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Abstract

After decades of evolution, the cellular system has become an indispensable part of modern
life. Together with the convenience brought by the cellular system, many security issues
have arisen. Message integrity protection is one of the urgent problems. The integrity of a
message is usually protected by message authentication code (MAC).

Forgery attacks are the primary threat to message integrity. By Simon’s definition,
forgery is twofold. The first is impersonation forgery, in which the opponent can forge a
MAC without knowing any message-MAC pairs. The second is substitution forgery, in
which the opponent can forge a MAC by knowing certain message-MAC pairs.

In the 4G LTE system, MAC is applied not only to RRC control messages and user data,
but also to authentication of the identities in the radio network during the authentication
and key agreement (AKA) procedure. There is a set of functions used in AKA, which is
called A3/A8. Originally, only one cipher suite called MILENAGE followed the definition
of A3/A8. Recently, Vodafone has proposed another candidate called TUAK.

This thesis first analyzes a MAC algorithm of the 4G LTE system called EIA1. The
analysis shows that because of its linear structure, given two valid message-MAC pairs
generated by EIA1, attackers can forge up to 232 valid MACs by the algorithm called
linear forgery attack proposed in this thesis. This thesis also proposes a well-designed
scenario, in which attackers can apply the linear forgery attack to the real system.

The second work presented in this thesis fixes the gap between the almost XOR universal
property and the substitution forgery probability, and assesses the security of EIA1 under
different attack models. After the security analysis, an optimized EIA1 using an efficient
polynomial evaluation method is proposed. This polynomial evaluation method is analog
to the fast Fourier transform. Compared with Horner’s rule, which is used in the official
implementation of EIA1, this method reduces the number of multiplications over finite field
dramatically. The improvement is shown by the experiment results, which suggests that
the optimized code is much faster than the official implementation, and the polynomial
evaluation method is better than Horner’s rule.

The third work in this thesis assesses the security of TUAK, and proves TUAK is a
secure algorithm set, which means f1, f ∗1 , and f2 are resistant to forgery attacks, and key
recovery attacks; f3 - f5, and f ∗5 are resistant to key recovery attacks and collision. A novel
technique called multi-output filtering model is proposed in this work in order to study
the non-randomness property of TUAK and other cryptographic primitives, such as AES,
KASUMI, and PRESENT. A multi-output filtering model consists of a linear feedback shift
register (LFSR) and a multi-output filtering function. The contribution of this research is
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twofold. First, an attack technique under IND-CPA using the multi-output filtering model
is proposed. By introducing a distinguishing function, we theoretically determine the
success rate of this attack. In particular, we construct a distinguishing function based on
the distribution of the linear complexity of component sequences, and apply it on studying
TUAK’s f1 algorithm, AES, KASUMI and PRESENT. The experiments demonstrate that
the success rate of the attack on KASUMI and PRESENT is non-negligible, but f1 and
AES are resistant to this attack. Second, this research studies the distribution of the
cryptographic properties of component functions of a random primitive in the multi-output
filtering model. The experiments show some non-randomness in the distribution of the
algebraic degree and nonlinearity for KASUMI.

The last work is constructing two MACs. The first MAC called WGIA-128 is a vari-
ant of EIA1, and requires the underlying stream cipher to generate uniform distributed
key streams. WG-16, a stream cipher with provable security, is a good choice to be the
underlying cipher of WGIA-128 because it satisfies the requirement. The second MAC
called AMAC is constructed upon APN functions. we propose two different constructions
of AMAC, and both of these two constructions have provable security. The probability of
substitution forgery attacks against both constructions of AMAC is upper bounded by a
negligible value. Compared with EIA1 and EIA3, two message authentication codes used
in the 4G LTE system, both constructions of AMAC are slower than EIA3, but much
faster than EIA1. Moreover, both constructions of AMAC are resistant to cycling and
linear forgery attacks, which can be applied to both EIA1 and EIA3.
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Chapter 1

Introduction

In the past thirty years, wireless communication has acquired tremendous success. Now
it is playing a key role in every corner of the human society. Cellular and Wi-Fi are two
widely deployed wireless communication systems. Because of their outstanding mobility
and flexibility, they offer great convenience to our lives.

The cellular system has already experienced four evolutions. The connection speed and
the management method have been substantially improved. Compared with the cellular
system, Wi-Fi is designed to cover much smaller areas. Thus, it is simpler than the cellular
system. The Wi-Fi alliance concentrates on improving the coverage of a single access point
(AP) and the speed of the network.

Together with its convenience, wireless communication also gives rise to security con-
cerns. Since the data are transmitted over the air, the signal can be intercepted or modified
easily by an attacker. Moreover, the expense of attacking a wireless communication system
has decreased to an affordable level. Therefore, the vulnerability of a wireless communi-
cation system is exposed to everyone. Protecting wireless communication systems has
become an urgent problem to be solved. In this thesis, we focus on the integrity protection
of the 4G LTE system. We remark that some methods can be extended to other wireless
communication systems as well. But we will not discuss the extension in this thesis.

The rest of this chapter is organized as follows. Section 1.1 introduces the brief history
of the Cellular system. Section 1.2 demonstrates the authentication and message authenti-
cation in the 4G LTE system. Some well-known message authentication code constructions
are presented in Section 1.3. The last section, Section 1.6, illustrates the structure of this
thesis.
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1.1 Historical View of Cellular Network

Amazingly, the first “wireless” conversation happened in 1880. It was made by Alexander
Graham Bell and Charles Sumner Tainter. This communication device was called “Pho-
tophone”. As what it literally meant, the communication was conducted via light, and
the communication distance could not be longer than the sight distance. Although the
photophone was hardly practical in that era, as a precursor, it in fact started the age of
wireless communications.

The concept of our daily used cellphone was proposed by AT&T’s BELL lab in the
1970’s, more than one hundred years after Heinrich Hertz showed the existence of electro-
magnetic waves. In 1981, the first commercial cellphone network was deployed by Nordic
Mobile telephone, which is the predecessor of Nokia. Two years later, the US also had its
own commercial cellphone service called Advanced Mobile Phone Service. This generation
of cellphone is usually referred to as the 1G network. The communication of the 1G net-
work was conducted using analog signal. To serve multiple users simultaneously, the 1G
network used Frequency Division Multiple Access (FDMA) to divide the channel.

In 1982, Europe began to work on the next generation communication technology,
which was envisioned to be a digital cellular communication network. Five years later, the
specification of the Global System for Mobile communications (GSM) was approved by the
European countries and became the standard in Europe. The first phone call via GSM
network was made in 1991, and in the next year, the first text message was sent through
the GSM network. GSM is a digital communication network. It divides the channel by
Time Division Multiple Access (TDMA). Besides GSM, there is another standard of the
2G network, which is called CDMA1 (IS-95 or TIA-EIA-95). CDMA1 was standardized
by the US. As the commercial name suggests, it divides the channel by Code Division
Multiple Access (CDMA).

At the beginning of GSM, it only allowed to transmit data through a circuit switched
fashion. Thus, the data were charged per minute of connection time. As the General
Packet Radio Service (GPRS) was developed, GSM had the capability to transmit data in
a packet switched way, and the data was billed based on the volume of data transmitted.
This GSM/GPRS network is usually called the 2.5G network. The difference between GSM
and GSM/GPRS is that GSM/GPRS imported packet switching into the cellular system.

GSM and CDMA1 were two mainstream standards in the age of the 2G network. As the
competition of 3G network started, GSM and CDMA1 evolved to UMTS and CDMA2000
respectively. UMTS was standardized by an organization in Europe called 3GPP, and
CDMA2000 was operated by a group in North America called 3GPP2. UMTS is based on
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WCDMA, which is also a variant of CDMA. In the 3G network, all data is transmitted
via packet switched network. However, the voice is still transmitted through the circuit
switched network.

The competition between different standards and organizations were terminated by the
rise of 4G LTE. Now, LTE has become the only standard of the 4G network. It evolved from
UMTS. A new technology called Orthogonal Frequency Division Multiplexing (OFDM)
was introduced in the LTE standard. Both data and voice should be transmitted via pack
switched network. However, because of the legacy infrastructure in some network, the
voice phone call is made by downgrading the network to 3G or 2G, which means the voice
is transmitted by a circuit switched method in those systems. This downgrading brought
some security issues to the LTE system.

1.2 Authentication and Key Agreement Procedure and

Message Authentication in 4G LTE System

There are two kinds of message authentications in the 4G LTE system: one used in the
Authentication and Key Agreement (AKA) procedure and the other applied to RRC com-
mands and the user data.

The AKA procedure is presented in Figure 1.1 [8, 38]. The cellphone is called User
Equipment (UE) in the 4G LTE standard. The Subscriber Identity Module (SIM) is called
USIM in both 3G UMTS and 4G LTE. MME is the Mobility Management Entity, which
is called RNC in 3G UMTS. AuC is the Authentication Centre. K is the long term
credential, which resides only in USIM and AuC. Note that K is written in a secure ROM
in USIM, and cannot be read out or be changed. USIM provides a computation interface
for the cellphone using but not outputting the long term key. The interface is called A3/A8
algorithm. Although it is called an algorithm, in fact, it only specifies the input and output
formats. The underlying cipher is chosen by the operator. In 2G GSM, because of the
weakness of the first version of A3/A8, the long term key was exposed easily, and many
SIM card cloning tools were seen in the market at that time. However, the evolution of the
underlying cipher led to the current version of A3/A8, which is considered to be secure.

The AKA procedure starts with sending the International Mobile Subscriber Identity
(IMSI) by UEs to the MME. The IMSI is an unique number, which associates the USIM
card with an account. The MME forwards the IMSI to AuC. After AuC gets the identity,
it retrieves the long term key K and generates the Authentication Vectors (AVs) using
A3/A8. AuC generates several AVs and sends them all to the MME, which selects one
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UE/USIM(K) MME AuC(K)

IMSI IMSI

{AVi}, i = 1, 2, · · · , n

RANDi, AUTNi
Verify AUTNi

Comput RESi

Derive CK, IK
RESi

Compare RESi with XRESi

Figure 1.1: The AKA procedure of 4G LTE

AV each time to authenticate the UE. Before using up all the AVs sent by AuC, the
MME can carry out the AKA for the same USIM by itself without involving the AuC
again. This mechanism saves the bandwidth between the MME and AuC. This feature
is important, because, especially when UE is roaming, the communication between the
local MME and AuC is expensive. MME retrieves the random number RANDi and the
authentication token AUTNi from the i-th AV, and sends them back to the UE. Upon
receiving the response from the MME, the UE verifies AUTNi to authenticate the received
sequence number SQN and computes a response, which will be sent back to the MME. The
Confidentiality Key (CK) and Integrity Key (IK) are also derived in this process. After the
response RESi is sent back to MME, MME authenticates UE by comparing RESi with
XRESi, which is computed by AuC and written in AVi.

In 3G UMTS, AV has five fields,

AVi = {RANDi, XRESi, CKi, IKi, AUTNi}.

As described above, RANDi is a random number. XRESi is the expected response. CKi

and IKi are the confidentiality key and integrity key respectively. (In 4G LTE, these two
keys are replaced by one master session key KASME.) AUTNi is the authentication token,
which is defined by

AUTNi = {SQNi ⊕ AKi, AMF,MACi}.
AK is the anonymity key, which masks the sequence number SQNi. Note that SQNi is a
relatively sensitive data, by which an intruder can infer some information about the user,
since the user utilizes it for the verification of the authenticity of the network. Thus, it
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Figure 1.2: MILENAGE

is masked by a random number. AMF is the authentication management field, which
indicates some parameters of the authentication. MACi is the Message Authentication
Code (MAC) computed over the information in AUTNi. To verify AUTNi, UE computes
MAC ′i and compares it with MACi.

Together, all the message authentication and key derivation functions mentioned above
make up the A3/A8 algorithm. Actually, A3/A8 algorithm contains seven functions. Orig-
inally, only one algorithm set called MILENAGE followed the A3/A8 standard. Recently,
Vodafone proposed another one called TUAK. Since TUAK is one of the research topic
of this thesis, it is introduced in the next section together with other preliminaries of
this thesis. In this section, we use MILENAGE as an example to illustrate the A3/A8
algorithm.

MILENAGE is presented in Figure 1.2. The ci and ri, for 1 ≤ i ≤ 5, are constants.
OPc is an operator specified constant. Ek is an arbitrary block cipher, whose block is
128-bit. Usually, the network operators choose AES as the underlying block cipher. The
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function f1 generates the MAC of AUTN . In the specification, the f1 function is called
the network authentication function, which means the UE uses this function to authen-
ticate the network. The f2 function, called the user authentication function, generates
the expected response and response. The f3 and f4 functions generate the CK and IK,
respectively, which are legacies of the 3G UMTS network. They are the keys to protect the
confidentiality and integrity. However, in 4G LTE, there is only one session key KASME.
Other keys are derived from this master session key. To reuse the infrastructure, KASME

is derived from CK and IK by a key derivation function. Because the SQN may leak
some information of the subscriber, the SQN is masked by an anonymity key generated
by the function f5. Notice that the SQNs may be mismatched, i.e. the received one is
smaller than the stored value. When such situation happens, the UE and the AuC run a
re-synchronization routine. For security reasons, the MAC and AK in re-synchronization
are generated by f ∗1 and f ∗5 , respectively.

After the AKA and security mode set-up procedure, the integrity and confidentiality
of all the control messages are protected [8]. The integrity protection method, called
f9, is applied in radio resource control (RRC) layer. The f9 function takes four inputs:
COUNT−I, MESSAGE, DIRECTION and FRESH. COUNT−I is a counter, which
counts how many times the integrity key is used. After COUNT − I reaches a threshold,
the UE and MME must negotiate a new integrity key. MESSAGE, as the name suggests,
is the message the MAC is computed on. DIRECTION indicates whether the message
is sent in the uplink or downlink. This mechanism can prevent replay attacks. FRESH is
the random number generated by the MME and sent to the UE during the (RRC) security
mode command at the connection set-up procedure. This random number also helps the
system avoiding replay attacks.

Upon the UE or other entities on the radio network receiving a message, it first checks
the sequence number to see whether the message is fresh. If it is not, this message is
discarded. Otherwise, UE or the network validates the message by checking MAC. If the
message does not pass the validation, it is discarded.

1.3 Message Authentication Code

When the active wiretapper was proposed [112], integrity protection attracted more at-
tention than ever before. Simmons [99] proposed the first authentication model using
Message Authentication Code (MAC), and demonstrated two different attacking models
against MAC: the impersonation forgery attack and the substitution forgery attack. Im-
personation forgery means that the opponent can forge a MAC without intercepting any
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message-tag pairs, and substitution forgery means that the opponent can forge by observ-
ing message-tag pairs. The success rate of these two attacks are denoted by PI and PS,
respectively.

There are several ways to construct a MAC, such as algebra [37, 82], combinatorics
[101, 102], finite geometries [108], and coding theory [69].

Recently, people have begun to construct MACs on top of hash functions in one of two
ways: the first is based on the universal hash functions, such as in Stinson’s work [103];
the second uses cryptographic hash functions to construct MACs as Krawczyk’s work [74].
Note that constructions using block ciphers also belong to the latter category, because block
ciphers can be equivalent to keyed hash functions in the sense of CBC or other modes. For
example, CBC-MAC [20] and XOR-MAC [19] are two MACs using block ciphers.

Originally, the keyed hash functions and block ciphers based MACs attracted most
researchers’ attention. As stream ciphers were widely deployed in the wireless communi-
cation related to our daily life, MACs based on stream ciphers became a hot reach topic.
Constructions based on universal hash functions are naturally suitable for working with
stream ciphers, because most of these constructions’ security proofs require a one-time
pad. Usually, the period of the key stream generated by a stream cipher is guaranteed to
be huge. Therefore, the key stream can be considered as a one-time pad required by the
universal-hash-function-based constructions.

Krawczyk demonstrated that any Almost XOR Universal (AXU) hash function is equiv-
alent to a secure message authentication code [73]. Krawczyk’s theory forms basis of many
well-known MACs, such as GCM [82], EIA1 (UIA2) [3], etc. GCM has been standardized
by NIST as an authenticated encryption (AE) scheme. EIA1 is the integrity protection
algorithm deployed in the 4G LTE system. Note that an AE scheme encrypts and authen-
ticates messages in one step. If we remove the encryption of GCM, it becomes GMAC,
which is also a kind of MAC. EIA1 and GMAC are similar, because both are based on the
evaluation of a polynomial. We call such MACs polynomial based MACs in this paper.
The difference between these two is that EIA1 uses a method called secure truncation [21],
while GCM just simply truncates the output to a fixed size.

In this section, we introduce two different kinds of MACs. Sub-section 1.3.1 presents
the MACs based on block ciphers and hash functions, then Sub-section 1.3.2 demonstrates
the MACs based on stream ciphers.
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1.3.1 Message Authentication Codes Based on Block Ciphers
and Hash Functions

Here we take CBC-MAC [28] and HMAC [15, 74] as examples to show the MACs based on
block ciphers. Of course, there are other outstanding MACs based on block ciphers, but
these are omitted from this thesis.

The structure of CBC-MAC is illustrated in Figure 1.3.

FK FK FK

M0 M1 Mn−1

...

OUTPUT

Figure 1.3: CBC-MAC

CBC-MAC is a variant of the Cipher Block Chain (CBC) mode of block cipher. The
underlying cipher FK can be any block cipher or keyed hash function that maps a fixed-
length input to a fixed-length output. Because CBC-MAC is computed in a chain, the
computation cannot be parallelized.

When CBC mode is used for both authentication and encryption, using the same key
for both authentication and encryption is forbidden [54] because of the following attack.
Assume that Alice encrypts the message

P = {P0, · · · , Pn−1}
to get the ciphertext

C = {C0, · · · , Cn−1},
and uses the last block Cn−1 as the MAC. Now Alice sends C to Bob. However, Eve
intercepts and modifies C to

C ′ = {C ′0, · · · , C ′n−2, Cn−1}.
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Note that only the last block remains unchanged. Bob receives C ′ and decrypts. What
Bob gets is different from the original P , but he is unaware of this modification.

Even using different keys for encryption and authentication, CBC-MAC is vulnerable
to another well-known attack [28]. Assume that the MAC is computed on the ciphertext

C = {C0, · · · , Cn−1},

which is encrypted by a different key. The tag is computed in a recursive way.

Tn−1 = FK(Cn−1 ⊕ Tn−2).

Eve can construct another message

C ′ = {C0, · · · , Cn−1, Tn−1 ⊕ C0, · · · , Cn−1}.

The tag computed on the first n blocks is Tn−1. When computing the n-th block, we have

Tn = FK(Tn−1 ⊕ Tn−1 ⊕ C0) = FK(C0),

where Fk is the same block cipher as in Figure 1.3. Then this message and the original
message have the same MAC (assume the initial vector of CBC-MAC is zero).

Since so many attacks are possible, numerous variants of CBC-MAC have emerged, such
as EMAC [52], OMAC[105], TMAC [75], etc. Most of these variants improve CBC-MAC
by encrypting the last block.

Unlike CBC-MAC, HMAC requires its underlying primitive to have the capability of
mapping arbitrary-length input to fixed-length output. Most cryptographic hash functions
fulfill this requirement, but all block ciphers do not have such capability. Thus, block
ciphers cannot be the underlying primitive of HMAC without any modification. However,
if we modify block ciphers a little bit, such as using Merkle-Damg̊ard construction [63],
they can be utilized as the underlying cipher of HMAC. HMAC is defined by

T = H((K ⊕ opad)||H((K ⊕ ipad)||M)),

where H is a cryptographic hash function or a block cipher, opad and ipad are two con-
stants, K is a key.

The two-layer design is to avoid the length extension attack [15], which is a kind of
attack applied to Merkle-Damg̊ard hash constructions [42, 85, 86]. Merkle-Damg̊ard hash
constructions assembly the compression functions like a chain. If HMAC has only one
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layer, and the underlying cipher of HMAC is a Merkle-Damg̊ard hash function, the length
extension attack can also be applied to HMAC.

Because of the Merkle-Damg̊ard construction, K ⊕ opad and K ⊕ ipad are prefixed to
a message and its intermediate tag to increase the computation in an exhaustive search.
For example, if HMAC is designed as

T = H(H(M||(K ⊕ ipad))||(K ⊕ opad)),

the adversary can pre-compute the hash value t = H(M), and the hash value of t. Since
the hash values of M and t are used in the computation of MAC, and these two values
remain unchanged in the following computation, the pre-computation can reduce the time
consumption of the exhaustive search.

1.3.2 Message Authentication Codes Based on Stream Ciphers

Several outstanding MACs, such as the one based on Grain-128 [10], cryptographic check
sum [76], are based on stream ciphers. In this subsection, we introduce a very special
case, GCM. This algorithm is proposed for the block cipher in counter mode. However,
since the counter mode is actually a kind of stream ciphers, GCM can work not only with
block ciphers, but also with arbitrary stream ciphers. Therefore, we consider it as a MAC
based on stream ciphers. We remark here that GCM is an AE scheme. Therefore, the
encryption and the authentication are done together. GCM has two blocks, GCTR and
GHASH. GCTR encrypts messages, and GHASH generates the hash tag of messages. If
the hash tag generated by GHASH is eventually encrypted by GCTR, GHASH and GCTR
together are called GMAC.

Figure 1.4 demonstrates the structure of GCM. This figure takes AES as an example,
but one can use any block cipher to replace AES in this figure. H is the hash sub key, which
is generated by encrypting 0 using the key K. The notations “�”, “�” and “⊕” represent
integer addition, multiplication over finite field and XOR respectively. J0, the pre-counter
block, is initialized by IV in a complicated way as follows. Let s = 128dlen(IV )/128e −
len(IV ). Then

J0 =

{
IV ||031||1, If len(IV ) = 96,

GHASHH(IV ||0s+64||[len(IV )]64), If len(IV ) 6= 96.

Several works analyzed GCM, such as Käsper and Schwabe [70], Iwata et al. [68], Zhu
et al. [113], Abdelraheem et al.[9] and Saarinen [97].
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Figure 1.4: GCM
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1.4 Related Work

UE eNodeB MME AuC

Step 1. Authentication and Key Agreement

Step 2. Protected Communication

Figure 1.5: The Security Architecture of 4G LTE

As shown in Figure 1.5, this thesis is about the integrity and authenticity protection
in both Steps 1 and 2. The first step authenticates entities on the network and derives
the session key, which will be used in Step 2. Both entity authentication and message
authentication methods called A3/A8 are applied to Step 1. Step 2 is the communication
after the security set-up in Step 1. The message integrity of Step 2 is protected by MAC
using the key derived in Step 1.

Security Analysis on Keccak and TUAK

For Step 1, Vodafone has proposed an algorithm set called TUAK [53] to do the authen-
tication and message authentication, recently. TUAK is built upon Keccak [25], which
was standardized as SHA-3 by NIST. The design of the Keccak hash function is based
on the sponge function and its internal state size is 1600 bits [23, 91]. The Keccak cryp-
tographic hash algorithm set contains four instances: Keccak-224, Keccak-256, Keccak-
384 and Keccak-512 [91]. Several cryptanalytic attacks including differential attacks and
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distinguishing attacks have been developed on the round-reduced Keccak hash function
[12, 22, 44–46, 49, 77, 87, 89, 104]. A differential cryptanalytic technique is a method that
can be used to produce a collision of a hash function. The differential attack for building
a distinguisher or producing collisions on round-reduced Keccak can be found in several
papers [44, 45, 49, 89]. Dinur et al. [44] proposed a collision attack on 4-round Keccak-
224 and Keccak-256, and a near-collision attack on 5-round Keccak-224 and Keccak-256.
In another paper of Dinur et al. [45], the authors proposed a practical collision attack
on 3-round Keccak-384 and Keccak-512, a collision attack on 4-round Keccak-384 with
complexity of 2147 and a collision attack on 5-round Keccak-256 with complexity of 2115.
Daemen and Van Assche studied the differential trails of the Keccak hash function in their
paper [41]. Recently, Dinur et al. applied the cube attack on a message authentication
code based on 6-round Keccak [46]. TUAK is a new application of Keccak. Although
Keccak is proved to be secure, it does not necessarily mean TUAK is secure as well. This
thesis proposes security proof and security assessment of TUAK for the first time to prove
TUAK is as secure as Keccak.

Security Analysis of EIA1 and EIA3

In Step 2, message integrity is protected by the EIA family [3, 6]. EIA1 and EIA3 are
two MACs based on stream ciphers. EIA1 is a kind of polynomial evaluation MAC, which
computes the tag by evaluating a polynomial. Saarinen et al. presented an attack called
cycling attack, and demonstrated the application of this attack on polynomial evaluation
MACs in their paper [97]. Handschuh et al. showed key-recovery attacks [62] on univer-
sal hash function based MACs. The authors used two different methods: weak key and
birthday attacks. The cycling attack is a special case of the weak key attacks proposed
by Handschuh et al. However, no attacks can be directly applied to EIA1, and cause seri-
ous security flaws. EIA3 is equivalent to a polynomial evaluation MAC. The argument of
EIA1 applies to EIA3 as well. Besides, a forgery attack [106] proposed by Thomas et al.
could forge MACs generated by EIA3 V1.3. The current version of EIA3 is V1.5, which is
resistant against such attacks. In a nutshell, none of the existing attacks harm the security
of EIA1 and EIA3 seriously. The forgery attack called linear forgery attack proposed in
this thesis is the first applicable attack on EIA1 and EIA3.

MAC Design

MAC is used in every stage of the communication in Figure 1.5. Thereby, secure algorithms
are highly demanded. Since the linear forgery attack is a relatively new attack, which
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has not attracted much attention, two MACs proposed in this thesis are the first work
resistant to such attacks. The first MAC is a variant of EIA1, and replaces the addition
over a finite filed with the addition over a ring. There does not exist any work discussing
such kind of MACs. The second MAC is based on APN functions, whose definition will
be presented in Chapter 2. Chanson et al. [37] proposed MACs based on functions with
optimal nonlinearity for the first time. Ding et al. [43] and Carlet et al. [34] continued the
work of Chanson et al. Jian et al. [79] showed that the relationship between the perfect
nonlinearity functions and the universal hash functions, and constructed an authentication
code based on the universal hash function. None of the above MAC constructions can
take an arbitrary-length input. The second MAC proposed in this thesis is the first MAC
based on APN functions, and maps arbitrary-length inputs to fixed-length outputs just
like CBC-MAC, HMAC, etc.

1.5 Contributions

Contributions of this thesis are listed as follows.

1. Linear Forgery Attack: This is the first practical attack on EIA1 and EIA3. Known
two message-MAC pairs, attackers can forge up to 232 valid message-MAC pairs.
This thesis also demonstrates an example that attackers can easily find meaningful
messages among those 232 valid message-MAC pairs. By a well-designed scenario,
attackers can apply the linear forgery attack to the real system. This practical attack
makes the linear forgery attack more serious than existing attacks.

2. Security Proof of Almost XOR Universal MAC and EIA1: The security proof of
Almost XOR Universal (AXU) MAC left a gap between the AXU property and the
probability of substitution forgery attacks. We fix this flaw, and show AXU MAC is
secure under certain attack model. EIA1 as an AXU MAC is secure under this attack
model. In addition, we consider the security of EIA1 under other attack models. This
is the first time that EIA1 is examined under different models.

3. Improvement of EIA1: We point out several implementation flaws of EIA1 official
implementation, and improve the official implementation by optimizing the multipli-
cation over the finite field. Moreover, we introduce an efficient polynomial evalua-
tion algorithm into EIA1 to make it faster than the official implementation using the
Horner’s Rule.
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4. Security Proof of TUAK: TUAK is a new algorithm set. The security proof pre-
sented in this thesis is the first study on its security. This thesis considers the MAC
algorithm and key derivation functions (KDFs) in TUAK, and proves the security of
each algorithm. Based on the Keccak’s main document, this thesis suggests a tiny
modification to TUAK to make it more secure.

5. Multi-Output Filtering Model and Its Applications: The Multi-Output Filtering Model
(MOFM) is originally used in the communication system. We novelly apply it to the
analysis of cryptographic primitives for the first time. This model utilizes LFSR as
input, and arbitrary cryptographic primitive as the filtering function. By experiment,
the MOFM may reveal some randomness of the primitive. For example, we test the
linear complexities and algebra degrees of four primitives in this thesis. To test the
linear complexity, we take the output as sequences, and compute the linear complex-
ity for each component sequence. The distribution of the linear complexity shows
differences between different primitives. For the algebra degree, we take the four
primitives as vector Boolean functions, and compute the degree of each component
function.

6. MAC Designs: The contribution is twofold. The first called WGIA-128 is a variant
of EIA1. WGIA-128 replaces the addition over finite filed used in EIA1 with the
addition over ring, which makes WGIA-128 resist the linear forgery attack. The
second is AMAC, which is MAC based on APN functions. There exist many MAC
constructions based on APN functions. However, all the existing works can deal the
fixed-length message only. AMAC is the first F∗2-to-Fm

2 MAC, like CBC-MAC or
HMAC, based on APN functions. There are two different constructions of AMAC,
and both have security proofs. The efficiency of AMAC is better than EIA1.

1.6 Organization

This thesis is organized as follows. Chapter 2 introduces the preliminaries, including the
notations, definitions, etc. Chapter 3 presents a forgery attack on EIA1. This attack
exploits the linear structure of EIA1. Inspired by the attack in Chapter 3, Chapter 4 ana-
lyzes the security of EIA1 under different security models. Moreover, the implementation
of EIA1 is improved by importing an efficient polynomial evaluation algorithm, which is
better than Horner’s Rule. The next two chapters (5 and 6) discuss another set of authen-
tication and message authentication methods used in the 4G LTE system. The algorithm
set, very recently proposed by Vodafone, is called TUAK. Chapter 5 is the security proof
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of TUAK as MAC and KDF. Chapter 6 introduces a new analysis method called Multi-
Output Filtering Model (MOFM), which is applied to TUAK later in this chapter. Chapter
7 presents two new MACs. One, an variant of EIA1, is resistant to the attack we propose
in Chapter 3. The other MAC is based on APN functions. The last chapter, Chapter 8,
concludes this thesis and points out some open problems, which are still unsolved.
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Chapter 2

Preliminaries

This chapter presents the preliminaries of this thesis. Section 2.1 lists all notations used in
the chapters that follow. Section 2.2 introduces three cryptographic primitives: Snow3G,
ZUC, and WG-16. Snow3G and ZUC are both stream ciphers deployed in the 4G LTE
system. They are the underlying ciphers of EIA1 and EIA3, two MACs discussed in this
thesis. WG-16 is another stream cipher. Because one of our MAC designs is based on WG-
16 (using its uniform distribution property), we demonstrate it in this chapter. Section 2.4
presents the concept of universal hash families, including universal and almost universal
hash, strongly universal and almost strongly universal hash, and almost xor universal hash.

2.1 Notations

Table 2.1 lists the notations used in this thesis.

2.2 Underlying Ciphers

In this section, we present three stream ciphers: Snow3G, ZUC, and WG-16. The first
two are the underlying ciphers of EIA1 and EIA3, respectively. We introduce them here
because their structures can help us to understand the performance of EIA1 and EIA3
in Chapter 7. WG-16 is another stream cipher, and is the cipher underlying the MAC
proposed in this research. To understand the security proof of this MAC, we demonstrate
WG-16 and its properties in this section.
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Notations Explanation
GF (pn) or Fpn The Galois Field with pn elements,

where p is a prime.
Fn

2 The n-dimensional vector space over F2.
232 232

Trnm(x) The trace function, which maps element from Fqn to Fqm .
Tr(x) The absolute trace, which maps element to the ground field.

M = {M0, · · · ,Ml−1}, M is a vector over F2n .
where Mi ∈ F2n , for 0 ≤ i < l
⊕ The XOR operator.
a + b The addition over a Galois Field.
a, b ∈ F2n

a + b The integer addition.
a, b ∈ Z
a · b or ab The multiplication over a Galois Field.
a, b ∈ F2n Without ambiguity, the “·” can be removed.
a ∗ b or a× b The integer multiplication.
a||b Concatenation of a and b.

a
$← A, where A is a set. a is randomly selected from A.

Table 2.1: Notations
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2.2.1 Snow3G and ZUC

Snow3G

s10 s9 s8 s7 s6 s5 s4 s3 s2 s1s15 s14 s13 s12 s11 s0

R1 R2 R3
S1 S2

α−1 α

Zt

Figure 2.1: Snow3G

Snow3G [2] is composed of a 16-stage linear feedback shift register (LFSR) and a finite
state machine (FSM). Since each register of the LFSR can hold 32 bits, the operation
of the LFSR is defined over GF (232). To define GF (232), we first define GF (28) by the
polynomial g1(x) = x8+x7+x5+x3+1 over GF (2). Then we extend GF (28) to GF (232) by
the polynomial g2(x) = x4 +β23x3 +β245x2 +β48x+β239 over GF (28), where β ∈ GF (28) is
the root of g1(x). The feedback polynomial of this LFSR is f(x) = αx16 +x14 +α−1x5 + 1,
where α ∈ GF (232) is the root of g2(x). The FSM is composed of three 32-bit registers
and two S-boxes. These two S-boxes, called S1 and S2, map 32 bits to 32 bits. S1 and
S2 are made of four juxtaposed 8-bit S-boxes, which rely on the Rijndael S-box, Dickson
polynomial, and MixColumn operation. Notice that Snow3G combines the addition in
GF (232) together with the integer modular addition. To balance the key stream, the
output of FSM is masked by the register s0. From the description above, we can see that
Snow3G is a kind of nonlinear filter generator. The key stream is generated by passing the
internal states of the LFSR through a nonlinear filtering function.

In the evaluation report on Snow3G [1], the authors proved only the period of the key
stream generated by Snow3G, but no other randomness properties, such as k-tuple distri-
bution, run distribution, etc. They also showed some properties of S-boxes and claimed
that Snow3G resists distinguishing attacks and algebraic attacks. At the end of the evalu-
ation report, the authors compared Snow3G with Kasumi and indicated that Snow3G has
better throughput than Kasumi.

19



ZUC

s10 s9 s8 s7 s6 s5 s4 s3 s2 s1s15 s14 s13 s12 s11 s0
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L16
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Figure 2.2: ZUC

Similar to Snow3G, ZUC [7] is a nonlinear filtering generator as well. It also has a
16-stage LFSR and a FSM. However, the operation of the LFSR is defined over a prime
field GF (231 − 1) (Snow3G is defined over GF (232)). Thus, each register has only 31 bits.
The feedback polynomial is f(x) = 215x15 + 217x13 + 221x10 + 220x4 + 28 + 1. Because the
registers of the LFSR are 31 bits each, which is not a power of 2, a bit reorganization layer
is placed between the LFSR and the FSM in order to make each word 32 bits. The FSM
has two 32-bit registers, which hold the intermediate states of the FSM. The nonlinear
layer of the FSM is made up of the Rijndael S-box, Dickson polynomial, MixColumn, and
ShiftRow.
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2.2.2 WG-16

WG-16 is an efficient variant of the WG stream cipher family with 128-bit secret key and
128-bit initial vector (IV). It consists of a 32-stage LFSR with the feedback polynomial
l(x) followed by a WG-16 transformation module with decimation d = 1057. Therefore,
it can be regarded as a nonlinear filter generator over finite field F216 . WG-16 operates in
two phases, namely an initialization phase and a running phase.

Initialization Phase

16

WGP-16(x1057) WGP-16(x1057): WG-16 Permutation Module with Decimation d = 1057

⊕
⊕

S0S1S2S15S16S30S31

ω2743

16 16

16 1616

· · · S17S29 · · ·· · · S6S7S8

⊕
16

16 ⊗ 16⊕
S24S25

16

S26 · · ·

16

Figure 2.3: The Initialization Phase of the Stream Cipher WG-16
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WGT-16(x1057): WG-16 Transformation Module with Decimation d = 1057

WGP-16(x1057): WG-16 Permutation Module with Decimation d = 1057

Tr(·): Trace Computation Module
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⊕
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· · · S17S29 · · ·· · · S6S7S8

⊕
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16 ⊗ 16⊕
S24S25

16

S26 · · ·

Figure 2.4: The Running Phase of the Stream Cipher WG-16

The key/IV initialization phase of WG-16 is illustrated in Fig. 2.3. Let the 128-bit secret
key be K = (K127, . . . , K0)2, the 128-bit IV be IV = (IV127, . . . , IV0)2, and the internal
state of the LFSR be S0, . . . , S31 ∈ F216 , where Si = (Si,15, . . . , Si,0)2 for i = 0, . . . , 31. The
key/IV initialization process is conducted below:

Si =

{
(K8i+7, . . . , K8i, IV8i+7, . . . , IV8i)2 i = 0, . . . , 15,
Si−16 i = 16, . . . , 31.

Once the LFSR is loaded with the key/IV, the apparatus runs for 64 clock cycles. During
each clock cycle, the 16-bit internal state S31 is sent to the WG-16 permutation with
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decimation d = 1057 (i.e., the WGP-16(x1057) module) and the output is used as the
nonlinear feedback to update the internal state of the LFSR. The LFSR state update
procedure follows the recursive relation:

Sk+32 =
(
ω2743 ⊗ Sk

)
⊕ Sk+7 ⊕ Sk+16⊕

Sk+25 ⊕WGP-16
(
S1057
k+31

)
, 0 ≤ k < 64.

After the initialization phase, WG-16 starts the running phase and a bit key stream is
generated per clock cycle.

Running Phase

The running phase of WG-16 is shown in Fig. 2.4. During the running phase, the 16-bit
internal state S31 is sent to the WG-16 transformation with decimation d = 1057 (i.e., the
WGT-16(x1057) module) and the output is a bit key stream. Note that the only feedback in
the running phase is within the LFSR and the recursive relation for updating the internal
state of LFSR is given below:

Sk+32 =
(
ω2743 ⊗ Sk

)
⊕ Sk+7 ⊕ Sk+16 ⊕ Sk+25, k ≥ 64.

The WGT-16(x1057) module comprises of two sub-modules: a WG-16 permutation module
WGP-16(x1057) followed by a trace computation module Tr(·). While the WGP-16(x1057)
module permutes elements over F216 , the Tr(·) module compresses a 16-bit input to a bit
key stream.

Randomness Properties of the WG-16 Key stream

The key stream generated by the stream cipher WG-16 has the following desired random-
ness properties [38]:

1. The key stream has a period of 2512 − 1.

2. The key stream is balanced, i.e., the number of 0’s is only one less than the number
of 1’s in one period of the key stream.

3. The key stream is an ideal two-level autocorrelation sequence.

4. The key stream has an ideal t-tuple (1 ≤ t ≤ 32) distribution, i.e., every possible
output t-tuple is equally likely to occur in one period of the key stream.

5. The linear span of the key stream can be determined exactly, which is 279.046.
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2.3 Details of TUAK, EIA1 and EIA3

2.3.1 TUAK

TUAK is an algorithm set for the 3GPP authentication and key derivation functions.
TUAK specification contains the functions TOPc, f1, f ∗1 , f2, f3, f4, f5 and f ∗5 and all of
them are built upon the Keccak-f [1600] permutation. For the convenience, we first list the
following notations, which will be used throughout this thesis. They are the same as those
notations in the specification of TUAK.

- The permutation Keccak-f [1600] is denoted by Π. Throughout this thesis we use Π to
denote the Keccak permutation. According to the design of Π, it accepts an input of size
1600 bits that is represented by IN[0], · · · , IN[1599] and outputs an element of 1600 bits
that is represented by OUT[0], · · · ,OUT[1599];

- TOP is a 128-bit value decided by the operator and used as the input of the TOPc

function;

- ALGONAME is a fixed binary string of 56 bits, whose value can be found in the speci-
fication;

- INSTANCE is a binary variable of 8 bits. It uses to instantiate different functions, TOPC ,
fi’s, f

∗
1 and f ∗5 , in the TUAK algorithm set;

- K denotes the subscriber key;

In the following, we provide a description of each algorithm in TUAK. In this thesis, we
interchangeably use the terms “algorithm” and “function” for the functions in the TUAK
algorithm set.

Description of TOPC

Authentication and key derivation functions of TUAK use the output of TOPC . We provide
a description of the TOPC function. The TOPc function takes a 256-bit value called TOP
(chosen by the operator) and the subscriber key (can be 128 or 256 bits) as inputs (the
other bits are constants), and outputs a 256 bit value TOPc. More precisely, the inputs of
TOPc are assigned as follows:
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- The value of INSTANCE is given by

INSTANCE[0]..INSTANCE[6] = 0, 0, 0, 0, 0, 0, 0;

INSTANCE[7] = 0 if the length of K is 128,

= 1 if the length of K is 256.

- IN[0]..IN[255] = TOP[255]..TOP[0];

- IN[256]..IN[263] = INSTANCE[7]..INSTANCE[0];

- IN[264]..IN[319] = ALGONAME[55]..ALGONAME[0];

- IN[i] = 0, for 320 ≤ i ≤ 511;

- IN[512]..IN[767] = K[255]..K[0] if the length of K is 256 bits;

- IN[512]..IN[639] = K[127]..K[0] if the length of K is 128 bits ;

- IN[i] = 0 for 640 ≤ i ≤ 767 if the length of K is 128 bits ;

- IN[i] = 1 for 768 ≤ i ≤ 772 ;

- IN[i] = 0 for 773 ≤ i ≤ 1086;

- IN[1087] = 1;

- IN[i] = 0 for 1088 ≤ i ≤ 1599.

Figure 2.5 depicts an overview of an input assignment to the TOPC function. The
TOPC function is given by

OUT = Π(INPUT)

with
TOPc[0], .., TOPc[255] = OUT [255], .., OUT [0].
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Figure 2.5: The TOPc function of TUAK

Description of f1

The function f1 is used to generate the MACs. An input of 1600 bits to f1 is constructed by
the following binary strings: TOPc (256 bits, generated by the function TOPc), INSTANCE
(8 bits), ALGONAME (56 bits), RAND (128 bits), AMF (16 bits), SQN (48 bits), and the
subscriber key K (128 or 256 bits). The output value MAC can be 64, 128 and 256 bits.
Precisely:

- The value of INSTANCE is:

INSTANCE[0], INSTANCE[1] = 0, 0

INSTANCE[2]..INSTANCE[4] = 0, 0, 1 if the MAC length is 64 bits

= 0, 1, 0 if the MAC length is 128 bits

= 1, 0, 0 if the MAC length is 256 bits

INSTANCE[5], INSTANCE[6] = 0, 0

INSTANCE[7] = 0 if the length of K is 64 or 128

= 1 if the length of K is 256.

- IN[0]..IN[255] = TOPc[255]..TOPc[0];

- IN[256]..IN[263] = INSTANCE[7]..INSTANCE[0];

- IN[264]..IN[319] = ALGONAME[55]..ALGONAME[0];

- IN[320]..IN[447] = RAND[127]..RAND[0];
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- IN[448]..IN[463] = AMF[15]..AMF[0];

- IN[464]..IN[511] = SQN[47]..SQN[0];

- IN[512]..IN[767] = K[255]..K[0] if the length of K is 256 bits ;

- IN[512]..IN[639] = K[127]..K[0] if the length of K is 128 bits ;

- IN[i] = 0 for 640 ≤ i ≤ 767 if the length of K is 128 bits ;

- IN[i] = 1 for 768 ≤ i ≤ 772;

- IN[i] = 0 for 773 ≤ i ≤ 1086;

- IN[1087] = 1;

- IN[i] = 0 for 1088 ≤ i ≤ 1599.

A high-level overview of the input assignment is provided in Figure 2.6. The MAC function
f1 is defined as

OUT = Π(IN).

The output of f1, i.e. the MAC, can be of length 64, 128, and 256 and is given by

MAC[0]..MAC[63] = OUT[63]..OUT[0], if the MAC length is 64 bits,

MAC[0]..MAC[127] = OUT[127]..OUT[0], if the MAC length is 128 bits,

MAC[0]..MAC[255] = OUT[255]..OUT[0], if the MAC length is 256 bits.

Description of f2 to f5

The f2 function is used to generate a response (RES) over a random number, a sequence
number (SQN), and an AMF for a fixed key. The f3, f4 and f5 functions are used to generate
a cipher key (CK), an integrity key (IK) and an anonymity key (AK), respectively for a
random number. The input assignment of these functions are given below.
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Figure 2.6: The f1 function of TUAK for generating MAC

- The value of INSTANCE is:

INSTANCE[0], INSTANCE[1] = 0, 1

INSTANCE[2]..INSTANCE[4] = 0, 0, 0 if the RES length is 32 bits

= 0, 0, 1 if the RES length is 64 bits

= 0, 1, 0 if the RES length is 128 bits

= 1, 0, 0 if the RES length is 256 bits

INSTANCE[5] = 0 if the length of CK is 128 bits

= 1 if the length of CK is 256 bits

INSTANCE[6] = 0 if the length of IK is 128 bits

= 1 if the length of IK is 256 bits

INSTANCE[7] = 0 if the length of K is 128 bits

= 1 if the length of K is 256 bits.

- IN[0]..IN[255] = TOPc[255]..TOPc[0];

- IN[256]..IN[263] = INSTANCE[7]..INSTANCE[0];

- IN[264]..IN[319] = ALGONAME[55]..ALGONAME[0];

- IN[320]..IN[447] = RAND[127]..RAND[0];

- IN[i] = 0, 448 ≤ i ≤ 511;

- IN[512]..IN[767] = K[255]..K[0] if the length of K is 256 bits ;
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- IN[512]..IN[639] = K[127]..K[0] if the length of K is 128 bits ;

- IN[i] = 0 for 640 ≤ i ≤ 767 if the length of K is 128 bits ;

- IN[i] = 1 for 768 ≤ i ≤ 772;

- IN[i] = 0 for 773 ≤ i ≤ 1086;

- IN[1087] = 1;

- IN[i] = 0 for 1088 ≤ i ≤ 1599.

On receiving the input INPUT, the outputs of f2 − f5 and f ∗5 are calculated as follows

OUT = Π(INPUT).

The output of f2 = RES, where:

RES[0]..RES[31] = OUT[31]..OUT[0] if the RES length is 32 bits

RES[0]..RES[63] = OUT[63]..OUT[0] if the RES length is 64 bits

RES[0]..RES[127] = OUT[127]..OUT[0] if the RES length is 128 bits

RES[0]..RES[255] = OUT[255]..OUT[0] if the RES length is 256 bits

The output of f3 = CK, where:

CK[0]..CK[127] = OUT[383]..OUT[256] if the CK length is 128 bits

CK[0]..CK[255] = OUT[511]..OUT[256] if the CK length is 256 bits

The output of f4 = IK, where:

IK[0]..IK[127] = OUT[639]..OUT[512] if the IK length is 128 bits

IK[0]..IK[255] = OUT[767]..OUT[512] if the IK length is 256 bits

The output of f5 = AK, where:

AK[0]..AK[47] = OUT[815]..OUT[768]
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Description of f ∗5

For the f ∗5 function, the INSTANCE is given by

INSTANCE[0], INSTANCE[1] = 1, 1

INSTANCE[2], ..., INSTANCE[6] = 0, 0, 0, 0, 0

INSTANCE[7] = 0 if the length of K is 128 bits

= 1 if the length of K is 256 bits.

The assignment of INPUT is the same as the input assignment of f2 − f5 with the above
INSTANCE and the following changes

IN[257] = 0, IN[258] = 0, IN[259] = 0, IN[260] = 0, IN[261] = 0, IN[263] = 1.

The output of f ∗5 is given by
OUT = Π(INPUT)

where

AK[0]..AK[47] = OUT[815]..OUT[768].

Different algorithms of TUAK produce outputs of different lengths. We denote by fi-M
the fi function/algorithm with output M bits.

2.3.2 EIA1

Figure 2.7 shows the structure of EIA1. P,Q ∈ GF (264) and OTP ∈ GF (232) are generated
by Snow3G.

...
Truncate

M0 M1 Mn-1 LEN Q

P

OTP

OUTPUT

Figure 2.7: EIA1
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According to Figure 2.7, the MAC of the message

M = {M0, · · · ,Mn−1}, where Mi ∈ GF (264),

is given by [
(
n−1∑
i=0

P n−iMi + LEN)Q
]
Truncate

+OTP, (2.1)

where LEN is an element in GF (264). By the specification [3], “Truncate” means cutting
the least significant 32 bits and leaving the most significant 32 bits. Specifically, if H ∈
GF (264) and H = h1||h0, where h0 and h1 are the least significant and the most significant
32 bits respectively, Truncate(H) = h1.

Lemma 1. Let p(x) = x2 + ax + b be the defining polynomial of GF (264) over GF (232),
where a, b ∈ GF (232). Then

Truncate(H) = Tr64
32(H)a−1,

where Tr64
32(x) = x232 + x is the trace function from GF (264) to GF (232).

Proof. Let α be a root of p(x) over GF (264). Thus we have

α2 + aα = b. (2.2)

Let H = h1 + h2α. Since h1, h2 ∈ GF (232),

Tr64
32(H) = h1 + h2α

232 + h1 + h2α = h2(α232 + α).

Because of Eqn.(2.2), (α
a

)2

+
α

a
=

b

a2(α
a

)4

+
(α
a

)2

=

(
b

a2

)2

· · ·(α
a

)232

+
(α
a

)231

=

(
b

a2

)231

Sum the equations above together, we have(α
a

)232

+
α

a
= Tr

(
b

a2

)
.
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Because x2 + ax+ b has no roots over GF (232), it is easy to prove that Tr
(

b
a2

)
= 1. Thus,

α232 + α = a.

Therefore,
Truncate(H)a = Tr64

32(H).

Since a 6= 0,
Truncate(H) = Tr64

32(H)a−1.

By Lemma 1, Eqn.(2.1) can be written in a mathematical way, which is easier to
analyze.

Tr64
32

(
(
n−1∑
i=0

P n−iMi + LEN)Q
)
a−1 +OTP.

2.3.3 EIA3

M [0]

Z0

M [1]

Z1

M [n− 1]

Zn−1...

ZLEN Z32∗(L−1)

OUTPUT

Figure 2.8: EIA3: based on ZUC

Originally, ZUC is not in the UMTS standard. It is added to the standard after the
system migrates to LTE. The integrity protection based on ZUC is EIA3 [6]. EIA3 borrows
the idea of Krawczyk [73], which uses shifted key streams to generate the MAC. In Figure
2.8, M [i] is the i-th bit of message, and Zi is the i-th word of the key stream generated by
ZUC. Assume the key stream generated by ZUC is

Z = (Z[0], Z[1], · · · , Z[32 ∗ L− 1]),
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where each Z[i] is a bit. Then, Zi is defined by

Zi = (Z[i], Z[i+ 1], · · · , Z[i+ 31]).

EIA3 pads every message with a“1”. Z32∗(L−1) is the mask to encrypt the intermediate tag.
L is equal to dLENGTH/32e+ 2.

A mathematical expression of Figure 2.8 is given by

MAC(M) =
n−1∑
i=0

M [i]zi︸ ︷︷ ︸
part1

+ zLENGTH + z32∗(L−1)︸ ︷︷ ︸
part2

,

The main observation of EIA3 is that Part 1 is a linear operation and Part 2 is a constant
if the length is fixed.

2.4 Universal Hash Functions and APN Functions

We use the definitions of δ function and universal2 hash function in Carter and Wegman’s
work [36] to illustrate the concept of universal hash function family.

Definition 1. Let H be a hash function family. ∀f ∈ H, f : A 7→ B. Define δf (x, y) as
follows.

δf (x, y) =

{
1 x 6= y and f(x) = f(y)

0 otherwise
,

where x, y ∈ A. Define δH(x, y) using δf (x, y).

δH(x, y) =
∑
f∈H

δf (x, y).

Definition 2. Let H be a class of hash functions from A to B. We say that H is universal2
if ∀x, y ∈ A, δH(x, y) ≤ |H|/|B|. That is, H is universal2 if no pair of distinct keys collide
under more than 1/|B|-th of functions.

Carter and Wegman explained the subscript “2” as the intention to emphasize that
the definition constrains the behaviour of H only on pairs of elements in A. Carter and
Wegman defined the strongly universaln and strongly universalω hash function families in
another paper [109].
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Definition 3. Suppose H is a set of hash functions, each element of H being a function
from A to B. H is strongly universaln if given any n distinct elements a0, · · · , an−1 of
A and any n (not necessarily distinct) elements b0, · · · , bn−1 of B, then |H|/(|B|n) func-
tions take a0 to b0, a1 to b1, etc. A set of hash functions is strongly universalω if it is
strongly universaln for all values of n.

Nevelsteen et al. formalized the definitions of Almost Universal (AU) hash function
and Almost Strongly Universal (ASU) hash function based on the definitions proposed by
Stinson [103] in their paper [90]. Besides, they also formalized the concept of Almost Xor
Universal (AXU) hash function based on the definition in Krawczyk’s paper [73].

Definition 4. Let ε be any positive real number. An ε-almost universal family (or ε-AU
family) H of hash functions from a set A to a set B is a family of functions from A to B
such that for any distinct elements x, x′ ∈ A

|{h ∈ H : h(x) = h(x′)}| = δH(x, x′) ≤ ε · |H|.
Definition 5. Let ε be any positive real number. An ε-almost strongly universal family (or
ε-ASU family) H of hash functions from a set A to a set B is a family of functions from
A to B such that

• for every x ∈ A and for every y ∈ B, |{h ∈ H : h(x) = y}| = |H|/|B|,
• for every x1, x2 ∈ A (x1 6= x2) and for every y1, y2 ∈ B(y1 6= y2), |{h ∈ H : h(x1) =
y1, h(x2) = y2}| ≤ ε · |H|/|B|.

Definition 6. Let ε be any positive real number. An ε-almost XOR universal family (or
ε-AXU family) H of hash functions from a set A to a set B is a family of functions from
A to B such that for any distinct elements x, x′ ∈ A and for any b ∈ B

|{h ∈ H : h(x) + h(x′) = b}| ≤ ε · |H|.

Without ambiguity, we sometimes use AXU hash function to indicate the AXU hash
function family throughout this thesis.

McGrew and Viega defined a class of message authentication code called Almost Xor
Universal MAC (AUX-MAC) [82] based on AXU hash function family.

Definition 7. A message authentication code is called ε-AXU MAC if it is defined as

MAC = H(K,M) +R(N),

where K is the key; M is the message; N is the nonce; H is a ε-AXU hash function, and
R is a random function.
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When discussing the security of a message authentication code, Krawczyk proposed a
concept called ε-otp-secure [73]. Before the definition, he proposed a secure model.

Secure model: Let M be a message of length m authenticated with the tag t = h(M)+r,

where h
$← H and r

$← {0, 1}n. We say that an adversary that sees M and t succeeds
in breaking the authentication if it find M’ and t′, where M’ is different than M and
t′ = h(M′) + r. We assume that the adversary knows the family of hash functions, but not
the particular value of h or the pad r.

Definition 8. A family H of hash functions is called ε-otp-secure if for any message M
no adversary succeeds in the above scenario with probability larger than ε.

Simmons defined two kinds of forgery attacks. Here we borrow the definition in [103].

Definition 9. When an opponent places a new message m′ = (s′, a′), where s′ is the
source state, and a′ is the authenticator, this is called impersonation forgery. When
the opponent sees a message m = (s, a) and changes it to a message m′ = (s′, a′) where
s 6= s′, this is called substitution forgery.

Note that the impersonation forgery means the opponent can forge a message-MAC pair
without accessing to the oracle. The substitution forgery means the opponent accesses to
the oracle once, and then forge a message-MAC pair.

The AXU property is quite similar to the definition of the APN function, which is
defined as follows.

Definition 10. Let f(x) : F2n 7→ F2n. For any a, b ∈ F2n, we denote

δ(a, b) = #{x ∈ F2n : f(x) + f(x+ a) = b}.

If
max

a6=0,b∈F2n
δ(a, b) = 2,

the function f(x) is called an almost perfect nonlinear (APN) function.

Thus, it is straightforward that the APN function can be applied to the AXU MAC.
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Chapter 3

Linear Forgery Attack on EIA1

EIA1 has been proved to be a 2−32 + L × 2−64-AXU MAC. Thus, the theoretical success
rate of the substitution forgery attack is upper bounded by 2−32 +L× 2−64. If we consider
the security proof of the AXU MAC in Krawczyk’s work [73], which will be discussed in
the next chapter, there is a very strong assumption that the proof needs a one-time pad.
However, as we all know, a one-time pad is not realistic in real systems. Therefore, this
assumption has been criticized. For example, several researchers have proposed a concept
called the robust authenticated-encryption scheme. According to Hoang, Krovetz and
Rogaway, the “robust authenticated-encryption scheme [is] a new and very strong notion
that implies protection of the privacy and authenticity of M and the authenticity of N
and A, and must do so to the maximal extent possible even if nonces get reused (‘misuse
resistance’).” [64]

Several recent works have focused on this property called “misuse resistance” [95]. Since
the most significant misuse of AE schemes is the repetition of the nonce, most of misuse-
resistant schemes are designed to provide some level of security when the nonce is repeated.
The first scheme, called deterministic authenticated-encryption (DAE) [95], is proposed
by Rogaway and Shrimpton. The very recent work is AEZ [64]. When misuse-resistant
schemes are used improperly, the security levels of these schemes drop from the optimal
levels to lower levels. Compared with misuse-resistant schemes, the ordinary schemes have
no security at all when misuse occurs.

Since misuse can hardly be avoided, it is quite interesting to see what will happen to
the ordinary schemes, when the nonce is repeated. Thus, in this chapter, we reveal some
issues of the integrity protection of the 4G LTE system, when the nonce is repeated.

The linear structures of EIA1 and EIA3 enable us to forge a valid MAC if we know two
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MACs generated by the same IV and IK. Note that the repetition of (IV, IK) is a kind
of misuse. On top of such facts, we develop a method, by which we can forge up to 232

valid MACs with two known valid MACs. Since we have 232 valid MAC-message pairs,
the probability of finding a pair with a valid MAC and valid message is quite significant.
Statistically, there is more than one meaningful pair among those 232 pairs. For brute-force
attacks, the probability of finding the valid MAC of a message is 1/232, but the message is
not guaranteed to be valid (meaningful). Now the probability that we will get a meaningful
MAC-message pair is increased to more than 1/232. In fact, finding the parameter that can
generate a meaningful pair is much easier in practice, because the messages usually have
some specific structures, which may shrink the search space. In addition, such an attack
aims not only at EIA1 and EIA3 but also at general polynomial MACs.

To prove that our linear forgery attack is doable, we create a scenario from which our
attack can be launched. This scenario is based on the observation that the authentication
of LTE is not really mutual, although it is claimed to be a mutual authentication. In
EPS-AKA (the AKA procedure of LTE) only the server sends a challenge to a client.
Checking the response of the challenge, the server can authenticate clients. Nevertheless, a
client does not challenge the server. Thus, it can only authenticate the server by checking
the MAC of the authentication vector. Such a protocol leaves a hole for replay attacks.
Usually, replay attacks on EPS-AKA cannot obtain any information. However, because of
our attack, the replay attack makes the forgery possible.

The rest of this chapter is organized as follows. Section 3.1 introduces how to synchro-
nize the initial vector (IV) of the underlying cipher, and how to derive the integrity key
(IK) in LTE. Section 3.2 presents certain security issues of EIA1 and EIA3, and proposes
a forgery attack on EIA1 and EIA3. Since the attack makes use of the linearity of MACs,
we call it a linear forgery attack. Section 3.3 describes a scenario from which the linear
forgery attack can be launched in practice, and shows some experimental results obtained
from the attack.

3.1 IV Synchronization Mechanism and Derivation of

IK

EIA1, EIA2 and EIA3 synchronize IVs in the same way. As required by the EIA family,
COUNT −I and FRESH are inputted as parameters to form IV of the underlying cipher.
FRESH is a random number transmitted by the network to the UE during the security
mode set-up procedure. COUNT − I is a counter that records how many times IK has
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already been used previously. This counter consists of two parts, RRC SQN and hyper
frame number (HFN). RRC SQN is the sequence number of the radio resource control com-
mands, and increases every time a package is sent, whether successfully or unsuccessfully.
When RRC SQN overflows, HFN increases. COUNT − I and FRESH together are used
to help the system prevent replay attacks.

COUNT − I is written in the header of each package to synchronize the counters of
the transmitter and receiver named COUNTERtx and COUNTERrx, respectively. The
transmitter uses COUNTERtx as the value of its COUNT − I, and then generates a key
stream. When the receiver receives a package, the value of COUNT − I is compared with
the value of COUNTERrx. If the value of COUNT − I is greater than COUNTERrx,
the received COUNT − I together with FRESH are used to form IV, and the value of
COUNTERrx is replaced by the received COUNT − I. Then, the key stream generated
using this IV is used to verify the MAC. If the value of COUNT − I is smaller than
COUNTERrx, this package will be treated as a repeated package and disregarded.

IK is derived in EPS-AKA. To prevent replay attacks, EPS-AKA needs SQN to identify
those replayed messages. This SQN is different from RRC SQN mentioned before. RRC
SQN is the sequence number of RRC commands, and SQN is the sequence number of the
AKA procedure. At the beginning of each session (a session means the duration between
two AKAs), RRC SQN will be set to an initial value. Compared with RRC SQN, SQN is
used in the AKA procedure, and at the beginning of each session, SQN continues with the
value of the last session. Therefore, both UEs (precisely USIMs) and the AuC record the
SQN of the last session. In order to conduct the replayed AKA in our attack, we need to
make SQN wrap around.

The documents of 3GPP do not specify the implementation of SQN, because it does
not affect the interoperability. USIM and AuC belong to the same operator, which by itself
can decide the implementation SQN. Thus, specification of SQN in the standard is not nec-
essary. Instead, 3GPP provides only some suggestions and recommended implementation
examples.

Here, we present one recommended implementation in TS33.102 [8], which is called
Profile 2. SQN has two portions, SEQ and IND. Each subscriber has an individual SEQ
counter on the AuC’s side. On the subscriber’s side, SEQ of the last session is stored in
USIM. For the purpose of description, we call the value stored on the user’s side SEQMS,
and we call the SEQ stored on the AuC’s side SEQHE. To store the value of SEQ, both
AuC and USIM have an array, whose size is 2LEN(IND), where LEN(IND) represents
the length of IND. Let us take the array on UE’s side as an example to illustrate the
verification of SQN. Denote the i-th slot of SEQMS as SEQMS[i]. After the received
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authentication vector passes the verification of MAC and SQN, the new SEQ goes into
this array in the following way. Assume the the values of the received SEQ and IND are
SEQ0 and IND0. SEQ0 is written to the IND0-th slot (SEQMS[IND0]). In the next
AKA procedure, assume the received SEQ and IND are SEQ1 and IND1. To verify SQN,
USIM retrieves SEQMS[IND1] from the IND1-th slot. If SEQ1 > SEQMS[IND1] and
SEQ1 < SEQMS[IND1]+∆, this SQN will be accepted, where ∆ is the variable to prevent
SQN from wrapping around. Otherwise, USIM will send an AUTS to resynchronize.

As mentioned in the introduction, AuC generates a batch of AVs and sends them to
MME in each AKA procedure. Because of the traffic delay, those vectors may arrive at
MME out of order. However, since USIM maintains an array to record SEQ, such disorder
will not cause rejection of a valid AV. For example, {AVi|0 ≤ i < n} is received in the order
of {AVi0 , AVi1 , · · · , AVin−1}. They have the same SEQ but different INDs. When USIM
receives AVi with SQNi, it writes SEQi into the INDi-th slot. In the next session, USIM
receives AVj with SQNj, where SEQj = SEsQi. However, since INDj 6= INDi, and the
value in INDj-th slot should be smaller than SEQj (assuming no errors or attacks occur),
then USIM can accept SQNj. The length of IND affects how many AVs can be delivered
from AuC to MME each time.

Profile 2 in Appendix C.3.2 of TS33.102 suggests that the lengths of SEQ and IND are
43-bit and 5-bit, respectively. The recommended value of ∆ is 228.

3.2 Security Issue of EIA1 and EIA3

We present our work in this section. Compared with other works before, our attack is more
practical. We need only two valid message-MAC pairs to forge another valid message-MAC
pair.

3.2.1 Quasi-Linearity Property of EIA1 and EIA3

Let M = (M0,M1, · · · ,Mn−1), whereMi is a 64-bit vector, treated as an element inGF (q2),
which is defined by a primitive polynomial t(x) = x64 + x4 + x3 + x + 1. Let α be a root
of t(x) in GF (q2), and let β = α232+1. Then β is a primitive element of GF (q), a subfield
of GF (q2). The minimal polynomial of α over GF (q) is given by

t1(x) = x2 + ux+ v,
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where u = β17, v = β. Then each element in GF (q2) can be represented as a + bα,
a, b ∈ GF (q). We define

f(M, P ) =
n∑

i=1

Mn−iP
i, for P ∈ GF (q2), Mi ∈ GF (q2).

Property 1. For any λ ∈ GF (q), a subfield of GF (q2),

M1 = (M1,0,M1,1, · · · ,M1,n−1)

M2 = (M2,0,M2,1, · · · ,M2,n−1),

then

f(M1 + M2, P ) = f(M1, P ) + f(M2, P ) (3.1)

f(λM, P ) = λf(M, P ). (3.2)

Proof. According to the definition of f(M, P ), we have

f(M1 + M2, P ) =
n∑

i=1

(M1,n−i +M2,n−i)P
i

=
n∑

i=1

M1,n−iP
i +

n∑
i=1

M2,n−iP
i

= f(M1, P ) + f(M2, P ).

f(λM, P ) =
n∑

i=1

(λMn−i)P
i

= λ
n∑

i=1

Mn−iP
i = λf(M, P ).

Thus, the assertions are true.

We have the MAC of M generated by EIA1 as

MAC(M) = [Q · f(M, P )]0..31 + [Length ·Q]0..31 +OTP

Let Q · f(M, P ) = a + bα, Length · Q = c + dα, a, b, c, and d ∈ GF (q). From the MAC
generation of EIA1 introduced in Section 2.3 and Property 1, the following result follows
immediately.
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Property 2. For any λ ∈ GF (q),

MAC(M) = a+ c+OTP (3.3)

MAC(λM) = λa+ c+OTP. (3.4)

EIA3 can be equivalent to a polynomial evaluation based MAC. Then the linear forgery
attack can be directly applied to it.

3.2.2 Linear Forgery Attack Algorithm

Assume that we can make three queries to a MAC oracle to obtain MACs of the messages
Mi, for i = 1, 2, 3, under the same IV. Let

Q · f(Mi, P ) = ai + biα, ai, bi ∈ GF (q). (3.5)

Theorem 1. Let (i, j, k) be a permutation of (1, 2, 3). For any λ ∈ GF (q)

MAC(Mnew) = λ(MAC(Mi) +MAC(Mj)) +MAC(Mk) (3.6)

which is a valid MAC value of the message

Mnew = λ(Mi + Mj) + Mk.

Proof. Since the proofs for the other cases are similar, we give a proof only for (i, j, k) =
(1, 2, 3). In order to prove (3.6), we compute both sides of (3.6). According to Properties
1 and 2

MAC(Mnew) = λ(a1 + a2) + a3 + c+OTP. (3.7)

On the other hand,

λ(MAC(M1) +MAC(M2))) +MAC(M3)

= λ(a1 + c+OTP + a2 + c+OTP ) + a3 + c+OTP

= λ(a1 + a2) + a3 + c+OTP. (3.8)

The assertion follows from (3.7) and (3.8).

From (3.6), we have the following corollary.
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Corollary 1. Let (i, j) be a permutation of (1, 2), and k ∈ (1, 2). For any λ ∈ GF (q),
(3.6) is true. In other words, if we have the valid MACs from two queries, then

MAC(λ(M1 + M2) + M1)

= λ(MAC(M1) +MAC(M2)) +MAC(M1)

MAC(λ(M1 + M2) + M2)

= λ(MAC(M1) +MAC(M2)) +MAC(M2)

are valid.

From Corollary 1, we need only two valid MACs to forge a new one. In practice, we
can reduce the number of queries by applying Corollary 1. Obtaining two valid MACs
generated by the same IV is much easier than obtaining three.

The algorithm that can forge a valid MAC using two known valid MACs is shown
in Algorithm 1, where findλ() is a function that returns a λ ∈ GF (q) such that either
λ(M1 + M2) + M1 or λ(M1 + M2) + M2 is a valid message. How to find λ, such that the
message is also valid, is discussed in Section 3.2.3.

Algorithm 1: Linear forgery

Data: two messages M1, M2, and the MACs of these two messages MAC(M1),
MAC(M2)

Result: one message and its valid MAC
λ = findλ();
temp = λ(M1 + M2);
if temp + M1 is a valid message then

Mnew = temp + M1;
MAC(Mnew) = λ(MAC(M1) +MAC(M2)) +MAC(M1);

else
Mnew = temp + M2;
MAC(Mnew) = λ(MAC(M1) +MAC(M2)) +MAC(M2);

end
return MAC(Mnew) and Mnew;

Remark 1. The length of the MAC generated by EIA family is 32-bit. An attacker can
randomly select 32 bits to forge the MAC of a message; the success probability is 1/232.

41



However, if the attacker can make two queries to obtain two valid MACs, then he can forge
232 messages with valid MACs. In Section 3.3, we will demonstrate how the attacker can
obtain two valid MACs in practice.

3.2.3 How To Find λ

We randomly pick a λ, then we can forge a MAC of a message. However, this message
may not be a meaningful message of a protocol. Thus, the problem is how to find a λ that
can generate the MAC of a meaningful message.

Usually, in a real system, the two queried messages have certain relationship, which
let us easily find a λ. Take counter check message as an example. Two counter check
messages have very similar structures. Therefore, most bits in the XOR of two counter
check messages are zeros. The only bits that we need to consider are those nonzero bits,
which are minority in the result of XOR.

Moreover, even we cannot find the valid message, our linear forgery attack can still
cause Denial-of-Service (DoS) attacks. Because the MAC is valid, every time the receiver
must do the decoding and then finds the message is not well formatted. Note that simply
flipping bits can also be a DoS attack, by which the server will stop after verifying the
MAC. However, our attack can make the server keep computing until the message is de-
coded. Therefore, the computational resource will be occupied by verifying and decoding.
Compared with flipping bits, our attack brings more computation to the server.

3.3 Application

In this section, we design a scenario, in which the same IV and IK will occur twice. Because
of the repetition, our linear forgery attack can be launched to get the valid MAC.

3.3.1 A Scenario of Fixing IV

The procedure that make the same (IV, IK) combination happen twice in two consecutive
sessions is essentially a replay attack. Without ambiguity, we call this procedure a replay
attack. Figure 3.1 demonstrates the replay attack by which we can make the same RRC
SQN and IK occur twice in two different sessions. The repetition of IK leads to the
consequence that FRESH is repeated in two sessions. Since IV is composed of RRC SQN
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Get MAC2

Forge

Restore the communication at point A

Figure 3.1: Fixing IV
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and FRESH, IV is repeated as well. The same (IV, IK) combination in two consecutive
sessions determines the same initial states of the underlying stream cipher, which will
generate the same key stream in two different sessions, consequently. The preconditions of
this replay attack are: (1) we can set up the man-in-the-middle (MITM), and (2) there is
a malware on the phone that can shut down and turn on the radio. Perez et al. [94] show
that Condition (1) is applicable. Condition (2) is also easy to be satisfied. We can choose
the Android smart phone to be our target because Android is an open platform, and is
widely used around the world.

The whole replay attack procedure is described as follows. First, the MITM attacker
records all user data messages and control messages, including the authentication and key
agreement messages. When this attacker observes the package he wants to forge, he shuts
down the radio of the victim and then turns it on. The MITM attacker uses the recorded
AKA messages to conduct a replay attack. In the AKA protocol, mobile devices are not
required to verify whether the random number has been received before or not. They
only check the freshness of SQN. However, in some cases, we can make SQN wrap around
(the details are shown in full version of our paper [110]). Thus, the victim believes it is
talking with the real base station. Notice that the EPS-AKA is claimed to be mutually
authenticated. The UE proves its identity to the MME by replying to the challenge from
the MME. However, the UE does not send any challenges to the MME. The UE can verify
the MME only by checking the MAC of the authentication vector. The random number
in the authentication vector can make sure each authentication vector is unique. However,
the UE cannot record all random numbers it received before. This enables the replay
attack. Such attack makes the UE accept the fake MME. Generally, the attacker can get
nothing from the replay attack, because he still cannot get the key. But in our case, we do
not care about the key. The only thing we care about is the RRC SQN. As long as we get
two identical RRC SQNs with the same IK, we can launch our linear forgery attack.

Upon the victim accepts the random number, it generates the same IK, which is also
used in the session suspended by the attacker. When the victim believes the attacker is the
real MME, it begins to send packages. The attacker replies with the previously recorded
packages. The victim may accept or reject those packages, but it does not matter, because
the only target for the attacker is to increase the victim’s counter until the RRC SQN
reaches the recorded value.

As long as we get the sequence number that we want, the MITM attacker applies our
linear forgery attack to forge a valid MAC of the package. This forged package together
with the forged MAC will be forwarded to the real base station. Since the MAC will pass
the verification, this package will be accepted.
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3.3.2 Counter Check Message

A practical application of our linear forgery attack is forging counter check messages.
Because the integrity of the user plane is not protected in LTE, counter check messages are
sent from the MME to UE to check the number of transmitted data packages. The MME
writes the most significant s bits of its counter in the counter check message and sends it
to UE, who compares its own counter with the received value. Then, UE sends the most
significant s bits of its counter back to the MME. Upon receiving the value sent back by
UE, the MME computes the difference between the received value and its counter. If the
difference is not acceptable, the MME releases the connection. This procedure is shown in
Figure 3.2. Chen et al. [38] present more details about the counter check message.

UE RNC

1. Counter check(Cc, FRESH,MAC − I)

2. Counter check response(C′
c, FRESH,MAC − I)

3. Release connection, if failed

Figure 3.2: Counter Check Message.

Attackers may sometimes want to insert some data (malicious codes, advertisement,
etc.) into the user data stream. If the counter check message is conducted correctly, the
MME will find out the insertion and release the connection. In this point of view, attackers
need to forge a counter check message to deceive the MME.

3.3.3 Launching Attack

We assume that the MAC-I in Figure 3.2 is generated by EIA1 or EIA3. IVs of EIA1
and EIA3 are composed of two portions: the least significant four bits represent the RRC
SQN, and the other twenty-eight bits represent the HFN. The RRC SQN is increased by
one each time when an RRC signal is sent whether successfully or unsuccessfully. If there
is an overflow of the RRC SQN, the HFN is increased by one.
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Attacking scenario:

1. MME sends a counter check message to the MITM attacker.

2. The MITM attacker forwards this message to the UE, and gets the reply form the
UE with MAC1.

3. The MITM attacker applies the attack we mentioned above, and gets MAC2.

4. The MITM attacker forges λ(MAC1+MAC2)+MAC1 orMAC2+λ(MAC1+MAC2),
then forwards to the real base station.

5. The MME accepts the difference, and continues communicating with the MITM
attacker.

6. The MITM attacker can continue to forward messages between the MME and the
UE without being detected by the MME.

This process has a disadvantage that the connection between the MITM attacker and the
MME may be time-out during the forgery process. So such attack can forge only the
counter check message that is sent not too long after powering up.

3.3.4 Experimental Results

In order to test our attack, we generate two counter check messages, which consist of are
two counters as shown in Table 3.1. The RRC commands of these two packages are listed
in Table 3.2.

Table 3.1: Counter Check Messages

Message Identity UCounter DCounter

M1
10 258 257
50 260 259

M2
10 259 258
50 261 260
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Table 3.2: Counter Check Messages in Hex

Message RRC command

M1

0x30 0x27 0xA1 0x25 0xA4 0x23 0xA0 0x21
0xA0 0x1F 0x80 0x01 0x1E 0xA1 0x1A 0x30
0x0B 0x80 0x01 0x0A 0x81 0x02 0x01 0x02
0x82 0x02 0x01 0x01 0x30 0x0B 0x80 0x01
0x32 0x81 0x02 0x01 0x04 0x82 0x02 0x01
0x03

M2

0x30 0x27 0xA1 0x25 0xA4 0x23 0xA0 0x21
0xA0 0x1F 0x80 0x01 0x1E 0xA1 0x1A 0x30
0x0B 0x80 0x01 0x0A 0x81 0x02 0x01 0x03
0x82 0x02 0x01 0x02 0x30 0x0B 0x80 0x01
0x32 0x81 0x02 0x01 0x05 0x82 0x02 0x01
0x04

Forgery Procedure

XOR of these two messages gives

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01
0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00
0x07

Then chose λ =0x1B, λ(M1 + M2) is

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1B
0x00 0x00 0x00 0x2D 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x1B 0x00 0x00 0x00
0x41

Finally, we get the message Mnew = M2 + λ(M1 + M2)
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Figure 3.3: Retransmission times / SNR
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0x30 0x27 0xA1 0x25 0xA4 0x23 0xA0 0x21
0xA0 0x1F 0x80 0x01 0x1e 0xa1 0x1A 0x30
0x0B 0x80 0x01 0x0A 0x81 0x02 0x01 0x18
0x82 0x02 0x01 0x2F 0x30 0x0B 0x80 0x01
0x32 0x81 0x02 0x01 0x1E 0x82 0x02 0x01
0x45

This forged message is represented in the binary form, whose XML form is shown in Figure
3.4. Obviously, the message in Figure 3.4 still contains the counter values of the bearers
10 and 50. In the forged counter check message, the uplink and downlink counter values of
the bearer 10 are 577 and 531, which are greater than the original values. The uplink and
downlink counter values of the bearer 50 are increased to 274 and 352 as well. Not only
the counters of both bearers are incremented as what attackers want, but also the counter
check message can pass the MAC verification. Therefore, attackers can successfully forge a
valid package, in which the value of each counter is increased, and the MAC of the message
is valid. The forgery leads to the consequent that if the attacker inserts some packages,
the MME is unaware of the insertion.

Timing of Attack

Turning the radio off and on usually costs three to six seconds. If the connection is not
time-out within this duration, our attack can be launched successfully. No specification
of this time-out duration is suggested in the LTE standard, which means the duration is
decided by network operators. We cannot measure this duration by experiments, because
analysis of public communications is forbidden by the law. However, since RRC commands
are transmitted in an ARQ fashion, we can use the retransmitting time to estimate the
lower bound of the time-out duration. We simulate an Additive White Gaussian Noise
(AWGN) channel, and choose the modulation scheme to be the Quaternary Phase Shift
Keying (QPSK). The result is shown in Figure 3.3. Each column is corresponding to a set
of coding parameters. The top row shows the bit Signal to Noise Ratio (SNR), while the
bottom row represents the symbol SNR.

Figure 3.3 indicates that when the bit SNR or symbol SNR is around −0.2dB, the
base station needs to transmit a message three times on average to ensure that the user
can receive the transmitted message. When UEs are inside a building, SNR may even be
smaller than −0.2dB. To make sure all users can get services, the time-out duration must
be longer than three-time retransmission. This duration is long enough to give attackers a
chance to conduct the attack.
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<DL-DCCH-Message>
<message>
<counterCheck>
<r3>
<counterCheck-r3>
<rrc-TransactionIdentifier>30</rrc-TransactionIdentifier>
<rb-COUNT-C-MSB-InformationList>
<RB-COUNT-C-MSB-Information>
<rb-Identity>10</rb-Identity>
<count-C-MSB-UL>577</count-C-MSB-UL>
<count-C-MSB-DL>531</count-C-MSB-DL>

</RB-COUNT-C-MSB-Information>
<RB-COUNT-C-MSB-Information>
<rb-Identity>50</rb-Identity>
<count-C-MSB-UL>274</count-C-MSB-UL>
<count-C-MSB-DL>352</count-C-MSB-DL>
</RB-COUNT-C-MSB-Information>
</rb-COUNT-C-MSB-InformationList>
</counterCheck-r3>
</r3>
</counterCheck>
</message>
</DL-DCCH-Message>

Figure 3.4: Decoding result
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3.4 Summary

In this chapter, we propose a method called linear forgery attack, whereby two known
valid message-MAC pairs generated by the same IV and IK, attackers can forge 232 valid
message-MAC pairs. Compared with the random guessing or birthday attacks, our attack
guarantees that the forged message-MAC pairs can pass the verification. Moreover, among
those 232 valid pairs, very likely, there exist some meaningful messages, which will not be
discarded by the receiver because they are meaningless messages. In a real environment,
we can easily find a meaningful message-MAC pair. This chapter demonstrates an example
that generates a meaningful pair by forging a counter check message. We also develop an
attack scenario that makes the same IV and IK occur twice. This scenario enables our
linear forgery attack in practice.

To prevent our linear forgery attack, the structures of EIA1 and EIA3 need to be
changed such that either the message is involved in generating the key stream or the MAC
is generated in a nonlinear fashion. We can hardly find a way to avoid linear structures
without compromising efficiency. So far, security and efficiency of EIA1 and EIA3 are
trade-off.

51



Chapter 4

Security Analysis and Efficient
Implementation of EIA1

In Krawczyk’s paper[73], he proved that if the MAC was constructed by adding an ε-AXU
hash and a one-time pad together, the success probability of substitution forgery attacks
against this MAC is upper bounded by ε. However, in his proof, he directly replaced a
conditional probability with an unconditional probability without any explanation. This
proof left a gap between the ε-AXU property and the substitution forgery probability.
Since the security of all AXU MAC constructions is proved using Krawczyk’s theorem in
this paper, his proof needs to be fixed in order to fix the security proofs of all AXU MACs.

As mentioned in the previous chapter, EIA1, as an AXU MAC, has its security proof.
However, attacks against EIA1, such as the linear forgery attack, are found, because in
Krawczyk’s proof, he required a one-time pad, which is impractical. Since no one-time pad
exists in the real world, usually it is replaced by a stream cipher or a block cipher in counter
mode, which can be misused. Because of the misuse, the requirement is not satisfied, and
the MAC is not information theoretically secure anymore. Therefore, the security of EIA1
(as well as other AXU MACs) should be examined under different security models.

The official implementation of EIA1 is published on ETSI’s website. The latest version
is V2.1. It is quite confusing that for the same message, V1.1 and V2.1 of EIA1 generate
different tags. Moreover, the algorithm is implemented in a very inefficient way.

In this chapter, we fix the gap between the AXU property and the substitution forgery
probability. Then, we present the security proof of EIA1 under different attack models. The
security bound proposed in the evaluation report of EIA1 is a special case of our analysis.
After the security proof, we point out some implementation flaws of EIA1, both V1.1 and
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V2.1, published on the ETSI’s website. We optimized the official implementation to get an
optimized version of f9 function, which is called f9opt. We also use an efficient polynomial
evaluation method, which is analog to the fast Fourier transform, to improve the efficiency.
Compared with Horner’s rule, which is used in the official implementation, our method
reduces the number of multiplications over finite field dramatically. After that, we show
the improvement by the experiment results. The results show that our optimized code
is much faster than the official implementation, and our polynomial evaluation method is
better than Horner’s Rule.

The remaining part of this chapter is organized as follows. Sections 4.1 fixes the proof of
AXU MAC and assesses the security of EIA1 under different models. Section 4.2 discusses
the improvement of EIA1, and shows the improvement by the experiment. The last section
concludes the chapter.

4.1 Security Analysis of EIA1

In the evaluation report of EIA1 [1], it was claimed to be an L× 2−64 + 2−32-AXU MAC.
Then the authors indicated the substitution forgery probability was upper bounded by
L × 2−64 + 2−32. This idea is quite similar to the proof of Lemma 5 in McGrew and
Viega’s paper [82]. In Krawczyk’s paper [73], he theoretically proved that ε-AXU MAC is
resistant to substitution forgery attacks. However, Krawczyk directly replaced a conditional
probability with an unconditional probability, which made the proof imprecise. In this
section, we show the conditional probability is equal to the unconditional probability. The
equality fixes Krawczyk’s proof. Then, we analyze the security of EIA1 under four modes.
Note that the security analysis in the evaluation report of EIA1 is only a subset of our
results.

4.1.1 AXU Hash Is Secure

McGrew and Viega proved GCM is an AXU-MAC by counting the number of roots of a
polynomial. The security proof of EIA1 has the same idea. The theory behind those proofs
is a theorem proposed by Krawczyk in 1994.

Theorem 2. [73] A necessary and sufficient condition for a family H of hash functions to
be ε-otp-secure is that

∀M1 6= M2, c, Prh[h(M1) + h(M2) = c] ≤ ε.
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Krawczyk argued that if the attacker cannot find two message-tag pairs, such that the
summation of these two tags equals a certain value with very high probability, this MAC
is secure. However, in his proof of Theorem 2, he directly let the substitution forgery
probability equal Prh[h(M1) +h(M2) = c], which is the impersonation forgery probability.
But under the chosen-plaintext-attack (CPA) model, the adversary has the ability to choose
any plaintext based on the previous queries [71]. Thus, the substitution forgery probability
should be Prh[h(M1) + h(M2) = c|h(M1) +R = t1], where R is a random mask, under the
CPA model. Note that there are three random variables in this probability, h(M1), h(M2)
and R. From the probability theory, we know Prh[h(M1) + h(M2) = c|h(M1) + R = t1]
does not necessarily equal Prh[h(M1) +h(M2) = c]. To fix Krawczyk’s proof, we prove the
following lemma and theorem.

Lemma 2. Let X, Y and R be random variables over Fm
2 , and denote N = 2m. R is

independent from both X and Y , and uniformly distributed. Then,

Pr[X +R = t] =
1

N
, for any constant t ∈ Fm

2 , (4.1)

Pr[X + Y = c,X +R = t] =
1

N
Pr[X + Y = c], for any c and t ∈ Fm

2 . (4.2)

Proof. Eqn. (4.1) equals ∑
r∈Fm

2

Pr[X = r + t|R = r]Pr[R = r].

Since R is uniformly distributed, Pr[R = r] = 1/N . Then,

Eqn. (4.1) =
1

N

∑
r∈Fm

2

Pr[X = r + t|R = r]

Because r runs through every element in Fm
2 and R is independent from X, then∑

r∈Fm
2

Pr[X = r + t|R = r] = 1.

Thus,

Eqn. (4.1) =
1

N
.

From the proof above, Eqn. (4.2) equals

1

N

∑
r∈Fm

2

Pr[X + Y = c,X = r + t].
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Because r runs through every element in Fm
2 , event X + Y = c,X = r+ t runs through all

the possible (x, y) ∈ Fm
2 × Fm

2 , such that x+ y = c. Thereby,∑
r∈Fm

2

Pr[X + Y = c,X = r + t] = Pr[X + Y = c].

Thus,

Eqn. (4.2) =
1

N
Pr[X + Y = c].

This completes the proof.

Theorem 3. Let H = {h|h : F∗2 7→ Fm
2 } be a hash function family, and R ∈ Fm

2 be a
random variable, which is uniformly distributed in Fm

2 .

Prh[h(M1) + h(M2) = c]

= Prh[h(M1) + h(M2) = c|h(M1) +R = t1].

Proof.

Prh[h(M1) + h(M2) = c|h(M1) +R = t1]

=
Prh[h(M1) + h(M2) = c, h(M1) +R = t1]

Prh[h(M1) +R = t1]
.

By Lemma 2

Prh[h(M1) + h(M2) = c|h(M1) +R = t1]

= Prh[h(M1) + h(M2) = c].

From Theorem 3, Krawczyk’s proof of Theorem 2 still holds for all AXU-MACs.

4.1.2 Security Analysis of EIA1

To thoroughly analyze the security of EIA1, we need to examine it under different models.
We want to remark that the original security analysis of EIA1 is a subset of our results.

Let Mi denote the i-th message and Ti denote the tag of Mi. LENi is the number
of blocks of the message Mi. Mi(x) is the polynomial, whose coefficients are the blocks
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of message Mi. Pi, Qi and OTPi are three random numbers generated by SNOW3G in
the i-th query. Without ambiguity, if Pi, Qi and OTPi are constants in each query, we
simply use P,Q and OTP without the subscript. There exists an oracle that accepts at
most n queries, which are either generation or verification queries. By generation queries,
attackers can send selected messages to the oracle, which sends back the tag of each queried
message. Attacker can also query the oracle with verification queries to verify the validity
of any given message-tag pairs. Attackers must forge a message-tag pair with at most n
queries. Let us define four attack models as follows.

• M0: Adversaries get (M0, T0) and forge (M1, T1) with the same (P,Q,OTP ). This
is the substitution forgery by Simmons’ definition.

• M1: Adversaries have the ability to get (M0, T0), · · · , (Mn−1, Tn−1), where Mi 6= Mj

for i 6= j. For each (Mi, Ti), 0 ≤ i ≤ n−1, Ti = Tr64
32

(
(Mi(P ) + LENi)Q

)
a−1+OTP .

Adversaries try to forge a pair (Mn, Tn), such that
Tn = Tr64

32

(
(Mn(P ) + LENn)Q

)
a−1 +OTP .

• M2: Adversaries have the ability to get (M0, T0), · · · , (Mn−1, Tn−1), where Mi 6= Mj

for i 6= j. For each (Mi, Ti), 0 ≤ i ≤ n − 1, Ti = Tr64
32

(
(Mi(Pi) + LENi)Qi

)
a−1 +

OTPi. If i 6= j, (Pi, Qi, OTPi) 6= (Pj, Qj, OTPj) with very high probability. Adver-
saries try to forge a pair (Mn, Tn), such that ∃0 ≤ i ≤ n− 1
Tn = Tr64

32

(
(Mn(Pi) + LENn)Qi

)
a−1 +OTPi.

• M3: Adversaries have the ability to get (M0, T0), · · · , (Mn−1, Tn−1), where Mi 6= Mj

for i 6= j. For each (Mi, Ti), 0 ≤ i ≤ n − 1, Ti = Tr64
32

(
(Mi(Pi) + LENi)Qi

)
a−1 +

OTPi. If i 6= j, (Pi, Qi, OTPi) 6= (Pj, Qj, OTPj) with very high probability. Adver-
saries try to forge a pair (Mn, Tn), such that
Tn = Tr64

32

(
(Mn(Pn) + LENn)Qn

)
a−1 + OTPn, where (Pn, Qn, OTPn) is different

from (Pi, Qi, OTPi), for 0 ≤ i ≤ n− 1, with very high probability.

Security under M0

The bound in the evaluation report holds for EIA1 in this case. However, in the report,
the authors did not give the explicitly proof of the forgery probability. We present our
proof here for the purpose of this paper.

Proof. Let us use M1
L1

(x) and M2
L2

(x) denote the polynomial whose coefficients are the

blocks of M1 and M2 respectively. The corresponding degrees of each polynomial are L1
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and L2. A = {R | R ∈ GF (q2), T r64
32(R)a−1 = δ}. Therefore,

Pr[MAC(M1) +MAC(M2) = δ]

= Pr[(M1
L1

(P ) + LEN1)Q+ (M2
L2

(P ) + LEN2)Q ∈ A].

Denote LEN = LEN1 +LEN2 and ML(P ) = M1
L1

(P ) +M2
L2

(P ), where L = max(L1, L2).
Then the above equation can be written as

Pr[(ML(P ) + LEN)Q ∈ A] (4.3)

• Case δ = 0: If R = 0,

Pr[(ML(P ) + LEN)Q = R]

= Pr[Q = 0] + Pr[ML(P ) + LEN = 0]

−Pr[Q = 0,ML(P ) + LEN = 0];

= 2−64 + L× 2−64 − L× 2−128.

If R 6= 0, then Q 6= 0,

Pr[(ML(P ) + LEN)Q = R]

= Pr[ML(P ) + LEN +Q−1r0 = 0];

= 2−64 − L× 2−128.

Thus, Eqn.(4.3) ≤ 2−64 + L × 2−64 − L × 2−128 + (232 − 1)(2−64 − L × 2−128) ≤
2−32 + L× 2−64.

• Case δ 6= 0: By very similar argument, we get

Eqn.(4.3) = 2−32 − L× 2−96.

Therefore,
Eqn.(4.3) ≤ max(2−32 + L× 2−64, 2−32 − L× 2−96).

This completes the proof.
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Security under M1

In this attack model, the adversary can access to the oracle n times and the random
numbers P , Q and OTP never change. Then the adversary forges a message-tag pair with
the same P , Q and OTP . When n = 1, this case is equivalent to M0. Therefore, we only
focus on the case that n > 1.

Before the analysis, we present the following lemma.

Lemma 3. Let Prn0 and Prn1 denote the probabilities that the attacker can guess (P,Q,OTP )
when he is allowed to query at most n0 and n1 times respectively. We have

Prn0 ≤ Prn1 ,∀n0 ≤ n1.

Proof. If Prn0 > Prn1 , the attacker can guess based on only n0 queries. The probability
becomes Prn0 = Prn1 . Therefore, with n1 queries, the probability is at least Prn0 .

As shown by Wu and Gong [111], the substitution forgery probability is one when
n = 2. By Lemma 3, ∀n > 1, the substitution forgery probability is one. Wu and Gong
also presented an attacking scenario that the random numbers might repeat.

If attackers can get n ≥ 2, they can even recover P,Q and OTP . This attack is formally
addressed in Theorem 4.

Theorem 4. Under M1, the adversary can recover P,Q and OTP with probability

Pr =

{
1

232∗(5−n) , 2 ≤ n < 5

1, n ≥ 5

Proof. We prove this theorem by constructing the attack. The attacker first queries the
oracle with an empty message to get OTP . Let us assume OTP = r. We prove n = 2 up
to 5 cases. Then the cases that n > 5 are straightforward by Lemma 3.

Case n=2: Constructing another message with only one block. Since we know the
random mask OTP = r, we have

Tr64
32 ((MP + LEN)Q) = a(T + r). (4.4)

We consider the case that T + r = 0. For (MP + LEN)Q = 0, there exist 2 ∗ 264 − 1
possible (P,Q) pairs. For (MP + LEN)Q 6= 0, there are (232 − 1) ∗ (264 − 1) pairs of
(P,Q). Thus, 264 ∗ 232 + 264− 232 pairs of (P,Q) satisfy Eqn. (4.4). If T + r 6= 0, there are
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264 ∗ 232 − 232 pairs of (P,Q) satisfy Eqn. (4.4). Thus, the probability to guess the tuple
(P,Q,OTP ) is

Pr =
1

232
× 1

296 + 264 − 232
+

232 − 1

232
× 1

296 − 232
≈ 1

296
.

Case n=3: Construct the second and third messages as

M1 = (b0, · · · , bk1−1),

M2 = (b0, · · · , bk1−1, 0, · · · , 0︸ ︷︷ ︸
k2−k1

),

where bi ∈ GF (2) for 0 ≤ i ≤ k1 − 1, and k1 < k2 < 32. After padding, we have

M
′
1 = (b0, · · · , bk−1, 0, · · · , 0︸ ︷︷ ︸

64−k1

),

M
′
2 = M

′
1.

Let M ′
1 ∈ GF (q2) denote (b0, · · · , bk−1, 0, · · · , 0︸ ︷︷ ︸

64−k1

). Note that both messages are one-block

messages, and LEN1, LEN2 ∈ GF (q) . T1 and T2 are computed by

T1 = a−1Tr64
32 ((M ′

1P + LEN1)Q) + r,

T2 = a−1Tr64
32 ((M ′

1P + LEN2)Q) + r.

Let P = p0 + p1α, M ′
1 = m10 +m11α and Q = q0 + q1α, where α is defined before; pi, m1i

and qi ∈ GF (q), for i = {0, 1}. Since both k1 and k2 are smaller than 32, m10 = 0. Then,

a−1Tr64
32 ((M ′

1(P ) + LEN1)Q)

= m11

(
(q0 + aq1)p0 + (a2q1 + bq1 + aq0)p1

)
+ LEN1q1,

a−1Tr64
32 ((M ′

1(P ) + LEN0)Q)

= m11

(
(q0 + aq1)p0 + (a2q1 + bq1 + aq0)p1

)
+ LEN2q1.

Let (q0 + aq1)p0 + (a2q1 + bq1 + aq0)p1β = x and q1 = y. We can solve this linear system.
Assume

q1 = s,

(q0 + as)p0 + (a2s+ bs+ aq0)p1 = t.
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Guessing q0 = e with probability 1/232, we have

(e+ as)p0 + (a2s+ bs+ ae)p1 = t. (4.5)

If Q = 0, the number of possible P is 264. Otherwise, guessing one of p0 and p1, we can
determine the other one. Therefore, the probability of guessing (P,Q,OTP ) is 1/264.

Case n=4: Construct another message

M3 = (0, · · · , 0︸ ︷︷ ︸
238

).

Note that the length 238 is the upper bound of the length of messages. The MAC of this
message is

T3 = a−1Tr64
32 (αQ) + r.

Since
a−1Tr64

32 (αQ) = q0 + as,

we can get q0 = u. Together with Eqn. (4.5), we have

(u+ as)p0 + (a2s+ bs+ au)p1 = t. (4.6)

Guessing either p0 or p1 makes this equation become a linear equation of the other one.
Therefore, we can solve the unique P . The probability of guessing (P,Q,OTP ) is

Pr ≈ 1

232
.

Case n=5: Construct another message

M4 = M ′
1||(0, · · · , 0︸ ︷︷ ︸

k4

).

The MAC of this message is

T4 = a−1Tr64
32

(
(M ′

1P
2 + LEN4)Q

)
+ r.

By the same method above, we can get

(u+ as)p2
0 + (bu+ a2u+ a3s+ a3sb)p2

1 = v.
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Together with Eqn. (4.6), we have a linear system of p2
0 and p2

1.

(u+ as)p2
0 + (bu+ a2u+ a3s+ a3sb)p2

1 = v

(u+ as)2p2
0 + (a2s+ bs+ au)2p2

1 = t2

We can solve unique p2
0 and p2

1. Since x2 is a permutation polynomial over GF (2n), P is
uniquely determined.

By Lemma 3, ∀n > 5, (P,Q,OTP ) can be uniquely determined.

Note that in our attack, the opponent first queries an empty message. This query may
not be allowed. However, it won’t affect our result. Theorem 4 still holds for EIA1. But
the proof is more complicated than the one we present here.

Security under M2

When n = 1, this case is equivalent to M0. We only exam n > 1 cases. To prove the
security, we present the following lemma.

Lemma 4.
Pr[Ti = β|Tj = γ] = Pr[Ti = β],∀i 6= j.

Proof.

Pr[Ti = β|Tj = γ]

=
Pr[Ti = β, Tj = γ]

Pr[Tj = γ]

=

∑
r Pr[Ti = β, a−1Tr64

32 ((Mj(Pj) + LENj)Q) = Tj + r]∑
r Pr[a

−1Tr64
32 ((Mj(Pj) + LENj)Q) = Tj + r]

= Pr[Ti = β].

Lemma 5. Assume the adversary forges (Mn, Tn) with (Pi, Qi, OTPi).

Pr[Tn = τn|T0 = τ0, · · · , Tn−1 = τn−1] = Pr[Tn = τn|Ti = τi].
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Proof.

Pr[Tn = τn|T0 = τ0, · · · , Tn−1 = τn−1]

=
Pr[Tn = τn, T0 = τ0, · · · , Tn−1 = τn−1]

Pr[T0 = τ0, · · · , Tn−1 = τn−1]

By Lemma 4, Ti and Tj are independent, ∀i 6= j.

Pr[Tn = τn|T0 = τ0, · · · , Tn−1 = τn−1]

=
Pr[Tn = τn, Ti = τi]

Pr[Ti = τi]

= Pr[Tn = τn|Ti = τi].

By Lemma 5, the case that n > 1 is equivalent toM0 as well. Thus, the bound proved
before still holds for EIA1 in this case.

Security under M3

Lemma 6. Under M3,

Pr[Tn = τn|T0 = τ0, · · · , Tn−1 = τn−1] = Pr[Tn = τn].

The same argument of Lemma 5 also applies to here. Therefore, we omit the proof.
Note that in this case, the attack model is equivalent to impersonation forgery by Stinson’s
definition, whose success probability is 1/q.

4.2 An Efficient Implementation of EIA1

This section points out some implementation flaws of the official implementation, and
improves the evaluation of polynomial over finite field by an efficient algorithm, which
needs only 64 log r multiplications. Compared with the Horner’s Rule, which is used in the
official EIA1 implementation, this algorithm improves the efficiency dramatically.
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4.2.1 The Implementation Flaws of EIA1

The current version of the official implementation is V2.1, which was published in 2009.
When we compare this version with the previous one, V1.1, and try to use V2.1 as a
comparison baseline, we find several problems.

• Compiling Error: There is a compiling error in V2.1. In function f9, the last
second line uses an undefined symbol mac32, which should be EV AL.

• Implementation Bug: When we compare the output of V1.1 and V2.1, we find that
they are totally different. By debugging, we figure out the following implementation
errors.

– The bit arrangements of two versions are different.

– When a zero-length message is passed in, there is an overflow for both V1.1 and
V2.1.

Besides, we find both V1.1 and V2.1 implement the multiplication over GF (q2) in a
quite inefficient way. The function “MUL64xPOW”, which can be implemented by a loop,
is implemented in a recursive fashion. It is well known that the recursion costs more than
the loop because of the manipulation on the stack.

4.2.2 Improvement with Modification to EIA1

If we are allowed to change the algorithm of EIA1, we can improve the efficiency of EIA1
in two ways.

Fix P , Q

For each IK, we fix the random numbers P and Q, which can be done by checking whether
the COUNT is equal to 0. When COUNT = 0, IK must be a new generated integrity
key. In this case, we generate a new pair of (P,Q). Otherwise, we keep using the previous
(P,Q). Note that by the arguments of AXU MAC, fixing (P,Q) for each IK does not
compromise the security. Originally, the algorithm needs to generate 160 bits to compute
the MAC for a message. After the modification, the number of generated bits is reduced
to 32 in each round, when COUNT 6= 0.
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Choose another field

By Lemma 1, if the defining polynomial of GF (q2) over GF (q) is in the form of x2 +x+β,
the truncation of a multiplication can be computed in such a way

Truncate(R ∗Q) = Tr64
32(R ∗Q)

= r0q1 + r1q0 + r1q1.

In this way, we use only three multiplications over GF (q) to compute the multiplication
of GF (q2) and truncate the product. In the official implementation, the multiplication
over GF (q2) is first computed, and then half of the multiplication result is discarded.
Multiplication over GF (q2) is equivalent to four multiplications over GF (q). The official
implementation wastes one multiplication over GF (q).

4.2.3 Improvement without Modification to EIA1

Without changing the algorithm of EIA1, we can improve the efficiency of the algorithm
by replacing Horner’s Rule with a more efficient polynomial evaluation algorithm and
optimizing the multiplication over GF (q2).

A Faster Polynomial Evaluation Algorithm

The polynomial evaluation algorithm discussed below can be applied to any binary field.
Thus it is presented in general binary field GF (2n), not restrict to GF (q2). For the purpose
of the implementation, field elements are represented under the polynomial basis, which
are also used in the official implementation of EIA1.

Let F2n be a finite field GF (2n) and α be a primitive element of F2n . Then for any
x ∈ F2n , we can write

x =
n−1∑
i=1

xiα
i, xi ∈ F2 (4.7)

Let

F (x) =
r∑

i=0

Fix
i, Fi ∈ F2n .
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According to (4.7), we can write F (x) as a linear combination of polynomials over F2

as follows.
fi =

∑n−1
j=0 cijαj =⇒

F (x) =
∑n−1

j=1 (
∑r

i=0 cijx
i)αj

=
∑n−1

j=1 fj(x)αj,where fj(x) =
∑r

i=0 cijx
i, cij ∈ F2

For P ∈ F2n , the evaluation of F (P ) can be decomposed to computing the evaluation
of fj(P ) , and the summation of fj(P )αj. Let T (r) be the number of multiplications used
in the evaluation of fj(P ), which is a polynomial over F2. Since the time complexity is
dominated by the number of multiplications, we omit the number of additions and consider
the number of multiplications only. Therefore, the complexity of this method for computing
F (P ), denoted as Γ(r, n), is given by

Γ(r, n) = T (r)× n.

In the following, a fast algorithm to evaluate polynomials over F2 is presented. Note
that for any polynomial g(x) =

∑r
j=0 gjx

j, gj ∈ F2, it can be decomposed into a summation
of two polynomials by collecting odd and even exponents of x as follows:

g(x) = g0(x2) + xg1(x2) = g0(x)2 + xg1(x)2

where both gi(x)’s have their respective degrees at most of r/2. Algorithm 2 presents the
details of the above method [51].

Algorithm 2: Polynomial evaluation

Data: Input: g(x) ∈ F2[x] and S = {P i : i = 2, · · · , r/2k}
Result: Output: g(P )
if deg (g(x)) ≤ r/2k then

return evaluation of g(x) using S;
else

g(x) = g0(x)2 + xg1(x)2;
recursively call this procedure on g0(x) and g1(x);
return evaluation of g0(x)2 + xg1(x)2;

end
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Optimize the Code

The recursive function call in “MUL64XPOW” function is replaced by a loop, and all the
integer multiplications of 2n is implemented by shifting n bits to the left. The efficiency
improvement is analyzed in the next section.

4.2.4 Efficiency Analysis

Three versions of EIA1 are compared in this research: the first one that evaluates the
polynomial using Algorithm 2, the second one that implements the multiplication of F2n in
loops instead of recursive function call, and the official implementation. Denote the first,
second, and the official implementations as f9eva, f9opt, and f9, respectively.

The efficiency of f9eva

The complexity of Algorithm 2 consists of

• At most r/2k multiplications for computing S.

• At most r additions (at most r/2k additions to evaluate each polynomial at the k-th
step), which can be reduced to r/ ln r by reusing some terms (dynamic programming).

• 2k − 1 multiplications to get the final result by substituting back the values.

For the same reason mentioned above, we consider the number of multiplications only.
Thus, the complexity of evaluating a polynomial over F2 is upper bounded by T (r) ≤
r/2k + 2k multiplications in F2n .

Selection of k: Purpose of selection of k is to minimize T (r) ≤ r/2k + 2k. Note that

dT (r)

dk
= 2kln2− rln2

2k
.

So when we take

2k =
r

2k
=⇒ k =

1

2
log r, (4.8)

T (r) ≤ log r.
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Squaring: For the squaring, one way is pre-computing the list and storing that

α2i, i = 0, 1, · · · , n− 1.

In the EIA1, n = 64 and α is a root of the polynomial which defines F264 . Another way is
computing the squaring under the normal basis. By exhaustive search, we find one normal
element 0xC48F6B490773E7A1.

Therefore, the total complexity of evaluating F (P ) is given by n log r. Compared with
the Horner’s Rule, this number is smaller when the degree of the polynomial is greater
than a threshold. For n = 64, the threshold is 589.

The efficiency of f9opt

In this version, the optimization includes the follows.

• Replacing all the integer multiplications of 2n by shifting n bits to the left;

• Changing the recursive implementation of the multiplication of F2n to the loop im-
plementation.

Table 4.1 lists the difference between multiplication of 2n and shifting n bits. The time
consumption is measured when the multiplication or shift is computed 230 times. Although
the difference is quite tiny, it improves the efficiency a little bit.

Table 4.1: Time costs of multiplying by 2n and shifting n bits

n Multiplication (clock cycle) Shift (clock cycle)
1 7531852.000000 7497074.500000
2 7541375.000000 7537943.000000
3 7887745.500000 7832369.000000

The efficiency difference between the recursion and loop is list in Table 4.2. This
improvement is much more significant than replacing multiplication of 2n with shifting n
bits.

The comparison of our implementation, our optimization and the official implementa-
tion is shown in Figure 7.1. We call our implementation EIA1, the optimized implementa-
tion f9opt and the official implementation f9.
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Table 4.2: Time costs of Recursion and Loop

Recursion (clock cycle) Loop (clock cycle)
Time consumption 13.642400 5.600540
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Figure 4.1: Comparison of f9, f9opt and f9eva
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In Figure 7.1, the curve l = r/2i shows the time consumption when k = i. Theoretically,
as long as k < log r, the larger k is, the higher speed f9eva should achieve. However, Figure
7.1 suggests opposite results. The reason is that allocating memories costs much more than
computing multiplications. When the length of a message is large enough, f9eva is always
better than f9 and f9opt. Theoretically, this threshold should be 589, but because of the
memory allocation, the real threshold is greater than the theoretical one.

4.3 Summary

In this chapter, we prove that the conditional probability and the unconditional probability
in Krawczyk’s proof are equal. The equality fixes Krawczyk’s proof, which states that
AXU MACs are secure. Then, the security of EIA1 is assessed under different models.
The assessment shows that only if the random numbers are all repeated, EIA1 has some
security issues. Specifically, if the random numbers are reused, the linear forgery attack
can be directly applied to EIA1. In addition, if the random numbers are allowed to reuse
more than twice, attackers have non negligible probability to recover the random numbers.
Especially, when the random numbers are rescued for more than four times, attackers can
recover the random numbers determinately.

After the theoretical analysis, we examine the implementation provided in the proposal
of EIA1, and find several implementation flaws. The implementation in the proposal is very
inefficient. We optimize their codes and get an optimized version called f9opt. Moreover,
we replace the Horner’s Rule with our efficient polynomial evaluation algorithm to get a
new implementation called f9eva. By the comparison among f9, f9opt and f9eva, we can
conclude that our optimized version works faster than the original one, and our polynomial
evaluation method is faster than Horner’s Rule when the length of the message is large
enough.
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Chapter 5

Security Proof of TUAK

In addition to the EIA family, many other MACs exist in the 4G LTE system. For ex-
ample, f1, f2 functions introduced in Section 1 are two MACs in the AKA procedure.
Originally MILENAGE is the only cipher suite implementing A3/A8. After SHA-3 was
standardized, Vodafone proposed another cipher suite called TUAK, which also followed
A3/A8 specification, and was built upon Keccak. This chapter presents the security proof
of TUAK as message authentication codes and key derivation functions. The proofs prove
the security of TUAK using certain properties of Keccak.

The rest of this chapter is organized as follows. Section 5.1 proves the security of f1,
f ∗1 and f2 functions as MACs. Section 5.2 proves other fn functions as KDFs. The last
section concludes this chapter.

5.1 Security proof of the f1, f
∗
1 and f2 function con-

struction

The f1 and f ∗1 functions are two MAC algorithms. The f2 function is a special MAC algo-
rithm, because it generates the response, which is essentially a MAC, in the authentication
process. The threat model of f2 is the same as MACs’ threat model. Thus, f2 should resist
to all the attacks applied to MACs. This section investigates the properties of these three
functions as MAC algorithms. At the beginning, f1 is taken as an example to derive the
security bound. After that, this security bound is generalized to f ∗1 and f2.

By the definition of the f1 function, we may consider the first 768 bits (TOPc, INSTANCE,
ALGONAME, RAND, AMF , SQN , K) as the domain separator, message and key, the
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320 bits in the middle as the padding, and the last 512 zeros as the capacity. Specifically,
the bits 1 · · · 1︸ ︷︷ ︸

5

0 · · · 0︸ ︷︷ ︸
314

1 are the Sakura padding [26]. Let f ′1 be same the function as f1 but

the first 768 bits could be any value in F2768 , i.e.

f1(x) = f ′1(TOPc||INSTANCE||ALGONAME||x||K).

Fact 1. The f ′1 function is a sponge function with the bit rate r = 1088 and the capacity
c = 512. The f1 function is f ′1 in MAC mode.

In the following discussion, we always assume the underlying permutation Π is a pseu-
dorandom permutation (PRP).

Lemma 7. Throw u balls into v buckets uniformly, where u ≥ v. Let event E denote
the event that at least one bucket is empty. The probability that event E happens is upper
bounded by

Pr[E ] < v(1− v−1)u. (5.1)

Proof. after throwing all u balls, denote the event that the i-th bucket is empty as Ei. The
probability that event Ei happens is given by

Pr[Ei] = (1− v−1)u.

Since Ei and Ej are not independent for i 6= j, and u ≥ v, we have

Pr[E ] <
v−1∑
i=0

Ei = v(1− v−1)u.

This completes the proof

Lemma 8. Throw u balls into v buckets uniformly, where u < v. Let event E denote the
event that at least v−u+ 1 bucket is empty. The probability that event E happens is upper
bounded by

Pr[E ] <

(
v
u

)
u(1− u−1)u.

Proof. Let I be an index set of the bucket, I = {i|0 ≤ i ≤ v − 1}. Each time, we select
a subset of I, and the size of this subset is v − u. We call this subset Ij. Let the buckets
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indexed by the subset Ij be empty. Then, the problem becomes Lemma 7. Let the event
Ej denote fixing subset Ij, the rest buckets have at least one empty bucket. By Lemma 7,

Pr[Ej] < u(1− u−1)u.

By the same argument as the proof of Lemma 7,

Pr[E ] <
w∑

j=0

u(1− u−1)u, where w =

(
v

v-u

)
− 1.

Therefore,

Pr[E ] <

(
v
u

)
u(1− u−1)u.

This proves the Lemma.

Lemma 9. The output of f ′1 is uniformly distributed, which means ∀y ∈ Fn
2 , randomly

chosen an x ∈ F768
2 , the following equation always holds for f ′1.

Pr[f ′1(x) = y] =
1

2n
± ε,

where n(= 32, 64, 128, 256) is the length of the output, and ε is a negligible value.

Proof. Notice the underlying block Π is a pseudorandom permutation. Thus, the truncated
output is uniformly distributed. Now, we restrict the input of Π to a subspace F768

2 by
setting 832 bits to a constant to get f ′1. Let Ω and Γ denote the pre-image and image
set of f ′1 respectively. In this case |Ω| = 2768. By Lemma 7, |Γ| = 2n with overwhelming
probability. Since the truncated output of Π is uniformly distributed, each value in Γ has
almost the same number of pre-image. Then

Pr[f ′1(x) = y] =
1

2n
± ε.

Theorem 5. Randomly pick x0 and x1 from the pre-image set of f1. The probability of
finding a collision of f1 is given by

Pr[f1(x0) = f1(x1)] =

{
1

2n
± ε if n = 32, 64, 128,

ε if n = 256.
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Proof. First, let us consider the case that n = 32, 64, 128. By the proof of Lemma 9, the
size of image set of f1 is also 2n with the probability approaching 1. By Lemma 9, the
outputs of f ′1 distribute in Fn

2 uniformly. Thus, the outputs of f1 are distributed uniformly
in Fn

2 . Then we have

Pr[f1(x0) = f1(x1)] =
∑
y∈Fn

2

Pr[f1(x0) = y, f1(x1) = y].

Since Π is assumed to be a PRP, f(x0) and f(x1) are independent for x0 6= x1. Therefore,

Pr[f1(x0) = f1(x1)] =
1

2n
± ε.

Then, let us consider the case that n = 256. Notice that |Ω| = 2192. It is far less than
2n. By Lemma 8, |Γ| = |Ω|. The probability of collision is ε.

This completes the proof.

Before the next theorem, we clarify some notations. Assume there is an oracle Oa,
which can recover the key of f1 with N queries. Using Oa, attackers can build a game G
to find the pre-image of f ′1. We denote l as the number of queries that attackers need to
find the pre-image of f ′1 using any method except the game G. The notation b is the lower
bound of the overall expected number of queries to find the pre-image of f ′1.

Theorem 6. The expected success rate of the universal key recovery attack with N queries
under the adaptive chosen plaintext attack on f1 function is no greater than

2m(2k + (1− |Γ|
2m

)l − b)
|Γ|(2k −N)

,

where m is the length of the output; k is the size of the key; Γ is the image set of f1.

Proof. Let us assume there exist two oracles, OK
t and Oa. OK

t returns the output of
function f1 (denoted by MAC) with the key K given an triple of (RAND,SQN,AMF ).
Oa chooses N triples of (RAND,SQN,AMF ) adaptively and queries OK

t for the MAC
of each triple. After that, the oracle Oa returns the key K used by OK

t . The behavior is
described in Table 5.1.

Notice that Oa is an universal key recovery attack under the adaptive chosen plaintext
model on f1. Using OK

t and Oa, one attacker can construct a probabilistic game G to find
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Table 5.1: OK
t and Oa.

OK
t Oa

Input: T = (RAND,SQN,AMF ) Input: no input
Output: MAC Output: K or failed
Compute MAC = f1(K,T ); Choose T0 = (RAND0, SQN0, AMF0); query OK

t with T0; and get H0;
Return MAC. · · ·

Choose TN−1 = (RANDN−1, SQNN−1, AMFN−1)
based on the previous selection of T0 · · ·TN−2

and the output; query OK
t with TN−1; and get HN−1;

Compute K = A(T0, · · · , TN−1, H0, · · ·HN−1) with success probability p;
Return K or failed.

Table 5.2: The game G to find the pre-image of f ′1.

G
Input: H = f ′1(x), x is not a pre-image of any f1.
Output: The state of f1 s.t. H = f1(Ts) or failed.
1. If H 6∈ Γ, return failed;
2. If H = Hs, query Oa to recover K;
3. Construct the state by Ts, K, and return the state.

the pre-image of one output of f ′1. Let Ti = (RANDi, SQNi, AMFi) (0 ≤ i ≤ 2192 − 1)
denote all possible input of OK

t , then set Γ is defined by Γ = {Hi : Hi = OK
t (Ti), 0 ≤ i ≤

2192 − 1}. The game is shown in Table 5.2.

Notice that the condition of this adversary is choosing a H = f ′1(x) and x is not a
pre-image of any f1. The cardinality of the pre-image set of f1 is 2192, while the cardinality
of the pre-image set of f ′1 is 2768. The probability that given an x, x is a pre-image of f1 is
1/2576. This probability is negligible. Thus, in the following discussion, we only consider
x is not a pre-image of any f1.

Since we assume the output of the f ′1 function is uniformly distributed, the probability
that given any H ∈ Fm

2 H ∈ Γ is given by

Pr[H ∈ Γ] =
|Γ|
2m
,

where m is the length of the output of f1. In the following, we discuss two cases, H ∈ Γ
and H 6∈ Γ.

If H ∈ Γ, the attack may use game G to find the pre-image. Assume the probability
that G can recover the key is

Pr[G success] = p.
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However, game G may fail with probability 1 − p. Then, the attacker needs 2k queries to
recover the key.

If H 6∈ Γ, the attacker needs at most 2k queries to let the game G output failed, and l
queries to find the pre-image by other methods. Thus, the expected number of queries to
find the pre-image of one output is given by

|Γ|
2m
p(N − 2k) +

|Γ|
2m

2k + (1− |Γ|
2m

)(2k + l).

Since b is the lower bound of the expected number, thus

|Γ|
2m
p(N − 2k) +

|Γ|
2m

2k + (1− |Γ|
2m

)(2k + l) ≥ b.

Therefore, we have

p ≤ 2m(2k + (1− |Γ|
2m

)l − b)
|Γ|(2k −N)

,

This completes the proof.

Because |Γ|/2m ≈ 1, the result of Theorem 6 becomes

p <
2k − b
2k −N .

By Bertoni et al. [60], the value of b is bounded by 2n−r + 2c/2. Therefore, as long as N
is far smaller than b, no significant universal key recovery attack exists. Formally, we have
the following corollary.

Corollary 2. When N << b, the probability of universal key recovery attack is negligible.

Substitution forgery attacks on TUAK is described as follows. Attackers are allowed to
select N messages adaptively and to access the oracle OK

t to get the MAC of each query.
After N queries, attackers try to forge the MAC of a message other than the previously
queried messages.

Theorem 7. Under the model described above, the expected number of queries to success-
fully forge a MAC generated by f1 is given by

Exp(N) = 2320.
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Proof. In the following proof, we will use K to denote the key, c to denote the capacity,
and z to denote the maximum number of messages that can be MACed with the same key.
By Bertoni et al. [60], when using a sponge function as a MAC algorithm, the workload
to forge a tag generated by this MAC algorithm is given by

Exp(N) =
2c

z − 1
,

when |K| < c− log2(z).

For f1 case, z = 2192, |K| = 256(or 128), c = 512. Then we have

Exp(N) =
2512

2192 − 1
≈ 2320.

Corollary 3. It is infeasible to forge a MAC generated by f1 under the model described
above.

The workload in Theorem 7 is greater than 2256, which is the workload of guessing the
key. Thus, f1 resists to substitution forgery attacks. For functions f ∗1 and f2, we have the
following arguments.

• f1 and f ∗1 are almost the same. The only difference is the constant, but that does
not affect the properties of the function. Therefore, all result applied to f1 can also
be applied to f ∗1 . We omit the arguments of f ∗1 .

• The f2 function has different pre-image set compared with f1 and f ∗1 . SQN and
AMF does not exist in the input of f2. The cardinality of the pre-image set becomes
2128.

Theorem 6 and its corollary also holds for f2. Theorem 7 needs some tiny modification.

Theorem 8. The expected number of queries to successfully forge a MAC generated by f2

is
Exp(N) = 2384.

From the proof of Theorem 7, and the cardinality of the pre-image set of f2, Theorem 8
is straightforward. Corollary 3 still holds for f2 because this workload is also greater than
guessing the key.
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5.2 Security proof of f3, f4, f5 and f ∗5 construction

Functions f3, f4, and f5 are KDFs. The basic requirements of KDFs are: 1) given the
random number, adversaries should not have the ability to guess the derived key; 2) for
two different random numbers, each of the f3 - f5 functions should not produce the same
derived key; 3) KDFs must protect long term credentials from being exposed when the
adversaries obtain certain number of derived keys.

Remark 2. Varying the constant, INSTANCE, makes the same underlying permutation,
Π, work as different functions. However, the f2 - f5 functions share the same INSTANCE.
Therefore, the outputs of f2 - f5 functions are different portions of the output generated
by the same function. The sponge function always requires the output length smaller then
half of the capacity. In this case, the total length of the output generated by the same
INSTANCE lies between 336 and 816. Even we consider the effective capacity of TUAK
is 768, the output length 816 is still far greater than half of 768. Although we cannot find
any immediate attacks, this construction has potential risks.

Using different INSTANCE values for f2 - f5 can improve the security of TUAK, but
it compromises efficiency. As long as the speed of TUAK fulfills the specification of 3GPP,
security is more important than efficiency. Therefore, the following results are all based on
the revised version of f2 - f5.

Since the revised version of f3 - f5 are the same as f2, the arguments on f2 in the last
section can be applied to f3 - f5. Therefore, we only list the theorems below without any
proof. To clearly illustrate following results, define f ′i for 3 ≤ i ≤ 5 in the same way as f ′1.

Theorem 9. Randomly pick x0 and x1 from the pre-image set of fi (3 ≤ i ≤ 5). The
probability of finding a collision of fi is given by

Pr[fi(x0) = fi(x1)] =

{
1

2n
± ε if n = 32, 64, 128,

ε if n = 256.

Theorem 9 implies that the probability that fi (3 ≤ i ≤ 5) generates the same derived
key for different inputs is negligible.

Theorem 10. Under the CPA model, the expected success rate of universal key recovery
attacks on fi (3 ≤ i ≤ 5) function with N queries is no greater than

2m(2k + (1− |Γ|
2m

)l − b)
|Γ|(2k −N)

,

where m is the length of the output; k is the size of the key; Γ is the image set of fi.
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This theorem means that opponents can hardly recover long term credentials.

Theorem 11. The expected number of queries to successfully forge a derived key generated
by fi (3 ≤ i ≤ 5) is

Exp(N) = 2384.

Theorem 11 shows that forgery of a derived key generated by fi (3 ≤ i ≤ 5) without
knowing the long term key is impossible. The f ∗5 function is the same as the revised f5,
except the constant, INSTANCE. The above theorems also hold for f ∗5 .

5.3 Summary

In this chapter, we proved the security of fi (1 ≤ i ≤ 5) and f ∗i (i = 1, 5) as MAC algorithms
and key derivation functions. For the MAC functions, we consider the complexity of
universally forging a MAC, recovering the key, and finding a collision. For the KDF
functions, we consider the complexity of recovering the master key, guessing the derived
key, and finding a collision for the derived keys.

When analyzing TUAK, we found that the constructions of f2, f3, f4, and f5 are
not in a recommended way. Since they all use the same constant as the input, these
constructions output more bits than it is allowed by the security capacity of Keccak. We
fixed the constructions by varying the constants for each function to meet the requirement
of Keccak. The security of these functions are proved on the revised version.

The functions f1, f2 and f ∗1 as three MACs are secure in the sense of key recovery,
and substitution forgery. We prove that as long as the underlying primitive, Keccack,
resists pre-image attacks, recovering the key of f1, f2, and f ∗1 is infeasible. Based on some
properties of Keccak, we show that finding two messages with the same MAC, or given
one MAC forging another are both infeasible as well.

The functions f3, f4, and f5 are KDFs. Using the properties of Keccak, we prove these
three KDFs are secure, which means recovering the master key, guessing the derived keys,
and finding to identical derived keys are all infeasible.
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Chapter 6

Multi-Output Filtering Model

When assessing the security of TUAK, we developed a useful tool called Multi-Output
Filtering Model (MOFM) to study the randomness property of a cryptographic primitive,
such as message authentication codes or block ciphers. The MOFM consists of an LFSR and
a multi-output filtering function. The content in this Chapter is twofold. First, we propose
an attack technique under IND-CPA using the MOFM. By introducing a distinguishing
function, we theoretically determine the success rate of this attack. In particular, we
construct a distinguishing function based on the distribution of the linear complexity of
component sequences, and apply it on studying TUAK’s f1 algorithm, AES, KASUMI
and PRESENT. We demonstrate that the success rate of the attack on KASUMI and
PRESENT is non-negligible, but f1 and AES are resistant to this attack. Second, we
study the distribution of the cryptographic properties of component functions of a random
primitive in the MOFM. Our experiments show some non-randomness in the distribution
of algebraic degree and nonlinearity for KASUMI.

The rest of this Chapter is organized as follows. Section 6.1 introduces the preliminaries
only for this section only. In Section 6.2, we first describe the MOFM in which an LFSR
is used to generate the inputs to a multi-output function. In Section 6.3, we describe
the attack model of our distinguishing attack. Section 6.4 presents the construction of
a distinguishing function based on the distribution of linear complexity of component
sequences. In Section 6.5, we present some non-randomness in the distribution of the
algebraic degree and the nonlinearity of component functions of f1 and other primitives.
Section 6.6 concludes this Chapter.
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6.1 Basic Definitions

We present some definitions, which will be used in this Chapter.

6.1.1 Basic definitions on sequences

We present some definitions on sequences. For a well-rounded treatment of sequences and
Boolean functions, the reader is referred to [33, 57].

Let s = {si} be a sequence generated by an LFSR whose recurrence relation is defined
as

s`+i =
`−1∑
j=0

cjsi+j, si, ci ∈ F2, i = 0, 1, ... (6.1)

where p(x) =
∑̀
i=1

cix
i ∈ F2[x] is the characteristic polynomial of degree ` of the LFSR. A

binary sequence s in Eq. (6.1) with period 2` − 1 generated by an LFSR is called an m-
sequence. Let s = {si} be an m-sequence of period 2` − 1 and f(x0, ..., x`−1) be a Boolean
function in ` variables. We define a sequence a = {ai} as

ai = f(sr1+i, sr2+i, ..., srt+i), si, ai ∈ F2, i ≥ 0

where r1 < r2 < . . . < rt < ` are tap positions. Then the sequence a is called a filtering
sequence and the period of a equals 2` − 1.

The linear complexity or linear span of a sequence is defined as the length of the shortest
LFSR that generates the sequence. For an m-sequence, the linear complexity of an m-
sequence is equal to the length of its LFSR [57]. On the other hand, the linear complexity
of a nonlinear filtering sequence lies in the range of ` and 2`− 1 [72]. If a filtering sequence
has linear complexity 2` − 1, then we call it has optimal linear complexity.

6.1.2 Basic definitions on Boolean functions

There is a one-to-one correspondence between a sequence and a Boolean function. The
correspondence between a Boolean function and a sequence can be obtained by computing
the trace representation of a given sequence using the Fourier transformations. For the
details, see Chapter 6 of [57].
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Definition 11. Let f be a Boolean function from Fn
2 to F2. Then f can be uniquely

represented by its algebraic normal form (ANF) as

f(x) =
∑

I∈P({0,...,n−1})

aIx
I ,

where aI ∈ F2, x
I =

∏
i∈I xi and P({0, . . . , n− 1}) is the power set of {0, . . . , n− 1}. The

algebraic degree of f , denoted by d(f), is the maximal size of I in the ANF of f such that
aI 6= 0.

One of the most important properties of Boolean functions is its nonlinearity, which
was proposed to measure the distance of it to all affine functions. A cryptographic strong
Boolean function is supposed to have high nonlinearity to resist linear attacks [81].

Definition 12. The Walsh spectrum of a Boolean function f to a point a ∈ Fn
2 , denoted

by Wf (a), is defined by

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x

where a · x is the inner product of a and x.

The nonlinearity of f can be defined in terms of the Walsh spectrum as

NL(f) = 2n−1 −max
a∈Fn

2

|Wf (a)|
2

.

When n is an even positive integer, it is known that the maximum value if the nonlinearity
of a Boolean function f is NL(f) ≥ 2n−1 − 2n/2−1 [33]. A Boolean functions achieving this
bound is called a bent function.

Let m and n be two positive integers. A function F , from Fn
2 to Fm

2 , defined by F (x) =
(f1(x), f2(x), ..., fm(x)) is called an (n,m)-function, a multi-output Boolean function, or a
vectorial Boolean function, where fi’s are called coordinate functions [33].

6.2 Multi-Output Filtering Model

In this section, we provide a detailed description of the MOFM of a cryptographic primitive.
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6.2.1 Description of the Multi-Output Filtering Model

Let a = {ai}i≥0 be a binary sequence generated by an `-stage LFSR whose recurrence
relation is

a`+i =
`−1∑
j=0

cjai+j, cj ∈ F2, i ≥ 0, (6.2)

where p(x) = x` +
∑`−1

i=0 cix
i is a primitive polynomial of degree ` over F2 and STATEj =

(aj, aj+1, ..., a`−1+j) is called the j-th state of the LFSR. Using this LFSR, from the above
sequence a, we generate a set of messages of n bits, denoted by R = {Rj : 0 ≤ j ≤ 2`− 2}
where

Rj = (aj, aj+1, · · · , aj+n−1), j = 0, 1, ..., 2` − 2, (6.3)

Here modulo 2` − 1 is taken over the indices of ai’s. Note that the elements in R are in
the sequential order. We now define the MOFM on F : {0, 1}k × {0, 1}n → {0, 1}m. For a
fixed key K and for each Rj with 0 ≤ j ≤ 2` − 2, we obtain

Cj = F (K,Rj)
= (g0 (K,Rj) , . . . , gm−1 (K,Rj))

, (yj,0, yj,1, . . . , yj,m−1).
(6.4)

Using a matrix, we can represent the above Cj as
C0

C1
...

C2`−2

 =


y0,0 y0,1 · · · y0,m−1

y1,0 y1,1 · · · y1,m−1
...

...
...

y2`−2,0 y2`−2,1 · · · y2`−2,m−1

 . (6.5)

The matrix (6.5) provides us two methods to study cryptographic properties of F as
described below.

I. Sequence point of view: Each column in the above can be considered as a sequence
of period 2`−1 for a nonzero initial state of the LFSR. Each sequence of period 2`−1
is called a component sequence. We denote the i-th component sequence by si and
si = {y0,i, y1,i, ..., y2`−2,i}. si can also be considered as a filtering sequence with filter
function gi, 0 ≤ i ≤ m− 1.
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II. Boolean function point of view: From (6.4) and (6.5), we see the following process

gi :
{

STATEj ∈ F`
2 of the LFSR

}
→ {Rj ∈ Fn

2} → i-th component sequence.

Therefore, each component sequence can also be regarded as a Boolean function on
F`

2. Note that, for a nonzero initial state, the LFSR cannot generate all-zero state, we
need to query F to get the output value F (K, 0n) for all-zero input for all component
Boolean functions. With a fixed K in F , using an `-stage LFSR, we obtain m Boolean
functions on F`

2. Mathematically, m Boolean functions gi : F2` → F2 (0 ≤ i ≤ m− 1)
are defined as

gi(K, STATEj) = yj,i, (0 ≤ j ≤ 2` − 2). (6.6)

We call each Boolean function gi a component or coordinate function of F .

6.2.2 Application to TUAK’s f1, AES, KASUMI and PREENT

For the sake of clarity on the input assignment, we briefly explain how we apply the MOFM
on TUAK’s f1, and block ciphers AES, PRESENT and KASUMI.

TUAK’s f1:

Recall that f1 takes K, RAND, and SQN as inputs. Now we fix a key K and a sequence
number SQN. We use an `-stage LFSR to generate random numbers RANDj in f1. Denot-
ing by the i-th state of the `-stage LFSR by STATEi ∈ F`

2. We obtain 2`−1 different n-bit
RAND numbers R = {Rj : 0 ≤ j ≤ 2`− 2} by Eq. (6.3) and the component sequences and
component functions are obtained using Eq. (6.4) with Cj = f1 (K,Rj, SQN).

Remark 3. For TUAK’s f1 function, in Eq. (6.5), recovering the last bit y2`−2,i for each
component sequence si from the previous 2` − 2 bits is equivalent to recovering C2`−2 from
{C0, ..., C2`−3}. This leads to a MAC forgery attack on f1.

AES, PRESENT and KASUMI:

Recall that AES-128 accepts a 128-bit key and a 128-bit input and produces an output of
128 bits, and AES-256 accepts a 256-bit key and a 128-bit input and produces an output
of 128 bits [40]. KASUMI has a 64-bit input, a 128-bit key, and a 64-bit output. For
AES-128 and AES-256, the inputs messages of 128 bits are generated using an LFSR of
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length ` and by Eq. (6.3), and the component sequences and functions are obtained using
Eq. (6.4) with Cj = AES-128 (K,Rj) and Cj = AES-256 (K,Rj). PRESENT [29] is a 64-
bit block cipher with a 80-bit key. The component sequences and functions of PRESENT
are obtained using Eq. (6.4) with Cj = PRESENT (K,Rj). KASUMI [5] is a 64-bit block
cipher with a 128-bit key. The 64-bit inputs messages are generated by Eq. (6.3) with
n = 64 and the component sequences and functions are obtained using Eq. (6.4) with
Cj = KASUMI (K,Rj).

6.3 Distinguishing Attack Model

In this section, we describe the attack model of our distinguishing attack on a message
authentication code and a block cipher. In this paper we restrict ourselves to message
authentication codes and block ciphers. The attack model is based on indistinguishability
(IND) of encryptions under chosen-plaintext attack (CPA) (IND-CPA), which was first
developed due to Goldwasser and Micali [55] in public-key settings. In [17], Bellare et
al. studied the indistinguishability of encryptions under chosen-plaintext attack in the
symmetric key setting. Here, we use the same attack model to distinguish MACs (or
ciphertexts) in the symmetric-key setting. However, we develop a new distinguishing tech-
nique based on linear complexity of component sequences in the MOFM for deciding the
MAC (or ciphertext). For the message authentication code, the aim of an adversary is to
distinguish two MACs for two messages P0 and P1 with a high probability where messages
P0 and P1 were chosen by the adversary. On the other hand, for an encryption, the ad-
versary aims at distinguishing two ciphertexts for two chosen messages P0 and P1 with a
high probability.

Let F : {0, 1}k × {0, 1}n → {0, 1}m be a cryptographic algorithm which accepts two
inputs, a key of length k and a message of length n and produces an output of length m.
Assume that P0 and P1 are two messages of length n chosen by the adversary, the length
of the key K is k and ci = F (K,Pi), i = 0, 1. The aim of the distinguishing attack is to
distinguish c0 and c1 for the messages P0 and P1 with high probability. We denote the
oracle by O and the adversary by A. The indistinguishability game [18, 55] between the
oracle and the adversary is described as follows.

(1) Fixing a key K and generating the set of messages R = {R0, R1, ..., RN−1} using an
LFSR with a primitive polynomial of degree `, N = 2` − 1;

(2) The adversary A randomly picks up P0 ∈ R and P1 6∈ R and sends both {P0, P1} to
O.
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(3) The oracle picks up Pb
$←− {P0, P1}, b = 0 or 1 and computes c = F (K,Pb). O sends c

to the adversary A.

(4) Once A receives c as a challenge, the adversary performs a technique and decides b′

and returns b′ to O where b′ = 0 or 1;

(5) If b = b′, then adversary A succeeds; otherwise she fails.

We also summarize the game in Figure 6.1.

Adversary A Oracle O
R = {R0, R1, . . . RN−1}
P0 ∈ R, P1

$←− {0, 1}n
and P1 /∈ R

{P0, P1}−−−−−−−−−−−−→
b

$←− {0, 1}
c = F (K,Pb)

c←−−−−−−−
A applies distinguishing function h

to decide b′

b′−−−−−−−→ Check b′ =? b

Success if b′ = b←−−−−−−−−−−−
Fail if b′ 6= b←−−−−−−−−

Figure 6.1: Indistinguishability game

It is easy to see that, for a random cipher B, the success rate of winning the game for
an adversary is 1/2. In the following section, we present a new method to distinguish the
MACs produced by f1 for P0 and P1 with probability greater than 1/2. Therefore, the new
method provides a construction of a distinguisher on f1.

6.4 Distinguishing Attack Based on Linear Complex-

ity

In this section, we first present a general technique to build a distinguisher of a crypto-
graphic primitive, followed by the theoretical determination of the success probability of

85



the distinguishing attack. In particular, we make use of the distribution of the linear com-
plexity of component sequences of a primitive to develop a new distinguisher. Finally, we
apply this technique on f1, AES, KASUMI, and PRESENT.

6.4.1 A generic framework to build a distinguisher

We start this section by the following definition.

Definition 13. Let R and S be two subsets of U , where S = U \ R. Let Ω be a subset
of R × S. Let C be a cryptographic scheme from U to some set V . For any P0 ∈ R and
P1 ∈ S, define a distinguishing function h : {C(P0), C(P1)} → {0, 1}. We say that C is
distinguishable with respect to R,S, h,Ω if the average probability∑

i∈{0,1}

Pr
(
h(c) = i ∧ c = C(Pi)

)
is non-negligible compared with 1/2, when (P0, P1) is randomly chosen from Ω.

Now we state the main theorem below and the proof of it.

Theorem 12. Let the notations be the same as above. Now we define a subset CS of U ,
which is called the condition set. Let S ′ ⊂ S and Ω = R× S ′. For any P0 ∈ R, P1 ∈ S ′,
let us define the distinguishing function h : {C(P0), C(P1)} → {0, 1} as

h(y) =

{
0 if y = C(x) and x ∈ CS,
1 otherwise.

(6.7)

Define the following two probabilities

q0 = Pr (x0 ∈ R ∧ x0 ∈ CS) ,
q1 = Pr (x1 ∈ S ′ ∧ x1 ∈ CS) .

(6.8)

where (x0, x1)
$←− Ω. Then the average probability is∑

i∈{0,1}

Pr (h(c) = i ∧ c = C(Pi) ) =
1 + (q0 − q1)

2
. (6.9)

Proof. It is not difficult to see that there are four independent cases of the event h(c) =
i ∧ c = C(Pi) when i ∈ {0, 1}, therefore we may compute its probability one by one and
sum them together:

86



(1). h(c) = 0 ∧ c = C(P0) ∧ P0 ∈ CS. The probability of this case equals

Pr (h(c) = 0 | c = C(P0) ∧ P0 ∈ CS ) Pr (c = C(P0) | P0 ∈ P ) Pr (P0 ∈ CS ) =
1

2
q0;

(2). h(c) = 0 ∧ c = C(P0) ∧ P0 6∈ CS. The probability of this case is clear 0.

(3). h(c) = 1 ∧ c = C(P1) ∧ P0 ∈ CS. The probability of this case equals

Pr (h(c) = 1 | c = C(P1) ∧ P0 ∈ CS ) Pr (c = C(P1) | P0 ∈ P ) Pr (P0 ∈ CS ) =
1

2
q0(1−q1).

(4). h(c) = 1 ∧ c = C(P1) ∧ P0 6∈ CS. The probability of this case equals

Pr (h(c) = 1 | c = C(P1) ∧ P0 6∈ CS ) Pr (c = C(P1) | P0 6∈ P ) Pr (P0 6∈ CS ) =
1

2
(1−q0)(1−q1).

Summing the above probability we have the desired result∑
i∈{0,1}

Pr (h(c) = i ∧ c = C(Pi) ) =
1 + (q0 − q1)

2
.

The proof is completed.

Several remarks on Theorem 12 are as follows:

(i) An attacker will expect the probability value in (6.9) to be as large as possible so
that she can distinguish the cryptographic scheme C with a high probability.

(ii) The difficulty of finding the distinguishing attack described in Theorem 12 is to find
a proper condition set CS such that q0 − q1 is large.

(iii) The value of q0− q1 could be negative. If the attacker uses CS to replace CS, q0− q1

will be positive, and the probability will be greater than 0.5. Thus, the problem of
finding a condition set such that q0 − q1 is large becomes the problem of finding the
condition set such that |q0 − q1| is large.

(iv) In the rest of this section, we will show how to construct such set CS, which leads to
distinguishing attack on KASUMI and PRESENT with non-negligible success rate.
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6.4.2 Distribution of the linear complexity of component sequences

We use f1, AES,KASUMI and PRESENT as multi-output filtering functions and study the
distribution of the linear complexities of their component sequences. Meidl and Niederre-
iter studied the expectation of the linear complexity of random binary periodic sequences
in [83]. Unfortunately, the average values of the linear complexities of the component
sequences of AES, f1, KASUMI, PRESENT are very close to the theoretical value de-
termined in [83] according to our experiments. This motivates us to look at the whole
distribution of the linear complexity of the component sequences instead of considering
only the average value. We perform the following test for the linear complexity and have
an interesting observation on the component sequences of KASUMI and PRESENT.

Test of the distribution of linear complexity.

Usually, for a primitive C, it is difficult to determine the distribution of linear complexity of
its component sequences. Of course, one can choose a subset of inputs to the primitive to
estimate the linear complexity distribution. However, since the input space is very large,
it is hard to measure the accuracy of the estimated distribution. To avoid such problem,
we propose a new method to test the distribution. This goal is achieved by choosing two
(large) subsets of inputs and by comparing the distributions of the linear complexity of
their component sequences. In particular, we choose one subset LI of the inputs to be
generated by an `-stage LFSR and the other subset RI = (LI \ {P0}) ∪ {P1}, where

P0
$←− LI and P1

$←− LI. Note that the elements in LI are ordered according to Eq. (6.3).
It is clear that if the C has very good random property, it should not be easy to distinguish
two distributions for LI and RI. Our method consists of the following three steps.

Now fixing a primitive C and an `-stage LFSR:

Step 1 (Generating component sequences).

We randomly choose Nkey keys.

1. For all keys, using LI as the set of inputs and C as a multi-output filter, we obtain
m ·Nkey component sequences. This set of component sequences is denoted by Q1.

2. Similarly, using RI as the inputs, we generate another set of m · Nkey component
sequences, which is denoted by Q2.
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Step 2 (Computing linear complexity).

We compute the linear complexities of the sequences in Q1 and Q2 and count the number
of component sequences in Qi with the linear complexity 2` − 2 and 2` − 1, denoted by
N i

2`−1
and N i

2`−2
, where i = 1 or 2.

Step 3 (Comparing the distributions).

Now we compare two distributions by computing the slopes sli of the line between two
points (2` − 2, N i

2`−2
) and (2` − 1, N i

2`−1
), where

sli =
N i

2`−1
−N i

2`−2

(2` − 1)− (2` − 2)
= N i

2`−1 −N i
2`−2.

If the difference between sl1 and sl2 is non-negligible, we can make use of it to build a
distinguisher of C, which is described in the next section. The worst case computational
complexity for exhausting all `-stage LFSRs of the above three steps is

φ(2` − 1)

`
×Nkey × 2`× (2` − 1)×m, (6.10)

where φ is the Euler phi function. We perform the experiment using these parameters on
f1, AES, KASUMI and PRESENT in the next section.

Distribution of f1, AES, KASUMI and PRESENT.

In our experiment, we choose ` = 8 and Nkey = 108. By Eq. (6.10), the worst case
complexity for the primitive f1 is 250.27 (some computation can be performed in a parallel
way). We present the result in the following Figures In the figures, the red (resp. blue)
line represents the distribution of sequences in Q1 (resp. Q2).

From Figures 6.2(a) and 6.2(b), one can observe that, for KASUMI and PRESENT,
the difference of the distribution of the linear complexity for sequences in Q1 and Q2 is
non-negligible. While Figures 6.2(c) and 6.2(d) show this is not the case for AES and f1.

6.4.3 The new distinguishing attack

We now present the details of our distinguishing attack, which is achieved through con-
structing a distinguishing function h. The construction of the distinguishing function is
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(c) AES
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(d) f1

Figure 6.2: Distribution of the Component Sequences with Linear Complexity 254 and 255

based on the linear complexity distribution of the component sequences of a primitive in
the MOFM.

Constructing the distinguishing function.

Recall that the distinguishing function is defined in Definition 13. We use the notations in
Theorem 12 and the attack model is depicted in Figure 6.1.

1. Choosing an `-stage LFSR with a primitive polynomial to generate the inputs of length
n in R (see Eq. (6.3)). For f1 and AES, n = 128; for KASUMI and PRESENT, n = 64.

2. Constructing S = Fn
2 \ R;

3. Randomly choose a message P0 ∈ R and P1 ∈ S;

4. Let NLC be the number of component sequences with linear complexity LC where
` ≤ LC ≤ 2` − 1;
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5. Defining the condition set

CS =

y ∈ Fn
2

∣∣∣∣∣
using (R \ {P0}) ∪ {y} as the inputs of a primitive in the
MOFM, the slope of the line between
the points (2` − 2, N2`−2) and (2` − 1, N2`−1) is less than t.

 ;

6. The distinguishing function h is defined in Eq. (6.7) using the condition set CS;

7. q0, q1 are the probability values defined in Definition 13.

6.4.4 An example of the attack

In this section, we apply the attack with our distinguishing function defined in Section 6.4.3
on f1, AES, KASUMI, and PRESENT. For simplicity, we use an 8-stage LFSR to conduct
our attack. However, one can use an arbitrary stage LFSR based on computation capability.
For each of those four ciphers, we compute over 108 keys to obtain the distribution of the
linear complexity. Figures 6.2(a) - 6.2(d) show the average number of the component
sequences, which has the linear complexity 254 and 255. However, this computation was
so heavy that it costed more than 4 weeks, even it was computed by an eighty-core server.

Theorem 12 and the observations in Figures 6.2(a) and 6.2(b) enable us to gain a non-
negligible success rate of the attack on KASUMI and PRESENT. In the following, we
present an example to show a possible application inspired by the observation shown in
Figure 6.2 with 210 keys.

We first choose an 8-stage LFSR to construct the set R. We then randomly choose
210 keys. For each key, a message P0 ∈ R and message P1 ∈ S are chosen randomly. In
Figure 6.1, we use the distinguishing function h to execute the attack. It is worth to mention
that, to test whether the average success rate is stable, we repeated the experiment 20 times
by choosing different groups of 210 keys and found similar results for most experiments.
Due to the page limit, we present the largest success rate that we can achieve in Table 6.1,
where we use the upper bound of the slope t and an 8-stage LFSR.

One can observe from the average success rate in Table 6.1 that the outputs of both KA-
SUMI and PRESENT can be distinguished from a random primitive with a non-negligible
probability. On the other hand, the performance of f1 and AES is very similar to the
random one.

Remark 4. Note that in order to increase the accuracy of the success rates shown in
Table 6.1, a larger scale experiment needs to be done, which will be designed as one of our
future work.
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Table 6.1: Average success rate of our attack on f1, AES, KASUMI and PRESENT

Primitive t q0 q1 Avg. Succ. Rate
f1 2 0.20398 0.194458 50.476%

AES 2 0.193848 0.20044 50.329%
KASUMI 4 0.421875 0.454103 51.612%

PRESENT 5 0.5686 0.540285 51.416%

6.5 Distribution of the Algebraic Degree and Nonlin-

earity of the Component Functions

In this section, we investigate the distribution of the algebraic degree and the nonlinearity of
the component functions of f1, AES, KASUMI, and PRESENT in the MOFM. To measure
the randomness property, we first determine the distribution of the algebraic degree and the
nonlinearity of component functions using a random primitive as the multi-output filter.
Comparing this ideal distribution with those of f1, AES, KASUMI and PRESENT obtained
by performing experiments, some non-randomness property of KASUMI is discovered.
On the other hand, our experimental results show that f1, AES and PRESENT perform
very similar to the ideal case in the sense of the distributions of the algebraic degree and
nonlinearity.

6.5.1 Algebraic degree distribution

Recall that the algebraic degree of a Boolean function is defined in Section 6.1. The
following result states the number of Boolean functions with a given algebraic degree. The
first part of the result can also be found in [33]. We provide a simple proof below for the
completeness.

Theorem 13. Let f be a Boolean function on F2n. Then the number of Boolean functions

with algebraic degree at most d is 2
∑d

i=0(
n
i ), and the number of Boolean functions with

algebraic degree exactly d is
(

2(n
d ) − 1

)
2
∑d−1

i=0 (n
i )

Proof. Denoting the set Ω = {0, 1, . . . , n− 1}. Let the ANF of f be f(x) =
∑

I∈P(Ω) aIx
I .

If the degree of f is at most d, then all aI = 0 for |I| > d. Clearly there are
∑d

i=0

(
n
i

)
terms in the ANF of f with |I| ≤ d, and their coefficients can be either 0 or 1. Therefore
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there are 2
∑d

i=0(
n
i ) Boolean functions with degree at most d. For simplicity, let us denote

by Ad the number of Boolean functions with degree at most d. Then by noting the number
of Boolean functions with degree exactly d is Ad − Ad−1 we obtain the result.

Corollary 4. Let C be a random cryptographic primitive and L be an n-stage LFSR whose
characteristic polynomial is a primitive polynomial of degree n. We use C as a multi-output
filtering function and L to generate the inputs of C. Then the probability of the component

functions having degree at most d is 2
∑d

i=0(n
i )

22n
. In particular, Pr(d ≤ n− 3) = 1

2n+1 .

Several remarks on the application of Theorem 13 are in the sequel:

(1) Assume the primitive C is used to generate MACs (for instance the function f1 in
TUAK). If the percentage of component functions with degree less than n− 2 is large,
then we may use the decoding method of the Reed-Muller code R(n, n − 3) to forge
the MACs. See [80] for the Reed-Muller decoding. Note that the code R(n, n − 3) is
the set of Boolean functions on F2n with algebraic degree at most n− 3. Therefore, we
need the probability Pr(d ≤ n− 3) to be as small as possible.

(2) On the other way, as shown in Corollary 4, for a random primitive, the probability
Pr(d ≤ n− 3) = 1

2n+1 . So, for the primitive C, if this probability is very different with
1

2n+1 , some non-randomness properties may be exploited.

(3) The probability Pr(d ≤ n − 3) is actually affected by the diffusion property of the
primitive C. Assumed C is a keyed primitive from F2n to F2m . In the modern design
of ciphers, by increasing the number of iteration rounds, normally C could attain the
maximal possible degree for any key K. For a keyed primitive CK , in the multi-output
model, we restrict the inputs of CK to a subspace S generated by an LFSR. For a fixed
key K, CK can be regarded as a vectorial function and the ANF of CK has the form
CK(x) =

∑
I∈P(Ω) aI(K)xI , where Ω = {0, . . . , n − 1} and P(Ω) is the power set and

aI(K) ∈ F2m are the coefficients of xI (aI is a function with K as the variable) [33].
Then the restrictions of CK |S =

∑
I∈P(Ω),I⊂S aI(K)xI . The degree d of the component

functions is then determined by aI with |I| = d. If the diffusion property of C and
the key generating algorithm are good, it should be very rare that all aI = 0 for
|I| ≥ dim(S)− 2.

To better understand Theorem 13 and the above comments, for f1,AES, KASUMI and
PRESENT, we perform the following test on the distribution of the algebraic degree of
their component functions.
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Statistical Test 1. By Corollary 4, using an LFSR with a primitive polynomial of degree
8, the probability that the degree of the component functions is smaller than 7 is 1

29
=

19.53125 × 10−4. For f1, AES, KASUMI and PRESENT, we apply the MOFM as in
Section 6.2.1. We choose 50, 000 keys for these primitives and compute the degree of the
component functions. The probability of the degree is smaller than 7 is listed in the following
table.

Table 6.2: Distribution of the degree smaller than 7

Cryptographic primitive Pr(d ≤ 6)
Random function 19.53125× 10−4

f1 19.87× 10−4

AES 19.77× 10−4

KASUMI 20.16× 10−4

PRESENT 19.58× 10−4

From Table 6.2, we can see that for KASUMI, the probability Pr(d ≤ 6) is much higher
than the one for other ciphers. To confirm this, we test another 50000 keys and found
the probability is very close to it. This points out a distinguisher of KASUMI and other
ciphers in Table 6.2.

6.5.2 Nonlinearity distribution

The nonlinearity of a Boolean function is one of the most important cryptographic prop-
erties. A highly nonlinear function is used to avoid the linear attack and its variants. Let
f be a Boolean function on Fn

2 . The nonlinearity of f is defined in Section 6.1. One can
see easily from its definition that, in other words,

NL(f) = max
g∈RM(1,n)

d(f, g),

where RM(1, n) denotes all Boolean functions with degree at most 1, and d(f, g) is the
weight of the sequence (f(x) + g(x) : x ∈ Fn

2 ). It is well known that when n is even the
best nonlinearity a Boolean function may achieve is 2n−1 − 2n/2−1 and such functions are
called bent functions (see [33] for more details). However, such functions are very rare.
For a random Boolean function, we have the following result on the distribution of its
nonlinearity.
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Theorem 14 ([33, 100]). Let c be any strictly positive real number. The density of the set{
f ∈ Bn, NL(f) ≥ 2n−1 − c√n2

n−1
2

}
is greater than 1− 2n+1−c2n log2 e. If c2 log2 e > 1, then this density tends to 1 when n tends
to infinity.

Applying the above theorem on Boolean functions with 8 variables, we have the follow-
ing table. Note that the best nonlinearity we expect for Boolean functions with 8 variables
is 27 − 23 = 120.

Table 6.3: Lower bound of the density of Boolean functions in B8 with nonlinearity greater
than W

Lower Bound W of NL
Lower bound of the density of
Boolean functions with NL(f) ≥ W

98 0.5475
97 0.7190
96 0.8282
95 0.8966
94 0.9387
93 0.9642
92 0.9795
91 0.9884
90 0.9935

From the above table, one can see that if the component functions of f1 are random,
the probability that the component Boolean functions have nonlinearity smaller than 90
is very small, which is 1− 0.993545113167509528277258485524 ≈ 0.00645. In view of this,
we perform the following statistical test for f1, AES, KASUMI and PRESENT.

Statistical Test 2. Let the LFSR and the other settings be the same as in Statistical
Test 1. We list the distribution of the nonlinearity of the component functions of f1 and
AES in the following table. Since only the component functions with smallest nonlinearity
are important to us (as an attacker), we only list the probability that a Boolean function
has nonlinearity smaller than 90 or 91. The notation Pr<W denotes the probability that
the nonlinearity is smaller than W .
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Table 6.4: The distribution of the nonlinearity of component sequences of f1, AES, KA-
SUMI and PRESENT

Cryptographic primitive Pr<90 Pr<91

Random Function 0.006455 0.011597
f1 0.000299 0.000690

AES 0.000306 0.000592
KASUMI 0.000299 0.000565

PRESENT 0.000308 0.000589

Unlike the distribution of the algebraic degree, from the above table we can not see
obvious difference among these four ciphers. However, one can still see that the probability
values Pr<90 and Pr<91 is still very different with the random case (although they are only
the upper bounds of the probability).

Although now we cannot derive attacks from Statistical Test 1 and Statistical Test 2,
it is interesting to observe some non-randomness in the aspect of the distribution of cryp-
tographic properties.

6.6 Summary

In this Chapter, we introduced the MOFM for analyzing the security of a cryptographic
primitive. In this model, a cryptographic primitive is used as a multi-output filtering
function and a number of component sequences and component functions of the primitive
are obtained. We aimed at exploiting the security properties of the primitive through
studying its component sequences and functions.

Thanks to the fruitful research outcome in the theory of sequences and Boolean func-
tions, we propose a general distinguish attack technique under IND-CPA. We developed a
new object, called a distinguishing function, to characterize the success rate of our new at-
tack method. Interestingly enough, for a primitive C, by comparing the distribution of the
linear complexity of the component sequences generated by two sets of inputs, we can con-
struct a new distinguishing function. The importance of this new distinguishing function
is demonstrated by launching an attack on KASUMI and PRESENT with non-negligible
success rates.

Furthermore, we studied the cryptographic properties of the component functions. By
comparing the distribution of the algebraic degree and nonlinearity properties with that of
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a random one, we discovered that, for KASUMI, its distribution of the algebraic degree is
very different, while the distribution of f1, AES and PRESENT is not. We cannot propose
any immediate attack based on this observation, but it is interesting to point it out for
future research.

Regarding to the future work, we believe it is important to study which inner structure
of a primitive affects the distribution of the linear complexity, algebraic degree, nonlinearity,
and other properties of component sequences and functions. This study may lead to a new
attacking method, and present new criteria on designing a cryptographic primitive.
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Chapter 7

Stream Cipher Based MACs
Construction

In this chapter, we focus on constructing the MACs based on stream ciphers. As intro-
duced in the preliminary chapter, EIA1 and EIA3 are two outstanding stream-cipher-based
MACs, and they both have solid security proof and high efficiency. However, the cycling
attack and the linear forgery attack make EIA1 and EIA3 not secure anymore. The cycling
attack exploits the fact that the order of an element randomly selected from a finite field
may be small. Attackers can conduct substitution forgery by simply switching two message
blocks. The cycling attack can be applied to any polynomial-evaluation-based MACs only
when the random numbers used in those MACs have small order, and attackers must guess
the order. Thus, this attack is a probabilistically attack. Compared with the cycling attack,
the linear forgery is more serious, because it is a deterministic attack. Some researchers
may argue that since the linear forgery attack breaks the security assumption (one-time
pad) of EIA1 and EIA3, this attack does not compromise the security of these two. But
more researchers have realized that the one-time pad assumption of EIA1 and EIA3 is too
strong. They even proposed a concept called “misusing-resistance”. A misusing-resistant
MAC is resistant against the linear forgery attack.

This chapter introduces two new kinds of MAC, which are both resistant to the linear
forgery attack. The first MAC called WGIA-128 is a variant of EIA1. The addition over
finite field used in EIA1 is replaced by the addition over ring. The second MAC called
AMAC has two different constructions, which are both based on APN functions. AMAC
also resists the cycling attack.

The rest of this chapter is organized as follows. Section 7.1 proposes a variant of EIA1,
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which is resistant to the linear forgery attack. Section 7.2 presents the APN-function-based
MAC, AMAC, which resists both the linear forgery attack and the cycling attack. The
last section concludes this chapter.

7.1 WGIA-128 and Security Analysis

This section introduces WGIA-128 algorithm and presents the security analysis of WGIA-
128 under two attack models. WGIA-128, a variant of EIA1, is a MAC based on WG-16
stream cipher. Because only WG-16 can guarantee the randomness properties required by
the security proof of WGIA-128, this MAC is specially designed as the integrity protection
algorithm of WG-16.

7.1.1 Integrity Algorithm WGIA-128

The integrity algorithm WGIA-128 is a MAC function that maps an input message and
an integrity key IK to a fixed-length MAC. The allowed bit length of a message is no
greater than 264. The inputs and output of the algorithm are given in Tables 7.1 and 7.2,
respectively.

Table 7.1: The Inputs of WGIA-128

Parameter Size(bits) Remark

COUNT 32 The counter (COUNT31, . . . ,COUNT0)

FRESH 32 The random number (FRESH31, . . . ,FRESH0)

BEARER 5 The bearer identity (BEARER4, . . . ,BEARER0)

DIRECTION 1 The direction of transmission DIRECTION0

IK 128 The integrity key (IK127, . . . , IK0)

LENGTH 64 The length of the input message

M LENGTH The input bit stream (MLENGTH−1, . . . ,M0)
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Table 7.2: The Output of WGIA-128

Parameter Size(bits) Remark

MAC 32 The output bit stream (MAC31, . . . ,MAC0)

Initialization.

WG-16’s parameters described in Chapter 2 are initialized using the inputs listed in Table
7.1 as follows:

K =(IK127, . . . , IK1, IK0),

IV =(COUNT31, . . . ,COUNT1,COUNT0,

FRESH31, . . . ,FRESH1,FRESH0,

COUNT31 . . . ,COUNT1,COUNT0 ⊕ DIRECTION0,

FRESH31, . . . ,FRESH16 ⊕ DIRECTION0, . . . ,FRESH0)

After both K and IV are loaded, WG-16 runs under the initialization mode to scramble
the input.

Key Stream Generation.

In key stream generation phase, WG-16 runs under the running mode to generate 96-
bit key stream z0, . . . , z95, where z0 and z95 are the first and last bits of the key stream,
respectively. We denote the 96-bit key stream generated in this step by z = (z95, . . . , z0).
Let H = (H31, . . . , H0) be a random number that is selected uniformly from F232 and is
independent of z.

MAC Generation

The 96-bit key stream generated in the last step is partitioned into three blocks P,Q and
OTP , where P = (z95, . . . , z64), Q = (z63, . . . , z32) and OTP = (z31, . . . , z0) are three 32-
bit blocks. Let L = dLENGTH/32e + 3 and Mi be the i-th bit of the message. Denote
Bi = (M32·i+31, . . . ,M32·i) for 0 ≤ i ≤ L − 5, BL−4 = (0, . . . , 0,MLENGTH−1, . . . ,M32·(L−4)),
BL−3 = (LENGTH31, . . . , LENGTH0), BL−2 = (LENGTH63, . . . , LENGTH32) and BL−1 =
(H31, . . . , H0). The MAC is then computed as follows:
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1. Set the 32-bit value T0 = 0;

2. Compute Ti+1 = (Ti �Bi)� P , for 0 ≤ i ≤ L− 1;

3. Compute MAC = (TL �Q)⊕OTP .

Note that in the above MAC generation process the multiplication (denoted by �) is
defined over the finite field F232 generated by the irreducible polynomial r(x), whereas
the addition (denoted by �) is computed over a ring Z232 . In this paper, Steps 1 and 2
are called GHASH+, which enhances the security of the original polynomial hash (i.e.,
GHASH) [82]. The drawback of a polynomial hash comes from its linear structure. Hence,
we have replaced the XOR operations in the original polynomial hash by the modular 232

additions to form a semi-polynomial hash, which enables us to keep the the efficiency of a
polynomial-like hash and avoid the linear structure simultaneously. Since the operations
for generating a MAC are no longer linear, the linear forgery attack is not applicable.

7.1.2 Attack Models

The security of WGIA-128 is analyzed under two attack models.

Model A

This attack model is adopted from McGrew and Viega’s work [82], in which adversaries have
the capability to access a MAC-generation oracle and a MAC-verification oracle only once.
This one-time-access restriction describes the case that no misuse exists in the system, and
almost guarantees the one-time pad used in Krawczyk’s proof [73]. Note that the one-time
pad is not fully guaranteed, because usually it is implemented by stream ciphers, which
are analog to the one-time pad.

Model B

This attack model simulates a scenario that misuse occurs. Compared with Model A,
adversaries can query the MAC generation oracle with the same (IV,H) at most twice.
In [111], Wu and Gong showed that EIA1 is vulnerable to the linear forgery attack under
Model B. Since WGIA-128 replaces the XOR operations in EIA1 by the modular 232

additions, it resists the linear forgery attack.
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7.1.3 Ideal 32-Tuple Distribution Property of WG-16

Property 3 (Ideal 32-Tuple Distribution Property). For 1 ≤ t ≤ 32, each non-zero t-tuples
over F2 occurs exactly 216×32−t times and the zero t-tuple, 216×32−t−1 times. In particular,
each non-zero 32-tuples over F2 occurs 215×32 times and the zero t-tuple, 215×32 − 1 times.

This property has been proved theoretically in [59], which implies the following lemma.

Lemma 10.

Pr[W = r] ≈ 1

232
,

where W is a 32-tuple generated by WG-16 and r is an arbitrary element in F232.

Lemma 10 guarantees that all the random numbers using in WGIA-128 are uniformly
distributed.

7.1.4 Security of WGIA-128 under Model A
Since the last block of the inputs of WGIA-128 (i.e., BL−1 = H) is chosen uniformly from
F232 , the following theorem holds for GHASH+.

Theorem 15. GHASH+ is almost universal, which means

Pr[Tk = r] =
1

232
+ ε ≈ 1

232
,

where ε = 1/296.

Proof. Assume the last step of GHASH+ is Tk = (Tk−1�H) � P . To obtain Pr[Tk = r],
where r is an arbitrary element in F232 , we consider the following two cases.

Case 1: When r 6= 0, we have

Pr[(Tk−1 �H)P = r]

=
∑
p 6=0

(Pr[(Tk−1 �H)P = r|P = p]Pr[P = p]),

=
∑
p 6=0

∑
a

(Pr[Tk−1 = a,H = rp−1 − a|P = p]

Pr[P = p]),
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=
∑
p 6=0

∑
a

(Pr[H = rp−1 − a|Tk−1 = a, P = p]

Pr[Tk−1 = a|P = p]Pr[P = p]).

P is generated by WG-16, which means from Lemma 10, it is uniformly distributed. H is
assumed to be uniformly distributed. Since both H and P are uniformly distributed, and
they are independent of each other, we obtain

Pr[H = rp−1 − a|Tk−1 = a, P = p] =
1

232
,

P r[P = p] =
1

232
.

Using these two equations, we have

Pr[(Tk−1 �H)P = r] =
1

232

1

232

∑
p6=0

∑
a

Pr[Tk−1 = a|P = p].

Noting that
∑

a Pr[Tk−1 = a|P = p] = 1, we finally get

Pr[(Tk−1 �H)P = r] =
232 − 1

(232)2
.

Case 2: When r = 0, we have

Pr[(Tk−1 �H)P = r]

=
∑
p 6=0

(Pr(Tk−1 �H = 0|P = p]Pr[P = p]) +

1 · Pr[P = 0],

=
232 − 1

(232)2
+

1

232
.

We then obtain

Pr[Tk = r] = Pr[Tk = r|r 6= 0]Pr[r 6= 0] +

Pr[Tk = r|r = 0]Pr[r = 0]

=
232 − 1

(232)2

232 − 1

232
+

1

232

1

231
≈ 1

232
.

Therefore, GHASH+ is almost universal.
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Let Dj = (Mj, pointj0, · · · , pointj232−1, r
j), where pointji = (P j

i ,H
j
i ), and P j

i ,H
j
i ,M

j, rj ∈
F232 . D is the set that contains all the Dj satisfying the following four conditions:

(a) For all i1 6= i2, P j
i1
6= P j

i2
;

(b) For all Dj1 6= Dj2 , there always exists at least one pointj1i ∈ Dj1 , but pointj1i 6∈ Dj2 ;

(c) For all Dj1 6= Dj2 , rj1 6= rj2 ;

(d) GHASH+(Mj, point
j
i ) = rj.

Let |D| = N be the size ofD. EachDj represents that the polynomial GHASH+(Mj, point) =
rj passes all pointji , for 0 ≤ i ≤ 232 − 1. If an adversary knows the whole set D,
given r ∈ F232 and 232 points with different P s, she can find a message M, such that
GHASH+(M, point) = r passes all given points. According to the notation in Theorem
15, we keep using Tk to represent the GHASH+ value of a message M, whose length is k.
Then “Tk = tk passes some points” is equivalent to say “GHASH+(M, point) = tk passes
some points”, where tk is an element in F232 .

Notice that due to the computational limit, an adversary can never get the whole D.
Assuming that she can get a subset S of D with size n, it is quite difficult for adversaries
to get the GHASH+ value of a new message based on a set of known GHASH+ values and
messages. Therefore, S is selected randomly from D. We assume that each element in S
is chosen from D equally likely.

A u-match means that given any 232 different points and a random element tk, Tk = tk
passes u given points. If u = 1, finding a u-match is a determinate problem. If u > 1,
finding u-match becomes a hard problem. We can only randomly choose a Tk = tk to test
whether it passes u given points or not. The probability that we can find a u-match is
given by the following lemma.

Lemma 11. When u > 1, the probability of finding a u-match of the given points by
randomly searching is 1/232u.

Proof. Since the space of message is infinite. Then we can consider that the probability of
Tk = tk passing any 232 points is equal. Finding a u-match means finding a Tk = tk that
passes u of the given points. Then the probability is

Pr[finding a u-match of the given points]

=

(
232

u

)
(264)232−u

(264)232
=

(
232

u

)
1

264u
≈ 1

232u
.
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Lemma 12.

Pr[Tk = tk|T ′k = t′k] ≈ 1

232
.

Proof. Given one P , the adversary can get a H under the condition Tk = tk. Thus she gets
232 different points. The probability of finding a 232-match in S is n/N . Otherwise, the
probability of finding a u-match, where 1 < u < 232, is given by Lemma 11. When u = 1,
the probability is 1. Thus,

Pr[Tk = tk, T
′
k = t′k]

≈ n

N
+
N − n
N

(
1

232
+

u=232−1∑
u=2

u

232

1

232u
),

=
n

N
+
N − n
N

1

232
(1 + ε),

where ε is a very small value compared with 1
232

. Because of the limitation of the compu-
tational resources, n << N . Therefore, Pr[Tk = tk|T ′k = t′k] ≈ 1/232.

Theorem 16. GHASH+ is AXU, which means

Pr[Tk ⊕ T ′k = r] ≈ 1

232

where Tk and T ′k are two tags generated by GHASH+, and r is an arbitrary element in
F232.

Proof. Assume that Tk and T ′k are two tags generated by GHASH+. Obviously, if Tk and
T ′k are generated by two different pairs of IVs and Hs, we have Pr[Tk ⊕ T ′k = r] = 1/232.
However, in Model A, the adversary is allowed to query the MAC verification oracle many
times with the same IV. As a result, we must investigate Pr[Tk ⊕ T ′k = r] under the
condition that Tk and T ′k are generated by the identical pair of IVs and Hs. We first have

Pr[Tk ⊕ T ′k = r] =
∑
tk

Pr[Tk ⊕ T ′k = r|Tk = tk]Pr[Tk = tk].

From the Lemma 12, we obtain

Pr[Tk ⊕ T ′k = r] ≈
∑
tk

1

264
=

1

232
.

Remark 5. Since the GHASH+ is AXU, the original security proof of GCM [82] can be
immediately applied to WGIA-128.
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7.1.5 Security of WGIA-128 under Model B

When deploying the EIA1 and WGIA-128 in 4G-LTE networks, one should avoid the
scenario described in Model B. However, misusing the algorithms may lead to the reuse
of IV and H in practice. We demonstrate that even in Model B, WGIA-128 is still more
secure than EIA1. Since the security of the components directly affects the security of the
whole algorithm and the most important components of EIA1 and WGIA-128 are the hash
functions, we first show that GHASH+ is more secure than GHASH under Model B.

Remark 6. Under Model B, Lemma 12 shows even known one tag, the output of the
generation oracle is still universal.

Lemma 13.

Pr[Tk = tk|T ′k = t′k, T
′′
k = t′′k] ≈ 1

232
,

Proof. The proof is quite similar to the proof of Lemma 12. So we do not present the
details here.

Theorem 17. GHASH+ is AXU under Model B, which means

Pr[λ1Tk ⊕ λ2T
′
k ⊕ T ′′k = r] ≈ 1

232

where Tk and T ′k are two tags generated by GHASH+, and r is an arbitrary element in
F232.

The proof of Theorem 17 is straightforward from Lemma 13. Thus we omit it here.

7.2 AMAC and Two Constructions

We call the MAC constructed upon APN functions AMAC. This section presents two
different constructions of AMAC. Both constructions have the same assumption that the
underlying cipher C maps the integrity key to key stream uniformly. Formally, if the key
size is k and the length of the key stream generated by C using key K is len, len ≤ k, there
are 2k−len different values of K, which can generate this key stream. When len > k, this
key stream is generated by one K with probability 2k−len.
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7.2.1 Construction I

In Construction I, we use n, k and l to denote the length of the output, the key and the
number of blocks in the message respectively. Note that the size of one block is the same
as the length of the output.

We construct a MAC from F∗2 × Fk
2 to Fn

2 using an APN function f(x) : Fn
2 7→ Fn

2 and
an underlying cipher C. We remark that the underlying cipher C is a stream cipher or a
block cipher (keyed hash function) in counter mode. For a stream cipher or a block cipher
in counter mode, there are two stages, the initializing phase and running phase, which are
denoted as Init and Gen in the following pseudo code respectively. Init(K,N ,C) means
initialize the cipher with integrity key and the nonce, and Gen(C, i) means get the i-th
n-bit block from the key stream generated by C. Our construction takes four inputs. The
first one is the message, followed by the length of this message in bit. The third input is
the integrity key, and the last argument is the nonce.

Algorithm 3: MAC

Input: Message (M), Length of M (L), Key (K), Nonce (N)
len← L/n;
res← L mod n;
ret = 0;
Init(K,N,C);
for i← 0 . . . len− 1 do

H1 ← Gen(C, i);
ret← ret+Mi ·H1;

end
i← len;
if res 6= 0 then

H1 ← Gen(C, i);
ret← ret+ (Mlen||0) ·H1;
i← i+ 1;

end
H1 ← Gen(C, i);
ret← ret+ L ·H1;
(OTP ||H0)←Gen(C, i);
ret← f(ret+H0) +OTP ;
return ret ;
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Algorithm 3 demonstrates the computation of the tag. The message is partitioned into
blocks, and each block Mi has n bits. If the length of M is not a multiple of n, the last
block is padded with zeros to make it a complete block, whose length is n. OTP , H0 and
H1 ∈ Fn

2 are three random numbers, which are generated by the underlying cipher C. We
write Algorithm 3 as a function for the purpose of analysis. First let us define an auxiliary
function gK(x).

gK(M) =
l∑

i=0

Mi · sub− keyi, (7.1)

where Ml is the length L represented as a field element. Then we define Algorithm 3 as

FK(M) = f(gK(M) +H0) +OTP. (7.2)

Theorem 18. If f(x) : Fn
2 7→ Fn

2 is an APN function, then the success probability of the
substitution forgery attack against Construction I is upper bounded by

PS ≤
1

2n−1
− 1

22n
.

Proof. Assume two messages

M = [M0, · · · ,Ml−1] and

M
′

= [M ′
0, · · · ,M ′

l′−1],

where Mi,M
′
i ∈ F2n are blocks of each message. M 6= M

′
. WLOG, assume the length of

M is no smaller than the length of M
′
, i.e. l ≥ l′.

G = gK(M) + gK(M
′
)

=
l′∑

i=0

(Mi +M ′
i) · sub− keyi +

l∑
i=l′+1

Mi · subkeyi.

Let

gi =

{
Mi +M ′

i , 0 ≤ i ≤ l′

Mi , l′ < i ≤ l

Then we have

G =
l∑

i=0

gi ·Ki.
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To prove FK(M) is an AXU MAC, we need to compute the following probability.

PrK [f(gK(M) +H0) + f(gK(M
′
) +H0) = c]

=
∑
b∈F2n

PrK [f(gK(M) +H0) + f(gK(M) +H0 + b) = c,G = b].

Let us consider the equation

G =
l∑

i=0

gi ·Ki = b. (7.3)

Since Eqn. (7.3) is a linear function of sub-keys, it is easy to show that, for any b ∈ F2n ,
there are l − 1 different sub-key sequences {K0, · · · , Kl−1} such that Eqn. (7.3) holds.

Case 1 b 6= 0: Let gK(M) +H0 = x and G = b. By definition of APN function,

f(x) + f(x+ b) = c (7.4)

has at most two solutions of x for any b 6= 0. Since H0 is independent from gK(M) and

gK(M
′
), for any given M and M

′
, there are at most two H0 such that Eqn (7.4) holds.

Thus, there are totally 2n(l−1)+1 different (K0, · · · , Kl−1, H0) tuples that satisfy Eqn. (7.4).
Note that the length of the key stream generated by C is n(l + 1)-bit.

When n(l+1) ≤ k, each (K0, · · · , Kl−1, H0) tuple is mapped from 2k−n(l+1) keys. Thus,
2n(l−1)+1 different (K0, · · · , Kl−1, H0) tuples are mapped from
2n(l−1)+1 ∗ 2k−n(l+1) keys. Therefore,

PrK [f(gK(M) +H0) + f(gK(M
′
) +H0) = c,G = b] ≤ 1

22n−1
.

When n(l + 1) > k, each (K0, · · · , Kl−1, H0) tuple is mapped from a possible key with
probability sk−n(l+1). As the same argument above, the probability

PrK [f(gK(M) +H0) + f(gK(M
′
) +H0) = c,G = b] ≤ 1

22n−1
.

Case 2 b = 0. As the same argument in Case 1, there are l − 1 different sub-key
sequences {K0, · · · , Kl−1} such that G = 0. Whatever H0 is,

f(gK(M) +H0) + f(gK(M
′
) +H0)
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is always zero. Thus, there are 2n(l−1) different (K0, · · · , Kl−1, H0) tuples such that G = 0.
By the same argument in Case 1,

PrK [f(gK(M) +H0) + f(gK(M
′
) +H0) = c,G = 0] =

1

22n
.

Thus,

PrK [f(gK(M) +H0) + f(gK(M
′
) +H0) = c]

=
∑
b∈F2n

PrK [f(gK(M) +H0) + f(gK(M
′
) +H0) = c,G = b]

≤ 1

2n−1
− 1

22n
.

Therefore, f(gK(M)+H0) is an ε-AXU hash family, and FK(M) is an ε-AXU MAC, where
ε ≤ 2−n+1 − 2−2n. By Theorem 5 in [73], the probability of the substitution forgery attack
on Construction I is no greater than 2−n+1 − 2−2n.

7.2.2 Construction II

We construct a MAC from F∗2 × Fk
2 to Fn

2 using an APN function f(x) : F2n 7→ F2n and
an underlying cipher C. The four arguments are the same as defined in Construction I. As
assumed before, C uniformly maps the key K to the key stream, two n-bit blocks generated
by C are independent.

Algorithm 4 demonstrates the second construction. In the second last statement, the
return value is masked by both H and OTP . It seems that H0 is not necessary. But in the
proof of the following theorem, we will show H0 is indispensable. To prove the following
theorem, we define Construction II as a function.

FK(M) = gK(M) +OTP,

where

gK(M) =
l−1∑
i=0

f(Mi +Ki) +Kl.

Theorem 19. If f(x) : Fn
2 7→ Fn

2 is an APN function, then the success probability of the
substitution forgery attack against Construction II is

PS ≤
2

2n
.
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Algorithm 4: MACII

Input: Message (M), Length of M (L), Key (K), Nonce (N)
len← L/n;
res← L mod n;
ret← 0;
Init(K,N,C);
for i← 0 . . . len− 1 do

H1 ←Gen(C, i);
ret← ret+ f(Mi +H1);

end
i← len;
if res 6= 0 then

H1 ←Gen(C, i);
ret← ret+ f((Mlen||0) +H1);
i← i+ 1;

end
H1 ←Gen(C, i);
ret← ret+ f(L+H1);
(OTP ||H0)←Gen(C, i);
ret← ret+H0 +OTP ;
return ret ;
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Proof. Assume

M = {M0, · · · ,Ml−1},
M
′

= {M ′
0, · · · ,M ′

l′−1}

are two messages.
Case 1 l 6= l′: WLOG, assume l > l′. We have

gK(M) + gK(M
′
) =

l′−1∑
i=0

(f(Mi +Ki) + f(M ′
i +Ki)) +

l−1∑
i=l′

f(Mi +Ki) +Kl′ +Kl.

(7.5)

Let Q denote the summation of all the terms in Equ. (7.5) except Kl. Since K is uniformly
mapped to tuple (K0, · · · , Kl), and Kl is independent from Q. ∀b ∈ F2n , we have

PrK [gK(M) + gK(M
′
) = b] =

∑
a∈F2n

PrK [Kl = b+ a]Pr[Q = a]

=PrK [Kl = b+ a] =
1

2n
.

Case 2 l = l′: We have

gK(M) + gK(M
′
) =

l−1∑
i=0

(f(Mi +Ki) + f(M ′
i +Ki)) .

Let
gi = f(Mi +Ki) + f(M ′

i +Ki), for 0 ≤ i < l.

Since all Ki (0 ≤ i < l) are independent, gi (0 ≤ i < l) are independent as well. Therefore,

PrK [gK(M) + gK(M
′
) = b]

=
∑

(a0,··· ,al−2)∈Fl−1
2n

PrK [gl−1 = b+
l−2∑
i=0

ai]PrK [g0 = a0, · · · , gl−2 = al−2]

By definition of APN functions, ∀b ∈ F2n and (a0, · · · , al−2) ∈ Fl−1
2n ,

PrK [gl−1 = b+
l−2∑
i=0

ai] ≤
2

2n
,
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Therefore, PrK [gK(M) + gK(M
′
) = b] ≤ 21−n Thus, gK(M) is an ε-AXU hash function

family, where ε ≤ 21−n. By Theorem 5 in [73], the probability of the substitution forgery
attack on Construction II is no greater than 21−n.

Let us consider removing H0 in the second last statement. The upper bound of the
probability in Case 1 would be 3/2n if we removed H0. An opponent can achieve this
bound by selecting two messages as follows.

M = {M0, · · · ,Ml′−1,Ml′ , · · · ,Ml−1} and

M
′

= {M0, · · · ,Ml′−1}.

The first l′ terms of Eqn. (7.5) are cancelled. The rest terms are all three-to-one mappings.
Each term has at most three different values of sub-keys to make this term equal a certain
value. Thus, the total probability is 3/2n. Case 1 would be the worst case if we removed
H0. Then PS is upper bounded by 3/2n.

7.2.3 Security Analysis

Remark 7. Although the security level of each construction is n − 1 (forgery probability
is O(2n−1)), we still consider this level is enough, because this bound is for any length
of messages. In other words, the bound will not change when the length of the messages
increases. To decrease this bound, we can compute in a larger field and apply “secure
truncation” [21] to the tag, the same as EIA1.

Since two constructions are AXU MACs, they are resistant against most attacks. But
for cycling attack [97] and linear forgery attack [111], the resistance is not straightforward.
Therefore, we only consider these two attacks in the following.

Cycling Attack.

Cycling attack is a kind of attack that can be applied to all polynomial based MACs. The
polynomial based MACs have a polynomial evaluation block, which is addressed as follows.

T =
∑
i

MiP
i+1,

where Mi is a message block and P is a random number. It treats message as a polynomial
over finite field and evaluates this polynomial at P . If the order of P is smaller than the
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length of the message in block, there exists at least one pair of P i = P j, i 6= j. Then the
adversary can switch Mi and Mj without changing the MAC.

Both EIA1 and EIA3 are vulnerable to this attack. Since EIA1 is a kind of polynomial
based MAC, it is straight forward EIA1 cannot resist such attack. EIA3 is equivalent to a
polynomial based MAC. Thus, it is unsurprised that EIA3 also suffers this attack.

In our algorithm, the sub-key in each round plays a similar role of P i in polynomial
based MAC. However, since our sub-key is generated by a stream cipher each time, the
same sub-key appears twice with negligible probability. Moreover, even the same sub-key
appears, it is hard to tell the exact position of this sub-key. Thus, the adversary can hardly
make an attack.

Linear Forgery Attack.

This attack was proposed by Wu and Gong on Wisec13’. Because of the linear structure,
known 2 pairs of message and tag pairs generated by EIA1, the adversary can forge up to
232 message and tag pairs. This attack can be applied to EIA3 as well.

The two constructions in this paper are resistant to this attack, because the sub-key is
generated by a stream cipher. The structure is no longer linear.

7.3 Implementation and Efficiency

In this section, we present some consideration regarding the implementation. At the end
of this section, we compare our algorithms with EIA1 and EIA3, two MACs deployed in
the 4G LTE system.

7.3.1 Selection of Fields and APN Function

The length of a MAC tag is usually some power of two. Several decades ago, people believed
that 32-bit tag was enough. For a 32-bit tag, the complexity of the birthday attack is 216,
which is too huge to be computed at that time. Therefore, the tag sizes of some legacy
systems are still 32-bit, such as cellular, Wi-Fi, and etc. Since the computers become more
powerful, 216 is easy to compute even for a personal laptop computer. Usually, a powerful
server has the capability to do the exhaustive search beyond 248. Therefore, nowadays even
a 64-bit tag is still vulnerable to the birthday attack. People now increase the tag size to
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128 or 256, for example TUAK [53]. We want our algorithm to work with both the legacy
systems and the modern systems. For this reason, our design has four versions, 32-bit,
64-bit, 128-bit and 256-bit.

Selection of Finite Fields.

The multiplication over finite filed is a necessary block of our algorithm. Assume the
defining polynomial of the finite field GF (2n) over GF (2) is

f(x) = xn + g(x).

To make the multiplication more efficient, we want both the degree and the number of
terms of g(x) to be as small as possible. Usually, for a USIM card, there is an 8-bit
chip inside, which means it can compute 8-bit XOR simultaneously. The 8-bit platform is
currently the smallest platform considered by us. Therefore, we restrict the degree of g(x)
to be smaller than eight. By exhaustive search, we find the defining polynomial for each
version of our design. The defining polynomials are listed in Table 7.3. Note that for the
field GF (2256), we cannot find a polynomial satisfies our criterion. Thus, we loosen our
condition, and find a polynomial that the degree of g(x) is ten. It is not efficient on the
8-bit platform, because the XOR is computed in two clock cycles. But it is still efficient
on the 16-bit and higher platforms.

Table 7.3: Defining Polynomials

Version Field Defining Polynomial
32-bit GF (232) x32 + x7 + x6 + x2 + 1
64-bit GF (264) x64 + x4 + x3 + x+ 1
128-bit GF (2128) x128 + x7 + x2 + x+ 1
256-bit GF (2256) x256 + x10 + x9 + x8 + x7 + x4 + x2 + x+ 1

Selection of APN Function.

Another critical block is the APN function. There are several constructions of APN func-
tions. Among all those constructions, we want the function has the following properties.

• Work in the field GF (2n), where n is even;
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• Be efficient to compute.

Proposition 6 in [35] suggests one construction that has the form of

x3 + αTr(βx3 + γx9),

where α, β, γ ∈ GF (2n), α 6= 0 and n is even. We know that this construction is EA-
equivalent to x3. Since the computation of x3 is more efficient than x3 + αTr(βx3 + γx9),
we choose x3 as our function.

If the field element is represented under a normal basis, the square is simply cyclic
shifting one bit. To compute x3, we may first compute x2, and then compute x2 · x.

7.3.2 Experiment Result of Efficiency

Since our MACs are based on APN function, we call it AMAC. We implement both Con-
struction I and Construction II, which are called AMAC I and AMAC II respectively.
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Figure 7.1: Efficiency comparison among EIA1, EIA3, and AMAC

Figure 7.1 shows the comparison of EIA1, EIA3, and our algorithms. In this test, we
choose ZUC as our underlying cipher. From the figure we can clearly see that although
our algorithms are slower than EIA3, they are overwhelmingly faster than EIA1.
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Figure 7.2: Efficiency comparison when using ZUC and Snow3G as underlying ciphers

Since we generate random numbers in each round, the efficiency of our algorithms highly
depend on the underlying cipher. Figure 7.2 demonstrates the difference between different
underlying ciphers. Obviously, ZUC is much faster than Snow3G.

7.4 Summary

We improved EIA1 such that the new variant is resistant to the linear forgery attack. Af-
ter that, we proposed two new MAC constructions using APN function. Compared with
previous works based on APN function, ours can take messages with any length as the
input, and output a fixed-length tag as MAC. Such design is more flexible and practical.
Both constructions are analog to XOR-MAC. However, both constructions have simpler
round functions compared with XOR-MAC. Therefore, we have better performance than
MACs based on block ciphers or keyed hash functions. Moreover, we have solid mathe-
matical security proofs for both constructions. We compare the security and efficiency of
our algorithm with two well known stream cipher based MACs, EIA1 and EIA3, which
are deployed in 4G LTE cellular network. Our algorithms resist to the cycling attack and
linear forgery attack, which can be applied to EIA1 and EIA3. The experiments show that
our algorithms are slower than EIA3 but faster than EIA1.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis first proposes a practical attack on EIA1 called linear forgery attack, which
exploits the linear structure of EIA1. Known two message-MAC pairs, the opponent can
forge up to 232 valid pairs.

Inspired by the linear forgery attack, this thesis assesses the security of EIA1 under
different models. The security proof of EIA1 is only a special case of the analysis in this
thesis. The assessment shows that when the assumption of one-time pad is broken, EIA1
is not safe at all. In addition to the linear forgery attack, attackers can even recover the
key stream used in EIA1. Broking the one-time pad assumption is sometimes referred
to as misuse. Several researchers have begun to study the misuse-resistant MACs, which
have some level of security when misuse happens. After the security assessment, several
optimizations of EIA1 are presented, and a more efficient polynomial evaluation algorithm
is introduced to replace the Horner’s Rule. The experiments suggest that the optimized
version is much faster than the official implementation of EIA1.

For TUAK, this thesis suggests to use different constant INSTANCE for function f2 -
f5 to follow the recommendation of Keccak. After this modification, we theoretically prove
that f1, f ∗1 and f2 are secure MACs, and f3, f4, f5 and f ∗5 are secure KDFs. Specifically,
f1, f ∗1 and f2 resist the universal key recovery, substitution forgery, pre-image and second
pre-image attacks, and f3, f4, f5 and f ∗5 resist universal key recovery, pre-image and second
pre-image attacks.

To assess TUAK, a new crypto analysis method called Multi-Output Filtering Model
is proposed. This model is inspired by the system test using LFSR in communication
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systems. An LFSR generates the input, and the cipher works as the filtering function.
The output can be treated as a sequence or the output of the boolean function. MOFM
reveals the randomness of the cryptographic primitive being tested. This thesis applies
MOFM to TUAK, AES, PRESENT and KASUMI. The results suggest that TUAK and
AES have very good randomness properties, but PRESENT and KASUMI show some non
randomness.

After studying existing MACs, such as EIA1, EIA3, TUAK, this thesis proposes two
novel MAC constructions. The first called WGIA-128 is a variant of EIA1. The addition
over finite filed used in EIA1 is replaced by the addition over ring in order to resist the
linear forgery attack. The second called AMAC is quite different from EIA1 and EIA3,
and it is based on APN functions. In addition to the linear forgery attack, AMAC is also
resistant to the cycling attack.

8.2 Future Work

The work presented in this thesis is still improvable. We can think of several possible
improvements of these works.

The linear forgery attack highly depends on the misuse of network operators. Our
ultimate goal is to find a way to conduct the linear forgery attack without the misuse of
network operators. In other words, we want to find a method, which follows the standard,
to repeat IV and IK. To achieve the goal, we need carefully study the standard.

The theoretical explanation of MOFM is still unclear. Currently, we cannot explain
the different performances between the strong group (AES and TUAK) and weak group
(PRESENT and KASUMI). The difference is probably due to the algebraic degree or
the nonlinearity of the filtering function. We conjecture that the MOFM test could be
equivalent to some existing properties of boolean functions. If our conjecture is correct,
the MOFM test could be an effective way to test those properties.

Although AMAC has better security than EIA1 and EIA3, the performance is not
satisfactory. In the future, our goal is to design a faster MAC with security proof and
misuse-resistant property. We believe the LFSR together with a simple nonlinear filtering
function would be a good choice. For example, stream cipher in scrambling mode could be
a MAC algorithm. But the security proof of scrambling mode is still an open question.

119



References

[1] Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.
Document 5: Design and Evaluation Report. Technical Report TR 35.919, 3rd Gen-
eration Partnership Project.

[2] Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.
Document 2: SNOW 3G Specification. Technical Report TS 35.216, 3rd Generation
Partnership Project, September 2006.

[3] Specification of The 3GPP Confidentiality and Integrity Algorithms UEA2& UIA2.
Document 1: UEA2 and UIA2 Specification. Technical Report TS 35.215, 3rd Gen-
eration Partnership Project, 2006.

[4] Specification of the 3GPP Confidentiality and Integrity Algorithms. Document 1:
f8 and f9 Specification. Technical Report TS 35.201, 3rd Generation Partnership
Project, 2007.

[5] Specification of the 3GPP Confidentiality and Integrity Algorithms. Document 2: Ka-
sumi Specification. Technical Report TS 35.202, 3rd Generation Partnership Project,
June 2007.

[6] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3. Document 1: 128-EEA3 and 128-EIA3 Specification. Technical Report
TS 35.221, 3rd Generation Partnership Project, January 2011.

[7] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-
EIA3. Document 2: ZUC Specification. Technical Report TS 35.222, 3rd Generation
Partnership Project, January 2011.

[8] 3G Security Security architecture. Technical Report TS 33.102, 3rd Generation Part-
nership Project, December 2012.

120



[9] Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov, and Elmar Tis-
chhauser. Twisted Polynomials and Forgery Attacks on GCM. In Advances in
Cryptology–EUROCRYPT 2015, pages 762–786. Springer, 2015.

[10] Martin Agren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: A New
Version of Grain-128 with Optional Authentication. Int. J. Wire. Mob. Comput.,
5(1):58–59, December 2011.

[11] Mufeed ALMashrafi, Harry Bartlett, Leonie Simpson, Ed Dawson, and Kenneth
Koon-Ho Wong. Analysis of Indirect Message Injection for MAC Generation Using
Stream Ciphers. In Information security and privacy, pages 138–151. Springer, 2012.

[12] Jean-Philippe Aumasson and Willi Meier. Zero-sum Distinguishers for Reduced
Keccak-f and for the Core Functions of Luffa and Hamsi. rump session of Cryp-
tographic Hardware and Embedded Systems-CHES, 2009:67, 2009.

[13] Harry Bartlett, Mufeed AlMashrafi, Leonie Simpson, Ed Dawson, and Kenneth
Koon-Ho Wong. A General Model for MAC Generation Using Direct Injection.
In Information Security and Cryptology, pages 198–215. Springer, 2013.

[14] Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision-
resistance. In Proceedings of the 26th annual international conference on Advances in
Cryptology, CRYPTO’06, pages 602–19, Berlin, Heidelberg, 2006. Springer-Verlag.

[15] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message
Authentication. In Advances in Cryptology—CRYPTO’96, pages 1–15. Springer,
1996.

[16] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Mes-
sage Authentication. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 1–15, London, UK, UK,
1996. Springer-Verlag.

[17] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 394–403. IEEE, 1997.

[18] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
Among Notions of Security for Public-Key Encryption Schemes. In Advances in
Cryptology—CRYPTO’98, pages 26–45. Springer, 1998.

121
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