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Abstract

Automated remote sensing image interpretation has been investigated for more than a
decade. In early years, most work was based on the assumption that there are sufficient
labeled samples to be used for training. However, ground-truth collection is a very tedious
and time-consuming task and sometimes very expensive, especially in the field of remote
sensing that usually relies on field surveys to collect ground truth. In recent years, as the
development of advanced machine learning techniques, remote sensing image interpretation
with limited ground-truth has caught the attention of researchers in the fields of both
remote sensing and computer science.

Three approaches that focus on different aspects of the interpretation process, i.e.,
feature extraction, classification, and segmentation, are proposed to deal with the limited
ground truth problem. First, feature extraction techniques, which usually serve as a pre-
processing step for remote sensing image classification are explored. Instead of only
focusing on feature extraction, a joint feature extraction and classification framework
is proposed based on ensemble local manifold learning. Second, classifiers in the case
of limited labeled training data are investigated, and an enhanced ensemble learning
method that outperforms state-of-the-art classification methods is proposed. Third, image
segmentation techniques are investigated, with the aid of unlabeled samples and spatial
information. A semi-supervised self-training method is proposed, which is capable of
expanding the number of training samples by its own and hence improving classification
performance iteratively. Experiments show that the proposed approaches outperform state-
of-the-art techniques in terms of classification accuracy on benchmark remote sensing
datasets.
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Chapter 1

Introduction

1.1 Overview

Remote sensing is the acquisition of information about the Earth’s surface by the
electromagnetic energy emitted by or scattered from the surface, using sensors installed
on airplanes or satellites [98]. Compared to site observation, remote sensing technology
enables real-time collection of data on the surface in a large scale, especially in dangerous
and inaccessible areas. Remote sensing imagery has been widely used in a variety
of terrestrial, oceanographic, and atmospheric applications such as natural resource
management, sea-ice monitoring, natural hazard assessment, etc. According to the Union
of Concerned Scientists satellite database [49], the total number of operating satellites was
1,265 by January 31, 2015, including 309 satellites for earth observation.

Remote sensing systems can be divided into passive sensors and active sensors. Passive
sensors receive energy that is naturally available, such as sunlight and thermal radiation
that is emitted or reflected by the objects on the Earth’s surface or in the atmosphere. The
passive imagery can be further divided based on the number of spectral bands provided by
the imaging system, such as panchromatic, multispectral, and hyperspectral imagery. Each
spectral band covers a narrow wavelength range of the electromagnetic spectrum including
visible radiation, infrared, and microwave. Active sensors, instead, provide their own
energy source for illumination by emitting radiation directly to the target to be investigated.
A representative active sensor is synthetic aperture radar (SAR), which is a microwave
remote sensing technology that uses synthetic antenna aperture to create finer resolution
imagery.
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The key to make the imagery created by all these sensors useful is the effective
conversion from the quantized pixel values of an image into some values that have physical
meanings or some properties of the surface being sensed [98]. Usually a thematic map
is finally created to display the geographical distributions of a specific phenomenon [98],
such as land surface elevation and ice concentration. The most direct thematic map from
a remote sensing imagery is a surface cover map which displays the existing land or marine
covers in the area. The process of identifying objects based on the corresponding locations
of pixels in the imagery is called interpretation.

So far, most of the interpretation tasks for remote sensing imagery are still performed
manually. Some tasks require the interpretation of the entire image with very high
accuracy, which usually take considerable time and efforts even for an experienced human
interpreter. For some other tasks, even though the pixelwise mapping is not required,
efficient automated mapping techniques are still valuable. Take the interpretation of sea
ice imagery as an example. An ice expert first divides an image into multiple irregular
polygons. The boundaries of those polygons are often between regions belonging to different
ice types, and the number of classes in a single polygon can be reduced to be less than the
number of classes in the whole image. Then, an egg code [37] is created for each polygon,
recording the total concentration of ice, different ice types (stages of development), the
concentration of each type, and the floe size in each type. This is sometimes not accurate
because the concentration is estimated by the ice experts. The accuracy is dependent on
the experience of the experts. Sometimes, the ice maps are inconsistent among different
ice experts [72], in which case automated or semi-automated methods can help ice experts
generate more accurate mapping with little or no inter-operator bias.

1.2 Motivation and research objectives

This thesis addresses the automated interpretation of remote sensing imagery with limited
label information. The main research objective is to develop algorithms that can improve
classification accuracy using limited labeled training data. Recently, the advancing imaging
techniques of optical sensors have facilitated remote sensing image analysis by abundant
images with rich spatial, spectral, and temporal information. Also, the development of
data processing and data analysis technologies such as image processing and machine
learning enable the fast acquisition of useful information from images with little or no
human intervention.

Considering the huge volume of remote sensing images, it is necessary to develop
automated approaches for remote sensing image interpretation. Over the past decade, a
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lot of automated interpretation algorithms have been proposed for various types of remote
sensing imagery. Many of these methods were developed based on an assumption that
there are sufficient labeled samples used for training. However, ground truth is usually
collected by field survey, which is expensive and sometimes very difficult to access in the
remote sensing community. Consider the sea ice imagery as an example. The backscatter
characteristics and location of sea ice change very quickly, so that the validation set may
sometimes be inconsistent with the images even in a day. Even without any field survey,
the manual delineation of ground truth on a remote sensing image of large size is very
tedious and time-consuming. Moreover, due to the Hughes effect [64], large training sets
are usually required for supervised methods, especially on the high-dimensional data such
as hyperspectral data. Therefore, the difficulty of obtaining sufficient and accurate ground
truth is a bottleneck of the automated interpretation of remote sensing imagery.

In recent years, the small-sample-size (SSS) problem for remote sensing image
interpretation has attracted the interest of researchers in various fields including remote
sensing, machine learning, and computer vision. The methods that have been proposed
mainly focus on one or more of the following techniques:

• Feature extraction, or dimension reduction techniques that seek more discriminative
features, usually in lower dimensionality compared to the original feature space using
supervised, semi-supervised, or unsupervised techniques.

• Classification techniques that are capable of dealing with limited labeled training
samples, including supervised and semi-supervised classifiers.

• Segmentation techniques that use spatial context to aid the imperfect pixelwise
classification due to limited training samples, and finally generate a thematic map
for the whole image.

In this thesis, the term classification only denotes the pixelwise classification that
assigns each pixel a label independently without spatial context, while the term
segmentation refers to grouping pixels into regions using spatial context without loss of
generality [17, 88]. The above three techniques are partially or all included in the remote
sensing interpretation approaches: feature extraction can serve as a pre-classification step,
and segmentation can serve as a post-classification step. A simple way to include these
techniques is to perform “feature extraction - classification - segmentation” in a three-
step processing chain. In fact, however, one set of features may not be discriminative
enough because the reduction of dimensionality may result in loss of information, and
the incorporation of spatial context may be helpful for classification. Also, the problem
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of limited label information tends to affect all the steps that require labeled samples for
training.

1.3 Thesis structure

In this thesis, techniques for remote sensing image interpretation in the situation of
limited labeled training data are investigated. To improve the accuracy of the machine
interpretation, three approaches focused on feature extraction (Chapter 4), classification
(Chapter 5), and segmentation (Chapter 6 & 7) respectively using limited labeled training
data are designed, implemented, and tested. The rest of the thesis is organized as follows.

Chapter 2 reviews the literature of automated interpretation of remote sensing imagery.
We focus on two typical types of remote sensing imagery: hyperspectral imagery and
SAR imagery. Algorithms related to feature extraction, classification, and segmentation
are reviewed, with an emphasis on examples using limited labeled training data. The
hyperspectral data and SAR data used in the experiments of the thesis are described in
Chapter 3.

Chapter 4 introduces a framework of joint feature extraction and classification based
on the ensemble of localized manifolds. Multiple linear manifolds emphasizing on different
locations in the feature space are learned to characterize the input data, and a classification
ensemble is then trained using the features extracted via the different manifolds. Such
manifolds are localized in the feature space, and can overcome the challenges and
limitations associated with learning a single global manifold for characterizing complex
data structures.

Chapter 5 investigates the performance of different classifiers using limited labeled
training data in a supervised manner. An enhanced ensemble method which combines
two ensemble algorithms is developed. The proposed classifier performs inherent feature
extraction without reducing the dimensionality, and outperforms other ensemble methods
in the situation of inadequate training samples and high dimensionality. Further, the
proposed method innately produces posterior probabilities inherited from AdaBoost, which
are used for the unary potentials of the conditional random field (CRF) model in order
to incorporate spatial context information. This chapter is largely based on a published
paper [86].

Chapter 6 proposes a joint classification and segmentation algorithm in a semi-
supervised manner. The algorithm is also derived from the CRF framework. A multimodal
Gaussian model is used to estimate the probabilities that serve as the unary potential of
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CRF, and the edge strength is naturally incorporated into the energy function. Also,
region merging is concatenated with the CRF inference to reduce the number of nodes
iteratively. Moreover, the self-training technique is used, which iteratively enlarges the
training sample set and retrains the classifier. The proposed method achieves reasonable
classification accuracy for hyperspectral imagery using five labeled training samples per
class.

Chapter 7 extends the algorithm proposed in Chapter 6 for automated ice-water
interpretation using dual-pol RADARSAT-2 imagery. The daily interpretation of SAR
sea ice imagery is very important for ship navigation and climate monitoring. SAR sea
ice imagery usually has large image size and complex image properties. In the proposed
method, backscatter, texture, and edge strength features are incorporated in a CRF model.
The algorithm is tested on a large-scale RADARSAT-2 dual-polarization dataset. This
chapter is largely based on a published paper [85].

Finally, Chapter 8 concludes the thesis and suggests future research directions.
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Chapter 2

Literature review

2.1 Remote sensing imagery

There are many types of remote sensing image data based on a variety of imaging sensors,
including panchromatic, multispectral, hyperspectral, and SAR images. This thesis focuses
on hyperspectral imagery and SAR imagery. These two types of imagery have been widely
used in many applications, and both of them have their own unique properties that make
the automated interpretation challenging.

2.1.1 Hyperspectral imagery

Hyperspectral imagery is capable of providing rich spectral information of objects, and
has been applied to many purposes such as agriculture, mineralogy, and land use/land
cover management. Similar to other spectral imaging, hyperspectral imaging collects
signals from across the range of electromagnetic spectrum by breaking into groups of
bands of different wavelengths. By expanding and improving capability of multispectral
sensors, hyperspectral imaging sensors have the capability of collecting a large number of
very narrow wavebands. For example, the airborne visible/infrared imaging spectrometer
(AVIRIS) sensor by National Aeronautics and Space Administration (NASA) acquires data
in 224 bands in the range 0.4 to 2.5 µm with a bandwidth of 10nm [98]. Despite the fine
spectral resolution, hyperspectral imagery can also be acquired with fine spatial resolution.
The spatial resolutions of the hyperspectral imagery acquired from satellite systems are
usually 30m or finer, and those from airborne systems are usually 5m or finer [46]. For
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example, the imagery acquired by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor used in the experiments of this thesis has a geometric resolution of 1.3m.

The main difficulty of processing hyperspectral data is the “Hughes phenomenon [64]”
caused by the high dimensionality of spectral bands. The high-dimensionality of
hyperspectral data leads to difficulties in estimating of statistical parameters such as
covariance matrix for some classification approaches [98]. As the dimensionality of the data
increases, large volumes of test and training data need to be collected for the parameter
estimation, which is sometimes impracticable. Therefore, feature extraction methods that
can reduce the dimensionality and robust classifiers for the SSS problem are required. Also,
the abundant image details due to high spectral and spatial resolution lead to large within-
class variation, so only applying pixelwise classification techniques may not be enough. In
recent years, spectral-spatial methods [93,101,142] have been widely used for hyperspectral
imagery to refine the classification result using spatial context.

2.1.2 SAR imagery

SAR imagery has been widely applied for oceanology, such as sea ice mapping, owing
to its all-weather and all-day imaging capability. Sea ice is an important issue for both
safety of navigation and climate monitoring. Owing to the development of remote sensing
technology, rapid and large-scale mapping of sea ice using SAR satellites is available.
Currently, one of the most advanced satellites for sea ice monitoring is the RADARSAT-2
satellite launched in December 2007 by the Canadian Space Agency [156].

The SAR system is a type of radar imaging system. Different from the real aperture
radar, it uses relative motion between an antenna and the target region to achieve a finer
spatial resolution. The SAR system is installed on an aircraft or spacecraft. Pulses of
radio waves at different wavelengths are repeatedly emitted from a single beam-forming
antenna to a target scene, and the echo waveforms received at different antenna positions
are detected, stored and post-processed to resolve elements in an image of the target
region [26].

SAR has multiple polarization modes because the radar waves are polarized.
Anisotropic materials such as ice can reflect different intensities in different polarizations. A
fully polarimetric mode includes horizontal transmit and horizontal receive (HH), vertical
transmit and vertical receive (VV), horizontal transmit and vertical receive (HV), and
vertical transmit and horizontal receive (VH). The first two polarization modes are called
co-polarized modes, and the last two are called cross-polarized modes. Also, the signal is
complex including both magnitude and the phase.
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Different from optical imagery, SAR imagery is affected by speckle noise, which increases
the difficulty of interpretation tasks. Speckle noise is a form of multiplicative, locally
correlated noise [171]. Many filters have been proposed to reduce the noise [45,82,110,171].
However, the noise filters will affect the image details and change the texture.

Another problem for interpretation is the incidence-angle effect accentuated by a long
swath. An incidence angle is defined by the angle between the perpendicular to the imaged
surface and the direction of the incident radiation. Normally, backscatter will decrease with
increasing incidence angle, causing the intensity inhomogeneity along SAR range direction
in SAR images. However, the rate of variation depends on the land cover type and the
polarization, which makes the incidence-angle effect difficult to be corrected.

The currently operational SAR sensors include TerraSAR-X (X-band SAR with 3.1 cm
wavelength), RADARSAT-2 (C-band SAR with 5.6 cm wavelength), and ALOS-PALSAR
(L-band SAR with 23.6 cm wavelength). For the RADARSAT-2 satellite, a very important
purpose is to monitor sea ice. Compared to RADARSAT-1 satellite launched earlier, the
RADARSAT-2 satellite can offer dual-polarization modes with wide swath coverage [111].

2.2 Feature extraction techniques

Feature extraction is the process of mapping the original measurement variables into
informative and less redundant features, facilitating the subsequent tasks, such as data
compression [34], classification [76], target detection, and spectral unmixing [87]. The
reduction of feature dimensionality can avoid the curse of dimensionality and reduce
computational costs. Generally speaking, there are two types of features: image features
and non-image features.

2.2.1 Extraction of image features

Apart from intensity that is directly obtained from an image, image features such as texture
and shape features are usually extracted based on a square window or a region. One of
the most commonly-used texture features for remote sensing imagery is the gray-level
covariance matrix (GLCM) [51], which provides a second-order method for generating
texture features by capturing the correlations of pairwise pixels in a spatial window of
interest [23]. The probability measure is defined as

Pr(x) = {Cij | (δ, θ)} (2.1)
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where Cij is the co-occurrence probability between grey levels i and j, δ is the interpixel
distance and θ is the orientation. Cij is defined as:

Cij =
pij∑G

i,j=1 Pij
(2.2)

where Pij is the number of occurrences of grey levels i and j, G is the quantized number of
grey levels. Common GLCM statistics include uniformity, entropy, dissimilarity, contrast,
inverse difference, inverse different moment, and correlation [23].

In the last decade, GLCM has been successfully used for classification using SAR
imagery, especially for distinguishing open water or different ice types [2,62,84,135]. Most
of the previous work is related to analyzing the effectiveness of a single or multiple grey level
co-occurrence matrix (GLCM) parameters (e.g., energy, contrast, variance, correlation,
entropy and inverse difference moment) and testing on the pure samples. According to
these papers, the methods reach satisfactory accuracy on the classification of most ice types
in the experiments using some grey level co-occurrence probability (GLCP) coefficients,
and the results can be further improved by using multiple displacement values to capture
textures of sea ice in different scales [135].

Apart from GLCP, other texture features have also been explored. Clausi [22] analyzed
and compared the performance of GLCPs, Markov random fields (MRF) parameters, and
Gabor filters for sea ice classification, and the results show that GLCPs have the best
classification accuracy, a little higher than Gabor filters. While a single MRF is much
poorer than those two texture features, the combination of MRF and GLCPs can reach the
highest accuracy. However, some classes are very visually similar and difficult to separate
using only texture feature, e.g., to separate calm open water from smooth first-year ice, or to
separate young ice floes from rough water. [22]. Kandaswamy et al. [71] introduced patch
reoccurrences, and showed that the approximated texture features extracted using the
GLCM can improve efficiency without significant degradation in the classification results.
Aytekin et al. [1] proposed a feature descriptor called local primitive (LP) pattern based
on an adaptive neighborhood instead of a fixed size window, and information such as sizes,
intensity levels, and repetitiveness of the LPs is incorporated in the feature vectors.

The shape feature is another type of commonly-used feature. One example of shape
descriptors is based on the morphological filter [7, 113, 147]. The residual between the
original image and the open or close morphological transformation result is used as a
morphological characteristic. There are some other ways of extracting shape features,
for example, by calculating the area and the ratio between the length and width of the
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regions [13]. For SAR sea ice imagery, Soh et al. [136] has summarized some shape-
based features such as roundness, elongation, and irregularity that can be helpful for sea
ice classification. Yu and Clausi [169] also included shape information into the energy
function to detect leads and ice floes. However, extracting effective shape-based features is
very difficult. The main reason is that the boundaries can be vague, making the extraction
of shape features difficult. Moreover, regions generated by image segmentation techniques
are either oversegmented or undersegmented, and thus do not match well with the real
objects [169].

2.2.2 Extraction of non-image features

The non-image feature extraction methods are used to transform the original features
into new features in lower dimensionality based on some criteria. These methods are
also called dimension reduction or manifold learning methods, which are mainly applied
to hyperspectral imagery [69, 79, 94, 95, 150]. To minimize the impact of the Hughes
phenomenon, various feature extraction techniques have been developed as a preprocessing
step before classification, so that useful information such as feature structure and class
separability can be maintained in the new feature space, while the dimensionality of data
is significantly reduced. A recent review of non-image feature extraction techniques for
hyperspectral image classification is by Lunga et al. [96]. Compared to the texture or
shape features, the new features extracted by these methods usually have no physical
meaning. These methods can be divided into supervised and unsupervised methods. A
well-known unsupervised feature extraction method is the principal component analysis
(PCA), which seeks for a small set of linearly uncorrelated variables called principal
components that can preserve most of the variance. The problem is solved by eigen-
decomposition. Another similar method is the minimum noise fraction (MNF) [47], which
can be considered as a noise-adjusted version of PCA, and has also been widely used for
hyperspectral imagery [98].

However, the drawback of the variance criterion in both PCA and MNF is that, since
these methods are both unsupervised, they are not directly related to classification. In
contrast, linear discriminant analysis (LDA), which is another commonly-used technique,
seeks the projection that maximizes the between-class variation and minimizes the within-
class variation using the label information:

W = arg max
W∈Rd×r

[
tr
{

(W TS(w)W )−1W TS(b)W
}]

(2.3)
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where S(w) and S(b) are the within-class scatter and the between-class scatter in the original
feature space, and d and r represent the number of features in the original space and the
new space respectively.

Similar to PCA, LDA can be also solved by eigen-decomposition, i.e., finding the
eigenvalues of (S(w))−1S(b). The main problem of LDA includes its unimodal assumption
and rank-deficiency problem (i.e., the number of extracted features can be at most the
number of classes). Many variants of LDA have been proposed to overcome the rank-
deficiency problem. A notable LDA-based algorithm is the local Fisher discriminant
analysis [138]. It combines LDA and locality preserving projections (LPP), which is an
unsupervised dimensionality reduction algorithm that works well with multimodal data.
Li et al. [94] used local Fisher discriminant analysis (LFDA) for hyperspectral image
classification, and found its combination with Gaussian mixture model (GMM) classifiers
outperforms traditional approaches. Another LDA-based algorithm is the nonparametric
weighted feature extraction (NWFE) algorithm [79]. It is a nonparametric extension of
LDA. In NWFE, different weights for every sample are assigned based on the distance
from the sample to the “weighted mean” to compute the scatter matrix. Both LFDA
and NWFE are capable of dealing with multimodal data and generating full-rank scatter
matrices.

In recent years, more and more attention has been given to the effects of limited training
data on the supervised feature extraction methods. For LDA, a large number of training
samples are usually required for estimating the within-class and between-class scatter
matrices if the feature dimensionality is high [98]. Kuo and Chang proposed regularized
feature extraction (RFE), and found that the RFE-regularized NWFE outperforms RFE-
regularized LDA for the SSS problem [78]. Ly et al. [104] used a sparse graph-based method
which does not require evaluation of the within-class scatter matrix and between-class
scatter matrix. Imani and Ghassemian [65,66] addressed the situation of limited training
samples using “attraction points” and cluster-based feature extraction methods. Also, some
supervised feature extraction methods have been extended into semi-supervised methods
by incorporating unlabeled training samples. For example, a semi-supervised version of
LFDA [139] is the combination of LFDA and PCA. Liao et al. [95] proposed a framework
to combine LDA and several unsupervised local linear feature extraction methods. Shi et
al. [131] proposed a semi-supervised graph-based feature extraction method, and selected
unlabeled samples based on the segmentation result.

Most of the above-mentioned manifold learning methods are linear methods.
Considering the complexity of some high-dimensional data such as hyperspectral
image data, nonlinear feature extraction methods have been explored in recent years.
Representative methods include Isomap [143], local linear embedding [121], Laplacian
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Eigenmaps [5], etc. An alternative way to capture the nonlinearity is to kernelize a linear
method using the “kernel trick” [16] to implicitly map the features to the induced feature
space and compute the inner product. For example, kernel PCA [127] and generalized
discriminant analysis [4] are the kernelized versions of PCA and LDA respectively. Besides
kernelization, there are also approaches of adapting the data to multiple local manifolds.
Hastie and Tibshirani [53] first developed an algorithm that combines with nearest neighbor
classification and uses local LDA to estimate the metric for computing the neighborhood
of each sample. Kim and Kittler [75] proposed a nonlinear discriminant analysis method
using a set of linear transformations called locally linear discriminant analysis to deal with
multimodally distributed face classes. Wang et al. [151] also used the same idea for metric
learning, i.e., learning multiple local metrics.

2.3 Classification techniques

Classification is the process of assigning or allocating individual objects into different
classes [98]. In this thesis, classification techniques refer to methods without using
spatial proximity. There are different categories of classification techniques depending on
the availability of labeled training samples, including unsupervised methods, supervised
methods, and semi-supervised methods. For unsupervised methods such as k-means and
GMM, the labels of samples are unavailable, and the cluster label is learned directly from
the data and has no physical meaning. In this thesis, we focus on supervised and semi-
supervised methods.

Given sufficient labeled training data, the difference between different classifiers is
negligible because they all converge at or close to the Bayes error rate [54]. However, this
is unrealistic in practice, especially for classification of remote sensing data for which the
acquisition of ground truth is usually expensive and time-consuming. Due to the difficulty
and costs of obtaining ground truth for remote sensing imagery, classification using few
labeled samples, i.e., classification in the SSS scenario has attracted the attention of remote
sensing researchers in recent years [68,163].

2.3.1 Supervised classification methods

A well-known classifier in the remote sensing community is the maximum likelihood
classifier (MLC) [98]. Usually the conditional probability is assumed to follow a Gaussian
distribution assumption, and the parameters (i.e., the mean and variance) are estimated
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by training samples based on maximum likelihood. The predicted labels are determined
by the maximum a posteriori (MAP) criterion:

ŷ = argmax
∀k
{P (xi | y = k)P(y = k)} (2.4)

where ŷ is the predicted label, P (xi | y = k) is the conditional probability, and P (y = k)
is the prior probability which is pre-determined in the supervised context.

In practice, however, one class may have more than one Gaussian modality due to
the complexity of data. Li et al. [94] assumed that each class consists of multiple
Gaussian modes for hyperspectral image classification. They first estimated the number of
modalities in each class using some criterion such as Akaike information criterion (AIC) or
Bayesian information criterion (BIC), and then estimate the parameters using expectation
maximization (EM). However, the main problem of MLC is that it requires sufficient
training samples to learn the sample variance for high-dimensional data [98]. Mather [97]
suggests based on empirical experience that the number of labeled training samples for
each class should be at least 30 times more than the number of features.

Another commonly-used supervised classifier is the support vector machine (SVM) [25].
Different from MLC, SVM is a nonparametric model because it does not require the
estimation of statistical parameters. SVM was designed originally for binary classification.
It is designed for finding the maximum gap between two classes by solving a convex
quadratic programming problem. One theoretical advantage of SVM over some other
classification methods is that it approximately implements the structural risk minimization
(SRM) by minimizing the empirical error and the VapnikChervonenkis dimension
simultaneously, so that the upper bound of the expected risk can be minimized [107],
even though such a upper bound is very conservative in practice. Also, the same kernel
trick as that in feature extraction can be used for SVM to make it a nonlinear classifier.

For the standard SVM, there are mainly two limitations. First, the theory is established
mainly for binary classification problems; second, it returns “hard” binary predictors, while
in many applications probabilistic outputs are required. An attempt to overcome both
limitations is relevance vector machine (RVM) [145]. RVM is a Bayesian sparse kernel
technique which can generate fewer relative vectors than the support vectors in SVM, and
thus has faster performance in testing. However, the training computational complexity of
RVM is O(N3) given N training samples, which is higher than SVM for large datasets [27].
To address the multi-class problem, Weston and Watkins [155] proposed a multi-class
SVM algorithm that solves the optimization problem in a single framework. In practice,
however, methods based on multiple binary classifiers, especially one-against-all (OAA)
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has been widely used in spite of their practical limitations [8]. To generate probabilistic
outputs, Platt [114] trained the parameters of an additional sigmoid function to map the
SVM outputs into probabilities. This method was applied by Wu et al. [157] who proposed
two OAA-based approaches to estimate the probability for multi-class classification. Both
methods can be reduced to linear systems so that they are easy to implement, and one of
the methods is later implemented in the LibSVM library [20].

In contrast to MLC and SVM that are both single classifiers, there is another category of
classification methods called ensemble learning, which combines multiple weak classifiers
into a strong ensemble classifier. One state-of-the-art ensemble method is the random
forest, which has been applied for remote sensing data [44,109]. It consists of many decision
trees and outputs the class which is the mode of the output classes by individual trees [54].
It combines the “bagging” method (bootstrap aggregating) and the random selection of
features to construct a collection of decision trees with controlled variation. There are also
some variants of the random forest algorithm. The extremely randomized tree method [43]
is one of them, which is designed for reducing the variation by further de-correlating the
individual trees. The cut-point of each tree is selected fully at random, that is, independent
of the target variable. Another variant is the rotation forest algorithm [120], which performs
an innate feature transformation on the data for each base classifier. Compared to SVM,
ensemble methods are more natural to be used for multi-label classification problems.
Also, they can deal with thousands of input variables without variable deletion and gives
estimates of what variables are important in the classification. So, a dimension reduction
preprocessing step is usually not required. In fact, a random forest itself can be used for
feature selection [122]. Moreover, ensemble methods have been demonstrated to work very
well for the SSS problem [153,162,163].

2.3.2 Semi-supervised classification methods

Semi-supervised classification methods are designed for learning a classification model using
both labeled and unlabeled training samples. They are developed for the scenarios that a
small amount of labeled data and a large amount of unlabeled data are available. There
are different types of semi-supervised learning methods, including generative models [105],
low-density separation methods [70], and graph-based methods [100]. A survey of semi-
supervised learning methods can be found in a previous paper [181].

Semi-supervised classification methods have also been used for remote sensing imagery.
In fact, the first approach to investigate the effect of unlabeled samples to address the
SSS problem was proposed in the remote sensing community, and it dates back to the
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year 1994 [130]. Later, Jackson and Landgrebe [67] proposed an iterative procedure
to adaptively estimate the covariance matrices for MLC. Recently, more and more self-
supervised learning algorithms have been applied to remote sensing data, such as low-
density separation methods based on SVM [15, 21], graph-based methods [15], and self-
training [33]. These methods have been demonstrated to outperform supervised methods
using the same number of training samples. Beyond the improvement, however, the
classification accuracy is usually still unsatisfactory due to the insufficiency of labeled
training samples. Also, previous empirical experiments showed that semi-supervised
methods might make no improvement or even harm the classification performance [181].
Especially for the remote sensing imagery, there may be some pixels in the image which
belong to none of the classes in the training areas. There might be negative effect on
the classification performance if these pixels are selected for training. Even though, most
semi-supervised methods select the training samples ad hoc over the whole image. One
exception is a recently-published paper [33], in which only samples spatially surrounding
the training samples have the chance to be selected.

2.4 Image segmentation techniques

Image segmentation is the process of partitioning an image into meaningful parts.
Segmentation can be either used for a pre-classification step in a region-based approach to
obtain superpixels, or a post-classification step to refine the pixelwise classification result.
There is a huge amount of literature on image segmentation algorithms. Here we only focus
on two types of segmentation methods: methods based on region growing and methods
based on random fields.

2.4.1 Region growing methods

Region growing methods are bottom-up methods that start at an over-segmentation result,
and then merge regions which have similar property into larger ones. The over-segmented
result is commonly performed by the watershed algorithm [149]. The basic idea of the
watershed algorithm is to simulate the forming of the real watershed by first putting seeds
into an image like drops of water, and then flooding the image and building barriers when
different water sources meet. For the region merging step, some merging and stopping
criteria are defined. Regions that belong to the same object should be merged to make the
following task more efficient. Moreover, regions that belong to different objects should not
be merged because the merging process is usually irreversible.
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Image cues such as intensity and edge strength can be used in the merging criteria.
Hojjatoleslami et al. [61] proposed two more discontinuity measurements: average contrast
and peripheral contrast. To improve the merging efficiency, Haris et al. [52] proposed a
fast region merging method based on an edge-preserving noise reduction preprocessing step
and a region adjacency graph. The merging criteria are usually based on statistical tests.
Nock and Nielsen [106] developed a statistical region merging method which uses a merging
predicate that is simple to implement, and a simple ordering to achieve low segmentation
error. The algorithm can be approximated in linear time. Peng et al. [112] also used a
statistical test, i.e., the sequential probability ratio test with the minimal cost criterion for
the merging criterion.

Region growing methods have also been used for remote sensing imagery, mainly for
SAR imagery to reduce the computational cost and resist the speckle noise. Carvalho et
al. [19] used a statistical region growing procedure by combining the Kolmogorov-Smirnov
test with a hierarchical stepwise optimization algorithm for SAR image segmentation.
Yu et al. [166] used a context-based hierarchical merging method containing a coarse
merging and a fine merging stage for SAR image segmentation, and different types of
features including intensity, texture, edge, and spatial information are incorporated into the
model. Specifically for SAR sea ice imagery, high level features such as texture, shape, and
edge smoothness have been used due to the immense within-class variation of backscatter
intensity. Sun et al. [140] compared a pixel-based method based on adaptive filtering with
a region-based method based on segmentation using edge detection and region growing
algorithms. However, the accuracy of the region-based method is just slightly higher than
the pixel-based method because the performance of the former is largely dependent on the
performance of the edge detector. Haverkamp et al. [55] proposed a method in which an
image is first separated into regions, and a dynamic local thresholding technique is then
used to merge those regions. It uses several high-level features such as perimeter, area
and wiggliness to build a rule-based expert system based on the features. The expert
system was later improved and developed into an intelligent system for satellite sea ice
image analysis named ARKTOS [136], which used Dempster-Shafer theory to imitate the
reasoning process of ice analysts. ARKTOS first uses the watershed algorithm to obtain
initial over-segmentation results, and then merges the neighboring regions iteratively based
on multiple classification rules. Yu and Clausi [169, 170] developed a joint segmentation
and classification method named iterative region growing using semantics (IRGS) for SAR
sea-ice analysis. It is a hierarchical algorithm in which the segmentation part is based
on a region-growing technique and the classification part is a region-based MRF approach.
The two processes are integrated under the Bayesian framework to enable the classification
results to guide the region-growing process in a new iteration.
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Apart from SAR imagery, region merging methods are also used for images with large
homogeneous regions, such as high spatial resolution images. Bruzzone and Carlin [13]
used region merging to perform multi-scale feature extraction, and used the SVM for
classification. Li et al. [91] used multiple features including texture, spectral, and shape
to derive a distance measure for the region adjacency graph. Tilton et al. [144] integrated
region growing with nonadjacent region object aggregation, and their refined algorithm is
capable of processing large-size hyperspectral images. Region merging methods are mainly
used for unsupervised segmentation. For those methods used for supervised classification,
region merging is used either as a preprocessing step [13] to facilitate feature extraction,
or as a post-processing step to refine the result [144].

2.4.2 Random field methods

Random field methods, most predominantly MRF, have been used to incorporate spatial
context for different types of remote sensing images in both supervised and unsupervised
manners. For SAR imagery, MRF can help generate smooth segmentation results when the
images are corrupted by severe speckle noise. Rignot and Chellappa [118] first used MRF
for the segmentation of polarimetric SAR data. The classification accuracy is shown to be
much better than the methods without taking spatial context into account. Even though,
there are some drawbacks. For example, the line segments such as roads may disappear
partially or entirely, and region borders fail to be located accurately. To overcome these
drawbacks, Smits and Dellepiane [134] proposed MRF with adaptive neighborhoods, in
which a Bayesian inference is used to choose the shapes of the local neighborhood systems
for the region label process based on various information sources. Tison et al. [146] used
the Fisher distribution in the MRF framework to deal with the non-Gaussian scattering
statistics in SAR images when the resolution is high or the area is man-made. Deng
and Clausi [28] used a varying weighting parameter in an annealing step. The feature
modeling component is first dominant in the MRF model they proposed, and then the
weight of the region labeling component increases so as to refine the segmentation results.
Another modification on the standard MRF model in recent years is the triplet Markov
field model [6] to solve the nonstationary property of real images. A third random field
is introduced into an earlier proposed pairwise Markov field model and the Markovianity
of the triplet is assumed. This model is further improved later by either adding an edge
penalty [159] or using a multiscale model in wavelet domain [174].

For supervised classification methods, random fields are often used in a post-processing
step after the probabilistic estimates by pixelwise classification methods are generated.
Any classifier that is capable of generating probabilistic estimates can be combined with
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a random field, such as GMM [93], SVM [142], multinomial logistic regression [90], and
rotation forest [160]. However, the traditional MRF model that is derived from a Bayesian
framework requires the conditional probabilities to be independent. Also, the pairwise
potentials can be only related to the labels, so that data-dependent features such as
edge strength are not allowed to be incorporated. The conditional random field (CRF),
another type of random fields, overcomes these limitations. The CRF models the posterior
probabilities directly without using the Bayes’ rule, so the rigid conditional independence
assumption is relaxed. Also, features related to both the observations and the labels can
be arbitrarily integrated into the pairwise potentials. The CRF was first proposed by He
et al. for image labeling [58]. In the remote sensing community, Zhong and Wang [177]
introduced CRF to classification of hyperspectral images, and demonstrated its superiority
to MRF. Zhang and Jia [173] incorporated a boundary constraint in order to reduce model
parameters.

In a CRF model, the unary clique potentials can be naturally represented by a
multinomial logistic regression (MLR) [173,176,177]. Theoretically it is the most suitable
model to fit into CRF because logistic regression is by itself a simple form of CRF.
More generally, other classifiers such as boosting [132] and SVM [178] can be also used.
For most image labeling approaches, the parameters of the unary potentials are trained
independently. For the pairwise energy term, generalized Ising model [173, 177] and
multiscale region connection calculus model [137] that are dependent on the observed data
can be used to model the spatial interaction.

One important issue of random field-based methods is the determination of the weight
parameters between the unary and pairwise potentials. For supervised classification,
the weight parameters can be selected by exhaustive grid search. To avoid the high
computational cost resulted from the grid search, Serpico and Moser [129] proposed an
automatic supervised procedure for optimizing the weighting parameters based on the Ho-
Kashyap algorithm. However, when the number of labeled training samples is limited, grid
search or other automatic selection methods might not be reliable.

2.5 Research questions

Despite the huge volume of literature related to remote sensing image classification, the
situation when there is limited labeled training data available has not been fully explored.
In this thesis, we aim to develop algorithms that can achieve reasonable classification
accuracy by using limited labeled training data, with emphasis on feature extraction,
classification, and segmentation, respectively.
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1. For feature extraction, the performances of supervised, semi-supervised, and
unsupervised methods for classification are measured in the case of limited labeled
training samples. Also, due to the limitation of using single linear manifolds, methods
using multiple linear manifolds are investigated. We want to see if the classification
accuracy can be improved by using multiple linear manifolds for limited training
samples. These questions will be investigated in Chapter 4.

2. For classification, the performance of common classifiers such as SVM and random
forests for limited training samples are measured. Is it possible to design an ensemble
classifier that has both small bias and variance? Moreover, we would like to measure
the improvement of classification performance by using spatial context models as a
post-processing step. These questions will be investigated in Chapter 5.

3. For segmentation, we would like to know if segmentation methods, including random
fields and region merging methods introduced before, can used not only as a post-
processing step. Also, can semi-supervised methods that make use of the unlabeled
samples can address the problem of limited label information? These questions will
be investigated in Chapter 6 and Chapter 7.
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Chapter 3

Datasets

3.1 Hyperspctral datasets

Three standard hyperspectral datasets [3], including the University of Pavia dataset,
the Kennedy Space Center dataset, and the Salinas dataset, are used for evaluation of
algorithms in the thesis (Fig. 3.1).

The University of Pavia dataset, as shown in Fig. 3.1 (a), was acquired by the ROSIS
sensor in Pavia, Italy. The original image has 115 spectral bands with a spectral range from
0.4µm to 0.9µm. A total number of 103 spectral reflectance bands are used for analysis
after the noisy bands are removed. The spatial resolution of the image is 1.3 meters. The
size of the dataset used in the experiment is 610×340 pixels. There are nine classes in the
ground-truth image. The number of samples in each class in the training areas is shown
in Table 3.1.

The Salinas image, as shown in Fig. 3.1 (b), was acquired by the AVIRIS sensor
over Salinas Valley, California. Its geometric resolution is 3.7 meters. The area covered
contains 512 lines by 217 samples. It has 224 spectral reflectance bands ranging from
0.4µm to 2.5µm, and 24 bands covering the water absorption bands have been discarded.
There are 16 classes in the ground-truth image. The number of samples in each class in
the training areas is shown in Table 3.2.

The Kennedy Space Center dataset, as shown in Fig. 3.1 (c), was acquired by the
AVIRIS instrument over the Kennedy Space Center, Florida on March 23, 1996 [50]. The
original image has 224 bands with a spectral range from 0.4µm to 2.5µm. A total number
of 176 bands are used in the experiment after the water absorption and noisy bands are
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Table 3.1: Class names and the number of samples of the University of Pavia dataset.

Class Name No. of Samples

1 Asphalt 6631

2 Meadows 18649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare Soil 5029

7 Bitumen 1330

8 Self-Blocking Bricks 3682

9 Shadows 947

Table 3.2: Class names and the number of samples of the Salinas dataset.

Class Name No. of Samples

1 Brocoli-green weeds-1 2009

2 Brocoli-green weeds-2 3726

3 Fallow 1976

4 Fallow-rough plow 1394

5 Fallow-smooth 2678

6 Stubble 3959

7 Celery 3579

8 Grapes-untrained 11271

9 Soil-vinyard develop 6203

10 Corn-senesced green weeds 3728

11 Lettuce romaine-4wk 1068

12 Lettuce romaine-5wk 1927

13 Lettuce romaine-6wk 916

14 Lettuce romaine-7wk 1070

15 Vinyard-untrained 7268

16 Vinyard-vertical trellis 1807
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(a) Rosis University of Pavia image (b) AVIRIS Salinas image

(c) AVIRIS Kennedy Space Center image

Figure 3.1: False-color composition of three hyperspectral images with their training areas
overlaid

22



removed. The spatial resolution of the image is 18 meters. The size of the dataset used
in the experiment is 512×614 pixels. There are 13 land cover types in the training area of
the reference data. The number of samples in each class in the training areas is shown in
Table 3.3.

Table 3.3: Class names and the number of samples of the Kennedy Space Center dataset.

Class Name No. of Samples

1 Scrub 761

2 Willow swamp 243

3 Cabbage plam hammock 256

4 Cabbage plam/oak hammock 252

5 Slash pine 161

6 Oak/broadleaf hammock 229

7 Hardwood swamp 105

8 Graminoid marsh 431

9 Spartina marsh 520

10 Cattail marsh 404

11 Salt marsh 419

12 Mud flats 503

13 Water 927

3.2 SAR datasets

The SAR dataset used in this thesis, specifically in Chapter 7, was obtained from the
C-band RADARSAT-2 SAR satellite over the Beaufort Sea and Chukchi Sea areas from
May to December in the year 2010, and has been used in the previous publication [84].
They were captured in the ScanSAR Wide mode, which is mostly used for operational
monitoring of sea ice at CIS [18]. Dual polarizations (HH and HV) are provided in the
ScanSAR Wide mode. The spatial resolution of images is 50m, and the image sizes are
around 10 000 × 10 000 pixels. The test images were acquired from both ascending and
descending passes, with an incidence angle ranging from 20◦ to 49◦.

In the pre-processing step, the log-transformed original images were down-sampled
using 4 × 4 block averaging to reduce unnecessary computational cost [84]. Each test
image has a size of about 2500 × 2500 pixels, as shown in Fig. 3.2. Even though the down-
sampled images yield coarser classification results, the results are still far more detailed
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(a) HH (b) HV (c) ground truth

(d) HH (e) HV (f) ground truth

Figure 3.2: Examples of Images in the SAR dataset. The first row corresponds to the data
captured on October 3, 2010 and the related ground truth. The second row corresponds to the
data captured on November 14, 2010 and the related ground truth.

than that provided by human interpretation [84]. The vector-based ground truth for the
test images was made by an experienced ice analyst, as shown in Fig. 3.2 (c) and (f). To
make a better evaluation of the algorithms, accurate pixelwise ground truth for each image
has been created based on the vector-based ground truth for both training and validation.
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Chapter 4

Joint feature extraction and
classification using ensemble localized
manifold learning

4.1 Introduction

General feature extraction methods for hyperspectral imagery have been reviewed in
Section 2.2.2. In recent years, there has been increasing attention to the problem of limited
training samples [115]. For LDA, a large number of training samples are usually required to
determine the within-class and between-class scatter matrices. Kuo and Chang [78] found
that NWFE with regularization outperforms LDA with regularization for the small-sample-
size problem. Also, some supervised feature extraction methods have been extended into
semi-supervised methods by incorporating the unlabeled training samples. Liao et al. [95]
proposed a framework to combine LDA and an unsupervised local linear feature extraction
(LLFE) method. Shi et al. [131] proposed a semi-supervised graph-based feature extraction
method, and selected the unlabeled samples based on the segmentation result.

The purpose of the above methods is to learn an embedded subspace by a single linear
transformation matrix. However, the structure of hyperspectral imaging data is typically so
complex that the use of a single linear manifold may result in the loss of useful information,
especially when we wish the dimensions of extracted features to be low. A traditional
approach to capture nonlinear manifolds of high-dimensional data is to use the “kernel
trick”, such as kernel PCA [127] and generalized discriminant analysis [4]. However,
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kernel methods usually have high computational complexity which is cubic in the size of
training samples [16].

An alternative method to capture nonlinear manifolds is to use local manifolds or
metrics by adapting to local sample points in the feature space. It is noted that all
the geometric terms such as “local”, “localized”, and “distance” in this chapter refer
to the feature space. An early attempt is the discriminant adaptive nearest neighbor
classification algorithm (DANNC) [53]. This algorithm first uses local LDA to learn
metrics for computing neighborhoods, and then adapts local neighborhoods based on local
decision boundaries by a neighborhood-based classifier. However, the local metrics are
learned independently, and thus the method is prone to overfitting [151]. A more recent
approach is the multi-metric version of the large margin nearest neighbor method (LMNN-
MM) [154] which first uses k-means to split training data into disjoint clusters, and then
learns a Mahalanobis distance metric for each cluster. Although the number of local
metrics is reduced from the number of training samples in DANNC to the number of
clusters, overfitting is still unavoidable because the metrics are learned from separate parts
of training samples independently. Moreover, such local methods will cause a discontinuity
of the metrics near the k-means decision boundary. There are also approaches where the
local manifolds of the training samples are represented by the weighted linear combination
of multiple manifolds [75,151], but a large number of parameters need to be estimated.

In the last decade, ensemble learning has been widely used to improve classification
performance [12, 63, 176]. Combining multiple weak classifiers into a classifier ensemble
can reduce the variance by a single classifier and thus prevent overfitting. All of the
aforementioned issues related to manifold learning, along with the benefits of ensemble
learning, motivates the proposed joint feature extraction and classification method in this
chapter. Unlike traditional approaches that use feature extraction as a preliminary step
followed by fitting a classifier on the extracted features, here we first learn multiple localized
manifolds, and then fit multiple classifiers on features projected onto different localized
manifolds, and finally combine the classifiers to provide the unified classification decision
in order to reduce the bias caused by localization.

The rest of the chapter is organized as follows. Section 4.2 summarizes the proposed
algorithm. In Section 4.3, the implementation details of localized manifolds are covered
and the localization for two feature extraction methods, including a supervised method
(L-NWFE) and a semi-supervised method (L-SELD) based on a novel weighting scheme
are shown. In Section 4.4, the performance of the algorithm is evaluated by comparing
with those based on a single global manifold using three standard hyperspectral datasets.
Section 4.5 concludes the chapter by summarizing the above sections.
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4.2 Overview of ensemble localized manifold learning

algorithm

This section overviews the ensemble localized manifold learning (ELML), a joint feature
extraction and classification method that captures the nonlinear structure using multiple
linear manifolds. First, the feature space is partitioned into K clusters using a data
clustering algorithm. Note that such a cluster is independent of the classes of training
samples, so one cluster could have training samples of multiple classes. Then, localized
manifolds are learned, each focused on one cluster. After K manifolds are learned, K sets of
features are extracted using the manifolds. Afterwards, multiple base classifiers are trained
on each set of features. All the classifiers are finally combined into a final classifier ensemble
to improve classification performance. Fig. 4.1 shows a simulated example showing why
multiple manifolds are better than a single manifold.

Algorithm 1 shows a high level algorithm for ELML. In Step 1, we use k-means to
partition the data into K clusters due to its simplicity and fast convergence. Step 3
implements the localized manifolds and is the most important step in the ELML algorithm.
We will focus on this step in the Section 4.3, and propose a weighting scheme to learn the
manifolds for each cluster. In Step 4, the 1-nearest neighbor (1-NN) classifier is used as
the base classifier. 1-NN is a very simple non-linear classifier with no tuning parameters.
It is guaranteed to converge to an error rate less than twice the Bayes error when the
number of samples approaches infinity [54]. NN-based classifiers are capable of capturing
the variations of features, so they have been widely used to test the performance of feature
extraction methods and achieve comparable performance to more complicated classifiers
such as SVM [95, 165]. In the ELML algorithm, this property can help generate more
diversity between the base classifiers. In Step 6, standard majority voting is used to
aggregate the predictions by all the base classifiers.

4.3 Learning localized manifolds

From the theory of ensemble learning, the individual learners should have small bias and be
diverse from each other [54]. Different from random sampling methods such as bootstrap
sampling [35] and random subspace [60] commonly used in ensemble methods, the diversity
of base classifiers is achieved by learning localized features in ELML. The key is thereby to
learn the localized manifolds. If the manifold is learned only on a local cluster of data, it
might be incapable of reflecting global data structure, and the bias will be thus increased.
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Figure 4.1: A simulated example showing why multiple manifolds are better than a single
manifold. The red “o” and blue “x” represent two classes in two-dimension feature space. It is
obvious that no linear dimension reduction method could project all the samples to one-dimension
space to achieve projected separability. However, we can project them to three one-dimension
manifolds, and fit three non-linear classifiers to each set of projected samples. Even though in
each base classifier, some of the “o” are misclassified as “x”, these misclassified samples can be
finally corrected by majority voting.

Moreover, there might be insufficient training samples to learn a manifold in the local part.
Therefore, in this chapter, each localized manifold is learned from all the training samples
using a localization weighting scheme.

In this section, two existing localized methods are presented, including a supervised
method (NWFE [79]) and a semi-supervised method (SELD [95]). These techniques are
modified in this thesis by modifying them to be able to learn localized manifolds. Our
new techniques are called localized NWFE (referred to as L-NWFE) and localized SELD
(referred to as L-SELD). Similar to LDA, both methods seek a transformation so as to
minimize the within-class scatter matrix and maximize the between-class scatter matrix:

W = arg max
W∈Rd×r

[
tr
{

(W TS(w)W )−1W TS(b)W
}]

(4.1)
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Algorithm 1 The ELML algorithm

Input: training data X, number of clusters K;
Output: A classifier ensemble H(X);

1: Partition X into K clusters Ck (k = 1, ..., K);
2: for k = 1 to K: do
3: Generate a manifold Mk that focuses on Cluster k: Mk ← {X, Ck} (k = 1, ..., K);
4: Generate a classifier hk on data projected in the manifold: hk ←Mk(X);
5: end for
6: Combine all the classifiers into the final classifier ensemble: H(X) = ∪{hk(X)} (k =

1, ..., K).

where S(w) and S(b) are the within-class scatter and the between-class scatter in the original
feature space, and d and r are the number of features in the original space and the new
space respectively.

This optimization can be solved by eigen-decomposition, i.e., the extracted r features
are the r eigenvectors associated with the largest r eigenvalues of (S(w))−1S(b). Therefore,
the key of this category of algorithms is to define S(w) and S(b). In both proposed methods,
new S(w) and S(b) are defined using a novel weighting scheme to incorporate localization,
where sample points closer to the local clusters are assigned larger weights. The details of
these two methods, L-NWFE and L-SELD, are described in the rest of this section.

4.3.1 Supervised localized feature extraction

Nonparametric weighted feature extraction

NWFE is a nonparametric feature extraction method based on scatter matrices. It is
modified from the standard LDA by replacing the class mean with the local mean for
each sample point. Moreover, the scatter matrices are weighted based on the Euclidean
distances from sample points to their local means. More details of the original NWFE
algorithm are provided by Kuo and Landgrebe [79].

Given L classes, the nonparametric between-class scatter matrix is defined as provided
by Kuo and Landgrebe [79]:

S(b) =
L∑
i=1

Pi

L∑
j=1
j 6=i

Ni∑
l=1

λi,jl
Ni

(xil −Mj(x
i
l)) · (xil −Mj(x

i
l))

T (4.2)
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S(w) =
L∑
i=1

Pi

Ni∑
l=1

λi,il
Ni

(xil −Mi(x
i
l)) · (xil −Mi(x

i
l))

T (4.3)

where xil is a feature vector, Ni is the number of samples in class i, Pi is the prior probability
of class i, and the nonparametric local weight λi,jl is defined as:

λi,jl =
dist(xil,Mj(x

i
l))
−1∑Ni

t=1 dist(x
i
t,Mj(xit))

−1
(4.4)

where dist(·, ·) is the Euclidean distance between two points. The local mean Mj(x
i
l) of a

sample xil is the weighted mean of Nj sample points in class j

Mj(x
i
l) =

Nj∑
m=1

wi,jlmx
j
m (4.5)

wi,jlm =
dist(xil, x

j
m)−1∑Nj

t=1 dist(x
i
l, x

j
t)
−1

(4.6)

Localized nonparametric weighted feature extraction

To implement localization, A localized weight γi,kl is introduced for sample xil on cluster
Ck, denoted as

γi,kl = exp

{
−dist

2(xil, Ck)
σ2

}
(4.7)

where dist(xil, Ck) denotes the Euclidean distance from xil to cluster Ck, and σ is
a smoothness parameter, controlling the sensitivity of distance. When xil is in Ck,
dist(xil, Ck) = 0, otherwise it is the shortest distance between xil to any point that belongs
to Ck.

Therefore, the localized within-class and between-class scatter matrix are formulated
as

S
(b)
k =

L∑
i=1

Pi

L∑
j=1
j 6=i

Ni∑
l=1

γi,kl λi,jl
Ni

(xil −Mj(x
i
l)) · (xil −Mj(x

i
l))

T (4.8)

30



S
(w)
k =

L∑
i=1

Pi

Ni∑
l=1

γi,kl λi,il
Ni

(xil −Mi(x
i
l)) · (xil −Mi(x

i
l))

T (4.9)

The localized weight σ is used to determine the degree of localization for learning
manifolds. When σ → 0, the manifoldMk is learned only from samples in Ck, which is the
strategy used in the LMNN-MM method [154]. When σ → +∞, the method is reduced to
a single manifold learning algorithm.

4.3.2 Semi-supervised localized feature extraction

Semi-supervised local discriminant analysis

Semi-supervised local discriminant analysis (SELD) [95] is a category of semi-supervised
feature extraction algorithms that linearly combines LDA and a LLFE method, such as
LPP [57], neighborhood preserving embedding [56] (NPE), and linear local tangent space
alignment (LLTSA) [175]. All these LLFE methods are designed to preserve the local
neighborhood structure of data in the low-dimension feature space. LLFE can be expressed
in a unified way:

WLLFE = argmax
W

W TXCXTW

W TXCXTW
(4.10)

where C and C are both n×n matrices.

Here we only implement LPP [57], for which C = D and C = L, where D is a n×n
diagonal weight matrix, i.e., Dii =

∑
j Aji, and L is the Laplacian matrix, i.e., L = D−A,

where A is the adjacency matrix. The implementation of NPE and LLTSA can be found
in the original papers [95]. The only change is to use different C and C.

To combine LDA with LLFE, the optimization problem of LDA is first reformulated
into a similar form as LLFE [95]:

WLDA = argmax
W

W TXPXTW

W TX(I − P )XTW
(4.11)

where I =

[
In×n 0

0 0

]
, In×n is an n×n identity matrix, P =

[
Pn×n 0

0 0

]
, and Pn×n is defined

as:
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Pn×n =


P (1) 0 · · · 0

0 P (2) · · · 0
...

...
. . .

...
0 0 · · · P (L),

 (4.12)

and P (l) is the Nl ×Nl matrix with all the elements equal to 1
Nl

.

Then, the optimization function of SELD is defined by linearly combining the covariance
matrices of (4.10) and (4.11)

WSELD = argmax
W

W TXAXTW

W TXAXTW

= argmax
W∈Rd×r

W TX(P + C)XTW

W TX(I − P + C)XTW

(4.13)

Localized semi-supervised local discriminant analysis

To localize SELD, we use a localized weight matrix U (k) related to cluster k with the same
size of SSELD and SSELD, whose elements U

(k)
i,j representing the localized weight between

two sample points xi and xj is defined as:

U
(k)
i,j = exp

{
−dist

2(xi, Ck) + dist2(xj, Ck)
2σ2

}
(4.14)

where σ is a smoothness parameter as in Eq. (4.14).

Thus, the optimization problem of L-SELD is:

W k
L−SELD = argmax

W

W TX(A ◦ U (k))XTW

W TX(A ◦ U (k))XTW
(4.15)

where (· ◦ ·) is the Hadamard product that computes the element-wise product of two
matrices.
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4.4 Experiments

4.4.1 Experimental setup

The hyperspctral datasets for testing are described in Section 3.1. The classification
performance using 1-NN classifiers on the original features and on extracted features by
eight methods (i.e., PCA, LPP, LDA, NWFE, LFDA, SELD, L-NWFE, and L-SELD) are
compared. For SELD and L-SELD, 1000 unlabeled samples are randomly selected for
training. The single-manifold methods are applied to a single classifier and the multi-
manifold methods are applied to multiple classifiers. For all the multi-manifold methods,
the number of clusters in the k-means algorithm is fixed to 10. It has been tested that
there is little improvement by setting the number of clusters to be greater than 10. The
smoothness parameter σ is selected by grid search (σ = 0, 20/10, 21/10, ..., 25/10) and five-
fold cross-validation using training samples. The number of extracted features ranges from
1 to 15. Two test cases are used in the experiment, in which there are 15 and 30 labeled
training samples for each class respectively.

4.4.2 Experimental results and analysis

The experimental results by different feature extraction methods are in Fig. 4.2. LPP
which is unsupervised and only dependent on local information is incapable of preserving
separability of the original data. Even though supervised methods such as LDA and LFDA
perform very well when there are sufficient training samples, they perform even worse than
PCA when there are only 15 labeled samples per class. Though NWFE requires the
estimation of the covariance matrix using labeled samples as well, its performance can be
still maintained in the small-sample-size situation, which is consistent with the previous
literature [78]. By using unlabeled training samples, SELD performs significantly better
than both LDA and LPP. Also, both L-NWFE and L-SELD outperform NWFE and SELD
respectively, especially when the number of extracted features is low. The highest OA
achieved by each feature extraction methods with number of extracted features (maximum
15) is shown in Table 4.1. L-SELD achieves highest OA for both 15-sample and 30-sample
cases in the University of Pavia and Kennedy Space Center datasets, and L-NWFE achieves
highest OA for both cases in the Salinas dataset.

Finally, we test the sensitivity of the smoothness parameter σ. The relationship between
σ and OA is shown in Fig. 4.3. All the OA reach the highest when σ is equal to some value
between 0 and 3, and decrease slowly afterwards. Specifically, the classification performance
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Figure 4.2: Classification accuracy (vertical axis) using 1-NN on different numbers of extracted
features (horizontal axis) on three datasets for different number of labeled training samples. The
dotted horizontal line tagged “RAW” is the classification accuracy using all the original features
(103 the for University of Pavia dataset, 176 for the Kennedy Space Center dataset, and 200 for
the Salinas dataset).
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Table 4.1: Highest classification accuracy achieved for three datasets using 15 and 30 labeled
training samples (with the corresponding number of extracted feature dimensions). “PU”,
“Salinas” and “KSC” represents the University of Pavia dataset, the Salinas dataset, and the
Kennedy Space Center dataset respectively.

Methods PU-15 KSC-15 Salinas-15 PU-30 KSC-30 Salinas-30
RAW 65.28 (103) 82.30 (176) 81.54 (200) 69.90 (103) 85.48 (176) 83.26 (200)
PCA 65.20 (15) 82.18 (14) 81.48 (15) 69.74 (15) 85.23 (15) 83.18 (15)
LPP 43.16 (3) 39.20 (5) 32.58 (4) 60.62 (4) 73.11 (10) 79.41 (9)
LDA 49.22 (7) 48.12 (12) 25.99 (14) 66.62 (6) 86.03 (13) 86.30 (13)
LFDA 53.46 (7) 48.66 (15) 33.43 (15) 74.03 (6) 88.81 (14) 87.98 (13)
NWFE 68.68 (15) 84.99 (15) 86.47 (12) 73.06 (15) 87.13 (15) 87.35 (13)
SELD 70.77 (10) 86.99 (15) 84.38 (15) 74.93 (10) 89.56 (15) 86.60 (14)
L-NWFE 71.15 (15) 86.43 (15) 87.28 (14) 76.32 (15) 89.15 (14) 88.52 (15)
L-SELD 71.83 (11) 88.57 (15) 85.31 (15) 77.24 (12) 91.05 (14) 87.90 (14)

of L-NWFE is relatively robust to the variation of σ, and the optimal performance is
achieved when σ is close to 0. For L-SELD, OA reaches a peak around σ = 1 for all
datasets. When σ becomes smaller, the manifolds are too focused on local structure and
OA tends to decrease.

4.5 Summary

In this chapter, a joint feature extraction and classification method called ELML is
proposed for hyperspectral imagery. Considering the complexity and nonlinearity of high-
dimensional data structure, multiple linear localized manifolds are learned from the data.
Then, multiple sets of features are extracted using these manifolds, and a classifier ensemble
is trained on the features to obtain the final result. To implement ELML, L-NWFE and
L-SELD are modified from NWFE and SELD using a localization weighting scheme in
order to learn the localized manifolds, and the 1-NN classifier is used for classification.
Experiments show that both L-NWFE and L-SELD compare favorably with respect to
the referenced classification approaches when there are limited labeled training samples on
three hyperspectral datasets.
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Figure 4.3: Classification accuracy (OA%) as a function of σ for both L-NWFE and L-SELD
using 15 labeled samples per class and 15 extracted features on three datasets.
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Chapter 5

Classification and segmentation using
enhanced ensemble learning and
conditional random fields

5.1 Introduction

This chapter investigates the performance of supervised classification methods in the
situation of limited labeled training data, and especially focuses on ensemble methods.
Ensemble methods have been successfully applied for hyperspectral image classification,
such as random forests [50] and AdaBoost [74]. Compared to other classifiers, dimension
reduction is usually unnecessary for ensemble methods because they deal fairly well
with high-dimensional data [164]. In recent years, ensemble methods have been shown
in particular to achieve high classification performance when the number of training
samples is limited. Waske et al. [153] demonstrated that classifier ensembles using support
vector machines and random feature selection can significantly improve classification
performance. Yang et al. [163] proposed a dynamic subspace method for hyperspectral
image classification which achieves better classification accuracy than the random subspace
method. Xu et al. [162] investigated different classifiers for marine oil spill identification,
and found that bagging-based methods significantly outperform other classification
methods.

A recent trend of hyperspectral image classification research is the prevalence
of spectral-spatial classification methods that incorporate spatial context to improve
classification performance [115]. It has been demonstrated that global random field
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methods are better than local filtering methods [126]. The most commonly-used random
field model for remote sensing imagery is MRF [115]. Previous literature showed that the
classification performance can be improved by combining MRF with a unary classifier that
can generate probabilistic outputs [93, 101, 142]. In recent years, a discriminative random
field model, i.e., the CRF model which can incorporate edge information has been used for
remote sensing imagery [173,177,178].

This chapter addresses the training sample inadequacy issue by proposing a novel
spectral-spatial hyperspectral image classification approach based on an enhanced ensemble
classifier and the CRF technique. First, the proposed multiclass boosted rotation forest
(MBRF) algorithm that integrates rotation forest and AdaBoost is used to obtain pixelwise
estimation. The motivation is based on bias-variance analysis, i.e., the two ensemble
classifiers have relative advantages in terms of decreasing model bias and model variance.
Therefore, the combination of the two, as conducted in the proposed enhanced ensemble
classifier, is able to take advantage of merits of both classifiers, especially in this small
training sample size context. Second, to model the spatial contextual information in
hyperspectral imagery, the proposed algorithm is incorporated into the CRF framework,
serving as the unary term in the CRF objective function. Experiments on benchmark
hyperspectral images demonstrate that the proposed MBRF algorithm is capable of
outperforming other referenced state-of-the-art supervised classifiers, and is better able to
aid the CRF approach for spectral-spatial classification of hyperspectral image, especially
when the number of training samples is small.

The rest of this chapter is organized as follows. Section 5.2 introduces the bias-variance
tradeoff for classification, and discusses the relative advantages and inadequacies of two
mainstream ensemble methods, i.e., boosting and bagging from the perspective of the
bias-variance trade-off, which motivates the proposed enhanced ensemble method. Section
5.3 introduces the proposed framework, including the details of the MBRF algorithm, its
ability to approximate posterior probability estimates, and its incorporation into CRF to
achieve spectral-spatial classification. Section 5.4 shows the comparison of the proposed
method and several referenced state-of-the-art supervised classification methods on three
hyperspectral datasets. Section 5.5 concludes the chapter by summarizing the above
sections.

5.2 Bias-variance tradeoff for classification

Ensemble methods are computational techniques that combine a large number of base
classifiers for improved prediction [10]. They have been widely used for supervised
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classification due to their flexibility, ease of implementation, and outstanding performance.

The benefit of ensemble methods can be explained from a bias-variance decomposition
perspective, which was originally proposed by Geman et al. for a regression model of
squared loss [41]. Domingos [31] provided a unified bias-variance decomposition which can
be applied to any loss function. The predicted loss ED,y[L(y, h)] for a given loss function
L can be decomposed into intrinsic noise, bias and variance:

ED,y[L(y, h)]

= c1Ey[L(y, h∗)] + L(h∗, hm) + c2ED[L(hm, h)]

= c1N(x) +B(x) + c2V (x)

(5.1)

where D is the training set, x is the example, y is the true value, h is the prediction, h∗ is
the optimal prediction that minimizes Ey[L(y, h∗)], hm is the main prediction [31] which is
the mean of the predictions under squared loss, c1 and c2 are constants, and N(x), B(x),
and V (x) represent noise, bias, and variance respectively.

Since the noise is irreducible [54], we only consider the bias and the variance. The bias
describes the error of the classifier in expectation, and the variance reflects the sensitivity
of the classifier to variations in the training samples. For squared loss, c1 = c2 = 1, so
both bias and variance increase the predicted loss. However, for zero-one loss used in
classification problems, it has been demonstrated that c2 is negative for biased examples,
and therefore there is a much higher tolerance for variance [31,101].

Ideally, we wish the classifiers to have both low bias and low variance. However,
there is usually a tradeoff between bias and variance [54]. When the complexity of a
classifier goes up, the bias tends to decrease while the variance will increase. Ensemble
methods can largely reduce the variance by majority voting of the results by base classifiers,
without affecting the bias or even reducing it [39]. Therefore, weak learners that are
sensitive to small changes in data are selected as base classifiers, such as decision trees and
perceptron [54].

Two mainstream ensemble approaches are boosting [38] and bagging [10]. The idea of
boosting methods is to learn classifiers iteratively by adjusting the distribution of training
samples based on the classification error, and predict labels by weighted majority voting.
Both bias and variance can be reduced by boosting. Empirical experiments show that
boosting is not easy to overfit [40], but when the sample size is small, boosting tends
to have large variance and thus cause overfitting [99]. One of the most popular boosting
methods is the AdaBoost algorithm [38]. It can be viewed as a forward stagewise additive
modeling algorithm to minimize the exponential loss function.
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The standard bagging is designed to reduce model variance by performing majority
voting among base classifiers that are trained on bootstrap subsets of training samples.
Compared to boosting, the bagging technique is more effective at reducing model variance,
but the model bias is unchanged. In recent years, there are also some variants of the
bagging method that have become popular. The random forest algorithm [11] is a method
that combines bagging and random subspace method [60]. A reduction in the variance can
be achieved by reducing the correlation between the trees, at the expense of a slight bias
increase. Another typical method is the rotation forest algorithm [120], which performs
feature transformation with some randomness on the data for each base classifier, and also
combine the results by majority voting. Previous empirical experiments show that rotation
forests have smallest variance compared to other ensemble methods such as boosting and
random forests. Also, unlike bagging and random forests, the rotation can reduce bias even
though the reduction of bias is not as significant as boosting [119].

Motivated by the above bias-variance analysis, an ensemble method integrating rotation
forests and AdaBoost is proposed in this chapter so that both bias and variance can be
further reduced by taking advantage of both methods. A similar approach to the proposed
method is the RotBoost algorithm [172], but it is not developed for SSS context. Moreover,
RotBoost adopts standard AdaBoost algorithm which requires the training error of the base
classifiers to be less than 1/2, which is too strict for a multiclass classification problem.
Instead, we use here a multiclass AdaBoost algorithm that is more tolerant about the
training error. We also show that the proposed method allows the posterior probability
to be naturally obtained without requiring the base classifiers to estimate probabilities.
The posterior probability is used with the CRF framework to incorporate spatial context
information. The implementation details will be introduced in the next section.

5.3 Proposed framework

In this section, we propose a two-stage framework for hyperspectral image classification
with a limited number of training samples. The first stage is to perform ensemble learning
to obtain posterior probability of class labels for pixels in hyperspectral image using only
spectral information. The MBRF algorithm that combines rotation forests and AdaBoost
is proposed for improving label prediction based on the motivation in Section 5.2. Using
a multiclass AdaBoost algorithm, the posterior probability can be naturally generated
without requiring the base classifiers to output probability estimates. In the second stage,
based on the posterior probability, the proposed MBRF classifier is incorporated into
the CRF framework, in order to simultaneously incorporate both spectral and spatial
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information in hyperspectral imagery.

5.3.1 Multiclass boosted rotation forest

The MBRF method is a bagging-based method that combines multiple classifiers which are
independent from each other. Instead of performing bootstrap sampling, the data is first
perturbed by performing feature transformation with randomness, and then the classifier
is trained by adaptive boosting. Therefore, the individual classifier for MBRF is not a
single base classifier, but a boosted ensemble of base classifiers which is called meta-base
classifier (MBC). Any rotation-variant classifier, i.e., the decision boundary will be changed
by rotating the feature space of the data, can be used as base classifiers. The posterior
probabilities by an MBC can be naturally approximated, and the probabilities by all the
MBCs are finally combined. The flow chart of the MBRF algorithm is shown in Fig. 5.1.

Figure 5.1: Flow charts of the proposed MBRF algorithm. The left is training stage and the right
is test stage. Q rotation matrices and Q classifiers are learned based on training data XTr in the
training stage. They are used to estimate the posterior probabilities of test data XTe in the test
stage.

To train a classifier hi, the first step is to perturb the original data by multiplying by
a rotation matrix. The procedure of calculating the rotation matrix is shown in Alg.
2. The original feature set is first randomly divided into Q subsets, and a random
number of classes are eliminated to increase the randomness of the rotation matrix.
Then a bootstrap sample of 75% sample size is selected [120]. Afterwards, a feature
extraction method is performed on the bootstrap sample without reducing the dimensions.
Empirical experiments show that PCA is the feature extraction method that can achieve
best classification performance [77,161]. The coefficients by PCA obtained for each subset
are incorporated into a rotation matrix:
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R =


c
(1)
1 , c

(2)
1 , · · · , c(M1)

1 · · · [0]
[0]
...

. . .
...

[0] · · · c
(1)
Q , c

(2)
Q , · · · , c(MQ)

Q

 (5.2)

where Q is the number of subsets, Mi is the number of variables in each subset i (i = 1...Q),

and c
(M1)
i , · · · , c(Mi)

i are Mi × 1 coefficient vectors of principal components obtained from
the bootstrap samples with variables in the ith subset.

The columns in R are rearranged according to the order of the original feature set to
obtain the final rotation matrix Ra.

Algorithm 2 Calculating rotation matrix Ra

1: Split the feature set F into Q subsets of features: Fi, (i = 1, ..., Q);
2: for i = 1...Q do
3: Let Xi be the dataset X for features in Fi;
4: Remove a random subset of classes from Xi;
5: Select a bootstrap sample of 75% sample size from Xi to form a new sample set X ′i;
6: Apply PCA on X ′i to obtain the coefficients cji , (j = 1, ...,Mi);
7: end for
8: Construct R with the obtained coefficients using Eq. (5.2);
9: Output Ra by rearranging the columns of R by matching the order of features in F .

The second step is to perform AdaBoost on the rotated data. The original AdaBoost
algorithm [38] is for binary classification. For multiclass problems, it may easily fail
when the training error by base classifiers is greater than 1/2. One way to apply
AdaBoost to a multi-class problem is to use one-versus-rest or one-versus-one strategies to
decompose into multiple binary classification problems [179], such as AdaBoost.MH [125]
and AdaBoost.M2 [124]. A disadvantage of these methods is the posterior probability
cannot be directly generated. In the proposed method, we use a multiclass AdaBoost
algorithm called SAMME [180]. It can be considered as forward stagewise additive
modeling using a multiclass exponential loss function, which has the same statistical
explanation as the original AdaBoost algorithm. Given K classes, it only requires the
error rate by a base classifier to be less than 1− 1/K rather than 1/2 which is very rigid
for multiclass classification. We can also see that SAMME will reduce to AdaBoost when
K = 2.
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At the beginning, the training data are sampled from the training set D in the uniform
distribution, i.e.,D1(x) = 1/n, where n is the number of training samples. Then, a base
classifier ht is trained on the sampled data, and the error εt is calculated:

εt = pxt∼Dt(ht(x) 6= y) (5.3)

where x represents the training samples and y represents their true labels.

The sampling distribution is updated in the way that misclassified samples are assigned
larger weights:

Dt+1(x) =
1

Zt
Dt(x) · exp { αtI(ht(x) 6= y) } (5.4)

where Zt is a normalization factor, I(·) is the indicator function, and αt is the model
parameter based on the training error:

αt = log
1− εt

εt
+ log(K − 1) (5.5)

For a new sample x, the posterior probability P (y = k | x) for each MBC can be
approximated:

P (y = k | x) =
e

1
K−1f ∗k (x)

e
1

K−1f ∗1 (x) + · · ·+ e
1

K−1f ∗K(x)
(5.6)

where

f ∗k (x) =
T∑
t=1

αt · δ(ht(x), k) (5.7)

and

δ(ht(x), k) =

{
1 ht(x) = k

− 1
K−1

otherwise
(5.8)

After the posterior probabilities for each MBC are obtained by SAMME, the final
probability estimates are calculated by averaging over all the boosted classifiers. The
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MBRF algorithm is described in Algorithm 3. Eq. (5.6) provides a way to obtain class
probability with good theoretical meaning, so that it is not necessary for a single base
classifier to generate probability estimates.

Algorithm 3 The MBRF algorithm

1: for q = 1 to Q: do
2: Calculate the rotation matrix Ra

q as shown in Alg. 2;
3: Perturb the data by multiplying the rotation matrix: xq = x ·Ra

q ;
4: Initialize the weight distribution Ds1(xq) = 1/n;
5: for t = 1 to T : do
6: Train a classifier hqt from the training set D under distribution Dqt: hqt =

L(D,Dqt);
7: Update the sampling distribution Dq,t+1 using Eq. (5.4);
8: end for
9: Output conditional probability Pq(y = k | xq) using Eq. (5.6);

10: end for
11: Output final probability estimates by averaging:

P (y = k | x) = 1
Q

∑Q
q=1 Pq(y = k | xq).

5.3.2 Conditional random fields

The traditional MRF model is formulated in a probabilistic generative framework modeling
the joint probability of the image and its labels [42, 92]. It assumes that a set of random
variables have a Markovian property, which means the random variables are only dependent
on their neighborhood. According to Bayes rule, the posterior probability is modeled as
P (y | x) ∝ P (x | y)P (y), where y is the labels and x is the observations. P (y) is modeled
as a Gibbs distribution. P (x | y) can be represented as a factorized form if we assume the
conditional probability P (xi | yi) is independent:

P (x | y) =
∏
i

P (xi | yi) (5.9)

Contrary to MRF, CRF [81] discriminatively models the posterior probability directly
so that the rigid conditional independence assumption can be relaxed:
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P (y | x) =
1

Z(x)
exp

{
−
∑
c∈C

ψc(yc,x)

}
(5.10)

where Z(x) =
∑

y exp { −
∑

c∈C ψc(yc,x) } is the partition function and ψc is a potential
defined on clique c.

For simplification, only unary and pairwise clique potentials are usually considered. Eq.
(5.10) can be rewritten as

P (y | x) =
1

Z(x)
exp {− [

∑
i∈S

φi(yi,x) +
∑
i∈S

∑
j∈ηi

ξij(yi, yj,x)] } (5.11)

where φi(·) and ξij(·) are unary and pairwise clique potentials respectively, ηi is the set of
neighbors of site i, and S is the set of integers indicating the discrete rectangular lattice.

In the proposed method, an 8-connected CRF is used. The unary and pairwise clique
potentials can be defined as arbitrary domain-specific local discriminative classifiers [177].
In previous remote sensing literature, the unary potentials have been defined as
posterior probabilities by various discriminative classifiers such as multinomial logistic
regression [173, 176] and support vector machines [142, 178]. In the proposed method, we
use the probability estimates by the proposed MBRF method as shown in the previous
section. Thus, the unary potential can be defined as

φi(yi,x) =
K∑
k=1

δ(yi = k) {− logP (yi = k | xi) } (5.12)

where P (yi = k | xi) is calculated using Eq. (5.6).

For the pairwise potentials, the standard MRF model only allows the contextual
information of the labels to be used (i.e., the standard Potts model [116]), while both
the labels and the observed data can be formulated in the CRF model as ξij(yi, yj,x) in
Eq. (5.11). We note that pairwise connected terms will tend to have different labels at
discontinuities in image structure. As a result, we use a generalized Potts model as the
discontinuity preserving smoothness constraint:

ξij(yi, yj,x) =

{
βexp{−α(Iei + Iej )/2} yi 6= yj

0 otherwise
(5.13)
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where i and j are indices of two neighboring pixels, Ie is the edge image obtained using the
Gaussian derivative per band then per pixel maximum over all the bands, α = 1/(0.25 ·
Totsu), Totsu is the Otsu Threshold of the edge image Ie which will adapt the edge strength
based on global edge strength of the image [133], and β is a weight parameter representing
the degree of smoothness.

In practice, the optimum β is usually selected using cross validation [178]. In the
inference step, the optimal labeling is assigned by maximizing the posterior probability in
Eq. (5.11), i.e., to solve the energy minimization problem below:

argmin
y

∑
i∈S

φi(yi,x) +
∑
i∈S

∑
j∈ηi

ξij(yi, yj,x) (5.14)

In previous literature, loopy belief propagation (LBP) [103] has been used to
solve this combinatorial optimization problem [177, 178], but recently graph-cut based
methods have become popular. For binary labeling problem, the graph-cut method
can find the global optimum [48]. Boykov et al. [9] developed an efficient graph-cut
based algorithm, i.e., α-expansion and α-β-swap algorithms, which are able to find an
approximate solution to the multiclass labeling problem. The α-expansion algorithm has
been demonstrated to outperform other state-of-the-art energy minimization methods on
benchmark problems [141]. Furthermore, it has been proved [9] that a local minimum
within a known factor of the global minimum can be found using α-expansion. As a result
we use the α-expansion algorithm to solve the energy minimization problem.

5.4 Experiments

In this section, experiments are conducted for testing the performance of the proposed
MBRF method and the combination with CRF. First, MBRF is compared with several
state-of-the-art supervised pixelwise classification methods, including SVM, random forests
(RF), SAMME, and rotation forests (RoF). SVM is one of the most commonly-used
classifier for remote sensing imagery. RF and SAMME are advanced versions of bagging
and standard AdaBoost respectively. Then, the combination of MBRF and CRF without
using edge strength (MBRF-CRF-NE) and with edge strength (MBRF-CRF-E) is tested
with two recently proposed spectral-spatial methods: SVMMRF-E [142] and MLR-CRF-
E [173]. It is noted that SVMMRF-E is actually a CRF-based method because it uses
posterior probabilities by a discriminative classifier and uses edge strength in the pairwise
potentials.
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The hyperspctral datasets for testing are described in Section 3.1. The main objectives
of this section are testing and evaluating the performance of the aforementioned pixelwise
and spectral-spatial classification methods in different numbers of training samples for the
three datasets.

5.4.1 Experimental setup

For SVM, the radial basis function (RBF) is used as the kernel function, and the optimum
parameters, i.e., the regularization parameter C and the bandwidth parameter of the RBF
kernel γ are found using 5-fold cross-validation. The number of trees is set to 500. The
number of variables randomly selected at each split is set by default, i.e., the square root of
the total number of variables. For SAMME, the number of base classifiers are set to 100.
For RoF and MBRF, the number of classes eliminated from the original data to calculate
the rotation matrix is fixed to 3. In previous literature, the number of trees in the rotation
forest algorithm is usually set to 10 [120,161]. Considering that the SSS problem might lead
to slow convergence, the number of trees in rotation forests is set to 50. For MBRF, the
number of MBCs is set to 30, and the number of trees in an MBC is set to 20. Decision tree
classifier is used as the base classifier for all the ensemble methods. Due to the incapability
of generating posterior probabilities directly by SVM, pairwise coupling [158] used in [142]
is also adopted in the experiment.

We use the same setting for the number of training samples as [68]. Different numbers
of randomly selected training samples per class (3, 5, 10, and 15) are used for testing.
The overall accuracy (OA), average accuracy (AA), and kappa coefficient are calculated to
evaluate the classification performance. We also notice that the classification performance
is very sensitive to the selection of training samples when the number of training samples is
limited, so all the methods are tested for 50 times using different randomly selected training
samples, and the mean is used for all the statistics. For the weight parameter β in the
CRF model, the traditional cross-validation is usually incapable of selecting the optimal
parameter because the number of training samples is limited. Therefore, we conduct
multiple tests using different β (20, 21, 22, ..., 28) and report the highest test accuracy.
To investigate the usefulness of the edge penalty information used in the smoothness
constraint, we make a comparative study between the CRF model using edge penalty
in Eq. 6.9 and without using edge penalty (i.e., α→ +∞).
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5.4.2 Experiments: University of Pavia dataset

The first dataset for testing was acquired by the ROSIS sensor in University of Pavia,
Italy. The classification result of the University of Pavia dataset is shown in Table 5.1.
It is observed that MBRF achieves best classification performance for different number of
labeled training samples. When there are only three samples per class, MBRF generally
achieves about 5.5% OA higher than SVM, 9.2% higher than RF, 16.0% higher than
SAMME, and 2.4% higher than RoF. The classification accuracy increases more than ten
percent on average by combining with CRF. The classification accuracy of each class in the
case of 10 training samples per class is shown in Table 5.2. MBRF has highest classification
accuracy in five out of nine classes and has the highest average accuracy. The confusion
matrix using MBRF-CRF-E with 10 random-selected samples per class in one test is shown
in Table 5.3.

Among the spectral-spatial methods, MBRF-CRF-E achieves highest classification
accuracy in all the cases. Also, we can see that CRF with edge penalty is significantly
better than that without edge penalty, with an improvement of 5.3% classification accuracy
on average. Fig. 5.2 shows the segmentation result using MBRF and CRF with different
number of training samples in one test. The object boundaries are well-delineated due to
the high spatial resolution and the urban scene of the dataset, which can help extract a
clean edge map for the CRF model. Using edge penalty, neighboring pixels with strong
edges can be prevented to be assigned the same label. Meanwhile, higher weight parameter
can be selected so that pixels with high within-class variation can be smoothed out in the
labeling.

5.4.3 Experiments: Salinas dataset

The second dataset for testing was acquired by AVIRIS Salinas dataset over Salinas Valley,
California. The classification result of the Salinas dataset is shown in Table 5.4. The overall
accuracy achieved by MBRF is 1.5% higher than SVM, 3.8% higher than RF, 10.0% higher
than SAMME, and 1.7% higher than RoF on average.

The classification results by different methods using 10 samples per class in one test is
shown in Fig. 5.3. Due to the low separability between the Vinyard-untrained class and
the Grapes-untrained class, it is not enough to achieve satisfactory classification for these
two classes by using only spectral information. In this case, the CRF model which serves
as a smooth labeling method can help improve classification significantly. MBRF-CRF-
E increase OA by 10.7% in all the cases compared to the pixelwise MBRF method, and
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n=3, OA=68.5% n=5, OA=81.1% n=10, OA=87.7% n=15, OA=88.6%

n=3, OA=74.6% n=5, OA=83.0% n=10, OA=90.9% n=15, OA=98.1%

Figure 5.2: Segmentation map by MBRF-CRF-NE (top) and MBRF-CRF-E (bottom) in different
number of training samples (n per class) with optimal weight parameter in the University of Pavia
dataset. Results in the same column are based on the same probability outputs by MBRF.
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Table 5.1: Overall accuracy (OA%) and average accuracy (AA%) , and kappa coefficient ([κ])
of different number of training samples by different methods for the University of Pavia dataset.
The first five columns are results of pixelwise classifiers, and the last four columns are results
refined by random fields. Bold identifies the highest OA among all the methods.

Classifier
Labeled samples per class

3 5 10 15

SVM
56.6 (68.0) 60.0 (71.4) 68.9 (77.3) 73.8 (80.7)

[0.47] [0.51] [0.61] [0.67]

RF
56.7 (68.1) 59.8 (70.6) 62.4 (73.7) 65.5 (75.6)

[0.47] [0.51] [0.54] [0.57]

SAMME
42.6 (51.4) 53.2 (62.9) 58.6 (69.3) 62.8 (72.7)

[0.32] [0.43] [0.49] [0.54]

RoF
59.2 (67.9) 64.1 (73.9) 71.9 (79.3) 76.5 (82.5)

[0.50] [0.56] [0.65] [0.70]

MBRF
61.6 (71.9) 67.6 (76.2) 73.7 (80.7) 78.3 (84.0)

[0.53] [0.60] [0.67] [0.72]

SVMMRF-E
52.2 (61.3) 66.0 (71.5) 83.9 (86.1) 90.8 (92.4)

[0.43] [0.58] [0.79] [0.88]

MLR-CRF-E
71.2 (76.2) 79.6 (82.6) 88.1 (88.5) 91.7 (92.3)

[0.64] [0.74] [0.85] [0.89]

MBRF-CRF-NE
69.1 (75.9) 78.2 (82.7) 85.6 (88.6) 90.2 (92.5)

[0.61] [0.72] [0.82] [0.87]

MBRF-CRF-E
75.2 (80.3) 83.7 (86.9) 90.9 (92.9) 94.6 (95.9)

[0.69] [0.79] [0.88] [0.93]

achieves higher OA than other spectral-spatial methods. Instead, MBRFCRF-NE does not
consider the edge between the Vinyard-untrained class and the Grapes-untrained class, and
only relies on the unary classifier which is incapable of separating these two classes. The
confusion matrix using MBRF-CRF-E with 10 random-selected samples per class in one
test is shown in Table 5.5.

5.4.4 Experiments: Kennedy Space Center dataset

The Kennedy Space Center dataset was acquired by the AVIRIS instrument over the
Kennedy Space Center, Florida on March 23, 1996 [50]. The classification result is shown
in Table 5.6. Compared to the two datasets, this dataset is relatively easy because the
pixelwise classification can achieve over 90% accuracy by MBRF using only 15 training
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SVM RF SAMME RoF MBRF
(OA=84.1%) (OA=79.5%) (OA=70.7%) (OA=83.5%) (OA=84.5%)

SVMCRF-E MLRCRF-E MBRFCRF-NE MBRFCRF-E Ground truth
(OA=97.0%) (OA=96.3%) (OA=87.7%) (OA=97.4%)

Figure 5.3: Classification maps by different methods using 10 labeled training samples per class
on the Salinas dataset in one test.
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Table 5.2: Class accuracy (%) achieved by different pixelwise classifiers for the University of
Pavia dataset in the case of 10 training samples per class. “C1”, “C2”, ...,“C9” represent the
nine classes orderly in the legend of Fig. 3.1. Bold identifies the highest accuracy among all the
methods.

Classifier C1 C2 C3 C4 C5 C6 C7 C8 C9 AA

SVM 65.9 64.3 58.5 90.5 99.1 58.4 85.8 73.2 99.9 77.3

RF 65.0 53.4 52.3 87.1 99.0 50.1 82.7 70.6 99.9 73.4

SAMME 62.2 49.7 50.0 81.2 97.1 52.6 77.1 66.4 91.4 69.8

RoF 67.6 67.3 61.5 91.0 99.0 66.9 83.8 76.0 99.8 79.2

MBRF 70.4 70.0 67.4 91.9 99.4 68.7 87.2 75.5 99.9 81.2

Table 5.3: Confusion matrix using the MBRF-CRF-E algorithm for the University of Pavia
dataset with 10 randomly-selected labeled samples per class. The number n at ith row and jth

column means n pixels that belong to class i are misclassified into class j. “C1”, “C2”, ... represent
the corresponding classes in Table 3.1.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 3614 0 6 0 2 2998 1 0 0

C2 0 12515 0 772 0 5352 0 0 0

C3 0 0 2087 0 0 2 0 0 0

C4 77 175 0 2375 1 414 0 7 5

C5 0 0 0 0 1327 7 0 1 0

C6 0 3 1 0 2 5012 0 1 0

C7 1 0 0 0 0 0 1319 0 0

C8 6 0 0 0 0 120 0 3546 0

C9 0 0 0 0 0 0 17 0 920

samples for each class. Considering the classification accuracy for all the cases, MBRF
averagely outperforms SVM by 2.8%, RF by 9.2%, SAMME by 13.2%, and RoF by 2.7%.

After combining with CRF, the highest overall accuracy using 15 training samples
per class can reach 98% by MBRF-CRF-NE. There is no improvement of using the edge
penalty in the CRF model. Compared to the first two datasets, this dataset has relatively
low spatial resolution. Also, there is not much strong edge information in the rural area of
the image where most of the training areas are located. As shown in Fig. 5.4, both methods
achieve similar classification accuracy inside the training areas. However MBRF-CRF-NE
tends to oversmooth over the image, while MBRF-CRF-E is better at preserving details,
especially in small regions with strong boundary information. The confusion matrix using
MBRF-CRF-E with 10 random-selected samples per class in one test is shown in Table
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Table 5.4: Overall accuracy (OA%) and average accuracy (AA%) , and kappa coefficient ([κ])
of different number of training samples by different methods for the Salinas dataset. The first
five columns are results of pixelwise classifiers, and the last four columns are results refined by
random fields. Bold identifies the highest OA among all the methods.

Classifier
Labeled samples per class

3 5 10 15

SVM
76.9 (84.4) 80.3 (87.9) 83.3 (90.6) 85.0 (91.9)

[0.74] [0.78] [0.82] [0.83]

RF
75.6 (83.5) 77.9 (85.9) 80.8 (88.3) 82.1 (89.5)

[0.73] [0.76] [0.79] [0.80]

SAMME
64.2 (71.4) 71.2 (77.9) 76.2 (83.7) 79.9 (87.3)

[0.61] [0.68] [0.74] [0.78]

RoF
76.3 (83.4) 80.0 (87.9) 83.5 (90.6) 84.8 (91.7)

[0.74] [0.78] [0.82] [0.83]

MBRF
79.8 (87.3) 81.2 (88.8) 84.6 (91.3) 86.1 (92.6)

[0.78] [0.79] [0.83] [0.85]

SVMMRF-E
78.1 (82.9) 85.0 (91.3) 91.4 (95.1) 95.6 (97.1)

[0.76] [0.83] [0.90] [0.95]

MLRCRF-E
84.6 (90.6) 90.2 (93.4) 94.4 (96.3) 97.1 (98.1)

[0.83] [0.89] [0.94] [0.97]

MBRFCRF-NE
87.0 (92.4) 87.0 (92.7) 92.2 (93.6) 95.6 (97.5)

[0.86] [0.86] [0.91] [0.95]

MBRFCRF-E
90.5 (94.3) 89.4 (91.8) 96.2 (96.0) 98.1 (98.6)

[0.89] [0.88] [0.96] [0.98]

5.7.

5.4.5 Summary of classification results and sensitivity analysis

Observed from the pixelwise classification results (Table 5.1, Table 5.4, and Table 5.6),
the overall classification accuracy by SAMME is not satisfactory because it is prone to
overfitting when there are limited training samples. RF is less prone to overfitting because
it reduces model variance, however, it cannot reduce bias of the decision tree classifiers.
SVM is slightly better than RF, especially in the cases of n = 10 and n = 15. However,
SVM is sensitive to the selection of model parameters, which are often determined by cross
validation. When the number of training samples is limited, the parameters that achieve
best cross-validation performance are less likely to be the optimal parameters. This could
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Table 5.5: Confusion matrix using the MBRF-CRF-E algorithm for the Salinas dataset with
10 randomly-selected labeled samples per class. The number n at ith row and jth column
means n pixels that belong to class i are misclassified into class j. “C1”, “C2”, ... represent
the corresponding classes in Table 3.2 in order.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C1 1999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2 0 3716 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C3 0 0 1966 0 0 0 0 0 0 0 0 0 0 0 0 0
C4 0 0 2 1382 0 0 0 0 0 0 0 0 0 0 0 0
C5 0 0 4 30 2632 0 0 0 0 1 1 0 0 0 0 0
C6 0 10 0 0 0 3939 0 0 0 0 0 0 0 0 0 0
C7 0 0 0 0 3 0 3554 9 0 0 0 0 0 1 1 1
C8 0 0 0 0 0 0 0 11094 0 163 1 0 0 2 1 0
C9 0 0 0 0 0 0 0 0 6193 0 0 0 0 0 0 0
C10 0 0 0 3 0 0 0 0 47 3204 0 0 0 12 0 2
C11 0 0 0 3 0 0 0 0 0 0 0 1055 0 0 0 0
C12 0 0 0 0 0 0 0 0 0 0 0 1917 0 0 0 0
C13 0 0 0 0 0 0 0 0 0 0 0 892 0 14 0 0
C14 0 0 0 0 0 0 0 1 0 29 0 0 0 1030 0 0
C15 0 0 3 32 1 0 0 2 0 2 0 0 0 0 7218 0
C16 0 0 0 0 1 0 0 1 0 13 0 0 0 0 0 1782

be improved using unsupervised heuristics or semi-supervised heuristics. The rotation
forest classifier which reduces both bias and variance perform well very in SSS problems.
It achieves higher overall classification accuracy than other comparing methods except
MBRF in most of the cases. MBRF achieves the highest OA, AA, and kappa coefficient
for all the cases, and it gains additional improvement of 2.5% classification accuracy over
RoF. This is because the combination of RoF with SAMME can further reduce model bias.
Moreover, the high variance and overfitting drawback of boosting in SSS problem turns
into a benefit because it can de-correlate the MBCs from each other, and thus increase
diversity.

From the spectral-spatial classification results, we observe that OA achieved by
SVMMRF-E is not satisfactory in the cases of n = 5 and n = 10, which is even worse than
the pixelwise SVM result. The reason might be that the pairwise coupling method [158]
fails to generate satisfactory posterior probabilities when there are insufficient training
samples. Instead, MLR is a classifier that learns posterior probabilities discriminatively,
and results show that the OA achieves by MLR-CRF-E is achieved better than that by
SVMMRF-E. Similarly, MBRF allows the natural approximation of posteriors. We can
see that the highest classification accuracy is achieved by either MBRF-CRF-E or MBRF-
CRF-NE in all the datasets. Also, MBRF-CRF-E achieves higher classification methods
than MBRF-CRF-NE in the University of Pavia dataset which has high spatial resolution
and strong edge strength.

Compared to the rotation forest classifier, there is one more parameter to determine
in the MBRF method, i.e., the number of trees T for the embedded SAMME algorithm.
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n=3,OA=80.8% n=5, OA=94.0% n=10, OA=96.2% n=15, OA=98.6%

n=3,OA=81.9% n=5, OA=93.4% n=10, OA=96.8% n=15, OA=97.1%

Figure 5.4: Segmentation map by MBRF-CRF-NE (top) and MBRF-CRF-E (bottom), in
different number of training samples (n per class) with optimal weight parameter β in the Kennedy
Space Center dataset. We can see that details are more preserved in the results using edge penalty.
Results in the same column are based on the same probability outputs by MBRF.

Figure 5.5: Overall classification accuracy (OA%) as a function of the number of inner iterations
T in MBRF for the University of Pavia dataset using different randomly-selected training samples
(5 per class).
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Table 5.6: Overall accuracy (OA%) and average accuracy (AA%) , and kappa coefficient ([κ]) of
different number of training samples by different methods for the Kennedy Space Center dataset.
The first five columns are results of pixelwise classifiers, and the last four columns are results
refined by random fields. Bold identifies the highest OA among all the methods.

Classifier
Labeled samples per class

3 5 10 15

SVM
73.1 (67.5) 79.1 (74.2) 86.0 (82.2) 88.4 (85.0)

[0.70] [0.77] [0.84] [0.87]

RF
68.5 (62.2) 73.5 (68.0) 78.1 (73.6) 80.9 (76.5)

[0.65] [0.70] [0.76] [0.79]

SAMME
56.0 (51.2) 69.2 (64.5) 77.9 (73.7) 81.9 (77.8)

[0.51] [0.66] [0.75] [0.80]

RoF
73.2 (67.6) 80.0 (75.3) 85.8 (81.8) 88.2 (84.4)

[0.70] [0.78] [0.84] [0.87]

MBRF
78.0 (72.7) 82.7 (78.2) 87.5 (83.6) 89.8 (86.2)

[0.76] [0.81] [0.86] [0.89]

SVMMRF-E
68.1 (62.0) 82.8 (78.8) 92.7 (91.0) 95.2 (94.2)

[0.65] [0.81] [0.92] [0.95]

MLR-CRF-E
84.3 (81.3) 89.2 (87.0) 94.4 (93.0) 96.3 (95.2)

[0.82] [0.88] [0.94] [0.96]

MBRF-CRF-NE
87.8 (84.5) 91.9 (89.3) 96.2 (94.7) 98.0 (96.7)

[0.86] [0.91] [0.96] [0.98]

MBRF-CRF-E
86.8 (84.4) 90.9 (88.4) 95.3 (94.0) 97.3 (96.2)

[0.85] [0.90] [0.95] [0.97]

When T = 1, MBRF is reduced to RoF. Fig. 5.5 shows the overall classification accuracy
as the number of trees increases for the University of Pavia dataset. The number of outer
iterations Q is fixed to 20, the same as the previous experimental setting. As shown in Fig.
5.5, the classification performance is improved as T increases, and the accuracy becomes
stable when T is greater than 15.

For the computation time, MBRF requires to train T base classifiers in an outer
iteration compared to RoF, but the computational cost is still low considering the small
training sample size, and the testing speed is very fast if the decision tree classifier is
used. Compared to other ensemble methods such as bagging and boosting, MBRF might
be slower due to the innate PCA step. The computational complexity of PCA is O(D3)
if the eigendecomposition of the D × D covariance matrix is performed using a power
method [148]. But in the MBRF, D is only a small subset of features, which is set to three
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Table 5.7: Confusion matrix using the MBRF-CRF-E algorithm for the Kennedy Space Center
dataset with 10 randomly-selected labeled samples per class. The number n at ith row and jth

column means n pixels that belong to class i are misclassified into class j. “C1”, “C2”, ... represent
the corresponding classes in Table 3.3 in order.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
C1 727 0 0 0 0 24 0 0 0 0 0 0 0
C2 0 226 0 1 0 4 0 1 1 0 0 0 0
C3 0 0 240 1 0 0 0 4 1 0 0 0 0
C4 1 0 47 104 7 78 0 4 0 0 0 1 0
C5 0 0 0 61 85 2 0 3 0 0 0 0 0
C6 0 0 0 7 0 212 0 0 0 0 0 0 0
C7 0 0 0 0 0 0 95 0 0 0 0 0 0
C8 0 0 0 3 0 0 0 416 0 0 0 1 1
C9 0 0 0 0 0 0 0 12 498 0 0 0 0
C10 0 0 0 0 0 0 0 0 0 393 0 1 0
C11 0 0 0 0 0 0 0 1 0 0 408 0 0
C12 1 2 0 0 0 0 0 5 0 2 4 443 36
C13 0 0 0 0 0 0 0 0 0 0 0 0 917

in the experiment. Therefore, the PCA does not increase computational cost very much.

Finally, we test the sensitivity of the weight parameter. The test accuracy related to
different number of training samples for all the datasets is shown in Fig. 5.6. It is observed
that the weight parameter for CRF with edge penalty is less sensitive than that without
edge penalty. Also, the optimal weight parameter varies for different number of training
samples. Based on the observations, it slightly increases when there are more training
samples. One explanation is that the spatial context is only helpful when the probability
estimates are reliable. If a majority of pixels in a region are misclassified, random fields or
any other type of smooth labeling methods tend to make the result worse.

5.5 Summary

A spectral-spatial classification method was proposed in this chapter to deal with the
situation when there are limited labeled training samples available. It is based on a novel
ensemble method combining rotation forests and multiclass AdaBoost. The classification
performance can be enhanced by combining both methods because the rotation forest
algorithm reduces model variance while the AdaBoost algorithm reduces model bias.
Also, we showed that the posterior probability can be naturally approximated by the
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Figure 5.6: Overall classification accuracy (OA%) for different weight parameter (β) and different
number of training samples (n per class) in three datasets. The results in the left column are
created by CRF without edge penalty, and the results in the right column are created by CRF
with edge penalty.
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proposed MBRF method and incorporated into the CRF framework. Experimental results
showed that MBRF as well as its combination with CRF outperforms other state-of-the-art
supervised classification methods when the number of labeled training samples is limited.
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Chapter 6

ST-IRGS: a semi-supervised
self-learning system for segmentation
and classification of hyperspectral
imagery

6.1 Introduction

In recent years, semi-supervised classification methods have been developed for
hyperspectral image classification, which improve the performance of classifiers by
incorporating unlabeled training samples [14, 15, 21, 33, 89, 152]. Most of these semi-
supervised methods use a regularized term which encourages unlabeled samples that are
close to each other in the feature space to be assigned the same label. Due to the
regularization, the decision boundary can be adjusted to cross regions in low density.
However, empirical experiments have shown that semi-supervised methods make no
improvement or even detrimental impact on classification performance [181]. Moreover,
many semi-supervised methods usually have high computational cost, especially when
the size of unlabeled training samples is large. Further, the above semi-supervised
approaches either do not consider spatial context, or use spatial context models as a
post-processing step to refine the classification results, which make no improvement on
parameter estimation for training models.

In this chapter, a region-based semi-supervised classification and segmentation
algorithm called self-training iterative region merging using semantics (ST-IRGS) as
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well as its application for hyperspectral imagery is presented. ST-IRGS is a semi-
supervised extension of the IRGS algorithm [170] which is an unsupervised classification
and segmentation segmentation algorithm that integrates hierarchical region merging in
a spatial context model, and has been successfully applied to SAR sea ice imagery [169]
and later to polarmetric SAR imagery [167]. To the authors’ knowledge, this is the first
algorithm to integrate CRF, region merging, and self-training into a single framework.
Experimental results show that ST-IRGS outperforms state-of-the-art methods using
limited labeled data for training.

Below is the description of the ST-IRGS algorithm:

1. ST-IRGS is formulated in the CRF framework, in which image features such as edge
strength can be arbitrarily incorporated into the energy function.

2. ST-IRGS uses a multimodal Gaussian model to calculate the unary potentials,
in which multiple Gaussian modalities are assumed for a single class. Bayesian
information criterion (BIC) is used to estimate the number of mixtures in each class.

3. ST-IRGS inherits the iterative region merging of the original IRGS algorithm. The
integration of iterative region merging with labeling for optimizing the CRF energy
function can significantly reduce the number of nodes, so that the convergence rate
can be speeded up and near-global optimum solutions can be achieved.

4. ST-IRGS integrates the self-training technique that is capable of iteratively
expanding the training sample set and retraining the classifier. Pixels that are in the
same regions of the original training samples are selected as new training samples,
so that the edge constraint can be implicitly used for training sample selection.

The rest of this chapter is organized as follows. Section 6.2 reviews the IRGS algorithm
that the proposed approach is based on. Section 6.3 describes the proposed ST-IRGS
algorithm. Section 6.4 shows the performance of the proposed approach on benchmark
hyperspectral image datasets. Section 6.5 concludes the chapter by summarizing the above
sections.

6.2 Review of IRGS

This section provides a high-level description of the IRGS algorithm [170] to help
understand the proposed ST-IRGS algorithm.
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The goal of image classification is to find the optimal label field configuration given the
image data. In the Bayesian framework, we aim to find a y that optimizes

y∗ = argmax
y∈Y

p(x | y)P (y) (6.1)

The term p(x | y) can be represented as a factorized form if we assume that the
conditional probability P (xi | yi) is independent:

p(x | y) =
∏
i

P (xi | yi) (6.2)

The label field Y can be modeled as an MRF, assuming the Markovian property of
the labels. For image labeling problems, usually only the pairwise clique potentials are
considered [92].

In IRGS, GMM is used to calculate the unary potential energy. The multi-level
logistic (MLL) model [30] is used to incorporate spatial context, penalizing regions that are
neighbors but are assigned different labels. An edge penalty function is also incorporated
into the pairwise potential energy. A prior model should theoretically not be dependent on
the data. In practice, however, the additional edge penalty can help improve classification
performance [170].

By taking the logarithm on both sides of Eq. (6.1) and incorporating the unary and
pairwise potentials, the region-based energy function is formulated as [117,170]:

Yr = argmin
yr
i ,i=1,...,Nr

{
Nr∑
i

∑
s∈Ωi

[
1

2
log(

∣∣Σyri

∣∣) +
1

2
(xs − µyri )TΣ−1

yri
(xs − µyri )

]

+β
∑
i

∑
j

∑
s∈∂Ωi∩∂Ωj

g(Os)

} (6.3)

where µyri and Σyri
are the mean and variance related to class yri , g(Os) is the edge penalty

function, and ∂Ωi ∩ ∂Ωj denotes the boundary between Ωi and Ωj.

A simulated annealing (SA) iterative procedure is used to solve the combinatorial
optimization problem in IRGS. In each iteration, each region is scanned in a random
order, and the label field configuration that minimizes the energy function in Eq. (6.3) is
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chosen. Different from traditional pixelwise MRF approaches, IRGS also performs iterative
region merging during the SA iterations. This process significantly reduces the number of
regions and avoids being trapped in a local minimum. Here, a region is assumed to be
homogeneous and unimodal, so the merging criterion can be derived from Eq. (6.3) by
assuming each region has a unique label. The region merging starts from the result by an
over-segmentation algorithm such as watershed [149], and a region adjacency graph (RAG)
is constructed. In each iteration, neighboring regions are merged if the merging can reduce
the global energy function. For two neighboring regions Ωi and Ωj, the merging criterion
is derived as:

δEij = (Ni +Nj) log(|Σij|)−Ni log(|Σi|)−Nj log(|Σj|)− β
∑

s∈∂Ωi∩∂Ωj

g(Os) (6.4)

where Ni and Nj are the number of pixels in Ωi and Ωj respectively.

Only regions that have the same class label are allowed to be merged. Once two regions
get merged, related nodes and edges in the RAG will be also updated accordingly.

6.3 The ST-IRGS algorithm

For most of remote sensing image labeling methods, classification and segmentation are
performed separately. Segmentation is either served as a preprocessing step to reduce
computational cost, or a postprocessing step to refine classification results using spatial
context. However, human interpretation is not performed in two separate steps. In fact,
classification and segmentation can be mutually beneficial to each other. Classification
obtains the probability of a pixel belonging to a class, which can help guide the
segmentation. Also, segmentation provides region-level features that are more robust to
noise, which can reciprocally improve the classifier.

The IRGS algorithm [169] has been used as a joint classification and segmentation
approach by incorporating shape prior knowledge into the energy function, while it is
still in a unsupervised manner because no training samples are used. Recently, IRGS has
been extended to supervised classification by combining with a support vector machine
(SVM) [84], but the SVM model is pre-trained and the probabilities remain unchanged
during segmentation. In the rest of this section, the proposed ST-IRGS algorithm, which is
a joint classification and segmentation approach based on the CRF model will be described,
where the self-training technique is integrated to iteratively update the classifier.
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6.3.1 Conditional random fields

CRF [81] has been introduced in Section 5.3.2 as well as its advantages over MRF. An
example of the CRF model for image labeling is shown in Fig. 6.1. There are mainly two
advantages of CRF over MRF that can benefit our approach. First, the unary potential
at site s in CRF is a function of all the observation data x as well as the label ys, while
in MRF it is a function of xs and ys only. In our approach, the label of a pixel ys is not
determined only by the features at the same site xs, but by all the features in the same
region as s. Second, in MRF, the pairwise potential for each pair s and t is independent of
the observation, while in CRF it is a function of all the xs as well as the labels ys and yt.
Therefore, the edge strength can be naturally incorporated into the the pairwise potential
in CRF.

Figure 6.1: Example of a CRF for image labeling.

To summarize, there are mainly two advantages of CRF over MRF that can benefit our
approach. First, the unary potential at site s in CRF is a function of all the observation
data x as well as the label ys, while in MRF it is a function of xs and ys only. In our
approach, the label of a pixel ys is not determined only by the features at the same site
xs, but by all the features in the same region as s. Second, in MRF, the pairwise potential
for each pair s and t is independent of the observation, while in CRF it is a function of
all the xs as well as the labels ys and yt. Therefore, the edge strength can be naturally
incorporated into the the pairwise potential in CRF.

In Section 6.3.2, the details about the unary and pairwise potentials in the CRF model,
as formulated in Eq. (5.11) are shown.
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6.3.2 Defining unary and pairwise potentials

For the unary potentials, we simply use the Gaussian classifier extended from the original
IRGS algorithm to generate probability estimates, but our approach can also be adaptable
to other supervised or semi-supervised probabilistic classifiers. The main advantages of a
Gaussian classifier are its simplicity of estimating parameters and its meaningful probability
estimates compared to the non-probabilistic classifiers. Given sufficient training samples,
a Gaussian classifier works very well when the data fit a normal distribution.

The traditional Gaussian MLC [98] assumes each class to be a single Gaussian
distribution. In practice, however, a class often includes multiple materials that have
different spectral signatures, in which case a single Gaussian distribution is incapable of
modeling the whole class. Therefore, we assume that each class is a linear mixture of
multiple Gaussian distributions, which we call “multi-modal Gaussian MLC” (MGMLC):

p(xs|ys) =

Cys∑
k=1

αkN(xs, µk,Σk) (6.5)

where Cys is the number of clusters in the class ys, and

N(xs, µk,Σk) =
1

(2π)d/2 |Σk|1/2
exp { − 1

2
(xs − µk)TΣk

−1(xs − µk) } (6.6)

MGMLC combined with dimension reduction techniques has been found to outperform
SVM for hyperspectral image data [94]. But different from MLC, the model parameters for
each Gaussian distribution cannot be directly obtained from training samples. Expectation
maximization (EM) is often used to estimate the parameters by maximizing the expected
log-likelihood function. Also, the number of mixtures for each class is unknown. There are
many methods to estimate the number of clusters. We simply use BIC [128] that has been
demonstrated to provide an accurate estimation on the number of clusters for hyperspectral
data [94]. Given the complete log-likelihood L̂ with optimal model parameters optimized
by MGMLC, BIC can be calculated without extra cost [54]:

BIC = −2 log(L̂) + d(logNs) (6.7)

where Ns is the number of samples and d is the number of features.

To incorporate Eq. (6.5) into the CRF model, we define the unary potential and use
Bayes’ theorem:
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φs(ys,x) = − log {p(ys | xs)}

= − log

{
p(xs | ys)P (ys)

p(xs)

}
(6.8)

Note that p(xs) is independent of Y and thus can be ignored in the optimization.

For the pairwise potential, we only consider first-order interactions, i.e., two nodes
only have non-zero weights when they are neighbors. Here, the pairwise potential is based
on a function of the gradient structure distribution. The Otsu’s threshold [108] is used to
determine a threshold that maximizes inter-class separability between two gradient clusters.
So we define

ξst(ys, yt,x) =

{
βg(Os) ys 6= yt

0 otherwise
(6.9)

g(Os) = exp{−α ‖xs − xt‖2
∞ /K(τ)2} (6.10)

where ‖·‖2
∞ is the infinite norm that returns the maximum absolute value for all the feature

bands in the image, α = 1/(0.25 · TOtsu), where TOtsu is the Otsu threshold of the edge
image which adapts the edge strength based on global edge strength of the image, and
K(τ) is monotonically increasing with the iteration number τ [170]:

K(τ) =

{
f(2τ), 1 ≤ τ ≤ 50

1.1K(τ − 1), τ > 50
(6.11)

where f(i) takes a value in [0, 1] indicating that i percentage of the site pairs have weaker
edge strength than f(i). Such a penalty function is called “graduated increased edge
penalty” that has been experimentally demonstrated to be satisfactory [170].

By incorporating Eq. (6.8) and Eq. (6.9) into Eq. (5.11) and cumulating the potentials
related to the same region, we have the region-based energy optimization function for the
CRF model:

Yr
CRF = argmin

yr
i ,i=1,...,Nr

{
Nr∑
i

∑
s∈Ωi

− log {p(xs | yri )P (yri )}

+β
∑
i

∑
j

∑
s∈∂Ωi∩∂Ωj

g(Os)

}
(6.12)
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where P (yri ) is the class prior, and p(xs | yri ) is calculated from Eq. (6.5).

Even though the energy function in Eq. (6.12) is very similar to (6.3) except the
replacement of GMM by the supervised GMGLC classifier, the definition of CRF provides
the theoretical legality of using edge strength in the pairwise potential of (6.12). In fact,
the optimization of Eq. (6.12) is the same as the optimization of the pixelwise CRF model
with region equivalence constraints. If the label of a pixel is changed by Gibbs sampling,
all the other pixels in the same region should change to the same labels as well. Therefore,
we can consider the Gibbs sampling is performed on each region in the RAG as a unit.

6.3.3 Joint region merging and self-training

In our approach, the same assumption of regions as that in the IRGS algorithm described
in Section 6.2 is used, so the merging criterion in the proposed approach is the same as Eq.
(6.4). The only difference is that we further restrict the necessary condition for merging.
After MGMLC is performed on the training data, each region is assigned an additional
“cluster label” to one of the Gaussian mixtures in the class that region is labeled. In the
region merging step, two adjacent regions are allowed to be merged when they are not only
labeled as the same class, but also as the same cluster. Such a criterion can help protect
the homogeneity of regions so that they can be modeled as Gaussian distribution with
single modality. Moreover, if a region contains training samples, the risk of incorporating
samples that are incorrectly labeled into the training set could be reduced.

Followed by region merging, the self-training step is performed in order to expand the
training set and retrain the classifier iteratively. Self-training (also called “self-learning” or
“self-teaching”) is a wrapper algorithm that has been commonly used for semi-supervised
learning [181]. In the self-training framework, we first train a classifier using a small
amount of labeled data, then use it to classify the unlabeled data. Later we select the most
confident unlabeled points with their predicted labels and move them into the training set.
The classifier is retrained multiple times. However, such a procedure is largely dependent
on the performance of the classifier. In the early iterations, there is an insufficient number
of training samples, and thus the classifier is very likely to obtain inferior results, which
might in turn make the results iteratively worse.

In the remote sensing context, most image classification tasks select training samples
and perform classification on the same image, and pixels around a training sample have
high probability of belonging to the same class as that training sample. However, such
location information of training samples was rarely used in previous literature. Dópido
et al. [33] recently used the spatial locations of the initial labeled training samples to
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select unlabeled samples. Only pixels that are around the labeled training samples can
be selected, based on the assumption that nearby pixels are likely to belong to the same
class. This is safer than selecting unlabeled samples only depending on their estimated
class probabilities. Nevertheless, the self-training algorithm by Dópido et al. [33] is a naive
model without consideration of either edge strength or spatial context.

In our approach, the region merging and self-training procedures are both concatenated
into the spatial context model. The region merging technique enables the integration of a
safer strategy of self-training, i.e., only pixels that belong to the same region as a labeled
sample are labeled and incorporated into the training samples. Such a strategy not only
uses spatial constraint, but also takes the edge strength into account in an implicit manner
because edge strength has been incorporated into the merging criterion. Further, the
spatial context model can label the outliers according to their surrounding pixels. Such
outliers can be considered as obstacles, which are “cleaned up” by the spatial context
model to boost region merging, and subsequently enables the further expansion of more
training samples. Lastly, the self-training naturally stops when the regions stop merging,
so extra stopping criteria for self-training are not required.

6.3.4 Selection of weight parameter

The weight parameter β in Eq. (6.3) controls the smoothness by leveraging the data term
and spatial term in the CRF model. It is very challenging to select the weight parameter
automatically, and thus it was predetermined and fixed during the optimization process in
many random field based approaches [90, 142, 160]. Nevertheless, some approaches that
modify the parameter adaptively have been shown to outperform those using a fixed
parameter. Deng and Clausi [29] used a gradually increasing weighting scheme during
SA. In IRGS [170], the parameter is based on class separability which is decreasing as
spatial context is incorporated during the merging process. For supervised classification,
the weight parameter can be selected by exhaustive grid search. To avoid the high
computational cost resulted from grid search, Serpico and Moser [129] proposed an
automatic supervised procedure for optimizing the weight parameters based on the Ho-
Kashyap algorithm. However, when the number of labeled training samples is limited, grid
search or other automatic selection methods might not be feasible. Here, we adopt the
parameter selection method in IRGS to a supervised context.

In IRGS, the weight parameter is defined based on class separability [117]:

β̂ = C1
Jmin/C2

1 + Jmin/C2

β0 (6.13)
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where β0 is the ratio of the current total class boundary length over the image size [117],
C1 and C2 are constants, and Jmin = minij Jij is the minimum pairwise class separability.

In ST-IRGS, the Fisher’s criterion is extended to multiple Gaussian modalities:

Jij =
∑
s∈c{i}

∑
t∈c{j}

p(yi)p(yj)Tr(S
−1
Wst

SBst) (6.14)

SWst =
Ns

Ns +Nt

Σs +
Nt

Ns +Nt

Σt (6.15)

SBst = (us − ut)(us − ut)
T (6.16)

where c{i} and c{j} represent the sets of modalities belonging to class i and j respectively.

Jij is updated using the estimated GMM parameters updated in each iteration. In the
original IRGS algorithm, J is relatively large at the beginning of the iterations because the
feature model dominates the energy function, and is decreasing as segmentation proceeds
due to the spatial context that gradually plays an important role [170]. In the ST-IRGS
algorithm, however, the training samples are incapable of representing the true class at the
beginning and result in poor classification accuracy, so the class separability is relative low.
As self-training proceeds, the classifier is retrained and the model parameters are refined.
Then, J tends to increase, and so does β̂. This agrees with the intuition that the spatial
context is only helpful when a majority of predictions by the unary classifier is correct.

6.3.5 Summary of the proposed algorithm

The summary of the ST-IRGS algorithm is shown in Algorithm 4. The watershed algorithm
is first performed on the image to obtain an oversegmentation result, and pixels in the
same region of the training samples are added into the training set. Then, the training
of the MGMLC classifier, Gibbs sampling, and region merging are performed iteratively.
The parameter β is updated in each iteration, and the edge penalty is also updated as a
function of K(τ). After the maximum number of iterations is reached, the boundary sites
are labeled using maximum a posteriori [117].

6.4 Experiments

In this section, experiments are conducted for testing the performance of the proposed
ST-IRGS algorithm. The hyperspctral datasets for testing are described in Section 3.1.
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Algorithm 4 The ST-IRGS algorithm

Input: Set C1, C2 in Eq. (6.14);
Set τmax and let τ = 0;
Set initial temperature T0 and K0;
Obtain the edge map of the image using Eq. (6.10).

Output: A predicted class map.
1: Obtain an initial over-segmentation result by watershed transform and construct an

initial RAG;
2: Update STr and D. For a pixel s, add it to STr and its corresponding features and

estimated label (xs, ys) into D if ∃t, t ∈ STr and s, t belong to the same region;
3: Estimate the number of mixtures for each class using Eq. (6.7) on the current D;
4: Retrain the classifier and calculate the class probabilities for each pixel using Eq. (6.5);

5: Update β using Eq. (6.13), let τ = τ + 1, update T (τ) and K(τ), and update edge
penalty in Eq. (6.10);

6: Perform Gibbs sampling on the current RAG to find a suboptimal solution for Eq.
(6.12). Each RAG vertex is visited once randomly. If τ = τmax, go to Step 9.

7: Calculate ∂Eij using Eq. (6.3) for each pair of adjacent regions in the current RAG, if
Ωi and Ωj have the same cluster label;

8: If the minimum ∂Eij is negative, merge Ωi and Ωj, and then update the RAG and Ω
correspondingly. If merging happens, go to Step 7; Otherwise go to Step 2;

9: Label region boundary sites on the class boundaries to one of the classes its neighboring
regions belong based on maximum a posteriori.

The experimental analysis is mainly focused on the first two datasets whose ground truth
areas are large enough to verify the correctness of labels as the training set is expanded
by self-training. The experimental setup is described in Section 6.4.1, and the experiments
are shown in Section 6.4.2.

6.4.1 Experimental setup

The ST-IRGS algorithm is implemented in Microsoft Visual C++ 2010. The same
parameters are used for both datasets. C1 and C2 in Eq. (6.13) are set to 5 and 1
respectively based on the experiment. T0 is set to 1, and T (τmax) = T0 · 0.98τ−1. τmax is set
to 100. The maximum number of Gaussian mixtures in each class is set to 5. If the number
of training samples in a class is less than 200, the number of mixtures is automatically set
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to 1 to avoid insufficient training samples. In contrast, if the number of available training
samples is too large, we perform Monte Carlo sampling to reduce computational costs for
estimating GMM parameters, e.g., sample a pixel with a probability p:

p =

{
1, Ni < Nmax

Nmax

Ni
, otherwise

(6.17)

where Ni is the number of pixels available for the training set, and Nmax is a threshold of
maximum sampled pixels. In the experiment, λ is set to 0.01, and Nmax is set to 5000.

To avoid excessive merging in a single step which might cause class imbalance of the
expanded training set, we define the maximum number of merges in one iteration, which
is set to 300. In each iteration, the merging is processed from the most negative ∂Eij in an
ascending order. To reduce computation time, the model parameters are not re-estimated
unless Ni > λNold

i for class i, where Ni is the number of pixels available for the training
set that, Nold

i is the number of pixels related to the old classifier, and λ is a constant that
is set to 1.01 in the experiment.

As a preprocessing step, PCA is first applied to reduce the dimensions to 10. We
use three algorithms that are also based on Gaussian models for comparison: MGMLC,
GMRF, and ST-IRGS-S. GMRF combines MGMLC with the standard MRF model, and
ST-IRGS-S is a simple version of ST-IRGS by assuming a single Gaussian distribution (or
called “uni-modal”) for each class. All the methods are region-based methods that perform
the watershed algorithm first, and use pixels that are in the same watershed region as the
initial set for training. At the end, one watershed or higher-scale region is assigned a unique
class label. The result by MGMLC serves as an initialization for the other three methods.
At the end, we also compare the results by ST-IRGS to results by state-of-the-art methods
published in recent years using the same datasets and limited training data.

In the experiment, all the tests are repeated ten times using different randomly-selected
labeled training samples, five per class for both images. Below are the results and analysis.

6.4.2 Experimental results and analysis

Experiments: University of Pavia dataset

The classification results are shown in Table 6.1. The confusion matrix using the ST-IRGS
in one test is shown in Table 6.2. MGMLC followed by a watershed algorithm only achieves
an OA of 71.8% by averaging ten runs. In Fig. 6.2 (a), even though the watershed algorithm
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Table 6.1: Class accuracy, overall accuracy (OA%) and average accuracy (AA%) in percentage,
and kappa coefficient ([κ]) using different region-based methods for the University of Pavia dataset
with five labeled samples per class (45 samples in total).

MGMLC GMRF ST-IRGS-S ST-IRGS

Asphalt 80.9±11.3 87.8±7.5 41.3±48.5 98.1±2.6
Meadows 65.2±12.7 67.5±13.2 40.0±41.8 85.0±15.1
Gravel 74.2±15.4 78.9±15.1 92.2±10.5 91.8±11.4
Trees 97.2±2.3 97.2±2.9 83.3±11.3 87.9±10.7
Painted metal sheets(1345) 99.6±0.2 99.7±0.2 97.4±7.9 96.6±10.6
Bare Soil 72.1±12.5 77.5±13.1 88.3±8.5 95.7±4.4
Bitumen 85.1±24.8 86.1±27.6 99.7±0.3 98.9±0.4
Self-Blocking Bricks 44.8±24.5 55.8±28.8 26.2±19.6 83.2±27.5
Shadows 99.0±0.9 98.8±0.9 93.2±16.6 86.5±7.2

OA 71.8±5.4 75.7±5.0 55.0±19.9 89.5±6.3
AA 79.8±3.9 83.3±4.9 73.5±7.5 91.5±3.6

κ 0.80±0.04 0.83±0.05 0.74±0.08 0.92±0.04

can reduce the noise more or less, the labels are still noisy due to the large within-class
variance of the same class and insufficiency of training samples. This is evidently shown in
the bare soil area in the middle of the image, and the meadows area at the bottom. Also,
the filament-shape self-blocking bricks among the trees are largely misclassified as gravels,
yielding to only 44.8% classification accuracy.

In Fig. 6.2 (b), the isolated misclassified labels are largely removed due to the spatial
context using MRF model, and the final OA is improved by 3.9% compared to MGMLC.
However, the errors could be hardly corrected if a majority of labels are misclassified in a
region. For example, a large area of the meadows on the top left is still misclassified as
shadows or bare soil. Compounding the errors, the wrong labels tend to accumulate and
dominate the area, resulting in even poorer classification accuracy. This is the reason why
the ST-IRGS-S achieves unsatisfactory classification accuracy. In Fig. 6.2 (c), the whole
meadow area at the bottom is misclassified as asphalt. This indicates that the uni-modal
Gaussian distribution is incapable of modeling some classes in this dataset, which is more
significant as the training set becomes larger. The misclassified pixels might be selected
for new training samples to train a new classifier or guide the region merging in the future
iterations, and thus might make things worse.

The ST-IRGS algorithm achieves higher classification performance than the above three
methods on this dataset. The classification performance by ST-IRGS improves stably as the
number of iterations increases, and converges in about 90 iterations, while the classification
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(a) MGMLC (b) GMRF (c) ST-IRGS-S (d) ST-IRGS

Figure 6.2: Classification results by different methods for the University of Pavia image

(a) τ = 1 (b) τ = 10 (c) τ = 20 (d) τ = 50 (e) τ = 100

Figure 6.3: Classification results in different iterations by ST-IRGS for the University of Pavia
image using five labeled training samples per class.
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Table 6.2: Confusion matrix using the ST-IRGS algorithm for the University of Pavia dataset
with five randomly-selected labeled samples per class. The number n at ith row and jth column
means n pixels that belong to class i are misclassified into class j. “C1”, “C2”, ... represent the
corresponding classes in Table 3.1 in order.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 5985 2 0 561 0 0 0 33 0

C2 0 15590 1 1070 0 939 0 0 999

C3 9 0 2040 0 0 0 0 0 0

C4 56 170 0 2659 0 27 0 2 100

C5 0 0 1 0 1294 0 0 0 0

C6 0 1337 0 88 0 3539 0 15 0

C7 15 0 0 0 0 0 1265 0 0

C8 4 0 0 1165 0 0 0 2463 0

C9 0 0 0 24 17 0 0 0 856

accuracy by ST-IRGS-S drops significantly after a few iterations, as shown in Fig. 6.4. as
shown in Fig. 6.4. The intermediate results by ST-IRGS are shown in Fig. 6.3. The result
in Fig. 6.3 (a) is the same as that by MGMLC. Its corresponding training set is shown
in Fig. 6.5 (a). The training set gradually expands as the number of iterations increases,
so more and more training samples are collected to improve the classifier. Meanwhile,
the incorporation of spatial context smooths the labeling and thus helps the expansion of
the training set. Comparing Fig. 6.3 (d) with (a), (b), and (c), the labels are smoother
and more accurate. For example, the class of self-blocking bricks which achieves very low
accuracy in the early iterations are, for the most part, correctly classified in Fig. 6.3 (d).
Even though the area of this land cover is in a filament shape, it can still be expanded by
ST-IRGS. Moreover, large misclassified regions in the meadow areas can also be corrected
owing to the expansion of the training set. At the end of iterations, the number of regions
is reduced to about 2000, which is approximately 1/6 of the original number of regions, so
that the chance of converging to a suboptimal solution can be lowered.

Experiments: Salinas dataset

The classification results for the Salinas dataset are shown in Table 6.3. The confusion
matrix using the ST-IRGS in one test is shown in Table 6.4. Most classes have good
separability and thus achieve satisfactory classification accuracy even by using MGMLC.
One exception is the separation between the grapes-untrained class and the vinyard-
untrained class. In Fig. 6.7, most of the grapes-untrained area is misclassified into the
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Figure 6.4: Overall accuracy by ST-IRGS and ST-IRGS-S during the iterations for the University
of Pavia image.

(a) τ = 1 (b) τ = 10 (c) τ = 20 (d) τ = 50 (e) τ = 100

Figure 6.5: Training set in different iterations by ST-IRGS for the University of Pavia image
using five labeled training samples per class.
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Table 6.3: Class accuracy, overall accuracy (OA%) and average accuracy (AA%) in percentage,
and kappa coefficient ([κ]) using different region-based methods for the Salinas dataset with five
labeled samples per class (80 samples in total).

MGMLC GMRF ST-IRGS-S ST-IRGS

Brocoli-green-weeds-1 97.4±3.4 99.0±1.9 100.0±0.0 100.0±0.0
Brocoli-green-weeds-2 99.6±0.6 99.3±1.1 100.0±0.0 99.9±0.2
Fallow 99.5±0.9 96.0±8.2 99.6±1.1 99.9±0.2
Fallow-rough-plow 99.9±0.2 100.0±0.1 100.0±0.0 99.9±0.1
Fallow-smooth 80.3±16.7 84.2±17.0 97.6±0.1 98.6±0.2
Stubble 99.8±0.2 99.9±0.1 99.9±0.0 99.9±0.2
Celery 99.5±0.7 99.6±0.7 99.9±0.3 99.9±0.1
Grapes-untrained 55.8±22.8 59.0±30.4 92.7±3.4 93.1±3.3
Soil-vinyard-develop 98.5±1.5 96.9±3.6 99.9±0.1 99.5±0.5
Corn-senesced-green-weeds 87.1±10.1 88.7±10.7 84.5±13.9 84.8±12.1
Lettuce-romaine-4wk 89.5±6.3 90.0±6.0 94.4±3.6 88.2±31.2
Lettuce-romaine-5wk 88.5±12.3 91.0±11.5 100.0±0.0 100.0±0.0
Lettuce-romaine-6wk 96.8±2.9 98.0±1.5 97.9±1.5 97.0±4.8
Lettuce-romaine-7wk 93.3±5.6 93.8±5.1 81.7±29.5 87.7±18.9
Vinyard-untrained 74.5±13.8 81.5±13.5 76.8±17.8 89.2±13.4
Vinyard-vertical-trellis 94.9±3.1 95.9±2.7 98.6±1.4 97.4±3.4

OA 84.2±4.3 86.0±5.8 93.7±2.6 95.4±2.5
AA 90.9±2.3 92.0±2.4 95.2±2.3 95.9±2.9

κ 0.91±0.02 0.92±0.02 0.95±0.02 0.96±0.03

vinyard-untrained class. Such misclassification is difficult to be corrected by simple random
fields or other smooth labeling methods. Therefore, the OA is only improved by 1.8% using
MRF. With self-training, ST-IRGS-S increases an OA by 7.7% over GMRF after using the
self-training technique. ST-IRGS also shows a stable improvement from the MGMLC
initialization, and is slightly better than ST-IRGS-S, as shown in Fig. 6.6. ST-IRGS
converges in about 50 iterations, and achieves the highest classification accuracy of 95.4%.

In Fig. 6.8, even though the grapes-untrained class and the vinyard-untrained class
have very low separability, the training set related to these two classes is still expanding
in a correct way. There are mainly two reasons. First, as the number of training samples
increases, the estimated model parameters are more close to the parameters for the true
classes, and thus the classification error rate is reduced. Second, the edge strength is
relatively strong between the two areas, which can prevent assigning the same label to
regions on both sides, or merging the regions across the boundary. Fig. 6.9 and Fig. 6.6
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Table 6.4: Confusion matrix using the ST-IRGS algorithm for the Salinas dataset with five
randomly-selected labeled samples per class. The number n at ith row and jth column means
n pixels that belong to class i are misclassified into class j. “C1”, “C2”, ... represent the
corresponding classes in Table 3.2 in order.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C1 1959 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2 0 3652 0 0 0 0 0 0 0 24 0 0 0 0 0 0
C3 0 0 1926 0 0 0 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 796 3 0 0 0 0 0 0 0 0 0 545 0
C5 0 0 0 33 2593 1 0 0 0 0 0 0 0 0 1 0
C6 0 0 0 0 0 3908 1 0 0 0 0 0 0 0 0 0
C7 0 0 0 0 0 0 3528 0 0 0 0 0 0 0 1 0
C8 0 0 0 0 0 0 0 10272 0 145 0 0 0 0 804 0
C9 0 0 0 0 0 0 0 0 6153 0 0 0 0 0 0 0
C10 0 4 0 0 0 0 0 0 47 3177 0 0 0 0 0 0
C11 0 2 0 0 0 0 0 0 0 0 1016 0 0 0 0 0
C12 0 0 0 0 0 0 0 0 0 0 239 1638 0 0 0 0
C13 0 0 0 0 0 0 0 0 0 0 0 0 850 16 0 0
C14 0 0 0 0 0 0 0 0 0 35 0 0 0 985 0 0
C15 0 0 0 0 0 0 0 1828 0 4 0 0 0 0 5386 0
C16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1757

show the gradual refining of the labeling and improvement of classification accuracy as the
number of iterations increases.

In Fig. 6.8 (e), most pixels in the grapes-untrained class and vinyard-untrained classes
can be expanded to the training set with the correct labels. There is an unexpanded region
in the right of the vinyard-untrained class, which is finally misclassified as grapes-untrained
because its characteristics are more close to that of the grapes-untrained class. This can
be probably avoided by adding a training sample into the region. Even though, such a
misclassification is more easily corrected than pixel-based methods because one can simply
change the label of the whole region in the post-processing step.

Experiments: Kennedy Space Center dataset

The classification results on the Kennedy Space Center dataset are shown in Table 6.5.
The confusion matrix using the ST-IRGS in one test is shown in Table 6.6. Compared
to the first two datasets, the ground truth only covers very small areas compared to the
image size, so the test accuracy might not reflect the true accuracy of the whole image.
Nevertheless, ST-IRGS achieves highest classification accuracy among all the methods.
Though ST-IRGS only outperforms GMRF by 3.4% OA, we can observe in Fig. 6.10 that
a large part of water areas is misclassified. Such a misclassification does not affect the
classification accuracy because there is no ground truth of these areas. Also, the details of
some small regions in Fig. 6.10 (d) can be preserved despite the edge strength is weaker
than that in the first two images.
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Figure 6.6: Overall accuracy by ST-IRGS and ST-IRGS-S during the iterations for the Salinas
image.

(a) MGMLC (b) GMRF (c) ST-IRGS-S (d) ST-IRGS

Figure 6.7: Classification results by different methods for the Salinas image
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(a) τ = 1 (b) τ = 5 (c) τ = 10 (d) τ = 20 (e) τ = 50

Figure 6.8: Training set in different iterations by ST-IRGS for the Salinas image using five labeled
training samples per class.

(a) τ = 1 (b) τ = 5 (c) τ = 10 (d) τ = 20 (e) τ = 50

Figure 6.9: Classification results in different iterations by ST-IRGS for the Salinas image using
five labeled training samples per class.
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(a) MGMLC (b) GMRF

(c) ST-IRGS-S (d) ST-IRGS

Figure 6.10: Classification results by different methods for the Kennedy Space Center image
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Table 6.5: Class accuracy, overall accuracy (OA%) and average accuracy (AA%) in percentage,
and kappa coefficient ([κ]) using different region-based methods for the Kennedy Space Center
dataset with five labeled samples per class (65 samples in total).

MGMLC GMRF ST-IRGS-S ST-IRGS

Scrub 89.1±3.3 95.7±1.7 62.3±31.3 93.7±10.6
Willow swamp 91.3±2.8 97.0±1.7 60.6±27.2 85.9±24.5
Cabbage palm hammock 77.1±8.8 86.9±8.6 81.0±30.0 70.1±14.6
Cabbage palm//oak hammock 61.8±8.0 73.6±12.6 73.6±10.5 73.7±14.3
Slash pine 83.7±8.8 87.0±7.5 88.6±8.2 85.1±7.8
Oak//broadleaf hammock 52.2±8.1 72.0±14.0 80.6±17.6 69.4±12.3
Hardwood swamp 84.9±9.4 99.6±0.8 100.0±0.0 100.0±0.0
Graminoid marsh 65.0±13.9 68.3±18.8 83.7±17.9 81.5±18.5
Spartina marsh 83.7±13.0 90.7±9.1 80.0±42.2 87.6±28.2
Cattail marsh 88.0±8.9 97.7±3.2 92.4±11.0 90.5±11.6
Salt marsh 88.2±2.8 89.5±4.0 90.5±5.1 92.7±6.4
Mud flats 45.6±31.0 50.9±36.5 61.3±32.9 92.1±7.8
Water 99.2±1.5 98.2±5.7 95.4±9.7 100.0±0.0

OA 80.7±2.6 86.2±4.4 79.9±14.1 89.4±4.6
AA 77.7±2.0 85.2±3.6 80.8±11.9 86.3±4.8
κ 0.78±0.02 0.85±0.04 0.81±0.12 0.86±0.05

Results of ST-IRGS using different number of labeled training samples

The result of ST-IRGS using different number of labeled training samples (5, 10, 15, and
20) is shown in Fig. 6.11. As the number of labeled training samples increases, the OA by
ST-IRGS is improved on all the three datasets. But there is little improvement after the
number of labeled training samples per class is greater than 15. For the Salinas dataset,
there is only 1.4% improvement when using 20 labeled samples per class compared to
using 5 samples. In practice, there is a trade-off between spending some time to label a
few more training samples and sacrificing several percent of classification accuracy. Also,
different classes may require different number of labeled training samples depending on
their complexity.

Comparison of ST-IRGS and other methods

The comparison of the ST-IRGS algorithm, the MBRF-CRF algorithm in Chapter 5, and
other state-of-the-art methods recently published for limited training samples problem is

81



Table 6.6: Confusion matrix using the ST-IRGS algorithm for the Kennedy Space Center dataset
with five randomly-selected labeled samples per class. The number n at ith row and jth column
means n pixels that belong to class i are misclassified into class j. “C1”, “C2”, ... represent the
corresponding classes in Table 3.3 in order.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
C1 697 0 0 0 0 0 0 0 0 14 0 0 0
C2 0 155 0 0 0 0 37 1 0 0 0 0 0
C3 29 0 171 0 0 0 0 0 6 0 0 0 0
C4 33 0 41 121 1 0 0 3 0 0 0 3 0
C5 0 0 0 3 107 0 0 0 1 0 0 0 0
C6 52 21 0 0 0 106 0 0 0 0 0 0 0
C7 0 0 0 0 0 0 55 0 0 0 0 0 0
C8 0 0 0 0 0 0 0 220 161 0 0 0 0
C9 0 0 0 0 0 0 0 0 470 0 0 0 0
C10 0 0 0 0 0 0 0 0 196 141 0 17 0
C11 0 0 0 0 0 0 0 0 0 0 369 0 0
C12 0 0 0 0 0 0 0 0 0 0 0 453 0
C13 0 0 0 0 0 0 0 0 0 0 0 0 877

shown in Table 6.7, using the same hyperspectral datasets. We replicated the highest
OA that those methods can achieve in the publications. Jia et al. [68] used a supervised
approach, and others used semi-supervised approaches. Also, all methods but Dópido
et al. [33] used spatial context information from either texture features or the random
field model. The results show that our ST-IRGS algorithm achieves highest OA for both
datasets. For the University of Pavia dataset, ST-IRGS achieves 5.4% higher than the
method by Dópido et al. [33] that used 10 labeled samples for each class, in spite of
the possibility of further improvement of their method by incorporating spatial context
information. For the Salinas dataset, ST-IRGS achieves 8.2% higher OA than the method
by Li et al. [89], and 6.0% higher OA than MBRF-CRF-E. For the Kennedy Space Center
dataset, ST-IRGS achieves 8.2% higher OA than the method based on sparse representation
proposed by Haq et al. [123] which does not consider spatial context. MBRF-CRF-NE with
the optimal weight parameter based on the test accuracy achieves 2.5% higher OA than
ST-IRGS.

6.5 Summary

A semi-supervised joint classification and segmentation algorithm named ST-IRGS was
presented and applied to hyperspectral image classification. This algorithm is based on
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Figure 6.11: Classification results by ST-IRGS using different labeled training samples.

the CRF model, and is capable of combining semi-supervised classification, region merging,
and spatial context model into a single framework. The multimodal Gaussian model is used
as the unary potential in the CRF model, and the edge penalty function is incorporated
into the pairwise potential. The self-training technique is adopted to incorporate unlabeled
samples. The selection of new samples is only from regions that contain the original training
samples, which is more reliable than just based on the predictions of the unlabeled samples.
The information of intensity and edge strength can be implicitly used for the selection due
to the region merging criterion. Experiments on three benchmark hyperspectral images
indicate that the ST-IRGS algorithm outperforms other methods without self-training, and
achieves reasonable classification accuracy when there are few labeled samples available.

83



Table 6.7: Comparison of MBRF-CRF, ST-IRGS, and state-of-the-art methods for limited labeled
training samples using the same datasets. The highest OA achieved by other methods are
replicated from the publications.

Methods labels per class supervision spatial context OA AA [κ]
University of Pavia dataset

Jia et al. [68] 5 supervised Gabor texture 75.2 80.6 0.69
Wang et al. [152] 5 semi-supervised Gabor texture 69.6 \ \
Dópido et al. [33] 10 semi-supervised no 84.1 87.4 0.80
MBRF-CRF-E 5 supervised CRF 83.7 86.9 0.79
ST-IRGS 5 semi-supervised region merging + CRF 89.5 91.5 0.92

Salinas dataset
Jia et al. [68] 5 supervised Gabor texture 84.1 87.2 0.82
Wang et al. [152] 5 semi-supervised Gabor texture 86.8 \ \
Li et al. [89] 5 semi-supervised MRF 87.2 \ \
MBRF-CRF-E 5 supervised CRF 89.4 91.8 0.88
ST-IRGS 5 semi-supervised region merging + CRF 95.4 95.9 0.96

Kennedy Space Center dataset
Haq et al. [123] 5 supervised no 81.2 \ \
MBRF-CRF-NE 5 supervised CRF 91.9 89.3 0.91
ST-IRGS 5 semi-supervised region merging + CRF 89.4 86.3 0.86

84



Chapter 7

Extension of ST-IRGS for automated
interpretation of SAR sea ice imagery
using multiple image features

7.1 Introduction

The operational mapping of sea ice is beneficial for several important purposes, including
ship navigation, weather forecasting, and environmental science [169]. Among many
satellite sensors, SAR sensors are very suitable for sea ice mapping because of the all-
weather and all-day imaging capability. Also, the RADARSAT-2 satellite makes dual-
band polarization on large scale available, so that more information can be provided for
the operational sea ice mapping.

In the Canadian Ice Service (CIS) [37], the interpretation of sea ice imagery is currently
performed manually by ice analysts everyday. An example of the manual ice chart is shown
in Fig. 7.1 [37]. The manually-outlined irregular polygons are “egg codes” [37] defined
by World Meteorological Organization, which record the ice conditions such as the ice
concentration in the polygons estimated by the ice experts based on their experiences. The
ice chart provides interpretation in a large scale, but lacks because the ice-water boundaries
are coarsely outlined, and ice types are only estimated by fraction. Also, the result may
not be consistent for different ice analysts [102]. By comparison, automated interpretation
approaches have the potential of generating high-volume pixel-level classification maps
with no inter-operator bias.
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Figure 7.1: An example of an ice chart [37] and the egg codes, recording the total ice concentration,
the partial ice concentration, the stage of ice development, and the form of ice in the polygon.
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The automated interpretation of SAR sea ice imagery has been studied for over a
decade [29,73,80,84,136,169]. However, there is no known algorithm that generates labeled
maps that can be used operationally for this purpose. There are mainly two reasons.
First, the backscatter of ice and open water in the SAR imagery are affected by many
factors such as incidence angle, snow condition, and wind speed, resulting in tremendous
within-class variability across scenes and even within a scene. Also, SAR imagery is
corrupted by speckle noise [83], which degrades the image details and further decreases
class separability. As a result, traditional pixelwise classification methods [73, 80] are
incapable of achieving accurate classification. Second, traditional supervised classification
methods require sufficient labeled samples for training. However, the ground-truthing
requires the expertise and experience of interpreting sea ice, a time-consuming and tedious
task considering the large size of SAR images. Otherwise, if only a small number of pixels
are labeled for training, there may be insufficient training samples for characterizing the
true data distribution which leads to inferior classification results.

In this chapter, ST-IRGS, which has been described in Chapter 6, is applied to SAR
sea ice imagery. Compared to the hyperspectral images for testing in the early chapters,
SAR images have larger image size, which results in high computational complexity and
slow convergence of some labeling models such as MRF. Therefore, grouping pixels into
regions can help decrease computation complexity and avoid suboptimal solutions [170].
Also, region-based methods enable the extraction of high-level features which are more
resistent to noise. A common way is to first generate over-segmentation result, and
then iteratively merge similar regions based on region information such as intensity and
boundary [13, 91, 144, 166]. These methods are largely dependent on a good merging
criterion. As described in Chapter 6, ST-IRGS is a region merging algorithm that inherits
useful properties from IRGS [169]. Unlike traditional region merging methods, ST-IRGS
is integrated with a CRF to iteratively reduce the number of nodes, and edge strength
is used in both classification and region merging. The key feature of the ST-IRGS is an
embedded self-training procedure. Compared to a similar approach [33], the ST-IRGS
can iteratively expand the training candidate set owing to its region merging property,
so that the abundant unlabeled samples can be explored even if they are not near the
original training samples. Also, the correctness of the labels can be ensured by the region
properties.

The rest of the chapter is structured as follows. Section 7.2 describes the proposed
ST-IRGS algorithm in the context of the ice-water labeling problem. Experiments on a
RADARSAT-2 SAR dual-polarization dataset are reported in Section 7.3. Section 7.4
summarizes the chapter.
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7.2 Methodologies

7.2.1 Problem formulation

Given a few labeled pixels in an image, we aim to learn the optimal labeling configuration
of all the pixels in the image. For a first-order CRF model, the posterior probabilities
P (y | x) can be formulated as [59,132]:

logP (y | x, θ) =
∑
s

φs(ys,x
φ; θφ) + β

∑
s

∑
t∈ηs

ξst(ys, yt, gst(x
ξ); θξ)− logZ(θ,x) (7.1)

where φs(·) and ξst(·) are unary and pairwise clique potentials respectively, s indexes nodes
in a discrete rectangular lattice, ηs refers to the 4-connected neighbors of node s, gst(x

ξ) is
the edge feature for two adjacent nodes s and t, Z(θ,x) is a partition function, {xφ,xξ} ⊂ x
are features for the potentials, y is the label configuration, β is a weight parameter between
unary and pairwise potentials, and θ =

{
θφ, θξ

}
are model parameters.

Compared to Eq. (5.11), different features are used for the unary and pairwise
potentials. We use a combination of backscatter and texture features for xφ in the unary
potentials. In the previous literature, GLCM parameters have been demonstrated to be
effective in distinguishing different ice types and open water [24]. In our approach, we
adopt a total of 28 features including the mean, standard deviation, and GLCM measures
in different window sizes extracted for ice-water classification using a RADARSAT-2 image
dataset [84].

The unary potentials are defined using Gaussian models. For SAR sea ice imagery, a
single Gaussian mode may be insufficient to model a class even within a scene. Fig. 7.2
shows an example that the principal component of the water class has multiple mixtures.
Therefore, we use MGMLC that has been introduced in Chapter 6 as the unary classifier.
The unary potentials are defined as:

φs(ys,x
φ;αk, µk,Σk, Cys) = log

{
P (ys)

Cys∑
k=1

αkN(xφs , µk,Σk)

}
(7.2)

where P (ys) is a class prior, Cys is the number of mixtures in the class, µk and Σk are the
mean and variance of the kth mixture, and αk is the mixture prior in the class Cys . Although
other classifiers such as logistic regression [89] and SVM [178] can be used as the unary
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(a) (b)

Figure 7.2: (a) RADARSAT-2 SAR imagery in HH polarization captured over Beaufort Sea on
July 30, 2010. (b) Probability density function of the first principal component (PC) of the 28
features for the water class, which clearly shows multiple mixtures due to the incidence angle
effect.

classifier, the multimodal Gaussian model performs very well for ice-water classification in
the experiment given sufficient training samples, and the estimated mixture parameters
can be used for region merging and determining the weight parameter later.

For xξ in the pairwise potentials, we use the same edge penalty function as the original
IRGS algorithm [170]. However, we only use the backscatter in the HV polarization which
is less sensitive to incidence angle effect compared to the HH polarization [84]. The edge
feature is set to measure the gradient between neighboring pixels [170]. Thus, the pairwise
potential is defined as:

ξst(ys, yt,x) =

{
βgst(xξ) ys 6= yt

0 otherwise
(7.3)

gst(x
ξ) = exp

−(xξs − xξt
K

)2
 (7.4)

where β is a weight parameter, and K is a gradually increasing parameter that is calculated
using Eq. (6.11).
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Fig. 7.3 shows an overview of the ice-water labeling framework.

Figure 7.3: Overview of the ice-water labeling framework.

7.2.2 Problem solution using ST-IRGS

The solution to Eq. (7.1) is mostly the same as that in Chapter 6. An alternating
procedure is used to perform both parameter estimation and inference, as shown in Fig.
7.4. In each iteration, the model parameters are first fixed, and the label configuration is
optimized. Then, the model parameters are updated based on the current labels. In the
parameter estimation step, the parameters related to the unary potentials are estimated
independently. The number of mixtures is estimated using BIC [128], and then αk, µk,
and Σk are estimated using EM. After the parameters are estimated, Gibbs sampling [8]
is used for inference. Each node is processed only once in one iteration.

Similar to the IRGS algorithm [170], we incorporate the hierarchical region growing
procedure into the iterations to build a hierarchical data-adaptive structure to make the
optimization more efficient. The watershed algorithm [149] is first performed to obtain
the over-segmented regions. Then, similar neighboring pixels are iteratively merged into
regions, so that the number of nodes can be significantly reduced, and thus the convergence

90



Figure 7.4: Flow chart of the ST-IRGS algorithm
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rate can be increased. In our approach, we assume the distribution of HV backscatter in
each region to be unimodal Gaussian distribution. Even if the distribution of features in a
SAR image is not strictly Gaussian, the Gaussian models can still be used to approximate
it [29, 169]. Dong et al. [32] compared segmentation results using Gaussian-MRF and
Gamma-MRF, and showed that the Gaussian-MRF model is even more stable and reliable
while the Gamma-MRF model mistakenly merges some small segments. The same merging
criterion as the IRGS is used [169]:

∂Eij =
∑
s∈Ωk

log(Σk)−
∑
s∈Ωi

log(Σi)−
∑
s∈Ωj

log(Σj)− β
∑

〈s,t〉∈C;s∈Ωi,t∈Ωj

gst(x
ξ) (7.5)

where ∂Eij is the energy difference between merging two regions i and j and not merging
them, Ωi and Ωj are two neighboring regions for merging, Ωk is the region after merged, C
is the set of pixels in the discrete rectangular lattice, and Σi is the variance in the region
i. The detailed derivation is found in a previous publication [170].

To preserve the single-mode property of the regions, each region is assigned a mixture
label based on the previous estimated number of mixtures and Gaussian parameters. Only
regions that are in both the same predicted class label and mixture label are allowed to
be merged. In each iteration, the edges of adjacent nodes with negative ∂Eij are put
into a merging list in an ascending order to make the merging more efficient, and the
corresponding region and edge information is updated after each merging. Also, each node
is only allowed to be merged once in early iterations to avoid extremely-large regions that
may result in imbalanced number of training samples. For SAR sea ice imagery and other
remote sensing images that contain homogeneous regions, the number of nodes can be
finally reduced to a very small number.

To address the problem of insufficient training samples, a self-training procedure is
followed by region merging in each iteration. Self-training is a semi-supervised technique
that iteratively retrains the classifier using the predictions that are confident [181].
However, traditional self-training methods are largely dependent on the performance of
the classifier. If the classifier performs very badly, the predictions are not reliable and will
degrade the classification performance if they are used for retraining. In our approach, we
only select pixels which are in the same regions as the original training samples to be new
training samples.

Another important issue is to determine the weight parameter β between the unary and
pairwise potentials. The optimum weight parameter can be selected using a grid search,
but it is time-consuming and unreliable when only limited training samples are available.
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In the ST-IRGS, we use the scheme for adapting the weight parameter of the IRGS. The
parameter β is updated based on class separability in each iteration:

β = C1
J/C2

1 + J/C2

β0 (7.6)

where β0 is the ratio of the current total class boundary length over the image size [117],
C1 and C2 are constants, and J is the separability of ice and water classes. See thesis by
Yu for details [168].

To calculate the pairwise class separability J , we still use the Fisher’s criterion, but
we need to sum up the values of all the pairwise mixtures because each class has multiple
mixtures:

J =
∑
i∈Cice

∑
j∈Cwater

{
αiαj
|µi − µj|
Σ2
j + Σ2

j

}
(7.7)

where µi and Σi are the mean and variance of the HV backscatter for pixels that belong
to the mixture i.

In each iteration, the β and K in Eq. (7.3) and Eq. (7.4) are updated correspondingly
until a maximum number of iterations τmax is reached.

7.3 Experiments

7.3.1 Experimental setup

The SAR datasets for testing are described in Section 3.2. Scenes that contain only ice
or only open water are excluded, and 12 scenes, each of which contain both ice and open
water are used for testing. The ST-IRGS algorithm is implemented in Microsoft Visual
C++ 2010. C1 and C2 in Eq. (7.6) are set to 3 and 0.4 respectively, as suggested in the
original IRGS algorithm [169]. We use the same weight parameter for all the test images
considering its adaptability, even though the accuracy could be improved by carefully
tuning the parameters for each scene. τmax is set to 100. The experiments show that there
is no further change of the label configurations after 100 iterations. The setting of K in Eq.
(7.4) is the same as the IRGS algorithm [170]. The maximum number of mixtures Ci for
each class i is set to 5. When the number of training samples in a class is less than 200, a
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single-mode Gaussian model is used in order to guarantee sufficient samples for estimating
the model parameters. To reduce the computational cost, we randomly select 5000 samples
for parameter estimation in the EM algorithm if the number of expanded training samples
for a class exceeds 5000. Empirically the selection of more training samples does not
show additional improvement. Also, the parameters are only updated when the available
training samples for a class increase by 2%. In the first 30 iterations, each region is only
allowed to be merged once to avoid class imbalance, as mentioned in Chapter 6.

At the beginning of the experiment, only ten pixels for each class are randomly selected
for training samples. We use MGMLC, GMRF, and SVM-IRGS [84] for comparison.
Both MGMLC and GMRF are closely related to the proposed ST-IRGS algorithm for
comparison. MGMLC uses the pixels in the same watershed algorithm as the original
training samples for parameter estimation, and it serves as the unary classifier for both
GMRF and ST-IRGS. GMRF combines MGMLC with the standard MRF model, and the
graph-cut algorithm [9] is used for inferencing the labels. The weight parameter of GMRF
adopts the parameter with highest test accuracy in a set {20, 21, 22, ..., 28}. For all the
methods, PCA is first applied to the 28 features and the first five principal components
are used. SVM-IRGS [84] combines SVM and IRGS into a single framework, and uses
the leave-one-out training scheme, which is fundamentally different from the ST-IRGS
algorithm. However, it can still be used as a reference because it has been tested on the
same dataset.

7.3.2 Experimental results and analysis

The classification result of the whole test dataset is shown in Table 7.1. Each image is
tested for 10 times, and the mean and standard deviation of the OA for each scene are
shown in the table. The ST-IRGS achieves about 92% classification accuracy, which is
significantly higher than MGMLC and GMRF, and only a little lower than SVM-IRGS.
Moreover, the variation of the OA due to random sampling is significantly reduced by the
ST-IRGS. This is because as the training set is expanded, the classification performance
becomes less sensitive to the initial training samples. Also, ST-IRGS only achieves slightly
lower OA than SVM-IRGS which requires a large number of labeled samples from other
scenes to train the SVM model.

Fig. 7.5 shows the result on a RADARSAT-2 image scene captured over the Beaufort
Sea on October 3, 2010. The ice usually starts to freeze in the Beaufort Sea in early
October. The air temperature was -1.0◦C on this date [36]. In Fig. 7.5 (a), different stages
of ice growth including new ice, grey ice, and grey-white ice are observed. There is also
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Table 7.1: Overall classification accuracy (OA%) and kappa coefficient for MGMLC, GMRF,
ST-IRGS, and SVM-IRGS on a RADARSAT-2 SAR dual-polarization dataset. The results by
SVM-IRGS are replicated from the previous publication [84].

Date MGMLC GMRF ST-IRGS SVM-IRGS [84]

20100524 82.92±9.89 84.27±13.79 97.19±1.73 98.36

20100623 94.84±3.90 92.69±7.75 98.70±0.16 98.45

20100629 79.41±13.61 79.98±15.17 93.36±1.47 93.25

20100712 70.10±10.01 75.24±10.17 85.30±5.01 92.03

20100721 78.96±8.13 83.45±6.67 89.39±1.09 91.54

20100730 69.35±5.14 69.18±5.78 84.77±2.36 90.31

20100807 73.28±7.82 78.50±4.20 85.71±1.39 89.95

20100909 78.19±16.18 83.64±9.48 86.60±1.52 94.12

20101003 75.01±13.08 79.92±10.23 97.62±0.26 94.97

20101021 75.37±17.12 88.43±6.45 97.64±0.31 97.24

20101027 74.73±10.76 79.75±6.37 93.71±0.65 94.64

20101114 78.19±6.45 82.45±9.10 96.03±0.57 95.62

Average 77.53±10.17 81.46±8.76 92.17±1.38 94.21

some multi-year ice in the north east. It had survived the summer and began to build up
together with the first-year ice that is freezing. The wind speed at PRDA2 tower was 12.6
m/s [36], which results in the wind-roughened texture of the open water on the image.

Due to the high wind and the incidence angle effect, some areas of the open water have
similar properties to ice in both intensity and texture. In Fig. 7.5 (b), the rough water
area in the west and the open water in the near range in the south east are misclassified
as ice. Conversely, some newly-formed ice that has similar backscatter to water is also
misclassified. Moreover, class boundaries are not accurate because the edges of the texture
images are blurred due to the large GLCM window size used. This is unavoidable because
if a smaller texture window size is used, some macroscopic texture patterns might fail to be
extracted. In Fig. 7.5 (c), GMRF can refine some of the labeling with the aid of the spatial
context, but in some open water areas, there is even more misclassification due to the poor
estimation of the unary classifier, as shown in the west of Fig. 7.5 (b). Also, there is no
improvement on the correction of the class boundaries. In Fig. 7.5 (d), the classification
result is significantly improved due to the expanded self-training set by the self-training
technique. An average of 97.2% overall classification accuracy can be achieved in 10 tests
using different randomly-selected samples. Also, the class boundaries are corrected after
the incorporation of edge strength into the CRF energy function. SVM-IRGS in Fig. 7.5
(e) can capture the boundary between open water and small pieces of ice in the middle,
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(a) Data (b) MGMLC (c) GMRF

(d) ST-IRGS (e) SVM-IRGS (f) Ground truth

Figure 7.5: Classification results of the data captured on October 3, 2010. (a) shows the HV
polarization of the data, with original training samples overlain on the image (dark blue: ice; light
blue: open water). (b), (c), (d), and (e) are classification results of MGMLC, GMRF, ST-IRGS,
and SVM-IRGS respectively. (f) is the ground truth.

but there is misclassification of ice into water in the north east.

Beyond the improvement, there are two obvious errors in Fig. 7.5 (d). First, the grease
ice in the middle of the image is mostly misclassified. Even though a human interpreter
is able to identify some grease ice by its difference from the surrounding open water, the
feature space of grease ice is overlapped with that of open water in other areas of the scene.
The correct labeling of the grease ice may be at the cost of misclassifying some open water,
as shown in Fig. 7.5 (b) and (c). Also, the small pieces of ice in the south east are labeled
as open water. Due to the texture window size, there is little difference between those
small ice floes and the open water in the texture feature space. Also, the small regions
tend to be considered as noise in a spatial context model. Nevertheless, neither of these
misclassifications incurs significant operational issues [84].

Another result is shown in Fig. 7.6, using the scene captured over the Chukchi sea
on November 14, 2010. The air temperature was -15.1◦C. The wind speed measured at
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(a) Data (b) MGMLC (c) GMRF

(d) ST-IRGS (e) SVM-IRGS (f) Ground truth

Figure 7.6: Classification results of the data captured over Chukchi sea on November 14, 2010.
(a) shows the HV polarization of the data, with original training samples overlaid on the image
(dark blue: ice; light blue: open water). (b), (c), (d), (e) are classification results of MGMLC,
GMRF, ST-IRGS, and SVM-IRGS respectively. (f) is the ground truth.

PRDA2 tower was 6.7 m/s. In mid November, the ice coverage is increasing towards the
south west in the Chukchi Sea, and new ice starts to form. In this image, there is a
mixture of first-year ice, grey ice, and grey-white ice in the north east. Some ice area has
very dark intensity, and is difficult to be distinguished from open water from in a small
scale. As a result, MGMLC that is only based on small watershed regions is unable to
achieve satisfactory classification result. GMRF can correct some misclassifications of open
water into ice, but does not help improve the classification accuracy of ice. The ST-IRGS
correctly classifies most of the pixels by expanding the training set, and achieves an OA of
96.0% over 10 tests. The SVM-IRGS achieves an OA of 95.6%, but it has more accurate
ice/water boundary.

Fig. 7.7 shows the change of the OA during the iterations for the dataset. The OA
fluctuates at the beginning of the iterations because even though the number of training
samples increases, they are still incapable of characterizing the whole image. Once new
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samples are incorporated, the classifier will change greatly. Such an intermediate result is
not reliable. If the self-training is only based on this result without the region constraint,
the subsequent result might be even worse. Instead, the ST-IRGS only trusts the predicted
labels in the regions that contain the original training samples based on region merging,
in order to ensure the correctness of the self-training samples. After 30 iterations, the OA
starts to increase as more samples are added into the training set, and become stable both
after 80 iterations.

Figure 7.7: Overall classification accuracy by ST-IRGS during its iterations, averaged over all
the test images.

In Fig. 7.8, the number of regions is gradually reduced from about 100,000 at the
beginning to less than 400 at the end of the iterations. There are two advantages. First,
reducing the number of regions makes the optimization more efficient and can help extract
high-level features. Second, it is very convenient to correct the classification results
manually by re-labeling the misclassified regions using the region maps in any previous
iteration.

7.4 Summary

The ST-IRGS algorithm is capable of effectively distinguishing ice and open water in large-
scale dual-polarization SAR images using a very small number of labeled samples. The
multimodal Gaussian model is suitable for describing the class distributions considering
the complexity of the SAR sea ice data. The inherent combination of self-training in
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Figure 7.8: Number of regions by ST-IRGS during the iterations, averaged over all the test
images.

the IRGS framework can iteratively and correctly expand the training set and improve
the classifier. Robust classification results have been achieved on a RADARSAT-2 dual-
polarization dataset captured over the Beaufort and Chukchi Sea areas.
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Chapter 8

Conclusions

In this chapter, the summary and research contributions for the thesis are provided followed
by a few suggestions for the directions of future research.

8.1 Summary

This thesis systematically studies automated interpretation of remote sensing imagery with
limited labeled training data. Traditional automated interpretation techniques usually
consist of three separate steps, which are sequentially feature extraction, classification,
and segmentation. In this thesis, three methods are proposed, and each of them focuses
on one of the three steps. A summary of the three methods is shown in Table 8.1.

8.2 Research contributions

The specific contributions in the four main chapters of this thesis are described as follows.

• In Chapter 4, we have demonstrated multiple localized manifolds outperform a single
manifold for high-dimensional data with limited training samples. We proposed the
ELML framework for joint feature extraction and classification based on localized
manifold learning. Multiple linear manifolds emphasizing on different locations of
the feature space are learned to characterize the input data, and a classification
ensemble is then trained using the features extracted via the different manifolds.
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Table 8.1: Summary of three proposed methods (ELML, MBRF-CRF, and ST-IRGS).

ELML MBRF-CRF ST-IRGS
Feature extraction Localized manifolds PCA (no dimension reduction) PCA

Classification k-NN MBRF MGMLC
Segmentation No CRF CRF+region merging
Supervision Supervised/semi-supervised Supervised Semi-supervised

Such manifolds are localized in the feature space, and can overcome the challenges
and limitations associated with learning a single global manifold for characterizing
complex data structures. Two feature extraction methods, including a supervised
method (NWFE) and a semi-supervised method (SELD), are modified into localized
methods (L-NWFE and L-SELD). The effectiveness of the proposed algorithm is
illustrated using six feature extraction methods including NWFE and SELD for
comparison on hyperspectral datasets.

• In Chapter 5, we investigate the performance of different classifiers using limited
labeled training data in a supervised manner. We focus on the ensemble learning
techniques, which are particularly effective for high-dimensional data and the
SSS problem. An enhanced ensemble method is developed, which combines the
rotation forest algorithm and a multiclass AdaBoost algorithm. The benefit of
the combination can be explained by the bias-variance analysis, especially in the
situation of inadequate training samples and high dimensionality. MBRF can be
considered as a joint feature extraction and classification method due to its inherent
feature extraction step using PCA. But different from ELML introduced in Chapter
4, the dimensionality is not reduced. Further, MBRF innately produces posterior
probabilities by the embedded multi-class boosting algorithm, which serve as the
unary potentials of the CRF model to incorporate spatial context information.
The effectiveness of the proposed MBRF and its combination with CRF is shown
by comparing with several state-of-the-art classification methods on hyperspectral
datasets.

• Chapter 6 and Chapter 7 propose the ST-IRGS algorithm, which is a semi-supervised
joint classification and segmentation algorithm. The algorithm is derived from the
CRF framework to incorporate spatial context. GMM is used to estimate the
probabilities for the unary potentials, and the edge strength is naturally incorporated
into the energy function due to the flexibility of CRF. Unlike traditional methods
based on random fields, region merging is concatenated with the CRF inference to
reduce the number of nodes iteratively, and the merging criterion is designed to
minimize the global energy function. Moreover, the self-training technique is used,
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which iteratively enlarges the training sample set and retrains the classifier. The
selection of training samples is based on region merging, so that the risk of assigning
wrong labels can be reduced. Chapter 7 extends the ST-IRGS algorithm to ice-
water classification using dual-polarization RADARSAT-2 imagery. Compared to the
hyperspectral imagery used in Chapter 6, the SAR imagery for testing in Chapter 7
has a larger size and more complex data properties. Therefore, texture information
needs to be incorporated into the CRF model. The performance of the ST-IRGS
algorithm has been tested on both hyperspectral and SAR datasets.

8.3 Suggestions of future research directions

The work motivates future research in the following directions.

• ELML in Chapter 4 is more like a framework than a specific algorithm. For example,
the k-means algorithm can be replaced by any other clustering algorithm, and the
base classifier (1-NN) can be replaced by any supervised or semi-supervised classifier.
The feasibility of this framework has been shown in this thesis, while a comprehensive
study of different clustering algorithms and classifiers can be further investigated.
Also, spatial context can be further incorporated to improve classification accuracy
using MRF or CRF as a post-processing step if 1-NN is replaced by other classifiers
that can generate probability estimates;

• The main problem of using random field models for limited training samples is the
difficulty of determining the weight parameter, because the result by grid search is not
reliable. Therefore, it is worthwhile developing automated techniques for choosing
the weight parameters. In ST-IRGS, we use an automated technique to determine
the weight parameter based on class separability. In the previous literature, it can
also be determined using the Ho-Kashyap algorithm [129]. Automated approaches
for determining the weight parameter can be further investigated in future work.

• ST-IRGS in Chapter 5 & 6 uses a Gaussian model as the unary classifier, because it
works well with ST-IRGS and is suitable for the test datasets in the experiments. For
some data whose distribution cannot be approximated as a single or a multimodal
Gaussian distribution, other classifiers such as SVM, MLR, or the proposed MBRF
method might be more appropriate. If non-Gaussian classifiers are used, the merging
criterion and the class separability measure need to be modified because in ST-IRGS
they are both based on Gaussian parameters. In the operational use, it is helpful to
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incorporate more classifiers into the software system, so that users can decide which
one to be used. Also, it might be more helpful if the most appropriate classifier can
be automatically selected based on the characteristics of the data.

103



References

[1] O. Aytekin, M. Koc, and I. Ulusoy, Local primitive pattern for the classification of
SAR images, IEEE Transactions on Geoscience and Remote Sensing 51 (2013), no. 4,
2431–2441.

[2] A. Baraldi and F. Pianigiani, An investigation of the textural characteristics
associated with gray level cooccurrence matrix statistical parameters, IEEE
Transactions on Geoscience and Remote Sensing 33 (1995), no. 2, 293–304.

[3] Basque University, Hyperspectral remote sensing scenes, 2015, [Online; accessed 13-
May-2015].

[4] G. Baudat and F. Anouar, Generalized discriminant analysis using a kernel approach,
Neural computation 12 (2000), no. 10, 2385–2404.

[5] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data
representation, Neural computation 15 (2003), no. 6, 1373–1396.

[6] D. Benboudjema and W. Pieczynski, Unsupervised statistical segmentation of
nonstationary images using triplet Markov fields, IEEE Transactions on Pattern
Analysis and and Machine Intelligence 29 (2007), no. 8, 1367–1378.

[7] J. A. Benediktsson, M. Pesaresi, and K. Arnason, Classification and feature extraction
for remote sensing images from urban areas based on morphological transformations,
IEEE Transactions on Geoscience and Remote Sensing 41 (2003), no. 9, 1940–1949.

[8] C. M. Bishop, Pattern recognition and machine learning, springer New York, 2006.

[9] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via
graph cuts, IEEE Transactions on Pattern Analysis and and Machine Intelligence 23
(2001), no. 11, 1222–1239.

104



[10] L. Breiman, Bagging predictors, Machine Learning 24 (1996), no. 2, 123–140.

[11] , Random forests, Machine Learning 45 (2001), no. 1, 5–32.

[12] G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, Multiple classifiers applied
to multisource remote sensing data, IEEE Transactions on Geoscience and Remote
Sensing 40 (2002), no. 10, 2291–2299.

[13] L. Bruzzone and L. Carlin, A multilevel context-based system for classification of
very high spatial resolution images, IEEE Transactions on Geoscience and Remote
Sensing 44 (2006), no. 9, 2587–2600.

[14] L. Bruzzone, M. Chi, and M. Marconcini, A novel transductive SVM for
semisupervised classification of remote-sensing images, IEEE Transactions on
Geoscience and Remote Sensing 44 (2006), no. 11, 3363–3373.

[15] G. Camps-Valls, T. Bandos Marsheva, and D. Zhou, Semi-supervised graph-based
hyperspectral image classification, IEEE Transactions on Geoscience and Remote
Sensing 45 (2007), no. 10, 3044–3054.

[16] G. Camps-Valls and L. Bruzzone, Kernel methods for remote sensing data analysis,
vol. 26, Wiley Online Library, 2009.

[17] G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli Benediktsson, Advances in
hyperspectral image classification: Earth monitoring with statistical learning methods,
IEEE Signal Processing Magazine 31 (2014), no. 1, 45–54.

[18] Canadian Ice Service, MANICE: Manual of standard procedures for observing and
reporting ice conditions, Meteorological Service of Canada (Ottawa, Canada), 2005.

[19] E. A. Carvalho, D. M. Ushizima, F. N. Medeiros, C. I. O. Martins, R. C. Marques, and
I. Oliveira, SAR imagery segmentation by statistical region growing and hierarchical
merging, Digital Signal Processing 20 (2010), no. 5, 1365–1378.

[20] C.-C. Chang and C.-J. Lin, LIBSVM : a library for support vector machines, (2013),
1–39.

[21] M. Chi and L. Bruzzone, Semisupervised classification of hyperspectral images by
SVMs optimized in the primal, IEEE Transactions on Geoscience and Remote Sensing
45 (2007), no. 6, 1870–1880.

105



[22] D. A. Clausi, Comparison and fusion of co-occurrence, Gabor, and MRF texture
features for classification of SAR sea ice imagery, Atmosphere-Ocean 39 (2001),
no. 3, 37–41.

[23] , An analysis of co-occurrence texture statistics as a function of grey level
quantization, Canadian Journal of Remote Sensing 28 (2002), no. 1, 45–62.

[24] D. A. Clausi and B. Yue, Comparing cooccurrence probabilities and Markov random
fields for texture analysis of SAR sea ice imagery, IEEE Transactions on Geoscience
and Remote Sensing 42 (2004), no. 1, 215–228.

[25] C. Cortes and V. Vapnik, Support-vector networks, Machine learning 20 (1995), no. 3,
273–297.

[26] J. C. Curlander and R. N. McDonough, Synthetic aperture radar, John Wiley & Sons,
1991.

[27] B. Demir and S. Erturk, Hyperspectral image classification using relevance vector
machines, IEEE Geoscience and Remote Sensing Letters 4 (2007), no. 4, 586–590.

[28] H. Deng and D. A. Clausi, Unsupervised image segmentation using a simple MRF
model with a new implementation scheme, Pattern Recognition 37 (2004), no. 12,
2323–2335.

[29] H. Deng and D. A. Clausi, Unsupervised segmentation of synthetic aperture radar
sea ice imagery using a novel Markov random field model, IEEE Transactions on
Geoscience and Remote Sensing 43 (2005), no. 3, 528–538.

[30] H. Derin and H. Elliott, Modeling and segmentation of noisy and textured images
using Gibbs random fields, IEEE Transactions on Pattern Analysis and Machine
Intelligence (1987), no. 1, 39–55.

[31] P. Domingos, A unified bias-variance decomposition, Proceedings of International
Conference on Machine Learning, 2000, pp. 231–238.

[32] Y. Dong, B. C. Forster, and a. K. Milne, Comparison of radar image segmentation by
Gaussian- and Gamma-Markov random field models, International Journal of Remote
Sensing 24 (2003), no. 4, 711–722.
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