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Abstract

Let q and ` be distinct primes. Given an elliptic curve E over Fq, we study the behaviour

of the 2-dimensional Galois representation of Gal(Fq/Fq) ∼= Ẑ on its `-torsion subgroup
E[`]. This leads us to the problem of counting elliptic curves with prescribed `-torsion
Galois representations, which we answer for small primes ` by counting rational points on
suitable modular curves. The resulting exact formulas yield expressions for certain sums
of Hurwitz class numbers.
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Chapter 1

Introduction

The problem of counting rational points on algebraic varieties has a long and intriguing
history. Perhaps the first nontrivial example is the investigation of the behaviours of the
traces of Frobenius aq ∈ Z of the Fq-reductions of an elliptic curve E over Q. These
should be thought of as “error terms” to a point-counting problem; they appear as Fourier
coefficients of cusp forms. As another example, the values τ(n) of the Ramanujan tau
function, which famously appear as the Fourier coefficients of the modular discriminant
∆, give the error involved in trying to count the number of ways a given integer can be
represented as a sum of four squares; see Mazur [23]. Hence the conjecture that τ(n) 6= 0
for all n amounts to saying that our approximation is never exact.

The residues aq mod m of the traces of Frobenius have also been studied; see [5]. In
this thesis, we consider an elliptic curve E over the finite field Fq (for q a prime) and study
the Galois representation

ρ` = ρ`(E) : Gal(Fq/Fq)→ GL(2, `) := GL2(F`)

attached to the group of `-torsion points of E. This representation encodes the algebraic
complexity of the coordinates of the `-torsion points of E, i.e. the manner in which these
points are distributed among the various field extensions of Fq. Since we are only concerned
with representations up to equivalence, we view ρ` as a conjugacy class in GL(2, `).

Often, the representation ρ` is completely determined by the residues of q and aq modulo
`. The existence of scalar (central) conjugacy classes in GL(2, `), however, causes this to
fail in general. In this sense, ρ` is a slightly finer invariant of E than is the residue of aq
modulo `. We are therefore lead to consider the problem of counting the number of curves
with prescribed ρ`.
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In Section 2, we collect some standard facts about elliptic curves over finite fields,
providing references to the literature for their proofs.

In Section 3, we completely handle the case when ` = 2.

In Section 4, we discuss modular curves and their interpretation as moduli spaces,
recording information on their genera and number of cusps.

In Section 5, we apply the Hasse-Weil bound to derive explicit formulas for the number
of curves with any prescribed ρ` when ` = 3. We then move on to the cases ` = 5 and ` = 7,
obtaining similar formulas for certain choices of ρ`. Our method does not likely extend to
larger primes `, as it relies on the existence of relevant modular curves with genus zero. As
a byproduct, we deduce identities involving certain sums of Hurwitz class numbers, as in
the paper [2]; the reader is strongly advised to compare the results and methods contained
therein to those that follow.

In Section 6, we conclude the thesis by stating some conjectures.
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Chapter 2

Background on elliptic curves

In this section we review standard material on elliptic curves. No attempt is made at
generality; we immediately restrict our attention to finite fields. Our primary reference for
this section is Silverman [33, Chap. V]. For further reading, one can consult the excellent
texts by Husemöller [15], Knapp [18], Koblitz [17], and McKean-Moll [24].

2.1 Basic notions

We loosely follow the treatment in Menezes [25]. Let q be a prime number, and denote
by Fq and Fq the finite field of order q and its algebraic closure, respectively. Recall that
an elliptic curve E over Fq is the set of all solutions (X : Y : Z) in the projective plane
P2(Fq) of a smooth Weierstrass equation, which in general takes the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3
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for a1, a2, a3, a4, a6 ∈ Fq. The point O = (0 : 1 : 0) is called the point at infinity ; it behaves
as the identity element for the group law on E. Define the quantities

d2 = a21 + 4a2

d4 = 2a4 + a1a3

d6 = a23 + 4a6

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

c4 = d22 − 24d4

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6

j(E) = c34/∆.

We call ∆ the discriminant of the Weierstrass equation. The Weierstrass equation is
smooth if and only if ∆ 6= 0, in which case the quantity j(E) is referred to as the j-
invariant of E. Its role in classifying elliptic curves will be discussed shortly. Under the
heading of “monstrous moonshine”, the j-invariant has also recently been connected to
a diverse host of objects, including the representation theory of sporadic groups, vertex
operator algebras, and conformal field theory; see Gannon [12].

For convenience, we typically dehomogenize, that is, we take x = X/Z and y = Y/Z
and work instead with the affine equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

When q 6= 2, 3, by means of a change of variables, the curve E can be brought into
short Weierstrass form,

y2 = x3 + ax+ b.

In this case we have the simpler formulas ∆ = −16(4a3 +27b2) and j(E) = −1728(4a)3/∆.

For the definition of the trace of Frobenius, see [33, Remark V.2.6].

2.2 Torsion points

Let E[m] = E[m](Fq) denote the set of P ∈ E(Fq) with m ·P = O; we refer to E[m] as the
m-torsion subgroup of E. The smallest integer d > 0 such that E[m](Fqd) = E[m] shall be
called the m-torsion depth of E. See [33, Cor. III.6.4] for the following result:

Proposition 1. Let E be an elliptic curve and let m ∈ Z with m 6= 0.
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(a) If q - m, then E[m] ∼= (Z/mZ)2.

(b) If q | m, one of the following holds:

(i) E[qe] = {O} for e = 1, 2, 3, . . .

(ii) E[qe] = Z/qeZ for e = 1, 2, 3, . . .

Now fix a prime ` 6= q. The absolute Galois group Gal(Fq/Fq), being topologically
generated by the Frobenius automorphism x 7→ xq, is isomorphic to the profinite completion
of the integers Ẑ. It acts on the homogeneous coordinates of points in the projective plane
P2(Fq), and this action preserves E[`]. We therefore obtain a representation1

ρ` = ρ`(E) : Gal(Fq/Fq)→ Aut(E[`]) ∼= GL(2, `)

which we will identify with the conjugacy class of GL(2, `) determined by the image of
the Frobenius under ρ`. Thus by abuse of language, we will for example refer to the
multiplicative order of ρ`. For a full description of the conjugacy class structure of GL(2, `),
see Lang [20, XVIII.12].

Let d and t be elements of F` with d 6= 0. The number of conjugacy classes having
trace t and determinant d is 2 or 1 according as d is, or is not, a quadratic residue modulo
`. Thus there are precisely `2− 1 conjugacy classes in total. Furthermore, it can be shown
[33] that ρ` has trace aq and determinant q. As a consequence, ρ` is determined completely
by q and aq modulo ` whenever the pair (q, aq) is not of the form (q,±2

√
q).

Definition 2. Let q be a prime. A conjugacy class C of GL(2, `) shall be called admissible
for q if matrices in C have determinant q mod `, and have trace t mod ` for some t in the
Hasse interval [q + 1− 2

√
q, q + 1 + 2

√
q].

Proposition 3. Suppose the conjugacy class C of GL(2, `) is admissible for q, and q
is a quadratic nonresidue modulo `. Then there exists an elliptic curve E over Fq with
ρ`(E) = C.

The proof is immediate from the following result, which we quote from Waterhouse
[36]. Here (a

b
) denotes the Jacobi symbol while H(N) denotes the Hurwitz class number;

see §2.5 below.

1Note that all homomorphisms from Ẑ to a finite group are continuous.
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Theorem 4 (Deuring). Let p be a prime and q = pm. Let t be an integer with |t| ≤ 2
√
q.

Then the number of isomorphism classes of elliptic curves over Fq with aq(E) = t, that is,
with #E(Fq) = q + 1− t, is

H(t2 − 4q) if t2 < 4q and p - t
H(−4p) if t = 0, m odd

1 if t2 = 2q, p = 2, m odd

1 if t2 = 3q, p = 3, m odd
1
12

(p+ 6− 4(−3
p

)− 3(−4
p

)) if t2 = 4q and m even

1− (−3
p

) if t2 = q and m even

1− (−4
p

) if t = 0 and m even

0 otherwise.

Conjecture 5. Proposition 3 holds even when q is a quadratic residue modulo `, as long
as q is sufficiently large.

Proposition 6. The multiplicative order of ρ`(E) in GL(2, `) is precisely the `-torsion
depth of E.

Proof. Write k for the order and d for the depth. The Galois representation descends to
a map Z/dZ ∼= Gal(Fqd/Fq) → GL(2, `). Clearly k ≤ d, then, but we claim that in fact

k = d. Suppose instead that k < d. Then we have that Frobk(P ) = P , meaning that the
coordinates of P are all fixed by x 7→ xq

k
, therefore the coordinates all lie in Fqk , so that

P lies in Fqk , so that d ≤ k < d, which is a contradiction.

We attach to each conjugacy class C of GL(2, `) two invariants r1(C) and r2(C) as
follows. If A is a matrix in C, then we define r1(C) to be the least integer k > 0 such that
Ak admits 1 as an eigenvalue, and r2(C) to be the least integer k > 0 such that Ak is the
identity matrix, i.e. r2(C) is the multiplicative order of A.

Remark 7. The existence of nontrivial Fq-rational `-torsion on E is equivalent to the
linear algebraic condition that 1 be an eigenvalue of ρ`(E). If r1 denotes the least positive
integer k such that E[`](Fqk) 6= {O}, and r2 denotes the least positive integer k such that
E[`](Fqk) = (Z/`Z)2, then r1 = r1(ρ`) and r2 = r2(ρ`). Hence the spectral properties
of GL(2, `) control the possible behaviours of the `-torsion of an elliptic curve over Fq

(knowledge of this structure can be used to write a fast algorithm for determining `-torsion
depth).
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2.3 Local zeta function

Let Nm := #E(Fqm) = qm + 1− aqm . Then the local zeta function of E is defined by

Z(t) = exp

(
∞∑
m=1

Nm
tm

m

)
.

The same definition can be used for any smooth projective variety over a finite field. The
terminology is intended to contrast Z(t) with the “global”, or Hasse-Weil zeta function,
attached to a variety over a number field (for example Q), which (ignoring issues at primes
of bad reduction) is obtained by taking an Euler product over all local zeta functions. In
this context one takes t = q−s for s ∈ C, but for our purposes it will suffice to view Z(t)
as a formal power series in t.

It turns out that the integers Nm (m > 1) are uniquely determined by N1. There are,
unfortunately, elliptic curves E over Fq with the same number of Fq-rational points (and
hence the same zeta function), whose corresponding ρ` do not coincide. In view of the
above remarks, this occurs if and only if the traces and determinants agree, but one of
them is a scalar conjugacy class while the other is not.

The Weil conjectures were proven in full generality by Deligne in [7] and [8]. The
portions relevant for us are stated below.

Theorem 8. Let X be a smooth projective variety of dimension n defined over Fq, and let
Z(t) be the local zeta function of X. Then we have:

1. Z(t) is a rational function of t. More precisely, we can write

Z(t) =
P1(t) · · ·P2n−1(t)

P0(t) · · ·P2n(t)

where each Pi(t) is a polynomial with integral coefficients. Furthermore, P0(t) = 1−t,
P2n(t) = (1− qnt), and for 1 ≤ i ≤ 2n− 1, Pi(t) factors over C as

∏
j(1− αijt) for

some αij ∈ C.

2. |αij| = qi/2 for all 1 ≤ i ≤ 2n− 1 and all j.

Taking X to be an elliptic curve E, we obtain the following.

7



Corollary 9. Let E be an elliptic curve defined over Fq, and let Z(t) be its zeta function.
Then

Z(t) =
1− aqt+ qt2

(1− t)(1− qt)
=

(1− αt)(1− βt)
(1− t)(1− qt)

.

We have aq = α + β ≤ 2
√
q by Hasse’s theorem, and αβ = q, so |α| = |β| = √q.

Since aqm is the trace of the mth power of the Frobenius endomorphism x 7→ xq, the
Newton-Girard identities for expressing power sums in terms of elementary symmetric
polynomials yield the following formula:

Nm = qm + 1− aqm = qm + 1− (αm + βm) = qm + 1−

∣∣∣∣∣∣∣∣∣∣∣

aq 1 0 . . . 0
2q aq 1 . . . 0
... q aq

. . . 0
... 0

. . . aq 1
0 . . . . . . q aq

∣∣∣∣∣∣∣∣∣∣∣
.

Here, as above, α, β ∈ C denote the Frobenius eigenvalues.

2.4 Isomorphism classes

Let q be a prime. The number of pairs (a, b) ∈ Fq ×Fq such that y2 = x3 + ax+ b defines
a nonsingular curve is q2 − q, since there are precisely q such pairs with discriminant ∆
equal to zero. First we discuss Fq-isomorphism classes of elliptic curves over Fq; denote
the collection of such by Eq. It is mentioned in [14] that

|Eq| :=
∑

[E]∈Eq

1 =


2q + 6 q ≡ 1 mod 12

2q + 2 q ≡ 5 mod 12

2q + 4 q ≡ 7 mod 12

2q q ≡ 11 mod 12.

However, this is a somewhat vulgar way of counting curves; to accommodate curves with
unusually large automorphism groups, we should really take a weighted count as follows:

|Eq|′ :=
∑

[E]∈Eq

1

|Aut(E)|
= q.

8



Here, Aut(E) denotes the group of Fq-automorphisms of E. The group of Fq-automorphisms
of E, on the other hand, will be denoted Aut(E). One should always be careful to not
confuse the notion of Fq-isomorphism with that of Fq-isomorphism, as much of the liter-
ature glosses over this subtlety. Unless explicitly mentioned, by “number of isomorphism
classes” below we always mean the unweighted count.

Isomorphic elliptic curves have the same j-invariant, and over an algebraically closed
field, the converse is true (that is, the j-invariant classifies elliptic curves up to isomor-
phism). The story over C is classical and beautiful; in that setting, the connection between
lattices and complex tori shows that the isomorphism classes correspond to the orbits of
the Poincaré upper half-plane H = {τ ∈ C : Im τ > 0} under the action of the modular
group PSL(2,Z). The j-invariant then turns out to be a holomorphic function on the upper
half-plane which surjects onto C and is invariant under this action.

Unfortunately, finite fields are not algebraically closed, so there are non-isomorphic
elliptic curves over Fq with the same j-invariant. However, such curves must be twists of
one another. The following characterization of twists can be found in [33, X.5.4].

Proposition 10. If K is a field of characteristic not equal to 2 or 3, then the twists of an
elliptic curve E/K are in one-to-one correspondence with K∗/K∗n where

n =


2 j(E) 6= 0, 1728

4 j(E) = 1728

6 j(E) = 0.

Corollary 11. Write |j−1(x)| for the number of isomorphism classes of elliptic curves with
j = x ∈ Fq. Then for any x 6= 0, 1728 we have |j−1(x)| = 2 (quadratic twists), while

|j−1(0)| =

{
6 q ≡ 1, 7 mod 12

2 q ≡ 5, 11 mod 12,
|j−1(1728)| =

{
4 q ≡ 1, 5 mod 12

2 q ≡ 7, 11 mod 12.

Proof. Note that |K∗/K∗2| = 2 while |K∗/K∗4| = 2 if q ≡ 3 mod 4 and 4 if q ≡ 1 mod 4.
Also, |K∗/K∗6| = 2 if q ≡ 2 mod 3 and 6 if q ≡ 1 mod 3.

Remark 12. Suppose q 6= 2, 3. If a value of j = j(z) is given it is possible to write an
equation for a representative curve in the isomorphism class, namely [4, §6]

• If j 6= 0, 1728, then y2 = x3 − ax± 2a, where a = 27j/(j − 1728).

• If j = 0, then y2 = x3 + a6.

9



• If j = 1728, then y2 = x3 + a4x.

a6 should be chosen from the sixth roots of unity and a4 from the fourth roots of unity.
This is very useful for computational purposes.

We now describe the number of automorphisms of an elliptic curve E over Fq.

Proposition 13. Assume q 6= 2, 3. If E is an elliptic curve in the isomorphism class
C ∈ Eq with j-invariant j, then the number of Fq-automorphisms of E is

|Aut(E)| =


6 if j = 0

4 if j = 1728

2 otherwise.

The number of Fq-automorphisms is [29, Cor. 3.3.6]

|Aut(E)| =



2 if j 6= 0, 1728

4 if j = 1728 and q ≡ 1 mod 4

2 if j = 1728 and q ≡ 3 mod 4

6 if j = 0 and q ≡ 1 mod 6

2 if j = 0 and q ≡ 5 mod 6.

The number of elliptic curves over Fq which are Fq-isomorphic to E is

|C| = q − 1

|Aut(E)|
.

An elliptic curve E over a field of characteristic q is said to be supersingular when E[q]
is trivial, that is, when no points of order q exist, even in E(Fq). We note the following
facts about supersingular curves. For their proofs, see [35, Sec. 4.6].

Proposition 14. Let E be an elliptic curve over Fq, where q ≥ 5 is a prime. Then E is
supersingular if and only if aq(E) = 0, that is, if and only if #E(Fq) = q + 1.

Proposition 15. Let q ≥ 5 be prime. Then the elliptic curve y2 = x3 + 1 over Fq is
supersingular if and only if q ≡ 2 mod 3, and the elliptic curve y2 = x3 + x over Fq is
supersingular if and only if p ≡ 3 mod 4.

10



2.5 Hurwitz class numbers

The Hurwitz class number H(N) is a modification of the class number of positive definite
binary quadratic forms of discriminant −N . For an integer N ≥ 0, H(N) is defined as
follows. H(0) = −1/12. If N ≡ 1, 2 mod 4 then H(N) = 0. Otherwise, H(N) is the num-
ber of classes of not necessarily primitive positive definite quadratic forms of discriminant
−N , except that those classes which have a representative which is a multiple of the form
x2 + y2 (respectively x2 + xy + y2) are weighted by 1/2 (respectively 1/3).

Results similar to Theorem 4 involving curves with prescribed torsion can be found in
[6].

For this reason, we will see later that formulas counting curves naturally yield formulas
for evaluating certain sums of Hurwitz class numbers. A trivial example of this is:

Corollary 16. If q is prime,

1

2

∑
|r|<2

√
q

H(4q − r2) = q.

In other words, if one sums over all possible values of aq(E), one obtains the weighted
number of isomorphism classes.

11





Chapter 3

The case ` = 2

3.1 The case q = 2

The general Weierstrass form for the elliptic curve C in this case is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We denote by O = (0 : 1 : 0) the point at infinity (the identity element for the group law).
Noting that P + Q + R = O in group law iff P,Q,R are collinear, we see that 2P = O
iff P, P,O are collinear, iff the tangent line at P contains O, iff the tangent line at P is
vertical. Differentiating the equation of the curve, we obtain

a1x dy + a1y dx+ a3 dy = 3x2 dx+ a4 dx ⇒ dy

dx
=

3x2 + a4 − a1y
a1x+ a3

so in order for this to be infinite, we need x = a3/a1. Certainly this cannot hold if a3 = 1
and a1 = 0. On the other hand, if a1 = a3 = 0 then C is singular, so it is not an elliptic
curve. So assume a1 = 1. Then for all 2-torsion points (x0, y0), x0 = a3. This means

y20 + a3y0 + a3y0 = a33 + a2a
2
3 + a4a3 + a6 ⇒ y0 = a33 + a2a

2
3 + a4a3 + a6

and so there is exactly one nontrivial 2-torsion point

(x0, y0) = (a3, a
3
3 + a2a

2
3 + a4a3 + a6).

Hence E[2] is a 1-dimensional F2-vector space, upon which the Galois group must act
trivially, since the above point (x0, y0) has both coordinates in F2.

13



3.2 The case q = 3

Now the general Weierstrass form for the elliptic curve C is

y2 = 4x3 + b2x
2 + 2b4x+ b6.

Performing a similar analysis to the case q = 2, we obtain

2y dy = 2b2x dx+ 2b4 dx ⇒ dy

dx
=
b2x+ b4

y

so we need y = 0. In this case x can be any root of the cubic 4x3 + b2x
2 + 2b4x + b6 and

it will be 2-torsion. Hence E[2] is a 2-dimensional F2-vector space. This case now reduces
to the case treated next.

3.3 The case q 6= 2, 3

Now suppose q 6= 2, so that E[2] is a 2-dimensional Fq-vector space, and q 6= 3, so that
the short Weierstrass form

y2 = x3 + ax+ b, a, b ∈ Fq

can be used. Let E be the elliptic curve defind by this equation. Then the 2-torsion points
of E all satisfy y = 0, so that

E[2] = {O, P1 = (α1, 0), P2 = (α2, 0), P3 = P1 + P2 = (α3, 0)}

where α1, α2, α3 ∈ Fq are the distinct roots of the cubic x3 + ax+ b, and O is the point at
infinity (the identity element for the group law on the elliptic curve).

If G is a finite group, we are interested in the possible continuous group homomorphisms
φ : Ẑ → G. First of all, note that any such homomorphism must factor through the
projection map πn : Ẑ � Z/nZ for some n. Indeed, 1 ∈ Ẑ is sent by φ to some element
a ∈ G with order n dividing |G|. However this means we can define a homomorphism
ψ : Z/nZ → G by declaring ψ(1) = a, but then φ(1) = (ψ ◦ πn)(1), which implies

φ = ψ ◦ πn as any continuous homomorphism out of Ẑ is determined by where it sends
1 (note πn is continuous by the very definition of Ẑ as an inverse limit in the category of
topological groups, and any homomorphism coming out of a discrete group, such as ψ, is
automatically continuous).

14



Now, we are interested in the case G = GL(2, 2) ∼= S3; this group has 3 elements of
order 2 (the “transpositions”):(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
2 elements of order 3 (the “3-cycles”):(

1 1
1 0

)
,

(
0 1
1 1

)
and 1 element of order 1 (the identity): (

1 0
0 1

)
.

Moreover, these are precisely the three conjugacy classes. Hence, since we are merely
trying to show that every possible mod 2 representation of Gal(Fq/Fq) is equivalent to a
representation attached to the 2-torsion of an elliptic curve, it suffices to hit one matrix
from each conjugacy class in this manner. The foregoing remarks therefore reduce our
problem to understanding the nontrivial homomorphisms Z/nZ → GL(2, 2) for n = 2, 3.
However, this is simple: when n = 2, the element 1 ∈ Z/2Z can be sent to any of the
elements of order 2. When n = 3, the element 1 ∈ Z/3Z can be sent to any of the elements
of order 3. As was just remarked, the actual matrix it is sent to is immaterial (only its
order in GL(2, 2) matters), so we only have three elliptic curves to exhibit:

• For the trivial representation Ẑ → GL(2, 2), it suffices to choose three distinct ele-
ments α1, α2, α3 ∈ Fq and form the cubic (x− α1)(x− α2)(x− α3). Then the Galois
group acts trivially on the roots, so the representation attached to the corresponding
elliptic curve is the trivial representation.

• For the unique equivalence class of representation Ẑ→ GL(2, 2) wherein the element

1 ∈ Ẑ is sent to a linear operator of order 2, it suffices to choose α1 ∈ Fq and an
irreducible quadratic f ∈ Fq[x] with distinct roots α2, α3 /∈ Fq, and form the cubic
(x − α1) · f(x). Then the generator of the Galois group acts on the roots by fixing
α1 and swapping the roots of f , so the representation attached to the corresponding
elliptic curve is in the aforementioned equivalence class. Indeed, choosing the basis
{P1, P2} where Pi = (αi, 0), the representation obtained from the 2-torsion is the one
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where 1 ∈ Ẑ acts by the transformation defined by P1 7→ P1, P2 7→ P1 + P2, in other
words, the matrix (

1 1
0 1

)
which has order 2.

• For the unique equivalence class of representation Ẑ→ GL(2, 2) wherein the element

1 ∈ Ẑ is sent to a linear operator of order 3, it suffices to choose an irreducible
cubic f ∈ Fq[x] with distinct roots α1, α2, α3 /∈ Fq. Then the generator of the Galois
group acts by cycling the roots of f (that is, αi 7→ αi+1 where we put α4 := α1),
so the representation attached to the corresponding elliptic curve is in the afore-
mentioned equivalence class. Indeed, choosing the basis {P1, P2} where Pi = (αi, 0),

the representation obtained from the 2-torsion is the one where 1 ∈ Ẑ acts by the
transformation determined by P1 7→ P2 and P2 7→ P1+P2, in other words, the matrix(

0 1
1 1

)
which has order 3.
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Chapter 4

Modular curves

To count elliptic curves with prescribed Galois representations ρ`, we will make use of
modular curves. These are moduli spaces whose non-cuspidal points parameterize “en-
hanced” elliptic curves over Fq. A thorough treatment of these objects in the language
of modern algebraic geometry can be found in the Katz-Mazur book [16] or the paper of
Deligne-Rapoport [9]. The Hasse-Weil bound, which is equivalent to the determination
of the absolute values of the roots of the local zeta function (see §2.3), will be of key
importance:

Theorem 17. Let X be a smooth, absolutely irreducible projective curve of genus g over
Fq. Then

|#X(Fq)− (q + 1)| ≤ 2g
√
q.

The following corollary is the main tool we will use to deduce exact formulas.

Corollary 18. Let X be a smooth, absolutely irreducible projective curve of genus 0 over
Fq. Then #X(Fq) = q + 1.

4.1 Moduli problems

We will be most interested in the Fq-reductions of the (compactified) modular curvesX(N),
X1(N), and X0(N) arising from the congruence subgroups Γ(N), Γ1(N), and Γ0(N) of
SL(2,Z) = Γ(1). These act as moduli spaces for the moduli problems of classifying Fq-
isomorphism classes of:
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• pairs (E,B) where B is an ordered basis for E[N ] whose value under the Weil pairing
is ζN = e2πi/N .

• pairs (E,P ) where P is a point of exact order N .

• pairs (E,C) where C is a cyclic subgroup of order N .

4.2 Cusps and genera

Denote by g(N), g1(N) and g0(N) the genera of the modular curves X(N), X1(N) and
X0(N) respectively. Then when N ≤ 10, we have g0(N) = g1(N) = 0. On the other hand,
g(N) = 0 when N ≤ 5, but g(7) = 3. In fact, X(7) is a Hurwitz surface known as the
Klein quartic.

It will be important for us to know which cusps of these curves are defined over Fq.
The algebraic curve X1(N) has half of its N −1 cusps defined over Q and the rest over the
maximal real subfield of Q(ζN), which is Q(ζN + ζN), an extension of degree (N − 1)/2.
Hence, for example, X1(7) has 6 cusps defined over Fq when q ≡ ±1 mod 7 and 3 cusps
otherwise. See also [26, Cor. 5.10.1] for an explicit formula for #X0(N)(Fq) in terms of
traces of Hecke operators.

Let Y (N) denote the non-compactified modular curve of full level N structures, let cN
denote the number of cusps and gN denote its genus. Then the Hasse-Weil bound says

|#Y (N)(Fq)− (q + 1− cN)| = |#X(N)(Fq)− (q + 1)| ≤ 2gN
√
q.

For N ≤ 5, we have gN = 0, so this implies that #Y (N)(Fq) = q+ 1− cN . Suppose N = `
is a prime different from q. The number of cusps is, according to [10, p. 101],

ε∞(Γ(`)) = c` =
1

2
(`2 − 1).

Thus c3 = 4 while c5 = 12. We conclude that #Y (3)(Fq) = q + 1 − 4 = q − 3 while
#Y (5)(Fq) = q + 1− 12 = q − 11.
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Chapter 5

Counting curves with given Galois
representation

5.1 Introduction

If C denotes a conjugacy class of GL(2, `), we write Nq(C) for the number of (short Weier-
strass equations of) elliptic curves over Fq with ρ` = C; the prime ` is omitted from
the notation since it will always be fixed. Henceforth, we denote by Cd,t (resp. C∗d,t) the
non-scalar (resp. scalar, if it exists) conjugacy class of GL(2, `) with determinant d and
trace t. Since aq(E) = −aq(E ′) where E ′ denotes the quadratic twist of E, we deduce the
symmetries Nq(Cd,t) = Nq(Cd,−t) and Nq(C

∗
d,t) = Nq(C

∗
d,−t). For brevity of notation, we

set

Ñq(C) =
Nq(C)

q − 1
=
∑
E

1

|Aut(E)|
,

the sum being taken over a complete set of representatives E for the isomorphism classes of
elliptic curves over Fq with ρ` = C. The quantities Ñq(C) are related to sums of Hurwitz
class numbers as follows:

1

2

∑
|r|<2

√
q

r≡t mod `

H(4q − r2) =

{
Ñq(Cq,±t) + Ñq(C

∗
q,±t) if t2 ≡ 4q mod `,

Ñq(Cq,±t) otherwise.
. (5.1)

For the small ` we consider, the right-hand side turns out to simply be a linear polynomial
in q with constant coefficients. Note that the trace of ρ` must be aq mod `, while its
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determinant must be q mod `. Furthermore, d is a quadratic residue mod ` if and only if
there exist scalar (central) conjugacy classes in GL(2, `) of determinant d.

There are a few choices for how to go about counting curves. We could simply sample
the curve y2 = x3 + ax+ b with (a, b) chosen uniformly at random from F2

q \ S where S is
the set of (a, b) with discriminant zero. On the other hand, we could count Fq-isomorphism
classes instead. Finally, we could count isomorphism classes weighted by the reciprocal of
the size of their automorphism groups. Methods 1 and 3 turn out to give the same answer;
see [13].

5.2 The case ` = 3

The purpose of this section is to prove the following theorem. It will be proved in several
pieces, and in most cases, we will also give the number of isomorphism classes with j = 0
and j = 1728 which contribute to each conjugacy class.

Theorem 19. Let q be a prime. Then for any conjugacy class C of GL(2, 3),

Ñq(C) =
|C|

|SL(2, 3)|
(q − aC) =

|C|
24

(q − aC)

where aC is the integer corresponding to C in the below table1, where each cell contains the
information

aC (|C|): (r1(C), r2(C)).

We first treat the case q ≡ 1 mod 3. Corollary 11 says that |j−1(0)| = 6 and |j−1(1728)| =
4 or 2 depending on whether q ≡ 1 or 7 mod 12.

Proposition 20. When q ≡ 1 mod 3,

Ñq(C
∗
1,±1) =

q − 3

24
.

Precisely one isomorphism class with j = 0 contributes. The number of classes with j =
1728 which contribute is 1 (respectively 0) when q ≡ 1 mod 12 (respectively q ≡ 7 mod 12).

1The class function on GL(2, 3) defined by C 7→ aC is in fact an irreducible character.
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Proof. Let S3 denote the collection of isomorphism classes of elliptic curves over Fq with
complete rational 3-torsion. Using the moduli interpretation of Y (3)(Fq) previously men-
tioned,

q − 3

24
=

#Y (3)(Fq)

|SL(2, 3)|
=
∑
E∈S3

1

|Aut(E)|
.

To establish the second statement, note that when q ≡ 1 mod 12, we have |Aut(E)| ∈
{2, 4, 6} for all E, so

q − 3 = 12mord + 6m1728 + 4m0

with 0 ≤ 2m1728 ≤ 4 and 0 ≤ 2m0 ≤ 6, hence 0 ≤ m1728 ≤ 2 and 0 ≤ m0 ≤ 3. We
claim m0 = m1728 = 1. Reducing the above equation we obtain 2 ≡ 2m1728 mod 4 while
1 ≡ m0 mod 3, and the claim follows. On the other hand, when q ≡ 7 mod 12, we have
|Aut(E)| ∈ {2, 6} for all E, so

q − 3 = 12mord + 4m0

with 0 ≤ m0 ≤ 3. Reducing gives m0 ≡ 1 mod 3, so m0 = 1. The final statement then
follows from Proposition 15.

Let us now turn our attention to the non-scalar classes C1,±1, which have size 8.

Proposition 21. When q ≡ 1 mod 3,

Ñq(C1,±1) =
8q

24
.

Precisely 2 classes with j = 0 contribute, and none with j = 1728 contribute.

Proof. A generic isomorphism class with rank 1 rational 3-torsion should contribute exactly
1 point to Y1(3)(Fq) because Z/3Z only has one possible cyclic 3-subgroup. On the other
hand each generic isomorphism class with full (rank 2) rational 3-torsion should contribute
|P1(F3)| = 4 points to Y1(3)(Fq). Therefore,

q − 1 = #Y1(3)(Fq) = 8
∑
rank 2

1

|Aut(E)|
+ 2

∑
rank 1

1

|Aut(E)|
= 8Ñq(C

∗
1,−1) + 2Ñq(C1,−1)

and so

Ñq(C1,−1) =
q − 1

2
− q − 3

6
=

3q − 3− q + 3

6
=
q

3
.
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To establish the remaining statements, note that when q ≡ 1 mod 12, by the same tech-
niques as above we obtain

4q = 6mord + 3m1728 + 2m0

with 0 ≤ m1728 ≤ 1 and 0 ≤ m0 ≤ 2. Reducing we get 0 ≡ m1728 mod 2 so m1728 = 0.
Similarly 1 ≡ 2m0 mod 3 so m0 = 2. Otherwise if q ≡ 7 mod 12, the same technique shows
m0 = 2, but we must have m1728 = 0 again by Proposition 15.

To conclude our analysis of the q ≡ 1 mod 3 case, we deduce the count for the remaining
conjugacy class C1,0 of size 6.

Proposition 22. When q ≡ 1 mod 3,

Ñq(C1,0) =
6(q + 1)

24
.

No classes with j = 0 contribute, while 2 with j = 1728 contribute.

Proof. This is immediate: since every elliptic curve over Fq has det ρ` = q ∈ F3, we
certainly have ∑

C

Ñq(C) = q,

the sum taken over all conjugacy classes C in GL(2, 3) of determinant q mod 3. Hence,
using the previous two results, we have

Ñq(C1,0) = q − 2 · 8q

24
− 2 · q − 3

24
=

3(q + 1)

12
.

For the remaining statements, note that all 6 classes with j = 0 have already been ac-
counted for above. If q ≡ 1 mod 4, only 2 of the 4 with j = 1728 have been accounted
for. On the other hand, if q ≡ 3 mod 4, there are 2 classes with j = 1728 in total, and we
haven’t accounted for either of them yet (in fact Proposition 15 says they are supersingular
anyway).

Now consider q ≡ 2 mod 3. In this case, Corollary 11 says |j−1(0)| = 2, and |j−1(1728)| =
4 or 2 depending on whether q ≡ 5 or 11 mod 12. By Proposition 15, those with j = 0 are
always supersingular, and when q ≡ 11 mod 12, those with j = 1728 are as well.
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Proposition 23. When q ≡ 2 mod 3,

Ñq(C2,0) =
12(q − 1)

24
.

Both isomorphism classes with j = 0 contribute. The number of classes with j = 1728
which contribute is 2 when q ≡ 11 mod 12.

Proof. The strategy is identical to the above; count the Fq-rational points on Y1(3). The
statement about the j = 0 contribution follows from remarks above. For the j = 1728
contribution, note that if q ≡ 11 mod 12 then Proposition 15 implies the result.

Proposition 24. When q ≡ 2 mod 3,

Ñq(C2,1) = Ñq(C2,2) =
6(q + 1)

24
.

No classes with j = 0 contribute. If q ≡ 11 mod 12, then no classes with j = 1728
contribute.

Proof. The count formula itself follows from subtracting from the total, as in Proposition
22. That is, we note

Ñq(C2,1) + Ñq(C2,2) = q − Ñq(C2,0) =
2q − (q − 1)

2
=
q + 1

2

and both terms on the left-hand side are equal. The statement about the j = 0 contribution
is clear, since all of these isomorphism classes were already accounted for above. For the
j = 1728 contribution, note that if q ≡ 11 mod 12, the same is true.

5.3 The case ` = 5

In this section we will prove certain cases of the following conjecture. Note that since 5
does not divide 12, the analysis required to give information about the j = 0 and j = 1728
contributions is significantly more involved; we therefore remain silent on this question.

Conjecture 25. Let q be a prime. Then for any conjugacy class C of GL(2, 5),

Ñq(C) =
|C|

|SL(2, 5)|
(q − aC) =

|C|
120

(q − aC)

where, as before, aC is the integer corresponding to C in the table.
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We first assume q ≡ 1 mod 5. The following proposition gives the number of elliptic
curves with complete Fq-rational 5-torsion.

Proposition 26. When q ≡ 1 mod 5,

Ñq(C
∗
1,±2) =

q − 11

120
.

Proof. We consider the modular curve X(5) which has genus 0 and 12 cusps. Hence
#Y (5)(Fq) = q + 1− 12 = q − 11, so we obtain, as desired, that

q − 11 = 120
∑
E∈S5

1

|Aut(E)|
,

where S5 denotes the collection of isomorphism classes of elliptic curves over Fq with
complete rational 5-torsion.

As before, we seek to take care of the nonscalar conjugacy class of these same traces.
Looking at the values of (r1, r2) listed in the table, we see that another modular curve can
help.

Proposition 27. When q ≡ 1 mod 5,

Ñq(C1,±2) =
24(q − 1)

120
.

Proof. Consider the modular curve X1(5), which has 4 cusps and genus 0. We have
#Y1(5)(Fq) = q + 1− 4 = q − 3, so that

q − 3 = 4
∑
rank 1

1

|Aut(E)|
+ 24

∑
rank 2

1

|Aut(E)|
.

The second (“rank 2”) summation was calculated above, so

q − 3 = 4
∑
rank 1

1

|Aut(E)|
+
q − 11

5

and hence
q − 1

5
=
∑
rank 1

1

|Aut(E)|
.
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To complete the analysis of the q ≡ 1 mod 5 case, it would be necessary to prove
Conjecture 25 either for C = C1,1 or for C1,0; the rest of the claims would follow from the
quadratic twist symmetry and subtraction from the total.

The relation (5.1) to sums of Hurwitz class numbers immediately establishes the fol-
lowing conjecture made in [2, Table 1].

Corollary 28. When q ≡ 1 mod 5, we have that for c ≡ ±2 mod 5,∑
|r|<2

√
q

r≡c mod 5

H(4q − r2) =
5q − 7

12
.

The conjecture stated there for q ≡ 4 mod 5 and c ≡ ±1 mod 5 would follow in the
same manner if we could prove our predictions for Ñq(C4,±1) and Ñq(C

∗
4,±1).

The following two propositions are equivalent to [2, Theorem 4] and can be proved by
counting points on X1(5). Recall that the number of cusps of X1(5) defined over Fq is 4
when q ≡ ±1 mod 5, and otherwise is 2. This explains the slight difference between the
following two formulas.

Proposition 29. When q ≡ ±2 mod 5,

Ñq(Cq,±(q+1)) =
30(q − 1)

120
.

Proposition 30. When q ≡ 4 mod 5,

Ñq(C4,0) =
30(q − 3)

120
.

5.4 The case ` = 7 and the Klein quartic

It is tempting to believe that there exists a single class function C 7→ aC ∈ Z on each of
the groups GL(2, `), such that a result analogous to the ones mentioned for ` = 3 and ` = 5
would hold. After all, were this true, perhaps there would be some fruitful representation-
theoretic interpretation of this information. In Table 3, we have tabulated values of aC
that agree with computational evidence. Sizes of conjugacy classes are also shown in
brackets, although the invariants (r1, r2) have been omitted due to space constraints. For
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each prime q, if we evaluate Ñq(C) by computation, we can then calculate aC = aC(q)
using the relation

Ñq(C) =
|C|

|SL(2, `)|
· (q − aC).

We then see that in the case ` = 7, for some conjugacy classes C, the values aC(q) are
no longer constant as q runs through the relevant arithmetic progression modulo `. In
our table these are denoted by “?”. Indeed, the mere congruence conditions that such
putative integers would have to satisfy appear to preclude them from existing. Hence we
can no longer assign a single aC ∈ Z to each conjugacy class C of GL(2, `), having to resort
instead (as will be elaborated shortly) to the assignment of an infinite family of integers to
each conjugacy class. Moreover, the sets indexing these families, for conjugacy classes of
varying determinant, appear to be different, thereby slashing any hopes of packaging this
information together into a family of class functions on GL(2, `), in general. Thus, without
substantial modification, such a result cannot be true.

Proposition 31. When q 6≡ ±1 mod 7, we have

Ñq(Cq,±(q+1)) =
56(q − 2)

336
.

Proof. As we mentioned above, only 3 of the 6 cusps of X1(7) are defined over Fq when q 6≡
±1 mod 7. Note that the maximal real subfield of Q(ζ7) is the cubic extension Q(ζ7 + ζ7).
The result now follows by emulating the proof of Proposition 27.

We would like to draw attention to the conjectures in the table [2, Table 2]. Since

the Klein quartic X(7) has genus 3, any exact formula for Ñq(C
∗
1,±2) and Ñq(C1,±2) will

have to depend on further properties of the prime q. It is mentioned in [26, Section 5.7.5]
that #X(7)(Fq) is related to how the prime q splits in the ring Z[

√
−7]; note this is not a

Dedekind domain. By Eichler-Shimura and the fact that the Jacobian of X(7) decomposes
as a product of three elliptic curves, the numbers #X(7)(Fq) are related to the Fourier
coefficients bn of the unique cusp form for Γ0(49) by the formula #X(7)(Fq) = q+ 1− 3bq;
see [22, Elliptic curve 49.a4] and the Master’s thesis [31, p. 67]. In [19, Cor. 11.4] the
numbers #X(7)(Fq) are shown, in some cases, to satisfy certain congruences.

However, we have the following weaker result, which shows that if one takes an appro-
priate linear combination of Ñq(C

∗
1,±2) and Ñq(C1,±2), the behaviour is once again straight-

forward.
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Proposition 32. When q ≡ 1 mod 7,

Ñq(C1,±2) + 8Ñq(C
∗
1,±2) =

56(q − 5)

336
.

Proof. X1(7)(Fq) has 6 cusps and genus 0, so we obtain

q + 1− 6 = 6Ñq(C1,±2) + 48Ñq(C
∗
1,±2).

Note the 56 in the numerator is no mistake, as |C1,±2|+ 8 · |C∗1,±2| = 56.

Here are some other results proved in [2, Theorem 6], using other tools such as the
Eichler-Selberg trace formula.

Proposition 33. When q ≡ 3 mod 7,

Ñq(C3,0) = Ñq(C5,0) =
56(q + 1)

336
, Ñq(C6,0) =

56(q − 5)

336
, Ñq(C6,±2) =

56(q + 1)

336
.

To end this section, we discuss some auxiliary patterns we noticed in our computations
of Ñq(C

∗
4,±1). It appears that all of the values aC(q) do become constant when we restrict

the prime q to lie in certain fixed quadratic progressions. For example, one should obtain
formulas just as simple and explicit as in the ` = 3 case upon restriction to primes of the
form q = 28n2 − 28n + A for A ∈ {11, 53, 151, 263, . . .}. This seems to be due to the fact
that the elliptic curve appearing in the decomposition of the Jacobian mentioned above
admits complex multiplication; see the main result of [27].
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GL(2, 3) 1 2
0 −1 (6): (4, 4) 1 (12): (1, 2)

1
0 (8): (2, 6)
3 (1): (2, 2)

−1 (6): (8, 8)

2
0 (8): (1, 3)
3 (1): (1, 1)

−1 (6): (8, 8)

GL(2, 5) 1 2 3 4
0 −1 (30): (4, 4) −1 (20): (8, 8) −1 (20): (8, 8) 3 (30): (1, 2)

1 −1 (20): (6, 6) −1 (20): (24, 24) 1 (30): (2, 4)
−1 (24): (4, 20)
−1 (1): (4, 4)

2
1 (24): (1, 5)
11 (1): (1, 1)

1 (30): (2, 4) −1 (20): (24, 24) −1 (20): (12, 12)

3
1 (24): (2, 10)
11 (1): (2, 2)

1 (30): (1, 4) −1 (20): (24, 24) −1 (20): (12, 12)

4 −1 (20): (3, 3) −1 (20): (24, 24) 1 (30): (1, 4)
−1 (24): (4, 20)
−1 (1): (4, 4)

GL(2, 7) 1 2 3 4 5 6
0 ? (42) ? (42) −1 (56) ? (42) −1 (56) 5 (56)

1 −1 (56)
? (48)
? (1)

−1 (42) ? (42) 2 (56) −1 (42)

2
? (48)
? (1)

? (42) −1 (42) 2 (56) −1 (42) −1 (56)

3 ? (42) 2 (56) 2 (56)
? (48)
? (1)

−1 (42) −1 (42)

4 ? (42) 2 (56) 2 (56)
? (48)
? (1)

−1 (42) −1 (42)

5
? (48)
? (1)

? (42) −1 (42) 2 (56) −1 (42) −1 (56)

6 −1 (56)
? (48)
? (1)

−1 (42) ? (42) 2 (56) −1 (42)
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Chapter 6

Concluding remarks

For a fixed prime ` and conjugacy class C of GL(2, `), it is natural to ask about the

asymptotic behaviour of Ñq(C), that is, as q →∞. The genera of modular curves increase
fairly rapidly, and the error terms in the Hasse-Weil bound appear in many cases to be
related to well-guarded arithmetic data, such as the traces of Hecke operators on spaces of
cusp forms (Eichler-Shimura). Although this makes it likely that any exact formulas for

Ñq(C) will be complicated, the Hasse-Weil bound and the general idea that we should be

able to express Ñq(C) in terms of point counts of modular curves suggests the following
equidistribution conjecture.

Conjecture 34. For a conjugacy class C of GL(2, `),

Ñq(C)

q
=

|C|
|SL(2, `)|

+O(q−1/2).

That is, the (suitably weighted) proportion of elliptic curves E over Fq with ρ`(E) = C
should approach the proportion of matrices in GL(2, `) admissible for q which lie in C.

By looking at Table 3, we see that the conjugacy classes C = C3,0 and C ′ = C3,±3
of GL(2, 7) both have order 56, and multiplicative order 6, but aC 6= aC′ . Thus, the

coincidence of these properties alone will not suffice to ensure Ñq(C) = Ñq(C
′).

We conclude with the remark that even where strong computational evidence suggests
that exact formulas exist, some such formulas seem to remain just beyond the reach of
these methods. For example, as stated at the end of [2], all conjugacy classes of GL(2, 5),
as well as many conjugacy classes of GL(2, 7) (namely, the cells in the table where no “?”
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is found) should admit simple formulas, and it seems likely that the remaining conjugacy
classes of the latter group (or at least those with determinant 1) can all be connected to
the Klein quartic. The reader is referred to [3] for recent progress.
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