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Abstract

Self-stabilization [14] is a versatile technique for recovery from erroneous behavior due to tran-
sient faults or wrong initialization. A system is self-stabilizing if (1) starting from an arbitrary
initial state it can automatically reach a set of legitimate states in a finite number of steps and (2)
it remains in legitimate states in the absence of faults. Weak-stabilization [25] and probabilistic-
stabilization [32] were later introduced in the literature to deal with resource consumption of
self-stabilizing algorithms and impossibility results. Since the system perturbed by fault may
deviate from correct behavior for a finite amount of time, it is paramount to minimize this time
as much as possible, especially in the domain of robotics and networking. This type of fault
tolerance is called non-masking because the faulty behavior is not completely masked from the
user [13].

Designing correct stabilizing algorithms can be tedious. Designing such algorithms that
satisfy certain average recovery time constraints (e.g., for performance guarantees) adds further
complications to this process. Therefore, developing an automatic technique that takes as input
the specification of the desired system, and synthesizes as output a stabilizing algorithm with
minimum (or other upper bound) average recovery time is useful and challenging. In this thesis,
our main focus is on designing automated techniques to optimize the average recovery time of
stabilizing systems using model checking and synthesis techniques.

First, we prove that synthesizing weak-stabilizing distributed programs from scratch and re-
pairing stabilizing algorithms with average recovery time constraints are NP-complete in the
state-space of the program. To cope with this complexity, we propose a polynomial-time heuris-
tic that compared to existing stabilizing algorithms, provides lower average recovery time for
many of our case studies.

Second, we study the problem of fine tuning of probabilistic-stabilizing systems to improve
their performance. We take advantage of the two properties of self-stabilizing algorithms to
model them as absorbing discrete-time Markov chains. This will reduce the computation of
average recovery time to finding the weighted sum of elements in the inverse of a matrix.

Finally, we study the impact of scheduling policies on recovery time of stabilizing systems.
We, in particular, propose a method to augment self-stabilizing programs with k-central and k-
bounded schedulers to study different factors, such as geographical distance of processes and the
achievable level of parallelism.
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Chapter 1

Introduction

Distributed systems have conquered the digital world in recent years. Networks have been rapidly
growing in size and the geographical area that they are distributed over. Their applications span
a wide range including telecommunications, home appliances, medical equipment and real-time
aircraft control. Due to the broad area and sensitiveness of their applications, reliability and
robustness is a paramount issue in their design. As new generations of circuits continue to shrink
in size, they become more prone to faults and sensitive to noise. Designing a fault-tolerant system
requires predicting all possible scenarios of fault perturbation and their outcome which can be
very challenging or impossible in very large networks. One way to deal with this difficulty is
to design the system in a way that starting from any arbitrary initial state it will reach a correct
behavior in a finite time. In this case, the system can recover from transient faults that throw the
system in an unwanted state. Such systems are called self-stabilizing [14].

Self-stabilization is a non-masking fault-tolerance technique. A fault-tolerant system is non-
masking if wrong behavior (violation of safety) is allowed for a finite amount of time. Self-
stabilization can be used for recovery from erroneous behavior due to transient faults or wrong
initialization in distributed systems. Pioneered by Dijkstra in 1974, he raised the question
whether several processes can synchronize their behavior in spite of distributed control [14].
In his seminal paper, he presented self-stabilizing algorithms for the mutual exclusion problem.
In distributed control, processes do not have access to the state of the whole system. Their infor-
mation and consequently actions are limited to a small subset of the network. More specifically,
each process shares information only with its neighbors. Consequently, reaching a desirable
global behavior (legitimate state) and preserving it when each process has partial observation of
the state of the system can be challenging or impossible.

Self-stabilizing systems are identified by two main properties:
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• strong convergence ensures that starting from any arbitrary initial state, all computations
will eventually reach a correct behavior in a finite number of steps,

• Closure guarantees that after reaching a legitimate state the system will remain in legiti-
mate states in the absence of faults.

Strong convergence is a very strong condition as it requires all computations to reach a legitimate
state. There are problems that are impossible to solve in non-probabilistic settings (e.g. token cir-
culation and leader election in anonymous networks [32, 28, 12]). Furthermore, self-stabilizing
algorithms with strong convergence usually require more space. Other variants of convergence,
weak [25] and probabilistic [32] convergence, were introduced to solve a wider range of prob-
lems and tackle resource consumption issues. Weak convergence requires that starting from
any state there should exist at least one computation that reaches a legitimate state. Similarly, in
probabilistic convergence the probability of reaching a legitimate state starting from any arbitrary
state should be one.

1.1 Challenges in Designing Self-Stabilizing Algorithms

Synthesizing correct distributed self-stabilizing algorithms from their specification is a difficult
task. Below, we discuss three main challenges in this regard.

1.1.1 Proof of Correctness

Designing self-stabilizing algorithms and proving their correctness can be very demanding and
prone to error to the point that Dijkstra asked readers to design an algorithm before reading his
solution to the mutual exclusion problem [14, 16]. He, in fact, proved its correctness twelve
years later [15].

1.1.2 Partial Observation

The main application of self-stabilization is in distributed systems. In such systems, processes
can read and write only a small subset of the variables that determine the global state of the
system in one atomic step. Processes need to reach a desired behavior using their partial infor-
mation of the state. Partial observation causes dependency among some transitions of a process
which we refer to them as groups of transitions. In Chapter 3 we prove that a consequence of this
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dependency is that synthesis and repair of a weak-stabilizing algorithm to meet a given average
recovery time bounded by a real number k is NP-complete.

1.1.3 Recovery Time Calculation

Analytical computation of recovery time of a self-stabilizing algorithm is challenging on its own.
Adding average recovery time constraints to the system’s specification can further complicate the
design process.

Given the above challenges, it is crucial to develop automated techniques to synthesize cor-
rect and more preferably optimum self-stabilizing algorithms from their specification.

1.2 Contributions

In this thesis, our primary focus is on analysis and optimization of recovery time using model-
checking and verification methods. Our contributions can be summarized as:

1. First, we prove that repair and synthesis of a weak-stabilizing algorithm with average re-
covery time constraints is NP-complete and present a polynomial-time heuristic that works
for both repair and synthesis problems.

2. Given the popularity of randomized schedulers, we propose a technique to find the ran-
domization values that give minimum average recovery time.

3. We study the effect of different types of schedulers through an empirical study of the ver-
tex coloring problem. In this regard, we propose a method to augment self-stabilizing
programs with k-central and k-bounded schedulers.

In the sequel, we explain the above contributions in more detail.

1.2.1 Complexity of Repair & Synthesis of Weak-Stabilizing Algorithms
under Recovery Time Constraints

The first step was to analyze the complexity of the problem of synthesizing or repairing sta-
bilizing systems to meet pre-specified average recovery time constraints. In [18], the authors
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proposed an efficient automated method to add weak convergence to a distributed program with-
out average recovery time bounds in linear time. Their heuristic uses the weakest program, a
maximal program in the sense that all possible transitions are present in the system. All possi-
ble stabilizing programs for that specification are a subset of the maximal program. Therefore,
synthesizing a stabilizing program can be reduced to repairing (eliminating transitions from) the
maximal program. We employ this reduction to prove that synthesizing (equivalently repairing) a
weak-stabilizing program with an average recovery time bounded by a real value is NP-complete.
In this regard, we propose a polynomial-time heuristic that takes as input the state-space, set of
legitimate states and the corresponding maximal program and repairs it with the goal of minimiz-
ing the average recovery time. Our heuristic is based on the intuition that cycles tend to increase
recovery time and the closer they are to legitimate states the greater their impact.

1.2.2 Automated Fine-tuning of Probabilistic-Stabilizing Algorithms

Randomization can be used to break symmetry in anonymous networks in deterministic settings.
In probabilistic distributed systems processes execute their actions randomly. Intuitively, the
probability values based on which processes run their actions can affect the average recovery
time. However, using biased coins (probability value other than 0.5) to minimize recovery time
was a counter-intuitive result first demonstrated by Kwiatkowska et al. [37] through an empirical
study. Following their line of work, we propose an automated technique to find the optimum
randomization parameters that give minimum average recovery time for a specific network size.
We use the two properties of stabilizing algorithms, closure and convergence, to model them with
absorbing Markov chains and reduce the computation of average recovery time to calculating
the weighted sum of elements in the inverse of the transition probability matrix among non-
legitimate states. After computing the rational expression for the average recovery time in terms
of randomization parameters, we use existing symbolic optimization tools (Maple) to find a
valuation of the parameters that gives minimum average recovery time.

1.2.3 Automated Analysis of Impact of Scheduling on Performance of Self-
Stabilizing Algorithms

Schedulers or daemons are another element of distributed systems that can significantly affect
recovery time or even the possibility of convergence. A scheduler determines which subset of
the enabled processes can execute their commands at each time. They can be classified based
on several factors: distribution, enabledness, boundedness and fairness [17]. We study the effect
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of different scheduler types on correctness and average recovery time of several stabilizing algo-
rithms for the vertex coloring problem in arbitrary graphs [28]. The deterministic algorithm [28]
does not converge in the worst case under a distributed unfair scheduler. One way to refine this
algorithm to a scheduler-oblivious stabilizing algorithm is to compose it with a stabilizing mutual
exclusion protocol with the cost of higher recovery time due to ensuring safety. Another way is
to randomize the actions of processes [28, 29]. Our experiments showed that in general, deter-
ministic algorithms have better performance. One deterministic algorithm is to assign unique IDs
to each process and always have an enabled process with lowest ID to run. This protocol beats
all the other deterministic and probabilistic algorithms we studied. However, it has the drawback
of needing unique IDs for processes in advance. To run a ID-based self-stabilizing algorithm on
an anonymous network, it should be composed with a unique naming self-stabilizing algorithm
at the cost of performance hit. We studied three randomization strategies: 1) p=constant value 2)
p=1/vertex degree 3) p=1/#conflicts. The first two strategies are static, i.e. the probability values
do not change throughout the execution. The third approach is dynamic as the number of con-
flicts for each vertex varies during the execution. Our experiments demonstrate that this strategy
outperforms the other two in most cases with the advantage of no pre-tuning requirements.

1.3 Organization

Chapter 2 presents our framework, formal definitions of distributed programs, Markov chains
and average recovery time. In Chapter 3 we prove that repair and synthesis of a weak-stabilizing
algorithm with average recovery time constraint is NP-complete and propose a polynomial-time
heuristic. In Chapter 4, we present an automated technique for fine tuning of probabilistic dis-
tributed self-stabilizing algorithms to achieve minimum average convergence time. In Chapter 5,
we study the effect of schedulers and randomized conflict managers on correctness and average
recovery time of a stabilizing vertex coloring algorithm. Chapter 6 is dedicated to related work
and finally we conclude and discuss future work in Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we present our formal framework and computation models used throughout the
thesis.

2.1 Distributed Programs

A distributed program dp consists of a finite set Π of processes and a finite set V of discrete
variables, where each variable v ∈ V ranges over a finite domain Dv. A state s of dp is determined
by a value assignment to all variables, denoted by a vector s = 〈v1, . . . , v|V |〉. The value of a
variable v in a state s is indicated by v(s). The state space of dp (S ) is the set of all possible
states:

S =
∏
v∈V

Dv.

A state predicate is a subset of S . We denote the initial state distribution, i.e., the probability of
starting the program in each state by ιinit(s) such that

∑
s∈S

ιinit(s) = 1.

Definition 1 (Process) A process π ∈ Π over a set V of variables is a tuple 〈Rπ,Wπ,Tπ〉, where

• Rπ ⊆ V is the read-set of π; i.e., variables that π can read;
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• Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can modify, and

• Tπ is the transition relation of π, which is a set of ordered pairs (s, s′), where s, s′ ∈ S ,
subject to the following constraints:

– Write restriction:

∀(s, s′) ∈ Tπ : ∀v ∈ V : (v(s) , v(s′))⇒ v ∈ Wπ

– Read restriction:

∀(s0, s1) ∈ Tπ : ∃s′0, s
′
1 ∈ S

∀v < Wπ : (v(s0) = v(s1) ∧ v(s′0) = v(s′1))) ∧
(∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ⇒

(s′0, s
′
1) ∈ Tπ. �

The write restriction requires that a process can only change the value of a variable in its
write-set, but not blindly. That is, it cannot write a variable that it is not allowed to read. The
read restriction captures the fact that in distributed computing, processes have only a partial view
of the global state. The read restriction imposes the constraint that for each process π, each
transition in Tπ depends only on reading the variables that π is allowed to read (i.e. Rπ). Thus,
each transition in Tπ is in fact an equivalence class in Tπ, which we call a group of transitions.
This is because each process π should exhibit identical behavior in states where its read-set has
equal valuation. The key consequence of read restriction is that during synthesis, if a transition
is included (respectively, excluded) in Tπ, then its corresponding group must also be included
(respectively, excluded) in Tπ.

Notation 1 For a transition (s, s′) ∈ Tπ, G(s, s′) denotes the set of all transitions in the group of
(s, s′). Also, G(X) denotes

⋃
(s,s′)∈X G(s, s′), where X is a set of transitions.

Definition 2 (Distributed Program) A distributed program over a set of variables V is a tuple
dp = 〈Πdp,Tdp〉, where

• Πdp is a set of processes over the common set V of variables, such that for any two distinct
processes π1, π2 ∈ Πdp, we have Wπ1 ∩Wπ2 = ∅,

• Tdp is the transition relation of dp, such that

Tdp =
⋃
π∈Πdp

Tπ �

7



Algorithm 1 Probabilistic-stabilizing Vertex Coloring (process π)
1: Variable: cπ : int ∈ [0, B]
2: Guarded Command: cπ , max({0, · · · , B}\

⋃
π′∈N(π) cπ′ ) −→ p : cπ := max({0, · · · , B}\

⋃
π′∈N(π) cπ′ ) + (1−

p) : cπ := cπ;

π0 π1 π2

Figure 2.1: Example of a graph coloring problem

In our model, processes communicate through shared memory, i.e. several processes can
read the same variable. However, only one process can write to a variable. It also models an
asynchronous distributed program, where process transitions execute in an interleaving fashion
resulting in Tdp being the union of transition relations of the processes in the program. We say
that processes π1, π2 ∈ Πdp are neighbors iff Rπ1 ∩ Rπ2 , ∅. Thus, the communication network
of a distributed system can be modeled by a graph G = (Π, E), where a node represents a process,
and there is an edge between any two processes that are neighbors.

Notation 2 We denote the set of neighbors of a process π by N(π), the shortest path between two
vertices (processes) π and π′ in G by dist(π, π′) and the diameter of the graph by diam(G).

Example 1 We use the probabilistic distributed vertex coloring algorithm of [28] as a running
example. A solution to the vertex coloring problem is an assignment of colors to vertices (i.e.,
processes) of a graph from a given set of colors subject to the constraint that no two adjacent
vertices share the same color. Here, adjacency is determined by the neighborhood relation. Al-
gorithm 1 runs on each process π in the system. Each process π maintains a variable cπ, which
represents the color of π and ranges over Dcπ = [0, B], where B is the maximum vertex degree in
the graph. Processes representing adjacent vertices in the graph are neighbors in the distributed
program (they can read the color of their neighbors). States in which no guards are satisfied (i.e.,
the value of all variables equals the maximum available color) are considered legitimate states in
this algorithm. Suppose we have a graph with three vertices connected in a row as shown in Fig-
ure 2.1. In this example, Πdp = {π0, π1, π2} sharing a read variable with its neighbor process(es).
Let dp = 〈Πdp,Tdp〉 be the distributed program over variables V = {c0, c1, c2} solving our vertex
coloring problem.

8



Now, consider the following transitions:

t1 =

(s0 = [c0 = 0, c1 = 1, c2 = 2], s1 = [c0 = 2, c1 = 1, c2 = 2])
t2 =

(s′0 = [c0 = 0, c1 = 1, c2 = 1], s′1 = [c0 = 2, c1 = 1, c2 = 1])

Observe that as far as process π0 is concerned, states s0 and s′0 are identical, as the variables in
the read-set of π0 have the same value in both states. Consequently, since π0 is changing its only
write variable, c0, from 0 to 2 in s0, it should do the same in s′0. In other words, if transition t1

exists in the program, then so should t2. If not, π0’s execution will depend on the value of c2

which is not readable by π0.

2.2 Discrete-time Markov Chains

Discrete-time Markov Chains (DTMCs) are transition systems equipped with probabilities. By
modelling distributed programs with DTMCs, one can reason about their correctness and com-
pute their recovery time in case of stabilizing programs.

2.2.1 Discrete-Time Markov Chains

Definition 3 (DTMC) A DTMC is a tupleD = (S , S 0, ιinit,P, L, AP) where,

• S is a finite set of states

• S 0 is the set of initial states

• ιinit : S → [0, 1] is the initial state distribution such that∑
s∈S

ιinit(s) = 1

• P : S × S → [0, 1] is the transition probability matrix (TPM) such that

∀s ∈ S :
∑
s′∈S

P(s, s′) = 1

9



• L : S → 2AP is the labeling function that identifies which atomic propositions from a finite
set AP hold in each state.

�

In Definition 3, if the transition probabilities include symbolic values, it gives a parametric
DTMC (PDTMC) [7].

Definition 4 (Parametric DTMC) A parametric DTMC is a tuple PD = (S , S 0,U, ιinit,
P, L, AP) where,

• S , S 0, L are as defined before,

• U = {u1, u2, · · · , ur} is a finite set of real parameters,

• ιinit : S → FU is the initial state distribution and FU is the set of multivariate polynomials
in u = (u1, · · · , ur),

• P : S × S → FU is the transition probability matrix. �

An evaluation function eval : U → R assigns real values to parameters in set U. Given an
evaluation function eval and a polynomial f ∈ FU , eval( f ) denotes the value obtained by re-
placing each parameter ui in f by eval(ui). An evaluation function is valid for a PDTMC with
parameter set U if the induced TPM (Peval = eval(P) : S × S → [0, 1]) and initial distribution
(ιiniteval = eval(ιinit) : S → [0, 1]) satisfy the following conditions:

∀s ∈ S :
∑
s′∈S

Peval(s, s′) = 1,
∑
s∈S

ιiniteval(s) = 1.

2.2.2 Distributed Programs as DTMCs

It is straightforward to model the transition system of a distributed program with a DTMC. The
state-space of the distributed program forms the set of states of the DTMC. S 0 and ιinit can be
determined based on the program. If the distributed program is probabilistic, then the value of
the elements of P are known. Otherwise, without loss of generality, we can consider uniform
distribution over transitions. In that case:

P(s, s′) =
1

|{(s, s′′) ∈ T (dp)}|

10



L assigns atomic propositions to states which facilitates computation and verification of certain
quantitative and qualitative properties. Later, in Section 2.3, we will see how a single atomic
proposition ls can define an important class of distributed programs namely, self-stabilizing pro-
grams.

00 01

10 11

p
2

p
2

1 − p 1

1

p
2

p
2

1 − p

Figure 2.2: DTMC of Algorithm 1.

Example 2 The DTMC and TPMs of two processes running Algorithm 1 for a graph with two
vertices π1 and π2 are shown in Figures 2.2 and 2.3 respectively. The TPM corresponding to
Figure 2.2 is shown in Figure 2.4.


00 11 01 10

00 1 − p 0 0 p
11 0 1 − p p 0
01 0 0 1 0
10 0 0 0 1




00 11 01 10
00 1 − p 0 p 0
11 0 1 − p 0 p
01 0 0 1 0
10 0 0 0 1


Figure 2.3: Transition probability matrices of π1 and π2.

Definition 5 (Computation) A computation σ of a distributed program (equivalently a DTMC)
is an infinite sequence of states:

σ = s0s1s2 · · ·

where,

• for all i ≥ 0 : si ∈ S (called the state at time i),
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00 11 01 10

00 1 − p 0 p
2

p
2

11 0 1 − p p
2

p
2

01 0 0 1 0
10 0 0 0 1


Figure 2.4: Transition probability matrix of Figure 2.2.

• ∀i ≥ 0 : (si, si+1) ∈ dp, or equivalently P(si, si+1) > 0. �

A state with no outgoing transitions is a terminating state. We consider a self-loop on such
states, so that any computation that reaches them stutters there infinitely. A prefix of σ is called
a finite computation.

Notation 3 σs indicates a computation that starts in state s. We use the notation σn for a finite
computation of length n. We denote the set of all possible distributed programs by DP, the set of
all computations of a distributed program by Σ(dp) and the set of finite computations by Σ f in(dp).

In the sequel, we review cylinder sets and reachability probabilities in Markov chains from [6].

Definition 6 The cylinder set of a finite computation σn is the set of infinite computations which
start with σn: Cyl(σn) = {σ | σn ∈ prefix(σ)} �

The probability of a cylinder set is given by:

Pr(Cyl(s0 · · · sn)) = ιinit(s0)
∏

0≤i<n

P(si, si+1) (2.1)

Reachability probability is a common quantitative property measured in Markov chains. Given
a subset B of the state space S , we look for the probability of eventually reaching a state s ∈ B
(denoted by (^)). In other words, we are interested in computations with the initial sequence
of states of the form s0 · · · sn−1 < B and sn ∈ B. All such computations can be indicated by the
regular expression RB(M) = Σ f in(M)∩(S \B)∗B. Hence, reachability probability can be computed
as follows:

Pr(^B) =
∑

s0···sn∈Σ f in∩(S \B)∗B

ιinit(s0)
∏

0≤i<n

P(si, si+1) (2.2)
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2.3 Self-stabilization and Convergence Time

A distributed program is self-stabilizing if (1) starting from an arbitrary initial state, all compu-
tations reach a state in the set LS of legitimate states in a finite number of steps without outside
intervention, (2) after which remains there in the absence of faults. The first condition is known
as strong convergence and the second as closure. An arbitrary state can be reached due to erro-
neous initialization or transient faults.

Definition 7 (self-stabilization) A distributed program
D = (S , S 0 = S ,P, L, {ls}) is self-stabilizing iff the following conditions hold:

• Strong convergence: ∀s ∈ S , all computations σs eventually reach a state in LS = {s | ls ∈
L(s)},

• Closure: ∀s ∈ LS : (P(s, s′) > 0) ⇒ (s′ ∈ LS ). �

It has been shown that some problems do not have a self-stabilizing solution [29]. Thus, the
strong convergence property has been relaxed in other variants of stabilization to tackle the im-
possibility issues and to reduce resource consumption. Weak-stabilization ensures the possibility
of convergence and probabilistic-stabilization guarantees convergence with probability one.

Definition 8 (weak-stabilization) A distributed program D = (S , S 0 = S ,P, L, {ls}) is weak-
stabilizing iff the following conditions hold:

• Weak convergence: For all s ∈ S , there exists a computation σs that eventually reaches a
state in LS ,

• Closure: ∀s ∈ LS : (P(s, s′) > 0) ⇒ (s′ ∈ LS ). �

Definition 9 (probabilistic-stabilization) A distributed program D = (S , S 0 = S ,P, L, {ls}) is
probabilistic-stabilizing iff the following conditions hold:

• Probabilistic convergence: For all s ∈ S , a computation σs reaches a state in LS with
probability one,

• Closure: ∀s ∈ LS : (P(s, s′) > 0) ⇒ (s′ ∈ LS ). �
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In the sequel, we use the term stabilizing algorithm to refer to either of the three types of sta-
bilization mentioned above. The expected convergence (recovery) time of a stabilizing algorithm
is a key measure of its efficiency [21]. To define this metric, we use the concept of cylinder sets
(Def. 6) and the reachability probability (Eq. 2.2) from Section 2.1.

The first time a computation of a stabilizing program reaches LS (B = LS ) gives us the
recovery time of that computation. More formally,

Definition 10 For a stabilizing program dp (D), the convergence time or recovery time of a
computation σ with an initial fragment s0s1 · · · sn such that s0s1 · · · sn−1 < LS and sn ∈ LS
equals n.

The expected recovery time of a stabilizing program is the expected value of the recovery
time of all states in S .

ERT (dp) =
∑
s∈S

ιinit(s)ert(s). (2.3)

ιinit(s) indicates the probability of starting the program in state s at time 0. If this initial
distribution is unknown, we can consider a uniform distribution ιinit(s) = 1

|S | for all s ∈ S . Given
Def. 10 and Eq. 2.1, the expected recovery time (ERT ) of a stabilizing program M is derived by
the following equation:

ERT (D) =
∑
s0∈S 0

∑
σn∈RB(M)

0≤n<∞

n.ιinit(s0).
∏

0≤i<n

P(si, si+1) (2.4)
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Chapter 3

Synthesizing Self-stabilizing Protocols
under Average Recovery Time Constraints

In this chapter, we formally define two problems of repair and synthesis of weak-stabilizing
programs that meet certain average recovery time bounds. We prove that these problems are
NP-complete in the state-space of the program and propose a polynomial-time heuristic in this
regard.

3.1 Problem Statement

3.1.1 The Repair Problem

Given an existing stabilizing program and a real value ert, a repair algorithm generates another
stabilizing program whose average recovery time is below ert. Moreover, the algorithm is re-
quired to preserve all properties of the input program. The latter can be achieved by allowing
merely removing transitions from the original program. That is, we do not allow for adding
transitions to avoid introducing new behaviors to the program. Since the new transition set of
the repaired program will be a subset of the set of transitions of the input program, the set of
computations in the new program will be a subset of the set of computations of the original one
as well. Hence, any universal property satisfied by the input program (even during convergence)
will be satisfied by the repaired program as well. Formally, the decision problem we study is as
follows:
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Instance. A weak-stabilizing program dp = 〈Πdp,Tdp〉, and a real number ert.

Repair decision problem. Does there exist a weak-stabilizing program dp′ = 〈Πdp,T ′dp〉,
such that:

• T ′dp ⊆ Tdp, where T ′dp , ∅, and

• AvgRT(dp′) ≤ ert.

3.1.2 The Synthesis Problem

A synthesis algorithm takes as input (1) an empty program, (2) the description of its set of le-
gitimate states, and (3) a real value ert and generates as output the transition relation for each
process, such that the average recovery time of the synthesized weak-stabilizing program is be-
low ert.

Instance. An empty program dp = 〈Πdp,Tdp〉, where Tdp = ∅, a state predicate LS, and a
real number ert.

Synthesis decision problem. Does there exist a weak-stabilizing program dp′ =

〈Πdp,T ′dp〉, where T ′dp , ∅, for the set LS of legitimate states, such that:

• AvgRT(dp′) ≤ ert.

In Sections 3.2 and 3.3, we show that the above decision problems are NP-complete in the
size of the state space.

3.2 The Complexity of Repairing Weak-Stabilizing Protocols
with Respect to Average Recovery Time

In this section, we prove that the repair problem as introduced in Subsection 3.1.1 is NP-complete.

3.2.1 Weak-stabilizing Repair

We present a polynomial-time reduction from the 3-Dimensional Matching (3DM) [22] problem
to our repair problem.
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Theorem 1 The repair decision problem in Section 3.1.1 to obtain a weak-stabilizing programs
is NP-complete.

We show that the problem is in NP and it is NP-hard.

Proof of membership to NP
Given a program dp′ = 〈Πdp,T ′dp〉 as a solution, we should verify the following two conditions:

1. It is weak-stabilizing.

2. AvgRT(dp′) ≤ ert

To prove that a program is weak-stabilizing, we should verify weak-convergence and clo-
sure. This verification can be achieved through a simple graph exploration algorithm, such as
BFS. Such an algorithm have polynomial-time complexity in the number of states. Calculation
of expected recovery time, which in essence is reachability analysis in Markov chains (discussed
in Section 2.3) can be solved in polynomial time as well [6].

Proof of NP-hardness

The 3-Dimensional Matching (3DM) problem: Given three disjoint sets X, Y , and Z each of
equal size q, and m a subset of distinct tuples in X × Y × Z of size M, the 3DM problem asks
whether a subset msol ⊆ m of size q exists such that none of the tuples in msol share a coordinate
and msol is a cover for X, Y and Z. In other words,

• ∀(x, y, z), (x′, y′, z′) ∈ msol : (x , x′) ∧ (y , y′) ∧ (z , z′)

• (
⋃

(x,y,z)∈msol
x = X) ∧ (

⋃
(x,y,z)∈msol

y = Y) ∧ (
⋃

(x,y,z)∈msol
z = Z)

We present a polynomial-time mapping from an instance of 3DM to an instance of our repair
problem, a distributed weak-stabilizing program dp = 〈Πdp,Tdp〉, a set of legitimate states LS,
and an upper bound of average recovery time ert. Figure 3.1 shows an example of an instance of
the repair problem obtained from a 3DM instance, where X = {1, 2}, Y = {3, 4}, Z = {5, 6}, and
m = {m1 = (1, 3, 5),m2 = (2, 4, 6),m3 = (1, 4, 5)}, q = 2 and M = 3. In the sequel, we explain
our mapping in detail.

Variables. Vdp = {v1, v2}, where Dv1 = [0,M] and Dv2 = [0, 9q − 1].
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States. The state space of our instance is the set of all valuations of variables, resulting in
9q(M + 1) states. The set of non-legitimate states is the following:

{i0, i1 | i ∈ X ∪ Y ∪ Z} ∪
{imt

0 , jmt
0 , k

mt
0 , i

mt
1 , jmt

1 , k
mt
1 | mt = (i, j, k) ∈ m}

It is easy to see that there are 6q + 6M non-legitimate states: two per each element in X ∪ Y ∪ Z,
and six per each tuple in m. We refer to them as element states and tuple states, respectively.
They can be seen as the 30 white circles in Figure 3.1. The rest of the states are in LS. As shown
in Figure 3.1, we include 3q + 3M states in LS denoted by LS A1 and LS Bmt

0 , where A and B are
integers that distinguish states from each other. State LS ∗ in the figures represents the remaining
9q(M + 1) − 6q − 6M − 3q − 3M = 9M(q − 1) states in LS. In all figures, shaded circles denote
LS states.

Notation 4 In the sequel, set U = X ∪ Y ∪ Z is the universal set. We denote by C(i) the set of
tuples that contain element i ∈ U. For example, in Figure 3.1, we have C(1) = {m1,m3}. By i0/1,
we mean two states {i0, i1}. Likewise, imt

0/1 = {imt
0 , i

mt
1 }. Finally, iC(i)

0 = {imt
0 | (i ∈ U) ∧ (mt ∈ C(i))}

denotes |C(i)| states per element i ∈ U. From now on, we omit ∀i ∈ U unless for emphasis.

Values of v1 and v2 in non-legitimate states are as follows:

• ∀i ∈ U : v1(i0/1) = 0

• ∀mt = (i, j, k) ∈ m, t ∈ [1,M] : v1(imt
0/1) = v1( jmt

0/1) = v1(kmt
0/1) = t

• ∀i ∈ U, t ∈ [0, 3q − 1] : v2(i0) = v2(iC(i)
0 ) = t ∧ v2(i1) = v2(iC(i)

1 ) = 3q + t

Processes. Our mapping includes two processes π1 and π2. The read/write restrictions for each
process are as follows:

Rπ1 = {v1} Wπ1 = {v1}

Rπ2 = {v1, v2} Wπ2 = {v2}

Transition relation. Process π1 has the following transitions: Tπ1 =

outgoing:

G({(imt
0 , i0), ( jmt

0 , j0), (kmt
0 , k0), (imt

1 , i1), ( jmt
1 , j1), (kmt

1 , k1) | mt = (i, j, k) ∈ m}) ∪
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incoming:

G({(i0, i
mt
0 ), ( j0, jmt

0 ), (k0, k
mt
0 ), (i1, i

mt
1 ), ( j1, jmt

1 ), (k1, k
mt
1 ) | mt = (i, j, k) ∈ m}) (3.1)

The valuation of v1 and v2 in non-legitimate states is chosen in a way that the above six outgoing
transitions from the six tuple states belong to the same group. To this end, the six incoming
transitions (reverse direction) will be in the same group (but not in the same group as the outgoing
transitions although the snake and shaded lines are on transitions on both direction).

Process π2 has the following transitions:

Tπ2 = {(imt
0 , LS Amt

0 ), ( jmt
0 , LS Bmt

0 ), (kmt
0 , LS Cmt

0 ) | mt = (i, j, k) ∈ m} ∪ {(i1, LS D1) | i ∈ U}
∪ {(s, s) | s ∈ LS}

Process π2 can read both variables, so none of its transitions form a group.

Average recovery time. In our mapping,

ert =
21(q + M)
9q(M + 1)

.

We now show that the answer to our decision problem is positive, if and only if the answer
to the 3DM instance is affirmative:

(⇒) Given a solution msol ⊆ m to the instance of 3DM, we show how to repair the corre-
sponding weak-stabilizing instance to yield an average recovery time equal to ert. To this end,
for every tuple m∗ not in the solution, we remove the group of six transitions (pay attention to the
subscripts 0/1):

{(i0/1, im∗
0/1), ( j0/1, jm∗

0/1), (k0/1, km∗
0/1) | m∗ = (i, j, k) < msol}

The six transitions above on the reverse direction cannot be removed otherwise a computation
that reaches a state in {im∗

1 , jm∗
1 , k

m∗
1 } will not converge. Since we only remove transitions corre-

sponding to the tuples not in msol, and the solution is a cover for sets X, Y , and Z, every state
i0/1 will have exactly one loop attached to it and |C(i)| − 1 incoming transitions. In our example,
msol = {m1,m2}. Hence, m∗ = {m3}, and six (snake) transitions {(10/1, 1

m3
0/1), (40/1, 4

m3
0/1), (50/1, 5

m3
0/1)}

should be removed from Figure 3.1. In the repaired graph, we will have two types of connected
components. One type can be seen among the states with subscript 0 (see Figure 3.2). It can be
verified that the average recovery time of the top element state i0 is 4 (there are 3q of them in
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Figure 3.1: Weak repair instance mapped from 3DM instance X = {1, 2}, Y = {3, 4}, Z = {5, 6}
and m = {m1 = (1, 3, 5),m2 = (2, 4, 6),m3 = (1, 4, 5)}.

total) and the tuple states imt
0 is 3 (there are 3M of them). The other type can be seen among the

states with subscript 1 (see Figure 3.3). The top state i1’s average recovery time is 3 (there are 3q
of them) and for tuple states below imt

1 is 4 (there are 3M of them). Hence, the average recovery
time of the whole system is:

3q × 4 + 3M × 3 + 3q × 3 + 3M × 4
9q(M + 1)

=
21(q + M)
9q(M + 1)

which is exactly equal to the bound ert. Finally, closure of LS is ensured by the self-loops.

(⇐) Now, we show that if we have a solution for the weak-stabilizing repair instance, we
can find a solution for the corresponding 3DM instance. The bound above, ert, is in fact the
minimum average recovery time. The obvious way to reduce the average recovery time of our
instance is to eliminate loops. Observe that transitions (imt

0 , i0) cannot be removed because they
are the only way that states imt

1 could converge to LS. On the other hand, for states i0 to converge,
they should have at least one outgoing transition. Particularly, those states must have at least one
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i0

im1
0 im2

0 im|C(i)|
0

LS Am1
0 LS Bm2

0 LS Cm|C(i)|
0

...

...

Figure 3.2: Connected blocks with subscript 0.

i1

im1
1 im2

1 im|C(i)|
1

LS A1

...

Figure 3.3: Connected blocks with subscript 1.

loop attached to them. Hence, the minimum recovery time is achieved when they have exactly
one loop attached to them. As a result, the solution to the 3DM instance is the set of tuples mt for
which transitions (i0, i

mt
0 ), ( j0, jmt

0 ), (k0, k
mt
0 ) exist (have a loop attached to them). For example,

in Figure 3.1, (1m3
0/1, 10/1), (4m3

0/1, 40/1), (5m3
0/1, 50/1) are the only transitions that can be removed

without violating convergence, correctly suggesting that msol = {m1,m2} is the solution to the
3DM instance.

Note that the outgoing/incoming transitions of the six states presenting a tuple are in the same
group, so they are either removed together or kept together. In other words, all three coordinates
of a tuple are simultaneously eliminated or selected implying that the loops remaining in the
program correctly represent the tuples of a solution.

3.3 The Complexity of Synthesizing Weak-Stabilizing Proto-
cols with Certain Average Recovery Time

In this section, we prove that the synthesis problem defined in Subsection 3.1.2 is NP-complete.
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Theorem 2 The problem of synthesizing a weak stabilizing program with a constrained average
recovery time is NP-complete.

Observe that synthesizing a weak-stabilizing program from scratch for a given set LS of legit-
imate states is equivalent to repairing a weak-stabilizing program with LS whose set of transitions
is maximal. That is, the set of transitions includes all possible transitions (and their groups) ex-
cept for the ones that violate the closure of LS.

Definition 11 A weak-stabilizing program dp = 〈Πdp,Tdp〉 is maximal in an asynchronous set-
ting if

Tdp = {(s, s′) | ∀s, s′ ∈ S s.t. s and s′ differ in one variableonly} − {G(s, s′) | s ∈ LS ∧ s′ < LS}

Before we present the proof, we note that the mapping presented in proof of Theorem 1
cannot be applied to the synthesis case, as the mapped program is not maximal. For example,
it lacks transition (10, 2

m2
0 ) where neither itself nor its group transitions violate closure. Thus, in

order to make our mapped instance a maximal program, we must find a way to cause at least one
of the transitions in G((10, 2

m2
0 )) violate closure. One way to defeat this problem is to add the

source state (10) to LS and leave the destination state 2m2
0 in non-legitimate states. However, that

will cause transitions (10, 1
m1
0 ), (10, 1

m3
0 ) to be removed which is not desirable. The other solution

is to create group transition(s) for only (10, 2
m2
0 ) that violate closure. We demonstrate through an

example how one can eliminate some transitions appearing in a (possibly maximal) program by
adding variables and processes (and inevitably transitions of the new process) to the system.

Consider a system consisting of a single process π1, where Rπ1 = Wπ1 = v1 with domain
Dv1 = [0, 2] and LS = {〈0〉}. Each 〈〉 denotes a state. the corresponding maximal program dpmax

contains 4 transitions:

Tπ1,max = {(〈1〉, 〈0〉), (〈2〉, 〈0〉), (〈1〉, 〈2〉), (〈2〉, 〈1〉)}

We examine a situation in which we require a maximal program where (〈1〉, 〈2〉) < Tπ1,max.
In a system with the above specification, (〈1〉, 〈2〉) cannot be avoided in the maximal program
since it does not violate closure and it has no group transitions to do so. For this purpose, we
add v2 with Dv2 = [0, 1] to the system such that v2 < Rπ1 . Since our model does not permit
blind write, v2 < Wπ1 is also true. As a result, π2 is introduced (Rπ2 = Wπ2 = {v2}). The new
state space will consist of 6 states. Furthermore, transitions (〈1, 0〉, 〈2, 0〉) and (〈1, 1〉, 〈2, 1〉) of
π1 will belong to the same group. The first and second integers in 〈, 〉 denote values of v1 and
v2 respectively. If we choose LS = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉 ∈ LS}, transition (〈1, 1〉, 〈2, 1〉) of π1 will
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violate closure. Consequently, both transitions (〈1, 0〉, 〈2, 0〉), (〈1, 1〉, 〈2, 1〉) cannot exist in the
corresponding maximal program dp′max. The transition relation of π1 and π2 in the new maximal
program are as follows:

T ′π1,max = {(〈1, 0〉, 〈0, 0〉), (〈2, 0〉, 〈1, 0〉), (〈2, 0〉, 〈0, 0〉),
(〈1, 1〉, 〈0, 1〉), (〈2, 1〉, 〈1, 1〉), (〈2, 1〉, 〈0, 1〉)}

T ′π2,max = {(〈0, 0〉, 〈0, 1〉), (〈1, 0〉, 〈1, 1〉), (〈2, 0〉, 〈2, 1〉)}.

Note that it is not always possible to create groups that violate closure for a specific transition
without affecting other transitions (whether they belong to the same process or not). The main
challenge of this work was to find a maximal program with a substructure similar to Figure 3.1.

Proof of membership to NP is identical to that of Theorem 1.

Proof of NP-hardness. To prove that synthesis is NP-hard, we provide a mapping from 3DM to
a maximal weak-stabilizing program. We present a polynomial-time mapping from an instance
of 3DM to an instance of the synthesis problem, a distributed maximal weak-stabilizing program
dp = 〈Πdp,Tdp〉, legitimate state set LS, and

ert =
(18M + 30)q2 + (21M + 11)q + 4M

36(M + 1)q2 + 12(M + 1)q
.

Variables. Vdp = {v1, v2, v3, v4}, where, Dv1 = [0,M], Dv2 = [0, 9q − 1], Dv3 = [0, 6q + 1], and
Dv4 = [0, 1].

States. The state space of our instance is the set of all valuations of variables, resulting in
108(M + 1)q2 + 36(M + 1)q states which is polynomial in the size of the 3DM instance.

Processes. We declare 4 processes π1, · · · , π4, with the following read/write restrictions:

Rπ1 = {v1, v4},Wπ1 = {v1}

Rπ2 = {v1, v2},Wπ2 = {v2}

Rπ3 = {v1, v2, v3},Wπ3 = {v3}

Rπ4 = {v1, v4},Wπ4 = {v4}

Starting from V = {v1, v2}, Π = {π1, π2} with specifications defined above, we illustrate
how to design a distributed system whose maximal weak-stabilizing program has a substructure
resembling Figure 3.1.
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First, we determine LS and transition relations of π1, π2. Similar to Figure 3.1, we have
6q+6M non-legitimate states. All other states are in LS. The valuation of v1, v2 in non-legitimate
states and the transition relation Tπ1 (Equation 3.1) also remain the same. We modify Tπ2 to
contain transitions only among the states in LS ∗:

Tπ2 = {(s, s′) | s, s′ ∈ LS∗, s, s′differ only in value of v2}

For now, it appears that the non-legitimate states do not converge (See Figure 3.4). As we will
discuss shortly, this problem is solved by including variable v3 and process π3 to the system.
Figure 3.4 cannot represent a maximal program since there are many transitions that can exist
without violating closure, e.g., (10, 20). To construct a maximal program with the desired struc-
ture, we need to group the missing transitions with some other transitions that violate closure.

Including v3, π3 (gadgetv3): Variable v3 and process π3 are incorporated in our mapping to
preserve two-way transitions (loops) between every two state in {i0/1, i

C(i)
0/1 } and eliminate all other

transitions to/from them.

We group the undesirable transitions of π1 and π2 with transitions that violate closure. To do
so, we append ∀v ∈ [0, 6q+1], v3 = v to all states in the state space of {v1, v2} and call it gadgetv.
The transitions in each gadget form a group with the corresponding transitions of every other
gadget because π1 and π2 cannot read v3. We add a second subscript v to the label of every state
in gadgetv when referring to them. In every gadget v ∈ [1, 3q], in addition to LS∗, we will have
the following states in LS: i0,v, iC(i)

0,v . Similarly, ∀v ∈ [3q + 1, 6q] we have additional states i1,v, iC(i)
1,v

in LS (see Figure 3.5). From this point forward, we add LS to their superscripts for clarity.

Notice that the reason the mapping in the proof of weak repair works is that states i0 and
imt
1 are not directly connected to LS. To prevent transitions of form (i0,LS) and (imt

1 ,LS) for π1

or π2, we flip the non-legitimate and LS states of gadget0, in gadget6q+1 (see Figure 3.6). In
Figure 3.6, state LS

∗

V,0 represents a graph with 9qM − 3q − 6M non-legitimate states with all
possible transitions of π1 and π2.

The problem that arises by adding v3 and π3 to the system is that inter-gadget transitions of π3

will cause states i0,0 and imt
1,0 to connect directly to LS states of other gadgets (iLS

0,v and iLS
0,v, v , 0,

respectively). To eliminate these transitions, we need to add another variable and process.

Including v4, π4 (Gadgetv4): Let Gadget0 and Gadget1 be all the 9q(6q + 2)(M + 1) states that
we had so far in the mapped program appended with v4 = 0 and v4 = 1, respectively. A third
subscript in a state’s label shows the value of v4 in that state (equivalently, which Gadget it
belongs to).
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LS ∗0,0

10,0,0

20,0,0

30,0,0

40,0,0

50,0,0

60,0,0

1m1
0,0,0

3m1
0,0,0

5m1
0,0,0

2m2
0,0,0

4m2
0,0,0

6m2
0,0,0

1m3
0,0,0

4m3
0,0,0

5m3
0,0,0

11,0,0

21,0,0

31,0,0

41,0,0

51,0,0

61,0,0

1m1
1,0,0

3m1
1,0,0

5m1
1,0,0

2m2
1,0,0

4m2
1,0,0

6m2
1,0,0

1m3
1,0,0

4m3
1,0,0

5m3
1,0,0

Figure 3.4: v3 = v4 = 0 in gadget0 ∈

Gadget0.

LS ∗v,0

10,v,0

20,v,0

30,v,0

40,v,0

50,v,0

60,v,0

1m1
0,v,0

3m1
0,v,0

5m1
0,v,0

2m2
0,v,0

4m2
0,v,0

6m2
0,v,0

1m3
0,v,0

4m3
0,v,0

5m3
0,v,0

11,v,0

21,v,0

31,v,0

41,v,0

51,v,0

61,v,0

1m1
1,v,0

3m1
1,v,0

5m1
1,v,0

2m2
1,v,0

4m2
1,v,0

6m2
1,v,0

1m3
1,v,0

4m3
1,v,0

5m3
1,v,0

Figure 3.5: v3 ∈ [1, 6q], v4 = 0 in gadgetv ∈

Gadget0.

In Gadget0, everything remains the same, as described before. However, in Gadget1, states
iLS
0,0,1 and imt ,LS

1,0,1 are the only states in LS (see Figure 3.7). All other gadgets gadgetv, v ∈ [1, 6q+1]
in Gadget1 have the same structure as in Figure 3.7 except that they have no LS states. Observe
that there are only one-way transitions of π1 from non-LS to LS states. This will not affect
gadgets in Gadget0 where v4 = 0 because π1 can read v4 which is 1 in Gadget1. Transitions
(i0,0,1, iLS

0,v,1), v ∈ [1, 3q] and (imt
1,0,1, i

mt ,LS
1,v,1 ), v ∈ [3q + 1, 6q] of π3 in Gadget1 violate closure, so do

their corresponding transitions in Gadget0 (in the same group). This implies that the only way for
states i0,0,0 and imt

1,0,0 to directly connect to LS is through transitions (i0,0,0, iLS
0,0,1) and (imt

1,0,0, i
mt ,LS
1,0,1 )

of π4. That is not possible since their group transitions (iLS
0,v,0, i0,v,1) and (imt ,LS

1,v,0 , i1,v,1), (v ∈ [1, 6q])
violate closure.

Note that π1 should be able to read v4, otherwise the transitions of π1 in Gadget0 will in-
evitably be eliminated due to violation of closure by their group transitions (iLS

0,0,1, i
C(i)
0,0,1) and

(imt ,LS
1,0,1 , i1,0,1) in Gadget1.
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LS
∗

V,0

10,V,0

20,V,0

30,V,0

40,V,0

50,V,0

60,V,0

1m1
0,V,0

3m1
0,V,0

5m1
0,V,0

2m2
0,V,0

4m2
0,V,0

6m2
0,V,0

1m3
0,V,0

4m3
0,V,0

5m3
0,V,0

11,V,0

21,V,0

31,V,0

41,V,0

51,V,0

61,V,0

1m1
1,V,0

3m1
1,V,0

5m1
1,V,0

2m2
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4m2
1,V,0

6m2
1,V,0

1m3
1,V,0

4m3
1,V,0

5m3
1,V,0

Figure 3.6: V = v3 = 6q + 1, v4 = 0 in
gadget6q+1 ∈ Gadget0.
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3m1
0,0,1

5m1
0,0,1

2m2
0,0,1

4m2
0,0,1

6m2
0,0,1

1m3
0,0,1

4m3
0,0,1

5m3
0,0,1

11,0,1

21,0,1

31,0,1

41,0,1

51,0,1

61,0,1

1m1
1,0,1

3m1
1,0,1

5m1
1,0,1

2m2
1,0,1

4m2
1,0,1

6m2
1,0,1

1m3
1,0,1

4m3
1,0,1

5m3
1,0,1

Figure 3.7: = v3 = 0, v4 = 1 in gadget0 ∈

Gadget1.

Legitimate States. The list of states in LS are summarized below with the number of them in
brackets:

{LS∗v,0 | v ∈ [0, 6q]} [(9Mq + 3q

-6M)(6q + 1)]

{iLS
0/1,6q+1,0 | i ∈ U, mt ∈ m} [6q + 6M]

{iLS
0,v,0, iC(i),LS

0,v,0 | i ∈ U, v ∈ [1, 3q]} [3q + 3M]

{iLS
1,v,0, iC(i),LS

1,v,0 | i ∈ U, v ∈ [3q + 1, 6q]} [3q + 3M]

{iLS
0,0,1, iC(i),LS

1,0,1 | i ∈ U} [3q + 3M]
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We now have to show that our mapped instance has a solution if and only if there is a solution
to the 3DM problem. To this end, note that gadget0 of Gadget0 has the same structure as the weak
repair instance in Figure 3.1. Thus, all arguments in the proof of weak repair apply here. Hence,
it will suffice to show how to compute the new bound ert. The bound is obtained by repairing
the maximal program, i. e. removing as many loops as possible. All loops are removable
except for at least one between tuple states and element states as mentioned in the proof of
weak repair. Therefore, gadget0 of Gadget0 has 3q + 3M states with average recovery time
equal to 4 and the same number with average recovery time of 3. All other states (total of
18q(6q + 2)(M + 1) − 9q(M + 1)) in other gadgets are either in LS for which average recovery
time is 0, or are directly connected to LS (by breaking the loops their average recovery time is
1). The sum of expected recovery times of states will add up to:

[(90 + 54M)q2 + (63M + 12)q + 12M] × 1+

(3q + 3M) × 3 + (3q + 3M) × 4

= (54M + 90)q2 + (63M + 33)q + 12M

Finally, the average recovery time of the repaired maximal program that determines the bound
ert is:

ert =
(18M + 30)q2 + (21M + 11)q + 4M

36(M + 1)q2 + 12(M + 1)q

3.4 Polynomial-time Heuristic and Case Studies

Following our NP-completeness results, in this section, we present a polynomial-time heuristic
that can be employed both for synthesis and repair.

3.4.1 The Heuristic

We take into account two factors that contribute to average recovery time: (1) existence of loops
in the transition system, and (2) the position of loops with regard to LS states. In general, loops
increase the average recovery time of its successors. Thus, it is beneficial to decrease average
recovery time of states closer to LS that more states depend on them. Due to grouping of transi-
tions, loops may not be avoidable. Our strategy is to eliminate as many loops as possible in near
proximity of LS.

Algorithm 2 takes as input a stabilizing program dp, and a set LS of legitimate states. In the
case of synthesis, dp must be maximal. Algorithm 2 works as follows. We consider Diam + 1
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classes of states, where Diam is the diameter of the underlying graph of dp. States are assigned
to a class based on their shortest path distance to LS states. If a state s has distinct shortest path
distances to different states in LS, it will be assigned to several classes accordingly. Classification
can be done by performing BFS several times, each time starting from a state in LS. After
classification, we keep a Boolean value for every edge that shows whether it has been visited
before or not. Initially, this value is false for all edges. Starting from class 1, first, we store
transitions in a priority queue based on how much average recovery time will decrease if that
transition and its group are deleted. Then, we remove only transitions (and their group) of form
(s, t), where s ∈ d[i], t < LS, and t < d[i − 1], that have not been visited before. Every time a
group of transitions are removed, we check if convergence is violated. If so, we put them back
and mark that group as visited. We repeat this step for all classes up to d[Diam]. Condition
t < d[i − 1] tends to keep a shorter path and lets longer paths to be removed.

Algorithm 2 Synthesis/Repair Heuristic
1: Input: dp, LS
2: d[0..Diam(dp)]← BFS(dp,LS)
3: for i = 1 to Diam(dp) do
4: pq← PriorityQueue({(s, t) | s ∈ d[i], (s, t) ∈ Td p}) . Keep transitions based on effect on avg recovery

time in priority queue.
5: while ¬pq.empty do
6: edge← pq.get() . edge[0]=s, edge[1]=t
7: if edge[1] < LS ∧ ¬Visited(edge) ∧ edge[1] < d[i − 1] then
8: DeleteTransitionGroup(dp, edge)
9: if ¬Converge(dp) then

10: InsertTransitionGroup(dp, edge)
11: VisitedTransitionGroup(edge)
12: end if
13: end if
14: end while
15: end for

The total running time of our algorithm is O(n(n + m) + 2m + gn(n + m) + gn2.3) contributed
by classification, visiting edges and calculation of average recovery time. In the worst case
g = O(m), while in an asynchronous setting m = O(nlogn). To conclude, Algorithm 2 has
running time O(n3log2n + n3.3logn).

One might think keeping transitions in a priority queue considerably improves average recov-
ery time. Although there are cases for which the above statement is true, in our case studies we
saw only negligible impact (even in cases detrimental) with evident average recovery time cal-
culation overhead. The results in tables 3.1, 3.2, and 3.3 come from an implementation without
a priority queue.

28



P Algorithm 2 Gradinariu et al [28] Synthesis
2 0.89 1 9 (ms)

3 1.62 1.85 40 (ms)

4 2.01 2.21 0.5 (s)

5 2.87 2.82 5 (s)

6 4.06 3.34 97 (s)

7 3.89 3.88 26 (m)

Table 3.1: Vertex Coloring (line)

P Algorithm 2 Adamek et al [1] Synthesis
3 0.25 0.56 20 (ms)

4 0.5 0.5 273 (ms)

5 0.69 0.36 2 (s)

6 1.13 0.23 19 (s)

7 1.44 0.14 182 (s)

Table 3.2: Dining Philosophers (tree)

P Algorithm 2 Devismes et al [12] Synthesis
3 0.25 0.25 10 (ms)

4 2.02 2.63 2 (s)

5 1.49 1.49 0.2 (s)

6 7.99 9.05 24 (hr)

7 3.64 3.64 11 (s)

Table 3.3: Token circulation (ring)

3.4.2 Case Studies and Experimental Results

We ran Algorithm 2 on three problems: vertex coloring, token circulation in rings and dining
philosophers. We used a system with 8GB RAM and Intel Core i5 2.60GHz CPU for our experi-
ments. A brute-force approach for determining optimum average recovery time for our instances
was not feasible on the system used in our experiments. We compared our results with average
recovery time of existing stabilizing algorithms for the three problems in the literature using the
technique in [21]. In all case studies, we used exactly the same setting (processes, read/write
restrictions, variables, variable domains and LS) as described in the existing algorithms. In most
cases, the output of our heuristic provides lower average recovery time. For each case study, we
present an example of a program that our algorithm synthesizes.
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Case Study 1: Vertex Coloring

The vertex coloring problem asks for a coloring of vertexes from a set of given colors such that
no to adjacent vertices have identical colors. We compare our results with the deterministic
weak-stabilizing algorithm of [28] (see Table 3.1) for the line topology, where P is the number
of processes. As can be seen, in half cases, the program synthesized by Algorithm 2 outperforms
the algorithm proposed in [28], as far as the average recovery time is concerned. The synthesized
program for a line graph of size 3 is as follows:

Dvi = [0, 2], i = 1, 2, 3, LS = {〈1, 2, 1〉, 〈2, 1, 2〉}
Wπ1 = {v1}, Rπ1 = {v1, v2}

Wπ2 = {v2}, Rπ2 = {v1, v2, v3}

Wπ3 = {v3}, Rπ3 = {v2, v3}

Tπ1 = {(〈0, 1〉, 〈2, 1〉), (〈0, 2〉, 〈1, 2〉), (〈2, 2〉, 〈1, 2〉), (〈1, 1〉, 〈2, 1〉), (〈0, 0〉, 〈1, 0〉), (〈0, 0〉, 〈2, 0〉)}

Tπ2 = {(〈0, 0〉, 〈0, 1〉), (〈1, 0〉, 〈1, 2〉), (〈1, 1〉, 〈1, 2〉), (〈2, 2〉, 〈2, 1〉), (〈0, 0〉, 〈0, 2〉), (〈2, 0〉, 〈2, 1〉)}

Case Study 2: Dining Philosophers

The dining philosophers is a classic problem in concurrent algorithms design that deals with syn-
chronization. A solution to this problem must guarantee two conditions: (1) neighbor processes
should not enter their critical sections simultaneously (in the same state), and (2) each process
that requests to enter its critical section must eventually be allowed to do so.

We compared our results to the stabilizing dining philosophers of Adamek et al. [1] (see
Table 3.2). We considered tree structures with height 1 in our experiments. Our results show that
Adamek’s algorithm has lower average recovery time for trees with degree higher than 3.

Dvi = [0, 1], i = 1, 2, 3
LS = {〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}
Wπ1 = {v1}, Rπ1 = {v1, v2, v3}

Wπ2 = {v2}, Rπ2 = {v1, v2}

Wπ3 = {v3}, Rπ3 = {v1, v3}
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Tπ1 ={(〈1, 0, 1〉, 〈0, 0, 1〉), (〈0, 0, 1〉, 〈1, 0, 1〉), (〈0, 1, 0〉,
〈1, 1, 0〉), (〈0, 1, 1〉, 〈1, 1, 1〉), (〈1, 1, 0〉, 〈0, 1, 0〉),
(〈1, 0, 0〉, 〈0, 0, 0〉)}

Tπ2 ={(〈1, 1, 1〉, 〈1, 0, 1〉), (〈0, 1, 1〉, 〈0, 0, 1〉), (〈1, 0, 0〉,
〈1, 1, 0〉), (〈0, 0, 0〉, 〈0, 1, 0〉), (〈0, 1, 0〉, 〈0, 0, 0〉),
(〈1, 0, 1〉, 〈1, 1, 1〉)}

Tπ3 ={(〈1, 1, 1〉, 〈1, 1, 0〉), (〈0, 1, 1〉, 〈0, 1, 0〉), (〈1, 1, 0〉,
〈1, 1, 1〉), (〈0, 0, 1〉, 〈0, 0, 0〉), (〈0, 0, 0〉, 〈0, 0, 1〉),
(〈1, 0, 0〉, 〈1, 0, 1〉)}

Case Study 3: Token circulation in anonymous networks

Our last case study is the famous token circulation problem which ensures that only one process
holds the token and each process holds the token infinitely often. Table 3.3 compares the average
recovery time of our synthesized solutions to that of the algorithm in [12], where P is the number
of processes. As can be seen, in most cases, the synthesized program has the same average
recovery time as the algorithm proposed in [12]. We note that since the second condition requires
the existence of a cycle in LS, we slightly modified Algorithm 2 to preserve a cycle in LS.

Table 3.3 shows a trend that for rings with odd length, Algorithm 2 and [12] have the same
average recovery time. This is because they both generate the maximal program. Algorithm 2
could not remove any group of transitions due to violation of convergence suggesting that the
maximal program is the only stabilizing program.

Algorithm 2 synthesizes a strong-stabilizing program for a ring consisting of 4 processes
which means the program can be used on non-anonymous networks [12]. It was not feasible to
analyze the output for even-length networks of size 6 and higher due to very long execution time.

Dvi = [0, 1], i = 1, 2, 3
LS = {〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}
Wπ1 = {v1}, Rπ1 = {v1, v2, v3}

Wπ2 = {v2}, Rπ2 = {v1, v2}

Wπ3 = {v3}, Rπ3 = {v1, v3}
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Tπ1 = {(〈0, 0, 0〉, 〈1, 0, 0〉), (〈1, 0, 1〉, 〈0, 0, 1〉), (〈1, 1, 1〉, 〈0, 1, 1〉), (〈0, 1, 0〉, 〈1, 1, 0〉)}

Tπ2 = {(〈1, 1, 1〉, 〈1, 0, 1〉), (〈0, 0, 0〉, 〈0, 1, 0〉), (〈1, 1, 0〉, 〈1, 0, 0〉), (〈0, 0, 1〉, 〈0, 1, 1〉)}

Tπ2 = {(〈0, 1, 1〉, 〈0, 1, 0〉), (〈0, 0, 0〉, 〈0, 0, 1〉), (〈1, 1, 1〉, 〈1, 1, 0〉), (〈1, 0, 0〉, 〈1, 0, 1〉)}
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Chapter 4

Automated Fine Tuning of Probabilistic
Self-Stabilizing Algorithms

In this chapter, we study fine tuning of probabilistic-stabilizing programs. The fine tuning prob-
lem assigns probability distributions to transition executions such that the average recovery time
of the program is minimized. In this chapter, first we formally define the fine tuning problem.
Then, We show how stabilizing programs can be modelled by absorbing DTMCs. We use the
mapping to reduce the calculation of average recovery time to computing the weighted sum of
elements in the inverse sub-matrix of the transition probability matrix to generate a symbolic
expression. We find the real roots of this expression using existing methods and tools to find the
optimum probability values.

4.1 Fine Tuning of Probabilistic Models

Our tuning problem takes as input the parametric DTMC of a probabilistic-stabilizing distributed
program PD and outputs a valid evaluation function that minimizes the expected recovery time
of PD.
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Instance. A probabilistic-stabilizing program modeled by a parametric DTMC
PD = (S , S 0 = S ,U, ιinit,P, {LS}).

Fine tuning problem. An evaluation function evalmin : U → R that is valid for PD and
minimizes its expected recovery time. That is,

evalmin = argmin
eval

ERT (PD)

4.2 Calculating the Expected Recovery Time of Stabilizing
Programs

We use the theory of Absorbing Discrete-Time Markov Chains to reduce the computation of
expected recovery time of stabilizing programs to matrix inversion. In this section, we first
define absorbing DTMCs. Next, we present a mapping from stabilizing programs to absorbing
DTMCs such that the expected absorption time of transient states in the absorbing DTMC is
equivalent to the expected recovery time of the stabilizing program.

4.2.1 Absorbing Discrete-Time Markov Chains

A DTMC should have two properties, which we call absorption and reachability, to be consid-
ered absorbing.

Definition 12 (Absorbing DTMC) A DTMCD = (S , S 0, ιinit,P, L) is absorbing iff

• Absorption: It contains at least one absorbing state from where there exists one and only
one self-loop:

∃s ∈ S : (P(s, s) = 1 ∧ ∀s′ , s : P(s, s′) = 0)

• Reachability: All non-absorbing (transient) states can reach at least one absorbing state. �

We denote the set of absorbing states of an absorbing DTMC by A. Note that transient states
are not required to be in the set of initial states S 0. The reachability condition requires for each
transient state s the existence of a computation that once arrives in s at time i (si = s for i ≥ 0),
it should be able to reach an absorbing state at time j > i (s j ∈ A).
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Definition 13 (Absorption Time) The absorption time of a state s ∈ S in a computation σ =

s0s1 · · · starting from s is:

T (σs) = min{i | s0 = s, 0 ≤ k < i, sk < A, si ∈ A}

We consider T (σs) = ∞ for computations that never reach an absorbing state. �

Since there can be more than one computation starting from s that reaches absorbing states,
each with a distinct absorption time, the absorption time of a state is a discrete random variable
and we can calculate its expected value. To do so, we use the canonical representation of the
transition probability matrix of the absorbing DTMC. The canonical form of representing an
absorbing Markov chain with t transient and r absorbing states is as follows [30]:

P =

Qt×t Rt×r

0r×t Ir×r

 , (4.1)

where Q is a t× t sub-matrix of one-step transition probability among transient states, R is a t× r
sub-matrix of one-step transition probability from transient states to absorbing states, 0 is a r × t
zero sub-matrix and I is a r × r identity matrix. The expected absorption time of the transient
states of an absorbing DTMC can be computed as follows [30]:

N =
( ∞∑

i=0

Qi
)
ẽ = (I − Q)−1ẽ, (4.2)

where ẽ is a column vector of size t filled with ones, N is a column vector of size t such that N(i)
is the expected absorption time of the ith transient state.

4.2.2 Stabilizing Programs as Absorbing DTMCs

We exploit the two fundamental properties of stabilizing programs, convergence and closure, to
model every stabilizing program (modelled by a DTMCD) with an absorbing DTMC (D∗). This
mapping helps us employ Eq. 4.2 to compute the expected recovery time of stabilizing programs.

Closure =⇒ Absorption: The closure property of stabilizing programs states that once a
program reaches a legitimate state, it is trapped in legitimate states. Hence, we can assume each
legitimate state is an absorbing state. We will justify this assumption shortly.
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Convergence =⇒ Reachability: All types of convergence ensure that every non-legitimate
state has at least one path to a legitimate state (now absorbing), which satisfies the reachability
property of transient states of absorbing DTMCs in Def. 12.

The transition probability matrix of a stabilizing program with t non-legitimate and r legiti-
mate states can be divided into 4 sub-matrices as follows if written in the proper order:

P =

¬LS LS


¬

LS
Qt×t Rt×r

LS 0r×t Cr×r

,

where Q, R, 0, and C are the one-step transition probability among ¬LS − ¬LS, ¬LS − LS ,
LS − ¬LS and LS − LS states, respectively. The closure property ensures that the transition
probability from LS states to non-LS states is zero leaving the lower left quarter of P all zeros.
Converting legitimate states to absorbing ones will modify P as follows:

P∗ =

¬LS LS



¬
LS

Qt×t Rt×r

LS 0r×t Ir×r

,

where, Ir×r is the identity matrix. Observe that P∗ is in the form of an absorbing DTMC (Eq. 4.1).
It is now easy to draw a connection between the absorption time of transient states inD∗ and the
recovery time of states in ¬LS inD. As a matter of fact, they are equivalent (the absorption time
of a transient state is the first time it reaches an absorbing state, just as the recovery time of a
non-legitimate state is the first time it reaches a legitimate state). Hence, we use Eq. 4.2, Eq. 2.3,
and the fact that legitimate states have zero recovery time to calculate the expected recovery time
of a stabilizing program as follows:

ERT (D∗) = ~init(I − Q)−1ẽ, (4.3)

36



π0 π1

00 01

10 11

p
2

p
2

1 − p 1

1

p
2

p
2

1 − p

Figure 4.1: The DTMC of the vertex coloring Algorithm 1 (right) run on a graph with two
vertices (left).

where, ~init is a 1 × t row vector containing ιinit(s) for each s < LS .

Recall from Eq. 4.2 that (I − Q)−1ẽ produces a t × 1 column vector N of expected recovery
times of non-LS states. Thus, the dot product of ~init with N gives Eq. 2.3. For example, the
average recovery time of the program of Figure 4.1 is derived as follows:

ERT (D) =

[
1
4

1
4

]
.

p 0

0 p


−1

.

11
 =

1
2p
.

Discussion We modeled stabilizing programs with absorbing DTMCs to use the fundamental
matrix (Eq. 4.2) to calculate the expected recovery time. Calculating the sum of powers of a
matrix, especially for large powers, is computationally expensive. Eq. 4.2 becomes particularly
more interesting in our case because it reduces calculating the sum of powers of a matrix to
calculating the weighted sum of the elements of the inverse matrix. The latter does not involve
finding the inverse itself explicitly and takes less computational time. We elaborate on the com-
putation of weighted sum of elements of inverse matrix in Sec. 4.2.3. The similarity, however,
implies that as far as absorption time of transient states (equivalently, recovery time of non-LS
states) are concerned, we can represent the stabilizing program with P∗ instead of P.
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4.2.3 A Symbolic Linear Algebraic Technique for Computing Recovery
Time

In this section we explain how we compute ERT (D∗) = ~init(I − Q)−1ẽ as defined in Eq. 4.3.
Observe that ERT (D∗) is the weighted sum of the elements of (I−Q)−1. The dot product (I−Q)−1ẽ
produces a column vector N whose elements are the sum of the elements in each row of (I−Q)−1.
Computing the dot product of ~init with N gives the weighted sum of the elements of N, which
by linearity of addition is equal to the weighted sum of elements of (I − Q)−1. In the sequel, we
describe the techniques we used from the literature of symbolic computation.

We begin by estimating the size of the symbolic expression ~init(I −Q)−1ẽ, a rational function
in the variable p. The matrix Q is filled with integer polynomials in the variable p. Let n be the
dimension of Q, let d be the degree of Q (i.e., the maximal degree in p of all entries of Q), and let
α be an upper bound for the number of bits in the binary representation of any integer coefficient
of any entry of Q. The total size of (number of bits to represent) Q is then bounded by n2(d +1)α.
Now consider (I − Q)−1. By Cramer’s rule, each entry (I − Q)−1

i, j is equal to ±Bi, j/ det(I − Q),
where Bi, j is a minor of I −Q of dimension n− 1 and det(I −Q) is the determinant of I −Q. The
degrees of Bi, j and det(I − Q) are thus bounded by (n − 1)d and nd respectively, so on the order
of n times larger than the degree of Q. Moreover, the integer coefficients of Bi, j and det(I − Q)
are bounded in length by O(n(α + log n + log d)) bits [24], so on the order of roughly a factor of
n larger than the length of the integer coefficients in Q. This analysis shows that we can expect
the size of the single rational function ~init(I −Q)−1ẽ to be about the same as the size of the entire
input matrix Q, and the size of the entire inverse (I−Q)−1 will be on the order of n2 times the size
of Q. Because of the growth in degrees and bitlengths, computing the entire inverse (I − Q)−1

explicitly, let alone storing it in memory, would become prohibitively expensive as n grows.

Fortunately, we can avoid the computation of (I −Q)−1 entirely by exploiting a simple homo-
morphic imaging scheme. We choose a collection X = (xi)0≤i≤nd+(n−1)d of distinct integer points
that are not roots of det(I − Q), and compute the rational numbers

Y =
(
( ~init(I − Q)−1ẽ) |p=xi

)
0≤i≤nd+(n−1)d

.

Fast polynomial interpolation [23, Section 10.2] and rational function reconstruction [23, Sec-
tion 5.7] can recover ~init(I − Q)−1ẽ from the list of independent and dependent values X and Y,
respectively. By far the dominant cost of this scheme is to compute the evaluations Y. To this
end, note that

( ~init(I − Q)−1ẽ) |p=xi=
~init((I − Q) |p=xi)

−1ẽ,

that is, we can first evaluate I −Q at the point p = xi to obtain an integer matrix A = (I −Q) |p=xi ,
then solve the nonsingular rational system Av = ẽ for v, and finally compute the dot prod-
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uct ~init v. In our implementation we solved the systems Av = ẽ using the Integer Matrix Li-
brary (IML) [10], a highly optimized C library for integer matrix computations. The evaluations
(I−Q) |p=xi and the reconstruction of the rational function ~init(I−Q)−1ẽ from X andY were per-
formed using the Maple computer algebra system (http://www.maplesoft.com). We were
able to call IML directly from Maple using Maple’s DefineExternal facility to link to the
library.

Once ERT (D∗) has been computed, the values of p in the interval [0, 1] that minimize the
expected recovery time must be a subset of the set of real roots of the derivative of the numerator
of ERT (D∗). These roots can be found using Maple’s realroots or RootFinding[Isolate]
procedures.

4.3 Experiments and Analysis

We use Eq. 4.3 to find the optimum probability value for two probabilistic-stabilizing algo-
rithms: (1) Herman’s token circulation in synchronous anonymous rings, and (2) Gradinariu
and Tixeuil’s vertex coloring of arbitrary graphs.

4.3.1 Vertex Coloring of Arbitrary Graphs

Algorithm 1 is a probabilistic-stabilizing vertex coloring algorithm designed for arbitrary graphs.
The challenge is to find the optimum value of p that minimizes the expected recovery time. A
higher value of p increases recovery time by reducing the possibility of making progress, while
it decreases recovery time by reducing the probability of simultaneous execution of two enabled
neighbors. Our experiments for line and ring structures of size up to 6 showed that the expected
recovery time is of form

c1

c2 p
,

where c1, c2 ∈ N. Therefore, the effect of reducing the probability of simultaneous execution
prevails and p = 1 produces minimum expected recovery time in case of a central scheduler (See
Table 4.1). In an anonymous network under a distributed scheduler Algorithm 1 does not work
in a deterministic setting. In that case, p must be strictly less than 1.
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Structure Size |Q| popt Ertopt

Line

3 25 1 146
81p = 1.80

4 77 1 2357
972p = 2.42

5 237 1 31295857
10497600p = 2.98

6 721 1 8401071143
2361960000p = 3.56

Ring

3 21 1 1
p = 1

4 79 1 228
81p = 2.81

5 233 1 1690
729p = 2.32

6 715 1 981097
291600p = 3.36

Table 4.1: Randomized Vertex Coloring

4.3.2 Herman’s Token Circulation

The token circulation problem ensures that only one process holds a token (privilege) at any time
and every process is infinitely often granted the token. It’s been shown that a non-probabilistic
self-stabilizing algorithm for the token circulation problem in anonymous networks does not
exist [4, 32].

Herman’s probabilistic algorithm [32] (see Algorithm 3) is designed for distributed systems
in which an odd number of identical processes are connected in a ring. Herman’s algorithm
breaks the symmetry by randomizing processes actions. It declares a binary variable per process.
Each process looks at the value of its own variable and that of its left neighbour. If they are
identical, the process holds a token and it sets its corresponding variable to 0 with probability
p and to 1 with probability 1 − p. Otherwise, it flips its value with probability 1. The size of
the state space of this program is 2n, where n is the number of processes. By taking advantage
of topological symmetry in anonymous rings, we were able to reduce this size to O( 2n

n ), which
made the computations feasible. Since, approximately, every n distinct states of the state space
represent the same topology. For instance, consider a ring of size 3. States 〈1, 0, 0〉, 〈0, 1, 0〉 and
〈0, 0, 1〉 basically, exhibit similar behavior because the network is anonymous and the fact that
which two variables are 0 and which one is 1 does not affect the global behavior of the system.

An interesting observation made in [37] was that when the size of network is greater than 9,
p = 0.5 does not yield minimum worst-case expected recovery time anymore. We calculate the
precise value of p that results in the minimum average-case expected recovery time for networks
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Algorithm 3 Probabilistic-stabilizing Token Circulation (process i)
1: Variable: xi : boolean ∈ [0, 1]
2: Guarded Commands:

xi = xi−1 −→ p : xi := 0 + 1 − p : xi := 1;
xi , xi−1 −→ p : xi := xi−1;

Size |Q| popt ERTopt ERTp=0.5 diff(%)

3 2 0.5 0.33 0.33 0

5 6 0.5 1.93 1.93 0

7 18 0.5 4.49 4.49 0

9 58 0.53 7.9210 7.9215 0.006

11 186 0.37,0.64 12.1020 12.2058 0.85

13 630 0.33,0.67 16.95 17.35 2.31

15 2190 0.31,0.69 22.46 23.34 3.77

Table 4.2: Herman’s Randomized Token Circulation

of sizes 3 − 15 (see Table 4.2). Based on our results, we see that for networks of size over 9,
p = 0.5 is a local maximum and there are two points, one smaller and one larger than p = 0.5,
that minimize expected recovery time. Furthermore, for larger networks a biased coin is more
effective. We conjecture that as the network size grows, the two minimum points grow farther
(one towards lower values and one towards larger values) and a biased coin can significantly
reduce the expected recovery time.

Implementation Notes We should note that for a network with 15 processes, we used a ma-
chine with 64 cores and ran several instances of the computer algebra system Maple in parallel.
Moreover, for rings of size 13 and 15, we found the optimum points by plugging values in the
final symbolic expression.
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Chapter 5

Automated Analysis of Impact of
Scheduling on Performance of
Self-Stabilizing Protocols

We study the effect of different scheduling schemes on possibility of convergence and perfor-
mance of stabilizing distributed programs. There are several criteria to consider: distribution,
boundedness, enabledness and fairness [17]. There are algorithms that stabilize under a proba-
bilistic scheduler [32, 42], a fair scheduler [12] and a non-distributed scheduler [28]. Schedulers
can also affect the performance of self-stabilizing algorithms [8].

In this chapter, we review the formal definitions of schedulers [17]. We propose a method to
augment stabilizing algorithms with k-central and k-bounded scheduling policies. In particular,
we studied the impact of schedulers on three vertex coloring stabilizing algorithms [28] and a
few other variants considering both deterministic and probabilistic algorithms. Our experiments
showed that in general, deterministic algorithms have lower average recovery time. We compared
three randomization strategies, two static and one dynamic. The adaptive dynamic strategy had
better performance in most cases with the advantage of no pre-tuning requirements.

5.1 Scheduler Types

Schedulers determine the degree of parallelism in a distributed program. They are specifically
important in stabilizing programs as they affect both the possibility of convergence and conver-
gence time. A detailed survey of schedulers in self-stabilization can be found in [17]. In this
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section, we review the four classification factors of schedulers that we consider in this paper,
namely distribution, fairness, boundedness and enabledness studied in [17].

A scheduler d is a function that associates to each distributed program a subset of its computa-
tions: d : DP→ P(Σ(dp)), whereP denotes the powerset. Thus, d(dp) denotes the computations
of dp constrained by scheduler d. A transition t = (s, s′) activates a process π in state s iff it
updates at least one of the variables in Wπ. Act associates to each transition t = (s, s′) the set of
processes that it activates:

Act(s, s′) = {π ∈ Π | ∃v ∈ Wπ : v(s) , v(s′)}

In a distributed program dp, we say that a process π is enabled in state s iff there exists a
transition in dp that originates in s and activates π. Hence, the set of processes enabled in state s
is given by:

En(s, dp) = {π ∈ Π | π is enabled by dp in s}

5.1.1 Distribution

Distribution imposes spatial constraints on the selection of processes whose transitions will be
executed.

Definition 14 (k-central) Given a distributed system G = (Π, E), a scheduler d is k-central iff:

∀dp ∈ DP : ∀σ = s0s1 · · · ∈ d(dp) : ∀i ∈ N : ∀π1 , π2 ∈ Π :
[π1 ∈ Act(si, si+1) ∧ π2 ∈ Act(si, si+1)]→ dist(π1, π2) > k

�

In other words, a k-central scheduler allows processes in distance at least k to execute si-
multaneously. In particular, 0-central and diam(G)-central schedulers are called distributed and
central respectively. In the former, any subset of the enabled processes can be scheduled at any
time. In the latter, a single process can execute at a time (i.e., the interleaving semantics).

5.1.2 Fairness

Schedulers are classified into four categories based on fairness assumptions. A weakly fair sched-
uler ensures that a continuously enabled process is eventually scheduled.
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Definition 15 (weakly fair) Given a distributed system G = (Π, E), a scheduler d is weakly fair
iff

∀dp ∈ DP : ∀σ = s0s1 · · · ∈ Σ(dp) :
[∃π ∈ Π : ∃i ≥ 0 : ∀ j ≥ i : (π ∈ En(s j, dp) ∧ π < Act(s j, s j+1))]⇒ σ < d(dp) �

A strongly fair scheduler ensures that a process that is enabled infinitely often is eventually
scheduled.

Definition 16 (strongly fair) Given a distributed system G = (Π, E), a scheduler d is strongly
fair iff

∀dp ∈ DP : ∀σ = s0s1 · · · ∈ Σ(dp) :
[∃π ∈ Π : ∃i ≥ 0 : (∀ j ≥ i : ∃k ≥ j : π ∈ En(sk, dp)) ∧ (∀ j ≥ i : π < Act(s j, s j+1))]⇒
σ < d(dp)

�

A third type of fairness is Gouda fairness which is beyond the scope of this paper. Any other
scheduler that does not satisfy any type of fairness constraints is considered unfair.

5.1.3 Boundedness and Enabledness

A scheduler is k-bounded if it does not schedule a process more than k times between any two
schedulings of any other process.

Definition 17 (k-bounded) Given a distributed system G = (Π, E), a scheduler d is k-bounded
iff:

∀π ∈ Π : ∃k > 0 : ∀dp ∈ DP : ∀σ = s0s1 · · · ∈ d(dp) : ∀(i, j) ∈ N2 :
[[π ∈ Act(si, si+1) ∧ (∀l < i : π < Act(sl, sl+1))]⇒
∀π′ ∈ Π\{π} : |{l ∈ N | l < i ∧ π′ ∈ Act(sl, sl+1)}| ≤ k] ∧
[[i < j ∧ π ∈ Act(si, si+1) ∧ π ∈ Act(s j, s j+1) ∧
(∀l ∈ N : i < l < j⇒ π < Act(sl, sl+1))]⇒
∀π′ ∈ Π\{π} : |{l ∈ N | i ≤ l < j ∧ π′ ∈ Act(sl, sl+1)}| ≤ k]

�
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A scheduler is k-enabled if a process cannot be enabled more than k times before being
scheduled.

Definition 18 (k-enabled) Given a distributed system G, a scheduler d is k-enabled iff:

∀dp ∈ DP : ∃k > 0 : ∀σ = s0s1 · · · ∈ d(dp) : ∀(i, j) ∈ N2 : ∀π ∈ Π :
[[π ∈ Act(si, si+1) ∧ (∀l ∈ N, l < i⇒ π < Act(sl, sl+1))]⇒
|{l ∈ N | l < i ∧ π ∈ En(sl, σ)}| ≤ k] ∧
[[i < j ∧ π ∈ Act(si, si+1) ∧ π ∈ Act(s j, s j+1) ∧
(∀l ∈ N, i < l < j⇒ π < Act(sl, sl+1))]⇒
|{l ∈ N | i < l < j ∧ π ∈ En(sl, σ)}| ≤ k] ∧
[[pi ∈ Act(si, si+1) ∧ (∀l ∈ N, l > i⇒ π < Act(sl, sl+1))]⇒
|{l ∈ N | l > i ∧ π ∈ En(sl, σ)}| ≤ k]

�

5.2 Augmenting a Distributed Program with a Scheduler

To concisely specify the behavior of a process π, we utilize a finite set of guarded commands
(Gπ). A guarded command has the following syntax:

〈label〉 : 〈guard〉 → 〈statement〉;

The guard is a Boolean expression over the read-set of the process. The statement is executed
whenever the guard is satisfied. Execution of guarded commands updates variables and causes
transitioning from one state to another. In probabilistic programs commands are executed with a
probability. Hence, transitions among states in the system are executed according to a probability
distribution.

〈label〉 : 〈guard〉 → p1 : 〈statement1〉 + · · · + pn : 〈statementn〉;

where
n∑

i=1

pi = 1
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A guarded command is enabled if its guard evaluates to true. A process is enabled if at least one
of its guarded commands is enabled. The set of guarded commands of a distributed program is
formed by the union of the guarded commands of its constituent processes. In a parallel (i.e.,
simultaneous) execution, all enabled processes execute their enabled commands. In contrast, in a
serial (i.e., interleaving) execution, only one enabled process runs its enabled commands. We use
labels to synchronize (parallelized) guarded commands of different processes. More specifically,
if all guarded commands (possibly belonging to different processes) that have identical labels
are enabled, they will all be executed. If at least one of them is not enabled, none of them will
be executed. The synchronization of guarded commands with guards g1, · · · , gn is equivalent to
having one guarded command with guard g1 ∧ · · · ∧ gn and the union of all statements. We omit
the label from a guarded command whenever it is not used.

5.2.1 Encoding Schedulers in a Distributed Program

In this section, we describe how we modify a distributed program dp to obtain a program that
behaves as if dp was executed under a certain type of scheduler, when only serial executions are
available.

k-Central Scheduler

Given a distributed system composed of processes Π. Let each process π in Π consist of a set of
guarded commands Gπ. We augment Π with a k-central scheduler as follows. For every process
π ∈ Π, let

KValidπ = {π′ | dist(π, π′) > k}

be the set of processes that are at least k + 1 hops away from π. To encode a k-central scheduler,
we synchronize every guarded command of a process π with the guarded commands of every
subset of KValidπ. Thus, each process of the new program consists of the following guarded
commands:

f or all 〈gπ,i〉 → 〈sπ,i〉 ∈ Gπ : f or all kvalπ ⊆ KValidπ : f or all π′ ∈ kval :
f or all 〈gπ′, j〉 → 〈sπ′, j〉 ∈ Gπ′ :

〈gπ,i ∧ (
∧

gπ′, j)〉 → 〈sπ,i〉;

Note that kvalπ = ∅ yields the original guarded command of the process. It is necessary to
include this case to model a central scheduler.
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k-Bounded and k-Enabled Schedulers

To simulate the behavior of a k-bounded (similarly, k-enabled) scheduler, we add a counter (vari-
able) per every ordered pair of processes in the system. A command of a process is allowed
to execute only if it has been executed less than k times between any two executions of every
other process. Once a process π executes a command, the variables which count the number of
executions of other processes between any two executions of π are reset to zero. In a distributed
system with n processes Π = {π1, · · · , πn}, we add variables {countπi,π j | 1 ≤ i, j ≤ n}. Thus, we
replace each guarded command 〈gπi〉 → 〈sπi〉 in Gπi with the following:

〈gπi ∧ (
∧

1≤ j≤n
i, j

countπi,π j < k)〉 → 〈sπi〉; {〈countπ j,πi := 0〉; }1≤ j≤n
i, j

Fairness

Schedulers that generate the worst and best cases are unfair. They can be achieved by modelling
the program with a Markov decision process (MDP) instead of a DTMC (for more information
see [41]). A probabilistic scheduler which uniformly chooses transitions produces average case
expected recovery time, which is both fair and unfair.

5.2.2 Transformation to Scheduler-oblivious Self-stabilization

Refining self-stabilizing algorithms to work under weaker scheduling constraints or no con-
straints at all has been studied before [26, 27, 9]. A solution to this problem is to compose the
algorithm with a self-stabilizing local mutual exclusion algorithm that prevents neighbors from
executing their commands simultaneously. In this section, we review the composition method
used in [9].

First, we define the specification of the local mutual exclusion problem [9].

Definition 19 A distributed program dp satisfies the local mutual exclusion problem specifica-
tion iff:

• (safety) A process and none of its neighbors do not hold a privilege simultaneously,

• (liveness) Each process holds the privilege infinitely often. �
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In the composed algorithm, each process basically contains the guarded commands of the lo-
cal mutual exclusion algorithm (LME) and the algorithm dp as its critical section. In particular,
for every guarded command of LME and dp, we include the following:

〈guardLME〉 → 〈statementLME〉;

〈guardLME ∧ privilege = 1 ∧ guarddp〉 → 〈statementLME〉; 〈statementdp〉;

where privilege is a variable that determines if the process holds the privilege. Our experimental
results in Section 5.3 show that ensuring safety imposes overhead on the recovery time of the
stabilizing algorithm.

5.3 Experiments and Analysis

We use probabilistic model-checking (in particular, the tool PRISM [36]) to investigate the sig-
nificance of the choice of a scheduler on the expected recovery time of a stabilizing distributed
algorithm. We chose the vertex coloring in arbitrary graphs problem as our case study. It is
a classic problem in graph theory that has many applications in scheduling, pattern matching,
etc. Furthermore, we study several stabilizing programs that solve this problem. One non-
probabilistic algorithm that requires a network, where each process must have a unique id. A
probabilistic algorithm where a static probability is assigned to each process, and one with adap-
tive probability. We compare the expected recovery time of these strategies under all types of
schedulers. In our experiments, the choice of graph structure/size and some other parameters was
influenced and limited by the computational power of the machine used to do the experiments.

5.3.1 Self-stabilizing Vertex Coloring in Arbitrary Graphs

Definition 20 (Vertex Coloring) In a graph G = (V, E), the vertex coloring problem asks for a
mapping from V to a set C of colors, such that no two adjacent vertices (connected directly by
an edge) share the same color. �

Definition 21 (Vertex Conflict) Two vertices are in conflict iff they are neighbors and they
have the same color. Thus, the number of conflicts for a vertex is the number of its neighbors that
have the same color as the vertex. �
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The first deterministic self-stabilizing vertex coloring program of [28] is designed for an
anonymous network with an arbitrary underlying communication graph structure G = (Π, E)
and a non-distributed scheduler. We call this program deterministic. Each process has a variable
cπ representing its color with domain cπ ∈ [0, B], where B is the maximum degree (number of
neighbors) of a vertex (process) in G. In every state, if a process’s color is not equal to the
maximum available color (the maximum number not taken by any of its neighbors) maxπ, it
changes its color to maxπ. Otherwise, it does not do anything. In this algorithm, a legitimate
state is one that the color of each process is equal to maxπ. We denote the neighbors of a process
by N(π) (see Algorithm 1).

The Effect of Schedulers on Expected Recovery Time

We investigate the effect of four attributes of schedulers: centrality, boundedness, enabledness,
and fairness, on the expected recovery time of Algorithm 1.

k-Centrality: We calculate the average case expected recovery time for a linear graph, where
the size varies from 5 − 7 and k varies from 0 −Diam(G). In a linear graph, Diam(G) = size − 1.
As expected, Table 5.1(a) validates that, in average, parallelism helps improve the recovery time.
However, there can be cases in which it shows detrimental effect. The impact of centrality also
depends on the fairness of the scheduler. In the worst case this program does not stabilize under
a distributed (0 − central) scheduler.

Boundedness/Enabledness: We study the effect of boundedness/enabledness on graphs of size
4 with complete, star, and linear structures for k = 1, 2, 3. For each graph structure and each value
of k, Table 5.1(b) contains three numbers: Rmin (best case expected recovery time), Ravg (aver-
age case expected recovery time), and Rmax (worst case expected recovery time). Table 5.2(c)
demonstrates that as k increases so does the gap between the best case and the worst case. This
is the result of allowing more computations as we increase k. That is, all executions correspond-
ing to a k-bounded (respectively, k-enabled) scheduler are also included in the executions of a
(k − 1)-bounded (respectively, (k − 1)-enabled) scheduler.

Fairness: Fairness alongside centrality can determine possibility of convergence. An unfair
distributed scheduler can prevent Algorithm 1 from converging. Consider, for example, a state
in which two neighbors have identical colors (〈1, 1〉) and the same maximum available color
(2). A computation that infinitely alternates between states 〈1, 1〉 and 〈2, 2〉 never converges to a
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(a) Effect of centrality on expected recovery time (av-
erage case)

Size\k 0 1 2 3 4 5 6

5 5.6 9.1 13.1 14.4 15.7 - -

6 7.1 10.7 14.6 18.6 19.6 20.9 -

7 7.6 11.6 16.1 21.2 24.5 24.6 25.8

(b) Effect of boundedness/enabledness on expected recovery time

Complete Star Linear

Rmin Rmax Rexp Rmin Rmax Rexp Rmin Rmax Rexp

1 3.24 4.64 3.88 10.25 13.33 11.78 6.84 10.30 8.48

2 2.68 7.14 4.10 6.74 24.20 12.52 4.48 19.40 9.03

3 2.57 9.63 4.28 5.74 35.04 13.39 3.87 28.61 9.60

(c) Rmax − Rmin

Complete Star Linear

1 1.40 3.08 3.46

2 4.46 17.46 14.92

3 7.06 29.30 24.74

Table 5.1: Effect of centrality, boundedness and enabledness.

correct state. Such a computation can be produced by a distributed unfair scheduler. In the rest
of our experiments, by unfair scheduler we mean a scheduler that results in worst case expected
recovery time, unless otherwise specified.

5.3.2 Composition with Dining Philosophers & the Cost of Ensuring Safety

Recall that Algorithm 1 needs to be refined to work under distributed unfair schedulers. We com-
pose Algorithm 1 with an optimal snap-stabilizing (i.e., zero recovery time) dining philosophers
distributed program for trees of [33] and refer to it as the composed strategy. The solution to the
dining philosophers problem provides local mutual exclusion. Since this algorithm is designed
specifically for tree structures, in the rest of this section, we use balanced trees in our experiments
to ensure fair comparison. Figs. 5.1 and 5.2 depict the expected recovery time of the composed
algorithm under fair (central, 1-central, distributed) and unfair (central, 1-central, distributed)
schedulers, respectively.
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Fair Unfair

deterministic composed deterministic composed

Deg 1-central distributed 1-central distributed

2 1.72 2.54 2.44 2.91

3 2.29 3.73 3.52 4.75

4 2.72 4.69 4.61 6.56

5 3.05 5.49 5.69 8.34

6 3.33 6.16 6.77 10.08

7 3.56 6.72 7.82 11.77

8 3.76 7.21 8.87 13.43

Table 5.2: Cost of ensuring safety in executions

Observe that composing a distributed program with dining philosophers and running the com-
position under a distributed scheduler is in principle equivalent to running the original distributed
program under a 1-central scheduler. However, the 1-central scheduler that is produced by the
dining philosopher algorithm may only be able to produce a subset of the possible schedules.
Table 5.2 shows the expected recovery time of the deterministic algorithm under 1-central sched-
uler and the composed algorithm under distributed scheduler (both fair and unfair) for trees with
height one and degrees 2− 8. The difference is explained by the fact that the dining philosophers
layer itself forces processes that are normally not activatable (that is, they already have a non-
conflicting color) to act; that is, the enforcement of fairness between nodes induces unnecessary
computation steps.

5.3.3 ID-Based Prioritization

This strategy corresponds to the second deterministic self-stabilizing algorithm of [28], and re-
quires an identified network where each process has a unique id. When several processes are
in conflict with the same color, only the process with the highest id will execute its command.
As a result, no two similarly colored enabled neighbors will ever execute their commands si-
multaneously. In some rare cases, this algorithm may not produce 1-central schedules: consider
a line of 4 processes c, a, b, d (where identifiers are ordered alphabetically), such that c and a
have the same color α, and b and d have the same color β (with α , β). Then, a distributed
scheduler may schedule both a and b in a particular step from this situation, resulting in neigh-
boring nodes executing their actions simultaneously. In trees of height 1, this situation cannot
occur, and all produced schedules are 1-central. This explains in our results (see Figs. 5.3 and
5.4) why running this program under 1-central and distributed schedulers produces the same
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Figure 5.1: Composed program with a fair
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expected recovery time.

5.3.4 Probabilisitic-Stabilizing Vertex Coloring Programs

The random conflict manager [29] is a lightweight composition scheme for self-stabilizing pro-
grams that amounts to executing the original algorithm with some probability p (rather than
always executing it). The probabilistic conflict manager does not ensure that two neighboring
nodes are never scheduled simultaneously, but anytime the (possibly unfair) scheduler activates
two neighboring nodes u and v, there is a 1− p2 probability that u and v do not execute simultane-
ously. Composing the random conflict manager with the deterministic coloring protocol yields a
probabilistic coloring algorithm. Fine tuning the parameter p is challenging: a higher p reduces
the possibility that a conflict persists when two neighboring conflicting nodes are activated si-
multaneously (reducing the stabilization time), but also reduces the possibility to make progress
by executing the algorithm (increasing the stabilization time). Thus, we consider three strategies
for choosing p: (1) p is a constant, for all nodes, throughout the entire execution; (2) p depends
on local topology (i.e. the current node degree); (3) p is dynamically computed (i.e. depending
on the current number of conflicts at the current node).
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Figure 5.3: ID-based deterministic program
with a fair scheduler
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Figure 5.4: ID-based deterministic program
with an unfair scheduler

Constant Randomization Parameter

In this strategy, p is a fixed constant for all processes during the program execution. In the
original third probabilistic algorithm [28], this probability is equal to 0.5. Figs. 5.5 and 5.6
show that with fixed probability of execution, the stabilization time increases as the number of
potential initial conflicts rises. Figs 5.7 and 5.8 demonstrate that for a fixed topology, fine tuning
the probability used can result in significantly lower stabilization time. We observe that the
stabilization time is not necessarily monotonous with respect to the probability used, as the unfair
case demonstrates that increasing the probability of execution too much may have detrimental
effects (more conflicts can be preserved in the worst case).

Vertex Degree

This strategy depends on the local structure of the network to let a process execute its commands.
It is based on the intuitive reasoning that nodes with fewer neighbors have a lower chance of being
in conflict with one of them. The protocol gives higher priority to processes with less number of
neighbors. Although processes can have distinct values of p, their values are statically chosen
and fixed during the execution. Fig. 5.5 shows that this strategy works remarkably better than a
fair coin under a fair scheduler. However, it gradually falls behind a fair coin in the worst case
under an unfair scheduler. This is explained by the existence of a central node with an increasing
number of neighbors. If executed, this central node can resolve many conflicts at the same time
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Figure 5.5: Probabilistic programs
with a fair distributed scheduler
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Figure 5.6: Probabilistic programs
with an unfair distributed scheduler
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Figure 5.8: Evaluating the effect of the
randomization parameter on expected
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degree=2) with an unfair distributed
scheduler

(expediting stabilization) in the initial case where it has many conflicts. However, the vertex
degree approach pushes towards that these many conflicts are resolved by satellite nodes with a
higher probability, causing stabilization to require additional steps, in the worst case.

Number of Conflicts

This strategy refines the vertex degree approach to dynamically take into account the number
of potential conflicts. It prioritizes processes with more conflicts over processes with fewer
conflicts. Figures 5.5- 5.8 indicate that except for a few biased coins, this adaptive method
defeats the other two strategies. It also has the clear advantage of no pre-tuning of the system.
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Figure 5.10: Unfair distributed scheduler

5.3.5 Comparing Strategies & Schedulers

This section is devoted to analyzing the results of our technique to select a protocol variant for
a particular environment (topology and scheduler). Figure 5.9 presents a comparison of protocol
variants (deterministic, composed, id-based, and the three probabilistic ones) when the scheduler
is fair, varying the number of nodes in the network. One interesting lesson learned is that the
original protocol (deterministic), which is not self-stabilizing for the distributed scheduler (only
weakly stabilizing) performs in practise better than actually self-stabilizing protocols (composed,
and the three probabilistic variants), so there is a price to pay to ensure (actual or probabilistic)
self-stabilization. Overall, the id-based deterministic protocol performs the best (but requires
the additional assumption that nodes are endowed with unique identifiers). We also observe that
smarter probabilistic variants outperform the composed deterministic protocol, so probabilistic
stabilization can come cheaper than a deterministic one.

Figure 5.10 describes the performance of the same protocols in the worst case (unfair sched-
uler). As deterministic is only weak-stabilizing, its stabilization time with unfair scheduler is
infinite. In that case, all probabilistic protocols perform worse than composed, as there exists
computations with longer incorrect paths of execution. We also represent the performance of
deterministic under the 1-central scheduler as a reference (all other protocols are presented for
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the distributed scheduler) for best case situation where only 1-central execution are present. It
turns out that both probabilistic variants and composed introduce overhead. The overhead of
composed has been discussed in Section 5.3.2, while the overhead of probabilistic variants is
that more executions (including executions that are not 1-central) remain possible (with respect
to 1-central ones). Again, id-based outperforms all others, including those of deterministic under
1-central scheduler.
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Figure 5.11: Expected recovery time of the six algorithms under fair and unfair schedulers for a
tree of height 2 and degree 2. Deterministic is presented for the 1-central scheduler. All others
are presented for the distributed scheduler.

The most complex topology is presented in Fig. 5.11, and the relative order of strategies is
preserved also for this setting. If the scheduling is fair and identifiers are not available, leaving
the algorithm unchanged is the best option. Otherwise, the choice can be to use the refined
probabilistic option (that is depending on the current number of conflicts) when there are no
identifiers, and the id-based deterministic protocol whenever they are available.

56



Chapter 6

Related Work

There has been extensive research on self-stabilizing systems from design to analysis in the past
years. In this chapter, we discuss some important published work related to our work.

6.1 Complexity of Repair & Synthesis of Weak-Stabilizing Al-
gorithms under Recovery Time Constraints

Designing self-stabilizing distributed programs and proving their correctness is challenging and
prone to errors. Therefore, a lot of effort has been put in automating the design and verification
process. In terms of complexity, it has been shown adding strong convergence to a distributed
program is NP-Complete [34]. An automated efficient sound correct-by-construction method
for designing convergence was proposed in [18]. They use the maximal stabilizing program
corresponding to the system specifications as an approximation of strong convergence. They rank
states based on shortest path to legitimate states in the maximal program. Using the ranks, they
find backward reachable states starting from legitimate states attempting to eliminate deadlocks.
Their algorithm is sound but not complete as such their solution might output failure although a
solution exists.

Other less efficient but complete techniques were introduced [19, 35]. In [19], the synthesis
problem is reduced to solving a satisfiability problem by modeling read/write restrictions, closure
and convergence properties as an SMT instance. This method is sound (correct-by-construction)
and complete. It guarantees finding a solution if one exists if enough computational resources
are available. A sound and complete method was proposed in [35]. Their method is based on
variable superposition and backtracking search. They introduce computational redundancy by
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adding variables to the original system and perform parallel backtracking with a fixed number of
threads. One distinction of their method compared to others is including new behavior into the
system.

None of the aforementioned techniques, however, impose performance constraints, e.g. av-
erage convergence time on the output. Average recovery time is shown to be an important per-
formance metric [21, 20]. Therefore, in this study, we considered the problem of synthesizing
self-stabilizing algorithms under average recovery time constraints. To the best of our knowl-
edge, no prior work in this area exists.

6.2 Automated Fine-tuning of Probabilistic-Stabilizing Algo-
rithms

Randomization was introduced to tackle impossible cases in designing stabilizing programs [32].
There has been active research in design and repair of probabilistic systems. In [11], Daws
presents a language-theoretic approach to symbolic model checking of reachability properties
in DTMCs. In this approach, a finite state automaton is derived from the DTMC from which a
regular expression is obtained that amounts to the probability measure of a set of paths satisfying
a formula. The regular expression is recursively converted to a rational function over the set of
parameters. This approach lacks scalability especially that in stabilizing systems all states are
initials states and the above procedure must be repeated for every state. The parametric model
checker PARAM (http://depend.cs.uni-sb.de/tools/param/) [31], is an improved ver-
sion of [11]. For our case studies, this tool was not able to compute the expected recovery time.

In [7], the authors modify the probability of controllable transitions to achieve a new model
of the program that satisfies a desired property represented in the form of a rational function
over a set of parameters while minimizing the cost function. They use the recursive method
presented in [11] to obtain the rational parametric function. They show that this problem can
be reduced to a non-linear optimization problem. While they present a solution to the model
repair problem, their work differs from ours in two aspects. First, they consider only one initial
state. This significantly reduces the memory and computation time. Second, their solution works
for models representing a single process or networks that are not necessarily anonymous since
their approach does not guarantee the preservation of anonymity of processes. Recall that the
TPM of a distributed program is a function of the TPMs of the underlying processes which is not
accounted for in this work. Furthermore, we take advantage of properties of stabilizing programs
to reduce the calculation of the rational function to weighted sum of inverse matrix elements as
opposed to the recursive language-theoretic approach of [11].
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In [40], instead of performing non-linear optimization as done in [7], which is not scalable,
the authors take a greedy approach to finding the optimal evaluation of parameters that results
in satisfying the property. Our work is different from this work also in the aforementioned two
aspects. Moreover, we compute the symbolic expression of expected recovery time as well as
optimum numerical values for parameters.

In [37], the authors verified the asymptotic bounds on the worst-case recovery time of Her-
man’s token circulation algorithm with probabilistic model checking. By calculating the worst-
case expected recovery time for different probabilities and network sizes, they made an interest-
ing and surprising observation that a fair coin does not lead to minimum worst-case expected
recovery time for networks of size greater than 9. In this paper, for each network size, we com-
pute the parametric average-case expected recovery time of the algorithm, a symbolic rational
function over p, and find the exact optimum value of p.

6.3 Automated Analysis of Impact of Scheduling on Perfor-
mance of Self-Stabilizing Algorithms

A vital factor in designing self-stabilizing protocols is the scheduling assumptions. A detailed
survey of schedulers in self-stabilization can be found in [17]. They classify schedulers based on
four characteristics (distribution, boundedness, enabledness and fairness). Schedulers can affect
the speed and possibility of convergence. For instance, certain protocols are stabilizing under
a (1) fair scheduler [12], (2) probabilistic scheduler [32, 42], or (3) scheduler that disallows
fully parallel execution of processes [28]. In [28], authors propose a deterministic stabilizing
vertex coloring algorithm for arbitrary graphs in an anonymous network. This algorithm, does
not converge under a synchronous scheduler in the worst case (unfair scheduler). One way to
overcome this problem is to use a less distributed k-central scheduler, where k > 0, or use a
probabilistic scheduler that randomizes the actions.

One of the challenges of our study was augmenting schedulers in the program. The sched-
ulers we augmented with our stabilizing programs were not maximal. In other words, they did
not generate all valid schedules of that specific type of scheduler. Previous work [39] has shown
it is impossible to generate all strongly fair schedules when tasks are interleaved. The same au-
thors presented a distributed maximal scheduler for strong fairness [38]. They used unbounded
counters to generate all valid schedules. The unbounded counters create infinite state-space in
the DTMC model of the program while our models are limited to finite space Markov chains.
Therefore, we were not able to use their maximal scheduler in our experiments.
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In addition to the issue of correctness, different scheduling policies may have a totally differ-
ent impact on the performance of a self-stabilizing protocol [8]. To the best of our knowledge,
there is no work on rigorous analysis of how a scheduling policy alters the performance of self-
stabilization.
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Chapter 7

Conclusion

Given the rising interest in self-stabilization in the area of fault-tolerant distributed program
design, we explored this field from an optimization perspective. Our main focus in this study
was minimizing the average recovery time of such systems. In this chapter, we summarize our
results and discuss possible extensions and future work.

7.1 Summary

Our first contribution in this study was the counter-intuitive result on the complexity of repair-
ing and synthesizing weak-stabilizing programs under recovery time constraints. We proved
that this problem is NP-complete although the synthesis problem without average recovery time
constraints has a polynomial time solution [18]. In this regard, we proposed a polynomial-time
heuristic for repair and synthesis of stabilizing algorithms under average recovery time con-
straints. Our heuristic synthesized programs with lower average recovery time in networks of
smaller sizes.

We studied the randomization parameter in probabilistic-stabilizing programs. Following the
work in [37], we proposed an automated method to calculate the average recovery time of a
stabilizing algorithm. We use this method to find the optimum randomization parameters that
give the minimum average recovery time for an instance of a probabilistic-stabilizing program.
Our method is based on the observation that stabilizing programs can be modelled by absorbing
DTMCs due to their convergence and closure properties. By modelling them with absorbing
DTMCs we reduced the average recovery time calculation to finding the weighted sum of ele-
ments in the inverse of the transition probability matrix among non-legitimate states. We find the
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real roots of the derivative of the rational expression computed in the previous step, the optimum
probability values, using existing symbolic algebra techniques.

Finally, we evaluated the effect of different types of schedulers on stabilizing determinis-
tic and probabilistic vertex coloring algorithms. We proposed a method to augment stabilizing
programs with k-central and k-bounded schedulers. Our experiments showed that parallelism
improves the recovery time in general. However, it depends on the fairness of the scheduler as
well. One method used to allow weaker scheduling constraints is composing the algorithm with
a self-stabilizing mutual exclusion algorithm. We composed the deterministic anonymous vertex
coloring algorithm [28] with a snap-stabilizing dining philosophers algorithm [33] and showed
that ensuring safety imposes an overhead on recovery time. Another way to tackle this prob-
lem is randomization [28, 29]. Our experiments demonstrated that deterministic algorithms have
better performance, especially when there are unique IDs assigned to each process. ID-based
self-stabilizing algorithms should be composed with self-stabilizing unique naming algorithms
to be able to run on anonymous networks at the cost of higher recovery time.

We considered three randomization schemes to choose the probability p with which the pro-
cesses execute their enabled commands: (1) p is a constant value for all nodes throughout the
execution (2) p depends on local topology (i.e.the current node degree); (3) p is dynamically
computed (i.e. depending on the current number of conflicts at the current node). Our experi-
ments demonstrated promising performance for the last strategy. The dynamic adaptive strategy
had lower average recovery time than some constant values of p and higher than others. However,
it has the advantage of no pre-tuning requirements for the system.

7.2 Future Work

7.2.1 Complexity of Repair & Synthesis of Weak-Stabilizing Algorithms
under Recovery Time Constraints

For future work, we reckon that there exists no heuristic with constant approximation ratio to
solve the synthesis/repair problem under average recovery time constraints. Existing sound
and complete algorithms for synthesizing any stabilizing algorithm (without recovery time con-
straints) are computationally expensive. An interesting future work is finding efficient heuristics
for the synthesis problem (both with and without recovery time constraints).

Our heuristic (Algorithm 2 in Section 3.4) can be improved both in efficiency of the heuristic
and performance of the synthesized algorithms using other methods such as A∗ search or ILP.
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There are other interesting problems to consider, such as synthesizing snap-stabilizing, ideal-
stabilizing algorithms and parametrized stabilizing protocols under recovery time constraints.

7.2.2 Automated Fine-tuning of Probabilistic-Stabilizing Algorithms

An interesting challenging problem for future is parametrizing the number of processes as well
as execution probabilities. Developing methods that scale better and studying the problem in the
context of other stabilizing algorithms with larger state-spaces are also challenging problems.

7.2.3 Automated Analysis of Impact of Scheduling on Performance of Self-
Stabilizing Algorithms

Given the importance of schedulers, a challenging problem to consider is finding a technique that
augments stabilizing programs with the maximal version of a type of scheduler. For example,
building a scheduler that its computations generates all k-bounded/enabled schedulers. Another
open challenge is using advanced composition techniques [5] to analyze the precise performance
hit when a weak-stabilizing algorithm is composed with a self-stabilizing mutual exclusion al-
gorithm to work under distributed schedulers.
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