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Abstract 

 

 The market for path-dependent options has been expanded considerably in 

the financial industry. The approach for pricing the path-dependent options in this 

thesis is developed by Kolkiewicz (2014) based on a quasi-Monte Carlo simulation 

with Brownian bridges conditioning on both their terminal values and the integrals 

along the paths. The main contribution of this essay is an extension of the above 

method to price Asian options under a stochastic volatility model. A Matlab 

implementation of generating multi-dimensional independent Brownian paths is 

also included as part of the contribution. The result can be used to price path-

dependent options, such as an Asian option under both stochastic interest rate 

model and/or stochastic volatility model. A comparison with regular Monte Carlo 

simulation is provided. 
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Chapter 1 

Pricing path-dependent Options 

Nowadays, the trading volumes of path-dependent option are high and most deals 

take place in OTC market due to several of its characteristics. Firstly, the path-

dependent options can provide investors the products specific to their needs. 

Secondly, the options can play an important role in hedging as they meet hedgers’ 

needs in a cost effective ways. For example, Asian options are less expensive than 

European options. Hedging strategies based on these options are usually more 

preferable.  

 The pricing methods used for main types of path-dependent options are 

numerical or analytical. The most common approaches include the partial 

differential equation (PDE) approach and the Monte Carlo approach.  This chapter 

justifies the reason for choosing Monte Carlo simulation for pricing. 

 The PDE approach solves a PDE with given initial and boundary conditions 

in order to price an option. When additional variables are introduced in the PDE, 

this approach can be computationally expensive, especially in the case of stochastic 

interest rate and/or stochastic volatility (Forsyth at al. 1998, Vecer 2001). For 

example, the Asian option price under stochastic volatility in the PDE is considered 

as a function of the underlying stock price, time, volatility and the price average. 
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 The literature on simulation in the context of option pricing started with the 

paper by Boyle (1977). The price of a derivative is given by the expected discounted 

payoffs. The expectation is taken with respect to a risk neutral probability measure. 

The Monte Carlo approach has the following steps: 

1. Over a given time horizon, simulate a path of the underlying asset under a 

risk neutral measure; 

2. Discount the payoff corresponding to each path at the risk-free rate; 

3. Repeat the first two steps for a large number of paths; 

4. Take the average of the discounted payoffs over all the paths simulated to 

obtain the option’s value. 

Under the Black-Scholes model for the dynamic of the underlying asset, the formula 

for a random path generated at discrete time-intervals is as follows: 

    𝑆𝑡+𝛥𝑡 = 𝑆𝑡 exp [(𝑟 −
𝜎2

2
) 𝛥𝑡 + 𝜎𝑡√𝛥𝑡ϵ]    𝑡 ∈ {0, Δt, 2Δt, … }   

where 

 𝑆𝑡 is the asset price at time t; 

 𝑟 represents risk free interest rate; 

 𝛥𝑡  represents the constant length of time steps; 

 𝜎𝑡 represents the constant volatility of stock prices; 

 { 𝜖𝑡| t = 0, Δt, 2Δt, … }  is a vector of i.i.d. standard normal random variables. 
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The standard error of the sample mean converges to 0 with a rate of 
1

√𝑁
 if 𝑁 

paths are generated independent and randomly, where 𝑁 is the total number of 

paths. This result is guaranteed by the central limit theorem. 

 For random numbers, the rate of convergence 
1

√𝑁
 does not depend on the 

dimensions. In the next chapters we explain that if we replace random numbers with 

low-discrepancy numbers then a higher rate of convergence can be achieved. The 

discretization of each path results in a higher dimension of the problem. However, 

the methods based on simulation can deal with extremely complicated or high-

dimensional problems. Another advantage of a simulation approach is that 

advanced technology have reduced the computational time which makes this 

method more attractive. Overall, the method is easy to implement, flexible and easy 

to modify.  

 The main drawback of simulation is that the low rate of convergence will 

require a very high number of simulations for accuracy. This can be improved by 

many existing variance reduction methods such as antithetic variables, control 

variables, importance sampling and stratified sampling, etc. The method that we 

consider uses deterministic sequences of numbers instead of pseudo-random 

numbers. In the literature, they are called “low-discrepancy” sequences. Kolkiewicz 

(2014)  developed a simulation method which efficiently uses the low-discrepancy 

sequence so that Brownian paths are generated conditionally on their terminal 
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values and the integrals along the paths. This simulation method is introduced as 

the BBI method in this thesis, and is extended to price Asian options under a 

stochastic volatility model. 

 The rest of the thesis is organized as follows. Chapter 2 provides a literature 

review of Asian option and quasi-Monte Carlo simulation. In chapter 3, the efficient 

quasi-Monte Carlo simulation is introduced in detail. In chapter 4, prices of 

arithmetic Asian options are simulated under the Heston model. The results of the 

implementation are compared with results from the regular Monte Carlo simulation. 

Chapter 5 gives an analysis on the comparison, and Chapter 6 concludes the 

findings. 
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Chapter 2 

Asian Option and Quasi-Monte Carlo Approach  

for Stochastic Volatility Models 

Payoffs of path-dependent options at expiry are based on the past historical 

underlying asset prices. For example, in the case of Asian options, we need the 

average of asset prices over certain fixed dates. This chapter is organized as follows. 

Asian options will be introduced first. This is followed by two popular stochastic 

volatility models: Hull-White’s model (1987) and Heston’s model (1998). We will 

then introduce a quasi-Monte Carlo simulation method, low discrepancy sequences 

and a Brownian Bridge construction. 

2.1 Asian Options and Monte Carlo Simulation 

The payoff of a regular Asian option depends on a strike price and the average 

(arithmetic, geometric or harmonic) value of the underlying asset over a specific 

time period. For the arithmetic Asian option, the payoff is as follows: 

Payoff = max[𝜑(𝐴𝑇 − 𝐾) , 0]                                                  (1) 

where  

𝐴𝑡 =
1

𝑡
∫ 𝑆𝑠
𝑡

0
𝑑𝑠 for 𝑡 > 0, is the process of an underlying asset average price; 

𝑆𝑡 for 𝑡 > 0, is the process of an underlying asset price; 

𝑇 represents the time at maturity; 
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𝐾 is the strike price; 

𝜑 equals 1 for a call option and -1 for a put option. 

For any process 𝑋, we use 𝑋𝑡 to represent the instantaneous value of the process at 

time 𝑡 ∈ [0, 𝑇]. Thus, 𝐴𝑇 represents the average of 𝑆𝑡 from 𝑡 = 0 to 𝑇. 

 The geometric average options are relatively easy to price as the price is 

lognormally distributed and one can apply the Black-Scholes model.  However, the 

sum of lognormal random variables is not lognormal and there is no recognized 

distribution for that. Unlike the geometric Asian options, which can be priced 

analytically with a risk neutral expectation by using the fact that the average follows 

a lognormal distribution, the arithmetic average does not have this property. 

Therefore, Monte Carlo simulations have been used quite often to price arithmetic 

Asian options. Monte Carlo simulation becomes a good way to price options mainly 

due to its advantages compared to other methods: firstly, it generates numbers of 

path of all desired time asset values in a simple and easy to implemented way. For 

path dependent options, such as Asian option, barrier option and look back option, 

Monte Carlo gives a simple and flexible solution. Secondly, one can assess the 

accuracy of the computation by calculating, for example, a 95% confidence interval 

for 𝜇𝑆 using the following formula 

(𝜇𝑆 −
1.96𝜎𝑆

√𝑁
, 𝜇𝑆 +

1.96𝜎𝑆

√𝑁
)                                                         (2) 
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based on the sample mean 𝜇𝑆, the sample standard deviation 𝜎𝑆 and the standard 

error 
𝜎𝑆 

√𝑁
 of the simulation results and assuming that 𝜇𝑆 is normally distributed. 

2.2 Stochastic Volatility Models 

In real financial markets, volatility usually does not stay constant over time. 

Stochastic volatility models make pricing of options more realistic. Hull-White 

model (1987) proposes stochastic volatility and interest rate models. Recall the 

process and assumption for pricing for the Monte Carlo simulation method 

introduced in Chapter 1. We use the same notations here with one exception that the 

volatility 𝜎 is not constant, but follows a stochastic process in a risk-neutral world. 

Based on a large number of numerical experiments, Hull and White decided to 

propose a model based on the assumption that the stochastic volatility is 

independent of the asset price. Then, the asset price process and the volatility 

process satisfy the equations below: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑍𝑡 

𝑑𝑉𝑡 = 𝜇𝑡𝑉𝑡𝑑𝑡 + 𝛿𝑉𝑡𝑑𝑊𝑡 

where 

𝑉𝑡 = 𝜎𝑡
2 represents the variance process of S; 

𝜇𝑡 represents the drift of 𝑉; 

𝛿 represents the volatility of 𝑉; 

𝑍𝑡 and 𝑊𝑡 are independent Brownian motions. 
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By Ito’s formula, we have:  

𝑑 ln𝑉𝑡 =
1

𝑉𝑡
𝑑𝑉𝑡 −

1

2
×

1

𝑉𝑡 
2 (𝑑𝑉𝑡)

2  

           = (𝜇𝑡 −
𝛿2

2
)𝑑𝑡 + 𝛿𝑑𝑊𝑡.  

In our simulations we use the Euler discretization of the two processes: 

    𝑆𝑡+𝛥𝑡 = 𝑆𝑡 exp [(𝑟 −
𝜎2

2
)𝛥𝑡 + 𝜎𝑡(𝑍𝑡+Δ𝑡 − 𝑍𝑡)] 

𝑉𝑡+𝛥𝑡 = 𝑉𝑡 exp [(𝜇𝑡 −
𝛿2

2
) + 𝛿(𝑊𝑡+Δ𝑡 −𝑊𝑡)] 

Applying Monte Carlo simulation with stochastic volatility, Hull-White model 

assumes the following form of the drift term:  

𝜇𝑡 = 𝛼(σ − 𝜎𝑡) 

and therefore, the simple lognormal process for variance could be replaced by a 

mean-reverting form 

𝑑𝑉𝑡 = 𝛼(σ − 𝜎𝑡)𝑉𝑡𝑑𝑡 + 𝛿𝑉𝑡𝑑𝑊𝑡 

where  

𝛼 represents the speed of mean reversion; 

σ represents the long term volatility mean. 

Below we describe the simulation procedure suggested by Hull and White. Let 

{𝜀𝑡 | 𝑡 = 0, Δ𝑡, 2Δ𝑡, … } and {𝜖𝑡 | 𝑡 = 0, Δ𝑡, 2Δ𝑡, … } denote two vectors of i.i.d. standard 

normal random variables. 
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1. Variance at each point in time was generated by the following stochastic 

process:  

                  𝑉𝑡+𝛥𝑡 = 𝑉𝑡 exp((μt −
δ2

2
)Δt + δ𝜀𝑡√𝛥𝑡) + 𝛿𝜀𝑡√𝛥𝑡                            

2. Use the variance vector to generate the stock prices: 

                    𝑆𝑡+𝛥𝑡 = 𝑆𝑡 exp [(𝑟 −
𝑉𝑡

2
)𝛥𝑡 +√𝑉𝑡𝜖𝑡√𝛥𝑡]                          

The generated paths can be then used to price Asian options. 

 Using the same notation as in the Hull-White model, the Heston model can be 

written as: 

                                            𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑍𝑡 

                                 𝑑𝑉𝑡 = 𝛼(σ
2
− 𝑉𝑡)𝑑𝑡 + 𝛿𝜎𝑡𝑑𝑊𝑡 

                                 𝑑𝑍𝑡𝑑𝑊𝑡 = 𝜌𝑑𝑡   

where 𝜌 is the correlation between 𝑍𝑡 and 𝑊𝑡. 

Given two independent Brownian motions 𝑊(1) and 𝑊(2), it can be easily 

verified that for 𝑍 defined as 

𝑑𝑍 = 𝜌𝑑𝑊(1) +√1 − 𝜌2𝑑𝑊(2), 

the correlation between 𝑍 and 𝑊(1) is 𝜌. 

Note that the process of 𝑉𝑡 in Heston model follows the CIR model (Cox at al. 

1985). Thus the condition 

2𝛼σ
2
≥ 𝛿2 
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will ensure that 𝑉𝑡 remains positive. However, the simulation formula 

𝑉𝑡+𝛥𝑡 = 𝑉𝑡+𝛼(σ
2
− 𝑉𝑡)𝛥𝑡 + 𝛿√𝑉𝑡(𝑊𝑡+Δ𝑡 −𝑊𝑡) 

can still produce negative values in the cases of a large negative Gaussian increment 

(𝑊𝑡+Δ𝑡 −𝑊𝑡). The absolute value of 𝑉𝑡+Δ𝑡 will be used as proposed by Berkaoul, 

Bossy and Diop(2008). Therefore, to simulate price paths under the Heston model 

we will use the following procedure with two independent Brownian motions 𝑊𝑡 

and 𝑍𝑡:  

1. Variance at each discrete point is generated according to: 

𝑉𝑡+𝛥𝑡 = |𝑉𝑡+𝛼(σ
2
− 𝑉𝑡)𝛥𝑡 + 𝛿√𝑉𝑡(𝑊𝑡+Δ𝑡 −𝑊𝑡)|.                     (3) 

2. Then the stock prices at the same discrete time points are obtained using 

𝑆𝑡+𝛥𝑡 = 𝑆𝑡 exp [(𝑟 −
𝑉𝑡
2
)𝛥𝑡 +√𝑉𝑡 (𝜌(𝑊𝑡+Δ𝑡 −𝑊𝑡) + √1 − 𝜌

2(𝑍𝑡+Δ𝑡 − 𝑍𝑡))].      (4) 

2.3 Quasi-Monte Carlo Simulation 

Quasi-Monte Carlo simulation (Niederreiter, 1992) is based on a similar procedure 

as Monte Carlo simulation, but it uses sequences of quasi-random numbers that 

have a more uniform behavior. Similar to pseudo-random numbers, quasi-random 

numbers are generated algorithmically by computer except the latter have the 

property of being deterministically chosen based on equally distributed sequences in 

order to cover uniformly the unit hypercube. The improved convergence rate is 

almost as fast as 
1

N
. However, Niederreiter also pointed that the completely 
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deterministic procedure guarantees deterministic error bounds. There is no simple 

criterion to assess the accuracy of the estimates.  

Quasi-random sequences are also called sub-random sequences or low 

discrepancy sequences. The discrepancy of a point set  𝑃 = {𝑥𝑖}𝑖=1,�̅� ∈ [0,1)
𝑠 is 

defined as 

𝐷𝑁
(𝑠)(𝑃) = sup

B
|
𝐴(𝐵;𝑁)

𝑁
− 𝜆(𝐵)| 

where: 

 the supremum is taken over all sets of B of the form 

𝐵 = [0, 𝑡1) × …× [0, 𝑡𝑠), 0 ≤ 𝑡𝑗 ≤ 1, 𝑗 = 1,… , 𝑠; 

 𝜆(𝐵) represents the Lebesgue measure of 𝐵; 

𝐴(𝐵;𝑁) represents the number of 𝑥𝑖 , 𝑖 = 1,… ,𝑁, contained in 𝐵. 

Hence, 𝐵 is a s-dimensional hyper-rectangle, 𝜆(𝐵) is the length, area or volume of 𝐵, 

𝐴(𝐵;𝑁)

𝑁
 is the percentage of 𝑥𝑖 in 𝐵, and the discrepancy is the largest difference 

between 
𝐴(𝐵;𝑁)

𝑁
 and 𝜆(𝐵).  

A low-discrepancy sequence is a sequence of s-dimensional points that fill the 

sample area rather uniformly. Discrepancy of such a sequence is lower than straight 

pseudo-random sequences. It follows that a infinite sequence {𝑥𝑖} is uniformly 

distributed if and only if lim𝑁→∞ 𝐷𝑁
(𝑆)(𝑥1, 𝑥2, 𝑥3, … ) = 0. In other words, the 



 

` 12 

discrepancy can be considered as a quantitative measure of uniformity. Keifer (1961) 

showed that the discrepancy of a random uniform sequence of length 𝑁 is bounded 

below by (2𝑁−1 log log𝑁)
1

2. And it turns out, however, that deterministic sequences 

may have smaller discrepancy. A straight forward example can be {𝑥𝑖|𝑥𝑖 =
2𝑖−1

2𝑁
, 𝑖 =

1, … , 𝑁}, which was constructed using the midpoint rule. Niederreiter (1992) 

suggested that such a sequence can achieve the lowest possible discrepancy 
1

2𝑁
. For 

an 𝑠-dimensional sequence of length 𝑁, it is believed that the lower bound can 

achieve 
𝐵𝑠 log

𝑠𝑁

𝑁
, where 𝐵𝑠 > 0 depends only on 𝑠 for some low discrepancy 

sequences (Kuripers and Niederreiter 1974). 

The concept of discrepancy can also be used to determine the upper bounds 

on integration errors. The famous Koksma-Hlawka inequality (Koksma 1943, 

Hlawka 1961) is stated after the proper definition of the Hardy-Krause variation. 

Definition (Hardy-Krause Variation). For a function 𝑓 on [0,1)𝑠 with 𝑠 > 1,  

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑠) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑠), let us define the 𝑠-dimensional difference 

operator Δ(𝑠)as follows: 

Δ(𝑠)(𝑓; [𝑥, 𝑦]) = ∑ …∑(−1)∑ 𝑖𝑗
𝑠
𝑗=1 𝑓(𝑦1 + 𝑖1(𝑥1 − 𝑦1), … , 𝑦𝑠 + 𝑖𝑠(𝑥𝑠 − 𝑦𝑠))

1

𝑖𝑠=0

1

𝑖1=0

.  

Let 0 = 𝑢1
(𝑑) ≤ 𝑢2

(𝑑) ≤ ⋯ ≤ 𝑢𝑛𝑑
(𝑑) = 1, 𝑑 = 1,… , 𝑠 be a partition of [0,1], and let 𝑃 be the 

partition of [0,1]𝑠 which is composed as 
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𝑃 = {[𝑢𝑗1
(1), 𝑢𝑗1+1

(1) ] × …× [𝑢𝑗𝑠
(𝑠), 𝑢𝑗𝑠+1

(𝑠) ], for 𝑗𝑑 = 1,… , 𝑛𝑑  and 𝑑 = 1,… , 𝑠} . 

Then the variation of 𝑓 on [0,1)𝑠 in the sense of Vitali is defined as the supremum 

over all partitions 𝑃 of [0,1)𝑠 as follows: 

𝑉(𝑠)(𝑓; [0,1]𝑠) = sup
P
| ∑ Δ(𝑠)(𝑓; [𝑥, 𝑦])

[𝑥,𝑦]∈𝑃

|. 

Let 1 ≤ 𝑑 ≤ 𝑠, 1 ≤ 𝑗1, … , 𝑗𝑑 ≤ 𝑠 and 𝑉(𝑑)(𝑓; 𝑗1, … , 𝑗𝑑; [0,1]
𝑠) denote the vitali variation 

of the function 𝑓 restricted to the 𝑑-dimensional subspace (𝑢1, … , 𝑢𝑠) ∈ [0,1]
𝑠 such 

that 𝑢𝑘 = 1 for all 𝑘 ≠ 𝑗𝑖, … , 𝑗𝑑. Then the variation of 𝑓 on [0,1]𝑠 in the sense of Hardy 

and Krause anchored at 1 is given by 

𝑉(𝑓) = ∑ ∑ 𝑉(𝑑)(𝑓; 𝑗1, … , 𝑗𝑑; [0,1]
𝑠)

1≤𝑗1<⋯< 𝑗𝑑≤ 𝑠

𝑠

𝑑=1

. 

Theorem (Koksma-Hlawka Inequality). For an 𝑠-dimensional sequence 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑠) ∈ [0,1)
𝑠 for 𝑖 = 1,… ,𝑁 and any function 𝑓 of bounded variation in the 

sense of Hardy-Krause we have 

|
∑ 𝑓(𝑥𝑖)
𝑁
𝑖=1

𝑁
−∫ 𝑓(𝑢)𝑑𝑢

[0,1)𝑠
| ≤ 𝑉(𝑓)𝐷𝑁

(𝑠)(𝑥). 

 Note that the integration error bound given by Koksma-Hlawka inequality is 

separated into two parts: the smoothness of the function 𝑓 and the discrepancy of 

the deterministic nodes. Recall that the discrepancy for a set of 𝑁 random points and  

a sequence of 𝑁 low discrepancy points are Ο(𝑁−
1

2(log log𝑁)
1

2) and Ο(𝑁−1 log𝑠 𝑁) 
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respectively. Thus, for a fixed dimension 𝑠 and a sufficiently large 𝑁, the use of low 

discrepancy sequences would increase the efficiency. The advantages of quasi-

Monte Carlo simulation is that it results in faster convergence. Therefore, fewer 

points are needed to achieve the same level of accuracy. With a well-chosen 

sequence of points, the Quasi-Monte Carlo simulation gives a better estimate with 

shorter computational time and higher accuracy. 

2.4 Use of Low-discrepancy Sequences 

Low-discrepancy sequences cover the unit cube as “uniformly” as possible by 

reducing gaps and clustering of points (Paskov, 1998). For implementationa, there 

are several well-known multi-dimensional sequences, like Halton (1964), Faure 

(1982) and Sobol (1967) sequences. A comparison of the low-discrepancy sequences 

was presented by Galanti and Jung (1997). Their results suggest that all low-

discrepancy sequences can be successfully used for low dimensions. Although 

implementation of the Halton method is much easier, it's performance is typically 

dominated by the Faure and Sobol methods. For higher dimensions, Sobol 

sequences and generalized Faure (Tezuka, 1998) method would typically give fast 

convergence and reliability. As a motivation for dimension reduction, it is worth 

mentioning that typical low discrepancy sequences, such as Sobol and Halton 

sequences, have poor uniformity in their high dimensions, which may cause 
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simulation error. In addition, the rate at which the integration error diminishes 

depends on the dimension 𝑠. 

2.5 Brownian Bridge and Quasi-Monte Carlo Simulation 

The payoff function of an Asian option depends on the spot prices of the underlying 

over the whole time period. Section 2.2 provides the price path simulation formulas 

under some stochastic volatility models. Equation (3) and (4) show that the 

uncertainty of the paths depends on the two Brownian paths 𝑍 and 𝑊. Now we 

explain how low-discrepancy sequences can be used to simulate paths of a stochastic 

process. According to Koksma-Hlawka inequality, the multiplicative factor log𝑠 𝑁 in 

the discrepancy bound of low discrepancy sequence suggests that high dimensions 

would significantly affect the valuation efficiency. The basic idea of quasi-Monte 

Carlo simulation is to simply replace random points with low discrepancy points. 

Paskov and Traub (1995) used this idea to price a collaterized mortgage obligation. 

The problem used a 360-dimensional low-discrepancy sequence as they are using 

daily prices to evaluate a one year contract. The authors demonstrated that quasi-

Monte Carlo leads to more accurate results than standard methods. Paskov (1997) 

used the concept of effective dimension and argued that the efficiency of an 

integration method closely relates to the effective dimension of the problem. 

Effective dimension is defined using the concept of ANOVA decomposition 

of function variance (Caflisch, Morokoff and Owen, 1997). For any non-empty index 
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set 𝑢 ⊆ {1,2, … , 𝑠}, let 𝑢𝑐 and |𝑢| denote its complement and cardinality. Considering 

an 𝑠-dimensional sequence 𝑥, we denote by 𝑥𝑢 the |𝑢|-dimensional sequence 

containing the coordinates of 𝑥 with indices in 𝑢. For a square integrable function 

𝑓(𝑥) defined on [0,1]𝑠, the ANOVA decomposition of 𝑓(𝑥) is the sum of its ANOVA 

terms over all non-empty subsets of {1,2, … , 𝑠}: 

𝑓(𝑥) = ∑ 𝑓𝑢(𝑥)

𝑢⊆{1,2,…,𝑠}

 

where 

𝑓𝑢(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥𝑢𝑐
[0,1]𝑠−|𝑢|

−∑𝑓𝑣(𝑥)

𝑣⊂𝑢

 and 

𝑓∅(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
[0,1]𝑠

. 

Note that the ANOVA decomposition is orthogonal in that for 𝑢 ≠ 𝑣 

∫ 𝑓𝑢(𝑥)𝑓𝑣(𝑥)𝑑𝑥 = 0
[0,1]𝑠

. 

As a result, we have the decomposition for the variance of 𝑓(𝑥) as the sum of 

ANOVA terms over all non-empty subsets of {1,2, … , 𝑠}: 

𝜎2(𝑓) = ∑ 𝜎𝑢
2(𝑓)

𝑢⊆{1,2,…,𝑠}

 

where 

𝜎𝑢
2(𝑓) = ∫ 𝑓𝑢

2(𝑥)𝑑𝑥
[0,1]𝑠

 and 

𝜎∅
2(𝑓) = 0. 
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The effective dimension of 𝑓 in the superposition sense is defined as the smallest 

integer 𝑑𝑠, such that 

∑ 𝜎𝑢
2(𝑓) ≥ 𝑝𝜎2(𝑓)

|𝑢|≤𝑑𝑠

 

where 𝑝 ∈ (0,1) is the proportion, which normally close to 1. The effective 

dimension of 𝑓 in the truncation sense is the smallest integer 𝑑𝑡, such that 

∑ 𝜎𝑢
2(𝑓) ≥ 𝑝𝜎2(𝑓)

𝑢⊆{1,…,𝑑𝑡}

. 

The problem of how path generation methods affect the accuracy of quasi-Monte 

Carlo methods has been studied by using the concept of effective dimension (Wang 

and Tan 2012 and the references therein). Considering the ANOVA decomposition 

for right hand side of the Koksma-Hlawka inequality, the simulation error bound 

can be expressed as 

|
∑ 𝑓(𝑥𝑖)
𝑁
𝑖=1

𝑁
−∫ 𝑓(𝑢)𝑑𝑢

[0,1)𝑠
| ≤ 𝑉(𝑓)𝐷𝑁

(𝑠)(𝑥) 

                                                      ≤ ∑ 𝑉𝑢(𝑓)𝐷𝑁
(𝑠)(𝑃𝑥,𝑢)

𝑢⊆{1,…,𝑠}

 

where 𝑃𝑥,𝑢 is the projection of the sequence 𝑥 on [0,1]|𝑢|. Let 𝑑𝑠 and 𝑑𝑡 represent the 

effective dimension of 𝑓 in the sense of superposition and truncation respectively. 

We have 

|
∑ 𝑓(𝑥𝑖)
𝑁
𝑖=1

𝑁
−∫ 𝑓(𝑢)𝑑𝑢

[0,1)𝑠
| ≤ ∑ 𝑉𝑢(𝑓)𝐷𝑁

(𝑠)(𝑃𝑥,𝑢)
|𝑢|≤𝑑𝑠

+ ∑ 𝑉𝑢(𝑓)𝐷𝑁
(𝑠)(𝑃𝑥,𝑢)

|𝑢|>𝑑𝑠

  and 
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|
∑ 𝑓(𝑥𝑖)
𝑁
𝑖=1

𝑁
−∫ 𝑓(𝑢)𝑑𝑢

[0,1)𝑠
| ≤ ∑ 𝑉𝑢(𝑓)𝐷𝑁

(𝑠)(𝑃𝑥,𝑢)

𝑢⊆{1,…,𝑑𝑡}

+ ∑ 𝑉𝑢(𝑓)𝐷𝑁
(𝑠)(𝑃𝑥,𝑢)

𝑢⊆{𝑑𝑡+1,…,𝑠}

. 

If 𝑑𝑠 and 𝑑𝑡 are small, the terms ∑ 𝑉𝑢(𝑓)𝐷𝑁
(𝑠)(𝑃𝑥,𝑢)|𝑢|≤𝑑𝑠  and ∑ 𝑉𝑢(𝑓)𝐷𝑁

(𝑠)(𝑃𝑥,𝑢)𝑢⊆{1,…,𝑑𝑡}  

are much smaller for quasi-Monte Carlo methods than for crude Monte Carlo 

methods. The definition of an effective dimension implies that the terms 

∑ 𝑉𝑢(𝑓)𝐷𝑁
(𝑠)(𝑃𝑥,𝑢)|𝑢|>𝑑𝑠  and ∑ 𝑉𝑢(𝑓)𝐷𝑁

(𝑠)(𝑃𝑥,𝑢)𝑢⊆{𝑑𝑡+1,…,𝑠}  are small as the multiplicative 

factor 𝑉𝑢(𝑓) is small. Thus, quasi-Monte Carlo methods are expected to be more 

efficient than crude Monte Carlo methods. Note that the argument was made on 

error bounds. Therefore, small effective dimension is not a sufficient condition for 

the effectiveness of applying quasi-Monte Carlo methods. 

 Wang and Tan (2012) investigated the effect of several path generation 

methods on Asian option pricing. The path generation methods included in the 

investigation include brownian bridge (Caflisch and Moskovitz, 1995), principal 

component analysis (Acworth, Broadie, Glasserman, et al., 1996), linear 

transformation (Imai and Tan, 2006) and diagonal method (Morokoff, 1998). It is 

concluded that all these four methods results in significantly smaller effective 

dimensions (less than 10 while the nominal dimension is around 260 with p=0.99) 

for simple Asian options. The idea of dimension reduction in quasi-Monte Carlo 

simulation can be actualized using Brownian Bridge. Quasi-random sequences are 
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used first to determine some points on each path, then the remaining parts of each 

path are filled using points determined by pseudo random numbers.  

We denote 𝐵𝑎,𝑏 for a Brownian Bridge from 𝑎 to 𝑏 over its time interval [𝑡𝑖, 𝑡𝑗], 

which represents a Brownian motion 𝐵 on [𝑡𝑖 , 𝑡𝑗] with 𝐵𝑡𝑖 = 𝑎 and 𝐵𝑡𝑗 = 𝑏. Brownian 

Bridge Construction (BBC) and Brownian Bridge Discretization (BBD) are two 

methods of generating Brownian paths (Glasserman, 2003). 

Given the initial and terminal value, BBC is an algorithm that generates a 

discrete Brownian path 𝐵𝑎,𝑏 = (𝐵𝑡0 , … , 𝐵𝑡𝑛)  recursively. The procedure is as follows: 

1. Set 𝐵𝑡0 = 𝑎 and 𝐵𝑡𝑛 = 𝑏. 

2. Generate standard normal random numbers 𝑍𝑖~𝑁(0,1) for 𝑖 = 1,… , 𝑛 − 1. 

3. Calculate 𝐵𝑡𝑖+1 conditional on 𝐵𝑡𝑖 and 𝐵𝑡𝑛,  for 𝑖 = 0,… , 𝑛 − 2,  recursively 

using the Brownian Bridge formula: 

𝐵𝑡𝑖+1 =
𝑡𝑛−𝑡𝑖+1

𝑡𝑛−𝑡𝑖
𝐵𝑡𝑖 +

𝑡𝑖+1−𝑡𝑖

𝑡𝑛−𝑡𝑖
𝐵𝑡𝑛 +√

(𝑡𝑖+1−𝑡𝑖)(𝑡𝑛−𝑡𝑖+1)

𝑡𝑛−𝑡𝑖
𝑍𝑖+1.                 (5) 

BBD is another method that is based on Brownian Bridge formula. The 

difference between BBD and BBC is the order in which the points are filled. In BBC, 

it is clear that points are filled in one behind another to form the path. In BBD, 

middle points of existing points are filled at each time. This method generates a 

discrete Brownian path 𝐵𝑎,𝑏 = (𝐵𝑡0 , … , 𝐵𝑡𝑛) with 𝑛 equals a power of 2, and the idea 

is always to fill in the middle points first. The order of assigning the generated 

points to the path could be  
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1

2
𝑛,
1

4
𝑛,
3

4
𝑛,
1

8
𝑛,
3

8
𝑛,
5

8
𝑛,
7

8
𝑛,
1

16
𝑛,
3

16
𝑛,
5

16
𝑛,
7

16
𝑛,
9

16
𝑛, … 

The procedure is as follows: 

1. Set 𝐵𝑡0 = 𝑎 and 𝐵𝑡𝑛 = 𝑏. 

2. Generate standard normal random numbers 𝑍𝑖~𝑁(0,1) for 𝑖 = 1,… , 𝑛 − 1. 

3. Calculate 𝐵𝑡
𝑛×

1
2

 conditionally on 𝐵𝑡0 and 𝐵𝑡𝑛 using Equation (5). 

4. Calculate 𝐵𝑡𝑛
4

 conditionally on 𝐵𝑡0 and 𝐵𝑡𝑛
2

 and calculate 𝐵𝑡3𝑛
4

 conditionally 

on 𝐵𝑡𝑛
2

 and 𝐵𝑡𝑛, etc. until all 𝑛-1 spot values are calculated. 

Comparing with BBC, the first few spot values generated by BBD gives much more 

sense of what the path looks like.  Due to the poor uniformity of low discrepancy 

sequences in high dimensions, we want to use only 𝑑 quasi-random numbers to 

simulate a discrete Brownian path of length L. The 𝑑 quasi-random numbers would 

be more effectively capture the important dimensions while using BBD.  

For a consistent use in algorithms and implementation, a list of notations is 

provided below: 

 𝐿 represents the number of time steps for each path; 

 𝑑  represents the dimension of a low-discrepancy sequence; 

 𝐿𝐷  represents the length of the low-discrepancy sequences; 

 𝑀𝐶 represents the number of trajectories of each conditioned process; 

 𝑁 equals 𝐿𝐷 × 𝑀𝐶, represents the total number of paths being simulated; 
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 𝑇 represents the time at maturity. 

Note that 𝑑 is chosen to be a power of 2 and 𝐿 is chosen to be a multiple of 𝑑, so that 

each conditioned process has the same length.  

To generate Brownian paths, low discrepancy points are used to capture the 

important dimensions. Random points are then used to fill in the gaps. A detailed 

algorithm for generating N = LD × MC Brownian paths using quasi-Monte Carlo 

simulation is given below. In the remaining part of the thesis, BB-QMC refers to this 

algorithm.  

BB-QMC Algorithm 

Algorithm Input: d, L, LD,MC and T. 

Algorithm Output: A matrix, Path, with dimension (𝐿𝐷 ×𝑀𝐶, 𝐿 + 1). 

Algorithm: 

1. Generate a 𝑑-dimensional low-discrepancy sequence of length 𝐿𝐷. 

2. Apply the BBD method to calculate 𝐿𝐷 sets of 𝑑 spot values using the low-

discrepancy sequence. 

 For 𝑖 = 1,… , 𝐿𝐷 

a) Generate standard normal random numbers 𝑍( 𝑖, 𝑗) for 𝑗 =

1, … , 𝑑 using the d-dimensional low-discrepancy sequence from 

Step 1. 
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b) Set 𝐵( 𝑖, 1) = 0 and 𝐵(𝑖, 1 + 𝑑) = √𝑇𝑍(𝑖, 𝑑). 

c) Calculate 𝐵( 𝑖,
𝑑

2
+ 1) conditionally on  𝐵( 𝑖, 1) and 𝐵(𝑖, 1 + 𝑑) 

using 𝑍(𝑖,
𝑑

2
) and Equation (5). 

d) Calculate 𝐵( 𝑖,
𝑑

4
+ 1) conditionally on  𝐵( 𝑖, 1) and 𝐵 (𝑖,

𝑑

2
+ 1) 

using 𝑍(𝑖,
𝑑

4
); and calculate 𝐵( 𝑖,

3𝑑

4
+ 1) conditionally on  

𝐵 ( 𝑖,
𝑑

2
+ 1) and 𝐵(𝑖, 1 + 𝑑) using 𝑍(𝑖,

3𝑑

4
), etc. until all 𝑑 spot 

values are created. 

3. Apply BBC method to generate 𝑀𝐶 Brownian Bridges of length 
𝐿

𝑑
 

conditionally on each set of 𝑑 spot values. 

For 𝑖 = 0,… , 𝐿𝐷 − 1 

For 𝑘 = 0, … , 𝑑 − 1 

For 𝑗 = 1,… ,𝑀𝐶 

a) Set 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, 𝑘 ×
𝐿

𝑑
+ 1) = 𝐵(𝑖 + 1, 𝑘 + 1) and 𝑃𝑎𝑡ℎ (𝑖 ×

𝑀𝐶 + 𝑗, (𝑘 + 1) ×
𝐿

𝑑
+ 1) = 𝐵(𝑖 + 1, 𝑘 + 2). 

b) Generate ( 
𝐿

𝑑
− 1) standard normal random variables 𝑍(𝑙) for 

𝑙 = 1, … ,
𝐿

𝑑
− 1. 
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c) Apply Equation (5) to calculate 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, 𝑘 ×
𝐿

𝑑
+ 1 + 𝑙) 

conditionally on 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, 𝑘 ×
𝐿

𝑑
+ 𝑙) and 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 +

𝑗, (𝑘 + 1) ×
𝐿

𝑑
+ 1) for 𝑙 = 1,… ,

𝐿

𝑑
− 1. 
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Chapter 3 

BBI Quasi-Monte Carlo Method 

A high level literature review of variance reduction techniques for quasi-Monte 

Carlo simulation is provided in Kolkiewicz (2014). A new method of generating 

Brownian motion sample paths was developed for the purpose of increasing 

efficiency of simulation methods. The key idea of the new method rests on the 

intelligent use of the 𝑑-dimensional low-discrepancy sequence. This method is 

referred to as BBI in this thesis. The BBI method of generating Brownian motion 

paths provides an efficient simulation method to evaluate expectations of the form 

𝐸 [𝐺 (∫ 𝑔1(𝑡,𝑊(𝑡))𝑑𝑡
𝑇

0

, … ,∫ 𝑔𝑟(𝑡,𝑊(𝑡))𝑑𝑡
𝑇

0

,𝑊(·))] 

where 𝑔1, … , 𝑔𝑟 are given functions and 𝑊(·) is a path of a standard Brownian 

motion. In the case of 𝑟 = 1, Kolkiewicz (2014) proved that for a smooth integrand 

with certain assumptions, variance of the integrand using the BBI method is of 

smaller order than the variance of the BB method. 

 In one Brownian path, consider two consecutive Brownian Bridges, 𝐵𝑎,𝑏 from 

time step 𝑡𝑎 to 𝑡𝑏 and 𝐵𝑏,𝑐 from time step 𝑡𝑏 to 𝑡𝑐 constructed as in Step 3(c) of QMC 

in Appendix A. BBD method is applied using low discrepancy points. More 

precisely, to generate one Brownian path in a specific simulation problem, one point 

in the first dimension of a low-discrepancy sequence is used to obtain the value 
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𝐵𝑡𝑐
𝑏,𝑐 = 𝑐, and one point in the second dimension of the low-discrepancy sequence is 

used to calculate 𝐵𝑡𝑏
𝑎,𝑏 = 𝑏 conditionally on 𝐵𝑡𝑐

𝑏,𝑐 = 𝑐. Several paths of the two 

Brownian bridges are then constructed conditionally on these two terminal values 

and initial value 𝐵𝑡𝑎
𝑎,𝑏 = 𝑎. Putting the two Brownian Bridges, 𝐵𝑎,𝑏 and 𝐵𝑏,𝑐 together, 

𝐵𝑎,𝑐 is a Browian Path from time steps 𝑡𝑎 to 𝑡𝑐 with 𝐵𝑡𝑎
𝑎,𝑐 = 𝑎 and 𝐵𝑡𝑐

𝑎,𝑐 = 𝑐. 

 In the BBI method, after 𝐵𝑡𝑐
𝑎,𝑐 = 𝑐 is calculated, it is suggested that we 

construct paths from time steps 𝑡𝑎 to 𝑡𝑐 conditionally on the integral of the path. 

Therefore, two issues have to be addressed. The first problem is how to determine 

the integral of a path so that one can construct that path conditionally on the 

determined integral? The second issue is how to generate a path while given a pre-

determined integral of the path? These two problems are solved in the following 

two sections. The algorithm of the BBI simulation method is given in Appendix B. 

3.1 Integral of Brownian Bridges 

Let 𝑊𝑡 denote a standard Brownian motion process for 𝑡 ∈ [0,T] with 𝑊0 = 0, which, 

in practice, can be simulated over any finite set of times in practice. For 0 < 𝑡1 < 𝑡2 <

⋯ < 𝑡𝑛, the increments 𝑊𝑡1 −𝑊0,𝑊𝑡2 −𝑊𝑡1 , … ,𝑊𝑡𝑛 −𝑊𝑡𝑛−1are independent and 

normally distributed with expectation 0. Thus, the expectation 𝐸[𝑊𝑡] = 0, and the 

covariance, 𝐶𝑜𝑣(𝑊𝑠,𝑊𝑡), can be calculated as follows by letting 0 ≤ 𝑠 ≤ 𝑡 

𝐶𝑜𝑣(𝑊𝑠,𝑊𝑡) = 𝐸[𝑊𝑠𝑊𝑡] = 𝑠.                             
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Note that, 𝐸[𝑊𝑠(𝑊𝑡 −𝑊𝑠)] = 0 since 𝑊𝑠 and (𝑊𝑡 −𝑊𝑠) are independent normal 

random variables with mean 0. Hence, we conclude that for 𝑠, 𝑡 ∈ [0, 𝑇], 

𝐶𝑜𝑣(𝑊𝑠,𝑊𝑡) = 𝑠 ∧ 𝑡 

where 𝑠 ∧ 𝑡 denotes the smaller of 𝑠 and 𝑡. 

A standard Brownian Bridge from 0 to 0 on time interval [0, 𝑇] can be 

represented as 

𝐵𝑡
0,0 = 𝑊𝑡 −

𝑡

𝑇
𝑊𝑇 , 𝑡 ∈ [0, 𝑇]. 

The expectation and covariance can be calculated as follows: 

𝐸[𝐵𝑡
0,0] = 𝐸 [𝑊𝑡 −

𝑡

𝑇
𝑊𝑇] 

               = 𝐸[𝑊𝑡] −
𝑡

𝑇
𝐸[𝑊𝑇] 

               = 0 

for 𝑡 ∈ [0, 𝑇], and for 𝑠, 𝑡 ∈ [0, 𝑇] 

𝐶𝑜𝑣(𝐵𝑠
0,0, 𝐵𝑡

0,0) 

= 𝐶𝑜𝑣(𝑊𝑠 −
𝑠

𝑇
𝑊𝑇 ,𝑊𝑡 −

𝑡

𝑇
𝑊𝑇) 

= 𝐶𝑜𝑣(𝑊𝑠,𝑊𝑡) −
𝑡

𝑇
𝐶𝑜𝑣(𝑊𝑠,𝑊𝑇) −

𝑠

𝑇
𝐶𝑜𝑣(𝑊𝑡,𝑊𝑇) +

𝑠𝑡

𝑇2
𝐶𝑣𝑜(𝑊𝑇 ,𝑊𝑇) 

= (𝑠 ∧ 𝑡) −
𝑡

𝑇
(𝑠 ∧ 𝑇) −

𝑠

𝑇
(𝑡 ∧ 𝑇) +

𝑠𝑡

𝑇2
(𝑇 ∧ 𝑇) 

= 𝑠 ∧ 𝑡 −
𝑠𝑡

𝑇
. 

A Brownian Bridge from 𝑎 to 𝑏 on time interval [0,T] can be represented as 
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𝐵𝑡
𝑎,𝑏 = 𝑎 + (𝑏 − 𝑎)

𝑡

𝑇
+ 𝐵𝑡

0,0, 𝑡 ∈ [0, 𝑇] 

where 𝐵𝑡
0,0 is a standard Brownian Bridge. For 𝑠, 𝑡 ∈ [0, 𝑇], the expectation and 

covariance of 𝐵𝑡
𝑎,𝑏 are computed as follows: 

𝐸[𝐵𝑡
𝑎,𝑏] = 𝐸 [𝑎 + (𝑏 − 𝑎)

𝑡

𝑇
+ 𝐵𝑡

0,0] 

               = 𝑎 + (𝑏 − 𝑎)
𝑡

𝑇
− 𝐸[𝐵𝑡

0,0] 

               = 𝑎 + (𝑏 − 𝑎)
𝑡

𝑇
 

and 

𝐶𝑜𝑣(𝐵𝑠
𝑎,𝑏 , 𝐵𝑡

𝑎,𝑏) 

= 𝐶𝑜𝑣(𝐵𝑠
𝑎,𝑏 − 𝐸[𝐵𝑠

𝑎,𝑏], 𝐵𝑡
𝑎,𝑏 − 𝐸[𝐵𝑡

𝑎,𝑏]) 

= 𝐶𝑜𝑣(𝐵𝑠
0,0, 𝐵𝑡

0,0) 

= 𝑠 ∧ 𝑡 −
𝑠𝑡

𝑇
. 

Note that for 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < 𝑇,  𝐵𝑡1
𝑎,𝑏 , 𝐵𝑡2

𝑎,𝑏, … , 𝐵𝑡𝑛
𝑎,𝑏 are jointly normal since 

𝑊𝑡1 ,𝑊𝑡2 , … ,𝑊𝑡𝑛 ,𝑊𝑇 are jointly normal. 

 The integral 𝐴𝑎,𝑏 of Brownian Bridge 𝐵𝑡
𝑎,𝑏 over the time interval [0, 𝑇] is 

defined to be 

𝐴𝑎,𝑏 = ∫ 𝐵𝑡
𝑎,𝑏𝑑𝑡

𝑇

0
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        = ∫ 𝑎 + (𝑏 − 𝑎)
𝑡

𝑇
𝑑𝑡

𝑇

0

+∫ 𝐵𝑡
0,0𝑑𝑡

𝑇

0

 

        =
(𝑎 + 𝑏)𝑇

2
+ ∫ 𝐵𝑡

0,0𝑑𝑡
𝑇

0

. 

Since 𝐵𝑡1
𝑎,𝑏 , 𝐵𝑡2

𝑎,𝑏 , … , 𝐵𝑡𝑛
𝑎,𝑏 are jointly normally distributed for 𝑡𝑎 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 <

𝑡𝑏, it can be shown that 𝐴𝑡𝑎,𝑡𝑏
𝑎,𝑏  is normally distributed with mean 𝐸[𝐴𝑎,𝑏] and variance 

𝑉𝑎𝑟[𝐴𝑎,𝑏] of the following forms: 

𝐸[𝐴𝑎,𝑏] = 𝑎 +
(𝑏 − 𝑎)𝑇

2
+ 𝐸 [∫ 𝐵𝑡

0,0𝑑𝑡
𝑇

0

] 

                  = 𝑎 +
(𝑏 − 𝑎)𝑇

2
, 

and 

𝑉𝑎𝑟[𝐴𝑎,𝑏] = 𝐸[𝐴𝑎,𝑏 − 𝐸[𝐴𝑎,𝑏])2] 

                   = 𝐸 [(∫ 𝐵𝑡
0,0𝑑𝑡

𝑇

0

)(∫ 𝐵𝑠
0,0𝑑𝑠

𝑇

0

)] 

                   = ∫ ∫ 𝐸[𝐵𝑠
0,0𝐵𝑡

0,0]𝑑𝑠𝑑𝑡
𝑇

0

𝑇

0

 

                   = ∫ ∫ 𝐶𝑜𝑣(𝐵𝑠
0,0, 𝐵𝑡

0,0)𝑑𝑠𝑑𝑡
𝑇

0

𝑇

0

 

                   = ∫ ∫ 𝑠 ∧ 𝑡 𝑑𝑠𝑑𝑡
𝑇

0

𝑇

0

−∫ ∫
𝑠𝑡

𝑇
 𝑑𝑠𝑑𝑡

𝑇

0

𝑇

0

 

                   =
𝑇3

3
−
𝑇3

4
 =

𝑇3

12
. 
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Therefore, the integral of a Brownian Bridge, 𝐴𝑎,𝑏 can be determined, in simulation, 

using the representation 

𝐴𝑎,𝑏 = 𝜇𝑎,𝑏 + 𝜎𝑇𝑧                                                  (6) 

with 

𝜇𝑎,𝑏 =
(𝑎 + 𝑏)𝑇

2
                                                         (7) 

and 

𝜎𝑇 = √
𝑇3

12
                                                              (8) 

where 

𝑎 represents the initial value of the path, 

 𝑏  represents the terminal value of the path, 

 𝑇  represents the time length of the path, 

 𝑧 represents a standard normal random variable. 

3.2 Brownian Path Conditional on Integral 

This section starts with an important theorem for Gaussian processes presented in 

Kolkiewicz (2014). A specific version for a Brownian Bridge is given below followed 

by a proof. 
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Theorem. Let 𝐵𝑡
𝑎,𝑏 , 𝑡 ∈ [0, 𝑇] be a Brownian Bridge from 𝑎 to 𝑏. Then, the law of the process 

𝑍𝑡
𝑎,𝑏 = 𝐵𝑡

𝑎,𝑏 −
6𝑡(𝑇 − 𝑡)

𝑇3
[∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0

− 𝛼𝑎,𝑏] , 𝑡 ∈ [0, 𝑇] 

has the same law as the process 𝐵𝑡
𝑎,𝑏 , 𝑡 ∈ [0, 𝑇] given that ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0
= 𝛼𝑎,𝑏. 

Proof. Looking at the covariance between the process 𝑍𝑡
𝑎,𝑏 and ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0
. We have 

𝐶𝑜𝑣 (𝑍𝑡
𝑎,𝑏 , ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (𝐵𝑡
𝑎,𝑏 −

6𝑡(𝑇 − 𝑡)

𝑇3
∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0

+
6𝑡(𝑇 − 𝑡)

𝑇3
𝛼𝑎,𝑏 , ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (𝐵𝑡
𝑎,𝑏, ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0

) −
6𝑡(𝑇 − 𝑡)

𝑇3
𝐶𝑜𝑣 (∫ 𝐵𝑡

𝑎,𝑏𝑑𝑡
𝑇

0

, ∫ 𝐵𝑠
𝑎,𝑏𝑑𝑠

𝑇

0

)

+ 𝐶𝑜𝑣 (
6𝑡(𝑇 − 𝑡)

𝑇3
𝛼𝑎,𝑏 , ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0

) 

= 𝐸 [(𝐵𝑡
𝑎,𝑏 − 𝐸[𝐵𝑡

𝑎,𝑏]) (∫ 𝐵𝑠
𝑎,𝑏𝑑𝑠

𝑇

0

− 𝐸 [∫ 𝐵𝑠
𝑎,𝑏𝑑𝑠

𝑇

0

])]

−
6𝑡(𝑇 − 𝑡)

𝑇3
𝐸 [(∫ 𝐵𝑡

𝑎,𝑏𝑑𝑡
𝑇

0

− 𝐸 [∫ 𝐵𝑡
𝑎,𝑏𝑑𝑡

𝑇

0

]) (∫ 𝐵𝑠
𝑎,𝑏𝑑𝑠

𝑇

0

− 𝐸 [∫ 𝐵𝑠
𝑎,𝑏𝑑𝑠

𝑇

0

])]

+ 0 

= 𝐸 [𝐵𝑡
0,0 (∫ 𝐵𝑠

0,0𝑑𝑠
𝑇

0

)] −
6𝑡(𝑇 − 𝑡)

𝑇3
𝐸 [(∫ 𝐵𝑡

0,0𝑑𝑡
𝑇

0

)(∫ 𝐵𝑠
0,0𝑑𝑠

𝑇

0

)] 

= ∫ 𝐸[𝐵𝑠
0,0𝐵𝑡

0,0]𝑑𝑠
𝑇

0

−
6𝑡(𝑇 − 𝑡)

𝑇3
×
𝑇3

12
 

= ∫ 𝑠 ∧ 𝑡 𝑑𝑠
𝑇

0

−∫
𝑠𝑡

𝑇
 𝑑𝑠

𝑇

0

−
𝑡(𝑇 − 𝑡)

2
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= ∫ 𝑠 𝑑𝑠
𝑡

0

+∫ 𝑡 𝑑𝑠
𝑇

𝑡

−
𝑡𝑇

2
−
𝑡(𝑇 − 𝑡)

2
 

= 0. 

Hence, their independence implies that, for any fixed 𝛼𝑎,𝑏 , the law of the process Zt
a,b 

has the same law as the process Bt
a,b, t ∈ [0, T] given ∫ Bs

a,bds
T

0
= αa,b. □ 

 In simulation, a standard Brownian Bridge, 𝐵𝑡
0,0, will be constructed to 

generate the Brownian Bridge, 𝐵𝑡
𝑎,𝑏, conditionally on  ∫ 𝐵𝑠

𝑎,𝑏𝑑𝑠
𝑇

0
= 𝛼𝑎,𝑏 using the law 

of the process 

𝐵𝑡
𝑎,𝑏 = 𝑎 + (𝑏 − 𝑎)

𝑡

𝑇
+ 𝐵𝑡

0,0 −
6𝑡(𝑇 − 𝑡)

𝑇3
[
(𝑎 + 𝑏)𝑇

2
+ ∫ 𝐵𝑠

0,0𝑑𝑠
𝑇

0

− 𝛼𝑎,𝑏] , 𝑡 ∈ [0, 𝑇]    (9) 

where 𝛼𝑎,𝑏 represents the conditioning integral of the path. 

 As introduced at the beginning of this chapter, the BBI quasi-Monte Carlo 

method uses the same number of conditioning variables as the BB-QMC method. 

The implementation results by Kolkiewicz (2014) indicate a much better 

performance, and it is believed that the proposed set of conditioning variables 

would capture a significantly larger amount of variability than that of the BB-QMC 

method when the dimension increases.  

 An algorithm for generating Brownian paths using BBI is given below. In the 

remaining part of the thesis, BBI-QMC refers to this algorithm. There is a new input 

parameter for the simulation algorithm, denotes 𝑑𝑖𝑚, which represents the number 
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of independent stochastic processes in the simulation. Therefore, the results can be 

used to simulate price paths under stochastic interest rate and/or stochastic 

volatility models, prices of multiple correlated assets, etc.  

BBI-QMC Algorithm 

Algorithm Input:  

 𝑑𝑖𝑚 represents the number of independent stochastic processes; 

 𝑑  represents the dimension of the simulation problem for each path; 

 𝐿 represents the number of the total time steps for each path; 

 𝐿𝐷  represents the length of the low-discrepancy sequence; 

 𝑀𝐶 represents the number of trajectories of each conditioned process; 

 T represents the time at maturity. 

Algorithm Output: 

 A matrix, 𝑃𝑎𝑡ℎ𝑠, with dimension (𝐿𝐷 × 𝑀𝐶, 𝐿 + 1, 𝑑𝑖𝑚). 

Algorithm: 

1. Generate a (𝑑 × 𝑑𝑖𝑚)-dimensional low-discrepancy sequence of length 𝐿𝐷. 

2. Apply the BBD method to calculate 𝐿𝐷 sets of 
𝑑

2
 spot values using first half 

of the low-discrepancy sequence. 

 For 𝑖 = 1,… , 𝐿𝐷 

 For 𝑧 = 1, … , 𝑑𝑖𝑚 
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a) Generate standard normal random numbers 𝑍( 𝑖, 𝑗) for 𝑗 =

1, … , (𝑑 × 𝑑𝑖𝑚) using the (𝑑 × 𝑑𝑖𝑚)-dimensional low-

discrepancy sequence generated in Step 1. 

b) Set 𝐵( 𝑖, 1, 𝑧) = 0 and 𝐵 (𝑖, 1 +
𝑑

2
, 𝑧) = √𝑇𝑍 (𝑖,

𝑑

2
+ 𝑑(𝑧 − 1)). 

c) Calculate 𝐵 ( 𝑖,
𝑑

4
+ 1, 𝑧) conditionally on  𝐵( 𝑖, 1, 𝑧) and 𝐵 (𝑖, 1 +

 
𝑑

2
, 𝑧) using 𝑍 (𝑖,

𝑑

4
+ 𝑑(𝑧 − 1)) and Equation (5). 

d) Calculate 𝐵 ( 𝑖,
𝑑

8
+ 1, 𝑧) conditionally on  𝐵(𝑖, 1) and 𝐵 (𝑖,

𝑑

4
+

 1, 𝑧) using 𝑍 (𝑖,
𝑑

8
+ 𝑑(𝑧 − 1)); and calculate 𝐵 ( 𝑖,

3𝑑

8
+ 1, 𝑧) 

conditionally on  𝐵 ( 𝑖,
𝑑

4
+ 1, 𝑧) and 𝐵 (𝑖, 1 +

𝑑

2
, 𝑧) using 𝑍 (𝑖,

3𝑑

8
+

+𝑑(𝑧 − 1)), etc. until all 
𝑑

2
 spot values are created for each path. 

3. Compute the conditioning integrals using the second half of the low-

discrepancy sequence. 

For 𝑖 = 1,… , 𝐿𝐷 

For 𝑧 = 1, … , 𝑑𝑖𝑚 

For 𝑗 = 1,… ,
𝑑

2
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a) Calculate 𝜇(𝑖, 𝑗, 𝑧) and 𝜎(𝑖, 𝑗, 𝑧) using Equation (7) and Equation 

(8), with initial value 𝐵(𝑖, 𝑗, 𝑧), terminal value 𝐵(𝑖, 𝑗 + 1, 𝑧) and 

time length 
2𝑇

𝑑
. 

b) Calculate 𝐴(𝑖, 𝑗, 𝑧) using Equation (6), 𝑍 (𝑖,
𝑑

2
+ 𝑗 + 𝑑(𝑧 − 1)) and 

𝜇(𝑖, 𝑗, 𝑧) and 𝜎(𝑖, 𝑗, 𝑧) determined in Step 3(a). 

4. Apply the BBC method to generate MC paths with length 
2𝐿

𝑑
 conditionally 

on each set of 
𝑑

2
 spot values and 

𝑑

2
 integrals. 

For 𝑖 = 0,… , 𝐿𝐷 − 1 

For 𝑘 = 0, … ,
𝑑

2
− 1 

For 𝑗 = 1,… ,𝑀𝐶 

For 𝑧 = 1, … , 𝑑𝑖𝑚 

a) Set 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, 𝑘 ×
2𝐿

𝑑
+ 1, 𝑧) = 𝐵(𝑖 + 1, 𝑘 + 1, 𝑧) and 

𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, (𝑘 + 1) ×
2𝐿

𝑑
+ 1, 𝑧) = 𝐵(𝑖 + 1, 𝑘 + 2, 𝑧). 

b) Generate ( 
2𝐿

𝑑
− 1) standard normal random variables 𝑍(𝑙) for 

𝑙 = 1, … ,
2𝐿

𝑑
− 1. 
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c) Apply Equation (9) to calculate 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, 𝑘 ×
2𝐿

𝑑
+ 1 +

𝑙, 𝑧) using initial value equals 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, 𝑘 ×
2𝐿

𝑑
+ 𝑙), 

terminal value equals 𝑃𝑎𝑡ℎ (𝑖 × 𝑀𝐶 + 𝑗, (𝑘 + 1) ×
2𝐿

𝑑
+ 1), time 

length equals 
2𝑇

𝑑
 and conditioning integral equals 𝐴(𝑖 + 1, 𝑘 +

1, 𝑧) for 𝑙 = 1,… ,
2𝐿

𝑑
− 1. 
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Chapter 4 

An Application of the  BBI Quasi-Monte Carlo Method  

to Asian Option 

Here we discuss a Matlab implementation of the algorithm for pricing Asian options 

under the Heston model. The algorithm is based on the BBI-QMC method presented 

in the previous chapter. We discuss the performance of Matlab's quasi-random 

sequence generators in Section 4.1. Section 4.2 compares Moro's normal inverse 

algorithm with Matlab's built-in function "norminv()". A simple example of 

Brownian Bridges generated by BBI is given in Section 4.3. Section 4.4 gives 

parameter settings of the implementation. 

4.1 Low Discrepancy Sequences 

The first step in our simulation algorithm includes the generation of a multi-

dimensional random standard uniform sequence. The function “rand()” in Matlab is 

a pseudo random number generator, so that the resulting sequence of numbers 

looks random and uniformly distributed on [0,1]. Figure 1 plots a sample output of a 

2-dimensional pseudo-random standard uniform sequence of length 1000.  
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Figure 1: A 2-Dimensional Pseudo-Random Uniform Sequence of Length 1000 

There are two quasi-random sequences available in Matlab built-in library1, 

Halton sequences (Halton, 1960) and Sobol sequences (Sobol, 1976). The two 

sequences are introduced and tested in this section before the actual implementation.  

The Van der Corput sequence is the first one dimensional low discrepancy 

sequence. For an integer 𝑝 > 0, integer 𝑛 > 0 can be represent uniquely as 

𝑛 = ∑ 𝑎𝑖(𝑛)𝑝
𝑖

⌊log𝑝𝑛⌋

𝑖=0

. 

The 𝑛-th number of the Van der Corput sequence in base 𝑝 can be represented as 

                                                      
1
 Please refer to the following link for more details of function settings: 

"http://www.mathworks.com/help/stats/quasi-random-numbers.html". 
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𝑉𝐶𝑝(𝑛) = ∑
𝑎𝑖(𝑛)

𝑝𝑖+1

⌊log𝑝𝑛⌋

𝑖=0

 

where ⌊𝑥⌋ represents the largest integer less than or equal to 𝑥. 

The Halton sequence generalizes the Van der Corput sequence to higher dimensions. 

Let the ordered set {𝑝1, 𝑝2, … } be the set of all prime numbers in increasing order(e.g. 

𝑝1 = 2, 𝑝3 = 5). An 𝑠-dimensional Halton sequence with length 𝑛 can be represented 

as follows: 

[
 
 
 
 
 (𝑉𝐶𝑝1(1), 𝑉𝐶𝑝1(2),… , 𝑉𝐶𝑝1(𝑛))

(𝑉𝐶𝑝2(1), 𝑉𝐶𝑝2(2),… , 𝑉𝐶𝑝2(𝑛))

⋮

(𝑉𝐶𝑝𝑠(1), 𝑉𝐶𝑝𝑠(2),… , 𝑉𝐶𝑝𝑠(𝑛))]
 
 
 
 
 

. 

An 𝑠-dimensional Sobol sequence is generated from an 𝑠-dimensional binary 

fractions, called direction numbers. The Sobol sequence is not uniquely defined until 

all of the direction numbers are defined. Antonov and Saleev (1997) proposed an 

efficient implementation for generation of Sobol sequence. Consider the primitive 

polynomial in dimension 𝑖 over the field 𝐹2 with elements {0,1} as 

𝑃(𝑖)(𝑥) = 𝑥𝑞 + 𝑝1𝑥
𝑞−1 +⋯+ 𝑝𝑞−1𝑥 + 1. 

The direction numbers in dimension 𝑖 are generated as 

(𝑣(𝑖)(1), 𝑣(𝑖)(2),… ) 

with the recurrence relation 
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𝑣(𝑖)(𝑘) = 𝑝1𝑣
(𝑖)(𝑘 − 1) ⊕ 𝑝2𝑣

(𝑖)(𝑘 − 2) ⊕ …⊕ 𝑝𝑞−1𝑣
(𝑖)(𝑘 − 𝑞 + 1)⊕ 𝑣(𝑖)(𝑘 − 𝑞)

⊕ (
𝑣(𝑖)(𝑘 − 𝑞)

2𝑞
) , 𝑖 > 𝑞 

where ⊕ denotes the exclusive-or operation. The initial numbers are 

𝑣𝑗 =
𝑏𝑗

2𝑗
, 𝑗 = 1,… , 𝑞 

with random odd integers 0 < 𝑏𝑗 < 2𝑗 . Recall the unique representation of 

integer 𝑛 > 0 as 

𝑛 = ∑ 𝑎𝑖(𝑛)2
𝑖

⌊log2𝑛⌋

𝑖=0

. 

The 𝑛-th number of the Sobol sequence 𝑥(𝑖)(𝑛) in dimension 𝑖 is generated as 

𝑥(𝑖)(𝑛) = 𝑎1𝑣
(𝑖)(1)⊕ 𝑎2𝑣

(𝑖)(2) ⊕ …⊕ 𝑎log2 𝑛𝑣
(𝑖)(log2 𝑛). 

The 𝑠-dimensional Sobol sequence with length 𝑛 can be represented as follows: 

[
 
 
 
 
 (𝑥

(1)(1), 𝑥(1)(2), … , 𝑥(1)(𝑛))

(𝑥(2)(1), 𝑥(2)(2), … , 𝑥(2)(𝑛))

⋮

(𝑥(𝑠)(1), 𝑥(𝑠)(2),… , 𝑥(𝑠)(𝑛))]
 
 
 
 
 

. 

Figure 2 gives the plot of a 2-dimensional Halton sequence of length 1000, 

and Figure 3 shows the plot of a Sobol sequence. The points on both Figure 2 and 

Figure 3 look more evenly distributed than the points on Figure 1, which confirm 

theoretical properties of Sobol and Halton sequences.  
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Figure 2: A 2-Dimensional Halton Sequence of Length 1000 

 

Figure 3: A 2-Dimensional Sobol Sequence of Length 1000 
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Each dimension of a Halton sequence is generated using a different prime 

number 𝑝. Press (1992) argued that every time the length 𝑛 of Halton sequence 

increases by one, 𝑛's reversed fraction becomes a factor of 𝑝 finer-meshed. As a 

result, the generation process fills in all of the points on a sequence of finer and finer 

Cartesian grids. On the other hand, each dimension of Sobol sequence is generated 

using a different primitive polynomial. Press (1992) list 150 primitive polynomials 

which allow the construction of 150-dimensional Sobol sequences. A simulation for 

an underlying asset price under stochastic volatility will need a quasi-random 

sequence of dimension 16 using BBI-QMC method, considering an 8-dimensional 

sequence for each stochastic process. As introduced in Section 2.4, Galanti and Jung 

(1997) claimed that Sobol sequences outperform Halton sequences in high 

dimensions (greater than 20). 

For comparison of Halton and Sobol sequences in Matlab implementation, 

Figure 4 and Figure 5 give an example of 16-dimensional Halton and Sobol 

sequences of length 1000. Each graph contains 256 plots. The 16 bar charts on the 

diagonal show the distribution of numbers in each dimension. There are 120 small 

graphs on both the left side and the right side of the diagonal. Each small graph 

plots one pair from the 16 dimensions like what have done in Figure 1 to 3. For a 

better performance, both the two 16-dimensional quasi-random sequences are 
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already scrambled using the Matlab "scramble()" function. For more details, please 

refer to ' http://www.mathworks.com/help/stats/qrandset.scramble.html '. 

 

Figure 4: Overview of a 𝟏𝟔-Dimensional Holton Sequence of length 1000 

 

Figure 5: Overview of a 𝟏𝟔-Dimensional Sobol Sequence of length 1000 
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 The graphs suggest that Sobol sequence performs better when the dimension 

is a bit higher, since some unsatisfactory small graphs can be found in Figure 4 

including the highlighted graph at row 16 column 4. Figure 6 shows a clear version 

of the highlighted graph. The distribution bar charts of the Holton sequence at 

dimension 4 and dimension 16 are given as well in Figure 7 and Figure 8. From 

Figure 7 and Figure 8, we can see that the values at both the 4th and 16th dimensions 

are evenly distributed. Therefore, the gaps in Figure 6 indicate that the values in  4th 

and 16th dimensions are less independent. 

 

Figure 6: Dimensions 𝟒 × 𝟏𝟔  of the sample Holton sequence 
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Figure 7: Value Distribution of the Sample Holton sequence, Dimension 4 

 

Figure 8: Value Distribution of the Sample Holton sequence, Dimension 16 
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For implementation efficiency, Holton sequence is used for dimension less than 10, 

and Sobol sequence is selected for dimension higher than 10. 

4.2  Probit Function 

The cumulative distribution function of the standard normal distribution is: 

Φ(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2 𝑑𝑡.
𝑥

−∞

 

In the simulation, we let Φ(𝑥) to be uniformly distributed on [0,1]. Therefore, for 

each value 𝑢 from a low discrepancy sequence, there is a corresponding 𝑥 = Φ−1(𝑢) 

sample from the standard normal distribution, where the probit function Φ−1 is the 

inverse of the cumulative distribution function Φ. Since the probit function is not 

available in closed form, numerical algorithms are widely available in software such 

as Matlab.  

 The best known method of numerically implementing the probit function is 

by using the Box Muller algorithm. Galanti and Jung (1997) suggested that the 

famous Box Muller algorithm (Press at al. 1992) damages the low discrepancy 

properties of the sequences, and the traditional Beasley-Springer (1977) algorithm 

has poor performance for the tails of the normal distribution. We implemented 

Moro's (1995) algorithm which uses Beasley-Springer algorithm for the central part 

of the normal distribution, and a truncated Chebyshev series to model the tails of the 

distribution. Moro's algorithm for implementation are given as follows. 
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Moro's Normal Inverse Algorithm 

Algorithm Input: 𝑥 ∈ [0,1]. 

Algorithm Output: 𝛷−1(𝑥) ∈ (−∞,+∞). 

Algorithm: 

1. The central part of the distribution is when 𝑥 ∈ [0.08,0.92]. Beasley and 

Springer algorithm is applied to this region using formula: 

𝛷−1(𝑥) =
∑ 𝑎𝑛 |𝑥 −

1
2|
2𝑛+1

3
𝑛=0

1 + ∑ 𝑏𝑛 |𝑥 −
1
2|
2𝑛

3
𝑛=0

. 

2. The tail part of the distribution is when 𝑥 ∈ [0,0.08) ∪ (0.92,1]. A 

truncated Chebyshev series is used to model this region using formula: 

𝛷−1(𝑥) =

{
 
 

 
 ∑𝑐𝑛𝑇𝑛(𝑥)

8

𝑛=0

     𝑥 > 0.92

−∑𝑐𝑛𝑇𝑛(1 − 𝑥)

8

𝑛=0

     𝑥 < 0.08

 

where 

𝑇𝑛(𝑥) = [ln(− ln(1 − 𝑥))]
𝑛. 

The parameters 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 are given below.  

n 𝑎𝑛 𝑏𝑛 𝑐𝑛 

0 2.50662823884 -8.47351093090 0.3374754822726147 

1 -18.61500062529 23.08336743743 0.9761690190917186 

2 41.39119773534 -21.06224101826 0.1607979714918209 
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3 -25.44106049637 3.13082909833 0.0276438810333863 

4 N/A N/A 0.0038405729373609 

5 N/A N/A 0.0003951896511919 

6 N/A N/A 0.0000321767881768 

7 N/A N/A 0.0000002888167364 

8 N/A N/A 0.0000003960315187 

The Matlab code for Moro's algorithm is provided in Appendix C. Moro (1995) 

claims a maximum absolute error of 3 × 10−9 over the range 𝑥 ∈  [Φ(−7),Φ(7)].  

 We can now compare the standard normal quasi-random sequence and the 

standard normal random sequence. Scrambled Halton sequence of length 1000, 

Pseudo-random sequence of length 1000 and 10000 are used with Moro's algorithm 

for comparison. Statistical properties are presented in Table 1 below. 

Table 1 Comparison of Standard Normal Quasi-Random and Pseudo-Random Sequences 

 
Standard 

Normal 

Quasi-random 

Sequence of 

Length 1000 

Pseudo-random 

Sequence of 

Length 1000 

Pseudo-random 

Sequence of 

Length 10000 

Mean 0 -0.0000184 0.04360068 0.02226267 

Standard 

Deviation 
1 0.99878002 0.98199416 1.01528914 

Variance 1 0.99756152 0.96431253  1.03081205 

Skewness 0 -0.0006303 -0.04438527 0.001724717 

Kurtosis 3 2.9634615 2.8296301 2.94454714 

It can be seen from Table 1 that the quasi-random sequence is much more efficient in 

practical implementation of normality. Two dimensional sequences are plotted for a 

visual demonstration.  
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Figure 9: 2-Dimensional Standard Normal Quasi-Random Numbers of length 1000 
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Figure 10: 2-Dimensional Standard Normal Random Numbers of length 1000 
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Figure 11: 2-Dimensional Standard Normal Random Numbers of length 10000 

Comparison between Figure 9 and Figure 10 strongly suggests a much lower 

discrepancy of quasi-random sequences. Results in Figure 9 and Figure 11 are 

comparable. The graphs confirm the nice performance of the quasi-random 

sequence. 
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4.3 Generation of Brownian Paths for BB and BBI methods 

QMC is introduced before BBI-QMC for a better understanding of the latter. Both 

algorithms are given in Section 2.5 and Section 3.3. Input parameters of BBI-QMC 

simulation are introduced again with selection tips: 

1. 𝑑 represents the dimension of the low-discrepancy sequence for each path. 

That means each Brownian path is constructed conditionally on 𝑑 variables. 

Usually, 𝑑 = 2 or 𝑑 = 4 is good enough for a fast convergence. Wang and Tan 

(2012) concluded that BBD methods results in the effective dimension of 6 

while the nominal dimension is 260 with p=0.99 for simple Asian options. In 

this thesis 𝑑 is chosen to be 32. 

2. 𝑇 represents the time at maturity. For example, 𝑇 = 1 means the maturity is 1 

year from now. In this thesis 𝑇 is chosen to be 1. 

3. 𝐿 represents the number of the total time steps for each path. For example, 

one can choose 𝐿 = 260 × 𝑇 to represent the total number of business days 

during the contract. We assumed that 𝐿 is always chosen to be a multiple of 𝑑, 

so that the Brownian Bridges constructed conditionally on the 𝑑 variables 

could have the same length. Thus, in this thesis 𝐿 is chosen to be 320, so that 

each Brownian path is of length 320 generated using 32 low discrepancy 

points. 
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4. 𝐿𝐷 represents the length of the low-discrepancy sequence, and 𝑀𝐶 represents 

the number of trajectories of each conditioned process. Thus, 𝐿𝐷 sets of 

conditional variables are first determined and 𝑀𝐶 paths are generated 

conditionally on each set. Therefore, a total number of  𝑁 = 𝐿𝐷 ×𝑀𝐶 

Brownian paths are constructed to simulate one Brownian motion. 

 For demonstration, Figure 12 shows 10 simulated Brownian paths 

conditioning on one middle value and one terminal value using QMC method (i.e. 

𝑑 = 2, 𝐿𝐷 = 1 and 𝑀𝐶 = 10). For comparison, Figure 13 gives 10 simulated paths 

conditioning on one terminal value and one pre-determined integral using BBI-

QMC (i.e. 𝑑 = 2, 𝐿𝐷 = 1 and 𝑀𝐶 = 10). The number of time steps is chosen to be 

1000 with maturity 𝑇 = 1, so that the paths in Figure 12 and Figure 13 look smooth. 

The two graphs together give an intuitive grasp of the BBI-QMC algorithm. Both the 

two path generation methods are coded in Matlab and attached in Appendix B and 

Appendix C. 
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Figure 12: 10 Simulated Paths using BB-QMC method, d=2 
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Figure 13: 10 Simulated Paths using BBI-QMC, d=2 

4.4 Pricing Asian Option under Heston's Model 

We have implemented the BBI method to price a European arithmetic Asian call 

option with payoff function as follows: 

Payoff = max[(𝐴𝑇 − 𝐾) , 0]. 

Wang and Tan (2012) illustrate the impact of path generation methods using three 

choices of averaging methods. For 𝐴𝑇 = ∑ 𝑤𝑖
(·)𝑆𝑡𝑖

𝐿
𝑖=1 , the three weights are defined as 

follows: 

𝑤𝑖
𝐴 =

1

𝐿
, 
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𝑤𝑖
𝐵 = 𝑏2−𝑖 and 

𝑤𝑖
𝐶 =

𝑐(−1)𝑖−1

𝑖
 

for 𝑖 = 1,… 𝐿. Normalization constants 𝑏 and 𝑐 are chosen so that ∑ 𝑤𝑖
𝐵 = 1𝐿

𝑖=1  and 

∑ 𝑤𝑖
𝐵 = 1𝐿

𝑖=1 . Note that the second and third averaging methods have more weights 

on the beginning of the underlying price process. Their results indicate that the 

performance of BBD is even worse than standard Brownian path construction while 

{𝑤𝑖
𝐵} and {𝑤𝑖

𝐶} are implemented. The implementation in this thesis considers even 

weight {𝑤𝑖
𝐴} only, so that 

𝐴𝑇 =
1

𝐿
∑𝑆𝑖

𝐿

𝑖=0

. 

Consider the continuous form of Equation (3) and Equation (4), 

𝑆𝑡 = 𝑆0 exp((𝑟 −
1

2𝑡
∫ 𝑉𝑠𝑑𝑠
𝑡

0

) 𝑡 + 𝜌∫ √𝑉𝑠𝑑𝑊𝑠

𝑡

0

+√1 − 𝜌2∫ √𝑉𝑠𝑑𝑍𝑠

𝑡

0

) 

     = 𝑆0 exp ((𝑟 −
𝜌

𝛿
𝛼σ

2
) 𝑡 +

𝜌

𝛿
(𝑉𝑡 − 𝑉0) + (

𝜌

𝛿
𝛼 −

1

2
)∫ 𝑉𝑠𝑑𝑠

𝑡

0

+√1 − 𝜌2∫ √𝑉𝑠𝑑𝑍𝑠

𝑡

0

)                                                                          (10) 

The Asian call option payoff can be represented as the expectation of a function 𝐺 of 

{𝑉𝑡} and {∫ 𝑉𝑠𝑑𝑠
𝑡

0
} below 

 Payoff = 𝐸[(𝐴𝑇 − 𝐾)
+] 
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= 𝐸 [𝐸 [(
1

𝑇
∫ 𝑆𝑡𝑑𝑡
𝑇

0

− 𝐾)

+

| {𝑉𝑡}]] 

= 𝐸 [𝐸 [(
𝑆0
𝑇
∫ exp {(𝑟 −

𝜌

𝛿
𝛼σ

2
) 𝑡 +

𝜌

𝛿
(𝑉𝑡 − 𝑉0) + (

𝜌

𝛿
𝛼 −

1

2
)∫ 𝑉𝑠𝑑𝑠

𝑡

0

𝑇

0

+ √1 − 𝜌2∫ √𝑉𝑠𝑑𝑍𝑠

𝑡

0

} 𝑑𝑡 − 𝐾)

+

| {𝑉𝑡}]] 

= 𝐸 [𝐺 ({𝑉𝑡}, {∫ 𝑉𝑠𝑑𝑠
𝑡

0

})] . 

In the Heston model, the process {𝑉𝑡} follows the diffusion process 

𝑑𝑉𝑡 = 𝛼(σ
2
− 𝑉𝑡)𝑑𝑡 + 𝛿√𝑉𝑡𝑑𝑊𝑡, 𝑡 ≥ 0. 

Let the transformation be 𝛽(𝑥) =
2

𝛿
√𝑥  so that by applying the Ito's formula we have 

𝑑𝛽(𝑉𝑡) =
1

𝛿√𝑉𝑡
𝑑𝑉𝑡 −

𝛿

4√𝑉𝑡
𝑑𝑡 

               = 𝜇(𝑉𝑡)𝑑𝑡 + 𝑑𝑊𝑡, and 

                                                   𝜇(𝑥) =
𝛼(σ

2
−𝑥)

𝛿√𝑥
−

𝛿

4√𝑥
.                                                           (12) 

From the Girsanov theorem, the likelihood ratio of the measure generated by the 

process {𝛽(𝑉𝑡)} with respect to the measure induced by {
2

𝛿
√𝑉0 +𝑊(𝑡)} is 

𝐿(𝜔) = exp [∫ 𝜇(𝜔(𝑢))
𝑇

0

𝑑𝜔(𝑢) −
1

2
∫ 𝜇2(𝜔(𝑢))𝑑𝑢
𝑇

0

]. 
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Let 

𝐷(𝑥) = ∫ 𝜇(𝑧)𝑑𝑧
𝑥

 

          = 2 (
𝛼σ

2

𝛿
) 𝑥

1
2 −

2𝛼

3𝛿
𝑥
3
2. 

Then, the representation of the option payoff is: 

𝐸 [𝐺 ({𝑉𝑡}, {∫ 𝑉𝑠𝑑𝑠
𝑡

0

})]

= 𝐸 [𝐺 ({
𝛿2

4
𝑊𝑡} , {∫

𝛿2

4
𝑊𝑠𝑑𝑠

𝑡

0

}) exp(𝐷(𝑊𝑇) − 𝐷 (
2

𝛿
√𝑉0)

−
1

2
∫ 𝜇′(𝑊𝑠)𝑑𝑠 −

1

2
∫ 𝜇2(𝑊𝑠)𝑑𝑠
𝑇

0

𝑇

0

)] 

                          = 𝐸 [(
𝑆0
𝑇
∫ exp {(𝑟 −

𝜌

𝛿
𝛼σ

2
) 𝑡 +

𝜌

𝛿
(
𝛿2

4
𝑊𝑡 − 𝑉0) + (

𝜌

𝛿
𝛼 −

1

2
)
𝛿2

4
∫ 𝑊𝑡𝑑𝑠
𝑡

0

𝑇

0

+√1 − 𝜌2
𝛿

2
∫ √𝑊𝑠𝑑𝑍𝑠

𝑡

0

} 𝑑𝑡 − 𝐾)

+

exp (𝐷(𝑊𝑇) − 𝐷 (
2

𝛿
√𝑉0)

−
1

2
∫ 𝜇′(𝑊𝑠)𝑑𝑠 −

1

2
∫ 𝜇2(𝑊𝑠)𝑑𝑠
𝑇

0

𝑇

0

)] 

                          ≈ E [(
𝑆0
𝐿
∑exp [(𝑟 −

𝜌

𝛿
𝛼σ

2
) 𝑡𝑖 +

𝜌

𝛿
(
𝛿2

4
𝑊𝑡𝑖

− 𝑉0) + (
𝜌

𝛿
𝛼 −

1

2
)
𝛿2

4
∫ 𝑊𝑠𝑑𝑠
𝑡𝑖

0

𝐿

𝑖=1

+√1 − 𝜌2
𝛿

2
∫ √𝑊𝑠𝑑𝑍𝑠

𝑡𝑖

0

] − 𝐾)

+

exp (𝐷(𝑊𝑇) − 𝐷 (
2

𝛿
√𝑉0)

−
1

2
∫ 𝜇′(𝑊𝑠)𝑑𝑠 −

1

2
∫ 𝜇2(𝑊𝑠)𝑑𝑠
𝑇

0

𝑇

0

)]                                                          (13) 
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The BBI-QMC approach with dimension 𝑑 = 32 for pricing the Asian call option has 

the following steps: 

1. A 64-dimensional low discrepancy sequence of length 𝐿𝐷 is generated so 

that the BBI-QMC algorithm can be implemented with 𝑑𝑖𝑚 = 2 and 

𝑑 = 32 in Step 1 through Step 5. Over a given time horizon (i.e. T=1),  we 

have 𝑡𝑖 =
𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿. By completion of Step 4, two independent 

stochastic processes {𝑊𝑡𝑖
| 𝑡𝑖 =

𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿} and {𝑍𝑡𝑖| 𝑡𝑖 =

𝑖𝑇

𝐿
, 𝑖 =

1,2, … , 𝐿} are simulated with 𝑁 paths each. 

2. Apply the BBD method to calculate 𝐿𝐷 sets of 16 spot values {𝑊𝑘𝑇

16

, 𝑘 =

1,2, … ,16} using the first 16 dimensions of the low discrepancy sequence 

generated in Step 1. Please refer to Step 2 of the BBI-QMC method for 

details. These spot values together with the initial value 𝑊0 are the end-

values, which will be used for the calculation of the conditioning integrals 

and  derivation of the Brownian bridges in Step 3 and Step 4.  

3. Given 𝐿𝐷 sets of spot values {𝑊𝑘𝑇

16

, 𝑘 = 0,1,2, … ,16},  the second 16 

dimensions of the low discrepancy sequence are used to generate 𝐿𝐷 sets 

of the conditioning integrals 
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{𝑋𝑘 = ∫ 𝑊𝑠𝑑𝑠

𝑘
16
𝑇

𝑘−1
16

𝑇

, 𝑘 = 1,2, … ,16} . 

Thus, for each set, the vector of the 16 conditioning integrals is 16-variate 

normally distributed with joint distribution 

[𝑋1, 𝑋2, … , 𝑋16] ∼ 𝑀𝑁 ([𝑚1, 𝑚2, … ,𝑚16],
1

12
(
𝑇

16
)
3

𝐼16×16) 

where 𝐼16×16 is the identity matrix of size 16 and 

𝑚𝑘 = 𝑊
(𝑘−1)

𝑇
16
+
𝑇

2
[𝑊

𝑘
𝑇
16
−𝑊

(𝑘−1)
𝑇
16
] , 𝑘 = 1,2, … ,16. 

Note that each conditioning integral is calculated using its two end values 

and its time duration. Please refer to Step 3 of the BBI-QMC method for 

details. 

4. Conditionally on each set of spot values and conditioning integrals 

calculated in Step 2 and Step 3, 𝑀𝐶 Brownian bridges are constructed 

using BBC method. Thus, a total of 𝑁 = 𝐿𝐷 ×𝑀𝐶 Brownian paths 

{𝑊𝑡𝑖
| 𝑡𝑖 =

𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿} are generated. Please refer to Step 4 of BBI-QMC 

method for details. 

5. Similar to Steps 2 to 4, a total number of 𝑁 Brownian paths {𝑍𝑡𝑖| 𝑡𝑖 =
𝑖𝑇

𝐿
, 𝑖 =

1,2, … , 𝐿} are simulated using the BBI-QMC method. 
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6.  For each path of {𝑊𝑡𝑖
| 𝑡𝑖 =

𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿}, a path of the integrals 

{∫ 𝑊𝑠𝑑𝑠
𝑡𝑖
0

| 𝑡𝑖 =
𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿} is calculated. 

7. Given function 𝜇 in Equation (12), integrals ∫ 𝜇′(𝑊𝑠)𝑑𝑠
𝑇

0
 and ∫ 𝜇2(𝑊𝑠)𝑑𝑠

𝑇

0
 

are calculated. Note that both functions 𝜇′ and 𝜇2 are smooth. For 

functionals of the form ∫ 𝑔(𝑠,𝑊𝑠)𝑑𝑠
𝑇

0
, the variability of the integrand is 

analyzed in Kolkiewicz (2014) when 𝑔 is a smooth function. 

8. For one pair of Brownian paths {𝑊𝑡𝑖
| 𝑡𝑖 =

𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿} and {𝑍𝑡𝑖| 𝑡𝑖 =

𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿}, the option payoff can be calculated using Equation (13) 

using the integrals {∫ 𝑊𝑠𝑑𝑠
𝑡𝑖
0

| 𝑡𝑖 =
𝑖𝑇

𝐿
, 𝑖 = 1,2, … , 𝐿}, ∫ 𝜇′(𝑊𝑠)𝑑𝑠

𝑇

0
 and 

∫ 𝜇2(𝑊𝑠)𝑑𝑠
𝑇

0
 calculated in steps 6 and 7.  

9. A total of 𝑁 payoffs are generated by repeating steps 6 to 8. 

10. Discount the payoffs by the risk-free rate and take average to get the price 

of the option as follows: 

Price =
1

𝑁
∑𝑒−𝑟𝑇Payoff (𝑗)
𝑁

𝑗=1

. 

11. Compute the standard error: 

SE =
√ 1
𝑁 − 1

∑ (Price − 𝑒−𝑟𝑇Payoff (𝑗))2N
j=1

√𝑁
. 
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Both accuracy and efficiency of the BBI-QMC method are compared with the crude 

Monte Carlo method (MC) through different initial settings. The implementation 

algorithm given above used dimension 𝑑 = 32 for simulation. A comparison using 

dimensions 𝑑 = 8 and 𝑑 = 16 is applied to investigate the sensitivity of simulation 

variance to the choice of dimension 𝑑. The implementation results are given in 

Chapter 5. 
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Chapter 5 

Implementation Results 

The numerical tests in Andersen (2007) are taken as reference for choosing 

parameters. The speed of mean reversion 𝛼 is chosen to be 5. The volatility of the 

volatility process 𝛿 is chosen to be 1. The comparison is done in three scenarios 

when the option is at the money, out of the money and in the money. While the 

strike price 𝐾 = 100 is fixed, we choose the initial underlying price 𝑆0 = 100 in the 

case of at the money; 𝑆0 = 90 for the out of money case and 𝑆0 = 120 for the in the 

money case. Under each scenario, different cases use values 0.1 through 0.5 as the 

long term volatility mean σ, and the initial volatility 𝑉0 is set to be equal to the long 

term volatility. The correlation between the two Brownian paths 𝜌 is changing 

among values 0, −0.3, −0.6 and − 0.9. Other input values are chosen as follows. 

Time to maturity 𝑇 is chosen to be 1. The risk free rate 𝑟 is 0.15. Total time steps 𝐿 is 

chosen to be 320. The resulting price and the corresponding standard error (SE) are 

given together with different parameter settings. 

5.1 At the Money 

At the money is a situation when we have 𝑆0 = 𝐾, which in our case is 𝑆0 = 𝐾 = 100. 

In this scenario, seven different parameter settings are implemented, and the results 

are provided in Table 2. Note that, for the BBI-QMC method, when the total number 
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of paths  𝑁 = 40000  is given, we choose 𝐿𝐷 = 2000 and 𝑀𝐶 = 20. When the total 

number of paths  𝑁 = 1000  is given, we choose 𝐿𝐷 = 250 and 𝑀𝐶 = 4. 

Case# �̅� 𝝆 
BBI-QMC MC 

𝑵 Price SE 𝑵 Price SE 

1 0.3 -0.9 40000 10.3053 0.000174 100000 10.3275 0.035041 

2 0.4 -0.6 40000 11.8179 0.000495 100000 11.8326 0.049353 

3 0.5 -0.6 40000 13.8021 0.000352 100000 13.8506 0.062828 

4 0.1 0 1000 7.2212 0.001418 1000 7.2207 0.287521 

5 0.2 0 1000 8.8501 0.003153 1000 8.8455 0.379394 

6 0.2 -0.3 1000 8.6597 0.002326 1000 8.6343 0.395455 

7 0.3 -0.3 1000 10.2329 0.004121 1000 10.1773 0.473055 

Table 2: Implementation Results for 𝑺𝟎 = 𝟏𝟎𝟎 = 𝑲 

 As can be seen in Table 2, the large simulation size of the first three cases 

indicates the accuracy of the BBI-QMC method. The crude Monte Carlo method with 

𝑁 = 100000 gives significantly larger standard errors. Comparing with the results 

from the BBI-QMC method when 𝑁 = 40000, the prices from the BBI-QMC method 

are covered by the 95% confidence interval of results from the MC method with the 

same parameter setting. For both the BBI-QMC method and the MC method, the call 

option price and the corresponding standard error increase as long term volatility 

mean 𝜎 increases. Cases 4 to 7 are implemented with 1000 paths, which together 

indicate an overall much smaller standard error of the BBI-QMC method. 



 

` 64 

5.2 Out of the Money 

A call option is said to be out of the money when the strike price is higher than the 

underlying market price, i.e. 𝑆0 < 𝐾. Table 3 presents results for 𝑆0 = 90. 

Case# �̅� 𝝆 
BBI-QMC MC 

𝑵 Price SE 𝑵 Price SE 

1 0.2 0 40000 3.03006 0.000062 100000 3.04179 0.023894 

2 0.2 -0.3 40000 2.96811 0.000109 100000 2.96509 0.017903 

3 0.5 -0.3 40000 8.53310 0.000154 100000 8.52692 0.056185 

4 0.1 0 1000 1.89212 0.000713 1000 1.9837 0.143903 

5 0.3 -0.6 1000 4.72373 0.001155 1000 4.53732 0.198165 

6 0.2 0 1000 3.01909 0.001088 1000 2.8918 0.205618 

7 0.4 -0.6 1000 6.50715 0.002302 1000 6.56641 0.307005 

Table 3: Implementation Results for 𝑺𝟎 = 𝟗𝟎 < 𝑲 

Table 3 above represents the results when the initial underlying price is lower than 

the strike price, therefore the resulting values in Table 3 are much smaller than those 

in Table 2. Cases 4 to 7 suggest an overall smaller standard error of results from the 

BBI-QMC method. Prices calculated by the BBI-QMC method in Cases 1 to 3 are all 

covered by the 95% confidence interval of results derived by the MC method. 

5.3  In the Money 

A call option is said to be in the money when the underlying market price is higher 

than the strike price, i.e. 𝑆0 > 𝐾. Table 4 presents results for 𝑆0 = 120. 
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Case# �̅� 𝝆 
BBI-QMC MC 

𝑵 Price SE 𝑵 Price SE 

1 0.1 -0.9 40000 25.3732 0.000454 100000 25.3831 0.032904 

2 0.2 -0.9 40000 25.7203 0.000552 100000 25.6984 0.046225 

3 0.3 -0.9 40000 26.2021 0.000657 100000 26.2043 0.064796 

4 0.4 -0.9 40000 27.0923 0.001133 100000 27.1535 0.084329 

5 0.5 -0.9 40000 28.3039 0.002500 100000 28.3553 0.104472 

6 0.1 -0.6 1000 25.3867 0.007231 1000 25.0559 0.313628 

7 0.1 -0.3 1000 25.5212 0.009397 1000 25.1186 0.310621 

8 0.1 0 1000 25.7520 0.009295 1000 25.2075 0.312209 

Table 4: Implementation Results for 𝑺𝟎 = 𝟏𝟐𝟎 > 𝑲 

In cases 1 to 5 of Table 3, the prices simulated using the BBI-QMC method are 

again covered by the 95% interval of results from the MC method. The simulation 

results indicate an overall much smaller standard error of the BBI-QMC method. 

5.4  Choices of Dimensions 

To investigate the sensitivity of simulation variance to the choice of dimension 𝑑, a 

comparison of the simulation results using different dimensions (i.e.  𝑑 = 8, 𝑑 = 16 

and 𝑑 = 32) are conducted. The comparison considers at the money case with 

𝑁 = 40000 for BBI-QMC approach and 𝑁 = 100000 for crude MC approach. All 

parameters are chosen to be the same as Cases 1, 2 and 3 in Section 5.1. The results 

are presented in Table 5 below. 
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Case# �̅� 𝝆 
SE 

 (𝒅 = 𝟖) 

SE 

(𝒅 = 𝟏𝟔) 

SE 

(𝒅 = 𝟑𝟐) 
MC 

1 0.3 -0.9 0.002558 0.000511 0.000174 0.035041 

2 0.4 -0.6 0.008952 0.000705 0.000495 0.049353 

3 0.5 -0.6 0.011338 0.001213 0.000352 0.062828 

Table 5: Choices of Dimensions 

It can be seen from the table that by increasing the dimension of the conditioning 

vector the efficiency of the BBI-QMC approach can be improved. Further, the 

improvement by changing the dimension from 𝑑 = 8 to 𝑑 = 16 seems more 

significant than the improvement by changing the dimension from 𝑑 = 16 to 𝑑 = 32. 
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Chapter 6 

Conclusion and Future Works 

An efficient quasi-Monte Carlo method, developed by Kolkiewicz (2014) , is 

introduced in detail in this thesis with the objective of pricing an European 

arithmetic Asian call option under Heston's stochastic volatility model. The key idea 

of the efficient quasi-Monte Carlo rests on the intelligent use of the low-discrepancy 

sequence so that Brownian paths are generated conditionally on their integral. The 

main contribution of this thesis is an extension of Kolkiewicz's method to Asian 

options under stochastic volatility. Performance of quasi-random sequences and 

normal inverse algorithms are analyzed in a simulation study. 

 A special situation has been considered during our implementation. Consider 

an out of the money call option with 𝑆0 = 80 and 𝐾 = 100. Since 𝑑 = 2 is chosen for 

implementation efficiency, the price path will be simulated conditionally on a 

random terminal value and a random integral. Figure 14 gives a visual sense of the 

problem. 



 

` 68 

 

Figure 14: Possible Simulation Error for Out of the Money Call 

 In Figure 14, there are 4 paths meeting at a terminal value in the top right of 

the graph. Suppose 𝑆0 is chosen to be significant smaller than 𝐾, so that all simulated 

paths having trend to go below Path 4, such as Path 1 and Path 2 will result in zero 

payoffs. As introduced in Section 2.4 and Section 4.2, Moro’s normal inverse 

algorithm provides extra efficiency by reducing outliers. Therefore, comparing with 

MC, BBI-QMC might provide more paths like Path 4 and fewer paths like Path 3. 

Therefore, in extreme situations when the price of the option heavily relies on 

outliers, there will be a simulation error, i.e. the call option price will be 

underestimated. A similar situation for in the money put option will result in over 

pricing. Figure 15 presents an out of the money put option with 𝑆0 = 120 and 

𝐾 = 100.   
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Figure 15: Possible Simulation Error for Out of the Money Put 

However, the implementation results do not indicate this kind of error. Analyzing 

the use of Moro's algorithm for out of the money options can be part of the future 

works.  

 In order to use more properly the BBI method, formulation of the problem 

can be an effective approach. In Kolkiewicz (2014), the BBI method is tested to be 

very effective in reducing variances when evaluating the following three functionals 

of Brownian motion exp (−∫ 𝑊(𝑠)𝑑𝑠
𝑇

0
), exp (−∫ 𝑊2(𝑠)𝑑𝑠

𝑇

0
) and 

exp (−∫ exp(𝑊(𝑠))𝑑𝑠
𝑇

0
). Transformations of the pricing formula, which include 

more of these functionals, may improve the efficiency of simulation.  
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 The implementation results suggest a very good performance in all scenarios 

of parameter settings. More tests could be done using different interest rate values, 

volatility's mean reversion speed and time to maturity etc. The Matlab code can be 

easily applied to problems with higher dimensions. Pricing problems with multiple 

underlying assets under both stochastic interest rate and stochastic volatility can be 

applied to further test the efficiency. 
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Appendix A 

Matlab Code for Moro's Normal Inverse Algorithm 

%This function applies the Beasley-Springer-Moro normal inverse algorithm 
%Function Input: 
%   p = a probability in [0,1] 
% 
%Function Output: 
%   x such that Phi(x)=p 
% 
% Note that the Input can be a matirx, but allows only one input 
 
  
function x=InvNorm(p) 
  
a0=2.50662823884; 
a1=-18.61500062529; 
a2=41.39119773534; 
a3=-25.44106049637; 
  
b0=-8.47351093090; 
b1=23.08336743743; 
b2=-21.06224101826; 
b3=3.13082909833; 
  
c0=0.3374754822726147; 
c1=0.9761690190917186; 
c2=0.1607979714918209; 
c3=0.0276438810333863; 
c4=0.0038405729373609; 
c5=0.0003951896511919; 
c6=0.0000321767881768; 
c7=0.0000002888167364; 
c8=0.0000003960315187; 
  
u=p-0.5; 
  
index1=abs(u)<0.42; 
index2=not(index1); 
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x=zeros(size(p)); 
  
r1=abs(u(index1)); 
r=r1.^2; 
x(index1)=r1.*polyval([a3,a2,a1,a0],r)./polyval([b3,b2,b1,b0,1],r); 
  
r=p(index2); 
r=min(r,1-r); 
r=log(-log(r)); 
x(index2)=polyval([c8,c7,c6,c5,c4,c3,c2,c1,c0],r); 
  
x=x.*sign(u); 
  
end 
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Appendix B 

Matlab Code for Quasi-Monte Carlo Method  

%This function generates Brownian Paths use Efficient Monte Carlo method 
%Function Inputs: 
%   LD = Length of Low-discrepancy sequences 
%   MC = Number of Brownian Bridges to be created for each pair of conditions  
%   L = Number of equal spaced points during the whole time period (multiple of d) 
%   d = Dimension of the problem, must be a power of 2 (d>=2) 
%   T = Time of Maturity 
% 
%Function Outputs: 
%   Bpaths with dimension (LD*MC, L+1) 
%       for example an output with dimension (20000, 200) gives 
%       20000 simulation results of a brownian motion with 
%       length 201 
 
  
function Bpaths = QMC(LD,MC,L,d,T) 
dt=T/L; 
 
 
%creating Low-discrepancy sequences 
%if the overall dimension d*dim is less than 10, we use Haltonset. 
%Otherwise Sobolset is used. 
 
 
if  d*dim > 10 
 p = sobolset(d*dim,'Skip',1000,'Leap',100); 
 p = scramble(p, 'MatousekAffineOwen'); 
 Sobol = net(p,LD); 
 X = InvNorm(Sobol,0,1); 
else 
 p = haltonset(d*dim,'Skip',1000,'Leap',100); 
 p = scramble(p, 'RR2'); 
 Halton = net(p,LD); 
 X = InvNorm(Halton); 
end  
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%creating the conditional path points 
 
 
WT = zeros(LD,d+1); 
WT(:,d+1)=X(:,d)*sqrt(T); 
a=d; 
b=1; 
while(a>1) 
    c=2^b; 
    for i=1:2:(c-1) 
        WT(:,(i*d/c)+1)=0.5*(WT(:,((i-
1)*d/c)+1)+WT(:,((i+1)*d/c)+1))+0.5*sqrt(T/c)*X(:,i*d/c); 
    end 
    a=a/2; 
    b=b+1; 
end 
 
  
%creating the standard BB paths 
 
 
BBlength = 1 + L/d; 
BM = zeros(d,LD,MC,BBlength); 
BB = zeros(d,LD,MC,BBlength); 
  
for i=1:d 
    for j=1:LD 
        for k=1:MC 
            for l=2:BBlength 
                BM(i,j,k,l)=BM(i,j,k,l-1)+sqrt(dt)*randn; 
            end 
            for l=2:BBlength 
                BB(i,j,k,l)=BM(i,j,k,l)-BM(i,j,k,BBlength)*(l-1)/(BBlength-1); 
            end 
        end 
    end 
end 
  
%creating all paths 
 



 

` 75 

 
Bpaths = zeros(LD*MC,L+1); 
  
for j=1:LD 
    for k=1:MC 
        for i=1:d 
            for l=1:BBlength 
                Bpaths((j-1)*MC+k,(i-1)*(BBlength-1)+l)=WT(j,i) + (l-1)*(WT(j,i+1)-
WT(j,i))/(BBlength-1) + BB(i,j,k,l); 
            end 
        end 
    end 
end 
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Appendix C 

Matlab Code for BBI-Quasi-Monte Carlo Method 

%This function generates Brownian Paths use BBI Monte Carlo method 
% 
%Function Inputs: 
%   LD = Length of Low-discrepancy sequences 
%   MC = Number of Brownian Bridges to be created for each pair of conditions  
%   L = Number of equal spaced points during the whole time period (multiple of d) 
%   dim = Number of Independent Stochastic Process to be created 
%   d = Dimension of the problem, must be a power of 2 (d>=2) 
%   T = Time of Maturity 
% 
%Function Outputs: 
%   Bpaths with dimension (LD*MC, L+1, dim) 
%       for example an output with dimension (20000, 201, 2) gives 
%       20000 simulation results of 2 independent Brownian motions with 
%       length 201 
  
 
function Bpaths = EfficientQMC(LD,MC,L,dim,d,T) 
  
d0=d/2; 
dt=T/L; 
  
 
%creating Low-discrepancy sequences 
%if the overall dimension d*dim is less than 10, we use Haltonset. 
%Otherwise Sobolset is used. 
 
 
if  d*dim > 10 
 p = sobolset(d*dim,'Skip',1000,'Leap',100); 
 p = scramble(p, 'MatousekAffineOwen'); 
 Sobol = net(p,LD); 
 X = InvNorm(Sobol,0,1); 
else 
 p = haltonset(d*dim,'Skip',1000,'Leap',100); 
 p = scramble(p, 'RR2'); 
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 Halton = net(p,LD); 
 X = InvNorm(Halton); 
end 
 
  
%creating the conditional path points 
%this step performs the Brownian Bridge discretization to determine the conditional 
path for all #dim processes 
 
 
WT = zeros(LD,d0+1,dim); 
for z=1:dim 
    WT(:,d0+1,z)=X(:,z*d0)*sqrt(T); 
end 
  
a=d0; 
b=1; 
  
while(a>1) 
    c=2^b; 
    for i=1:2:(c-1) 
        for z = 1:dim 
            WT(:,(i*d0/c)+1,z)=0.5*(WT(:,((i-
1)*d0/c)+1,z)+WT(:,((i+1)*d0/c)+1,z))+0.5*sqrt(T/c)*X(:,i*d0/c+((z-1)*d0)); 
        end 
    end 
    a=a/2; 
    b=b+1; 
end 
  
 
%creating the conditional integrals 
%there are d0 integrals for each single path 
 
 
MU = zeros(LD,d0,dim); 
SIG = sqrt((T/d0)^3/12); 
A = zeros(LD,d0,dim); 
  
for i=1:d0 
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    for z=1:dim 
        MU(:,i,z)=0.5*(WT(:,i,z)+WT(:,i+1,z))*T/d0; 
        A(:,i,z)=MU(:,i,z)+SIG*X(:,d0*dim+(z-1)*d0+i); 
    end 
end 
 
  
%creating the standard Brownian Bridge paths 
%together with the conditional terminal values and integrals from last two steps, the 
complete paths can be generated 
 
 
BBlength = 1 + L/d0; 
BM = zeros(d0,LD,MC,BBlength,dim); 
BB = zeros(d0,LD,MC,BBlength,dim); 
IntBB = zeros(d0,LD,MC,dim); 
  
for i=1:d0 
    for j=1:LD 
        for k=1:MC 
            for l=2:BBlength 
                for z=1:dim 
                    BM(i,j,k,l,z)=BM(i,j,k,l-1,z)+sqrt(dt)*randn; 
                end 
            end 
            for l=2:BBlength 
                for z=1:dim 
                    BB(i,j,k,l,z)=BM(i,j,k,l,z)-BM(i,j,k,BBlength,z)*(l-1)/(BBlength-1); 
                    IntBB(i,j,k,z)=IntBB(i,j,k,z)+BB(i,j,k,l,z)*dt; 
                end 
            end 
        end 
    end 
end 
  
 
%creating all paths 
%this is the final step generating #dim processes with length #L+1 and simulation 
time #LD*MC 
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Bpaths = zeros(LD*MC,L+1,dim); 
  
for j=1:LD 
    for k=1:MC 
        for i=1:d0 
            for l=1:BBlength 
                for z=1:dim 
                    Bpaths((j-1)*MC+k,(i-1)*(BBlength-1)+l,z)=WT(j,i,z) + (l-1)*(WT(j,i+1,z)-
WT(j,i,z))/(BBlength-1) + BB(i,j,k,l,z) - (6*(l-1)*(BBlength-l)/(dt*((BBlength-
1)^3)))*(IntBB(i,j,k,z)-A(j,i,z)+0.5*(BBlength-1)*dt*(WT(j,i,z)+WT(j,i+1,z))); 
                end 
            end 
        end 
    end 
end 
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