cooling to the ground state of the spin ensemble with
magnetization 〈Jz〉 = −N/2.

216



6.5.1 Magnus Expansion for Dissipative Interaction Frames

In order to solve the Lindblad equation Eq. (6.230) for cavity cooling in the presence
of local dissipation we develop a novel new perturbation theory technique for dissipative
evolution. This is an extension of Average Liouvillian Theory [LDB92, GEB99, Gho00]
that involves applying the Magnus expansion in an imaginary time dissipative interaction
frame to the superoperators describing the open system evolution. Consider a Lindblad
master equation

d

dt
|ρ(t)〉〉 = (D0 + S1)|ρ(t)〉〉, (6.231)

where the dominant term is a Lindblad dissipator

D0 =
∑

j

γjD[Aj] (6.232)

and S1 may consist of dissipative and/or Hamiltonian evolution terms. We move into the
dissipative interaction frame defined by D0. Let

| ρ̃(t)〉〉 ≡ etD0|ρ(t)〉〉 (6.233)

S̃1(t) ≡ etD0S1e
−tD0 . (6.234)

In this interaction frame we have that

d

dt
| ρ̃(t)〉〉 = S̃1| ρ̃(t)〉〉 (6.235)

Since we are in the interaction frame of a purely dissipative term, time-dependent terms
in S̃1(t) will be of the form e±ωt where ω is real and positive. Thus as t → ∞ the eωt

terms will diverge to infinity. For the case where the original superoperator S1 is not
time-dependent, we can remove these divergent terms by performing a Wick rotation into
imaginary time [Wic54]. This is achieved by the change of variables

t 7→ iτ (6.236)

dt 7→ idτ. (6.237)

In the Wick rotated frame we have that

S̃1(iτ) = eiτD0S1e
−iτD0 (6.238)
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which is a periodic superoperator, with period defined by D0. If we define operators

G(τ) ≡ S1(iτ) (6.239)

Q(τ) ≡ ρ(iτ) (6.240)

then the Wick rotated master equation may be written as

d

dτ
|Q(τ)〉〉 = iG(τ)|Q(τ)〉〉 (6.241)

which has the solution

|Q(τ)〉〉 = T exp

(
i

∫ τ

τ0

dsG(s)

)
|Q(0)〉〉 (6.242)

where T is the time ordering operator. Since G(τ) is a periodic function with period T
we can consider the average stoboscopic evolution over this period by using the Magnus
expansion [Mag54]. The Magnus expansion states that

T exp

(
i

∫ T

0

dsG(s)

)
= exp

( ∞∑

k=1

Ωk(τ)

)
(6.243)

where Ωk(T ) are the Magnus terms, with the first three given by

Ω1(T ) =

∫ τ

0

ds1 i G(s1) (6.244)

Ω2(T ) = −1

2

∫ T

0

ds1

∫ s1

0

ds2 [G(s1), G(s2)] (6.245)

Ω3(T ) = − i
6

∫ T

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3

(
[G(s1), [G(s2), G(s3)]] + [G(s3), [G(s2), G(s1)]]

)
.

(6.246)

We can define an average superoperator over the period T by

Dk ≡
1

i T
Ωk(T ), (6.247)

and average stroboscopic evolution for a time τ = nT for integer n is given by

|Q(τ)〉〉 = exp

(
iτ

∞∑

k=0

Dk

)
|Q(0)〉〉. (6.248)
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Since the average dissipator is time-independent, we may inverse Wick-rotate back into real
time to obtain an average description of the system dynamics over the period T , which may
then be used to compute the stroboscopic evolution over integer multiples of the period T :

| ρ̃s(nT )〉〉 = exp

(
nT

∞∑

k=1

Dk

)
| ρ̃s(0)〉〉. (6.249)

The stroboscopic case the evolution is only equal to the Magnus expansion when t is an
integer multiple of T , however, if T is sufficiently short it is a useful course graining of the
evolution. In addition, If the rate of the dissipator D0 is greater than the rate of the term
S1 rate we may make a secular approximation and only need to consider the lowest order
terms of the Magnus expansion. We also note that since the original interaction frame
superoperator S̃1(t) had possibly divergent terms with time, so will the average dissipator
Dk, in general. Hence care must be taken to only evaluate the evolution in terms of an
expectation value.

6.5.2 Average Cavity Cooling Dissipator in the T2 Interaction
Frame

We now return to finding the equilibrium state for Eq. (6.230) for cavity cooling with local
dephasing. To do this we use the fact that this master equation preserves a global SU(4)
symmetry on the state space of vectorized density matrices. We recall that superoperators
for the cavity cooling dissipator and local T2 dissipator can be expressed in terms of SU(4)
generators by Eqs. (6.34) and (6.37):

Dcc =Γ
(

(1 + n)D[J−] + nD[J+]
)

(6.250a)

D[J±] =(U± + V±)(M± +N±)− 1

2
(U∓ + V∓)(U± + V±)

− 1

2
(M∓ +N∓)(M± +N±) (6.250b)

DT2 =M3 −
1

2
Q3 −

1

2
Σ3 −

N

4
I (6.250c)

We now consider the effective cavity cooling dissipator in the interaction frame of the
T2 dissipator using the techniques detailed in Section 6.5.1. This is given by

D̃cc(t) = etDT2Dcce−tDT2 (6.251)

= Γ
(

(1 + n)D̃[J−](t) + nD̃[J+](t)
)

(6.252)
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where
D̃[J±](t) = etDT2D[J±]e−tDT2 . (6.253)

We may expand this using the BCH expansion:

D̃[J±](t) =
∞∑

k=0

tk

k!
AdkDT2

(
D[J±]

)
(6.254)

where AdkDT2

(
D[J±]

)
are nested commutator terms with

Ad0
DT2

(
D[J±]

)
= D[J±] (6.255a)

Ad0
DT2

(
D[J±]

)
=
[
DT2 ,D[J±]

]
(6.255b)

AdkDT2

(
D[J±]

)
=
[
DT2 , Ck−1

[
D[J±]

]]
(6.255c)

We may compute the commutator terms of the BCH expansion using the SU(4) algebra.
To begin, we have

[
DT2 ,M±

]
=± γ

2
M±,

[
DT2 , N±

]
=∓ γ

2
N±, (6.256)

[
DT2 , U±

]
=± γ

2
U±,

[
DT2 , V±

]
=∓ γ

2
V±. (6.257)

Hence,
[
DT2 , D[J±]

]
=

1

2

([
DT2 , (U± + V±)(M± +N±) + (M± +N±)(U± + V±)

]

−
[
DT2 , (U∓ + V∓)(U± + V±) + (M∓ +N∓)(M± +N±)

])
(6.258a)

=
1

2

([
DT2 , U± + V±

]
(M± +N±) + (M± +N±)

[
DT2 , U± + V±

]

+
[
DT2 ,M± +N±

]
(U± + V±) + (U± + V±)

[
DT2 ,M± +N±

]

−
[
DT2 , U∓ + V∓

]
(U± + V±)− (U∓ + V∓)

[
DT2 , U± + V±

]

−
[
DT2 ,M∓ +N∓

]
(M± +N±)− (M∓ +N∓)

[
DT2 ,M± +N±

])

(6.258b)

= ±γ
2

[(
M±U± + U±M± − V∓U± −N∓M±

)

−
(
N±V± + V±N± − U∓V± −M∓N±

)]
. (6.258c)
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Next, we define superoperators

A± =
1

2

(
M±U± + U±M± − V∓U± −N∓M±

)
(6.259)

B± =
1

2

(
N±V± + V±N± − U∓V± −M∓N±

)
. (6.260)

We may then write
[
DT2 , D[J±]

]
= ±γA± ∓ γB±. (6.261)

If we take the commutator of A± and B± with the T2 dissipator we find

[
DT2 , A±

]
= ±γA±

[
DT2 , B±

]
= ∓γB±. (6.262)

Hence for k ≥ 1 we have that the nested commutator terms are given by

AdkDT2

(
D[J±]

)
= (±γ)kA± + (∓γ)kB± (6.263)

and

D̃[J±](t) =
∞∑

k=0

tk

k!
AdkDT2

(
D[J±]

)
(6.264)

= D[J±]−A± − B± +
∞∑

k=0

(±γt)k
k!
A± +

∞∑

k=0

(∓γt)k
k!
B± (6.265)

= D[J±] + (e±γt − 1)A± + (e∓γt − 1)B±. (6.266)

In the Wick-rotated interaction frame G(τ) = D̃[J±](iτ) is periodic with period T =
2π/γ. Hence, if the dephasing rate is greater than the collective cavity cooling rate we
may make a secular approximation for the average dissipator, and the first order Magnus
term over this period is the time-independent piece of Eq. (6.266):

D1 = Γ(1 + n)G− + ΓnG+, (6.267)

where

G± = D[J±]−A± − B±
=

1

2

(
U±N± +N±U± +M±V± + V±M± − U∓U± − V∓V± −M∓M± −N∓N±

)
.

(6.268)
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6.5.3 Equilibrium Value and Cooling Rate for 〈Jz(t)〉
Using the first order average dissipator in Eq. (6.267) we are interested in computing the
evolution of the expectation value of the Jz operator for an arbitrary initial state. We do
this by solving

〈Jz(t)〉 = 〈〈Jz|ρ(t)〉〉
= 〈〈J̃z(t)|ρ̃(t)〉〉
= 〈〈Jz |etD1|ρ(0)〉〉
= 〈〈ρ(0) |etD

†
1|Jz〉〉, (6.269)

where J̃z(t) = Jz(t) as [Jz,DT2 ] = 0.

The solution to Eq. (6.269) is given by

〈Jz(t)〉 = e−tΓcc(1+2n)〈Jz(0)〉 − N
(
1− e−tΓcc(1+2n)

)

2 + 4n
. (6.270)

This is an exponential relaxation process with decay rate T1 = Γcc(1+2n) to an equilibrium
state with magnetization

〈Jz〉eq = − N

2 + 4n
. (6.271)

Thus in the ideal cooling limit with n = 0 this is a T1 process to the ground state of the
spin ensemble with magnetization 〈Jz〉eq = −N/2.

We now proceed with the derivation of Eq. (6.270). We first note that the the adjoint
dissipator is given by

D†1 = G1 = Γ(1 + n)G
†
− + ΓnG

†
+, (6.272)

where

G
†
± =

1

2

(
U∓N∓+N∓U∓+M∓V∓+V∓M∓−U∓U±−V∓V±−M∓M±−N∓N±

)
(6.273)

and we have used M†
± =M∓. Similar arguments follow for N±,U±,V±.

Next, we compute the terms of D†1|Jz〉〉. We have that

(U∓N∓ +N∓U∓)|Jz〉〉 =
N∑

i,j=1

(∣∣∣E(j)
+ S

(i)
∓ JzE

(i)
− S

(j)
±

〉〉
+
∣∣∣σ(i)
∓ E

(j)
+ JzS

(j)
± E

(i)
−

〉〉)
(6.274a)

=
N∑

i,j=1

(∣∣∣E(j)
+ S

(i)
∓ E

(i)
− JzS

(j)
±

〉〉
+
∣∣∣σ(i)
∓ JzE

(j)
+ S

(j)
± E

(i)
−

〉〉)
. (6.274b)
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Hence,

(U−N− +N−U−)|Jz〉〉 =
N∑

i,j=1

∣∣∣S(i)
− Jz S

(j)
+ E

(i)
−

〉〉
(6.275a)

=
N∑

i,j=1

(∣∣∣
[
S

(i)
− , Jz

]
S

(j)
+ E

(i)
−

〉〉
+
∣∣∣JzS(i)

− S
(j)
+ E

(i)
−

〉〉)
(6.275b)

=
N∑

j=1

∣∣∣(Jz + 1)E
(j)
−

〉〉
(6.275c)

=
∣∣(Jz + 1)

(
N
2

1− Jz
)〉〉

(6.275d)

and

(U+N+ +N+U+)|Jz〉〉 =
N∑

i,j=1

∣∣∣E(j)
+ S

(i)
+ Jz S

(j)
−

〉〉
(6.276a)

=
N∑

i,j=1

∣∣∣E(j)
+ S

(i)
+ S

(j)
− (Jz − 1)

〉〉
(6.276b)

=
∣∣(N

2
1 + Jz

)
(Jz − 1)

〉〉
, (6.276c)

where we have made use of the relations

E±E± = E±, E±E∓ = 0 (6.277a)

E±S± = S±E∓ = S± (6.277b)

E∓S± = S±E± = 0. (6.277c)

Thus, we arrive at the expression

(U∓N∓ +N∓U∓)|Jz〉〉 =
∣∣(N

2
1∓ Jz

)
(Jz ± 1)

〉〉
. (6.278)

Similarly one can show

(V∓M∓ +M∓V∓)|Jz〉〉 =
∣∣(N

2
1∓ Jz

)
(Jz ± 1)

〉〉
. (6.279)

For the other terms we have

U∓U±|Jz〉〉 =
N∑

i,j=1

∣∣∣E(j)
+ E

(i)
+ JzS

(i)
∓ S

(j)
±

〉〉
=

N∑

i,j=1

∣∣∣Jz E(j)
+ E

(i)
+ S

(i)
∓ S

(j)
±

〉〉
. (6.280)
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Hence,

U−U+|Jz〉〉 =
N∑

i,j=1

∣∣∣Jz E(j)
+ E

(i)
+ S

(i)
− S

(j)
+

〉〉
= 0 (6.281)

U+U−|Jz〉〉 =
N∑

i,j=1

∣∣∣Jz E(j)
+ S

(i)
+ S

(j)
−

〉〉
=

N∑

j=1

∣∣∣Jz E(j)
+

〉〉
=
∣∣Jz
(
N
2

1 + Jz
)〉〉
. (6.282)

Similarly,

M−M+|Jz〉〉 = 0 (6.283a)

M+M−|Jz〉〉 =
∣∣Jz
(
N
2

1 + Jz
)〉〉

(6.283b)

V−V+|Jz〉〉 =
∣∣Jz
(
N
2

1− Jz
)〉〉

(6.283c)

V+V−|Jz〉〉 = 0 (6.283d)

N−N+|Jz〉〉 =
∣∣Jz
(
N
2

1− Jz
)〉〉

(6.283e)

N+N−|Jz〉〉 = 0. (6.283f)

Thus, we have

G
†
±|Jz〉〉 =

∣∣(N
2

1∓ Jz
)
Jz
〉〉
±
∣∣(N

2
1∓ Jz

)〉〉
−
∣∣(N

2
1∓ Jz

)
Jz
〉〉

= −|Jz〉〉 ±
N

2
|1〉〉. (6.284)

Next, we need to evaluate G
†
±|1〉〉. We have that

M+|1〉〉 = 0 M−|1〉〉 = |J−〉〉
U+|1〉〉 = 0 U−|1〉〉 = |J+〉〉
N+|1〉〉 = |J+〉〉 N−|1〉〉 = 0

V+|1〉〉 = |J−〉〉 V−|1〉〉 = 0

and so

G
†
+|1〉〉 =

1

2

(
N−|J+〉〉+ V−|J−〉〉

)
− 1

2

(
N−|J+〉〉+ V−|J−〉〉

)
= 0 (6.285)

G
†
−|1〉〉 =

1

2

(
M+|J−〉〉+ U+|J+〉〉

)
− 1

2

(
M+|J−〉〉+ U+|J+〉〉

)
= 0. (6.286)
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Finally, we may put this all together to obtain

G
†|Jz〉〉 = Γ

(
(1 + n)G

†
− + nG

†
+

)
|Jz〉〉

= Γ(1 + n)(−|Jz〉〉 −
N

2
|1〉〉) + Γn(−|Jz〉〉+

N

2
|1〉〉)

= −Γ(1 + 2n)

[
|Jz〉〉+

(
N

2 + 4n

)
|1〉〉
]
. (6.287)

In general, for k ≥ 1

G
k|Jz〉〉 = (−1)kΓk(1 + 2n)k

[
|Jz〉〉+

(
N

2 + 4n

)
|1〉〉
]
. (6.288)

Hence,

etG|Jz〉〉 =
∞∑

k=0

tk

k!
G
k|Jz〉〉

= |Jz〉〉+
∞∑

k=1

tk

k!
(−1)kΓk(1 + 2n)k

[
|Jz〉〉+

(
N

2 + 4n

)
|1〉〉
]

= e−tΓ(1+2n)|Jz〉〉 −
(
1− e−tΓ(1+2n)

)( N

2 + 4n

)
|1〉〉. (6.289)

For an arbitrary initial state ρ(0), the expectation value of Jz under this evolution is given
by

〈Jz(t)〉 = e−tΓ(1+2n)〈Jz(0)〉 −
(
1− e−tΓ(1+2n)

)( N

2 + 4n

)
. (6.290)

The effective dynamics are thus described by an exponential decay process with decay rate
T1 = Γ(1 + 2n) to an equilibrium state with magnetization

〈Jz〉eq = − N

2 + 4n
, (6.291)

where in the ideal cooling limit of n = 0, this is a T1 process to the ground state of the
spin ensemble.

6.5.4 Simulation Results

We now consider numerical simulations to compare the average cavity cooling dissipator
derived in Section 6.5.2 with evolution under the spin master equation Eq. (6.230) for
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cavity cooling with local dephasing:

d

dt
|ρ(t)〉〉 = (Dcc +DT2)|ρ(t)〉〉. (6.292)

We also compare with evolution under the full spin-cavity evolution for the Tavis-Cummings
master equation with cavity dissipation and local spin dephasing:

d

dt
|ρsc(t)〉〉 = (LTC +Dc +DT2) |ρsc(t)〉〉. (6.293)

All simulations were done using the QuantumUtils for Mathematica package [WHG15]
with an N -spin matrix representation of the symmetric subspace projection of the SU(4)
algebra, as described in Section 6.2.3.

Fig. 6.11 shows the results for simulation of 〈Jz(t)〉 for cavity cooling with local de-
phasing using Eq. (6.292) for both N = 10 spins, and N = 100 spins with dephasing rates
of γ = λN Γ with λ = 0, 0.1, 1, 10. In both cases we see that for γ = 0 we have cavity
cooling alone and population is trapped, and as γ > 0 we break the SU(2) symmetry and
achieve cooling to the ground state, at a rate that increases with γ. For γ = 10NΓ we have
good agreement between the first order average dissipator expansion D1 in Eq. (6.267),
shown as the dotted black line in Fig. 6.11. This is expected, as Eq. (6.269) is only a valid
approximation of the true dynamics when the dephasing strength γ is sufficiently strong
to disregard higher order terms in the Magnus expansion where terms that do not com-
mute with the dissipator rapidly average to zero. In practice this corresponds to requiring
γ > ΓN . The parameter C = ΓN/γ is also called the cooperativity of the spin ensemble,
and hence the condition for the validity of lowest order Magnus approximation is that
C < 1.

In Fig. 6.12 we simulated for N = 10 spins and a cavity truncated to 4 levels with
values of the spin-cavity coupling of g = 100, cavity dissipation rate κ = 4g2 = 4 × 104,
and spin dephasing rate γ = λN with λ = 0, 0.1, 1, 10, 102, 103, 104, 105. The values of
g and κ were chosen to satisfy the Markovian condition κ � g

√
N for N = 100, while

giving an effective spin cavity cooling rate of Γ = 4g2/κ = 1. In addition the strong
cavity dissipation rate allows us to truncate the cavity to low dimension. We find that
the spin-cavity master equation in Eq. (6.293) is in agreement with the spin cavity cooling
master equation in Eq. (6.292) for dephasing rates up to 10NΓ, however as the dephasing
rate increases beyond the collective cavity dissipation rate, the cooling rate begins to slow
down. In this strong dephasing regime the master equation in Eq. (6.293) is not an honest
description of the dynamics. This is because when deriving the cavity cooling dissipator
we must take into account that strong dephasing will reduce the effective coupling strength
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Figure 6.11: Simulations of the expectation value 〈Jz(t)〉 for a maximally mixed initial
state of an ensemble of N = 10 spins (left), and N = 100 spins (right) for master equation
described by first order average dissipator in Eq. (6.267) (dotted black line), and of the
cavity cooling with local dephasing master equation in Eq. (6.292) for γ = λNΓ, and
λ = 0, 0.1, 1, 10. In both cases we see good agreement between the first order approximation
and the full master equation for dephasing rate γ = 10NΓ.

between the spin and the cavity, and hence reduce the effective dissipation rate Γ. Following
the derivation in Section 6.3.1, this can be incorporated by a Lorentzian cavity cooling rate
Γ = 4g2κ/(κ2 + 4∆2), where ∆ is a parameter that depends the the physical mechanism
that gives rise to the local dephasing parameter γ. For example, in the simplest case of
N = 2, this is the expression where the dephasing mechanism arrises due to the the two
spins being tuned to ±∆/2 off-resonance considered in Eq. (6.224).

6.6 Summary

In this chapter we have described how, in theory, cavity cooling techniques can be used to
drive the Dicke subspace, and other coupled angular momentum subspaces of an ensemble
system to their respective ground states by coupling to a high-Q cavity. We also demon-
strated that these subspaces may be coupled to enable cavity cooling of all subspaces to
the ensemble ground state by including a local dephasing dissipator on each spin in the
ensemble.

The subspace cavity cooling we derived in Section 6.4 could prove useful as a fast reset
operation of the collective subspaces of a spin-ensemble at a rate potentially much faster
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Figure 6.12: Simulations of the expectation value 〈Jz(t)〉 for the full spin-cavity master
equation in Eq. (6.293) with the addition of a local dephasing dissipator for N = 10 spins
in a maximally mixed initial state, and a cavity truncated to 4 levels initialized in the
ground state. Evolution under the 1st order average dissipator in Eq. (6.267) is shown
as the dotted black line in both figures. In the left figure we see good agreement with
the cavity cooling master equation simulation in Fig. 6.11, however for stronger dephasing
rates (right) we see that the cooling rate of the spin ensemble decreases.
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than thermal relaxation. These subspaces provide a useful tool for implementing quantum
error correction and other quantum information protocols in proposals for hybrid quantum
systems where a Dicke subspace of a spin-ensemble is used as quantum memory for storing
an excitation from a superconducting qubit or resonator [KOB+10, AKN+11, DPF+11,
KGD+11]. However, since cavity cooling alone does not couple the Dicke subspace to the
non-Dicke subspaces, it is less useful if the initial state is highly mixed. In Section 6.4.4 we
showed that for a maximally mixed initial state, the cooling dynamics in the full Hilbert
space could be approximated by an exponential relaxation process to a state with final
magnetization of order

√
N , with a cooling time constant proportional to 1/

√
N . Cavity

cooling with local dephasing as discussed in Section 6.5 may be useful in this context, and
this technique could prove useful for initializing an ensemble spin system in a highly pure
state without requiring extremely high fields or low temperatures. In addition the method
for dissipative perturbation theory that we developed to solve the cooling master equation
in Section 6.5.1 could be useful for other systems where a dissipative term is dominant.

Dephasing is always present in a real physical system and this proposal uses it as a
resource for dissipative state engineering. Depending on the physical system there are many
possible mechanisms that give rise to dephasing. For spins systems it may arises due to
inhomogeneous static fields across the ensemble, which could be engineered by introducing
gradient fields. For systems such as phosphorus defects in silicon and nitrogen vacancy
centres in diamond it could arise due to hyperfine coupling between each electron and a
local nuclear spin or spin bath, and the strength of these interactions can be engineered to
a degree using decoupling sequences. Finally it could also be engineered by stochastically
applying σz gates to randomly chosen individual spins in the ensemble if one has the ability
to implement local control operations.

For simplicity of presentation our calculation in Section 6.5 considered the case where
the spin-ensemble was on resonance with the cavity and the resulting cavity cooling dis-
sipator can be thought of in terms of the Purcell effect. One could also consider the
side-band cooling approach as detailed in Section 6.4, by introducing a drive term on the
spins to target a side-band of the resonator. In that case the magnetization of the spins
under cooling accumulates in the Jx basis (for a Jx drive term) rather than the Jz basis
of the static field. In this situation the dephasing must also happen in the Jx basis to
achieve cooling to the Jx ground state. In practice this could be engineered by using a
gated protocol where a single cooling step consists of: side-band cavity cooling for a time
tcc, applying a collective rotation swapping the Jx and Jz eigenstates, dephasing for time
tT2 in the Jz basis, then applying the inverse collective rotation to rotate back to the Jx
basis. This cooling step can then be repeated to form a discretized cavity cooling cycle
with dephasing to reach the true ground state.
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Chapter 7

Quantum Correlations in Neutron
Interferometery

7.1 Introduction

A unique property of quantum theory is that when two or more quantum systems are
allowed to interact they may exhibit correlations that cannot be explained classically. In
the field of quantum information science protocols harnessing these correlations can exceed
classical efficiencies for certain metrology applications and information processing tasks
[NC00]. One of the most studied classes of correlated quantum states are entangled states
as they enable extremely non-classical quantum effects such as quantum teleportation
[HHHH09]. A maximally-entangled quantum state of a bipartite quantum system allows
for a projective measurement of one subsystem to completely determine the outcome of
the corresponding projective measurements on the other. The class of states of interest to
quantum computation however is broader then purely entangled quantum states, as certain
non-entangled quantum states may still posses correlations that cannot be accounted for
classically. In such cases measurement on one subsystem, while not determining the state
of another, may still cause a disturbance to the state of the other.

Classifying the quantum nature of correlations beyond entanglement has received much
interest, with many discussions focused on quantum discord (QD) and related measures
[LCS11, CMS11, MBC+12]. Quantum discord was proposed by Ollivier and Zurek [OZ02],
and Henderson and Vedral [HV01] to characterize quantum correlations in a bipartite sys-
tem. In effect, one may interpret QD as a measure of the minimum disturbance that mea-
surement of one subsystem of a bipartite quantum system can induce on the measurement
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outcomes of the other. Such classifications are of interest since certain quantum algorithms,
such as DQC1, do not require entanglement to exceed classical efficiencies[KL98]. It has
been shown that for the DQC1 algorithm QD is present in the output state of the compu-
tation even when entanglement is not, and hence it was suggested that QD may provide
a better figure of merit of evaluating quantum resources [DSC08]. Here we investigate the
quantum nature of correlations of single neutrons in a neutron interferometer (NI).

Neutron interferometry has been used for precise tests of quantum mechanical phenom-
ena such as coherent spinor rotation [RZB+75] and superposition [SBR+83], gravitationally
induced quantum interference [COW75], the Aharonov-Casher effect [COK+89], violation
of a Bell-like inequality[HLB+03], generation of a single neutron entangled state[HLB+07],
quantum contextually [BKS+09], and the realization of a Decoherence-Free subspace [PAC09,
PHAC11]. In our case a NI provides a clean system for considering quantum correlations
in a bipartite quantum systems as we are able to coherently control the spin and path-
momentum degrees of freedom of a neutron beam, and manipulate the correlations between
them. In addition, due to the high efficiency of single neutron detectors and the low inten-
sity of neutrons entering the interferometer, we are able to gather statistics from performing
true projective measurements on single quantum systems. In the present chapter we in-
vestigate the correlations between the spin and path degrees of freedom of the output
beam from a noisy NI by observing changes in the output beam intensity as a result of a
post-selected projective measurement on the neutron spin.

7.2 Theoretical Model of a Neutron Interferometer

The most common geometry for a neutron interferometer is a three-blade configuration
machined from a perfect single crystal of silicon. This type of interferometer functions as
a Mach–Zender interferometer on the longitudinal momentum of the neutron beam. We
refer to this degree of freedom of the neutron beam as the path system. The neutron path
can be viewed as a two level quantum system. The neutrons in the interferometer are also
spin-half particles, and we can treat the spin of the neutron as a second two level quantum
system that we call the spin system. We may couple to the neutron path and spin to form
a bipartite quantum system. In this context we may view the interferometer crystal as a
quantum circuit acting as illustrated in Fig. 7.1. We define the basis for the path to be
the computational basis where |0〉 and |1〉 correspond to the red and blue beam paths in
Fig. 7.1 respectively. For the spin-system we work in the spin-up, spin-down eigenbasis
|↑〉, |↓〉 with respect to a static field in the z-direction.

The first (and third) NI blades of the interferometer act as Hadamard (H) gates on the
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Figure 7.1: Experimental setup for the three blade neutron interferometer (top) and the
corresponding quantum circuit for the ideal model (bottom). The red (blue) paths in NI
schematic are defined as the |0〉(|1〉) path states, H is a Hadamard gate, Rx(α) is a rotation
of the neutron spin in the |0〉 path of α radians about x-axis, X is a bit-flip, Rz(φ) is a
relative phase shift of φ radians between the beam paths, Π is a projective measurement
performed on the spin-state (spin-analyser) in the basis cos(θ)|↑〉 ± eiφ sin(θ)|↓〉, and Z is
a projective measurement of the path intensities in the |0〉, |1〉 basis.
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neutron path by coherently splitting (and recombining) the neutron beam into two paths
via Bragg scattering in the Laue geometry [Sea89]. The second blade deflects the beam by
swapping the path-momentum directions, which we model as a bit-flip (X) gate. In our
defined bases these are given by:

H =
1√
2

(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) (7.1)

X = |0〉〈1|+ |1〉〈0| (7.2)

In practice the intensity of the output neutron beam is reduced compared to the input
beam due to neutrons escaping the NI at the second blade. We account for this in our
description of the output beam however by post-selecting on the neutrons which remain in
the interferometer.

Between the first and second NI blades we couple the spin and path degrees of freedom
by selectively rotating the neutron spin in the |0〉 path by an angle α. This acts a controlled-
X rotation (Rx(α)), with the spin and path as the target and control respectively:

C-Rx(α) = |0〉〈0| ⊗Rx(α) + |1〉〈1| ⊗ 1s (7.3)

Rx(α) = exp
[
i
α

2
(|↑〉〈↓|+ |↑〉〈↓|)

]
(7.4)

1s = |↑〉〈↑|+ |↓〉〈↓| (7.5)

We measure the intensities of the output beams using two 3He integrating detectors
called D0 and D1, corresponding to projective measurements of the states |0〉 and |1〉
respectively. This performs a Z-basis measurement on the neutron path subsystem. By
including spin-filters which selectively transmit neutrons with a preferred spin we may also
perform post-selected spin measurements. This allows us to perform joint measurements
on the spin and path of the neutron beam.

In a typical NI experiment a relative phase of φ is induced between the two paths by a
phase flag between the second and third blades which effectively implements the Z-rotation
gate:

Rz(φ) = e−iφ/2|0〉〈0|+ eiφ/2|1〉〈1|. (7.6)

The relative phase φ parameterizes the measured beam intensity by controlling the inter-
ference between the two beam paths recombined at the third blade.

Ideally the input beam is in the spin-up polarized state ψin = |0〉 ⊗ |↑〉 with respect to
a uniform magnetic field in the z-direction. In practice however one is not able to perfectly
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polarize the input neutron beam and in general we describe the input beam by the state

ρin(ε) = |0〉〈0| ⊗
(

1 + ε

2
|↑〉〈↑|+ 1− ε

2
|↓〉〈↓|

)
(7.7)

where −1 ≤ ε ≤ 1 parameterizes the spin-polarization of the neutron beam.

7.2.1 Output Intensities

In an ideal neutron interferometer interference effects are observed in the measured output
intensity at each detector. The ideal output intensity is a function of the relative phase
between interferometer paths and the angle of spin rotation in the |0〉 path. If no mea-
surement is performed on the neutron spin subsystem, the ideal detector probabilities in
the absence of noise are given by

D0,Ideal(φ, α) =
1

2

[
1 + cos

(α
2

)
cos(φ)

]

D1,Ideal(φ, α) =
1

2

[
1− cos

(α
2

)
cos(φ)

]
. (7.8)

which is independent of the spin-polarization of the neutron beam. In a real NI the blades
do not generally have equal transmission and reflection coefficients and hence are not true
50-50 beam splitters. This doesn’t effect the interference effects at detector D0 though
since both interferometer paths to this detector have the same number of transmissions
and reflections.

In practice neutron interferometers cannot be machined perfectly and surface imperfec-
tions in the crystal blades lead to a distribution of phases over the cross-sectional area of
the neutron beam. This results in reduced contrast of the beam intensity when averaged
over the beam distribution. To include the effect of phase noise in our model we consider
the output intensities with a phase shift φ + φr where φr is an additional random phase
shift introduced between paths by the NI blades. This random phase is assumed to be
normally distributed with mean 0 and variance σ. By averaging over the distribution of
φr, we may obtain the average detector intensities:

D0(φ, α, σ) =

∫ ∞

−∞
dφrD0,Ideal(φ+ φr, α)

exp
(
− φ2r

2σ2

)

√
2πσ2

(7.9)

=
1

2

[
1 + e−σ

2/2 cos
(α

2

)
cos(φ)

]
(7.10)
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7.2.2 Contrast

The intensity curves for each detector as a function of the relative phase φ between inter-
ferometer paths are referred to as contrast curves. They are analogous to the interference
pattern produced by a double slit interference experiment. The difference between the
maximum and minimum intensity of the D0-detector as a function of a phase-flag rotation
φ is called the contrast of the NI and is defined as

CP =
maxφ[D0(φ)]−minφ[D0(φ)]

maxφ[D0(φ)] + minφ[D0(φ)]
. (7.11)

The contrast may take values 0 ≤ CP ≤ 1 and is a measure of the strength of quantum
coherence between the paths.

We also consider an alternative contrast expression where our parameter of variation
in detector intensity is the angle of spin rotation α rather than the phase rotation φ as
in Eq. (7.11). We define an alternative contrast expression called the spin-contrast to be
given by

CS =
maxα[D0(α)]−minα[D0(α)]

maxα[D0(α)] + minα[D0(α)]
. (7.12)

We will refer to the standard contrast as the path-contrast to distinguish it from the spin-
contrast.

Using the observed detector probability in Eq. (7.10) we may calculate that the path
and spin contrasts of the noisy three blade NI:

CP (α, σ) = e−σ
2/2
∣∣∣cos

(α
2

)∣∣∣ (7.13)

CS(φ, σ) = e−σ
2/2 |cos (φ)| (7.14)

We see here that the average contrast and spin-contrast expressions are equivalent but
with the roles of α and φ interchanged (CS(φ, σ) = CP (2φ, σ)), and depend on the noise
strength, and the phase of the parameter that is not optimized over for the contrast (α for
path contrast and φ for spin-contrast).

7.3 Quantum Correlations in a Neutron Interferome-

ter

We now consider quantum correlations in the output state of a three-blade NI and will
follow with the mathematical model of the NI used to derive them Section 7.2. In our
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configuration systems A and B correspond to the path and spin degrees of freedom of a
neutron respectively, which each may be modelled as a two-level quantum system (qubit).
By performing a controlled spin-rotation of angle 0 ≤ α ≤ 2π in one of the paths of the
NI we may introduce entanglement between the spin and path subsystems of an initially
spin-polarized neutron beam. In a realistic NI there are noise sources which introduce
decoherence and reduce the effectiveness of this entangling operation. In the present paper
we consider the decoherence due to surface defects of the NI blades. This noise source intro-
duces a random phase between the two interferometer paths which degrades the coherence
of the path subsystem A.
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Figure 7.2: Entanglement of formation (left) and quantum discord D(A|B) (right) between
the spin and path degrees of freedom of neutrons exiting a three-blade NI as a function
of the spin rotation angle of neutrons in the |0〉 interferometer path, and noise strength
σ. The NI schematic is described in Fig. 7.1, and the noise model considered introduces a
normally distributed random phase, with mean 0 and standard deviation σ, between the NI
paths. The dashed line corresponds to the maximum noise case of a uniform distribution
of angles. While the entanglement approaches zero for all spin rotation angles as the noise
strength increases, the quantum discord remain non-zero.

Since the neutrons exiting the NI may be described by a mixed state of a 2 qubit quan-
tum system, we use entanglement of formation (EOF) as a measure of the entanglement in
the output state. Further, since the quantum state of the neutrons is rank-two we need only
perform the minimization in Eq. (1.37) over PVMs on the spin subsystem to calculate the
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quantum discord. We find that the EOF between the spin and path systems goes to zero
asymptotically as the strength of the random phase noise increases, while the QD remains
non-zero for all values of the spin rotation except nπ for integer values of n. This is illus-
trated in Fig. 7.2. Even though there is no entanglement between the spin and path of the
neutrons in the case of strong phase noise, the non-zero quantum discord D(A|B) indicates
the presence of non-classical correlations. This signifies that measurements performed on
the neutron spin will induce a disturbance on the path state of the output neutron beam.

The observed entanglement evolution under an increase in the strength of the phase
noise can be classed as approaching [ZCFJ12], in contrast to entanglement sudden death
[YE09]. QD has been shown to be robust to sudden death and instead asymptotically van-
ishes in bipartite systems subject to Markovian evolution [WSFVB09, FAC+10], however in
our case QD remains asymptotically non-zero for most spin rotation values. Similar effects
of the vanishing of entanglement but non-vanishing QD have been previously found in the
theoretical analysis of the evolution of coupled quantum dots under decoherence [FCC10].
Certain initially correlated two-atom states have also been shown to have a non-vanishing
quantum discord when coupled to a common dissipative cavity [ZZXG11].

7.3.1 Output Intensity with Spin-filtering

We now consider the detector intensities and contrast curves when we include a spin-filter
to perform a post-selected spin measurement on the output neutron beam before detector
D0. The spin-filter implements a post-selected projective measurement of the pure state

|S(θ, ϕ)〉 = cos

(
θ

2

)
|↑〉+ eiϕ sin

(
θ

2

)
|↓〉 (7.15)

where θ, φ are the spherical coordinates parameterizing the state on the Bloch Sphere. In
practice the spin-filter acts by absorbing neutrons in the orthogonal spin state before they
reach the detector. After post-selection the detector intensity is proportional to

D0,S(θ,ϕ)(φ, α, σ) =
1

4

(
1 + ε cos2 (α/2) cos(θ) +

ε

2
sin(α) sin(θ) sin(ϕ)

+ e−
s2

2 cos(α/2)(1 + ε cos(θ)) cos(φ)

− e− s
2

2 sin(α/2) sin(θ) cos(φ)
[

sin(φ)− ε sin(ϕ)
])

(7.16)

We explicitly consider two cases, spin-filtering in the same axes as the quantizing mag-
netic field (Z-filter), and spin-filtering in an orthogonal basis (X-filter). These are given
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by
Z : |↑〉 = |S(0, 0)〉 |↓〉 = |S(π, 0)〉
X : |↑ x〉 = |S(π/2, 0)〉 |↓ x〉 = |S(3π/2, 0)〉 (7.17)

in terms of the (θ, φ) parameterization in Eq. (7.15).

In these case of the Z-filter the observed intensities at detector D0 are proportional to

D0,↑z(φ, α, σ, ε) =

(
1 + ε

2

)
D0(φ, α, σ) +

ε

8
[cos(α)− 1] (7.18)

D0,↓z(φ, α, σ, ε) =

(
1− ε

2

)
D0(φ, α, σ)− ε

8
[cos(α)− 1] (7.19)

for spin-up and spin-down filtering in the z-direction respectively. Note that in this case
the normalization condition for the output probabilities is that D0,↓+D0,↑+D1,↓+D1,↑ = 1.

In these cases of the X-filter the observed intensities at detector D0 are proportional
to

D0,↑x(φ, α, σ) =
1

4

[
1 + e−σ

2/2 cos
(α

2
+ φ
)]

(7.20)

D0,↓x(φ, α, σ) =
1

4

[
1 + e−σ

2/2 cos
(α

2
− φ
)]

(7.21)

for spin-up and spin-down filtering in the x-direction respectively. We see here that the Z-
filter adds an additional term to the unfiltered contrast, while the X-filtering combines the
parameters φ and α into a single argument of a cosine function. Further, in the weak noise
case (σ ≈ 0) both these expressions are observably different from the non-spin-filtered
case in Eq. (7.10). However in the case of strong noise, the non-spin-filtered and X-
filtered intensities approach constant values. Only the Z-filtered intensities are observably
different to the non-spin-filtered intensity, and depend on the initial spin polarization ε,
and the controlled spin-rotation angle α. We discuss the implications of these results in
Section 7.3.3, but first we introduce a measure of coherence in interferometer experiments
called contrast.

7.3.2 Contrast with spin-filtering

We now consider the theoretical path and spin-contrasts of the output beam after spin-
filtering. When we post-select on the spin-up and spin-down states of the X-filter we
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obtain contrast values of

CP (↑x)(σ) = CS(↑x)(σ) = e−σ
2/2 (7.22)

CP (↓x)(σ) = CS(↓x)(σ) = e−σ
2/2. (7.23)

We find that the spin and path contrasts are equivalent and depend only on the strength
of the phase noise. In particular the contrast decreases to zero with the increase in noise
strength.

For the Z-filtered intensities we obtain post-selected path-contrasts of

CP (↑z)(α, σ, ε) =

∣∣∣∣∣
(1 + ε)e−σ

2/2 cos
(
α
2

)

1 + ε
2
(1 + cos(α))

∣∣∣∣∣ (7.24)

CP (↓z)(α, σ, ε) =

∣∣∣∣∣
(1− ε)e−σ2/2 cos

(
α
2

)

1− ε
2
(1 + cos(α))

∣∣∣∣∣ . (7.25)

which satisfy

CP (↑z)(α, σ, ε) ≥ CP (α, σ) ≥ CP,↓z(α, σ, ε) (7.26)

for ε ≥ 0, with equality in the case of an zero spin-polarization (ε = 0). In particular we
see that Cpath,↓z(α, σ, 1) = 0.

The spin-contrasts for the Z-filtered intensities are more complicated as the values of α
which obtain the minimum for the detector intensities are in general functions of φ, ε and
σ. For the spin-up Z-filter we have

CS(↑z)(φ, σ, ε) =
ε+ (1 + ε)CS(φ, σ) + CS(φ, σ)2

2 + ε+ (1 + ε)CS(φ, σ)− CS(φ, σ)2
. (7.27)

For the spin-down Z-filter, in the range of 1
3
≤ ε ≤ 1, we have

CS(↓z)(φ, σ, ε) =
ε− (1− ε)CS(φ, σ) + (1−ε)2

4ε
CS(φ, σ)2

2− ε+ (1− ε)CS(φ, σ)− (1−ε)2
4ε

CS(φ, σ)2
.

(7.28)

For the specific case of unpolarized neutrons (ε = 0) we have

CS(↑z)(φ, σ, 0) = CS(↓z)(φ, σ, 0) = CS(φ, σ) (7.29)
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and in the case of perfect polarization (ε = 1) we find that for spin-down Z-filtering we
have perfect spin-contrast:

CS(↓z)(φ, σ, 1) = 1 (7.30)

In the case of strong noise the Z-filtered spin-contrast expressions reduce to

CS(↑z)(φ,∞, ε) =
ε

2 + ε
(7.31)

CS(↓z)(φ,∞, ε) =
ε

2− ε. (7.32)

and depend only on the initial polarization ε of the neutron beam. In practice strong noise
amounts to σ ≥ 2π.

7.3.3 Interpretation of Spin-Post Selection Experiments

We now discuss the significance of previously calculated path-constrast and spin-contrast
values for the noisy 3-blade neutron interferometer. In the absence of spin-filtering, while
both the path-contrast and spin-contrast of the ideal 3-blade NI go to zero as the noise
strength σ increases, as shown in Fig. 7.2, there is a non-zero quantum discord D(A|B)
between the spin and path subsystems. This implies that if we implement a measurement
on the spin system the output intensities of the path system must be affected. By using
a spin-filter we are able to post-select on an outcome arbitrary PVM on the spin neutron
system, however to observe the influence of the spin-filter we are restricted by only being
able to measure the path subsystem in the |0〉, |1〉 basis due to the inability to change the
final blade of the NI. Hence when restricted to a single measurement basis this influence
may not be observable for all spin post-selected states.

No spin post-selection

In the absence of spin-filtering we found that the path-contrast for the noisy neutron
interferometer as given in Eq. (7.13), dependent only on the noise strength σ and the
angle of controlled spin-rotation α. In the absence of noise, as we increase the angle of
spin-rotation up to a α = π the measured contrast reduces to zero. At α = π the spin and
path subsystems are maximally entangled, as shown by an EOF of 1 in Fig. 7.2. By not
measuring the spin subsystem we are performing a partial trace over this subsystem which,
in the case of a maximally entangled state, results in a maximally mixed reduced state of
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the path subsystem, and hence zero contrast. This may be interpreted as having performed
a which-way measurement of the path taken by the neutron through the interferometer.
The neutrons passing the spin-filter are marked to have spin-down, while the neutrons
which don’t go through the arm with the spin-rotator will all have spin-up. By tuning
0 < α < π we may control the strength of this which-way marking of the neutrons. For α
close to 0 it becomes a weak which-way marking of the path taken by the neutrons through
the interferometer, and hence we still retain some contrast.

In the case of spin-contrast, as given in Eq. (7.14), we have the same situation but with
the roles of the rotation angle α and phase-flag φ reversed. In this case we are doing a
spin-based magnetic interference experiment, and the relative phase between paths now
performs the which-way marking of the neutron. In both cases the presence of noise reduces
the value of contrast, until it is approximately zero at σ = 2π. This would suggest that the
random phase noise destroys all relative phase information, and hence coherence, between
the two paths in the interferometer. However due to the non-zero discord between the path
and spin of the neutron we may attempt to recover some information by spin-measurements.

X-filter spin post-selection

In the case of X-filtering we found that both the path-contrast and spin-contrast when
spin-filtering on the |↑ x〉 or |↓ x〉 spin-states dependend only on the strength σ of the
random-phase noise, as shown in Eq. (7.22). This is because the X-filter post-selection
acts to combine the parameters α and φ into a single relative phase parameter φ + α/2
between the two NI paths which is observed at the detector. For path-contrast the spin
rotation angle only shows up as a shift of the contrast curves without changing the actual
contrast value. In effect the X-filter has erased the which-way marking of the neutrons in
the NI due to the controlled spin-rotation angle. Similarly, for the spin-contrast the roles of
φ and α are swapped with the spin-filter now erasing all effect of the phase-flag parameter
on the output intensities. This is analogous to a quantum eraser in optics [SD82]. By post-
selecting on the neutron spin in the x-direction we have erased the which-way measurement
caused by entanglement between the spin and path neutron subsystems. However, as the
noise strength increases the spin-filtered spin and path contrasts both reduce to zero and
become indistinguishable form the unfiltered contrast.

Z-filter spin post-selection

When implementing a Z-filter post-selection we calculated quite different values for the
spin-contrast and path-contrast. In the case where we post-select on the |↑〉 spin-state,
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the path-contrast in Eq. (7.24) is maximized for a perfectly polarized input (ε = 1), as
we are in effect filtering out only the portion of neutrons rotated away from |↑〉 by the
spin-rotator. In this sense, much like the non-post-selected case, the angle of rotation
controls the strength of the which-way measurement. If instead we filter on |↓〉 as given by
Eq. (7.25), then we find the contrast is zero for ε = 1. This is because in this case we are
post-selecting only on the spins that were rotated, and hence we are performing a perfect
which-may measurement of the path taken by the neutrons and cannot have any path
based interference effects . If the incoming beam is not perfectly polarized our which-way
measurement is effectively noisy and we will have a fraction of unrotated neutrons which
still have spin-down polarization. In this case, as with the |↑〉 filter, the angle of rotation
α controls the relative strength of the which-way measurement.

For the spin-filtered spin-contrast we find that with perfect polarization the spin-filtered
contrast with spin-down post selection is always 1. However with ε < 1 the value of
contrast will depend on the phase-flag φ, which acts as the which-way marking. As with
the unfiltered case it will be maximum for φ = 0, and zero at φ = π/2.

As the noise strength increases, the dependence of φ is removed as we are decohering
the relative phase information between paths. Hence the noise is erasing the which-way
marking due to the phase-flag on the spin-contrast. In the strong noise case we find that
the spin-contrast depends only on the initial polarization ε. If ε = 1 we are filtering out
all spins that are not rotated to |↓〉, so our measured intensity is a function of the rotation
angle. In the ε < 1 case, we are effectively introducing spin noise into the system as there
will now be (1 − ε)/2 portion of neutrons with spin-down in the non-rotated path, thus
reducing the spin-contrast. For the spin-up filter we have a similar situation, however
the contrast is no longer unity for ε = 1 unless φ = 0 and σ = 0. In this case we are
filtering out the percentage of neutrons rotated to spin-down by the spin-rotator, rather
than post-selecting on them.

It has been suggested this setup might be used to demonstrate the so-called quantum
cheshire cat paradox [APRS13]. This paradox is to weakly perform two measurements
of the path a neutron takes through the interferometer simultaneously. One that is spin-
based and determines that the neutron spin goes down one arm of the interferometer, and
another that is not spin-based and determines that the neutron itself went down the other
interferometer arm. By doing the which-way marking with a spin-filter we may measure
which path the neutron spin went down by a spin based measurement. By varying α we
may control the strength of this measurement. To complete the experiment would require
implementing a second weak measurement simultaneously to suggest that the neutron
itself was observed to go down a different path to its spin degree of freedom. This has been
suggested to be implemented in a NI by using a partial absorber in the interferometer path
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without the spin rotator [DGS+14], however the reported experiment did not implemented
both the spin based, and absorption based measurements simultaneously.

7.3.4 Experimental Demonstration

Some of the theoretical results from Section 7.2.2 were demonstrated experimentally by
collaborators M.O. Abutaleb, M.G. Huber and D.A. Pushin at the National Institute of
Standard and Technology (NIST) [WAH+14]. However, temperature variations caused by
the method of implementing the spin-rotator resulted in a phase drift which increases the
effective strength of the phase noise in our NI. Hence while we can calculate path-contrast
in the absence of spin-rotation, for the spin-contrast experiments the spin-rotator acts to
increase the apparent phase noise so that e−σ

2/2 ≈ 0. With the increase in phase noise
the spin-contrast with no spin-filtering, and with X-filtering is expected to be approxi-
mately zero. We may only observe the Z-filtered contrast which in the strong noise case
only depends on the neutron polarization. This Z-filter post-selection demonstrates the
disturbance of the path state of the neutrons by measurement of the neutron spin in the
presence of strong noise, as indicated by the non-zero QD as shown in Fig. 7.2.

We compared the contrast and spin-filtered contrasts after post-selecting on spin-down
neutrons, quantized in a static magnetic field in the z-direction, for three NIs using the
setup shown in Fig. 7.1. The experiment was performed at the NIST Center for Neutron
Research’s Neutron Optics and Interferometer Facility, located at Gaithersburg, Mary-
land [PHA+15, NIS15]. This facility has an excellent vibration isolation and temperature
stability thus allows for a good and long phase stability [PAHC08].

Our neutron beam consisted of 0.271nm wavelength neutrons, and the incident neutron
beam was polarized via a transmission mode supermirror polarizer [APH+12] giving an
initial polarization of 93% spin-up. The path-selective spin rotation was implemented using
thin permalloy films deposited on Si substrate [Pyn05]. Spin-filters were implemented using
either Heusler crystals or reflection-mode curved supermirrors. These were preceded by an
adiabatic coil used to rotate the neutron spin so that spin-up neutrons were absorbed, and
spin-down neutrons were transmitted. During this experimental work we have used two
LLL type NI with different initial contrasts: “good” and “bad”, which we refer to as N1

and N2 respectively. To compare spin-contrast with a very low contrast NI under the same
environmental conditions we used the good NI and introduced a large destructive phase
gradient by adding a 45 degree fused silica wedge in one interferometer path [PCA+07].
We refer to the good NI with the wedge as N3.

The measured contrast curves in the absence of spin-filtering for the three NIs is shown
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Figure 7.3: Measured intensity curves at detector D0 as a function of phase-flag rotation
for three NIs. The corresponding path-contrast values are CP1 = (82.5 ± 1.3)%, CP2 =
(23± 1.5)%, CP3 = (2± 1.7)% for interferometers N1, N2, N3 respectively.

in Fig. 7.3, these correspond to contrast values of CP1 = (82.5±1.3)%, CP2 = (23±1.5)%,
CP3 = (2±1.7)% for the interferometers N1, N2 and N3 respectively. These contrast values
correspond to standard deviations of σ1 = 0.62± 0.03, σ2 = 1.71± 0.04, σ3 = 2.80± 0.61
respectively in the noise model under consideration.

After applying the spin-down filter, the spin-filtered contrasts were found to be CS1(↓z) =
(78.0 ± 3)%, CS2(↓z) = (74.2 ± 2.2)%, CS3(↓z) = (84 ± 4)%, as shown in Fig. 7.4. Our
theoretical model with an initial neutron spin polarization of (1 + ε)/2 = 93% predicts a
spin-contrast of 75.3% for all three interferometers.

7.4 Summary

We have theoretically and experimentally investigated the role of quantum correlations in a
simple bipartite quantum system in the presence of noise by using the spin and path degrees
of freedom of a polarized neutron beam in a neutron interferometer. If we initially entangle
the the path and spin degrees of freedom of a neutron beam by a path dependent spin-
rotation, we found that that phase noise acts to reduce the amount of entanglement to zero
as the noise strength increases. However a non-zero value of quantum discordD(A|B) for all
noise strengths indicates that there are still non-classical correlations between the neutrons
spin and path degrees of freedom. The non-zero QD indicates that spin-measurements will
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Figure 7.4: Measured intensity curves at detector D0 as a function of spin-rotation for three
NIs where we have applied a spin-filter on the output beam to select spin-down neutrons
with respect to a static magnetic field in the z-direction. The corresponding spin-filtered
contrast values are CS1(↓z) = (78.0± 3)%, CS2(↓z) = (74.2± 2.2)%, CS3(↓z) = (84± 4)% for
interferometers N1, N2, N3 respectively.

have an influence on the quantum state of the neutron path subsystem, however due to the
experimental limitations we are only able to perform measurements of the path subsystem
in the basis corresponding to the beam paths as implemented by the physical neutron
detectors. Restricted to this measurement basis, we are not able to see a noticeable effect
for all projective measurements in the strong noise limit.

In the low noise case our analysis showed that we may think of the spin-path NI as a
quantum eraser. In the absence of spin-filtering by rotating the spin state of a neutron
in only one path of the interferometer we are labelling the neutrons which take this path
and performing a which-way measurement of the neutron’s path though the interferometer.
This results in a loss of contrast proportional to the entanglement of the path and neutrons.
By implementing a post-selected spin measurement in the x-direction we may erase this
labelling data and restore contrast. This also held true for the spin-contrast, but with the
roles of the phase flag and controlled spin rotation angle interchanged. However in the
strong noise case, the X-filtered path and spin contrast both reduce to zero and so are
not observably different from the non-spin-filtered contrast. Thus the effect of x-basis spin
measurements measurements on the path subsystem state are not directly observable in
the NI in the presence of strong dephasing noise.

In the case of spin-contrast with post-selected spin measurement in the z-direction, the
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contrast remains a function of the spin rotation angle but removes the effect of the phase
noise. In the high noise case the expression for spin-contrast when we perform a Z-filter
and post-select on the spin down state is a function of spin polarization only. Hence even
in the high noise case we are able to experimentally observe the effect of spin-filtering on
the path subsystem. Our experimental results agree with our theoretical model predicting
an increase in spin-filtered contrast over phase contrast for three NIs when spin-filtering
has been performed on the Spin-down state in the z-direction. The deviations between
our measured spin-filtered contrast the value predicted by our theoretical model are con-
sistent with phase variations over the acquisition time due to temperature and humidity
fluctuations in the NI environment. We interpreted this non-zero quantum discord as a
signature that even in the presence of strong phase noise, the NI still exhibits genuine
quantum behaviour.
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Chapter 8

Conclusion

In this thesis we have made several contributions to the field of open quantum systems
theory. The graphical calculus and techniques we have developed provide an intuitive and
pedagogical means of representing and unifying the transformations between the different
representations of CP-maps, and as we demonstrated numerous times provided an elegant
tool for developing new proofs, and constructions by the manipulation of the correspond-
ing tensor networks. The culmination of this line of research was the development of the
superchannel formalism which allows for the operational description of a strictly greater
set of dynamics than standard quantum channels. This was demonstrated by the IC super-
channel which allows for the complete characterization of an open quantum system which
is initially correlated with its environment. This is an important example to consider as
such a situation is one of the simplest examples of a non-Markovian environment — the
initial correlations can be thought of as the result of a memory effect between the environ-
ment and system from some previous evolution or computation. Non-Markovian effects are
becoming more and more important in current quantum devices which are able to achieve
strong coupling between the system and control elements, however most previous work
on non-Markovian quantum systems has been focused on the the underlying master equa-
tions describing the interaction, and previously presented measures of non-Markovianity
are difficult to measure experimentally and do not always have a clear operational interpre-
tation. The work presented here thus provides an important first step in the operational
characterization of general non-Markovian dynamics.

The work presented on the initialization of an ensemble quantum system in a high
purity state via means of cavity cooling with a high-Q resonator is a an important tool for
state initialization in ensemble spin based quantum processors. Ensemble spin systems are
a natural candidate for long life-time quantum memories in hybrid quantum architectures.
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However this long-life time also prevents the rapid reset of spins via thermal relaxation
processes, and thus cooling protocols that can short-circuit the thermal relaxation process
become necessary. The side-band cavity cooling protocol we presented in principle allows
for the gated on-demand reset of an ensemble spin system by selectively tuning the spins
on resonance with the sideband of a high-Q single mode cavity. In addition as quantum
systems begin to scale from 10s to 100s of qubits, the parallel removal of entropy via
collective dynamics becomes critical as independently controlling and addressing each spin
becomes a significant challenge. Thus the work presented here provides an important tool
for state initialization in a large scale spin based quantum architecture.

Finally the work presented on quantum correlations in neutron interferometery showed
that even in the presence of phase noise on the path degree of freedom, we can still observe
quantum effects by coupling to the spin degree of freedom. By including a spin-filter on the
output beam of the interferometer we were able to relate this to which-way interferometery
measurements and to the quantum eraser. Our discussion of spin-contrast, which was found
to be robust under phase noise, may be useful for developing neutron interferometer based
characterization methods for magnetic materials.
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pletely positive maps: Some properties and applications. Phys. Rev. A,
77:042113, 2008. arXiv:quant-ph/0512167, doi:10.1103/PhysRevA.77.
042113.

[DCEL09] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact and approximate
unitary 2-designs and their application to fidelity estimation. Phys. Rev.
A, 80:012304, 2009. doi:10.1103/PhysRevA.80.012304.

[DGS+14] T. Denkmayr, H. Geppert, S. Sponar, H. Lemmel, A. Matzkin, J. Tollaksen,
and Y. Hasegawa. Observation of a quantum cheshire cat in a matter-
wave interferometer experiment. Nature communications, 5, 2014. arXiv:
1312.3775, doi:10.1038/ncomms5492.

254

http://arxiv.org/abs/0906.1877
http://dx.doi.org/10.1016/j.aim.2010.08.002
http://dx.doi.org/10.1016/j.aim.2010.08.002
http://dx.doi.org/10.1103/PhysRevLett.63.380
http://dx.doi.org/10.1103/PhysRevLett.63.380
http://dx.doi.org/10.1103/PhysRevLett.34.1472
http://arxiv.org/abs/0904.1997
http://arxiv.org/abs/math/0511253
http://dx.doi.org/10.1007/s00220-006-1554-3
http://dx.doi.org/10.1007/s00220-006-1554-3
http://arxiv.org/abs/1102.2368
http://dx.doi.org/10.1007/s11229-011-9917-5
http://dx.doi.org/10.1007/s11229-011-9917-5
http://arxiv.org/abs/quant-ph/0512167
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.80.012304
http://arxiv.org/abs/1312.3775
http://arxiv.org/abs/1312.3775
http://dx.doi.org/10.1038/ncomms5492


[Dic54] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev.,
93:99–110, Jan 1954. doi:10.1103/PhysRev.93.99.

[DL15] J. M. Dominy and D. A. Lidar. Beyond complete positivity. ArXiv e-prints,
arXiv:1503.05342 [quant-ph], 2015. arXiv:1503.05342.

[DLP01] G. M. D’Ariano and P. Lo Presti. Quantum tomography for measuring
experimentally the matrix elements of an arbitrary quantum operation.
Phys. Rev. Lett., 86:4195, 2001. arXiv:quant-ph/0012071, doi:10.1103/
PhysRevLett.86.4195.

[DLP03] G. M. D’Ariano and P. Lo Presti. Imprinting complete information about
a quantum channel on its output state. Phys. Rev. Lett., 91:047902, 2003.
arXiv:quant-ph/0211133, doi:10.1103/PhysRevLett.91.047902.

[DMP00] G.M. D’Ariano, L. Maccone, and M.G.A. Paris. Orthogonality relations
in quantum tomography. Physics Letters A, 276(1-4):25–30, 2000. arXiv:
quant-ph/0005111, doi:10.1016/S0375-9601(00)00660-5.

[DN02] J. L. Dodd and M. A. Nielsen. Simple operational interpretation of the
fidelity of mixed states. Phys. Rev. A, 66:044301, 2002. doi:10.1103/

PhysRevA.66.044301.

[DPF+11] I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves.
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[GCM+12] J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin,
J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen,
and M. Steffen. Characterization of addressability by simultaneous random-
ized benchmarking. Phys. Rev. Lett., 109:240504, 2012. arXiv:1204.6308,
doi:10.1103/PhysRevLett.109.240504.

[GEB99] R. Ghose, T. R. Eykyn, and G. Bodenhausen. Average liouvillian the-
ory revisited: cross-correlated relaxation between chemical shift anisotropy
and dipolar couplings in the rotating frame in nuclear magnetic res-
onance. Molecular Physics, 96(8):1281–1288, 1999. doi:10.1080/

00268979909483072.

257

http://arxiv.org/abs/quant-ph/9712042
http://dx.doi.org/10.1109/18.761271
http://dx.doi.org/10.1109/18.761271
http://arxiv.org/abs/quant-ph/0611002
http://dx.doi.org/10.1063/1.2716992
http://dx.doi.org/10.1098/rsta.2010.0333
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://arxiv.org/abs/1108.2699
http://dx.doi.org/10.1103/PhysRevLett.107.180402
http://cvxr.com/cvx
http://arxiv.org/abs/1204.6308
http://dx.doi.org/10.1103/PhysRevLett.109.240504
http://dx.doi.org/10.1080/00268979909483072
http://dx.doi.org/10.1080/00268979909483072


[GFC15] C. Granade, C. Ferrie, and D. G. Cory. Accelerated randomized bench-
marking. New Journal of Physics, 17(1):013042, 2015. arXiv:1404.5275,
doi:10.1088/1367-2630/17/1/013042.

[GFWC12] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory. Robust on-
line hamiltonian learning. New Journal of Physics, 14(10):103013, 2012.
arXiv:1207.1655, doi:10.1088/1367-2630/14/10/103013.

[GGZ11] F. Galve, G. L. Giorgi, and R. Zambrini. Orthogonal measurements are
almost sufficient for quantum discord of two qubits. EPL, 96:40005, 2011.
arXiv:1107.2005, doi:10.1209/0295-5075/96/40005.

[Gho00] R. Ghose. Average liouvillian theory in nuclear magnetic resonance—
principles, properties, and applications. Concepts in Magnetic Resonance,
12(3):152–172, 2000. doi:10.1002/(SICI)1099-0534(2000)12:3<152::

AID-CMR4>3.0.CO;2-P.

[GLN05] A. Gilchrist, N. K. Langford, and M. A. Nielsen. Distance measures to
compare real and ideal quantum processes. Phys. Rev. A, 71:062310, 2005.
arXiv:quant-ph/0408063, doi:10.1103/PhysRevA.71.062310.

[GLP+13] K. Geerlings, Z. Leghtas, I.M. Pop, S. Shankar, L. Frunzio, R.J. Schoelkopf,
M. Mirrahimi, and M.H. Devoret. Demonstrating a driven reset protocol
for a superconducting qubit. Phys. Rev. Lett., 110:120501, 2013. arXiv:

1211.0491, doi:10.1103/PhysRevLett.110.120501.

[GPR+14] P. Gumann, O. Patange, C. Ramanathan, H. Haas, O. Moussa, M. L. W.
Thewalt, H. Riemann, N. V. Abrosimov, P. Becker, H-J. Pohl, K. M.
Itoh, and D. G. Cory. Inductive measurement of optically hyperpo-
larized phosphorous donor nuclei in an isotopically enriched silicon-28
crystal. Phys. Rev. Lett., 113:267604, 2014. arXiv:1407.5352, doi:

10.1103/PhysRevLett.113.267604.

[GRP+13] M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner, H-P. Breuer,
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Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet. Hy-
brid quantum circuit with a superconducting qubit coupled to a spin

260

http://dx.doi.org/10.1103/PhysRev.175.453
http://dx.doi.org/10.1103/PhysRev.175.453
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://arxiv.org/abs/1102.0948
http://dx.doi.org/10.1088/1751-8113/44/49/495303
http://arxiv.org/abs/quant-ph/0103121
http://arxiv.org/abs/quant-ph/0103121
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://arxiv.org/abs/0711.3636
http://dx.doi.org/10.1063/1.1724221
http://dx.doi.org/10.1063/1.1724221
http://link.aps.org/doi/10.1103/PhysRevA.70.052110
http://dx.doi.org/10.1103/PhysRevA.70.052110
http://arxiv.org/abs/1306.2348
http://dx.doi.org/10.1103/PhysRevX.4.011050
http://dx.doi.org/10.1103/PhysRevX.4.011050


ensemble. Phys. Rev. Lett., 107:220501, Nov 2011. arXiv:1110.2978,
doi:10.1103/PhysRevLett.107.220501.

[Kit97] A. Y. Kitaev. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, 52(6):1191–1249, 1997.

[KL80] G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories.
J. Pure Appl. Algebra, 19:193, 1980.

[KL98] E. Knill and R. Laflamme. Power of one bit of quantum information.
Phys. Rev. Lett., 81:5672, 1998. arXiv:quant-ph/9802037, doi:10.1103/
PhysRevLett.81.5672.

[KLM01] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum
computation with linear optics. Nature, 409(6816):46–52, 2001. doi:10.

1038/35051009.

[KMRRS07] A.-M. Kuah, K. Modi, C. A. Rodŕıguez-Rosario, and E. C. G. Sudarshan.
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[ŠB01] P Štelmachovič and V Bužek. Dynamics of open quantum systems initially
entangled with environment: Beyond the kraus representation. Phys. Rev.
A, 64:062106, 2001. arXiv:quant-ph/0108136, doi:10.1103/PhysRevA.
64.062106.

[SBC+11] A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M. G. A. Paris. Exper-
imental investigation of initial system-environment correlations via trace-
distance evolution. Phys. Rev. A, 84(3):032112, 2011. arXiv:1105.0174,
doi:10.1103/PhysRevA.84.032112.

[SBR+83] J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger.
Direct observation of fermion spin superposition by neutron interferometry.
Phys. Rev. A, 27, 1983. doi:10.1103/PhysRevA.27.2523.

[Sch96] B. Schumacher. Sending entanglement through noisy quantum channels.
Phys. Rev. A, 54:2614, 1996. arXiv:quant-ph/9604023, doi:10.1103/

PhysRevA.54.2614.

[SD82] Marlan O. Scully and Kai Drühl. Quantum eraser: A proposed pho-
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