
Integrating Security Mechanisms
in Hard Real-Time Systems

by

Neda Paryab

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Neda Paryab 2015

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The work presented in this thesis is partially based upon and extends the work presented in
the following published paper:

[36]: Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin Mohan, and
Rakesh B. Bobba. ”A generalized model for preventing information leakage in hard real-time
systems.” In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015
IEEE, pp. 271-282.

Due to the relation with the published work, parts of this thesis contain significant material
from [36], including Chapters 3-5 and Sections 2.2 and 8.1.

We would like to thank all the co-authors for their precious help in completing this research.
In particular, we would like to thank Sibin Mohan and Rakesh B. Bobba for their work on the
security model, Stanley Bak for contributing the exact FT bound and its implementation, Man-Ki
Yoon for implementing the graph FT bound, and Rodolfo Pellizzoni for his help on the schedu-
lability analysis.

iii

Abstract

Traditionally Real-Time Systems (RTSs) and security have been considered as separate do-
mains. This is mostly because traditional systems employed isolated customized components,
while modern systems tend to be highly interconnected and rely on open components and pro-
tocols. A wave of recent attacks on real-time systems have forced both practitioners and re-
searchers to consider security as an essential system requirement. To propose a first step towards
integrating security mechanisms in real-time systems, we focus on the problem of information
leakage through shared physical resources such as cache memory. Regular security mechanisms
tend to be computationally intensive, and using them as a separate protection component in hard
RTSs can affect the schedulability of the system. Hence, in this work we propose two mecha-
nisms to prevent information leakage, analyze their impact on task schedulability and study how
to optimize the system configuration to minimize overhead. A new generalized security model
is introduced to model the relevant security requirements. We implemented all proposed tech-
niques on an available real-time operating systems, and evaluated their performance based on
both a realistic case study of a UAV system as well as synthetic applications.

iv

Acknowledgements

I would like that thank all my co-authors who provided insight and expertise that greatly
assisted this research; this work could not have been completed without their help.

I would like to deeply thank my supervisor, Prof. Pellizzoni, for the patient guidance, en-
couragement and advice he has provided throughout my time as his student. I have been ex-
tremely lucky to have a supervisor who cared so much about my work, and who responded to
my questions so promptly. I would also like to thank all the members of Real-Time Systems
Lab, Jean-Christophe, Thomas, Yassir, and Peiyi who helped my technical issues. In particular I
would like to thank Summit, the Lab Manager, who gave me effective suggestions.

I must express my gratitude to my mother and father who experienced all of the ups and
downs of my research, and my very special and speechless thanks to my only sister, Nasim,
who was always beside me in all circumstances and push me through finding the best positive
experience out of them.

v

Dedication

This is dedicated to my beloved Parents, Nasrin and Khalil.

vi

Table of Contents

List of Tables x

List of Figures xi

List of Algorithms xiv

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 2

1.3 Thesis Organization . 3

2 Background and Literature Review 4

2.1 Background . 4

2.1.1 Security Problem . 5

2.1.2 FreeRTOS . 7

2.1.3 Genetic Algorithm . 10

2.2 Related Work . 13

2.2.1 Security and Real-Time Task Scheduling 14

3 Security Model 15

3.1 Case Study . 16

vii

4 Security Mechanisms 19

4.1 Task Model . 20

4.2 Resource Flushing . 20

4.2.1 Impact on Scheduling . 21

4.3 Resource Partitioning . 22

5 Schedulability Analysis 25

5.1 Exact FT Bound . 27

5.2 Approximated FT Bound . 29

5.3 Optimal Preemptivity Assignment . 38

6 Partition Assignment 42

6.1 Heuristic Scheme . 42

6.2 Genetic Algorithm . 43

6.3 Greedy Local Optimizer . 44

6.4 Crossover Operator . 46

6.5 Mutation Operator . 46

7 Implementation 48

7.1 Hardware Components . 49

7.2 Software Components . 50

7.3 Kernel Support . 51

8 Evaluation 53

8.1 Cache Flushing Approach . 53

8.1.1 Avionics Case Study . 53

8.1.2 Synthetic Results . 54

8.2 Cache Partitioning Approach . 58

8.2.1 Cache-Aware Worst-Case Execution Time 58

8.2.2 Synthetic Results . 63

viii

9 Conclusions 69

References 71

ix

List of Tables

3.1 noleak relations of the case study . 18

4.1 Example Task Set and “no-leak” Relationships Between Tasks 21

5.1 Example task set: FT bounds . 34

5.2 Example non-tight task set: noleak relation. Tasks indexed in inverse priority
order; τ5: task under analysis. Ij = 1 for all tasks in hep5. τ3 is the only
preemptive task. 37

7.1 case study timing parameters . 51

8.1 Demonstrator: Preemptivity Assignment . 54

8.2 Demonstrator: Schedulability Results . 54

8.3 Experimental Parameters. 55

8.4 Parameters of simulated tasks . 60

8.5 Benchmarks Experimental Data . 61

8.6 Benchmarks Experimentations for Memory Traces 62

8.7 Experimental Parameters. 63

x

List of Figures

2.1 Cover channel types. 6

2.2 FreeRTOS code layers. 7

2.3 FreeRTOS task TCB components. 9

2.4 FreeRTOS task states. 10

2.5 FreeRTOS′s Ready queue functionalities. 11

2.6 Overview of Genetic algorithm. 12

2.7 An example of single point crossover operator. 13

2.8 An example of mutation operator. 13

3.1 Demonstrator Overview . 16

4.1 Example task set: worst-case schedule. Vertical bars represent FTs. Numbers
represent job indexes (i.e., τ3 executes a single job in the busy interval). 22

4.2 Example task set: preemptive worst-case schedule. 22

4.3 Example task set: non-preemptive worst-case schedule. 23

5.1 Flow Graph Intuition: Context-Switch at Job End. One unit of flow is exchanged
between a job that finishes (END) and one that starts (ST) executing. Note any
priority relationship is valid since a higher priority task τj could arrive at the
same time τk finishes (right side of figure). 29

5.2 Flow Graph Intuition: Context-Switch at Preemption and Resumption. One unit
of flow is exchanged between a preempted job (PR) of task τk and a starting job
(ST) of higher priority task τj . In this example, when the job of τj ends (END),
execution is returned to τk (RE). 30

xi

5.3 Vertex Group: Preemptive task τj ∈ hpi . 32

5.4 Vertex Group: Preemptive task under analysis τi. The sink consumes F = 1
units of flow. 32

5.5 Vertex Group: Non-preemptive task τj ∈ hpi 33

5.6 Vertex Group: Non-preemptive task under analysis τi. The sink consumes F = 1
units of flow. 33

5.7 Example task set: flow graph. Where not explicitly labeled, an edge has u = +∞
and f̃ = f̄ = 0. Solid edges and dotted edges have cost a = 0. For dashed edges,
a = −1. 35

5.8 Example non-tight task set: invalid schedule implied by the FT Graph. 38

5.9 Example non-tight task set: valid worst-case schedule. 39

6.1 Overview of heuristic based GA algorithm. 43

7.1 Hexacopter Components . 50

8.1 Flush Task Bounds as calculated by the SMT solver, the Graph-based Analysis
and the Trivial Analysis . 56

8.2 Schedulability of Task Sets: Graph-based Bounds vs. Trivial Bounds [FT Over-
heads = 5, noleak = 10%] . 57

8.3 Schedulability of Task Sets: Graph-based Bounds vs. Trivial Bounds [FT Over-
heads = 1, noleak = 50%] . 58

8.4 Schedulability of Task Sets: Graph-based Bounds vs. Trivial Bounds [FT Over-
heads = 5, noleak = 20%] . 59

8.5 Preemptivity Assignments [Optimal vs. All Non-Preemptive vs. All Preemptive
vs. Random] . 60

8.6 Anagram Benchmark task partitioning. 61

8.7 H264DEC Benchmark task partitioning. 62

8.8 Synthetic Cache Partitioning Results. CFT=0.025 ms , NoLeak=10% 64

8.9 Timing vs. Schedulability. CFT=0.025 ms , NoLeak=50% 65

8.10 Synthetic Cache Partitioning Results. CFT=0.025 ms , NoLeak=50% 66

xii

8.11 Synthetic Cache Partitioning Results. CFT=0.025 ms , NoLeak=80% 66

8.12 Synthetic Cache Partitioning Results. CFT=0.062 ms , NoLeak=10% 67

8.13 Synthetic Cache Partitioning Results. CFT=0.062 ms , NoLeak=50% 67

8.14 Synthetic Cache Partitioning Results. CFT=0.062 ms , NoLeak=80% 68

xiii

List of Algorithms

1 Preemptivity Assignment . 40
2 Cache Partitioning GA . 44
3 Greedy Local Optimizer . 45
4 RankPartition . 45
5 Crossover Operator . 46
6 Mutation Operator . 47

xiv

Chapter 1

Introduction

In the past, security was not considered a major concern in real-time embedded systems. The
necessity of security in real-time systems was not recognized mainly because, until recently, real-
time systems employed customized system components and were physically isolated from one
another. On the other hand, new systems often rely on commercial off-the-shelf (COTS) compo-
nents and are highly interconnected with each other, possibly through unsecured networks such
as the Internet. Moreover, attackers are increasing in sophistication and are able to bridge air gaps
in industrial control systems [18], perform malicious code injection into the telematics units of
modern automobiles [15, 27], and demonstrate potential vulnerabilities in avionics systems [45]
and attacks on UAVs [39].

Given the additional constraints on the operation of real-time systems, vulnerabilities and
the impact of exploiting them differ from those of traditional enterprise systems. A successful
attack could destabilize the system resulting in harm to humans, the environment and/or the
system. Attacks could range from the leakage of critical data [41] to hostile actions such as an
adversary taking control of the system, say due to the lack of authentication [15, 27, 45]. Many
of the aforementioned attacks succeeded because such systems were not designed with security
in mind. Hence, we argue that security requirements should be planned in the design phase of
real-time systems.

One advantage of considering real-time and security requirements together at a system-level
is to end up with extended flexibility and adaptability to add a new subsystem. But the discussed
advantage might come with a significant cost. In fact, security mechanisms, such as encryption
algorithms, are often computationally intensive, and adding them to an existing real-time system
might compromise the ability of the system to meet its timing requirements (task deadline). In
this sense, the real-time task scheduler has a crucial role to coordinate shared resources between

1

various components of the system and also has the significant goal to guarantee that timing
constraints and other real-time requirements are safely met. Hence, security mechanisms should
be integrated with the real-time scheduler to guarantee that the system remains safe.

1.1 Problem Statement

Given the significant need for protecting real-time embedded systems against security vulner-
abilities, this thesis provides a first step towards integrating security mechanisms in real-time
scheduling by looking at a specific problem: avoiding information leakage through shared phys-
ical resources such as cache memory. It is fairly well understood that the use of shared re-
sources can lead to information leakage without the need for explicit communication between
tasks [26, 37, 53]. A new general security model is introduced to model the corresponding se-
curity requirements between tasks. Our research targets hard real-time tasks, where missing
deadlines is not acceptable, since it can lead to catastrophic effects. Hence, the focus is on
mechanisms that can be proven safe through schedulability analysis.

1.2 Contributions

In particular, we discuss two timing-analyzable mechanisms for preventing information leakage:
flushing the state of the resource upon a context switch between protected tasks, and statically
partitioning the resource among tasks. We introduce a model that allows us to combine the two
mechanisms while still deriving predictable bounds on timing interference. Furthermore, we
provide a heuristic optimization framework that allows the designer to trade-off the effects of
the two mechanisms while searching for a near to optimal design. We demonstrate our solution
using extensive simulations based on the case study of a UAV platform.

In more details, this research′s contributions are as follows:

• providing a general security model, which describes confidentiality relations between any pair
of tasks. The relation determines whether a task requires to have confidential protection against
another task;

• introducing two separate mechanisms to protect shared physical resources towards information
leakage, and discussing their effects on real-time task scheduling;

2

• introducing an optimized solution, in terms of overhead for preserving confidentiality, that
determines: (1) the lowest number of resource state resets, and (2) in addition to the previous
item, the best allocation of shared resource partitions to tasks;

• implementing each of the introduced techniques within an existing real-time operating sys-
tems, and demonstrating them with a realistic fully-functional application;

• evaluating the demonstrated techniques in terms of their timing and performance using both
the developed application and a large set of synthetic tasks sets.

1.3 Thesis Organization

Overall structure of the thesis can be described as following, Chapter 2 introduces readers
with backgrounds on the concerned security problem and FreeRTOS real-time kernel, besides
overviewing important related works. Chapter 3 describes the security model.Also, the chapter
introduces the developed case study. Chapter 4 describes two main contributed security mech-
anisms to reduce the potential for security attacks to happen, as well as studying the impact of
integrating those mechanisms with real-time task scheduler. Chapter 5 details the scheduling
analysis beneath the experimentations and implementation. Chapter 6 describes the heuristic to
finding optimized solutions for resource allocation. Chapter 7 comprehensively describes the im-
plemented platform by introducing its components, and modifications on FreeRTOS task sched-
uler. Finally, evaluations and experimental results are described in Chapter 8, while Chapter 9
provides concluding remarks and discusses some required complementary efforts.

3

Chapter 2

Background and Literature Review

In this chapter, we introduce readers to relevant backgrounds on underlying concepts used through-
out the thesis. Afterwards, we discuss significant related works in the area of security in real-time
systems, discussing the similarities and differences in our approach.

2.1 Background

In the following three sections, we want to give basic background on: (1) some security problems
in embedded systems, and more specifically on timing channel. In fact, it is worth explaining
what is the applicable scope of our security model, (2) FreeRTOS in terms of its code archi-
tecture and task scheduling functionality. In order to demonstrate the security model within a
case study (details in Chapters 3 and 7), we picked FreeRTOS as our beneath software platform.
Apart from its light-wight kernel code, it gives us freedom to have our modifications in the kernel
codes with the least struggling with dependency of codes on the system calls, etc. Therefore, it
is very necessary to provide basic background on FreeRTOS before explaining how we applied
the security model′s techniques on it (details in Chapter 7) (3) Genetic Algorithm (GA) by intro-
ducing its basic components and terminology, since we have used GA method afterwards to find
a good performance solution. In addition, the terminology of GA will be referred frequently in
the subsequent chapters. Thus it would be more clarifying for the readers to get introduced to
the basic background beforehand.

4

2.1.1 Security Problem

Traditional embedded systems have not recognized security as a required matter. In fact they
were less prone to having potential vulnerabilities because of (a) private protocols, (b) physically
isolated subsystems, (c) executing on dedicated hardware.

Given the next-generation embedded Real-Time Systems (RTSs), using Commercial-Off-
The-Shelf (COTS) technology, they reduce power consumption and are proceeded to be multi-
functional systems. Simultaneously, modern RTSs established complicated vulnerabilities. Some
of the security threats are against confidentiality, integrity and availability, that could be defended
using encryption, message authentication and replication. Arguably, security has been mostly
considered as a separate matter of fact from real-time requirements, resulted in having computa-
tionally intensive security techniques that swiftly reduce RTSs′ limited resources. On the other
hand, the lack of design-time considerations for security issues, initiates RTSs to be unprotected
against emergent and complicated security attacks such as timing channel.

Accordingly, real-time systems are threaten by various attacks, such as leakage of critical
data [41], and lack of authentication [15], [27], [39]. Consequently, there are some documented
examples of specific real-time industrial attacks, such as malicious code injection on modern
automobile systems [15], [27]. In [15], authors expose the vulnerability of external attacks in
contemporary automobiles. After synthesizing their threat model to demonstrate how possibly
I/O channels can be used to convey malicious input, they have assessed the capabilities that can
exploited by an attacker, and insightfully to have secured automotive platforms. Some other
specific attacks exist on avionics systems [39], [45]. For example, [45] practically demonstrated
that an attack on a aircraft can be done remotely, even with having no physical access to the
target aircraft. The authors of [45] have studied an attack formation as a sequence of: discov-
ery, information gathering, exploitation and post-exploitation. In order, discovery phase involves
Automatic Dependent Surveillance-Broadcast (ADS-B), which is used for locating and plotting
targets. Targets can be local data, including Software Defined Radio (SDR) data. Both in-
formation gathering and exploitation are fulfilled via Aircraft Communications Addressing and
Reporting System (ACARS), which is about transmitting digital datalink between aircraft and
ground stations in order to plot targets. The authors overviewed on some examples such as using
vulnerabilities of ACARS to exploit Flight Management System (FMS).

Stuxnet worm is likely the first sophisticated malware attack that targeted some industrial
nuclear embedded process control systems [18]. It exploited security vulnerabilities to get access
to Siemens controllers and download itself, exploiting intimate knowledge of those embedded
systems. By imposing an enormous cost on the victimized industrial system, Stuxnet took the
fundamental message that there is a crucial need for improving security protection in embedded
systems, especially in critical infrastructures.

5

There exists other complicated attacks such as covert timing channel, which is briefly about
having information leakage even without having explicit communications (e.g., [26], [37]).

Since our focus of this research is more about avoiding covert channels, we want to introduce
its basics and classifications in more details. In [41], types of covert channels, illustrated in
Figure 2.1, have been well classified as: non-deducible, positive-deducible, negative-deducible,
and partially-deducible.

Figure 2.1: Cover channel types.

In their context, High and Low identify two real-time tasks from different levels of confiden-
tiality, and as their names might clarify, Low task should not deduce information (with certainty)
from High task. The authors defined X to be a set of all possible available symbols for High task
to be transmitted, and Y be a set of all possible symbols that Low task receives through a noisy
channel.

Let channel={(x, y)|x ∈ X, y ∈ Y } where a noisy channel, for instance, can be defined as:
channel={(x1, y1), (x1, y3), (x2, y2)}, in which an input symbol can be mapped to more than one
output symbol.

Their classified covert channels are briefly explained as follows:

• In a non-deducible noisy channel, Low task receives all the symbols from High task, but after
receiving any symbol from High task, Low task cannot reliably deduce which symbol has been
sent by High task, in other word, here we have an ideal protected channel against the attack;

• In a positive-deducible noisy channel, Low task can definitely say which symbol is sent by
High task. For example, in Figure 2.1 (b), after receiving y3 by Low task, Low can reliably
deduce that x3 has been sent by High task;

• In a negative-deducible noisy channel, Low task can definitely say which symbol has not been
sent by High task. For example, in Figure 2.1 (c), after receiving y3 by Low task, Low can
reliably deduce that x3 has not been sent by High task;

6

• In a partially-deducible noisy channel, the occurrence cannot be classified as any of the other
three types.

According to [41], we can assume that High is a Trojan horse and Low is an adversary. Trojan
horse, while hiding in a computer system, has the intention of obtaining adversary′s information.
The following is a possible scenario of the Trojan and the adversary for a positive-deducible
covert channel; Trojan tries to transmit either of x1, x2 or x4 as the normal mode operation, as
Trojan found information from adversary, it changes its mode to only sends x3, simultaneously,
adversary ignores all the symbols but only y3. By observing received y3 symbols, it collected
classified information from Trojan, and accordingly an instance of positive-deducible channel
has happened.

2.1.2 FreeRTOS

FreeRTOS is a free and open source Real-Time Operating System (RTOS) for embedded sys-
tems. FreeRTOS can be used as a hard real-time operating system with either Preemptive or
Collaborative/non-Preemptive fixed priority scheduler, capable of both Inter-Process Communi-
cation (IPC) and Shared Memory functionalities.

Code Architecture

In abstract, an application relying on FreeRTOS can architecturally consist of separate layers of
codes as llustrated in the Figure 2.2 [1]:

Figure 2.2: FreeRTOS code layers.

7

Hardware independent code, which includes all of the FreeRTOS kernel, ISRs, and user-
defined tasks codes. FreeRTOS has a minimal light-weight kernel consisting of tasks.c, list.c,
queue.c and timers.c with their corresponding header files. ISRs are implemented within FreeR-
TOS kernel codes. As an important example, the system tick the heartbeat of FreeRTOS system,
the tick interrupt frequency is user-configurable by setting the value of configTICK RATE HZ
in the FreeRTOSConfig.h file. In each tick interrupt, vTaskSwitchContext kernel function will
be called- the core functionality of FreeRTOS task scheduler, which initializes pxCurrentTCB
variable with the highest priority ready task [5, 19].

Hardware dependent code provides a Hardware Abstract Layer (HAL) or a port for a specific
integration of compilers (GCC, IAR, Keil, MemMang, etc.) with processor families (ARM7,
ARM Cortex-M3, PICs, x86, etc.). The core functionalities are mostly implemented in the port.c
and partmarco.c. Many official/contributed ports are available as demonstrated demos at the
FreeRTOS website.

Task Scheduling

FreeRTOS as any other typical operating system, manages tasks by their Task Control Blocks
(TCB). The field of each TCB data structure is illustrated in Figure 2.3 [5].

By default, the stack grows decreasingly, then avoiding a stack overflow requires to compare
the top of stack value against the task stack pointer.

Task states within FreeRTOS are switching illustrated in Figure 2.4 [5].

To create a new task, FreeRTOS instantiate a TCB and add it to a Ready list based on the
task′s priority since there exists a dedicated Ready list for each priority levels - multiple Ready
lists equal to the maximum priority. No list exists for running task, in fact the running task
is still in the Ready list, but is recognized using pxCurrentTCB which points to the currently
running task′s TCB. The lists are implemented as the circular double linked list data structure.
The functionality of Ready list is shown in details in Figure 2.5 [1].

Block state happens due to the lack of accessing to a required resource. In FreeRTOS, a
resource means: using a queue, or obtaining semaphore as a specific case of queues. Thus,
writing to a full queue or reading from an empty queue will cause a Block state. However, It can
be chosen to be a Block state or not, since user can choose not having the task blocked by setting
xTicksToWait as 0 (means that blocking time is zero). Otherwise the task will be blocked equal
to tick value defined in xTicksToWait, as long as an event such as freeing up a full queue or filling
in an empty queue did not happen, this type of event is called an external event. In a blocking
scenario, the scheduler will transform the task into Delayed list. A task can also voluntarily be

8

Figure 2.3: FreeRTOS task TCB components.

in Block state waiting for a temporal event. In this case, a task can call vTaskDelay function to
be held in Block state for a period of time, in this scenario, the task itself (not scheduler) puts
itself into Delayed list. The last mentioned mechanism can also be exploited for implementing
a periodic task. As we can see, blocked tasks will be unblocked after a timeout period, within
blocking time, these tasks will not be scheduled. A Delayed task list is used for this purpose.
The scheduler checks for any timeout delayed task at every point of scheduling decision, then
the scheduler will transform unblocked tasks from Delayed list into their corresponding Ready
list. It is important to mention that timeout counter should be as small as 8-bits, to deal with
overflow waking times, the task will be placed in the OverflowDelayedTaskList instead. Then,
at each vTaskIncrementTick execution, if the check for the counter overflow was true, then two
lists of DelayedTaskList and OverflowDelayTaskList will be swapped. In addition, any task
can be suspended if it is running or servicing ISRs. Suspended tasks are not considered for
scheduling decisions and they do not have any timeout periods, and should be explicitly taken
out of Suspended state and put into a Ready state. [19]

9

Figure 2.4: FreeRTOS task states.

2.1.3 Genetic Algorithm

In this research, we developed a linear un-constraint genetic algorithm, combined with a problem
specific heuristic. The purpose is to minimize utilization and maximize schedulability.

Genetic Algorithms (GAs) are stochastic search algorithms to find global optimum solutions
for optimization problems. GAs have underlying bio-inspirational mechanisms based on natural
genetics, and try to find near-to-optimal solution starting from an initial population of chromo-
somes (or individuals), using basic operators called: selection, crossover and mutation. Chromo-
somes are typically binary strings, called bitstrings which evolve through progressive iterations,
called generations. Within each generation, some of the chromosomes will be newly generated,
using GA operators, and then will be evaluated by the fitness function. Finally, after checking
against defined stopping criteria, the algorithm finishes resulting with a binary representation of
the best solution.

An overview on GA development is illustrated in Figure 2.6. Let P(g) be the current popula-
tion and C(g) be offstring chromosomes which are split up to be selected for different operators
or be picked as elites. Then, the computed chromosomes are passed to be evaluated with Fitness
function. At the end of each cycle of GA generation, the new population is tested against stop

10

Figure 2.5: FreeRTOS′s Ready queue functionalities.

criteria that can be, for example, the maximum number of generations. If the stop criteria is
met, then the GA will be finished and the best chromosome is the output; otherwise, the next
generation will be processed.

In the following, we describe some of the GA basics: Population, Crossover and Mutation.
GAs start working with initial population of individuals. In each generation of GA, some of
the individuals will be chosen to feed Crossover and Mutation operators, afterwards, the newly
generated individuals (or offsprings) will be collected to create a modified population. This
process will be repeated until there is no need to work upon a new generation, because the best
solution has already been found, or because the stop criteria is already met.

As mentioned, the individuals in the population are supposed to be evaluated with a fitness
function that the developer has provided. The fitness function evaluates each of the given individ-

11

Figure 2.6: Overview of Genetic algorithm.

uals and will assign a score to each of them, which approximately describes the eligibility of each
solution (individual) in relation with the other found solutions. Selection between individuals are
so dependent on the developer′s strategy, however, it would be generally based on the scores of
each individual. The basic idea is that the qualified individuals are chosen to generate some other
individuals which are expected to approximately be close to the best optimized solution than the
previous individuals.

Different Crossover operators might be defined for different problems. As a simple example,
Figure 2.7 shows two parents with bitstring data type, and the child takes one part of its bitstring
from Parent 1 and the other part from Parent 2, this method is called single point Crossover.

Finally, Mutation operator takes some of the chromosomes or individuals and replaces them
with new individuals. To clarify the functionality, in Figure 2.8, a bitstring type chromosome
will be evaluated for each of its compound bits, and for instance, with a 50% probability will
switch each bit to 0, and 1 otherwise.

12

Figure 2.7: An example of single point crossover operator.

Figure 2.8: An example of mutation operator.

2.2 Related Work

Covert side channels are identified, analyzed, and mitigated in some works [21, 22, 24, 26, 37].
Here, we focus on cache memory resources. Timing attacks through highly ”stateful” cache
resources have been studied and documented in some research works [26, 37, 53]. In particular,
Hu [53] assumes a similar cache flushing strategy to mitigate timing channel attacks, and dis-
cusses how scheduling algorithms can be modified to minimize the number of flushes. However,
tasks do not have any real-time requirements and the scheduler does not support any service
guarantee.

Focusing on relevant works alongside considering real-time requirements, Son et al [41],
showed that a covert channel can be established in the rate-monotonic scheduler. Volp et al [48],
studied unauthorized information flows obtained through altered scheduling behaviour, that is
delayed preemption, then they discussed on modifications to a fixed-priority scheduler which
reduces such vulnerabilities. Later in 2008 [47], they focused on the effect of timing channels
introduced in by real-time resource locking protocols, and addressed them by transforming the
relevant protocols.

Some recent works [40, 44, 52, 54], have focuses on both Hardware and Software as a com-
bined architectural model to relieve security issues such as intrusion detection.

13

2.2.1 Security and Real-Time Task Scheduling

This research rather than specifically focusing on timing channel attacks, tries to mitigate secu-
rity properties by defining the equivalent real-time task scheduling constraints. Some other works
tracked timing channels in real-time systems between tasks of different levels of security; they
also tried to integrate the security requirement with Rate Monotonic (RM) scheduler [41]. Unlike
them, our collaborative research focus was on timing channels caused by shared resources. In
addition, rather than having an underlying Multi-Level Security (MLS), we preferred to general-
ize the model to have any arbitrary security constraints (the model is discussed in more details in
Section 3.2).

Similarly, Xin et al. [50] introduced a new scheduler, and Lin et al. [28] extended the existing
Earliest Deadline First (EDF) scheduler to meet both security and real-time requirements, in such
a way that overheads of priodic tasks with different security service times can be relaxed through
task scheduling.

Some other research works [10,42,43] studied general information leakage issue in real-time
database systems with MLS constraints. [42] has focus on transaction scheduling and concur-
rency control algorithms to meet both security and real-time requirements, which includes met-
rics to measure fulfilment of security requirements. In addition, in [10] authors discuss about
the trade-off between security and real-time requirements. In [43], the conflict between real-time
and security requirements is resolved by defining a notion of partial security.

In [33], authors used information leakage as an example to illustrate their techniques in order
to mitigate security requirements through task scheduling. They study enhancements to Fixed
Priority (FP) scheduling to reduce information leakage through shared resources while meeting
real-time requirements. They defined algorithms, called PF and CPF, and studied the issue of
computing the number of cache flushings which are mostly related to number of preemptions
suffered by a task or group of tasks. This research is a collaborative extension to theirs as fol-
lows: (a) the security model is generalized to capture the relationships between tasks; (b) our
methods have been demonstrated by implementation of a realistic application and hardware plat-
form. Existing work [33], has discussion on computing the exact preemption costs for tasks.
In comparison, in this work [36], other algorithms are developed in which rather than cleaning
up state (or do cache flush) in each preemption point, the confidentiality of the preempted task
determines if a cache flush is required or not. In addition, in order to reduce the number of
cache flushes and to increase schedulability, an optimal preemptivity assignment algorithm is
developed to specify if a task should be preemptive or non-preemptive. [36] is a collaborative
extension to [33], in the sense of generalization.

14

Chapter 3

Security Model

In this section, we introduce the developed security model which is based on confidentiality
relations between tasks. Also, in order to demonstrate the security model, an example avionics
case study is detailed in Section 3.1.

One of the main contributions of this research is to introduce a general security model that
is an extension to [33]. That work proposed a security model that considers tasks with varying
security levels and avoid information leakage between tasks. Here, we generalize that model by
introducing security relations between tasks as an arbitrary matrix. Tasks in the system are sub-
ject to security constraints and the given matrix establishes security requirements of each task
corresponding with each other task. The matrix is a true/false matrix, in which, each of true
values can introduce a condition of information leakage that should be avoided and protected
against. We model such security constraint by introducing a binary noleak relation between any
two different tasks τi and τj: if noleak(τi, τj) = T (true), then we require that information leak-
age from τi to τj is prevented; otherwise if noleak(τi, τj) = F , no such constraint needs to be en-
forced between τi and τj . Note that we do not impose any other property on the noleak relation;
in particular, we do not require properties of symmetry (i.e., it might hold noleak(τi, τj) = T
but noleak(τj, τi) = F) or transitivity. We also do not assume any special relation between the
real-time properties of a task and the noleak requirements [36].

We argue that the described scenario (i.e., tasks with different protection levels) can arise in
various complex real-time systems where applications developed by different vendors are inte-
grated together on the same computing platform. Examples include avionics systems designed
according to the DO-178B standard [17], as well as emulation and integration systems designed
for the porting of legacy applications, such as the “RePLACE” system from Northrup Grum-
man [20, 38].

15

Figure 3.1: Demonstrator Overview

3.1 Case Study

As discussed in the previous section, noleak relation have been defined to protect the confiden-
tiality between tasks of different sub-systems. In this section, a case study is used to demonstrate
how noleak can work in a real application to preserve the security constraints.

The Real-Time Embedded Systems Lab (RESL) at the University of Waterloo (UW) [6],
developed a tested avionics case study in two underlying implementations of QNX and Real-
Time Linux (RTL). In this research, we took the fundamental control software of the case study,
and extended it to have fundamental tasks and components of our research [4].

In order to motivate and evaluate the presented research, we use the example of the Electronic
Control Unit (ECU) for an avionics platform system detailed in Figure 3.1. This demonstrative
system, built and implemented at the University of Waterloo, runs many of the same types of
tasks which could be expected to run on an Unmanned Arial Vehicle (UAV) surveillance system,
as discussed in the last two previous sections. The ECU communicates locally with the iner-
tial sensors, GPS localization system and actuators (“UAV” in the figure), as well as a camera
subsystem. The ECU also uses off-board communication to exchange information with a base
station. We assume that three parties are involved in building the ECU system, Vendor 1, Vendor
2, and the Integrator. Each party is responsible for a different ECU subsystem, which in turn
comprises different real-time tasks. One or more tasks of each party have some degree of pro-
tected data. Each party trusts communication between tasks in its own subsystem, but wants to
prevent information leakage from its protected task or tasks to other subsystems. For example,

16

detected images can have a security classification, or control tasks can implement a proprietary
algorithm.

Vendor 1 is responsible for the image subsystem. The I/O Operation Task mimics the behavior
of a camera driver; to perform repeatable experiments, our system simply places a fixed set of
images into a Memory File System (MFS) and extracts them in order. Since conceptually this
task manages input state and not image data, it does not need to be protected. The Encoder task
is realized as a JPEG compressor. Encryption task uses the AES cipher using a protected, secret
key. The encrypted image is then passed to the network manager in the Integrator subsystem.

Vendor 2 is responsible for the control subsystem. The sensor task receives, parses examines
incoming sensor data for the other tasks. The Laws task computes the control output to move the
UAV towards a waypoint determined by the Mission Planner in the Integrator subsystem. Finally,
the Actuator Task prepares the actual output commands and send them to physical actuators.

Finally, the Integrator is responsible for connecting the two previous subsystems together
and performing mission control. The Mission Planner Task communicates with the Laws Task
to determine the current position of the UAV and move it between a set of fixed waypoints. The
Network Manager sends encrypted data coming from the Mission Planner and the Encryption
Task to the base station.

The proposed binary noleak relation between any two tasks can be generalized to implement
a range of security constraints. In this work we focus on unintended information flow (or in-
formation leakage) between tasks of different vendors through the use of shared resources. In
particular, we consider a vendor oriented security model where information leakage from a pro-
tected or sensitive task of one vendor to any task of a different vendor is considered undesirable
while no such constraints are placed on tasks within a given vendor’s subsystem. Such a model is
useful in many scenarios. For example, in our avionics demonstrator scenario, images captured
by the camera could have a higher security classification and it may be undesirable for Vendor
2 to gain unintended information about them even if the vendor is trusted with controlling the
UAV. Similarly, the control laws from Vendor 2 may contain a proprietary algorithm and Vendor
2 may not want other vendors to gain unintended knowledge about the algorithm.

The noleak relations between the tasks using the vendor oriented security model for the
avionics demonstrator case study are listed in Table 3.1. While the proposed vendor oriented
security model has the flavor of multi-level security models (e.g., [11]), it is quite different from
such models. In fact the proposed model is quite relaxed relative to traditional multi-level se-
curity (MLS) security models such as the well-known Bell-LaPadula [11] model that aim to
prevent information flow from a higher security level to a lower security level even within the
same compartment (in this case vendor). In contrast, note that no constraints on leakage are
placed between tasks from the same vendor in the proposed model. Similarly, no constraints

17

noleak
to

Sens. Laws Act. MP Net. AES JPEG I/O

from

Sens. - F F F F F F F
Laws F - F T T T T T
Act. F F - F F F F F
MP T T T - F T T T
Net. F F F F - F F F
AES T T T T T - F F
JPEG T T T T T F - F
I/O F F F F F F F -

Table 3.1: noleak relations of the case study

on leakage are placed between unprotected tasks (not security sensitive) even if they are from
different vendors. However, it is important to note that one could capture stricter security mod-
els using the proposed binary noleak relation when the system at hand warrants such a stricter
model.

18

Chapter 4

Security Mechanisms

As discussed in the previous chapters, the focus of this research is on protecting shared physical
resources. Both the software and hardware execution platform influence tasks’ ability to leak
information. We assume that the employed platform already provides mechanisms such as virtual
memory to prevent or control explicit communication between tasks.

Modern embedded systems overlay some highly “stateful” shared resources, such as caches,
DRAM, Data Bus and I/O interconnections. Their “stateful” property is very considerable, be-
cause any state change caused by one task might have significant timing effect on the next exe-
cuting tasks. Timing attacks based on cache state have been summarized in Section 2.2. Other
resources could similarly be used as covert channels between tasks. For example, DRAM con-
trollers typically implement an open row mechanism that behaves in a manner that is similar to
a cache [49]. It has been shown that I/O buses can carry traffic belonging to one task even after
a new task has been scheduled [34].

In general, there are multiple mechanisms that can be employed to mitigate or outright avoid
information leakage due to a shared resource. In this thesis, we consider two such mechanisms.
First, we propose to use a general “flushing” mechanism: whenever we detect that a task might
undesirably leak information to another task, we execute a synthetic ‘Flush Task’ (FT) function
that resets the state of all needed resources. Second, some resources can be divided into multiple
partitions, and then tasks can be statically allocated to partitions. For example, cache can be
partitioned into ways, and DRAM into banks. This prevents tasks allocated to one partition to
leak information to tasks executing on a different partition.

The rest of the chapter is organized as follows. First, the task model is discussed in Section
4.1 to provide definitions for cache-aware execution time, and overheads which will be referred
in the rest of the paper. Then, the two developed mechanisms for undertaking security protection

19

on shared physical resources are described in Sections 4.2 and 4.3, including some examples to
clarify the effectiveness of the proposed techniques.

4.1 Task Model

We consider the fixed priority scheduling of a set Γ = {τ1, . . . , τN} of N sporadic real-time
tasks on a uniprocessor. We consider information leakage through a single resource which
can be partitioned into K partitions of equal size. Each task τi is characterized by a tuple
{pi, ci(ki), preempti}. pi is the task’s period or minimum inter-arrival time. ci(ki) is the task’s
worst-case execution time when it runs non-preemptively with ki partitions assigned to the task.
Finally, preempti determines the task preemptability: if preempti = T , then the task can be pre-
empted by higher priority tasks; if instead preempti = F , a job of τi always run to completion
once started.

Tasks are assigned distinct priorities; without loss of generality, we assume that the priority
of task τj is higher than the priority of task τi if and only if j < i. For ease of notation, let hpi =
{τj|1 ≤ j < i} be the set of all tasks with priorities higher than τi and let hepi = {τj|1 ≤ j ≤ i}
be the set of higher priority tasks including τi; similarly, we define the set of lower priority tasks
lpi = {τj|j > i}. Finally, we assume that time is an integral quantity measured in multiples of
the system tick. For simplicity we do not discuss the effects of locking protocols, but the analysis
could be extended to include confidentiality-preserving real-time locking schemes [47].

4.2 Resource Flushing

Resource flushing technique resets the state of the shared resource before transferring execution
to an untrusted task. By resetting or flushing the whole cache, there is no possibility for an
untrusted task to track timing information from a protected task based on the extra timing that it
takes for cache line evictions which probably belong to the protected task. As another example,
in order to prevent information leakage in DRAM, the state can be reset by closing and opening
the bank.

In this thesis, we consider the “flushing” mechanism introduced in [36]; whenever we detect
that a task might undesirably leak information to another task, we execute a synthetic ‘Flush
Task’ (FT) function that resets the state of all needed resources. Based on the noleak relation
defined in Chapter 3, the following No-Leak Flush (NLF) mechanism is implemented:

20

preempt Ij
τ1 T 3
τ2 F 2
τ3 T 1

noleak
to

τ1 τ2 τ3

from
τ1 - T F
τ2 T - T
τ3 T F -

Table 4.1: Example Task Set and “no-leak” Relationships Between Tasks

Definition 1 (NLF Mechanism). Let Γ′ be the set of tasks executed since the last FT. Then if
there ∃τj ∈ Γ′, noleak(τj, τi) = T , a FT must be executed before scheduling task τi.

Note that our noleak model does not make any assumption on which portion of a task
reads/writes sensitive data; hence, in the situation stated by Definition 1, we need to flush even
if the job of τj did not finish executing. Let cft be the worst-case execution time of the FT. Note
that we assume that if a FT is required, it is executed as part of τi, i.e., the execution time of τi is
effectively increased to ci+cft. Once the NLF mechanism has been defined, the schedulability of
task set Γ can be guaranteed by computing a safe upper bound Nft to the number of FT required
in the busy interval of any task τi ∈ Γ; we show how to do so in Chapter 5.

4.2.1 Impact on Scheduling

An example schedule under NLF is shown in Figure 4.1 for the task set in Table 4.1, where Ij
represents the number of instances of τj in the depicted busy interval1 starting with the release
of τ3. Note that a FT is required before τ3 is scheduled because τ2 executed before the start of
the busy interval and noleak(τ2, τ3) = T . Similarly, a FT is required before τ1 can preempt
τ3 because noleak(τ3, τ1) = T ; however, no FT is required when execution returns to τ3 since
noleak(τ1, τ3) = F . Finally, a FT is required before executing τ2 even if noleak(τ3, τ2) = F
because noleak(τ1, τ2) = T and no FT is run between τ1 and τ3.

It is interesting to note that task preemptivity can have a significant effect on the FT number.
As an example, Figure 4.2 shows the schedule for the same task set as in Table 4.1, except that

1Note that since Definition 1 depends only on the sequence of task executions, for simplicity throughout all
figures we do not report or draw execution times to scale.

21

⌧1

⌧2

⌧3

1 2 3

1 2

1 1 1 1 1 1

Figure 4.1: Example task set: worst-case schedule. Vertical bars represent FTs. Numbers repre-
sent job indexes (i.e., τ3 executes a single job in the busy interval).

⌧1

⌧2

⌧3

1 2

1 1 1

3

2 2

1 1 1

Figure 4.2: Example task set: preemptive worst-case schedule.

all tasks are preemptive. In this case, the number of FT is 9 rather than 8. Figure 4.3 shows
the same example when all tasks are non-preemptive, resulting in 5 FT. As we show in Chapter
5, these are in fact exact bounds on the worst-case number of FT suffered by the example task
set. In general, task preemption creates additional context switches that can increase the number
of FT; on the other hand, executing a task non-preemptively creates blocking time for higher-
priority tasks. In Chapter 5, we first provide a schedulability analysis for task set Γ assuming
that the preemptability preempti of each task τi is known; then, using the derived schedulability
analysis, in Section 5.3 we show how to optimally assign preempti.

4.3 Resource Partitioning

Apart from the flushing technique discussed in the last section, we have studied a well-known
technique called resource partitioning as a solution to the information leakage problem. Re-
garding cache memory resources, this technique in our single-core system model, can reduce
cache evictions by assigning different partitions to various tasks. More in general, when applied

22

⌧1

⌧2

⌧3

1 2

1

3

2

1

Figure 4.3: Example task set: non-preemptive worst-case schedule.

in conjunction with the NLF mechanism, the technique has two advantages: 1) it can reduce
the number of required FT. This is because if we switch from a task τi to a task τj such that
noleak(τi, τj) = T but τi and τj do not share a partition, then no FT is needed. 2) It reduces
the time required to perform a FT. In the situation described above, if τi and τj share a single
partition, then only that partition would need to be flushed rather than the entire resource.

The disadvantage of using this technique is that it reduces the amount of resource available
to a task. In the case of cache resource, the task execution time might be increased since the
task is forced to use only a limited number of cache partitions rather than the whole cache.
Therefore, we have a trade-off between having less and shorter FT, and speeding up computation
by allowing each task to use the entirety of the resource.

In general, we will assume that a task can be assigned to any number ki of partitions, from 0
to the maximum number K of partitions in the system. To keep track of the partition assignment,
we define boolean values ai,k, for all i = 1 . . . N and k = 1 . . . K, where ai,k = T if task τi uses
the kth partition and ai,k = F otherwise. The problem is then how to assign the values of ai,k
in such a way as to maximize system schedulability; we study how to do so in Chapter 6 based
on the schedulability analysis detailed in Chapter 5. To keep track of the overhead of partition
flushing, we further define a partition-specific no-leak relation as follows:

noleakk(τi, τj) = noleak(τi, τj) and ai,k and aj,k. (1)

In other words, for the kth partition, noleakk(τi, τj) is true if noleak relation for tasks τi, τj is
true and both tasks are assigned to partition k; this implies that the partition must be flushed
when τi is followed by τj . We can then define a partition-aware NLF mechanism as follows:

Definition 2 (Partition-Aware NLF Mechanism). Let Γ′ be the set of tasks executed since the last
FT. Then for each partition k, if there ∃τj ∈ Γ′, noleakk(τj, τi) = T , a FT for partition k must
be executed before scheduling task τi.

23

Since when using the partition-aware NLF mechanism, a flush task invocation resets a single
partition, cft shall represent the time required to flush one partition rather than the entire resource.

Finally, since the execution time of a task τi depends on the number ki of partitions assigned
to the tasks (i.e., such that ai,k = T), we assume that the worst-case execution time ci(ki) for τi is
defined as a function of ki. We further assume that ci(ki) is measured with the task running non-
preemptively. In practice, if preempti = T , then the task can be preempted while executing. To
account for the preemption overhead, we introduce an additional term crt representing the time
required to “reload” the state of a single resource partition; every time the task is preempted, it
then suffers an extra overhead equal to ki · crt. For example, in the case of a cache resource,
the reloading term represents the overhead caused by preempting tasks evicting cache lines be-
longing to a preempted task. In the case of a DRAM, it represents the overhead of closing and
re-opening rows accessed by the preempted task.

While we argue that our methodology could be applied to a variety of shared resource, in
this thesis we limit our implementation and evaluation to cache resources. Cache partitioning is
performed using cache ways, and only last level cache is considered. Implementation details are
discussed in Chapter 7.

24

Chapter 5

Schedulability Analysis

In this chapter, we detail how to determine schedulability for a task under analysis τi based on the
system model and partition-aware NLF mechanism detailed in Chapter 4. The discussed analysis
also works for the case of pure resource flushing (i.e., no partitioning) by setting the number of
partitions K = 1.

Our schedulability analysis relies on determining an upper bound to the number Nft of FT
for τi on partition k. In the remaining of the paper, we shall consider bounds on Nft based only
on the noleakk relation and the number of higher priority jobs that interfere with τi, i.e., we make
no assumption on the exact arrival time of interfering jobs. While this could lead to a potentially
pessimistic bound on Nft, it nevertheless allows us to decouple the determination of the worst-
case number of FT , which depends on the job execution order, from the determination of the
number of interfering jobs of higher priority tasks, which is based on the critical instant arrival
pattern. Therefore, we shall write Nft(noleakk, {Ij|τj ∈ hpi}) to denote that Nft is a function
of noleakk and the number Ij of jobs of higher priority tasks τj that interfere with τi. Similarly,
we determine the number of reloads Nrl({aj,k}, {Ij|τj ∈ hpi}) on partition k as a function of the
partition assignments {aj,k} and number of higher priority jobs Ij only.

We use the analysis strategy in [12] for fixed-priority scheduling to determine the schedula-
bility of τi, except that we add a term

∑K
k=1 Nft(noleakk, {Ij|τj ∈ hpi}) · cft to account for the

overall FT time and a term
∑K

k=1Nrl({aj,k}, {Ij|τj ∈ hpi}) · crl to account for the overall reload
time. More in detail, τi is schedulable iff ∃t, 0 < t ≤ pi, such that:

25

Bi+
K∑
k=1

Nft(noleakk, {Ij|τj ∈ hpi})·cft+
K∑
k=1

Nrl({aj,k}, {Ij|τj ∈ hpi})·crl+
∑
∀τj∈hpi

(Ij·cj)+ci ≤ t,

(2)
where Bi represents the maximum blocking time induced by lower priority tasks and their FT. If
τi is non-preemptive, then the number of interfering jobs Ij of τj is computed as:

Ij =
⌊t− ci

pj
+ 1
⌋
, (3)

while if τi is preemptive it is computed as:

Ij =
⌈ t
pj

⌉
. (4)

Furthermore, the maximum blocking time Bi is:

Bi = max
∀τj∈lpi∧preemptj=F

c̄j − 1, (5)

while c̄j is computed as:

c̄j = cj +
∑

k=1...K,∃τl:noleakk(τl,τj)=T

cft; (6)

i.e., the execution time of lower priority non-preemptive task τj must be increased by cft for each
partition k such that a FT might be required for τj on k. The −1 term in Equation 5 accounts
for the fact that the lower priority blocking task must arrive at least one time unit before the
activation of τi.

Note that in practice it is sufficient to test Equation 2 on all points before a discontinuity
in Ij , which are Si = {r · pj|τj ∈ hpi ∧ 1 ≤ r ≤ bpi/pjc} if τi is preemptive, and Si =
{r · pj + ci − 1|τj ∈ hpi ∧ 1 ≤ r ≤ bpi/pjc} otherwise; [12] shows how to further reduce the
number of required testing points. Furthermore, from Equation 2 it follows immediately that we
can compute the slack ∆i for τi as:

∆i = max
t∈Si

(
t−
(
Bi +

K∑
k=1

Nft(noleakk, {Ij|τj ∈ hpi}) · cft+

K∑
k=1

Nrl({aj,k}, {Ij|τj ∈ hpi}) · crl +
∑
∀τj∈hpi

(Ij · cj) + ci
))
, (7)

26

where τi is schedulable iff the slack is non-negative, in which case ∆i represents the additional
amount of time that τi can take to complete while remaining schedulable; we will use this value
in Section 5.3.

A trivial bound on Nft(noleakk, {Ij|τj ∈ hpi}) can be obtained as the number of context-
switches for tasks using partition k, including the one at the beginning of the busy interval if
ai,k = T . If a task τj can preempt another task τl in the busy interval, τj accounts for two
context-switches (when τj starts by preempting τl, and when execution returns to τl); otherwise,
τj accounts for only one context-switch (when it starts). Hence, let Γ2

i,k = {τj ∈ hpi|∃τl ∈ hepi :
l > j ∧ preemptk = T ∧ aj,k = T ∧ al,k = T)} be the set of all higher priority tasks using
partition k that can preempt another task in the busy interval for τi (i.e., either τi or another task
with priority lower than l but higher than τi must be preemptive), and let Γ1

i,k = {τj ∈ hpi|aj,k =
T}\Γ2

i,k be the set of all other tasks in hpi that use partition k. ThenNft(noleakk, {Ij|τj ∈ hpi})
is upper bounded as follows:

Nft(noleakk, {Ij|τj ∈ hpi}) =
∑
∀τj∈Γ1

i,k

Ij +
∑
∀τj∈Γ2

i,k

2 · Ij + ai,k. (8)

Similarly, Nrl({aj,k}, {Ij|τj ∈ hpi}) can be computed as the number of preemptions in the busy
interval by tasks using partition k:

Nrl({aj,k}, {Ij|τj ∈ hpi}) =
∑
∀τj∈Γ2

i,k

Ij. (9)

Note that in the case of Nft, the bound above does not take noleakk into account. Hence, in
the following Section 5.1 we first show how to compute an exact bound (assuming no knowledge
of tasks’ arrival times) Nft(noleakk, {Ij|τj ∈ hpi}) based on a SMT formulation. Since the
complexity of the algorithm is exponential, in Section 5.2 we then show how to derive a safe
bound based on a min-cost flow graph problem that can be solved in polynomial time in the
number of tasks N . We will then show through simulations in Section 8.1.2 that the graph bound
is a good approximation of the exact bound.

5.1 Exact FT Bound

We created an SMT formulation of the exact FT bound problem using the Z3 SMT solver [16].
Note that since in this section and the next one we focus on computing the number of FT in-
stances for a single partition, for simplicity we drop the index k and use noleak rather than

27

noleakk. The input to this problem is the noleak matrix, the number of jobs for each higher
priority task, and whether each higher priority task is preemptive or not. The problem is formu-
lated by creating a set of variables for each step, where a step is a job start or a job end. The
set of variables at each step includes (1) an integer for the number of flushes so far, (2) a vector
of booleans whether each task is running, (3) a vector of booleans for whether each task is in
memory, (4) a vector of integers for the number of jobs remaining to be started for each task,
and (5) the transition type taken to get to the next step (encoded as an integer). At each step,
a transition occurs, subject to precondition and postcondition constraints. Possible transitions
include, for each task τi, the task can start, for each task τi and lower priority task τj (including
an idle task), τi can end and τj resumes and an FT occurs, or τi can end and τj resumes and no
FT occurs.

Conditions are then placed on both the precondition at each step and the postcondition at the
subsequent step. For example, a task τi is allowed to start only if the jobs left to start for that task
is greater than zero (precondition), and then in the subsequent step the number of jobs left to start
will be one less than in the previous step (postcondition). Another example is that task τi can end
and task τj resume with a FT only if τi is running, and no higher priority tasks are running, and
τj is the next highest priority task, and τj is running, and there is some task in memory for which
τj requires a flush and so on. Some of the postconditions in this case would be that only task τj
is in memory (because of the FT that has occurred), and that the number of flushes so far is one
greater than the in the previous step.

The SMT solver looks for a model where, at the last step, the number of flushes so far is
above a threshold. This threshold is iteratively increased until the maximum is exceeded, after
which the constraints are unsatisfiable. The last satisfiable model obtained gives an ordering of
events that produces that number of flushes Nft.

An upper bound on the number of schedules Z3 checks can be given by noticing that at each
scheduling event (job start or end, i.e., a context switch), at most a single event (such as a task
starting) is possible for each task in the busy interval. This means that runtime of the exact bound
approach for a specific task under analysis τi is upper-bounded by O

(
(CSi)

|hepi|
)
, where CSi is

the number of context-switches and |hepi| is the number of higher or equal priority tasks. While
this bound is exponential, solutions for task sets consisting of six or seven higher priority tasks
could typically be found in a few minutes. We used this ideal bound to compare with the graph
bound in order to evaluate the pessimism of the faster method.

28

END

ST

⌧j

⌧k

ST

END

⌧j ⌧k ⌧j⌧k

END ST STEND

Figure 5.1: Flow Graph Intuition: Context-Switch at Job End. One unit of flow is exchanged
between a job that finishes (END) and one that starts (ST) executing. Note any priority relation-
ship is valid since a higher priority task τj could arrive at the same time τk finishes (right side of
figure).

5.2 Approximated FT Bound

We now show how to compute a fast bound to Nft(noleakk, {Ij|τj ∈ hpi}) using a min-cost
flow graph formulation, as defined below.

Definition 3 (Min-cost flow problem). Let (V,E) be a flow network, i.e., a directed graph where
V is the set of vertices and E the set of directed edges of the form e = (v → v′, u, a), where
v, v′ ∈ V , u > 0 is the capacity of the edge and a is its cost. Let source ∈ V be the source
vertex, producing an amount of flow F > 0, and let sink ∈ V be the sink vertex, consuming
an amount of flow equal to F . Finally, let f(e) be the flow on edge e. Then the min-cost flow
problem is to minimize the total cost Ā of the flow:

Ā =
∑

∀e=(v→v′,u,a)∈E

f(e) · a, (10)

subject to the constraints:

• capacity constraint: ∀e = (v → v′, u, a) ∈ E : f(e) ≤ u;

• flow conservation: ∀v ∈ V :
∑
∀e=(v→v′,u,a)∈E f(e) − ∑∀e=(v′→v,u,a)∈E f(e) = k, where

k = F for source, k = −F for sink, and k = 0 for all other vertices.

29

⌧j

⌧k

ST

PR

⌧k ⌧j ⌧k

END

RE

⌧j

PR ST END RE

Figure 5.2: Flow Graph Intuition: Context-Switch at Preemption and Resumption. One unit of
flow is exchanged between a preempted job (PR) of task τk and a starting job (ST) of higher
priority task τj . In this example, when the job of τj ends (END), execution is returned to τk (RE).

We shall say that a flow assignment f for (V,E) is a valid flow if it satisfies all capacity and flow
conservation constraints.

Before formally detailing how we construct the flow graph in Definition 4, we provide the
intuition behind our method. The key idea is to encode the sequence of jobs executing during
the busy interval of τi as a chain of vertices exchanging flows between them. The exchange of
one unit of flow on an edge between a vertex and the next one in the chain represents a context-
switch between jobs of the tasks represented by those vertices. We assign a cost of −1 to edges
representing context-switches that result in the execution of a FT and we compute the minimum
cost over any valid flow; we can show that if the resulting (negative) minimum cost is Ā, then
−Ā represents an upper bound to Nft(noleak, {Ij|τj ∈ hpi}).

Note that a job could be context-switched out in two different situations: (a) the job has
finished executing or (b) the job is preempted by a higher priority task. Similarly, a job could
be context-switched into in two different situations: (c) the job starts executing or (d) the job
resumes execution after having been preempted. To encode each situation, we associate four
different vertices to each task τj: τj.END (job ending); τj.PR (job preempted); τj.ST (job
starting); and τj.RE (job resuming). We can then recognize three types of context-switch and
associated flow exchanges between vertices:

• A job of a task τj ends and a job of a task τk starts. Figure 5.1 shows this as an exchange
of flow between τj.END and τk.ST . Note: any priority relationship and any preemptivity is

30

possible for tasks τj and τk.

• A job of a lower priority task τk is preempted by a job of a higher priority task τj that starts
execution. The situation is depicted on the left side of Figure 5.2 as an exchange of flow
between τk.PR and τj.ST . Note that it must hold j < k, and furthermore preemptk = T .

• A job of a higher priority task τj ends, and a preempted lower priority task τk resumes execut-
ing. This situation is depicted on the right side of Figure 5.2 as an exchange of flow between
τj.END and τk.RE. Similarly to the previous case, it must hold j < k and preemptk = T .

Note that each job must start and end once in the busy interval and, furthermore, the number
of times the job is preempted must be equal to the number of times the job is resumed. Hence,
for a task τj , the incoming flow to vertices τj.ST and τj.RE must be equal to the outgoing flow
from vertices τj.END and τj.PR. We can enforce such constraints by adding a vertex τj.B
(balance) that maintains the flow conservation. The resulting vertex group for a task τj ∈ hpi is
shown in Figures 5.3 and 5.5, where all edges between vertices in the group have a cost a = 0.
Note that vertices τj.ST → τj.B and τj.B → τj.END have a capacity of Ij to enforce the fact
that the task cannot execute more than Ij jobs in the busy interval. The vertex group for task
τi is represented in Figures 5.4 and 5.6. In this case we omit τi.END since we do not need to
consider any FT after the task under analysis ends; instead, the sink drains F = 1 unit of flow
from τi.B to represent the end of the busy interval. Similarly, we add a source node to the graph
that injects one unit of flow to represent the context-switch at the beginning of the busy interval.

Finally, we add edges between vertices of type END,ST, PR and RE of any two tasks
τj, τk ∈ hepi based on the tasks’ priorities and preemptivity, as in Figures 5.1, 5.2. We assign
such edges a cost a = −1 if noleak(τj, τk) = T , and a = 0 otherwise. Note that as discussed
in the examples in Section 4.2.1, before the busy interval starts, a job of any task could have
executed last. Hence, when considering edges from the source node to a task τj , we need to
assign a cost a = −1 if there exists any task τk such that noleak(τk, τj) = T . Finally, we set
the capacity constraint for all such vertices to +∞ since the constraint on the number of jobs Ij
executed in the busy interval is already enforced by capacities on the edges in the vertex group.

We can now define the graph. For ease of notation, we define Ii = 1 to represent the fact that
only one job of the task under analysis appears in the busy interval.

Definition 4 (FT Graph). The FT Graph for noleak, {Ij|τj ∈ hpi} is a flow graph (V,E) with
the following set of vertices V :

1. a source and a sink which produce/consume an amount of flow F = 1;

2. vertices τi.B, τi.ST ;

31

B

⌧j

⌧j

⌧j

⌧j

⌧j

B

⌧j

⌧j

⌧j

u
=

+1

u =
+1

u
=

I j

u =
Ij

u = Ij

u = Ij

PR

ST

END

RE

ST

END

Figure 5.3: Vertex Group: Preemptive task
τj ∈ hpi

B

⌧i

⌧i

⌧i

⌧i

B

⌧i⌧i

sink sink

u = +1

u
=

+1
u

=
+
1

u
=

1

u = 1

u
=

+
1

ST

RE

PR

ST

Figure 5.4: Vertex Group: Preemptive task
under analysis τi. The sink consumes F =
1 units of flow.

3. for each task τj ∈ hpi, vertices τj.B, τj.ST, τj.END;

4. for each preemptive task τj ∈ hepi, vertices τj.RE, τj.PR;

and the following set of directed edges E:

1. for each task τj ∈ hepi, the following edges (if the corresponding vertices exist): (τj.ST →
τj.B, Ij, 0), (τj.B → τj.END, Ij, 0), (τj.RE → τj.B,+∞, 0), (τj.B → τj.PR,+∞, 0);

2. edge (τi.B → sink,+∞, 0);

3. for each task τj ∈ hepi, an edge (source → τj.ST,+∞, a), where a = −1 if there exists
τk ∈ Γ, noleak(τk, τj) = T , or a = 0 otherwise;

4. for each pair of tasks τj ∈ hpi, τk ∈ hepi, j 6= k, an edge (τj.END → τk.ST,+∞, a), where
a = −1 if noleak(τj, τk) = T , or a = 0 otherwise;

5. for each preemptive task τk ∈ hepi and each task τj ∈ hpi such that j < k, an edge (τk.PR→
τj.ST,+∞, a), where a = −1 if noleak(τk, τj) = T , or a = 0 otherwise;

6. for each task τj ∈ hpi and each preemptive task τk ∈ hepi such that j < k, an edge
(τj.END → τk.RE,+∞, a), where a = −1 if noleak(τj, τk) = T , or a = 0 otherwise.

32

B

⌧j

⌧j

⌧j

⌧j

⌧j

B

⌧j

⌧j

⌧j

u
=

+1

u
=

+1

u
=

I j

u =
Ij

u = Ij

u = Ij

PR

ST

END

RE

ST

END

Figure 5.5: Vertex Group: Non-preemptive
task τj ∈ hpi

B

⌧i

⌧i

⌧i

⌧i

B

⌧i⌧i

sink sink

u = +1

u
=

+1

u
=

+
1

u
=

1

u = 1

u
=

+
1

ST

RE

PR

ST

Figure 5.6: Vertex Group: Non-preemptive
task under analysis τi. The sink consumes
F = 1 units of flow.

Note that in Definition 4, edges of Types 1-2 are edges in the vertex groups shown in Figures
5.3-5.6, while edges of Types 3-6 are edges between vertex groups representing context-switches.

Figure 5.7 shows a complete example graph for the task set in Table 4.1, where τi = τ3 is the
task under analysis (note that flow assignments f̃ and f̂ are used in the upcoming Theorem 1 to
illustrate the proof). We use dashed edges to represent context-switches where noleak = T and
dotted edges for context-switches where noleak = F . Based on the discussed context-switch
rules, the edges between vertex groups can be constructed as follows:

• an edge from source to every ST (Type 3 in Definition 4);

• an edge from every END to every ST (Type 4), to represent context-switches between an
ending and a starting job;

• an edge from every PR to every ST of a higher priority task (Type 5; τ3 to τ1 and τ2; τ2 has
no PR since it is non-preemptive) to represent context-switches where a job is preempted;

• an edge from every END to every RE of a lower priority task (Type 6; in the example, both
τ1 and τ2 to τ3; again, τ2 has no RE) to represent context-switches where a job resumes from
preemption.

Note that since for each τj , there exists another task τk such that noleak(τk, τj) = T , all edges
from the source are dashed; following Table 4.1, the only dotted edges are from τ1 to τ3 and from
τ3 to τ2.

Table 5.1 summarizes the Nft bounds computed by the exact SMT formulation, the min-
cost flow algorithm, and the trivial bound on the example task set, for the three preemptivity

33

FT number Trivial Bound Graph Algorithm
Original Example 8 11 8

All Tasks Preemptive 9 11 9
All Tasks Non-Preemptive 5 6 5

Table 5.1: Example task set: FT bounds

assignments of Figure 4.1, 4.2 and 4.3. Note that in this case, the bounds computed by the min-
cost flow algorithms are exact, while the trivial bound always overestimates the value of Nft.
Finally, the computed bound corresponds to the number of FT for the schedule reported in the
figures.

Theorem 1 states that the flow algorithm is indeed always correct; the main intuition is that
we can algorithmically construct a flow to match any feasible job schedule.

Theorem 1. Let Ā be the min-cost for the flow graph in Definition 4. Then −Ā is a valid upper
bound to Nft(noleak, {Ij|τj ∈ hpi}).

Proof. Let φ be any valid sequence of job executions in the busy interval, i.e., any sequence that
respects the number of interfering jobs Ij and preemptivity for each task τi ∈ hepi. 1 The proof
will show that we can construct a valid flow assignment f̂ on the graph that results in a cost
Â = −Nft(φ), where Nft(φ) is the number of FTs required in sequence φ (assuming that the
first job in the sequence, say of a task τf , suffers a FT if it is possible, i.e., there exists any task
τk such that noleak(τk, τf) = T). But since Ā is the min-cost for the flow graph, it must hold
−Ā ≥ −Â = Nft(φ); hence, −Ā is indeed an upper bound to Nft(noleak, {Ij|τj ∈ hpi}), since
it bounds the number of FT required by any valid sequence of job executions in the busy interval
of τi.

To ease exposition, we first summarize how the rest of the proof works. We first construct a
valid, initial flow assignment f̃ that mirrors the valid sequence φ by exchanging one units of flow
along a chain of vertices representing the jobs in the sequence. We then obtain the desired flow
assignment f̂ by modifying f̃ ; intuitively, this is performed by removing the flow through the
vertices representing certain jobs in the sequence. The resulting flow f̂ has a cost Â = −Nft(φ)

by construction; we finally show that f̂ is a valid flow.

We construct the initial flow f̃ by starting with an assignment f̃(e) = 0,∀e ∈ E and then
adding flow to edges in this way: 1) we send one flow unit on the edge from source to τf .ST ,

1As stressed in Section 5, note that the definition does not consider the exact arrival times of tasks in the busy
interval.

34

source

⌧1

⌧1

⌧1

⌧1

⌧1
B

⌧3

⌧3

⌧3

⌧3

⌧2

⌧2

⌧2
B

B

sink

u
=

3

u =
3

u = 2

u = 2

u = 1

PR

ST

END

RE

ST

END

ST

RE

PR

f̃ , f̂
=

1

f̃ , f̂ = 2

f̃ = 5, f̂ = 3

f̃ = 5, f̂
= 3

f̃ , f̂ = 2

f̃ , f̂ = 1

f̃
,f̂

=
1

f̃ = 3, f̂ = 1

˜f,
ˆf
=

3

f̃ , f̂
=

3

f̃
=

0,
f̂

=
2

f̃
, f̂

=
2

f̃ , f̂
=

3
f̃

=
2,f̂

=
0

Figure 5.7: Example task set: flow graph. Where not explicitly labeled, an edge has u = +∞
and f̃ = f̄ = 0. Solid edges and dotted edges have cost a = 0. For dashed edges, a = −1.

the task of the first job in the sequence φ. 2) Next, we consider each context-switch between
jobs in φ. Assume that execution switches from a job of a task τk to a job of a task τl. Then
we add one unit of flow from either τk.END or τk.PR, depending on whether the job of τk
ends or is preempted, to either τl.ST or τl.RE, depending on whether the job of τl starts or
resumes execution after a preemption. 3) We send one unit of flow from τi.B to sink, where
τi is the task under analysis. 4) Finally, for any task τj ∈ hepi, we send flow between vertices
τj.ST, τj.END, τj.RE, τj.PR and vertex τj.B, such that the flow conservation is met at vertices
τj.ST, τj.END, τj.RE, τj.PR. Example: consider Figure 5.7 and the related job sequence in
Figure 4.1. Note f̃(τ3.PR → τ1.ST) = f̃(τ1.END → τ3.RE) = 3 since τ3 is preempted three
times by τ1 and then immediately resumes. Since τ3 is preempted two more times by τ2, we also
need to set f̃(τ3.B → τ3.PR) = f̃(τ3.RE → τ3.B) = 5 to meet flow conservation at vertices
τ3.PR and τ3.RE.

35

It is straightforward to see that f̃ is valid flow. Since at most Ij jobs of a task τj can be
executed in φ, it follows that at most Ij units of flow can be sent/received by vertices τj.END and
τj.ST , respectively; hence, the capacity constraint on edges τj.ST → τj.B and τj.B → τj.END
are respected; all other edge capacities are obviously respected since they are infinite. The flow
conservation constraint at vertices source, sink, and τj.ST, τj.END, τj.RE, τj.PS for all tasks
is respected by construction. Finally, since the number of times a job of task τj starts executing
in φ must be equal to the number of times it finishes executing, and furthermore the number of
times a job of τj is preempted must be equal to the number of times that the job resumes from
preemption, the flow conservation is also respected for τj.B. Hence, flow f̃ is valid.

Unfortunately, the cost Ã of the constructed flow f̃ might not match −Nft(φ): there might
exist a context-switch between jobs of tasks τk and τl in the sequence, such that τl requires a FT,
but the corresponding edge cost for the context-switch is 0. Consider the example of Figure 4.1,
where a flush is required before executing the first job of τ2 once it preempts τ3. In this case
noleak(τ3, τ2) = F , so sending flow on the edge τ3.PR → τ2.ST has a cost of 0, but we still
need to flush because noleak(τ1, τ2) = T and τ1 has been executed since the last FT. To solve
the problem, we can intuitively obtain f̂ from f̃ by removing the execution of τ3 between τ1 and
τ2, so that we send flow directly on the edge from τ1.END to τ2.ST , which has a cost of -1.

More precisely, assume that a FT is required for a job of τl in φ, that the task of the job that
causes the FT is τp (i.e., the task of the latest job to execute in φ before the job of τl, such that
noleak(τp, τl) = T) and that the two jobs are not executed one after the other in φ. Then to obtain
f̂ from f̃ , for any such job τl we add one unit of flow to the edge from the corresponding vertex of
τp (either τp.END or τp.PR, based on φ) to the corresponding vertex of τl (τp.ST or τp.RE) and
we remove the flow that would circulate between vertices corresponding to jobs that are executed
in φ between the jobs of τp and τl. The resulting cost Â of f̂ must be equal to −Nft(φ), since
by construction we send one unit of flow on an edge with a = −1 for each FT in φ. Example:
in Figure 5.7, f̂(τ1.END → τ3.RE) = 1, f̂(τ3.PR → τ2.ST) = 0, f̂(τ1.END → τ2.ST) = 2
(rather than values of 3, 2, 0 for f̃), since for each of the two jobs of τ2 we need to send flow
directly from τ1.END to τ2.ST rather than circulating flow from τ1.END to τ3.RE and from
τ3.PR to τ2.ST .

We finally show that f̂ is still a valid flow. First note that removing one unit of flow circulating
through a task τj cannot violate graph constraints for τj itself: reducing the amount of flow
cannot violate a capacity constraint, and since we are removing both one unit of incoming flow
from either τj.ST or τj.RE, and one unit of outgoing flow from either τj.END or τj.PR, the
flow conservation at τj.B is still respected. It remains to show that we can add one unit of flow to
the edge from the vertex of τp to the vertex of τl; this is not trivial since the corresponding edge
might not exist in the graph. If the job of τp sends flow from τp.END and the job of τl receives
flow on τl.ST , then this is trivially true since there is an edge between the END and ST vertices

36

noleak
to

τ1 τ2 τ3 τ4 τ5

from

τ1 - F F T F
τ2 F - T F F
τ3 T F - F F
τ4 F T F - F
τ5 F F F F -

Table 5.2: Example non-tight task set: noleak relation. Tasks indexed in inverse priority order;
τ5: task under analysis. Ij = 1 for all tasks in hep5. τ3 is the only preemptive task.

of any two tasks. Therefore, consider the two following remaining cases:

Case 1: the job of τp sends flow from τp.PR. Since the considered job is the last of τp to
execute before the one of τl, it follows that τl is preempting τp in the schedule of φ. Hence, τl must
be higher priority than τp, and furthermore the considered job of τl must be starting execution
(rather than resuming from preemption), thus it must be receiving flow to τl.ST . Therefore, we
can add one unit of flow to the edge from τp.PR to τl.ST , which exists in the graph.

Case 2: the job of τl receives flow on τl.RE. This case is specular to the previous one, in
the sense that τp must be preempting τl. Therefore, we can add one unit of flow to the edge from
τp.END to τl.RE, which exists in the graph. �

Graph Bound Tightness: Note that Theorem 1 only shows that the resulting bound is safe. As
a matter of fact, there are task sets where the computed bound is not tight; an example is shown
in Table 5.2. Solving the flow graph results in a value Nft = 5, for the implied schedule shown
in Figure 5.8. Note that this schedule satisfies the constraints of the graph, since each direct
preemption and resumption (PR to ST and END to RE events) satisfies priority ordering.
Nevertheless, this schedule is invalid, since lower-priority task τ4 is indirectly preempting task
τ3. One possible valid worst-case schedule is shown in Figure 5.8, where the number of FTs
is equal to 4; in fact, in this case it is easy to see that there is no valid schedule that results in
Nft > 4, since for each task τj ∈ hep5, there is a unique task τk such that noleak(τk, τj) = T .

Graph Bound Computational Complexity: Orlin’s algorithm [35] for the min-cost flow prob-
lem has a complexity of O(|E|2), where |E| is the number of edges in the graph. The number of
edges based on Definition 4 is O(N2) in the number of tasks in Γ, since we need a fixed num-
ber of edges between any two tasks in hpi. Hence, the overall complexity of deriving the graph
bound is O(N4).

37

⌧1

⌧2

⌧3 1

1

2

1 ⌧4

⌧5

1

1

Figure 5.8: Example non-tight task set: invalid schedule implied by the FT Graph.

5.3 Optimal Preemptivity Assignment

Based on the schedulability analysis in Section 5, Algorithm 1 details how to assign preemp-
tivity preempti to every task τi ∈ Γ. The algorithm is optimal, in the sense that if there exists
any preempti assignment that makes the task set schedulable according to our analysis, then
Algorithm 1 will find one such assignment.

The algorithm iterates on all tasks starting from the highest priority task τ1 to the lowest
priority task τN . At each step, the algorithm tries to determine if the current task τi can be
executed non-preemptively; it does so by checking that the blocking time that executing τi non-
preemptively would cause on each higher priority task τj would not make τj unschedulable (Line
2), by checking that c̄i−1 is not greater than the slack ∆j of τj , computed assuming zero blocking
time (Line 7, since we do not know if any lower priority task is non-preemptive this point). The
main intuition is that if τi can be executed non-preemptively, then doing so is convenient; setting
preempti = F can potentially reduce the number of FT suffered by τi and lower priority task
(Lemma 1), and furthermore reduce the number of jobs interfering with τi (Lemma 3). Based on
the lemmas, Theorem 2 then states that Algorithm 1 is optimal.

Lemma 1. Consider the bound on Nft(noleakk, {Ij|τj ∈ hpi}) computed by either the trivial,
graph or exact algorithm, and let τj ∈ hepi be a non-preemptive task. Changing τj to execute
preemptively results in a bound on Nft that is no less than the original one.

Proof. In the case of the trivial bound, the proof follows immediately from Equation 8, since
changing τj to execute preemptively cannot reduce the set Γ2

i,k.

38

⌧1

⌧2

⌧3 1

1

2

1 ⌧4

⌧5

1

1

Figure 5.9: Example non-tight task set: valid worst-case schedule.

For the graph bound case, it suffices to note that if τj is executed preemptively, additional
vertices and edges are added to the min-cost graph, but none are removed. Hence, any valid flow
when τj is non-preemptive is also a valid flow when τj is preemptive, which implies that the
resulting bound for Nft cannot decrease.

Finally, in the case of the exact bound, notice that any task ordering that is valid for the non-
preemptive case is also valid in the preemptive case: since we make no assumption on the exact
arrival time of jobs, if a job of task τj with j < l follows a job of τl rather then preempting it, we
can simply assume that the job of τj arrives immediately after the one of τl finishes executing.
Again, this implies that the preemptive case cannot result in a lower Nft number, concluding the
proof. �

Lemma 2. Consider the bound on Nrl({aj,k}, {Ij|τj ∈ hpi}) computed by Equation 9, and let
τj ∈ hepi be a non-preemptive task. Changing τj to execute preemptively results in a bound on
Nrl that is no less than the original one.

Proof. As in the proof of Lemma 1, it suffices to notice that changing τj to execute preemptively
cannot reduce the set Γ2

i,k. �

Lemma 3. The slack ∆i computed according to Equation 7 for the case when τi is non-preemptive
cannot be less than the slack when τi is preemptive.

Proof. According to Lemmas 1 and 2, when τi is non-preemptive the number Nft of FTs and
the number Nrl of reloads suffered by the task are each less than or equal to the corresponding
numbers for the preemptive case. Furthermore, note that the values Ij computed according to

39

Algorithm 1 Preemptivity Assignment
1: for i = 1 . . . N do
2: if ∀j = 1 . . . i− 1 : c̄i − 1 ≤ ∆j then
3: preempti ← F
4: else
5: preempti ← T
6: end if
7: Compute ∆i based on Equation 7 using Bi = 0
8: if ∆i < 0 then
9: Return FAIL

10: end if
11: end for
12: Return SUCCESS

Equation 3 in the non-preemptive case are similarly less than or equal to the values computed
according to Equation 4. Therefore, based on Equation 7 the slack with preempti = F is greater
than or equal to the slack with preempti = T . �

Theorem 2. The preemptivity assignment of Algorithm 1 is optimal for schedulability analysis
based on the slack time computation in Equation 7, where Nft(noleak, {Ij|τj ∈ hpi}) is derived
according to either the trivial, exact or graph bound.

Proof. The proof proceeds by induction on the task index i in Algorithm 1. In particular, we
prove the following property: if Algorithm 1 sets preempti = T , then there exists no pre-
emptivity assignment for {τ1, . . . , τi−1} such that preempti = F and tasks {τ1, . . . , τi−1} are
schedulable. In other words, the algorithm always assigns a task τi to execute non-preemptivily
if it is feasible to do so. Based on Lemma 3, this implies that the algorithm is optimal.

Base case: the property is trivial for i = 1, since τ1 is always assigned to execute non-
preemptively.

Inductive step: by contradiction, assume that the algorithm assigns preempti = T , but
there exists a preemptivity assignment {preempt1, . . . , preempti−1} such that preempti = F
and {τ1, . . . , τi−1} are schedulable. Let {preempt1, . . . , preempti−1} be the preemptivity as-
signment that the algorithm picked at previous steps 1, . . . , i − 1. Since the algorithm assigns
preempti = T , then tasks {τ1, . . . , τi−1} cannot be schedulable with assignment {preempt1,
. . . , preempti−1, preempti = F}: Line 2 must have evaluated to false, meaning that making τi
non-preemptive would cause at least one task in {τ1, . . . , τi−1} to miss its deadline due to exces-

40

sive blocking time. Therefore, it follows that the two assignments {preempt1, . . . , preempti−1}
and {preempt1, . . . , preempti−1} must be different. We now have two cases:

Case 1: there exists at least one task τk ∈ hpi such that preemptk = F and preemptk = T .
This contradicts the inductive hypothesis: since τk is feasible with the assignment {preempt1, . . . ,
preemptk = F}, at step k the algorithm must have assigned preemptk = F .

Case 2: for all tasks τk ∈ hpi such that preemptk 6= preemptk, it holds preemptk =
T and preemptk = F . This contradicts the assumption that {τ1, . . . , τi−1} are schedulable
under {preempt1, . . . , preempti−1, preempti = F} but not under {preempt1, . . . , preempti−1,
preempti = F}: based on Lemmas 1, 2, 3, the slack of a task cannot decrease when either the
task itself or a higher priority task is executed non-preemptively.

Since neither case is possible, the inductive step follows.

�

41

Chapter 6

Partition Assignment

Following the resource partitioning mechanism introduced in Chapter 4, in this chapter we dis-
cuss how to assign partitions to tasks by introducing an optimization algorithm for the resource
partitioning problem. Due to the complexity of the problem, we decided to pursue an heuristic
algorithm based on a meta-optimization strategy, namely, Genetic Algorithms (GA). We first pro-
vide an overview of the heuristic framework. Then, we describe the genetic algorithm solution,
and finally we provide algorithms of different operators and their relevant details.

6.1 Heuristic Scheme

In order to develop a heuristic for our resource partitioning problem, we need to explore the
problem to find special properties which help us with a near-to-optimal solution. We tried to
exploit critical resource requirements for each task, in addition to tasks interferences.

In order to develop our heuristic, two important properties are as follows: (1) for each task,
we try to determine an assigned number of partitions which is a threshold, meaning that after
the threshold, there is little improvement in task computation time. Thus, we used that specific
critical partition number as an important property to develop our heuristic. (2) As discussed in the
previous Chapters 4 and 5, there exists security requirements for each task with regards to another
task in the system, introduced as noleak relation; accordingly, we extracted interferences of each
task with regards to their relevant values in noleak relation; the way of calculating interferences
will be described in Section 6.3.

We used GA to do optimization over the problem; the overall heuristic framework is illus-
trated in Figure 6.1.

42

Figure 6.1: Overview of heuristic based GA algorithm.

In Figure 6.1, the task interference of each of the tasks and critical number of partitions
will be defined in Section 6.3. Both of them are used to calculate the greedy local optimizer. In
addition, those two properties are also used in the GA mutation operator, described in the Section
6.5. The local optimizer computes an initial approximate solution that is used to initialize the
population of the genetic algorithm.

6.2 Genetic Algorithm

The partitioning GA is listed in Algorithm 2. According to the algorithm, input aNK is an initial
matrix {ai,k} of assigned partitions for each task. This value is generated by the local optimizer
and used for computing initial population.

In the algorithm, P (g) represents the current population, g is the generation number, Cc(g) is
the set of selected chromosomes created by the crossover operator, Cm(g) is the set of chromo-
somes derived by the mutation operator, and terminating condition is the condition which stops
the GA from iterating over the population. Our selected values for both of population and gen-
erations is equal to 5. In this work, the terminating condition is either the maximum number of
generations, or is based on the improvement in the fitness value, which is the cumulative value of

43

Algorithm 2 Cache Partitioning GA

Input:{aNK}
Output:{aNK}

1: g ← 0;
2: initialize P (g) using locally optimized aNK ;
3: while not terminating condition do
4: create Cc(g) from P (g) by crossover;
5: create Cm(g) from P (g) by mutation;
6: C(g) = Cc(g) ∪ Cm(g);
7: evaluate C(g);
8: g← g + 1;
9: end while

all the response times, whether the tasks are schedulable or not; for unschedulable task sets, we
might not have converged response times for some of the tasks, thus we considered them a very
large value than any response time, which is 100000000 ms in our GA configuration. Here, no
significant improvement means that the change in the fitness function for the best chromosome
is less than or equal to a predefined threshold, that we configured to be equal to 1e-6. After
terminating, the algorithm then outputs the partition assignment aNK with the best fitness.

6.3 Greedy Local Optimizer

The greedy local optimizer, shown in Algorithm 3, computes an initial partition allocation by
ordering tasks based on their caused interference and allocating to each task the set of parti-
tions with the smallest number of already-assigned tasks. More in details, ProtectionRanki is
calculated for each task τi as follows:

ProtectionRanki =
N∑
j=1

noleak(τi, τj), (11)

i.e., it represents the interference caused by the task in terms of the number of other tasks for
which a FT is required. As discussed in Section 6.1, PartitionNumberi represents the crit-
ical partition number for task τi; having more than the critical number of partitions does not
significantly decrement the computation time of the task. More in details:

PartitionNumberi = {a|ci(a)− ci(a+ 1) < ε}, (12)

44

Algorithm 3 Greedy Local Optimizer

Input:{N,K,noleak}
Output:{aNK}

1: calculate ∀i : ProtectionRanki;
2: calculate ∀i : PartitionNumberi;
3: ∀i, k : aNK(i, k) = F ;
4: sort tasks by non-increasing values of ProtectionRank;
5: for i = 1 . . . N do
6: SortedRanks← RankPartition(aNK ,N,K);
7: for k = 1 . . . PartitionNumberi do
8: aNK(i, SortedRanksk)← T ;
9: end for

10: end for

where ε is a small value (configured to be equal to 1ms in our evaluation).

After tasks are sorted by decreasing interference values, partitions are sorted using the re-
sults of the RankPartition procedure, described in Algorithm 4. This procedure calculates the
partition ranks based on their eligibility to be assigned to a task. The eligibility is determined in
terms of the number of tasks which are already assigned to a given partition. After calculations,
partitions are sorted non-decreasingly. Therefore, partitions with the lowest numbers of already
assigned tasks are chosen to be allocated to the requested tasks.

Algorithm 4 RankPartition

Input:{aNK ,N,K}
Output:{SortedRanks}

1: tmpRank← 0;
2: for k = 1 . . . K do
3: tmpRankk ←

∑
i=1...N

aNK(i, k)

4: end for
5: SortedRanks← list of partition indexes sorted by non-decreasing values of tmpRank;

Based on our evaluation in Chapter 8, the local optimizer is effective in providing a better
choice of partitions for each of the tasks, which significantly helps in decreasing the number
of flushes because there would be lower interferences between the tasks which are supposed to
occupy the same partition. As overviewed in Figure 6.1, the initial population calculated by

45

the heuristic will be fed to GA. By feeding such initial population of local optimized values, the
chance of finding the best solution can be increased. Alternatively, in Chapter 8 we also evaluated
the performance of the local optimizer alone without running the further GA optimization step.

6.4 Crossover Operator

The basic idea of a crossover operator is to generate a child (IndTaskPartition3) from two parents
(IndTaskPartition1 and IndTaskPartition2), using some randomized combination.

Algorithm 5 Crossover Operator

Input:{IndTaskPartition1,IndTaskPartition2}
Output:{IndTaskPartition3}

1: for i = 1 . . . N do
2: SelectionV ector← random binary string with K length;
3: for k = 1 . . . K do
4: if SelectionV ectork = 1 then
5: IndTaskPartition3i,k ← IndTaskPartition1i,k;
6: else
7: IndTaskPartition3i,k ← IndTaskPartition2i,k;
8: end if
9: end for

10: end for

According to Algorithm 5, we have a partition matrix of N ·K size. Two for loops are used
to generate a randomized bit string corresponding with each of the tasks and evaluate each task
against each partition, in order to decide to copy a bit from either parent; if the corresponding
bit of the string is 1, then the bit from the first parent will be chosen for the new child, otherwise
the second parent’s bit will be chosen. The SelectionV ector is a binary vector of generated
independent pseudorandom values using a uniform distribution.

6.5 Mutation Operator

Finally, Algorithm 6 shows the employed mutation operation. The threshold numbers of required
partitions for each task, namely PartitionNumber array, are given as static pre-computed val-
ues as discussed in Section 6.1. The array is used in the mutation operator to determine the

46

Algorithm 6 Mutation Operator

Input:{aNK ,PartitionNumber}
Output:{aNK}

1: for i = 1 . . . N do
2: P ← PartitionNumberi/K
3: for k = 1 . . . K do
4: with probability P, assign T to aNK(i, k), otherwise F ;
5: end for
6: end for

probability of having the required number of partitions for each of the tasks. In fact, our used
probability of allocating a partition to τi is equal to PartitionNumberi/K. The reason that this
method is exploited in mutation operator is related to the fact that GA is essentially based on
randomization that on one hand will help us with finding good solution in the evolutionary way,
but on the other hand might unbalance the number of assigned partitions to each of the tasks;
hence, potentially increasing a task’s execution time and decreasing the schedulability of the
system. Also, if more than required number of partitions are assigned to a task, it might increase
the overhead of resource flushing which might also cause a loss of schedulability. Therefore, this
functionality of mutation operator can generally help with the drawback of the randomization.

47

Chapter 7

Implementation

In this chapter, we provide an overview of the platform used to implement the discussed tech-
niques and constraints, explaining its main software and hardware components. In particular, we
implemented and tested a prototype case study based on the application described in Section 3.1.

Our implementation focuses on the processor cache, which is the most easily exploitable
“stateful” resource on the platform; we employ available hardware functionality to flush the
entire cache content (both L1 and L2). Here, we are assuming that the covert channel can take
advantage of cache line evictions, in the sense that the attacker can leak information from the
victim by tracking the overhead timing that an eviction causes. The partitioning implementation
is based on way-partitioning scheme for last-level cache (L2).

We selected for our implementation a Zedboard development board employing a Xilinx Zynq
System-on-a-Chip (SoC). The Zynq SoC comprises a dual-core ARM Cortex-A9 processors, a
PL310 cache memory controller (A9), and related peripherals. Since our research focuses on
single-core systems, we used only one of the available A9 cores.

The default system configuration comprises a 512 KB, 8-way associative level 2 cache; this
gives us a number of cache partitions K = 8, each with size 64 KB. For measurements, each
core features a 32-bit clock cycle counter (called CCNT) that we used to accurately count cpu
cycles in our experiments, and evaluate the performance in terms of timing.

In order to implement cache flushing and cache way partitioning in our system, we mostly
used Xilinx software tools to have direct control over hardware components. Specifically, in
order to do L2 cache flushing, we used functions which were implemented to invalidate and
clean cache L2. L2 cache flushing′s underlying implementation is, in order: (1) disables Write-
back and line fills, (2) finds the address with “XPS L2CC” base address and “Cache Invalidate

48

and Clean by Way” offset that is 0x07FC, (3) then writes 0x0000FFFF to that, (4) finally enables
Write-back and line fills.

For cache way partitioning, there are available methods as: “lock by master”, “lock by way”
and “lock by line”. We decided to use cache lock by way, since our platform is single-core and
accessing to ways rather than lines could meet our needs to lock particular ways and have some
partitioned cache resources. Unfortunately, we have not found an official Xilinx function to do
cache way locking, so we wrote our code in this order: (1) all maskable interrupts and exceptions
are disabled, (2) the single 32-bit lockdown register will be used to lock/unlock cache ways. The
register’s first eight least significant bits are represented for 8 available ways, and the rest of
24bits are reserved. By writing 1 to each bit, we lock the equivalent way. For example bit 0
is equivalent to way 0 and by setting that bit, we lock way 0. (3) After writing to the lockdown
register, all the interrupts and exceptions will be enabled.

We measured a time of 340µs for the whole cache flush. Based on such value, we estimated
that it would take 340/8=42.5µs for each cache way to be flushed, that is our definition of cft
for the partitioning mechanism. The value was measured by first filling the cache with dirty
(modified) cache lines; this forces the flush procedure to write back the entire cache content,
which represents the worst-case timing. Hence, we assumed a similar timing for a single cache
way reloading overhead, that is we set crt = cft.

Although, ARM Cortex-a9 provides an interesting feature called Trustzone which tries to
guarantee secure access to L2 cache lines and avoiding non-secure cache evictions, it cannot
protect cache memory from being a victim of complicated timing attacks such as covert channel.
In fact, in terms of timing attack possibility, there is no significant difference for a system with
or without Trustzone feature [3].

7.1 Hardware Components

To allow indoor experimentation, the UAV part of the platform comprises a combination of an
actual aerial vehicle and a Hardware-In-the-Loop (HIL) simulator [4]. The vehicle has 3 degrees
of freedom, with its actual position being fixed. The HIL component uses the vehicle′s dynamics
to simulate changes in position and returns a GPS-like positional signal to the ECU. The ECU
platform is based on a Xilinx FPGA using an ARM Cortex A9 processor core running at 667Mhz.

The HIL, as the tested hexacopter, was running on a Beagleboard development board. As part
of our implementation, we changed the hardware for ECU to run on a Zedboard development
board. In addition, ECU is running with FreeRTOS kernel rather than RTL kernel. More details
on the kernel is discussed in Section 7.3.

49

7.2 Software Components

As discussed in Chapter 4, to demonstrate the research, an example avionics case study has been
used. Figure 7.1 shows the main components of the case study [4].

The demonstrator has been implemented upon the control software, called Autopilot, of Hex-
acopter case study research project, developed in Real-Time Systems Lab (RESL) at the Univer-
sity of Waterloo [6] for emSYSCAN participants. The simulated plant, or HIL, in this case is
considered as a black box and fully responsible for sending valid sensor data with response to the
valid received actuation data, then system state will be calculated by the Autopilot application.

Figure 7.1: Hexacopter Components

The vehicle was tested as QNX and Real-Time Linux (RTL) implementations. Basically, the
case study consists of two parts: Autopilot and Real-time HIL system, each part running on sep-
arate Beagleboards. Each BeagleBoard has OMAP3530 System-on-a-Chip (SoC) and designed
with open source software development in mind. The QNX based system has been validated out-
doors and the RT-Linux based system with a QNX hardware-in-the-loop (HIL) module has been
in use as part of the online version of the platform. Our extended case study has focused on the
RT-Linux based Autopilot. Autopilot and HIL communicate through Universal Asynchronous
Receiver/Transmitter (UART) protocol. The hexacopter has been changed and also extended to
meet our research requirements, which is in line with the goal of the hexacopter project, that is
to enable researchers with a practical and tested platform to experiment and demonstrate their

50

models [4]. Our changes include hardware boards, operating system and adding more real-time
tasks up to Autopilot.

Table 7.1 summarizes the key timing parameters of the implemented tasks, as illustrated in
Figure 3.1. We report the cumulative worst-case execution time for all control tasks because they
run at the same frequency. Note that communication in the image and integrator subsystem can
use non-blocking buffers to avoid long blocking times.

Task Name Worst Case Timing(ms) Period(ms)
Software Control Tasks 2 20

Mission Planner 0.002 100
Encryption 3 42

Image Encoding 18 42
Image I/O 1.46 42

Network Manager 0.03 10

Table 7.1: case study timing parameters

7.3 Kernel Support

We implemented the described NLF mechanism by modifying the FreeRTOS real-time kernel.
FreeRTOS natively supports preemptive fixed-priority scheduling. We extended the task de-
scriptor to include preemptability information, and modified the scheduling function to avoid
rescheduling while a non-preemptive task is running. We then modified the context-switch func-
tion to determine whether a FT is required before executing a task. Our implementation is able to
perform the check in constant time as long as the number of tasks in the system is less than the bit-
width of the machine (32 bits for our hardware platform) by using bit-arrays encoded as integers.
In details, we maintain a binary array mustflush[i] which determines whether a FT is required
before executing task τi. The array is reset to 0 whenever a FT is executed. Whenever a task τj
is executed, we then update the array such that mustflush[i] ← mustflush[i]|noleak(τj, τi),
i.e., mustflush[i] is set to 1 if executing τj requires a FT for τi. Since the array is implemented
as an integer, we can perform the update in constant time using bit-wise logical operations.

To provide more details, in order to make task scheduler enable to trace security require-
ments, we extended TCB data structure to have a specific security requirement. This property is
initialized when a task is created. This security property, similar to other TCB properties, can be
globally accessed by the scheduler that indicates if the task is protected or not. In FreeRTOS ker-
nel, we also have the capability of sending parameters while creating the task, so we can send the

51

id of a task as a parameter at the task creation time. The parameters of each task will be stored
on top the stack of that specific task. This parameter will be used to check against the given
“noleak” relation in each context switch, in order to decide whether a cache flush is required or
not.

Cache Level 2 Flushing is fulfilled using Xilinx library function, called Xil L2CacheFlush
function. If the byte in cacheline has cached by the Data cache, then the cache line will be flagged
as modified (dirty), then the entire contents of the cacheline are written back to memory before
the line is invalidated [8], so it is guaranteed that cache data will not be lost.

Since L2 cache flush is implemented in the Xilinx official software tools, it technically guar-
antees the correctness of its functionality. In addition, because the L2 flushing is performed by
hardware output operation, called Xil Out32(u32 OutAddress, u32 Value) function, for a 32-bit
memory location by writing the specified Value to the the specified address [8], we can apprecia-
bly say that the cache flushing performs as fast as possible, that is very important for our system
that cache flushing is the only significant security overhead for threatening schedulability.

52

Chapter 8

Evaluation

To evaluate the effectiveness of the proposed mechanisms and schedulability analysis, we per-
formed a large number of simulations based on both our demonstrator example and sets of syn-
thetic tasks. This evaluation is divided to two parts: (1) Section 8.1 evaluates the flushing mech-
anism alone, without resource partitioning. In this case, each task uses the full resource (cache).
(2) Section 8.2 evaluates the combined partitioning and flushing mechanism (partitioned-aware
NLF mechanism).

8.1 Cache Flushing Approach

We evaluate the effects of the flushing approach alone. First, we discuss schedulability for our
described avionics case study. Then, we show simulation results based on synthetic tasks. Sim-
ulations are written in Java, using the IBM academic initiative version of CPLEX optimization
studio [23] to derive the graph bound.

8.1.1 Avionics Case Study

Based on the implementation discussed in Chapter 7, we used a cft value of 340µs for our
avionics case study. We then used our derived preemptability assignment and schedulability
analysis to assign preempti values and determine feasibility; note we assigned task priorities
based on Rate Monotonic (RM) ordering. We tested using the trivial bound, graph bound and
exact bound, as well as normal RM scheduling with no flushes. Table 8.1 shows results in

53

terms of preemptability assignment, which is the same for all algorithms, while Table 8.2 shows
response time results in terms of the maximum response time / period ratio for any task.

Sens. Laws Act. MP Net. AES JPEG I/O
F F F F F F T F

Table 8.1: Demonstrator: Preemptivity Assignment

Algorithm Max Response Time Ratio Min Period(ms)
RM (no flush) 64% 27
Exact (Z3) 75% 32
Graph 75% 32
Trivial 83% 36

Table 8.2: Demonstrator: Schedulability Results

All mechanisms result in a schedulable system, which corresponds to our observation running
the demonstrator. Response time ratio for the trivial bound is appreciatively worse than for the
graph bound; RM has the best schedulability but does not provide any security guarantees. We
also used the analysis to determine the minimum period at which the image subsystem could be
run while still remaining schedulable. Once again, results for the graph bound are better than
for the trivial bound. Finally, results for the exact bound matched the graph bound, although the
analysis took 7 minutes, whereas computing the graph bound took less than a second.

8.1.2 Synthetic Results

Table 8.3 summarizes the parameters used for the generation of the synthetic task sets used in our
evaluation. We generated 3000 task sets that fall into each utilization group, [0.02+0.1 · i, 0.08+
0.1 · i] for i = 0, . . . , 9, i.e., 300 sets per group. The base utilization of a task set is defined as
the total sum of the task utilizations. Each group is generated with the following three different
settings; the first 100 sets with the probability of noleak(τi, τj) for any pair of tasks being 10%,
the next 100 with the probability of 20%, and the last 100 sets with a probability of 50%.

Each input instance consists of [5, 20] tasks, each τi of which has a period pi ∈ [5ms, 100ms]
and an execution time ci ∈ [0.3ms, 3ms]; note that since we do not employ partitioning, there
is no need to specify the execution time as a function of number of partitions. The deadline of
each task is equal to its period, i.e., di = pi. Task priorities are assigned according to the Rate
Monotonic (RM) algorithm [29]. Except for the last set of experiments, the preemptiveness of

54

Parameter Value
Number of tasks, N [5, 20]
Task period, pi [5ms, 100ms]
Task execution time, ci [0.3ms, 3ms]
FT overhead, cft {0.1ms, 0.5ms}

Table 8.3: Experimental Parameters.

each task is assigned in a random manner. These task parameters are in line with the values
measured on the demonstrator platform where a typical FT execution time was 0.34ms (Section
8.1.1).

Evaluation of FT bound

We first evaluate our (approximate) FT bound by comparing it with the exact bound found by
the SMT solver as well as the trivial bound. For each task set, we first calculate the worst-case
response time of the lowest-priority task using the graph-based analysis from Section 5. Then,
we feed the information on the number of higher priority jobs and the no-leak matrix to an SMT
solver so that it can calculate the exact bound on the number of FT invocations. The results are
based on the calculation of the number of flushes that occur during the worst-case busy period of
the lowest-priority task.

Figure 8.1 shows the geometric mean of the number of flushes (that occur during the lowest-
priority task’s busy period) found by the graph-based approximation (Graph) and by the trivial
bound (Trivial) normalized to the exact bound, Z3. As we can see from the results, our graph-
based approximation method computes a tight bound on the number of flushes irrespective of
the percentage of no-leak relation. On average, this number is 1% or 2% more compared to the
exact bound. On the other hand, the trivial bound is often three times the exact bound. Note that
the trivial bound tends to be more pessimistic when the probability of noleak(τi, τj) = T is low,
since it is only based on the number of context-switches and ignores the no-leak relation itself.

Evaluation of Schedulability

We also evaluated the effects of the graph-based and trivial bounds on the schedulability of task
sets by varying the flush times, cft, as well as the no-leak percentage. The results of these
experiments are shown in Figures 8.2, 8.3 and 8.4.

The X-axis plots the utilization bins for the experiments while the Y-axis represents the total
percentage of schedulable instances for task sets for each bin (100 tasks per bin). The graphs

55

10%	 20%	 50%	
Z3	 1.000	 1.000	 1.000	
Graph	 1.013	 1.018	 1.015	
Trivial	 2.824	 1.879	 1.386	

Z3	 Z3	 Z3	 Graph	 Graph	 Graph	

Trivial	

Trivial	

Trivial	

0.000	

0.500	

1.000	

1.500	

2.000	

2.500	

3.000	

Av
er
ag
e	
of
	 N
or
m
al
iz
ed

	 N
0
	

Percentage[noleak(i,j)=true]	

Figure 8.1: Flush Task Bounds as calculated by the SMT solver, the Graph-based Analysis and
the Trivial Analysis

represent the schedulability of (a) no flushes (RM), (b) the number of flushes computed by the
graph-based approximation (Graph) and (c) the trivial bound for the number of flushes (Trivial).
The graphs also show the effects of varying the FT execution times (the different values of Cft)
and the percentage of noleak(τi, τj) for each experiment.

Figures 8.2 and 8.3 show the two extreme cases i.e., when the difference in the schedulability
between ‘Graph’ and ‘Trivial’ is the largest and the smallest. The graph-based method outper-
forms the trivial bounds when the no-leak percentage is low since the latter is highly pessimistic
(Figure 8.1). The schedulability of ‘Trivial‘ further decreases as the overhead for flushing, cft,
increases. On the other hand, the difference becomes smaller as the no-leak percentage becomes
larger (and thus the pessimism of ‘Trivial’ becomes smaller) and the flushing time becomes
shorter. Figure 8.3 shows the case when the performance of the graph-based method is similar
to that of ‘Trivial’. These figures also show that (i) schedulability drops as cft increases because
of the extended blocking times due to longer flushes and, (ii) schedulability drops as the no-leak
percentage increases because of the greater chance of a flush occurring during a context switch.

Figure 8.4 shows behavior that lies between the two extreme cases presented above. It might
even be a ‘typical’ case where 20% of the tasks have the noleak relationship between them to

56

0%	

20%	

40%	

60%	

80%	

100%	

120%	

0.0-‐-‐0.1	 0.1-‐-‐0.2	 0.2-‐-‐0.3	 0.3-‐-‐0.4	 0.4-‐-‐0.5	 0.5-‐-‐0.6	 0.6-‐-‐0.7	 0.7-‐-‐0.8	 0.8-‐-‐0.9	 0.9-‐-‐1.0	

Pe
rc
en

ta
ge
	 o
f	 S

ch
ed

ul
ed

	 In
st
an

ce
s	

Base	 U5liza5on	

C9	 =	 5	 and	 Percentage[noleak(i,j)=true]	 =	 10%	

Graph	

Trivial	

RM	

Figure 8.2: Schedulability of Task Sets: Graph-based Bounds vs. Trivial Bounds [FT Overheads
= 5, noleak = 10%]

be true and the flush time overheads are around 0.5ms. As expected, our graph-analysis based
bounds outperform the trivial bounds by being able to schedule more instances of task sets.

Preemptability Assignment

Finally, we performed synthetic experiments to evaluate the effect of task preemptability. The
results are shown in Figure 8.5, where we plot the total percentage of schedulable task sets as
a function of the utilization bin, similar to the previous experiment. The three graphs represent
the optimal assignment using Algorithm 1 (Optimal), the case where all tasks are either pre-
emptive (P) or non-preemptive (NP), and using random assignment (Random). Note that while
NP performs better than P on average for this specific parameter assignment, in general the two
approaches are incomparable, i.e., there are task sets which are schedulable by P but not NP and
vice-versa. Being optimal, the assignment generated by Algorithm 1 performs better than either.

57

0%	

20%	

40%	

60%	

80%	

100%	

120%	

0.0-‐-‐0.1	 0.1-‐-‐0.2	 0.2-‐-‐0.3	 0.3-‐-‐0.4	 0.4-‐-‐0.5	 0.5-‐-‐0.6	 0.6-‐-‐0.7	 0.7-‐-‐0.8	 0.8-‐-‐0.9	 0.9-‐-‐1.0	

Pe
rc
en

ta
ge
	 o
f	 S

ch
ed

ul
ed

	 In
st
an

ce
s	

Base	 U5liza5on	

C9	 =	 1	 and	 Percentage[noleak(i,j)=true]	 =	 50%	

Graph	

Trivial	

RM	

Figure 8.3: Schedulability of Task Sets: Graph-based Bounds vs. Trivial Bounds [FT Overheads
= 1, noleak = 50%]

8.2 Cache Partitioning Approach

We next evaluate the combined partitioning and flushing approach discussed in Section 4.3. The
partitioning optimization framework is run in Matlab [31], whereas the simulations are integrated
with Java codes and CPLEX as discussed in the previous section.

8.2.1 Cache-Aware Worst-Case Execution Time

To properly evaluate our partitioning mechanism, it is essential to construct a reasonable model
for the worst-case execution time ci(ki) of each task as a function of the number of assigned par-
titions ki. In the case of cache resource, reducing the number of assigned partitions, and hence
the size of usable cache, can increase the number of capacity misses suffered by the task. In
turn, this leads to an increase in its worst-case execution time. While the effect can be directly
observed by running benchmarks on our implemented platform, to conduct simulations on syn-
thetic tasks we need an analytical model to randomly generate realistic ci(ki) curves for a variety
of different tasks.

We found the analytical model described in [46] to be close to our needs; the model has been
previously employed in related work on cache-aware real-time scheduling [13]. More in details

58

0%	

20%	

40%	

60%	

80%	

100%	

120%	

0.0-‐-‐0.1	 0.1-‐-‐0.2	 0.2-‐-‐0.3	 0.3-‐-‐0.4	 0.4-‐-‐0.5	 0.5-‐-‐0.6	 0.6-‐-‐0.7	 0.7-‐-‐0.8	 0.8-‐-‐0.9	 0.9-‐-‐1.0	

Pe
rc
en

ta
ge
	 o
f	 S

ch
ed

ul
ed

	 In
st
an

ce
s	

Base	 U5liza5on	

C9	 =	 5	 and	 Percentage[noleak(i,j)=true]	 =	 20%	

Graph	

Trivial	

RM	

Figure 8.4: Schedulability of Task Sets: Graph-based Bounds vs. Trivial Bounds [FT Overheads
= 5, noleak = 20%]

and similar to [13], we use MissRate(k) function that is the L2 cache miss rate which is in the
range of [0, 1] for a task with k allocated cache ways:

MissRate =

1−

k.(1− 1
θ
)

A1
−A2

1−A2
ifk ≤ A1

Aθk(1−θ)
θ

−A2

1−A2
ifA1 < k ≤ k0

0 ifk0 < k

A1 = Aθ/(θ−1)

A2 =
Aθ

θ
(k0)(1−θ) (13)

In the above functions, θ is the locality parameter and is inversely proportional to the probability
of making large jumps, the probability that a memory access visits a new cache line diminishes
as the locality increases. According to [46], based on the studied traces, the range of [1.5, 3] can
be reasonable. (k0) is the size of last level of cache memory, A1 is critical cache sizes for, i.e.,

59

0%	

20%	

40%	

60%	

80%	

100%	

120%	

0.0-‐-‐0.1	 0.1-‐-‐0.2	 0.2-‐-‐0.3	 0.3-‐-‐0.4	 0.4-‐-‐0.5	 0.5-‐-‐0.6	 0.6-‐-‐0.7	 0.7-‐-‐0.8	 0.8-‐-‐0.9	 0.9-‐-‐1.0	

Pe
rc
en

ta
ge
	 o
f	 S

ch
ed

ul
ed

	 In
st
an

ce
s	

Base	 U5liza5on	

C9	 =	 5	 and	 Percentage[noleak(i,j)=true]	 =	 20%	

Op1mal	

All	 NP	

Random	

All	 P	

Figure 8.5: Preemptivity Assignments [Optimal vs. All Non-Preemptive vs. All Preemptive vs.
Random]

it is working set size. Based on [46], if the cache size is larger than the working-set size, θ can
describe the miss rate.

To set the remaining parameters to reasonable values, we conducted experiments using the
PIN tool [30] on memory intensive benchmarks of some commonly used suits, such as: StreamIt,
MediaBench, MiBench and SPEC2006. Based on these experiments, Table 8.4 summarizes the
parameters used for our simulations. The next paragraphs provide more details on the employed
methodology.

A(KB) θ k0(KB) Cache Memory References
[1,5] [1.5,3] [A1,512] [2e+4,5e+4]

Table 8.4: Parameters of simulated tasks

Using PIN tool, we draw the figures of experimentation results of cache miss ratios for dif-
ferent cache sizes, examples can be found in Figures 8.6 and 8.7. In order to instrument through
PIN toolset, we configured cache related configuration codes to meet our the characteristics of
our hardware platform described in Chapter 7; therefore, cache line size is defined to be 32 B,
cache sizes for both L1 Data and Instruction are set for 32 KB, cache way associativity for L1
and L2 are set as 4 and 8, cache L2 is set to be unified, and the number of sets for both of L1 and

60

L2 is computed as CacheSize/(LineSize∗Associativity). To instrument for different number
of partitions and find the total cache miss ratio of read+write request from/to L2 cache, we only
needed to change the total cache size and cache associativity to run the tools for a benchmark to
capture the relevant traces.

After experimenting on some benchmarks running with different size of unlocked cache
ways, we found that there are some typical behaviours that can be seen in all the experiments.
We found that, the cache aware execution time is composed of two sections, as can be observed
in Figures 8.6 and 8.7. They have significant drop points for their miss ratio, after which we
have a flat line (less than 3-4% changes), meaning that there will not be a significant change in
their miss ratio reductions (or execution time) even by providing more cache size to the task.
We found those points as ways to find critical cache sizes (number of partitons) for each of the
tasks, as discussed in Chapter 6. The corresponding trace data for some of the benchmarks can
be found in Table 8.5.

Benchmark Cache Refs Critical Cache Size (KB) MinMissRatio%
Anagram 49668 192 25.94

Epic 32669 192 36.44
h264decode-block 28461 256 36.44

Sha 35795 192 33.44
gsm-encode 29508 192 36.96

Table 8.5: Benchmarks Experimental Data

Figure 8.6: Anagram Benchmark task partitioning.

61

Figure 8.7: H264DEC Benchmark task partitioning.

The memory traces of some of the benchmarks are also listed in Table 8.6 which shows the
total and unique number of address for read and write memory requests.

Benchmark Total Unique
Anagram 6067821 23771

Epic 17214190 23598
h264decode-block 1526038 23905

Sha 65534 1735

Table 8.6: Benchmarks Experimentations for Memory Traces

After obtaining data based on Table 8.5, we can also calculate execution times using the same
equation as in [13]:

ci(k) = (1−MissRate(k)) ∗ CacheRef ∗HitDelay+

MissRate(k) ∗ CacheRef ∗MissDelay (14)

In order to generate ci(k) for each of the synthetic tasks, CacheRef is randomly generate
from the range of Cache Memory References which is indicated in 8.4, and MissRate(k) is
computed by Equation 13. For calculating the values of HitDelay and MissDelay, since they
are platform dependent, we used the datasheets of ARM A9 and PL310 cache controller to find
the approximate cpu cycles of access and miss latencies for L2 cache and DDR3. The derived
numbers for HitDelay and MissDelay are, in order, 19 ns and 73 ns.

62

8.2.2 Synthetic Results

Table 8.7 summarizes the parameters used for the synthetic task set generations. We evaluate a
system with K = 8 partitions, similar to our implemented platform. Some of the parameters,
such as: number of tasks and task period are the same as in Table 8.3. In addition, cft and crt
are similarly the same, and the only difference is that, since here we wanted to consider a single
partition overhead, we divided the relevant cft of Table 8.3 by the number of partitions. The
cache-aware worst-case execution time ci(k) is derived as discussed in the previous section; the
table reports the range of values observed after running 1 million traces of task generations.

Parameter Value
Number of tasks, N [5, 20]
Task period, pi [5ms, 100ms]
Task execution time, ci(k) [0.24ms, 2.8ms]
FT overhead, cft {0.025ms, 0.062ms}
Reload overhead, crt {0.025ms, 0.062ms}

Table 8.7: Experimental Parameters.

Regarding experiments, 1000 task sets have been generated distributed to different utilization
intervals as [i + 0.1, (i + 0.1) + 0.1) for i = 0, ..., 9, meaning that there are 100 incorporated
synthetic task sets for each of the points in the following experimental figures. The deadline of
each task is still equal to its period as before, i.e., di = pi. The probability of noleak values to
be true is varied between 10% and 80%. Results are illustrated in Figures 8.8, 8.10, 8.11, 8.12,
8.13, and 8.14 based on the percentage of schedulable task sets.

In order to better evaluate our GA optimization solution, we compare against three other ap-
proaches, namely: Greedy, Full Shared Partitioning, Randomized. The Greedy approach consists
of running the local optimized described in Section 6.3 without the further GA optimization step.
In the Full Shared Partitioning approach, each task uses all partitions available in the system, i.e.,
this algorithm is conceptually the same as the previous approach in Section 8.1. It is expected to
show the worst performance, since we do not take advantage of resource partitioning to reduce
the flushing overhead. Finally, in the Randomized case, we simply evaluate a fixed number of
randomized partitioning assignments. This algorithm can be a good evaluation if our GA re-
sults are better solution than a trivial randomization since GA also works within the underlying
principle of randomization. The number of randomized values is considered proportional to the
maximum number of loops which are required to find a good solution in GA algorithm, that is
equal to (sizeofpopulation)∗ (numberofgenerations+1); since we have population = 5 and
generations = 5, the maximum of random generations for Randomized case will be equal to 30.

63

The randomized bit strings are pseudorandom, independent values with uniform distribution. In
fact, the number of iterations for GA algorithm is variable, since a good solution is found as the
stop criteria has been met; in the Randomized case, the algorithm might also be stopped earlier
(without trying all possible number of randomized aNK) as it found a scheduled case.

Figure 8.8: Synthetic Cache Partitioning Results. CFT=0.025 ms , NoLeak=10%

After observing the results of GA against Randomized, we have found that as the probability
of noleak true values increases, the utilization of Randomized algorithm will get worse than
GA. In fact, for the higher number of noleak true values, more cache flushes are required and
since tasks are randomly assigned to partitions, more partitions might happen to flush if they are
already allocated to the tasks which need to be protected. Figures 8.12 and 8.14 can clearly show
those distinctions.

For the larger values of FT and Reload overheads, we can observe different performance
for GA and solely Greedy results. It explains that for those overheads we need to have more
iterations to find better partitions for each of the tasks, and being decided once (greedily) on the
task partition allocation based on the number of required partitions with regards to tasks′ mutual
security protections, is not enough to have a good solution. Figures 8.11 and 8.14 illustrate this
behavior.

64

Figure 8.9: Timing vs. Schedulability. CFT=0.025 ms , NoLeak=50%

Concerning the run-time of the algorithms, there is a significant difference in two extremes,
one is FullSharedPartitioning algorithm which finds an answer in less than 10 seconds and
another one is GA algorithm which might take 210 seconds to find a good answer. The compar-
ative Figure 8.9 illustrates the timing to achieve one solution against the schedulability ratio for
utilizations between 0.8-1.0 with overhead = 0.025ms and noleak = 50%, running on a Intel
processor with 7 cores and 3.4 GHz frequency.

65

Figure 8.10: Synthetic Cache Partitioning Results. CFT=0.025 ms , NoLeak=50%

Figure 8.11: Synthetic Cache Partitioning Results. CFT=0.025 ms , NoLeak=80%
66

Figure 8.12: Synthetic Cache Partitioning Results. CFT=0.062 ms , NoLeak=10%

Figure 8.13: Synthetic Cache Partitioning Results. CFT=0.062 ms , NoLeak=50%
67

Figure 8.14: Synthetic Cache Partitioning Results. CFT=0.062 ms , NoLeak=80%

68

Chapter 9

Conclusions

This research explored some generalized solutions on the idea of integrating security-based con-
straints with hard RTSs using real-time task scheduling. The solutions have been demonstrated
in theory, using extensive simulations, and also with implementation and running realistic tasks
from different sub-systems. We believe that the whole work, including the previous works [33]
and [36], is a first step towards helping researchers of real-time systems with evaluating their
hard real-time systems against the cost of having security constraints.

As observed in Chapter 8, we evaluated two approaches of resource flushing and resource
partitioning. The results show that resource partitioning can lead to lower overhead, hence
improving performance in terms of task schdulability for hard RTSs. In addition, the devised
optimization solution for the resource partitioning approach shows relevant improvements in
comparison with trivial heuristics and the non-partitioned case. All simulation results are based
on using the last level of cache memory as the partitioned resource in a single-core processor
system, and use parameters derived from our implementation and application case study.

We believe that the solutions discussed in this work are not exclusively for cache, since infor-
mation leakage possibility also exists through other shared physical resources, such as DRAMs
or I/O bus. For example, I/O buses could be vulnerable to information leakage, in such a way
that a previously run task might have affect the timing that a new task required to access the
bus [34]. Also, since DRAM controllers handle an open row mechanism which resembles cache
functionalities [49], our mechanism might also be applied to information leakage through DRAM
controllers.

As mentioned, all the demonstrations of the security techniques have been applied to a single-
core processor, since we wanted to concentrate on the correctness and effectiveness of the solu-
tions on the simplest available platform. However, modern systems, even in the real-time domain,

69

are progressively moving towards the adoption of multi-core processors or multi-processor ar-
chitectures; thus, extending this work to such architectures would be a very relevant contribution.

A second worthwhile extension would be to explicitly demonstrate a security attacks, in the
sense of information leakage. While cache-based attacks have been shown in the literature [26,
37, 53], including the ability to recover cryptographic keys [53], it would be relevant to quantify
the amount and type of information that can be extracted by an attacker on our implemented
platform with and without the proposed security mechanisms. Finally, there are some relevant
open theoretical questions that have not been answered in this research, such as computational
complexity bounds on the optimal solutions for the scheduling and partitioning problems.

70

References

[1] http://www.aosabook.org/en/freertos.html. Accessed: 2015-03-30.

[2] ARM Cortex A9 official technical reference. Accessed: 2015-03-30.

[3] ARM Security Technology: Building a Secure System using TrustZone Technology. Ac-
cessed: 2015-04-30.

[4] Experimenting For Everyone With a Hexacopter: Getting Practical Data for your Research.
Accessed: 2015-03-30.

[5] FreeRTOS Official. http://freertos.org. Accessed: 2015-03-30.

[6] Real-time Systems Lab (RESL), university of Waterloo . Accessed: 2015-03-30.

[7] W32.Stuxnet Dossier. Accessed: 2015-05-10.

[8] Xilinx OS and Libraries Document Collection (UG643). Accessed: 2015-03-30.

[9] Zynq-7000 AP SoC Technical Reference Manual, UG585 (v1.8.1) September 19, 2014.
Accessed: 2015-03-30.

[10] Quazi N Ahmed and Susan V Vrbsky. Maintaining security in firm real-time database
systems. In Computer Security Applications Conference, 1998. Proceedings. 14th Annual,
pages 83–90.

[11] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathematical founda-
tions. Technical report, DTIC Document, 1973.

[12] Enrico Bini and Giorgio C Buttazzo. Schedulability analysis of periodic fixed priority
systems. Computers, IEEE Transactions on, 53(11):1462–1473, 2004.

71

http://www.aosabook.org/en/freertos.html
http://freertos.org

[13] Bach Duy Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact of cache partition-
ing on multi-tasking real time embedded systems. In Embedded and Real-Time Computing
Systems and Applications, 2008. RTCSA’08. 14th IEEE International Conference on, pages
101–110.

[14] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms
and applications, volume 24. Springer Science & Business Media, 2011.

[15] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al.
Comprehensive experimental analyses of automotive attack surfaces. In USENIX Security
Symposium. San Francisco, 2011.

[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–
340, Berlin, Heidelberg, 2008. Springer-Verlag.

[17] European Organisation for Civil Aviation Electronics. DO-178B: Software Considerations
in Airborne Systems and Equipment Certification, Dec 1992.

[18] Nicolas Falliere, Liam Murchu, and Eric Chien (Symantec). W32.stuxnet dossier.
http://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_dossier.pdf, 2011.

[19] Rich Goyette. An analysis and description of the inner workings of the freertos kernel.
Carleton University, 5, 2007.

[20] Northrup Grumman. RePLACE. http://www.northropgrumman.com/
Capabilities/RePLACE/Pages/default.aspx.

[21] W-M Hu. Lattice scheduling and covert channels. In Research in Security and Privacy,
1992. Proceedings., 1992 IEEE Computer Society Symposium on, pages 52–61. IEEE,
1992.

[22] Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of computer security,
1(3):233–254, 1992.

[23] IBM ILOG. Cplex optimization studio. URL: http://www-01. ibm.
com/software/commerce/optimization/cplex-optimizer, 2014.

72

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.northropgrumman.com/Capabilities/RePLACE/Pages/default.aspx
http://www.northropgrumman.com/Capabilities/RePLACE/Pages/default.aspx

[24] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem: System-level protec-
tion against cache-based side channel attacks in the cloud. In USENIX Security symposium,
pages 189–204, 2012.

[25] David Kleidermacher and Mike Kleidermacher. Embedded systems security: practical
methods for safe and secure software and systems development. Elsevier, 2012.

[26] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in Cryptology–CRYPTO′96, pages 104–113. Springer, 1996.

[27] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern automobile. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 447–462.

[28] Man Lin, Li Xu, Laurence Tianruo Yang, Xiao Qin, Nenggan Zheng, Zhaohui Wu, and
Meikang Qiu. Static security optimization for real-time systems. Industrial Informatics,
IEEE Transactions on, 5(1):22–37, 2009.

[29] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In ACM Sigplan Notices, volume 40,
pages 190–200. ACM, 2005.

[31] Mathworks Matlab. Simulink. MathWorks Inc., Version, 7(0), 2008.

[32] Sibin Mohan, Stanley Bak, Emiliano Betti, Heechul Yun, Lui Sha, and Marco Caccamo.
S3a: secure system simplex architecture for enhanced security of cyber-physical systems.
arXiv preprint arXiv:1202.5722, 2012.

[33] Sibin Mohan, Man Ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba. Real-time systems se-
curity through scheduler constraints. In Real-Time Systems (ECRTS), 2014 26th Euromicro
Conference on, pages 129–140.

[34] Min-Young Nam, Rodolfo Pellizzoni, Lui Sha, and Richard M Bradford. Asiist: Applica-
tion specific i/o integration support tool for real-time bus architecture designs. In Engineer-
ing of Complex Computer Systems, 2009 14th IEEE International Conference on, pages
11–22.

73

[35] James B Orlin. A polynomial time primal network simplex algorithm for minimum cost
flows. Mathematical Programming, 78:109–129, 1997.

[36] Rodolfo Pellizzoni, Neda Paryab, Man Ki Yoon, Sibin Mohan, Stanley Bak, and Rakesh
Bobba. A generalized model for preventing information leakage in hard real-time systesm.
In Real-Time and Embedded Technology and Applications (RTAS), 2015 21st. IEEE, 2015.

[37] Colin Percival. Cache missing for fun and profit, 2005.

[38] Derek Reinhardt. Certification criteria for emulation technology in the australian defence
force military avionics context. In Eleventh Australian Workshop on Safety Critical Systems
and Software - Volume 69, SCS ’06, pages 79–92, Darlinghurst, Australia, 2006.

[39] Daniel P Shepard, Jahshan A Bhatti, and Todd E Humphreys. Drone hack. GPS World,
23(8):30–33, 2012.

[40] Weidong Shi, Hsien-Hsin S Lee, Laura Falk, and Mrinmoy Ghosh. An integrated frame-
work for dependable and revivable architectures using multicore processors. In ACM
SIGARCH Computer Architecture News, volume 34, pages 102–113. IEEE Computer So-
ciety, 2006.

[41] Joon Son and J Alves-Foss. Covert timing channel analysis of rate monotonic real-time
scheduling algorithm in mls systems. In Information Assurance Workshop, 2006 IEEE,
pages 361–368.

[42] Sang H Son. Supporting timeliness and security in real-time database systems. In Real-
Time Systems, 1997. Proceedings., Ninth Euromicro Workshop on, pages 266–273. IEEE.

[43] Sang Hyuk Son, Craig Chaney, and Norris P Thomlinson. Partial security policies to sup-
port timeliness in secure real-time databases. In Security and Privacy, 1998. Proceedings.
1998 IEEE Symposium on, pages 136–147.

[44] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. Secure program execution
via dynamic information flow tracking. In ACM Sigplan Notices, volume 39, pages 85–96.
ACM, 2004.

[45] Hugo Teso. Aircraft hacking. In HITB Security Conference, Amsterdam, The Netherlands,
2013.

[46] Dominique Thiebaut, Joel L. Wolf, and Harold S Stone. Synthetic traces for trace-driven
simulation of cache memories. Computers, IEEE Transactions on, 41(4):388–410, 1992.

74

[47] Marcus Volp, Benjamin Engel, C Hamann, and Hermann Hartig. On confidentiality-
preserving real-time locking protocols. In Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), 2013 IEEE 19th, pages 153–162.

[48] Marcus Völp, Claude-Joachim Hamann, and Hermann Härtig. Avoiding timing channels
in fixed-priority schedulers. In Proceedings of the 2008 ACM symposium on Information,
computer and communications security, pages 44–55.

[49] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case analysis of dram latency
in multi-requestor systems. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th,
pages 372–383.

[50] Tao Xie and Xiao Qin. Improving security for periodic tasks in embedded systems through
scheduling. ACM Transactions on Embedded Computing Systems (TECS), 6(3):20, 2007.

[51] Patrick Meumeu Yomsi and Yves Sorel. Extending rate monotonic analysis with exact cost
of preemptions for hard real-time systems. In Real-Time Systems, 2007. ECRTS’07. 19th
Euromicro Conference on, pages 280–290. IEEE, 2007.

[52] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. Securecore: A
multicore-based intrusion detection architecture for real-time embedded systems. In Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th,
pages 21–32.

[53] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-vm side chan-
nels and their use to extract private keys. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 305–316.

[54] Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan. Time-based
intrusion detection in cyber-physical systems. In Proceedings of the 1st ACM/IEEE Inter-
national Conference on Cyber-Physical Systems, pages 109–118. ACM, 2010.

75

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Problem Statement
	Contributions
	Thesis Organization

	Background and Literature Review
	Background
	Security Problem
	FreeRTOS
	Genetic Algorithm

	Related Work
	Security and Real-Time Task Scheduling

	Security Model
	Case Study

	Security Mechanisms
	Task Model
	Resource Flushing
	Impact on Scheduling

	Resource Partitioning

	Schedulability Analysis
	Exact FT Bound
	Approximated FT Bound
	Optimal Preemptivity Assignment

	Partition Assignment
	Heuristic Scheme
	Genetic Algorithm
	Greedy Local Optimizer
	Crossover Operator
	Mutation Operator

	Implementation
	Hardware Components
	Software Components
	Kernel Support

	Evaluation
	Cache Flushing Approach
	Avionics Case Study
	Synthetic Results

	Cache Partitioning Approach
	Cache-Aware Worst-Case Execution Time
	Synthetic Results

	Conclusions
	References

