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Abstract

In 2015, Ducas and Micciancio presented a novel technique to compute the NAND
gate using the Learning With Errors cryptosystem (LWE), along with a novel bootstrap-
ping technique that turns turns this cryptosystem into a fully-homomorphic encryption
scheme that allows a very short and fast implementation. We present an extension of their
bootstrapping technique that allows refreshing encryptions of elements in Zp and the ho-
momorphic computation of arbitrary gates, alongside with an implementation that exploits
the power of parallel computation.
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Chapter 1

Introduction

Since the appearance of the Diffie-Hellman key exchange protocol in 1976 [9], cryptography
has become increasingly sophisticated. Public-key cryptosystems and digital signature
schemes were made possible shortly thereafter, using (a variant of, in the case of digital
signatures) the well-known protocol invented by Rivest, Shamir and Adleman [33] in 1977,
where two integers N = pq and e ∈ {0, . . . , ϕ(N) − 1} are made public, and to encrypt
an message µ ∈ Z∗N we compute Enc(µ) = µe. A (probably) accidental feature of this
protocol is the fact that it is multiplicative: given two messages µ1, µ2 ∈ Z∗N we have
that Enc(µ1µ2) = (µ1µ2)

e = µe1µ
e
2 = Enc(µ1)Enc(µ2). This led Rivest et al. [34] to rise

the question of the existence of an encryption scheme that is able to evaluate arbitrary
circuits (and not only multiplications of elements in Z∗N). In other words, they proposed
an encryption scheme equipped with a function Eval such that, on input any circuit C of
arity t and any messages µ1, . . . , µt, successfully outputs

Enc
(
C(µ1, . . . , µt)

)
← Eval

(
Enc(µ1), . . . ,Enc(µt), C

)
.

The existence of such a cryptosystem is by no means obvious, but rather a difficult
problem that, in some sense, might seem paradoxical, since looking to successfully operate
on encrypted data is analogous to looking to successfully perform a task while blindfolded.
However, 30 years later, Gentry [15] succeeded for the first time in constructing a cryp-
tosystem able to homomorphically evaluate any given circuit.

Previous constructions are able to homomorphically evaluate more than just multiplica-
tions in Z∗N . Many of them [33], [18], [12] can handle several additions over the integers, and
some of them [5][22], the so-called somewhat homomorphic encryption schemes, can even
perform a few multiplications. The main obstacle for many of them was the noise growth:
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the noise required for semantic security is added every time an addition is performed, and
is multiplied every time a multiplication is performed. Gentry’s idea was to add a second
layer of encryption to evaluate the decryption circuit with the purpose of eliminating the
first layer with its corresponding noise, resulting in a new “fresh” encryption of the same
message. Note that in order to evaluate the decryption circuit we have to, in some way,
hand the decryption key to an untrusted party, and then to keep the system secure we
hand the key encrypted under a second key. Therefore there are some requirements on the
somewhat homomorphic cryptosystem to turn it into a fully homomorphic one: it must
be able to evaluate a little more than its own decryption circuit, and it must be safe to
give away an encryption of the decryption key. This process is best known in the litera-
ture as bootstrapping, and has been the main subject of study around fully homomorphic
encryption both to base its security on standardized problems, and to improve its running
time, since it is the main bottleneck in the performance of Gentry’s construction and all
the other later constructions.

Several improvements have been made in fully homomorphic encryption in terms of
security (basing its security on well studied problems such as Ring-LWE) and also in terms
of its performance (decreasing its running time from hours to seconds). In order to optimize
the amortized running time per gate, many authors approached the problem by increasing
the depth capacity of their cryptosystems, allowing more homomorphic gate-operations
before running a single expensive bootstrapping operation. Nevertheless, another approach
is also possible. Ducas and Micciancio [11] designed a protocol that performs a cheap
bootstrapping operation after every gate. This approach has the advantage that it is no
longer the user’s concern to know when and where to apply the bootstrapping procedure.
It uses a different and more robust cryptosystem to add a second layer of encryption
and evaluate the decryption circuit of the lighter one, improving with this its speed and
versatility. Although it is a very fast algorithm, the amortized running-time per gate
reported by Ducas and Micciancio is still not better than other implementations such as
the Shoup-Halevi implementation HElib [19] and it has the limitation that it can only
evaluate a very small family of gates before bootstrapping.

1.1 Our Contribution

We improve the fully homomorphic encryption scheme proposed by Ducas and Micciancio
[11] in both theory and practice. From the theoretical point of view, we extend the ca-
pabilities of the homomorphic accumulator algorithm (thus named by the authors) used
to perform the bootstrapping operation. This algorithm was previously only able to “re-
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fresh” ciphertexts encrypting messages in Z2. We use a special property of the cyclotomic
polynomial Φp(x), where p is a prime, to handle ciphertexts encrypting messages in Zp.
This modification, together with other techniques, allows us to apply the bootstrapping
procedure after any arbitrary gate, which makes the task of designing circuits much easier.

From the practical point of view, we improve the C++ implementation given by Ducas
and Micciancio, by parallelizing the bootstrapping procedure, thus speeding up the evalu-
ation time.

1.2 Outline Of The Thesis

The thesis is divided in 6 chapters. In Chapter 2 we give an introduction to lattices,
describing the hard problems on which the security of lattice-based cryptosystems is based,
the main existing algorithms to solve them, and the mathematical theory that is behind
them.

In Chapter 3 we introduce the Learning With Errors cryptosystem and describe the
properties of this system that will be used in the following chapters.

In Chapter 4 we give an introductory overview of fully homomorphic encryption and a
more detailed description of Gentry’s construction and idea.

In Chapter 5 we will describe in detail the construction of the fully homomorphic
cryptosystem given by Ducas and Micciancio [11].

In Chapter 6 we describe our extension of the Ducas-Micciancio cryptosystem.

In Chapter 7 we report the benchmarks and running times of our modified implemen-
tation, as well as the main ideas behind how we modified the C++ code.
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Chapter 2

Lattices

In geometry, a lattice is a collection of points forming a uniform periodic pattern that
extends to infinity. Such a set of points exists in any euclidean space, independently of the
dimension. For example, in dimension 1 we can think about the integer numbers, which
are points on the real line forming a uniform periodic pattern easily obtained by “sum-
ming/subtracting” 1 every time. This pattern extends to infinity by summing/subtracting
as many ones as necessary. In dimension 2, we can obtain a similar set by taking two vec-
tors and repeatedly summing/subtracting either one of them to obtain a periodic pattern,
as shown in Figure 2.

Figure 2.1: 2-dimensional lattice

In this chapter we give an brief introduction to lattices, explaining how they form an
elegant bridge between geometry and algebra, and how cryptography uses this structure
as a security guarantee for some of the most sophisticated cryptographic constructions.
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2.1 Geometry of Numbers

From geometry we understand lattices as a uniform regular tiling of euclidean space. This
regularity resembles the properties of the vectors with integer coordinates in Rn; thus it is
natural to try to describe the idea by saying that a lattice is a “skewed” version of Zn in
euclidean space. Thus, the idea of a lattice can be formalized with the following definition.

Definition 2.1.1 (Lattice). Let n,m ∈ Z+ with m ≤ n, and let B = {v1, . . . ,vm} ⊆ Rn

be a collection of m linearly independent vectors. The lattice generated by B is the set

L = L(v1, . . . ,vm) =

{
m∑
i=1

ξivi : ∀i ∈ {1, . . . ,m}, ξi ∈ Z

}
⊆ Rn. (2.1)

The set B is called a basis of the lattice. We say that B generates the lattice L and that
L is of rank m. For q ∈ Z+, a lattice L is said to be q-ary if qZn ⊆ L ⊆ Zn. A generating
set of a lattice is any set containing a basis as subset.

From the last definition we have that a lattice has an implicit group structure. In fact,
a lattice can equivalently be defined as a discrete group in Rn. On the other hand, a q-ary
lattice has a richer structure, since having qZn as a subset implies that the lattice is “peri-
odic modulo q”, so all the information about the lattice can be obtained by looking at the
residues of its entries modulo q. Thus, the q-ary lattices are in one-to-one correspondence
with linear codes over Zq. These algebraic properties can be further exploited with the
help of module theory and linear algebra. The following definition is motivated by the
concept of a generator matrix in coding theory.

Definition 2.1.2 (Generator Matrix). Given an (ordered) set of vectors S = {v1, . . . ,vm} ⊆
Rn we denote by

MS =

 v1
...

vm

 , (2.2)

the matrix whose rows are the elements of S. If B is a set of linearly independent vectors,
the matrix MB is called a generator matrix of the lattice L(B).

Definition 2.1.3 (Unimodular Matrices). An integer matrix is said to be unimodular if
its determinant is either 1 or −1.
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A lattice L has, in general, several different bases. In particular, if U is a unimodular
matrix then the matrix UMB is also a generator matrix for L(B). The converse result is
also true: given two different generator matrices of a lattice, one can be obtained from the
other by multiplying by a unimodular matrix. This gives us the following proposition.

Proposition 2.1.4. Let B,B′ ⊆ Rn be two sets of linearly independent vectors. Then the
lattices L(B) and L(B′) are equal if and only if there exists a unimodular matrix U ∈Mn

such that MB = UMB′.

The previous proposition tells us, in particular, that the determinant of a lattice is well
defined, up to multiplication by −1. Therefore the notion of determinant can be, in a way,
extended to lattices.

Definition 2.1.5 (Determinant of a Lattice). Let B = {v1, . . . ,vn} ⊆ Rn be a collection
of linearly independent vectors. The determinant of the lattice L(B) is the absolute value
of the determinant of the generator matrix MB, i.e.

Det(L) = |Det(MB)|. (2.3)

Given a lattice L ∈ Rn of rank n and a basis B, the basis determines a tiling of the Rn

into parallelotopes, all of which are congruent to the parallelotope whose edges are parallel
to the elements of B. Moreover, it is well known that the absolute value of the determinant
of MB is the volume of this parallelotope. Consequently, by Proposition 2.1.4, we have
that the parallelotopes determined by any two bases have the same volume. Hence, the
volume of a lattice can be defined as

Vol(L) = Det(L). (2.4)

An interesting question is “what is the smallest parallelotope that we can find in a
lattice?”. Note that this question is very easy to answer if we think of size in terms of
the volume, since every fundamental region has the same volume, however, it is more
interesting if we think of the size of the edges of the parallelotope. Intuitively, edge length
defines the “most compact” tiling determined by the lattice. In the context of coding
theory, this tiling is very useful for decoding. The following definition helps to formalize
the previous idea.

Definition 2.1.6 (Successive Minima). Let n ∈ Z+ and let L be a lattice on Rn. Let Q
be a quadratic form defined over Rn and let

B1 = {x ∈ Rn : Q(x) ≤ 1} .
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For i ∈ {1, . . . , n} we define the ith successive minimum to be

λi(L) = inf
{
λ ∈ R : Dim (λB1 ∩ L) ≥ i

}
. (2.5)

We define the minimal parallelotope to be the parallelotope defined by a set of vectors
that achieve the successive minima values, that is, a set {v1, . . . ,vn} such that for all
i ∈ {1, . . . , n} we have |vi| = λi.

2.2 Hard Lattice Problems

The problem of finding the successive minima is intuitively easy because when we think
about a lattice, we imagine the set of all the vectors in the lattice, and then to find the
ones that form the smallest parallelotope, it is enough to look for the set of independent
vectors closest to the origin. However, that would require knowledge of all the vectors in
the lattice, which is computationally unattainable. Even saving those vectors whose norm
is bounded by a constant would require an exponential amount of memory. Nonetheless, a
lattice is uniquely determined by the elements of a basis, therefore storing a basis is enough
to completely describe it. In this case, finding the minimal parallelotope becomes a really
hard problem.

The Shortest Vector Problem Finding the minimal parallelotope requires finding the
shortest vector in the lattice. This, by itself, is a very important problem in geometry of
numbers.

Definition 2.2.1 (The Shortest Vector Problem (SVP)). Let L be a lattice and let B be
a basis for L. The shortest vector problem (SVP) is the problem of finding a vector v ∈ L
such that |v| = λ1(L).

The shortest vector problem depends on the norm that we are considering. The com-
plexity of the problem may also vary depending on the norm. It is well known that SVP
is an NP-Hard problem for randomized reductions when we consider the euclidean norm
[2]. However, the problem is NP-Hard in the traditional sense if we consider the infinity
norm, which is defined for v = (v1, . . . , vn) as ||v||∞ = max{|v1|, . . . , |vn|}[38]. Some other
variants of the problem can also be considered.

Definition 2.2.2 (The Approximate Shortest Vector Problem (SVPγ)). Let L be a lattice
and let B be a basis for L. Let γ ≥ 1 be an approximation factor. The approximate shortest
vector problem (SVPγ) is the problem of finding a vector v ∈ L such that 0 < |v| ≤ γλ1(L).
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Definition 2.2.3 (The Gap Shortest Vector Problem (GapSVPγ)). Let L be a lattice
and let B be a basis for L. Let γ ≥ 1 be an approximation factor and B > 0 be a
real constant. The gap approximate shortest vector problem (GapSVPγ) is the problem of
deciding whether λ1(L) ≤ B, in which case the output is TRUE; or if λ1(L) > Bγ, in which
case the output is FALSE.

In cryptography it is commonly accepted that SVPγ is a hard problem when γ is
polynomially bounded. Later in this thesis we describe a polynomial-time algorithm that
approximates SVP within exponential factors.

The Closest Vector Problem Another interesting problem is to find the distance from
an arbitrary vector in the space to the lattice. This problem is a natural generalization of
the problem of decoding in coding theory, where the task is to find the closest codeword
to the received message.

For a set S ⊆ Rn and an element w ∈ Rn define

Dist(S,w) = inf{|v −w| : v ∈ S}. (2.6)

Definition 2.2.4 (The Closest Vector Problem (CVP)). Let L be a lattice, let B be a
basis for L and let w 6∈ L be a target vector. The approximate closest vector problem
(CVP) is the problem of finding a vector v ∈ L such that |v −w| = Dist (L,w).

The closest vector problem can be seen as a generalization of the shortest vector prob-
lem: naively we can think that we are trying to find the closest vector to the origin, but
the origin is part of the lattice. However, it is well known that SVP can be efficiently
reduced to CVP [27] (which implies that CVP is also a hard problem). Similarly we can
also consider some other variants of this problem.

Definition 2.2.5 (The Approximate Closest Vector Problem (CVPγ)). Let L be a lattice,
let B be a basis for L and let w 6∈ L be a target vector. Let γ ≥ 1 be an approximation
factor. The approximate closest vector problem (CVPγ) is the problem of finding a vector
v ∈ L such that 0 < |v −w| ≤ γDist (L,w).

Definition 2.2.6 (The Gap Closest Vector Problem (GapCVPγ)). Let L be a lattice, let
B be a basis for L and let w 6∈ L be a target vector. Let γ ≥ 1 be an approximation
factor and let B > 0 a real constant. The approximate closest vector problem (GapCVPγ)
is the problem of deciding whether Dist (L,w) ≤ B in which case the output is TRUE; or if
dist (L, w) > Bγ, in which case the output is FALSE.
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In cryptography, these problems are considered to be hard when the approximation
factor is a polynomial. It is known that the approximation version of both problems are
in NP∩ coNP when the approximation factor is, at least

√
n. However it is unlikely that

they are NP-Hard for those approximation factors. In the next section we describe the
main algorithms that are used to solve the previously defined problems.

2.3 Lattices and Cryptography

In the previous section we presented some of the most important computational problems
in the context of lattices: the shortest vector problem (SVP) and the closest vector prob-
lem (CVP). Both problems and their corresponding variants have been observed to be
hard, even in the context of quantum algorithms. In this section we describe how lattice
problems can be used as security guarantees for cryptographic constructions, specifically
for a hash function introduced by Ajtai [1]. He proved that inverting this hash function is
computationally as hard as solving classical lattice problems (such as SVPγ) in the worst
case.

The Short Integer Solution Problem Suppose that we are given the following system
of linear equations over Zq.

a1,1v1 + a1,2v2 + . . .+ a1,mvm = 0 (mod q)
a2,1v1 + a2,2v2 + . . .+ a2,mvm = 0 (mod q)

...
...

...
...

an,1v1 + an,2v2 + . . .+ an,mvm = 0 (mod q).

Suppose that n ≤ m. Since the system is consistent (because it is homogeneous) it has a
solution that is easy to find by using Gaussian elimination. However, if we restrict ourselves
to find a “small” nonzero solution, the problem is much more difficult.

Definition 2.3.1 (The Short Integer Solution Problem (SIS)). Let n,m, q, s ∈ Z+ with
s < q. Let A ∈ Zn×mq . The short integer solution problem is the problem of finding v ∈ Zm

with 0 < |v| ≤ s and such that AvT = ~0 (mod q).

Ajtai’s One-Way Function In 1996, Ajtai published the seminal paper Generating
Hard Instances of Lattice Problems where he presents a reduction from SIS to worst-case
hardness of SVPnc , for some constant c > 0 (which has been proven to be very close
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to 1 [28]). Ajtai also used the SIS problem as a security guarantee for a cryptographic
construction for the first time (destructive applications were previously found in [37])

Definition 2.3.2 (Ajtai’s One-Way Function). Let n,m, q, d ∈ Z+ with n < m, d ≤ q and
q ∈ O(log n). Ajtai’s one-way function is the function f : Zn×mq × {0, . . . , d − 1}m → Znq
that takes A ∈ Zn×mq uniformly at random and is defined for a vector v ∈ {0, . . . , d− 1}m
by

fA(v) = AvT . (2.7)

Note that this function is very easy to implement, since it only involves additions and
multiplications modulo q (which is in O(n)), so there is no need for “big numbers”. How-
ever, the memory requirements are much bigger than for other cryptographic constructions,
since the size of the keys is O(mn).

2.4 Solving Hard Lattice Problems

Since we are using the difficulty of solving lattice problems as a security guarantee for
cryptographic constructions, we need to know the best existing algorithms to solve them
in order to establish the security parameters. In this section we give an introductory review
of two of the most important approaches to solve SVPγ and CVPγ.

2.4.1 Lattice Reduction

The difficulty of solving lattice problems such as CVPγ or SVPγ can vary, depending on
how “good” of “bad” the given basis is. For instance, suppose that the lattice consists
of all the integer vectors in Rn and we are given, as basis, the standard basis1. Then the
solution for SVP is immediate and CVP can be solved by just rounding the coordinates
of the target vector. A similar procedure can be used if we are given a basis consisting of
“short” and “close to orthogonal” vectors. Note that, in such a basis, the volume of the
parallelotope is very close to the product of the lengths of the vectors in the basis. With
this idea in mind we can think of a basis as “good” if∏n

i=1 |vi|
Vol(L)

(2.8)

1The standard basis in Rn is the set of vectors {e1, . . . , en} where ei is the vector whose ith entry is 1,
and the rest are all equal to 0.
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is not much larger than 1. However, when trying to solve SVP, the length of the shortest
vector of the basis is a better parameter to take into account. In [14], Gama and Nguyen
reported an extensive experiment on which they determined that given an algorithm that
takes a lattice L of dimension n, and outputs a basis {v1, . . . ,vn} (in non-decreasing order
with respect to their norm), the root Hermite factor defined as

δ =

(
|v|1/n

Vol(L)

)1/n

(2.9)

is very similar for most lattices and bases (thus declared as an invariant of the algorithm),
and a good indicator of how good an algorithm is.

Recall that the Gram-Schmidt process finds an orthonormal basis in polynomial time,
starting with a basis {v1, . . . ,vn} of the vector space. This is done by subtracting from vj
its projection v∗j on the space generated by {v1, . . . ,vj−1}, which is a linear combination
of these vectors with coefficients

µi,j =

〈
vi,v

∗
j

〉〈
v∗j ,v

∗
j

〉 , for i ∈ {1, . . . , j − 1}. (2.10)

These are called the Gram-Schmidt coefficients.

Lenstra-Lentra-Lovász In 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász
[24] introduced an algorithm to approximate the shortest vector of a lattice. The special
feature of this algorithm is that it runs in polynomial time in the bit size of the vectors
and the dimension of the lattice. The algorithm works in a similar way as the Gram-
Schmidt process, and outputs a reduced basis, that is a basis consisting of “small” and
“more orthogonal” vectors. The precise notion of what reduced means in the context of
Lenstra, Lenstra and Lovász is given by the following definition.

Definition 2.4.1 (LLL-Reduced Basis). Let n ∈ Z+, let B = {v1, . . . ,vn} ⊆ Zn a set
of linearly independent vectors, and let B∗ = {v∗1, . . . ,v∗n} the basis resulting from the
Gram-Schmidt process applied to B. Let L = L (B) be the lattice generated by B. The
basis B is said to be size-reduced if for all i, j ∈ {1, . . . , n} with i < j

|µi,j| ≤
1

2
. (2.11)

The basis B is said to be LLL-reduced for a parameter τ ∈
(
1
4
, 1
]

if
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1. it is size-reduced.

2. for all i ∈ {2, . . . , n} the following equation holds∣∣v∗i−1∣∣2 ≤ 1

τ

(∣∣v∗i−1∣∣2 + µ2
i,i−1

∣∣v∗i−1∣∣2) . (2.12)

The last condition is called the Lovász condition.

An LLL-reduced basis is then understood as a “short” and “orthogonal” basis. The
following definition describes an efficient algorithm to compute an LLL-reduced basis. In
the literature, the parameter τ is usually denoted with the letter δ, but this would cause
a conflict with the Hermite factor notation (Equation 2.9), so we use τ instead. This
parameter is used to adjust the running-time/precision of the algorithm: the higher the
parameter is, the more precise the result will be, at the cost of increased running time.

Definition 2.4.2 (The Lenstra-Lenstra-Lovász Algorithm (LLL)). Let B = {v1, . . . ,vm} ⊆
Rn be a set of vectors. Without loss of generality, assume that B is linearly independent.
Let B∗ = {v∗1, . . . ,v∗m} be the result of applying the Gram-Schmidt process to B and µi,j
the (i, j)-Gram-Schmidt coefficient. The Lenstra-Lenstra-Lovász algorithm is the following

12



algorithm.

Algorithm 1: The Lenstra-Lenstra-Lovász Algorithm

Input : Basis B = {v1, . . . ,vm}, parameter τ .
Output: LLL reduced basis B.

1 B∗ ←GramSchmidt(B);
2 k ← 2;
3 while k ≤ n do
4 for j ← 1 to k − 1 do
5 vk ← v − bµk,jevj;

end
6 if ||v∗k||2 ≥ (τ − µ2

k,k−1)||v∗k−1||2 then
7 k ← k + 1;

else
8 u← vk;
9 vk ← vk−1;

10 vk−1 ← u;
11 k ← max(k − 1, 2);

end

end
12 return B;

The following theorem states the correctness of the LLL algorithm and says exactly
what its running time is. Observe that the running time is polynomial in the number of
bits necessary to describe the basis. However, from Definition 2.4.1 we can only conclude
that the shortest vector v1 of the output satisfies

|v1| ≤
(

2√
4τ − 1

)n−1
λ1(L). (2.13)

Theorem 2.4.3. Let B = {v1, . . . ,vm} ⊆ Rn and suppose that vn is a longest vector in
B. The Lenstra-Lenstra-Lovász algorithm computes an LLL-reduced basis for L(B) in time

O
(
m5n(ln vn)3

)
. (2.14)

The LLL algorithm can be understood as a fast-but-bad approximation for SVP. Never-
theless, it is well known that, in practice, it performs much better in both aspects: running
time and quality. In fact it can even be used as a SVP oracle for small dimensions. This
is very important for the development of other algorithms that use LLL as a subroutine to
obtain a much better quality of the output.
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(Block) Korkine-Zolotarev

The objective of a lattice reduction algorithm is to obtain a basis that is close to the
minimal parallelotope (see Definition 2.1.6), that is, a basis consisting of short and close
to orthogonal vectors. The LLL algorithm runs in polynomial time, but, the quality of
the result is not good enough for many applications (such as attacking cryptosystems).
Following the opposite philosophy we can try to find a basis {v1, . . . ,vn} that achieves
a good quality without caring too much about the running time. Assume for a moment
that we have access to an n-dimensional SVP oracle (such an assumption holds in low
dimensions as we mentioned before). Suppose that the oracle outputs v1 for the lattice
L. By projecting the lattice onto its orthogonal space v⊥1 , we reduce the dimension of the
problem by one. Let ṽ2 be the output of the oracle for the projection of L onto v⊥1 . Then
ṽ2 gives us a good idea of the second successive minimum of the original lattice (since this
can be easily lifted to the original lattice by adding some small multiple of v1). Following
this idea we obtain a Korkine-Zolotarev reduced basis, but the algorithm described is very
inefficient, since it requires n calls to the SVP oracle, hence it is as hard as solving SVP in
dimension n.

A different and more efficient approach comes when we combine the two previously
described algorithms. In 1991, Schnorr and Euchner [36] described an algorithm that
is a running-time/quality trade-off. It runs the Korkine-Zolotarev algorithm (the one
previously described) on blocks of size k (that are thought to be small), using practical
algorithms (such as LLL) to solve SVP on those blocks, projecting the lattice onto the
orthogonal space of the block and applying LLL reduction again. The efficiency and quality
of the algorithm is regulated by k: for k = n we have the Korkine-Zolotarev algorithm, and
for k = 1, we have the LLL algorithm, therefore the bigger the block size is, the stronger
the reduction is. This process is known as the block Korkine-Zolotarev algorithm (BKZ),
and it is the lattice reduction algorithm that is used to measure the security of lattice-based
cryptosystems. The algorithm outputs a lattice basis whose shortest vector satisfies

|v1| ≤ (1 + ε)γ
n−1
2k−1

k Vol(L)
1
n . (2.15)

There is not a good known upper bound on the complexity of BKZ. An exponential
bound was given in [20], but, in practice it performs very well for relatively small block
sizes (being very practical for k ≤ 20 and significantly decreasing in efficiency for k ≥ 25
[7]). Hanrot et al. [20] give a more detailed analysis of a simplified variant the algorithm,
observing that the most important changes in the basis occur during the first steps, and
achieving a basis B whose shortest vector satisfies

|v1| ≤ 2γ
n−1
2k−1

+ 3
2

k Vol(L)
1
n . (2.16)
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Notice that this bound is only slightly worse than Equation 2.15.

2.4.2 Enumeration Algorithms

Lattice-reduction algorithms help to find better quality bases and shorter vectors, but
an additional routine is necessary to solve CVP. Given a basis B = {v1, . . . ,vn} and a
target vector w, we can reduce w modulo B to obtain a vector w̃ inside the parallelotope
determined by B. Projecting w to the closest facet of the parallelotope that is not parallel
to vn we reduce the problem by 1 in dimension. When reverting the reduction (with respect
to B) in the final solution, we obtain an element in the lattice that, naively, we expect to be
close to w. This approach is referred in the literature as Babai’s nearest plane algorithm
and clearly runs in polynomial time. Nonetheless, given an arbitrary basis, it does not
guarantee any closeness of the result to the target vector. However, given a reduced basis
it provides an exponential approximation.

Babai’s nearest plane algorithm has been generalized by other authors (such as Pohst
[31], Kannan [23] and Schnor-Euchner [36]) to other deterministic algorithms to solve
the exact version of CVP, with exponential running time. It can also be generalized to
randomized algorithms that run in polynomial time and provide better approximations to
the closest vector with high probability.
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Chapter 3

Learnings With Errors

The cryptographic applications of lattices that we have presented so far are limited to hash
functions: the one-way function introduced by Ajtai [1] in his seminal paper Generating
Hard Instances of Lattice Problems published in 1996. The first cryptosystem was intro-
duced shortly after, in 1997, by Ajtai and Dwork [3]. The security of this cryptosystem
was based on the difficulty of solving the worst case of a variant of SVP. However, one
year later, Stern and Nguyen published an attack that made the cryptosystem impracti-
cal for real-life applications. In the same year, Goldreich, Goldwasser and Halevi (GGH)
[17] proposed a cryptosystem based on lattices, which is an analog to the earlier McEliece
cryptosystem that is based on linear codes. In 1998, a construction based on q-ary lat-
tice that arise naturally from ideals over rings called NTRU was published by Hoffstein,
Pipher and Silverman [21], representing the first practical cryptosystem based on lattices.
However, neither GGH nor NTRU have a proof of security that ensures that breaking the
cryptosystem is at least as hard as solving some lattice problem.

Almost a decade after, in 2005, Oded Regev [32] presented a problem related to the
minimum distance decoding problem, a well known difficult problem that arises in coding
theory. In this paper he gave a (quantum) reduction between this generalization (which
he called learning with errors) and the decisional variant of SVP (GapSVP). Using this
reduction as a security guarantee, one naturally obtains public-key and symmetric-key
cryptosystems which form the basis for many cryptographic constructions based on lattices.

In this chapter we give a brief introduction to the problem and the cryptosystems,
which form the basis for the constructions given in Chapters 5 and 6. We start by giving
the necessary mathematical background in Section 3.1.
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3.1 Mathematical Background

In Chapter 2 we introduced lattices as one of the main objects of study of the Geometry
of Numbers. However, in some cases lattices are embedded in number fields, thus enjoying
extra properties. We start this chapter with a brief reminder of the essential properties of
number fields of interest in the context of lattice-based cryptography. Afterwards we will
give a brief review of the concepts of probability that we need, and we end the section with
some results on random matrices over a cyclotomic ring.

3.1.1 Cyclotomic Fields

A number field is a field extension of Q of finite degree. Number fields can be obtained
by adjoining elements in C \ Q. We are particularly interested in the extensions that we
obtain by adjoining a root of unity.

Definition 3.1.1 (Roots of Unity). Let n ∈ Z+. A number ζ ∈ C is called an nth root of
unity if ζn = 1. If ζ is a root of unity and for all j ∈ {1, . . . , n − 1} we have that ζj 6= 1,
then it is called a primitive nth root of unity.

Let n ∈ Z+ and consider the set ΠΠΠn = {j ∈ Z+ : 1 ≤ j < n and gcd(j, n) = 1}. We
define the Euler’s totient function to be the function ϕ(n) = |ΠΠΠn|. It is well known that if

n = pd11 . . . pdkk

then ϕ(n) is given by

ϕ(n) = (p1 − 1) . . . (pn − 1)pd1−11 . . . pdk−1k .

This function naturally counts the cardinality of the set of generators of Zn (which is the
same set as Z∗n).

The complex numbers have a natural multiplicative subgroup isomorphic to Zn, namely,
the group of complex solutions to the equation xn = 1. Note that the set of roots of unity
forms a regular polygon on the complex plane. With this picture in mind the following
result is intuitively evident.

Lemma 3.1.2. Let n ∈ Z+ and let {ζ1, . . . , ζn} be the set of nth roots of unity. Then∑n
j=1 ζj = 0.
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As mentioned before, the set of roots of unity in the complex numbers is completely
characterized as the set of complex roots of the polynomial xn−1. On the other hand, the
set of primitive roots of unity in the complex numbers can be characterized as the set of
roots of the polynomials described by the following definition.

Definition 3.1.3 (The nth Cyclotomic Polynomial). Let n be a positive integer. The nth
cyclotomic polynomial is the unique irreducible polynomial Φn ∈ Z[x] that divides xn − 1
and, for all m < n, satisfies the property that Φn does not divide xm − 1. Alternatively, if
Pn ⊆ C is the set of primitive nth roots of unity, then

Φn(x) =
∏
ζ∈Pn

(x− ζ). (3.1)

The previous definition does not provide any easy way to compute the coefficients of the
cyclotomic polynomial. Moreover, from the equation 3.1 it is not clear that the polynomial
even has integer coefficients. However, for our purposes, we are only interested in the case
where n is a prime power. Then the cyclotomic polynomial has a nice form described by
the following proposition.

Proposition 3.1.4. Let p be a prime number and let d be a positive integer. Then the
pdth cyclotomic polynomial can be writen as Φpd(x) =

∑p−1
j=0 x

jpd−1
.

Proof. Let f(x) =
∑p−1

j=0 x
jpd−1

. Since deg f = deg Φpd and all the roots of Φpd are different
(i.e. Φpd is a separable polynomial), it is only left to prove that all the roots of Φpd are

roots of f(x) as well. Let ζ be a root of Φpd . Note that, for j ∈ {0, . . . , p−1}, ζjpd−1
is a pth

root of unity. Moreover, since ζ is a primitive root of unity, if j 6= j′ then ζjp
d−1 6= ζj

′pd−1
.

Hence, the set
{
ζjp

d−1
: 0 ≤ j ≤ p− 1

}
is the set of pth roots of unity. Therefore, using

the Lemma 3.1.2 we have that
∑p−1

j=0 ζ
jpd−1

= 0.

Corollary 3.1.5. Given a positive integer d, the cyclotomic polynomial Φ2d is given by

Φ2d = x2
d−1

+ 1. (3.2)

Definition 3.1.6 (The Cyclotomic Field). Let n ∈ Z+ and let ζ ∈ C be a primitive nth
root of unity. The nth cyclotomic field is the field Q[ζ].

Remark 3.1.7. Since the cyclotomic polynomial is irreducible, we can also define, the nth
cyclotomic field to be the field Q[x]/Φn(x).

Definition 3.1.8 (Ring of Integers in the Cyclotomic Field). Let n ∈ Z+ and consider its
cyclotomic field Q[x]/Φn(x). The ring of integers of Q[x]/Φn(x) is the quotient Z[x]/Φn(x).
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3.1.2 Probability Distributions

For a cryptosystem to be semantically secure the encryption procedure cannot be deter-
ministic; some randomness has to be involved. The security and even the correctness of
some cryptosystems depend on the probability distribution that is used. In several cases it
is convenient to use a Gaussian distribution, since it is well-studied and easy to describe.

Definition 3.1.9 (Gaussian Distribution). For o, θ ∈ R, the Gaussian distribution of mean
o and standard deviation θ is the probability distribution with density given by

ψo,θ(s) =
1√
2πθ

e
(s−o)2

2θ2 . (3.3)

Definition 3.1.10 (Moment-Generating Function). Let X be a real-valued random vari-
able. The moment generating function of X is the function MX → R→ R defined by

MX(s) = E
[
esX
]
. (3.4)

whenever the expectation function exists.

Definition 3.1.11 (Subgaussian Distribution). Let X be a real-valued random variable.
We say that X is subgaussian if there exists θ > 0 such that for all s ∈ R

MX(s) ≤ e
θ2s2

2 .

A subgaussian distribution is a probability distribution that is dominated by a Gaussian.
As a consequence, we have the following result.

Proposition 3.1.12. Let X be a real-valued random variable and let B > 0. If P (|X| <
B) = 1, then X is a subgaussian random variable of parameter B

√
2π.

Theorem 3.1.13. Let ψ, ψ′ be two Gaussian distributions of means and standard devia-
tions (o, θ) and (o′, θ′), respectively. Then the sum ψ + ψ′ is a Gaussian distribution of
mean o+ o′ and standard deviation

√
θ2 + θ′2.

3.1.3 Random Matrices Over a Cyclotomic Ring

In several cases it is very important to have a notion of the “size” of a matrix, in terms of
how big its entries are. Later in the thesis we use random matrices to add some noise to
certain ciphertexts, and therefore it is crucial to bound how big the entries of the matrix
are. A natural way to formalize the notion of size is to see how big the images of the
unitary vectors are when seen as linear functions.
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Definition 3.1.14 (Induced Norm). Let K be a real or complex field, let d1, d2 ∈ Z and
suppose that || · ||(1) and || · ||(2) are norms over Kd1 and Kd2 , respectively. The induced
norm associated to them is the norm || · || : Kd1×d2 → R defined by

||A|| = sup
{
||Av||(2) : ||v||(1) = 1

}
. (3.5)

In the special case where the norms || · ||(2) and || · ||(1) are both Euclidean, the induced
norm of A is called the spectral norm, and is denoted by s1(A).

As mentioned, the induced norm is defined for real and complex fields; however the field
Q[x]/Φn(x) field has several embeddings in Cn. The canonical embedding ι : Q[x]/(xn −
1)→ Cn is defined by

ι : α(x) 7→
(
α(ζ1), . . . , α(ζn)

)
. (3.6)

Notice that for any complex number ζ (not necessarily a root of unity) and for any α, β ∈
Q[x]/(xn− 1) we have that α(ζ)β(ζ) = αβ(ζ). Therefore, since any nth degree polynomial
is determined by its value on n different elements, we have that

ι(α · β) = ι(α)� ι(β), (3.7)

where � denotes the component-wise product. This identity is fundamental to prove the
following proposition.

Proposition 3.1.15. Let R = Z[x]/(xn−1). Let ψ be a Gaussian distribution of parameter
θ and let A = (ai,j) ← Rd1×d2 be a matrix such that each of whose entries is sampled
according to ψ. Then with overwhelming probability we have that

s1(A) ≤ θ
√
n O

(√
d1 +

√
d2 + ω

√
n
)

The proof is completely analogous to the proof of Fact 6 of [10]. However, to have a
similar bound for matrices over Q[x]/Φn(x), where n = pd is a prime power, we first lift
the matrix to a matrix Ã ∈ (Q/xn − 1)d1×d2 , so that when taking the quotient by Φn(x),
the error is bounded by

s1(A) ≤ θp
√
nO
(√

d1 +
√
d2 + ω

√
n
)
. (3.8)

Lemma 3.1.16 (Hensel’s Lemma). Let f(x) ∈ Z[x] be a monic polynomial and consider
R = Z[x]/f(x). Then for all primes p and for all u ∈ Rpe, if u is invertible when reducing
modulo p (as an element of Rp), then it is also invertible in Rpe.
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Lemma 3.1.17. Let p, p′ ∈ Z+ be primes such that p is a primitive root modulo p′2 and
let l be a power of p′. Let Rl = Z[x]/〈Φn(x), l〉 and suppose that A is sampled uniformly
at random from Rk×k

l , for some dimension k ∈ Z+, where l is a power of p′. Then there
exists a negligible function ε(l) such that A is invertible with probability 1− ε(l).

Proof. A matrix A ∈ Rk×k
l is invertible if and only if its determinant D = Det(A) is

invertible in Rl. By Lemma 3.1.16, D is invertible in Rl if it is invertible when reducing
modulo p. From our choice of p we have that Φn(x) is irreducible modulo p and Rp is a
field of pn elements. Hence D is invertible in Rl with probability 1− 1

1−l .

In Table 3.1 we present the numerical results for the first primes and the cases where
this parameters can be applied.

Table 3.1: Smallest primitive root q modulo p2

Prime p Primitive root q
3 2
5 2
7 3

11 2
13 2
17 3
19 2
23 5
27 2
31 3

3.2 Regev’s Learning With Errors Cryptosystem

Despite the fact that cryptographic constructions based on lattice problems started to
appear in the late ’90s, they did not receive much attention from the community at that
time, since the only known encryption scheme (the Ajtai-Dwok construction [3]) required
impractical key-size to be secure [29]. Other constructions such as GGH [17] and NTRU
[21] appeared after Ajtai’s work, but neither of them enjoyed of a theoretical reduction to
the hardness of classical lattice problems. It was not until 2005 and Regev’s learning with
errors cryptosystem that lattice based cryptography started growing, and since then many
other cryptographic constructions have been built around Regev’s cryptosystem.
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The Learning With Errors Problem

The learning with errors problem is, in some sense, similar to the short integer solution
problem. The main difference is that in this case the system is overdetermined and noisy.
Suppose that we are given m samples of the form

a1,1s1 + a1,2s2 + . . .+ a1,nsn = b1 + ε1 (mod q)
a2,1s1 + a2,2s2 + . . .+ a2,nsn = b2 + ε2 (mod q)

...
...

...
...

am,1s1 + am,2s2 + . . .+ am,nsn = bm + εm (mod q)

where the vector s = {s1, . . . , sn} is unknown, the coefficients {ai,j}i∈{1,...,n},j∈{1,...,m} are
uniformly sampled from Zq and the error εi is sampled according a probability distribution
ψ. The problem is to find the secret vector s. Notice that with no error the problem can be
efficiently solved by using Gaussian elimination; however, when error is added the problem
becomes much more challenging.

Definition 3.2.1 (The Learning With Errors Problem (LWEq,ψ)). Let n, q ∈ Z+ and let
ψ be a probability distribution on Zq. Let s ∈ Znq . The learning with errors problem
(LWEn,q,ψ) is the problem of finding s given any number of samples of the form(

a, 〈a, s〉+ ε
)

where a is sampled uniformly from Znq and ε is sampled from Zq according to ψ.

The learning with errors problem was introduced in 2005 by Oded Regev [32] as a gener-
alization of the learning parity with noise problem. Regev gave a quantum reduction from
LWE to the GapSVP problem. The latter is, to this date, believed to be a hard problem
even in the context of quantum algorithms. In addition he also described a cryptosystem
whose difficulty is based on LWE. The problem and the cryptosystem have played a cen-
tral role in the development of lattice-based cryptography. Since its publication, several
other constructions whose security is based on LWE have appeared [30][6][16], and better
security guarantees have been given.

Theorem 3.2.2. Let n, q ∈ Z+ and let θ ∈ (0, 1) a real number such that θq >
√
n. If there

exists an efficient algorithm that solves LWEn,q,ψ, then there exists an efficient algorithm
to solve GapSVPÕ(n/θ) in the worst case 1.

1In [32], Regev also gives a reduction from LWEn,q,ψ to SIVPÕ(n/θ)
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3.2.1 Symmetric-Key LWE Cryptosystem

The learning with errors problem is about the difficulty of learning a linear function
La : a 7→ 〈a, s〉, given an arbitrary number of samples of approximate evaluations of it.
Using this problem as a base, Regev had the idea of hiding the message by transforming
the linear function into an affine function, translating the image by a secret message µ,
resulting in

µ 7→ (a, 〈a, s〉+ µ+ ε).

However, if both domain and range are of the same size, the noise would make the de-
cryption impossible, due to overlapping. This issue can be easily fixed by initially taking
messages from a smaller set and then “scaling” the message to the bigger set. This es-
calation process may require to round the result. Then to formalize the idea we give the
following definition

Definition 3.2.3 (Randomized Rounding Function). A randomized rounding function is
a function % : R→ Z such that for all x ∈ R and for all a ∈ Z

%(x+ a) = %(x). (3.9)

The function bψe(x) := %(x)− x is called the rounding error of %.

A randomized rounding function is then completely determined by its value on the
interval [0, 1). When this function is restricted to Z we are adding the same “error” ψ(0).
With this definition we can formalize the previous idea of a cryptosystem based on the
learning with errors problem.

Definition 3.2.4 (LWE Symmetric Encryption Scheme (symLWE)). Let n, t, q ∈ Z+ such
that t ≥ 2 and q = nO(1). Let % : R → Z a randomized rounding function. The Learning
With Errors symmetric encryption scheme is the encryption scheme with message space
Zt, and ciphertext space Zn+1

q , that consists of the following algorithms:

KeyGen: Sample s ← Znq uniformly at random or as a random short vector. The
element s is the shared secret key.

Encryption: Given a message µ ∈ Zt and the key s, sample a ←R Znq uniformly at
random. An encryption of µ under s is the element

symLWEψt:q(s, µ) =
(
a, %

(
〈a, s〉+

µq

t

)
(mod q)

)
. (3.10)
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Decryption: Given a ciphertext c = (a, b) and the key s, the message can be recovered
using the following equation

µ′ =

⌊
t

q
(b− 〈a, s〉)

⌉
. (3.11)

The error of a ciphertext (a, b) (with respect to µ and s) is the function

εµ,s(a, b) = b− 〈a, s〉 − µ t
p

(mod q), (3.12)

taking its value in the set
{
− q

2
,− q

2
+ 1, . . . , q

2
− 1, q

2

}
.

In the previous definition, it is not clear that the decryption procedure will recover the
original message; in fact, the message computed will not always be equal to the original,
because the message can be mapped to any element in Zn+1

q , since we did not impose any
bound on the error. To ensure the correctness of the previous cryptosystem we have to
control the error added by %. For a message µ ∈ Zt and an error e ∈ Z+ let

symLWEet:q(µ, s) =
{

(a, b) ∈ Zn+1
q : |εµ,s(a, b)| ≤ e

}
. (3.13)

Proposition 3.2.5 (Correctness of symLWE). Let e ∈ {− q
2
, . . . , q

2
} and let c ∈ symLWEet:q(µ, s).

If e < q
2t

then the decryption algorithm recovers correctly the encrypted message.

Proof. Let (a, b) ∈ symLWEet:q(µ, s) and let ε = εµ,s(a, b) be the error in the ciphertext.
Then, by Equation 3.11,

µ′ =
⌊
t
q

(
b− 〈a, s〉

)⌉
=

⌊
t
q

(
q
t
µ+ ε

)⌉
=

⌊
µ+ t

q
ε
⌉

= µ+
⌊
t
q
ε
⌉
.

Finally, since ε ∈ {−e, . . . , e− 1, e} and e < 1
2
, we have that

⌊
t
q
ε
⌉

= 0. Therefore µ′ =

µ.
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Homomorphic property of LWE One of the most important properties of the LWE
cryptosystem is the fact that it is “homomorphic”: the sum of two LWE ciphertexts is an
LWE ciphertext of the sum of the messages, under only the condition that the error is not
too big. This property is explained on the following proposition and further explored in
the following chapters.

Proposition 3.2.6. Let t, q, n ∈ Z+, µ, µ′ ∈ Zt, s ∈ Znq and let (a, b) ∈ LWEet:q(s, µ) and
(a′, b) ∈ LWEet:q(s, µ). If ψ is a subgaussian distribution of parameter θ, then

(a + a′, b+ b′) ∈ LWE2e
t:q(s, µ+ µ′).

is an LWE encryption of µ+ µ′ of parameter
√

2θ.

Proof. The proposition follows immediately from the definition of the LWE encryption
scheme and Theorem 3.1.13.

LWE Modulus-Switch The LWE encryption scheme allows us to change the ciphertext
modulus even after the message has been encrypted, just by scaling the coordinates of the
ciphertext (no key material is necessary). The process will, of course, modify the noise of
the ciphertext as well, which may be desirable in some settings.

Definition 3.2.7 (Randomized Scaling Function).
Let q, l ∈ Z+. The randomized scaling function is the function [·]l:q : Zl → Zq defined by

[a]l:q =
⌊aq
l

⌋
+ ς, (3.14)

where ς ∈ {0, 1} is such that

Pr(ς = 1) =
aq

l
−
⌊aq
l

⌋
∈ [0, 1).

Definition 3.2.8 (Modulus-Switching Operation).
Let t, q, l, n ∈ Z+ and let µ ∈ Zt. The modulus-switching operation is the function

ModSwitch: Zn+1
l → Zn+1

q defined by

ModSwitch(a0, a1, . . . , an) =
(
[a0]l:q, [a1]l:q, . . . , [an]l:q

)
.

Proposition 3.2.9. Let t, q, l, n ∈ Z+, µ ∈ Zt and s = (s0, . . . , sn−1) ∈ Znq . If (a, b) ∈
LWEψt:l(s, µ) is an encryption of µ where ψ is a subgaussian distribution of parameter θ, then

ModSwitch(a, b) ∈ LWEψ
′

t:q(s, µ) is an encryption of µ where ψ′ is a subgaussian distribution
of parameter √(

qθ

l

)2

+ 2π(|s|2 + 1).
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Proof. Note that for all a ∈ Z,

[a]l:q =
q

l
a+ r,

where r < 1. Hence r can be regarded as a subgaussian distribution of parameter
√

2π
(see Proposition 3.1.12).

Let c = (a, b) = (a0, . . . , an−1, b) and let [c]l,q =
(
[a0]l,q, . . . , [an−1]l,q, [b]l,q

)
= (a′, b′).

Then
εµ,s(a

′, b′) = b′ − 〈a′, s〉 − qm
t

= q
l
b+ rb −

∑n−1
i=0

(
q
l
ai + ri

)
si

= q
l
(b− 〈a, s〉) + rb +

∑n−1
i=0 risi

= q
l
εµ,s(a, b) +

∑n−1
i=0 risi.

Therefore, since εµ,s(a, b), rb, r0, . . . , rn−1 are independent variables we have that, by The-
orem 3.1.13, the sum is a subgaussian distribution of parameter√√√√q

l
θ + 2π

(
n−1∑
i=0

s2i + 1

)
.

LWE Key-Switching

The key-switching property allows a third party to change the key of an LWE ciphertext
without learning anything about the message or the encryption keys. This process takes
advantage of a certain “key homomorphic” property that LWE possesses, and it is described
in the following definitions.

Definition 3.2.10 (Key-Switching Key). Let t, q, n,m,Bks, dks ∈ Z+ with Bks < q and
dks = logBks q. Let s ∈ Znq and z = (z0, . . . , zm−1) ∈ Zml . For i ∈ {1, . . . ,m}, j ∈
{0, . . . , dks − 1} and ξ ∈ {0, . . . , Bks} let

ki,j,ξ ∈ LWEψq:q
(
s, ξziB

j
ks

)
where ψ is a subgaussian distribution. A key-switching key from z to s is a set of the form

Kks =
{
ki,j,ξ : i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , dks − 1}, a ∈ {0, . . . , Bks}

}
.

Note htat the key-switching key is not unique and, since the message and the ciphertext
moduli used in Definition 3.2.10 are equal, the elements of the key are not decryptable
ciphertexts. The size of the key-switching key directly depends on the parameters Bks and
dks.
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Definition 3.2.11 (Key-Switching Operation). Let t, q, n,m ∈ Z+ and let µ ∈ Z. Let
s ∈ Znq and z ∈ Zmq . Let Kks be a key-switching key. The key-switching operation is the
function KeySwitch : Zm+1

q → Zn+1
q defined by

KeySwitch(a0, a1, . . . , am) = (~0, am)−
m−1∑
i=0

dks−1∑
j=1

ki,j,ai,j

where for i ∈ {0, . . . ,m− 1} and j ∈ {0, . . . , dks− 1}, we define ai,j to satisfy the equation

ai =
∑dks

j=0B
j
ksai,j.

Proposition 3.2.12. Let t, q, n,m,Bks, dks ∈ Z+ with Bks < q and dks = logBks q. Let
s ∈ Znq and z ∈ Zmq . Let K be a key-switching key from z to s and suppose that its elements

were created using a subgaussian distribution of parameter θks. If (a, b) ∈ LWEψt:q(z, µ) for a
message µ ∈ Zt and a subgaussian distribution ψ of parameter θ, then KeySwitch(a, b) ∈
LWEψ

′

t:q(s, µ), where ψ′ is a subgaussian distribution of parameter√
θ2 +mdksθ2ks.

Proof. Suppose that z = (z0, . . . , zm−1). For an element

ki,j,ξ =
(
a(i,j,ξ), b

(i,j,ξ)
0

)
=
((

a
(i,j,ξ)
0 , . . . , a

(i,j,ξ)
m−1

)
, b(i,j,ξ)

)
∈ K,

let εi,j,ξ = εµ,s(ki,j,ξ) be the error in the LWE ciphertext. By definition of the key-switching
operation, if KeySwitch(a, b) = (a′, b′) = (a′0, . . . , a

′
n−1, b), then we have that

a′ = −
m−1∑
i=0

dks−1∑
j=0

a(i,j,ai,j).

On the other hand we also have that

b′ = b−
∑m−1

i=0

∑dks−1
j=0 b(i,j,ai,j).

= b−
∑m−1

i=0

∑dks−1
j=0

〈
a(i,j,ai,j), s

〉
+ ai,jziB

j
ks + εi,j,ai,j

= b+
〈
−
∑m−1

i=0

∑dks−1
j=0 a(i,j,ai,j), s

〉
−
(∑m−1

i=0 zi
∑dks−1

j=0 ai,jB
j
ks

)
+ ε

= b+ 〈a′, s〉 −
(∑m−1

i=0 ziai
)

+ ε
= b+ 〈a′, s〉 − 〈z, a〉+ ε,
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where

ε =
m−1∑
i=0

dks−1∑
j=0

εi,j,ai,j

is, by Theorem 3.1.13, a subgaussian distribution of parameter
√
mdksθks. Finally, to

compute the total error distribution, note that

εµ,s(a
′, b′) = b′ − 〈a′, s〉 − qµ

t

= b+ 〈a′, s〉 − 〈a, z〉+ ε− 〈a′, s〉 − qµ
t

= b− 〈a, z〉 − qµ
t

+ ε
= εµ,z(a, b) + ε,

which is a subgaussian distribution of parameter
√
θ2 +mdksθ2ks.

3.2.2 Public-Key LWE Cryptosystem

In the last subsection we explained the construction of a symmetric-key cryptosystem whose
security is based on the learning with errors problem. It is possible as well to construct a
public-key cryptosystem based on the same problem. We proved that the symmetric-key
cryptosystem has certain homomorphic properties that, based on a result that is explained
further in Section 4.1, are enough to create a public-key cryptosystem. However, we give
the construction explicitly here.

Definition 3.2.13 (LWE Public-Key Encryption Scheme). Let n,m, t, q ∈ Z+ such that
t ≥ 2 and q = nO(1). Let % : R → Z a randomized rounding function. The Learning With
Errors public-key encryption scheme is the encryption scheme with message space Zt, and
ciphertext space Zn+1

q , that consists of the following algorithms:

KeyGen: Sample s ← Znq uniformly at random or as a random short vector. The
secret key is

sk = s. (3.15)

Sample A ∈ Zm×nq uniformly at random and sample E ∈ Zmq choosing each entry
according to the distribution ψθ. The public key is

pk =
(
A,P = AsT + E

)
∈ Zm×nq × Zmq . (3.16)
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Encryption: Given a message µ ∈ Zt and the public key (A,P), sample a ← Znq
uniformly at random. An encryption of µ under s is the element(

u = AaT , b = %
(
〈P, a〉+

µq

t
(mod q)

))
. (3.17)

Decryption: Given a ciphertext c = (a, b) and the private key s, the message can be
recovered using the following equation

µ′ =

⌊
p

q

(
b− 〈a, s〉

)⌉
. (3.18)

The error of a ciphertext (a, b) (with respect to µ and s) is the function

εµ,s(a, b) = b− 〈a, s〉 − µq
t

(mod q), (3.19)

taking its value in the set
{
− q

2
,− q

2
+ 1, . . . , q

2
− 1, q

2

}
.

Note that the public key is just a collection of encryptions of 0, in terms of the
symmetric-key cryptosystem that we previously defined.

3.3 Learning With Errors Over Rings

The public-key cryptosystem based on the learning with errors problem involves very sim-
ple operations in the encryption and decryption procedures, only sums and multiplications
modulo q. This is an advantage when compared to classical cryptosystems such as RSA or
other constructions based on elliptic curves. However, the key-size is a great disadvantage,
making it very difficult to deploy in practice. The same problem is found in Ajtai’s con-
struction of a one-way function (see Section 2.3). One possible solution is to use circulant
matrices instead of totally random matrices. A circulant matrix is a matrix of the form

A =


a0 an−1 an−2 · · · a1
a1 a0 an−1 · · · a2
a2 a1 a0 · · · a3
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

 .
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Notice that all the information necessary to represent a circulant matrix is encoded on the
first column, reducing the key size to n log q. It also reduces (asymptotically) the running
time required to compute matrix products, using the fast Fourier transform (see Section
7.1). However, the adaptation of Ajtai’s function to this family of matrices [26] was proven
to be weak against a very simple cryptographic attack that finds collisions [25, 28].

It is possible to establish a relation between these matrices and quotients of the poly-
nomial ring Z[x]. Given a vector v = (v0, . . . , vn−1) ∈ Znq , multiplying on the left by the
circulant matrix A results in

AvT =


a0v0 + an−1v1 + an−2v2 + . . .+ a1vn−1
a1v0 + a0v1 + an−1v2 + . . .+ a2vn−1

...
an−1v0 + an−2v1 + an−3v2 + . . .+ a0vn−1

 .

which is the vector of coefficients of the product (v0 + v1x + . . . + vn−1x
n−1)(a0 + a1x +

. . . + an−1x
n−1) as elements of the ring Z[x]/〈xn − 1, q〉. Moreover, given any polynomial

f(x) = f0 + f1x+ . . .+ fnx
n +xn−1 ∈ Z[x], the ring Rq = Z[x]/〈f(x), q〉 has a q-ary lattice

structure given by the matrix
0 0 · · · 0 −f0
1 0 · · · 0 −f1
0 1 · · · 0 −f2
...

...
. . .

...
...

0 0 · · · 1 −fn

 ∈ Zn+1
q .

This structure is known as an ideal lattice.

The ring learning with errors problem is the restriction of the learning with errors
problem to the class of ideal lattices (instead of totally random lattices). The use of this
variant can be traced back to NTRU [21] and no significantly better attacks have been
found to ideal lattices when compared to their totally random counterparts.
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Chapter 4

Fully-Homomorphic Encryption

When we think about encrypted messages we can imagine that the messages are covered
under a cloak that makes the message, and even its “shape”, unrecognizable (which is
what we formally call semantic security). Therefore, being able to successfully manipu-
late encrypted messages without compromising the semantic security of the cryptosystem
may seem paradoxical. However, many widely deployed cryptosystems allow to compute
certain operations on ciphertexts, such as RSA [33], Goldwasser-Micali [18], ElGamal [12]
and LWE [32], although none of these cryptosystems can effectively evaluate arbitrary
(computational) functions. The ones that are able to do so are formally described by the
following definition.

Definition 4.0.1 (Fully-Homomorphic Encryption). Let E = (Setup,KeyGen,Enc,Dec)
be an (either public-key or symmetric-key) encryption scheme. We say that E is fully-
homomorphic if there is a computationally efficient function Eval and a polynomial f such
that, for all parameters λ, for all circuits C of arity t and depth at most f(λ), and for all
messages µ1, . . . , µt, if c1, . . . , ct are their corresponding ciphertexts, then

Eval(ek, c1, . . . , ct) (4.1)

is a valid encryption of C(µ1, . . . , µt), where ek is an evaluation key possibly containing
(encrypted) information about the encryption key.

The existence of a fully-homomorphic encryption scheme would have great theoretical
and practical impact: in theory, many other constructions would become possible by us-
ing a fully-homomorphic encryption scheme, such as functional encryption, obfuscation,
homomorphic signatures, etc. In practice, encrypted data could be sent to an untrusted
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party with high computational power (such as the cloud) and computations on the data
could be outsourced to the third party without revealing any information about the data
or any intermediate result. However, for over 30 years it remained a longstanding open
problem to find a construction satisfying these properties, until in 2009, when Craig Gentry
[15] published the first construction of a fully-homomorphic cryptosystem based on ideal
lattices (ideal lattices are described in Chapter 3).

In this chapter we give an introductory overview of fully-homomorphic encryption,
where we abstractly describe the bootstrapping procedure, which is the main idea be-
hind Gentry’s construction. Moreover, for all existing constructions of fully-homomorphic
cryptosystems, a bootstrapping step is needed and it is the main bottleneck for their per-
formance.

4.1 Homomorphic Encryption

In algebra, a homomorphism between two algebraic structures G and H is a function
f : G −→ H that “preserves their corresponding structure”. For example if G and H
are groups, then a homomorphism is a function that preserves the group operation: for
g, g′ ∈ G, computing gg′ (as an element of G) and then computing f(gg′) is equivalent to
computing f(g) and f(g′), and then f(g)f(g′) (as elements of H).

The word “homomorphism” has a different meaning depending on the context in which
it is used. A group homomorphism from G to H is a function f : G −→ H with the property
described above (for all g, g′ ∈ G, f(gg′) = f(g)f(g′)). There are several examples of
cryptosystems for which the encryption function is a group homomorphism. For example,
the RSA encryption function is a homomorphism from Z∗n onto itself since, for all µ, µ′ ∈ Z∗n

Enc(µµ′) = (µµ′)
e

= µeµ′e = Enc(µ)Enc(µ′).

Nevertheless, the message and ciphertext spaces can have more complicated structures.
For instance consider the following cryptosystem

KeyGen: Choose n ∈ 2Z + 1 a large random odd integer. For i ∈ {1, . . . ,m} let
ki = ain+ 2ri, where ai, ri ∈ Z are random integers such that |ri| < n

2l
. The secret key

is sk = n, and the public key is pk = {ki}i∈{1,...,m}.

Encryption: Given a message µ ∈ {0, 1}, choose a random bit string s1 . . . sm and
output

c =
∑m

i=1 siki + µ
= n

∑m
i=1 siai + 2

∑m
i=1 siri + µ.
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Decryption: Given a ciphertext c ∈ Z, compute

c̃ = c (mod n)
= 2r + µ,

where r =
∑m

i=1 ri. Then µ can be recovered by computing LSB(c̃).

The correctness of the scheme follows from the fact that |ri| < n
2l

. It is also easy to see
that, given some extra conditions on the size of ri, the encryption function is a ring homo-
morphism. Suppose that |ri| < n

4l
, let µ, µ′ ∈ Z2, and let c, c′ ∈ Z be their corresponding

encryptions. Then we have that

c+ c′ =
(∑m

i=1 siki + µ
)

+
(∑m

i=1 s
′
iki + µ′

)
= n

∑m
i=1

(
si + s′i

)
ai + 2

∑m
i=1

(
si + s′i

)
ri + µ+ µi,

which is a valid encryption of µ + µ′ since 2
∑m

i=1(si + s′i)ri < n. Multiplication works in
a similar manner, but the required bound on |ri| is much more restrictive.

c · c′ =
(∑m

i=1 siki + µ
)
·
(∑m

i=1 s
′
iki + µ′

)
=

(
n
∑m

i=1 siai + 2
∑m

i=1 siri + µ
)
·
(
n
∑m

i=1 s
′
iai + 2

∑m
i=1 s

′
iri + µ′.

)
= sn+ 4

(∑m
i=1 siri

)(∑m
i=1 s

′
iri
)

+ 2µ
∑m

i=1 s
′
iri + 2µ′

∑m
i=1 siri + µµ′

= sn+ 4
∑m

i=1

∑m
j=1 risirjs

′
j + 2

∑
(µ′risi + µris

′
i) + µµ′.

Therefore, it is necessary that |ri| < k
√
n for some constant k < 1.

Even if the protocol is designed with these bounds on the “noise”, this noise grows
too fast with every multiplication, making the homomorphic operations unsustainable
(in constrast with RSA, that can homomorphically evaluate any number of multiplica-
tions). A cryptosystem like the one described above is called somewhat homomorphic
since, even though it can successfully evaluate both ring operations, the number of op-
erations is bounded by a constant (that, in this case, depends on the parameters of the
cryptosystem). The depth capacity of a homomorphic encryption scheme E is the largest
integer ∆ such that E can evaluate all circuits of size less than or equal to ∆.

Symmetric-Key vs Public Key In the context of homomorphic encryption there
is no theoretical difference between symmetric-key and public-key encryption. In 2011,
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Rothblum [35] proved that a homomorphic cryptosystem with big enough depth capac-
ity can be easily transformed into a public-key encryption scheme by a generic oper-
ation that uses the fact that the cryptosystem can evaluate sums and products. Let
E = (KeyGen,Enc,Dec,Eval) be a symmetric-key homomorphic encryption scheme and
suppose that the message space is {0, 1}. To get a public-key encryption scheme, the
private key σ and the decryption algorithm Dec stay the same.

Public Key: Sample k random bits b1, . . . , bk and compute

ci ← Enc(σ, bi).

The public key is the list
pk =

(
(b1, c1), . . . , (bk, ck)

)
.

Encryption: Given a message µ ∈ {0, 1}, sample a bit string ρ = ρ1 . . . ρk such that∑k
i=1 ρibi = µ. Output the ciphetext

c =
∑k

i=1 ρici
=

∑k
i=1 ρiEnc(σ, bi)

= Enc
(
σ,
∑k

i=1 ρibi

)
= Enc(σ, µ).

The cryptosystems that we present in the rest of the thesis are all symmetric-key
encryption schemes, since they are generally easier to describe. However, all of them can
be easily transformed into public-key schemes.

Universal sets of gates In this section we have been describing the intuition of what
a homomorphic cryptosystem is: one that can effectively evaluate a family of circuits (for
instance, the product of elements in Z∗n). We also defined a fully-homomorphic cryptosys-
tem as one that can effectively evaluate any arbitrary circuit. Nevertheless, we have been
treating them as schemes that can effectively evaluate any number of additions and mul-
tiplications. The formal definition suggests that, in order to prove that a cryptosystem is
fully-homomorphic, we have to prove that we can evaluate any list of gates, and for that
we would have to classify all possible gates. However, there is an easier way to solve this
problem by describing a set of atomic elements. For that we first introduce the following
definition.
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Definition 4.1.1 (Universal Set of Gates). A set of boolean gates S is called universal if
for any truth table T there exists a circuit C with elements in S such that C has T as truth
table.

Since every computational function is a binary function, we have that all computational
functions can be computed by a circuit with elements in a universal set. We may think
that finding a universal set of gates is hard; however, there are several examples of such
sets, some of which are very simple.

Definition 4.1.2 (NAND and NOR Gates). Let µ1, µ2 ∈ {0, 1}. The NAND function
µ1

Yµ2 of µ1 and µ2 is the function defined by

NAND(µ1, µ2) = µ1

Yµ2 = 1− µ1µ2. (4.2)

The NOR function µ1 Y µ2 of µ1 and µ2 is the function defined by

NOR(µ1, µ2) = µ1 Y µ2 = 1− µ1 − µ2 + µ1µ2. (4.3)

Theorem 4.1.3. The sets {NAND} and {NOR} are universal.

Using the definition that we give of NAND and NOR, it is immediate to see that those
gates can be effectively computed using addition and multiplication gates. Then by the
previous theorem we have that it is equivalent to describe fully-homomorphic encryption
using additions and multiplications or using any other universal set of gates.

4.2 Gentry’s Bootstrapping Procedure

Several constructions exist of cryptosystems that can homomorphically evaluate both op-
erations in a ring. However, all of them seem to have the same issue: the “noise” growth
limits the number of operations that can be performed. One possibility is to try to reduce
the noise every time it grows too much. This operation could be performed by decrypting
the message, but that would reveal (the current state of) the message. Gentry introduced
a technique to turn a somewhat homomorphic cryptosystem into a fully-homomorphic sys-
tem. The idea is to reduce the noise of the ciphertext by evaluating the decryption circuit,
but taking advantages of the (somewhat) homomorphic properties of the cryptosystem.
This technique is best known in the literature as bootstrapping. To describe it, we intro-
duce the following definition.
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Definition 4.2.1 (Bootstrappable Encryption). Let E(KeyGen,Enc,Dec) be a somewhat
homomorphic encryption scheme and let D be a minimal circuit that computes the de-
cryption function. We say that E is bootstrappable if its depth capacity is strictly greater
than the depth of D.

Definition 4.2.2 (The Bootstrapping Procedure). Let E(KeyGen,Enc,Dec) be a boot-
strappable encryption scheme and let D be the decryption circuit corresponding to Dec.
Let σ0, σ1 be two secret keys and let σbs = Enc(σ1, σ0) be an encryption of σ0 under σ1.
The bootstrapping procedure takes as input a ciphertext c0 encrypting a message µ under
the key σ0 and the bootstrapping key σbs, and computes c1 using Algorithm 2.

Algorithm 2: The bootstrapping procedure

Input : Bootstrapping key σbs, ciphertext c0
Output: ciphertext c1
c′ ← Enc(σ1, c0);
c1 ← Eval(D, σbs, c′);
return c1;

Note that the output of the Algorithm 2 is a ciphertext c1 given by

c1 ← Eval(D, σbs, c′) = Eval
(
D,Enc(σ1, σ0),Enc(σ1, c0)

)
= Enc

(
σ1,Dec(σ0, c0)

)
= Enc(σ1, µ).

Note that the algorithm Eval increases the noise of Enc(σ1, c0), however, since the depth
of D is less than the capacity of the cryptosystem, the noise added by Eval is smaller than
the noise of c0. Under these conditions we can say that the bootstrapping procedure is
correct (assuming that c0 has the maximum decryptable noise).

Given a bootstrappable encryption scheme, there is still not an obvious way to turn it
into a fully-homomorphic scheme. One possibility is to store a list of keys and publish a list
of bootstrapping keys, but in order to evaluate a circuit it is necessary to know its depth
beforehand to have the number of keys necessary to reach the required depth capacity.
Such a scheme is called leveled homomorphic.

However, Gentry’s solution just requires a finite set of keys. The idea is to “recycle the
keys”. More formally, given a sequence of encryption keys

(σ1, σ2, . . . , σk),
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publish the sequence of bootstrapping keys

(σ
(1,2)
bs , . . . , σ

(k−1,k)
bs , σ

(k,1)
bs ),

where σ
(i,j)
bs = Enc(σj, σi). This gives the scheme the capacity to evaluate circuits of arbi-

trary depth, but requires the assumption that giving away this collection of bootstrapping
keys does not convey any information about the keys. Such an assumption is fairly non-
trivial, since the list of bootstrapping keys is a circular encryption of the keys that are used
for encryption. This assumption is called the circular assumption.

Theorem 4.2.3. Under the circular assumption, if there exists a bootstrappable encryption
scheme that can effectively evaluate a universal set of gates, then there exists a fully-
homomorphic encryption scheme.
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Chapter 5

Ducas-Micciancio LWE-Based
Fully-Homomorphic Cryptosystem

Since the first construction of a fully-homomorphic encryption scheme in 2009, several
other schemes have been invented with the purpose of improving security and, primarily,
efficiency. The main bottleneck in the design of all current fully-homomorphic encryption
schemes is the bootstrapping step, since it requires the homomorphic evaluation of the
decryption circuit every time the ciphertext has too much noise (which can potentially
be every time a single operation is performed). Many constructions were mainly centered
around making the depth capacity of the cryptosystem as large as possible, to reduce the
amortized cost of the bootstrapping per operation. This approach, in general, requires a
robust cryptosystem, which very likely has a complex decryption algorithm. In 2015, Ducas
and Micciancio [11] approached the problem in a different way. Their idea was to use a
lightweight encryption scheme with a small decryption circuit. This scheme would probably
not be able to perform the bootstrapping on its own (because the depth capacity might
be too shallow), so a different and more robust encryption scheme is used to evaluate the
decryption circuit, to then be collapsed to an encryption of the message under the original
encryption scheme. This lightweight bootstrapping is performed after every “non-free”
operation, offering the highest possible granularity.

In this chapter we describe in detail the Ducas-Micciancio encryption scheme. We start
by giving the necessary mathematical background. Many of the statements and results
in Section 3.1 are given in a generalized way, so as to use them in the following chapters.
In Section 5.2 we describe a bootstrapping procedure for LWE called the homomorphic
accumulator. We dedicate the rest of the chapter to describing in detail the construction.
It is helpful to see Figure 5.1 for a graphic description of the idea.
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Figure 5.1: High level description of the Ducas-Micciancio cryptosystem

LWEψt:q(s,m)
Gate

LWEψt′:q(s,m
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′)

5.1 Computing the NAND Gate

By Theorem 4.2.3 it is enough for a bootstrappable encryption scheme to be able to effec-
tively evaluate a universal set of gates (such as {NAND} and {NOR}) in order to turn it
into a fully-homomorphic scheme. For expository reasons, Ducas and Micciancio centered
the construction given in [11] around evaluating the NAND gate. However, as we explain
in Section 5.5, their idea can be easily adapted to efficiently evaluate other sets of gates.

The idea starts with the following observation: given two bits µ1, µ2 ∈ {0, 1}, it is
possible to recover complete information about µ1

Yµ2 from µ1+µ2 when they are regarded
as elements of a bigger group, say Z4 instead of Z2 since

µ1

Yµ2 = 1 ⇔ µ1 + µ2 ∈ {0, 1}
µ1

Yµ2 = 0 ⇔ µ1 + µ2 ∈ {2}.

Nonetheless, the left-hand side is still a boolean value (an element of Z2), while now the
right-hand side is an element of a bigger set.

The next step consists of modifying the definition of the bootstrapping procedure de-
scribed in 4.2.2. If the message bits are regarded as elements of Z4 then, by Proposition
3.2.6, the sum of the LWE ciphertexts is an encryption of the sum of the messages (pro-
vided that certain bounds on the noise are satisfied). Then, after a small transformation,
a natural modulus change allows us to interpret the information as the result of evaluating
the NAND gate on the given messages.

The formal statement and the proof are given by the following proposition.

Proposition 5.1.1. [11, Lemma 7] Let r ≥ 4 be a positive integer and let q = 2r. Let

n ∈ Z+ and let s ∈ Znq . For i ∈ {0, 1} let mi ∈ {0, 1} and ci = (ai, bi) ∈ LWE
q
16
4:q(s,mi).
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Then the pair

homNAND(c0, c1) :=

(
−a0 − a1,

5q

8
− b0 − b1

)
(5.1)

is an element of LWE
q
4
2:q(s,m1

Ym2).

Proof. Let a = −a0 − a1 and b = 5q
8
− b0 − b1. Let e0 = εµ,s(c0) and e1 = εµ,s(c1). Recall

that m0

Ym1 = 1 − m0m1. Then it is enough to prove that the corresponding error is
bounded by q

4
. We have that

(m0 −m1)
2 = m2

0 − 2m0m1 −m2
1.

Then, since m0,m1 ∈ {0, 1},

m0m1 = − (m0−m1)2−m2
0−m2

1

2

= − (m0−m1)2−m0−m1

2
.

Note that the previous calculations hold over the rationals. Using this we have that

b− 〈a, s〉 − (m0
Ym1) = b− 〈a, s〉 − (1−m0m1)

=
(
5q
8
− b0 − b1

)
− 〈−a0 − a1, s〉 − q

2
(1−m0m1)

= q
2

(
5
4
− 1 +m0m1

)
− (〈a0, s〉 − b0)− (〈a1, s〉 − b1)

= q
2

(
1
4
− (m0−m1)2

2

)
− (〈a0, s〉 − b0 − m0q

4
)− (〈a1, s〉 − b1 − m1q

4
)

= q
2

(
1
4
− (m0−m1)2

2

)
− e0 − e1

= (−1)m0+m1 q
8
− (e0 + e1).

Therefore homNAND(c0, c1) = (a, b) is a valid ciphertext for LWEψ2:q
q
4
(s,m0

Ym1).

5.2 Homomorphic Accumulator as a Bootstrapping

Technique for LWE

The decryption algorithm for LWE, as described in Definition 3.2.4, is computationally
very simple. To decrypt a ciphertext (a, b) we need to compute the inner product between
a and the secret key s (which involves n multiplications and n − 1 additions modulo q).
Then we subtract the result from b, and then we perform a (rounding) scale back to the
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message modulus. However, the homomorphic properties of LWE itself are not enough
to evaluate its own decryption circuit. To do so, Ducas and Micciancio used an alternate
procedure to the original bootstrapping described by Gentry [15]. Instead of using the
cryptosystem to evaluate its own decryption circuit, they use a different and more robust
encryption scheme, and the resulting ciphertext is then collapsed back to LWE.

The following definition outlines this procedure in an abstract setting. Naturally, a
homomorphic accumulator requires key material. To have some control over how much
material must be stored, the accumulator is parameterized by a base Br < q in which
elements a ∈ Zq are expressed, and dr =

⌈
logBr q

⌉
. Under these parameters, the encryption

key s = (s1, . . . , sn) is hidden in the refreshing key as follows

Kr =
{
E
(
usiB

j
r (mod q)

)
: u ∈ {0, . . . , Br−1}, j ∈ {0, . . . , dr−1}, i ∈ {1, . . . , n}

}
. (5.2)

The construction given in [11] is described in the next section.

Definition 5.2.1 (Homomorphic Accumulator). Let n, t, q, Br, dr ∈ Z+ with dr =
⌈
logBr q

⌉
.

Let F be a family of functions evaluated over Zq. A homomorphic accumulator scheme is
a tuple of algorithms

HomAcc = (E , init, incr, collapse)

such that

E: is a homomorphic encryption scheme with Zq as message space.

init: takes as input an element a0 ∈ Zq and initializes the variable Acc.

incr: takes as input the current value of Acc and an E-encryption of some element
a′ ∈ Zq and outputs an updated value of Acc.

collapse: takes as input the current value of Acc and a function f ∈ F , and outputs
an element c ∈ Zn+1

q .

Correctness: Let e : Z+ −→ Z+ be an error function. A homomorphic accumulator is
e-correct if for all (a1, . . . , an) ∈ Znq and for all functions f ∈ F we have that the refresh
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procedure described below, outputs a vector c ∈ LWE
e(n)
t:q

(
s, f(v)

)
, where v = a0 +

∑n
i=1 ai.

Algorithm 3: The refresh procedure

function Refresh(a0, {E .Enc(ai) : 1 ≤ i ≤ n})
1 Acc← init(a0);
2 for i ∈ {1, . . . , n} do

3 Compute ai,1, . . . , ai,dr such that −ai =
∑dr

j=0 ai,jB
j
r ;

4 for j ∈ {1, . . . , dr} do
5 Acc← incr(Acc, E(ai));

6 c← collapse(Acc);
7 return c;

Note that the definition of homomorphic accumulator that we give here generalizes the
one given by Ducas and Micciancio [11]. In that paper they fixed fix F to be the set
containing only the function MSB : Zq → {0, 1}, the most significant bit function. In this
case we call msbExtract the collapsing function that only takes that function as input. This
functionality is enough for them to prove the following result.

Theorem 5.2.2. [11, Theorem 1] Suppose that HomAcc = (E , init, incr,msbExtract) is a

correct homomorphic accumulator scheme. Let (a, b) ∈ LWE
q
4
2:q(s, µ) and let Kr =

{
E(ai,j) :

i ∈ {1, . . . , n}
}

. Then the msbExtract procedure outputs an LWE encryption of MSB(v).

Proof. From the definition of correctness, it is enough to prove that the refresh procedure
outputs an encryption of MSB(v). Suppose that e is the error of (a, b). Then b− 〈s, a〉 =
q
2
µ+ e. Therefore

v = b+ q
4

+
∑n

i=1

∑dr−1
j=0 ai,jsiB

j
r

= b+ q
4

+
∑n

i=1 si
∑dr−1

j=0 ai,jB
j
r

= b+ q
4
−
∑n

i=1 siai
= b− 〈s, a〉
= q

2
µ+ e+ q

4
.

Since |e| ≤ q
4

we have that 0 ≤ e+ q
4
< q

2
. Hence v is such that

v ∈
{ (

0, q
2

)
if µ = 0(

q
2
, q
)

if µ = 1.

Therefore it is enough to identify the most significant bit of v.
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5.3 GSW Construction

The definition of the homomorphic accumulator (Definition 5.2.1) requires an encryption
scheme with homomorphic properties for the increasing loop (step 3 of Algorithm 3).
In this section we describe a homomorphic encryption scheme which is a variant of the
construction given by Gentry, Sahai and Waters in [16].

The idea is to embed the LWE instance in a bigger group containing Zq as subgroup.
Suppose the message modulus of the LWE instance is 2, the ciphertext modulus is q =
2d1 , and the dimension is m. Let 2d = n > q. The bigger group to be used is the
multiplicative group of the ring R = Z[x]/

(
x
n
2 + 1

)
. The subgroup isomorphic to Zq is

the group generated by a qth root of unity, which is given by y = x
n
q . Recall that the

polynomial x
n
2 + 1 is the cyclotomic polynomial Φn(x) (since n is a power of 2). See

Proposition 3.1.4.

Since Zq is identified with a multiplicative group, we need to give an efficient way to
homomorphically compute the multiplication of messages (this is the reason why a variant
of the GSW encryption scheme is convenient for this application). We start by defining the
main components of the construction. The reader may prefer to go straight to Definition
5.3.4, and leave Definitions 5.3.1-5.3.3 only as reference.

Definition 5.3.1 (Bg Decomposed Form of a Matrix). Let l, Bg ∈ Z+ with Bg < l and let

dg =
⌈
logBg l

⌉
. Let M ∈ R2dg×2

l . The Bg-decomposed form of M is the matrix

DecompBg (M) =
[
M(0)

∣∣M(1)
∣∣· · ·∣∣M(dg−1)

]
∈ R2dg×2

l (5.3)

such that
dg−1∑
i=0

M(i)dig = M.

Definition 5.3.2 (The ∗ Operation of Matrices). Let l, Bg ∈ Z+ with Bg < l and let dg =⌊
logBg l

⌋
. Let M1,M2 ∈ R2dg×2

l . We define the operation ∗ : R
2dg×2
l × R2dg×2

l −→ R
2dg×2
l

by
∗ (M1,M2) = M1 ∗M2 = DecompBg (M1) M2. (5.4)

Definition 5.3.3 (Gadget Matrix). Let l, Bg ∈ Z+ with Bg < l and let dg =
⌊
logBg l

⌋
.

Let I be the identity matrix in R2×2. The gadget matrix GBg is the matrix

GBg =
[
I
∣∣BgI

∣∣· · ·∣∣Bdg−1
g I

]T
. (5.5)
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Definition 5.3.4 (Bootstrapping Encryption Scheme). Let q, l, p, d, h ∈ Z+ with p a prime

number, l ≥ q, pd | q and h ∈ Z∗l ∩
{⌊

l
2t

⌋
,
⌈
l
2t

⌉}
1. Let y = x

pd

q ∈ Rq. Given a message

v ∈ Zq and a secret key σ ∈ Rq, sample ααα ← R
2dg
q uniformly at random and εεε ← R

2dg
q

according to a probability distribution ψ

Enc(σ, µ) = (ααα, σααα + εεε) + hyvG. (5.6)

Note that by multiplying by the gadget matrix Gbg we can revert the decomposition of
a matrix M since

DecompBg (M) Gbg =
[
M

(0)
1

∣∣∣M(1)
1

∣∣∣· · ·∣∣∣M(dg−1)
1

] [
I
∣∣∣BgI

∣∣∣· · ·∣∣∣Bdg−1
g I

]T
= M

(0)
1 I +BgM

(1)
1 I + · · ·+B

dg−1
g M

(dg−1)
1 I

= M
(0)
1 +BgM

(1)
1 + · · ·+B

dg−1
g M

(dg−1)
1

= M.

Then we have the following remark.

Remark 5.3.5. For any matrix M ∈ R2dg×2, the following identity holds:

DecompBg (M) Gbg = M.

Proposition 5.3.6. Let M1 = [ααα1, σααα1 + εεε1] +η1G and M2 = [ααα2, σααα2 + εεε2] +η2G be two

matrices in R
2dg×2
l . Then M1 ∗M2 is of the form

M1 ∗M2 = [ααα3, σααα3 + εεε3] + η1η2G (5.7)

where εεε3 is given by
Decomp (M1)εεε2 + η2εεε1.

Proof. By definition,

M1 ∗M2 = Decomp (M1) M2

= Decomp (M1)
(

[ααα2, σααα2 + εεε2] + η2G
)

= Decomp (M1) [ααα2, σααα2 + εεε2] + η2Decomp (M1) G.

The term Decomp (M1) [ααα2, σααα2 + εεε2] can be written as the matrix

[Decomp (M1)ααα2|σDecomp (M1)ααα2 + Decomp (M1)εεε2] . (5.8)

1Notice that Z∗
l ∩ {

⌊
l
2t

⌋
,
⌈
l
2t

⌉
is non-empty.

44



On the other hand, by Remark 5.3.5 we have that

η2Decomp (M1) G = η2(M1)
= η2

(
[ααα1, σααα1 + εεε1] + η1G

)
= η2 [ααα1, σααα1 + εεε1] + η1η2G.

(5.9)

Therefore, from Equations 5.8 and 5.9 it follows that

M1 ∗M2 =
[
Decomp (M1)ααα2 + η2ααα1

∣∣∣σ(Decomp (M1)ααα2 + η2ααα1

)
+Decomp (M1)εεε2 + η2εεε1

]
+ η1η2G.

Corollary 5.3.7. Let v1, v2 ∈ Zq and let C1 = [ααα1, σααα1 + εεε1]+y
v1G and C2 = [ααα2, σααα2 + εεε2]+

yv2G be encryptions of v1 and v2. Then C1 ∗C2 is an encryption of v1 + v2 with error

Decomp (C1)εεε2 + yεεε1.

5.4 MSB Test

So far in the chapter we have described the construction of an encryption scheme with ho-
momorphic properties for the purpose of using it in the bootstrapping procedure. However,
there exists a fundamental difference between this approach to refresh a ciphertext and the
one originally described by Gentry [15]: in this case we have to “collapse” the E-ciphertext
encrypting a message v to an LWE-ciphertext that encrypts the message µ = MSB(v). To
explain the idea we first introduce some notation.

Notation 5.4.1. For α = a0 + a1x+ . . .+ a2d−1−1x
2d−1−1 ∈ Rl, we denote by −→α the vector

−→α = (a0, a1, . . . , a2d−1−1) ∈ Z2d−1

l . (5.10)

We can also characterize α by the linear functional Lα : R → R that results from multi-
plying by α. We denote by

=⇒α ∈ Z(2d−1)×(2d−1)
l (5.11)

the matrix associated to Lα with respect to the standard basis.
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The idea behind the “collapsing” process starts with the following fact (which can be
directly derived from Corollary 3.1.5): for i ∈ {0, . . . , 2d− 1}, the vectors associated to the

powers of x in R = Z[x]/
(
x2

d−1
+ 1
)

−→
xi =

{
ei+1 if i ∈ {0, . . . , 2d−1 − 1},
ei−2d−1+1 if i ∈ {2d−1, . . . , 2d − 1}.

Moreover, the sum of the entries of
−→
xi is constant on each of these intervals, and can be

easily recovered by computing the inner product with the MSB-test vector given by

tMSB = −(1, 1, . . . , 1) ∈ Z2d−1

l . (5.12)

Then we have that 〈
tMSB,

−→
xi
〉

+ 1 =

{
0 if i ∈ {0, . . . , 2d−1 − 1},
2 if i ∈ {2d−1, . . . , 2d − 1}, (5.13)

in other words 〈
tMSB,

−→
xi
〉

+ 1 = 2 MSB(i). (5.14)

The second observation is that if C ∈ R2dg×2 is an E-encryption of v ∈ Zq, then the
second row of C is of the form

[α, ασ + hyv + ε]. (5.15)

This follows directly from Definition 5.3.4.

Finally, observe that

〈tMSB,
−→ασ〉 =

〈
tMSB,

=⇒α−→σ T
〉

= tMSB

(
=⇒α · −→σ T

)
=

(
tMSB ·=⇒α

)−→σ T

=
〈
tMSB

=⇒α , −→σ
〉
.

Note that this equality is independent of the form of tMSB. This proves the following
remark.

Remark 5.4.2. For all v ∈ Z2d−1

l and for all α, σ ∈ Rl,〈
v, −→ασ

〉
=
〈
v=⇒α , σ

〉
. (5.16)
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Definition 5.4.3 (MSB Test). Let n, l ∈ Z+ and let h as in Definition 5.3.4. The MSB-test
is the algorithm that takes as input a matrix C ∈ R2dg×2 and the test vector tMSB, and
computes the following.

Algorithm 4: The MSB test

Input : Matrix C ∈ R2dg×2, test vector tMSB.
Output: Vector c̃ = (ã0, . . . , ãn−1, b) ∈ Zn+1

l .
1 α1 ← C[0, 1];
2 α2 ← C[1, 1];
3 (ã0, . . . , ãn−1)← tMSB ·=⇒α1;
4 b← 〈tMSB,

−→α2〉+ h;
5 return (ã0, . . . , ãn−1, b);

Proposition 5.4.4. Let v ∈ Zq and let C ∈ R2dg×2 be an encryption of v under the
bootstrapping encryption scheme (see Definition 5.3.4). Then the MSB test, on input C

and the test vector tMSB outputs an LWEψ
′

4:l encryption of the most significant bit of v.

Proof. From the Remark 5.4.2 we have that 〈tMSB,
−→α 〉 =

〈
tMSB · =⇒α , σ

〉
. From this and

equations 5.14 and 5.15 we have that the output of Algorithm 4 is of the form(
a, 〈a, σ〉+ h

(
2 MSB(v)− 1

)
+ h+ 〈tMSB, ε〉

)
where a = tMSB ·=⇒α . Then, since h ≈ l

2t
, this output is an LWE encryption of MSB(v).

Proposition 5.4.5. Assuming that the Ring-LWE problem is hard on Rl, then the homo-
morphic accumulator scheme defined above is ε-correct, where

ε(k) =

√
Nq2

l2

(
θ2g · k · q ·B2

g · dg + θ2ks · dks
)

+ |bs|2 · ω
√

log n.

The proof of this proposition can be found in [11]. It requires to first study the evolution
of the error after every step of the homomorphic accumulator to bound the final noise after
the MSB test.

5.5 Other Gates

In Section 5.1 we described a new way to homomorphically compute the NAND gate
introduced by Ducas and Micciancio [11]. Since the NAND gate is universal, this is enough

47



for the cryptosystem to be fully-homomorphic (see Definition 4.1.1). However, other gates
can be efficiently computed and refreshed by the homomorphic accumulator using a similar
technique.

We skip the proof of the following theorem since it is analogous to the proof of Theorem
5.1.1.

Theorem 5.5.1. Let r ≥ 4 be a positive integer and let q = 2r. Let n ∈ Z+ and let s ∈ Znq .

For i ∈ {0, 1} let µi ∈ {0, 1} and ci = (ai, bi) ∈ LWE
q
16
4:q(s, µi). Then the pair

homAND(c0, c1) =
(
a0 + a1,

q

8
− b0 − b1

)
(5.17)

is an element of LWE
q
4
2:q(s, µ1

∨

µ2). Similarly, the pair

homNOR(c0, c1) =

(
−a0 − a1,

3q

8
− b0 − b1

)
(5.18)

is an element of LWE
q
4
2:q(s, µ1 Y µ2).

One interesting circuit to implement is the add-and-carry circuit (which will be com-
puted with a single gate in the next section). Since the NAND gate is universal it is
possible to construct the add-and-carry circuit using only NAND gates, but it would take
at least 9 of them. Using NOT, NOR, OR and AND it is possible to construct a circuit
using only 7 gates, which significantly reduces the running time.
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Chapter 6

Homomorphic Accumulator for
Multi-Bit Bootstrapping

In Chapter 5 we described in detail a fully-homomorphic cryptosystem based on LWE.
The construction was given by Ducas and Micciancio [11] in 2015, and it has the novelty
of having a very low-cost bootstrapping procedure that is applied after every gate. It
offers the best possible level of granularity and it has the advantage that it frees the user
from having to calculate where to perform the bootstrapping operation. The cryptosystem
has, however, some disadvantages: it provides a very limited family of gates that can be
bootstrapped by their method called the homomorphic accumulator. In [11] the authors
only describe a way to perform the operation after the NAND gate. However, we showed in
Section 5.5 it can be easily modified to refresh the ciphertext after other gates are applied,
such as NOT, AND and NOR.

In this chapter we introduce a generalization of the homomorphic accumulator used by
Ducas and Micciancio in [11] to perform bootstrapping. We use the special representation
of the cyclotomic polynomial Φp(x), where p is a prime, given in Proposition 3.1.4, to
compute a generalization of the MSB test described in Section 5.4, which can be seen as
a “set-membership” test. This generalization allows us to homomorphically compute the
bits corresponding to a message from Zp. Using the computation of the separate bits of a
message and the homomorphic properties of LWE described in Section 3.2, we can perform
the bootstrapping operation after any arbitrary circuit.

To understand the content of this chapter we assume that the reader has basic knowl-
edge of Chapter 5 or [11]. However, we warn the reader of a change of notation between
[11] and this work. The results in this chapter previously appeared in a paper by Biasse
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and Ruiz [4].

6.1 General Set-Membership Test

The core of our construction is a generalization of the MSB test (see Definition 5.4.3). The
MSB test is used as the msbExtract procedure in the GSW construction to collapse an E-
encryption of an element v ∈ Zq into an LWE-encryption of MSB(v). For our generalization
we use a wider family of functions that allows us to refresh LWE-ciphertext encrypting
messages in Zp.

Definition 6.1.1 (Characteristic Function). Let S be a set and S ′ ⊆ S. The characteristic
function χS′ : S → {0, 1} is the function defined by

χS′(s) =

{
1 if s ∈ S ′
0 otherwise.

Suppose that n is even. Then the MSB function can be seen as the characteristic
function

MSB(v) = χ{n
2
,...,n−1}(v)

for v ∈ {0, . . . , n − 1}. This family of functions is enough to recover the message given
the homomorphic properties of the LWE encryption: suppose that we want to refresh an
LWE ciphertext (a, b) encrypting a message µ ∈ Zp, and assume we can obtain, after
the “increasing” loop in the refreshing procedure (Algorithm 3) the LWE encryptions
c0, . . . , cp−1 of χ0(µ), . . . , χp−1(µ), respectively. Then using the fact that

µ =

p−1∑
i=1

iχi(µ)

and the homomorphic properties of LWE (Proposition 3.2.6), we have that
∑p−1

i=1 ici is an
LWE encryption of µ, provided that some bound on the noise is satisfied.

Recall that the encryption function of LWE maps elements from Zp to Zq using a
(randomized) scaling function and adding some noise. Then the elements of Zq can be
seen as “scaled versions of Zp”, and the characteristic function χi over Zp corresponds to
the characteristic function χS, for some S ⊆ Zq. To collapse an E-encryption of an element
v ∈ Zq into an LWE-encryption of χS(v), we use some special algebraic properties of the
cyclotomic ring Rl.
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Let m = pd, then the cyclotomic polynomial Φm is of the form

Φpd(x) =

p−1∑
j=0

xjp
d−1

.

This implies that the powers of x in Rl “cycle in two different intervals”. More precisely,
if exp : Z→ R maps i 7→ xi, we have beforehand that this function has period m, since x
is an mth primitive root of unity. However, the set {0, . . . ,m− 1} is mapped as follows

0 7→ 1
1 7→ x
2 7→ x2

...
...

...
ϕ(m)− 1 7→ xϕ(m)−1

ϕ(m) 7→ −1− xm
p
− . . .− x(p−2)

m
p

...
...

...

m− 1 = ϕ(m) + p− 1 7→ −x
m
p
−1 − . . .− x(p−1)

m
p
−1.

We then have as a corollary that the vectors associated to the powers of x over Rl are of
the form

−→
xi =

{
ei if i ∈

{
0, . . . , ϕ(pd)− 1 = (p− 1)pd−1 − 1

}
,∑p−2

j=0 ej·pd−1+i if i ∈
{
ϕ(pd) = (p− 1)pd−1, . . . , pd

}
.

The goal is to recover some information about the exponent of x. We can try to do so
by using Remark 5.4.2 as we did for the MSB test in Chapter 5. It is thus natural to look

at the inner product of
−→
xi with the vectors

v0 =

ϕ(n)=(p−1)m
p︷ ︸︸ ︷

(1, . . . , 1︸ ︷︷ ︸
m
p

, 0, . . . , 0) =
∑m

p

k=1 ek,

...
...

...
...

...

vi =

ϕ(m)=(p−1)m
p︷ ︸︸ ︷

(0, . . . , 0︸ ︷︷ ︸
im
p

, 1, . . . , 1︸ ︷︷ ︸
m
p

, 0, . . . , 0) =
∑(i+1)m

p

k=im
p
+1 ek,

...
...

...
...

...

vp−2 = (0, . . . , 0, 1, . . . , 1) =
∑(p−1)m

p

k=(p−2)m
p
+1 ek.

(6.1)
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For i ∈ {0, . . . , p− 2} let

Si =

{
i
m

p
+ 1, . . . , (i+ 1)

m

p

}
(6.2)

be the set of non-zero entries of vi. We then have

〈−→
xi ,vj

〉
=


1 if i ∈ Sj,
0 if i < ϕ(m) and i 6∈ Sj,
−1 if i ∈ {ϕ(m), . . . ,m− 1}.

(6.3)

This calculation would allow us to recover the right information for i ∈ {0, . . . , ϕ(m)− 1},
but it still fails for i ∈ {ϕ(m), . . . ,m− 1}. To fix this shortcoming, note that if

v = (1, . . . , 1) ∈ Zϕ(m)
l , (6.4)

then 〈−→
xi ,v

〉
=

{
1 if i ∈ {0, . . . , ϕ(m)− 1},
−p+ 1 if i ∈ {ϕ(m), . . . ,m− 1}. (6.5)

Putting the equations 6.3 and 6.5 together we have that

〈−→
xi , pvj − v

〉
= p

〈−→
xi ,vj

〉
−
〈−→
xi ,v

〉
=


p− 1 if i ∈ Sj,
−1 if i < ϕ(m) and i 6∈ Sj,
−1 if i ∈ {ϕ(m), . . . ,m− 1}.

(6.6)

Moreover, using −v, by Equation 6.5 we can identify whether or not i ∈ {ϕ(m), . . . ,m−1}
in the same way since

〈−→
xi ,−v

〉
= −

〈−→
xi ,v

〉
. This motivates the following definition.

Definition 6.1.2 (Test Vectors). For i ∈ {0, . . . , p− 2} we define the ith test vector to be

ti = p

(i+1)pk−1−1∑
j=ipk−1

ej

− (1, . . . , 1) .

Using these test vectors, the following definition is a generalization of Algorithm 4.

Definition 6.1.3 (Membership Test). Let n = pd, l ∈ Z+ and let h ∈ Z∗l ∩ {
⌊
l
p·t

⌋
,
⌈
l
p·t

⌉
.

The ith-membership test is the algorithm that takes as input a matrix C ∈ R2dg×2 and the
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test vector ti, and computes the following.

Algorithm 5: The membership test

Input : Matrix C ∈ R2dg×2, test vector ti.
Output: Vector c̃ = (ã0, . . . , ãn−1, b) ∈ Zn+1

l .
1 α1 ← C[0, 1];
2 α2 ← C[1, 1];
3 (ã0, . . . , ãn−1)← tMSB ·=⇒α1;
4 b← 〈tMSB,

−→α 〉+ h;
5 return (ã0, . . . , ãn−1, b);

Note that the inner product given in equations 6.5 and 6.6 is not quite the result
we need. Ideally we would like a test to output 1 if i ∈ Sj and 0 otherwise (as in the
characteristic function). However we can use a trick similar to the one used for the MSB
test in Chapter 5, introducing an invertible factor h ∈ Zl that is close to l

p·t . Observe that{⌊
l
p·t

⌋
,
⌈
l
p·t

⌉}
∩Z∗l is non empty, since no consecutive numbers can have a common divisor.

Proposition 6.1.4. Let v ∈ Zq and let C ∈ R2dg×2 an encryption of v under the boot-

strapping encryption scheme (see Definition 5.3.4). Let h ∈
{⌊

l
p·t

⌋
,
⌈
l
p·t

⌉}
∩ Z∗l and let

i ∈ {0, . . . , p − 1}. Then the membership test, on input an C and the ith test vector ti
outputs an LWE-encryption of χSi(v).

Proof. Using Equation 6.6, the proof is completely analogous to the proof of Proposition
5.4.4.

In the previous proposition, the error is given by 〈ti, ε〉. However, in order to bound it
we first have to describe the evolution of ε on every step of the accumulator.

Lemma 6.1.5 (Norm of Decomposed Matrices). Let D(i) =
[
D1| · |Ddg

]
where h−1Acc(i) =∑dg

i=1B
j
gDj. Assume that for i ∈ {1, . . . , dg}, the ciphertext C(i) is computationally indis-

tinguishable from random. Then the bound

S1

[
D(0)| . . . |D(k)

]
= O

(
Bg

√
N · dg · k

)
(6.7)

on the singular norm holds with overwhelming probability for any function k ≥ ω(
√

log n).

Proof. The proof is analogous to the proof of Fact 2 of [11].
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Table 6.1: Truth table of the one-bit full adder
b1 b2 ci s co

0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 0 1
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 1

Lemma 6.1.6 (Intermediate Error of the Collapsing Procedure). Assume the hardness of
Ring-LWE and let Acc be a k-encryption of v ∈ Zq, where q ≥ ω

(√
log n

)
. Then the

ciphertext c defined by the collapsing procedure has an error

ε(c) = O
(
θgBg

√
q · n · dg · k

)
. (6.8)

6.2 Full Adder Gate

Addition of integers is one of the fundamental operations performed by computers. An
adder is a circuit that performs addition of numbers. We are particularly interested in the
one-bit full adder, that computes the sum of two one-bit numbers b1, b2 ∈ {0, 1} and an
input carry ci, outputting bits s, co ∈ {0, 1} such that b1 + b2 + ci = 2co + s.

Definition 6.2.1 (One-Bit Full Adder). The one-bit full adder is the circuit that takes 3
bits as input b1, b2, ci and outputs two bits s, co, according to Table 6.2.1.

There are several possible implementations of the full-adder circuit using boolean gates.
Moreover, since the NAND gate is universal, it is possible to implement the full-adder using
only NAND gates. The minimal possible implementation of such a circuit is described in
Figure 6.2.

By using a large enough modulus together with the membership tests, it is possible to
implement the full adder circuit in one single gate running the homomorphic accumulator
just once, thus bootstrapping more than one bit at the time and (potentially) reducing the
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Figure 6.1: Full adder with NAND gates

running time compared to an implementation using only NAND gates.

Algorithm 6: Homomorphic full adder gate

Input : LWEψs:t/q(b1), LWEψs:t/q(b2), LWEψs:t/q(c)

Output: LWEψs:t/q(b3), LWEψs:t/q(c
′), digit and carry of b1 + b2 + c

1 (a, b)← LWEψs:t/q(b1) + LWEψs:t/q(b2) + LWEψs:t/q(c) ;

2 Call Algorithm 3 on (a, b) = LWEψs:t/q(µ) ;

3 LWEψz:t/Q(c)← LWEψs:t/Q(χ{2,3}(µ)) ;

4 LWEψz:t/Q(b3)← LWEψz:t/Q(χ{0,1}(µ)) ;

5 Switch key and modulus on LWEψz:t/Q(b3), LWEψz:t/Q(c) ;

6 return LWEψs:t/q(b3), LWEψs:t/q(c) ;
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Chapter 7

Implementation and Benchmarks

In [11], Ducas and Micciancio reported on an implementation of their encryption scheme.
This implementation is special for two main reasons: it is simple and short (taking just a
few hundred lines of code), and it performs a complete bootstrapping procedure in less than
a second. Although the amortized cost-per-operation is not yet faster than that reached by
other implementations [19], the theoretical and practical importance of the cryptosystem is
undeniable. The code of Ducas and Micciancio is a C++ implementation available online.
Most of the routines are original, using only the help of the FFTW 3 library to carry out
the polynomial multiplications.

We modified their code to improve its performance and extend its capabilities. Using
the OpenMP library, we parallelize the most expensive operation, improving the running
time of the algorithm by roughly 4 times, allowing further parallelization by the user when
constructing circuits and giving the possibility of running time improvements by modifying
the parameters of the homomorphic accumulator.

In this chapter we explain the main details of the original implementation given by
Ducas and Micciancio, and the improvement that we gave which also has the ability to re-
fresh LWE ciphertext encrypting messages in Zp using the techniques explained in Chapter
6. We conclude the chapter with comparative benchmarks of both cryptosystems.
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7.1 Fast Fourier Transform and Polynomial Multipli-

cation

The homomorphic accumulator is a bootstrapping procedure used to refresh LWE cipher-
texts. In Chapters 5 and 6 we described a realization of this procedure using an encryption
scheme based on Ring-LWE. In Algorithm 3 several polynomial multiplications are required
when implemented with the homomorphic accumulator defined in Section 5.3. However,
carrying out multiplications in the naive way requires a quadratic number of operations.
An optimized way to multiply polynomials is to use a fast Fourier transform algorithm.
To understand how this algorithm helps to compute polynomial multiplications, we first
explain what the discrete Fourier transform is.

Definition 7.1.1 (Discrete Fourier Transform). Let ω1, . . . , ωm ∈ C be a sequence of
complex numbers. The discrete Fourier transform is the sequence{

Xk =
n−1∑
j=0

ωj · e−2πi
jk
n : for k ∈ Z

}
.

It is easy to see that the sequence is periodic, and in fact actually determined by the first
n terms. Hence, the Fourier transform can be seen as an (invertible) linear transformation
Fn : Cn −→ Cn. In fact, the matrix associated to this linear function is the Vandermonde
matrix

MFn =


1 ζ1 ζ21 · · · ζn−11

1 ζ2 ζ22 · · · ζn−12

1 ζ3 ζ23 · · · ζn−13
...

...
...

. . .
...

1 ζn ζ2n · · · ζn−1n

 .

Note that if α(x) = a0 + a1x+ . . .+ anx
n, then multiplying the vector (a0, . . . , an)T on the

left by the matrix MFn is equivalent to compute the image of α under the canonical embed-
ding (see Equation 3.6). Therefore, once the Fourier transform is computed, polynomial
multiplication is transformed to component-wise multiplication (see Equation 3.7)

A fast Fourier transform is an algorithm that computes the discrete Fourier transform,
the most common being the Cooley-Tukey algorithm, whose running time is O(n lnn).
The details of the Cooley-Tukey algorithm are out of the scope this thesis, but they can
be found in [8].
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The fast Fourier transform implementation that is used by Ducas and Micciancio in the
implementation of their cryptosystem, as well as in our code, is the FFTW3 library, which
is specially optimized for powers of 2 (due to the nature of the Cooley-Tukey algorithm).
However, the performance of this implementation remains acceptable if the dimension of
the problem is of the form 2a3b5c7d11e13f , where e+ f ∈ {0, 1} [13].

7.2 Use of OpenMP

The Ducas-Micciancio cryptosystem [11] was the first construction to report a complete
bootstrapping procedure in less than a second. However, since this operation has to be
performed right after (almost) every gate is computed, the amortized cost makes the im-
plementation impractical to use in most real-world situations. After profiling of the given
code, it is clear that most of the computing time is spent on the bootstrapping step (which
is expected), particularly, more than 99% of the computing time is spent on the “increasing
loop” (step 2 of Algorithm 3) that calls the incr function every time ai,j in the decomposi-
tion

−ai =

dg−1∑
j=0

ai,jB
j
g

is non zero. Recall that the incr function constructed in Section 5.3 consists of decomposing
the current value of Acc and multiplying by the bootstrapping key corresponding to
ai,j (see definitions 5.2.1 and 5.3.2). The matrix multiplication step can be parallelized
into as many threads as the dimension of the square matrix (the decomposed for of the
accumulator), which is 2dg (see Definition 5.3.1).

To parallelize the incr routine we used OpenMP. After several experiments we realized
that the most efficient tool for this purpose is parallel sections. We assigned each row
multiplication to a different section, whose computation is carried out by one individual
thread.

7.3 Benchmarks

In this section we present comparisons of the efficiency of the two encryption schemes
in the case of the full adder circuit, and the influence that parallelization has on the
implementation.
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In Table 7.1 we present the computation time for the implementation of the Ducas-
Micciancio cryptosystem [11] described in Chapter 5 when the incr step of the homomorphic
accumulator is parallelized into several threads. In our experiments, a single matrix multi-
plication is roughly 4 times faster when the computation is divided into 6 threads. In the
table we can observe a similar speedup on the overall computation time of the cryptosys-
tem (that includes encryption, homomorphic computation of NAND, bootstrapping and
decryption).

Table 7.1: Influence of parallel computation on the NAND gate
Number of threads 1 2 3 4 5 6

CPU time (sec) 1.5446 0.7504 0.6913 0.6761 0.5941 0.4176

In Table 7.2 we present the computation time for our cryptosystem when the full-adder
is evaluated, and how the performance is improved when the same increasing procedure
is divided into several threads and how it is compared to the implementation of the same
circuit using only NAND gates as showed in Figure 6.2.

Table 7.2: Benchmark on the homomorphic full adder
Number of threads 1 2 3 4 5 6

full adder with 9 NAND gates 13.901 6.754 6.222 6.05 5.347 3.758
Full adder gate 4.374 2.421 1.691 1.725 1.697 0.993
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Chapter 8

Conclusions and Future Work

In the last seven years, fully-homomorphic encryption has evolved from a merely theoret-
ical construction to constructions that are better understood and allow implementations
that can even be considered for some real-life applications. However, the best existing
constructions and implementations are still far from being considered practical in most
scenarios, such as cloud computing, and the application of fully-homomorphic encryption
in other cryptographic primitives such as obfuscation, fully-homomorphic signatures, etc.

As it was mentioned before in Chapter 4 the bottleneck of all existing cryptosystems is
the bootstrapping step. A long standing question is the possibility of a fully-homomorphic
cryptosystem that does not require bootstrapping. However, a more realistic approach is
the improvement of the existing bootstrapping techniques.

From the theoretical point of view, an outstanding problem is the extension of the
construction given by Ducas and Micciancio [11] to the entire set of positive integers.
From the practical point of view, the implementation we provide may as well be improved
by using different algorithms to carry out polynomial multiplications, that can possibly
result in a more efficient implementation of the homomorphic accumulator.
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