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Abstract

In a few words, this thesis is concerned with two alternative approaches to imag-
ing, namely, Function-valued Mappings (FVMs) and Structural Similarity Index Measure
(SSIM)-based Optimization. Briefly, a FVM is a mathematical object that assigns to each
element in its domain a function that belongs to a given function space. The advantage
of this representation is that the infinite dimensionality of the range of FVMs allows us
to give a more accurate description of complex datasets such as hyperspectral images and
diffusion magnetic resonance images, something that can not be done with the classical
representation of such data sets as vector-valued functions. For instance, a hyperspectral
image can be described as a FVM that assigns to each point in a spatial domain a spectral
function that belongs to the function space L2(R); that is, the space of functions whose
energy is finite. Moreoever, we present a Fourier transform and a new class of fractal
transforms for FVMs to analyze and process hyperspectral images.

Regarding SSIM-based optimization, we introduce a general framework for solving op-
timization problems that involve the SSIM as a fidelity measure. This framework offers
the option of carrying out SSIM-based imaging tasks which are usually addressed using
the classical Euclidean-based methods. In the literature, SSIM-based approaches have
been proposed to address the limitations of Euclidean-based metrics as measures of vi-
sual quality. These methods show better performance when compared to their Euclidean
counterparts since the SSIM is a better model of the human visual system; however, these
approaches tend to be developed for particular applications. With the general framework
that it is presented in this thesis, rather than focusing on particular imaging tasks, we
introduce a set of novel algorithms capable of carrying out a wide range of SSIM-based
imaging applications. Moreover, such a framework allows us to include the SSIM as a
fidelity term in optimization problems in which it had not been included before.

iii



Acknowledgements

This thesis would not have been completed without the support of all the persons that
have been along the path that I have traversed since I came to Waterloo back in January
of 2011. Among them, I want to first thank my supervisor, Professor Edward Vrscay, for
his constant guidance and support throughout all these years. His expertise, kindness, and
sense of humour will be always remembered. I feel fortunate for having had him as my
academic advisor

Also, I want to thank my cosupervisor, Professor Oleg Michailovich, who introduced me
to the “wonders” of the field of optimization and its algorithms. His vast knowledge and
energetic disposition towards research are examples to follow. Special thanks also go to
Professor Davide La Torre, who is the embodiment of a true mathematician. His expertise
and valuable comments are key ingredients of this thesis.

I would also like to thank the other Ph.D. committee members, Professor David Siegel
and Profesor Justin Wan, as well as the external examiner, Professor Abdol-Reza Mansouri.
Their feedback and comments highly contributed to improve the final version of the thesis.

Further, I want to gratefully acknowledge the financial support from the Faculty of
Mathematics, University of Waterloo, the Department of Applied Mathematics and the
Natural Sciences and Engineering Research Council of Canada Discovery Grant (ERV).

My deepest gratitude goes to the friends who have been around all these years: Iván
Camilo Salgado, Andree Susanto, Vivek Kant, Shiv Vyas, Satya Kumar and Rahul Sharma.
Your company and all the moments that have been shared have made this experience more
significant.

To the members of the family Frasica Perdomo, Alejito, Mari, Sofi and Sarita, thank
you so much for opening the doors of your home. You have not only being friends but also
like a family to me.

My colombian friends, the sapoiguanacaimanes Cami, Caro, Dianis, Pachito, Betty,
Pedro, Gloria, Glenda, Andy and Jose, your company is priceless. Thank you so much
for bringing more happiness to this world. My other colombian friends, Mati, Ferchito,
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Chapter 1

Introduction

There are two important paradigms in image processing upon which imaging tools are de-
veloped: (i) representation of images as valued-vector functions and (ii) using the Euclidean
distance as either a metric or a norm for images. The former offers a good framework for
applications since some type of images, e.g., colour and hyperspectral images, can be well
represented by vector-valued functions [60, 81]. As for the latter, this is a convex and math-
ematically tractable metric that is frequently used in a variety of imaging tasks in which
an optimization problem is to be solved (e.g., deblurring, denoising, sparse reconstruction,
etc.) [13, 12].

Although many efficient imaging tools have been developed which are based on these
paradigms [24, 15, 4, 8], these approaches have some limitations. For instance, consider the
case of a video sequence, which can be represented as a vector-valued function u : Ω→ Rn.
Here, Ω is the spatial domain, and each component ui of the range of u, 1 ≤ i ≤ n, is a
time frame. Due to the finite dimensionality of the range, it is not possible to propose a
suitable space of functions as a model for the class of time functions defined at each pixel
location of the video. A similar situation is encountered when complex data sets such as
hyperspectral images are to be modelled.

As for the Euclidean distance, measures of visual quality such as the Mean Square Error
(MSE) and Peak to Signal Noise Ratio (PSNR) are Euclidean-based metrics, however, it
has been shown that these metrics are not the best choices when it comes to measure the
visual quality of images. This drawback of Euclidean-based metrics has been overcome up
to some point by the Structural Similarity Index Measure (SSIM), which has proved to be
a good model of the Human Visual System (HVS) [122]. For this reason, the SSIM has
been employed as a fidelity term in several types of optimization problems for carrying
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out a variety of imaging tasks—e.g., filtering, best-SSIM approximation, video coding, etc.
[18, 29, 118]. Nevertheless, these methods tend to be developed for particular applications
and are not general.

In this thesis we propose two alternative approaches to overcome the difficulties men-
tioned above, namely, Function-valued Mappings (FVMs) and SSIM-based Optimization.
With FVMs we address the problem of modelling complex data sets properly. In this case,
we define a FVM as follows:

u : X → F(Y ), (1.1)

where X is the support of the FVM (for digital images, the “pixel space”) and F(Y ) is a
Banach space of either real- or complex-valued images supported on the set Y . Observe
that the range of u is infinite dimensional, therefore, depending on the application, an
appropriate space F(Y ) can be chosen to describe the functions that are assigned to each
x ∈ X. For instance, a hyperspectral image can be represented as a FVM of the form
u : X ⊂ R2 → L2(R), where L2(R) is the space of square integrable functions supported
on the real line—that is, we are interested in the spectral functions that have finite energy.
Moreover, spaces of FVMs can be defined, such as the Lebesgue-Bochner Lp spaces [40],
therefore, some of the classical theorems of functional analysis can be employed for the
development of imaging tools based on this approach. In particular, we introduce a Fourier
transform and a new class of fractal transforms for FVMs, which we employ to analyze
and process hyperspectral images.

It must be mentioned that the FVM approach is not a novelty in other fields such as
partial differential equations [126], harmonic analysis [97, 85], statistics [3], and others [40].
In fact, FVMs are known in the mathematical community as Banach-valued functions,
the latter being studied mainly by analysts who have been interested in seeing if the
classical results of real-valued functions still hold in the Banach-valued setting [40, 23, 39].
Nevertheless, in imaging, this methodology has been barely explored. Despite this, some
contributions can be found which employ the concept of a function taking values in an
infinite dimensional Banach space. For instance, in an effort of closing the gap between the
mathematical formalism of Banach-valued functions and practical applications in imaging,
in [84], the authors use the FVM approach to provide a solid mathematical platform to
describe and treat diffusion magnetic resonance images. Also, in [75], an analogue of FVMs
is introduced, namely, measure-valued images, which are well suited for non-local image
processing. Indeed, non-local means denoising [21] and fractal image coding [72] are the
two applications that are addressed in [75] using this measure-valued methodology. Given
the latter, rather than introducing state-of-the-art algorithms for imaging applications,
we propose the FVM approach as a mathematical framework that may offer interesting
possibilities for the image processing community.
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Regarding SSIM-based optimization, we present a general framework for optimization
problems that involve the SSIM as a fidelity term. Such a framework is divided into
two approaches, namely, unconstrained and constrained SSIM-based optimization. In the
unconstrained approach, an optimization problem is defined as follows:

min
x
{T (Φ(x), y) + λh(x)}, (1.2)

where T (·, ·) := 1 − SSIM(·, ·) is a SSIM-based dissimilarity measure, Φ is a linear trans-
formation, y a given observation, and h(x) a convex regularizing term along with its reg-
ularization parameter λ. As for the constrained counterpart, the minimization problem is
given by

min
x

T (Φ(x), y)

subject to hi(x) ≤ 0, i = 1, . . . ,m (1.3)

Ax = b,

where the hi(x) define a set of convex constraints, and Ax = b is an equality constraint.
We also introduce a set of algorithms to solve both (1.2) and (1.3). The advantage of this
framework is that it allows us to involve the SSIM in optimization problems in which it
had not been employed before, in particular, SSIM optimization with L1-norm regulariza-
tion. Moreover, we complement this general framework with the usage of mollifiers [50]
for solving non-smooth SSIM-based optimization problems with classical gradient-based
methods. Also, we provide experimental results to contrast the performance of these novel
algorithms with the classical Euclidean-based approaches.

Regarding the structure of the thesis, this is divided into two parts. The first part
is about the FVM methodology, which is composed by five chapters. In the first of these
chapters, Chapter 2, some of the current approaches to imaging are reviewed and the FVM
approach is presented in more detail. Further, the mathematical definition of a FVM is also
presented. To continue with the mathematical formalism, in Chapter 3, we provide a brief
review of part of the mathematical theory of Banach-valued functions within the context
of FVMs. Further, the mathematical concepts that are used throughout this first part of
the thesis are also included in this chapter. Chapters 4 and 5 correspond to the Fourier
and the fractal transforms for FVMs respectively. In Chapter 4, definition and properties
of the Fourier transform for FVMs are provided, which is a special case of the Fourier
transform for Banach-valued functions. In Chapter 5, a fractal transform for hyperspectral
images is introduced as well as a complete space of FVMs in which such a transform is a
contractive mapping. Finally, in Chapter 6, a review of several approaches for denoising
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hyperspectral images is provided. In particular, we contrast some classical methods with
a FVM-based denoising approach.

The second part of the thesis is composed of four chapters and deals with the sub-
ject of SSIM-based optimization. In the first chapter of this second part, Chapter 7, the
classical Euclidean-based methodology is contrasted with some of the current SSIM-based
approaches that are found in the literature. Also, we present formally our general frame-
work for SSIM-based optimization and provide a definition of the SSIM along with some of
its properties. Following this chapter, the subject of constrained SSIM-based optimization
is presented in Chapter 8. An algorithm that solves problem (1.3) is introduced along with
several SSIM-based imaging applications. Also, in Chapter 9, unconstrained SSIM-based
optimization is addressed. In particular, two algorithms that solve both the differentiable
and non-differentiable counterparts of problem (1.2) are formulated. Ultimately, in Chap-
ter 10, we address the problem of solving non-smooth SSIM-based optimization problems
by means of a special class of smooth functions known as mollifiers. Experimental results
are provided in the last sections of Chapters 8, 9 and 10.
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Function-valued Mappings
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Chapter 2

Function-valued Mappings

In the first section of this chapter, we give a brief review of some of the classical image
models that are employed in image processing, which we contrast with the usage of FVMs as
representations of images. Moreover, some potential applications in which such mappings
can be employed are also presented. We conclude the chapter by introducing a formal
definition of the concept of FVM.

2.1 Image Models

A key task in image processing is to find proper mathematical models of images. Over
time, distinct approaches have been proposed, which usually differ in how these translate
into mathematical terms what is understood as an image. What model is the best choice
depends on the type of visual data at hand and the image processing task that is to be
carried out [25]. In the following sections some of the most known image models are
reviewed.

2.1.1 Stochastic Modelling

In some cases, images are interpreted as the result of one or more underlying random
processes. This is commonly seen in natural scenery, where the different elements in the
landscape haven been shaped by distinct random factors: mountains “carved” by the
erosion produced by both wind and water; the formation of clouds, which is affected by
the changes in temperature in the atmosphere, the evaporation of water and winds; the
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patterns of a distant forest, which are usually created by the way the trees have been
distributed over the soil; and so on. As such, it makes sense to model the probability
distributions that govern the random processes associated to a particular image—this is
precisely the main goal of stochastic modelling. Methods such as Gibbs’ ensembles, Markov
random fields, visual filters and others aim to this goal [25, 96]. These are well suited for
representing not only images of natural scenes, but also textures and tissues [25].

2.1.2 Mumford-Shah Model

Although the stochastic approach gives special attention to details and textures, it is
usually seen that images can be well approximated by either piecewise constant or smooth
functions—this fact is the main idea behind the well known Mumford-Shah model. In this
approach, an image is modelled as a collection of elements with almost uniform textures
and well defined boundaries. Given this, an approximation of a given image f supported
on Ω is obtained by minimizing the Mumford-Shah functional [92, 25]:

E[u,Γ] = α

∫
Ω\Γ

(K(u)− f)2dx+ β

∫
Ω\Γ
‖∇u‖2dx+ γH1(Γ), (2.1)

where K is a blur operator, Γ is an edge set containing the boundaries of the objects
present in the image, H1(·) is the one-dimensional Hausdorff measure, and α, β and γ
are regularization parameters. It can be noted in Eq. (2.1) that non-smooth piecewise
functions and excessive long boundaries are penalized, as well as solutions that are not
close to the observed image f . Notice that this model is well suited for smoothing and
segmentation.

2.1.3 Images as Distributions

Along the lines of deterministic models we have the interpretation of images as distribu-
tions. In this instance, images are linear functionals acting on an space of test functions.
That is, given an image u supported on Ω, where Ω is an open and bounded subset of R2,
and a set of test functions defined as

D(Ω) = {φ : φ ∈ C∞c (Ω), supp φ ⊆ Ω}, (2.2)

we have that u is a linear functional on D(Ω):

u : φ→ 〈u, φ〉, (2.3)
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where 〈·, ·〉 is an inner product. This implies that the space of images is D∗(Ω), i.e., the
dual space of D(Ω). This interpretation is quite useful since it allows to handle in formal
mathematical terms images that are not functions in the classical sense, e.g., a bright point
at the origin (u(x, y) = δ(x, y)) or a uniform bright line (u(x, y) = δ(y)) [89, 25].

2.1.4 Lp Images

Although distributions can represent basically any kind of image, this model tends to be too
general, thus it is more difficult to extract key features of images under this interpretation.
It is, therefore, desirable to introduce models that have more structure—one example of
this is the case of Lp images. Mathematically speaking, an image u with support Ω belongs
to the space Lp(Ω) if its Lp norm is finite. In other words, the space that contains all Lp

images is the set given by
Lp(Ω) = {u : ‖u‖pp <∞}, (2.4)

where

‖u‖p =

(∫
Ω

|u(x)|pdx
) 1

p

. (2.5)

One key feature of this model is that any element in Lp(Ω) has to be bounded with respect
to the Lp norm. Indeed, this characteristic leads to the fact that

Lq(Ω) ⊆ Lp(Ω), ∀ q ≥ p ≥ 1, (2.6)

as long as Ω is bounded; therefore, L1(Ω) is the most general class of Lp images [25].
Furthermore, when p = 2, we have the special case L2(Ω), which is a Hilbert space endowed
with an inner product. This important characteristic allows to, for instance, represent any
element in L2(Ω) as a linear combination of orthonormal basis functions.

2.1.5 Sobolev Images

There are other models that are even more specific than the Lp class. Among these we
have Sobolev images, which are denoted as W n

p (Ω); that is, the images whose n-th order
distributional derivatives have finite Lp norm. In the special case when n = 1 and p = 2,
we have that an image u belongs to W 1

2 (Ω) as long as its first order derivatives belong to
L2(Ω) in the distributional sense. The norm used for W 1

2 (Ω) is given by

‖u‖W 1
2

=
(
‖u‖2

L2 + ‖∇u‖2
L2×L2

) 1
2 <∞. (2.7)

In general, the norm of a Sobolev image that belongs to W n
p (Ω) is defined in a similar

fashion, with the difference that it has higher order distributional derivatives [25].
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2.1.6 Images of Bounded Variation

Another important model for images with a nice structure is the space of images with
bounded variation BV (Ω) [105, 24, 25]. In the distributional sense, an L1 image is in
BV (Ω) if and only if its distributional gradient Du satisfies

‖Du‖ = sup
φ∈Φ
〈∇u, φ〉 <∞, (2.8)

where Φ is defined as

Φ = {φ : φ ∈ C∞c (Ω,R2), ‖φ(x)‖2 ≤ 1 ∀x ∈ Ω}. (2.9)

If such supremum exists, then this is called the Total Variation (TV) of u, which is denoted
as ‖Du‖. The norm of BV (Ω) is defined as

‖u‖BV = ‖u‖1 + ‖Du‖. (2.10)

One of the relevant attributes of this model is that images in BV (Ω) may have edges,
which are an important visual feature in images, whereas Sobolev images do not. Also,
irregularities, which are usually caused by noise, are penalized by the norm of this space.
Notice that Lp images might have edges as well, however, the Lp norm is not a good
measure of oscillatory irregularities1[25].

2.2 The Function-valued Mapping Approach

Other important models are the level set representation of images, introduced by Osher
and Sethian in [94], and wavelets and multi scale representation [79, 117, 25]. It is worth
to point out that these models, and most of the models mentioned above, rely on the
interpretation of an image as a function, which is the most common representation found
in the literature [79, 62, 24, 25]. For instance, a grey scale image is usually described as
a real-valued function u that assigns to each point in its domain an intensity value that
belongs to its range. In mathematical terms, this is usually written as follows:

u : Ω→ Y, (2.11)

1For functions with support Ω = (0, π), ‖ sin(nx)‖2 tends to
√
π/2 as n → ∞, whereas ‖ sin(nx)‖BV

diverges as n goes to infinity.

9



where Ω and Y are subsets of R2 and R, respectively. To represent colour images this
definition is extended to vector-valued functions. In this case, the set Y becomes a vector
space well suited for the colour space that is being employed. In the case of RGB, Y may
be defined as a subset of R3.

Although functions—along with their generalized counterpart: distributions—are the
foundation of a large class of image models and image processing tasks, these may not be
sufficient to describe in all their richness more complex visual objects such as magnetic
resonance images or hyperspectral images. For instance, hyperspectral images are usually
represented as vector-valued functions [120, 83, 81], nevertheless, the finite dimensionality
of the range of this representation does not allow us to model properly the spectral functions
that are found at each spatial location. This difficulty can be overcome by introducing the
concept of function-valued mapping (FVM), which is a mathematical relation that assigns
to every element in its domain a function that belongs to a certain space. In more formal
terms, a FVM u is defined as follows:

u : X → F(Y ), (2.12)

where both X and F(Y ) are Banach spaces. In particular, F(Y ) is a space of functions
whose support is the set Y .

The FVM approach offers several advantages over the classical representations of im-
ages. First, it can be employed in a wide range of applications such as diffusion MRI
(Magnetic Resonance Imaging) [84], sensor networks, video [118] and hyperspectral imag-
ing [115, 116]. Also, a proper function space F(Y ) can be defined to model more faithfully
the class of functions that are embeddded in these data sets (e.g., the spectral functions
of hyperspectral images). Moreover, functions (e.g., grayscale images) and vector-valued
functions (e.g., hyperspectral images) can be seen as samples of a FVM, thus (2.12) can
be considered as a generalization of these classical representations: in other words, given
a FVM u : X → F(Y ), the i-th entry of a vector-valued image v : X → Rn can be defined
as

vi(x) = u(x)(zi) =

∫
Y

u(x)δ(y − zi)dy, (2.13)

where each zi ∈ Y , 1 ≤ i ≤ n, is a given element of Y , and δ(·) is the Dirac delta
distribution. By setting n = 1, one obtains the representation of images as real-valued
functions.

Indeed, in [84], this approach has already been used to provide a solid mathematical
foundation for treating and modelling diffusion MRI images. Also, in [115, 116], FVMs
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are used as representations of hyperspectral images for studying the self-similarity of hy-
perspectral data [115] and defining a simple class of fractal transforms [6, 7] in a complete
metric space [116].

Given the latter, it is worthwhile to discuss in more detail how the FVM approach can
be employed to represent the different kinds of signals that are found in some applications.
This is the subject of the next section.

2.3 Applications

Although in this study we focus our attention on hyperspectal imaging, in this section
we review some of the applications in which the FVM approach can be employed. The
definitions that may be used to represent the distinct data sets that are mentioned are also
provided.

2.3.1 Hyperspectral Imaging

In a few words, hyperspectral imaging may be defined as image processing across the elec-
tromagnetic spectrum. In this field, the hyperspectral sensors that collect the information
divide the spectrum into many narrow bands, and all the data is usually organized in a
three-dimensional matrix [26, 107]. A processed image of this matrix is shown in figure
2.1.

Hyperspectral images are produced by sensors called imaging spectrometers. Their
development comes from two related but disctint technologies: spectroscopy and remote
imaging of the Earth. Spectroscopy is the study of light that is reflected or emited by
objects and its variation in energy with wavelength. It deals with the spectrum of sunlight
that is reflected by an object in the surface of the Earth. Remote imaging has to do with
the measure of light reflected from many areas on the Earth surface. Its name comes from
the fact that the images are taken from an object that is at considerable distance from the
Earth, usually a satellite [99].

In spectroscopy, the fundamental property that is measured is spectral reflectance, which
is the ratio of reflected to incident energy as a function of wavelength. In general, reflectance
varies with wavelength because energy at certain frequencies is absorbed in different de-
grees. For instance, visible light is reflected by many objects, but X-rays are usually
absorbed by solid objects that reflect visible light [99, 107].
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Figure 2.1: Hyperspectral images are sometimes called image cubes. This cube was taken
by the AVIRIS hyperspectral sensor made by NASA. The image corresponds to the mining
district in Colorado, where the front of the cube shows the areas from acid mine drainage
highlighted in orange, yellow and red. Taken from [107].

Different materials have different spectral reflectances. If a graph of the reflectance
versus wavelength is plotted, it is seen that each material has a different graph. This
graph is sometimes called the spectral signature of the material. In general, there are
regions in the spectrum where a material selectively absorbs the incident energy. These
regions are commonly called absorption bands. The shape of the signature of a material,
together with the position and “depth” of the absorption bands, are useful features to
identify different materials. In figure 2.2, the spectra of two minerals may be seen [99, 76].

Applications

Originally hyperspectral imaging was developed for mining and geology since it is ideal
to identify different types of minerals or fossilized organic materials such as ore and oil.
However, given that it is easy to identify materials using their spectra, hyperspectral
imaging is now used in many fields such as ecology, mineralogy, hydrology, surveillance,
archeology, among others.

In hyperspectral applications, the following objectives are usually pursued: Target de-
tection, material mapping, material identification and mapping details of surface proper-
ties [107]. Even though hyperspectral imaging may be used for the inspection of harvested
products, pharmaceutical studies [63], or for MRI [26], we will focus on the description
of some applications that are classified as hyperspectral remote sensing [107]. These are
grouped according to their objectives.
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Figure 2.2: These spectra are from a hyperspectral image captured by the AVIRIS sensor.
The red spectrum is from a pixel that corresponds to the location of a place filled with the
mineral Alunite; the black spectrum is from a pixel associated with a location filled with
the mineral Kaolinite. Taken from [107].

Target detection: The aim in this application is to locate known target materials.
For example, hyperspectral imaging has been used to detect military vehicles under partial
vegetation, and also to detect small military objects within relatively larger pixels. Another
application is the identification of different vegetation species, and also the detection of
vegetation stress and disease.

Material mapping: This application is also performed when the materials present in
the scene are known beforehand. For example, hyperspectral images have been used by
geologists for mapping economically interesting minerals. They have also been used to
map heavy metals and other toxic wastes within mine tailings in active and historic mining
districts including superfund sites.

Material identification: The aim of this application is to determine the unknown mate-
rials that are present in the scene. This analysis may also be accompanied by the geograph-
ical location of the materials throughout the image. For instance, a project in Australia
used hyperspectral imaging to identify roofs susceptible to hail damage [107]. The overall
shape of the spectral curve was detected and also the position and strength of distinguish-
ing absorption features in these roofing materials. These spectral characteristics provided
information that was useful to identify the locations more susceptible to hail damage.
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Mapping details of surface properties: In this case, the details of surface properties
that are undetectable using other types of imaging are studied. For instance, hyperspectral
images have been used to detect soil properties including moisture, organic content, and
salinity.

Hyperspectral image as a function-valued mapping

As expected, a hyperspectral image may be understood as a discrete version of a function
valued mapping. From this perspective, the discrete data that is organized in a three-
dimensional matrix may be seen as a continuous mapping that assigns to every element in
its domain a spectrum or a function of wavelength. Moreover, the FVM approach allows us
to choose a function space as a model for these spectral functions. For instance, a natural
choice is F(Y ) = L2(R); that is, the space of functions with finite energy. Mathematically
this may written as follows:

Definition 2.3.1. A hyperspectral image can be represented by the function-valued mapping
u : X ⊂ R2 → L2(R), where L2(R) is the space of square integrable functions supported on
the real line.

2.3.2 Diffusion MRI

Magnetic resonance imaging (MRI) is a medical imaging technique usually used to produce
detailed images of the internal biological structures of the human body. MRI scanners
produce a strong magnetic field that changes the magnetic configuration of some of the
atoms in the body. Very briefly, this causes the atoms in the body to rotate in this field.
When the field is momentarily turned off, these rotations decay to zero, but at different
rates according to the different environments in which the nuclei are found. From these
differing rates, an image of the biological tissue may be obtained. One advantage of MRI
is that provides good contrast for the images of soft tissues such as brain, muscles, nerves,
among others—i.e., the tissues that are not considered bone [68].

In contrast with MRI, diffusion MRI (dMRI) is a method based on the MRI technology
which measures the diffusion of water molecules in biological tissues. In a glass of water
for example, water molecules move randomly (without taking into account temperature
gradients or turbulence), but in a biological tissue, the diffusion of the water molecules
depends strongly on the structure of the tissue. For instance, under normal conditions,
a water molecule in the axon2 of a neuron tends to move inside the neural fiber since

2The axon is a long projection of a nerve cell or a neuron that conduces electrical impulses.
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it is not very likely that it will cross the myelin membrane3. For this reason, dMRI is
a key technology determining the connections of the nervous system [65][68]. Its main
applications are medical diagnosis and connectomics.

Applications

Medical diagnosis: Its relevance in medical diagnosis is due to the fact that various
brain pathologies may be best detected by looking at particular measures of anisotropy
and diffusivity [65, 68]. It can be seen in figure 2.3 how a tumor can be detected by means
of a MRI scanning.

Figure 2.3: Diffusion MRI in a patient with a low grade astrocytoma, which is a kind of
tumor found in the brain (top). The tumor shows decreased diffusion (arrows). Image
taken from http://en.wikipedia.org/wiki/File:AstrocytomaDiffMRI.jpg.

Connectomics: This one is the science that assembles and analyzes comprenhensive
maps of the neural connections of the brain, usually know as connectomes. The principal
object of study is the brain, but any neural connection could be mapped. It is believed
that as genomic4 brought many advances to genetics, connectomic may benefit greatly
different fields, mainly neuroscience5. An example of an image showing some connections
of a resting brain can be seen in figure 2.4.

3It is a layer with dielectric properties that covers the axon.
4Discipline on genetics concerned with the study of the genomes of organisms.
5The scientific study of the nervous system.
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Figure 2.4: The color coded tracks show major nerve cell axons in the white matter (cortex)
of a resting brain. An MRI cross sectional image of the brain bisects the diffusion image.
Image taken from http://newscenter.berkeley.edu/2011/01/05/functionalmri/.

dMRI image as a function-valued mapping:

Intuitively, it may be seen that the way water diffuses in a biological tissue depends on
the location of the water molecules. Given this, one also would think that at each point a
function that describes the diffusion of water exists. Then, a dMRI image can be under-
stood as a function-valued mapping that assigns to every element in its three-dimensional
domain a function that measures the diffusivity of water in every direction. This can be
defined as follows:

Definition 2.3.2. A dMRI image may be represented by a mapping u : X ⊂ R3 → L2(S2),
where F(Y ) = L2(S2) is the space of functions supported on the three-dimensional unit
sphere S2. Such a space is a good model for functions that contain the information of the
diffusivity of water in every direction in R3.

2.3.3 Sensor networks

A sensor network (SN) is a collection of autonomous sensors spatially distributed that
detect and collect data from a variety of environments. The sensors usually monitor or
measure physical quantities in a geographical area and can be connected to one or several
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sensors in the network. The fashion in which the sensors are connected is called the
topology of the network. There are different network topologies, each one with its own
characteristics and advantages, but all of them represent how the information is flowing
through the network. In some cases a network may have a hybrid topology, which is
a combination of two or more topologies that create a new one. In figure 2.5 different
network topologies are shown.

Figure 2.5: The most common network topologies. Image taken from http://en.

wikipedia.org/wiki/File:NetworkTopologies.svg.

Nowadays, thanks to advances in hardware and wireless network technologies, low-cost,
low-power, multi- functional miniature sensor devices are available. For this reason, many
SNs are connected via a wireless connection. This special type of SNs are known as wireless
sensor networks (WSN) and are of a major importance in the field. Also, these advances
have made SNs more reliable, accurate, cheap and flexible, which in turn have allowed SNs
to be used in a larger number of applications [112].

Applications

Since a SN collects data from a geographical area or space, this may monitor the space
itself, the elements that are present in the area that is being monitored, or the interactions
between these elements. Given this, the wide range of applications of a SN can be divided
roughly into three groups [36]:

Monitoring space: environmental and habitat monitoring, precision agriculture, indoor
climate control, surveillance, among others.
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Monitoring elements in a space: structural monitoring, condition-based equipment
maintenance, urban terrain mapping, etc.

Monitoring interactions among the elements of a space: wildlife habitats, disaster
management, emergency response and more.

SN as a function-valued mapping

The information collected by a sensor may be understood as a function of time, therefore,
a SN can be seen as a graph where at each node there is a function that represents the data
gathered by each sensor. Then, a SN may be represented as a function-valued mapping
that assigns to each node in the graph a function. This can be defined more formally as
follows:

Definition 2.3.3. A SN may be represented a function-valued mapping u : X → F(Y ),
where X is a graph and F(Y ) may be the space of square integrable functions that are
supported on a subset of R+.

2.4 Definition

We define a FVM u as a mathematical relation that assigns to every element x in its
domain X a function f that belongs to a function space F(Y ), where X and Y , unless
otherwise stated, are compact sets in Rn. That is,

u : X → F(Y ). (2.14)

Here, the pairs (X, ‖·‖X) and (F(Y ), ‖·‖F(Y )) are Banach spaces and the elements of F(Y )
are either real or complex-valued functions supported on Y . These spaces are defined as
follows:

X = {x ∈ Rn : ‖x‖X <∞}, (2.15)

and
F(Y ) = {f : Y → R,C : ‖f‖F(Y ) <∞}. (2.16)

Since the domain of u will be usually defined as a compact set of Rn, we have that X
has an interior and a closure. The interior of X is defined as

int(X) = {x ∈ X : ∃Br(x) ⊆ X, r > 0}, (2.17)
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where Br(x) = {x̂ ∈ X : ‖x̂− x‖X < r}. The closure of X is denoted as X̄ and is given by

X̄ =
{
x̂ ∈ Rn : x̂ = lim

n→∞
xn, xn ∈ X, n ∈ N

}
, (2.18)

that is, the set that has all the limits of the sequences that are in X. Both the interior
and the closure of X are useful for defining its boundary, which we denote as ∂(X). This
is defined as

∂(X) = X̄\int(X); (2.19)

or in other words, ∂(X) is the relative complement of int(X) respect to X̄. If X is open,
we simply have that ∂(X) = X̄\X. Throughout this first part of the thesis, (2.19) is the
definition of boundary that we will use for sets.
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Chapter 3

Mathematical Foundation

The mathematical foundation that is presented in this chapter consists of basically three
parts, namely, calculus, Lp spaces of FVMs and the Euler-Lagrange equation. In each one
of these, some of the mathematical concepts that are already found in the literature are
presented within the context of FVMs. The literature on functions that assume values in
a Banach space is vast, so it is not our objective to give a comprehensive review of this
field; nevertheless, it is intended to introduce the concepts that are considered necessary
for having a mathematical cornerstone solid enough upon which some imaging tools can
be developed.

3.1 Calculus

Although the origins of calculus go back in time at least more than two thousand years to
the ancient Greeks, who considered the problem of the area of certain figures, it is in the
XVII century when finally it was discovered the relation that exists between the problem
of finding the tangent of a curve, which was first analyzed by Pierre Fermat, and the
problem of area [108]. This realization lead to the birth of infinitesimal calculus, which is
evidently one of the greatest accomplishments of the XVII century. From it new branches
of mathematics sprouted, such as differential equations, differential geometry, calculus of
variations and many others [71]. Given this, it is clear why calculus plays a central role in
mathematics and why it is usually the first building block of other mathematical fields. For
these reasons, it is the first subject that is presented in the first section of this chapter1.

1Some of the ideas presented in this section follow the same approach that can be found in [80] and
[30].
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The reader who is familiar with the calculus of functions that take values in a Banach
space may skip this section.

3.1.1 Limit

The concept of limit is fundamental for the study of functions and an important tool in
Calculus and other branches of mathematics. It is not only used to define derivatives,
but also for finding asymptotes, calculating improper integrals, and for studying other
important features of functions [80]. The basic idea of limit can be traced back to Isaac
Newton, but it was not until the XIX century when the german mathematician Karl
Weierstrass introduced the modern definition of limit as we know it today [108]. This
classical definition is valid for real-valued functions and is as follows:

Definition 3.1.1. Let u : Ω→ R be a function defined on the open set Ω ⊂ R. Let x0 be
a point that belongs to either Ω or its boundary ∂(Ω). We say that the limit of u is L as x
tends to x0, which we write as

lim
x→x0

u(x) = L,

if and only if for all ε > 0 there exists δ > 0 such that for x ∈ Ω that satisfies 0 < |x−x0| <
δ, we have that |u(x)− L| < ε.

Given the importance of this concept, it becomes evident that a definition of limit for
FVMs is necessary for defining the basic mathematical tools of the FVM approach. For
this reason, the concept of limit for FVMs is introduced in the following section.

Definition of limit

It is tempting at this point to use 3.1.1 as a “stepping stone” and continue directly to
define what it means when one says that the limit of a FVM u is the function f when
one is approaching a limit point x0 in the domain of u; however, before going any further,
we introduce first the following definition and prove that there exists an equivalent ε − δ
version of it for FVMs.

Definition 3.1.2 (Definition of limit for a FVM). Let u : X ⊂ Rn → F(Y ). Let x0 be
a point that belongs to either X or its boundary ∂(X), and let Nf be an open neighbourhood
of f ∈ F(Y ). We say that f is eventually in Nf as x ∈ X approaches x0 in the ‖ ·‖X sense
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if there exists an open neighbourhood Nx0 of x0 such that x 6= x0, x ∈ (X ∩ Nx0), implies
that f ∈ Nf . We say that u tends to f when x tends to x0, which we write as

lim
x→x0

u(x) = f,

when, for any neighbourhood Nf of f , u(x) is eventually in Nf as x approaches x0. If, as
x tends to x0, u(x) does not approach to any particular function f ∈ F(Y ) in the ‖ · ‖F(Y )

sense, then we say that the limit of u as x→ x0 does not exist.

Notice that in definition 3.1.2 we have stated that x 6= x0, which is the standard
convention when the limit of either a real or a vector-valued function is being defined
[108, 80]. Now we prove in the following theorem that definition 3.1.2 has an equivalent
ε− δ counterpart.

Theorem 3.1.1. Let u : X ⊂ Rn → F(Y ) and let x0 be a point in either X or its
boundary ∂(X). Then limx→x0 u(x) = f if and only if for all ε > 0 there exists a δ > 0
such that for x ∈ X that satisfies 0 < ‖x− x0‖X < δ, we have that ‖u(x)− f‖F(Y ) < ε.

Proof. See Appendix A, Theorem A.0.1.

Properties of Limits

For the sake of completeness, two important properties of limits are included in this section,
namely, the limit of a FVM times a constant and the limit of the sum of two FVMs. These
properties are presented in the following theorem.

Theorem 3.1.2. Let u : X ⊂ Rn → F(Y ), v : X ⊂ Rn → F(Y ), f, g ∈ F(Y ), α ∈ R
and x0 ∈ X a point in either X or its boundary ∂(X). Then, the following affirmations
hold:

1. If limx→x0 u(x) = f , then limx→x0 αu(x) = αf , where αu : X ⊂ Rn → F(Y ) is
defined as x 7→ αu(x).

2. If limx→x0 u(x) = f and limx→x0 v(x) = g, then limx→x0(u + v)(x) = f + g, where
(u+ v)(x) : X ⊂ Rn → F(Y ) is defined as x 7→ u(x) + v(x).

Proof. See Appendix A, Theorem A.0.2
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3.1.2 Continuity

As with real and vector-valued functions, FVMs may also be continuous. In this case,
intuitively speaking, we consider that the FVM u is continuous at x0 if the limit of u is
its function-value at x0. If this limit exists for any x0 in a domain X of u, we say simply
that u is continuous on X. In the following definition, we state formally the concept of
continuity for FVMs.

Definition 3.1.3 (Continuity of a FVM). A FVM u : X ⊂ Rn → F(Y ) is continuous
at x0 ∈ X if and only if

lim
x→x0

u(x) = u(x0).

If this limit exists for any x0 ∈ X, we simply say that u is continuous on X.

Now, we introduce an ε − δ criterion for continuity of a FVM u using Theorem 3.1.1.
This result is given in the following theorem.

Theorem 3.1.3. A FVM u : X ⊂ Rn → F(Y ) is continuous at x0 ∈ X if and only if for
all ε > 0 there exists δ > 0 such that for x ∈ X that satisfies 0 < ‖x− x0‖X < δ, we have
that ‖u(x)− u(x0)‖F(Y ) < ε.

Proof. See Appendix A, Theorem A.0.3.

Example 3.1.1. We may have different types of continuity depending on the norm of the
function space F(Y ). Let u : X ⊂ R→ F(Y ) be defined as

u(x)(y) =

{
e−(x2+y2), x 6= 0
f(y), x = 0,

(3.1)

where

f(y) =

{
e−y

2
, y 6= 0

0, y = 0.
(3.2)

If F(Y ) = L1(R), then u is continuous; however, if F(Y ) = L∞(R), where L∞(Y ) = {f :
Y → R : ‖f‖∞ <∞}, u is not continuous at x = 0.

Example 3.1.2. Although continuity of FVMs is in general “weaker” as compared to
continuity of functions, there exist FVMs that are definitely not continuous in any sense.
For instance, let u : X ⊂ R→ L2(R) be defined as

u(x)(y) =

{ sin(y)
y
, x = 0

0, x 6= 0.
(3.3)

In this case, limx→0 u(x) = 0, nevertheless, u(0)(y) = sin(y)
y

; hence u is not continuous.
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Absolute Continuity

It is a known result that if the derivative of a continuous real-valued function G of one
variable is an integrable function f , such a function does not necessarily differ from the
indefinite integral of f by a constant. However, if the function G is absolutely continuous,
then the latter statement is true [30]. Interestingly enough, FVMs defined over R have also
the property of being absolutely continuous [126]. This type of continuity is introduced in
the following definition.

Definition 3.1.4. [126] Let u : X ⊂ R→ F(Y ). The FVM u is absolutely continuous
if and only if for all ε > 0 there exists a δ > 0 so that∑

n

‖u(xn)− u(zn)‖F(Y ) < ε (3.4)

holds for all finite systems of pairwise disjoint intervals (xn, zn) such that |xn − zn| < δ.

An interesting property of absolutely continuous FVMs is that these are also Lipschitz
continuous; that is, there exists K > 0 such that for any x, z ∈ X, we have that ‖u(x) −
u(z)‖F(Y ) ≤ K|x− z|. This follows from the definition of absolute continuity [126].

3.1.3 Differentiation

As mentioned previously, a FVM can be considered as a mapping between two Banach
spaces. Given this, the derivative of a FVM u at a given point x0 ∈ X ⊂ Rn can be defined
by means of the Fréchet derivative:

Definition 3.1.5 (Fréchet Derivative). Let u : X ⊂ Rn → F(Y ). We say that Du(x0)
is the derivative of u at x0 ∈ X if

lim
h→0

‖u(x0 + h)− u(x0)−Du(x0)h‖F(Y )

‖h‖X
= 0. (3.5)

Moreover, Du : X → F(Y ) is bounded and linear. Also, if (3.5) exists for any x0 ∈ X, we
simply say that u is differentiable in the ‖ · ‖F(Y) sense.

As for properties of the derivative, we have that it is a linear operator. Moreover, it
also posseses a product rule of differentiation as its classical counterpart. In the following
theorem such results are presented.

24



Theorem 3.1.4. Let u : X ⊂ Rn → F(Y ) and v : X ⊂ Rn → F(Y ) be differentiable,
and suppose that (uv)(x) ∈ F(Y ) for all x ∈ X. Also, let f ∈ F(Y ), α, β ∈ R and x ∈ X.
Then, the following assertions are true:

1. Derivative of a Constant: If u(x) = f , then Du(x) = 0 for all x ∈ X.

2. Sum Rule: If w(x) = αu(x) + βv(x), then Dw(x) = αDu(x) + βDv(x).

3. Product Rule: If w(x) = (uv)(x), then Dw(x) = Du(x)v(x) + u(x)Dv(x).

Proof. See Appendix A, Theorem A.0.4.

As with real-valued functions, FVMs have also a directional derivative. Such a deriva-
tive can be defined by means of the well known Gâteaux derivative.

Definition 3.1.6 (Gâteaux Derivative). Let u : X ⊂ Rn → F(Y ). We say that
Du(x0; h) is the directional derivative of u at xo ∈ X in the direction of h ∈ X
if the limit

Du(x0;h) = lim
ε↓0

u(x0 + εh)− u(x0)

ε
(3.6)

exists. If (3.6) holds for all x ∈ X, we say that u is Gâteaux differentiable in X.

As usual, by definition and properties of the Gâteaux derivative, we also have that
the directional derivative of a FVM u may not always be linear. This implies that if a
FVM u is Gâteaux differentiable, it may not be Fréchet differentiable; however, Fréchet
differentiability of u—or simply differentiability—always implies Gâteaux differentiability
thereof.

Example 3.1.3. Let u(x) = |x|. If x 6= 0, we have that

lim
ε→0

|x+ εh| − |x|
ε

= lim
ε→0

(x+ εh)2 − x2

ε(|x+ εh|+ |x|)
(3.7)

= lim
ε→0

2εxh+ (εh)2

ε(|x+ εh|+ |x|)
(3.8)

= h
x

|x|
. (3.9)

When x = 0, by the definition of directional derivative, it can be easily seen that Du(0;h) =
|h|. Then,

Du(x;h) =

{
h x
|x| , x 6= 0

|h|, x = 0,
(3.10)
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Notice that the Gâteaux derivative of u exists at x = 0, however, u is not differentiable at
this point. Moreover, at x = 0, Du(0;h) is a non-linear function of h.

We now review some of the most important properties of the directional derivative.
These are presented in the following theorem.

Theorem 3.1.5. Let u : X ⊂ Rn → F(Y ) and v : X ⊂ Rn → F(Y ) be Gâteaux
differentiable, and suppose that (uv)(x) ∈ F(Y ) for all x ∈ X. Also, let f ∈ F(Y ),
α, β ∈ R and x ∈ X. Then, the following assertions are true:

1. Derivative of a Constant: Let u(x) = f , where, f ∈ F(Y ). Then, Du(x;h) = 0.

2. Sum Rule: If w(x) = (u+ v)(x), then D(u+ v)(x;h) = Du(x;h) +Dv(x;h).

3. Product Rule: If w(x) = (uv)(x), then D(uv)(x;h) = Du(x;h)v(x)+u(x)Dv(x;h).

Proof. See Appendix A, Theorem A.0.5.

Let X ⊂ Rn. As usual, the partial derivative of u with respect to the component xi
of x ∈ X can be defined as a directional derivative. We denote such a derivative as ∂u

∂xi
,

which is given by

∂u

∂xi
= lim

h→0

u(x1, . . . , xi + h, . . . , xn)− u(x1, . . . , xi, . . . , xn)

h
. (3.11)

Moreover, if all the partial derivatives of u exist and are continuous at x0 ∈ X, then u is
differentiable at this point.

Theorem 3.1.6. If the partial derivatives ∂u
∂xi

exist at every x ∈ X, and if the mappings
∂u
∂xi

: X ⊂ Rn → F(Y ) are continuous at a point x0 ∈ X, then u is differentiable at x0.

Proof. See [23], Proposition 3.7.2, p. 46.

This theorem implies that Du(x) is a vector in Rn such that its i-th entry is the partial
derivative of u with respect to the variable xi. As expected, Du(x) is linear and bounded.
We denote this operator as ∇xu(x). In the particular case in which X ⊂ R, we have that

Du(x) = lim
h→0

u(x+ h)− u(x)

h
. (3.12)

Furthermore, if u is differentiable at x0 ∈ X with respect to ‖ · ‖F(Y ), Du(x0) is also the
derivative of u with respect to any other norm ‖ · ‖, provided that ‖ · ‖F(Y ) and ‖ · ‖ are
equivalent.
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Theorem 3.1.7. If u is differentiable at x0 ∈ X for a given norm, then u is also differ-
entiable at this point for any other equivalent norm and its derivative remains the same.

Proof. See [23], Proposition 2.1.1, p. 27.

The previous results motivate the following definition.

Definition 3.1.7. Let u : X ⊂ Rn → F(Y ). If u is differentiable at x0 ∈ X, we say that
∇xu(x0) is the derivative of u at x0 ∈ X. Also, if u is differentiable for any x0 ∈ X,
we simply say that ∇xu(x) is the derivative of u and that u is differentiable.

3.1.4 Best Linear Approximation

Thanks to definition 3.1.5, it is now known that u is differentiable at x0 if

lim
h→0

‖u(x0 + h)− u(x0)−Du(x0)h‖F(Y )

‖h‖X
= 0. (3.13)

By making the substitution h = x− x0, the following equivalent condition for differentia-
bility is obtained:

lim
x→x0

‖u(x)− u(x0)−Du(x0)(x− x0)‖F(Y )

‖x− x0‖X
= 0. (3.14)

The latter equation implies that if u is differentiable at x0, the quantity Rx0(x) = u(x)−
u(x0)−Du(x0)(x− x0) approaches zero faster than x gets closer to x0. As expected, this
implies that the linear form Lx0(x) = u(x0)+Du(x0)(x−x0) is the best linear approximation
of u at the point x0 with respect to the norm of the function space F(Y ).

Definition 3.1.8 (Best Linear Approximation). Let u : X ⊂ Rn → F(Y ). If u is
differentiable at x0, then Lx0u(x) = u(x0) +∇xu(x0)(x− x0) is the best linear ap-
proximation of u at x0 ∈ X.

Example 3.1.4. Let u : X ⊂ R→ L1(R) be defined as

u(x)(y) = e−(x2+y2). (3.15)

Say one wishes to obtain L1(x). First, one has that

du

dx
(y) = −2xe−(x2+y2), (3.16)

then u′(1)(y) = −2e−(1+y2). Also, u(1)(y) = e−(1+y2). Thus, the linear form

L1(x)(y) = e−(1+y2)(3− 2x) (3.17)

is the best linear approximation of u at x = 1.
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3.1.5 Integration

Integration of FVMs can be defined by means of the Bochner integral [11, 3]. Such an
integral is a natural generalization of the Lebesgue integral for mappings taking values in
a Banach space. As expected, this integral inherits some of the properties of the Lebesgue
integral, such as linearity.

Definition 3.1.9. [3] Let v : Ω → Z be a mapping and let (Ω,Σ, µ) be a measure space.
We say that v is strongly µ-measurable if there exists a sequence {ϕn} of Ω-simple
mappings such that limn→∞ ‖v(ω)− ϕn(ω)‖Z = 0 for almost all ω ∈ Ω in the sense of the
measure µ.

Definition 3.1.10 (Bochner Integral). [3] Let v : Ω → Z be a mapping between the
Banach spaces Ω and Z. Also, let Σ be a σ-algebra of Ω and (Ω,Σ, µ) be a measure space.
Then, a strongly µ-measurable v is Bochner integrable if there exists a sequence {ϕn}
of Ω-step mappings defined below such that the real-valued function ‖v(ω) − ϕn(ω)‖Z is
Lebesgue integrable for each n and

lim
n→∞

∫
‖v(ω)− ϕn(ω)‖Z dµ = 0. (3.18)

Moreover, for each D ∈ Σ, the Bochner integral of v over D is defined as∫
D

v dµ = lim
n→∞

∫
D

ϕn dµ. (3.19)

In this case, an Ω-step mapping is a measurable mapping ϕ : Ω → Z such that its
range is finite; i.e.,

R(ϕ) = {zi : zi ∈ Z, i ∈ N, 1 ≤ i ≤ n}, (3.20)

and
Ai = ϕ−1(xi) ∈ Σ, (3.21)

for all i, with µ(Ai) < ∞ for every non-zero zi. If the condition µ(Ai) < ∞ is not
considered, then ϕ is called an Ω-simple mapping. Both Ω-simple and Ω-step mappings
can be represented with the following formula:

ϕ(ω) =
n∑
i=1

ziχAi(ω), (3.22)
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where χ is the characteristic function2. In particular, the integral of an Ω-step mapping is
given by ∫

ϕ dµ =
n∑
i=1

µ(Ai)zi. (3.23)

Furthermore, the integral of ϕ over any D ∈ Σ is defined as∫
D

ϕ dµ =

∫
ϕχD dµ. (3.24)

At this point it is clear that definitions 3.1.9 and 3.1.10 can be employed easily to define
measurability and integrability of FVMs. In few words, we say that a FVM u is measurable
if it is strongly measurable. Similarly, if u is measurable, we say that u is integrable if it is
Bochner integrable. These concepts are formally introduced in the following definitions:

Definition 3.1.11 (Measurable FVM). Let u : X ⊆ Rn → F(Y ) and let (X,Σ, µ) be a
measure space, where µ is the canonical Lebesgue measure and Σ is a σ-algebra of X. We
say that u is measurable if there exists a sequence {ϕn} of X -simple mappings, where
ϕn : X ⊆ Rn → F(Y ), such that limn→∞ ‖u(x) − ϕn(x)‖F(Y ) = 0 for almost all x ∈ X in
the sense of the Lebesgue measure.

Definition 3.1.12 (Integral of a FVM). Let u : X ⊆ Rn → F(Y ). Also, let Σ be a
σ-algebra of X and (X,Σ, µ) be a measure space endowed with the Lebesgue measure. If
u is measurable, we say that u is integrable if there exists a sequence {ϕn} of X-simple
mappings such that the real-valued function ‖u(x) − ϕn(x)‖F(Y ) is Lebesgue integrable for
each n and

lim
n→∞

∫
‖u(x)− ϕn(x)‖F(Y ) dx = 0. (3.25)

Moreover, for each D ∈ Σ, the integral of u over D is defined as∫
D

u(x) dx := lim
n→∞

∫
D

ϕn(x) dx. (3.26)

The latter definition of integrability might be difficult to apply; nevertheless, for fi-
nite measure spaces, integrability of a measurable FVM u can be checked more easily by
employing the following criterion:

Theorem 3.1.8. Let u : X ⊆ Rn → F(Y ) be a measurable FVM and let (X,Σ, µ) be a
finite measure space. Then, u is integrable if and only if ‖u(x)‖F(Y ) is Lebesgue integrable,
that is,

∫
X
‖u(x)‖F(Y ) dx <∞.

2As usual, χD(x) is equal to one if x ∈ D and zero elsewhere.
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Proof. See [40], Theorem II.2.2, p. 45.

The collection of all Bochner integrable functions is a vector subspace of the set of all
the strongly measurable mappings of the form v : Ω→ Z; moreover, the Bochner integral
acts as a linear operator from this space into Z. Therefore, we also have that the set of all
the integrable FVMs of the form u : X ⊆ Rn → F(Y ) is a vector subspace of the set of all
the measurable FVMs, which we denote as MF :

MF = {u ∈ (F(Y ))X : u is measurable}. (3.27)

As expected, the integral of FVMs is also a linear operator from the set MF into the
function space F(Y ).

Theorem 3.1.9. If u and v are integrable and α, β ∈ R, then αu + βv is also integrable
and ∫

D

(αu+ βv)dx = α

∫
D

u dx+ β

∫
D

v dx (3.28)

for all D ∈ Σ.

Proof. See [3], Theorem 11.43, p. 426.

Moreover, the integral of FVMs also has the property of additivity of integrals on sets.
This is proved in the following theorem.

Theorem 3.1.10. Let u : X ⊆ Rn → F(Y ) be an integrable FVM. Also, let D,E ∈ Σ and
D ∩ E = ∅. Then, we have that∫

D∪E
u dx =

∫
D

u dx+

∫
E

u dx. (3.29)

Proof. See Appendix A, Theorem A.0.6.

As with the Lebesgue integral, there is also a dominated convergence theorem for the
Bochner integral. We present the FVM-version of this result in the following theorem.

Theorem 3.1.11 (Dominated Convergence Theorem). Let (X,Σ, µ) be a measure
space. Also, let u : X ⊆ Rn → F(Y ) be a measurable FVM and {un} be a sequence of
integrable FVMs such that ‖un(x)− u(x)‖F(Y ) → 0 for µ-almost all x ∈ X. If there exists
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a positive real-valued Lebesgue integrable function such that ‖un(x)‖F(Y ) ≤ g(x) µ-almost
everywhere, then u is integrable and

lim
n→∞

∫
D

un dx =

∫
D

u dx (3.30)

for all D ∈ Σ.

Proof. See [3], Theorem 11.46, p. 427.

Another important property of the Bochner integral is that it commutes with bounded
operators. As expected, this implies that integrals and bounded operators that act on
FVMs also commute.

Theorem 3.1.12. Let u : X ⊆ Rn → F(Y ) be integrable and let Z be a Banach space. If
T : F(Y )→ Z is a bounded operator, then the mapping Tu : F(Y )→ Z is integrable and∫

X

Tu dx = T

(∫
X

u dx

)
. (3.31)

Proof. See [109], Theorem 2.12, p. 17.

Furthermore, for FVMs of the form u : X ⊆ Rn → Lp(Y ), we have the following
important result:

Theorem 3.1.13. Let (X,Σ, µ) and (Y, T, ν) be finite measurable spaces. Then, for a
FVM of the form u : X ⊆ Rn → Lp(Y ) the following results hold:

1. If u is integrable and 1 ≤ p ≤ ∞, then there exists a µ × ν measurable real-valued
function v : X × Y → R—which is uniquely determined up to a µ× ν null set—such
that for µ-almost all x ∈ X we have that u(x) = v(x, ·). Moreover, for ν-almost all
y ∈ Y , the real-valued function v(·, y) is µ-integrable and(∫

X

u(x) dµ

)
(y) =

∫
X

v(x, y) dµ(x). (3.32)

2. If u : X ⊆ Rn → L1(Y ) is integrable, then there exists a µ× ν integrable real-valued
function v : X×Y → R such that for µ-almost all x ∈ X we have that u(x) = v(x, ·).
Furthermore,

∫
X
v dµ exists for ν-almost all y ∈ Y and(∫

X

u(x) dµ

)
(y) =

∫
X

v(x, y) dµ(x). (3.33)
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3. If v is µ×ν measurable and u(x) = v(x, ·) is in Lp(Y ) for µ-almost all x ∈ X, where
1 ≤ p <∞, then u is µ-measurable.

Proof. See [44], Theorem 17, p. 198.

It is also worthwhile to mention some results regarding integration of FVMs over sets
of measure zero and integrals of FVMs that are equal almost everywhere. These results
are presented in the following theorem.

Theorem 3.1.14. Let u, v ∈ MF such that u, v ≥ 0 for all x ∈ X and all y ∈ Y . Then
the following affirmations hold:

1. If µ(Z) = 0, then
∫
Z
u dx = 0.

2. If u = v almost everywhere on X, then
∫
X
u dx =

∫
X
v dx.

Proof. See Appendix A, Theorem A.0.7.

Example 3.1.5. Let u : [−a, a] ⊂ R→ L1([−a, a]) be given by

u(x)(y) = x2 + y2. (3.34)

The integral of u respect to x over the interval [−a, a] is given by∫ a

−a
(x2 + y2)dx =

2

3
a3 + 2ay2. (3.35)

Notice that the result of carrying out this integration is a function that depends only on y.

Example 3.1.6. Another interesting example is the integral respect to x of the following
FVM u : R→ L1(R):

u(x)(y) =

{
e−y

2
, x = 0

0, x 6= 0.
(3.36)

In this case one has that ∫ ∞
−∞

u(x)dx = 0. (3.37)

The reason for this is that u is equal to the FVM v = 0 almost everywhere. Since
∫
X
v dx =

0, by Theorem 3.1.14 we have that
∫
X
u dx =

∫
X
v dx = 0.

It is worthwhile to mention that all the results that are presented in this section also
hold if integration is carried out over the field of complex numbers C [44].
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Iterated Integral of u

Integration of FVMs can be carried out with respect to both variables x and y. As expected,
the result of such an integration can be interpreted as the “total volume” of a given FVM
u. Moreover, under some circumstances, the order of integration does not affect the final
result. The conditions under which this result holds are shown in the following theorem

Theorem 3.1.15. Let u : X ⊆ Rn → L1(Y ) be an integrable FVM. Then, we have that∫
Y

(∫
X

u dx

)
dy =

∫
X

(∫
Y

u dy

)
dx. (3.38)

Proof. See Appendix A, Theorem A.0.8.

3.1.6 Fundamental Theorem of Calculus

As with real-valued functions whose support is a subset of the real line, there is also a
fundamental theorem of calculus for FVMs that depend only on one variable. This result
is presented in the following theorem.

Theorem 3.1.16. Let (X,Σ, µ) and (Y, T, ν) be finite measure spaces, where X = [a, b] ⊂
R. Also, let u : X ⊂ R→ F(Y ) be a continuous FVM. Then, the FVM U defined as

U(x) =

∫ x

a

u(z)dz (3.39)

is differentiable on (a, b) and U ′(x) = u(x) for ν-almost every y ∈ Y .

Proof. See Appendix A, Theorem A.0.9.

Corollary 3.1.16.1. If u : X ⊂ R→ F(Y ) is a continuous FVM, then

lim
h→0

1

h

∫ x+h

x

u(z) dz = u(x) (3.40)

for ν-almost all y ∈ Y and all x ∈ (a, b) ⊂ X.

Proof. See Appendix A, Theorem A.0.9.
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Observe that the latter corollary is analogous to the Lebesgue differentiation theorem
for real-valued functions [30]. Moreover, the definite integral of the derivative of a FVM u
is also equal to the difference of the values of u evaluated at the limit points of its integral.

Theorem 3.1.17. Let u : [a, b] ⊂ R → F(Y ) be an absolutely continuous FVM and
F(Y ) a reflexive Banach space. Then, the classical derivative u′(x) exists for µ-almost X.
Moreover, we have that ∫ x

a

u′(z) dz = u(x)− u(a) (3.41)

for all x ∈ [a, b].

Proof. See [126], Volume II-A, Problem 23.5c, p. 443.

Integration by Parts

An immediate consequence of theorems 3.1.16 and 3.1.17 is the possibility of defining the
integration by parts of the product of two differentiable FVMs. Let u, v : X ⊂ R→ F(Y )
be differentiable. By properties of the derivative of FVMs, we have that

(uv)′ = u′v + uv′, (3.42)

provided that (uv)(x) ∈ F(Y ) for all x ∈ X. Integrating both sides of the previous
equation over [a, b], and using the results from the previous section, we obtain that∫ b

a

(uv)′ dx =

∫ b

a

u′v dx+

∫ b

a

uv′ dx, (3.43)

which is equivalent to ∫ b

a

u′v dx = uv|ba −
∫ b

a

uv′ dx. (3.44)

Example 3.1.7. Let u : [−1, 1] ⊂ R→ L1([−1, 1]) be defined as

u(x)(y) = (xy)e−(x+y). (3.45)

Its integral over [−1, 1] can be computed using integration by parts:∫ +1

−1

(xy)e−(x+y)dx = −(xy)e−(x+y)
∣∣+1

−1
+

∫ +1

−1

ye−(x+y)dx (3.46)

= −(xy)e−(x+y)
∣∣+1

−1
− ye−(x+y)

∣∣+1

−1
(3.47)

= −(x+ 1)ye−(x+y)
∣∣+1

−1
(3.48)

= −2ye−(1+y). (3.49)
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Notice that
d

dx
(−(x+ 1)ye−(x+y)) = (xy)e−(x+y), (3.50)

as expected.

3.2 Lp Spaces

In the literature, the Lp spaces of functions that take values on a Banach space are known
as Lebesgue-Bochner Lp spaces [126, 40]; however, in this thesis, we refer to them simply
as Lp spaces. These are defined in the following way.

Definition 3.2.1 (Lp Space). Let (X,Σ, µ) be a measure space and 1 ≤ p < ∞. We
define the Lp(X;F(Y)) space as the set of all equivalence classes of µ-measurable FVMs
of the form u : X ⊆ Rn → F(Y ) such that

‖u‖p :=

(∫
X

‖u(x)‖pF(Y )dx

) 1
p

<∞, (3.51)

If p =∞, then we have the space L∞(X;F(Y)), whose elements are the set of measurable
FVMs such that

‖u‖∞ := ess sup
x∈X

{‖u(x)‖F(Y )} <∞, (3.52)

where ess sup
x∈X

{·} is the essential supremum with respect to the measure µ.

As expected, both ‖ · ‖∞ and ‖ · ‖p fulfill the properties of a norm, therefore, Lp spaces
are normed spaces, which implies that ‖u‖p is the norm of u ∈ Lp(X;F(Y )).

Theorem 3.2.1. The functionals ‖u‖p : Lp(X;F(Y ))→ R and ‖u‖∞ : L∞(X;F(Y ))→ R
are norms.

Proof. See Appendix A, Theorem A.0.10.

Moreover, if F(Y ) is a Banach space, Lp(X;F(Y )) is also a Banach space.

Theorem 3.2.2. Let (X,Σ, µ) and (Y, T, ν) be finite measure spaces and let 1 ≤ p ≤ ∞.
If F(Y ) is a Banach space, then Lp(X;F(Y )) is also a Banach space.

Proof. See Appendix A, Theorem A.0.11.

35



Given the previous theorems, it can be seen that Lp spaces of FVMs are Banach spaces;
in other words, Lp spaces “inherit” the completeness of their function space F(Y ). This
also happens if the function space is separable. If this is so, then Lp(X;F(Y )) is also a
separable space.

Theorem 3.2.3. If F(Y ) is separable and X ⊂ R, then Lp(X;F(Y )) is separable as well.

Proof. See [126], Volume II-A, Problem 23.2, p. 440.

Moreover, if F(Y ) is a Hilbert space, we have that L2(X;F(Y )) is also a Hilbert space.

Theorem 3.2.4. If F(Y ) is a Hilbert space with scalar product 〈·, ·〉F(Y ), then L2(X;F(Y ))
is also a Hilbert space with scalar product defined as

〈u, v〉 =

∫
X

〈u(x), v(x)〉F(Y )dx, (3.53)

for all u, v ∈ L2(X;F(Y )).

Proof. See Appendix A, Theorem A.0.12.

Another property of Lp spaces is that the set ofX-step mappings is dense in Lp(X;F(Y )).
This follows from the fact that any element of Lp is a µ-measurable FVM, therefore, there
is a sequence {ϕn} of X-step mappings such that for any u ∈ Lp(X;F(Y )) we have that
limn→∞ ‖u(x) − ϕ(x)‖pF(Y ) = 0 for µ-almost x ∈ X. Moreover, if X ⊂ R, the space of

continuous FVMs C(X;F(Y )) with norm defined as

‖u‖ := sup
x∈X
{‖u(x)‖F(Y )}, (3.54)

for all u ∈ C(X;F(Y )), is dense in Lp(X;F(Y )) as well.

Theorem 3.2.5. [126] The space C(X;F(Y )) is dense in Lp(X;F(Y )). Even more, the
embedding C(X;F(Y )) ⊆ Lp(X;F(Y )) is continuous.

Proof. See Appendix A, Theorem A.0.13.
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The previous embedding can be extended not only to the space of continuous FVMs
but also to L∞(X;F(Y )). In this case, we can use the following inequality

‖u‖p ≤ µ(X)
1
p ess sup

x∈X
{‖u(x)‖F(Y )} (3.55)

= µ(X)
1
p‖u‖∞, (3.56)

which implies that the embedding L∞(X;F(Y )) ⊆ Lp(X;F(Y )) is continuous if µ(X) <
∞. An immediate consequence of this is that any bounded FVM is in Lp. Along these
lines, if 1 ≤ q ≤ p ≤ ∞, we also have that the embedding Lp(X;F(Y )) ⊆ Lq(X;G(Y )) is
continuous, provided that the embedding F(Y ) ⊆ G(Y ) is continuous as well. This can be
proved using the classical Hölder inequality.

Theorem 3.2.6. [126] Let (X,Σ, ν) and (Y, T, ν) be finite measure spaces. If the embedding
F(Y ) ⊆ G(Y ) is continuous and 1 ≤ q ≤ p ≤ ∞, then the embedding Lp(X;F(Y )) ⊆
Lq(X;G(Y )), is also continuous.

Proof. See Appendix A, Theorem A.0.14.

3.2.1 The Dual Space of Lp(X;F(Y))

If 1 ≤ p <∞ and 1
p

+ 1
q

= 1, we have that the dual of Lp(X;F(Y )) is Lq(X;F(Y )∗); that

is, Lp(X;F(Y ))∗ = Lq(X;F(Y )∗), where F(Y )∗ is the dual of F(Y ). This assertion holds
if F(Y ) has the Radon-Nikodým property ; that is, given a σ-algebra Σ on X, F(Y ) has
the Radon-Nikodým property with respect to any finite measure µ on X.

Definition 3.2.2. [40] Let Σ be a σ-algebra of subsets of X, ρ : Σ → F(Y ) be a vector
measure, and µ be a finite non-negative real-valued measure on Σ. If limµ(E)→0 ρ(E) = 0,
then ρ is µ-continuous.

Definition 3.2.3 (Variation of a vector measure). [40] Let Σ be a σ-algebra of subsets
of X, ρ : Σ → F(Y ) be a vector measure. The variation of ρ is defined as the extended
nonnegative function |ρ| whose value on a set E ∈ Σ is given by

|ρ|(E) := sup
Π

∑
F∈Π

‖ρ(F )‖F(Y ), (3.57)

where the supremum is taken over all partitions Π of E into a finite number of pairwise
disjoint elements of Σ. If |ρ|(E) is finite, then it is said that ρ has bounded variation
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Definition 3.2.4 (Radon-Nikodým property). [5] Let (X,Σ, µ) be a measure space.
F(Y ) has the Radon-Nikodým property with respect to µ if for every countably additive
µ-continuous vector measure of bounded variation ρ : Σ→ F(Y ) there exists an integrable
FVM v : X → F(Y ) such that

ρ(E) =

∫
E

v dµ (3.58)

for any measurable set E ∈ Σ.

The fact that Lq(X;F(Y )∗) is the dual of Lp(X;F(Y )) relies on two important re-
sults, namely, the Hölder inequality and the Radon-Nikodým theorem for Banach-valued
functions. These are presented in the following theorems within the context of FVMs.

Theorem 3.2.7 (Hölder Inequality). [126] Let u ∈ Lp(X;F(Y )) and v ∈ Lq(X;F(Y )∗),
where F(Y ) is the dual space of F(Y ). Also, let 1 < p < ∞ and 1

p
+ 1

q
= 1. Then, the

following Hölder inequality holds for all the elements of both Lp and Lq:∫
X

|〈u(x), v(x)〉F(Y )|dx ≤
(∫

X

‖u(x)‖pF(Y )dx

) 1
p
(∫

X

‖v(x)‖qF(Y )∗dx

) 1
q

. (3.59)

In particular, all the integrals of this inequality exist.

Proof. See Appendix A, Theorem A.0.15.

Theorem 3.2.8 (Radon-Nikodým theorem). If ν : Σ → F(Y ) is a µ-continuous
vector-measure of bounded variation, then there exists an integrable FVM u ∈ L1(X;F(Y ))
such that ν(D) =

∫
D
u dµ for all D ∈ Σ.

Proof. See [40], Chapter III.

Theorem 3.2.9 (Dual of Lp(X;F(Y))). Let (X,Σ, µ) be a finite measure space and let
1 ≤ p < ∞. If 1

p
+ 1

q
= 1, then Lp(X;F(Y ))∗ = Lq(X;F(Y )∗) if and only if F(Y )∗ has

the Radon-Nikodým property with respect to µ.

Proof. See [40], Theorem I, p. 98.

Thanks to Theorem 3.2.9, we have that Lp(X;F(Y ))∗ is the space of all continuous
linear functionals of the form Φv : Lp(X;F(Y ))→ R. Such functionals are defined as

Φv(u) :=

∫
X

〈u(x), v(x)〉F(Y )dx (3.60)
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for all u ∈ Lp(X;F(Y )). As expected, each v ∈ Lq(X;F(Y )∗) defines a unique continuous
linear functional on Lp(X;F(Y )) and ‖Φ‖ = ‖v‖q.

For the sake of completeness, we close this section by presenting the following important
corollary that follows from the previous theorem. Its proof can also be found in [40].

Corollary 3.2.9.1. Let (X,Σ, µ) be a finite measure space and let 1 ≤ p ≤ ∞. Then, the
space Lp(X;F(Y )) is reflexive if and only if both Lp(X) and F(Y ) are reflexive.

Proof. See [40], Corollary 2, p. 100.

3.3 Euler-Lagrange Equation

The origins of calculus of variations go back to the XVII century, when Johann Bernoulli
posed the brachistochrone curve problem3 in a prize competition. Several important math-
ematicians from that time replied with a solution, among them Jacob Bernoulli and Got-
tfried Wilhelm Leibniz; however, it was Leonhard Euler who provided a general method to
solve optimization problems in which an unknown curve is to be found. Euler’s approach
proved to be useful, but it was Lagrange’s simpler and more general method which became
the standard approach and it is still being used even nowadays. As opposed to Euler, La-
grange was able to address multi-dimensional variational problems, which lead to partial
differential equations [126].

As is well known, the field of calculus of variations was “nourished” by the contribu-
tions of other influential mathematicians, namely, Weierstrass, Legendre and Jacobi [126].
Moreover, developments have not stopped. Consequently, the calculus of variations has
become an important branch of mathematics with important applications in different fields
such as physics, economics and image processing. Given this, it is not our goal to pro-
vide a comprehensive extension of this field to include FVMs, but to simply present the
Euler-Lagrange equation of a given functional whose argument u is a FVM of the form
u : X ⊂ Rn → F(Y ). In particular, we focus our attention on expressions of the following
form:

I(u) =

∫
X

f(x, u,∇xu)dx, (3.61)

3Johann Bernoulli published this problem in the June edition of Leipzig Acta Euditorium in 1696. It
read as follows: “Two points, at different distances from the ground and not in a vertical line, should be
connected by such a curve so that a body under the influence of gravitational forces passes in the shortest
possible time from the upper to the lower point.”
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where f : X ×F(Y )×Gn(Y )→ R is a mapping that is Fréchet differentiable with respect
to all of its arguments, and Gn(Y ) is the Cartesian product of the range of ∇xu; that is,
Gn(Y ) = G(Y ) × · · · × G(Y ), where ∂u

∂xi
: X ⊂ Rn → G(Y ). As expected, the solution of

the Euler-Lagrange equation is a FVM that either maximizes or minimizes I(u).

Theorem 3.3.1. Let (X,Σ, µ) and (Y, T, ν) be finite measure spaces. Also, let u : X ⊆
Rn → F(Y ), ∂u

∂xi
: X ⊂ Rn → G(Y ), and assume that the function

Φ(x) := f(x, u(x),∇xu(x)) (3.62)

is integrable over X. In addition, suppose that the Fréchet derivatives of f : X × F(Y )×
Gn(Y ) → R with respect to all of its arguments are continuous. Define the functional
I(u) : Z(F(Y ),G(Y ))→ R as follows:

I(u) :=

∫
X

f(x, u,∇xu)dx, (3.63)

where Z(F(Y ),G(Y )) is a Banach space of FVMs that depends on the function spaces
F(Y ) and G(Y ). If u0 : X ⊂ Rn → F(Y ) is a stationary point of I(u), u0 is the solution
of the equation

∂f

∂u
(u0)−∇ · ∂f

∂∇xu
(∇xu0) = 0. (3.64)

where ∂f
∂u
∈ F(Y )∗ and ∂f

∂∇xu ∈ G
n(Y )∗ are the Fréchet derivatives of f with respect to u

and ∇xu respectively, ∇· is the classical divergence operator, and F(Y )∗ and G(Y )∗ are
the dual spaces of F(Y ) and G(Y ) respectively.

Proof. See Appendix A, Theorem A.0.16.

We consider Eq. (3.64) as the Euler-Lagrange equation of the functional I(u) defined
in (3.63). As its classical counterpart, it is also a necessary condition for the solutions
of the variational problem stated in the previous theorem, however, it is not a sufficient
condition for the existence of such solutions. To determine if such solutions exist, the
standard sufficient conditions from calculus of variations can be employed to such an end
[126].
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Chapter 4

Fourier Transform

Motivated by the study of the diffusion of heat, Joseph Fourier proposed in the beginning of
the XIX century that any periodic function can be decomposed as a series of harmonically
related sine functions. With this idea alone, Fourier revolutionized both mathematics and
physics; however, it took one and a half centuries to understand the convergence of Fourier
series and complete the theory of Fourier integrals [79].

Although Fourier used his breakthrough idea to solve the partial differential equa-
tion that governs the diffusion of heat over a surface, the extensions of his work have
been employed in many fields such as signal and image processing, quantum physics (e.g.,
Heisenberg’s uncertainty principle) [79], number theory [110] and others. Moreover, the
well known Fourier transform diagonalizes all linear-time invariant operators, which are the
building blocks of signal processing [79]. Given the clear importance of Fourier analysis, in
this chapter, we present a Fourier transform for FVMs, as well as its inverse counterpart.
Properties of this transform, examples and some applications are also provided.

4.1 Some Current Definitions

Over time, Fourier’s work has been extended much further by many mathematicians,
among them, Peter Dirichlet, one of Fourier’s doctoral students, and Bernhard Riemann.
A classical example of these generalizations is the Fourier transform, which allows to ana-
lyze non-periodic functions. For instance, let u : R → R. Its Fourier transform is usually
defined as

U(ω) :=

∫ ∞
−∞

u(x)e−iωxdx, ω ∈ R, (4.1)
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provided that u ∈ L1(R). As is known, this definition can be extended for functions that
belong to L2(R) by using the fact that the space L1(R)∩L2(R) is dense in L2(R) [79]. On
the other hand, if both u and U belong to L1(R), the inverse Fourier transform is given by

u(x) =
1

2π

∫ ∞
−∞

U(ω)eiωxdω. (4.2)

A natural extension of the previous result is the Fourier transform of real-valued func-
tions of several variables. Let u : Rn → R, u ∈ L1(Rn). Its Fourier transform is defined
as

U(ω) :=

∫
Rn
u(x)e−iω·xdx, (4.3)

where ω ·x is the dot product of the vectors ω, x ∈ Rn. The inverse counterpart is equal to

u(x) =
1

(2π)n

∫
Rn
U(ω)eiω·xdω, (4.4)

provided that both u and U belong to L1(Rn).

Another interesting generalization is the fractional Fourier transform. If the classical
Fourier transform is understood as an operator of order one, its fractional counterpart is
an operator of order n, where n may not be an integer. Let u : R → R. The fractional
Fourier transform of u is defined as

Fα{u(x)} :=

√
1− i cot(α)

2π
ei cot(α)ω

2

2

∫ ∞
−∞

u(x)e−i csc(α)ω·x+i cot(α)x
2

2 dx, (4.5)

where α ∈ R. Notice that when α = π/2, we obtain the classical symmetric Fourier
transform. Moreover, F−π

2
{U(ω)} is equal to the usual inverse Fourier transform. This

transform is also employed for solving certain classes of ordinary and partial differential
equations that arise in quantum mechanics [90].

Furthermore, in [97], Peetre provides perhaps one of the first generalizations of the
Fourier transform for Banach-valued functions. In fact, for p ∈ (1, 2], Peetre proves that the
Fourier transform is a bounded operator from Lp(R;Z) to Lq(R;Z), where q is the Hölder
conjugate of p and Z is a Banach space. This result was extended further by Milman in
[85]. Here, it is proved that the Fourier transform is a well defined operator from Lp(G;Z)
to Lq(Ĝ;Z), where G is a locally compact abelian group and Ĝ its Pontryagin dual1.

1In few words, the Pontryagin dual is the set of all frequencies ω. The “nature” of this dual is determined
by how the set G is defined: e.g., the real line, a finite cyclic group, etc..
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Along these lines, in [109], as an application of the Bochner integral [3], the following
definition of the Fourier transform is provided:

U(ω) :=

∫
Rn
eiω·x u(x)dx, (4.6)

where u : Rn → H is an element of L1(Rn;H). Here, H is a separable Hilbert space. Note
that in [109], the exponent of the complex exponential has a positive sign. Moreover, it
is shown that U(ω) is well defined and that it is a bounded operator from L1(Rn;H) to
L∞(Rn;H). However, no definition of the inverse Fourier transform is presented.

4.2 Fourier Transform for FVMs

The already existing definitions of the Fourier transforms for Banach-valued functions
provide the foundation for defining the Fourier transform of FVMs. In particular, we focus
our attention on the elements of the space L1(Rn;F(Y )); that is, the space of integrable
FVMs.

Definition 4.2.1. Let u ∈ L1(Rn;F(Y )), where F(Y ) is a complex-valued space. We
define the Fourier transform of u as the integral

F{u} :=

∫
Rn
e−iω·x u(x)dx, (4.7)

where ω ∈ Rn. In some cases, we will denote F{u} as U(ω) as well.

In technical terms, observe that ω must belong to the Pontryagin dual of Rn, however,
the Euclidean space Rn is a locally compact abelian group that it is self-dual, therefore,
ω is indeed an element of Rn. On the other hand, in a general setting, it is customary to
employ the Haar measure when integration is carried out over a locally compact topological
group, nevertheless, in the case of Rn, the Haar measure is the Lebesgue measure.

Theorem 4.2.1. [109] F is a bounded operator of the form

F : L1(Rn;F(Y ))→ L∞(Rn;F(Y )). (4.8)

Proof. We have that

‖F{u}(ω)‖F(Y ) ≤
∫
Rn
‖e−iω·x u(x)‖F(Y )dx (4.9)

=

∫
Rn
‖u(x)‖F(Y )dx (4.10)

= ‖u‖1. (4.11)
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By taking the supremum at both sides of the inequality over all ω ∈ Rn we obtain that

sup
ω∈Rn

‖F{u}(ω)‖F(Y ) = ‖F{u}‖∞ ≤ ‖u‖1. (4.12)

Regarding the inverse transform, this operator is not well defined for all the elements
that belong to L∞(Rn;F(Y )) since not all the FVMs of this space are in L1(Rn;F(Y )).
Given this, as is customary in harmonic analysis [53], we define this transform under the
assumption that both u and U belong to L1(Rn;F(Y )).

Definition 4.2.2. If both u and U are elements of L1(Rn;F(Y )), we define the inverse
Fourier transform of U as

F−1{U} :=
1

(2π)n

∫
Rn
eiω·x U(ω)dω. (4.13)

As for the measure of the above integral, this is defined as the dual measure of µ, which
we denote as µ̂. In our particular case, we have that µ̂ = 1

(2π)n
µ [53].

Theorem 4.2.2. If both u and U belong to L1(Rn;F(Y )), then

u(x) =
1

(2π)n

∫
Rn
eiω·x U(ω)dω. (4.14)

Proof. The proof is completely analogous to the real-valued case, which can be found in
[79], Theorem 2.1, p. 23. First, let us define the following FVM Iε : Rn → F(Y ):

Iε(x) :=
1

(2π)n

∫
Rn

∫
Rn
e−

ε2‖ω‖22
2

+iω(x−z) u(z)dzdω. (4.15)

Integration with respect to z yields

Iε(x) =
1

(2π)n

∫
Rn
e−

ε2‖ω‖22
2

+iωx U(ω)dω. (4.16)

Observe that the integrand is bounded by ‖U(ω)‖F(Y ), therefore, by the dominated con-
vergence Theorem 3.1.11, we have that

lim
ε→0

Iε(x) =
1

(2π)n

∫
Rn
eiω·x U(ω)dω. (4.17)
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Now, let us apply Fubini’s theorem to Eq. (4.15):

Iε(x) =
1

(2π)n

∫
Rn

∫
Rn
e−

ε2‖ω‖22
2

+iω(x−z)dω u(z)dz. (4.18)

Notice that the inner integral is equal to a multivariate Gaussian of variance ε2 and mean
equal to x. Therefore,

Iε(x) =
1

(2π)n

∫
Rn

1

(2πε2)
n
2

e−
‖z−x‖22

2ε2 u(z)dz. (4.19)

This Gaussian converges to a multivariate Dirac delta as ε→ 0, then

lim
ε→0

Iε(x) = u(x), (4.20)

which implies that

lim
ε→0

∫
Rn
‖Iε(x)− u(x)‖F(Y )dx = 0 (4.21)

for µ-almost all x ∈ X. This completes the proof.

4.2.1 Properties

It is clear that the operator F is linear, which is, of course, a consequence of the linearity
of the integral of the Fourier transform. Let α, β ∈ C and u, v ∈ L1(Rn;F(Y )). We claim,
without proof, that the following equality holds:

F{αu+ βv} = αF{u}+ βF{v}. (4.22)

As expected, linearity also holds for the inverse operator F−1. Let α, β ∈ C and U, V ∈
L1(Rn;F(Y )). Then,

F−1{αU + βV } = αF−1{U}+ βF−1{V }. (4.23)

As with the classical Fourier transform, in the FVM setting, we also have properties
such as translation, scaling, modulation, differentiation with respect to x and integration.
These are presented in the following theorems.

Theorem 4.2.3. Let both u ∈ L1(Rn;F(Y )). Also, let ω0, x0 ∈ Rn and a ∈ R, a 6= 0.
Then, the following assertions hold:
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1. Translation: F{u(x− x0)} = e−iω·x0U(ω).

2. Modulation: F{e−iω0·xu(x)} = U(ω − ω0).

3. Scaling: F{u(ax)} = 1
|a|nU(ω

a
).

4. Integration:
∫
Rn u(x) dx = U(0).

Proof. Assertions one and two follow easily by making a simple substitution. Regarding
assertion three, substitution is also required, but two cases need to be considered separately:
a > 0 and a < 0. If a is positive, we have that

F{u(ax)} =

∫
Rn
e−iω·x u(ax)dx (4.24)

=
1

an

∫
Rn
e−i(

ω
a

)·z u(z)dz (4.25)

=
1

an
U(ω). (4.26)

For negative a, F{u(ax)} is given by

F{u(ax)} =

∫
Rn
e−iω·x u(−|a|x)dx (4.27)

=
(−1)n

|a|n

∫
−Rn

ei(
ω
|a|)·z u(z)dz. (4.28)

Notice that
∫
−Rn(·) dx = (−1)n

∫
Rn(·) dx. Then,

F{u(ax)} =
1

|a|n

∫
Rn
ei(

ω
|a|)·z u(z)dz (4.29)

=
1

|a|n
U

(
− ω

|a|

)
. (4.30)

Both Eqs. (4.26) and (4.30) can be combined into the next single expression:

F{u(ax)} =
1

|a|n
U
(ω
a

)
. (4.31)

As for the property of integration, this is evident.
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Theorem 4.2.4 (Differentiation). Assume all ∂
lu
∂xlj

and (iωj)
lU are elements of L1(Rn;F(Y ))

whenever 0 ≤ l ≤ k. Then,

F

{
∂ku(x)

∂xkj

}
= (iωj)

kU(ω). (4.32)

Proof. Since (iωj)
lU is in L1(Rn;F(Y )) for all 0 ≤ l ≤ k, we obtain that

∂ku(x)

∂xkj
=

1

(2π)n

∫
Rn
eiω·x (iωj)

kU(ω) dω. (4.33)

On the other hand, we have that

G(ω) =

∫
Rn
e−iω·x

∂ku(x)

∂xkj
dx. (4.34)

Given that both ∂ku
∂xkj

and (iωj)
kU are in L1(Rn;F(Y )), we must have that G = (iω)kU .

Therefore,

F

{
∂ku(x)

∂xkj

}
= (iωj)

kU(ω), (4.35)

This completes the proof.

Observe that the last assertion of the previous theorem shows that differential operators
are multiplication operators in the frequency domain, therefore, as with the real-valued
case, we also have that the Fourier transform of FVMs “diagonalizes” differential operators.
Moreover, we have a convolution theorem as well.

Theorem 4.2.5 (Convolution). Let (Rn,Σ, µ) be a measure space. Also, let u, v ∈
L1(Rn;F(Y )). Then,

u ∗ v :=

∫
Rn
u(x− z)v(z)dz =

∫
Rn
u(z)v(x− z)dz (4.36)

is in L1(Rn;F(Y )) as well and

F{u ∗ v} = F{u}F{v}. (4.37)
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Proof. Once again, the proof is analogous to the real-valued case. First, let us verify that
u ∗ v ∈ L1(Rn;F(Y )). Let w : R2n → F(Y ) be equal to w(x, z) = u(x− z)v(z). Since both
u and v are integrable, there exist sequences {ϕn} and {ψn} such that

lim
n→∞

‖f(x)− ϕn(x)‖F(Y ) = 0 and lim
n→∞

‖v(x)− ψn(x)‖F(Y ) = 0 (4.38)

for µ-almost all x ∈ Rn. Define ζn(x, z) = ϕn(x− z)ψn(z), which is equivalent to

ζn(x, z) =

(
q∑
j=1

fjχAj(x− z)

)(
r∑

k=1

gkχBk(z)

)
(4.39)

=
s∑
l=1

hlχCl(x, z). (4.40)

Thus,
lim
n→∞

‖w(x, z)− ζn(x, z)‖F(Y ) = 0 (4.41)

for µ × µ-almost all (x, z) ∈ R2n; which implies that w(x, z) is measurable. On the other
hand, we have that∫

Rn

∫
Rn
‖w(x, z)‖F(Y )dxdz =

∫
Rn

∫
Rn
‖u(x− z)‖F(Y )‖v(z)‖F(Y )dxdz (4.42)

=

∫
Rn
‖u‖1‖v(z)‖F(Y )dz (4.43)

= ‖u‖1‖v‖1. (4.44)

Given that both u and v are in L1(Rn;F(Y )), we have that w ∈ L1(R2n;F(Y )). By
Fubini’s Theorem for Banach-valued functions (see [39]), we have that∫

Rn

∫
Rn
u(x− z)v(z)dxdz =

∫
Rn

∫
Rn
u(x− z)v(z)dzdx, (4.45)

therefore, u ∗ v is integrable. Furthermore,∫
Rn
‖(u ∗ v)(x)‖F(Y )dx ≤

∫
Rn

∫
Rn
‖u(x− z)‖F(Y )‖v(z)‖F(Y )dzdx <∞. (4.46)

Thus, u ∗ v ∈ L1(Rn;F(Y )); i.e., L1(Rn;F(Y )) is closed under the convolution operation.
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Regarding F{u ∗ v}, this is given by

F{u ∗ v} =

∫
Rn
e−iω·x

∫
Rn
u(x− z)v(z)dzdx (4.47)

=

∫
Rn

∫
Rn
e−iω·(t+z)u(t)v(z)dzdt (4.48)

=

(∫
Rn
e−iω·tu(t)dt

)(∫
Rn
e−iω·zv(z)dz

)
(4.49)

= F{u}F{v}. (4.50)

Example 4.2.1 (Rectangular Function). Let u : R→ L∞(R) be given by

u(x)(y) =

{
1, |x| ≤ 1
0, |x| > 1.

(4.51)

Its Fourier transform is given by

U(ω)(y) =

∫ +1

−1

e−iωxdx =
sin(ω)

ω
. (4.52)

In other words,

U(ω)(y) =

{
sin(ω)
ω

, ω 6= 0
1, ω = 0.

(4.53)

Observe that U is an element of L∞(R, L∞(R)) but it is not in L1(R, L∞(R)), thus, the
inverse Fourier transform is not defined for this FVM.

Example 4.2.2 (Gaussian Function). Let u : R→ L1(R) be the following FVM

u(x)(y) =
1

2πσ2
e−

x2+y2

2σ2 . (4.54)

We have that the Fourier transform is equal to

U(ω)(y) =
1

σ
√

2π
e−

y2

2σ2

∫ +∞

−∞

(
1

σ
√

2π
e−

x2

2σ2

)
e−iωxdx =

1

σ
√

2π
e−

σ2ω2

2
− y2

2σ2 . (4.55)

Notice that in this case U ∈ L1(R, L1(R)), therefore, its inverse Fourier transform can be
computed:

F−1{U}(y) =

(
1

σ
√

2π
e−

y2

2σ2

)(
1

2π

∫ +∞

−∞
e−

σ2ω2

2 eiωxdω

)
=

1

2πσ2
e−

x2+y2

2σ2 . (4.56)
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Figure 4.1: The Fourier transform of the rectangular function given in Eq. (4.51).
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Figure 4.2: The Fourier transform of the Gaussian function of Example 4.2.2. In this case,
σ =
√

3.
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4.3 Applications

Under certain assumptions, the Fourier transform can be employed to find the particular
solutions of certain ordinary differential equations (ODE). Suppose we wish to find u :
R→ F(Y ) such that

u′ + u = v. (4.57)

Assuming that all u′, u and v are in L1(R;F(Y )), we can apply the Fourier transform to
both sides of the ODE, which yields

U(ω) =
V (ω)

ω + 1
, (4.58)

where V (ω) = F{v}. If U ∈ L1(R;F(Y )), we obtain that

u(x) = F−1

{
V (ω)

ω + 1

}
, (4.59)

Observe that this approach is equivalent to employ the Fourier transform for solving the
classical partial differential equations that arise in practical applications—e.g., the heat
equation [64]. In fact, in [69], the authors employ Fourier techniques to study the periodic
solutions of second order differential equations that take values in a Banach space.

Regarding practical implementations, to get some insight into the behaviour of the
continuous Fourier transform of real images, we applied the fast Fourier transform (FFT)
to hyperspectral datasets of size M ×N ×P ; that is, the hyperspectral image has P bands
and its spatial domain is an array of size M × N . In the continuous setting, we define a
hyperspectral image as a FVM u : X ⊂ R2 → L2(R); i.e., u is a mapping that assigns to
each element x ∈ X a spectral function of finite energy. The continuous Fourier transform
of such a mapping is also a FVM of the form U : Ω ⊂ R2 → L2(R), where Ω is the
appropriate set of frequencies. Notice that the elements on L2(R) may be complex-valued
functions. The discrete approximation of U can be obtained by computing the FFT of
each band of the discrete hyperspectral image independently.

In this setting, it is interesting to see how the correlation between bands changes before
and after computing the discrete approximation of U of a given hyperspectral dataset. In
Figure 4.3, the image on the left corresponds to a depiction of the correlation matrix of all
the bands of the hyperspectral image Indian Pines. This image has 224 bands, thus the
matrix of correlation coefficients is of size 224× 224. Each entry (k, l) of this matrix is the
value of the correlation coefficient Ckl between bands uk and ul, which is given by

Ckl =

∑N
i1=1

∑M
i2=1(uk(i1, i2)− ūk)(ul(i1, i2)− ūl)√∑N

i1=1

∑M
i2=1(uk(i1, i2)− ūk)2

√∑N
i1=1

∑M
i2=1(ul(i1, i2)− ūl)2

, (4.60)
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where ūk and ūl are the mean values of uk and ul respectively:

ūk =
1

MN

N∑
i1=1

M∑
i2=1

uk(i1, i2), and ūl =
1

MN

N∑
i1=1

M∑
i2=1

ul(i1, i2). (4.61)

As expected, this matrix is symmetric. The image on the right is the matrix of correlation
coefficients upon computation of the magnitude of the FFT of each band. It can be
observed that upon transformstion, the bands tend to be more correlated in the frequency
domain as opposed to their spatial counterparts. This suggests that the functions U(ω)(y)
tend to be more regular across the spectral domain. This should not be surprising since the
operator F may transform discontinuous functions in the spatial domain into continuous
functions in the frequency domain (see example 4.2.1). On the other hand, this example
also shows that information across bands in the frequency domain has less “variation”
than in the spatial domain, which is an example of the compression capabilities of the
Fourier transform. Another example is shown in Figure 4.4. In this figure, the correlation
matrices correspond to the hyperspectral image Salinas. Both Indian Pines and Salinas
can be found in [38].
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Figure 4.3: Matrices of correlation coefficients between bands of the hyperspectral image
Indian Pines. Image on the left corresponds to the correlations in the spatial domain,
whereas the image on the right shows how this correlation between bands tends to be
greater in the frequency domain.
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Figure 4.4: Matrices of correlation coefficients between bands of the hyperspectral image
Salinas. As in the previous figure, the image on the left correspond to the correlations in
the spatial domain, whereas the image on the right shows the correlation between bands
in the frequency domain.

Indian Pines
Salinas

Figure 4.5: The image on the left is the band number 23 of the hyperspectral image Indian
Pines. The image on the right corresponds to band number 57 of the hyperspectral image
Salinas.
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Chapter 5

A Simple Class of Fractal Transforms
for Hyperspectral Images

In [115], we examined some basic self-similarity properties of hyperspectral (HS) images,
considering them as FVMs of a base (or pixel) space X to a suitable (spectral) function
space. At each location or pixel x ∈ X, the hyperspectral image mapping u(x) is a function
that is supported on a suitable domain Y . In practical applications, of course, HS images
are digitized: Both the base space X and spectral domain Y are discretized so that u(x)
is a vector.

Earlier studies of greyscale images [2, 19] have shown that most subblocks of natural
images are well approximated (using various forms of affine greyscale mappings) by a
number of other subblocks of the image. Such image self-similarity is responsible, at
least in part, for the effectiveness of various non-local image processing schemes, including
nonlocal-means denoising [22], fractal image coding [125, 78] and a variety of other methods
devoted to image enhancement, e.g., [37, 45, 48, 51, 55]. The study in [115] shows that
HS images are also quite self-similar, in the sense that “data cubes”, namely, M -channel
vectors supported over n× n-pixel subblocks of the HS image are well approximated by a
number of other data cubes of the image. Moreover, the spectral functions over individual
pixels demonstrate a remarkable degree of correlation with each other, not only locally but
over the entire image. This suggests that various nonlocal image processing schemes which
rely on self-similarity should be quite effective for HS images.

In Section 5.2 of this chapter, we provide the mathematical formalism for a particular
class of affine fractal transforms on the space of function-valued HS images and show that
under certain conditions, a fractal transform T can be contractive. From Banach’s Fixed
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Point Theorem, this implies the existence of a fixed point HS image ū such that T ū = ū.
This leads to the inverse problem of fractal image coding, namely, given an HS image u,
find a fractal transform T with fixed point ū that approximates u to a sufficient degree of
accuracy. As in the case of fractal coding of greyscale images, this problem can be solved
by means of collage coding, i.e., find a fractal transform T that maps the HS image u as
close to itself as possible.

One of the original motivations for fractal image coding was image compression [7,
125, 78]. As in the case of standard transform coding of images, it was found that much
less computer memory was required to store the parameters defining the block-based frac-
tal transform T of an image u. Moreover, the fixed-point approximation ū to u can be
constructed by iteration of the transform T . Fractal image coding has been shown to be
effective in performing a number of other image processing tasks, for example, denoising
[58] and super-resolution [82].

In Section 5.4, we examine in more detail a block fractal coding scheme briefly in-
troduced in [115], deriving sufficient conditions for contractivity of the associated fractal
transform T . We also present the results of some computations on a hyperspectral image.
However, it is not our purpose to investigate the compression capabilities of this fractal
coding scheme nor to compare it with other compression schemes.

Acknowledging the tremendous amount of work that has been done on hyperspectral
images, e.g., [27, 88], we mention that our work is intended to complement the well-
established notion that hyperspectral images generally exhibit a high degree of correlation
which can be exploited for the purposes of image enhancement.

5.1 A Complete Metric Space (Z,dZ) of Hyperspectral

Images

We consider hyperspectral images as function-valued mappings of a base space X to an
appropriate space of spectral functions F(Y ), along the lines established in [115, 84]. In
this chapter, the ingredients of our formalism are as follows:

• The base space X: The compact support of the hyperspectral images, with metric
dX . For convenience, X = [0, 1]n, where n = 1, 2 or 3.

• The range or spectral space F(Y ): The space L2(Rs) of square-integrable func-
tions supported on a compact set Rs ⊂ R+, where R+ = {y ∈ R | y ≥ 0}. L2(Rs) is
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a Hilbert space with the standard definition of the inner product, i.e.,

〈f, g〉 =

∫
Rs
f(y) g(y) dy, ∀f, g ∈ L2(Rs). (5.1)

This inner product defines a norm on L2(Rs), to be denoted as ‖ · ‖L2(Rs).

We now let Z denote the set of all FVMs from X to L2(Rs). Given a hyperspectral
image u ∈ Z, its value u(x) at a particular location x ∈ X will be a function—more
precisely, an element of the space L2(Rs). Following the same prescription as in [84], the
norm ‖ · ‖L2(Rs) arising from Eq. (5.1) may be used to define a norm ‖ · ‖Z on Z which, in
turn, defines a metric dZ on Z. The distance between two hyperspectral images u, v ∈ Z
will then be defined as

dZ(u, v) =

√∫
X

‖u(x)− v(x)‖2
L2(Rs) dx. (5.2)

By Theorem 3.2.2, we have that the space L2(X;L2(Rs)) is complete, which implies that
the metric space (Z, dZ) of hyperspectral images is complete as well.

5.2 A Class of Fractal Transforms on (Z,dZ)

We now list the ingredients for a class of fractal transforms on the space of HS images
introduced above. For simplicity (especially as far as notation is concerned), we assume
that our HS images are “one-dimensional,” i.e., X = [0, 1]. The extension to [0, 1]n, in
particular, n = 2, is straightforward.

1. A set of N one-to-one, affine contraction mappings wi : X → X, wi(x) = six + ai,
x ∈ X, with the condition that ∪Ni=1wi(X) = X. In other words, the contracted
copies, or “tiles” of X, wi(X), cover X.

2. Associated with each map wi are the following:

(a) A scalar αi ∈ R and

(b) A function βi : Rs → R+, βi ∈ L2(Rs).
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The action of the fractal transform T : Z → Z defined by the above is as follows: For
a u ∈ Z and any x ∈ X,

v(x) = (Tu)(x) =
N∑
i=1

′[αiu(w−1
i (x)) + βi ]. (5.3)

The prime on the summation signifies that we sum over only those i ∈ {1, 2, · · · , N} for
which the preimage w−1

i (x) exists, i.e., those i for which x ∈ wi(X).

The above formulation represents a generalization of the standard fractal transform for
greyscale images. The “value” of the HS image v(x) = (Tu)(x) at a point x ∈ X is a
spectral function, i.e., v(x) ∈ L2(Rs). Furthermore, the values of v(x) at y ∈ Rs are given
by

v(x)(y) = (Tu)(x)(y) =
N∑
i=1

′[αi u(w−1
i (x))(y) + βi(y) ] . (5.4)

The function βi(y) replaces the traditional constant βi employed in standard fractal trans-
forms for (single-valued) images [125, 78].

Another way of viewing this procedure is as follows: For each x ∈ X, N copies of the
function u(x) are first placed at the points wi(x), 1 ≤ i ≤ N . Each of these copies is then
altered in the spectral direction by multiplication by the appropriate αi factor followed
by the addition of the βi function. If two or more modified copies are situated at a point
x ∈ X, then they are added together to produce the function v(x) = (Tu)(x).

Theorem 5.2.1. Given the fractal transform T defined above, for any u, v ∈ Z,

dZ(Tu, Tv) ≤ KdZ(u, v), (5.5)

where

K =
N∑
i=1

|si|1/2|αi| ≥ 0. (5.6)
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Proof. This can be proved by simply finding a bound for dZ(Tu, Tv):

dZ(Tu, Tv) =

∫
X

∥∥∥∥∥
N∑
i=1

αi
(
u(w−1

i (x))− v(w−1
i (x))

)∥∥∥∥∥
2

L2(Rs)

dx

1/2

(5.7)

≤
N∑
i=1

(∫
Xi

∥∥αi (u(w−1
i (x))− v(w−1

i (x))
)∥∥2

L2(Rs)
dx

)1/2

(5.8)

=
N∑
i=1

(
|si|
∫
X

‖αi(u(z)− v(z))‖2
L2(Rs)dz

)1/2

(5.9)

=

(
N∑
i=1

|si|1/2|αi|

)(∫
X

‖u(z)− v(z)‖2
L2(Rs)dz

)1/2

(5.10)

= KdZ(u, v). (5.11)

The following is a consequence of Banach’s Fixed Point Theorem.

Corollary 5.2.1.1. If K < 1, i.e., T is contractive on Z, then there exists a unique ū ∈ Z,
the fixed point of T , such that ū = T ū. Furthermore, let u0 ∈ Z be any “seed” for the
iteration sequence un+1 = Tun. Then un → ū as n→∞, i.e., dZ(un, ū)→ 0.

5.3 Inverse problem for fractal transforms on (Z,dZ)

We now wish to consider the following inverse problem, which includes fractal image cod-
ing [125, 78] as a special case: Given a target element u ∈ Z, find a contractive fractal
transform T : Z → Z such that its fixed point ū approximates u to a desired accuracy,
i.e., dZ(ū, u) is sufficiently small. Given the complicated nature of the fractal transform,
such direct inverse problems are very difficult. An enormous simplification is yielded by
the following consequence of Banach’s Fixed Point Theorem, known in the fractal coding
literature as the Collage Theorem [6].

Theorem 5.3.1 (Collage Theorem). If K < 1, i.e., T : Z → Z is contractive with fixed
point ū ∈ Y , then for any u ∈ Z,

dZ(u, ū) ≤ 1

1−K
dZ(u, Tu) . (5.12)
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In collage coding [72], one looks for a contractive fractal transform T that maps the
target u as close as possible to itself, in an effort to make the so-called collage error,
dZ(u, Tu), as small as possible.

As mentioned in the Introduction, one of the original motivations for fractal image
coding was image compression [7, 125, 78].

5.4 Block fractal transforms on digital hyperspectral

images

The remainder of this chapter will be concerned with digital HS images supported on an
N1×N2 -pixel array, M channels per pixel. Formally, a digital HS image can be represented
by a vector-valued image function, u : X → RM

+ , where X = {1, 2, · · · , N1}×{1, 2, · · · , N2}
is the base or pixel space and RM

+ , the nonnegative orthant of RM , is the spectral space. At
a pixel location (i1, i2) ∈ X, the hyperspectral image function u(i1, i2) is a non-negative
M -vector with components uk(i1, i2), 1 ≤ k ≤ M . We shall refer to this vector as the
spectral function at pixel (i1, i2).

Most, if not all, fractal image coding methods employ block-based transforms, where
subblocks of an image are mapped onto small subblocks of the image, following the original
method of Jacquin [67]. Here it might be tempting to simply consider an HS as a “cube”
of data and simply move 3-D sub-cubes to other sub-cubes. This, however, is contrary
to our spirit of function-valued HS images. We wish to see what can be accomplished by
keeping the spectral functions intact, or perhaps “partially intact” as we discuss later in
this chapter.

It would also be tempting to perform fractal image coding on each channel of an HS
image separately. Once again, this is contrary to the spirit of FVMs and the desire to keep
spectral functions intact. Our goal is to exploit both the spatial self-similarity of channels
as well as the correlation between them.

Here we outline a very simple block-based fractal transform for HS images that keeps
spectral functions intact. As done in [2] for greyscale images, we let R(n) denote a set of
non-overlapping n × n-pixel range subblocks Ri, such that X = ∪iRi, i.e., R(n) forms a
partition of the pixel space X. Furthermore, let u(Ri) denote the portion of the HS image
function u that is supported on subblock Ri ⊂ X. In this discrete setting, u(Ri) is an
n× n×M “data cube” of nonnegative real numbers. We also introduce an associated set
D(m) of m × m-pixel domain subblocks Dk ⊂ X, where m = 2n. This set need not be
non-overlapping, but the blocks should cover the support X, i.e., ∪iDi = X.
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Given an M -channel digital HS image u, the fractal transform operator T will be
constructed as follows: For each image subblock Ri ∈ R(n), we choose from D(m) a domain
block u(Dj(i)) in order to produce an approximation of the form,

u(Ri) ≈ (Tu)(Ri) = αi ̂u(Dj(i)) + βi, 1 ≤ i ≤ NR. (5.13)

(The choice of the best domain block will be discussed a little later in this section.) Here,
βi = (βi1, βi2, · · · , βiM) is an M -vector, which plays the role of the βi(t) function in Eq.

(5.4). NR denotes the cardinality of the set R(n) and the wide hat denotes an appropriate
2n× 2n→ n× n pixel decimation operation which produces the geometric contraction in
discrete pixel space. Note that only one constant αi is employed for all M -channels sup-
ported on the range block Ri. (In other words, the M -channels are not coded separately.)

For notational convenience, the approximation problem in Eq. (5.13) may be expressed
in the form

ylm ≈ αxlm + βm, 1 ≤ l ≤ N, 1 ≤ m ≤M, (5.14)

where N = N1 × N2. (For simplicity, the N1 × N2 matrices in pixel space have been
converted into N -vectors.) The “stack” of M N -vectors ylm contain the elements of the
range block u(Ri) being approximated. The parameters α and βm, 1 ≤ m ≤ M , which
minimize the squared L2 distance,

∆2 =
N∑
l=1

M∑
m=1

(ylm − αxlm − βm)2 , (5.15)

are given by (details in [115])

α =

∑M
m=1

∑N
l=1 xlm (ylm − ȳm)∑N

l=1

∑M
m=1 x

2
lm −N

∑M
m=1 x̄

2
m

(5.16)

and
βm = ȳm − αx̄m, 1 ≤ m ≤M, (5.17)

where

x̄m =
1

N

N∑
l=1

xlm, ȳm =
1

N

N∑
l=1

ylm, (5.18)

denote the (spatial) means over each channel.
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The spectral map parameters, (αi, βi1, βi2, · · · , βiM), for 1 ≤ i ≤ NR, and the set of
range-domain assignments (i, j(i)), comprise the fractal code which defines a fractal trans-
form T . If T is contractive (see below), then its fixed point hyperspectral image ū may
be computed by the iteration procedure un+1 = Tun, where u0 is any “seed” image. For
convenience, one may employ the zero image u0 = 0. Note that in the special case that
M = 1, Eq. (5.13) reduces to the usual fractal block transform method for greyscale images.

Technically speaking, Theorem 5.2.1 of Section 5.2 does not apply to block-based frac-
tal transforms since one is not mapping the entire image u(X) onto a range block Ri. The
determination of L2 Lipschitz factors such as K in Eq. (5.6) is quite complicated. Fortu-
nately, we may resort to a simplification which is employed in most block coding methods.
In the case of digitized images, it is easy to show that the condition |αi| < 1 for all image
range blocks u(Ri) is sufficient to guarantee contractivity of the fractal transform T in the
L∞ norm, from which the existence of a unique fixed point ū of T follows.

We now return to the question of determining the “best” fractal transform T associated
with a given image u, i.e., the transform T with fixed point ū that approximates u as best as
possible. Because the range blocks Ri are non-overlapping, the sum of the errors associated
with the approximations in Eq. (5.13) defines the total collage error dZ(u, Tu) on the RHS
of Eq. (5.12). Since our goal is to make the approximation error dZ(u, ū) on the LHS of
Eq. (5.12) as small as possible, we choose, for each range block u(Ri), the domain block
u(Dj(i)) which best approximates u(Ri). If we let ∆ik denote the error in approximating a
range block u(Ri) with a domain block u(Dk), i.e.,

∆ik = min
α,β

∥∥∥u(Ri)− αû(Dk)− β
∥∥∥

2
, (5.19)

then the index j(i) of the optimal domain block u(Dj(i)) associated with u(Ri) is

j(i) = arg min
k

∆ik . (5.20)

Once again, this is the essence of collage-based fractal image coding.

5.5 Some Numerical Results

We now show some results of our block-based fractal transform as applied to the AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) image, “Yellowstone calibrated scene
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0,” a 512 line, 677 samples per line, 224-channel image, available from the Jet Propulsion
Laboratory site [91]. The computations reported below were performed on a 512 × 512-
pixel section of this image. The range blocks Ri used were NR = 4096 nonoverlapping
8 × 8-pixel blocks. The domain blocks Di were ND = 1048 nonoverlapping 16 × 16-pixel
blocks.

In Figure 5.1 (top) is presented a histogram plot of the distribution of errors ∆ij as-
sociated with all possible approximations in Eq. (5.19), i.e., for each range block Ri, we
consider all possible domain blocks Dk. This distribution is very similar to the distribution
of “Case 3” same-scale approximation errors in [115], where the domain blocks Dk were
the same size as the range blocks Ri. The strong peaking of these distributions near zero
error shows that many range blocks u(Ri) of the AVIRIS hyperspectral image are well
approximated by affinely modified domain blocks u(Dk).

For reference purposes, Figure 5.1 (bottom) shows a histogram plot of the error dis-
tribution that results when no affine mapping is employed in Eq. (5.13), i.e., αi = 1
and βi1 = · · · = βiM = 0. Here, each range block u(Ri) is simply approximated by the
decimated domain block u(Dk) with error given by

∆0
ik = ‖u(Ri)− û(Dk) ‖2 . (5.21)

The distribution of these errors is more diffuse and, in fact, very similar to the “Case 1”
same-scale approximation errors (also with no affine mappings) presented in [115]. Clearly,
the use of affine maps yields a significant improvement in approximation.

In Figure 5.2 is presented the distribution of αi coefficients associated with the optimal
range blocks u(Ri) employed in the fractal code. The spikes at ±0.95 are caused by
“clamping”. For a relatively small number of range blocks, the optimal value of α lies
outside the range (−1, 1). In such cases, the α parameter is “clamped” to ±0.95 and the
β vector is computed from this value. This clamping is performed in an effort to insure
the stability and numerical convergence of the iteration procedure un+1 = Tun used to
construct the fixed point attractor ū of the fractal transform T . The effect of this sub-
optimal fitting of a few blocks is negligible.

The absence of a strong peak at α = 0 in Figure 5.2 represents a significant difference
between the α-parameter distributions for HS images and those observed for most (single-
valued) greyscale images. The near-zero peaking in greyscale images is generally due to
the fact that most of their blocks are quite “flat,” i.e., have low variance. As such, they
can be well approximated by constant blocks which are produced by α-values close to zero,
if not equal to, zero. This does not seem to be the case for HS images, mostly because the
image subblocks are “cubes,” i.e., collections of vectors.
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Figure 5.1: Distributions of errors ∆ij over the interval [0, 0.02] obtained by approximating
non-overlapping 8 × 8-pixel range blocks u(Ri) with all possible decimated 16 × 16-pixel
domain blocks of AVIRIS hyperspectral image. Top: Using affine mapping, Eq. (5.13).
Bottom: No affine mapping, Eq. (5.21).
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Figure 5.2: αi parameters over the interval [−1, 1] employed in the “best fit” of AVIRIS
HS image range subblocks u(Ri).

Some of the results of this fractal coding procedure are presented in Figure 5.3. The
fixed point attractor function ū of the fractal transform T defined by the fractal code for
the AVIRIS image—the domain-range assignments j(i), the scaling parameters αi and the
shift vectors βi for 1 ≤ i ≤ 4096—was generated using the iteration procedure un+1 = Tun,
starting with the image u0 = 0. Reasonable convergence was achieved at u10. Channels
20, 120 and 220 of u10 are presented in Figure 5.3 on the right along with corresponding
channels of the original (uncoded) AVIRIS image on the left.

A closer inspection of these fractal-based approximations shows that the most noticeable
errors are located in regions of high image variation, i.e., detailed textures. Furthermore,
because of the block-based nature of the coding method, blurriness is also accompanied by
blockiness. Such degradations (which are also observed in the fractal coding of standard
greyscale images [125, 78]) are also seen in images that have been highly compressed using
the JPEG. (Recall that the JPEG compression method employs 8 × 8-pixel blocks.) For
purposes of comparison, a JPEG-encoded approximation to Channel 20 is presented in
Figure 5.4. The Quality Factor of 25 was chosen in order to yield a compression ratio that
was roughly equal to that estimated for the fractal coding method (about 40:1).

As might be expected, the accuracy of the simple fractal coding method employed
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Channel 20. Left: Original. Right: Fractal-based approximation.

Channel 120. Left: Original. Right: Fractal-based approximation.

Channel 220. Left: Original. Right: Fractal-based approximation.

Figure 5.3: Some channels of the attractor ū of the fractal transform T obtained by fractally
coding the AVIRIS hyperspectral image using 8× 8-pixel range blocks and 16× 16-domain
blocks.
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Channel 20. Left: Fractal. Right: JPEG (QF 25).

Figure 5.4: 8 × 8-pixel block approximations to Channel 20 of the AVIRIS hyperspectral
image.

here may be increased by using smaller range blocks, Ri, for example, 4 × 4-pixel blocks.
However, this increase in accuracy is accomplished at a price—the need to store more
fractal code parameters. Such a trade-off between accuracy and storage is the basis of
rate-distortion analysis—a fundamental issue of image and data compression—which is
beyond the scope of this thesis.

Admittedly, the use of a regular grid of n × n-pixel blocks is suboptimal. There are
more sophisticated methods of partitioning the pixel spaceX, e.g., quadtree decomposition,
rectangular and triangular blocks—for more details, the reader is referred to [125, 78]. We
simply mention here that the mathematical framework presented here can easily be adapted
to accommodate such schemes.

5.6 Final Remarks

In this chapter, we have presented a complete metric space (Z, dZ) of FVMs that is suitable
for the representation of hyperspectral images. As well, a class of fractal transforms over
this space has been introduced. Under appropriate conditions, a fractal transform T can be
contractive. This leads to an inverse problem in which an element u ∈ Y is approximated
by the fixed point ū of a fractal transform.

We then consider a simple class of block-based fractal transforms—a slight modification
of the transforms introduced earlier—which are particularly suited for digital hyperspectral
images, approximating spectral function vectors at one point x ∈ X by modified vectors
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from other points. Such an approach is consistent with the method of nonlocal image
processing.

A block-based transform employing 8 × 8-pixel range blocks Ri was then employed
to fractally code a standard hyperspectral image, the 224-channel AVIRIS “Yellowstone”
image. Of course, this transform is in no way optimal. The results could be improved
slightly by examining all eight possibilities of mapping square blocks to square blocks, i.e.,
rotations and inversions. One could also employ smaller range blocks, or a variety of range
block sizes, as is done in quadtree-based fractal coding of greyscale images [125, 78]. Of
course, the price for any improvement is increased computational time.

A further improvement may also be obtained if significant correlations exist between
groups of channels in a hyperspectral image. For example, Figure 5.5 shows a plot of the
correlations between all pairs of channels uk and ul, 1 ≤ k, l ≤ M , of the AVIRIS image
employed in this study, where M = 224. Recalling that each channel uk is an N1 × N2

array, the correlation Ckl between channels uk and ul is computed in the standard fashion,
i.e.,

Ckl =
σkl
σkσl

. (5.22)

Here

σk =

√√√√ N1∑
i1=1

N2∑
i2=1

(uk(i1, i2)− ūk)2 (5.23)

and

σkl =

N1∑
i1=1

N2∑
i2=1

(uk(i1, i2)− ūk)(ul(i1, i2)− ūl) , (5.24)

where ūk denotes the mean of the array uk. (The usual factor 1/(N1N2− 1) accompanying
each double summation can be omitted from the formulas for σk and σkl since it cancels
out of the formula for Ckl.)

The block nature of the plot in Figure 5.5 shows that the channels can be divided into
at least three subgroups, the channels within each subgroup having higher correlations
than with those of other subgroups. As such, it may be advantageous to consider separate
fractal transforms, each of which operates within a particular group of channels.

The plot in Figure 5.6 of the correlations between channels in the “hyperspectral fern”
image [54], which was also examined [115], shows a much lesser amount of internal grouping
of channels. As such, a single fractal transform over all channels may suffice.
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Figure 5.5: Correlations Ckl between channels of AVIRIS hyperspectral image, demon-
strating the existence of several subgroups of highly correlated channels.
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Figure 5.6: Correlations Ckl between channels of hyperspectral fern image, which demon-
strates a lesser degree of grouping of correlated channels.
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Chapter 6

Denoising of Hyperspectral Images

In this chapter, we consider the problem of denoising digital hyperspectral (HS) images
obtained from remote sensing of the Earth’s surface. In this case, the HS image associated
with a given surface region R is comprised of a set of reflectance values—ratios of reflected
energy vs. incident energy—of electromagnetic radiation at a number of frequencies (or,
equivalently, wavelengths) at each pixel location in R. The number of frequencies depends
upon the spectral resolution of the sensor of the hyperspectral camera and may range
from tens to hundreds. For example, the well-known AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) satellite images [123] typically contain 224 frequencies.

Suppose that a region R of the Earth’s surface is represented by an M ×N pixel array
and that associated with each pixel in the array there are P reflectance values. The first
(i), and most obvious, way of viewing this HS data set is as a M × N × P “data cube.”
The correlations between neighbouring entries of this cube give rise to two additional and
complementary ways of viewing this 3-D data set: (ii) as a collection of P images of region
R at different frequencies—often referred to as spectral channels or frequency/wavelength
bands—and (iii) as a collection of M ×N P -vectors, each of which corresponds to a given
pixel location (i, j) of R—frequently referred to as the spectral function or, simply, spectrum
at (i, j). These three views of the HS image will play a central theme in this chapter.

Let us very briefly recall the importance of spectral functions. Since different materials,
e.g., minerals, water, vegetation, exhibit different reflectance spectra, the latter serve as
“spectral fingerprints”. The spectrum at a pixel (i, j) makes it possible to determine
the composition/nature of material situated at that location. This makes the study of HS
images useful in a variety of applications, including agriculture, mineralogy, geography and
surveillance, the latter involving hyperspectral imaging tasks such as target detection and
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classification [107]. In light of the acquisition process, HS images are, as in the case of many
other images, prone to contamination by noise which can compromise the performance of
such tasks. As a result, it is desirable to develop reconstruction techniques that recover
good approximations of noise-free HS images.

Indeed, many different methods for denoising HS data have been proposed. For ex-
ample, in [81], diffusion-based filtering is adapted to HS images. The proposed method
consists of two diffusion processes, one confined to each band of the HS image, and the
another restricted to the spectral domain. The overall anisotropic diffusion is basically a
combination of these two processes, which are carried out in a controlled fashion. In [95],
a rather novel wavelet-based denoising approach is proposed. This method transforms the
HS data set into a spectral-derivative domain, in which the irregularity of noise is more
easily detected. The transformed HS image is denoised using wavelet shrinkage (WS) inde-
pendently in both the spatial and spectral domains. A reconstruction is then obtained by
first computing the corresponding inverse wavelet transforms of the denoised data followed
by an integration in the spectral direction. Another method that carries out denoising
employing WS is presented in [31]. Here, principal component analysis (PCA) is used to
decorrelate the most relevant HS data from the noise, most of which is assumed to be
contained in the lowest energy components of the transformed data. The noise is removed
from these components using WS in both spatial and spectral domains. The denoised HS
data set is then retrieved by means of the inverse PCA transform. Variational approaches
are proposed in [124, 28]. In [124], a total variation (TV) model that considers the changes
of noise intensity present across the bands and pixels of an HS image is presented. In [28],
a method that employs a TV model along with sparse representations of each band is also
introduced. More approaches can also be found in [103, 98].

In this study, we wish to examine the roles of both spatial (pixel) and spectral domains
in the denoising of HS images. For example, is it preferable to focus the denoising in one
domain at the expense of the other, or should both domains be considered? In order to shed
some light on this and related questions, we compare five different denoising approaches.
The main difference between these approaches lies in the way that the HS image is treated,
using the three views mentioned earlier, i.e., as a (i) 3-D data “cube”, (ii) a set of frequency
bands or (iii) a set of spectral functions.

In our first approach, the denoising process is performed in the spectral domain, cor-
responding to (iii) above. In particular, we apply L1-norm regularization [8, 113, 4] to the
spectral functions. In the second approach, the denoising process is performed in the spa-
tial domain, corresponding to (ii) above. As expected, any denoising technique applicable
to 2-D signals/images can be employed—here, we focus our attention on the TV approach
[105, 24]. Our third approach employs a formulation of vectorial TV to denoise the entire
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HS image at once [60, 15], corresponding to (i) above. As for the fourth approach, an HS
image is viewed as a collection of both spectra and frequency bands. Our method involves
a combination of the first two approaches so that denoising is carried out by regularization
in both the spatial and spectral domains. To solve this inverse problem we employ the
Alternating Direction Method of Multipliers (ADMM) [12]. Finally, in the fifth approach,
we present a simple denoising method based on the FVM approach. In this case, HS data
sets as considered as a whole, which corresponds to (i) above; however, it will be seen that
approaches (ii) and (iii) arise naturally depending on how the HS images are represented.
Experimental results are then presented so that the performance of these methods can be
compared.

6.1 Denoising Approaches

In practice, the strengths of the denoising process across spatial and spectral domains of
an HS image should be different. Even within the spatial domain, different features such
as edges and flat regions should not be denoised with the same intensity. In addition, it
is quite common that the power of noise across bands is not constant [10, 124]. Some
methods that address these possible scenarios can be found in the literature, e.g., [124, 95].
Nevertheless, in this study, for the sake of simplicity we assume that the power of the noise
is constant over the entire HS data set, i.e., it is independent of the location and band of a
given voxel. As such, we consider the simple degradation model f = u+ n, where f is the
noisy observation, u is the noiseless HS data we wish to recover, and n is additive white
Gaussian noise (AWGN). In this case, f , n and u are considered as M ×N × P HS data
cubes. Moreover, for the remainder of this chapter, this interpretation of HS images as
3-D discrete data sets is the one that we will consider, unless otherwise stated.

Despite that the model mentioned above may not always be well suited for noise in HS
images, it will be seen that some of the methods presented below can be easily adapted for
different scenarios in which the noise characteristics change over space and wavelength.

6.1.1 Denoising of hyperspectral images as a collection of spectra

Here, we view f as a collection of M×N spectral functions, each of which is represented by
a P -vector. As such, the denoising problem is split into M ×N independent subproblems,
each involving the denoising of a particular spectral function.
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Each spectral function may be denoised with any of the available denoising techniques
that can be applied to 1-D signals, e.g., wavelet shrinkage, linear filtering, 1-D total varia-
tion denoising, etc.. Here, however, we investigate the effectiveness of L1-norm regulariza-
tion, primarily because of the good performance of methods that exploit sparse represen-
tations of signals [8, 113, 4].

In this approach, we solve the following sparse approximation problem independently
at each pixel (i, j),

min
cij

{
1

2
‖Dcij − sij‖2

2 + λ‖cij‖1

}
, (6.1)

where sij denotes the noisy spectrum, D is an appropriate transformation matrix (e.g.,
frame, random matrix, etc.), and cij is the set of coefficients that is to be recovered at the
pixel location (i, j).

In the literature, many algorithms for solving (6.1) can be found [8, 113, 4], however,
we focus our attention on the special case in which the matrix D is an orthogonal trans-
formation (e.g., DCT, wavelet transform, Fourier matrix, etc.). In this particular case,
problem (6.1) can be solved by means of the soft thresholding (ST) operator [113, 12].

It is worth pointing out that this approach allows us to change the strength of the
denoising process across the spatial domain, i.e., different regularization parameters can
be used at different pixels or in different regions of the HS image.

6.1.2 Denoising of hyperspectral images as a collection of bands

In this approach, the denoising process takes place in the spatial domain. Each fre-
quency/wavelength band is treated independently and the denoising problem is split into
P independent subproblems. Here, we consider each k-th band uk as a scalar function
uk : Ω→ R, where Ω ⊂ R2 and 1 ≤ k ≤ P .

As expected, any denoising method for 2-D images can be employed here, e.g., linear
filtering, non-local means denoising, total variation, non-linear filtering, etc.. Nevertheless,
in this study, we employed a TV denoising approach for which a number of fast algorithms
exist, e.g., [105, 24, 61]. As well, some TV-based denoising methods for HS images have
yielded promising results [28, 124].

Our approach, a channel-by-channel TV method in the spatial domain where each band
uk is treated independently, translates to the following approximation problem,

min
uk

{
1

2ρ
‖uk − fk‖2

2 + ‖uk‖TV
}
, (6.2)
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where ‖ · ‖TV is the total variation norm and fk is the k-th noisy band or channel. To solve
this problem numerically, we employ the method introduced by Chambolle in [24], which
has received special attention because of its excellent performance. Here, the following
definition of the isotropic TV norm is employed,

‖uk‖TV =

∫
Ω

‖Duk‖2dx = sup
ξk∈Ξk

{∫
Ω

uk∇ · ξk dx
}
, (6.3)

where Ξk = {ξk : ξk ∈ C1
c (Ω,R2), ‖ξk(x)‖2 ≤ 1 ∀x ∈ Ω}, and ∇· is the divergence operator.

If uk ∈ C1
c (Ω,R), Duk = ∇uk in the distributional sense. This approach is convenient

since only the integrability, and not the differentiability, of uk is required.

By using (6.3), Chambolle shows that the optimal solution u?k of (6.2) is given by
u?k = fk − ΠρΓk(fk), where ΠρΓk(fk) is the non-linear projection of fk onto the convex set
ρΓk, and Γk is the closure of the set {∇ · ξk : ξk ∈ C1

c (Ω,R2), ‖ξk(x)‖2 ≤ 1 ∀x ∈ Ω}. Such
projection is obtained by solving the following minimization problem:

min
‖ξk(x)‖2≤1

{ρ∇ · ξk − fk} . (6.4)

Thus, we have that for each band the optimal reconstruction is given by u?k = fk− ρ∇ · ξ?k.
This approach may easily be modified to accommodate the case in which the power of

the noise is not constant throughout the bands. In this case, one can specify the degree of
regularization to be applied to each channel independently by means of the parameter ρ.

6.1.3 Denoising of hyperspectral images as a whole

In this case, we view a HS image as a vector-valued function u : Ω→ RP , where Ω ⊂ R2.
To denoise it, we follow a variational approach, employing a definition of the Vectorial TV
seminorm (VTV).

Given the effectiveness of TV for denoising images—along with its applicability to
other image processing tasks such as inpainting, zooming, etc.—many extensions for vector-
valued functions have been proposed [15, 60]. Indeed, a practical application already exists
for colour images, which are essentially low-dimensional HS images. This approach can
easily be extended to HS images, with no required changes to the definitions presented
in the literature. In particular, we use Bresson and Chan’s approach [15], which is a
generalization of Chambolle’s algorithm for vector-valued functions. Here, the authors
extend the Rudin-Osher-Fatemi model [105] as follows,

min
u

{
1

2ρ
‖u− f‖2

L2(Ω;RP ) + ‖u‖V TV
}
, (6.5)
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where f is the noisy observation. The VTV seminorm is defined as

‖u‖V TV =

∫
Ω

‖Du‖dx = sup
ξ∈Ξ

{∫
Ω

〈u,∇ · ξ〉dx
}

; (6.6)

where Ξ = {ξ : ξ ∈ C1
c (Ω,RP×2), ‖ξ(x)‖2 ≤ 1 ∀x ∈ Ω}; 〈·, ·〉 is the standard Euclidean

scalar product in RP ; and ‖Du‖2 =
∑P

k=1 ‖∇uk‖2
2 if u ∈ C1

c (Ω,RP ), that is, the L2 norm
of the TV norm of all the bands uk of the HS image u. Substitution of (6.6) into (6.5)
yields the following minimization problem:

min
‖ξ(x)‖2≤1

{∥∥∥∥∇ · ξ − f

ρ

∥∥∥∥2

L2(Ω;RP )

}
, (6.7)

whose solution ξ? is computed using a semi-implicit gradient descent scheme. The solution
u? of the original problem in (6.5) is obtained using u? = f − ρ∇ · ξ?. In our case, f is the
noisy HS image.

6.1.4 Denoising of hyperspectral images as a collection of both
bands and spectra

In this fourth approach, we perform regularization in both the spectral and spatial domains.
This can be done in various ways, but we focus our attention on the methods employed
previously, that is, TV and L1-norm regularization.

Borrowing from our previous methods, we consider the following hybrid scheme. Firstly,
denoising in the spectral domain is carried out by solving an optimization problem in which
the L1 norm of a set of coefficients is used as a regularizing term. Secondly, denoising
in the spatial domain is performed using a variational approach. In other words, we
consider a good reconstruction of the original HS data u from the noisy observation f to
be one with bounded variation across bands and with spectral functions that possess sparse
representations in a certain domain. In order to find such a reconstruction, we solve the
following optimization problem,

min
c

{
1

2
‖S(c)− f‖2

2 + ρ‖S(c)‖V TV + λ‖c‖1

}
, (6.8)

where S(·) is a synthesis operator that reconstructs the HS image from the set of coefficients
c. More specifically, at each pixel (i, j), the operator S(·) recovers the spectrum located at
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that pixel location by computing Dcij, where cij is the set of coefficients associated with
its spectrum.

For solving problem (6.8) we employ ADMM, which is a method well suited for convex
optimization and large scale problems [12]. We first need to express (6.8) in ADMM form:

min
c,u

{
1
2
‖u− f‖2

2 + ρ‖u‖V TV + λ‖c‖1

}
(6.9)

subject to S(c)− u = 0.

It is well known [12] that this new problem can be solved by forming the augmented
Lagrangian and minimizing with respect to the variables c and u in an alternate fashion.
Given this, we propose the following ADMM iterations for solving (6.8):

cn+1 := min
c

{
1

2

∥∥∥∥S(c)− f + δ(un − pn)

δ + 1

∥∥∥∥2

2

+
λ

δ + 1
‖c‖1

}
(6.10)

un+1 := min
u

{
δ

2ρ
‖u− (S(cn+1) + pn)‖2

2 + ‖u‖V TV
}

(6.11)

pn+1 := pn + S(cn+1)− un+1, (6.12)

where p is the dual variable associated to the augmented Lagrangian, (6.12) its update,
and δ is a penalty parameter. Problem (6.10) can be solved by any algorithm capable
of carrying out sparse reconstruction using the L1 norm as a regularizing term. Problem
(6.11) can be addressed using any method employing the vectorial TV norm. In particular,
we have used ST to solve (6.10) at each pixel and Bresson and Chan’s algorithm for problem
(6.11).

It is important to mention that different regularization terms can be used in problem
(6.10) since it is solved at each pixel independently. Moreover, problem (6.11) can be solved
using our second approach in Section 6.1.2, that is, denoising each band independently,
in which case the regularization can be changed from band to band. In other words, our
fourth approach may be adapted for denoising with different intensities across both spatial
as well as spectral domains.

6.1.5 Denoising of hyperspectral images using FVMs

If HS images are represented as FVMs there are several ways in which the inverse problem
of denoising can be addressed. In this section we review some of the different possibilities
that arise when the FVM approach is employed. Moreover, it will be seen that some
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methods can be understood as the continuous counterparts of the approaches examined
earlier.

Let us begin with the simple assumption that the HS images in which we are interested
belong to C2(X;L2(Y )), where X and Y are subsets of R and R2 respectively. Admittedly,
this is a quite strong requirement on the HS image in the spatial direction—piecewise
C2(X;L2(Y )) would be more “realistic”. Here, however, we simply wish to examine the
consequences of our simple Euler-Lagrange formalism. Also, let (X,Σ, µ) and (Y, T, ν) be
finite measure spaces. In order to recover a denoised reconstruction of the contaminated
HS image u we minimize the following functional I(u) : C2(X;L2(Y ))→ R:

min
u

{
1

2

∫
X

(ρ‖u(x)− f(x)‖2
2 + ‖u′(x)‖2

2)dx

}
; (6.13)

that is, we wish to recover HS images that have a smooth variation across the spectral
domain. By Theorem 3.3.1, the Euler-Lagrange equation is given by

ρ

∫
Y

(u(x)− f(x))(y)dy − d

dx

∫
Y

u′(x)(y)dy = 0. (6.14)

Assuming that the second derivative of u is integrable with respect to y, we have that∫
Y

(ρ(u(x)− f(x))− u′′(x))(y)dy = 0. (6.15)

Observe that any solution of the integrand such that its integral over Y is zero is a minimizer
of (6.13). Proceeding heuristically, we choose the trivial case, that is, we seek for a solution
u such that

(ρ(u(x)− f(x))− u′′(x))(y) = 0 (6.16)

for µ-almost all x ∈ X and ν-almost all y ∈ Y . This choice is motivated by the fact that
in the finite dimensional case, e.g., u : X → Rn, we have a system of n Euler-Lagrange
equations in which each equation is equal to zero. On the other hand, it is worthwhile to
mention that the second variation of problem (6.13) is given by D2I(u;ϕχY ) = ν(Y )(‖ϕ‖2

2+
‖ϕ′‖2

2), where ϕ ∈ C∞(X) and χY is the characteristic function of the set Y ⊂ R2. This
expression is clearly greater or equal than zero provided that ν(Y ) ≥ 0, thus, minimization
of (6.13) is feasible.

Given the latter, we are to solve the following differential equation

ρ(u− f)− u′′ = 0. (6.17)
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A simple approach for addressing this problem is to use the Fourier transform for finding
the non-homogeneous solution of Eq. (6.17). We have, then, that the Fourier transform of
u is given by

U(ω) = ρ
F (ω)

ω2 + ρ
, (6.18)

where F is the Fourier transform of f . Therefore,

u(x) = F−1

{
ρ
F (ω)

ω2 + ρ

}
. (6.19)

Notice that in this case we are filtering each spectral function u(x)(y) independently,
therefore, this approach can be seen as the continuous counterpart of denoising HS images
as a collection of spectra.

Furthermore, it is also possible to carry out filtering of each band in an independent
fashion by defining HS images as FVMs that assign to each x ∈ X a spectral function;
that is, FVMs of the form u : X ⊂ R2 → L2(Y ), where Y ⊂ R. Once again, we assume
that HS images are regular enough so that these belong to C2(X;L2(Y )). In this case, we
minimize the following functional:

min
u

{
1

2

∫
X

(ρ‖u(x)− f(x)‖2
2 + ‖∇xu(x)‖2

2)dx

}
. (6.20)

The corresponding Euler-Lagrange equation is given by

ρ

∫
Y

(u(x)− f(x))(y)dy − ∂

∂x1

∫
Y

∂u(x)

∂x1

(y)dy − ∂

∂x2

∫
Y

∂u(x)

∂x2

(y)dy = 0, (6.21)

which implies that ∫
Y

(
ρ(u(x)− f(x))− ∂2u(x)

∂x2
1

− ∂2u(x)

∂x2
2

)
(y)dy = 0, (6.22)

We consider a particular solution u such that(
ρ(u(x)− f(x))− ∂2u(x)

∂x2
1

− ∂2u(x)

∂x2
2

)
(y) = 0 (6.23)

for µ-almost all x ∈ X and ν-almost all y ∈ Y . We find such a u by means of the Fourier
transform. That is,

u(x) = F−1

{
ρ

F (ω)

‖ω‖2
2 + ρ

}
. (6.24)
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This approach can be considered as a continuous counterpart of the method of denoising
HS images as a collection of bands.

As with the previous methods, the FVM approach also permits to denoise with different
intensities across either the spatial or the spectral domain. This can be done by setting
the regularization parameter as a function that depends on y. For instance, to control the
strength of the denoising process for each spatial function u(x)(y), we can substitute in
Eq. (6.24) the regularization parameter ρ by a function ρ(y):

u(x) = F−1

{
ρ(y)

F (ω)

‖ω‖2
2 + ρ(y)

}
. (6.25)

6.2 Experiments

In order to compare the performance of the four methods described above, they were
applied to noisy versions of the Indian Pines and Salinas-A HS images. The latter is a
subset of the Salinas HS image—both of them can be downloaded from [38]. The sizes
of the 3-D Indian Pines and Salinas-A data sets are 145 × 145 × 220 and 83 × 86 × 224,
respectively. White additive Gaussian noise was added to these HS data (assumed to be
noiseless). In all experiments, the Peak Signal-to-Noise Ratio (PSNR) before denoising
was 30.103 dB.

In the approaches where a set of optimal coefficients was to be determined, the trans-
formation matrix D employed was the Karhunen-Loève Transform (KLT), which was com-
puted for each HS image. The KLT was chosen since it gives a very sparse representation of
the HS data (as compared to DCT, wavelet and other transforms), as well as being optimal
in the L2 sense. When the KLT is used, the mean of the HS data must be subtracted prior
to processing.

Regarding the implementation of the FVM approach, we employed the fast Fourier
transform to get some insight into the continuous behaviour of this approach. In particular,
we present the results obtained by the method defined in Eq. (6.24). We refer to this
method as “FOURIER” in the results presented below.

As for measures of performance, we employed the Mean Square Error (MSE), PSNR,
and the Structural Similarity Index Measure (SSIM) [122]. For the latter, we computed
the SSIM between the original and recovered HS images in both the spatial and spectral
domains. For the spatial case, the SSIM is computed between bands; whereas in the
spectral case, the SSIM is computed between spectra. An overall SSIM is obtained by
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simply averaging all the computed SSIMs for both the spatial and the spectral cases. Note
that the greater the similarity between two images, the closer their SSIM is to 1. In Table
6.1, a summary of these quantitative results is shown.

According to these results, the fourth approach (ADMM) outperforms all the other
methods with respect to any of the metrics of performance that were considered. Only in
the denoising results for Indian Pines, the spectral-oriented method described in section 2.1
performs as well as ADMM in the “spectral-SSIM sense”. The latter suggests that methods
that carry out regularization in both the spectral and spatial domains may perform better
than methods in which the denoising process is not carried out in this fashion. We believe
this to be the case because the fourth approach captures best the “nature” of HS data,
that is, data that is correlated in both the spatial and spectral domains.

On the other hand, the fifth approach does not show a good performance when com-
pared to the other methods. This may be due mainly for two reasons. Firstly, the filtering
carried out by this method attenuates, but does not set to zero, the high frequency coef-
ficients, which results in a lower PSNR. Secondly, the space C2(X;L2(Y )), as mentioned
earlier, is an over-simplified model for images, and therefore the channels which comprise
HS images. As is known, the space of functions of bounded variation is a good model for
images. However the mathematical foundations for FVMs with bounded variation in the
spatial direction is beyond the scope of this thesis. Despite all this, it is worth to point
out that these results would most likely be improved by minimizing functionals that are
defined over spaces of FVMs that are better models of HS data sets.

For visual comparison, some results are presented in Figures 6.1 and 6.2. Figure 6.1
demonstrates how the methods achieve the denoising in the spatial domain. The SSIM
maps, shown in the top row of Figure 6.1, illustrate the similarity between the reconstruc-
tions (denoised) and the original (noiseless) HS data for a particular band. The brightness
of these maps is an indication of the magnitude of the local SSIM, i.e., the brighter a given
location the greater the similarity between the retrieved and the original bands at that
point [122]. Figure 6.2 shows the denoising yielded by different methods in the spectral
domain. A visual comparison between reconstructions (blue plots) and noisy spectra (red
plots) is shown in the top row. In the bottom row, original spectra (green plots) along
with the corresponding reconstructions (blue plots) are compared.
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SALINAS-A
ST TV VTV ADMM FOURIER

MSE 4860.8284 4944.6999 4853.3592 4218.4193 47798.1633
PSNR (dB) 41.5905 41.5162 41.5972 42.2061 31.6635

SPATIAL SSIM 0.9812 0.9575 0.9658 0.9855 0.6537
SPECTRAL SSIM 0.9977 0.9977 0.9979 0.9980 0.9792

INDIAN PINES
MSE 13803.4370 15516.8153 18415.5653 13268.2362 60229.8927

PSNR (dB) 38.2492 37.7410 36.9972 38.3046 31.8509
SPATIAL SSIM 0.9533 0.9338 0.9132 0.9556 0.7436

SPECTRAL SSIM 0.9972 0.9970 0.9963 0.9972 0.9881

Table 6.1: Numerical results for the different approaches. Numbers in bold identify the
best results with respect to each of the four measures of performance considered. In all
cases, the PSNR prior to denoising was 30.103 dB.

Original ST TV VTV ADMM FOURIER

Noisy ST TV VTV ADMM FOURIER

Figure 6.1: Visual results for Band No. 23 of the Indian Pines HS image. Beside the
original (noiseless) image in the lower row are shown the various reconstruction results.
Beside the noisy image in the upper row are shown the corresponding SSIM maps between
the reconstructed (denoised) images and the original image.
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ST

TV

TV

VTV

VTV

ADMM

ADMM

FOURIER

FOURIER

Figure 6.2: Denoising results for a particular spectral function of the Indian Pines HS
image. In the top row, for visual comparison, the reconstructions (blue plots) and noisy
spectra (red plots) are shown. The original spectra (green plots) along with the corre-
sponding reconstructions (blue plots) can be observed in the bottom row.
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Part II

SSIM-based Optimization

82



Chapter 7

Preliminaries of SSIM-based
Optimization

Many image processing tasks, e.g., denoising, inpainting, deblurring, are usually carried
out by solving an appropriate optimization problem. In most cases, the objective function
associated with such problems is expressed as the sum of a fidelity term (or terms) f(x)
and a regularization term (or terms) h(x). The optimization problem then assumes the
form

min
x
{f(x) + λh(x)}, (7.1)

where the constant λ is a regularization parameter.

The role of the fidelity term f(x) is to keep the solution to (7.1) close to the observed
data. A typical choice is f(x) = 1

2
‖x − y‖2

2, where y is the (corrupted) observation, e.g.,
a noisy image. The regularization term h(x) has a twofold purpose: (i) It prevents over-
fitting to the observed data and (ii) it imposes constraints on the solution based upon prior
information or assumptions. For instance, if the optimal solution is assumed to be sparse,
a typical regularization term is h(x) = ‖x‖1 [4, 8, 113].

Using the squared Euclidean distance as a measure of closeness is convenient since
it is convex, differentiable, and usually mathematically tractable, not to mention easily
computed. Furthermore, widely used metrics of visual quality such as Mean Squared Error
(MSE) and Peak to Signal Noise Ratio (PSNR) are based on this definition of closeness.
Nevertheless, it has been shown that such distortion measures are not the best choice when
it comes to quantify visual quality [121, 122]. For this reason, many measures of visual
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quality have been proposed in an attempt to model the Human Visual System (HVS). The
Structural Similarity (SSIM) image quality measure, originally proposed by Wang et al.
[122], was based upon the assumption that the HVS evolved to perceive visual errors as
changes in structural information. On the basis of subjective quality assessments involving
large databases, SSIM has been generally accepted to be one of the best measures of visual
quality/closeness.

With these comments in mind, when visual quality is important, it would seem natural
to consider the SSIM as a replacement for the widely-used squared Euclidean distance in
the fidelity term f(x) of Eq. (7.1), given the limitations of the latter to measure visual
closeness. Indeed, from a practical point of view, it is easy to make such a replacement
since the mathematical expression for the SSIM between x and the observed data y is
rather straightforward. One may then be tempted to simply start computing. There is a
problem, however, in that the actual mathematical framework behind such an SSIM-based
optimization, which would be important for the establishment of existence and uniqueness
of solutions, is more complicated due to the fact that the SSIM is not a convex function.
Notwithstanding these obstacles, optimization problems that employ the SSIM as a fitting
term have already been addressed.

7.1 Current SSIM-based Optimization Approaches

Let us now review some of the SSIM-based imaging tasks that can be found in the literature.
For instance, in [18] the authors find the best approximation coefficients in the SSIM
sense when an orthogonal transformation is used (e.g., Discrete Cosine Transform (DCT),
Fourier, etc.). Finding the best SSIM approximation coefficients is equivalent to minimizing
the function

T (Φ(x), y) = 1− SSIM(Φ(x), y), (7.2)

where Φ(·) is an orthonormal matrix, and y the signal being approximated. The function
T (x, y), which will be used in this part ot the thesis, may be considered as a measure of
the visual dissimilarity between x and y.

Based on this result, Rehman et al. [102] address the SSIM version of the image restora-
tion problem proposed by Elad et al. in [47]. In this work, a novel method for denoising
images using sparse and redundant representations over learned dictionaries is introduced.
This is the K-SVD algorithm, which is a generalization of the K-means algorithm that uses
singular value decomposition to update the learned dictionary. The denoised image is the
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solution to the following problem:

αij = argmin
α

{
‖Dijα−Rijx‖2

2 + µij‖α‖0

}
(7.3)

x̂ = argmin
x

{∑
ij

‖Dijαij −Rijx‖2
2 + λ‖x− y‖2

2

}
, (7.4)

where α is the set of coefficients that it is being sought, Dij is an overcomplete dictionary,
Rij is a matrix that extracts the ij-th block of x, αij and µij are regularization parameters,
and y is the noisy observation. Elad et al. use orthogonal marching pursuit (OMP) to solve
(7.4), followed by an update of the dictionaries Dij using SVD. The vector x̂ is found by
employing the closed form solution of (7.4). Upon this approach, Rehman et al. redefine
the latter problem by replacing the quadratic terms with the SSIM:

αij = argmin
α
{1− SSIM(Dijα,Rijx) + µij‖α‖0} (7.5)

x̂ = argmax
x

{∑
ij

SSIM(Dijαij, Rijx) + λSSIM(MBx, y)

}
, (7.6)

where B is a blurring filter, and M is a downsampling operator. To solve (7.6) the authors
use a modified version of OMP based on the SSIM. For solving (7.6) they employ gradient
ascent. The dictionaries Dij are updated using K-SVD as well. Moreover, in [102], apart
from the proposed OMP algorithm and the approach for denoising images using K-SVD
and the SSIM, the authors also introduce a super-resolution algorithm—also based on the
SSIM—to recover from a given low resolution image its high resolution version.

Another interesting application for reconstruction and denoising was proposed in [29].
Here, the authors define the statistical SSIM index (statSSIM), an extension of the SSIM
for wide-sense stationary random processes. By optimizing the statSSIM, an optimal filter
in the SSIM sense is found. The optimization problem they address is

max
g
{statSSIM(x̂(g), x)} . (7.7)

Here, x is the source random process; g is the optimal filter that is to be found; and x̂ is
given by g∗y, where y is the observed process that is defined as y = h∗x+n (h is an invariant
linear time filter and n is additive white noise). The non-convex nature of the statSSIM is
overcome by reformulating its maximization as a quasiconvex optimization problem, which
is solved using the bisection method [13, 29]. Nevertheless, it is not mentioned that the
SSIM—under certain conditions—is a quasiconvex function (see [20]). As a result, it can
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be minimized using quasiconvex programming techniques, which permits the consideration
of a much broader spectrum of SSIM-based optimization problems.

More imaging techniques based on the SSIM can also be found in [118, 101]. In these
works, optimization of rate distortion, video coding and image classification are explored
using the SSIM as a measure of performance.

7.2 General Framework for SSIM-based Optimization

Note that maximizing SSIM(x, y) is equivalent to minimizing the function,

T (x, y) = 1− SSIM(x, y) , (7.8)

which may be viewed as a kind of distance function or dissimilarity between x and y, i.e.,
T (x, y) = 0 if and only if x = y (see Theorem 7.3.3). Furthermore, many SSIM-based
imaging tasks, including all of the applications mentioned above, may now be expressed in
terms of the following optimization problem,

min
x
{T (Φ(x), y) + λh(x)}, (7.9)

where Φ is usually a linear transformation. As such, we consider Eq. (7.9) to define a
general set of problems involving unconstrained SSIM-based optimization. On the other
hand, the constrained version of this problem is given by

min
x

T (Φ(x), y) (7.10)

subject to h(x) ≤ λ.

We call this optimization problem a constrained SSIM-based optimization problem. As it
will seen later, SSIM-based imaging tasks can be cast as either (7.9) or (7.10), therefore, we
consider these problems as the general framework of what we call SSIM-based optimization.

In this part of the thesis, in the effort of providing a unified framework as opposed
to developing specific methods that address particular applications, which has been the
tendency of research literature to date, we introduce a set of algorithms to solve the
general problems (7.9) and (7.10) in chapters 9 and 8 respectively. In particular, we
focus our attention on the case in which h(x) is convex. Moreover, in chapter 8, we show
that (7.10) can still be solved if T (Φ(x), y) is subjected to a set of convex constraints [13].
Applications such as Total Variation and L1 norm regularization are discussed, as well as
comparisons between the L2 and SSIM approaches.
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7.3 SSIM

7.3.1 Definition

The SSIM provides a measure of visual closeness between an image and a distorted or
corrupted version of it. Since it is assumed that the distortionless image is always available,
the SSIM is considered a full-reference measure of image quality assessment (IQA) [122].
Its definition is based on two assumptions: (i) images are highly structured—that is,
pixels tend to be correlated, specially if they are spatially close—and (ii), that the HVS
is adapted to extract structural information. For these reasons, SSIM measures similarity
by quantifying changes in perceived structural information. This measurement is done by
comparing luminance, contrast and structure of the two images being compared. Given
two images x and y, changes in luminance are measured by quantifying relative changes in
the means of the images. This is done by means of the following formula:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (7.11)

where C1 is a positive constant added for stability purposes. It is worth to point out that
l(x, y) is sensitive to the relative change of luminance, not to its absolute change. This
is consistent with Weber’s law, a model for light adaptation of the HVS [122]. As for
contrast, this comparison is carried out by measuring relative variance:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

. (7.12)

When there is a change in contrast, c(x, y) is more sensitive if the base contrast is low
than when this is high; i.e., the HVS perceives objects better when they contrast with the
background. As expected, C2 > 0 is added to avoid division by zero. Regarding structure,
this is compared simply by calculating the correlation coefficient between the two images
x and y:

s(x, y) =
σxy + C3

σxσy + C3

. (7.13)

Once again, the positive constant C3 is included for stability. Finally, these three compo-
nents are combined using the function f(x1, x2, x3) = xα1x

β
2x

γ
3 :

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ, (7.14)
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where α, β and γ are positive parameters that control the relative influence of the three
comparisons. In [122], the authors simplify (7.14) by setting α = β = γ = 1 and C3 = C2/2.
This leads to the well known formula of the SSIM:

SSIM(x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxy + C2

σ2
x + σ2

y + C2

)
. (7.15)

This definition of the SSIM will be employed for the remainder of this second part of the
thesis.

Although Eq. (7.15) is neither convex nor a metric, it has some appealing properties
such as symmetry, boundedness and unique maximum.

Theorem 7.3.1 (Symmetry). [17] The SSIM(x, y) is symmetric; that is, SSIM(x, y) =
SSIM(y, x).

Proof. Each component of the SSIM, namely, l(x, y), c(x, y) and s(x, y), is symmetric,
which immediately implies that SSIM(x, y) = SSIM(y, x).

Theorem 7.3.2 (Boundedness). The SSIM(x, y) is bounded: −1 ≤ SSIM(x, y) ≤ 1.

Proof. Consider the function f : R2 → R given by

f(w, z) =
2wz + C

w2 + z2 + C
, (7.16)

where C is some positive constant. Since for any real numbers w and z we have that
2wz ≤ w2 + z2, it follows that

2wz + C

w2 + z2 + C
≤ 1. (7.17)

Moreover,

− 2|wz|+ C

w2 + z2 + C
≤ 2wz + C

w2 + z2 + C
. (7.18)

Thus, −1 ≤ f(w, z).

Given the latter, we immediately obtain that −1 ≤ l(x, y) ≤ 1. As for the second term
of Eq. (7.15), the Cauchy-Schwarz inequality implies that |σxy| ≤ σxσy. Thus, we have
that

− 2σxσy + C

σ2
x + σ2

y + C
≤ 2σxy + C

σ2
x + σ2

y + C
≤ 2σxσy + C

σ2
x + σ2

y + C
. (7.19)
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By using the bounds of the function f(w, z), with w = σx and z = σy, we obtain that

− 1 ≤ 2σxy + C

σ2
x + σ2

y + C
≤ 1. (7.20)

Therefore, we conclude that −1 ≤ SSIM(x, y) ≤ 1.

Theorem 7.3.3 (Uniqueness). SSIM(x, y) = 1 if and only if x = y.

Proof. Let v(x, y) be given by

v(x, y) =
2σxy + C2

σ2
x + σ2

y + C2

. (7.21)

If SSIM(x, y) = 1, we have that either l(x, y) = v(x, y) = 1 or l(x, y) = v(x, y) = −1.
However, since both x and y are images, their means µx and µy are both greater or equal
than zero, which implies that l(x, y) = v(x, y) = 1. Now, let us consider again the inequality

2wz + C1 ≤ w2 + z2 + C1 (7.22)

and let w = µx and z = µy. Since l(x, y) = 1, we have that µx = µy. On the other hand,
v(x, y) = 1 implies that 2σxy = σ2

x + σ2
y. Observe that if x, y ∈ Rn, we obtain that

2σxy = 2xTy − 2nµxµy, (7.23)

and
σ2
x + σ2

y = ‖x‖2
2 − nµ2

x + ‖y‖2
2 − nµ2

y. (7.24)

Further, let x, y : Ω → R be functions that belong to a Hilbert space and let (Ω,Σ, ν) be
a finite measure space. Then,

2σxy = 2〈x, y〉 − 2ν(Ω)µxµy, (7.25)

and
σ2
x + σ2

y = ‖x‖2
2 − ν(Ω)µ2

x + ‖y‖2
2 − ν(Ω)µ2

y. (7.26)

Given that µx = µy, we have that either

2xTy = ‖x‖2
2 + ‖y‖2

2, or 2〈x, y〉 = ‖x‖2
2 + ‖y‖2

2. (7.27)

In any case, we obtain that ‖x − y‖2
2 = 0, which implies that x = y. As for the converse,

if x = y, this immediately implies that SSIM(x, y) = 1 and the assertion follows.
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Observe that in the previous theorems we have not specified the nature of both x and y;
these might be either vectors in Rn or functions. This fact highlights another feature of
the SSIM: its generality.

We close this section by pointing out that, in practice, the similarity between two images
is computed using the MSSIM, which is basically an average of local SSIM measurements.
The reason for this is that the statistics of images vary greatly across their spatial domain.
By using a sliding window that moves pixel by pixel the overall SSIM is computed. If M
local windows are used in the process, the MSSIM for the images X and Y is simply the
average of the individual SSIM measurements:

MSSIM(X, Y ) =
M∑
i=1

SSIM(xi, yi), (7.28)

where xi and yi are the the sub-images associated to each i-th local window. It is worth-
while to mention that for avoiding “blocking” artifacts, in [122], the authors employ a
circular Gaussian function. The effect of this is that the sums, in the discrete case, of the
local statistics become weighted sums; analogously, we have “weighted” integrals in the
continuous instance.

7.3.2 The SSIM as a normalized metric

Let x and y be vectors in Rn. In the special case that both x and y have equal means, i.e.,
µx = µy, the luminance component l(x, y) of Eq. (7.15) is equal to one, which implies that
the SSIM is now given by

SSIM(x, y) =
2σxy + C2

σ2
x + σ2

y + C2

. (7.29)

This less cumbersome version of the SSIM can be simplified even further if both x and y
have zero mean, i.e., µx = µy = 0. If this is so, we have that

σxy =
1

n− 1

n∑
i=1

xiyi = xTy and σ2
x =

1

n− 1

n∑
i=1

x2
i = ‖x‖2

2. (7.30)

Substitution of these equations into Eq. (7.29) yields the following simplified formula for
the SSIM,

SSIM(x, y) =
2xTy + C

‖x‖2
2 + ‖y‖2

2 + C
, (7.31)
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where C = (n − 1)C2. The corresponding distance/dissimilarity function T (x, y) in Eq.
(7.8) is given by

T (x, y) = 1− SSIM(x, y) =
‖x− y‖2

2

‖x‖2
2 + ‖y‖2

2 + C
. (7.32)

Note that 0 ≤ T (x, y) ≤ 2 if C = 0. Furthermore, T (x, y) = 0 if and only if x = y, which
can be easily seen from Theorem 7.3.3.

As mentioned before, since SSIM(x, y) is a measure of similarity, T (x, y) can be con-
sidered as a measure of dissimilarity between x and y. In fact, Eq. (7.32) is an example of
a (squared) normalized metric, which has been discussed in [17, 20]. Furthermore, T (x, y)
gives us a sense of how far x is from a given observation y in the SSIM sense, whereas
SSIM(x, y) tells us about how correlated or similar are x and y. Also, 1− SSIM(x, y) can
be thought as a kind of normalized error. Since in the majority of optimization problems
the fidelity term conveys the information about the distance or the error with respect
to a given observation, we will state the SSIM based optimization problems using the
dissimilarity measure defined in equation (7.32).

On the other hand, for the remainder of this thesis, we shall be working with zero mean
vectors, so that Eq. (7.31) and Eq. (7.32) will be employed in all computations of the
SSIM. Although this condition might seem restrictive, it is possible to recover non-zero
mean vectors from their zero mean counterparts, provided that the non-zero mean vectors
are related by a linear degradation model.

Theorem 7.3.4. Let D be an m × n matrix and let n be some zero-mean random degra-
dation process. Also, let x? ∈ Rn and y ∈ Rm be non-zero mean vectors, where y is given
and x? is to be found. If y = Dx? + n and the inverse of DTD exists, then x? = x∗ + x̂,
E(Dx∗) = 0, and

x̂ = ȳ(DTD)−1DT1 (7.33)

Here, ȳ = E(y) and 1 is a vector in Rn whose components are all equal to one.

Proof. We have that

E(y) = E(Dx? + n) (7.34)

E(y) = E(Dx?). (7.35)

Moreover, y can be expressed as y∗ + ȳ1, where E(y∗) = 0. This implies that there exist
vectors x∗ and x̂ such that E(Dx∗) = 0 and ȳ1 = Dx̂. Therefore, we obtain that x? = x∗+x̂,
where

x̂ = ȳ(DTD)−1DT1 (7.36)
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7.3.3 Quasiconvexity and Quasiconcavity

An interesting property of the dissimilarity measure T is that it is a quasiconvex function.
To see under what conditions this property of T holds, we use the fact that a function
f : Rn → R is quasiconvex if its domain and all its sub-level sets

Sα = {x ∈ dom f | f(x) ≤ α}, (7.37)

for α ∈ R, are convex [13].

Theorem 7.3.5. Let y ∈ Rn be fixed. Then, T (x, y) is quasiconvex if xTy ≥ −C
2

, where
C is the stability constant of the dissimilarity measure T (see Eq. (7.32)).

Proof. Since the domain of (7.32) is Rn, which is convex, we just have to see if its sub-level
sets are convex as well. This can be done using (7.37):

T (x, y) =
‖x− y‖2

2

‖x‖2
2 + ‖y‖2

2 + C
≤ α (7.38)

‖x‖2 − 2xTy + ‖y‖2 ≤ α(‖x‖2
2 + ‖y‖2

2 + C) (7.39)

(1− α)‖x‖2
2 − 2xTy + (1− α)‖y‖2

2 − αC ≤ 0 (7.40)

The set of x vectors that make this inequality hold defines a convex set as long as 0 ≤ α ≤ 1.
This implies that T (x, y) is quasiconvex if it is less or equal than one. Then,

‖x− y‖2
2

‖x‖2
2 + ‖y‖2

2 + C
≤ 1 (7.41)

‖x‖2
2 + ‖y‖2

2 − 2xTy

‖x‖2
2 + ‖y‖2

2 + C
≤ 1 (7.42)

‖x‖2
2 + ‖y‖2

2 + C − C − 2xTy

‖x‖2
2 + ‖y‖2

2 + C
≤ 1. (7.43)

Thus, if 2xTy + C ≥ 0, T (x, y) is quasiconvex. In other words, quasiconvexity of T (x, y)
holds if xTy ≥ −C

2
.

Corollary 7.3.5.1. SSIM(x, y) is quasiconcave if xTy ≥ −C
2

.

Proof. We have that T (x, y) = 1 − SSIM(x, y), which is equivalent to T (x, y) − 1 =
−SSIM(x, y). The function T (x, y)−1 is also quasiconvex since subtracting a constant does
not affect quasiconvexity. Given that function a f is quasiconcave if −f is quasiconvex,
we immediately obtain that SSIM(x, y) is quasiconcave if xTy ≥ −C

2
.
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Moreover, T (x, y) is quasiconcave if xTy ≤ −C
2

. This can be proved by using the
definition of quasiconcavity of a real-valued function: a function f : Rn → R is quasiconcave
if its domain and all its super-level sets

Sα = {x ∈ dom f | f(x) ≥ α}, (7.44)

for α ∈ R, are convex [13].

Theorem 7.3.6. Let y ∈ Rn be fixed. Then, T (x, y) is quasiconcave if xTy ≤ −C
2

, where
C is the stability constant of the dissimilarity measure T (see Eq. (7.32)).

Proof. By the previous theorem, we can see easily that the super-level sets of T (x, y) are
given by

(1− α)‖x‖2
2 − 2xTy + (1− α)‖y‖2

2 − αC ≥ 0 (7.45)

If α ≥ 1, the set of x vectors for which this inequality holds is a convex set. Then, T (x, y)
is a quasiconcave function over the region in which this inequality is true. Thus, as it was
proved in the previous theorem, we obtain that this region is defined by the inequality
xTy ≤ −C

2
. This completes the proof.

Corollary 7.3.6.1. SSIM(x, y) is quasiconvex if xTy ≤ −C
2

.

Proof. The proof is completely anologous to the proof of the previous corollary. In this
case, we use the fact that a function f is quasiconvex if −f is quasiconcave and the assertion
follows.
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Figure 7.1: This is the plot of T (x, 3) for the one-dimensional case with C = 0. Notice
that when x ≥ 0 the dissimilarity measure is quasiconvex. Indeed, the sub-level sets are
convex as long as T (x, 3) ≤ α, for any α ∈ [0, 1]. In a similar manner, the super-level sets
are convex if 1 ≤ T (x, 3) ≤ 2, which implies that the function is quasiconcave over that
region of the real line.
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Figure 7.2: The plot of T (x, y) in the two-dimensional case. Once again, C = 0. Here,
x = [x1, x2]T and y = [3, 2]T . As it was shown, the line 3x1 + 2x2 = 0 delimits the regions
of quasiconvexity and quasiconcavity of T (x, y).
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Chapter 8

Constrained SSIM-based
optimization

A standard quasiconvex problem is defined as follows:

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m (8.1)

Ax = b,

where f(x) is quasiconvex, Ax = b is an equality constraint, and the hi(x) are a set of convex
inequality constraints. Optimization problems of this type can be addressed by solving a
sequence of feasibility problems. The key ingredients of this technique are a family of
convex inequalities, which represent the sub-level sets of f(x); a convex feasibility problem
that is to be solved at each step; and the bisection method for finding the optimal value of
(8.1) up to a certain accuracy [13]. Given this, thanks to the quasiconvex properties of the
dissimilarity measure T (x, y), we can cast constrained SSIM-based optimization problems
as quasiconvex optimization problems.

Taking the latter into account, we shall define a constrained SSIM-based optimization
problem as follows,

min
x

T (Φ(x), y)

subject to hi(x) ≤ 0, i = 1, . . . ,m (8.2)

Ax = b,
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where Φ(·) is some linear transformation. Also, for the sake of simplicity, we set to zero the
stability constant C of the dissimilarity measure T (Φ(x), y). This implies that T (Φ(x), y)
is now given by

T (Φ(x), y) =
‖Φ(x)− y‖2

2

‖Φ(x)‖2
2 + ‖y‖2

2

. (8.3)

One might argue that this compromise the stability of the SSIM-based fidelity term, nev-
ertheless, we assume that we always work with a non-zero observation y. This ensures
stability and differentiability of T (Φ(x), y) for all x ∈ Rn.

In this chapter, we introduce a simple and robust algorithm based on the bisection
method to solve the constrained SSIM-based optimization problem (8.2), as well as a
review of some of the SSIM-based imaging tasks that can be carried out by solving (8.2).
Experimental results are also presented.

8.1 Optimizing T(Φ(x),y)

Assuming that the optimal zero-mean solution x∗ is in the region where T (Φ(x), y) is
quasiconvex, i.e.,(Φ(x∗))Ty ≥ 0, the problem in (8.2) can be solved by solving a sequence
of feasibility problems. For this, we require a family of convex inequalities that represent
the sub-level sets of T (Φ(x), y) and a convex feasibility problem that is to be solved at
each step. The bisection method may be employed to determine the optimal value of (8.2)
up to a certain accuracy [13].

The family of convex inequalities is defined by means of functions φα : Rn → R such that

f(x) ≤ α ⇐⇒ φα(x) ≤ 0 . (8.4)

Also, for every x, φβ(x) ≤ φα(x), whenever α ≤ β. The following functions satisfy such
conditions:

φα(x) = (1− α)‖Φ(x)− y‖2
2 − 2α(Φ(x))Ty. (8.5)

The feasibility problems then assume the form

Find x

subject to φα(x) ≤ 0 (8.6)

hi(x) ≤ 0, i = 1, . . . ,m

Ax = b.

If (8.6) is feasible, then p∗ ≤ α, else, p∗ > α, where p∗ is the optimal value of (8.2).
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Using the fact that 0 ≤ T (Φ(x), y) ≤ 2, and defining 1 and 0 as vectors in Rn whose
entries are all equal to one and zero respectively, we propose the following algorithm for
solving (8.2):

Algorithm I: Bisection method for constrained SSIM-based optimization

initialize x = 0, l = 0, u = 2, ε > 0;
data preprocessing ȳ = 1

n
1Ty, y = y − ȳ1;

while u− l > ε do
α := (l + u)/2;
Solve (8.6);
if (8.6) is feasible, u := α;
elseif α = 1, (8.2) can not be solved, break;
else l := α;

end
return x, y = y + ȳ1.

Notice that this method will find a solution x∗ such that l ≤ f(x) ≤ l + ε in exactly
dlog2((u− l)/ε)e iterations [13], provided that such solution lies in the quasiconvex region
of T (Φ(x), y). In other words, if this is so, the algorithm converges to an optimal value p∗.
This condition may seem restrictive, however, one is normally interested in solutions that
are positively correlated to the given observation y. The MATLAB code for this algorithm
is presented in Appendix C, Section C.1.

It is worthwhile to mention that it is not always possible to recover the mean of the
non-zero-mean optimal solution x?. This is because the luminance component of the SSIM
has not been taken into account. Nevertheless, in many circumstances (e.g., denoising of
a signal corrupted by zero-mean additive white Gaussian noise), the mean of y and Φ(x?)
coincide. In this case, thanks to theorem 7.3.4, we have that x? = x∗ + x̂, where x∗ is the
zero-mean optimal solution and x̂ is given by:

x̂ = ȳ(DTD)−1DT1, (8.7)

provided that the inverse of DTD exists.
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8.2 Applications

Clearly, different sets of constraints lead to different SSIM-based optimization problems.
For instance, by making the substitution Φ(x) = Dx, where D is an m × n matrix and
x ∈ Rn, and redefining (8.6) as

find x

subject to (1− α)‖Dx− y‖2
2 − α2xTDTy ≤ 0 (8.8)

‖Ax‖pp − C ≤ 0,

we have this optimization problem:

min
x

T (Dx, y) (8.9)

subject to ‖Ax‖pp ≤ C,

where A is some linear operator (e.g., a difference matrix). For different choices of A and
p, different interesting SSIM-based imaging tasks emerge. We review some of these in this
section.

8.2.1 SSIM with Tikhonov constraint

A common method used for ill-posed problems is Tikhonov regularization or ridge regres-
sion. This is basically a constrained version of least squares and it is found in different
fields such as statistics and engineering. It is stated as follows

min
x

‖Dx− y‖2
2 (8.10)

subject to ‖Ax‖2
2 ≤ C,

where A is called the Tikhonov matrix. A common choice for the matrix A is the identity
matrix, however, other choices may be a scaled finite approximation of a differential oper-
ator or a scaled orthogonal projection [66, 56, 87]. By making the substitution p = 2 in
(8.9), we have the SSIM version of Tikhonov regularization:

min
x

T (Dx, y) (8.11)

subject to ‖Ax‖2
2 ≤ C.
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8.2.2 L1-constrained SSIM-based optimization

Making the substitution Φ(x) = Ax, where A is a m × n matrix and x ∈ Rn (although
x may be complex), and by using the convex constraint h(x) = ‖x‖1 − λ, we obtain the
following SSIM based optimization problem:

min
x

T (Ax, y) (8.12)

subject to ‖x‖1 ≤ λ.

This particular problem is appealing because it combines the concepts of similarity and
sparseness. As with the classical regularized version of the least squares method known as
LASSO (Least Absolute Shrinkage and Selection Operator) [46, 4], the solution of (8.12)
is also sparse. Observe that by decreasing the L1 norm of the solution vector (which is
accomplished by decreasing λ), a greater number of coefficients are “thresholded” to zero,
thereby increasing the “sparsity” of the solution vector. As expected, problem (8.12) can
be employed in applications such as compressed sensing, in which sparsity is the assumed
underlying model for signals. To the best of our knowledge, this is the first reported
optimization problem where the SSIM is optimized having the L1 norm as a constraint.

8.2.3 SSIM and Total Variation

By employing the constraint h(x) = ‖Dx‖1 − λ, where D is a difference matrix and
Φ(x) = x, we can define informally a SSIM-total-variation-denoising method for one-
dimensional discrete signals. Given a noisy signal y, its denoised version is the solution of
the problem,

min
x

T (x, y) (8.13)

subject to ‖Dx‖1 ≤ λ.

Here, we consider ‖Dx‖1 as a measure of the total variation (TV) of the vector x. Notice
that instead of minimizing the TV norm, we employ it as a constraint. This approach is
not new, it can also be found in [32, 52]. As with the classical TV optimization problems,
solutions of (8.13) have bounded variation as well.

Moreover, images can also be denoised by minimizing the dissimilarity measure T (x, y)
subject to the following convex constraint:

h(x) = ‖D1(x)‖1 + ‖D2(x)‖1 − λ, (8.14)
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where the linear operators D1 and D2 are difference matrices used to compute the spatial
derivatives of the digital image x. Notice that the anisotropic TV norm is being used in
this case. As far as we are concerned, the work reported in [106] and these applications
are the only approaches in the literature that combine TV and the SSIM.

8.2.4 Deblurring

The blurring of an image is usually modelled as the convolution of an undistorted image
x and a blur kernel τ . Nevertheless, in practice, the blurred observation y may have been
degraded by either additive noise or errors in the acquisition process. For this reason, the
following model is used to represent the degradation process [57, 60]:

y = τ ∗ x+ η, (8.15)

where η is usually white Gaussian noise.

The problem of recovering x can be addressed by the proposed approach by using the
convex constraint h(x) = ‖Dx(x)‖1 + ‖Dy(x)‖1 − λ, and by defining Φ(x) = Kx, where K
is a linear operator that performs the blurring process. That is, the unblurred image x can
be estimated by solving the following SSIM-based optimization problem:

min
x

T (Kx, y) (8.16)

subject to ‖Dx(x)‖1 + ‖Dy(x)‖1 ≤ λ.

8.2.5 Zooming

In this case, given an image y, assumed to be of “lower resolution”, we desire to find an
approximation x to a higher resolution version of y. This inverse problem can be solved
in a manner very similar to the one described described in the previous section; that is,
by defining Φ(x) = Sx, where S is a subsampling matrix, and using the same convex
constraint that is employed for the deblurring application. We claim that a good estimate
of the high resolution image x is the solution of the SSIM-based optimization problem
given by

min
x

T (Sx, y) (8.17)

subject to ‖Dx(x)‖1 + ‖Dy(x)‖1 ≤ λ.
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Observe that, in general, the matrix STS is not invertible, therefore, equation (8.7) can
not be used to recover the optimal non-zero mean solution x?. Nevertheless, the mean of
the low-resolution observation y can be used as a good estimate of the mean of the high
resolution image that is being sought.

The problem of zooming using the SSIM approach has also been addressed in [102],
in which sparse representations of non-overlapping blocks of the image are used in the
reconstruction process; however, the variational approach is not considered. Methods that
employ the TV norm for estimating the high resolution image x can be found in [24, 60],
nevertheless, the fitting term is the commonly used square Euclidean distance. Problem
(8.17) can be considered as a method that combines the SSIM and the variational approach
for addressing this inverse problem.

8.3 Experiments

In a series of numerical experiments, we have compared the performance of optimization
methods employing (i) the usual squared Euclidean distance and (ii) Structural Similarity
as fitting terms. For simplicity, we refer to these methods as (i) L2-based and (ii) SSIM-
based methods, respectively. This is done by comparing the structural similarities between
an undistorted given image and both L2 and SSIM reconstructions. The structural similar-
ities are calculated using the definition given by (8.3). By averaging the SSIM values of all
non-overlapping 8×8 pixel blocks, the total SSIM for each recovered image is obtained. The
reconstructions are obtained by solving either a SSIM-based or an L2-based optimization
problem over each pixel block. Finally, for each application, the corresponding constraint
h(x) being employed is the same for all non-overlapping blocks.

In all the applications that are presented below, the estimated mean from each block is
removed prior to processing. Once the zero-mean optimal block x∗ is obtained, the optimal
non-zero-mean block x? is recovered by means of Eq. (8.7), except in the case of zooming.
In this case, the means of the high resolution blocks are approximated by the means of
their corresponding low resolution counterparts. This is necessary since quasiconvexity
of T (Φ(x), y) is guaranteed for zero-mean vectors. This approach is also applied in the
classical L2-based optimization method even though it is not required, for the sake of fair
comparison of the two approaches.

For the L1-constrained optimization problems of Section 8.2.2, both (8.12) and its L2

version are solved over each non-overlapping block. Here, Φ(x) = Dx, where D is a n× n
discrete cosine transform (DCT) matrix and x ∈ Rn is the set of DCT coefficients that is
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to be recovered. As expected, the fitting term of the L2 counterpart of (8.12) is substituted
by ‖Dx−y‖2

2. The result is that for a given λ, a sparse approximation problem is solved at
each block. In this experiment, a 96× 96 sub-image of the test image Mandrill was used.

For the TV-based problems of Section 8.2.3, (8.13) is solved over each non-overlapping
block. Since we are working with images, the constraint in (8.13) is replaced by the
following convex term:

‖D1(x)‖1 + ‖D2(x)‖1 ≤ λ . (8.18)

The fidelity term ‖x−y‖2
2 is employed in the L2-based version of (8.13). In this experiment,

a 96 × 96 noisy sub-image of the test image Mandrill, corrupted with additive zero-mean
Gaussian noise (AWGN) (σ = 1/32) was employed.

For the deblurring problem of Section 8.2.4, a blurred and noisy 104 × 104 pixel sub-
image of the test image Lena was processed. The reconstructions were obtained by solving
problem (8.16) and its L2 version over each non-overlapping block. The blurring kernel
employed was a Gaussian with unit standard deviation. The blurred image was also con-
taminated with AGWN with σ = 1

64
.

Finally, with regard to the zooming problem of Section 8.2.5, the estimated high res-
olution images are obtained by solving both problem (8.17) and its L2 version over each
pixel block. The fitting term employed in the L2-based method was ‖Sx− y‖2

2.

Some results of sparse reconstruction, deblurring and zooming are presented in Figures
8.1, 8.2 and 8.3, respectively. In each figure are shown the original (uncorrupted) image, its
corrupted version and SSIM- and L2-based reconstructions. For each set of experiments, the
SSIM maps between reconstructions and the original image are presented. The brightness
of regions in the SSIM maps indicates the degree of similarity between corresponding image
blocks—the brighter a given point the greater the SSIM, hence visual similarity, at that
location [122].

In Figure 8.1, where results of the sparse reconstruction problem are shown, the SSIM-
and L2-based reconstructions are very similar. However, we notice that the SSIM re-
construction enhances the contrast at some locations (e.g., the wrinkles below the eye of
Mandrill).

With regard to Figure 8.2, where the deblurring results are shown, we see that edges
in the reconstructions tend to be sharper than those in the blurred and noisy image.
However, the reconstruction of textures is not very good in both methods. We expect that
improved results may be obtained by tuning the constraints of each pixel block for optimal
performance.
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With regard to Figure 8.3, where zooming results are shown, we observe that both
SSIM- and L2-based reconstructions are quite good. Some vertical and horizontal artifacts
can be seen in both reconstructions, located mainly near edges. This may be due to the
fact that anisotropic total variation was employed as a constraint.

A summary of quantitative results is presented in Table 8.1. The effectiveness of both
SSIM- and L2-based approaches was quantified using the mean squared error (MSE) and
the SSIM defined in Eq. (7.31). The best results with respect to each measure of perfor-
mance are denoted in bold. We observe that the effectiveness of both methods is almost the
same, although the proposed approach performs better with respect to the SSIM measure
SSIM(x, y) = 1−T (x, y), as expected. We also observe that a low MSE does not necessar-
ily imply a high visual similarity (measured in terms of SSIM) between the reconstructions
and the original images, as is well known in the literature [122].

PROPOSED L2

SSIM MSE SSIM MSE
SPARSE RECONS. 0.6779 7.6729 0.6656 8.0950
TV DENOISING 0.8903 1.5601 0.8894 1.5549
DEBLURRING 0.6911 2.0389 0.6878 2.0197

ZOOMING 0.8167 2.0753 0.8142 2.1067

Table 8.1: Numerical results for the different approaches and applications. Numbers in
bold identify the best results with respect to each measure of performance.
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Figure 8.1: Visual results for the sparse reconstructions. In this case, for each pixel block,
the maximum allowed value for the L1 norm of the coefficients that are to be recovered is
1. In the top row, SSIM maps are shown. Original and recovered images can be seen in
the bottom row.
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Figure 8.2: Visual results for the deblurring application. In the top row, the blurred and
noisy image along with the SSIM maps are presented. As above, the recovered and original
images are seen in the bottom row.
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Figure 8.3: Visual results of the zooming experiments. The low resolution image and the
SSIM maps can be seen in the top row. Original image along with the SSIM and L2

reconstructions are shown in the bottom row.
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Chapter 9

Unconstrained SSIM-based
optimization

We define an unconstrained SSIM-based optimization problem as follows

min
x
{T (Φ(x), y) + λh(x)}, (9.1)

where Φ(·) is a linear transformation, λ is a regularization parameter, and h(x) is a convex
regularizing term. As usual, when the regularization parameter λ is different from zero,
the regularizing term h(x) plays a role in the solution of (9.1), which is controlled by the
magnitude of λ. Notice that, since the dissimilarity measure is not convex—although it
is locally quasiconvex—, problem (9.1) is not convex. This implies that the existence of
a global optimal point cannot be guaranteed; nevertheless, algorithms that converge to
either a local or global minimum can be developed. In particular, in section 9.2 of this
chapter, we present a set of algorithms for solving problem (9.1) when λ is greater than
zero.

Even though possibly the most interesting applications arise when the regularization
parameter is positive, it is worthwhile to take a look at the case when λ is zero. That is,
the solution of a problem of the form

min
x
{T (Φ(x), y)}. (9.2)

This instance of (9.1) was already considered in [18] when Φ is an orthogonal transfor-
mation, however, we present an alternative derivation of the same result in the following
section. Also, we extend this result by considering the case in which Φ is an m× n matrix
(m ≥ n).
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9.1 The special case λ = 0

Given that x is a discrete signal or a vector in Rn, we will focus our attention on the case
where Φ(x) = Dx; that is, D is an m × n matrix. For the sake of simplicity, we assume
that y is a non-zero vector in Rm, thus we set the stability constant C to zero. We have,
then, that problem (9.2) is equivalent to

min
x

{
‖Dx− y‖2

2

‖Dx‖2
2 + ‖y‖2

2

}
. (9.3)

Interestingly enough, the optimal x∗ that minimizes (9.3) is the optimal L2 solution of

min
x
‖Dx− y‖2

2 (9.4)

times a constant. This is proved in the following theorem.

Theorem 9.1.1. If DTD is invertible, the optimal zero-mean solution x∗ of problem (9.3)
is given by

x∗ = γ(DTD)−1DTy, (9.5)

where the constant γ is equal to

γ =
‖y‖2

‖yTD(DTD)−1DTy‖2

. (9.6)

Proof. To find the x∗ that minimizes (9.3) we simply compute the gradient and find the x
vectors that make it equal to zero. This can be done easily using logarithmic differentiation
and the chain rule. This leads to

∇(T (Dx, y)) =

(
2DT (Dx− y)

‖Dx− y‖2
− 2DTDx

‖Dx‖2 + ‖y‖2

)
T (Dx, y). (9.7)

Equation (9.7) is zero if Dx = y. This case is trivial and it does not provide any interesting
information about x∗. However, as for term in parentheses, this does give us more insight
into the optimal x∗. Equating it to zero leads to

2DT (Dx∗ − y)

‖Dx∗ − y‖2
2

=
2DTDx∗

‖Dx∗‖2
2 + ‖y‖2

2

(9.8)

DT (Dx∗ − y) = (DTDx∗)T (Dx∗, y) (9.9)

x∗ =
(DTD)−1DTy

SSIM(Dx∗, y)
. (9.10)
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Notice that x∗ is simply the x that minimizes ‖Dx− y‖2
2 divided by the SSIM of Dx∗ and

y. In other words, the optimal zero-mean solution x∗ is the L2 optimal solution multiplied
by a constant. Indeed, we can find this constant by defining x∗ = γ(DTD)−1DTy and
using (7.31) with C = 0:

SSIM(Dx∗, y) =
1

γ
=

2x∗TDTy

‖Dx∗‖2
2 + ‖y‖2

2

(9.11)

1

γ
=

2γ((DTD)−1DTy)TDTy

γ2‖D(DTD)−1DTy‖2
2 + ‖y‖2

2

(9.12)

‖D(DTD)−1DTy‖2
2γ

2 = ‖y‖2
2 (9.13)

γ = ± ‖y‖2

‖D(DTD)−1DTy‖2

(9.14)

We have, then, two possible values for the constant γ. Observe that the negative γ cor-
responds to an optimal x∗ that is negatively correlated with the observation y, therefore,
this is an optimal zero-mean solution that maximizes the dissimilarity measure T (Dx, y).
Thus, we conclude that to minimize problem (9.3) the constant γ must be given by

γ =
‖y‖2

‖D(DTD)−1DTy‖2

. (9.15)

Corollary 9.1.1.1. Let D be an orthogonal matrix and let y ∈ Rn. The optimal zero-mean
solution x∗ of problem (9.3) subject to ‖x‖0 = k, k ≤ n, is given by x∗ = γẑ, where ẑ is the
vector of basis coefficients that best approximates y in the L2 sense— that is, the non-zero
entries of ẑ are the k basis coefficients of greatest magnitude of y—and γ is equal to

γ =
‖z‖2

‖ẑ‖2

. (9.16)

Here, z = DTy.

Proof. Let us rewrite this SSIM-based optimization problem as follows:

min
w,E∈F

{
‖Ew − y‖2

2

‖Ew‖2
2 + ‖y‖2

2

}
, (9.17)

where w ∈ Rk is the vector of k coefficients that is to be found, and F is the set of
submatrices that are obtained from the matrix D by choosing k out of its n columns.
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By the previous theorem, we know that for each element of F there exists an optimal
zero-mean SSIM solution given by

w∗E =
(ETE)−1ETy

SSIM(Ew∗E, y)
. (9.18)

for all E ∈ F—that is, we have minimized (9.17) respect to w. Since D is orthogonal, we
have that ETE is an k × k identity matrix. Then,

w∗E =
ETy

SSIM(Ew∗E, y)
. (9.19)

Out of the n!
(n−k)!k!

possible choices for the submatrix E, we have to find the optimal E in
the SSIM sense. Let us consider the following inequality

|‖Ew‖2 − ‖y‖2|2

‖Ew‖2
2 + ‖y‖2

2

≤ ‖Ew − y‖2
2

‖Ew‖2
2 + ‖y‖2

2

. (9.20)

Observe that for 0 ≤ k ≤ n, we have that 0 ≤ ‖Ew‖2 ≤ ‖y‖2. If we consider the left-hand
side of the above inequality as a function of ‖Ew‖2, this term is a monotone decreasing
function in the interval 0 ≤ ‖Ew‖2 ≤ ‖y‖2. Therefore, the lowest bound for the right-
hand side of this inequality is determined by the greatest value that ‖Ew‖2 can attain.
This implies that the best candidate for minimizing problem (9.17) is the submatrix E
whose columns correspond to the greatest basis coefficients of y, that is, the optimal L2

coefficients. Let Ê be such a matrix. Then, we have that the minimizer of problem (9.17)
is given by

w∗
Ê

=
ÊTy

SSIM(Êw∗
Ê
, y)

. (9.21)

which is equivalent to
w∗
Ê

= γÊTy, (9.22)

where γ is given by

γ =
‖y‖2

‖ÊÊTy‖2

. (9.23)

Since D is orthogonal, we have that ‖y‖2 = ‖Dz‖2 = ‖z‖2. Moreover, ‖ÊÊTy‖2 =
‖ÊTy‖2 = ‖ẑ‖2. Hence,

γ =
‖z‖2

‖ẑ‖2

. (9.24)
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Given the latter, the vector of basis coefficients in Rn that best approximates y in the
SSIM sense is the vector x∗ whose non-zero components are determined by w∗

Ê
. Thus, we

obtain that
x∗ = γD̂y, (9.25)

where D̂ is a matrix whose only non-zero columns are defined by the k columns of D
associated to the k basis coefficients of y of the greatest magnitude. Observe that D̂y = ẑ,
thus

x∗ = γẑ. (9.26)

This completes the proof.

The previous theorem can be considered a generalization of the result that can be found
in [18] when the stability constant is zero. It shows that if the matrix DTD is invertible, in
general, the optimal SSIM solution of problem (9.3) is a scaled version of the optimal L2

solution. In fact, when D is an orthogonal transformation, this scaling has the property of
preserving the norm of the observation y:

‖x∗‖2 =

∥∥∥∥‖z‖2

‖ẑ‖2

ẑ

∥∥∥∥
2

= ‖z‖2 = ‖y‖2. (9.27)

In other words, regardless of how many k basis coefficients are considered for approximating
y, the norm of the optimal SSIM basis coefficients is always equal to the norm of y. The
visual effect of this is that, given an image block y, the best SSIM approximation has better
contrast as compared to its L2 counterpart [18].

9.2 The general case λ > 0

The development of algorithms for solving (9.1) depend on whether the regularizing term
h(x) is differentiable or not. For this reason, we consider these two cases separately below.

9.2.1 Differentiable h(x)

When the regularizing term is differentiable, root-finding algorithms can be employed to
find a local zero-mean solution x∗ to (7.9). For example, if Tikhonov regularization is used,
we have the following SSIM-based optimization problem,

min
x
{T (Dx, y) + λ‖Ax‖2

2}, (9.28)
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where D is an m × n matrix, λ > 0 is a regularization parameter, and A is the so called
Tikhonov matrix. By computing the gradient of (9.28), we find that the solution x∗ must
satisfy

[(SSIM(Dx∗, y)DTD + λ(‖Dx∗‖2
2 + ‖y‖2

2 + C)ATA]x∗ = DTy. (9.29)

If we define the following function f : X ⊂ Rn → R,

f(x) = [(SSIM(Dx, y)DTD + λ(‖Dx‖2
2 + ‖y‖2

2 + C)ATA]x−DTy, (9.30)

then x∗ is a (zero-mean) vector in Rn such that f(x∗) = 0.

To find x∗ we may use the generalized Newton method [93]. The convergence of this
method is guaranteed, under certain conditions, by the Newton-Kantorovich theorem.

Theorem 9.2.1 (Newton-Kantorovich Theorem). Let X and Y be Banach spaces and
g : X ⊂ A→ Y . Assume g is Fréchet differentiable on an open convex set D ⊂ X and

‖g′(x)− g′(z)‖ ≤ K‖x− z‖2, for all x, z ∈ D, (9.31)

Also, for some x0 ∈ D, suppose that g′(x0)−1 is defined on all Y and that

h := L‖g′(x0)−1‖‖g′(x0)−1g(x0)‖ ≤ 1

2
, (9.32)

where ‖g′(x0)−1‖ ≤ β and ‖g′(x0)−1g(x0)‖ ≤ η. Set

K1 =
1−
√

1− 2h

Kβ
and K2 =

1 +
√

1− 2h

Kβ
, (9.33)

and assume that S := {x : ‖x− x0‖ ≤ K1} ⊂ D. Then, the Newton iterates

xk+1 = xk − g′(xk)−1g(xk), k ∈ N, (9.34)

are well defined, lie in S and converge to a solution x∗ of g(x) = 0, which is unique in
D∩{x : ‖x−x0‖ ≤ K2}. Moreover, if h < 1

2
, the order of convergence is at least quadratic.

Proof. See [93].

In our particular case, the Fréchet derivative of f is its Jacobian, which we denote as
Jf and is given by

Jf (x) = DTDx(∇s(x))T + λATAx(∇r(x))T + s(x)DTD + λr(x)ATA, (9.35)
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where s(x) = SSIM(Dx, y) and r(x) = ‖Dx‖2
2 + ‖y‖2

2 + C. By the previous theorem, we
have that convergence of the generalized Newton’s method in any open convex subset Ω of
X, where X ⊂ Rn, is guaranteed if the initial guess x0 satisfies the following condition,

L‖Jf (x0)−1‖‖Jf (x0)−1f(x0)‖ ≤ 1

2
. (9.36)

Here, Jf (·)−1 denotes the inverse of Jf (·), and L > 0 is a constant less or equal than the
Lipschitz constant of Jf (·). In fact, it can be proved that for any open convex subset
Ω ⊂ X, Jf (·) is Lipschitz continuous.

Theorem 9.2.2. Let f : X ⊂ Rn → R be defined as in Eq. (9.30). Then, its Jacobian is
Lipschitz continuous on any open convex set Ω ⊂ X; that is, there exists a constant L > 0
such that for any x, z ∈ Ω,

‖Jf (x)− Jf (z)‖F ≤ L‖x− z‖2 . (9.37)

Here, ‖ · ‖F denotes the Frobenius norm1 and

L = C1‖DTD‖F + λC2‖ATA‖F , C1, C2 > 0. (9.38)

Proof. See appendix B, Theorem B.0.17.

From this discussion, and the notation 1 = [1, 1, · · · , 1]T ∈ Rn, we propose the following
algorithm for solving the problem in Eq. (9.28).

Algorithm II: Generalized Newton’s Method for unconstrained SSIM-based optimization with
Tikhonov regularization

initialize Choose x = x0 according to (9.36);
data preprocessing ȳ = 1

n
1Ty, y = y − ȳ1;

repeat
x = x− Jf (x)−1f(x);

until stopping criterion is met (e.g., ‖x(new) − x(old)‖∞ < ε);
return x, y = y + ȳ1.

Notice that this algorithm can be used for any unconstrained SSIM-based optimization
problem by defining f and Jf accordingly. The MATLAB code can be found in Appendix
C, Section C.2.

1The Frobenius norm of an m× n matrix A is defined as ‖A‖F =
√∑m

i=1

∑n
j=1 |aij |2.
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9.2.2 Non-differentiable h(x)

In this case, a different approach must be taken. Let us consider the particularly important
example h(x) = ‖x‖1, i.e., we minimize the following functional

min
x
{T (Dx, y) + λ‖x‖1}, (9.39)

where y ∈ Rm is a given observation, λ is a regularization parameter, and D is an m × n
matrix. In this case, the optimal x∗ satisfies

DTDx∗ ∈ DTy

SSIM(Dx∗, y)
− λ

(
‖Dx∗‖2

2 + ‖y‖2
2 + C

2SSIM(Dx∗, y)

)
∂‖x∗‖1, (9.40)

where ∂‖x∗‖1 is the subdifferential of ‖x‖1 at x∗ [4].

Definition 9.2.1 (Subdifferential). Let g be a convex function g : Rn → R and x0 a
fixed vector in Rn. The subdifferential of g at x0 is the set

∂g(x0) := {z ∈ Rn : g(x0) + zT (x− x0) ≤ g(x) ∀x ∈ Rn}. (9.41)

Example 9.2.1. Let us consider the subdifferential of the absolute value on R. According
to Definition 9.2.1, the subdifferential of |x| is given by

∂|x| =


−1, x < 0,

[−1, 1], x = 0,

1, x > 0 .

(9.42)

This simple example is important in the discussion to follow.

To find x∗ we employ a coordinate descent approach [111], that is, we minimize (9.39)
along each component of x while the other components are fixed. From (9.40), for the i-th
entry of x ∈ Rn, the optimal coordinate xi is given by

xi ∈
DT
i y

SSIM(Dx, y)‖DT
i ‖2

2

−DT
i Dx−i − λ

(
‖Dx‖2

2 + ‖y‖2
2 + C

2SSIM(Dx, y)‖DT
i ‖2

2

)
∂|xi|, (9.43)

where DT
i is the i-th row of the transpose of D, x−i is the vector x whose i-th component

is set to zero, and ∂|xi| is the subdifferential of |xi|.
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The value of xi can be found by examining the different cases that arise in (9.43). To
begin with, we define

τi(xi) = λ

(
‖Dx‖2

2 + ‖y‖2
2 + C

2SSIM(Dx, y)‖DT
i ‖2

2

)
(9.44)

and

ai(xi) =
DT
i y

SSIM(Dx, y)‖DT
i ‖2

2

−DT
i Dx−i . (9.45)

Then, xi = 0 if
ai(0) ∈ τi(0)[−1, 1]. (9.46)

As expected, xi > 0 if ai(0) > τi(0), so that

xi = ai(xi)− τi(xi). (9.47)

Similarly, we obtain xi < 0 if ai(0) < −τi(0), in which case xi is given by

xi = ai(xi) + τi(xi). (9.48)

Notice that when xi 6= 0, we have an expression of the form xi = g(xi). This non-linear
equation may be solved by employing different approaches. For instance, let g±(xi) be
defined as

g±(xi) := ai(xi)∓ τi(xi). (9.49)

Such equation may be solved using either a fixed-point iteration scheme, provided that
g±(xi) is a contraction. Further, by defining f±(x) as

f±(x) := xi − g±(xi), (9.50)

we can use a root finding algorithm for finding the value of xi such that f±(xi) = 0.
Regardless of which method is chosen for finding xi, equations (9.46), (9.47) and (9.48)
can be combined into the following single operator:

Φτi(0)(ai(0)) :=


Solve xi = ai(xi)− τi(xi), if ai(0) > τi(0),

Solve xi = ai(xi) + τi(xi), if ai(0) < −τi(0),

xi = 0, if |ai(0)| ≤ τi(0) .

(9.51)

Eq. (9.51) is an important result since it may be considered as an extension of the widely
used soft-thresholding (ST) operator [41, 113] for the purpose of solving the unconstrained
SSIM-based optimization problem (9.39).

It is worthwhile to mention that we follow a fixed-point approach for solving the non-
linear equations of the soft-thresholding operator defined above. Indeed, it can be proved
that g±(xi) has a fixed-point if the regularization parameter λ is less than a certain value.
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Theorem 9.2.3. Let g±(xi) := ai(xi)∓ τi(xi), y ∈ Rm be a given observation, x0 ∈ Rn an
initial condition, and D an m×n matrix whose columns have L2 norm equal to one. Then,
g±(xi) has a fixed point provided that the regularization parameter λ fulfills the following
condition:

λ < min
x∈Ω

{
(SSIM(Dx, y))2 − δ‖y‖2

2‖D‖2‖x‖2

}
, (9.52)

where δ is a small positive constant, and Ω ⊂ Rn is the set of vectors that lie on the path
followed by an algorithm that solves problem (9.39) starting at x0.

Proof. See appendix B, Theorem B.0.18.

The latter theorem shows that the higher the SSIM between Dx and y for all x ∈ Ω,
and the smaller the L2 norms of x, y and D, the greater the regularization parameter
λ can be. For instance, if ‖y‖2 = 1 and D is orthogonal (‖D‖2 = 1), by definition, an
algorithm that solves problem (9.39) will try to maximize the SSIM, therefore , as such an
algorithm progresses, the term SSIM(Dx, y) will be close to one. On the other hand, since
the similarity between Dx and y tends to be maximized, the norm of all x ∈ Ω will also be
approximately one. Moreover, experimental results show that typical values of δ are of the
order of 10−3 and less. Thus, by the previous theorem, a good estimate for the maximum
value of λ under these conditions is 1

2
.

From the above discussion, we introduce the following algorithm to determine the
optimal x∗ for problem (9.39).

Algorithm III: Coordinate Descent algorithm for unconstrained SSIM-based optimization
with L1 norm regularization

initialize x = x0;
data preprocessing ȳ = 1

n
1Ty, y = y − ȳ1;

repeat
for i = 1 to n do
xi = Φτi(0)(ai(0));

end
until stopping criteria is met (e.g., ‖x(new) − x(old)‖∞ < ε);
return x, y = y + ȳ1.
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As expected, the result proved in Theorem 7.3.4 can be used to recover the non-zero mean
optimal solution x?, provided that the means of y and Dx? are equal and that (DTD)−1

exists. The MATLAB code for this algorithm is presented in Appendix C, Section C.3.

We close this section by mentioning that if the fixed-point approach is employed it is
recommended to work with images whose grayscale values have been normalized. Also,
Theorem 9.2.3 suggests that if Dx∗ is close to y with respect to the SSIM, Dx0 should
be close to y in the SSIM sense as well. Experimental results show that the optimal L2

solution of the unconstrained problem ‖Dx− y‖2
2 is a good initial guess that satisfies this

condition—i.e., x0 = (DTD)−1DTy, as long as the inverse of DTD is well defined.

9.3 Experiments

Algorithms I and II can be used for many different SSIM-based applications. In the results
presented below, however, we have focussed our attention on the performance of Algorithm
II for solving problem (9.39) when D is an orthogonal transformation. To measure its effi-
cacy, we compare the solutions obtained by the proposed method with the set of solutions
of the L2 version of problem (9.39), namely,

min
x

{
1

2
‖Dx− y‖2

2 + λ‖x‖1

}
, (9.53)

which can be solved by means of the soft thresholding (ST) operator [4, 113] if D is an
orthogonal matrix.

The experiments reported below were concerned with the recovery of discrete cosine
transform (DCT) coefficients. All images were divided into non-overlapping 8 × 8 pixel
blocks, the means of which were subtracted prior to processing. After a block has been
processed, its mean is added. Although this procedure is not required for L2 approaches,
it has been performed for the sake of a fair comparison between the two methods.

In Figure 9.1, the first two plots from left to right corresponds to the average SSIM of
all the reconstructions versus the L0 norm2 of the recovered coefficients for the test images
Lena and Mandrill. The average SSIM was computed by combining and averaging all the
computed SSIMs from all 4096 non-overlapping blocks for both Lena and Mandrill (both
test images have 512 × 512 pixels). It can be clearly seen that the proposed algorithm

2The L0 norm of a vector x ∈ Rn, which is denoted as ‖x‖0, is defined as the number of non-zero
components thereof.
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outperforms the L2-based method (ST). This is because minimization of the dissimilarity
measure T (x, y) in Eq. (7.2) is equivalent to maximization of SSIM(Dx, y), which produces
an enhancement in contrast [18]. This effect is demonstrated in the nature of the recovered
coefficients. Firstly, the degree of shrinking and thresholding of DCT coefficients by our
proposed method is not at strong as ST. Secondly, in some cases, there are DCT coefficients
which are thresholded (i.e., set to zero) by the L2 approach, but kept non-zero by the SSIM-
based method for the sake of contrast. These effects are demonstrated in the third and
fourth plots in Figure 9.1. In these two plots, the same block from the image Lena was
processed, but subjected to two different amounts of regularization.

In addition, some visual results are shown in Figure 9.2. In this case, a sub-image from
the test image Lena was used. The original and recovered images are presented in the
bottom row. Regularization was carried out so that the sparsity induced by each method
is the same; that is, the L1 norm of the set of recovered coefficients is 13 in all cases. In the
top row of the figure are shown the SSIM maps that illustrate the similarity between the
reconstructions and the original image. The brightness of these maps indicates the degree
of similarity between corresponding image blocks—the brighter a given point the greater
the magnitude of the SSIM between the retrieved and the original image blocks at that
location [122]. It can be seen that the performance of the proposed method and the L2

approach is very similar. However, the proposed algorithm does perform better than ST in
terms of SSIM . This can be seen at some locations in the SSIM maps. For instance, note
that the upper left corner of the SSIM map of the proposed method is slightly brighter
than the corresponding regions of the other two SSIM maps. This is also evident at other
locations. Moreover, the enhancement of contrast is clearly seen when the pupils of the
left eyes are compared. With regard to numerical results, the average T (Dx, y) for the L2

approach is 0.8609, whereas for the proposed method is 0.8864, which is moderately better.
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Figure 9.1: The first two plots from left to right correspond to the average SSIM versus
the L0 norm of the recovered coefficients for the test images Lena and Mandrill. In the
last two plots, a visual comparison between the original and recovered coefficients from a
particular block of the Lena image can be appreciated. Regularization is carried out so
that the two methods being compared induce the same sparseness in their recoveries. In
the two shown examples, the same block was processed but subjected to different amounts
of regularization. In particular, the L0 norm of the set of DCT coefficients that were
recovered by both the proposed method and ST is 3 for the first example (third plot), and
15 for the second (fourth plot).
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Figure 9.2: Visual results for a patch from the test image Lena. In all cases, the L0 norm
of the recovered DCT coefficients for each non-overlapping block is 13. In the upper row,
the SSIM maps between the reconstructions and the original patch are shown. Recon-
structed and original patches can be seen in the lower row. The average T (Dx, y) of all
non overlapping blocks for the proposed method is 0.8864, whereas for ST is 0.8609.
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Chapter 10

SSIM-based Optimization Using
Mollifiers

In section 9.2.2 an algorithm for solving the following non-smooth problem was presented,

min
x
{T (Dx, y) + λ‖x‖1}, (10.1)

where D is an m×n matrix, y ∈ R a given observation, and λ a regularization parameter.
As was shown, it was necessary to introduce an extension of the classical soft-thresholding
operator in order to find a zero-mean optimal solution of this SSIM-based optimization
problem. Although this approach is efficient for solving problem (10.1), it is not the only
option with which non-smooth SSIM-based optimization problems can be addressed.

For instance, the L2 counterpart of (10.1), which is known as the LASSO (Least Absolute
Shrinkage and Selection Operator) problem [4],

min
x

{
1

2
‖Dx− y‖2

2 + λ‖x‖1

}
, (10.2)

can be solved without relying on techniques from subdifferential calculus. One approach
is to cast problem (10.2) as a Quadratic Program (QP) and employ generic methods to
solve the QP version of (10.2) [4]; another possibility is to approximate the L1 norm by
a family of smooth functions known as mollifiers, and use gradient-based methods for
solving the “mollified” counterpart of problem (10.2) [50]. In particular, in [114], the
Gaussian distribution is used as an approximate mollifier to solve a smooth version of
(10.2), which is obtained by convolving each component of the L1 norm with a standard
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one-dimensional Gaussian density function of variance ε2. This technique allows the usage
of gradient-based methods for approximating the optimal solution x? of (10.2). In this
case, the smooth approximation of the original problem is given by

min
x

{
1

2
‖Dx− y‖2

2 + λ‖x‖ε1
}
, (10.3)

where ‖x‖ε1 is equal to

‖x‖ε1 =
n∑
i=1

∫
R
|xi − zi|φ̂ε

(zi
ε

)
dz. (10.4)

Here, φ̂(x) is the standard normal distribution in one dimension.

In this chapter, inspired by the idea of optimizing non-smooth functions via mollifiers,
we introduce a gradient-based method that solves the following smooth version of (10.1):

min
x
{T (Dx, y) + λ‖x‖ε1}, (10.5)

where ‖x‖ε1 is obtained by convolving the L1 norm with a multivariate Gaussian distribution
of variance ε2. Moreover, we show in Theorem 10.1.6 that the functional of (10.5) epi-
converges to the functional of (10.1), which ensures that the sequence of minimizers x∗ε of
(10.5) converges to an optimal solution x∗ of (10.1) when ε→ 0. Numerical results can be
found in section 10.3 of this chapter.

10.1 Smoothing via Mollifiers

In this section, we recall some of the basic notions and properties of mollifiers and introduce
the smoothing approach. Let us first introduce the following definition for a family of
mollifiers.

Definition 10.1.1. [50] For each ε > 0, a family of mollifiers is a family of functions
ϕε ∈ C∞0 (Rn) that satisfies the following properties:

1. ϕε(x) ≥ 0, for all x ∈ Rn,

2. supp ϕε ⊆ {x ∈ Rn : ‖x‖ ≤ ε},

3.
∫
Rn ϕε(x)dx = 1.
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A family of mollifers that is used quite often in applications is the following:

ϕε(x) =

{
e

1
‖x‖2−ε2 , ‖x‖2 ≤ ε,

0, ‖x‖2 > ε.
(10.6)

One of the advantages of such mollifiers is that any function in L1
loc(Rn)—that is, any lo-

cally integrable function—can be approximated via convolution by these kind of functions.
Given a family of mollifiers {ϕε : Rn → R+, ε ∈ R+}, we can define a smooth function
approximation f ε of f through the convolution

fε(x) := (f ∗ ϕε)(x) =

∫
Rn
f(x− z)ϕε(z)dz =

∫
Rn
f(z)ϕε(x− z)dz . (10.7)

The sequence f ∗ ϕε is said to be a sequence of mollified functions.

Moreover, from a computational perspective, this convolution can be computed as an
expected value. Let us notice that if Yε(x, z) is a random vector with density defined by
z → ϕε(x− z), the above definition can be written as

(f ∗ ϕε)(x) := E(f(Yε(x, z))) , (10.8)

where E is the expected value of the random variable f(Yε(x, z)). The advantage of this
stochastic interpretation is that allows us to compute the above integral by estimating the
expected valued of f(Yε(x, z)), which is numerically much easier than calculating such a
convolution directly.

On the other hand, we also have the following important result regarding the conver-
gence of the smooth approximation of f via convolution.

Theorem 10.1.1. Let f ∈ C(Rn). Then f∗ϕε converges pointwise to f , i.e. f∗ϕεm(xm)→
f(x) for all xm → x. In fact, f ∗ ϕε converges uniformly to f on every compact subset of
Rn as εm → 0.

Proof. See [16], Proposition 4.21, p. 108.

Furthermore, the previous convergence property can be generalized.

Definition 10.1.2. [50] A sequence of functions {fm} : Rn → R epi-converges to f : Rn →
R at x if:

1. lim infm→+∞ fm(xm) ≥ f(x) for all xm → x;
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2. limm→+∞ fm(xm) = f(x) for some sequence xm → x.

The sequence {fm} epi-converges to f if this holds for all x ∈ Rn. In this case, we say that
f is the epi-limit of {fm}.

It is worthwhile to mention that epi-convergence is a special case of Γ -convergence [14].
In fact, given a sequence {fn} of functions that epi-converges to f , epi-convergence of {fn}
amounts to the Painlevé-Kuratowski convergence (PK-convergence) of the epigraphs of fn
to the epigraph of f [9]. As is known, the epigraphs of fn PK-converge to the epigraph of
f if and only if the sequence {fn} Γ-converges to f [14].

On the other hand, it can be checked that if the sequence {fm} converges continuously,
then it also epi-converges. The importance of the notion of epi-convergence is that it
ensures the convergence of minimizers of {fm} to the minimizers of f [104]. Moreover, if
f is the epi-limit of some sequence {fm}, then f is lower semicontinuous.

Definition 10.1.3. [50] A function f : Rn → R is strongly lower semicontinuous
(s.l.s.c.) at x if it is lower semicontinuous at x and there exists a sequence xm → x with f
continuous at xm (for all m) such that f(xm)→ f(x). The function f is strongly lower
semicontinuous if this holds at all x.

Theorem 10.1.2. Let εm → 0 as m → +∞. For any s.l.s.c. locally integrable function
f : Rn → R, and any associated sequence {fεm} of mollified functions, we have that f is
the epi-limit of {fεm}.

Proof. See [50], Theorem 3.7, p. 5.

Observe that the functional of problem (10.5) is a function of the form g+f ∗ϕε, where
g is differentiable. This implies that the previous results do not necessarily hold in this
case. Nevertheless, it can be proved that such a function is the epi-limit of a sequence
of smooth approximations of the functional of problem (10.1). To see this, we use the
following lemma.

Lemma 10.1.1. Let {ϕε : Rn → R+, ε ∈ R+} be a family of mollifiers. Also, let z be a
random variable whose density function is given by ϕε(z). If E(z) = 0 for all ε ∈ R+, then
the mollified norm ‖x‖ε1 = ‖x‖1 ∗ϕε(x) is greater or equal than its non-smooth counterpart
‖x‖1 for any x ∈ Rn and all ε ∈ R+.

124



Proof. Let f(z) = ‖x − z‖1. Then, by convexity of f and using Jensen’s inequality, we
have that

‖x− E(z)‖1 ≤
∫
Rn
‖x− z‖1ϕε(z)dz. (10.9)

Given that E(z) = 0 for all ε ∈ R+, we immediately obtain that ‖x‖1 ≤ ‖x‖ε1 for all x ∈ Rn

and any ε ∈ R+.

Theorem 10.1.3. Let g : Rn → R and {εm} be a sequence of positive real numbers such
that εm → 0. The function g(x) + γ‖x‖1 is the epi-limit of the sequence of functions
hm : Rn → R defined as

hm(x) := g(x) + λ‖x‖εm1 . (10.10)

Proof. Let {xm} be a sequence in Rn such that xm → x. Since ‖x‖εm1 converges to ‖x‖1 as
m tends to infinity, we have that

lim
m→∞

hm(xm) = g(x) + λ‖x‖1. (10.11)

Also, by lemma 10.1.1, it follows that for any xm ∈ Rn and any εm ∈ R+

g(xm) + γ‖xm‖εm1 ≥ g(xm) + λ‖xm‖1. (10.12)

Taking lim inf of both sides over all sequences xm → x we obtain that

lim inf
m→∞

g(xm) + γ‖xm‖εm1 ≥ g(x) + λ‖x‖1. (10.13)

This completes the proof.

By means of mollified functions it is possible to define generalized directional derivatives
for a non-smooth function f , which, under suitable regularity of f , coincide with Clarke’s
subdifferential. Such a subdifferential is defined as

∂Cf(x) := {s ∈ Rn : 〈s, t〉 ≤ dCf(x, t), ∀t ∈ Rn} , (10.14)

where dCf(x, t) is the Clarke subderivative, which is given by

dCf(x, t) := lim sup
m→∞,ρ↓0

f(xm + ρt)− f(xm)

ρ
. (10.15)

Here, the lim sup is calculated with respect to all sequences {xm} such that xm → x and
ρ→ 0. In particular, in [50] (see also [73, 34, 33] for alternative definitions of generalized
derivatives through mollified functions), a generalized gradient with respect to the mollifier
sequence {fεm} has also been defined in the following way:
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Definition 10.1.4. Let f : Rn → R be locally integrable. Also, let {fεm} be a sequence of
averaged functions that are obtained from the convolution of f with a sequence of mollifiers
{ϕεm}, where εm → 0 as m → ∞. Assume that the mollifiers are such that the averaged
functions have continuous first order derivatives. The set of the ϕ-mollifier subgradients
of f at x is by definition

∂ϕf(x) := Lim sup
m→+∞

{∇fεm(xm), xm → x} , (10.16)

that is, ∂ϕf(x) is the outer superior limit of the sequence of sets {∇fεm(xm), xm → x}; i.e.,
the cluster points of all possible sequences {∇fεm(xm)} such that xm → x. Here, ∇fε is
equal to

∇fε(x) =

∫
Rn
f(z)∇ϕε(x− z)dz. (10.17)

The full Φ-mollifier subgradient set is

∂Φf(x) :=
⋃
ϕ

∂ϕf(x), (10.18)

where ϕ ranges over all possible sequences of mollifiers that generate smooth averaged
functions.

Moreover, this generalized gradient is equal to the Clarke’s subdifferential if f is locally
integrable and locally Lipschitz.

Theorem 10.1.4. Let f : Rn → R be locally integrable and locally Lipschitz at x. Then,
∂Φf(x) coincides with the Clarke’s subdifferential of f at x; that is, ∂Φf(x) = ∂Cf(x).

Proof. See [50], Theorem 4.10, p. 15.

The above result can be extended to include functions of the form g(x)+λ‖x‖1, provided
that the function g : Rn → R is differentiable, locally integrable and locally Lipschitz. This
is shown in the following theorem.

Theorem 10.1.5. Let g : Rn → R be differentiable, locally integrable and locally Lipschitz
at x. Also, let h(x) := g(x) + λ‖x‖1. Then, ∂Φh(x) coincides with Clarke’s subdifferential
of h at x.
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Proof. Let f(x) = ‖x‖1. Clearly, f(x) is Lipschitz continuous with Lipschitz constant one
since

|‖x‖1 − ‖y‖1| ≤ ‖x− y‖1. (10.19)

Moreover, since g is locally Lipschitz at x, it follows that h is locally Lipschitz at x as well.
Similarly, given that f is locally integrable, we have that h is locally integrable as well.
Also, by definition of ∂Φ(·), we have that

∂Φh(x) :=
⋃
ϕ

(
Lim sup
m→∞

{∇(g(xm) + λ‖xm‖εm1 ), xm → x}
)

:=
⋃
ϕ

(
Lim sup
m→∞

{∇g(xm), xm → x}+ λLim sup
m→+∞

{∇(‖xm‖εm1 ), xm → x}
)

:= ∇g(x) + λ
⋃
ϕ

∂ϕf(x)

:=
⋃
ϕ

∂ϕh(x).

By theorem 10.1.4, since h is locally integrable and locally Lipschitz at x, we have that the
last equation is the set of Clarke’s subgradients of h at x.

Observe that the dissimilarity measure T (Dx, y) as a function of x is bounded—here,
D is an m× n matrix and y ∈ Rm is a given vector. Therefore, it is locally integrable over
any compact set K ⊂ Rn. Also, it is differentiable and its gradient is bounded1, which
implies that is Lipschitz continuous. Given this, Theorems 10.1.3 and 10.1.5 guarantee
that the sequence of minimizers x∗ε of (10.5) converges to a minimizer x∗ of (10.1) when ε
tends to zero. In other words, x∗ε → x∗ as ε→ 0.

In the sequel we will use the following family of smoothing Gaussian functions:

φ̂ε(x) =
1

εn
φ̂
(x
ε

)
, (10.20)

where

φ̂(x) =
1√
2π
e−
‖x‖22

2 . (10.21)

It is well known that φ̂ε is a density function, so its integral over Rn is equal to one, it
is smooth, and φ̂ε goes to zero when ‖x‖2 → ∞. However, this sequence is not a proper

1Indeed, it is not hard to prove that |∇T (Dx, y)| ≤ ‖DT ‖2√
2‖y‖22+C−‖y‖22

.

127



family of mollifiers as each element φ̂ε does not have compact support. Nevertheless, it
can be proved that, given a function f , the family of smooth functions

f̂ε(x) = (f ∗ φ̂ε)(x) =
1

εn

∫
Rn
f(x− z)φ̂

(z
ε

)
dz (10.22)

epi-converges to f when ε→ 0.

Theorem 10.1.6. The family of functions defined as f̂ε(x) := (f ∗ φ̂ε)(x) epi-converges to
f as ε→ 0.

Proof. Let {xm} be a sequence in Rn such that xm → x. Also, let {εm} be a sequence
of real numbers such that εm → 0 as m → ∞. Observe that the sequence of functions
f̂εm(x) = (f ∗ φ̂εm)(x) converges to f as m→∞. Then, we have that

lim
m→∞

f̂εm(xm) = f(x). (10.23)

On the other hand, by Jensen’s inequality, fε(x) ≥ f(x) holds for all x ∈ Rn and all ε ∈ R+.
Therefore,

f̂εm(xm) ≥ f(xm). (10.24)

By taking lim inf of both sides of this inequality over all sequences {xm} such that xm → x
we obtain that

lim inf
m→∞

f̂εm(xm) ≥ f(x). (10.25)

By definition 10.1.2, we conclude that f̂ε epi-converges to f as ε→ 0.

10.2 SSIM-based Optimization with Sparsity

In this section, we propose a simple gradient-based method for solving problem (10.5). To
develop such a method, we first need to define the following non-linear functional:

fε(x) := T (Dx, y) + λ‖x‖ε1. (10.26)

Its gradient is given by

∇fε(x) =
2SSIM(Dx, y)DTDx− 2DTy

‖Dx‖2
2 + ‖y‖2

2 + C
+ λ

∫
Rn
‖z‖1∇φ̂ε

(
x− z
ε

)
dz, (10.27)
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where ∇φ̂ε(x) is equal to

∇φ̂ε
(x
ε

)
=

−x√
(2π)nεn+2

e−
‖x‖22
2ε2 . (10.28)

By using (10.27), and defining 1 = [1, · · · , 1]T ∈ Rm, we are now in a position to introduce
the following gradient-descent algorithm for solving (10.5):

Algorithm IV: Gradient descent for unconstrained SSIM-L1 optimization via mollifiers

initialize Choose x = x0, γ;
data preprocessing ȳ = 1

n
1Ty, y = y − ȳ1;

repeat
x = x− γ∇fε(x);

until stopping criterion is met (e.g., ‖x(new) − x(old)‖∞ < δ);
return x, y = y + ȳ1.

The MATLAB code for this algorithm is presented in Appendix C, Section C.4. Also,
notice that this algorithm will return a zero-mean optimal solution x∗ of problem (10.5).
As usual, if it is known that the means of y and Dx? are equal, then, the non-zero mean
optimal solution x? can be recovered by means of the following equation:

x? = x∗ + ȳ(DTD)−1DT1, (10.29)

provided that the inverse of DTD exists.

10.3 Experiments

In these experiments we solve the approximate sparse reconstruction problem (10.5) with
the proposed gradient-descent algorithm. Its performance is measured by comparing its
recovered solutions with the solutions obtained by the Algorithm III for solving (10.1) (see
Section 9.2.2) and the solutions of problem (10.2). In all computations a set of Discrete
Cosine Transform (DCT) coefficients is to be recovered; therefore, problem (10.2) was
solved by means of the soft-thresholding (ST) operator [4, 113].
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In all the experiments images were divided into non-overlapping 8× 8 pixel blocks. As
expected, the means of each block are subtracted prior to processing, which are added after
the non-overlapping blocks have been processed. This is also done when problem (10.2) is
solved at each pixel block for the sake of a fair comparison between the different methods.

It is worthwhile to mention that for computing the integral of the gradient of (10.26)
we performed a Monte Carlo integration (see Eq. (10.27)). This can be done by noticing
the fact that calculating ∫

Rn
‖z‖1∇φ̂ε

(
x− z
ε

)
dz (10.30)

is equivalent to computing the expected value E(‖z‖1(x− z)), where z follows a Gaussian
distribution of variance ε2 and mean equal to x.

In the left plot in Figure 10.1 is shown an example of the optimal DCT coefficients
that are obtained by the different methods that are being compared. Plots in red and
green correspond to the solutions obtained by Algorithm III and ST respectively. The
blue plot is the optimal solution that was obtained by the proposed method when ε =
0.001. True sparsity in the solution is not achieved since this occurs in the limit when
ε → 0; nevertheless, it can be seen that the proposed method gives a good non-sparse
approximation of the solution of the non-smooth problem (10.1). This in fact can be
useful for providing a good initial guess of a thresholding method that solves (10.1) [114].
In the plot on the right it can be seen how a sequence of optimal solutions of (10.5) gets
closer to a solution of (10.1) as ε tends to zero. In this case, the plot in magenta corresponds
to the set of optimal DCT coefficients that is obtained by solving problem (10.1).

As for visual results, these are shown in Figure 10.2. In the example shown, a sub-
image of the test image Lena was employed. In the bottom row the original sub-image
and its recovered counterparts can be observed. Regularization was carried out at all
non-overlapping pixel blocks in such a way that the number of non-zero DCT coefficients
obtained by the Algorithm III and the ST operator is always 19. As for the regularization
of the proposed algorithm, the values of the regularization parameter that were used were
the same that were employed for the algorithm that solves the non-smooth problem (10.1).
This was done in this way since in the limit ε → 0, both problems (10.1) and (10.5) are
equivalent. In other words, the strength of the regularization tends to be the same for
these two methods. Along with the images of the bottom row, the SSIM maps that depict
the similarity between the original sub-image and its reconstructions are shown in the top
row. The higher the brightness of these maps at a given location, the higher the SSIM at
that particular point [122]. As mentioned in Section 9.3, performance of the ST approach
and Algorithm III is very similar, however, the average T (Ax, y) of the non-mollified SSIM-
based optimization problem (0.9156) is slightly higher than the average T (Ax, y) of the L2
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counterpart (0.9117). As for the proposed approach, the recovered image is visually more
appealing than the other two methods, and as expected, the average T (Ax, y) is the highest
of the three approaches that are being compared (0.9629). This should not be surprising
since several recovered DCT coefficients are not set to zero by the proposed algorithm,
which is not always the case for the other two methods.
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Figure 10.1: The plot on the left shows an example of the different solutions that were
obtained by the three methods that were compared. The plot on the right shows a visual
example of how a sequence of minimizers x∗ε of the mollified SSIM-based optimization
problem (10.5) converges to a minimizer x∗ of the non-smooth problem (10.1).
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Figure 10.2: Visual results for a sub-image from the test image Lena. In all cases, reg-
ularization is carried out to induce the same degree of sparsity for all methods at each
non-overlapping pixel block. In the bottom row the original image and its reconstructions
are shown. The corresponding SSIM maps can be seen in the top row.

132



Chapter 11

Conclusions and Future Work

The concept of a function whose range is infinite dimensional has been an object of study
in the mathematical community since the third decade of the last century [11]. Nowadays,
there is a vast literature on the extension of classical results for real-valued functions to
the case of functions that assume values in a Banach space, which are also known as
Banach-valued functions [40, 97, 23, 86]. As was mentioned before, several fields have
benefited from this approach thanks to the works of Bochner [11], Peetre [97], Diestel [40]
and many others [126, 23, 85, 69]. Surprisingly, the image processing community has barely
considered these contributions.

Given the latter observation, we consider that the main contribution of the first part
of this thesis is the connection that has been established between the mathematical theory
of Banach-valued functions and image processing, which shows that is possible to carry
out image processing tasks without relying on the classical finite dimensional vector-valued
approach. For this reason, in Chapter 3, we decided to give a brief review of part of the
theory of Banach-valued functions in the context of FVMs, and use these mathematical
tools to develop some imaging methods that could be applied in an imaging application in
which high dimensionality is always present: hyperspectral images.

Although the experimental results of Chapter 5 show that the simple FVM-based
methods that were developed are outperformed by some classical approaches, it should
be pointed out that these approaches rely on two important image processing concepts,
namely, sparsity [4] and total variation [15], which we did not explore in the mathematical
foundation that we presented. This may imply that if state-of-the-art algorithms are to
be developed using the FVM approach, proper mathematical definitions of the notions of
sparseness and bounded variation for FVMs should be formulated. In fact, in [86, 100], for-
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mulations of total variation for Banach-valued functions are provided, however, to the best
of our knowledge, these contributions have not yet been employed in imaging applications.
As expected, these venues of research are considered as future work.

Along the lines of further future research, note that in this thesis we have employed
just part of the available mathematical theory of Banach-valued functions, therefore, an
obvious continuation of this work is to keep investigating in which ways these current
mathematical contributions can be applied to image processing.

Also, it is worthwhile to mention that we considered only FVMs whose range is a space
of either real or complex-valued functions, nevertheless, it is interesting to explore the
notion of vector-FVMs, that is, FVMs whose range is a vector-valued Banach space. In
this case, u : X ⊆ A→ Fn(Y ):

u(x) = [u1(x), · · · , un(x)]T . (11.1)

Observe that each ui, 1 ≤ i ≤ n, is a FVM of the form ui : X ⊂ A → F(Y ). The
importance of this representation is that it allows to parallelize image processing tasks.
For instance, if each ui is a HS image, a set of n HS datasets can be, say, denoised at the
same time with a denoising algorithm that is based on this representation.

Furthermore, the FVM approach seems to provide a natural way of defining the SSIM
for Banach-valued functions, and consequently, for vector-valued functions as well. Such
a definition is still missing, however, we can conjecture that for, say, FVMs u : X ⊆ A→
F(Y ) and v : X ⊆ A→ F(Y ) such that

∫
X
u dx =

∫
X
v dx = 0, the SSIM is simply given

by

SSIM(u, v) =
‖u− v‖2

2

‖u‖2
2 + ‖v‖2

2

, (11.2)

where

‖u‖2
2 =

∫
X

‖u(x)‖2
F(Y )dx. (11.3)

Note, however, that we still have to investigate how to define properly the statistics of
FVMs to provide a formal definition of the SSIM. Also, observe that the generalization
of the SSIM for FVMs provides a natural link between the first part of the thesis and
SSIM-based optimization, which suggests that both FVMs and SSIM may be combined to
develop imaging tools that take advantage of the benefits of these two approaches.

Regarding the second part of the thesis, a general framework for SSIM-based opti-
mization was proposed along with several algorithms with which a variety of SSIM-based
imaging tasks can be carried out. The main contribution of this approach is that it pro-
vides the means to include the SSIM as a fidelity term in a wide range of optimization
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problems. Moreover, problems in which the L1-norm is used either as a constraint or as
a regularizing term were addressed, something that, as far as we are concerned, had not
been done before.

As it was seen, we employed a simplified version of the SSIM which is an example of
the square of a normalized metric. This one is mathematically more tractable than its
original counterpart and has nice properties such as quasiconvexity and quasiconcavity.
Even though this simplified SSIM does not take into account the luminance component of
the original SSIM, it was shown that in many cases is possible to recover the luminance
information, as long as the given observation and the solution that is to be found are
related by a linear degradation model.

On the other hand, the experimental results show that the SSIM-based methods pre-
sented in the second part of the thesis indeed perform moderately better than the classical
L2 approaches with respect to the SSIM. Visually, this translates into an enhanced contrast
in some of the visual features of the recovered images. The reason is that the SSIM-based
dissimilarity measure T (x, y) takes into account the contrast component of the SSIM, there-
fore, minimization of T (x, y) leads naturally to an increased contrast in the reconstructions.
Although both SSIM and L2 approaches tend to have a similar performance, this is not
the case in all circumstances. For instance, in the second plot from left to right in Figure
9.1, these results suggest that the SSIM-based method outperforms significantly the L2

approach when sparsity is increased and images are not so regular.

As for future research, given the quasiconvex properties of the SSIM as the square of
a normalized metric, it would be interesting to employ different methods from the field
of quasiconvex programming [49] for optimizing the SSIM. Also, observe that we have
used the SSIM-based dissimilarity measure as a fidelity term, however, such a measure can
be employed as a constraint whereas the fidelity term may be a convex functional. For
instance, consider the following optimization problem:

min
x

‖x‖1 (11.4)

subject to T (Ax, y) ≤ λ.

This is a convex problem subject to a quasiconvex constraint. This approach is not new,
similar problems have been considered also in [59]. In general, we consider it is worthwhile
to explore the latter and other types of approaches, which may lead to algorithms more
efficient than the ones we have proposed in this thesis.

Last but not least, we hope that the contributions of this thesis benefit the image
processing community. We consider that these methodologies offer interesting venues of
research that are worthy of further investigation.
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Appendix A

Proofs of Chapter 3

Theorem A.0.1. Let u : X ⊂ Rn → F(Y ) and let x0 be a point in either X or its
boundary ∂(X). Then limx→x0 u(x) = f if and only if for all ε > 0 there exists a δ > 0
such that for x ∈ X that satisfies 0 < ‖x− x0‖X < δ, we have that ‖u(x)− f‖F(Y ) < ε.

Proof. Let us suppose first that limx→x0 u(x) = f . Let ε > 0 and consider Nf = Bε(f),
where

Bε(f) = {g ∈ F(Y ) : ‖g − f‖F(Y ) < ε}.

By definition 3.1.2, f is eventually in Bε(f) when x→ x0 in the ‖ · ‖X sense, which implies
that there exists an open neighbourhood Nx0 of x0 such that u(x) ∈ Bε(f) if x ∈ (X∩Nx0)
and x 6= x0. Since Nx0 is open and x0 ∈ Nx0 , there exists δ > 0 such that Bδ(x0) ⊂ Nx0 ,
where

Bδ(x0) = {x ∈ A : ‖x− x0‖X < δ}.

Thus, 0 < ‖x− x0‖X < δ and x ∈ Nx0 imply x ∈ Bδ(x0) ⊂ Nx0 . Therefore, u(x) ∈ Bε(f),
which means that ‖u(x)− f‖F(Y ) < ε.

Now we prove the converse. Suppose that for all ε > 0 there exists δ > 0 such
that 0 < ‖x − x0‖X < δ and x ∈ X implies ‖u(x) − f‖F(Y ) < ε. Let Nf be an open
neighbourhood of f . Then, there exists ε > 0 such that Bε(f) ⊂ Nf . Let Nx0 = Bδ(x0)
be an open neighbourhood of x0. According to the hypothesis, x ∈ (X ∩Nx0) and x 6= x0

implies ‖u(x)− f‖F(Y ) < ε, therefore, u(x) ∈ Bε(f) ⊂ Nf .

Theorem A.0.2. Let u : X ⊂ Rn → F(Y ), v : X ⊂ Rn → F(Y ), f, g ∈ F(Y ), α ∈ R
and x0 ∈ X a point in either X or its boundary ∂(X). Then, the following affirmations
hold:
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1. If limx→x0 u(x) = f , then limx→x0 αu(x) = αf , where αu : X ⊂ Rn → F(Y ) is
defined as x 7→ αu(x).

2. If limx→x0 u(x) = f and limx→x0 v(x) = g, then limx→x0(u + v)(x) = f + g, where
(u+ v) : X ⊂ Rn → F(Y ) is defined as x 7→ u(x) + v(x).

Proof. Regarding affirmation one, let us consider first the case when α = 0. If this is
so, then one simply has that limx→x0 0 = 0, which is valid for any δ > 0 such that
0 < ‖x− x0‖X < δ. If α 6= 0, since the limit of u is given, for a given ε̂ = ε

|α| there exists δ

such that 0 < ‖x− x0‖X < δ implies

‖u(x)− f‖F(Y ) <
ε

|α|
(A.1)

|α|‖u(x)− f‖F(Y ) < ε (A.2)

‖αu(x)− αf‖F(Y ) < ε (A.3)

This proves that limx→x0 αu(x) = αf .

As for the second affirmation, we have that

‖u(x) + v(x)− f − g‖F(Y ) ≤ ‖u(x)− f‖F(Y ) + ‖v(x)− g‖F(Y ). (A.4)

Let ε > 0 be any given number. Then, there exists δ1 such that 0 < ‖x − x0‖X < δ1

implies ‖u(x) − f‖F(Y ) < ε/2. Similarly, there exists δ2 such that 0 < ‖x − x0‖X < δ2

implies ‖v(x) − g‖F(Y ) < ε/2. Let δ = min{δ1, δ2}. Then, 0 < ‖x − x0‖X < δ implies
‖u(x) + v(x)− f − g‖F(Y ) < ε, which proves that limx→x0(u+ v)(x) = f + g.

Theorem A.0.3. A FVM u : X ⊂ Rn → F(Y ) is continuous at x0 ∈ X if and only if for
all ε > 0 there exists δ > 0 such that for x ∈ X that satisfies 0 < ‖x− x0‖X < δ, we have
that ‖u(x)− u(x0)‖F(Y ) < ε.

Proof. Suppose first that u is continuous at x0. Since limx→x0 u(x) = u(x0), by theorem
3.1.1 we have that

∀ε > 0,∃δ > 0 : x ∈ X ∧ 0 < ‖x− x0‖X =⇒ ‖u(x)− u(x0)‖F(Y ) < ε. (A.5)

To prove the converse assume that (A.5) holds. Then, by theorem 3.1.1 we get that
limx→x0 u(x) = u(x0) and the result follows.

Theorem A.0.4. Let u : X ⊂ Rn → F(Y ) and v : X ⊂ Rn → F(Y ) be differentiable,
and suppose that (uv)(x) ∈ F(Y ) for all x ∈ X. Also, let f ∈ F(Y ), α, β ∈ R and x ∈ X.
Then, the following assertions are true:
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1. Derivative of a Constant: If u(x) = f , then Du(x) = 0 for all x ∈ X.

2. Sum Rule: If w(x) = αu(x) + βv(x), then Dw(x) = αDu(x) + βDv(x).

3. Product Rule: If w(x) = (uv)(x), then Dw(x) = Du(x)v(x) + u(x)Dv(x).

Proof. The first two assertions follow easily from definition 3.1.5. Regarding the third
assertion, if g is a differentiable FVM, then, g(x+ h) = g(x) +Dg(x)h+ o(h). Therefore,

w(x+ h) = u(x+ h)v(x+ h)

= (u(x) +Du(x)h+ o(h))(v(x) +Dv(x)h+ o(h))

= u(x)v(x) + v(x)Du(x)h+ u(x)Dv(x)h+ (Du(x)h)(Dv(x)h)

+o(h)(u(x) + v(x) +Du(x)h+Dv(x)h+ o(h))

By using this fact, and employing definition 3.1.5, it is easily concluded that

Dw(x) = Du(x)v(x) + u(x)Dv(x). (A.6)

Theorem A.0.5. Let u : X ⊂ Rn → F(Y ) and v : X ⊂ Rn → F(Y ) be Gâteaux
differentiable, and suppose that (uv)(x) ∈ F(Y ) for all x ∈ X. Also, let f ∈ F(Y ),
α, β ∈ R and x ∈ X. Then, the following assertions are true:

1. Derivative of a Constant: Let u(x) = f , where, f ∈ F(Y ). Then, Du(x;h) = 0.

2. Sum Rule: If w(x) = (u+ v)(x), then D(u+ v)(x;h) = Du(x;h) +Dv(x;h).

3. Product Rule: If w(x) = (uv)(x), then D(uv)(x;h) = Du(x;h)v(x)+u(x)Dv(x;h).

Proof. Assertions one and two follow easily from the definition of directional derivative. As
for the third assertion, we have that if a FVM g is Gâteaux differentiable, then g(x+εh) =
g(x) + εDg(x;h) + o(ε). Then,

w(x+ εh) = u(x+ εh)v(x+ εh)

= (u(x) + εDu(x;h) + o(ε))(v(x) + εDv(x;h) + o(ε))

= u(x)v(x) + εDu(x;h)v(x) + εu(x)Dv(x;h) + ε2Du(x;h)Dv(x;h)

+o(ε)(u(x) + v(x) + εDu(x;h) + εDv(x;h) + o(ε))
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By employing the latter equation, and using the definition of directional derivative, it
follows that

Dw(x;h) = Du(x;h)v(x) + u(x)Dv(x;h). (A.7)

Theorem A.0.6. Let u : X ⊂ Rn → F(Y ) be an integrable FVM. Also, let D,E ∈ Σ and
D ∩ E = ∅. Then, we have that∫

D∪E
u dx =

∫
D

u dx+

∫
E

u dx. (A.8)

Proof. Since u is integrable, we have that∫
D∪E

u dx = lim
n→∞

∫
D∪E

ϕn dx (A.9)

= lim
n→∞

∫
ϕnχD∪E dx. (A.10)

Thanks to the properties of the indicator function, the latter equation is equivalent to∫
D∪E

u dx = lim
n→∞

∫
ϕn(χD + χE) dx (A.11)

= lim
n→∞

∫
ϕnχD dx+ lim

n→∞

∫
ϕnχE dx (A.12)

= lim
n→∞

∫
D

ϕn dx+ lim
n→∞

∫
E

ϕn dx (A.13)

=

∫
D

u dx+

∫
E

u dx. (A.14)

This completes the proof.

Theorem A.0.7. Let u, v ∈ MF such that u, v ≥ 0 for all x ∈ X and all y ∈ Y . Then
the following affirmations hold:

1. If µ(Z) = 0, then
∫
Z
u dx = 0.

2. If u = v almost everywhere on X, then
∫
X
u dx =

∫
X
v dx.
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Proof. Regarding the first affirmation, we have that∫
Z

u dx ≤
∫
Z

sup
x∈X
{‖u(x)‖F(Y )} dx (A.15)

= sup
x∈X
{‖u(x)‖F(Y )}µ(Z). (A.16)

Given that µ(Z) = 0, we have that
∫
Z
u dx = 0.

As for the second affirmation, let Z ⊂ X be the set on which u 6= v. Then, we have
that ∫

X

u dx =

∫
(X\Z)∪Z

u dx (A.17)

=

∫
X\Z

u dx+

∫
Z

u dx (A.18)

=

∫
X\Z

v dx (A.19)

=

∫
X\Z

v dx+

∫
Z

v dx (A.20)

=

∫
X

v dx. (A.21)

Thus,
∫
X
u dx =

∫
X
v dx.

Theorem A.0.8. Let u : X ⊂ Rn → L1(Y ) be an integrable FVM. Then, we have that∫
Y

(∫
X

u dx

)
dy =

∫
X

(∫
Y

u dy

)
dx. (A.22)

Proof. First, let us define the following operator T : L1(Y )→ R:

Tf :=

∫
Y

f dy. (A.23)

Clearly, R is a Banach space under the absolute value as a norm. Therefore, one has that

|Tf | =

∣∣∣∣∫
Y

f dy

∣∣∣∣ (A.24)

≤
∫
Y

|f | dy (A.25)

= ‖f‖1. (A.26)
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Thus, |T | ≤ 1; that is, T is a bounded operator.

Now, since u is integrable, we have that
∫
X
u dx is measurable and is in L1(Y ). More-

over, by theorem 3.1.12, we have that Tu is integrable and that the following equality
holds:

T

(∫
X

u dx

)
=

∫
X

Tu dx. (A.27)

Therefore, ∫
Y

(∫
X

u dx

)
dy =

∫
X

(∫
Y

u dy

)
dx. (A.28)

Theorem A.0.9. Let (X,Σ, µ) and (Y, T, ν) be finite measure spaces, where X = [a, b] ∈
R. Also, let u : X ⊂ R→ F(Y ) be a continuous FVM. Then, the FVM U defined as

U(x) =

∫ x

a

u(z)dz (A.29)

is differentiable on (a, b) and U ′(x) = u(x) for ν-almost every y ∈ Y .

Proof. For some h > 0 we have that

‖U(x+ h)− U(x)−DU(x)h‖F(Y )

|h|
=
‖
∫ x+h

x
u(z) dz −DU(x)h‖F(Y )

|h|
(A.30)

=
‖
∫ x+h

x
(u(z)−DU(x)) dz‖F(Y )

|h|
. (A.31)

For Bochner integrals the inequality ‖
∫
X
u dx‖ ≤

∫
X
‖u‖ dx holds for any norm ‖ · ‖;

therefore,

‖U(x+ h)− U(x)−DU(x)h‖F(Y )

|h|
≤ 1

|h|

∫ x+h

x

‖u(z)−DU(x)‖F(Y ) dz. (A.32)

Let v : X ⊂ R → R be defined as v(z) = ‖u(z) − DU(x)‖F(Y ). We claim that v(z) is a
continuous function. This can be seen by noticing the fact that for any given ε > 0 and
z, s ∈ X there exists δ > 0 that satisfies 0 < |z − s| < δ such that |v(z)− v(s)| < ε. This
is so since |v(z)− v(s)| can be bounded by ‖u(z)− u(s)‖F(Y ) < ε. By choosing ε = δ such
that the latter assertion holds, it is concluded that v(z) is continuous. Therefore, by the
mean value theorem for integrals we have that

1

|h|

∫ x+h

x

‖u(z)−DU(x)‖F(Y ) dz = ‖u(t)−DU(x)‖F(Y ) (A.33)
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for some t ∈ [x, x + h]. By taking the limit of h as it tends to zero at both sides of the
latter equation, and given that u is continuous on [a, b], we obtain that

lim
h→0

1

|h|

∫ x+h

x

‖u(z)−DU(x)‖F(Y ) dz = ‖u(x)−DU(x)‖F(Y ). (A.34)

The previous expression can be equal to zero if and only if DU(x)(y) = u(x)(y) for ν-almost
every y ∈ Y , thus, since x was arbitrary, U is differentiable on (a, b) and its derivative at
any x ∈ (a, b) is DU(x) = u(x).

Corollary A.0.9.1. If u : X ⊂ R→ F(Y ) is a continuous FVM, then

lim
h→0

1

h

∫ x+h

x

u(z) dz = u(x) (A.35)

for ν-almost all y ∈ Y and all x ∈ (a, b) ⊂ X.

Proof. First, notice that for some h > 0 Eq. (A.30) can be rewritten as∥∥∥∥1

h

∫ x+h

x

u(z) dz −DU(x)

∥∥∥∥
F(Y )

. (A.36)

Since u is continuous, the function U(x) =
∫ x
a
u(z) dz is differentiable and its derivative at

x ∈ X is given by DU(x) = u(x). Thus, we have that for every x ∈ (a, b)

lim
h→0

∥∥∥∥1

h

∫ x+h

x

u(z) dz − u(x)

∥∥∥∥
F(Y )

=

∥∥∥∥lim
h→0

1

h

∫ x+h

x

u(z) dz − u(x)

∥∥∥∥
F(Y )

= 0. (A.37)

This completes the proof.

Theorem A.0.10. The functionals ‖u‖p : Lp(X;F(Y ))→ R and ‖u‖∞ : L∞(X;F(Y ))→
R are norms.

Proof. For 1 ≤ p ≤ ∞, it is easy to see that ‖u‖p = 0 if and only if u = 0. Also, absolute
homogeneity is clearly fulfilled; that is, ‖αu‖p = |α|‖u‖p for all α ∈ R. Verifying that
the triangle inequality also holds for ‖ · ‖p requires some work. Let 1 ≤ p < ∞ and
u, v ∈ Lp(X;F(Y )). Then, we have that

‖u+ v‖p =

(∫
X

‖u(x) + v(x)‖pF(Y )dx

) 1
p

. (A.38)
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By the property of subadditivity of ‖ · ‖F(Y ) we obtain that

‖u+ v‖p ≤
(∫

X

(‖u(x)‖F(Y ) + ‖v(x)‖F(Y ))
pdx

) 1
p

. (A.39)

Finally, thanks to the Minkowski inequality, it follows that

‖u+ v‖p ≤
(∫

X

‖u(x)‖pF(Y )dx

) 1
p

+

(∫
X

‖v(x)‖pF(Y )dx

) 1
p

(A.40)

= ‖u‖p + ‖v‖p. (A.41)

When p =∞, subadditivity of ‖ · ‖∞ follows thanks to the subadditivity of both ‖ · ‖F(Y )

and the essential supremum:

‖u+ v‖∞ = ess sup
x∈X

{‖u(x) + v(x)‖F(Y )} (A.42)

≤ ess sup
x∈X

{‖u(x)‖F(Y ) + ‖v(x)‖F(Y )} (A.43)

≤ ess sup
x∈X

{‖u(x)‖F(Y )}+ ess sup
x∈X
{‖v(x)‖F(Y )} (A.44)

= ‖u‖∞ + ‖v‖∞. (A.45)

This completes the proof.

Theorem A.0.11. Let (X,Σ, µ) and (Y, T, ν) be finite measure spaces and let 1 ≤ p ≤ ∞.
If F(Y ) is a Banach space, then Lp(X;F(Y )) is also a Banach space.

Proof. Proving completeness of Lp(X;F(Y )) is analogous to the proof of completeness of
Lp spaces. Let 1 ≤ p <∞. Also, let

∑
k uk be a series such that every uk ∈ Lp(X;F(Y ))

for all k ∈ N and
∞∑
k=1

‖uk‖p <∞. (A.46)

We must show that such a series converges to an element of Lp(X;F(Y )) with respect to
‖ · ‖p. Let vn and wn be defined as

vn(x) :=
n∑
k=1

uk(x) and wn(x) :=
n∑
k=1

‖uk(x)‖F(Y )χY (y). (A.47)

Observe that

lim
n→∞

‖wn‖p ≤
∞∑
k=1

ν(Y )
1
p‖uk‖p <∞, (A.48)
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thus, w = limn→∞wn is in Lp(X;F(Y )) and the function ‖w(x)‖F(Y ) is integrable. Also,
for all n ∈ N and µ-almost every x ∈ X,

‖vn(x)‖F(Y ) ≤ ‖w(x)‖F(Y ), (A.49)

which implies that v is in Lp(X;F(Y )) as well. On the other hand, since F(Y ) is complete,
we have that for µ-almost all x ∈ X

lim
n→∞

‖v(x)− vn(x)‖pF(Y ) = 0. (A.50)

By the dominated convergence theorem we conclude that

lim
n→∞

∫
X

vn dx =

∫
X

v dx (A.51)

with respect to the Lp norm; that is,

lim
n→∞

∫
X

‖v(x)− vn(x)‖pF(Y )dx = 0. (A.52)

As for the case in which p =∞, let {uk} be a Cauchy sequence in L∞(X;F(Y )). Then,
there exists N(ε) ∈ N such that for all m,n > N one has that

‖um − un‖p < ε. (A.53)

Then, there exists a set Z of measure zero such that ‖um(x)− un(x)‖F(Y ) < δ for all x ∈
X\Z and all n,m > N(δ). Moreover, there exists a constant K such that ‖un(x)‖F(Y ) < K
for all x ∈ X\Z. Z is independent of n,m and K, therefore, the sequence {un} converges
uniformly to an element of L∞(X;F(Y )). This completes the proof.

Theorem A.0.12. If F(Y ) is a Hilbert space with scalar product 〈·, ·〉F(Y ), then L2(X;F(Y ))
is also a Hilbert space with scalar product defined as

〈u, v〉 =

∫
X

〈u(x), v(x)〉F(Y )dx, (A.54)

for all u, v ∈ L2(X;F(Y )).

Proof. It can be seen that 〈·, ·〉 fulfills the properties of an inner product, namely, conjugate
simetry, linearity and positive definiteness. Also, 〈u, u〉 = ‖u‖2

2; that is, the L2 norm is
induced by the scalar product defined in Eq. (3.53). Completeness of L2(X;F(Y )) follows
from the completeness of the Lp spaces.
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Theorem A.0.13. [126] The space C(X;F(Y )) is dense in Lp(X;F(Y )). Even more, the
embedding C(X;F(Y )) ⊆ Lp(X;F(Y )) is continuous.

Proof. X-step mappings can be arbitrarily closely approximated by continuous FVMs.
Since the set of X-step mappings is dense in Lp(X;F(Y )), we have that C(X;F(Y )) is
also dense in Lp(X;F(Y )).

As for the embedding, we have the following inequality:

‖u‖p ≤ µ(X)
1
p sup
x∈X
{‖u(x)‖F(Y )}, (A.55)

which implies the continuity of the embedding C(X;F(Y )) ⊆ Lp(X;F(Y )).

Theorem A.0.14. [126] Let (X,Σ, ν) and (Y, T, ν) be finite measure spaces. If the embed-
ding F(Y ) ⊆ G(Y ) is continuous and 1 ≤ q ≤ p ≤ ∞, then the embedding Lp(X;F(Y )) ⊆
Lq(X;G(Y )), is also continuous.

Proof. Since the embedding F(Y ) ⊆ G(Y ) is continuous, we have that ‖u(x)‖G(Y ) ≤
c‖u(x)‖F(Y ), where C is a finite positive constant that depends on ν(Y ) <∞. Thus,(∫

X

‖u(x)‖qG(Y )dx

) 1
q

≤ C
1
q

(∫
X

‖u(x)‖qF(Y )dx

) 1
q

. (A.56)

By using the classical Hölder inequality we obtain that(∫
X

‖u(x)‖qG(Y )dx

) 1
q

≤ C
1
qµ(X)

1
r

(∫
X

‖u(x)‖pF(Y )dx

) 1
p

, (A.57)

where 1
r

+ 1
s

= 1 and q ≤ p = qs. This completes the proof.

Theorem A.0.15 (Hölder Inequality). [126] Let u ∈ Lp(X;F(Y )) and v ∈ Lq(X;F(Y )∗),
where F(Y ) is the dual space of F(Y ). Also, let 1 < p < ∞ and 1

p
+ 1

q
= 1. Then, the

following Hölder inequality holds for all the elements of both Lp and Lq:∫
X

|〈u(x), v(x)〉F(Y )|dx ≤
(∫

X

‖u(x)‖pF(Y )dx

) 1
p
(∫

X

‖v(x)‖qF(Y )∗dx

) 1
q

. (A.58)

In particular, all the integrals of this inequality exist.
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Proof. We have that u and v are measurable on X, then, there exist sequences of X-simple
mappings {un} : X → F(Y ) and {vn} : X → F(Y )∗ such that un → u and vn → v as
n→∞ for µ-almost all x ∈ X. This implies that 〈un(x), vn(x)〉F(Y ) → 〈u(x), v(x)〉F(Y ) as
n→∞ for µ-almost all x ∈ X. Therefore, the real-valued function 〈u(x), v(x)〉F(Y ) : X →
R is measurable.

On the other hand, we have that |〈u(x), v(x)〉F(Y )| ≤ ‖u(x)‖F(Y )‖v(x)‖F(Y )∗ . Thus,∫
X

|〈u(x), v(x)〉F(Y )|dx ≤
∫
X

‖u(x)‖F(Y )‖v(x)‖F(Y )∗dx. (A.59)

The assertion follows by applying the classical Hölder inequality to the above inequality.

Theorem A.0.16. Let (X,Σ, µ) and (Y, T, ν) be finite measure spaces. Also, let u :
X ⊆ Rn → F(Y ), ∂u

∂xi
: X ⊂ Rn → G(Y ), and assume that the function Φ(x) :=

f(x, u(x),∇xu(x)) is integrable over X. In addition, suppose that the Fréchet derivatives
of f : X ×F(Y )× Gn(Y )→ R with respect to all of its arguments are continuous. Define
the functional I(u) : Z(F(Y ),G(Y ))→ R as follows:

I(u) :=

∫
X

f(x, u,∇xu)dx, (A.60)

where Z(F(Y ),G(Y )) is a Banach space of FVMs that depends on the function spaces
F(Y ) and G(Y ). If u0 : X ⊂ Rn → F(Y ) is a stationary point of I(u), u0 is the solution
of the equation

∂f

∂u
(u0)−∇ · ∂f

∂∇xu
(∇xu0) = 0. (A.61)

where ∂f
∂u
∈ F(Y )∗ and ∂f

∂∇xu ∈ G
n(Y )∗ are the Fréchet derivatives of f with respect to u

and ∇xu respectively, ∇· is the classical divergence operator, and F(Y )∗ and G(Y )∗ are
the dual spaces of F(Y ) and G(Y ) respectively.

Proof. Let ϕ ∈ C∞0 (X). As usual, since u0 is a stationary point, we have that the Gâteaux
derivative of I(u) at u0 in the direction of ϕχY is zero, which we denote as DI(u0;ϕχY ):

DI(u0;ϕχY ) = lim
ε↓0

1

ε

∫
X

f(x, u0 + εϕχY ,∇xu0 + ε∇x(ϕχY ))− f(x, u0,∇xu0)dx. (A.62)

By hypothesis, since the Fréchet derivatives of the integrand are continuous, we have that
the integrand is continuous as well; therefore, we can exchange the limit and the integral:

DI(u0;ϕχY ) =

∫
X

lim
ε↓0

f(x, u0 + εϕχY ,∇xu0 + ε∇x(ϕχY ))− f(x, u0,∇xu0)

ε
dx. (A.63)
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Given that the integrand of the previous equation is bounded, we can apply the Lebesgue
dominated convergence theorem to obtain

DI(u0;ϕχY ) =

∫
X

Df((x, u0,∇xu0); (0, ϕχY ,∇x(ϕχY )))dx. (A.64)

We have, then, that the integrand of the latter equation is the directional derivative of f
at the point (x, u0,∇xu0) in the direction of (0, ϕχY ,∇x(ϕχY )). Such a derivative is given
by

Df((x, u0,∇xu0); (0, ϕχY ,∇x(ϕχY ))) = (ϕχY )
∂f

∂u
(u0) +∇x(ϕχY ) · ∂f

∂∇xu
(∇xu0). (A.65)

Notice that in this case the partial derivatives ∂f
∂u

and ∂f
∂∇xu are Fréchet derivatives. Since

u and ∇xu take values on F(Y ) and Gn(Y ) respectively, we have that ∂f
∂u
∈ F(Y )∗ and

∂f
∂∇xu ∈ G

n(Y )∗. Substituting Eq. (A.65) into Eq. (A.64) we obtain that

DI(u0;ϕχY ) =

∫
X

(
(ϕχY )

∂f

∂u
(u0) +∇x(ϕχY ) · ∂f

∂∇xu
(∇xu0)

)
dx = 0. (A.66)

Observe that χY does not depend on x, thus the latter equation is equivalent to

DI(u0;ϕχY ) =

∫
X

(
ϕ
∂f

∂u
(u0) +∇ϕ · ∂f

∂∇xu
(∇xu0)

)
dx = 0. (A.67)

By using the product rule of the divergence operator we obtain that

DI(u0;ϕχY ) =

∫
X

ϕ

(
∂f

∂u
(u0) +∇ ·

(
ϕ

∂f

∂∇xu
(∇xu0)

)
− ϕ∇ · ∂

∂∇xu
(∇xu0)

)
dx = 0.

(A.68)
Given that ϕ(∂(X)) = 0, and using the divergence theorem, we have that

DI(u0;ϕχY ) =

∫
X

ϕ

(
∂f

∂u
(u0)−∇ · ∂f

∂∇xu
(∇xu0)

)
dx = 0. (A.69)

Finally, by the fundamental lemma of calculus of variations, we obtain that

∂f

∂u
(u0)−∇ · ∂f

∂∇xu
(∇xu0) = 0 (A.70)

for µ-almost all x ∈ X.
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Appendix B

Proofs of Chapter 8

Theorem B.0.17. Let f : X ⊂ Rn → R be defined as in Eq. (9.30). Then, its Jacobian is
Lipschitz continuous on any open convex set Ω ⊂ X; that is, there exists a constant L > 0
such that for any x, z ∈ Ω,

‖Jf (x)− Jf (z)‖F ≤ L‖x− z‖2 . (B.1)

Here, ‖ · ‖F denotes the Frobenius norm and

L = C1‖DTD‖F + λC2‖ATA‖F , C1, C2 > 0. (B.2)

Proof. Without loss of generality, and for the sake of simplicity, let the stability constant
C of the SSIM be zero. Also, let y be a non-zero vector in Rm. Let us define

s(x) :=
2xTy

‖Dx‖2
2 + ‖y‖2

2

, (B.3)

and
r(x) := ‖Dx‖2

2 + ‖y‖2
2. (B.4)

Therefore, we have that ‖Jf (x)− Jf (z)‖F is bounded by

‖Jf (x)− Jf (z)‖F ≤ ‖DTD‖F‖x∇s(x)T − z∇s(z)T‖F +

λ‖ATA‖F‖x∇r(x)T − z∇r(z)T‖F + |s(x)− s(z)|‖DTD‖F +

λ|r(x)− r(z)|‖ATA‖F , (B.5)
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To show that Jf is Lipschitz continuous on Ω, we have to show that the terms that multiply
the Frobenius norms of both DTD and ATA are Lipschitz continuous on Ω as well. Let us
begin with the term |r(x)− r(z)|. This is equal to

|r(x)− r(z)| = |‖Dx‖2
2 − ‖Dz‖2

2| (B.6)

= (‖Dx‖2 + ‖Dz‖2)|‖Dx‖2 − ‖Dz‖2|, (B.7)

which is bounded above by

|r(x)− r(z)| ≤ (‖Dx‖2 + ‖Dz‖2)|‖Dx−Dz‖2 (B.8)

≤ ‖D‖2
2(‖x‖2 + ‖z‖2)‖x− z‖2 (B.9)

≤ K1‖D‖2
2‖x− z‖2, (B.10)

where K1 = maxx,z∈Ω{‖x‖2, ‖z‖2}.
As for |s(x)− s(z)|, by using the mean-value theorem for functions of several variables

we have that
|s(x)− s(z)| ≤ ‖∇s(αx+ (1− α)z)‖2‖x− z‖2 (B.11)

for some α ∈ [0, 1] and all x, z ∈ Ω. In fact, it can be shown that for any vector w ∈ Rn,
the norm of the gradient of s is bounded by

‖∇s(w)‖ ≤ (
√

2 + 1)
‖D‖2

‖y‖2

. (B.12)

Let K2 = (
√

2 + 1)‖D‖2‖y‖2 . Thus, |s(x)− s(z)| ≤ K2‖x− z‖2.

Regarding the term ‖x∇s(x)T − z∇s(z)T‖F , we have that the ij-th each entry of the
n× n matrix x∇s(x)T − z∇s(z)T is given by

∇js(x)xi −∇js(z)zi, (B.13)

where ∇js(·) is the j-th component of the gradient of s(·). By employing the mean value
theorem for functions of one variable we obtain that

|∇js(x)xi −∇js(z)zi, | =
∣∣∣∣ ∂∂xi (∇js(x(v)))

∣∣∣∣ |xi − zi|, (B.14)

for some v ∈ R. Here, x(v) = [x1, . . . , xi−1, v, . . . , xn]. The partial derivative of the
previous equation is bounded, which can be proved using the classical triangle inequality
and differential calculus. Given this, we have that∣∣∣∣ ∂∂xi (∇js(x))(v)

∣∣∣∣ ≤ (
√

2 + 3)
‖DT

i ‖2‖DT
j ‖2

‖y‖2
2

+ (2
√

3 + 2)
‖DT

j ‖2

‖y‖3
2

(B.15)

= Kij, (B.16)
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where DT
k is the k-th row of the the transpose of the matrix D. Therefore,

|∇js(x)xi −∇js(z)zi, | ≤ Kij|xi − zi|. (B.17)

Using this result, we can conclude that

‖x∇s(x)T − z∇s(z)T‖F ≤ K3‖x− z‖2, (B.18)

where K3 is equal to
K3 = n max

1≤i,j≤n
Kij; (B.19)

that is, K3 is equal to the largest Kij times n. In a similar manner, it can be shown that

‖x∇r(x)T − z∇r(z)T‖F ≤ K4‖x− z‖2, (B.20)

where K4 is given by

K4 = max
1≤i,j≤n

{2nK1‖DT
j ‖2(‖DT

i ‖2 + ‖D‖2)}. (B.21)

Finally, we obtain that

‖Jf (x)− Jf (z)‖F ≤ [(K2 +K3)‖DTD‖F + λ(K1 +K4)‖ATA‖F ]‖x− z‖2, (B.22)

which completes the proof.

Theorem B.0.18. Let g±(xi) := ai(xi)∓τi(xi), y ∈ Rm be a given observation, x0 ∈ Rn an
initial condition, and D an m×n matrix whose columns have L2 norm equal to one. Then,
g±(xi) has a fixed point provided that the regularization parameter λ fulfills the following
condition:

λ < min
x∈Ω

{
(SSIM(Dx, y))2 − δ‖y‖2

2‖D‖2‖x‖2

}
, (B.23)

where δ is a small positive constant, and Ω ⊂ Rn is the set of vectors that lie on the path
followed by an algorithm that solves problem (9.39) starting at x0.

Proof. The proof amounts to show that g± is a contraction provided that the regularization
parameter λ is less than a certain value. Consider the following expression:

|g±(xi)− g±(zi)| = |g′±(t)||xi − zi| (B.24)
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for some t ∈ R. Thus, we need to see under what conditions the absolute value of g′±(t) is
less than one for all t ∈ R. Let us compute the derivative of g± with respect to xi:

g′±(xi) =
−DT

i y(∇is(x))(xi)∓ λ(2s(x)DT
i Dx−DT

i y)

(s(x))2
, (B.25)

where s(x) = SSIM(Dx, y) and ∇is(x) is the i-th component of the gradient of s(x). Thus,
since ‖DT

i ‖2 = 1 for all 1 ≤ i ≤ n, we have that the absolute value of g′±(xi) is bounded
above by

|g′±(xi)| =
| − (∇is(x))(xi)± λ|‖y‖2 + 2λ‖D‖2‖x‖2

(s(x))2
, (B.26)

Observe that if xi were zero, we would have that ai(0) ∈ τi(0)[−1, 1], which is equivalent to
(∇is(x))(0) ∈ λ[−1, 1]. Therefore, if g± is a contraction, we must have that (∇is(x))(xi) is
approximately equal to λ, if xi > 0, or −λ, if xi < 0. That is, (∇is(x))(xi) is either equal to
λ+δ1 or −λ−δ2, where both δ1 and δ2 are small positive constants. Let δ = max{|δ1|, |δ2|}.
Thus,

|g′±(xi)| =
δ‖y‖2 + 2λ‖D‖2‖x‖2

(s(x))2
, (B.27)

Therefore, g± is a contraction if the regularizing parameter λ satisfies the following in-
equality:

λ <
(s(x))2 − δ‖y‖2

2‖D‖2‖x‖2

. (B.28)

Let Ω be the set of vectors that lie on the path in Rn that an algorithm may follow to solve
problem 9.39 starting at x0 ∈ Rn. Then, g± is contractive if the following inequality holds:

λ < min
x∈Ω

{
(s(x))2 − δ‖y‖2

2‖D‖2‖x‖2

}
. (B.29)
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Appendix C

MATLAB Codes

C.1 Algorithm I

function [x,y] = bisection_ssim_lp(A,D,y,K)

% Bisection method for constrained SSIM-based optimization. In this case,

% the following problem is solved:

% min T(Ax,y)

% subject to \|Dx\|_p<=K.

% Constraints can be changed or added for carrying out the desired

% SSIM-based imaging task. This mehtod employs CVX, which is a

% Matlab-based modeling system for convex optimization. CVX can be

% downloded from http://cvxr.com/cvx/download/.

n = size(A,2);

x = zeros(n,1);

level_min = 0;

level_max = 2;

epsilon = 1e-5;

maxiter = 50;

i = 0;

p = 1;

average_y = mean(y);
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y = y - average_y;

while ((level_max-level_min) > epsilon) || (cvx_optval ~= 0)

alpha = (level_min + level_max)/2;

cvx_begin

variable x(n);

minimize 0

subject to

(1-alpha)*sum(square(A*x-y)) - ...

2*alpha*((A*x)’*y) <= 0;

norm(D*x,p) <= K;

cvx_end

if cvx_optval == 0

level_max = alpha;

elseif (cvx_optval == inf)&&(alpha == 1)

break;

elseif cvx_optval == inf

level_min = alpha;

end

i = i + 1;

if (i >= maxiter)&&(cvx_optval ~= inf)

break;

end

end

y = y + average_y;

end
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C.2 Algorithm II

function [x,y] = ssim_l2(D,A,y,lambda)

% Generalized Newton’s Method for unconstrained SSIM-based optimization

% with Tikhonov regularization. This algorithm solves the following

% unconstrained SSIM-base optimization problem:

% min {T(Dx,y) + \lambda\|Ax\|_2^2}

average_y = mean(y);

y = y - average_y;

Dt = D’;

At = A’;

x = (Dt*D + lambda*At*A)^(-1)*Dt*y;

C = .03;

epsilon0 = .0000001;

maxiter = 50;

i = 1;

cc0 = x;

cc0(1) = inf;

while (norm(cc0-x,inf))/(norm(x,inf))>epsilon0

cc0 = x;

x = x - jacob(x,y,D,Dt,A,At,lambda,C)^(-1)*fx(x,y,D,Dt,A,At,lambda,C);

if i==maxiter

break;

end

i = i + 1;

end

y = y + average_y;

end

function z = ssim(x,y,epsilon)

z = (2*x’*y + epsilon)/(norm(x)^2 + norm(y)^2 + epsilon);

end
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function z = rx(x,y,epsilon)

z = norm(x)^2 + norm(y)^2 + epsilon;

end

function z = jacob(x,y,D,Dt,A,At,lambda,epsilon)

DtD = Dt*D;

AtA = At*A;

I = eye(size(DtD,1));

Dx = D*x;

ss = ssim(Dx,y,epsilon);

r = rx(Dx,y,epsilon);

z = DtD*((2/r)*x*(Dt*y - DtD*x*ss)’ + ss*I) + ...

lambda*AtA*(x*(2*DtD*x)’ + r*I);

end

function z = fx(x,y,D,Dt,A,At,lambda,epsilon)

Dx = D*x;

z = (ssim(Dx,y,epsilon)*(Dt*D) + lambda*rx(Dx,y,epsilon)*(At*A))*x -...

Dt*y;

end
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C.3 Algorithm III

function [x,y] = ssim_l1(D,y,lambda)

% Coordinate Descent algorithm for unconstrained SSIM-based optimization

% with L1 norm regularization. This algorithm solves the following

% unconstrained SSIM-base optimization problem:

% min {T(Dx,y) + \lambda\|x\|_1}

average_y = mean(y);

y = y - average_y;

Dt = D’;

x = (Dt*D)^(-1)*Dt*y;

C = .03;

epsilon0 = 10^(-5);

epsilon1 = 10^(-5);

maxiter = 50;

i = 1;

cc0 = x;

cc0(1) = inf;

while (norm(cc0-x,inf))/(norm(x,inf))>epsilon0

cc0 = x;

for j = 1:size(x,1)

cp = x;

cp(j) = 0;

if abs(a(cp,y,cp,D,Dt,j,C)) <= tau(cp,y,D,Dt,j,lambda,C)

x(j) = 0;

elseif a(cp,y,cp,D,Dt,j,C) > tau(cp,y,D,Dt,j,lambda,C)

c0 = inf;

while abs(x(j)-c0)>epsilon1

c0 = x(j);

x(j) = a(x,y,cp,D,Dt,j,C) - tau(x,y,D,Dt,j,lambda,C);

end

elseif a(cp,y,cp,D,Dt,j,C) < -tau(cp,y,D,Dt,j,lambda,C)

c0 = inf;

while abs(x(j)-c0)>epsilon1
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c0 = x(j);

x(j) = a(x,y,cp,D,Dt,j,C) + tau(x,y,D,Dt,j,lambda,C);

end

end

end

if i==maxiter

break;

end

i = i + 1;

end

y = y + average_y;

end

function z = ssim(x,y,epsilon)

z = (2*x’*y + epsilon)/(norm(x)^2 + norm(y)^2 + epsilon);

end

function z = a(x,y,xk,A,At,k,epsilon)

z = (At(k,:)*y)/(ssim(A*x,y,epsilon)*norm(At(k,:))^2) - At(k,:)*A*xk;

end

function z = tau(x,y,A,At,k,lamb,epsilon)

z = (lamb/2)*((norm(A*x)^2 + norm(y)^2 + epsilon)/...

(ssim(A*x,y,epsilon)*norm(At(k,:))^2));

end
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C.4 Algorithm IV

function [x,y] = ssim_l1_mollifiers(D,y,lambda)

% Gradient descent for unconstrained SSIM-L1 optimization via mollifiers.

% This algorithm solves the following SSIM-based optimization problem using

% mollifiers:

% min {T(Dx,y) + \lambda\|x\|_1^\epsilon}

average_y = mean(y);

y = y - average_y;

dim = size(D,2);

epsilon = .001;

gamma = 10^(-3);

n = 10^6;

C = .03;

Dt = D’;

DtD = Dt*D;

x = (DtD)^(-1)*Dt*y;

criterion = 10^(-5);

maxiter = 50;

i = 1;

x_0 = x;

x_0(1) = inf;

while (norm(x_0-x,inf))/(norm(x,inf))>criterion

x_0 = x;

x = x - gamma*moll_subgrad(D,Dt,DtD,C,dim,epsilon,lambda,n,x,y);

if i==maxiter

break;

end

i = i + 1;

end

y = y + average_y;

end
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function grad = moll_subgrad(D,Dt,DtD,C,dim,epsilon,lambda,n,x,y)

grad = grad_ssim(D,Dt,DtD,C,x,y) + ...

lambda*conv_grad_molli_1(dim,epsilon,n,x);

end

function [ssim_grad] = grad_ssim(D,Dt,DtD,C,x,y)

Dx = D*x;

ssim_grad = 2*(ssim(Dx,y,C)*DtD*x - Dt*y)/(norm(Dx)^2 + norm(y)^2 + C);

end

function s = ssim(x,y,C)

s = (2*x’*y + C)/(norm(x)^2 + norm(y)^2 + C);

end

function [conv] = conv_grad_molli_1(dim,epsilon,n,x)

% Approximates the mollified subgradient of the L1 norm at the point x via

% Monte Carlo integration

[z,x] = gauss_rand_points(dim,epsilon,n,x);

conv = (epsilon^(-2))*mean(func(dim,x,z),2);

end

function y = func(dim,x,z)

% "program" the function that is to be integrated here

y = repmat(sum(abs(z),1),dim,1).*(z-x);

end
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