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Abstract 

 
Sucrase isomaltase (SI) and maltase glucoamylase (MGAM) are both large Family 31 

glycoside hydrolases with α-glucogenic activity (Cantarel et al., 2009; Lombard et al., 2014).  

Mammalian SI and MGAM, expressed predominantly in the small intestine, play essential roles 

in the process of starch digestion. Because their activities directly control the rate of α-

glucogenesis in the small intestine, they also pose a useful target for the design of α-glucosidase 

inhibitors, a class of drugs useful for the treatment of type 2 diabetes and other metabolic 

disorders. 

The purpose of this work was to characterize inhibition kinetics for enantiomeric 

pyrrolidine iminosugars 1,4-dideoxy-1,4-imino-L-arabinatol (LAB-1) and 1,4-dideoxy-1,4-

imino-D-arabinatol (DAB-1) with N- and C-terminal catalytic subunits of SI and MGAM, as 

well as for an additional C-terminal MGAM isoform, in the presence of three different 

substrates.  Kinetic analysis indicates that LAB-1 is a more potent inhibitor of maltose and PNP-

glucose hydrolysis than is DAB-1.  Both mixed and competitive inhibition kinetics are observed 

for varying combinations of inhibitor, enzyme, and substrate.  A general hypothesis regarding the 

binding of each of the two inhibitors is presented.  Additionally, evidence for substrate inhibition 

of palatinose hydrolysis for Nt-SI and Nt-MGAM is reported and discussed. 
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Chapter 1 Introduction 
 

1.1 Physiology and pathology of mammalian maltase glucoamylase 

and sucrase isomaltase 

 

Starch digestion in mammals is mediated by a consortium of enzymes which work 

together to provide a series of hydrolytic activities to ultimately liberate glucose for cellular 

metabolism (Quezada-Calvillo et al., 2007).  To initiate this process, salivary and pancreatic α-

amylases hydrolyze the internal α-1,4 glycosidic bonds of starch (Auricchio et al., 1965; 

Truscheit et al., 1981).  A mixture of shorter branched oligomers (α-limit dextrins), linear 

maltooligosaccharides and maltose are liberated and become substrates for the small intestinal 

brush border α-glucosidases sucrase isomaltase (SI) and maltase glucoamylase (MGAM) 

(Auricchio et al., 1965; Truscheit et al., 1981).  These enzymes are anchored by their N-termini 

to enterocytes in the mammalian small intestine (Nichols et al., 2003).  

SI and MGAM, two large paralogous glycoproteins (Nichols et al., 2003; Naumoff, 

2007), provide a spectrum of redundant and contrasting activities against the oligomeric products 

of starch digestion by α-amylases (Nichols et al., 2009).  Both human enzymes are composed of 

two catalytic subunits, the N- and C-termini (Quezada-Calvillo et al., 2009).  All four subunits 

exhibit catalytic activities, and all are classified as Family 31 glycoside hydrolases, based on 

similarity of amino acid sequences (Cantarel et al., 2009; Lombard et al., 2014).  Characterized 

by their general ability to transfer the glycosyl group from a substrate to water, glycoside 

hydrolases may hydrolyze substrates though either a retaining (double displacement) or an 

inverting (single displacement) mechanism (Koshland, 1953; Sinnott, 2007).   Family 31 is 
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comprised of retaining glycoside hydrolases, for which products of hydrolysis have the same α or 

β configuration as the substrate (Lombard et al., 2013).  

 

 

Figure 1.  Retaining mechanism for glycoside hydrolases. 
k 
The retaining mechanism, proposed by Dan Koshland in 1953 (Koshland, 1953), proceeds through 

general acid catalysis and requires both a proton donor and a nucleophilic base (Davies and Henrissat, 

1995).  This double displacement mechanism involves the formation and hydrolysis of a covalent 

glycosyl-enzyme intermediate (McCarter and Withers, 1994).  Two transition state species are formed, 

each a result of a separate displacement reaction (Rye and Withers, 2000). 

 

Apparent redundancies in activities between catalytic subunits are thought to have 

evolved to allow for the improved digestion of many different types of starches from various 

botanical origins (Nichols et al., 2009). 
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1.1.1 Physiological roles 

 

 

Each of the SI and MGAM catalytic subunits has a characteristic set of substrate 

specificities (Jones et al., 2011; Lee et al., 2014).  It is still not fully understood how these 

enzymes work together to perform the combination of hydrolytic functions required for the 

effective digestion of different complex carbohydrates (Lee et al., 2014).  Hydrolysis kinetics for 

a variety of substrates have, however, been well-characterized (Gray et al., 1979; Jones et al., 

2011; Lee et al., 2014; Auricchio et al., 1965).   Albeit with differing efficiencies, all four of the 

subunits are able to hydrolyze the α-1,4 glycosidic linkage of maltose (Gray et al., 1979; Jones et 

al., 2011).  Differences in substrate specificities provide important information about the 

individual roles played by each of these enzymes: the C-terminal subunit of SI, for instance, is 

unique in its ability to hydrolyze the α-1,2 linkage of sucrose, while the N-terminal subunit is 

capable of effectively hydrolysing the α-1,6 linkage of isomaltose (Gray et al., 1979; Sim et al., 

2010).  The N-terminal subunit of MGAM exhibits some isomaltase activity, but it is much less 

effective than the activity provided by Nt-SI (Lee et al., 2014).  Ct-MGAM has demonstrated no 

isomaltase activity at all (Lee et al., 2014).  It is thought that the general role of MGAM in the 

small intestine is to digest linear regions of oligomeric starch breakdown products, while sucrase 

isomaltase is responsible for the hydrolysis of branched linkages (Naumoff, 2007).  The 

biological advantage of this spectrum of different hydrolytic activities is that it provides an 

organism with the capacity to derive glucose from a vast array of different complex 

carbohydrates (Lee et al., 2014). 

In addition to two catalytic subunits, both SI and MGAM also possess a transmembrane 

domain and an O-glycosylated stalk or “linker” region (Naumoff, 2007).  The N-termini of SI 
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and MGAM are both located on the inside of the enterocyte membrane, while C-termini extend 

out into the small intestinal lumen (Semenza, 1986; Naim et al., 1988).  Catalytic subunits all 

extend into the intestinal lumen.  An SI precursor protein known as Pro-SI is cleaved in vivo by 

pancreatic proteases to yield separate component subunits sucrase and isomaltase (Semenza, 

1986; Naim et al., 1988).  After cleavage, these two catalytic subunits remain in close proximity 

to one another (Semenza, 1986).  While potential effects of this interaction on catalytic functions 

of the subunits remain unclear, discrete subunits have displayed catalytic activities in vitro (Lee 

et al., 2014).  In contrast, maltase glucoamylase does not undergo proteolytic processing, and N-

and C-terminal subunits are covalently linked (Naim et al., 1988). 

The gene for human sucrase isomaltase is encoded on chromosome 3q25-26 (West et al., 

1988), and the gene for human maltase-glucoamylase is encoded on chromosome 7q34 (Nichols 

et al., 2003).  Both SI and MGAM are considered to be the product of two ancestral duplication 

events (Naumoff, 2007; Nichols et al., 2003).  In most mammals, the C-terminal coding 

sequence of MGAM is composed of a series of internal tandem duplications, and different 

mammals exhibit different numbers of duplications (Sim, 2010).  Alternative splicing of this 

region results in the expression of several different Ct-MGAM spliceforms, each containing 

different parts of the variable region (Sim, 2010).  Each spliceform of Ct-MGAM possesses the 

glycoside hydrolase Family 31 amino acid signature sequence WIDMNE, although in different 

spliceforms, this sequence is located in different positions (Sim, 2010). 

The spliceforms used in the present work are Ct-MGAM N2 and N20, both from mice 

(Sim, 2010).  Interestingly, these two proteins exhibit some discrepancies in substrate specificity; 

for instance, Ct-MGAM N2 has been observed to have a four-fold higher affinity for maltose as 
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a substrate than Ct-MGAM N20 (Sim, 2010).  Whether or not there are comparative differences 

in inhibitor potency with respect to these two spliceforms is a question of special interest. 

In the present study, recombinant N-terminal subunits of SI and MGAM are human 

enzymes, while C-terminal subunits, Ct-SI, Ct-MGAM N2, and Ct-MGAM N20, are mouse 

enzymes (Sim, 2010).  The amino acid sequence similarity of mouse Ct-SI and human Ct-SI is 

78%, and the overall amino acid sequence similarity of mouse MGAM and human MGAM is 

greater than 80% (Sim, 2010).  It is still fair to suppose that inferences made about human C-

terminal enzymes from results observed for mouse C-terminal enzymes will be limited in scope.  

Although the overall architectures of these enzymes are similar, differences in amino acids 

present around the active site may cause the human and mouse enzymes to have quite different 

substrate specificities (Sim, 2010). 

 

1.1.2 Pathology 

 

 

The digestion of complex carbohydrates, including many different botanical varieties of 

starch, is an essential function in mammals (Quezada-Calvillo et al., 2007).  Unfortunately, 

normal digestive functions can be thwarted by a variety of genetic irregularities, including the 

mutation of a gene encoding an enzyme essential to this process (Jacob et al., 2002).  Congenital 

sucrase isomaltase disorder (CSID) is an example of a disease with complicated and devastating 

effects, caused directly by mutations to the gene encoding SI, which plays a critical role in starch 

metabolism (Jacob et al., 2002).  Pathology can also develop over time in the presence of 

physiological abnormalities; for instance, diabetes mellitus type 2 and other metabolic disorders 
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involve pathological changes to the normal physiological system which disrupt regular 

metabolism and can lead to long-term complications and ill health (Florez, 2008). 

Like many metabolic disorders, type 2 diabetes is the product of both genetic and 

environmental factors (Florez, 2008).  It has historically been characterized as an insulin-

resistant state, but it remains unclear whether the associated disease state results primarily from 

insulin resistance or from insufficient insulin secretion (Florez, 2008; Lillioja et al., 1993; 

Gerich, 2000).  Many long-term complications associated with type 2 diabetes are caused by 

hyperglycaemia, or elevated levels of plasma glucose in blood, over a long period of time 

(Gerich, 2000). 

The disease state is highly correlated with obesity, and lifestyle factors such as diet and 

exercise are very important in its treatment (Gerich, 2000).  Many classes of oral antidiabetic 

agents are also available for the treatment of type 2 diabetes, if nonpharmacological measures 

prove insufficient (Krentz and Bailey, 2005).  Among the popular oral agents are sulphonylureas, 

a class of compounds which stimulate insulin secretion; biguanides, which cause decreased 

gluconeogenesis and reduced plasma glucose; thiazolidinediones, which activate a particular 

group of nuclear receptors and cause enhanced insulin sensitivity; and α-glucosidase inhibitors, 

which help to control the rate of digestion of carbohydrates in the small intestine (Krentz and 

Bailey, 2005).  Proper glycaemic control is a main treatment target for this disease, and several 

classes of oral agents address it directly. 

The α-glucosidase inhibitor acarbose, introduced onto the market in the 1990s, was the 

first of its class to become available for the treatment of type 2 diabetes (Krentz and Bailey, 

2005).  Compounds of this class bind with high affinity to α-amylases, sucrase isomaltase, 
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maltase glucoamylase, or a combination of these enzymes, thereby inhibiting the hydrolysis of 

starch, oligosaccharide and disaccharide substrates (Krentz and Bailey, 2005).  This reduces the 

amount of monomeric glucose available for absorption along the intestinal tract (Krentz and 

Bailey, 2005).  Larger oligomers, which would normally be hydrolyzed early on, travel further 

along the intestinal tract,  ultimately causing the delayed absorption of glucose and 

circumventing the incidence of “spikes” in blood glucose, also known as postprandial 

hyperglycaemia (Krentz and Bailey, 2005; van de Laar et al., 2005).  The most common adverse 

effects associated with antidiabetic agents of this class are gastrointestinal in nature, due to the 

passage of undigested oligomeric carbohydrates into the large intestine, where they become 

substrates for the microflora of that environment (Krentz and Bailey, 2005).  This can result in 

abdominal discomfort, flatulence, and diarrhoea (Krentz and Bailey, 2005). 

α-glucosidase inhibitors are an attractive class of oral antidiabetic agents because they are 

generally associated with low levels of toxicity and they do not cause weight gain (van de Laar et 

al., 2005).  Since the 1990s, several new α-glucosidase inhibitors have been introduced, 

including miglitol and voglibose (Krentz and Bailey, 2005).  Salacia reticulata extract, 

containing inhibitors of the thiosugar sulfonium sulfate class, has also been shown in one double-

blind study to be an effective treatment for human patients with type 2 diabetes, with few 

deleterious effects (Jayawardena et al., 2005). 
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1.2 Elementary enzyme kinetics and inhibition kinetics 

The first recorded observations of cell-free activity for biological samples date back to 

the late 1700s (Segel, 1975).  Throughout the 1800s, a new idea emerged; this was the idea that 

cell-free activity, affecting the change of one substance into another, must be attributable to the 

presence of a kind of chemical catalyst (Segel, 1975).  Today these chemical catalysts are known 

as enzymes, with almost innumerable functional roles in biological systems.  Enzymes serve to 

decrease the activation energy required for a chemical reaction by providing an alternative 

mechanism to transform one or more substrates into products (Segel, 1975). 

 

1.2.1 Unireactant steady-state kinetics for enzyme-catalyzed reactions 

 For the very simple case of an enzyme-catalyzed reaction with a single substrate, a single 

enzyme, and a single intermediate enzyme-substrate (ES) complex, the following scheme 

describes the reaction progress and indicates rate constants (Cornish-Bowden, 1997; Copeland, 

2000).  First the enzyme binds the substrate; the strength of this interaction is proportional to the 

magnitude of k1, the rate constant for the formation of ES (Copeland, 2000; Stein, 2011).  

Dissociation of ES back to E and S is governed by the reverse rate constant, k-1 (Copeland, 

2000).  k2 is, in the simplest case, the catalytic rate constant, and k-2 is the rate constant of the 

reverse reaction (often of negligible magnitude) (Copeland, 2000). 

 

Figure 2.  General scheme for an enzyme-catalyzed reaction. 
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The rate constant k2, describing only a simple scenario where no additional complexes 

are formed subsequent to formation of the ES complex, is often insufficient to describe more 

complex reaction mechanisms.  For instance, several intermediate complexes may be formed 

before products are released (Segel, 1975).  It is therefore necessary to describe most enzyme-

catalyzed reactions using kcat, a constant which governs the rate-limiting or slowest step in a 

series of post-ES catalytic reactions (Copeland, 2000). 

In 1903, Victor Henri proposed the idea that enzyme-catalyzed reactions involved the 

formation of an enzyme-substrate complex at some point along the reaction coordinate (Henri, 

1903).  He independently derived a mathematical equation, later rediscovered and modified by 

the German biochemist Leonor Michaelis and by the Canadian physician Maud Menten, to 

describe the change in reaction velocity as a function of substrate concentration (Segel, 1975). 

𝑣

𝑉𝑚𝑎𝑥
=  

[𝑆]

𝐾𝑠 + [𝑆]
 

Equation 1.  Henri-Michaelis-Menten equation for slow reaction kinetics (Segel, 1975). 
where v = initial velocity (instantaneous reaction velocity, d[P]/dt or d[S]/dt) 

 Vmax = maximal reaction velocity; observed when all E present has been converted to ES 

 [S] = substrate concentration 

 Ks = k-1/k1 =  the dissociation constant for the ES complex   ≈  Km  when k2<<k-1 

 

 When the magnitude of rate constant k2 is not negligible – that is, when slow reaction 

kinetics are not observed, the equation becomes 

𝑣

𝑉𝑚𝑎𝑥
=  

[𝑆]

𝐾𝑚 + [𝑆]
 

Equation 2.  General Henri-Michaelis-Menten equation (Copeland, 2000). 
where Km = (k2 + k-1)/k1 
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Km, the Michaelis constant, is distinctive for each given enzyme reacted with a given 

substrate (Segel, 1975).  It is defined as the substrate concentration required for the instantaneous 

reaction velocity to reach half the magnitude of the maximal reaction velocity (Copeland, 2000).  

More complex kinetics, including those describing the activities of enzymes that do not follow 

rapid equilibrium kinetics, as well as for multireactant systems, were characterized later on in the 

twentieth century (Segel, 1975). 

In 1913, the “steady state” concept was first described by Max Bodenstein, a German 

physical chemist, and was later found to be applicable to enzyme kinetics by George Briggs and 

J. B. S. Haldane (Segel, 1975; Stein, 2011).  The essence of the steady state assumption is that 

any intermediate in a multistep reaction exists at a constant concentration; the rate of formation 

and the rate of decay are equivalent in magnitude (Stein, 2011).  For a unireactant system with a 

single ES complex, this means that [ES] is not changing over the course of the reaction time. 

Requirements of the steady state condition are listed as follows (Copeland, 2000): 

 [S]>>[E] 

The substrate concentration must be significantly greater than the total enzyme concentration.  The 

amount of unbound substrate is not appreciably depleted by formation of the ES complex. 

 [E]t = [E]+ [ES]  

 The total quantity of enzyme present does not change over the course of the reaction. 

  [P]o = 0 

There are no products present at the initiation of the reaction. 

 

Catalytic subunits of SI and MGAM, the enzymes relevant to the present work, are 

considered here as part of a unireactant system at steady state. 
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1.2.2 Linear inhibition kinetics for reversible inhibitors 

 

Iminosugars, including LAB-1 and DAB-1, are reversible inhibitors of glycoside 

hydrolases (Stϋtz, 1999; Butters et al., 2005).  In general, reversible inhibition can be subdivided 

into two categories: linear inhibition and nonlinear inhibition (Segel, 1975).  Linear inhibition 

involves the formation of one or more nonproductive complexes resulting from a binding 

interaction between an inhibitor and an enzyme, or between an inhibitor and an enzyme-ligand 

complex (Leskovac, 2003).  This type of inhibition can be further classified as competitive, 

noncompetitive (a form of mixed inhibition), or uncompetitive (Leskovac, 2003). 

 

Figure 3.  General scheme for linear inhibition of an enzyme-catalyzed reaction. 
`where Ki represents the dissociation constant for the EI complex 

Ki’ represents the dissociation constant for the EIS complex 

 α represents the constant relating Ki and Ki’ 

 

Competitive inhibition occurs when an inhibitor binds to an enzyme’s active site, thereby 

precluding binding of the substrate (Leskovac, 2003).  The concentration of products is directly 

dependent on the concentration of a competitive inhibitor in solution (Segel, 1975).  Henri-

Michaelis-Menten kinetics are altered by the presence of a competitive inhibitor in a predictable 

way; the Michaelis constant, Km, is increased (Leskovac, 2003).  This is because binding of an 

inhibitor to the free enzyme causes a shift in chemical equilibrium which favours dissociation of 

the ES complex as a result of Le Châtelier’s principle (Clugston and Fleming, 2000).  Equation 3 
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describes the relationship between Km and the apparent Km (Km
app) in the presence of a 

competitive inhibitor. 

𝐾𝑚
𝑎𝑝𝑝 =  𝐾𝑚(1 +

[𝐼]

𝐾 𝑖
) 

Equation 3.  Relationship between apparent Km and actual Km in the presence of a 

competitive inhibitor (Segel, 1975). 

 

 

Noncompetitive inhibition refers to a type of inhibition observed when an inhibitor binds 

with equal preference both to the free enzyme and to the ES complex (Segel, 1975).  The extent 

of dissociation of the two complexes formed, namely EI and EIS, is described by the magnitudes 

of constants Ki and Ki’, respectively.  In this scenario, the inhibitor binding site is independent of 

the substrate binding site, and Ki and Ki’ are equal in magnitude (Segel, 1975).  

𝑉𝑚𝑎𝑥
𝑎𝑝𝑝 =  

𝑉𝑚𝑎𝑥

(1 +  
[𝐼]
𝐾𝑖′

)
 

Equation 4.  Relationship between apparent Vmax and actual Vmax in the presence of a 

mixed, noncompetitive, or uncompetitive inhibitor (Segel, 1975). 

Vmax
app represents the observed maximal reaction velocity 
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Uncompetitive inhibitors bind only to the ES complex, affecting a decrease in the 

parameter Km due to a shift in chemical equilibrium which must favour the formation of the ES 

complex (Clugston, 2000).  Equation 5 illustrates the relationship between actual Km and 

apparent Km in the presence of an uncompetitive inhibitor. 

Binding of an uncompetitive inhibitor also reduces the rate of catalysis, causing an 

equivalent decrease in Vmax which can be described by Equation 4.  Because some enzyme will 

always be present in the inactive ESI form, in this scenario, it is not possible to drive all of the 

enzyme present into the ES form, even with an infinitely high concentration of substrate (Segel, 

1975). 

𝐾𝑚
𝑎𝑝𝑝 =  

𝐾𝑚

(1 + 
[𝐼]
𝐾𝑖′

)
 

Equation 5.  Relationship between apparent Km and actual Km in the presence of an 

uncompetitive inhibitor (Segel, 1975).  

 

 

A mixed inhibitor will bind both to E and to the ES complex, with a higher affinity for 

one form than for the other, causing Ki and Ki’ to be of different magnitudes (Segel, 1975).  Both 

the Michaelis constant and the maximal reaction velocity will be affected by the binding of this 

class of inhibitor; the extents to which they are affected will differ, however.  The change in Km 

observed as a result of the binding of a mixed inhibitor is illustrated in Equation 6.  As can be 

seen from Equation 4, the apparent Vmax is decreased in the presence of this type of inhibitor. 
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𝐾𝑚
𝑎𝑝𝑝 =  𝐾𝑚

(1 +
[𝐼]
𝐾𝑖

) 

(1 +  
[𝐼]
𝐾𝑖′

)
 

Equation 6.  Relationship between apparent Km and actual Km in the presence of a mixed 

inhibitor (Segel, 1975). 

 

 Linear mixed inhibition can result from several different situations.  It may be the result 

of an inhibitor binding to a single site and altering the affinity the enzyme has for its substrate, as 

well as the enzyme’s ability to effectively catalyze the reaction (Segel, 1975).  This type of 

inhibition may also result when an inhibitor binds at two distinct sites on the enzyme (Segel, 

1975).  In the latter case, binding of one inhibitor molecule must obstruct binding of the 

substrate, and while binding at the second site has no effect on substrate binding, it does produce 

a catalytically inactive ESI complex (Segel, 1975).  In some cases, IEI complexes can form if 

inhibitor binding events at two sites are not mutually exclusive (Segel, 1975). 

1.2.3 Nonlinear inhibition kinetics for reversible inhibitors 

 

 Nonlinear inhibition kinetics in monosubstrate reactions may result from several different 

phenomena (Leskovac, 2003).  One case of nonlinear inhibition kinetics is when a productive 

ESI complex forms (Segel, 1975; Whitely, 1997).  This phenomenon is governed by hyperbolic 

inhibition kinetics, named for the character of the secondary replots which distinguish them from 

linear or parabolic inhibition kinetics (Leskovac, 2003).  When the ESI complex can yield 

products with no loss of catalytic activity, the system demonstrates hyperbolic competitive 

inhibition kinetics (Segel, 1975).  Hyperbolic mixed inhibition is also possible: in this case, both 
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the ES complex and the ESI complex can yield products, but the ESI complex has decreased 

catalytic activity and therefore cannot render products as effectively (Segel, 1975).  Hyperbolic 

noncompetitive and hyperbolic uncompetitive inhibition systems are similar to their linear 

counterparts, with the sole difference being development of products from an ESI complex 

(Leskovac, 2003).  Indeed, all instances of hyperbolic inhibition are partial in nature, and a 

saturating concentration of inhibitor cannot completely quench the reaction; some enzyme will 

always be present in the EIS form, rendering products (Leskovac, 2003). 

 Nonlinear inhibition kinetics may also be the result of multiple inhibitor binding events – 

this is referred to as parabolic inhibition (Leskovac, 2003).  Parabolic inhibition is considered a 

type of complete inhibition, because under conditions of saturating [I], all enzyme present will be 

driven to an inactive form, IEI (Leskovac, 2003). 
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1.3 A review of iminosugar inhibitors and thiosugar sulfonium salts 

 

 In the discovery and development of candidate inhibitors of mammalian α-glucosidases, 

iminosugars and thiosugar sulfonium salts have been among the most rigorously researched 

classes of compounds (de Melo et al., 2006).  The isolation of naturally-occurring compounds 

such as nojirimycin, from Streptomyces sp. (Ishida et al., 1967), and salacinol, from Salacia 

reticulata (Yoshikawa et al., 1997), instigated a hunt for similar natural compounds and 

informed the rational design of biologically-active derivatives.  The following sections will 

provide a review of the structural differences and biological activities of piperidine and 

pyrrolidine iminosugar inhibitors.  Structural differences and biological activities of thiosugar 

sulfonium sulfates will be reviewed thereafter. 

1.3.1 Piperidine and pyrrolidine iminosugars 

 

Both naturally-occurring and synthetically-derived iminosugars have been well-

characterized as inhibitors of an impressive variety of enzymes, including but not limited to α- and 

β-glucosidases, glycosyl transferases, phosphorylases, sugar-nucleotide mutases, and glycogen 

phosphorylases (Rule et al., 1985; Fleet et al., 1985; Evans et al., 1985; Scofield et al., 1986; de 

Melo et al., 2006; Andersen et al., 1999).  Inhibitors of this class have been most actively studied 

for their often potent effects on α-glucogenic activities (Asano, 2003).  For this reason, iminosugar 

inhibitors have long been of interest as potential antidiabetic agents. 
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1.3.1.1 Iminosugars: Structural Characteristics and Mechanisms of Inhibition 

 

Iminosugars are generally classified by the nature of the ring structures of which they are 

composed.  Monocyclic iminosugars include pyrrolidines, which resemble furanose rings, and 

piperidines, which resemble pyranose rings (Asano et al., 2005).  Many bicyclic alkaloid 

structures, including indolizidines, pyrrolizidines, and nortropanes, have also been identified as 

glycosidase inhibitors (de Melo et al., 2006; Asano et al., 2000; Molyneux et al., 2002). 

The piperidine iminosugar nojirimycin (NJ), originally isolated in 1966 as an antibiotic 

from Streptomyces roseochromogenes (Ishida et al., 1967), has been identified as an inhibitor of 

both α- and β-glucosidic activities (de Melo et al., 2006; Asano et al., 2000).  Like other piperidine 

iminosugars, NJ is a six-membered heterocyclic compound containing endocyclic nitrogen (Asano 

et al., 2000).  Well-studied NJ derivatives include 1-deoxynojirimycin (DNJ) and 

deoxygalactonojirimycin (DGJ) (Asano et al., 2000).         

 

          

 

Figure 4.  Basic chemical structures of four classes of iminosugar inhibitors:  1, 

pyrrolidines, 2, piperidines, 3, indolizidines, and 4, pyrrolizidines. 

 

 

 

Pyrrolidine and piperidine iminosugars, including NJ, have frequently been described as 

substrate mimics, and ostensibly influence substrate binding by means of competition for an 

enzyme's active site (de Melo et al., 2006; Asano et al., 2000).  There exist several hypotheses 

1 2 3 4 
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about the general mechanism by which iminosugars exert inhibitory effects, but they are all 

based on the fundamental concept of structural mimicry (de Melo et al., 2006; Asano et al., 

2005).  Many iminosugars are highly effective inhibitors of glycosidases, and it is widely 

accepted that this is generally because they structurally mimic either a unit of a natural substrate 

or a transition state species (de Melo et al., 2006; Asano et al., 2005). 

The transition state species in a glycosidic cleavage reaction is considered the molecular 

structure with the highest potential energy along the reaction coordinate (Nash et al., 1965; 

Ozaki et al., 2008).  This species requires enzymatic stabilisation in order for the reaction to 

proceed toward products (Nash et al., 1965).  Enzymes are evolved to very effectively stabilise 

transition state species so that they can perform highly specific functions (Nash et al., 1965).  For 

this reason, enzymes generally have very high affinities for molecules which are structurally 

similar to the transition state species of a natural biological reaction. 

1.3.1.2 Iminosugars: Biological Activities 

 

The inhibitory capacity of a pyrrolidine iminosugar of special interest, 1,4-dideoxy-1,4-

imino-D-arabinatol (DAB-1), was first characterized in 1985 by George Fleet and Paul Smith at 

Oxford University (Fleet et al., 1985).  Here, DAB-1 was identified as a competitive inhibitor of 

α-glucosidic activity from Brewer's yeast (Fleet et al., 1985).  Fleet and Smith also showed that 

DAB-1 was identical to a naturally-occurring compound previously isolated from Arachniodes 

standishii (Furukawa, 1985) and Angylocalyx boutiqueanus (Fleet et al., 1985; Nash et al., 1985).  

At this time, Fleet and Smith reported that the L-enantiomer, LAB-1, was a significantly weaker 

inhibitor of α-glucosidic activity from Brewer’s yeast (Fleet et al., 1985). 
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Figure 5.  Chemical structures of iminosugar inhibitors 5, DAB-1, 6, LAB-1, and 7, DNJ. 

 

In 1986, George Fleet and colleagues assayed the enantiomers LAB-1 and DAB-1 for 

inhibition of maltase and isomaltase activities of a mouse intestinal mucosal suspension (Scofield 

et al., 1986).  This series of experiments yielded an interesting result: in contrast to the relative 

inhibitory effects of LAB-1 and DAB-1 observed when tested with Brewer’s yeast α-glucosidase, 

against mammalian α-D-glucosidase activity, LAB-1 was found to have a potency of an order of 

magnitude greater than DAB-1 (Scofield et al., 1986).  It was concluded that the synthetic 

iminosugar LAB-1 was a more potent inhibitor of mammalian intestinal disaccharidase activity 

than was its D-enantiomer (Scofield et al., 1986).  Because purified recombinant mammalian 

intestinal α-glucosidases were unavailable at the time, it was not a practical possibility in 1986 to 

determine precise modes of inhibition associated with DAB-1 and LAB-1 (Scofield et al., 1986).   

Nonetheless, the relative potencies of these L-and D-enantiomers of pyrrolidine iminosugars, with 

respect to mammalian α-glucosidase activity, demonstrated the relevance of their structural 

differences and suggested the potential for heterogeneity in the compounds’ modes of inhibition 

(Scofield et al., 1986).  It has long been a subject in need of clarification. 

Since the early pioneering works of George Fleet and colleagues, differential inhibition by 

L- and D-enantiomers of polyhydroxy iminosugars has remained a subject of academic interest.  

In 2005, three pairs of iminosugar enantiomers were assayed for inhibition of a considerable 

5 6 7 
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number of enzymes, including α- and β-D-glucosidases, α- and β-D-mannosidases, α- and β-D-

galactosidases, and amyloglucosidase, from a number of different organisms (Asano et al., 2005).  

Iminosugars tested included LAB-1 and DAB-1, L- and D- isofagomine (piperidine iminosugars), 

and L- and D-DMDP (2,5-dideoxy-2,5-imino-mannitol; pyrrolidine imminosugars) (Asano et al., 

2005).  This investigation showed that the three D-enantiomers inhibited both yeast and rat α-D-

glucosidase activity in a purely competitive manner, while L-enantiomers exhibited purely non-

competitive inhibition against the same enzymes (Asano et al., 2005).  These results provoked the 

question of whether LAB-1 and DAB-1 were binding to the same site, or whether LAB-1 bound 

to a remote allosteric site (Asano et al., 2005).  The matter has not been definitively settled.   

A recent study investigated the inhibition of rat α-D-glucosidic activities by N-benzyl 

derivatives of pyrrolidine iminosugars (Carreiro et al., 2014).  Analysis of inhibition kinetics for 

N-benzylated compounds revealed several instances of weak mixed inhibition (Carreiro et al., 

2014).  Since iminosugar inhibitors commonly exhibit competitive inhibition kinetics (Krasikov et 

al., 2001), structural modifications that influence an inhibitor’s effects on substrate affinity and 

enzymatic catalysis may provide useful information for rational drug design. 

A central weakness of iminosugar inhibitors as a group is that many compounds are 

somewhat nonselective and exert diverse biological effects by interacting with an assortment of 

enzymes (Asano et al., 2005).  Interestingly, several iminosugars including LAB-1, 

castanospermine, and a host of DNJ derivatives, have demonstrated anti-HIV activities in vitro 

(Fleet et al., 1988; Greimel et al., 2003), and castanospermine specifically has been implicated in 

the blockage of mouse tumour cell metastasis via inhibition of glucosidase I, an enzyme which 

initiates the processing of N-linked glycoproteins (Humphries et al., 1986).  The fact that 

iminosugars demonstrate such a great variety of interactions makes them attractive as first-
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generation compounds for drug development while simultaneously decreasing their direct use in 

the treatment of metabolic disorders and disease (Horne et al., 2011). 

1.3.2             Thiosugar sulfonium sulfates 

 

Investigation of thiosugar sulfonium sulfates began in 1990, when a research group from 

Toyama, Japan characterized the effects of an aqueous Salacia reticulata extract on plasma 

glucose levels in streptozotocin-induced diabetic rats (Serasinghe et al., 1990).  Salacia 

reticulata has been used traditionally in the Ayurvedic system of Indian Medicine to treat 

diabetes (Yoshikawa et al., 1997).  Biochemical investigations of oral hypoglycaemic activity of 

aqueous extracts from S. reticulata root bark were first reported in 1997, when Masayuki 

Yoshikawa et al. described the thiosugar sulfonium sulfate structure of the antidiabetic agent 

salacinol (Yoshikawa et al., 1997).  This initiated a wave of investigations into the effects of 

other thiosugar sulfonium sulfates present in S. reticulata extracts, as well as synthetically-

produced derivatives. 

As a result, another yet more potent antidiabetic principle was isolated from aqueous S. 

reticulata extract; this compound, called kotalanol, differed from salacinol only by the nature of 

the side chain extending off of the ring sulfur atom (Yoshikawa et al., 1998).  The sulfate group 

present on the side chain of kotalanol is oriented slightly differently in space, and the side chain 

itself is seven carbon atoms in length, while the side chain of salacinol is only four carbon atoms 

in length (Yoshikawa et al., 1997; Yoshikawa et al., 1998).  The significance of stereochemistry 

of the hydroxyl groups located at different positions on the kotalanol side chain would not be 

demonstrated before nearly a decade had passed (Tanabe et al., 2012).  In the meantime, side 

chain analogues ponkoranol and salaprinol (Yoshikawa et al., 2008) and de-O-sulfonated 
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analogues (Minami et al., 2008; Ozaki et al., 2008; Muraoka et al., 2008)) were isolated and 

characterized in a series of different ventures. 

 

Figure 6.  Chemical structures of two compounds isolated from Salacia reticulata: salacinol 

(9) and kotalanol (9). 

 

1.3.2.1 Thiosugar sulfonium sulfates: Structural Characteristics and 

Mechanisms of Inhibition 

 

Structurally, thiosugar sulfonium salts bear some similarities to the pyrrolidine 

iminosugars relevant to the present investigation; the five-membered rings of salacinol and 

kotalanol resemble the furanose-like ring of DAB-1 with respect to hydroxyl group 

stereochemistry, but include sulfur as the ring heteroatom instead of nitrogen (Yoshikawa et al., 

1997; Yoshikawa et al., 1998; Yoshikawa et al., 2002).  Structural characteristics such as ring 

hydroxyl group stereochemistry (Mohan and Pinto, 2007), the nature of the ring heteroatom 

(Gallienne et al., 2006; Mohan and Pinto, 2007), side chain stereochemistry (Tanabe et al., 2012; 

Mohan and Pinto, 2007), variation of chiral centers (Gallienne et al., 2006), and variation of ring 

size (Gallienne et al., 2006) all play an important role in determining the potency of thiosugar 

sulfonium sulfates and related inhibitors.   

Thiosugar sulfonium sulfates have distinctive zwitterionic structures, relying on 

stablilization of the ring sulfonium cation by a sulfate anion provided by the side chain 

8 9 
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(Gallienne et al., 2006; Mohan and Pinto, 2007; Lillelund et al., 2007).  It is thought that 

salacinol exerts inhibitory effects by mimicking an oxocarbenium-ion-like transition state species 

in the hydrolysis of natural polysaccharide or glycoside substrates (Gallienne et al., 2006).  

There is great variability in potency associated with this class of inhibitors, with respect to 

different glycosidases of different origins (Yuasa et al., 2001).  For these inhibitors, it is 

purported that potency with respect to different enzymes is directly related to how accurately the 

structure of the inhibitor mimics the structure of an oxocarbenium-ion-like transition state (Stϋtz, 

1999).  As is the case with the iminosugar inhibitors, the ring heteroatom of this class of 

inhibitors is thought to provide a positive charge to mimic the partial positive charge on the 

endocyclic oxygen atom of a transition state (Stϋtz, 1999).  

There is ample evidence that electrostatic interactions also play an important role in the 

determination of the potencies of different thiosugar sulfonium sulfate inhibitors (Stϋtz, 1999; 

Ghavami et al., 2001).  Structural modifications which exploit hydrogen bonding phenomena via 

altered hydroxyl group stereochemistry, or which exploit electrostatic and hydrophobic 

interactions, are therefore key to the development of successful inhibitors.    

1.3.2.2 Thiosugar sulfonium sulfates: Biological Activities 

 

Naturally-occurring compounds isolated from S. reticulata (Yoshikawa et al,, 1997; 

Yoshikawa et al., 1998; Ozaki et al., 2008) and related species including S. prinoides 

(Yoshikawa et al., 2008) are thought to be a by-product of coevolution between plants and the 

herbivores and omnivores that consume them (Marles and Farnsworth, 1995).  These 

hypoglycaemic agents are generally considered chemical defense compounds evolved by plants 

to deter predators (Marles and Farnsworth, 1995).  Since it is advantageous for plants to produce 
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chemicals which can affect a broad range of predators, active compounds isolated from a natural 

source often exhibit poor selectivity (Marles and Farnsworth, 1995).  This may explain why 

structures of naturally-occurring iminosugars and thiosugar sulfonium sulfates are such that they 

inhibit the functions of a variety of different enzymes. 

Salacinol analogues have shown inhibitory activities against mammalian α-glucosidases 

(Jones et al., 2011) and against a Drosophila homologue of human Golgi α-mannosidase II 

(Kuntz et al., 2005),  and certain derivatives have demonstrated activities against β-glucosidases 

(Gallienne et al., 2005) and β-galactosidases (Gallienne et al., 2006).  Several analogues exhibit 

the capacity to bind to more than one target enzyme (Jones et al., 2011; Kuntz et al., 2005).  If a 

compound is intended as a candidate drug for the treatment of a metabolic disorder, it is essential 

that the compound does not interact non-selectively with a broad range of enzymes present in the 

human body.  In order to improve the selectivity of these compounds, it is necessary to examine 

the precise effects that controlled structural modifications have on inhibition kinetics. Even 

apparently minor changes to an inhibitor’s structure can dramatically alter its selectivity 

(Gallienne et al., 2006). 

Salacinol and kotalanol exhibit classic competitive inhibition kinetics with recombinant 

subunits of both human maltase glucoamylase and sucrase isomaltase (Rossi et al., 2006; Sim, 

2010; Sim et al., 2010; Jones et al., 2011).  For maltose hydrolysis reactions in the presence of 

salacinol and kotalanol, inhibition constants are all in the low micromolar or nanomolar range 

(Jones et al., 2011).  The incidence of differential competitive inhibition of recombinant SI and 

MGAM subunits reinforces the notion that the active site architectures for each of these enzymes 

have evolved to perform a characteristic set of functions.  The competitive inhibition associated 

with this class of compounds indicates that they bind in the active site of affected enzymes, 
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thereby impeding substrate binding (Sim et al., 2010).  In 2008, a crystal structure of Nt-MGAM 

was reported in complex with acarbose (Sim et al,, 2008), and in 2010, the same group obtained 

the crystal structure of Nt-SI in complex with kotalanol (Sim et al., 2010).  Both inhibitors were 

found in the active sites of the respective structure (Sim et al., 2010).  These reports laid the 

groundwork for the development of inhibitors that might be tailored to the unique active site 

features of the different mammalian small intestinal α-glucosidases. 

 

1.4 Thesis Objectives 

The value of characterizing inhibition kinetics for compounds with inhibitory activities 

against mammalian digestive α-glucosidases is twofold.  Firstly, such research can elucidate the 

various mechanisms by which inhibitors and enzymes interact; it can also serve to clarify how or 

if the structures of different substrates affect this relationship.  Secondly, it may provide 

information about structural characteristics of enzyme active sites – information that may prove 

invaluable in the hunt for potent and highly selective α-glucosidase inhibitors. 

The second chapter of this thesis will describe assays performed for the purpose of 

characterizing inhibition kinetics of LAB-1 and DAB-1 with five different intestinal α-

glucosidases and the disaccharide maltose, which is composed of glucose units connected by an 

α-1,4 glycosidic linkage.  Chapter 2 will also outline the execution of another type of assay, one 

for which 4-nitrophenyl-α-D-glucopyranoside (PNP-glucose) was used as the substrate. 
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Figure 7.  Chemical structures of maltose (10), palatinose (11), and PNP-glucose (12).  
Images adapted from http://www.sigmaaldrich.com. 

The ultimate purpose of this work is to provide a detailed analysis of inhibition of 

mammalian small intestinal α-glucosidases by the polyhydroxylated pyrrolidine inhibitors LAB-

1 and DAB-1.  By using purified recombinant SI and MGAM subunits, it is possible to more 

precisely describe the mechanisms by which these two inhibitors exert their effects.  This 

information will contribute to our scientific understanding of pyrrolidine iminosugars and their 

roles as α-glucosidase inhibitors. 
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Chapter 2 Materials and Methods 

 

2.1 Assays for inhibition of maltose hydrolysis 
 
 

Unless otherwise indicated, all chemicals were sourced from Sigma-Aldrich. 

Each assay for maltase activity was performed in two 96-well microtitre plates, adapted 

from the method of Arne Dahlqvist (Dahlqvist, 1961).  Completion of the assay depended on 

several sequential reactions: an initial hydrolysis reaction, and a subsequent series of reactions 

for development of a secondary chromophoric product.  The assay’s first step involved the 

hydrolytic cleavage of maltose to two glucose molecules in the presence of MGAM or SI.  This 

reaction is represented by Equation 7.   

  

Equation 7.  Hydrolysis of maltose by MGAM or SI. 
 Images adapted from http://www.sigmaaldrich.com. 

 

Before addition to the reaction mixture, maltose was dissolved in a buffer containing 200 

mM MES monohydrate at pH 6.5.   The reaction was immediately incubated at 37°C, and had a 

final reaction volume of 50 µL.  The reaction time was 45 minutes.  Enzyme stocks contained 10 

mM NaCl and 20 mM Tris, at pH 8; stocks were highly diluted (1:100 to 1:500) with Milli-Q™ 

water before use in assays.  Variable quantities of each recombinant subunit were added; these 

quantities are recorded in Table 1.  Any inhibitors added to the reaction were dissolved in 200 
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mM MES monohydrate, pH 6.5.  The total reaction volume was divided up as follows: 10 µL 

enzyme, 10 µL inhibitor, and 30 µL substrate. 

 

Table 1.  Enzyme quantities used in assays for inhibition of maltase activity. 

Catalytic Subunit Quantity Added to Reaction (ng) 

Nt-SI 6.7 

Ct-SI 5.0 

Nt-MGAM 10 

Ct-MGAM N2 2.0 

Ct-MGAM N20 6.7 

 

The range of substrate concentrations tested in each assay was tailored to each catalytic 

subunit; ideal ranges were determined by trial and error.  This was done to ensure fair 

representation of both linear and plateau regions of Michaelis-Menten curves and to improve 

estimates of kinetic parameters Km (mM) and Vmax (molL-1s-1).  Inhibitor concentration ranges 

were also adjusted to improve resolution of inhibitory effects; ranges spanned from 15-200 nM 

to 1.2-8 µM, depending on which enzyme-substrate pair was used. 

Upon completion of the first incubation period, assay microplates were removed to room 

temperature.  The first reaction was quenched using 25 µL of a buffer containing 3M Tris, pH 

6.9.  A mixture of reduced o-dianisidine and the enzyme glucose oxidase-peroxidase (Dahlqvist, 

1961), with a total volume of 125 µL, was added to initiate the second reaction, described by 

Equation 8.  Microplates were immediately incubated at 37 degrees Celsius. 

 

Glucose + H2O + O2  D-Gluconic Acid + H2O2 

Equation 8.  Oxidation of glucose by glucose oxidase-peroxidase.  
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 Formation of H2O2 allowed another reaction to take place: H2O2 oxidized the reduced o-

dianisidine to form oxidized o-dianisidine, a brown-coloured product detectable by 

spectrophotometer at 450 nm.  On the same microplates used for the assay, a glucose standard 

curve was included and used to calculate glucose liberated over the total reaction time of 45 

minutes.  Quadruplicate absorbance values for each data point were used to determine glucose 

concentrations, and ultimately initial velocities for hydrolysis of maltose.  In this series of 

experiments, the rate was defined as molL-1s-1 of glucose developed over the course of the 

reaction.  Accounting for the stoichiometry of maltose hydrolysis, the real rate of the reaction 

was considered one-half of the rate of total glucose production. 

 

H2O2 + Reduced o-dianisidine  Oxidized o-dianisidine 

Equation 9.  Reaction of reduced o-dianisidine with hydrogen peroxide.  

 

All five enzymes, Nt-SI, Ct-SI, Nt-MGAM, Ct-MGAM N2, and Ct-MGAM N20, were 

tested in separate assays with the inhibitors LAB-1 and DAB-1.  The thiosugar sulfonium sulfate 

inhibitor salacinol was used as a positive control for inhibition of maltase activity.  No blank rate 

was observed over the range of maltose concentrations used in this assay. 

 

2.2 Assays for palatinose hydrolysis 
 

 
Assays involving palatinose as a substrate were performed following nearly identical 

methods to those described for maltase activity assays.  Methods that deviated from the maltase 

activity assay protocol are described as follows: 
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 Hydrolysis of palatinose liberates one glucose molecule, as indicated in Equation 

10.  When initial rates were calculated form absorbance data, this stoichiometry 

was taken into account. 

Palatinose  Glucose + Fructose 

Equation 10.  Hydrolysis of palatinose by MGAM or SI. 

 

 Enzyme quantities used in this series of assays are recorded in Table 2. 

 

Table 2.  Enzyme quantities used in assays for inhibition of palatinose hydrolysis. 

Catalytic Subunit Quantity Added to Reaction (ng) 

Nt-SI 67 

Nt-MGAM 200 

*C-terminal isoforms were not found to have any ability to hydrolyze palatinose. 

 

 A blank rate was observed for a negative control trial lacking enzyme.  This was 

presumed to be caused by a small amount of glucose contaminating the substrate, 

since the rate of glucose measured at the assay end point was directly proportional 

to the concentration of palatinose in solution. The blank rate was characterized 

and subtracted from rate data for all assays with palatinose as the substrate. 
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2.3 Assays for inhibition of PNP-glucose hydrolysis 
 
 

Assays with PNP-glucose involved only one reaction, since hydrolysis of this substrate 

produces equimolar amounts of glucose and nitrophenol.  PNP-glucose was dissolved in 200 mM 

MES monohydrate at pH 6.5.  Once again, substrate and inhibitor concentration ranges were 

tailored to individual enzymes for optimal representation and resolution of Michaelis-Menten 

plots.  Due to substrate solubility limitations, the maximum effective concentration of PNP-

glucose used in these assays was 30 mM. 

Importantly, only the deprotonated nitrophenolate ion is chromophoric, so upon 

completion of a 45-minute incubation period, the reaction was stopped and alkaline conditions 

were introduced via the addition of 150 µL of 500 mM sodium bicarbonate buffer, pH 10.  

Microplates were read by spectrophotometer at 405 nm.    

 

PNP-Glucose  Glucose + 4-Nitrophenol 

Equation 11.  Hydrolysis of PNP-glucose by MGAM or SI. 

  
 Enzyme quantities used in PNP-glucose hydrolysis assays are recorded in Table 3. 

 
Table 3.  Enzyme quantities used in assays for inhibition of PNP-glucose hydrolysis. 

Catalytic Subunit Quantity Added to Reaction (ng) 

Nt-SI 83 

Ct-SI 250 

Nt-MGAM 100 

Ct-MGAM N2 330 

Ct-MGAM N20 330 
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2.4 Nickel column purification of Ct-MGAM N2 and N20 

 
Purification of Ct-MGAM N20 and Ct-MGAM N2 was performed by affinity 

chromatography using a nickel-NTA column.  Methods for purification of these two proteins 

were identical.  Ct-MGAM subunits were expressed individually from Baculovirus constructs in 

High Five insect cells at the Baylor College of Medicine in Houston, Texas.   C-terminal His-

tagged Ct-MGAM was secreted from insect cells into liquid media.  Media was centrifuged for 

30 minutes at 9000 RPM and the supernatant, containing secreted soluble proteins, was decanted 

into a sterile flask.  After this, the supernatant was vacuum-filtered through a 500 mL Rapid-

Flow™ filter unit with a 0.1 µm aPES membrane.  The supernatant underwent overnight batch 

binding with HisPur™ Ni-NTA resin from ThermoScientific, Inc. (4 mL of resin per 500 mL of 

media).  Resin had been previously equilibrated using a buffer containing 300 mM NaCl and 50 

mM NaH2PO4, pH 8.  No imidazole was included during batch binding.  The resin was 

subsequently washed with two resin bed volumes of a buffer containing 10 mM imidazole, 300 

mM NaCl, and 50 mM NaH2PO4, pH 8.  A series of buffers containing increasing concentrations 

of imidazole (25 mM to 500 mM) were used to elute the target protein from a BioRad column, 

2.5 cm in diameter. 

Elutions containing Ct-MGAM N2 or N20 were concentrated to a volume of 5 mL using 

a 50K Amicon® Ultra centrifugal filter unit.  Next, the sample was subjected to a buffer 

exchange using 50K Amicon® Ultra microcentrifuge filter unit.  Protein was exchanged into a 

buffer containing 10 mM NaCl and 20 mM Tris, pH 8 and stored at -80 degrees Celsius. 

Ct-SI, Nt-SI, and Nt-MGAM preparations used in the present inhibition assays were all 

purified at an earlier date by Kyra Jones.  MGAM preparations are shown in Figure 8. 
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Figure 8.    MGAM preparations used for inhibition assays (14% denaturing gel) 

*Nt-MGAM was purified by Kyra Jones 

** All assays with Ct-MGAM N2, except for the assay involving DAB-1 and PNP-glucose, were 

performed using the preparation indicated here.  The second preparation is indicated in 

Appendix I. 

 

  

Figure 9 contains SDS-PAGE photos for SI preparations. 
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Figure 9.    SI preparations used for inhibition assays (14% denaturing gel) 

*Both Ct-SI and Nt-SI were purified by Kyra Jones 
 
 
2.5 Inhibition assay data analysis 
 
 

Nonlinear curve fitting for substrate inhibition plots was performed using 

KaleidaGraph™ software from Synergy Software; curves were fit using the Levenberg-

Marquardt algorithm (a Damped Least Squares method).  All inhibition assay data analysis was 

performed using the SigmaPlot Version 13.0 Enzyme Kinetics module (Systat Software, San 

Jose, CA).  When global curve fitting did not yield sufficiently unambiguous results, local curve 

analyses were performed using KaleidaGraph™ software. 

 Rate equations for full and partial competitive, noncompetitive, and mixed inhibition 

systems are included on the following page. 
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Equations 12-17 (Segel, 1975): 

 

Full Competitive:                                      
𝑣

𝑉𝑚𝑎𝑥
=

[𝑆]

𝐾𝑚(1+ 
[𝐼]

𝐾𝑖
)+[𝑆]

 

Full Noncompetitive:                                
𝑣

𝑉𝑚𝑎𝑥
=

[𝑆]

𝐾𝑚(1+ 
[𝐼]

𝐾𝑖
)+[𝑆](1+ 

[𝐼]

𝐾𝑖
)

 

Full Mixed-type:                                       
𝑣

𝑉𝑚𝑎𝑥
= 

[𝑆]

𝐾𝑚(1+
[𝐼]

𝐾𝑖
)+[𝑆](1+

[𝐼]

𝛼𝐾𝑖
)

  

Partial Competitive:                                  
𝑣

𝑉𝑚𝑎𝑥
=  

[𝑆]

𝐾𝑚

(1+
[𝐼]
𝐾𝑖

)

(1+
[𝐼]

𝛼𝐾𝑖
)
+[𝑆]

 

Partial Noncompetitive:                            
𝑣

𝑉𝑚𝑎𝑥
= 

[𝑆]

𝐾𝑚

(1+
[𝐼]
𝐾𝑖

)

(1+
𝛽[𝐼]
𝐾𝑖

)
+[𝑆]

(1+
[𝐼]
𝐾𝑖

)

(1+
𝛽[𝐼]
𝐾𝑖

)

 

Partial Mixed-type:                                   
𝑣

𝑉𝑚𝑎𝑥
=  

[𝑆]

𝐾𝑚

(1+
[𝐼]
𝐾𝑖

)

(1+
𝛽[𝐼]
𝛼𝐾𝑖

)
+[𝑆]

(1+
[𝐼]

𝛼𝐾𝑖
)

(1+
𝛽[𝐼]
𝛼𝐾𝑖

)
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Chapter 3 Results and Discussion 

 

3.1 Kinetic parameters for hydrolysis of maltose, palatinose, and  
PNP-glucose 
 

Replicates of all hydrolysis assays were performed with no inhibitor present in order to 

establish Michaelis constants for different enzyme-substrate combinations.  Km values were 

determined and compared with literature values where possible. 

 

 

3.1.1 Kinetic parameters for hydrolysis of maltose and PNP-glucose 

  hjjh 

 Kinetic parameters for hydrolysis of maltose and PNP-glucose were obtained by 

nonlinear regression of rate data from spectrophotometric experiments using KaleidaGraph™ 

software.  Table 4 illustrates Km, kcat, and kcat/Km values obtained from maltose hydrolysis assays 

with no inhibitor present. 

 

Table 4.  Kinetic parameters for α-glucosidases with maltose substrate 

†
Enzyme-Substrate Pair K

m (mM) ‡ kcat (s-1) ‡ kcat/Km (s-1mM-1) 

7 Nt-SI & Maltose 6.58 +/- 0.76 26.8 +/- 3.7 4.1 
13 Ct-SI & Maltose 5.42 +/- 0.20 24.9 +/- 2.1 4.6 

7 Ct-MGAM N2 & Maltose 0.858 +/- 0.076 32.4 +/- 8.2 37.8 
10 Ct-MGAM N20 & Maltose 2.01 +/- 0.18 27.4 +/- 7.6 13.6 

8 Nt-MGAM & Maltose 4.59 +/- 0.29 9.5 +/- 1.8 2.1 
† Number of trials in each average is indicated in superscript 

‡ Error is reported as a standard error of the mean 

 

 

 Kinetic parameters for hydrolysis of PNP-glucose are reported Table 5. 
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Table 5.  Kinetic parameters for α-glucosidases with PNP-glucose substrate 

†
Enzyme-Substrate Pair K

m (mM) ‡ kcat (s-1) ‡ kcat/Km (s-1mM-1) 

4 Nt-SI & PNP-Glucose 2.32 +/- 0.055 2.3 +/- 0.2 1.01 
5 Ct-SI & PNP-Glucose 8.18 +/- 0.76 0.4 +/- 0.08 0.05 

3 Ct-MGAM N2 & PNP-Glucose 2.35 +/- 0.80 0.3 +/- 0.1 0.13 
4 Ct-MGAM N20 & PNP-Glucose 3.48 +/- 0.34 0.1 +/- 0.01 0.03 

3 Nt-MGAM & PNP-Glucose 16.7 +/- 2.4 1.9 +/- 0.3 0.11 
† Number of trials in each average is indicated in superscript 

‡ Error is reported as a standard error of the mean 

 

3.1.2 Inhibition constants associated with maltose and PNP-glucose hydrolysis by 
mammalian α-glucosidases in the presence of LAB-1 and DAB-1. 

 

Table 6 contains results for inhibition assays involving LAB-1, the separate substrates 

maltose and PNP-glucose, and all five catalytic subunits.  Both mixed and competitive modes of 

inhibition were observed in the presence of LAB-1.  The mode of inhibition associated with each 

substrate depended on the catalytic subunit under observation.  Presence or absence of mixed 

inhibition, and the extent thereof, also appeared to be influenced by the substrate used.   

 

Table 6.  Inhibition constants for LAB-1 with mammalian α-glucosidases 

Enzyme-Substrate Pair Ki (nM) α β 
Mode of 

Inhibition 
Nt-SI & PNP-Glucose 56.6 +/- 8.7 10.70 +/- 4.76  - Mixed 

Nt-SI & Maltose 29.8 +/- 2.5 6.05 +/- 1.30 - Mixed 

Ct-SI & PNP-Glucose 565 +/- 30 - - Competitive 

Ct-SI & Maltose 608 +/-  51 10.96 +/- 2.60 - Mixed 

Nt-MGAM & PNP-Glucose 560 +/- 55 7.96 +/- 3.49 - Mixed 

Nt-MGAM & Maltose 413 +/- 33 - - Competitive 

Ct-MGAM N2 & PNP-Glucose 312 +/- 32 3.42 +/- 0.488 - Mixed 

Ct-MGAM N2 & Maltose 411 +/- 63 4.39 +/- 0.987 - Mixed 

Ct-MGAM N20 & PNP-Glucose 573 +/- 46 - - Competitive 

Ct-MGAM N20 & Maltose 463 +/- 40 4.46 +/- 0.625 - Mixed 

† Error in each parameter is reported as a standard error of the mean 
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Likewise, results for assays involving DAB-1 are reported in Table 8.  Once again both 

mixed and competitive inhibition kinetics are observed for different enzyme-substrate pairs in 

the presence of this inhibitor.  Inhibition constants are consistently larger in magnitude for DAB-

1 than for LAB-1, indicating that all five subunits have a generally weaker affinity for the D-

enantiomer. 

 

Table 7.  Inhibition constants for DAB-1 with mammalian α-glucosidases 

Enzyme-Substrate Pair Ki (µM) α β 
Mode of 

Inhibition 
Nt-SI & PNP-Glucose 1.18 +/- 0.113 13.25 +/- 3.57  - Mixed 

Nt-SI & Maltose 0.500 +/- 0.039 9.47 +/- 2.54 - Mixed 

Ct-SI & PNP-Glucose 5.16 +/- 0.409 - - Competitive 

Ct-SI & Maltose 4.95 +/- 0.266 - - Competitive 

Nt-MGAM & PNP-Glucose 3.43 +/- 0.120 - - Competitive 

Nt-MGAM & Maltose 1.82 +/- 0.171 8.75 +/- 2.06 - Mixed 

Ct-MGAM N2 & PNP-Glucose 2.717 +/- 0.183 8.43 +/- 1.11 - Mixed 

Ct-MGAM N2 & Maltose 2.64 +/- 0.353 6.53 +/- 1.44 - Mixed 

Ct-MGAM N20 & PNP-Glucose 4.82 +/- 0.032 8.55 +/- 0.693 - Mixed 

Ct-MGAM N20 & Maltose 2.80 +/- 0.223 14.11 +/- 2.78 - Mixed 

† Error in each parameter is reported as a standard error of the mean 

 

Results from inhibition assays with palatinose as substrate are excluded here due to the 

occurrence of substrate inhibition.  LAB-1 and DAB-1 were both found to inhibit palatinose 

hydrolysis by Nt-SI and Nt-MGAM, but mechanistic deductions were not made due to overlap 

between the range of substrate concentrations used in the inhibition assays, and the range of 

substrate concentrations that elicited the phenomenon of substrate inhibition. 
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3.2     Substrate inhibition of palatinose hydrolysis by Nt-SI and Nt-MGAM 

 

Substrate inhibition occurs at elevated substrate concentrations when increasing the 

concentration of substrate in solution leads to a reduced rate of reaction.  At the molecular level, 

it is generally caused by the formation of enzyme-substrate-substrate (ESS) complexes with 

reduced or abolished catalytic activity (Purich, 1983).  There are several mechanisms by which 

substrate inhibition can occur: it can be caused by the presence of a second binding site of lower 

substrate affinity; it may also commonly result from a second substrate molecule binding to a 

subsite in an already partially occupied binding pocket (Purich, 1983).  In the second scenario, 

two substrate molecules can bind simultaneously in sub-optimal configurations.  Resultant ESS 

complexes may be entirely nonproductive, or they may retain some catalytic activity. 

Nt-SI’s capacity to hydrolyze palatinose was tested using a broad range of substrate 

concentrations.  The palatinose hydrolysis activity assay was performed as described previously.  

Subtracting the blank rate observed from the control with no enzyme present was very important, 

especially at higher substrate concentrations.  The blank rate was thought to be caused by 

contaminating glucose in the substrate.  Although the substrate was greater than 99% pure, at 

very high concentrations, contaminants could be present in significant quantities.  The blank rate, 

determined to be linear with respect to the concentration of palatinose in solution, was subtracted 

from rates obtained from the assay in question in order to isolate the changes in reaction rate that 

were solely due to the substrate inhibition phenomenon. 
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Figure 10.  Partial substrate inhibition model for Nt-SI hydrolysis of palatinose.  Error bars 

represent the standard error of the mean. 

 

 
 

Results of this assay indicate that at a concentration of approximately 50 mM palatinose, 

substrate inhibitory effects begin to take place.  Data were first fit to a partial substrate inhibition 

model by nonlinear regression with Kaleidagraph™ software.  For this model, the coefficient of 

determination was 0.998.  The rate equation, originally derived by J. B. S. Haldane in 1930 

(Haldane, 1930), was obtained from Herbert J. Fromm’s publication Initial Rate Enzyme 

Kinetics: 

𝑣 =
𝑉1 ∙ [1 +

𝑉2 ∙ [𝑆]
𝑉1 ∙ 𝐾𝑖

]

1 +
𝐾𝑚

[𝑆]
+

[𝑆]
𝐾𝑖

 

Equation 18.  Partial substrate inhibition rate equation (Fromm, 1975). 
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A model for complete substrate inhibition was also considered.  The rate equation for this 

model is 

𝑣 =
𝑉1 ∙ [𝑆]

𝐾𝑚 + [𝑆] +
[𝑆]2

𝐾𝑖

 

Equation 19.  Complete substrate inhibition rate equation (Fromm, 1975). 

 

The complete substrate inhibition model was also an excellent fit, with a coefficient of 

determination of 0.997. 

 

Figure 11.  Complete substrate inhibition model for Nt-SI hydrolysis of palatinose. 

 

Since the partial substrate inhibition model does not provide a significantly better fit to 

the data, it is more likely that the substrate inhibition seen here is complete.  Based on structural 

evidence for multiple subsites within the Nt-SI active site (Sim et al., 2010), the possibility that 

multiple palatinose molecules are able to bind the enzyme should be considered.  Because there 

is no evidence for presence of a second, lower-affinity binding site for palatinose or other 
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disaccharide substrates, the concomitant binding of two palatinose molecules to the active site is 

the preferred hypothesis.   

Assuming that the substrate inhibition is complete, the Michaelis constant for the ES (Nt-

SI-palatinose) complex is 14.28 mM, while the dissociation constant for the ESS complex is 

110.58 mM.  A complete substrate inhibition model assumes that as the substrate concentration 

becomes infinitely high, the rate of reaction will approach zero. 

The substrate inhibition seen here is possibly related to the fact that the natural substrate 

of Nt-SI is isomaltose, a disaccharide composed of glucose subunits which is, like palatinose, 

linked by an α-1,6 glycosidic bond; of the other catalytic subunits, isomaltase activities have 

only been observed for Nt-MGAM, and to a much lesser extent (Lee et al., 2014).  Palatinose 

concentrations that elicit this kinetic behaviour are higher than one would generally expect to 

find in the small intestine under physiological conditions.  For this reason, it is quite possible that 

this substrate inhibition is a phenomenon without great biological significance.  It may simply be 

a product of in vitro experimental conditions which do not properly reflect the conditions these 

enzymes would normally encounter in the mammalian small intestine. 

Neither partial nor complete substrate inhibition was observed for any C-terminal 

catalytic subunits and substrates studied here.  Some evidence for substrate inhibition has been 

observed for Nt-MGAM, although the phenomenon remains to be fully characterized.  

Preliminary data were modeled using the complete substrate inhibition equation (Equation 13).  

Based on this model, the Michaelis constant for Nt-MGAM hydrolysis of palatinose is estimated 

to be 110.89 mM, and the dissociation constant for the ESS complex is estimated to be 278.68 

mM.   
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Figure 12.  Complete substrate inhibition model for Nt-MGAM hydrolysis of palatinose. 

 One possible explanation for substrate inhibition in this case is that both the -1 and +1 

subsites are occupied respectively by glucose or fructose moieties of two palatinose molecules.  

For Nt-SI, substrate inhibitory effects appear to begin taking place at much lower concentrations 

of palatinose than they do for Nt-MGAM, mirroring the difference in Michaelis constants 

observed for the two enzymes with this substrate.   

 

Table 8.  Kinetic parameters for Nt-SI and Nt-MGAM with palatinose substrate 

 
Enzyme-Substrate Pair K

m (mM)  Vmax (molL-1s-1) Ki (mM) 

Nt-SI & PNP-Glucose 14.28 +/- 1.27 7.1x10-8 +/- 3.4x10-9 110.58 +/- 9.94 

Nt-MGAM & PNP-Glucose 110.89 +/- 20.6  9.7x10-9 +/- 1.2 x10-9 278.68 +/- 63.6 
 sd 
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3.3 Inhibition of Nt-SI activities by LAB-1 
 

3.3.1 Inhibition of Nt-SI maltose hydrolysis by LAB-1 

 

Concerning the hydrolysis of maltose, LAB-1 and DAB-1 both inhibit Nt-SI more 

effectively than they inhibit any of the other catalytic subunits.  The Ki value associated with 

inhibition by LAB-1, 29.8 +/- 2.5 nM, indicates the most potent inhibition observed in any 

experiments reported here.  A physical interpretation of this number is that the inhibitor is able to 

interact with Nt-SI in a manner that influences the enzyme’s ability to bind the substrate maltose.  

Presumably, when LAB-1 binds to Nt-SI, an EI complex forms, decreasing the amount of free 

enzyme present.  Based on this event, a shift in the chemical equilibrium causes ES complexes 

present in the reaction mixture to more readily dissociate back to free enzyme and free substrate.  

The apparent or observed Michaelis constant is increased in the presence of this inhibitor, as a 

result.  A substantial increase in Km
app, dependent on inhibitor concentration, was seen in the 

presence of LAB-1.  The Michaelis-Menten plot for this inhibition assay is illustrated in Figure 

13.  
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Figure 13. Michaelis-Menten plot for Nt-SI hydrolysis of maltose in the presence of LAB-1. 

 

These data indicated that the inhibitor concentration affected not only on the apparent 

Michaelis constants, but also the apparent maximal reaction velocity.  The apparent Vmax was 

decreased in the presence of LAB-1, indicating that this inhibitor and the maltose substrate could 

be bound to Nt-SI simultaneously.  SigmaPlot’s Enzyme Kinetics module was used for a global 

assessment of the family of curves.  A full mixed inhibition model for data collected at variable 

LAB-1 concentrations provided the best fit, ranked first among all kinetic models under 

consideration, with a coefficient of determination of 0.987.  Full and partial models for 

competitive, mixed, and noncompetitive inhibition were all analyzed; uncompetitive models 

were excluded on the basis of a very unambiguous increase in magnitude of the parameter Km in 

the presence of LAB-1.  Full competitive and noncompetitive models yielded respective 

coefficients of determination of 0.925 and 0.969.  Based on these findings, it appears that either 

this inhibitor can bind the ES complex, or the substrate can bind the EI complex, or both, causing 

the formation of a non-productive EIS complex. 
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The following double-reciprocal Lineweaver-Burk plot was also constructed.  Lines of 

the Lineweaver-Burk plot provided a fair fit for the data.  Lines were found to intersect very 

close to but slightly to the left of the ordinate axis.  Noticeably higher error was observed for 

data points which were calculated from the lowest absorbance readings, due to poor 

spectrophotometer sensitivity at low concentrations of the chromophoric product. 

             

Figure 14. Lineweaver-Burk plot for Nt-SI hydrolysis of maltose in the presence of LAB-1. 

 

The possibility of formation of a productive EIS complex, indicating partial inhibition, 

was explored via transformation of the data for use in a Dixon plot.  This plot illustrates changes 

in the reciprocal rate of reaction over a range of inhibitor concentrations.  When a compound 

causes complete inhibition, it is expected that the change in the reciprocal rate is linear with 

respect to a change in the inhibitor concentration.  A hyperbolic Dixon plot indicates that at 

higher inhibitor concentrations, an increase in the inhibitor concentration has much smaller 

effects on the rate than it does at lower inhibitor concentrations.  This can be explained by the 

formation of a productive EIS complex.  
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Figure 15.  Dixon plot for Nt-SI hydrolysis of maltose in the presence of LAB-1. 

Linearity of Dixon plot data points for each substrate concentration indicate that 

inhibition by LAB-1 is complete rather than partial.  Lines appear to intersect at a point with an 

abscissa of approximately -30 nM.  This indicates a Ki value of this magnitude. 

Catalytic effects of LAB-1 binding are possibly due to a number of interactions with Nt-

SI residues proximal to the -1 subsite.  Considering the crystal structure of Nt-SI complexed with 

kotalanol, it is apparent that acid/base catalyst Asp 571 and catalytic nucleophile Asp 472 (Sim 

et al., 2010) may both be interacting with LAB-1, if its binding configuration is at all similar to 

that of the five-member ring of kotalanol.  LAB-1 may be only partially obstructing the -1 

subsite, allowing maltose to still bind, while its hydrogen bonding interaction with Asp 571 

and/or Asp 472 may prevent effective catalysis.  Asp 355 may also interact with LAB-1 if it 

binds in the -1 subsite.  To implicate a complete and accurate set of residues involved in binding 

LAB-1, a crystal structure of Nt-SI in complex with this inhibitor is needed. 
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3.3.2 Inhibition of Nt-SI PNP-glucose hydrolysis by LAB-1 

 

The assay conducted to assess the extent of Nt-SI hydrolysis of PNP-glucose in the 

presence of LAB-1 yielded data which were, like those obtained from the experiment with 

maltose, best explained by a mixed-type inhibition model.  The global analysis performed using 

SigmaPlot’s Enzyme Kinetics module indicated that a partial mixed model was the best fit, with 

a coefficient of determination of 0.968.  The full mixed model had a coefficient of determination 

of 0.965.  Due to the small difference in goodness of fit of the two models, linearity of the Dixon 

plot was assessed qualitatively as well.  The greater value of R2 observed for the partial mixed 

model might simply have been caused by the addition of a redundant parameter (Motulsky, 

2014).  Evidence for hyperbolic character of lines in the Dixon plot would support the case for a 

partial mixed model.  Dixon plots were therefore carefully considered. 
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Figure 16.  Michaelis-Menten and Dixon plots for Nt-SI hydrolysis of PNP-glucose in the 

presence of LAB-1; a) Michaelis-Menten plot for full mixed model, b) Michaelis-Menten 

plot for partial mixed model, c) Dixon plot for full mixed model, d) Dixon plot for partial 

mixed model. 

 

Both full and partial mixed model Dixon plots appear to fit data points fairly well.  Data 

points from the assay trial at 200 nM LAB-1 appear in some cases to have lower reciprocal rates 

than the full mixed model would predict.  The partial mixed model provides a better fit for the 

0.5 mM PNP-glucose point at 200 nM LAB-1.  However, this model also provides a poorer fit 

for other data points, and altogether, these qualitative observations of the Dixon plots do not 

justify an increase in model complexity.  It is possible that the apparent hyperbolic character is 
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an artifact of the assay procedure, especially since it mainly appears to be due to 200 nM LAB-1 

data points alone. 

Table 9.  Kinetic parameters for partial and full mixed models of LAB-1 inhibition of PNP-

glucose hydrolysis by Nt-SI. 

Model K
m (mM) Ki (nM) α β R2 

Partial Mixed 2.4 +/- 0.2  54.3 +/- 11.8 5.2 +/- 2.0 0.44 +/- 0.14 0.968 

Full Mixed 2.2 +/- 0.2 56.6 +/- 8.7 10.7 +/- 4.8 - 0.965 
  Error in all columns is reported as a standard error of the mean 

 

Assuming a full mixed inhibition model, the Ki is 56.6+/- 8.7 nM, and the value of the 

parameter α is 10.7.  Invoking the principle of parsimony, and due to its general goodness of fit, 

this remains the preferred model.  Furthermore, a replot of Km
app/Vmax

app as a function of LAB-1 

concentration was an excellent fit to a linear model, providing no compelling evidence for a 

partial inhibition. 

 

Figure 17.  Replot of Km
app

 / Vmax
app as a function of [LAB-1] for LAB-1 inhibition of PNP-

glucose hydrolysis by Nt-SI. 
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3.4 Inhibition of Ct-SI activities LAB-1 
 

3.4.1 Inhibition of Ct-SI maltose hydrolysis by LAB-1 

 

Inhibition of Ct-SI maltose hydrolysis by LAB-1 was best suited to a full mixed 

inhibition model.  The inhibition constant was found to be 0.608 +/- 0.051 µM, and the 

parameter α was 10.96 +/- 2.60.  A full mixed inhibition model would suggest that LAB-1 is able 

to bind to both the free enzyme and to the ES complex, exerting effects on the apparent affinity 

Ct-SI has for maltose, as well as on Ct-SI’s catalytic capacity. 

            

 

Figure 18.  Michaelis-Menten, Lineweaver-Burk, and Dixon plots for Ct-SI hydrolysis of 

maltose in the presence of LAB-1, assuming a full mixed inhibition model; a) Michaelis-

Menten plot, b) Lineweaver-Burk plot, c) Dixon plot. 
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60 mM maltose data points do not conform as well to this model as the lower substrate 

concentration data points.  This is obvious when one observes both Michaelis-Menten and Dixon 

plots.  The coefficient of determination for the full mixed inhibition model was 0.982.  While 

once again a partial mixed model was ranked highest by R2, a distinct lack of evidence for 

hyperbolic character in the Dixon plot indicates that a full inhibition model provides the most 

suitable explanation for these data. 

In a local analysis, estimation of kinetic parameters for individual curves by nonlinear 

regression does not show a significant change in Vmax in the presence of LAB-1, and the 

Lineweaver-Burk plot produced from these data indicates competitive inhibition.  That results 

obtained by the global analysis should contrast those obtained by the individual curve analysis 

seems counterintuitive.  The standard error of the mean for each data point clearly does not 

account for the apparent displacement of points at 60 mM maltose, so it is unlikely that this is 

simply an inflated experimental error.  Conclusions from the global analysis will be reported 

here, but reasonable uncertainty in the mode of inhibition should be duly noted. 
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3.4.2 Inhibition of Ct-SI PNP-glucose hydrolysis by LAB-1 

LAB-1 was found to competitively inhibit PNP-glucose hydrolysis by Ct-SI.  The full 

competitive model was ranked highest by R2, with a value of 0.989.  The inhibition constant 

determined from these data was 0.565 +/- 0.030 µM.  This value was very similar to that 

obtained from the assay with Ct-SI, LAB-1, and maltose, at 0.608 +/- 0.051 µM. 

 

 

Figure 19.  Michaelis-Menten and Lineweaver-Burk plots for Ct-SI hydrolysis of PNP-

glucose in the presence of LAB-1, assuming a full competitive inhibition model; a) 

Michaelis-Menten plot, and b) Lineweaver-Burk plot. 

 

The difference in modes of inhibition between Nt-SI (mixed) and Ct-SI (competitive) in 

the presence of PNP-glucose implies that, while Nt-SI can apparently accommodate LAB-1 and 

PNP-glucose binding simultaneously, Ct-SI cannot.  Without structural information about the Ct-

SI active site, it is difficult to detail the molecular interactions that may lead to this result.  It is 

possible, however, that the shape of the Nt-SI +1 subsite, which is known to be narrower and 

more spatially constraining than the Nt-MGAM subsite (Sim et al., 2010), is instrumental in 

determining whether PNP-glucose and LAB-1 can bind simultaneously. 
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3.5 Inhibition of Nt-MGAM activities LAB-1 
 

3.5.1 Inhibition of Nt-MGAM maltose hydrolysis by LAB-1 

 

LAB-1 was found to inhibit Nt-MGAM maltose hydrolysis competitively (R2 = 0.979), 

with a Ki value of 0.413 +/- 0.033 µM.  Please see Figure 20 for Michaelis-Menten and 

Lineweaver-Burk plots. 

 

 

Figure 20.  Michaelis-Menten and Lineweaver-Burk plots for Nt-MGAM hydrolysis of 

maltose in the presence of LAB-1 with full competitive inhibition model; 

a) Michaelis-Menten plot and b) Lineweaver-Burk plot. 

 

Of the other catalytic subunits, Nt-SI has the highest overall amino acid sequence 

similarity to Nt-MGAM (Sim et al., 2010), and the -1 subsites of the two enzymes’ active sites 

share many structural features essential to the hydrolysis of substrates such as maltose and PNP-

glucose (Sim et al., 2010).  Mixed inhibition kinetics observed for Nt-SI and LAB-1 indicate that 

LAB-1 binds both to Nt-SI and to the Nt-SI-maltose complex, with a marked preference for the 

free enzyme.  Nt-MGAM, however, does not seem to tolerate the simultaneous binding of both 

maltose and LAB-1.  It is logical that if LAB-1 binds in a manner similar to the five-member 
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ring of kotalanol near the -1 subsite, structural differences in this immediate region should be 

able to contribute to a hypothesis that would explain the kinetic disparities. 

The most pronounced difference in the -1 subsites of these two enzymes is that Nt-SI’s 

Tryptophan 327 is analogous to Tyrosine 299 in Nt-MGAM (Sim et al., 2010).  Trp 327 in Nt-SI 

is thought to confer α-1,6 specificity (Sim et al., 2010).  This residue may be integral to the 

determination of whether one or both ligands can bind the -1 subsite at once.  Differences in the 

+1 subsite may also be important; constraints placed on the substrate from the narrowness of the 

Nt-SI +1 subsite, compared with the Nt-MGAM +1 subsite (Sim et al., 2010), might actually be 

necessary for it to bind in the presence of LAB-1. 

 
 

3.5.2 Inhibition of Nt-MGAM PNP-glucose hydrolysis by LAB-1 

A number of models provided excellent fits to data from the LAB-1 inhibition assay with 

Nt-MGAM and PNP-glucose.  A partial mixed inhibition model was considered to be the best fit 

(R2 = 0.992) and a full mixed model appeared to fairly explain the data as well (R2 = 0.979).    

Dixon plots were used to compare the full and partial models qualitatively.  
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Figure 21.  Michaelis-Menten and Dixon plots for Nt-MGAM hydrolysis of PNP-glucose in 

the presence of LAB-1; a) Michaelis-Menten plot for full mixed model, b) Michaelis-

Menten plot for partial mixed model, c) Dixon plot for full mixed model, d) Dixon plot for 

partial mixed model. 

 

In addition to both mixed models, competitive and noncompetitive models were also 

assessed.  The partial competitive model provided a very poor fit for 2 mM PNP-glucose data 

points on the Dixon plot, and the full competitive model had a lower coefficient of determination 

than both mixed models.  Noncompetitive models were globally poor fits. 
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Table 10.  Kinetic parameters for partial and full mixed models of LAB-1 inhibition of 

PNP-glucose hydrolysis by Nt-MGAM. 

Model K
m (mM) Ki (µM) α β R2 

Partial Mixed 15.2 +/- 0.8  0.560 +/- 0.055 4.49 +/- 0.95 0.43 +/- 0.072 0.992 

Full Mixed 13.5 +/- 1.0 0.560 +/- 0.048 7.96 +/- 3.49 - 0.979 
  Error in all columns is reported as a standard error of the mean 

Assuming a full mixed model, Ki was found to be 0.560 +/- 0.055 µM, with an α value of 

7.96 +/- 3.49.   For the partial mixed model, the inhibition constant was 0.560 +/- 0.048 µM.  

Parameters α and β were 4.49 +/- 0.95 and 0.43 +/- 0.072, respectively.  To further investigate 

the possibility of hyperbolic inhibition, a secondary replot was constructed, considering Km
app

 / 

Vmax
app as a function of [LAB-1]. 

 

Figure 22.  Replot of Km
app

 / Vmax
app as a function of [LAB-1] for LAB-1 inhibition of PNP-

glucose hydrolysis by Nt-MGAM. 

 

The plot of Km
app

 / Vmax
app as a function of [LAB-1] was well explained by a linear model, 

with a coefficient of determination of 0.997.  Because the pattern of data points had no distinct 

hyperbolic character, introduction of a partiality factor into the rate equation was considered 
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unwarranted.  The full mixed model, albeit quantitatively a slightly poorer fit to the data, was 

therefore the preferred model. 

PNP-glucose solubility imposed an unfortunate limitation on this particular assay, 

resulting in sub-optimal representation of Michaelis-Menten curves.  With more accurate Vmax 

estimates, one would have more confidence that the full mixed model described here reflects the 

nature of the inhibition taking place.  

 

3.6 Inhibition of Ct-MGAM N2 and N20 activities by LAB-1 
 

3.6.1 Inhibition of Ct-MGAM N2 and N20 maltose hydrolysis by LAB-1 

 

The most suitable model for LAB-1 inhibition of Ct-MGAM N2 maltose hydrolysis was 

a full mixed model with a Ki value of 0.411 +/- 0.063 µM and an α value of 4.39 +/- 0.99.  

Michaelis-Menten and Lineweaver-Burk plots are depicted in Figure 23.  The full mixed model 

had a coefficient of determination of 0.945. 

Figure 23.  Michaelis-Menten and Lineweaver-Burk plots for Ct-MGAM N2 hydrolysis of 

maltose in the presence of LAB-1, assuming a full mixed inhibition model. 
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A partial mixed model was ranked first by R2 with a value of 0.947, but the Dixon plot 

for these data did not appear to conform well to the model.  The partial mixed model could not 

properly account for data points at 4000 nM [LAB-1].  Analysis of the Lineweaver-Burk plot for 

the partial mixed model also indicated a markedly poorer fit to most data points.  For these 

reasons, an additional increase in the complexity of the model was not justified.  All other 

models under consideration were poorer fits to the data, with R2 values of 0.91 or less. 

 

Figure 24.  Dixon plot for Ct-MGAM N2 hydrolysis of maltose in the presence of LAB-1, 

assuming a full mixed inhibition model. 

 

 

LAB-1 inhibition of Ct-MGAM N20 maltose hydrolysis was also most suited to a full 

mixed model (R2 = 0.98) with an inhibition constant of 0.463 +/- 0.040 µM and an α value of 

4.46 +/- 0.62.  There was no significant difference between inhibition constants and α values 

obtained from experiments with the two Ct-MGAM isoforms, indicating that they are not 

differentially inhibited by LAB-1. 
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The fact that there is no significant difference in the extent or mode of inhibition between 

the two C-terminal MGAM subunits suggests that the 89-amino acid substitution of Ct-MGAM 

N20 does not affect binding of LAB-1.  The -1 subsite of Ct-MGAM N2 has a number of 

proximal aspartic acid residues, including Asp 1420, Asp 1526 (potentially an acid/base 

catalyst), Asp 1279, and Asp 1157.  There are many opportunities for hydrogen-bonding with 

LAB-1 hydroxyl groups in this subsite.  Given the potential that Asp 1526 functions as an 

acid/base catalyst (Ren et al., 2011), the obstruction of catalysis might be explained by a contact 

between the inhibitor LAB-1 and this specific residue.  It is interesting, too, that this mode of 

inhibition is observed for nt-SI and both Ct-MGAM isoforms in the presence of maltose, while it 

is not observed for Nt-MGAM.   

 

 

Figure 25.  Michaelis-Menten and Lineweaver-Burk plots for Ct-MGAM N20 hydrolysis of 

maltose in the presence of LAB-1, assuming a full mixed inhibition model. 
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3.6.2 Inhibition of Ct-MGAM N2 and N20 PNP-glucose hydrolysis by LAB-1 

Data for LAB-1 inhibition of Ct-MGAM N2 PNP-glucose hydrolysis was best fit by a 

full mixed model, which yielded a Ki value of 0.312 +/- 0.032 µM and an α value of 4.39 +/- 

0.99 (R2 = 0.98).  These values are highly similar to mixed inhibition parameters determined for 

Ct-MGAM N2 and N20 hydrolysis of maltose in the presence of LAB-1.  This supports the 

conclusion that the two isoforms are affected to the same extent and most likely in the same way 

by the binding of LAB-1. 

 

Figure 26.  Michaelis-Menten and Lineweaver-Burk plots for Ct-MGAM N2 hydrolysis of 

PNP-glucose in the presence of LAB-1, assuming a full mixed inhibition model. 

 

LAB-1 inhibition of Ct-MGAM N20 PNP-glucose hydrolysis was best described by a full 

competitive inhibition model with a Ki value of 0.573 +/- 0.046 µM.  The model had a 

coefficient of determination of 0.985.  A partial mixed model was found to have higher R2 value 

(0.989), but the difference was not considered substantial enough to warrant introduction of an 

additional parameter.  The Dixon plot did not have any appreciable hyperbolic character.  



62 
 

The full competitive model fit high substrate concentration data points quite poorly, and 

for this reason, the possibility of mixed inhibition in this case was also explored.  An alternative 

analysis was performed whereby estimation of local kinetic parameters for individual curves was 

done by nonlinear regression.  The Lineweaver-Burk plot from this analysis also indicated 

competitive inhibition, as lines were found to intersect at the ordinate axis.  Based on a 

qualitative judgment, it is likely that the error associated with 25 mM substrate data points is due 

to experimental error.  The confidence associated with this conclusion is therefore rather low. 

 

 

 

3.7 Inhibition of Nt-SI activities by DAB-1 
 

3.7.1 Inhibition of Nt-SI maltose hydrolysis by DAB-1 

 

DAB-1 inhibition of Nt-SI maltose hydrolysis conformed well to a full mixed inhibition 

model (R2 = 0.98).  The inhibition constant was found to be 0.500 +/- 0.039 µM, and the α value 

was 9.47 +/- 2.54.  If a mixed model does fairly characterize these inhibition kinetics, then it 

should be concluded that LAB-1 and DAB-1 both reduce Nt-SI’s affinity for maltose and 

interfere with the mechanism of catalysis.  The Ki value associated with inhibition by LAB-1 is 

~17 times smaller in magnitude than the Ki value associated with inhibition by DAB-1, and 

catalytic effects caused by LAB-1 are also evidently more substantial.    
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Figure 27.  Michaelis-Menten and Lineweaver-Burk plots for Nt-SI hydrolysis of maltose in 

the presence of DAB-1, assuming a full mixed inhibition model. 

 

 The Dixon plot for these data revealed that 2 mM maltose data points conform rather 

poorly to the full mixed model.  Once again, increased error at low substrate concentrations is 

most likely the result of spectrophotometer error from low absorbance values.  Unsurprisingly, 

the error observed here is more pronounced at higher DAB-1 concentrations.  The Dixon plot 

provides good evidence for a full, rather than partial, inhibition model.   

 

3.7.2 Inhibition of Nt-SI PNP-glucose hydrolysis by DAB-1 

 

As was observed with the substrate maltose, DAB-1 inhibition of Nt-SI PNP-glucose 

hydrolysis is best described by a full mixed inhibition model (R2 = 0.981).  A partial mixed 

model was ranked first by R2 (R2 = 0.986), but there is not sufficient curvature in the Dixon plot 

to warrant an increase in model complexity.  Reciprocal rates associated with 4000 nM DAB-1 

data points on the Dixon plot are indeed generally lower than the full mixed model would 

predict, but this pattern does not appear to hold for data points associated with lower DAB-1 
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concentrations.  The full mixed model provided an inhibition constant of 1.18 +/- 0.113 µM and 

an α value of 13.25 +/- 3.57. 

 

                                       
 

Figure 28.  Dixon plot for Nt-SI hydrolysis of PNP-glucose in the presence of DAB-1, 

assuming a full mixed inhibition model. 

 

 

3.8 Inhibition of Ct-SI activities by DAB-1 
 

3.8.1 Inhibition of Ct-SI maltose hydrolysis by DAB-1 

 

The Ki value for DAB-1 inhibition of Ct-SI maltose hydrolysis was determined to be 4.95 

+/- 0.266, assuming a full competitive inhibition model (R2 = 0.988).  These inhibition kinetics 

are distinct from kinetics of LAB-1 inhibition, which were best suited to a full mixed model.  

The LAB-1 inhibition constant was ~8 times smaller in magnitude than that of DAB-1.   
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Figure 29.  Michaelis-Menten and Lineweaver-Burk plots for Ct-SI hydrolysis of maltose in 

the presence of DAB-1, assuming a full competitive inhibition model. 

 

3.8.2 Inhibition of Ct-SI PNP-glucose hydrolysis by DAB-1 

 

The best model for DAB-1 inhibition of PNP-glucose hydrolysis by Ct-SI was a partial 

mixed model (R2 = 0.986), with an inhibition constant of 2.37 +/- 0.302 µM.  Parameters α and β 

were determined to be 2.69 +/- 0.38 and 0.60 +/- 0.043, respectively.  This mode of inhibition is 

quite different from the full competitive model which best characterizes DAB-1 inhibition of 

maltose hydrolysis by Ct-SI.  A full competitive model was applied to these data as well, but the 

coefficient of determination was only 0.974.  Parameters associated with both full competitive 

and partial mixed models are reported below in Table 11. 

Table 11.  Kinetic parameters for partial mixed and full competitive models of DAB-1 

inhibition of PNP-glucose hydrolysis by Ct-SI. 

Model K
m (mM) Ki (µM) α β R2 

Partial Mixed 5.4 +/- 0.3 2.37 +/- 0.30  2.69 +/- 0.38  0.60 +/-0.043  0.986 

Full Competitive 5.7 +/- 0.3  5.16 +/- 0.41  - - 0.974 
  Error in all columns is reported as a standard error of the mean 

Michaelis-Menten plots are depicted in Figure 30. 
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Figure 30.  Michaelis-Menten plots for Ct-SI hydrolysis of PNP-glucose in the presence of 

DAB-1; a) partial mixed model, and b) full competitive model. 

 

Dixon plots for partial and full mixed inhibition models were also compared.  Points on 

the Dixon plot are fit better by the partial mixed model, but the difference in goodness of fit may 

simply be due to generally higher error associated with points obtained at low substrate and high 

inhibitor concentrations, due to spectrophotometer limitations discussed previously.   

              
 
Figure 31.  Dixon plots for Ct-SI hydrolysis of PNP-glucose in the presence of DAB-1; a) 

partial mixed model, and b) full competitive model. 

 

A secondary plot of Km
app/Vmax

app was constructed to assist in the determination of 

whether introduction of a partiality factor into the inhibition model was justified.  Points on this 
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plot were explained well by a linear model (R2 = 0.964), indicating a lack of evidence for 

hyperbolic inhibition.  The full competitive model was therefore considered the most appropriate 

model to explain the data. 

 

Figure 32.  Replot of Km
app

 / Vmax
app as a function of [DAB-1] for DAB-1 inhibition of PNP-

glucose hydrolysis by Ct-SI. 

 

 

3.9 Inhibition of Nt-MGAM activities by DAB-1 
 

3.9.1 Inhibition of Nt-MGAM maltose hydrolysis by DAB-1 

 

Assuming a full mixed inhibition model (R2 = 0.976), the Ki value for DAB-1 inhibition 

of Nt-MGAM was determined to be 1.82 +/- 0.171 µM.  The α value was 8.75 +/- 2.06.  A full 

competitive model was a much poorer fit to the data (R2 = 0.943).  Mixed inhibition by DAB-1 

would contrast the competitive inhibition of this subunit that was seen with LAB-1.   
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Figure 33.  Michaelis-Menten and Lineweaver-Burk plots for Nt-MGAM hydrolysis of 

maltose in the presence of DAB-1, assuming a full mixed inhibition model. 

 

The Michaelis-Menten plot depicted in Figure 33 recalls the same poor fit for 60 mM 

maltose data points that was seen in the assay with Ct-SI, where a full mixed model was also 

selected as the best model for these data by the global analysis.  The conclusion regarding 

whether the inhibition is truly mixed or competitive should therefore be regarded with some 

uncertainty. 

 

3.9.2 Inhibition of Nt-MGAM PNP-glucose hydrolysis by DAB-1 

 

PNP-glucose hydrolysis by Nt-MGAM was competitively inhibited by DAB-1, with an 

inhibition constant of 3.43 +/- 0.120 µM.  The full competitive inhibition model had a coefficient 

of determination of 0.993, ranking below both partial mixed and partial competitive models.  The 

disparity in R2 values for the three models was very small, and the Dixon plot does not 

overwhelmingly favour a partial inhibition model.  For these reasons, the full competitive model 

was deemed best.  The Michaelis-Menten and Dixon plots are depicted in Figure 34.  
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Figure 34.  Michaelis-Menten and Dixon plots for Nt-MGAM hydrolysis of PNP-glucose in 

the presence of DAB-1, assuming a full competitive inhibition model. 

. 

Once again, PNP-glucose solubility imposed limitations on Vmax estimates that could be 

extracted from this dataset.  This presents a source of error and limits the amount of mechanistic 

information that can be extracted from the dataset. 

3.10 Inhibition of Ct-MGAM N2 and N20 activities by DAB-1 
 

3.10.1 Inhibition of Ct-MGAM N2 and N20 maltose hydrolysis by DAB-1 

 

Ct-MGAM N2 inhibition by DAB-1 was best described by a full mixed inhibition model 

(R2 = 0.959).  Ki and α values were 2.64 +/- 0.353 µM and 6.53 +/- 1.44 respectively.  Michaelis-

Menten and Lineweaver-Burk plots are depicted in Figure 35.  
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Figure 35.  Michaelis-Menten and Lineweaver-Burk plots for Ct-MGAM N2 hydrolysis of 

maltose in the presence of DAB-1, assuming a full mixed inhibition model. 

 

DAB-1 also exhibited mixed inhibition kinetics with Ct-MGAM N20 and maltose (R2 = 

0.984).  The Ki and α values for this inhibition were 2.80 +/- 0.223 µM and 14.22 +/- 2.78.  The 

parameter α assigned to DAB-1 inhibition of Ct-MGAM N20 is more than twice the magnitude 

of that associated with inhibition of Ct-MGAM N2.  Inhibition constants for DAB-1 with both 

enzymes are almost indiscriminable.  Once again it is obvious that the highest substrate 

concentration data points – in this case, 15 mM maltose – fit the mixed model more poorly than 

lower substrate concentration data points. 

3.10.2 Inhibition of Ct-MGAM N2 and N20 PNP-glucose hydrolysis by DAB-1 

 

Inhibition of Ct-MGAM N2 PNP-glucose hydrolysis by DAB-1 was best fit by a full 

mixed model, as was the case with maltose as substrate.  The coefficient of determination for this 

model was 0.991.  Ki and α values were found to be 2.717 +/- 0.183 µM and 8.43 +/- 1.11 

respectively. 
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Figure 36.  Michaelis-Menten and Lineweaver-Burk plots for Ct-MGAM N2 hydrolysis of 

PNP-glucose in the presence of DAB-1, assuming a full mixed inhibition model. 

 

A partial mixed inhibition model was ranked first by R2 (0.993), but the difference 

between this value and that determined for the full mixed model was minute.  This was not 

considered sufficient evidence of partial inhibition.  The Dixon plot is depicted in Figure 37. 

 

 

 

Figure 37.  Dixon plot for Ct-MGAM N2 hydrolysis of PNP-glucose in the presence of 

DAB-1, assuming a full mixed inhibition model. 
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DAB-1 inhibition of PNP-glucose hydrolysis by Ct-MGAM N20 was found to have a Ki 

value of 5.22 +/- 0.531, assuming full competitive inhibition.  There are a number of problems 

with this model: firstly, 30 mM PNP-glucose data points are not well accounted for, and 

secondly, the spread of data points at each substrate concentration is poorly explained.  The R2 

value was only 0.961.  By observing the Michaelis-Menten plot, one can see that 30 mM PNP-

glucose data points are likely higher than they should be, possibly due to experimental error in 

the execution of the assay.  If all 30 mM PNP-glucose data points are associated with 

erroneously high rates, then the competitive inhibition model is most likely not accurate. 

 

Figure 38.  Michaelis-Menten plot for Ct-MGAM N20 hydrolysis of PNP-glucose in the 

presence of DAB-1, assuming a full competitive inhibition model. 

 

The possibility of mixed inhibition in this case was explored further.  Local kinetic 

parameters for individual curves were estimated by nonlinear regression.  The Lineweaver-Burk 

plot from this analysis indicated mixed inhibition.  Calculating inhibition parameters by this 

method, the Ki was found to be 4.82 +/- 0.0317 µM and the α value was found to be 8.55 +/- 

0.693.  Because the global and local methods of analysis indicated two different modes of 

inhibition, the matter was settled qualitatively.  The competitive model from the global analysis 
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was an inexplicably poor fit for 30 mM PNP-glucose data points, while the analysis of individual 

curves did not predict the same poor fit at only one PNP-glucose concentration value.  The 

mixed model is therefore considered a better qualitative explanation for the data seen here. 
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Chapter 4 Conclusions 

 

The higher inhibitory potency of LAB-1, compared to DAB-1, has been well-established 

for rat intestinal α-D-glucosidases in general (Asano et al., 2005).  This trend was also observed 

in kinetic data from the present experiments.  To attempt to account for the difference, it could 

be that one or both of the inhibitors may bind at more than one site on the enzymes, or that LAB-

1 stereochemistry allows for additional interactions that DAB-1 does not have when it binds.  

While the former hypothesis is favoured by some (Asano et al., 2005), there is as yet no concrete 

evidence for an alternate binding site for either LAB-1 or DAB-1 on the mammalian α-

glucosidases studied here. 

Here we have seen that Nt-SI hydrolysis of the disaccharide substrates maltose and PNP-

glucose is more powerfully affected by LAB-1 than it is by DAB-1.  If the two inhibitors do 

happen to bind at the same site, then the stereochemistry of pyrrolidine ring hydroxyl groups 

must somehow contribute to this difference in potency.  Observing the Nt-SI crystal structure, 

solved in complex with the thiosugar sulfonium sulfate inhibitor kotalanol (Sim et al., 2010), I 

hypothesize that LAB-1 and DAB-1 both bind to the -1 subsite of the active site of Nt-SI, where 

the five-member ring of kotalanol is known to bind.  I also hypothesize that this is the general 

way in which these iminosugars inhibit the activities of all five enzymes studied here. 

The -1 subsites of Nt-SI and Nt-MGAM are highly structurally conserved, with very few 

stark differences (Sim et al., 2010).  Their +1 subsites exhibit more structural variability, and this 

is thought to account for the observed differences in substrate specificity (Sim et al., 2010).     

The main -1 subsite difference between the two N-terminal human α-glucosidases is that the 



75 
 

residue Trp 327 in Nt-SI is analogous to Nt-MGAM’s Tyr 299.  This residue may play a role in 

favouring LAB-1 binding.  A number of aspartic acid residues in the -1 subsite of Nt-SI, 

including Asp 472, Asp 355, and Asp 571, could form hydrogen bonds with LAB-1 hydroxyl 

groups.  The orientation of hydroxyl groups would largely determine the strength of interactions 

with these residues in the -1 subsite, and this seems to be the most plausible explanation for the 

disparity in LAB-1 and DAB-1 potencies.  Since it is likely that the heteroatom extension of 

kotalanol influences the orientation of its five-membered ring in the Nt-SI and Nt-MGAM active 

sites, the suggestion that DAB-1, with the same ring stereochemistry as kotalanol, binds in 

precisely the same way, is highly speculative.  One molecular docking study has shown that 

LAB-1 derivatives do very likely bind in the enzyme’s active site in the manner discussed here 

(Kato et al., 2015).  They showed that hydrogen bonding with inhibitor hydroxyl groups and 

certain CH-π interactions are essential determinants of the predicted binding capacities of LAB-1 

derivatives (Kato et al., 2015). 

Mixed inhibition of Nt-SI activities by both LAB-1 and DAB-1 could be caused by direct 

interactions with residues Asp 571, the acid/base catalyst, and Asp 472, the catalytic nucleophile 

(Sim et al., 2010).  Since these residues are proximal to the -1 subsite, they could interact 

directly with any of the hydroxyl groups of LAB-1 and DAB-1.  Mixed inhibition kinetics dictate 

that a substrate and an inhibitor can bind simultaneously to an enzyme, so lacking evidence for 

an alternate binding site, the preferred hypothesis is that each of the inhibitors is able to bind to 

Nt-SI in complex with maltose and PNP-glucose substrates.  The resultant complex (ESI) is most 

likely catalytically inactive, based on the preferred full inhibition model.  This leads one to 

believe that one or more catalytic residues is hindered by the binding of these inhibitors.  The 

proposed scheme, wherein LAB-1 and DAB-1 bind to the -1 subsite of the Nt-SI active site, 
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seems congruent with this finding.  If this is the case, LAB-1 and DAB-1 must bind in such a 

way that they do not completely obstruct binding of the substrate.  The fact that thiosugar 

sulfonium sulfate inhibitors including salacinol and kotalanol have been characterized as 

competitive inhibitors suggests that the heteroatom extension plays a very important role in 

blocking the substrate.  LAB-1 and DAB-1 lack the heteroatom extension, and they do not 

exhibit exclusively competitive inhibition kinetics with Nt-SI. 

Full mixed inhibition kinetics were observed with most enzyme-substrate pairs tested 

here, but in some cases, the inhibition was best explained by a full competitive model.  

Considering the possibility that LAB-1 and DAB-1 bind to the -1 subsite of each enzyme’s 

active site, structural differences in the -1 subsite could contribute to these observations.  A few 

convincing cases of competitive inhibition were observed with Nt-MGAM and with Ct-SI.  This 

mode of inhibition could be related to the shape of the +1 subsites of these enzymes; it has been 

hypothesized that the narrowness of the Nt-SI +1 subsite is integral to the binding of α-1,6-linked 

substrates (Sim et al., 2010; Kato et al., 2015).  Perhaps Nt-MGAM and Ct-SI +1 subsites do not 

exercise sufficient constraints on the substrate to allow it to bind simultaneously with LAB-1 or 

DAB-1. 

Ct-MGAM N2 and Ct-MGAM N20 were inhibited by both LAB-1 and DAB-1, and the 

former inhibitor was found to be more potent than the latter by an order of magnitude.  Mixed 

inhibition was observed with both compounds.  The Ct-MGAM isoform N2 structure (Ren et al., 

2011) offers some structural insights that may help explain this mode of inhibition. Firstly, if 

these inhibitors bind to the -1 subsite, there are more aspartic acid residues (five) possibly 

available for hydrogen bonding contacts in Ct-MGAM N2 than there are in -1 subsites of either 
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Nt-SI or Nt-MGAM (three).  Either the acid/base catalyst or catalytic nucleophile could be 

hindered directly by the binding of LAB-1 and DAB-1, in this scenario. 

Finally, the complete substrate inhibition observed for both Nt-SI and Nt-MGAM at high 

millimolar concentrations of palatinose may be a phenomenon of biological significance if the 

result is also applicable to the hydrolysis of isomaltose.  Palatinose is only consumed in small 

quantities – mainly in honey (Oizumi et al., 2007) – so the phenomenon seen here does not likely 

have very much direct significance.  It is certainly more likely to be an artifact of the 

experimental conditions.  Still, if the same substrate inhibition is observed for isomaltose, it 

could indicate that the phenomenon plays a role in moderating glucose release by slowing the 

hydrolysis of α-1,6-linked starch branch points.  A similar phenomenon has been observed with 

maltase glucoamylase and maltooligosaccharides with up to five units of glucose per substrate 

molecule (Quezada-Calvillo et al., 2007; Quezada-Calvillo et al., 2008).   

Ultimately, the work reported here confirms that LAB-1 is a more potent inhibitor of all 

intestinal α-glucosidases tested than is DAB-1.  LAB-1 exhibits its most potent inhibitory 

activity against Nt-SI, and inhibits all other catalytic subunits to a similar extent.  Considering 

the existing Nt-SI, Nt-MGAM, and Ct-MGAM N2 crystal structures, it appears that the mixed 

inhibition kinetics observed with both inhibitors might be attributable to direct hydrogen bonding 

interactions with catalytic residues proximal to the -1 subsite in each subunit’s active site.   
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Chapter 5 Future Directions 

 

Numerous inhibitory compounds have already been designed on the basis of LAB-1 and 

DAB-1 structures (Kato et al., 2015; Carreiro et al., 2014).  Hydrophobic carbon chains and 

benzyl groups have been added to the pyrrolidine rings in separate ventures to explore the effects 

of particular alterations (Kato et al., 2015; Carreiro et al., 2014).  One possibility that has not 

been tested, to my knowledge, is the introduction of a sulfur atom as the heteroatom in the 

pyrrolidine ring of an otherwise LAB-like compound.  This could help determine the 

significance of the type of heteroatom, and in the absence of a crystal structure in complex with 

this inhibitor, it could perhaps also provide more insights as to how the inhibitor binds.   

Since pyrrolidine iminosugars have proven to be effective inhibitors of many different 

glycoside hydrolases, the question of binding promiscuity in vivo remains an important one 

(Asano et al., 2005).  Because of the impressive potency of LAB-1 as an α-glucosidase inhibitor, 

it would be worthwhile to better characterize the interactions that this inhibitor has with different 

human enzymes.  Salacinol and analogues have been shown to inhibit a Drosophila homolog of 

human Golgi α-mannosidase II (Kuntz et al., 2005) and whether iminosugar inhibitors LAB-1 

and DAB-1 have similar effects remains to be seen.   

Crystallization and structure determination for Ct-MGAM N20 and Ct-SI would prove 

very useful, as well, in developing an understanding of the inhibitory mechanisms and 

differences in potency associated with LAB-1 and DAB-1.  Crystal complexes with human 

intestinal α-glucosidases and either LAB-1 or DAB-1 could also provide a wealth of information 

about how and where the inhibitors really bind. 
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It still seems curious that LAB-1 and DAB-1 can exhibit mixed inhibition, while 

salacinol and its analogues are exclusively competitive inhibitors (Rossi et al., 2006; Sim, 2010; 

Sim et al., 2010; Jones et al., 2011).  While salacinol and derivatives have DAB-1ike hydroxyl 

group orientation about the five-member ring, they also each possess a large heteroatom 

extension.  I have put forward the possibility that the heteroatom extension is crucial to the pure 

competitive nature of the inhibition by salacinol and its derivatives.  It would be interesting to 

see if creating and testing salacinol analogues with heteroatom extensions of varying length 

might indicate the point at which the inhibitor’s heteroatom extension becomes so large that it 

obstructs binding of the substrate altogether. 

Finally, whether or not there is any benefit to purposefully designing mixed inhibitors of 

mammalian small intestinal α-glucosidases is worthy of some consideration.  Most α-glucosidase 

inhibitors used in the management of type two diabetes are purely competitive.  Effectively it 

seems there is really no benefit to one type of inhibition over the other; the most important goal 

is to selectively inhibit particular catalytic subunits with different compounds.  In any case, it is 

my hope that the findings reported here will one day be of aid in the development of more highly 

selective and effective α-glucosidase inhibitors. 
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Appendix I 

 

Documentation of a Ct-MGAM N2 nickel column purification, performed as described in 

the Materials and Methods, is included in Figures 39, 40, and 41. 

 

Figure 39.  Ct-MGAM N2 purification: Expression media, flow through, and 10 mM 

imidazole elutions (14% denaturing gel). 

 

Numbered gel columns indicate both the concentration of imidazole used to elute the 

proteins in each sample and the order of elutions (ex. 10-1 is the first elution of a series using a 

buffer with 10 mM imidazole). 

Figure 40 contains a photo of another reducing gel showing elutions from this 

purification. 



90 
 

 

Figure 40.  Ct-MGAM N2 purification: 75 – 250 mM imidazole elutions (14% denaturing gel). 

 

Final purified proteins from the Ct-MGAM N2 purification are shown in Figure 41.  Ct-

MGAM N2 from the first column (75-250: Ct-MGAM N2) was used in assay for inhibition of 

PNP-glucose hydrolysis by DAB-1. 

                                                        
Figure 41.  Ct-MGAM N2 purification: final preparations after protein concentration 

(10% denaturing gel). 


