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Abstract

This thesis is concerned with the investigation of the superconvergence, superaccuracy,
and stability properties of the discontinuous Galerkin (DG) finite element method in one
and two dimensions. We propose a novel method for the analysis of these properties. We
apply the DG method to a model linear advection problem to derive a partial differential
equation (PDE) which is satisfied by the numerical solution itself. This PDE is equivalent
to the original advection equation but with a forcing term that is proportional to the jump
in the numerical solution at the cell interfaces. We then use classical Fourier analysis to
determine the solutions to this PDE with particular temporal frequencies. We find that
these Fourier modes are completely determined on each cell by the inflow into that cell
and a certain rational function of the mode’s frequency. By using local expansions of
these modes, we prove several local superconvergence properties of the DG method, as
well as superaccurate errors in terms of dissipation and dispersion. Next, by considering
a uniform mesh and assuming periodic boundary conditions, we investigate the spectrum
of the method. In particular, we show that the spectrum can be partitioned into physical
and non-physical modes. The physical modes advect with high-order accuracy while the
non-physical modes decay exponentially quickly in time. Finally, using these results we
establish several global superconvergence properties of the method on uniform meshes.

In one dimension, we find that the Fourier modes of the numerical solution are closely
related to the z% Padé approximant of the exponential function e*, where p is the order
of polynomial approximation. We also find that the local expansion of the Fourier modes
of the numerical solution are related to the (p+ 1)-th right-based Radau polynomial R, ;.
These properties enable us to give a simple new proof of the local superconvergence of the
DG method, i.e. the local numerical error is superconvergent of order p + 2 at the roots of
this Radau polynomial, and order 2p + 2 at the downwind point in each cell. We also give
a new straight-forward proof that the scheme obtains order 2p 4+ 1 accuracy in dissipation
and order 2p + 2 in dispersion. Finally, we prove that on a uniform computational mesh
the numerical solution will globally tend towards a superconvergent form which converges
at order p 4+ 2 at the right Radau points in each cell and order 2p + 1 at the downwind
point of each cell.

In two dimensions, we establish results analogous to the one-dimensional case. We
again find that the Fourier modes of the numerical solution are related to rational approx-
imations of the exponential function e*. We then use these modes to prove several local
superconvergence properties, which depend on the flow direction on a cell. On a uniform
mesh of triangles, we symbolically verify that the scheme obtains order 2p + 1 in terms of
dissipation and dispersion errors. Finally, we also symbolically verify several global super-
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convergence properties of the numerical solution on this uniform mesh, and confirm these
properties numerically.

Having established these results, we also propose a new family of schemes which can
been viewed as a modified version of the DG scheme. These schemes contain p + 1 free
parameters which, a priori, can be freely chosen. By extending our analysis to these new
schemes we show that the modifications will affect the formal orders of accuracy of the
method in terms of dissipation and dispersion errors. We also show that the superconver-
gence properties of the method can be manipulated through these parameters. We then
find that the size of the spectrum of the method can be effectively altered using particular
choices of the parameters. We use this fact to construct schemes with significantly larger
stable Courant-Friedrichs-Lewy (CFL) numbers than the classic DG method. We demon-
strate through some numerical examples that these modified schemes can be effective in
capturing fine structures of the numerical solution when compared with the DG scheme
with equivalent computational effort.
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Chapter 1

The Discontinuous Galerkin Finite
Element Method

The obtaining of numerical results in mathematical applications, the so-
called ‘number crunching’ is quite often taken for granted, both in ordinary life
and even in relatively more sophisticated settings in science and engineering.
We blithely expect our calculators and computers to produce numerical answers,
flawlessly and unambiguously. Whatever mathematics is lurking behind those
calculations is hidden, obscured, invisible. This invisible mathematics is known
as numerical analysis.

(Anthony Peressini)

1.1 Introduction

This thesis is concerned with the numerical analysis of an algorithm known as the dis-
continuous Galerkin (DG) finite element method. Introduced in 1973 by Reed and Hill
[59] in the context of neutron transport, the DG method was originally developed for the
numerical solution of ordinary differential equations (ODEs). LeSaint and Raviart [52]
presented the first mathematical analysis of the method soon afterwards in 1974. The DG
method was then developed into a form which made it suitable for computational fluid
flow problems by Cockburn and Shu in a series of papers [30, 29, 27, 23]. In these works,
the original DG spatial discretization was paired with explicit Runge-Kutta [18] time in-
tegration methods. Since then, the DG scheme has gained popularity and been rapidly
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developed into a robust method for solving linear and non-linear partial differential equa-
tions (PDEs) in computational fluid dynamics and other areas. The DG method has had
applications in gas dynamics [13, 15, 11], compressible flows [12, 55, 32, 69], incompress-
ible flows [16, 25, 24], turbulent flows [14, 10], granular flows [37], electromagnatism [41],
magneto-hydrodynamics [68], KdV-type equations [71], and many more topics. A history
of the development of the DG method up to 1999 can be found in [26] and the reader is
referred to the review papers [31] and [22] and the references therein for a more complete
discussion.

The main application of the DG method that we will be concerned with in this thesis
is the numerical approximation of general hyperbolic systems of conservation laws in one
space dimension

w + f(u), =0

and in multiple spatial dimensions
u;+V-F(u) =0.

The approximation of partial differential equations (PDEs) of this type has proven to be a
difficult task primarily because their exact solutions are known to develop discontinuities
in finite time, and the solutions can exhibit a complex structure near these discontinuities
[51]. High-order finite difference and finite volume schemes have had considerable success
in this area; in particular, methods implementing the essentially non-oscillatory (ENO) [40,
39, 62, 63] and weighted essentially non-oscillatory (WENO) [54, 44, 35, 42] reconstruction
schemes. There are, however, several properties of the DG method which make it an
attractive alternative. The numerical solution produced by the DG method is inherently
discontinuous between computational cells, allowing for the capture of fine structures in the
solution near discontinuities. The method can also achieve an arbitrarily high formal order
of accuracy on smooth solutions by simply using a suitably high-order approximation on
each element. Unlike finite difference schemes, the DG method can be naturally applied to
unstructured computational meshes making it useful for problems with complex geometries.
Finally, the method is highly parallelizable and adaptive. The numerical solution on each
element only requires information from its own cell and its immediate neighbours in order
to be evolved in time. Adaptive strategies can therefore be used to alter the order of
approximation and the geometry of the mesh to suit the problem. These properties have
made the DG method an ideal candidate for implementation on highly parallel graphical
processing unit (GPU) computer architectures. The reader is referred to [45] and [36]
for a discussion of the implementation of the nodal and modal forms of the DG method,
respectively, on GPUs.



The DG method does, however, suffer from a significant drawback when compared to
finite difference and finite volume methods. The linear stability restriction of the method,
stated through its Courant-Friedrichs-Lewy (CFL) condition, scales inversely with its or-
der of approximation. The numerical solution therefore requires significantly more time-
integration steps to reach the same final time 7' compared to finite difference and finite
volume methods. The computation of the DG spatial discretization also involves both vol-
ume integrals and integrals along cell boundaries which must make use of Riemann solvers
in flux evaluations. This is in contrast to finite volume schemes, which do not require the
computation of volume integrals, and finite difference schemes, which do not require the use
of Riemann solvers. Finally, due to the occurrence of discontinuities in the numerical solu-
tion, and due to the inherent non-linearities in the general conservation laws, oscillations
in the DG numerical solution that form near discontinuities due to the Gibbs phenomenon
must be filtered using some form of limiting procedure. Although effective limiting proce-
dures which preserve the DG scheme’s local stencil and parallelism have been proposed in
one dimension, namely the moment limiter [46], the creation of robust limiters in higher
dimensions on unstructured meshes remains an open problem. These issues make the DG
scheme a potentially more expensive method for the same theoretical order of convergence
when compared to corresponding finite difference and finite volume schemes.

In this thesis we analyse several properties of the DG method and the accuracy of the
numerical solutions it produces. The first such property is known as superconvergence.
Superconvergence is the property that certain points within each computational cell can
potentially exhibit a higher rate of convergence than the numerical solution as a whole.
It has been conjectured that this property is what is exploited during post-processing
algorithms, such as presented in [28] and further developed in [60], where a higher-order
approximation is extracted from the current numerical solution. While superconvergence
for classical finite element methods has been extensively studied [66, 7], such analysis
has only recently been performed for DG schemes and several open questions remain,
particularly for the DG scheme on non-cartesian grids. The second property of interest in
this thesis is known as superaccuracy and refers to the high-order accuracy achieved by the
scheme in terms of dissipation and dispersion errors. This topic has been studied by several
authors [43, 6] in one dimension but few results exist for higher-dimensional problems. We
will also investigate the severe stability restriction of the method by analysing the spectrum
of the DG spatial discretization as done in [48]. While these three properties of the scheme
appear at first glance to be disparate topics of study, we show that not only is there a
connection between the superconvergence, superaccuracy, and stability of the method, but
that these properties can be altered to produced schemes with particular superconvergence
or superaccuary properties and schemes that are more stable than the classical DG method.



This analysis aims to give insight into how the scheme obtains high-order accuracy and
into the origin of the scheme’s severe stability restriction.

This thesis is organized as follows. In the remainder of this chapter we will derive
the DG method applied to scalar conservation laws, systems, and then multidimensional
problems. In Chapter 2, we use classical Fourier analysis to analyse the superconvergence,
superaccuracy, and stability of the scheme applied to a model linear problem. In Chapter
3, we propose a modification to the usual DG scheme which we demonstrate to lower the
formal accuracy of the scheme while significantly improving its stability. Chapter 4 extends
the analysis of the superconvergence, superaccuracy, and stability of the scheme to two-
dimensional problems on triangular meshes. Finally, in Chapter 5 we propose analogous
modification to the two-dimensional scheme proposed in Chapter 3 in order to obtain
similar stability improvements.

1.2 The DG Scheme

1.2.1 One-dimensional Scalar Equations

To illustrate the DG method, we apply the scheme to the scalar hyperbolic conservation
law

w4 fu)y =0, (1.2.1)

subject to appropriate initial and boundary conditions on interval I. We begin by discretiz-
ing the domain into non-overlapping mesh elements I; = [z}, z;41] of size h; = z;41 — z;j,

j=1,2,...,N so that
N
I=Jr.
j=1

We then approximate u on cell I; by a function U; € S, where § is a finite dimensional
subspace of L2[z;,2;41] which we refer to as the finite element space. Using this approx-
imation in (1.2.1), we multiply (1.2.1) by a test function V' and integrate the result on I;
to obtain

d [T+

Tjt+1

i
VV € V. Here, V is a finite dimensional subspace of the Sobolev space H'[z;, z;41] that
we refer to as the test function space. We then integrate the second integral in (1.2.2) by



parts to obtain,
d [T+

dt J,
J

Tj+1 Tjt+1

U,V dz — / FU)V, do + [f(Uj)v} —0, (1.2.3)
x; Ty

VYV € V. To simplify computations, we transform this equation to the canonical element
Iy = [-1, 1] through a linear mapping

Tj Ty h;

n(g) = LTI 4 2

¢. (1.2.4)
This yields
hjd (! ! 1
Yo [ uvae- [ v+ [rov] <o, (1.25)
2.dt J_4 _1 ~1
VvV €V, where now both U; and V' are understood to be functions of £. At this point, we
note that the evaluation of f(U;) at £ =1 and —1 is not well defined since the numerical

approximation U is potentially double-valued at each cell interface. To resolve this, let us
denote the value of U at x; by U; and write (1.2.5) as

he d 1 1
2o | UVde— [ fU)Veds + fU7)V ) = FUHV (1) =0, (1.2.6)

VV € V. This is known as the weak formulation of the conservation law. We call U a
Riemann state. Usual practice is to either specify an exact/approximate Riemann state
U; at each cell interface using a Riemann solver then evaluate the flux function f at
that state, or to specify an exact/approximate value f(U7) itself at each cell interface. A
detailed discussion regarding Riemann solvers is outside the scope of this text and we refer
the reader to the book by Toro [64] and the references therein for more information on
this subject. Here, we will simply state how we will specify U or f(U;). For this general
scalar equation we implement a local Lax-Friedrichs flux [53, 29], i.e.

)\

1
J=3

2

fU7) = 5 (f(Us(z;)) + f(Uj-1(z5))) —

5 (Uj(xj) = Uj-a(xy))

where ])\j7%| = max(|f'(U;(z;)|, | f (Uj=1(z;)|) is the largest wave speed on either side of the
cell interface. Note that this flux reduces simply to the upwind flux for linear conservation
laws.

Now, to complete the discretization we must specify our finite element space S and the
test function space V. We choose the finite element space to be & = P, i.e. the space of
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polynomials of degree less than or equal to p. We choose as the basis for this finite element
space the Legendre polynomials [1] Py, K = 0,...,p. The Legendre polynomials form an
orthogonal family on [—1, 1], i.e.

1
9
PP df = 1.2.
/_1 Sy (1.2.7)

where g, is the Kroneker delta. With the chosen normalization (1.2.7), the values of the
basis functions at the end points of the interval [—1, 1] are

P(1)=1,  P(-1)= (1" (1.2.8)

We write the numerical solution in terms of this basis as
p
Up=> ciP, (1.2.9)
1=0

where each coefficient ¢;; is a function of time ¢. Then using (1.2.9) in (1.2.6) we obtain a
Galerkin formulation by also requiring that the test function V space is equal to the finite
element space, i.e. V =S = P,. Therefore, choosing V = P, k = 0,1,...,p, and using
(1.2.8) and (1.2.7) we obtain p + 1 equations

h; dejk K ! :
= — [fWUj) = (D) AUD) | + | fU;) By dE, (1.2.10)
2k +1 dt U5 )] LR
for k = 0,...,p. We complete the discretization by approximating the integral term in

(1.2.10) using a quadrature rule [1] and evolving the solution coefficients ¢, in time using
a suitable time integration scheme. Although the choice of time integration scheme is
arbitrary, in this thesis we will only consider the most commonly employed scheme, i.e.
an explicit order p + 1 Runge-Kutta (RK) method. With this time integration scheme, it
is known [31] that the scheme will be linearly stable when the time step At satisfies the
Courant-Friedrichs-Lewy (CFL) condition

h,
At < min . :
~ U (2p+ 1) maxy, | f/(U;)]

We compute the initial values of ¢;;, through some projection of the initial profile u(z, 0) =
ug(x), usually the L? projection

1
/ (Uj — uj) P dé =0,
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for k = 0,...,p. Finally, we note that near discontinuities the numerical solution may
develop oscillations. One approach to suppress such oscillations is apply a limiter. A
complete discussion of limiters and alternative limiting strategies is beyond the scope of
this text but the reader is referred to [53] for a preliminary discussion. In this work, unless
otherwise stated, we will implement the moment limiter described in [46].

1.2.2 One-dimensional Systems

The implementation of the DG method applied to a one-dimensional hyperbolic system of
conservation laws is analogous to the scalar case. We consider the system

u; + f(u), =0, (1.2.11)

where u is vector of m variables. Note that the system is assumed to be hyperbolic, that
is, the Jacobian matrix A(u) = f(u), is diagonalizable and its eigenvalues are always real.
Following the same procedure as above we multiply (1.2.11) by a test function V' and
integrate by parts to obtain the weak formulation

e [ uwae [ fvas+ 103V - OV =0
YV € V. We again use the local Lax-Friedrichs flux, this time for systems
A1

J—3

(U3 = 5 (E(U () + £(U;2(0)) = 2 (Us(ay) = Upa ()

where A;_1 is the largest magnitude eigenvalue of the matrices A(U,(z;)) and A(U;_1(x;)).
We then approxunate the solution u by a vector of polynomials

U, = ZcﬂP,, (1.2.12)

and using this in the weak formulation and choosing V' = Py, £k = 0,...,p we obtain p+ 1

equations
1

h: dc.
ﬁ%Z [£(U5) = (= 1)’“f(U;f)}+/_1f(Uj)P,;d§, (1.2.13)

for k =0,...,p. The linear stability restriction on At now scales with the largest eigenvalue
of A(U), i.e
b
At < min 2 :
i (2p+ D)|Ajmazl

where \j 40 is the largest magnitude eigenvalue of A(U;).
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1.2.3 Two-dimensional Systems

Although the DG scheme can be applied to problems of arbitrary dimension and to arbi-
trary cell geometries with a suitable choice of finite element space, we restrict our attention
to applying the DG scheme to a two-dimensional problem on a mesh of triangular cells.
This way we are able to explicitly state the polynomial basis, and the stability restriction.

We consider the two-dimensional hyperbolic system of conservation laws,
u;+V-F(u)=0 (1.2.14)

subject to appropriate initial and boundary conditions in a region @ C R% Here F =
(F1,Fy) is a tensor of two vector valued flux functions F(u) and Fy(u). Note that the
system is assumed to be hyperbolic, that is, the matrix a«A(u) 4+ SB(u) is diagonalizable
and has real eigenvalues for any « and 3 such that a? + 8% = 1, where A(u) = (Fy)y
and B(u) = (F2),. We begin as usual by partitioning the domain 2 into non-overlapping
triangular cells Q;, j = 1,2, ..., N so that

N
a=Ja.
j=1

We again replace the exact solution u in the conservation law (1.2.14) by a polynomial U;
on every cell ;. Then multiplying (1.2.14) by a test function V' and integrating over €,

we obtain,
d
—// U,V dA+// V. F(u)V dA =0, (1.2.15)
dt J Jo, Q;

VV € V. Then, applying the divergence theorem to the second integral in (1.2.15) we
obtain,

i// UdeA—// F(U,)-VV dA+7§ n-F(UH)V ds = 0, (1.2.16)
dt Q; Q; 9

VYV €V, where 0€); is the boundary of (2, oriented counter-clockwise and n is the outward-
facing normal vector to 0€);. Note that we have again used the notation U* since the
numerical solution is potentially multi-valued along the cell boundary 0€2; and we must
replace U; with a Riemann state. We denote by Uj;; the value of the numerical solution
in the immediate neighbour of €2; along each edge of its boundary 0€2;. Using this, the
local Lax-Friedrichs flux can be written

&

i+

0 F(U5) = g0 (R(U) + F(U,) - 02 (U, - Uy),

8



(w3,y3) (0,1)

(1027 Ya)

(3617211) 0

(0,0) (1,0)
z 3

Figure 1.1: The transformation (1.2.17) maps each computational cell ; to the canonical
cell Q.

where A; 1 is the largest magnitude eigenvalue of the matrices n - (A(U;), B(Uy)) and

n - (A(U,4),B(U;;)). To obtain a more explicit expression for the numerical solution,
we proceed as in the one-dimensional case and map each cell €2; to a computational cell
Q. Suppose the cell Q; has vertices at (x1,y1), (22,¥2), and (x3,y3), traveling counter-
clockwise. We map €2; to the cell { in the variables (£, n), which has vertices located at
(0,0), (1,0), and (0,1). This mapping is given by

T T1 Ty I3 1—-¢&—n
yl =1 v y|= § : (1.2.17)
1 1 1 1 n

The Jacobian matrix for this transformation is constant and given by

J = (ﬂfs x,,) - (552 s xl) (1.2.18)
To\¥e W Yo—y1 Ys—1)’
and satisfies det J; = 2|Q;|. Using this mapping in (1.2.16) we can write
d
2|Qj|—// U,V dA— 20, // F(U,)-J-'VV dA+f n-F(U)V ds = 0, (1.2.19)
dt | Ja, Q ! 0 ’
where V is now understood to be an operator in the (&, n)-space.

In the new variables £ and 7, we choose the Dubiner basis [33] for the polynomial space
P, = span{¢n’|i + j < p}. These basis functions are given by

V(&) = /(20 + 1) (2k + 2) P22 (1 - 26) (1 - §)'P; <1 —~ 127”5) : (1.2.20)
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for k=0,...,pand 1 =0,...,k, where P,?’_QZH is the degree k — ¢ Jacobi polynomial with
parameters 0 and 2i + 1 and P, is the degree 7 Legendre polynomial. This basis satisfies

/ Vkiim dA = 0pidim, (1.2.21)
Qo

where 0y, is the Kronecker delta function. We write the numerical solution in terms of this
basis

D k
U= > cimtbml(én), (1.2.22)
m=0 1=0
and use this in (1.2.19), taking V = 4y; for K = 0,...,p and i = 0,...,k, and use the
orthogonality (1.2.21) to obtain 1 (p + 1)(p + 2) equations

d
2/0| = cini = _7({99 n-F(U)¢, ds+2\ij//Q F(U;) - J7'Vyy dA,  (1.2.23)
J 0

for k=0,...,pand ¢ = 0,...,k. The discretization is then completed by approximating
the volume integral using a quadrature rule over €y [34] and approximating the integral
along each edge of 0f); by using an appropriate one-dimensional quadrature. We then
time evolve the solution coefficients using an explicit order p + 1 Runge-Kutta (RK) time-
stepping scheme. The usual CFL condition used in these problems can be written

r

At < min J ,
i (2p+ DN mazl

where 7; is the radius of the inscribed circle in €; and A4, is the largest magnitude
eigenvalue of the matrix aA(u) + SB(u) over the cell Q;, where a* + 5 = 1.
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Chapter 2

Superconvergence and Superaccuracy
of the DG Method

2.1 Introduction

In this chapter we investigate the superconvergence, superaccuracy, and stability prop-
erties of DG method in one dimension. To do this, we apply the DG method to the
one-dimensional linear hyperbolic problem

up + auy = 0, (2.1.1)

with a > 0 constant, subject to periodic boundary conditions on interval I and sufficiently
smooth initial data ug(z).

We begin by deriving a PDE on the j-th cell which is solved by the polynomial numeri-
cal solution U; exactly. This PDE is equivalent to the original advection equation but with
a forcing term. Then, by applying classical Fourier analysis, we find the Fourier modes
of this PDE which are polynomial in space. These solutions are completely determined
by the inflow into each cell and a rational function of the mode’s frequency. These ratio-
nal functions are also closely related to both the (p + 1)-th right Radau polynomial R,
and the z% Padé approximant of the exponential function e*, where p is the degree of the
polynomial approximation. We use these particular polynomial solutions to investigate the
superconvergence, superaccuracy, and stability of the method. Specifically, we determine
the local superconvergence properties of the method by assuming an exact inflow into a cell
and considering a local expansion of the Fourier modes. Then, by looking for particular
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wave solutions, we find the numerical dispersion relation and establish the superaccurate
errors of the method in dissipation and dispersion. Finally we establish global superconver-
gence results and show in particular that for a uniform computational mesh of N elements
there exist (p+ 1) N independent polynomial solutions, N of which can be seen as physical
and pN as non-physical. The physical modes of the solution exhibit the familiar super-
convergence properties, while the non-physical modes are damped exponentially quickly in
time. This property was conjectured by Biswas et al [17] in 1994.

Superconvergence of the DG method for one-dimensional problems has been studied
in several papers. Following the conjecture made by Biswas et al, Adjerid et al in [4]
proved order (p+ 2) convergence of the DG solution at the downwind-based Radau points
and order 2p + 1 convergence at the downwind end of each cell for ODEs. An order
(p+ %) convergence rate of the DG solution to a particular projection of the exact solution
was later shown by Cheng and Shu in [20, 21]. Yang and Shu then showed the same
superconvergence property with order p + 2 convergence for linear hyperbolic equations in
[72]. Fourier analysis of the DG solution has also been applied to the DG solution in order
to investigate superconvergence by symbolically manipulating the discretetization matrices
for low order (p = 1,2, and 3) approximations [73, 38].

Likewise, the connection between the DG scheme and the Padé approximants of the
exponential function has been observed in several works. The stability region of the DG
method for ODEs was demonstrated by Le Saint and Raviart [52] to be given by |R(Ah)| < 1
where R(z) is the -f; Padé approximant of e* and h is the grid spacing. In [43], Hu
and Atkins conjectured that certain polynomials involved in the analysis of the numerical
dispersion relation are related to 22 Padé approximant of e* and used this to show that
the numerical dispersion relation is accurate to (kh)?*2, where & is the wavenumber. This
conjecture was proven and an extended analysis of the dispersion and dissipation errors
was given by Ainsworth in [6]. Later, a connection between the spectrum of the DG
method on linear problems and the Padé approximant of the exponential was investigated
by Krivodonova and Qin in [48]. In this chapter, we demonstrate that the numerical
solutions of the DG method are themselves closely related to this Padé approximant and
furthermore both the superconvergent local errors and superaccurate errors in dissipation
and dispersion of the method can be seen as resulting from the accuracy of this Padé

approximant.

The remainder of this chapter is organized as follows. In Section 2 we apply the DG
method to the linear problem (2.1.1) and use the formulation to write a PDE which is solved
by the numerical solution U; on the j-th cell. In Section 3 we decompose the numerical
solution into Fourier modes, we use this PDE to find particular numerical solutions and
establish our main results. These results are then illustrated numerically in Section 4.
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2.2 PDE for the DG Solution

Our goal in this section is to derive a partial differential equation for the numerical solution
of the DG method. We begin by applying the DG method (1.2.10) to the linear conservation
law (2.1.1) to obtain the scheme

1

hy _desn U, P de. (2.2.1)
1

* k1=
S = Ui = 0] +a [

We note that in the case of the linear flux f(u) = au, the local Lax-Friedrichs flux we
implement reduces to the upwind flux, which can be written as choosing the Riemann state

U to be the value of the numerical solution from the previous cell, i.e. U = U;_(x;).
Therefore we can write the scheme (2.2.1) as
h;  dej !
Qk—j_ld—; = —aq [Uj(l'j+1) — (—1>kUj,1($]’)] + &/_1 UJP;C df (222)

To derive a PDE which the numerical solution U; solves, we begin by integrating the
integral in (2.2.2) by parts to write

hj dek k ! 8U]
MGGk el — ip, ge. 9.2.3
e R A .0 (223
where [[U;]] = Uj(x;) — Uj_1(x;) denotes the jump between the endpoints of the numerical

solution at the interface of the j-th and (j — 1)-th cells. Note that the integral in this
expression is entirely local, as opposed to the term in (1.2.2). Since we are interested in
the equation which Uj itself satisfies we can reconstruct U; by multiplying each equation
in the system by P, and summing over all k£ and using the expression for U; in (1.2.9). We
can thereby write the following exact expression for %U ; after some rearrangement,

%) 2a =2k +1 ( [ OU; a 2
5 Ui+ B2 2 ( % P dg) b, = —h—j[[Uj]] (g(—l)’f(zk + 1)Pk> . (2.24)

Because the Legendre polynomials are an orthogonal family we have that the first summed
term in this expression is simply the projection of 63—[? into the finite element space P,.
Moreover, since 9% s already in the finite element space this projection is exact. Hence

: o8
we can write,

0 2a 0 a P
—U;j+ —=U; = ——[[U; ~DF2k+1)P; | . 2.2.5
50+ 5 gV hg[ﬂ(%%( 2k + 1) Q (225)
To simplify this expression further let us use the following proposition:
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Proposition 2.1.
p

d _
) (—D)FRk+ )P = 2d—§Rp+1(£),
k=0
where R, is the right Radau polynomial [1] of degree p + 1, which we defined as R, =
CU Pyt — By).

2

Proof. Tt is known that the Legendre polynomials satisfy [1],

d
d_fpk—H = (2/{5 + 1)Pk + (2]€ - 3)Pk_2 + (Zk — 7)Pk_4 + ...
Therefore, a simple calculation shows
d (—=1)rtt a
d_ng-s-l(f) = 9 d_g[Pp—l—l - Pp]
(—1)pt!
= (2p+1)P,+ (2p—3)Pya+ ...
— =)y~ (20— ) Pps— .. ]
1 & N
=3 (—1)%(2k 4+ 1) P,
k=0
which completes the proof. O

Using this proposition, we rewrite (2.2.5) compactly as

0 2a 0 2a d
pridiis h_ja_ij = h—j[[Ude—ngﬂ(ﬁ)- (2.2.6)

This is an equation which the polynomial approximation U; will satisfy exactly on the cell
I;. In particular, U; solves the same advection equation as the exact solution u, except
with a forcing term. Note that when approximating smooth solutions the polynomial
approximation U; will be locally order p + 1 accurate to the exact solution and thus the
jump term at the cell interface [[U;]] will be of order p 4+ 1 as well. This implies that the
solution to (2.2.6) and, hence, the numerical approximation will in a sense be close to a
solution of the advection equation since the forcing term is small.
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2.3 Fourier Analysis

To investigate the properties of solutions of @'2'6) we look at a single Fourier mode solution
of the form U;(§,t) = U;(§, w)e ™", where U, is a polynomial of degree p in €. Using these
assumptions on the form of U;(&,t) in (2.2.6) we have that this Fourier mode satisfies the
ODE

~2a 0 - 2a .~ ., d
—awlU; + — I, (%U = h_HU 1] ng+1(§) (2.3.1)
We can solve this ODE explicitly to obtain
: ; e g [ e tres @
Uj(¢,w) = Uj(—1,w)e 2 + (U] 16 T 1(s) ds. (2.3.2)

The general solution (2.3.2) is not necessarily a polynomial in . Therefore, (2.3.2) is too
general for our purposes. Below, we will look for additional restrictions which ensure that
this solution is polynomial in £&. We state two lemmas which will help us to rewrite and
investigate the integral term in (2.3.2).

Lemma 2.1. The integral term in (2.3.2) satisfies the following relation

¢ hy d whj 1
[ Gt do = = O () — o)) 233)

where g(wh;) is a polynomial of degree p+1 in wh; and f(wh;,§) is a polynomial of degree
p in both wh; and §.

Proof. We begin by integrating the integral in (2.3.2) by parts

§owny oo od 2 d __ d
/16 7 ¢ )ngH(S) ds = (w_hj> {d_prH(—l)@ HED d_ngﬂ(f)}
2 & un d>
= (&) _Rp-
i (w_h,> /16 | )dSQRpH(S) as,

and then continue integrating by parts until the remaining integral vanishes to obtain

/ f e 4 - (5) ds:%( (why)e 2 €D f(whj,§)> (2.3.4)

-1 ds P+l (Cx.)hj
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where

p+1 e
= ZQk(wh ypri- dekRP‘H( 1), (2.3.5)
p+1 g
flwh;, &) = Z2’f (why)PH1= kdgkRpH(g) (2.3.6)

Note that g(wh;) is a polynomial of degree p in wh;, and f(wh;,&) is polynomial of degree
p in wh; and . Therefore, defining g(wh;) = (wh;)P™ + g(wh;) in (2.3.4) we will obtain
equation (2.3.3) which completes the proof. O

Lemma 2.2. The integral term in (2.3.2) also satisfies
¢ ey d e | p-
e 2 ERp+l( ) ds = —e™ + Rp+1<€)

. +§; (ng)k (k_11)! /j(g — SRy (s) ds. (2.3.7)

Proof. We prove this lemma in a similar manner to Lemma 1, i.e., by integrating the
integral in (2.3.2) by parts, this time in reverse order

wh

S owny o od why _ Whje o
/162(5 5)£Rp+1(s) ds = —e = &1 + R,y (&) + T/le 7 (¢ )Rp+1(s) ds.

Here, from the definition of the Radau polynomial R, we have used R, ,(—1) = 1. We
continue integrating by parts to obtain

E whj s d wh

[ ) ds =~ <f+”+Rp+1<f>+( 2 )Rle ()
wh] ? 77(72)

+ =5 Ry5 (&) +. .., (23.8)

where we define R;jr(l_ " to be the repeated integrals of the right Radau polynomial, i.e.,
Ry:V(€) = Ry (6) and

§
R (¢6) = / 1 R (s) ds. (2.3.9)
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Finally, using this definition with the Cauchy integration formula we can write the poly-
nomials R, jr(f ") as

3
R (e = ﬁ / (€ — 5) 1R, (s) ds, (2.3.10)

-1

which, when used in (2.3.8), yields (2.3.7) and completes the proof. O

From these two lemmas we can establish a useful result regarding the polynomials ¢ and

f.
Corollary 2.1. The rational function fg(?j}f’_f) has the expansion
J

F@hs,€) iy (whyt!

Ry, (6) + (w—hj) R (g)] (2.3.11)

g(why) g(wh;) =\ 2
and, ©n particular,
fwhy, 1) h; 2p+2
D0 ) — e 4 O((why) 22, (2.3.12
o ((why)*2) )
i.€. fg((z;;) 1s the # Padé approximant of e*.

Before we state the proof of this corollary let us briefly recall the definition of a Padé
approximant [8].

Definition 1. Given integers m and n and a sufficiently smooth function F(z), the ™ Padé

approzimant of F(z) is a rational function % where P(z) and Q(z) are polynomials of

degree m and n, respectively, and satisfy

P(z
(2) = F(z) + O(zmH).
Q(2)
This Padé approximant is unique up to a constant multiple of the numerator and denom-
inator. It is conventional to take Q(0) = 1 so that the Padé approximant is uniquely

defined.

We now proceed to prove the Corollary.

17



Proof of Corollary 2.1. Equating the right hand sides of (2.3.3) and (2.3.7) we obtain

1 wh s
T (g(whj)e 5 (E+1) _ f(whj,§)> — _e 2 (&)

(why)
Rya(€) + Z (Wh ) R, (5)] :

e

Solving this expression for % immediately yields (2.3.11). Subsequently, evaluating
J

(2.3.11) at £ = 1 we obtain

flwhy, 1) (why)PH

gwhy) —C T glwhy)

B > wh\"
Rp+1(1) —+ (Tj) Rp—;-(l k)(l)] .
k=1

From the definition of R, in terms of the Legendre polynomials we have that R, (1) = 0.
Furthermore, from the definition of Rp N )(5) in (2.3.10) and the orthogonality of R, to
all polynomials of degree p — 1 we have that Rl;’(l_ k)(l) =0for k=1,...,p. We therefore

find that i
flwh, 1) (Why)P™ | (Whj) = (=)
TR ) gy W) U P
g(why) g9(why) kg;l 2 o
which yields
f(Whjv 1)

wh; 2p+2
= e“" + O((wh;)?PT°).
g(Oth> (( ]) )
By Lemma 2.1, f(z,1) is a polynomial of degree p while g(z) is a polynomial of degree
p + 1 with the form g(2) = 2P + g(z). Therefore, we find after a possible rescaling that

ut (( )) approximates e* to order 2p + 2. Therefore it is the unique

the rational function
Padé approximant of e

+1

Using Lemmas 2.1 and 2.2 we can write the general solution (2.3.2) in two ways:

0)(6.0) = Uy —Lw)e F16 — [[7,]) <f“>+%(<wh> € funy,©))

2 whj +1 [[UJH (&+1)
= Uy (Lw)e =6 )+W( gwh;)e T f(whj,é)) (2.3.13)
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- o (whi\"
Roa@+ 3 (52) AAV©
k=1

wh ;

= Uja(Lw)e = & 4 [[0;]]

&mmZ(%’”) Rpfl’“)(@]. (2.3.14)

1

Now, the solution corresponding to the exact advection of the downwind point Uj_l(l, w)

is Uj,l(l,w)ew%(f“) and, hence, from (2.3.13) and (2.3.14) the general solution for the
numerical approximation in cell ; consists of two parts: exact advection of the downwind
value in cell J;_; and higher-order error terms which are proportional to the magnitude of
the jump at that interface. This gives rise to the local superconvergence properties of the
method which we state formally in the following theorem.

Theorem 2.1 (Local Superconvergence). Let u(z,t) be a smooth exact solution of (2.1.1)
on the interval I with suitable boundary conditions. Let U be the numerical solution of the
DG scheme (2.2.2) on a mesh of N elements and let U; be the restriction of the numerical
solution to the cell I;. Let €;(§,t) = U; — u; be the numerical error on I; (mapped to
the canonical element [—1,1]). Suppose the inflow U;_1(x;,t) into cell I; is exact, i.e.
Uj_1(zj,t) = u(z;,t). Then the numerical error on cell I; satisfies

e;(&,t) = [[U;]1 R, 1 (€) + O(hF), (2.3.15)
and

e;(1,t) = O(h"2). (2.3.16)

Proof. We prove this by first considering a single Fourier mode of the error €;. That is, we

wh ;
consider an exact solution of the form u;(£,t) = ez €F1)=9% 5o that the exact inflow into
cell 1 is U;j_1(1,w) = 1. We then find using (2.3.14) that

¢;(§: 1) = [[U;]]

- () e
Roa©+ 3 () w0,
k=1

and furthermore, evaluating at £ = 1 we have

> (%f”)kR;ﬁf%] .

k=p+1

e;(1,t) = [[U;]]
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We therefore obtain (2.3.15) and (2.3.16) by summing these expressions over all possible
frequencies w. L

Next, as mentioned above we are interested only in polynomial solutions of (2.3.1). The
reason for this is that we know the numerical solution is polynomial in £ for all times ¢.
Hence, the numerical solution should be composed solely of solutions of (2.3.1) which are
polynomials in . By examining (2.3.13) we see that the solutions U; will be polynomial
in £ only when

A ooy 9lwhy)

Uj-1(L,w) + HUJHW =0 (2.3.17)
is satisfied. Hence, assuming g(wh;) # 0, we obtain after rearranging that Uj(—l,w) is
related to U;_1(1,w) by

L) = O (1w IWhs) — (why)PH!
UJ( L, ) UJ—1<17 ) g(whj) :

Using the above relation in (2.3.13) we obtain after rearranging that the polynomial solu-
tions of (2.3.1) have the form

f(Whj7 f)
g(why)

Thus, we obtain that the polynomial solutions on each cell are completely determined
by the rational function fg(fj,; ’§ and the value of the numerical solution at the downwind
point of the previous cell. The relation of the numerical solution to this rational function,
which itself is connected to the Padé approximant of e* is also related to the study of
the superaccurate errors in disipation and dispersion of the DG scheme. The same Padé
approximant was studied by Hu and Atkins in [43], Ainsworth in [6], and Krivodonova
and Qin in [48]. In each paper the authors note that the superaccuracies in dissipation
and dispersion errors stem from the accuracy of this Padé approximant. A key difference
here, however, is that we have not made the assumption of a uniform mesh. Hence we can
extend the previously known results concerning the 2p + 1 order of accuracy in dissipation

and 2p + 2 order of accuracy in dispersion of the DG method to non-uniform meshes.

U (€, w) = U;_1(1,w) (2.3.18)

To see this, we consider how the Fourier mode with frequency w propagates through
cell I;. An exact solution to (2.1.1) of the form wu(z,t) = exp(kxr — awt) would satisfy the
dispersion relation x = w and the relation u(z;41,t) = u(z;, t)e"". The numerical solution
with frequency w, on the other hand, satisfies

U;(1,t) = Uj_1(1,t)e™, (2.3.19)
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for some Kk which we call the numerical wavenumber. Note that we call errors in & dissi-
pation or dispersion depending on whether the error is real or imaginary. For sinusoidal
waves the exact frequency w is purely imaginary and therefore even powers of w in the
error (2.3.21) contribute dissipation error and odd powers of w contribute dispersion error.
We state the accuracy of this numerical wavenumber in the following theorem.

Theorem 2.2 (Superaccuracy). The numerical dispersion relation of the DG scheme ap-
plied to the linear equation (2.1.1) on cell I; between a frequency w and the numerical
wavenumber Kk can be written,

f(Whj> 1) Rh

=™, 2.3.20
g(why) ( )
The numerical wavenumber then satisfies

Ro=w+ CuwPP?hiP T 4 Cou™ PR (2.3.21)

i.e. the scheme has order 2p + 1 accuracy in dissipation and order 2p + 2 accuracy in
dispersion.

Proof. We obtain the dispersion relation (2.3.20) immediately by considering a Fourier
mode solution of (2.3.1) with frequency w, which can be written as the rational function
(2.3.18), and defining the numerical wavenumber % as in (2.3.19). We then obtain the
expansion (2.3.21) by performing a Taylor series of the dispersion relation (2.3.20), using
expansion (2.3.11) from Corollary 2.1, and solving for A. ]

In the above analysis, we find the numerical dispersion relation of the scheme by as-
suming that w was an exact frequency and finding the numerical wavenumber k,. Another
approach was taken in [48], where the authors were interested in the spectrum of the DG
method, i.e. the precise values of the numerical frequencies w for an exact wavenumber &.
We now show that we can use this approach to give an estimate of the numerical frequen-
cies w for problems with periodic boundary conditions. To this end we use the relation
between the downwind points of U in (2.3.19) and enforce the periodicity of the numerical
solution to obtain the following condition on w

H % =1 (2.3.22)

Hence, the admissible numerical frequencies w must satisfy this relation. Solving (2.3.22)
for every value of w, however, is difficult since it would require finding the roots of a
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high-order polynomial. An attempt to describe these values for some particular meshes
was made in [49], but this is beyond the scope of this chapter. We will instead make
the simplifying assumption that the mesh is uniform and obtain that the values of w are
solutions of

h,1
J@h 1) _ e (2.3.23)
g(wh)
where e™" is an N-th root of unity, i.e. k, = 2% n =0,...,N — 1, where L is the

length of the domain I. Note that since the mesh is uniform and each downwind point of
this solution is related by U;(1,w) = f;z’j}g)Uj_l(l, w) = e""U;_1(1,w), the exact physical
frequency for this wave is w = k,,. In the following theorem we give an estimate on the

values of w which are solutions of (2.3.23).

Theorem 2.3 (Physical Spectrum). Let U be the numerical solution of the DG scheme
(2.2.2) on a uniform mesh of N elements on the interval I with periodic boundary condi-
tions, and let U; be the restriction of the numerical solution to the cell I;.

The numerical solution U can be decomposed into (p + 1)N solutions. Each of these
solutions is polynomial in & and has the form U;(&,t) = Uj(f,w)e_“w'f. These solutions
also satisfy Uj(l,w) = e“”hUj_l(l,w) for each j where Kk, = 2’2”, n=2~0,..N-—1
Corresponding to each ky there are p+ 1 spectral values w = wy, w1, . ..,w, which have the

eTpansions

Wo = Ky, + (’)(Fcip“hm’“)
and

wm:l%—i_o("inL m217"‘7p7

where p,, are the p non-zero roots of the polynomial g(z) — f(z) and satisfy Re(pm,) > 0.

Proof. We begin by noting that from (2.3.12)

f(wh, 1)
g(wh)

there should be at least one solution of (2.3.23) of the form w = k,, + O(k?*2h?T1). The
condition (2.3.23) itself for the numerical frequency w can be rearranged to obtain

= e + O((wh)**?),

g(wh)e™" — f(wh,1) = 0. (2.3.24)

This expression is a polynomial of degree p+ 1 in w and, therefore, has up to p+ 1 distinct
roots. Regarding h as a small parameter, we have from the form of (2.3.24) that we can
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asymptotically approximate each root using the expansion

d_
w:Tl—Fdo—i—dlh—}—

Using this expansion in (2.3.24), and expanding e = 1 + k,h + O((k,h)?), we obtain
g(d_y) — f(d_1,1) + g(d_1)knh + ¢ (d_1)doh — f'(d_1,1)doh + O((k,h)?) = 0. (2.3.25)

Setting the powers of h equal to zero we find that we can determine the leading order
asymptotic behaviour of each root by finding the possible values of the coefficient d_;
which solve

g(d_1) — f(d_41,1) =0. (2.3.26)

Firstly, evaluating (2.3.12) at wh; = 0 gives that f(0,1) = ¢(0), so d_; = 0 is a root
of (2.3.26). Furthermore, differentiating (2.3.12) and evaluating at wh; = 0 yields that
£(0,1) # ¢’(0) and, hence, d_; = 0 is a simple root. Finally, when this Padé approximant
was studied in [48], the authors showed that non-zero roots of the polynomial g(z) — f(z,1)
lay in the right-half complex plane. Therefore we can conclude that there are p roots of
the form

Wy, = '%n + O(kn),

where Re(u,,) > 0, and one root which corresponds to d_; = 0. Clearly, the choice of
d_1 = 0 must correspond to the solution wy = k,, + O(k*T2h?+1),

We therefore obtain a total of (p + 1)N spectral values for w. Since every polynomial
solution associated with these spectral values satisfies U;(1,w) = e®"U;_;(1,w), and since
every wp, . . ., wp is distinct for each x,,, we have that these solutions are linearly independent
on the entire interval I. We can therefore decompose the numerical solution U into these
(p + 1)N solutions. O

From this theorem we have that for each k, there are p + 1 independent polynomial
solutions of (2.3.1) which satisfy U;(1,w) = e*"U;_;(1,w) for all j. One corresponds to
Wo = Kp + O(K2T2h?T1) and can be seen as ‘physical’ as it propagates with a numerical
frequency which is close to the exact frequency. The other, ‘non-physical’, solutions are
dampened out exponentially quickly. This property of the numerical frequencies of the
DG method was conjectured by Guo et al in [38], where the authors explicitly calculated
similar expansions of the numerical frequencies w,, for p = 1,2 and 3.

Now, since the non-physical modes are damped out exponentially quickly we see that
after sufficiently long times the accuracy of the numerical solution will be completely
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determined by the accuracy of the physical mode. Hence, if we specifically choose the
initial projection of the exact solution to ensure that the physical mode is high-order
accurate, we should preserve this accuracy for ¢t > 0. We formalize this observation in the
following theorem.

Theorem 2.4 (Global Superconvergence). Let u(z,t) be a smooth exact solution of (2.1.1)
on the interval I with periodic boundary conditions. Let U be the numerical solution of the
DG scheme (2.2.6) on a uniform mesh of N elements and let U; be the restriction of the
numerical solution to the cell I;. Let €;(€,t) = Uj—u; be the numerical error on I; (mapped
to the canonical element [—1,1]). Suppose the projection of the initial profile u(z,0) into
the finite element space is chosen such that

/_1 [U](§7 O) - U’j(ga 0)] Pk(g) df = O(h’2p+l_k)v k= 0,...,p, (2327)

is satisfied. Then the error on cell I; will tend exponentially quickly towards the form

6(6:8) = (U R+ (ORI 4 (DR, + O, (23.28)
where v, (t) = O(h¥) and, in particular,
e;(1,t) = O(R*PTh).

Proof. We begin by assuming for simplicity that the exact solution can be written as the
sum

N-1
u(z,t) = Z Gy e (@)
n=0
2mni

where k, = =F* and L is the length of I. The coefficients 1, are found by the discrete
Fourier transform and satisfy

Of course, in general the exact solution cannot be written in such a way but provided u is
sufficiently smooth and N is sufficiently large the error in such an approximation should be
negligible compared to the error in the polynomial approximation on each cell. Without
loss of generality, let us consider the numerical approximation of just one of these Fourier
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modes, u(z,t) = t,e" @ %, Restricting this Fourier mode to the cell I ; and mapping to
the canonical element we see that

(€, 1) = Qe (B HED),

Since the mesh is uniform, the projection of w;(x,0) into the finite element space will be
of the form U;(¢,0) = t,e™* U(€) for every j and we immediately obtain that U;(1,t) =
e "U;_1(1,t) for every j. We therefore can express the numerical solution as a sum of
the p 4+ 1 independent polynomial solutions found in Theorem 2.3 that satisty U;(&,t) =
Ui (€, wm)e™mt and U;(1,wp) = €U, _1(1,wy,), where the w,, are the p 4 1 distinct

"Jmhyg)

values which satisfy fg((wm = e Hence

f(wmh, §)
g(wmh) '

Since the physical frequency wy is an accurate approximation of the exact frequency k,, to
order O(k*T2h**1) we have by Corollary 2.1 the expansion

= (woh\"
Ry (€) + (‘%) R, ’“’(5)]
1

k=

p
Uj(g, t) _ Z Cmenn:cj—awmt
m=0

f(woh, &) _ Coe*“TLh(g_H) Oy (woh)Pt!

Co g(woh) g(woh)

+ O((k,h)*12).

Therefore performing the initial projection and using this expansion together with the
orthogonality of the Radau polynomial R, ; we find that

knh

/ [U](€7 0) o uj(g’ 0)] Pk df = /1(00 - an)Gﬂnxje 2

1

(I+1)Pk df

p 1
Kn; f(wmh’ 5) 2p+271 2p+1—k
+ m§:1 Cme /_1 k) P, dé+ O(K;F™h ).

Thus, the requirement of the initial projection to satisfy (2.3.27) will be satisfied by the
choice of Cy = @y, + O(h2*1) and YP _, CpLmh&) — o p where v = O(hP*Y). Hence,

g(wmh)
this initial projection yields a high-order accurate physical mode of the numerical solution.
Finally, we know from Theorem 1 that wy,...,w, have positive real parts of order O (%)

Hence these components of the solution are damped out exponentially quickly in time and
the numerical solution tends to the form

o nnxjfawotf(w0h7§) D
Uj(&,t) = tne woh) + O(h?th). (2.3.29)
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We can write this solution in the form (2.3.14) to find that
00 woh k .
_ 0 — (=
R+ (50) A
k=1

00 k
Ra@+ 3 (%) BV

k=1

Us(£,1) = et 4 €D amt 7] +O(h**h),

=u; (&) + [[Uj]] +O(hH).

From this, we see from that the error for the numerical approximation has the form

o) k
B+ 30 () m40©

k=1

6;(&:t) = [[U;]] +O(h* "),

and since this is true for any Fourier mode u,e"*, we obtain the result by summing this
expression over all Fourier modes. O]

Theorem 2.4 provides conditions for when we will observe the entire numerical solution
tending towards a superconvergent form on each cell. This superconvergent form will be
one order more accurate at points § such that R, () = 0, i.e. the roots of the right
Radau polynomial. In the proof of this theorem we see that the key requirement for global
superconvergence is that the initial projection projects the intial data onto the physical
mode with high-order accuracy. For example, an initial projection which consists of simply
interpolating the initial data at equidistant points will not satisfy this condition and thus
we do not observe superconvergence of the numerical solution at the downwind points at
any time.

Examining the superconvergent form (2.3.28) we can establish some useful corollaries.
First, we note that once the non-physical modes have been damped out the remaining
physical modes will be advected with order h?P*! accuracy. Hence, for the physical modes,
the DG method can be viewed as an order 2p+1 scheme. Second, since the initial projection
in Theorem 2.4 produces a high-order accurate physical mode, and due to the orthogonality
properties of the Radau polynomials, we also obtain high-order accuracy of the moments
of the numerical solution. We state the results formally below.

Corollary 2.2. The accumulation error of the superconvergent numerical solution (2.3.29)
1s of order 2p + 1. That s, after sufficiently long time the non-physical modes of the
numerical solution have been damped out and the numerical solution satisfies

1Uj1(8, t+ ah) = Uy (&, 1)[| = O(h*T).
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Corollary 2.3. The superconvergent form of the numerical solution (2.3.28) has the prop-
erty that the m-th moment of the error is order 2p +1 —m, i.e.

1
/ €;(€,1) Py, dE = O(h*HI™),

1

In the next section we perform several numerical test to confirm the results of Theorem
2.4 and Corollaries 2.2 and 2.3.

2.4 Numerical Examples

In this section we will perform several numerical experiments to confirm the superconver-
gence properties stated in the section above for the DG method for the linear advection
equation. Specifically, we will confirm that on a uniform mesh the numerical solution
of the DG method with a non-superconvergent initial projection will tend exponentially
quickly towards the superconvergent form (2.3.28). Moreover, we will show that when ¢
is sufficiently large the superconvergent numerical solution is advected at order O(h?*1).
Finally, we will show that the moments of the numerical error are also high-order accurate
after sufficiently long time t.

Our numerical studies were done on the initial value problem

u +u,; = 0, —1<z<1, t>0, (2.4.1)
u(z,0) = wup(x),
u(—=1,t) = wu(l,1),

with
uo(z) = sindmz. (2.4.2)

All tests below are calculated using an RK-4 time-stepping scheme and a CFL number of

% to minimize the error incurred in time integration.

Superconvergence from more general initial projections

In thet proof of Theorem 1 we showed that the non-physical waves are damped out like
__apm

n—. We therefore expect to observe that a numerical solution with an initial projection
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satisfying the conditions of Theorem 2, to have converged to the superconvergent form
(2.3.28) when

o~ nt O(h¥H),

where fi,,i, is the non-physical numerical frequency with the smallest real part. Therefore,
we expect that the numerical solution will be superconvergent when

op+ 1
t= -2 0(hlogh).

A lhmin

We can estimate the smallest real part of the non-physical numerical frequencies by ex-
plicitly calculating the roots of the polynomial g(z) — f(z,1) and finding the root with the
smallest non-zero real part. This calculation for p = 1,2, 3, and 4 yields g, = 6,3,0.42,
and 0.058, respectively. Therefore, we see that the smallest real part of the non-physical
numerical frequencies is decreasing very rapidly as the order p increases. Hence we expect
that it will take significantly longer for the non-physical modes to be damped out as the
order of the DG method increases.

In Figure 2.1 we show the error at the downwind point of the numerical solution as a
function of time for the p = 1,2, and 3 schemes on a uniform mesh of N = 64 elements
with the usual L? initial projection. The error at the downwind point is calculated using
the L' norm of the point-wise numerical errors at the downwind points, i.e. ||E|| =
h> 2 1U;(1,t) — u;(1,¢)]. We notice from the linear shape of the semi-log plots that the
error at the downwind point decays exponentially up to some critical time, at which point
the error remains relatively constant. We also notice that due to the scaling of fi,,;, it
takes significantly longer for the error at the downwind points to reach this critical time as
p increases. In the following numerical test we show that once this critical time is reached
the error at the downwind points is O(h?*1).

In Tables 2.1-2.3 we show the results of our convergence test for p = 1,2, and 3. In
each table we present the L' errors at the downwind points of the cells ||F||, and the L'
norm of the numerical errors in the cell averages, calculated as

N
el =h)
j=1

The errors are calculated at t = h, 4h, and 35h for the p = 1, 2, and 3 methods, respectively,
in order to allow sufficient time for the non-physical modes to dampen out. We calculate

/ll(Uj—uj) dé‘-
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Figure 2.1: Semi-log plots of L' norm of the point-wise error at the downwind points
of the numerical solution with L? initial projection as a function of time. Solutions are
calculated for the linear advection, (2.4.1)-(2.4.2) on a uniform mesh of N = 64 elements,

0.05

these errors for two different initial projections. The first is the usual L? projection while
the second is a left Radau-like projection, which is defined by

1
/(U]—uJ)Pkdfz(), ]{720,...7])—1,

1

and

Ui(~1,0) = u;(—1,0).
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L? Projection Left Radau Projection

N el [ r | &l [ r HEN | r [ &l | r
16 | 7.02e-02 - 6.66e-02 - 9.63e-02 - 1.22e-01 -
32 | 8.40e-03 | 3.06 | 8.90e-03 | 2.90 | 1.22e-02 | 2.98 | 1.68e-02 | 2.86
64 | 1.04e-03 | 3.01 | 1.08¢-03 | 3.04 | 1.54e-03 | 2.99 | 2.13e-03 | 2.98
128 | 1.30e-04 | 3.00 | 1.34e-04 | 3.01 | 1.93e-04 | 2.99 | 2.67e-04 | 3.00
256 | 1.63e-05 | 2.99 | 1.67e-05 | 3.00 | 2.43e-05 | 2.99 | 3.33e-05 | 3.00

Table 2.1: Linear advection, (2.4.1)-(2.4.2) with p = 1 and with the L? and left Radau
initial projections. L! error of the downwind points ||E|| and of the cell averages ||eo|| are
shown together with convergence rates, r. Errors are calculated at ¢t = h.

L? Projection Left Radau Projection
N el | r | Jall [ r 1EN [ r [ J@ll [ r
16 | 5.87e-03 7.96e-03 6.65e-03 7.66e-03

32 | 1.10e-04 | 5.72 | 1.86e-04 | 5.42 | 1.38e-04 | 5.59 | 2.20e-04 | 5.12
64 | 2.74e-06 | 5.34 | 4.04e-06 | 5.52 | 3.57e-06 | 5.27 | 5.54e-06 | 5.31
128 | 8.01e-08 | 5.10 | 1.10e-07 | 5.20 | 1.06e-07 | 5.07 | 1.60e-07 | 5.12
256 | 2.47e-09 | 5.01 | 3.28e-09 | 5.07 | 3.31e-09 | 5.00 | 4.87e-09 | 5.03

Table 2.2: Linear advection, (2.4.1)-(2.4.2) with p = 2 and with the L? and left Radau
initial projections. L! error of the downwind points ||E|| and of the cell averages ||eo|| are
shown together with convergence rates, r. Errors are calculated at ¢ = 4h.

These projections, while satisfying the conditions of Theorem 2, are far from the super-
convergent form (2.3.28) which can be viewed as close to a right Radau projection of the
exact solution. In each table we observe the expected 2p + 1 rate of convergence in both
the error at the downwind points of the cells and in the cell averages.

Order 2p + 1 advection of superconvergent solution

Next, we show that once the non-physical modes of the numerical solution have been
damped out, the remaining modes are advected at order 2p + 1. To show this we use the
L? initial projection and calculate the norm of the difference between numerical solutions
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L? Projection Left Radau Projection

N el [ r | &l [ r HEN | r [ &l | r
16 | 5.14e-04 | - 1.05e-03 | - 5.14e-04 | - 1.06e-03 -
32 | 2.36e-06 | 7.76 | 4.39e-06 | 7.90 | 2.30e-06 | 7.80 | 4.39e-06 | 7.91
64 | 9.17e-09 | 8.00 | 1.77e-08 | 7.95 | 9.09e-09 | 7.99 | 1.82e-08 | 7.91
128 | 3.63e-11 | 7.97 | 6.93e-11 | 8.00 | 3.53e-11 | 8.00 | 7.13e-11 | 8.00
256 | 2.75e-13 | 7.05 | 6.53e-13 | 6.73 | 2.99e-13 | 6.88 | 5.83e-13 | 6.93

Table 2.3: Linear advection, (2.4.1)-(2.4.2) with p = 3 and with the L? and left Radau
initial projections. L! error of the downwind points ||E|| and of the cell averages ||eo|| are
shown together with convergence rates, r. Errors are calculated at ¢t = 35h.

LN [ U@,0)—U@2 [ r [[[U(2)-Ud[] r |

16 9.16e-03 - 6.59e-03 -

32 2.34e-03 1.96 8.34e-04 2.98
64 5.90e-04 1.99 1.05e-04 3.00
128 1.48e-04 2.00 1.31e-05 3.00

Table 2.4: Linear advection, (2.4.1)-(2.4.2) with p =1 and L? initial projection. L' norms
of difference in numerical solutions at different times. Differences are measured between
U; initially and at ¢t = 2, after one period, then between U; at t = 2 and ¢ = 4, after an
additional period.

after 0,1, and 2 periods. That is, we calculate these differences as

U (2,0) = Uz, 2)]| ZhZ/llUj(é“,O)—Uj(f,?)l dg.

In Tables 2.4 and 2.5 we see that that the difference between the numerical solution initially
and after one period converges at the usual p 4+ 1 rate. This is expected since the non-
physical modes of the solution are present initially, and are O(hP*!). However, we also see
that that the difference between the numerical solution after one and two periods converges
with order 2p + 1. This shows that once the non-physical modes of the solution have been
damped out, the remaining physical modes are advected at order 2p + 1.
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LN V(@0 - U2 | r [[[U@2) U] r |

16 2.87e-04 - 1.03e-05 -

32 3.57e-05 3.00 3.24e-07 4.99
64 4.46e-06 3.00 1.01e-08 2.00
128 5.58e-07 3.00 3.17e-10 5.00

Table 2.5: Linear advection, (2.4.1)-(2.4.2) with p = 2 and L? initial projection. L' norms
of difference in numerical solutions at different times. Differences are measured between
U; initially and at ¢t = 2, after one period, then between U; at t = 2 and ¢ = 4, after an
additional period.

L? Projection Left Radau Projection
Nl llall [ r [ Jel [ r [ lal [ r | llel [ r
16 | 2.92e-03 | - |827e-03| - |3.24e-03| - | 8.06e-03 | -

32 | 1.12e-04 | 4.70 | 1.04e-03 | 2.99 | 1.04e-04 | 4.96 | 1.04e-03 | 2.95
64 | 8.09¢e-06 | 3.79 | 1.29¢-04 | 3.01 | 7.97e-06 | 3.70 | 1.29¢-04 | 3.01
128 | 5.21e-07 | 3.96 | 1.61e-05 | 3.00 | 5.19e-07 | 3.94 | 1.61e-05 | 3.00
256 | 3.28e-08 | 3.99 | 2.00e-06 | 3.00 | 3.27e-08 | 3.99 | 2.01e-06 | 3.00

Table 2.6: Linear advection, (2.4.1)-(2.4.2) with p = 2 and with the L? and left Radau
initial projections. L' norms of the first and second moments of the numerical error are
shown together with convergence rates, r. Errors are calculated at ¢ = 4h.

Superconvergence of moments

Finally, we demonstrate the high-order accuracy in the moments of the numerical error
for p = 2 in Table 2.6. We present the L' norm of the first and second moments of the
numerical error in each cell. The moments are calculated as

N
el =)
j=1

The moments are calculated from the numerical solution using the usual L? initial pro-
jection and the left Radau-like projection, as above. From this table we see that the
m-th moment of the numerical error does indeed achieve the predicted order 2p +1 —m
convergence rate.

[ =) ],

32



2.5 Discussion

By finding the Fourier modes of the PDE (2.2.6) that governs the numerical solution we
have shown that the polynomial solutions are completely described by the value of the
solution at the downwind point of the previous cell and the rational function %};?
This rational function has a local expansion in h; in terms of the (p + 1)-th right Radau
polynomial and the anti-derivatives of this polynomial. Furthermore, at the downwind
point of the cell, we have that % is the # Padé approximant of e*. As shown in
Theorem 2.2, the accuracy of this Padé approximant is what gives rise to the high-order
accuracies in both dissipation and dispersion of the DG scheme, known as superaccuracy.
Moreover, the expansion of the rational function in terms of the right Radau polynomial
and its anti-derivatives is what we observe to be the local superconvergence of the numerical
solution at the right Radau points and the order 2p 4 1 superconvergence of the downwind
point in each cell. Finally, as studied in [48] and shown by equation (2.3.22), the spectrum
of the DG discretization matrix is directly related to this rational function. By studying
the spectral values of the method, we are able to prove global superconvergence results
in Theorem 2.4. These Fourier modes, therefore, provide a direct connection between the

three previously disparate properties of superaccuracy, superconvergence, and the stability
of the DG method.

We have shown that for a uniform computational mesh of N elements there exist N
polynomial solutions that can be viewed as physical components of the numerical wave
and p/N polynomial solutions that are non-physical components. Moreover, these non-
physical solutions are damped out exponentially quickly in time and, therefore, neglecting
time integration errors, we can conclude that the accuracy of the numerical solution for
sufficiently large times is completely determined by the accuracy of the initial projection
of the exact solution onto the physical modes. Beyond this point, the DG scheme can be
viewed as order 2p + 1 accurate on these physical solutions. Using this result, we proved
that for a class of initial projections of the exact solution we expect to obtain a numerical
solution which is superconvergent at both the roots of the right Radau polynomial and
the downwind points of the cell, after sufficiently long times. In particular, there is a class
of initial projections which do not initially have order h**! accuracy at the downwind
point, but will obtain this order of accuracy after sufficient time has elapsed. For these
projections the points of superconvergence will migrate to the roots of the right Radau
polynomial exponentially quickly in time.

Since many properties of the DG scheme are connected to the accuracy of this rational
function, we are motivated to consider how these properties may be manipulated through
modifications to the scheme. We explore this idea in the next chapter where we propose
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modifications to the DG method in order to relax its stability restriction. We extend
the analysis from this chapter to this modified scheme in order to study what effects the
modifications have on the superconvergence and superaccuracy properties of the method.
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Chapter 3

The Modified Discontinuous Galerkin
Method

3.1 Introduction

It is well known that the DG method applied to convection problems has maximum a CFL
number that decreases with the order of approximation p as (approximately) 1/(2p + 1)
when paired with an appropriate order explicit Runge-Kutta scheme. This rather restric-
tive condition is caused by the growth of the spectrum of the spatial discretization operator
of the semi-discrete scheme, which increases slightly slower than O(p?) [48]. In contrast,
finite difference schemes have a stability restriction that grows with the size of the com-
putational stencil as O(p). This makes the DG method a more expensive scheme for the
same theoretical order of convergence and is often quoted as one of the shortcomings of the
DG scheme. A possible solution to this issue was proposed by Warburton and Hagstrom
in [67], in which the authors propose the use of a co-volume mesh which allows an order in-
dependent CFL number. However, this method is limited to structured grids and requires
mappings of the solution between the original and co-volume meshes. The method in [67]
shrinks the spectrum of the DG method so that it does not require the usual 1/(2p + 1)
scaling. Another approach is to devise explicit time-integrators with larger absolute sta-
bility regions or stability regions which better encapsulate the spectrum of the DG spatial
operator [57, 58, 65]. For Runge-Kutta methods this usually comes at the cost of additional
stages.

For the same theoretical order of convergence, numerical schemes can have distinctly
different global accuracy. It has been pointed out that the discontinuous Galerkin scheme
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is more accurate than the finite volume scheme, e.g. when applied to the two-dimensional
Euler equations [56], in terms of the £2 norm. One reason for this is the small dispersive
and dissipative errors in the DG method, as discussed in Chapter 2. These small errors
lead to slower accumulation of the numerical error which is especially noticeable for long
time calculations. Since the superaccuracy and superconvergence properties can be seen as
arising from the accuracy of a certain rational function f;zﬁj) it is reasonable to assume
then that a scheme resulting in a different rational approximation of exp(z) may have
desirable properties, e.g. a less restrictive CFL number. The difficulty is to modify the

weak DG form to obtain such a scheme.

In this chapter, we propose modifications to the DG method which involve p 4+ 1 pa-
rameters ay, k= 0,1,...,p, which we call flux multipliers. In the case when oy = 1, for
k =0,1,...,p, we recover the original DG scheme. When a certain «y is not equal to
one we refer to this multiplier as ‘modified’. In each equation evolving the k-th degree of
freedom on element I, c¢;i, in time (see (3.2.3)), we use the flux multiplier oy, to scale the
contribution from the jumps in the numerical flux at cell interfaces to the propagation of
c;k- The justification of this operation is that the weak DG formulation consists of integrals
over cell volumes plus contributions from jumps in the numerical flux at the cell bound-
aries. For solutions which belong to the finite element space, the flux jumps are equal to
zero and, thus, the proposed modifications will not influence the solution accuracy. More
generally, they will not affect the formal results on accuracy and convergence originally
established by Cockburn and Shu [29, 27], as long as the equation corresponding to the
cjo coefficient (i.e., the one corresponding to the constant basis function) is unchanged.
We show that the modifications will affect the eigenvalues of the spatial operator of the
semi-discrete scheme, and hence, the CFL number.

In order to relax the time step restriction of the standard DG formulation, we search
for a set of flux multipliers ay, that provides the largest increase in the CFL number when
using the Legendre polynomial basis. The values for any other polynomial basis could be
obtain from the presented ones by a simple transformation. In order to compute this set
of values, we use linear algebra software to search for oy so that the size of the spectrum
of the modified scheme is smaller than that of the original DG method. We find that for
the orders of approximation considered in this work, the CFL number can be improved
by a factor of two or more by modifying only the highest multiplier to be «, ~ 0.4. The
modification of more than the highest multiplier generally leads to a larger improvement in
the CFL for particular combinations of ay. Using an energy argument we prove that when
only the highest multiplier , ay,, is modified the semi-discrete scheme is linearly stable. In
this case small modifications to «, influence only the size of the spectrum. In a general case
where more than one multiplier is modified, a particular choice of multipliers can result in
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an unstable semi-discrete scheme. However, we are able to numerically find a combination
of multipliers which results in stable semi-discrete schemes.

Next, we analyse the superconvergence and superaccuracy of modified schemes. We
show that the modifications directly affect the local superconvergence properties. In par-
ticular, modifying m highest order multipliers lowers the order of accuracy at the downwind
point of the cell by m orders. We also show that the same modifications lower the orders of
accuracy in dissipation and dispersion to O(h?™27™) and O(h?PT1=™) respectively. Never-
theless, the order of convergence of the scheme in the £! norm remains the same regardless
of the number of multipliers changed, as long as ag remains equal to one. This follows from
the standard DG analysis [29, 27], and our numerical experiments. However, we observe
in numerical experiments that the magnitude of the global £! error increases due to larger
dissipative and dispersive errors. In particular, setting a larger number of multipliers to
be not equal to one leads to a larger global error.

The proposed schemes can be viewed from a different perspective. Instead of comparing
the schemes based on the size of spatial discretization, we can compare them based on the
computational effort. That is, instead of increasing the time step size for a fixed mesh, we
can fix the time step and proportionally increase the number of cells. We show that with
the modified DG scheme, the solution for the same computational effort is noticeably more
accurate in terms of the global error. This is especially advantageous for problems which
have high frequency waves or fine structures.

The remainder of this chapter is organized as follows: In Section 2 we will introduce
a modification of the discontinuous Galerkin method through the introduction of the flux
multipliers «a;. We will then prove several superconvergence and superaccuracy results
concerning the effects of these multipliers on the accuracy of the DG scheme by using the
linear advection equation as a model problem. We will then investigate the stability of the
modified scheme and show that we are able to ameliorate the usual stability restriction of
the classical DG scheme through suitable choices in the multipliers ax. We will conclude by
showing that the modified scheme preserves the usual order of convergence in the £! norm,
and we will show how the scheme performs on several test examples including the linear
advection equation and the Euler equations. We also give examples where the accuracies
of the DG and modified DG schemes are compared on different sized meshes, but equal
computation times.
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3.2 Modified Discontinuous Galerkin Discretization

We consider again the application of the DG scheme to the one-dimensional scalar conser-
vation law (1.2.1), as written in (1.2.10)

h: dc; 1
2 i ld_th - [f(UjH) - (_1)kf(Uf)} + /_1 f(U;) Py, dé.

Integrating the integral term by parts we can write,

S = ) - (OO - [ Ok (320)

where [[f(U7)]) = F(Uz1) = F(Us(a 1)) and [[f(U7)]] = F(Uj(x)) — £(UF) are the jumps
between the local value of the flux f(U;) and the Riemann fluxes at each boundary. Notice
that this expression of the scheme can be obtained directly from (1.2.2) by noticing that
to include the contributions from the boundary of the cell we have defined f(U;), as a
distribution

[FUNbsy @ =2y

fUj)a = § f(Uj)a, x € (5, Lj41) (3.2.2)
[F U000 7= 251

where (5%. is the Dirac delta function at x = z;. The derivative on the interior term is
defined classically since U; is smooth inside I;.

Notice that the contributions from neighboring cells are concentrated in the two jump
terms on the right hand side of (3.2.1), while the integral term is purely local to the cell ;.
Moreover, when the exact solution of (1.2.1) belongs to the finite element space, the two
jump terms at the cell boundaries will be equal to zero. Consequently, modifying these
terms will not affect the formal accuracy of the solution. This motivates us to consider a
modified version of (3.2.1),

h' dC ik % k % 1
T = U~ (Dl @) - [ fOeRdE (323)
Here we have introduced the parameters a4, k = 0, ..., p, which scale the contributions of

the flux discontinuities at the cell interfaces to the propagation of the solution coefficients.
This modification can viewed as altering how the §-functions in the distribution (3.2.2) are

projected into the finite element space. Note that when «a; = 1,VEk, we recover the original
DG scheme.
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Remark 1 (Formal order of Convergence). We remark that the proposed modified DG
scheme should preserve the usual formal order p + 1 convergence on smooth solutions.
Firstly, the modifications to the numerical flux do not affect consistency of the scheme. This
15 because on smooth solutions the jump term is zero and will not contribute and therefore
the numerical flur remains consistent with the exact flux function f(u). Hence the original
results established by Cockburn and Shu in [29, 27] on the (p + 1)-th order consistency
of the DG method will carry over to this modified scheme. We can therefore conclude by
the equivalence theorem of Laz-Richmeyer that the modified scheme will preserve the usual
p + 1 convergence rate for linear equations, provided the scheme is linearly stable.

For nonlinear equations the proof of the TVDM property presented in [29] can be ver-
batim applied to the modified scheme provided g = 1. In particular, Lemma 2.1 uses only
the equation for the cjo and the values of the solution at the endpoints of the interval. Since
the equation cjo is unmodified, and the endpoint values are limited in the same manner,
the lemma holds. Moreover Lemma 2.3 in [29] will also hold with p = 1 and the minmod
limiter. Hence the modified scheme preserves the usual order p+ 1 convergence for smooth
nonlinear problems provided it is stable and cg = 1.

In Section 3.4 we prove linear stability of the modified scheme in the case where only
the highest order multiplier is taken not equal to one. However, when more multipliers are
modified the scheme may not be linearly stable. In these cases we investigate stability by
plotting the spectrum of the spatial operator of the modified DG scheme.

We expect that this scheme, which we will refer to as the modified DG (mDG) scheme,
will perform similarly to the original DG on smooth solutions, where the altered jump
contributions are small. In the remainder of this chapter we will be interested in establish-
ing what effect these parameters will have on the numerical scheme. Since this analysis is
difficult to perform on the general formulation, we will again consider the simple problem
of the linear advection equation.

3.3 Fourier Analysis

Applying the modified DG discretization (3.2.3) to the linear advection equation (2.1.1),
and again using the upwind flux U, = U;(7;11), we obtain

hy dew P Bl

39



where [[U;]] = U;(z;) — U;—1(x;). To extend the analysis performed in chapter 2, we again
obtain a PDE which governs the numerical solution itself. Following the same procedure,
we can recover a PDE for U; by multiplying (3.3.1) by P, and summing over k =0,...,p
to obtain, after some rearrangement,

0 2a 0 a &
—U; + —=-U; = ——|[U; ~DF2k + DBy | - 3.3.2
50+ hoaels = il J”(Q 42k + 1oy ) (332)
Before we begin finding the polynomial solutions of (3.3.2) let us first introduce a new
polynomial R,1(&; o) which depends on all the flux multipliers, & = (ap, ..., ®,), and is
defined by
i.ﬁ% (& a) = 1ij(—l)’“ﬂ(?k + 1ap B (3.3.3a)
df p+1 ) 2 £ kL Kk, -J.
Ry(—1l;0) =1, (3.3.3b)

and let us establish some properties of this polynomial which will be useful later.

Proposition 3.1. Assume ag = 1 and let o, be the lowest order multiplier (smallest m)
for which o, # 1. Then the polynomial R,+1(&; o), defined in (3.3.3), satisfies

Rpr(l;a) =0 (3.3.4)
and
1 k41
) (-1
R, (& a)Pydé = ——(agy1 —ag_1), k=0,...,p—1. 3.3.5
[ Roa(ga)Pede = S o — o) 3.35)

Hence, since ap = 1 for all k < m, Rp+1(§; «) is orthogonal to all polynomials of degree
not exceeding m — 1.

Proof. From the assumption ap = 1, we can obtain (3.3.4) immediately by integrating
(3.3.3a) from -1 to 1 and using the orthogonality property of the Legendre polynomials.
Next, we use the property that Legendre polynomials satisfy (2k 4+ 1) Py, = d%[PkH — Py 4]
for k > 0 [1] (where we have chosen P_; = 1) in order to write (3.3.3a) as

d -~ 1< d
d—ngH(f; a) = 3 Z(_l)k+lakd_§[Pk+1 — D).
k=0
From this we find )
~ 1
Ry (§a) = B ;(—1)k+1ak[PkH — Py4]. (3.3.6)



Reindexing this sum we can write

= (=1t L~ e 1
By (& a) = 9 [ Ppr1 — ap1 By + 5 (=" (g1 — 1) Pr — 5(041 —1).
k=1
(3.3.7)
We can then establish relation (3.3.5) by multiplying (3.3.7) by Py, k =0,...,p— 1, and
integrating over [—1, 1]. O

Using the definition of the polynomial R, (; a) we can write the PDE (3.3.2) for the
numerical solution U; as

0 2a 0 2a d ~
ETi h_ja_ng = h—j[[U]‘Hd—SRpH(ﬁ; Q). (3.3.8)

Now, we continue as in Chapter 2 and find polynomlal solutions of (3.3. 8) by looking at a
single Fourier mode solution of the form U;(€,t) = U;(€,w)e™ ", where U; is a polynomial
of degree p in £. Using these assumptions on the form of U;(&, t) in (3.3.8) we have that
this Fourier mode satisfies the ODE

A 2a 0 2a ..~ - d =
—awl; + h“agU - h—a[[U P Rl (€ ). (3.3.9)

We then extend the derivations of the polynomial solutions and their properties from
Section 2.3 to (3.3.9), the only difference being that the Radau polynomial R, ,(§) is

replaced by the modified polynomial RpH(f; ). Hence, we can state that polynomial
solutions of (3.3.9) have the form

f(why, &)
g(why)

where f (why, &) and g(wh;) are degree p and p+1 polynomials, respectively, and are defined
using the polynomial R,.;(§; o) as

Ui (&, w) = Uja(1,w) =2~ (3.3.10)

p+1

Glwhy) = (why)P™ 4+ 28 (why)P+- kjgk 1 (—1 ), (3.3.11)
k=1
B p+1 dk ~
Jlwhy,€) = D 2 (hy)"™ ™ S Ry (&5 ). (3.3.12)

k=1
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Moreover, the polynomial solutions (3.3.10) have the local expansion in wh; as

Ryi1 (&) + i (wh ) Ry (€ a)] . (3.3.13)

k=1

U3(6,0) = Uja(1,w)e =D 4 [10]

where R;ﬂ) (¢; ) are the successive anti-derivatives of Rpﬂ(f’ ;) and can be written using
the Cauchy integration formula as

. 3 -
D (o) = ﬁ /_ (6= Rypa(ssr) s, (3.3.14)

and R\, (& ) = Ry (& ).

Again we see that the polynomial solutions on each cell are completely determined by

a rational function L (th § and the value of the numerical solution at the downwind point

of the previous cell. Using the expansion (3.3.13) we can establish an analogous result to

flwh; ©)

Corollary 2.1 concerning the properties of the rational function h)

Lemma 3.1. The rational function %};J? has the expansion
Fwhy &) _ shagenny _ (why)”™ | o (@hi\" pew
W) e _ L Roa(©)+ 3 (22) RGH () (3.3.1)
G(why) G(wh;) Pr —~\ 2 P

and in particular,

Flwhy, 1)

TGlwhy) ¢ T OUh)TE), (3.3.16)

f(whj,1)
g(why)
where m is the index of the lowest order multiplier (smallest m) for which o, # 1.

i.€. is an order p + 1 +m rational approzimation of the exponential function e“hi,

Proof. The expansion (3.3.15) is derived in an entirely analogous way as (2.3.11) was
derived in Section 2.3, and is therefore omitted for brevity. To establish (3.3.16), however,
we first note that from Proposition 3.1 we have that R, (1;a) = 0 and R, (& @) is
orthogonal to ever(y golynomlal of degree less than m — 1. Hence, from the definition of
the polynomials Rp+1 (&; @) in (3.3.14) we have that RI(,J: (1; ) = 0 for k < m—1. Hence,
evaluating (3.3.15) at £ = 1, we have that

f@hi 1) _ erierny  @h P IS (whi\* pi
9(wh;) g(wh;) [;( 2 ) iy (5)]
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which yields )
(w hj y 1)
g(wh;)

and establishes the result. O

= evhi 4 O((whj)p+1+m).

This lemma concerning the local accuracy of the rational function E(W}i §) allows us to
extend our results from Section 2.3 on the local superconvergence and superaccuracy of

the DG method to this modified scheme. We state these results in the following theorems.

Theorem 3.1 (Local Superconvergence). Let u(z,t) be a smooth exact solution of (2.1.1)
on the interval I with suitable boundary conditions. Let U be the numerical solution of
the modified DG scheme (3.3.1) on a mesh of N elements and let U; be the restriction of
the numerical solution to the cell I;. Let €;(§,t) = U; — u; be the numerical error on I;
(mapped to the canonical element [—1,1]). Suppose the inflow U;_1(x;,t) into cell I; is
exact, i.e. Uj_q1(x;,t) = u(z;,t). Then the numerical error on cell 1; satisfies

&(&,1) = [[Uj]] Rpsa (& @) + O(R]),

and

e;(1,t) = O(htHHHm), (3.3.17)
where m is the index of the lowest order multiplier (smallest m) for which o, # 1.

Theorem 3.2 (Superaccuracy). The numerical dispersion relation of the mDG scheme
applied to the linear equation (2.1.1) on cell I; between a frequency w and the numerical
wavenumber Kk can be written,

flwh;, 1) — oFhi

(w ) (3.3.18)
The numerical wavenumber then satisfies
fo= w4 CrP TR 4GPt p ity (3.3.19)

where m is the index of the lowest order multiplier (smallest m) for which o, # 1. There-
fore if p+m+1 is odd then the order of the dispersion error of the modified DG scheme is
p+m+ 1 and the order of the dissipation error is p+m. On the other hand, if p+m +1
is even then the order of the dissipation error of the modified DG scheme is p+m +1 and
the order of the dispersion error is p + m.
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From Theorem 3.1 we see that, much like the classical DG scheme, the leading order
local error of the scheme is the polynomial Rp+1(§ ;a), which is now directly altered by
the parameters oy, multiplied by the jump at the inflow boundary [[U;]]. Furthermore, we
see in (3.3.17) and in the results of Theorem 3.2 that as more flux multipliers are modified
the orders of the local superconvergence at the downwind point and the superaccuracies in
dissipation and dispersion errors are reduced. This is somewhat expected by recalling that
the forcing term in the PDE (2.2.6) for the numerical solution can be seen as resulting from
the projection of the d-functions in f(U), at the boundaries of the cell (see (3.2.2)) into
the finite element space. The modification of this projection, which produces the forcing
term in (3.3.8) for the modified scheme, can be viewed as introducing an error into the
usual projection of the d-function. We will see in Section 3.4, however, that although these
modifications reduce the formal orders of accuracy of the DG scheme, they can potentially
enable us to choose larger CFL numbers.

We continue the extension of the analysis presented in Chapter 2 to the modified
DG scheme by establishing analogous results to Theorems 2.3 and 2.4, which concern the
spectrum and global superconvergence of the method on uniform grids. To do this we again
consider a uniform mesh and periodic boundary conditions and note that, as a consequence,
the spectral values of the scheme must satisfy

h,1
JWh 1) e, (3.3.20)
9(wh)
where e is an N-th root of unity, i.e. , = 2’2’” where L is the length of the domain

I. We use this together with the results of Lemma 3.1 in order to establish an analogous
result to Theorem 2.3 for the modified scheme.

Theorem 3.3 (Physical Spectrum). Let U be the numerical solution of the modified DG
scheme (3.3.1) on a uniform mesh of N elements on the interval I with periodic boundary
conditions, and let U; be the restriction of the numerical solution to the cell I;.

The numerical solution U can be decomposed into (p + 1)N solutions. Fach of these
solutions is polynomial in & and has the form U;(£,t) = (A]j(f,w)e*a“’t. These solutions
also satisfy Uj(l,w) = e“”hﬁj_l(l,w) for each j where Kk, = %, n=2~0,...,N-—1
Corresponding to each k, there are p+ 1 spectral values w = wy,ws, .. .,w, which have the
expansions

Wo = ki + O(kETIFMpPT™)
and

wl:%—l—(’)(/@n), l=1,...,p,
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where m is the index of the lowest order multiplier (smallest m) for which o, # 1 and
are the p non-zero roots of the polynomial §(z) — f(z,1).

We note that the only difference in the proof of this theorem from the proof of The-

orem 2.3 occurs due to the reduced accuracy of the rational approximation ! g(‘(”:]_z;) The
immediate consequence is that the order of accuracy of the physical mode for the modified
scheme will be lowered to p +m where ., is the lowest order multiplier for which «,, # 1.
We also note that Theorem 2.3 also states that Re(yy;) > 0, for all I, the proof of which
used a known property of the Padé approximant. This, however, cannot be guaranteed in
general for the modified scheme. Therefore, to enforce that Re(y;) > 0 for all I we must
make the additional assumption that the multipliers oy, are chosen such that the non-zero
roots of §(z) — f(z,1) lie in the right-half complex plane. A sufficient, though not explic-
itly necessary, condition is to enforce that the modified DG discretization remains stable.
Under this condition we obtain that we can decompose the spectrum of the scheme into N
physical modes, wy = K, + O(h?*™), and pN non-physical modes with positive real parts
of order O(3).

Using this partitioning of the spectrum we finally extend the results of Theorem 2.4 to
this modified DG method, making the appropriate changes to the order of accuracy of the
physical modes, in order to establish a global superconvergence result for the modified DG
method.

Theorem 3.4 (Global Superconvergence). Let u(z,t) be a smooth exact solution of (2.1.1)
on the interval I with periodic boundary conditions. Let U be the numerical solution of
a modified DG scheme (3.2.3) on a uniform mesh of N elements, where the modifiers,
ag, are chosen so that the scheme is stable and oy = 1. Let m be the smallest index for
which o, # 1. Let U; be the restriction of the numerical solution to the cell I; and let
€;(&,t) = U; — u; be the numerical error on I; (mapped to the canonical element [—1,1]).
Suppose the projection of the initial profile u(x,0) into the finite element space is chosen
such that

| 060~ (€ 0] B(e) de = 007, k=0 (3:3.21)

is satisfied. Then the error on cell I; will tend exponentially quickly towards the form

(6:8) = (U1 Ry (& @) +7pia () By (€ @) + - pim (VR (€ ) + O™,
(3.3.22)
where v, (t) = O(h*¥) and, in particular,

e;(1,t) = O(h+™).
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Proof. The proof of this theorem follows an analogous argument as the proof of Theorem
2.4 in Chapter 2. We again consider an exact solution which consists of only a single
discrete Fourier mode, u(z,t) = 4, where k, = Q’er and L is the length of 1. We
then argue that the numerical solution on each cell is then a sum of the p+ 1 independent
polynomial solutions found in Theorem 1 associated with the wavenumber x,, i.e.

KnZj—awt (wlh’ g)
Z Cie g(wlh) .

Next, from the fact that the physical mode has the local expansion (3.3.13) we can conclude
that the initial projection (3.3.21) will guarantee that Cy = 1, + O(hP*™). Then, since the
modified scheme is assumed to be stable, we have from Theorem 3.3 that the non-physical
modes wy, .. .,w, Will have positive real parts of order O (%) and, hence, will be damped
out exponentially quickly and the numerical solution will tend to the form

ot (01, €)

p+m
3(woh) + O(RP™).

Uj(&,1) = tne

Therefore, using the expansion (3.3.13) and the accuracy of the physical mode wy to the
exact wavenumber k,, we obtain that

- = (woh\" - —k m
)60 = w6+ U] | Rpa(6ie) + Y (51 R )| + 00w,
k=1
which, upon summing over all possible Fourier modes, yields the result. O

This theorem tell us under what conditions we will observe the leading error of the
numerical solution tending to the form [[U;]]Rpy1(&; ). When this occurs, the numerical
solution will be superconvergent at the roots of R,.1({; ). Note, however, that the accu-
mulation error of the method is order p + m, where m is lowest index for which a,, # 1.
Hence if oy # 1 the accumulation error of the scheme will be order O(h?*!) and we will
not observe superconvergence at the roots of R,11(&; o). We formalize this in the following
corollary.

Corollary 3.1. If, in addition to the conditions of Theorem 3.4, we have that m > 2, i.e.
a1 = 1, then after sufficient time the numerical error will satisfy

¢ (&, t) = O("?),

where & are the roots of the polynomial ]:Epﬂ(f; Q).
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When we recall the PDE (3.3.8) for the numerical solution U;, where the effects of the
modifications the DG scheme were concentrated in the source term on the right hand side,
we see that Theorems 3.1 and 3.4 provide a direct link between this source term and the
superconvergence properties of the modified scheme. We note in particular that because
this source term arises from the projection of the d-functions at the cell interfaces the mod-
ifications to the DG scheme alter this projection and directly alter the superconvergence
properties of the method. This reveals that the superconvergence of this family of meth-
ods is directly governed by the form and accuracy of the projection of these d-functions.
Further, we can conclude that the classical DG method achieves a certain optimality in the
sense that when using the upwind flux the classical projection of the d-function into the
finite element space allows the scheme to achieve the highest possible order of accuracy at
the downwind point of the cell.

A direct consequence of these results is that we are able to manipulate the superconver-
gence properties of the family of methods (3.2.3). Indeed, from Theorem 3.4 and Corollary
1 we see that if we hold o and a; to be one then we will obtain a superconvergent numerical
solution at the roots of the polynomial }thH(f ;) after sufficient time. Hence for p > 2 we
can design schemes which have particular superconvergent points. Moreover, since much of

the superaccuracy results of these methods are based on the order of approximation of the
f(why,1) h
: : 9(wh;) : o : :
which will have particular rational approximations, not necessarily Padé approximants.
We demonstrate these results in the numerical experiments in Section 3.5 below. In the
next section, however, we perform a more in-depth study of the effects of the modifications

on the method’s stability.

rational function to the exponential function e, we can also investigate schemes

3.4 Stability of the mDG Method

In this section we will study what effects modifying the flux multipliers «; will have on
the linear stability of the modified DG scheme. We pair the DG spatial discretization of
order p with an order p+ 1 time-integration scheme, e.g. Runge-Kutta-(p + 1), in order to
ensure a global convergence rate of order p + 1. For the linear advection equation, when
using an explicit order p + 1 Runge-Kutta time-integration scheme to discretize (3.3.1), it
is known [29] that the stability restriction on the size of the time step At scales with p as

At
a(2p+1)
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This simple estimate is at most 5% smaller than the exact CFL number [31]. From the
analysis above we find that this time step restriction can be found by choosing At to be
small enough that all of the scaled spectral values “’\’“T"At are contained within the absolute
stability region of, in this case, Runge-Kutta-(p + 1). Here, each A, is a solution of

E L el (3.4.1)

9(=X)
where k,, = 27er where L is the length of the domain / and £k =0,...,pandn=0,..., N.
Upon altering the multipliers in the modified DG scheme (3.3.1), the spectral values A,
will be changed. It is therefore possible that this stability restriction can be relaxed by
choosing the multipliers a4, in some particular way. Since determining these spectral values
explicitly is very difficult, we will resort to numerically calculating them using root-finding
software and determine the time step restriction by numerically searching for the largest
CFL number such that the scaled spectral values will be contained in the absolute stability
region of RK-(p + 1). We will begin by only considering changes in the highest multiplier
o, since, as we will see, significant gains can be made in the relaxation of the stability
restriction through only modifying the highest multiplier. We will then move on to study
the effects of changing more than the highest multiplier.

Case 1: Only highest flux multiplier, «,, is not equal to one.

Before we begin, let us note that in the particular case that only the highest multiplier of
the modified scheme, «,, is taken to be not equal to 1, we have a corollary of Theorem 2.2.

Corollary 3.2. If the DG scheme is modified by only changing the highest multiplier, o,
then the order of the dispersion error of the scheme is lowered by two to O(h*) and the
order of the dissipation error remains O(h?PT1).

This corollary tells us that upon modifying the highest multiplier the order of accuracy
in dissipation and dispersion of the scheme is only minimally affected. Therefore, the
improvements in the stability restriction resulting from the modification of only the highest
coefficient will have the benefit of only mildly reducing the orders of the error in dissipation
and dispersion of the DG scheme. This is particularly true when using a very high-order
approximation since for large p the differences between an O(h**2) error and an O(h*)
error will be fairly negligible.
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Figure 3.1: Spectral values ), of the spatial DG discretization for the linear advection
equation, for the p = 1 and 2 (top) and p = 3, and 4 (bottom), with N = 50. We show in

each figure the values of A for o, = 1, %, and %

In Figure 3.1 we show the spectral values A, for the p = 1,2,3, and 4 schemes,
respectively, with different values for the highest multiplier «, in each case. In each figure,
we show with the ‘0’ marker the spectrum for o, = 1, which is the spectrum of the
original DG scheme, together with the spectra for oy, = % and o, = % with the ‘x” and ‘+’
markers, respectively. We notice from these figures that, in general, the modification of
the highest coefficient has the effect of scaling the spectrum. In particular, upon increasing
the o, multiplier the spectrum of spatial discretization is enlarged, while decreasing the
o, multiplier reduces the size of the spectrum. From this, we immediately see that when
a, < 1, and the spectrum is reduced, we are able to choose the CFL number larger and
still have a stable scheme. In contrast, when o, > 1 we must choose the CFL number
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’ P \ a, \ CFL \ Relative Increase

1 | 1.000 | 0.33 3.00
0.333 | 1.00

2 | 1.000 | 0.21 297
0.210 | 0.62

3 | 1.000 | 0.14 2.60
0.260 | 0.37

4 11.000 | 0.11 2.46
0.270 | 0.28

5 | 1.000 | 0.09 2.40
0.330 | 0.22

6 | 1.000 | 0.08 2.34
0.345 | 0.19

7 | 1.000 | 0.07 2.27
0.360 | 0.16

8 | 1.000 | 0.06 2.24
0.380 | 0.14

9 | 1.000 | 0.05 2.21
0.385 | 0.12

10 | 1.000 | 0.05 2.19
0.395 | 0.11

Table 3.1: Largest CFL numbers obtained with the modified DG scheme on the linear
advection equation for p = 1,2,...,10, only modifying the highest order coefficient. Rela-
tive increase is calculated as the ratio between the increased CFL of the modified scheme,
divided by the CFL number of the original DG scheme.

smaller and the stability condition of the scheme is made more restrictive. Although for
completeness we include the cases when «;, > 1 in our numerical tests below, we remark that
modifying the DG scheme in this way has little benefit since both the stability restriction
is tightened and the accuracy of the scheme is reduced.

Now that we have established that the stability restriction of the DG scheme can
be relaxed through reducing the highest multiplier c,,, our next pursuit is to determine
precisely the degree to which the stability condition can be improved, what choices of «,
give us the most relaxed time-step restriction, and how much of an improvement we can
expect to gain for very high-order approximations. To answer these questions, we have
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used a MATLAB program which calculates the spectral values Ay, for varying values of a,
and uses this spectrum to find the largest CFL number so that the complete spectrum of
CFL - A\, is contained within the absolute stability region of RK-(p + 1) via a bisection
algorithm. In Table 3.1 we present the largest CFL number we were able to obtain using
this program for schemes of order p = 1,2, ..., 10, together with the value of o, for which
the scheme obtains this CFL number. From this we see that we are able to achieve a
significant increase in the usual CFL number of the DG scheme. We conjecture that for
very high-order schemes we can expect to obtain a two-fold increase in the CFL number
of the DG scheme by only modifying the highest multiplier to be a;, ~ 0.4. We note that
this significant gain in the CFL number comes at the cost of only one order of accuracy in
the form of a dispersive error, while no additional dissipative error is introduced. In fact,
we can establish another property of the scheme with this modification: the semi-discrete
scheme (3.3.1) is linearly stable for any choice of a;, > 0.

Proposition 3.2. The modified DG scheme (3.3.1) with each multiplier o, = 1, m =
1,...,p—1, and o, > 0, is linearly stable.

Proof. Without loss of generality, we can assume a = 1 in the linear advection equation.
Using a,, = 1,m =1,...,p— 1, the scheme (3.3.1) with the upwind flux can be written

hy dejp du; B
s — (DM - / Topde, K=01.p-1 (342
hy dejp iy dU;

Wp+1 dt (=D [[U;]] = / ngd£ (3.4.3)

Multiplying each equation (3.4.2) by c¢;jx(t), then multiplying (3.4.3) by c]p( ) and sum-

ming, we obtain
) i ] )

-1
2dt [( — 2p + Doy, 7P
p—1 1
(Z cjkpk) + —ijpp
Qp

Since dd% is a polynomial of degree less than p, the integral [~ 11 dd? P,d¢ = 0. We then

de. (3.4.4)
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obtain

- vau; [
/ & (Z ek ’“) o, W7 = / Vi (Z %Pk) by dE,
- 0 P - k=0
du,
= —=U; d¢,
/_1 d§
1, -
= Ui (@541) = SUj (x5). (3.4.5)
Substituting (3.4.5) into (3.4.4) yields
1d [ (& hi hj 2 1.5 J
2dt 2 e+ 1% | T @2p+ Dy, | ~Us()[U]] = 505 (@51) + 505 (),
k=0

1 1
= _EUJ‘Q(%’H) + Uj(z5)Uj-a () — §Uj2(l’j)-

Finally, summing over the entire mesh and using the periodicity of the boundary conditions
yields

-1
pz: by + M
—2k+17%" (2p+ 1o, 7

Jj=0 \k=0
Yo
= Z < EUJQ x]—i—l + Uj (xJ)Uj—l(x]) UJQ(x])) ’
7=0
ANYAN
= Z ( §U32 1(@5) + Uj(2)Uj-1 () Uf(%)) '
7=0
1 N
LS W) - Ut <0
7=0

Therefore, we find that for any o, > 0, SV i=o |lcj|| will be bounded, and hence the semi-
discrete scheme is linearly stable. O]

Case 2: Several flux multipliers are not equal to one.

When several multipliers in the modified scheme (3.3.1) are taken to be not equal to
one, we encounter several difficulties. Firstly, as we have established above, as we alter
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more multipliers the order of accuracy diminishes as we introduce larger dispersive and
dissipative errors into the scheme. Secondly, the search for the choices of the multipliers
which will yield the largest gain in the CFL number becomes computationally expensive.
Thirdly, in our tests we observed that when more than one multiplier is modified, some
spectral values )\, may have positive real parts. Therefore, a linear stability analysis of
the type presented in Proposition 3.2 is not possible.

To understand why the scheme can become unstable, we consider the specific case
when p = 2 and consider modifications to the second highest multiplier, ;. Following
the arguments of Theorem 3.2 we explicitly calculate the relation between the numerical
wavenumber & and the exact frequency w (for simplicity we set ay = 1) to find

~ l—ar 4,3 a(l—a1) 54 5

H—W—FWW h +WC{) h +O(h )

From this equation, we see that when a; < 1 the coefficient in front of w* will be pos-
itive. Since the numerical solution associate to this frequency and wavenumber satisfies
U(xjs1,t) = e"U;_1(x;,t) with w purely imaginary, this error term will cause the magni-
tude of the solution to grow with j, rather than remain bounded. Hence, this order 3 error
in R is the cause of the instability that can be observed when solving (3.3.1) numerically.

In general, we can use these expansions of & to determine what choices of «; will
produce an unstable scheme. For example, if we calculate the complete expansion of & for
p =3 we find

- a1 — 1 574 7043(0[2 — ].) + 30(2(041 — 1) 615
= h h
Pt 16800, T T 7056002 “
N 4903 (a3 — 1) + 3bazag(ag — 1) + (14702 — 21laza; + 15a3)(a; — 1)w7h6 L omn,

493920003
and the condition that the coefficient on w® is positive can be written

Tas(l —
o > (sl —as)
3042
Therefore, if we alter the highest three multipliers for the p = 3 scheme we can expect
that the scheme will be stable if this condition is met. In general, the condition that the

coefficient of w? in the expansion of & will not cause an instability can be written

(2p+ 1)ay(l — apq)

+ 1.
(2p = 3)ap1

Qp_2 Z
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’ D \ oy \ 1 \ p—2 \ CFL \ Relative Increase

31100 1.00 | 1.00 | 0.14 5.40
0.04 | 0.39 | 1.15 | 0.78

411.00 | 1.00 | 1.00 | 0.11 4.06
0.04 | 0.41 | 1.16 | 0.47

51 1.00 | 1.00 | 1.00 | 0.09 3.88
0.07 ] 0.52 | 1.16 | 0.36

Table 3.2: Largest CFL numbers obtained with the modified DG scheme on the linear
advection equation for p = 3,4, and 5 modifying the three highest order coefficients.
Relative increase is calculated as the ratio between the increased CFL of the modified
scheme, divided by the CFL number of the original DG scheme.

Hence, this condition tells us that we can expect to obtain a stable scheme when reducing
the second highest multiplier, «,_;, so long as the third highest multiplier, o,,_9, is chosen to
be sufficiently large. Using this information, we again use our MATLAB program to search
for the optimal choices of the three highest multipliers. More specifically, we construct a
mesh of test values for «,, a,_1, and a,_» and search for the specific point in this mesh
which yields the largest CFL number in the modified scheme. The mesh is then refined
and the process is repeated until a desired amount of accuracy for this optimal point is
obtained. The obvious downside of this modification is that we must now alter the highest
three multipliers, rather than just the highest two. This modification will therefore have
a more severe effect on the overall accuracy of the scheme. We show the results of this
search in Table 3.2 where we see that we can again substantially improve the usual CFL
number of the DG scheme. However, this large increase in the CFL number appears to
diminish as the order of the scheme rises, and the effects of this modification become less
disruptive.

3.5 Numerical Examples

In this section we present two distinct applications of the analysis in the sections above.
Our primary goal is to apply the modified DG scheme to several test examples to confirm
its convergence rate and superconvergence properties as well as observe the general per-
formance of the scheme in comparison with the standard DG scheme. We will begin by
testing the modified scheme with several choices of the multipliers o, k =1, ..., p, to show
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that we retain the usual p + 1 convergence rate on smooth solutions. We will also demon-
strate that we are able to specifically alter the superconvergence properties of the method.
We will then show how the modified scheme performs for a linear problem with several
different waveforms. We will also present an example where the accuracy of the modified
scheme on a fine mesh is compared to the accuracy of the DG scheme on a coarse mesh,
but the computational effort of both schemes is relatively equivalent. These examples are
specifically chosen with initial conditions with fine structure where mesh refinement may
be more beneficial to accuracy than the higher-order dissipation and dispersion errors of
the DG scheme. We will conclude the section by applying the modified scheme to some
non-linear problems, in which we will again confirm the convergence rate and show that
the demonstrated gains in the CFL condition do indeed carry over to non-linear problems.

3.5.1 Superconvergence of the mDG scheme

In this section we will apply the modified DG scheme to a linear test problem to confirm its
global convergence rate. We will then show that we are able to control its superconvergence
properties through specific choices of the flux multipliers ay,.

Convergence Study

Our convergence studies were done on the same linear advection initial value problem
(2.4.1) in Section 2.4, this time with the initial condition

1
up(z) = §sin7ra:. (3.5.1)

In Tables 3.3-3.5 we show the results of the convergence tests for the p = 1,2, and 3
schemes. In each table, we present errors €; in the £! norm at t = 2 after one full period
on uniform meshes having 16, 32, 64, 128, and 256 elements. To obtain a proper comparison
of the accuracy of the numerical solution for each choice of the «,, multipliers, the CFL
number was chosen to be as large as possible, with the exception of the case p = 1 and
ap = % In this case, a simple calculation can show that when the time step is chosen
to be precisely At = % this scheme will perfectly advect, i.e. with no numerical error

committed, the piecewise linear numerical solution of the linear advection equation'. For

Tt is worth noting that for p = 2 we are able to construct a scheme which also perfectly advects the
piecewise quadratic solution to (2.1.1) by choosing ap = 1, ay = %, Qo = %0 and CFL = 1. However, as
discussed in section 3.4, because oy < 1 and «ag = 1, the scheme is linearly unstable for CFL # 1.
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0 = LOFL=1Tay=L.OFL=1 [a =LCFL=1 o = I.OFL =09
N €1 ‘ r €1 ‘ r €1 ‘ r €1 ‘ r
16 | 1.26e-02 - 1.97e-02 - 6.63e-03 - 2.14e-02 -

32 | 3.00e-03 | 2.07 | 4.88e-03 | 2.01 |1.73e-03| 1.93 | 5.77e-03 1.89
64 | 7.29e-04 | 2.04 | 1.21e-03 | 2.01 | 4.45e-04| 1.96 | 1.47e-03 1.98
128 | 1.80e-04 | 2.02 | 3.02¢e-04 | 2.01 | 1.12¢-04 | 1.99 | 3.73e-04 1.98
256 | 4.47e-05 | 2.01 | 7.54e-05 | 2.00 | 2.80e-05 | 2.00 | 9.39e-05 1.99

Table 3.3: Linear advection, (2.4.1), (3.5.1). L' errors €; and convergence rates, r, for the
sine wave initial condition, p = 1. Errors are calculated at t = 2, after one full period.

ay=1CFL=1|oy=1CFL=1|0y=%2CFL=2]0a,=+:,CFL=
N €1 ‘ r €1 ‘ r €1 ‘ r €1 ‘ r
16 | 1.66e-04 - 1.07e-04 - 8.10e-04 - 2.44e-03 -
32 | 2.06e-05 | 3.01 | 1.31e-05 3.04 |993e-05| 3.03 |3.02-04| 3.02
64 | 2.57e-06 | 3.00 | 1.62e-06 3.02 1.23e-05 | 3.01 | 3.76e-05 | 3.01
128 | 3.21e-07 | 3.00 | 2.01e-07 3.01 1.53e-06 | 3.01 | 4.70e-06 | 3.00
256 | 4.01e-08 | 3.00 | 2.51e-08 3.00 1.91e-07 | 3.00 | 5.87e-07 | 3.00

Table 3.4: Linear advection, (2.4.1), (3.5.1). L' errors €; and convergence rates, 7, for the
sine wave initial condition, p = 2. Errors are calculated at ¢t = 2, after one full period.

this reason, we choose a CFL number that is slightly less than the maximum possible.
In these convergence tests, when choosing the multipliers in the modified scheme to be
not equal to 1, we obtain that the scheme is less accurate in terms of the £! error. This
is expected, since these modifications result in increased dispersion and dissipation errors
as compared to the original DG scheme and these errors lead to a faster growth of the
accumulated error. The temporal component of the error also increases due to a larger
time step. We also see from these tables that for any stable scheme of order p + 1, we
retain the full p 4+ 1 order convergence rate regardless of the choices for the multipliers a4,
k=1,....p

Our numerical experiments revealed that when the lowest multiplier oy was changed,
the order of convergence of the scheme was reduced by one. This was to be expected, as
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a3 =1,CFL=0.14 | a3 =0.33,CFL =0.35| a3 =0.04,ay = 0.39,
ap = 1.15,CFL =0.78

N €1 \ r €1 \ r €1 \ T

16 | 3.38e-06 - 1.74e-05 - 5.15e-04 -

32 | 2.11e-07 4.00 1.08e-06 4.01 3.27e-05 3.97
64 | 1.32e-08 4.00 6.72e-08 4.00 2.04e-06 4.00
128 | 8.27¢-10 4.00 4.20e-09 4.00 1.28e-07 4.00
256 | 5.17e-11 4.00 2.62¢e-10 4.00 7.99e-09 4.00

Table 3.5: Linear advection, (2.4.1), (3.5.1). £! errors €; and convergence rates, r, for the
sine wave initial condition, p = 3. Errors are calculated at ¢t = 2, after one full period.

remarked above, and hence was not reported.

Superconvergence

In the following numerical examples we present two distinct applications of the supercon-
vergence results of Section 2.2. In our first example we choose to alter the J-function

projection (i.e. choose the flux multipliers a;) so that the rational function % takes
a particular form. In this way we are able to construct a scheme with particular JSuperac—
curacy properties and predict its superconvergence properties. In the second example we
will choose a d-function projection such that the superconvergent points of the modified
scheme are located at particular points. In both examples we perform a convergence study
on the same linear advection initial value problem (2.4.1)-(3.5.1). All tests are completed
using an RK-4 time-stepping scheme and a C'F'L number of % to minimize the error
incurred in time integration. The initial projections are also chosen to be the usual L?

projection, which satisfies the conditions of Theorem 3.4.

From the discussion above, we have seen that the superconvergence and superaccuracy
of the DG method is directly linked to the accuracy of the rational approximation of
the exponential function, [eh) 1 the first example we show that we can choose the

3(wh) ’
highest order flux modifier o, so that ! g‘(”flg) is the i% Padé approximant of e**. We

can then determine the superconvergence properties of this modified DG scheme. This
process can be analogously extended for other rational approximations, not necessarily
Padé approximants.
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_ In order to Construct a modified DG scheme such that its associated rational function

f;zjh ) i the Pade approximant of e*" we choose the parameters oy, such that f (wh, 1)
1)

is a polynomlal of degree p — 1, and % approximates e“" to order 2p + 1. By Lemma
3.1 above, this rational function will have this order of approximation if o, is the only
flux multiplier chosen not equal to one. In Proposition 1 of [19] it was shown that the
polynomials f (wh, 1) and g(wh) can be generated through certain recursion relations. Using
these relations, one can show that the coefficient on (wh)? in f(wh, 1) is S3°_ (—1)P+*(2k +

1)ay. Hence, fixing ay, = 1 for k =0,...,p — 1 we can choose
p—1
p+/€ 1 2]{ 1
W= 2p +1 Z L,
k=0
__r
2p+ 1’

in order to obtain that f(wh, 1) will be a polynomial of degree p— 1 and ! ~(2th1) will be the

p—} Padé approximant of e“*

For this specific choice of flux multipliers, we can determine the superconvergence prop-
erties of the modified scheme through the analysis above. In particular, using (3.3.7) we
determine the polynomial RPH(S ;) to be

- LS (—1)r p
R - E D YPey — P Py — P,
p+1 2 s k+1 k— 1] 9 2p+1[ p+1 2 1];
(=1) (=1t p
= 2 [Pp - Pp—l] + 2 2p + 1 [Pp-i-l - Pp—1]7
(- p p+1
= P,y —P,+——P,_
2 p 1t T ey e

and from Corollary 3.1 we know that for p > 2 the numerical error will tend towards being
proportional to this polynomial. Hence, for p > 2 the numerical solution will converge at a
rate of p+ 2 at the roots of this polynomial, and converge at a rate of 2p at the downwind
point of the cell. In fact, in this special case the polynomial Rp+1(£ ;) has a double root
at the downwind point which implies that the spatial derivative of the numerical error will
also be order 2p at the downwind point of the cell.

In Table 3.6 we show the results of our convergence tests for this particular modified
scheme. At each of the roots of R,;1({; ), including the downwind point, we calculate
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Downwind point Derivative at 1st Root 2nd Root
Downwind point
p\ N Error ‘ Order | Error ‘ Order | Error ‘ Order | Error ‘ Order

11 20 | 3.10e-02 - 1.10e-01 -
40 | 8.30e-03 | 1.90 | 2.96e-02 | 1.90
60 | 3.75e-03 | 1.96 | 1.33e-02 | 1.96
80 | 2.13e-03 | 1.98 | 7.55e-03 | 1.98
100 | 1.37e-03 | 1.98 | 4.85e-03 | 1.98

2| 20 | 4.70e-05 - 1.72e-04 - 4.07e-05 -
40 | 2.97e-06 | 3.98 | 1.09e-05 | 3.98 | 2.54e-06 | 4.00
60 | 5.90e-07 | 3.99 | 2.17e-06 | 3.99 | 5.02e-07 | 4.00
80 | 1.87e-07 | 3.99 | 6.86e-07 | 4.00 | 1.59e-07 | 4.00
100 | 7.67e-08 | 4.00 | 2.81e-07 | 4.00 | 6.50e-08 | 4.00

3| 20 | 3.48e-08 - 1.24e-07 - 2.00e-07 - 2.57e-07 -
40 | 5.48e-10 | 5.99 | 2.01e-09 | 5.95 | 5.90e-09 | 5.08 | 8.45e-09 | 4.93
60 | 4.84e-11 | 5.99 | 1.78e-10 | 5.99 | 7.61e-10 | 5.05 | 1.13e-09 | 4.96
80 | 8.70e-12 | 5.96 | 3.21e-11 | 5.95 | 1.76e-10 | 5.04 | 2.70e-10 | 4.97
100 | 2.32e-12 | 5.92 | 8.73e-12 | 5.83 | 5.82e-11 | 5.06 | 8.89e-11 | 4.98

Table 3.6: Linear advection, (2.4.1)-(3.5.1) with modified scheme associated to the ﬁ

Padé approximant. L' norm of the point-wise error of the numerical solution and the
derivative of the numerical solution at the downwind points are shown with the L' norm

of the point-wise error of the numerical solution at the interior roots of R; (& a).

the error as the L' norm of the vector of point-wise errors U; — u;. We also calculate the
error in the spacial derivative of the numerical solution at the downwind point by taking
the L' norm of the vector of point-wise errors %(Uj —u;). For the p = 2 scheme the final
root of R,y (£; @) is located at € = —1/2, while for the p = 3 scheme the roots are located
at £ = —%ﬁ. From the table we see that for p > 2 we indeed achieve the expected
order 2p rate of convergence in the numerical solution and the spacial derivative of the
numerical solution at the downwind point of the cell. We also achieve the expected order
p+ 2 convergence of the numerical solution at the roots of lf{p+1(§ ;) in the interior of the
cell.

In our second superconvergence test we show that we can choose the projection of
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Downwind point 1st Root 2nd Root 3rd Root
p‘ N Error ‘ Order | Error ‘ Order | Error ‘ Order | Error ‘ Order

11 20 | 3.20e-02 - 3.29e-02 -
40 | 8.20e-03 | 1.97 | 8.27e-03 | 1.99
60 | 3.66e-03 | 1.99 | 3.67e-03 | 2.00
80 | 2.06e-03 | 2.00 | 2.07e-03 | 2.00
100 | 1.32e-03 | 2.00 | 1.32¢-03 | 2.00

21 20 | 7.22e-05 - 7.33e-05 - 7.25e-05 -
40 | 4.56e-06 | 3.99 | 4.59¢-06 | 4.00 | 4.52¢-06 | 4.00
60 | 9.00e-07 | 4.00 | 9.05e-07 | 4.00 | 8.92e-07 | 4.00
80 | 2.85e-07 | 4.00 | 2.86e-07 | 4.00 | 2.82¢-07 | 4.00
100 | 1.17e-07 | 4.00 | 1.17e-07 | 4.00 | 1.16e-07 | 4.00

31 20 | 3.16e-08 - 2.62e-08 - 1.55e-07 - 1.67e-07 -
40 | 4.67e-10 | 5.99 | 3.28e-10 | 6.32 | 4.41e-09 | 5.13 | 5.67e-09 | 4.88
60 | 4.40e-11 | 5.98 | 2.31e-11 | 6.54 | 5.62e-10 | 5.08 | 7.66e-10 | 4.94
80 | 8.09e-12 | 5.89 | 3.68e-12 | 6.39 | 1.31e-10 | 5.05 | 1.83e-10 | 4.96
100 | 2.24e-12 | 5.75 | 9.83e-13 | 592 | 4.27e-11 | 5.04 | 6.06e-11 | 4.97

Table 3.7: Linear advection, (2.4.1)-(3.5.1) with modified scheme associated to the choice
Rpﬂ(ﬁ o) = #(f —1)P,(¢). L' norm of the point-wise error of the numerical solution
at the downwind points are shown with the L! norm of the point-wise error of the numerical
solution at the interior roots of R, 1(¢; ).

the interface d-functions such that the modified scheme has certain potentially desirable
superconvergent properties. Specifically, we can choose parameters «; such that the super-
convergent points, i.e. the roots of the polynomial Rp+1(§ ;a), are located at particularly
chosen points. The rate of superconvergence at the downwind point can then be determined
from the orthogonality properties of this polynomial Rp+1(£ JQ).

Suppose we wish to choose our modified scheme such that the interior roots of the
polynomial R,,1(§; ) are located at the roots of the Legendre polynomial P,. Then
R,11(&; a) takes the form

(1
2

Note that this choice of R,y1(&; ) satisfies Ry1(—1;a) = 1 and R, 1(1;a) = 0 and,
hence, the resulting modified scheme should preserve ay = 1. To determine what choices

Rp-i—l (67 a) =

(€ =1 E(E). (3.5.2)
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of the flux multipliers a, will yield a polynomial R, (&; a) of this form we note that that
the Legendre polynomials satisfy the following recursion relation [1]

_p+1 P

p=="1" —~ p_.
b 1 P gyt

Using this relation in (3.5.2) we obtain

_1)p+1
(1) {erl p Pl_Pp}’
2

P
1 gt

(=) [ p+1
2 2p+1

Rpﬂ (§a)=

(o= Byor) = (= Bn)| . (353

Comparing (3.5.3) to (3.3.7) we obtain that the choice of ay =1 for £k =0,...,p— 1 and

a, = ;p—fl will yield this polynomial Rpﬂ(g Q).

Using this choice of R,.1(&;a) in the definition of the polynomials R;(:i) (&) in
(2.3.10), and using the orthogonality of the Legendre polynomial P,, we obtain that
Rzg;];)(l;a) = 0 for k = 0,...,p — 1 and hence the local error at the downwind point
of the cell will be O(h**1). Furthermore, because we have particularly chosen the roots of
Rpﬂ(ﬁ ;) to be located at the roots of the Legendre polynomial P, we obtain the the local
error of the numerical solution at these points will be O(hP*2). We therefore expect to
obtain a global rate of convergence of 2p at the downwind point of the numerical solution

and a rate of convergence of p + 2 at the roots of P, inside the each cell when p > 2.

In Table 3.7 we show the results of our convergence tests for this particular modified
scheme. At each of the roots of R, (£; ), which in this case are the roots of P, plus the
downwind point, we calculate the error as the L' norm of the vector of point-wise errors
U; — u;. From the table we see that for p > 2 we indeed achieve the expected order 2p
rate of convergence in the numerical solution at the downwind point of the cell. We also
achieve the expected order p + 2 convergence of the numerical solution at the roots of P,
in the interior of the cell.

3.5.2 Performance on Linear Problems

The next test - with which we can more directly observe the effects of modifying the DG
scheme on a variety of waveforms - involves solving the linear advection problem (2.4.1)
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with the following initial conditions [44]:

(L(G(x,B,2 = 8) + G(x, 8,2 +6) +4G(z,8,2)) —0.8 <z < —0.6,
1 04<1<-02,
up(x) =< 1 —[10(z — 0.1)| 0<2<0.2, (3.5.4a)
t(F(z,a,a—06) + F(z,0,a 4 0) + 4F (z,a,2)) 0.4 <z <0.6,
L0 otherwise,
Gz, B,2) = e P2, (3.5.4b)
F(r,a,a) = v/max(1 — a®(z — a)?,0), (3.5.4¢)
where a = 0.5, z = —0.7, 6 = 0.005, a = 10, and 8 = ;%%3. This initial profile consists

of a combination of Gaussians, a square pulse, a sharp triangle, and a combination of
half-ellipses. We present the results with out limiting in order to discuss the effect of the
induced dispersive and dissipative errors in the modified scheme. These effects are better
seen in the spurious oscillations near solution discontinuities - which limiting would destroy
- and in the dissipation of local extrema, to which limiters heavily contribute. We then
present an example where the limiter has been applied and note that there is little difference
between the schemes in terms of accuracy. Implementation of limiters, e.g. the minmod
[29] or moment limiter [46], is straightforward and analogous to their implementation in
classical DG schemes.

The results of test (2.4.1)-(3.5.4) for the p = 1,2, and 3 schemes are shown in Figures
3.2-3.4 at t = 2 after one full period, on a uniform mesh of N = 200 cells. In each figure we
show several choices of the highest multiplier oy, and for the p = 3 scheme in Figure 3.4 we
show an example where the three highest multipliers have been modified to their optimal
values listed in Table 3.2. In Figure 3.2, we observe a slight shift to the left and right for
a; = 1 and a; = %, respectively, of the entire wave front for the p = 1 scheme. This is

3
especially noticeable for the Gaussians and ellipses. The modified scheme for which a; = 2

3
is visually closer to the original DG scheme. This can be explained once we explicitly
calculate the expansion of the numerical wavenumber % in terms of the exact frequency w
from Theorem 3.2 for the p = 1 scheme,

~ ap—1 5. 3
FR=w+ 20, w’h” 4+ O(h°). (3.5.5)

Hence, since w is purely imaginary, choosing o; > 1 will introduce an additional dispersive
error of negative sign into the usual DG scheme. On the other hand, decreasing a; to %
introduces an additional positive dispersive error.
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Figure 3.2: Linear advection, (2.4.1), (3.5.4), p = 1 on a mesh of N = 200 elements. Shown
at t = 2, after one full period. Solid line shows the exact solution, line with ‘x’ markers
shows the numerical solution. Top left: ay = 1,CFL = %, Top Right: a; = %, CFL = %,
Bottom left: aq = %,C’FL = %, Bottom right: a; = %,C’FL =0.9.

This property is true in general for the modified scheme, i.e. in the expansion of & for
the order p scheme, when each multiplier is taken to be equal to one except the highest,
the coefficient of w**2 will have a similar form to (3.5.5). Therefore, choosing a;, > 1 will
add a negative dispersive error and shift the wave fronts to the right, while choosing o, < 1
will add a positive dispersive error and shift the wave fronts to the left. For example, the
full expansion of 5 in the p = 2 scheme is calculated to be

1-— a1w4h3 _ 50&2(0&2 — 1) -+ 3051(0[1 — 1)

YT 0, 360002

Wht + O(hY), (3.5.6)
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Figure 3.3: Linear advection, (2.4.1), (3.5.4), p = 2 on a mesh of N = 200 elements. Shown
at t = 2, after one full period. Solid line shows the exact solution, line with ‘x’ markers
shows the numerical solution. Top left: ay =1, CFL = %, Top Right: ay = %, CFL = %,

Bottom left: ay = %,C’FL = %, Bottom right: ay = %,C’FL = %

and therefore when a; = 1,

052—1

YT 900,

w’h* 4+ O(h%), (3.5.7)

and the effects of altering a in the p = 2 scheme will be analogous to the effects of altering
aq in the p = 1 scheme.

We note that although the order of the leading errors of £ may stay the same for
different choices of the multipliers in (3.5.5)-(3.5.7), the magnitude of the error changes
with different choices. Indeed from these examples it is clear that although the formal
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Figure 3.4: Linear advection, (2.4.1), (3.5.4), p = 3 on a mesh of N = 200 elements.
Shown at t = 2, after one full period. Solid line shows the exact solution, line with
‘x” markers shows the numerical solution. Top left: a3 = 1,CFL = 0.14, Top Right:
az = 0.33, CFL = 0.36, Bottom: a3 = 0.04,as = 0.39,a7 = 1.15,CFL = 0.78.

order of accuracy remains the same, larger modifications may introduce larger errors in
accuracy. In practice, care should be taken to choose the multipliers to obtain a balance
between the stability gains and the deteriorating effects of the loss of accuracy.

Finally, we show in Figure 3.5 the results of this test for p = 1 with a minmod limiter
implemented. We measure the errors to be 0.070, 0.079, 0.068, 0.117 for the DG, mDG
with oy = 4/3,2/3,1/3, respectively. Visually the solutions look similar, with the excep-
tion of the ay = 1/3 case where the error is greater. This would seem to indicate that in
the presence of discontinuities when a limiter is used there is little difference in accuracy
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Figure 3.5: Linear advection, (2.4.1), (3.5.4), p = 1 on a mesh of N = 200 elements with
minmod limiter. Shown at t = 2, after one full period. Solid line shows the exact solution,

line with ‘x” markers shows the numerical solution. Top left: oy = 1,CFL = %, Top Right:
o = %,C’FL = %, Bottom left: oy = %,C’FL = %, Bottom right: oy = %,C’FL =0.9.

1

of the solutions, i.e. for non-smooth problems the numerical error is almost completely
determined by the errors introduced by the limiter. Hence, after limiting the detrimental
effects on accuracy introduced by the modifications do not impact the overall accuracy of
the scheme. This would seem to imply an immediate performance benefit of the modified
scheme compared to the classical DG scheme since the modified scheme requires signifi-
cantly fewer time-steps.
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alzl,CFL:% o) =
N €1 ‘ r €1 €1 €1
16 | 3.83e-03 - 3.54e-03 - 5.79e-03 - 1.58e-02 -

32 | 1.17e-03 | 1.71 | 9.92e-04 | 1.83 | 1.74e-03 | 1.73 | 3.78e-03 1.58
64 | 3.24e-04 | 1.84 | 2.67e-04 | 1.89 |4.99-04| 1.81 | 1.10e-03 1.78
128 | 8.63e-05 | 1.91 | 7.01e-05| 1.93 |1.37e-04| 1.87 | 3.02e-04 1.87
256 | 2.24e-05 | 1.95 | 1.80e-05 | 1.96 | 3.58e-05| 1.93 | 7.96e-05 1.93

00 ]
o I

0 | =y

4 2

<
<
<

CFL=X|loy=2CFL=1]a, =1 CFL=09
| | |

Table 3.8: Burgers’ equation (3.5.8), (3.5.1). L' errors ¢; and convergence rates, r, p = 1.
Errors are calculated at t = 0.3, before a shock wave forms.

ay=1CFL=:|oy=1,CFL=%|ay=2CFL=2]ay=
N €1 ‘ r €1 ‘ r €1 ‘ r €1
16 | 2.58e-04 - 2.02e-04 - 7.04e-04 - 1.40e-03 -

32 | 3.43e-05 | 291 | 2.76e-05 | 287 |9.45e-05| 290 | 1.95e-04| 2.84
64 | 4.63e-06 | 2.89 | 3.56e-06 | 295 | 1.22e-05| 2.95 | 2.62¢-05| 2.90
128 | 6.16e-07 | 2.91 | 4.54e-07 | 2.97 | 1.60e-06 | 2.93 | 3.49e-06 | 2.91
256 | 8.03e-08 | 294 | 5.78-08 | 2.97 | 2.10e-07 | 2.93 | 4.61e-07 | 2.92

oty

5

CFL =2
|

<

Table 3.9: Burgers’ equation (3.5.8), (3.5.1). L errors ¢; and convergence rates, r, p = 2.
Errors are calculated at ¢ = 0.3, before a shock wave forms.

3.5.3 Performance on Nonlinear Problems

To test the modified scheme on a non-linear problem, we consider Burgers’ equation,
up + uu, = 0, (3.5.8)

on [—1,1], with periodic boundary conditions and with the sine wave initial condition,
(3.5.1). We perform our convergence tests on this problem for the p = 1 and p = 2
schemes for various choices of the multipliers a; and show the results in Tables 3.8 and
3.9. We use the same choices of multipliers as in our convergence study for the linear
advection equation above, and present errors €; in the £ norm at ¢t = 0.3, before the shock
wave has formed. No limiter is used in these tests. From these tables we see that the
modified scheme indeed retains the usual order of convergence for this nonlinear problem,
for any choices of the multipliers aj. We again observe that the performance of the DG
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Figure 3.6: Euler equations, (3.5.9)- (3.5.10), p = 2, shown at ¢t = 2. Top: DG and mDG

with ay = % on a mesh of N = 500 elements. Bottom: DG on a 500-element mesh and

mDG with oy = %, on a mesh of N = 866 elements. Right plots are zooms of left plots.

scheme is roughly the same with that of the mDG method with increased CFL number for
a fixed computation effort.

3.5.4 Performance on Nonlinear Systems

To test the modified DG method for a system of equations, we consider the Euler equations,
u; + f(u), = 0 with

u=(p,pg, E)', f(u)=qu+(0,PqP)", (3.5.9a)

68



and an equation of state

Pe(y—1) (E _ %p(f) | (3.5.9b)

for which we take v = 1.4, and subject to the initial data [63]

(3.857143, —0.920279, 10.333333), z <0,
(p,q, P)(x,0) = ¢ (1+ 0.2sin(5z), —3.549648, 1.000000), 0 < z < 10, (3.5.10)
(1.000000, —3.549648, 1.000000), z > 10.

This example involves the interaction of a stationary shock at x = 0 with a leftward-moving
flow having a sinusoidal density variation. As the density perturbation passes through the
shock, it produces oscillations developing into shocks of smaller amplitude. We choose this
test problem since it gives us a good example of the interaction between a shock and the
fine structure of the produced oscillations. In our tests we chose to use the moment limiter
[46]. In Figure 3.6, we present the numerical solutions of the p = 2 scheme at ¢t = 2. In the
top left figure we show the unmodified DG scheme, as = 1 with CFL = %, and the modified
scheme with ay = é and CFL = %, on a mesh of N = 500 elements. In the top right
figure we show a zoomed view of the fine structure of the solution to the left of the shock
wave. In each figure we show the schemes together with a reference solution computed
using the DG scheme with p = 2 and N = 2500 with the moment limiter. Surprisingly, the
mDG solution is more accurate, i.e. suffers from less numerical diffusion. While a rigorous
explanation of this is still an open question, one possible explanation is that the limiter
destroys some of the accuracy of the fine structure at each iteration. Hence, since the
modified solution is obtained using a larger time-step, the solution is less damaged by the
limiter and is able to better resolve the fine structure to the left of the shock wave. Finally,
in the bottom left figure we show again the unmodified DG scheme, ay = 1 with CFL = %,
on the same mesh of Npg = 500 elements, together with the modified scheme with a, = %
and CFL = % on a mesh of N,,pe = 866 ~ v/3Np¢ elements. The bottom right figure
shows a zoomed view of the fine structure of the solution. This example demonstrates the
increase in accuracy we can obtain by implementing the modified DG scheme on a refined

mesh, for equivalent computation effort.

3.6 Discussion

In this chapter, we have proposed a family of numerical schemes obtained through a mod-
ification of the discontinuous Galerkin finite element method. It is known that the choice
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of numerical flux influences the spectrum of the DG scheme. For example, the central flux
results in the spectrum being entirely located on the imaginary axis and the upwind flux
produces a spectrum which lies in the left half-plane and grows with order of approxima-
tion p. Here, we propose a modification to the DG scheme that does not change the type
of flux, but rather alters the contribution of this flux to the solution coefficients c;;. This
modification is obtained by multiplying the jump contributions of the numerical flux for
the solution coefficient c;, by a multiplier cy,. Since for one-dimensional problems, with a
basis of Legendre polynomials, the coefficient c;;, is a numerical approximation of the k-th
derivative of the solution on cell j, scaled by Cph* where C} is a constant, our method
modifies the amount of numerical flux that is being contributed the k-th derivative of the
solution. In the specific case that a;, = 1, Vk, we obtain the usual DG method.

The modifications to the DG scheme can also be viewed as changing how the d-functions
at the cell interfaces are projected into the finite element space. By extending the analysis
performed in Chapter 2, we have shown that these modifications alter the superconvergence
properties of the scheme. Specifically, by using classical Fourier analysis we have shown
that the Fourier modes of the numerical method which are polynomials are closely related to

a rational approximation % of the exponential function. The order of approximation
J

of this rational function is determined by the orthogonality properties of the J-function
projection. Moreover, this rational function has a local expansion in terms of the degree
p+ 1 polynomial R,,,(&; «) and its antiderivatives. We have shown that for a family of
initial projections on a uniform mesh the superconvergent points of the numerical solution
will tend exponentially quickly towards the roots of this polynomial. Therefore these
modifications reveal a strong connection between the projection of the -functions at the
cell interfaces and the superconvergence properties of the method.

The results of our study of this modified method can be summarized as follows. Firstly,
the modification of the lowest order coefficient « in the order p scheme immediately results
in a severe accuracy loss and the order of convergence of the scheme is reduced by one.
We therefore avoid such a modification and focus on modifying only the equations for the
higher-order coefficients of the scheme. Secondly, by analyzing how the modified scheme
performs on the linear advection equation we can establish that when the coefficient «y is
modified the order of accuracy of dispersion and dissipation of the scheme is p+ k£, i.e. the
accuracy is reduced from the usual accuracy of order 2p+1 in dissipation and order 2p+2 in
dispersion. This reduction of accuracy introduces additional dispersive and diffusive errors
to the numerical solution. Thirdly, when modifying only the highest multiplier we can
prove that the method is linearly stable for any choice of . Furthermore, we can expect
to obtain a more relaxed stability restriction by choosing o, ~ 0.4. The relaxed condition
allows us to take a time step twice as large, compared to the usual DG method. Finally,
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more multipliers may be altered and a larger improvement in the usual CFL number can
be made for specific choices of oy, but as more multipliers are altered the accuracy of the
scheme is reduced as more dispersion and dissipation errors are added. Additionally, the
increased time step introduces a larger temporal error into the solution.

We present a number of numerical experiments demonstrating the performance of the
mDG method. In our examples, the mDG method preserves the convergence rate of the
original DG method in the usual L! norm. For the linear advection equation with a very
smooth profile, the mDG method performs similarly to the DG method for a fixed compu-
tational effort, i.e. the number of cells times the number of time steps. On the other hand,
when the solution has discontinuities and limiters are applied, the mDG scheme provides a
comparable solution on the same mesh, but in less computation time. Additionally, fewer
time steps results in less limiting which can result in fine structures of the solution from
being overly smoothed by the limiter. In particular, for the Euler equations example, the
mDG method results in a better solution with the CFL number being three times larger
than in the usual DG method.

Our numerical test have also shown that it is possible to alter the d-function projection
so as to obtain a modified scheme which has certain superconvergence properties. In par-
ticular, we can create schemes whose associated rational approximation of the exponential
function has a particular form/order, or we can design schemes so that the numerical so-
lution has specific superconvergent points. In doing so, however, care must be taken to
ensure that the downwind point remains O(h?*?) or else this error will dominate.

It is hoped that further study will illuminate a better understanding of the effects of
these modifications to the DG method. In particular, more testing is necessary to determine
what choices of the multipliers will be optimal in the sense of the trade-off between accuracy
and the CFL number. It would also be useful to compare the mDG scheme with finite-
volume and finite-difference schemes in terms of accuracy. Additionally, the results in
Tables 3.1 and 3.2 indicate that there may be a pattern in the choices of the multipliers
a which give us the largest CFL improvement, as p increases. This suggests that these
choices may be related to some specific rational approximation of exp(z). Further, the
optimal choices of the multipliers ay should also be investigated with the application of
different limiters in the presence of shock waves.
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Chapter 4

Superconvergence and Superaccuracy
of the DG Method on Triangular
Elements

4.1 Introduction

In this chapter we will extend the superconvergence, superaccuracy, and stability analysis
presented in Chapter 2 to the DG scheme for two-dimensional problems on triangular
elements. We again simplify the analysis by considering the application of the DG method
to a linear problem

u +a-Vu =0, (4.1.1)

where a = (a,b), on a two-dimensional domain  C R? subject to the initial condition
u(z,y,0) = up(x,y) and suitable boundary conditions.

We derive a PDE which is solved by the numerical solution itself and apply classi-
cal Fourier analysis to find the Fourier modes of this PDE that are polynomial in space.
Analogously to the one-dimensional case, we find that the Fourier modes of the numerical
solution are completely determined by a projection of the inflow into the cell and are ra-
tional functions of the mode’s frequency w and a parameter h;. Geometrically, h; is shown
to be the width of the cell §2; along the direction of flow a. We use these Fourier modes to
investigate the superconvergence, superaccuracy, and stability of the method. Specifically,
we determine the local superconvergence properties of the method on triangular cells by
assuming exact inflow into a cell. Then, by considering a simple uniform mesh of triangles,

72



we use these Fourier modes to symbolically calculate the numerical dispersion relation of
the method and verify that the numerical dispersion relation agrees with the exact disper-
sion relation to order 2p + 1, establishing the superaccuracies of the method in terms of
dissipation and dispersion errors. Finally, we investigate the global superconvergence prop-
erties of the method by using the numerical dispersion relation to show that the spectrum
of the method can be decomposed into physical and non-physical modes. The non-physical
modes are damped out exponentially quickly in time, and the physical modes are advected
with high-order accuracy. We then symbolically calculate the superconvergence properties
of physical modes to establish the global superconvergence properties of the DG method
on this uniform mesh.

We also derive a new, tighter CFL condition for the DG method for two-dimensional
problems. The stability condition which is usually implemented when the DG discretization
is paired with an explicit Runge-Kutta method can be written as

. Ty
min —2

At < )
2p+1 5 |la]]

where r; is the radius of the inscribed circle in each element and ||a;|| is the largest wave
speed. This condition was proposed and supported with numerical evidence by Cockburn
et al in [23] and provides a stable time step. However, it is known to not be a tight
bound [50] and in some cases a much larger stable time step exists. Here, we note that
the appearance of the parameter h; in the Fourier modes of the numerical solution has the
effect of scaling the size of the spectrum. Consequently, we propose that a more natural
CFL condition for the method can be written as

b
At < CFL min —-.
i |lal|

When pairing the spatial discretization with an explicit Runge-Kutta-(p+ 1) time integra-
tion, our numerical experiments have revealed that taking

1
4
Cp+1) (1+ g7

provides a fairly tight bound on the time step At.

CFL =

Previous studies of the superconvergence properties of the DG method in two dimen-
sions have been applied to two types of mesh elements: quadrilaterals and triangles. Fol-
lowing the one-dimensional superconvegence study of Adjerid et al in [4] where the authors
found that the local error of the DG scheme is superconvergent at the right-based Radau
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points, Adjerid and Massey [5] performed the natural extension of these results to the DG
scheme on rectangular meshes. The authors showed that the local error of the DG scheme
on rectangular cells with a tensor product basis is spanned by two degree p + 1 Radau
polynomials in the z and y directions. The local error of the DG scheme on triangular ele-
ments was then studied by Krivodonova and Flaherty in [47] and by Adjerid and Baccouch
in [2, 3]. In this chapter we use the Fourier modes of the numerical solution to provide
new simple proofs of the local superconvergence results presented in these works.

This chapter is organized as follows. In Section 4.2 we apply the DG method to a simple
linear advection problem and derive a PDE for the numerical solution. In Section 4.3 we
apply Fourier analysis to this PDE and derive the Fourier modes of the numerical solution
that are polynomials in space. We then use these Fourier modes in Section 4.4 to give
simple proofs of the local superconvergence properties of the DG method on triangular
elements. We then consider a uniform mesh and prove the superaccuracy of the DG
method in terms of the dissipation and dispersion errors in Section 4.5. In Section 4.6
we examine the spectrum of the DG method on this uniform mesh and show that our
proposed CFL condition arises naturally when considering the stability of the method. We
then proceed in Section 4.7 to establish that the spectrum of the method on this uniform
mesh can be partitioned into physical and non-physical frequencies and use this result to
establish several global superconvergence properties of the method. Finally, we provide
several numerical examples in Section 4.8 which confirm the superconvergence properties
of the method as well as demonstrate the efficacy of the proposed CFL condition.

4.2 The DG method in 2D

We begin our analysis as in 1D by applying the DG scheme to the linear problem (4.1.1)
on a mesh of triangles and derive a PDE for the numerical solution. First, we discretize
the domain €2 into a mesh of N triangles Q;,7 = 1,..., N. Recall that we consider the
equation (4.1.1) over a single cell ©; and map this cell using the mapping (1.2.17) to a
canonical triangle {2y whose vertices are located at (0,0), (1,0), and (0,1). The Jacobian
matrix for this transformation is constant and given in (1.2.18). Upon mapping this linear
problem (4.1.1) to the canonical triangle we obtain the scaled problem

u + o - Vu =0, (4.2.1)
where the V operator is now understood as a gradient in (£, n)-space and

a=(a,B)=a(J;H. (4.2.2)



Applying the formulation of the DG scheme in two dimensions (1.2.23) to this scaled
problem and using the upwind flux, i.e

4 n >
Ur = Ui amnz0, (4.2.3)
Uiy a-n<0,

we obtain the DG scheme for this linear problem

d
Ecjki + % (a . Il)U;Qﬂki ds — // [0 2% V@/)kZUJ dA = O, (424)
BQO QO

for k =0,...,pand i = 0,...,k, recalling that the vy; are the orthonormal polynomial
basis functions defined in (1.2.20) and U;y is the value of the numerical solution in the
immediate neighbour of §2; along each edge of its boundary 0€2;. We now proceed to find
the Fourier modes of the scheme by deriving a PDE for the DG solution satisfied by the
polynomial U;. To this end, we apply the divergence theorem to the volume integral in
(4.2.4) and move the boundary integrals to the right hand side to obtain

d
acj'ki + //QO (6 2K VUJ’(/)IW dA = — fggo(a : n)[[U]]]’(/)]m dS, (425)

where [[Uj]] = Us — Uj is the jump between the Riemann states and the numerical solution
on the boundary. Note that from the choice of the upwind flux (4.2.3) this jump is zero
along edges where av - n > 0, i.e. outflow edges. Hence, we can partition the boundary of
Qo as 0Qy = IOF U Qg , where 9Q is the inflow boundary along which a - n < 0, and
0O is the outflow boundary. Since U + = Uj along the out flow boundaries, the integral
along the entire boundary 0€) in (4.2.5) reduces to the integral along the inflow boundary
09 .

We will make a simplifying assumption about which edges of 9€)y are outflow edges. We
label the edges of the canonical triangle {2y travelling counter-clockwise as F;, Fs, and Ej,
where the first edge, Ej, is the edge connecting (0,0) to (1,0). We then assume, without
loss of generality, that the vertices of €2; have been indexed specifically so that when €2 is
mapped to the canonical cell €2y the second edge F5 is either the only inflow edge or the
only outflow edge. That is, we assume either a and [ have the same sign, or one of them
is equal to zero.

We proceed by multiplying (4.2.5) by ¢y, summing over k =0,...,pand i =0,...,k
and, using (1.2.22), obtain an equation for %Uj

k

%Uj * sz: {//QO o VUjbr dA} Vi = _ZP:Z [/aszo (- ) [[U;]] 4w dS] V-

P
k=0 i=0 k=0 i=0
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Note that because {¢y;} is an orthonormal family the first sum in this expression is a
projection of VU; into the space of polynomials P,. Furthermore, since U; is a polynomial
of degree at most p, a - VU, will be polynomial of degree p — 1 and the projection will be
exact. Therefore we can write

%Uj ta- VU= - Z Z [/596 (o - 0)[[Uj]] ki dS] Vi (4.2.6)

k=0 =0

Hence, we obtain a PDE that is solved exactly by the polynomial numerical approximation
U; on cell ;. This PDE is equivalent to the original linear problem, except for a forcing
term proportional to the size of the jumps at the cell boundaries. Note that the jump is
a function of £ and 7. We now proceed to find exact solutions of this PDE using classical
Fourier analysis.

4.3 Fourier Analysis

We look for a single Fourier mode solution of (4.2.6) of the form U, (¢,n,t) = U, (€, n)ellallvt
where U;(€,7n) is a polynomial in £ and n and [|a]| is the L? norm of the flow vector a.
Using this assumption in (4.2.6) we have that the Fourier mode satisfies

fallwl; +a - VU=~ >3 [ /a om0 ds] G (43.1)

k=0 =0

To proceed, we make a change of variables that transforms this PDE into an ODE. The

change of variables is
C\_( 1 1\ (¢
(O =lo21 0) (o) (4.3.2)

where 6 = 2% is a parameter in [0, 1] which gives a measure of the flow direction a.. We
will use the check accent to denote objects in this new coordinates. Hence, we denote €2y in
these new coordinates as €y and observe that )y has vertices at (0,0), (1,0—1), and (1,6).
Note also that the transformation (4.3.2) preserves the area of {)5. The flow direction &

in the (¢, o)-coordinates is given by

(1 6-1

= (a+ 3,0).
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Figure 4.1: The transformation (4.3.2) maps the coordinate system so that the direction
of flow is along the (-axis.

Hence, € is aligned such that the flow direction ¢ is along the (-axis (see Figure 4.1).
Consequently, upon transforming the V operator to the ({, o) coordinates we find that the
operator & - V in the PDE (4.3.1) becomes (a + 5)8% in the new coordinate system.

We also introduce a new small parameter h; = M which will tend zero under mesh

refinement. In fact, h; is the width of the cell €2; along the direction of flow a. To see this,
first note that from the definition of the scaled Veloc1ty a in (4.2.2) we can write

a(y3 - 3/1) - b($3 - $1)
(x2 — 1) (ys — 1) — (23 — 1) (Y2 — 1)’

o=

—a(y2 — 1) + b(x2 — 1)

F= (2o — 21)(ys —v1) — (w3 — 21) (Y2 — 1)

Hence, we can write

7



(;5;7 Y1)

Figure 4.2: Diagram of the cell 2; showing the parameter h;. We see that h; is the width
of €1; along the direction of flow a.

|l
T a+p
_ HaH ('TQ — xl)(y3 - yl) - ((L’g B x1)<y2 - yl)
a(y3 - y2) - b(l‘?) - xz)
_ ||a|| det Jj
a-(ys — y2, —(v3 — 2))
2|6

- ‘EJ’2| Sin(ﬁ.

(4.3.3)

Here we have used the notation that ¢ is the angle between a and E;,, where L), is the
side of €; which connects (x2,y2) and (x3,ys) (see Figure 4.2). We have also used that
det J; = 2|Q;|. If we write the area of cell Q; as || = 3|E;2|H;, where Hj is the height of
cell Q; measured from the vertex (z1,%1) to the edge E; o, then we see that (4.3.3) implies
that h;sin¢g = H;. From the definition of ¢ we see that h; is the width of cell 2, along
the direction of flow a.

Transforming the PDE (4.3.1) to this new coordinate system, and multiplying the entire
expression by %, we obtain the following ODE for the Fourier modes of the numerical

solution
/ U1k ds] Vi (4.3.4)
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Type I Type 11 Type 111

Figure 4.3: We label cells Type I, II, or III, based on the direction of the flow « into the
cell.

Here we have used the notation that n¢ is the first coordinate of the normal vector n =
(n¢, ny)’ in the (¢, o)-coordinates, and Ui are the polynomial basis functions now evaluated
using the (¢, o)-coordinates. The Fourier mode [7]- is now understood to be evaluated in
(¢, 0)-coordinates as well.

Next, we aim to write the right-hand side of (4.3.4) in a more compact form. Specifically,
we want to express this forcing term as the (-derivative of some polynomial R,1, as it was
done in one dimension with the right Radau polynomial. We notice, however, that because
of the integral in (4.3.4) is over the inflow boundary € this polynomial R,;; necessarily
depends on how many inflow edges Qo has. Hence, first we must separate this problem
into cases depending upon the number of inflow edges of the cell Qj. We label these cases
in the same way as in [2, 3] and denote a cell with only one inflow edge a type I cell, a cell
with two inflow edges a type II cell, and a cell with a characteristic edge a type III cell
(see Figure 4.3). Since, by assumption, o and 5 have the same sign we see that o, f > 0
corresponds to a type I cell, a, 3 < 0 corresponds to a type II cell, and the special case
when « or f3 is zero corresponds to a type III cell. Using this labelling, we write the forcing
on the right hand side of this equation in a more useful form in following proposition.

Proposition 4.1. We define a projection of the jump function [[Uj]], which we denote as
Rp1[[U;1](C, o), into the space of polynomials in ¢ and o satisfymg the following conditions,

/BQBL nCRP-H[ 1/%2 ds = //QO Rp—‘,—l 1/%1 dA (435)
fork=0,....pandi=0,...,k, and
/895 n¢ <Rp+1[[(7j]]> Uyi ds = /BQ_ [[U 1w ds, (4.3.6)
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for k. = 0,....,p and i = 0,...,k. When Q; is a type I or III cell we require that
Rpﬂ[[f]j]](c,a) is a polynomial of degree p + 1 in ¢ and of degree p in 0. When Q; is
a type 11 cell we require that Rp+1[[Uj]](C,a) is a polynomial of degree p+ 1 in ( and of
degree 2p in 0. Ryi1|[U;]](C, 0) is then uniquely determined by (4.3.5) and (4.3.6).

Then, using this projection, the forcing term on the right hand side of (4.3.4) can be

written as
3 [ [ el ds] i = SRy [0(6,0). (437

k=0 =0

Proof. We first confirm the existence of such a projection by checking that (4.3.5) and
(4.3.6) are sufficient to uniquely define R,1[[U;]]. First, R,1[[U;]] is required to be a
polynomial of degree p 4+ 1 in ¢ and either degree p or 2p in ¢ depending on what type of
cell € is. For now, let us say R,41[[U,]] is of degree M, in o. We can then write R, 1[[U;]
as a linear combination of monomials

RerlHﬁjH(Cy o) = Z Zrkfzﬂrl,ig —itlgt 4 27’010 (4.3.8)

k=0 =0

From this we see that R,[[U;]] contains $(p+1)(p+2) monomials which are of degree at
least 1in ¢ and M, + 1 monomials in only o. Hence R,41[[U;]] can be uniquely determined
through %(p +1)(p + 2) + M, + 1 independent equations. From the orthogonality of the
basis functions ¢y; we see that (4.3.5) contains 1(p + 1)(p + 2) independent conditions
on R,41[[U;]]. Tt therefore only remains to determine the M, + 1 additional independent
conditions.

Examining equation (4.3.6) we see that this expression involves an integral of each basis
function vy, along the inflow boundary 98 . Note that since vy, span all polynomials of
degree p in €, the restriction of these ba81s functions to a single edge (parametrized by
a single variable, say s) spans all polynomials of degree p in the variable s. Therefore, if
; is a type I or III cell the inflow boundary 8(25 will consists of only a single edge and
(4.3.6) gives p + 1 independent conditions on Rp+1[[Uj]]. Hence, when Q; is a type I or
IIT cell we have M, = p and (4.3.6) provides the remaining p 4+ 1 conditions necessary to
uniquely determine R, 1 [[U;]].

Similarly, the restriction of the basis functions 1; to an inflow boundary which consists
of two edges will span a space of dimension 2p + 1. To see this note that on a single edge
the basis functions span all polynomials of degree p or less, but every basis function is
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continuous on the whole cell Q. Hence, the restriction of the basis functions to two edges
(again parametrized by a variable s) will span all piecewise continuous polynomials of
degree p or less on each edge. Therefore, we obtain that if 2, is a type II cell the inflow
boundary 8(25 will consists of two edges and (4.3.6) gives 2p + 1 independent conditions
on Rp41[[U;]]. Hence, when Q; is a type IT cell we have M, = 2p and (4.3.6) provides the
remaining 2p 4+ 1 conditions necessary to uniquely determine R, 1[[U;]].

A

Finally, having shown the existence of R,;:[[U;]] through the relations (4.3.6) and

(4.3.6), we proceed to verify (4.3.7). Writing R,+1[[U;]] as a sum of monomials in (4.3.8)
we see that a%RpHHUjH is a polynomial of degree p in both ¢ and o,

B A P o
a_CRp—HHUjH(Ca o) =Y > (k—i+ i o', (4.3.9)
k=0 =0

7=

Therefore, we can verify (4.3.7) by multiplying the expression by 1y, integrating over €,
applying the divergence theorem, and using the orthogonality relations (4.3.5) to obtain

/895 ne([U;))ihni ds = //QO ((%Rpﬂ[[ﬁj]]) Uri dA

N o -
= Ryll0 s ds— [ RyallO) 5 s a
0o Qo

a
— [ ncllOy)dus as.
of

0

which is true by (4.3.6). O

The orthogonality relations (4.3.5) which define the projection R, were also consid-
ered in an analogous form when the local error of the DG method applied to a elliptic
boundary value problem was examined by Krivodonova and Flaherty in [47] and Ajerid
and Baccouch in [2]. We will make use of some of their results in order to establish certain
properties of the projection R,;.

A

Proposition 4.2. When §2; is a cell of type I the projection R,1[[U;]] of the jump function
along the inflow boundary satisfies the following orthogonality relation

/ ne Ry [[U;]]o* ds = 0, (4.3.10)
o0
forallk=0,...,p.

81



Proof. Cf. Ajerid and Baccouch [2]. O

Proposition 4.3. When Q; is a cell of type II or III the projection R 41| ]]] of the jump
function along the inflow boundary satisfies the following orthogonality relations

// Rp+1 ¢kl dA =0, (4.3.11)
Qo

forallk=0,....p—1andi=0,...,k, and

/v nCRp—i-lHUjHQ[}ki ds = 0, (4312)
Ot

0

forallk=0,...,pandi=0,..., k.
Proof. Cf. Krivodonova and Flaherty [47]. O

Using Proposition 4.1, we can write (4.3.4) in the following compact form

0. 0 ~

We can solve this ODE exactly by integrating from the inflow boundary 08 . For clarity,
let us parametrize the inflow boundary as 092, = {({y(c),0)}, observing from Figure 4.1

that (0 — 1) < o < 6}. From Figure 4.1 we also see that when € is a type I or III cell we
have

Co(O') =1
and when €); is a type II cell we have
e 0<o<0,
CO(U) — 00 = >

Using this notation, we solve (4.3.13) exactly by considering o as a fixed parameter and
integrating the ODE from the boundary 0€);, to write the solution as
<9

— Ry [U;]](2,0)e“ =) dz. (4.3.14)

U3(¢,0) = Uy(Go, )70 = | 5

These exact solutions are the general Fourier modes of the DG scheme in two dimensions.
The modes consist of an exact advection of the initial value U;((p, o) on 0§}, along the
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direction of flow and an integral term resulting from the forcing term in (4.3.13). However,
these solutions are not necessarily polynomials in ( and 0. We therefore will look for
particular solutions which are polynomials. First, however, let us define a new space

P = span{¢y;(Co,0)|k =0,...,p,and i = 0,..., k}. (4.3.15)

This is the restriction of the polynomial space P, to the inflow boundary 8@5 . As noted
in the proof of Proposition 4.1, when €; is a type I or III cell the inflow boundary 0},
consists of a single edge and the space P, has dimension p + 1. On the other hand, when

(2; is a type II cell the inflow boundary 8(25 consists of two edges and the space P, has
dimension 2p + 1. Next, let us define a projection Z, into this space.

Definition 2. Let Z,V ((o, o) be the projection of the function V into the space P, , defined

by
/ (Z,V) Yy ds = / Vi, ds,
005 007

fork=0,...,pandi=0,... k.

Notice that if the function V' is in the space P, then Z, acts as an identity operator. Next,
we state two lemmas which will help to investigate the general solutions (4.3.14) of the
PDE (4.3.13).

Lemma 4.1. The integral term in (4.3.14) can be written as

¢ . . N
S ReallOe,0)e ) s = s [ o) 50— FO1NC )]
' (4.3.16)
where ot .
FllUi11(¢, 0) = Z(whj)p“kaa—ck »llU11(¢, ). (4.3.17)

Proof. Viewing o as a fixed parameter in this integral, we can prove this lemma using the
same procedure as the proof of Lemma 2.1 in Chapter 2. Namely, we integrate the integral
term in (4.3.14) by parts repeatedly. O

By its construction in (4.3.17), F,[[U;]] is a polynomial of degree p in ¢ and o and also
a polynomial of degree p in wh;. Furthermore, since we can view R,4; as a projection
operator, we can also view F, as a projection operator to the space P,,.
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Lemma 4.2. The integral term in (4.3.14) can also be written as

<0 A .
: aRpH[[Uj]](z, 0)eh ) dy = — R, 1 [[U])(Co, o) e (640

A~

+ Ry [[U)(C,0) + Y (why)*REVIT](C, o), (4.3.18)
k=1

where Rz(:i)[[f]]]] are the repeated anti-derivatives of the polynomial Ryy1[[U;]] and can be
written using the Cauchy integration formula as

C A~
RTINS 0) = (k_ll)! /< (€ = 2 Ry [[U) (2, 0) da. (4.3.19)

Proof. As in Lemma 4.1, (4.3.18) is obtained by integrating the integral term in (4.3.14)
by parts repeatedly, this time in the opposite direction. O

Using these lemmas we can establish our first result.

Theorem 4.1. The Fourier modes of the DG method (4.2.4) for linear hyperbolic problems
in two dimensions which are polynomaials in ¢ and o can be written as

Ui(¢,0) = Fpo G, ' Uy, (4.3.20)

where o denote the composition of operators. Here gp_llA]H 18 a projection of the inflow
function Uy to P, which satisfies [(wh;)"' T+ F,) 0 G, 'U;w = L,U;. In addition
to being in P,, these modes are rational functions of wh;. They also have the following
expansion

U;(¢,0) = Ujs (Go, 0)e" = 1A Ry [[U5]](Go, 0) — ] J]]] e

o0

_Rerl ZWh p+1 ]](C> o). (4.3.21)

-1
Proof. Using Lemma 1 in the general solution (4.3.14) to the PDE (4.3.13) we find that
the solutions can be written

1

U3(6,0) = U360, 0)e ) — s | B3 Gor )e ) = FT])G, )]
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Examining this expression, we see that solutions of (4.3.13) will be polynomial in ¢ and o
when

(wWh; U (Go, 0) = FllU1) (6o, o), (4.3.22)
is satisfied. These polynomial solutions have the form
~ 1
U;j(¢,0) = (why )i’ FlUI(¢, 0). (4.3.23)
Adding (wh, )"t Z,[[U; J] to both sides of (4.3.22), and using the fact that from the definition
of the jump function [[U;]] we have that Z,[[U;]] = Z,U,, — U;, we obtain that
(@h PP LUj41(Gos o) = [(why)"™' T, + Fp] [U1](Gos 0)- (4.3.24)

At this point we define a new projection, denoted by G 1Uj+, of the inflow function Uj+
to P, which satisfies

/ ([(whj)p“Ip + .Fp] o gp_lffﬂ) wkz ds = / Ujerki dS,
o0y Yy

for k=0,...,p,and i =0, ..., k. That is, this projection is defined so that [(wh;)P'Z,+
FploG, U, = Z,U;. Using this new projection, the expression (4.3.24) can be rewritten
as

L[[U]] = (why)" G, U

and using this in (4.3.23) (first noting that, by the definition of Z,, F,[[U;]] = F, o Z,[[U;]])
we have that polynomial solutions of (4.3.13) can be written

Ui(¢,0) = F 0 G, ' Uys.
which establishes (4.3.20).

Finally, we can establish the expansion (4.3.21) by using Lemma 4.2 in the general
solution (4.3.14) to the PDE (4.3.13) to obtain

U (¢, ) = Uj(Go, 0)e™ ) + Ry [[U5]] (Go, 0 )" (=)

) =Y (wh)*REVITNC o).

k=1

Adding and subtracting Uj+(Co, 0)e*hi¢=%) from the right hand side of this equation yields
(4.3.21). 0
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From (4.3.20) in this theorem, we have that the Fourier modes of the DG scheme applied
to the linear problem (4.1.1) take the form of rational functions wh; on each cell. Moreover,
we have that these rational functions have the expansion (4.3.21) in wh;. This expansion
consists of an exact advection of the inflow function along the direction of flow U i ehi(6=60)
and higher-order terms involving the projection Rp+1[[U ;]] of the jump function along the
inflow boundary.

4.4 Local Superconvergent Error

Using the results from Theorem 4.1, we can state new and simple proofs of the local
superconvergence properties of the DG method applied to linear hyperbolic problems in
two dimensions.

Theorem 4.2. Suppose Q2 is a type I cell and the suppose the mﬂow function into §1; s
exact and given by U = ewhi®0*rhio Then the local error ¢; = U U of the DG method
(4.2.4) applied to the lmear problem (4.1.1) in this cell has the expansz’on

(¢,0) = ~Rypall0511(C, 0) = pr1Posa 20 = 20+ 1) + O(2*?), (4.4.1)
where
Tp+1 = (2p+ 3) /V Uj+Pp+1(20' — 260 + 1) ds. (442)
o0y

The error also satisfies
/ neejo™ ds = O(hh?). (4.4.3)
o0

form=0,....p

Proof. Using the inflow function U;, = e*"%+5hi7 in the expansion (4.3.21) of the Fourier
modes we obtain that

Uj(C, 0') = ewhjC-i-nhjU + Rp_:,_l[[ﬁj]](go, ) H AJH] GWhj(C—CO)

= Ry [[U3]](C,0) = D (why ' RET1I(C, 0),

k=1
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and since the exact advection of this inflow is @ = e*?¢T%i we see that
(¢,0) = [Ryual[031)(Go, 0) — [[T7] e
pll )= S wh P REVICNIC o). (444)

k=1

Next, from the definition of the projection Rp+1, and the fact that 8(20 consists of only
one edge, we have that R,1([U;]](¢o, o) = Z,[[U;]]. Hence,

Ry i1 [[U;])(Co, o) = [[U3]] = L[[U;])(Go, 0) = [[U]]
=ZL,0; — Uy
= —Ypr1Pp41(20 — 20 + 1) + O(hEH?),

where 7,41 is (’)(h?“) and can be found by (4.4.2). Using this leading order estimate in
(4.4.4) we obtain (4.4.1).

We can establish (4.4.3) by multiplying (4.4.4) by nco™ and integrating over 0§ .
Then, using the orthogonality property (4.3.10) of the projection R,.1[[U;]] shown in
Proposition 4.2, we can write

/ nee;o" ds = —/ n¢Yp+1Fp1(20 — 260 + 1)ewhj(€_co)0m ds + O(h§+2>-
g g

Expanding e*"/(~©) as 1 4+ wh;(¢ — (o) + O(h3), we see that the leading order term on
the integrand on the right hand side of this expression has no dependence on (. We can
therefore write the integral along this boundary as an integral in ¢ to obtain

/V neejo™ ds = — / neYpr1Ppt1(20 — 20+ 1)0™ ds + O(hé’”)
a0 o0

0
= / 7p+1pp+1(20 — 20 + 1)0,m do + O(h§7+2)
0—1
— O(h§+2>7

where in the last line the integral vanishes by the orthogonality of the Legendre polynomial
P, O
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Theorem 4.3. Suppose Q) is a type II cell and the suppose the mﬂow function into Q); is
exact and given by UH = eWh Ctrhio - Then the local error €; = U —u of the DG method
(4.2.4) applied to the linear problem (4.1.1) in this cell has the expansion

¢(¢0) = =Ry [lUG11(C. o) + O(RE™). (4.4.5)
The error also satisfies

/8 . ejo" ds = O(hF>™™), (4.4.6)

form=0,...,p and
/ / €jthmi ds = O(RFPFI™™), (4.4.7)
Qo

form=0,....p—1andi=0,....m

Proof. Again, using the inflow function Uj+ = e@hiCtrhio in the expansion (4.3.21) of the
Fourier modes we obtain the expansion of the error ¢;, (4.4.4). In this case, however, since
in its definition the projection R,41([U;]] is polynomial of degree p+ 1 in ¢ and 2p in o,
we have that R, [[U;]](Co, 0) = [[U5]] + O(h?*?). Hence we immediately obtain (4.4.5).
To prove (4.4.6), we multiply (4.4.4) by 0™ and integrate along the outflow edge 00 and
use the orthogonality property (4.3.12) of R,+1[[U;]] to obtain

/893 ejo" ds = /a " [RerlHUjH(CO,U) - [[Uj]]} (s (C=C0) gm 1
_Z(th)k/m RENIUN(C, 0)o™ ds. (4.4.8)

Since ¢ = 1 along 9}, we can show that the first integral on the right hand side of (4.4.8)

vanishes to O(h?p +2_m) by re-writing it as an integral along 8(25 in the following way,

/a(z+ |:Rp+1“UjH(CO, o) — [[ﬁj]]]ewhj(g_co)am "

0
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Expanding e*?(1=¢) = 1 4+ wh;(1 — () + ..., and using the property (4.3.6) from the

defintition of R,1 we get that the integral of the first p + 1 — m terms in this expansion

will vanish, and hence the whole integral is O(h?p 2oy

We then show that the sum on the left hand side of (4.4.8) vanishes to O(h§p+2_m) by
using the definition of the R;jr’? [[U;]] projections in (4.3.19) in order to write

/ RED(G,11(C, o)o™ ds = ]4 nREPIOI(C, 0)o™ ds
00

- ]{ = /C(C — 2" Ry [[U)(2, 0)0™ dz ds

k—1)! //QO — 2)" 0" Ry [[U5)] (2, 0) dA.

Finally, by the orthogonality property of Rp+1[[U ]] in (4.3.5) we have that this vanishes
for £k +m < p and hence the entire sum in (4.4.8) vanishes to O(h?p 2™ “and we have

established (4.4.6).

We follow a similar argument to prove (4.4.7). We multiply (4.4.4) by ¢"'o', where
[ <m and m < p— 1, integrate over ), and use the orthogonality of R,[[U;]] in (4.3.5)
to obtain

//Qo ("o dA = //QO [Rp+1[[Uj]](Co,a) - [[Uj]]} ¢ (C=Co) em=1 g1 1.4

-3 ) / | R IOG o) ot dA. (4:49)

We then show that the first integral term on the right hand side of (4.4.9) is O(h]zpﬂ_m)
by using the divergence theorem to write

// Rp+1[lU;]](Go, 0) = HUJH] ehiC=C0)em=lsl gA =
0

1 A N
o Jon ne [Rp+1[[Uj]](go, o) — [[0,]]] e 9I¢m ! ds

Rytl[03]](Gor @) = [[05]]] e 0¢m1 11 aA. - (4.4.10)

Q0

By a similar argument used above, the surface integral on the right hand side is O(th - l).
Applying the divergence theorem again, we will find that the surface integral term is now
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O(h?p +1_l). Hence, repeatedly applying the divergence theorem to this integral a total of

m — [ times, we will arrive at a surface integral which will be O(h?p oy,

The second integral term on the right hand side of (4.4.9) can be seen to be O(h]zpﬂ_m)
by a similar argument. We apply the divergence theorem to write

[ R0t aa= § a0 ot a
) Qo
—(m—l)/v RV o)em ot dA. (4.4.11)
Qo

Again, by a similar argument used above we know that the surface integral in this expres-
sion will vanish when £+ m < p—1. Applying the divergence theorem again we will again
find that the surface integral will vanish when k +m < p — 1 and, therefore, by repeatedly
applying the divergence theorem we can conclude that the entire expression will vanish for
k+m < p—1 and the sum on the right hand side of (4.4.9) will vanish to O(h?pﬂ_m)
which concludes the proof. ]

Theorem 4.4. Suppose Q2 is a type III cell and the suppose the mﬂow function into €); is
exact and given by of i+ = e“’h Ctrhio - Then the local error ¢; = U — u of the DG method
(4.2.4) applied to the linear problem (4.1.1) in this cell has the expansion

6(6,0) = ~Rpr [[T11(C,0) = Y Posa (20 — 260 4+ 1) + O(12*2), (44.12)
where
Tp+1 = (2p+ 3) /' Uj+pp+1(20 — 260 + 1) ds. (4413)
Qg

The error also satisfies
/ ejo"™ ds = O(hPT>™™), (4.4.14)
ot

form=20,....p and
J[ et s = 0@, (1.4.15
Q0o

form=0,....p—1andi=0,...,m
Proof. The proof of this theorem combines elements from the proofs of the previous the-

orems in this section. To begin, we can establish expressions (4.4.12) and (4.4.13) in an
entirely analogous way as (4.4.1) and (4.4.2) were established in the proof of Theorem 4.2.
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We then establish the orthogonality properties (4.4.14) and (4.4.15) through an argu-
ment analogous to the one used to prove the orthogonality properties (4.4.6) and (4.4.7) in
the proof of Theorem 4.3, instead using that the inflow edge is located along (, = 1. The
full argument is repetitive and is omitted. m

4.5 Superaccuracy

While the expansion of the Fourier modes found in Theorem 4.1 proves useful in determin-
ing the local superconvergence properties of the DG solution, the Fourier modes (4.3.20)
are themselves useful in investigating the superaccuracies of the method in terms of dissi-
pation and dispersion errors and in analysing the spectrum of the method. To do this, let
us consider the linear problem (4.1.1) on the unit square domain ¥ with periodic boundary
conditions. We consider a particularly simple uniform computational mesh found by parti-
tioning ¥ into N x M rectangles ¥;; = [2;, 2141] X [y}, y;j+1] of size Az x Ay, then dividing
each square into two triangles along lines connecting the points (z;41,y;) and (z, yj41)-
We begin by mapping each rectangle ¥;; to a canonical square element ¥y = [0, 1] x [0, 1]

using the mapping At
x x€ + 1
= : 4.5.1
<y) (Ayn + yj) 435.1)

On each cell, the flow direction is given by a = [ﬁ, Aiy} . For convenience we will assume

that the mesh is refined in such a way that % remains constant so that the direction of this
vector remains constant under refinement. We label the two triangles which make up this
canonical square €2; and §25. Now, as is usual in the analysis of dispersion and dissipation
errors, we assume that the numerical solution has the form of a plane wave along each cell.
In particular, we assume the numerical solution Uj; (€, n,t) on each square ¥;; has the form

Usy(&,n,t) = U(E m) exp (1AxFy + jAyRs — [[a][wt). (4.5.2)

Here k1 and &; are numerical wavenumbers. Note that the exact dispersion relation of a
plane wave of this form would be ak; + bky = ||a||w. Our goal in this section is to show
that this dispersion relation holds up to order 2p + 2 for the numerical wavenumbers.

From the analysis above, we can find solutions of the form (4.5.2) on the square ¥
by finding the Fourier mode solutions with frequency w on €2; and §25. These solutions
will be completely determined by the inflow into their cells. We compute these solutions
symbolically in order to determine a condition on w, A1 and Ky which must be satisfied
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Qo

2

Figure 4.4: Diagram of a square cell ¥;; and the two triangular sub cells €y (2.

in order for solutions of the form (4.5.2) to exist. We will restrict our attention to the
case that a, f > 0 since every other case can be seen as being equivalent to this case after
possibly some linear transformation. When «, 5 > 0 we have that the bottom and left
edges of Xy are inflow edges which means §2; is a type II cell while €5 is a type I cell.
We transform to the (¢, o)-coordinate system and consider an inflow U, along 997 and
compute the numerical solution on the triangle €2; using this inflow. We find the numerical
solution on €2; to be rational functions of wh and @, where h = giﬁf)iz and 6 = C&%.
We then can compute the numerical solution in €2y by using the value of the numerical
solution in €2y along its diagonal edge as the inflow to {25. On €25 the numerical solution
will be a rational function of —wh and . In this way we can write the numerical solution
U(&,m) over the entire square ¥ as a projection of the inflow U, which is polynomial in &

and 7 in 2; and 5. We denote this numerical solution on ¥y by

U(&,n) = HpUs (€,1). (4.5.3)

Finally, note that solutions of the form (4.5.2) on different cells are simply scalar multiples
of each other. Therefore, since the solutions (4.5.3) are completely determined by their
inflow, for these to be of the form (4.5.2) they must satisfy that their value along an outflow
edge is a scalar multiple of their value along the opposite inflow edge. We therefore have
that solutions of the form (4.5.2) will exist when the system

HPQ—F(L T]) = %Q—F(Ov 7])7
{Hpm(s, =10, 424

has non-trivial solutions, where v = exp (~Axf;) and p = exp (—Ayky). If we view this
system as an eigenvalue problem on the inflow polynomial U, we find that the system will
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have non-trivial solutions when its determinant is zero. Moreover, since the projections
are rational functions of wh the determinant will be a polynomial of h, w, v, and u. We
denote the determinant of system (4.5.4) as C, and compute it symbolically for several
values of p. The resulting expressions are quite large and are excluded but we provide the
Mathematica source code of the computation of the determinant C), in the appendix. We
use this determinant to propose the following theorem.

Theorem 4.5. Let U be a numerical solution of the DG method (4.2.4) applied to the
linear problem(4.1.1) on the square domain % with a uniform computational mesh and
suppose U is of the form (4.5.2). Then the numerical wavenumbers k1 and Ko satisfy

aky + big = ||al|w + O(R*T1). (4.5.5)

That is, the local orders of errors in dissipation and dispersion of the scheme along the
direction of flow are 2p + 1.

We have verified this theorem through symbolic computations for p < 5 in the following
way. Recall that when «, 8 > 0 solutions of the form (4.5.2) will exist when the determinant
C,, of the system (4.5.4) is equal to zero. This determinant depends on the small parameter

_ lal[AzAy _aly : . .
h=. Ay TiAs PINTVE Therefore, after computing this determinant
Az Ay

symbolically we make the substitution v = exp( T Fcl) and p = exp( h /%2) and form a
Taylor expansion of the equation C), = 0 around h = 0, recalling that by assumption the
mesh is refined in such a way that ﬁ—z remains constant and therefore 22, 2% and 6 also

R R
remain constant.

and the parameter 6 =

Examining this Taylor expansion we find that the constant term is identically zero and
the coefficient on h is A A
x . Y.
0—~r1+ (1 — 0)—Fke — w.
i+ (1- )22
Further more, we find that this expression is a factor in each coefficient of this Taylor
expansion up to and including the coefficient of h**!. Therefore we find that

A A
9%@-1 +(1- Q)Tygg — w+ O(hP),

must be true for C}, = 0 to hold. Using h = % and 0 = aA‘ﬁZM we arrive at (4.5.5).
We note that this has been verified symbolically up to p = 5 but we conjecture that it is

true for all p.
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4.6 Spectrum of DG in 2D

Let us again consider the DG method for solving (4.1.1) on uniform mesh of the square
domain 3 with periodic boundary conditions. In the previous section, we investigated
solutions of the form (4.5.2) in order to determine the numerical dispersion relation of
the scheme. In this sections, let us again examine the solutions (4.5.2) and note that
since the outflow edge of every cell is simply a scalar multiple of its opposite inflow edge,
the periodicity of the solution implies that these scalar multiples must be roots of unity.
More specifically, we must have that v = exp(—Axk;) is an N-th root of unity and p =
exp(—Auykz) is an M-th root of unity. Furthermore, since solutions of the form (4.5.2) will
exist when the determinant C), is equal to zero, we can investigate the spectrum of values
w admitted by the scheme on this mesh by finding what values of w will satisfy C}, = 0.
In fact, upon computing the determinant C), we find that that it is a degree (p+1)(p+ 2)
polynomial of wh. Therefore solving either C), = 0 for the N M possible choices of v and p
will yield (p+ 1)(p + 2)NM spectrum values. Since there are (p+ 1)(p + 2)NM degree of
freedom for the scheme on this mesh, this will be the complete spectrum of the method.

We note that the determinant C), is a polynomial function of wh and hence every spectral
value for the scheme is scaled by h. This is particularly interesting since geometrically h; is
the length of the cell 2; along the direction of flow a and not the size of the inscribed circle
in €2; or the length of the smallest edge in 2;, which are commonly implemented to scale the
minimum timestep At. To investigate this in more detail we introduce a variable A\ = —wh
to scale the spectral values of the DG method on this mesh. Then, solving C}, = 0 with
v = exp (%) and p = exp (%) for every root A\ we obtain (p + 1)(p + 2) N M spectral
values which we denote Agpm for 0 <k < (p+1)(p+1),n=0,...,N,and m=0,..., M.
When we pair the DG spatial discretization with an explicit order p 4 1 Runge-Kutta time
integration scheme we will have that the scheme will be stable if At is sufficiently small so

that
||al[ At Ak

h;
where A, is the absolute stability region of the RK-(p+1) scheme. Note that the spectral
values A, still depend on the parameter # which give a measure of the direction of flow
in each cell. We demonstrate how the parameter 6 alters the spectrum of the method in
Figures 4.5 and 4.6 for the p = 1 and p = 2 schemes. Our numerical computations of the
spectral values reveals that the overall size of the spectrum is not very sensitive to this
parameter, indicating that the size of the spectrum of the method is determined primarily

S Ap—i—la
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Figure 4.5: Spectral values Ay, of the 2D spatial DG discretization for the linear advection
equation, for the p = 1 for several values of § with N = M = 10. We show the spectral
values with # = 0.5 and 0.65 (top) and 6 = 0.85 and 1 (bottom).

by the parameter h and not by the direction of flow. This is in contrast to previous studies
[50, 41] which showed that using parameters such as the smallest cell edge or smallest cell
height in the CFL condition leads to CFL numbers which depend heavily on the direction
of flow. This strong dependence of the size of the spectrum on the parameter h motivates
us to propose a new CFL condition

hs
At < CFLmin —-, (4.6.1)
5 [[all

where the minimum stable time step At is now scaled by this new parameter h;. Our
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Figure 4.6: Spectral values Ay, of the 2D spatial DG discretization for the linear advection
equation, for the p = 2 for several values of § with N = M = 10. We show the spectral
values with # = 0.5 and 0.65 (top) and 6 = 0.85 and 1 (bottom).

numerical tests have revealed that taking a CFL number given by

CFL = ! | (4.6.2)

2p+1) (1+ )

provides a fairly tight bound on the maximum step size At, regardless of the value of 6.
This has been tested numerically up to p = 5. The CFL condition usually implemented for
the DG scheme would bound At roughly as ﬁ”%” where r; is the radius of the inscribed
circle in €2; or the length of the smallest edge in €;, (4.6.1)-(4.6.2) would seem to be a
significant improvement over the usual CFL condition. We see geometrically that r; is a
least half the size of h;. In particular we note that on our uniform mesh if the flow is
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parallel to an axis, say b = 0, we find that ﬁ = % and the time step restriction (4.6.1)
will have no dependence on Ay. This implies that we are able to use a very fine mesh in
the y direction without sacrificing the size of the time step At, a fact we will demonstrate

in the numerical examples section below.

4.6.1 CFL Condition for Non-linear Systems

While the proposed CFL condition (4.6.1) is valid for scalar linear problems in 2D, it is
unclear how such a condition should be extended to more general non-linear problems.
Here we briefly extend the above analysis to these more general problems, using a usual
linearization argument, and propose a more general CFL condition.

We consider the general two-dimensional hyperbolic system (1.2.14) on cell Q;. As is
usually done when considering the CFL condition for non-linear problems, we linearize the
flux tensor F(Uj;) around the cell averages U; in ;. We assume that the higher-order
terms in this linearization are sufficiently small to be negligible so that we can consider the
stability of the linear system

U, ay; U,
LA+ B 3 =0,

on ); where A = 1(U;) and B = %F2(U;). Now in the particular case when the matrices

A and B commute we will have that they are also simultaneously diagonalizable. Hence,

through a change of variables W; = RU;, where the columns of R are the simultaneous

eigenvectors of A and B, we can decouple the system into M equations where M is size of

the system (1.2.14), i.e.

OW; OW OW
D =
ot T o oy '
where D; and D, are diagonal matrices. Denoting the vector W, as W; = [Wy ;, Wa 5, ...,

WM,j]T, and the diagonal elements of D and D as a and by, respectively, fork =1,..., M,
we can write this system as the M characteristic equations

oW,  OWi,
% o

j+D2

oW
—

b
+ a2y

=0,

for k =1,..., M. We can then consider the CFL condition associated with each of these
independent equations. That is, we calculate the parameter Ay ; associated with the k-th
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characteristic field’s velocity ay = [ax, by]T, and take the time step At to be bounded by
the smallest of all the hy, ;,

hi .
At < CFLmin —L | (4.6.3)
ik ||al]

In the more general case when the matrices A and B do not commute, some characteristic
fields will not have a unique flow direction. Rather, these fields will have an infinite set
of flow directions forming a characteristic Monge cone. For these fields, we can extend
our proposed CFL condition by considering all directions and minimizing the cell width
divided by the flow velocity of each field over all directions. An alternative option is simply
to take hy; to be the minimum height of the cell €;, Ay j, and ||ag|| to be the largest
flow velocity of the field over all possible directions. Using either of these approaches in
the calculation of h; in (4.6.3) should be sufficient to obtain a linearly stable time step.

4.7 Global Superconvergence

We conclude the analysis of the DG scheme on triangular elements by extending the global
superconvergence results of Chapter 2 to these problems. We begin with an analogous
result to Theorem 2.3.

Theorem 4.6 (Physical Spectrum). Let U be the numerical solution of the DG scheme
(4.2.4) on a unit square domain ¥ with periodic boundary conditions and with a uniform
mesh of NM rectangles ¥;; which have been subsequently subdivided into two triangular
elements, and let Uy; be the restriction of the numerical solution to a rectangle ¥i;.

The numerical solution U can be decomposed into (p+ 1)(p + 2)NM solutions. Each
of these solutions is polynomial in & and n on each triangular element and has the form
Uy (&, m,t) = Uy (€, m)e I These solutions also satisfy Uy;(1,m) = % Uy_y ;(1,1) and
Ulj(f, 1) = ermAy Ul,j_l(f, 1) for each | and j where K, = 2mni, n = 0,...,N — 1 and
m=20,....M —1. Ifa # 0 and b # 0 then corresponding to each n and m there are
(p+ 1)(p + 2) spectral values w = wg, 0 < k < (p+ 1)(p + 2) which have the expansions

and

Wi = % + O(kn) + O(Em),

for 1 <k <(p+1)(p+2), where every pinm, satisfies Re(ug) > 0.
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On the other hand, if either a =0 or b =0 then the (p+ 1)(p + 2) spectral values have
the expansions

fork=0,...,p and

A % + O(kyn) + O(Em),

forp+1<k<(p+1)(p+2), where every p; satisfies Re(uy) > 0.

As with the results on concerning the superaccuracies and spectrum of the DG method
on triangular elements, this result relies on the explicit computation of the polynomial
solutions Ulj(§ ,n) and thus has only been symbolically verified for p < 5, but is conjectured
to be true for all p. We verify this result in the following way: considering again the
determinant C,, of the system (4.5.4), whose roots w are the spectral values of the method,
we asymptotically expand each root as

d_
w:Tl+d0+d1h+...,

and solve for the coefficients d_1, dy, dq, ... by setting like powers of A to zero.

As with Theorem 2.3 for one-dimensional problems, this theorem reveals that the spec-
trum of the DG method in two dimension on a uniform mesh with periodic boundary
conditions can be partitioned into physical and non-physical modes. The modes which
satisfy wy = % + O(h') are viewed as physical since they propagate with numerical
frequencies which agree with the exact frequencies to a high-order of accuracy. The modes
which satisfy wy, = 5% + O(k,) + O(ky,) are subsequently viewed as non-physical and are

damped out exponentially quickly since Re(u) > 0.

To determine the global superconvergence properties of the DG method for this problem
we must know the superconvergence properties of the physical modes. We therefore return
to the system (4.5.4) and symbolically calculate the eigenvectors associated to the physical
frequencies. Beginning with the case where a # 0 and b # 0 we find that the physical

mode associated to the frequency wy = amﬁiﬁ"m + O(h**1) has the expansion

For p = 1,2, and 3 we have symbolically verified the following orthogonality properties of
this physical mode. On each triangular cell €2; the physical mode satisfies

/ (a-m) [0, — i) ds = O(*), (4.7.1)
o0
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and

/ / [Uj - eﬁnhfﬂm’m} dA = O(hP+?), (4.7.2)
Qo

Also, on each square X;; the physical mode satisfies

/ / [Uﬂ - e“nhfﬂm’m} dA = O(hHY), (4.7.3)
Yo

Using these properties of the physical modes, we propose the following global superconver-
gence result.

Theorem 4.7 (Global Superconvergence). Let u(z,y,t) be a smooth exact solution of
(4.1.1) with neither a nor b equal to zero on the unit square 3 with periodic boundary
conditions. Let U be the numerical solution of the DG scheme (4.2.4) on a uniform mesh
of NM rectangles ¥;; which have been subsequently subdivided into two equal triangular
elements.

Let Uj; be the restriction of the numerical solution to the square Xj; and let U; be the
restriction of the numerical solution to a triangular element Q;. Let €; = Uj; — uy and
€; = U; —u; be the numerical error on the square Xj; and triangle Q;, respectively, mapped
to the canonical cells via the mapping (1.2.17). Suppose the projection of the initial profile
u(z,y,0) into the finite element space is chosen so that on each triangular element €,

/ /Q 0 [U; — uj] g dA = O(RP~FH), (4.7.4)

fork=0,....p—1andi=0,...k. Then after sufficiently long time that the non-physical
modes of the numerical solution have been damped out, the numerical error €; on each
triangular cell satisfies

/ (a-n)e; ds = O(h""?), (4.7.5)
o0

//QO e; dA = O(hPT?). (4.7.6)

Furthermore, over each square ¥;; the numerical error €;; satisfies

and

//EO €1 dA = O(R*T1). (4.7.7)
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Sketch of Proof. The proof of this theorem relies on the results of Theorem 4.6 and our
symbolic verification of the orthogonality properties of the physical modes and is therefore
only conjectured to be true for p > 3. Assuming these results hold, however, we give a brief
sketch of the proof of Theorem 4.7. We again consider an exact solution which consists of
a single discrete Fourier mode u(z,y,t) = typ,etn®Hrmy=(awntbem)t  Then on the square 2
the numerical solution can be written as the sum of the (p+1)(p+2) independent solutions
described in Theorem 4.6 associated with k, and k,,. Furthermore, as described in the
theorem, one of these solutions can be viewed as physical while the remaining non-physical
modes are damped a out exponentially quickly. The numerical solution tends exponentially
quickly to a scalar multiple of the physical mode.

Using the symbolically verified properties of the physical modes in (4.7.2) we can pro-
ceed as in the proof of the one-dimensional global superconvergence results in Theorems 2.4
and 3.4 and argue that the initial projection (4.7.4) projects the initial data onto the phys-
ical mode to order 2p + 1. Therefore, after sufficient time that the non-physical modes of
the numerical solution have been damped out, we use the orthogonality properties (4.7.1)-
(4.7.3) and the high-order accuracy of the physical frequency wy in order to establish that
(4.7.5)-(4.7.7) will hold for ¢ > 0. m

In the special case when either a = 0 or b = 0, every cell in the uniform mesh of
the square X will be type III. Without loss of generality we will assume that b = 0 so
that # = 1 in every cell. In this case, from the results in Theorem 4.6 from our symbolic
computations of the spectrum of the DG spatial operator, we will have for every k, and
Kkm, p + 1 spectral values wy, k = 0,...,p, which can be viewed as physical and have the
expansions w; = %= + O(h2P~M+1) Upon symbolically computing the physical modes

llal]
associated to these physical spectral values we find that the have the form

U; = h*Py(2n — 1)e™" + O(hP*),

and we have symbolically verified for p = 1,2, and 3 the following properties of these modes
/ [ﬁj — RE P2y — 1)e~nhf] 0 ds = O(h2=k+1), (4.7.8)
o0
for k=0,...,pand
/ / [ffj — h*Pu(2n — 1)6'*”"5] Y dA = O(h*7F), (4.7.9)
Qo

for k=0,...,p—1and ¢=0,...,k. Using these properties of the physical modes we can
establish a stronger superconvergence result in this special case.
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Theorem 4.8. Suppose the conditions of Theorem 4.7 hold but assume instead that either
a =0 orb = 0. Then after sufficiently long time that the non-physical modes of the
numerical solution have been damped out, the numerical error €; on each cell satisfies

// €Ur; dA = O(R*7F), (4.7.10)
Qo
fork=0,....p—1andi=0,...k, and
/ (a-n)ej(an — bE)* ds = O(hP~FH), (4.7.11)
o0
fork=0,...,p.

The proof of this theorem follows a similar argument to the proof of Theorem 4.7 and
uses the orthogonality properties (4.7.8) and (4.7.9).

We finish this section with a useful corollary, analogous to Corollary 2.2, regarding the
accumulation error of the numerical solution which holds when a # 0 and b # 0 since by
Theorem 4.6 every frequency of the physical modes is accurate to the exact frequency to
order 2p + 1.

Corollary 4.1. The accumulation error of the superconvergent numerical solution de-
scribed in Theorem 4.7 is of order 2p+1. That s, let Uy; be the numerical solution on the
rectangle Xy; and suppose there exists a time T such that r = at and s = bt are integers.
Then after sufficiently long time the non-physical modes of the numerical solution have
been damped out and the numerical solution satisfies

1Uerjs(€mt +7) = Uyg(§,m, 1) ]| = O(R*TY).

In the next section we perform several numerical tests to confirm the global super-
convergence results of this section as well as test the efficacy of the new CFL condition
proposed in section 4.6.

4.8 Numerical Examples

In this section we will perform several numerical experiments to confirm the superconver-
gence properties stated in the section above for the DG method for the two-dimensional
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linear advection equation. Specifically, we will confirm the superconvergence properties
described in Theorems 4.7 and 4.8 for the linear advection equation with a # 0 and b # 0
on a uniform mesh with periodic boundary conditions. We also show that when t is suf-
ficiently large the superconvergent numerical solution is advected at order O(h?***1). We
will then establish the stronger superconvergence results detailed in Theorem 4.8 in the
special case when b = 0. We will then give several examples which show the improvement
in the number of time steps required in time integration when using the new CFL condition
proposed in Section 4.6 when compared to the regularly implemented CFL condition.

4.8.1 Superconvergence Tests

Our first numerical study was done on the initial value problem

w + 2uy +u, = 0, 0<zx<l, O<y<l, t >0, (4.8.1)
u(x7y70) - U0($7y)7
u(0,y,t) = u(l,y,t),
u(z,0,t) = wu(x,1,t),

with
uo(z,y) = sin 27, (4.8.2)
All test below are performed using the classical RK-4 time-stepping scheme and a C'F'L
number of 0.1 to minimize the error incurred in time integration. We also
1) (14552

use an initial projection which satisfies the conditions of Theorems 4.7 and 4.8. In each
test, we calculate the numerical solution on the uniform mesh of triangles described at the
beginning of Section 4.5. We also take the number of cells in the x-direction to be equal
to the number of cells in the y-direction, i.e. N = M, for a total of Ng = 2N? triangular
cells.

In Tables 4.1-4.3 we show the results of this convergence test for p = 1, 2, and 3,
respectively. We present the L' norm of the integral of the numerical error along the
outflow edges of each cell, i.e.

Y

Nq
1E|| = det J;
j=1

/ (@Il ds
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[ No| h | BN | r [ [Efl [ r | JEsll | r |
32 | 1.25¢-01 [ 2.98¢-01 | - |243e-01| - |1.72e-01| -
64 | 8.33e-02 | 1.31e-01 | 2.03 | 9.74e-02 | 2.26 | 6.89e-02 | 2.26
128 | 6.25¢-02 | 6.27¢-02 | 2.56 | 4.54¢-02 | 2.66 | 3.21e-02 | 2.66
256 | 5.000-02 | 3.39e-02 | 2.76 | 2.42¢-02 | 2.81 | 1.71e-02 | 2.81
512 | 4.17e-02 | 2.01e-02 | 2.85 | 1.43¢-02 | 2.88 | 1.01e-02 | 2.88

Table 4.1: Linear advection, (4.8.1)-(4.8.2) for p = 1. L' norms of the integral of the
error along the outflow edges ||E||, over each triangluar cell ||Egql||, and over each square
cell ||Ex|| are shown together with convergence rates, r, with respect to the parameter h.
Errors are calculated at ¢t = 2.

(No| [ B [ r | [lEafl | r | lIEsl | r |
32 | 1.25e-01 | 1.05e-02 | - [7.83e-03| - [554e-03]| -
64 | 8.33e-02 | 1.67e-03 | 4.53 | 1.11e-03 | 4.81 | 7.88e-04 | 4.81
128 | 6.25¢-02 | 4.33¢-04 | 4.69 | 2.72e-04 | 4.91 | 1.92e-04 | 4.91
256 | 5.00e-02 | 1.50e-04 | 4.74 | 9.02¢-05 | 4.94 | 6.38¢-05 | 4.94
512 | 4.17e-02 | 6.33e-05 | 4.75 | 3.65¢-05 | 4.96 | 2.58¢-05 | 4.96

Table 4.2: Linear advection, (4.8.1)-(4.8.2) for p = 2. L' norms of the integral of the
error along the outflow edges ||E||, over each triangluar cell ||Eql|, and over each square
cell ||Ex|| are shown together with convergence rates, r, with respect to the parameter h.
Errors are calculated at ¢ = 2.

along with the error in the cell averages over each triangular cell 2,

//QO[Uj—uj] a4,

Nq

| Eall =) det.J;
j=1

and over each square X

N N
1Es]| =) 2det J;

j=1 1=1

//ZO[UJ-I — uy) dA‘.

We calculate this error on uniform meshes of N = 32,64, 128,256, and 512 triangular cells,
and we report the parameter h, calculated by its definition in (4.3.3). Errors are calculated
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(No| b | NEN [ r | [Boll [ r | NEsIl [ r |
32 | 1.25e-01 | 1.20e-04 | - [9.94e-05 | - |[7.03e-05| -
64 | 8.33e-02 | 8.33e-06 | 6.57 | 7.03e-06 | 6.53 | 4.37-06 | 6.85
128 | 6.25¢-02 | 1.28¢-06 | 6.50 | 1.25e-06 | 5.99 | 5.69¢-07 | 7.09
256 | 5.00e-02 | 3.57e-07 | 5.74 | 3.49e-07 | 5.73 | 1.19¢-07 | 7.02
512 | 4.17e-02 | 1.23e-07 | 5.84 | 1.30e-07 | 5.42 | 3.33¢-08 | 6.97

Table 4.3: Linear advection, (4.8.1)-(4.8.2) for p = 3. L' norms of the integral of the
error along the outflow edges ||E||, over each triangular cell ||Egql||, and over each square
cell ||Ex|| are shown together with convergence rates, r, with respect to the parameter h.
Errors are calculated at ¢t = 2.

[ No| h [[lU@,y,0)=Ulz,y, D[] r [[[Uly1)=Uly2)]] r |
32 | 1.2he-01 6.00-02 - 5.226-02 -
64 | 8.33e-02 2.106-02 2.59 2.036-02 2.33
128 | 6.256-02 9.780-03 2.65 9.29¢-03 272
256 | 5.00e-02 5.500-03 2.57 4.92¢-03 285
512 | 4.17¢-02 3.53¢-03 2.43 2.90e-03 2.01

Table 4.4: Linear advection, (4.8.1)-(4.8.2) for p = 1. L' norms of difference in numerical
solutions at different times. Differences are measured between U initially and at ¢ = 1,
then between U at t =1 and t = 2.

at t = 2 in order to allow sufficient time for the non-physical modes to be damped out.
We then calculated the rates of convergence r with respect to the h parameter for each
of the methods. In each test we observe the expected order p + 2 convergence rate of the
error ||E|| along the outflow edges of each cell and the error in the cell averages in each
cell ||Eql||. We also observe the predicted order 2p + 1 convergence rate of the error over
each square ||Ex||.

Next, we verify the results of Corollary 4.1 by verifying that once the non-physical
modes of the numerical solution have been damped out, the remaining modes are advected
at order 2p+1. To do this we calculate the L! norm of the difference between the numerical
solutions at t = 0 and ¢ = 1, and the numerical solutions at ¢t = 1 and t = 2. We calculate
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[ No| A [[U(2,y,0) = Uy, DI r [[U(zyl)-Ulz,y2)[[ r |

32 | 1.25e-01 3.33e-03 - 1.73e-03 -
64 | 8.33e-02 9.07e-04 3.21 2.33e-04 4.95
128 | 6.25e-02 3.64e-04 3.18 9.63e-05 4.93
256 | 5.00e-02 1.85e-04 3.04 1.86e-05 4.96
012 | 4.17e-02 1.05e-04 3.07 7.51e-06 4.98

Table 4.5: Linear advection, (4.8.1)-(4.8.2) for p = 2. L' norms of difference in numerical
solutions at different times. Differences are measured between U initially and at t = 1,
then between U at t =1 and t = 2.

these differences as
N
||U(l’,y,0) - U(x,y, 1)|| = Zdet Jj / 0 |U](§7n70) - Uj(€77]7 1)| dA.
j=1 0

In Tables 4.4 and 4.5 we see that the difference between the initial numerical solution at
t = 0 and the numerical solution at t = 1 converges as h?!, as usual, while the difference
between the numerical solutions at t = 1 and ¢t = 2 converges at the predicted h?"*! rate.
This shows that once the non-physical modes of the numerical solution have been damped
out the remaining physical modes are advected at order 2p + 1.

In our next superconvergence study, we aim to verify the results of Theorem 4.8 which
concerns the special case where every cell in the mesh is type III. To do this we consider
the initial value problem

ug +u, = 0, 0<z<l, O<y<l, t >0, (4.8.3)
u(r,y,0) = wuo(z,y),
u(0,y,t) = wu(l,y,t),
w(z,0,t) = wu(z,1,t),

with
up(z,y) = sin 27 (x + y). (4.8.4)
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([ No| A [ (Bl | r |
32 | 1.250.01 | 1.220-01 | -
61 | 8.330-02 | 4.290-02 | 2.5
128 | 6.25¢-02 | 1.91¢.02 | 2.82
256 | 5.006-02 | 9.98¢-03 | 2.90
512 | 4.176-02 | 5.84e-03 | 2.4

Table 4.6: Linear advection, (4.8.3)-(4.8.4) for p = 1. L' norms of the integral of the error
along the outflow edges || Ey|| are shown together with convergence rates, r, with respect
to the parameter h. Errors are calculated at ¢t = 2.

’ Ngq \ h ‘ || Eo|| ‘ r ‘ || E4 ] ‘ r ‘ || Mool | ‘ r ‘
32 | 1.25e-01 | 2.99e-03 - 2.63e-03 - 3.29e-03 -
64 | 8.33e-02 | 4.32e-04 | 4.76 | 5.08e-04 | 4.06 | 6.67e-04 | 3.93
128 | 6.25e-02 | 1.06e-04 | 4.89 | 1.53e-04 | 4.16 | 2.06e-04 | 4.08
256 | 5.00e-02 | 3.52e-05 | 4.93 | 6.13e-05 | 4.11 | 8.32e-05 | 4.06
512 | 4.17e-02 | 1.42e-05 | 4.95 | 2.91e-05 | 4.08 | 4.02e-05 | 3.99

Table 4.7: Linear advection, (4.8.3)-(4.8.4) for p = 2. L' norms of the moments of the
error along the outflow edges ||E||, ¥ = 0,1, and the L' norms of the moments of the
error over the whole cell ||My;||, kK =i = 0, are shown together with convergence rates, r,
with respect to the parameter h. Errors are calculated at t = 2.

In Tables 4.6-4.8 we show the results of this convergence test for p = 1,2, and 3,
respectively. We present the L' norms of two different kinds of errors. The first is the
moment of the error along the outflow edges, i.e.

=it as

0

Nq

1B =) detJ;
j=1

The second error is the moment of the error over the whole cell,

//QO [Uj — ujliw; ds

Errors are calculated at ¢ = 2 in order to allow sufficient time for the non-physical modes
to be damped out. We then calculated the rates of convergence r with respect to the h

Nq
| Myil| = det J;
j=1
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(No| b [ (B [ r | [IB [ r | (Bl [ r |
32 [ 1.25¢-01 | 3.46e-05 | - |3.11e-05 | - | 4.45e-05| -
64 | 8.33¢-02 | 2.48¢-06 | 6.50 | 3.19¢-06 | 5.61 | 5.09¢-06 | 5.34
128 | 6.25¢-02 | 3.75¢-07 | 6.56 | 5.42¢-07 | 6.16 | 1.14e-06 | 5.21
256 | 5.00e-02 | 8.08¢-07 | 6.88 | 1.49¢-07 | 5.79 | 3.65¢-07 | 5.08
512 | 4.17-02 | 2.12e-08 | 7.32 | 4.90e-08 | 6.10 | 1.46e-07 | 5.03

[ No| b | Mool [ » [ IIMwll [ » [ [IMull | r |
32 | 1.25e-01 | 4.89¢-05 - 1.33e-04 - 9.73e-05 -
64 | 8.33e-02 | 4.07e-06 | 6.13 | 2.02e-05 | 4.66 | 1.24e-05 | 5.08
128 | 6.25e-02 | 7.29e-07 | 5.97 | 4.95e-06 | 4.88 | 2.91e-06 | 5.04
256 | 5.00e-02 | 1.84¢-07 | 6.18 | 1.64¢e-06 | 4.95 | 9.53e-07 | 5.01
512 | 4.17e-02 | 6.19¢-08 | 5.97 | 6.64e-07 | 4.97 | 3.82¢-07 | 5.01

Table 4.8: Linear advection, (4.8.3)-(4.8.4) for p = 3. L' norms of the moments of the
error along the outflow edges ||E||, k = 0, 1,2, and the L' norms of the moments of the
error over the whole cell ||[My||, k = 0,1, i =0,...k, are shown together with convergence
rates, r, with respect to the parameter h. Errors are calculated at t = 2.

parameter for each of the methods. In each test we observe the expected order 2p — k + 1
convergence of the error ||Eg|| along the outflow edges of the cells, and we observe the
expected order 2p — k convergence of the error ||My;|| over all of the cells.

4.8.2 Proposed CFL Condition

Our second set of numerical tests aims to compare the CFL condition proposed in Section
4.6, which is scaled by the parameter h;, to the usual CFL condition implemented which
is scaled by the radius of the inscribed circle in the cell. We will present both linear and
non-linear examples at several orders p to demonstrate its efficacy. In each example, we
pair the degree p DG discretization with an explicit RK-(p + 1) time integration scheme
and do not apply a limiter. We apply the method to each problem twice, once with the
usual CFL condition and again with our proposed condition noting that both choices are
indeed stable, and compare the number of time steps required to reach the final time.
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(a) t =0 (b) t = 0.5
Figure 4.7: Linear advection equation (4.8.5) with square pulse initial profile (4.8.6) on an

unstructured mesh of 26524 elements. Shown initially at ¢ = 0 (left) and at ¢ = 0.5 (right).

For the first linear test we consider the initial value problem

U+ Uy +uy = 0, 0<z<l, O<y<l, t >0, (4.8.5)
u('r7y70) - Uo(ﬂfay))
u(0,y,t) = u(l,y,t),

w(,0,t) = wu(z,1,1),

with the initial condition consisting of a square pulse

1, 01<2<03, 01<y<0.3
wp(, y) = { / (4.8.6)

0, otherwise.

We apply the DG method on an unstructured mesh of 26524 elements up to a final time
of t = 0.5 for several orders p. Using the usual time step restriction
1 .
At < min " ,
2p+1 5 |la]

where r; is the radius of the inscribed circle in €2; we find that the p = 1,2, and 3
schemes required 1187, 1978, and 2768 time steps, respectively, to reach the final time. In
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comparison, using our proposed CFL condition

1
At < min

J
(2p + 1) <1+ ﬁ) i lall

we find that the p = 1,2, and 3 schemes required 715, 1032, and 1340 time steps, re-
spectively, to reach the final time. Since the computational cost of the scheme is directly
proportional to the number of time steps required, this marks a significant increase in the
efficiency of the algorithm. Indeed, at p = 3 the proposed time step restriction reduces the
amount of time steps required by more than 50%.

It was remarked in Section 4.6 that since h; is geometrically the length of the cell €);
along the direction of flow a then /; has no dependence on the size of {2; in an orthogonal
direction. This implies that the mesh can be refined indefinitely in this dimension without
further restricting the time step of the method. To observe this we consider a particularly
simple example. We again consider the linear advection equation (4.8.3) with the square
pulse initial profile (4.8.6), which has a flow direction parallel to the x-axis. We apply the
DG method on the uniform mesh described at the beginning of Section 4.5 with Az = &

50
and Ay = L= for a total of 25000 cells. The mesh is therefore five times more refined in the

Y direction?soClassically we would expect this level of refinement to be the limiting factor in
the time step restriction. Hence, when using the usual time step restriction involving the
radius of the inscribed circle we find that the p = 1,2, and 3 schemes required 833, 1388,
and 1943 time steps, respectively, to reach the final time of ¢ = 0.5. On the other hand,
upon computing h; thorough (4.3.3) we find that it has no dependence on Ay. Therefore
the scheme using our proposed time step restriction requires only 109, 157, and 204 time
steps, respectively to reach the same final time of £ = 0.5. We see that our proposed CFL
condition achieves more than an 85% reduction in computational cost in this special case.
We note that the percentage of computational cost reduced would increase asymptotically

to 100% in this example with continued refinements to Ay.

We proceed with two non-linear examples. For the first, we consider Burgers’ equation
in two dimensions,

w + uuy +uu, = 0, O<z<l, O0<y<l, t >0, (4.8.7)
u(xaya 0) UO(x7y)7
uw(0,y,t) = u(l,y,t) 0,
u(x,0,t) =u(z,1,t) = 0,
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Figure 4.8: Burgers’ equation (4.8.7) with Gaussian pulse initial profile (4.8.8) on an
unstructured mesh of 41416 elements. Shown initially at ¢ = 0 (left) and at ¢ = 0.1 (right).

with the initial condition consisting of a centred Gaussian pulse
uo(z,y) = exp (—15((z — 0.5)* + (y — 0.5)%)) . (4.8.8)

We apply the DG method on an unstructured mesh of 41416 elements up to a final time
of t = 0.1, before the formation of a shock. Using the usual time step restriction involving
the radius of the inscribed circle in €; we find that the p = 1,2, and 3 schemes required
265, 442, and 619 time steps, respectively, to reach the final time. In comparison, using our
proposed CFL condition we find that the schemes required 148, 213, and 276 time steps,
respectively.

Finally, in our second non-linear example we consider the Euler equations in two di-
mensions,

p 2pu pv
0 | pu o | pu+P 0 puv
= — — =0 4.8.9
8t pu + a[L‘ puUv + 6’3/ pU2 + P ) ( )
E u(E + P) v(E+ P)
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l2_x

Figure 4.9: Euler equations (4.8.9) with smooth vortex initial profile (4.8.11)-(4.8.14) on
an unstructured mesh of 16954 elements. Shown initially at ¢ = 0 (left) and at ¢t = 4
(right).

on the square —10 < x <10 and —10 < y < 10 with the equation of state

P=(y-1) (E — %p(u2 + v2)> , (4.8.10)

and the initial condition consisting of a smooth vortex [61] centred at the origin and moving
upward, i.e.

1

Po = [1 — 5827]52 exp (1 — x[;— yQ)} o , (4.8.11)
uy = % exp (1_5—;2_%) : (4.8.12)
vo=1-— ;—2 exp (1—;—};—y2> , (4.8.13)
Py = 7;42 ll - 5827]:/;[2 exp (#)] - ) (4.8.14)

112



where S = 13.5, M = 0.4, R = 1.5, and v = 1.4. We use the constant boundary condition

1
0
0 (4.8.15)
1

e 2

yM?
along the boundary of the mesh.

We apply the DG method on an unstructured mesh of 16954 elements up to a final
time of t = 4. Note that, as per the discussion in Section 4.6.1, since this system is not
simultaneously diagonalizable there exist characteristics which do not degenerate to lines.
We therefore take h; to be the minimum height of the cell for these fields. Using the usual
time step restriction involving the radius of the inscribed circle in €2; we find that the
p = 1,2, and 3 schemes required 1387, 2312, and 3236 time steps, respectively, to reach
the final time. In comparison, using our proposed CFL condition we find that the schemes
required 847, 1222, and 1587 time steps, respectively.

4.9 Discussion

In this chapter we have investigated the superconvergence, superaccuracy, and stability of
the DG method on triangular grids. By examining a PDE for the numerical solution we find
that the Fourier modes of the numerical solution on each cell are completely determined by
a projection of their inflow, a rational function of their frequency, the parameter h; which
can be seen to be the length of the cell 2; along the direction of flow a, and a parameter
0 which gives a measure of the direction of flow in each cell. These Fourier modes have a
local expansion in h; which involves a projection R,.1[[U;]] of the jumps in the numerical
solution along the inflow boundary of each cell. By assuming an exact inflow and using a
local expansion of these Fourier modes in terms of h; we are able to give a simple proof of
the local superconvergence properties of the method studied in [47, 2, 3].

When we consider a uniform mesh of triangles, we use these Fourier modes to sym-
bolically calculate a polynomial condition C, = 0 which relates the frequencies w to the
numerical wavenumbers x; and k3. We then perform an expansion of this condition in A in
order to verify the order 2p + 1 superaccuracy of the numerical wavenumbers to the exact
wavenumbers in terms of dissipation and dispersion. We also use the condition C, = 0 to
calculate the spectrum of the DG method on this uniform mesh. Examining the spectrum
over a range of values of 6 reveals that the size of the spectrum is not very sensitive to
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this parameter. Meanwhile, from the form of the polynomial C), we find that the spectral
values are scaled by @ We therefore propose a new CFL condition for the DG method in
which the time step is scaled by the parameter h;, rather than the radius of the inscribed
circle in each cell r; as is usually implemented. We then extend this CFL condition to
general non-linear hyperbolic systems. We see in our numerical tests that this new CFL
condition performs significantly better in that it provides much larger stable time steps.
Indeed, as p increases our tests with the proposed CFL condition required less than 50%

of the usual amount of time steps.

Finally, we show that the spectrum of the DG method on this uniform mesh can be
partitioned into frequencies which can be considered either physical of non-physical. The
physical modes of the numerical solution propagate with frequencies which agree with the
exact frequency to high-order, while the non-physical modes are damped out exponentially
quickly in time. We therefore obtain an analogous result to that established in Chapter
2 for the DG scheme in 1D: the accuracy of the numerical solution will be completely
determined by the accuracy of the initial projection onto these physical modes. Using this
result and symbolically examining the superconvergence properties of the physical modes,
we prove that for a class of initial projections the numerical solution will globally tend
exponentially quickly towards a superconvergent form.

The analysis of the DG method through the derivation and a PDE which governs the
numerical solution, and the Fourier analysis of said PDE, has proven effective in establish-
ing several useful superconvergence, superaccuracy, and stability results of the DG method.
The extension of this analysis to other cell geometries in 2D, and to higher-dimensional
problems is subject of future study. In particular the extension of the proposed CFL
number to these problems. Finally, in this analysis we observe an analogy with the the
one-dimensional case, in that we see that much of the error analysis relies on the orthogo-
nality properties of the projection R,41[[U;]] of the jumps in the numerical solution along
the inflow boundaries of the cell. As demonstrated in Chapter 3, modifications to this
projection can yield significant relaxation of the scheme’s stability restriction. We are
therefore motivated to extend this idea to the DG scheme in two dimensions, which we
explore in the next chapter.
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Chapter 5

The Modified DG scheme in 2D

5.1 Introduction

In one dimension, and when paired with an appropriate order explicit Runge-Kutta scheme,
the CFL number of the DG scheme decreases with the order of approximation p as roughly
1/(2p + 1). This restrictive condition is caused by the growth of the spectrum of the
spatial discretization operator of the DG scheme [48]. In Chapter 3 we explored a possible
approach to reducing the severity of this time step restriction, in which the one-dimensional
DG scheme was modified through the introduction of p + 1 parameters ag, k = 0,...,p,
called ‘flux-multipliers’. Using specific choices of these flux multipliers, particularly the
multipliers associated with the highest order modes, we were able to take significantly
larger CFL numbers while only introducing additional dispersive and diffusive errors.

In two dimensions, we encounter a similar scaling of the CFL number of the DG method.
Indeed, as discussed in Chapter 4, the DG scheme of order p on triangular meshes, when
paired with an explicit Runge-Kutta-(p+1) scheme, has a CFL number that scales roughly

S 1 . Again this restrictive condition is due to the growth of the spectrum

@p+) (1+ 552
of the spatial discretization operator. The similarity with the scaling of the CFL number
in one dimension motivates us to consider an analogous modification of the DG scheme
in 2D. To this end, we propose in this chapter a modified DG scheme that involves p + 1
flux multipliers v, £ = 0,...,p. These multipliers act analogously to the multipliers in
the one-dimensional mDG scheme to scale the contributions from the jumps along the cell
boundary to the numerical flux for the modes of the numerical solution. By following the
procedures used in Chapter 4, we show that these modifications alter the spectrum of the

DG method and allow us to take larger CFL numbers.
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We also investigate how the local superconvergence and superaccuracy properties of
the DG method are modified through the multipliers ;. Since the results of Chapter 4
rely on the properties of the Fourier modes of the numerical solution, we can extend them
immediately by investigating how the modes are modified by the multipliers. In particular,
we show that modifying the m highest order multipliers lowers the accuracy in dissipation
and dispersion to O(h?**T1=™). We observe these additional errors in several numerical
examples. We also present an example that compares the DG and modified DG methods
with equivalent computational effort and demonstrate that the modified method can obtain
significantly more accuracy on fine structures due to its smaller cell size.

The rest of this chapter is organized as follows. In Section 5.2 we introduce the modified
DG scheme in two dimensions, and proceed to extend our Fourier analysis used in Chapter
4 to this scheme in Section 5.3. We then investigate the effects of the modifications to the
spectrum of the DG method in Section 5.4, and we use linear algebra software to determine
what choices of the multipliers 7, will yield the largest CFL numbers. We then present
several numerical examples in Section 5.5 in order to observe the effects of the modifications
on the dissipation and dispersion errors of the scheme, and the potential benefits of the
scheme to reduce computational effort or capture fine structures of the numerical solution.

5.2 Modified DG Discretization

Following an analogous procedure to that used in Chapter 3, we consider the application
of the DG scheme to the two-dimensional system of conservation laws (1.2.14) in the form
similar to (1.2.23)

d
21| 2 ejni = —]{ n - F(U;)¢y ds+2lﬂjl// F(U;) - J; ' Vi, dA.
09 Q
Applying the divergence theorem to the volume integral again we obtain
d _
8Q‘j QO

where [[F(Uj)]] = F(Uj)—F(Uj) is the jump in numerical flux along the cell boundary 9<2;.
We proceed by noticing again that these jump terms should be small on smooth solutions
and their modification should not affect the formal accuracy of the scheme. Hence, we
propose modifications to the DG scheme (5.2.1) through the introduction of parameters
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Vi, for k. =0,...,p, in the following way
d
20| e =~ 0 (F(U s ds —2y] [[ 79 F(U b dA. (522
8Qj Q(J

We again expect that this 2D mDG scheme will perform similarly to the original DG
scheme on smooth solutions where the jump terms are small. Note that we have chosen
the multipliers v to depend only on the order of the polynomial basis function k£ and not
on the specific index of the basis function . This, of course, makes the implementation
of these modifications simpler and helps with our analysis by reducing the number of
different parameters which we must consider. More importantly, however, as we detail in
the sections below there does not seem to be any benefit in terms of superaccuracies or
stability when considering multipliers which depend on both k and 1.

In the remainder of this chapter we will extend some of our superconvergence and
superaccuracy analysis in Chapter 4 to this mDG scheme and we will investigate what
increases to the CFL number of the scheme we can achieve using the flux multipliers.

5.3 Fourier Analysis

Following the same procedure as in Section 4.2 we can apply the mDG scheme (5.2.2) to
the linear advection equation (4.1.1) to obtain

d
%Cjki + //Q (6 2N v¢kin dA = —Vk /69 (a . n)[[U]]]z/zm dS, (531)

where [[Uj]] = Uy — U; and the Riemann state U} is defined using the upwind flux (4.2.3).
We continue as in Section 4.2 and derive the PDE which the numerical solution U; satisfies
by multiplying (5.3.1) by ¥x; and summing over k =0,...,p and i =0, ...,k to obtain

/8 (e[ ds] b (5.3.2)

n,t) = (A]j(f,n)e*”a”“’t where Uj({“,n) is a

Next, we look for solutions of the form Uj(¢,
(5.3.2) into the (¢, o)-coordinates using the

polynomial in & and 1. We also transform
transformation (4.3.2) in order to write

I I Pt o ;



This process has been entirely analogous to what was done in Chapter 4, but now we see in
(5.3.3) that the modifiers 7, have altered the right hand side of (4.3.4). As a consequence,
the projection R,y; will be altered. We denote the new projection, which depends on
the modifiers 7y, by ﬁpﬂ and use it to simplify the right hand side of (5.3.3) using the
following proposition.

Proposition 5.1. We define a projection of the jump function [[Uj]], which we denote as
Ry [[U]](C, o), into the space of polynomials in ¢ and o satisfying the following conditions,

/ nCRp+1 77Z)k2 ds — // 7efp—i—l ¢kz dA =
0N Qo

(=1 [ neRyal[0)usds, (53
00y
fork=0,...,pandi=0,...,k, and
| R0 ds = [ (06 ds, (5.3.5)
00y o8y
for k. = 0,....,p and i = 0,...,k. When Q; is a type I or III cell we require that
Rp+1[[ (¢, o) is a polynomial of degree p + 1 in ¢ and of degree p in o. When Q; is

a type II cell we require that 7~2p+1[[(7j]](§,0) is a polynomial of degree p+ 1 in ( and of
degree 2p in 0. Ry [[U;]](C, 0) is then uniquely determined by (5.3.4) and (5.3.5).

Then, using this projection, the forcing term on the right hand side of (5.3.3) can be

written as i
p
2. [ I

k=0 i=0 vy

nc[[U;)) ks ds] Ui = 2= Ry [[U5]](C, ). (5.3.6)

0
¢
Proof. The proof of this proposition follows the same argument as the proof of Proposition
4.1. This time, however, we verify (5.3.6) by multiplying the expression by t;, integrating

over €, applying the divergence theorem, and using the orthogonality relations (5.3.4) to
obtain

o nliCilds = [ (S Real0]) s s

= fv n<7~€p+1 '(Lkz ds — // Rp+1 @D]ﬂ dA. (537)
0o Qo

= /8 . ne|[U;)] 0w ds, (5.3.8)
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which is true by (5.3.5). O

Using this proposition we can write (5.3.3) in the following compact form

0 - 0 ~ -
wh U + GCU] = a_CRp—FlHUjH(C’J). (539)

Note that because the defining relations of the projection R, have been altered, any
orthogonality properties of ﬁpﬂ will be directly determined by the choice of multipliers
n (5.3.4). As a consequence, since much of the superconvergence properties of the scheme
result from the orthogonality of this projection (e.g. Theorems 4.2-4.4), we have the
possibility that the superconvergence properties of the modified scheme can be specifically
manipulated. To determine this more precisely we repeat the procedures used in [2] and
[47] in determining the orthogonality of the R,; projection in order to establish some
properties of the modified projection 7~3p+1.

Proposition 5.2. Let Q; be a cell of type I and let q be the smallest index for which vy, # 1.
Then the projection Rp+1[[ S of the jump function along the inflow boundary satisfies the
following orthogonality relation

/ ne (7@,,“[[@]]) o* ds = 0, (5.3.10)
0T
forallk=0,...,qg—1.

Proof. We follow the same arguments as in the proof of expression (3.62) of Theorem 3.5
n [2]. We can also prove (5.3.10) directly by simply replacing ¢; by o* in (5.3.4). ]

Proposition 5.3. Let €); be a cell of type 11 or III and let q be the smallest index for which

vq # 1. Then the projection Rp+1[[ il of the jump function along the inflow boundary
satisfies the following orthogonality relations

// Ryt [[U;)] 0 dA = 0, (5.3.11)
Qo

forallk=0,...,g—2andi=0,...,k, and
[ Ryl ds o, (5:3.12)
0T

forallk=0,...,g—1andi=0,... k.
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Proof. We follow similar arguments as used in the proof of Theorem 1 in [47]. In particular,
we can prove both (5.3.11) and (5.3.12) directly by considering the monomial basis {({ —
nm™ (¢ —1)""o,..., 0™} form=0,...,pin (5.3.4). O

Now that we have obtained the PDE (5.3.9) for the numerical solution of the modified
DG scheme, analogous to the PDE (4.3.13) considered for the classical DG scheme in
Chapter 4, and we have established some of the orthogonality properties of the modified
ﬁpﬂ projection, we can extend much of the analysis performed in Chapter 4 to the modified
scheme. Since much of the analysis can be repeated almost verbatim, replacing R,1 by
Rp+1 and changing the orthogonality properties to those of Rp+1 where appropriate, we
will not repeat these results in full. Instead we will simply refer to these theorems and
note important differences in their results as they pertain to the modified scheme.

To begin, we follow the same procedure leading to Theorem 4.1 to obtain that the
Fourier modes of the modified DG method (5.3.1) for linear hyperbolic problems in two
dimensions which are polynomials in { and ¢ can be written as

Uj(C? U) = -F g j+7 (5313)

where the projections ]:"p and Q~p_ ! are defined in analogous ways to the definition of F,
n (4.3.17) and the definition of G, ' in Theorem 4.1. The Fourier modes also have the
expansion

Ui(C,0) = Ui (Co, 0)e ) + 1R, 1 [[U)(Go, 0) — H}H] (=)
— Ry [[U5]]( iwh FRUMTIC o). (5.3.14)
k=1

Using this expansion and the orthogonality properties of 7~€p+1 in Propositions 5.2 and
5.3 we can extend the local superconvergence properties presented in Section 4.4 to the
modified scheme. We omit restating these results in full and instead note the important
difference for their analogous modified results. For what follows, we assume ¢ is the smallest
index for which v, # 1. Beginning with the results of Theorem 4.2 concerning the local
superconvergence of type I cells, we note that for the modified scheme the orthogonality
property (4.4.3) will only hold for m = 0,...,¢q — 1. Next, for the results of Theorem
4.3 concerning the local superconvergence of type II cells we note that (4.4.6) will only
hold to O(REH™™™) for m = 0,...,q — 1, and (4.4.7) will only hold to O(hZ™"™™) for
m = 0,...,q — 2. Similarly, for the results of Theorem 4.4 concerning type III cells,
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(4.4.14) will only hold to O(h?ﬂﬂ_m) form=20,...,¢— 1, and (4.4.15) will only hold to
O(hfﬂ_m) form=0,...,q—2.

Finally, we extend our results concerning the superaccuracy of the DG method in
terms of dissipation and dispersion errors to the modified scheme. We again consider a
uniform mesh on the unit square domain ¥ and we look for solutions of the form (4.5.2).
We compute the Fourier mode solutions on each rectangle > and find that solutions of
this form will exist when the determinant of the system (4.5.4) is zero. We symbolically
compute these determinants, which now depend of the modifiers 7, and compute their
Taylor series around h = 0 in order to verify the following result up to p = 3.

Theorem 5.1. Let U be a numerical solution of the modified DG method (5.3.1) applied
to the linear problem(4.1.1) on the square domain ¥ with a uniform computational mesh
and suppose U is of the form (4.5.2). Then the numerical wavenumbers ki and Ko satisfy

aky + brg = ||a|lw + O(RP19), (5.3.15)

where q s the smallest index for which v, # 1. That s, the local orders of errors in
dissipation and dispersion of the scheme along the direction of flow are p + q.

It is interesting to note that this theorem holds even in the case when we take the
modifiers to depend on the index 7 in (5.3.1), or even take different choices of multipliers in
each sub-triangle of ;. The orders of dissipation and dispersion errors are still determined
by the smallest index ¢ for which 7, # 1, regardless of i.

5.4 Stability

In this section we will investigate what improvements to the usual CFL number of the DG
scheme can be obtained using the multipliers v,. We pair the mDG spatial discretization
with an explicit order p + 1 Runge-Kutta time integration method. As discussed in the
previous chapter for the classical DG method, with this time integration scheme the CFL
condition

1 h
4 7
(2p+1) (1 + W) lal|

provides a fairly tight bound on the time step At in order to ensure linear stability. We
found this condition by computing each spectral value Ag,.,, that is a root of the determinant

At <
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Figure 5.1: Spectral values Ay, of the spatial 2D DG discretization for the linear advection
equation, for the p = 1 and 2 (top) and p = 3 (bottom), with N = M = 10. We show in

each figure the spectral values for v, = 1, %, and %

C,, of the system (4.5.4) with v = exp (%) and p = exp (¥52%). For the modified DG
scheme (5.3.1) this determinant will depend on the multipliers ;. We again resort to
numerically calculating these roots for various choices of multipliers and determine the
time step restriction of the resulting scheme by finding the largest CFL number such that
the scaled spectral values are contained in the absolute stability region of the RK-(p + 1)
scheme.

In Figure 5.1 we show the spectral values g, of the two-dimensional DG spatial
discretization for the p = 1,2, and 3 schemes, respectively, with different values for the
highest multiplier 7, in each case. In each figure, we show with the ‘0’ marker the spectrum
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| p| 7 | CFL [ Relative Increase

1] 1.000 | 0.232 3.58
0.182 | 0.834

2 1 1.000 | 0.165 2.07
0.240 | 0.342

3| 1.000 | 0.124 1.89
0.278 | 0.234

Table 5.1: Largest CFL numbers obtained with the modified DG scheme on the 2D linear
advection equation for p = 1, 2, and 3, only modifying the highest order coefficient. Relative

increase is calculated as the ratio between the increased CFL of the modified scheme,
divided by the CFL number of the original DG scheme.

for v, = 1, which is the spectrum of the original DG scheme, together with the spectra for
Yp = % and vy, = % with the ‘x” and ‘+’ markers, respectively. As with the one-dimensional
mDG scheme in Chapter 3 we again see from these figures that, in general, the modification
of the highest modifier has the effect of scaling the spectrum. Specifically, increasing the
7, multiplier increases the size of the spectrum, while decreasing the 7, multiplier reduces
the size of the spectrum. From this, we again see that we are able to choose a larger CFL
number then the usual DG scheme when v, < 1.

To determine what choices of v, give us the most relaxed time-step restriction, we
implement a Nelder-Mead optimization algorithm in MATLAB. At each iteration, for a
given choice of multiplier +,, the program calculates the spectral values A, for varying
values of 6 and uses this spectrum to find the largest CFL number so that the complete
spectrum of CFL - Agyy, is contained within the absolute stability region of RK-(p + 1)
via a bisection algorithm. In Table 5.1 we present the largest CFL number we were able
to obtain using this program for schemes of order p = 1,2, and 3, together with the value
of 7, for which the scheme obtains this CFL number. From this table we see that we are
able to achieve a significant increase in the usual CFL number of the DG scheme through
modification to only the highest order multiplier.

When we consider modifications of more than just the highest order multiplier, and
extend our search for choices of these multipliers that allow us to take larger CFL numbers,
we find that there is little improvement to the CFL numbers reported in Table 5.1. For
example, considering the p = 3 scheme and searching for an optimal set of multipliers
Y1, Y2, and 3, returns that both ~; and 7, are very close to 1 and the optimal CFL
number is very close to 0.234. This result is in direct contrast with the results seen for
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(&) m=1 (b) 71 = 0.182

Figure 5.2: Linear advection equation (4.8.5)-(5.5.1), p = 1 on a mesh of 26524 triangles.
Shown at t = 0.3. We show the solution of the mDG scheme with vy = 1 and CFL = 0.232
(left) and with v, = 0.182 and C'FL = 0.834 (right).

the one-dimensional mDG scheme where modifying several multipliers had the potential
to yield even larger CFL numbers. It is possible that such modifications are still possible
but require higher-order schemes more multipliers to be modified. For now, we proceed
to numerically verify our results concerning the mDG scheme in two-dimensional in the
following section.

5.5 Numerical Examples

In this section we will present several numerical examples of the modified DG scheme
in two-dimensional to demonstrate its potentially more relaxed stability restriction and
qualitatively observe its effects on the dissipation and dispersion errors. In each test below
we pair the DG spatial discretization with a explicit order p+1 RK time-integration scheme
and use the largest CFL number possible.
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0139 051 1.16 Iz_x 0.162 0.564 1.29 Iz_x
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(a) y2 =1 (b) 72 = 0.24

Figure 5.3: Linear advection equation (4.8.5)-(5.5.1), p = 2 on a mesh of 26524 triangles.
Shown at t = 0.3. We show the solution of the mDG scheme with v = 1 and C'F L = 0.165
(left) and with v, = 0.24 and CFL = 0.342 (right).

In our first example we consider a simple linear problem with and initial condition
which contains several different waveforms. That is, we consider again the linear advection
initial value problem (4.8.5) with the initial condition

(

1 0<2<02 0<y<0.2
10 min(z — 0.3,0.5 — z,y,0.2 — y) 03<z<05 0<y<0.2,
up(z,y) = \/max(l —100((z —0.1)2 4+ (y — 0.4)?),0) 0<2<0.2,03<y<0.5
exp(—500((z — 0.4)* + (y — 0.4)?) 03<z<0.5,03<y<0.5,
L0 otherwise.
(5.5.1)

This initial profile consists of a square wave, a square base pyramid, a half-ellipse, and
a Gaussian pulse. We implement the mDG scheme for p = 1,2 and 3, modifying only
the highest order multiplier 7, using the values detailed in Table 5.1. We implement the
method on an unstructured mesh of 26524 triangles. Since limiting can potentially destroy
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(a) v3 =1 (b) 73 = 0.278

Figure 5.4: Linear advection equation (4.8.5)-(5.5.1), p = 3 on a mesh of 26524 triangles.
Shown at t = 0.3. We show the solution of the mDG scheme with v3 =1 and CFL = 0.124
(left) and with 3 = 0.278 and C'FL = 0.234 (right).

fine structures of the numerical approximation, we do not implement a limiter in these
tests so that we can observe the effects of the dissipation and dispersion errors that the
modifications will have.

In Figures 5.2, 5.3, and 5.4 we show the results of this test for p = 1,2, and 3, respec-
tively, at t = 0.3. In the first test, we see that the modification of the highest multiplier
has introduced a significant amount of dissipation and dispersion errors which appears to
smear the waveforms and even create a trailing error along the direction of flow. However,
with the error has come a significant increase in the size of the time step At. Using the
CFL condition proposed in Chapter 4 we find that the classical DG scheme requires 429
time steps to reach the final time, while the modified scheme requires only 120. Examining
the p = 2 and p = 3 tests we see similar results to those observed for the one-dimensional
mDG scheme. The effects of modifying the highest order multiplier on the dissipation and
dispersion errors of the scheme become less severe as the order p increases, while we are
still able to obtain significant increases in time-step sizes. We note that the classical DG
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Figure 5.5: Diagram of the double Mach reflection test problem for the Euler equations.

scheme with p = 2 required 619 time steps to reach final time, while the modified scheme
only required 299. Similarly, the DG scheme with p = 3 required 804 time steps while the
mDG scheme required only 426.

To demonstrate the efficacy of the modified scheme for a nonlinear problem we consider
a more involved example. A common test for the two-dimensional Euler equations is the
so-called double Mach reflection problem, discussed in [70]. In this problem, we consider a
rectangular domain Q = [0,4] x [0, 1] containing a right-moving shock wave impinging on a
reflecting wedge, as depicted in Figure 5.5. We solve the two-dimensional Euler equations
(4.8.9)-(4.8.10) with an initial condition consisting of a shock state U to the left of the
shock front which has p = 8, u = 8.25cos(§), v = 8.25sin(g), and P = 116.5 so that the
shock wave is traveling at Mach 10. The state to the right of the shock front U, is taken
to be at rest with p =1, u = v =0, and P = 1. The boundary conditions along the upper
edge are taken to match the position of the shock wave, inflow of the shock state along the
left edge, and outflow along the right edge. Finally, the bottom boundary is assigned to be
a reflecting boundary. Since this problem involves strong shocks we implement a limiter
in our experiments, namely the Barth-Jesperson limiter [9].

In Figure 5.6 we show the results of the classical DG scheme on an unstructured mesh
of 120926 triangles at the final time of T' = 0.2, which required 3865 time steps. We also
show the results of the mDG scheme with v, = % and a CFL number 2.5 times larger than
in the classical DG scheme on the same mesh in Figure 5.7. The two numerical solutions
appear visually identical, however the mDG scheme requires only 1545 time steps to reach
the final time, thus marking a significant performance benefit. A possible explanation for
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Figure 5.6: Double Mach reflection test. We show the results of the DG method with p =1
on a mesh of 120926 triangles at time t = 0.2.

o |

1.4 12,2 £ ;o

Figure 5.7: Double Mach reflection test. We show the results of the mDG method with
p=1and 1, = % on a mesh of 120926 triangles at time ¢ = 0.2.

this could be an analogous phenomenon to what was observed for the Euler equations in
one dimension presented in Section 3.5.4. In both examples it is possible that the scheme
which requires fewer time-steps is less damaged by repeated applications of the limiter.

In Figure 5.8 we show the results of the mDG method with with v, = % and a CFL
number 2.5 times larger than in the classical DG scheme on an unstructured mesh of 228654
triangles, which requires 2262 time-steps to reach the final time. Since the computational
effort of each scheme should be proportional to the number of cells in the mesh multiplied
by the number of time steps required, we find that this scheme has a similar computational
effort to example with the classical DG scheme consider in Figure 5.6. We see, however,

that the mDG scheme seems to obtain better accuracy on fine structures of the solution,
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Figure 5.8: Double Mach reflection test. We show the results of the mDG method with
p=1and y, = % on a mesh of 228654 triangles at time ¢t = 0.2.

particularly noticeable in the contact region, due to its more refined mesh. This suggests
a potential benefit to implementing the mDG scheme on a more refined mesh, for an
equivalent computational effort.

5.6 Discussion

In this chapter we have extended our modified DG scheme proposed in Chapter 3 to two-
dimensional systems on triangular meshes. The modifications scale the contributions from
the jumps in the numerical flux along the cell boundaries through the introduction of
so-called flux multipliers ;.

By applying the modified scheme to a simple linear problem, we show that the multi-
pliers alter the R, 1[[U;]] projection of the jump along cell boundary. Since much of the
superconvergence analysis performed in Chapter 4 relies of the properties of this projection,
we can immediately extend our local superconvergence results to the modified scheme by
making the appropriate changes to the proofs. In particular, we show that when the ~,
modifier is taken not equal to one, the order of accuracy of the method in terms of dissi-
pation and dispersion is p + ¢. The modifications therefore introduce additional dispersive
and diffusive errors to the numerical solution, which we observe in our numerical examples.

When we search for what choices of the multipliers will yield the largest CFL number
we find that we can take significantly larger CFL numbers when only the highest order
multiplier v, is modified. We also find that there is little benefit to modifying two or three
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of the highest order modifiers, since this result in very little gains in the maximum CFL
number, or results in an unstable semi-discrete scheme. It is possible that gains to the
CFL number may still be possible through modifying more than three modifiers, but this
remains an open question.

We present several numerical examples to observe the performance of the modified
scheme. On linear problems we observe that the modified scheme performs similarly to the
DG method on smooth profiles, but incurs additional dissipative and diffusive errors which
are particularly visible on strong discontinuities. In our non-linear examples, we observe
that when a limiter is applied there is very little difference between the DG and mDG
numerical solutions, while for a fixed computational effort the mDG achieves significantly
more accuracy on the fine structures of the solution due to its greater cell refinement.

Several questions remain open for further study. First, more testing is necessary to
determine what choices of multipliers will be optimal in the sense of the trade-off between
accuracy and efficiency. Additionally, more testing is required to extend the search for
optimal choices of multipliers presented in Table 5.1 for higher-order schemes. Finally,
more study is required to investigate the application of the modified scheme on other cell
geometries, as well as in higher-dimensional problems.
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Chapter 6

Conclusions and Future Work

In this thesis we have investigated the superconvergence, superaccuracy, and stability prop-
erties of the discontinuous Galerkin finite element method. By considering a simple linear
hyperbolic problem we have established several results in one and two dimensions on both
uniform and non-uniform meshes. We have also demonstrated, through simple modifica-
tions to the scheme, that the superconvergence, superaccuracy, and stability properties of
the DG method may be manipulated. We use these proposed modifications to construct
schemes that are formally less accurate but significantly more stable than the classical DG
method. Here we briefly summarize the work presented in the above chapters and discuss
how these topics may be further investigated in future works.

Our analysis began in Chapter 2 where we applied the DG method to a simple linear
advection problem. The key steps in the analysis were the derivation of a PDE that the
numerical solution satisfies on each cell and the application of classical Fourier analysis
to investigate the solutions of this PDE. After finding the Fourier modes of the numerical
solution we established our primary results. We showed that the local error of the scheme
is order p+ 2 superconvergent at the right Radau points inside the cell, and order 2p+2 at
the downwind points. We also showed that the Fourier modes of the numerical solution are
closely related to the ﬁ Padé approximant of the exponential e* at the downwind points
and used this result to establish the scheme’s superaccurate order 2p+1 and 2p+2 errors in
dissipation and dispersion, respectively. While these properties have been shown previously
on uniform meshes [4][43] our analysis extends these results to non-uniform meshes. We
then considered a uniform mesh with periodic boundary conditions and showed that under
these assumptions the spectrum of the method can be decomposed into non-physical and
physical modes, where the non-physical modes are damped out exponentially quickly in
time. Using this decomposition, we proved that for a class of initial projection the DG
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solution will tend to a globally superconvergent form which obtains order p + 2 rate of
convergence at the right Radau points on the interior of the cells and order 2p + 1 rate of
convergence at the downwind points of each cell.

In Chapter 3, we analysed the superconvergence, superaccuracy, and stability of the
DG method under a slightly different perspective. Specifically, we investigated how these
properties may be manipulated through modifications to the scheme. We proposed a new
family of schemes, which we name the modified DG (mDG) scheme, obtained via simple
modifications to the numerical fluxes through the introduction of several parameters, a4,
k=0,...,p. The original DG scheme can be seen as the special case of the mDG scheme
when o = 1 Vk. By repeating the analysis preformed in Chapter 2 we showed that the
superconvergence, superaccuracy, and stability of the mDG method can be manipulated
by choosing different values for the parameters a. We also proved that the DG scheme is
optimal in the sense that the modifications can only reduce the formal orders of accuracy in
dissipation and dispersion. The modifications do, however, allow us to construct schemes
which are more stable than the classical DG method. Indeed, we have constructed schemes
which allow for time steps which are twice as large as usual through only taking «, # 1.
We demonstrate with some numerical examples that there may be benefits to using the
mDG method over the classical DG method, in particular when limiting is applied or the
solution contains fine structures which would be more well-resolved under mesh refinement.

We continued our study of the DG method by moving to two-dimensional equations
in Chapter 4. In previous works, the local superconvegence of the DG method had been
investigated for meshes of quadrilaterals in [5] and triangles in [47] and [2]. In this Chap-
ter, we used the approach developed in Chapter 2 to provide new proofs of the results
in these works. We then made the simplifying assumption of a uniform mesh and peri-
odic boundary conditions in order to extend our other one-dimensional results. Through
symbolic calculation, we proved that the scheme obtains superaccurate order 2p + 1 er-
rors in dissipation and dispersion. We also proved that the spectrum of the method can
be decomposed into non-physical and physical modes, analogously to the one-dimensional
scheme. We then used this decomposition to prove that for a class of initial projections the
numerical solution will tend towards a superconvergent form. Finally, we also proposed
a new CFL condition for the scheme, motivated by the appearance of a parameter h; in
each cell, which geometrically can be seen to be the width of that cell along the direction
of flow. We showed through some linear and non-linear numerical examples that this CFL
condition can yield time steps which are significantly larger than those given using the
commonly-used CFL condition which uses the inscribed radii of each cell.

Our final topic was then presented in Chapter 5, where we extend our modified DG
scheme to two-dimensional problems. We modify the two-dimensional DG scheme in an
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analogous way to the one-dimensional scheme through the introduction of p+4 1 parameters
Vi, K =0,...,p. We then showed that these modifications to the DG method allow us once
again to manipulate the superconvergence and superaccuracy properties of the method. We
also proved, as in one dimension, that the DG scheme is the optimal choice in terms of
formal orders of accuracy in dissipation and dispersion. We then used the modifications
to construct schemes which are more stable than the usual DG method. In contrast to
the one-dimensional scheme, we found that the stability is only significantly improved by
modifying the highest order multiplier ,.

An immediate topic of further study is whether the spectral decomposition and global
superconvergence results of Chapters 2 and 4 may be extended to non-uniform meshes.
In one-dimension, it is known that on non-uniform meshes a numerical solution that is
initially in a superconvergent form will remain in a superconvergent form [72]. It is there-
fore reasonable to assume that an extension of our analysis is plausible. Further topics
of research arise when we note that the analysis performed in Chapters 2 and 4, while
yielding interesting results for the linear equations, must be further extended in order to
yield results for more practical problems. In particular, non-linear equations and systems
must be considered. As is usual for this type or analysis, a possible approach to non-linear
equations could be a linearisation argument in each cell, followed by our previously-used
linear analysis. This approach may then be successful in yielding leading order error esti-
mates and superconvergence/superaccuracy for these equations. The extension to systems
should then be fairly straight-forward by considering the linearisation of the characteristic
equations of the system. Another topic, concerning the analysis for Chapter 4, is whether
the results verified through symbolic computation will hold for all orders p. It is therefore
important that general proofs of these results be investigated.

Several questions remain regarding the modified DG methods proposed in Chapters 3
and 5. In particular, the affect the modifiers have on the global accuracy and what choices
of modifiers are optimal in the sense of the trade-off between accuracy and efficiency. While
some preliminary benchmarking was performed in [19], the results are not conclusive and
no such testing has yet been performed for the two-dimensional scheme. It is also not clear
how the limiter affects the modified scheme. While the examples we present show that
there is little difference between the numerical solutions produced by the DG and mDG
schemes when a limiter is applied these examples only consider the moment limiter. This
interaction is still an open question, especially if other limiting strategies, such as shock-
detection and artificial viscosity approaches, are employed. Finally, there is a possibility
that the modifications to the DG scheme could serve other purposes than obtaining larger
CFL numbers. Specifically, since the multipliers introduced scale the contributions to the
modes of the numerical solution from the jumps at the cell boundaries it is possible that
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the multipliers could be chosen adaptively to serve as a limiting strategy.

One final topic of further study is the extension of this work to three-dimensional
problems. In addition to the superconvergence and superaccuracy studies, the question of
whether an analogous CFL condition to the one proposed in Chapter 4 can be derived for
these higher-dimensional problems would be of significant practical interest.
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Appendix A

Mathematica Source Code

Here we give the Mathematica source code used to compute the determinant C, of the
system (4.5.4) described in Section 4.5. We note that in the code below we can calculate
C, for different values of p simply by changing its value in the first line. Moreover, we
can compute the determinants C), for the modified DG scheme described in Chapter 5 by
changing the values given to the variable gamma, currently defaulted to a list of ones which

corresponds to the classical DG scheme.

p=1;
phi[xi_,eta_,k_,i_] := JacobiP[k-1,0,2%i+1,1-2*xi]*(1-xi) ix*
LegendreP[i,1-2%eta/(1-xi)];

J1[s_] := Sum[(2*m+1)*Subscript[J,1,m]*LegendreP [m,2*s-1],{m,0,p}];
J3[s_] := Sum[(2*m+1)*Subscript[J,3,m]*LegendreP [m,2*s-1],{m,0,p}];
J2[s_] := Sum[(2*m+1)*Subscript[J,2,m]*LegendreP [m,2*s-1],{m,0,p}];
Ul[s_] := Sum[Subscript[U,1,m]*s"m,{m,0,p}];

U3[s_] := Sum[Subscript[U,3,m]*s"m,{m,0,p}];

gamma = Table[1,{p+1}];

C2[m_,1_] := -thetax*Integrate[J3[s]*phil0,1-s,m,1],{s,0,1}] -
(1-theta)*Integrate[J1[s]*phil[s,0,m,1],{s,0,1}];

Cl[m_, 1_] := Integratel[J2[s]*phi[l-s,s,m,1],{s,0,1}];
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£2 = Simplify[Sum[Sum[(2*m+2)*(2%1+1)*gamma [ [m+1]]*C2[m,1]*
Sum [ (omegax*h) ~ (-n-1)*D [phi [theta*zeta-sigma, (1-theta)*zeta
+sigma,m,1],{zeta,n}],{n,0,p}],{1,0,m}],{m, O, p}1];
S2 = Simplify[Solve[Union[
Table[Integrate[U3[s]*LegendreP[m,2*s-1],{s, 0, 1}] ==
Integrate[(J3[s]+f2/.{zeta->1-s,sigma->theta*(1-s)1})
*xLegendreP [m,2*s-1] ,{s,0,1}] ,{m,0,p}],
Table[Integrate[Ul[s]*LegendreP [m,2*s-1],{s,0,1}] ==
Integrate[(J1[s]+f2/.{zeta->s,sigma->(theta-1)*s})
xLegendreP [m,2*s-1] ,{s,0,1}],{m,0,p}]],
Union[Table[Subscript[J,1,m],{m,0,p}],
Table[Subscript[J,3,m] ,{m,0,p}t]]11[[1]]1];
F2 = Factor[f2/.S2];

f1 = Simplify[Sum[Sum[(2*m+2)* (2*1+1)*gamma [ [m+1]]*C1[m,1]*
Sum [ (-omega*h) ~ (-n-1) *D [phi [theta*zeta-sigma, (1-theta) *zeta
+sigma,m,1],{zeta,n}],{n,0,1}3],{1,0,m}],{m,0,1}1];
S1 = Factor[Solvel
Table[Integrate[(F2/.{zeta->1,sigma->theta-s})*
LegendreP [m,2*s-1],{s,0,1}] ==
Integrate[(J2[s]+f1/.{zeta->1,sigma->theta-1+s})*
LegendreP [m,2*s-1],{s,0,1}],{m,0,p}],
Table [Subscript[J,2,m],{m,0,p}]]1[[11]1];
F1 = Factor[f1/.S1];

M = Factor[CoefficientArrays[Union[
Table[Integrate[U3[s]*LegendreP [m,2*s-1],{s,0,1}] -
lambda*Integrate [(F1/.{zeta->s,sigma->theta*s})*
LegendreP[m,2*s-1],{s,0,1}],{m,0,p}],
Table[Integrate[Ul[s]*LegendreP [m,2*s-1],{s,0,1}] -

muxIntegrate[(F1/.{zeta->1-s,sigma->(theta-1)*(1-s)})*

LegendreP [m,2*s-1],{s,0,1}] ,{m,0,p}1],
Union[Table[Subscript[U,1,m],{m,0,p}],
Table[Subscript[U,3,m] ,{m,0,p}]11][[2]]];

Cp = Numerator[Factor[Det[M]]1];
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