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Abstract

We explore various trading strategies from a mathematical and practical perspective. Using
a geometric Brownian motion with a disorder to model asset price bubbles, we apply this
model to multiple periods and explore the trading strategies on real market data (S&P500,
NASDAQ and SSE Composite). We find that the mathematical model is sucessful in
predicting large market events such as the 2008 crisis, however fails to generate gains over
times of healthy market growth. Three practical models are also presented and show that
beneficial trading can be performed using some simple deterministic assumptions. The
mathematical and practical methods are compared.
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Chapter 1

Introduction

1.1 Motivation

When entering into a long position of a stock, the main motivation for the investor is to
maximize their gains buy collecting dividends and reselling this asset at a higher price
than they purchased. Ideally this increased value should be able to cover any transaction
costs incurred by executing the trade, as well as being the best use of one’s capital. It is
always possible to come out of a position with a nominal benefit, such as simply investing
your money in a fixed instrument, or even keeping your money in a low-interest savings
account. The real challenge is to determine the optimal way to deploy your capital in the
market in order to maximize your return subject to an acceptable risk. While the concept
is simple to understand, the vastness and complexity of the financial world makes this
problem non-trivial.

What makes this problem, and all problems in financial statistics, even more challenging
is the fact that financial markets are not purely statistical systems. In a truly statistical
system we may apply all of the mathematical machinery to a given problem and be very
confident that the assumptions we make will never be violated in our lifetimes. In finance,
however, there are a finite amount of market participants, some of which carry a large
amount of capital which can cause a market to change its behaviour dramatically thereby
violating statistical assumptions. Not only this, other global factors play a very large role
in moving the markets. If we wish to truly predict tomorrow’s market prices we must also
consider the global economy, politics, weather, or even hype driven by social media. A
problem of this size is of course not feasible to handle in its entirety, so there has been
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much theoretical and practical research done into trying to understand and predict these
markets.

Some strategies try to predict when a stock has hit its rock bottom and purchase it, then
wait for the stock to rise once again and resell at a higher price. This could take advantage
of certain periodic trends in seasonality (yearly), fiscal (quarterly) or even political (4 year
presidential terms) sectors [31, 17] . These types of methods are known as market timing
strategies and when the investor does not plan on repurchasing the asset, this is known
as a Buy and Hold type strategy. The problem with these types of methods are that it is
difficult to determine the difference between a temporary market correction or an actual
transition to a bear/bull market. Another strategy is to predict if we are entering a bull
market from a bear market and take a position only after we are confident that the market
will continue to go up. While we lose out on buying at the lowest lows and selling at the
highest highs, we are able to be more confident in our decision. It makes it much less likely
that we purchase a stock only to see it fall lower when we were expecting a rise in price. A
related method is to determine and predict the presence of an asset bubble. As an example
we can look at the dot-com crash in 2000 (See Figure 1.1)
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Figure 1.1: Diagram showing the steps leading up to the dot-com market collapse in the
NASDAQ. As you can see, a large speculative growth was followed by a steep decline in
market price. (Tom Fleerackers: From https://flatworldbusiness.wordpress.com/flat-education/previously/web-1-0-vs-

web-2-0-vs-web-3-0-a-bird-eye-on-the-definition/dotcom-bubble/)

A speculative bubble of this nature occurs where market participants believe that the
stock price will increase simply because it is increasing. The effect when many people buy
the stock is to raise its price even higher which of course benefits those who own it, and also
entices more investors to buy. This process continues until some percentage of investors
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sell off their position which drops the price, triggering the rest of the market rapidly trying
to liquidate their position before they lose all of the gains they have made. This occurs
until the value of the underlying companies and assets start to align with the market price
and finally the bubble ends. The overall effect is a very large increase in price followed by
a rapid decrease. The goal in this strategy is to determine whether a drop in the asset’s
price will trigger a collapse, or if it is just a temporary fluctuation.

The overall goal of all the above strategies is to take advantage of market fluctuations
and adjustments in order to maximize financial gain. In the next section we will highlight
some the practical and mathematical methods used to determine the optimal times to buy
and sell and also take a look at the three markets we will study which are the S&P500,
NASDAQ and SSE Composite index.

1.2 Background

In order to study financial markets much work has been done in applying mathematical
models in order to quantify and predict the behaviour of certain stocks and markets.
Sometimes these methods are simply done to predict a distribution of possible asset paths
in order to calculate fair market pricing, while in other cases it may be done to generate
a model for finding the probability that a market will transition from a bull to a bear
market. In the latter case, these mathematical models rely on parameterization methods
to quantify some of their inputs based on available historical data, as well as methods and
definitions to even determine what classifies as a bull and bear market.

In general we can categorize trading strategies into two general groups which are buy-
low-sell-high (BLSH) and momentum strategies. These two methods can be subdivided
into those that look at a finite or infinite trading horizon and those that allow for multiple
trades over time or a single decision. In a buy-low-sell-high strategy, the goal is to predict
the minimum of the stock price in some range, and sell it when a maximum is hit at some
other time. There are many examples of this in the literature considering a variety of
different models, time horizons and strategies. For example in [43, 28] the authors consider
a mean reversion type model to characterize the price of the asset and determine a set of
stopping time for both buying and selling the asset in order to maximize return. Other
papers modify the optimization condition to try and minimize the difference between selling
price and the global maximum [6, 5, 27], or for the terminal wealth [8].

In momentum strategies, the goal is not to try to predict when we hit a global minimum
or maximum, rather we aim to determine if we are currently in a market upswing or in a
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bull market. There has been much research into the reality of momentum in asset price,
and it is accepted that when a market is truly in an upswing, it will continue to do well
for a certain amount of time [19, 20, 35]. The goal here is to first determine if we are in
a bull market given past asset data, and then determine the optimal time to sell under
some condition. As in the BLSH strategies there is a plethora of different optimization
conditions and models. For example Dai et. al. [7] looks at optimally determining if we
are currently in a bear or bull market using a regime switching type model while works by
Shiryaev et. al. [34, 33] lays down a model for minimizing the relative difference between
the current asset value and global maximum when closing a momentum trade, and goes
on to apply such a model using real market data [36].

Another very interesting model was developed by Ekstrom and Lindberg [11] where
they model the asset behaviour as a Brownian motion with a disorder at some unknown
time θ wherein after that time the return of the asset switches from positive to negative.
This model was meant to study asset bubbles which carry this behaviour and are somewhat
non-standard events. Later in this thesis we will look at their ([11]) derivation and extend
it to handle multiple trading events and apply this method to historical market data
for backtesting. In order to parameterize the model (and similarly in the cases of other
methods) we rely on characterizing historical data based on trend analysis. The problem of
trend analysis itself has been tackled in various ways in the literature such as Markov chain
methods [21, 26], and what are known as dating algorithms [25]. Aside from these models
there are a wide array of different perspectives and strategies available in the literature
(See. [16, 42, 18, 44]).

While mathematical models provide us with the tools to analyze the markets, they
are also limited based on their own inherent assumptions. For example, how to treat the
return, volatility and which market model to use, under what time horizon and in what
subsection of the global market does a given model actually apply to. This is why there
are also various practical models in the literature that seek to predict markets based on
different factors and assumptions. In a paper by Jagadeesh et. al. [19] the authors look
at a strategy where we simply purchase stocks that are performing well and sell those
performing poorly. In performing this simple model they are able to generate gains over a
3-12 month window. In a model by Lleo et. al. [24] they focus on macroeconomic factors
in order to predict market crashes/bubbles, and Egan [10] explores the autocorrelation in
market prices.

It is clear that both the mathematical and practical methods are important for different
reasons all working toward the same overall goal. In this thesis I plan to extend the work of
[11] and apply it to the S&P500, NASDAQ and SSE Composite Index. The challenges will
be determining how to calculate the parameters on a limited dataset. I will also compare
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three more practical trading strategies aimed to maximize returns through tracking the
market and applying a deterministic set of trading rules based on recent asset performance.
I will then compare the results and highlight the benefits of both the mathematical and
practical approaches.

In the next section I will outline some characteristics and details about the datasets
we will be using for our historical testing. Chapter 2 will outline and extend the model
proposed by Ekstrom and Lindberg [11]. In this section there will also be a discussion
on the difficulty of parameterization of such models and results will be given. In Chapter
3 we will describe and explore the results of the three practical models used to generate
returns that beat the market on average. Chapter 4 will contrast and compare the practical
methods as well as the mathematical results. Chapter 5 will give a recap and conclude.

1.3 Historical Market Data

In order to apply our trading strategies we must first choose some datasets to test on.
For this we decided to choose the S&P500, NASDAQ and SSE Composite indices. The
reason for our choice of these three has to do with their correlations, market environments
and behaviours. When applying our strategies it is important to understand the dataset
in order to properly interpret the results. In this section we give a brief history of each
index as well as some key metrics and known behaviour and details. We will also compare
between the indices and explore the correlations and market composition difference between
them. With this in mind we will be able to explain better the results we attain. For all
calculations done for the remainder of this thesis, market data was extracted from historical
records from Yahoo! Finance [13, 12, 14].

1.3.1 S&P500 Index

The Standard and Poor’s 500 (S&P 500) is a large American stock index comprising the
top 500 companies with the largest market capitalization. These stocks are a mix between
the NYSE and NASDAQ markets, and therefore it is not surprising that there is a large
correlation between the movements of the S&P500 and NASDAQ in our results. The
market capital in total is around 20 trillion making it a large-cap index and it is comprised
mostly of Information Technology (19.8%), Financials (16.8%) and Health Care (15.6%)
sectors [2, 23]. Historically the average annualized returns have been around 10% with
significant changes in times of market bubbles and crashes. This index is a rather diverse
cross section of the U.S. market.
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1.3.2 NASDAQ

The National Association of Securities Dealers Automated Quotations (NASDAQ) is the
world’s second largest stock exchange second only to the New York Stock Exchange
(NYSE). Stared in 1972 the NASDAQ currently has a market capitalization of 8.5 tril-
lion with annualized returns around 10% [41]. In addition to the market crash of 2008, the
NASDAQ also played host to the dot-com crash in 2000 where a large speculative bubble
caused a loss of market capital of around 5 trillion (more than half of the current total
capitalization) by 2002 [15]. Since this market has suffered from two large collapses in
recent history, it makes it a useful dataset to capture this type of behaviour.

1.3.3 SSE Composite

The SSE Composite is an index composed of the top stocks listed on the Shanghai Stock
Exchange (SSE) comprised largely of government run institutions [1]. As such it is heavily
tied to the economy of China as a whole, and in this way is significantly different than
the S&P500 and the NASDAQ which includes non-government corporations. There are
a few other interesting characteristics of this index as well. Firstly, the opening times of
the SSE and American exchanges are opposite to one another, also the SSE has also had
a few significant crashes. The first crash occurred in 2007 where the index fell 9% due to
rumours of a rise in interest rates as well as a lockdown on speculative trading[4]. The
most recent actually started in June of this year (2015) and is ongoing. In just three weeks
the index fell by 30% forcing the government to take action such as restricting trading.
[30, 9, 40]
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Chapter 2

Mathematical Methods and
Approach

In the standard Black-Scholes model it is assumed that the expected return as well as the
volatility of a stock are constant over time [37, 38]. Even though this simplified model has
been used widely in both academia and industry, it is unable to capture many features that
are present in true markets. The issue of relevance for us is the lack of a time dependent
return µ(t). By allowing the return to take on a time dependence we have more flexibility
to model a situation where the markets may have some sort of trend reversal. This model
is known as a Brownian motion with a disorder. Under this model we can write the
differential of the asset price as,

dSt = µ(t)Stdt+ σStdWt (2.1)

where σ is the volatility of the process and Wt is a standard Brownian motion. We also
define the expected return to be,

µ(t) = µ+ − (µ+ − µ−)1{t<θ} (2.2)

where µ− < r < µ+ are the bear, risk-free and bull market returns, respectively. The
time θ is called the disorder time which is a random time in which a market trend change
occurs. In general the time θ is not directly observable and it is independent of the current
stock price St, so the challenge is to try and determine if we have crossed this time given
only the filtration generated by the observable stock path FSt . With this model, the goal is
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to try and maximize the discounted return of the stock over some time. The maximization
condition on this interval can be written as,

V = sup
τ∈T

Ee−rτSτ (2.3)

where τ is some stopping time in the set of all possible stopping times T . In order
to fully define the maximization, the probability of the disorder time must be established.
We let P(θ = 0) = π which means that there is a non-zero probability π that the disorder
has occurred at time zero, and

P(θ > t|θ > 0) = e−λt (2.4)

which defines the probability that the disorder has not occurred yet given that it did not
already occur before we entered the interval. This characterization will become important
when we evaluate multiple optimization intervals, since we will have more information as
to the state of the process before entering the next interval.

The challenge here is that the disorder time is not directly observable, however by
defining the posterior probability process Πt = P(θ ≤ t|FSt ) and using results from filtering
theory [29] we can show that Πt satisfies the differential

dΠt = λ(1− Πt)dt− ωΠt(1− Πt)dW̄t, Π0 = π (2.5)

where ω = (µ+ − µ−)/σ and

dW̄t =
1

σ

(
dSt
St
− (Πtµ− + (1− Πt)µ+)dt

)
. (2.6)

We can combine the two above expressions to represent Πt directly in terms of the
observable price process St. Plugging in Eq. 2.6 into Eq. 2.5 and combining dt and dSt
terms we end up at

dΠt = f(Πt, t)dt−
ωΠt(1− Πt)

σSt
dSt (2.7)

where

f(Πt, t) =
ω

σ
Π2
t (1− Πt)µ− −

ω

σ
Πt(1− Πt)

2µ+ + λ(1− Πt) (2.8)
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When we look at some numerical results we will convert Equation 2.7 into a discretized
form in order to convert the historical stock prices into the probability process. The
authors in [11] go on to apply a generalized Girsanov’s theorem to change the optimization
problem from a two dimensional to one dimensional problem. Under the new measure,
the optimization conditions are the solutions to a free boundary problem. The ordinary
differential equation admits analytical solutions, and the free boundary become a simple
constant which is the solution to the equation

2

∫ ∞
0

e−att(b+γ−3)/2(1 +Bt)(γ−b+1)/2dt (2.9)

= (γ − b+ 1)(1 +B)

∫ ∞
0

e−att(b+γ−1)/2(1 +Bt)(γ−b−1)/2dt (2.10)

where

a =
2λ

ω2
(2.11)

b =
2

ω

(
λ

ω
− σ

)
(2.12)

c =
2(λ+ r − µ+)

ω2
> 0 (2.13)

γ =
√

(b− 1)2 + 4c (2.14)

and the lower bound is

B >
µ+ − r
r − µ−

(2.15)

They go on to show that given the boundary B, the optimal stopping time is defined
as

τ∗ = inf

{
t ≥ 0 : Πt ≥

B

B + 1

}
(2.16)

Using this stopping time the value function can be solved to be
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V =

{
(1+B)ψ(φ)
(1+φ)ψ(B)

S0, if φ < B

S0, otherwise
(2.17)

where φ = π/(1 − π) and S0 are the initial states of the probability and price process
and

ψ(φ) =

∫ ∞
0

e−att(b+γ−3)/2(1 + φt)(γ−b+1)/2dt (2.18)

For a more detail derivation of the above results please see [11]. The above treatment
takes care of the offloading of an asset, however we can also find the optimal time to go
short an asset. In a similar treatment we find the solution for A, the optimal level to short
by solving the equation,

2

∫ ∞
0

e−att(b+γ−3)/2(1 + At)(γ−b+1)/2dt (2.19)

= (γ − b+ 1)(1 + A)

∫ ∞
0

e−att(b+γ−1)/2(1 + At)(γ−b−1)/2dt (2.20)

where

a =
2λ

ω2
(2.21)

b =
2

ω

(
λ

ω
+ σ

)
(2.22)

c =
2(λ+ r − µ+)

ω2
(2.23)

γ =
√

(b− 1)2 + 4c (2.24)

The optimal stopping time becomes,

τA∗ = inf

{
t ≥ 0 : Πt ≥

A

A+ 1

}
(2.25)

With these optimal stopping conditions we are able to determine the optimal sell and
buying time using historical datasets.
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2.1 Method Application

Now that we are able to optimally sell and go short based on the above method, we are
in a position to apply the strategy to a real asset. We start with the assumption that we
currently hold a single share of the asset, and when we sell of this asset, we immediately go
short one share. We then determine the best time to get off the short position (purchase
and give back asset) and at the same time we do this we also use the proceeds to purchase
as many shares of the assets as possible. We then repeat this process.

We begin by selecting a calibration dataset which is needed to adjust our free parameter;
which in this case is the decay time λ from Eq. 2.4. In our case we will be calibrating
on the S&P500, NASDAQ and SSE Composite from the year 2000-2005. On this set we
adjust the free parameter λ such that the mean relative return (MRR) defined by,

MRR =
1

n

n∑
i=1

wi
Si

(2.26)

where n is the number of trade days in the time period, wi/Si is the current wealth/stock
price at time i; is maximized. We then use this adjusted parameter and apply the calibrated
method to the dataset from year 2005-2015.

To perform these calculations we must first solve for the two boundaries (A,B) shown
above. This is simply done by applying a numerical integration scheme to both sides of
Equations (2.10,2.20) and perform a Newton iteration until we reach equality. After this is
done we must convert the stock price process St into the probability process Πt. Since we
are dealing with a discrete dataset we must first discretize Equation 2.7. This discretization
is shown as,

Πt+1 − Πt = f(Πt, t)∆t−
ωΠt(1− Πt)

σSt
(St+1 − St) (2.27)

Πt+1 = Πt + f(Πt, t)∆t−
ωΠt(1− Πt)

σ
(
St+1

St
− 1)

In the above equation we use the previous stock state St, probability state Πt and the
current stock state St+1 to determine the next value in the probability path. This is then
applied to the total stock path with the initial condition that Π0 = 0. An example of this
is shown in Figure 2.1.
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Figure 2.1: The stock price path and corresponding probability path for the S&P500 from
2005-2015. The probability path Πt rapidly increases to one during the 2008 financial
crisis, which in turn makes it very likely that a disorder has occurred.

Now that we are able to calculate the boundaries (A,B) and the probability path Πt we
can apply our strategy. By finding the time τ1, when the probability path crosses the sell
boundary (Πt > B/(B + 1)) we issue a sell order and go short an asset. We then reset the
probability path at τ1 to zero and start again (Πτ1 = 0), this time looking for the optimal
time to buy and close our short position when Πt > A/(A+ 1) which occurs at some time
γ1 > τ1. We continue this until the end of the dataset in 2015. In the end we are left with
a stock purchase process and wealth process which we can use to infer the benefits and
downfalls of the strategy.

2.2 Market Results

In this section we use the above treatment on the S&P500, NASDAQ and SSE Composite
index to see how our strategy performs. We choose for the S&P500 and NASDAQ a rate or
return of µ = 10% and a volatility of σ = 20% which is in line with historical market data
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when calculating the average year over year return and volatility. The SSE Composite is
roughly double in both respects giving µ = 20% and σ = 40%. In our treatment we assume
that when the market goes into a downturn that the rate of return simply flips sign, so in
the case of the SSE Composite the bearish sections of the market we assume have a return
of µ− = −20%.

Taking historical market data from 2000-2005 we chose a range of possible λ values
which acts as the only free parameter in our model. The challenge here is to find the
value of λ that optimizes the MRR metric in the calibration dataset. Since the numerical
calculations were relatively computationaly cheap, we simply selected parameters in the
range of λ ∈ [1, 10] and selected the values that maximized the MRR. These values are
shown in Table 2.2 for the three datasets. At this point we should make note that one of
the major downfalls/challenges of this method is the selection of the parameter λ. In the
model we are trying to capture the probability that a momentum trade persists through
time until the bubble bursts. Since these are unlikely events in history, a proper calibration
is difficult. To highlight this fact we take the NASDAQ as our example. We will see later
that the results of this method seem to fail when applied to the NASDAQ even though
the S&P500 (which is highly correlated) performs rather well. This is due to a difficulty
in determining the best λ from the available market data.

S&P 500 NASDAQ SSE Composite
λ 2.7 7.3 4.0

Table 2.1: Calibrated λ parameter for the S&P500, NASDAQ and SSE Composite indices.
The results show that the NASDAQ has a significantly higher calibrated λ value which
may explain its poor performance with this method.

As a matter of fact it is clear in Table 2.2 that the optimal λ value for the NASDAQ is
much larger than that of the S&P500 and the SSE Composite which both did well in the
final results.

The calibrated parameters were used to calculate the optimal boundaries for selling and
purchasing an asset (B,A) and in turn used to generate a trading strategy. The results for
the three datasets are summarized in Table 2.2.
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S&P 500 NASDAQ SSE Composite
A
A+1

0.6241 0.6089 0.5656
B
B+1

0.4178 0.4065 0.4642
A
A+1
− B

B+1
0.2063 0.2024 0.1014

MRR 1.3939 DEFAULT 1.4542

Table 2.2: Results for the S&P500, NASDAQ and SSE Composite indices. The results
show that only the NASDAQ met with financial ruin, while the other indices had a rather
large MRR return.

As you can see, both the S&P500 and SSE Composite were able to produce significant
gains on average over a buy and hold method (where one purchases the asset and holds
onto it). As discussed above, when the method was applied to the NASDAQ, we met with
financial ruin when our wealth eventually dwindled to zero. It is interesting to compare the
difference between the buy and sell boundaries A

A+1
− B

B+1
. When comparing the NASDAQ

and S&P500 the difference is almost identical except that the absolute values in the S&P500
are shifted upward by about 0.01. When comparing this to the SSE Composite, the Buy-
Sell band is twice as tight. The significance of this is that a tighter band leads to a large
amount of trades in that asset which is exemplified in the following figures. Note that in
our results we do not include the cost of transactions, however we can infer the importance
by the number of trades performed.

Figures 2.2,2.3,2.4 show the price St, stock held and wealth paths when applying the
strategy to the S&P500, NASDAQ and SSE Composite. The figures led us to investigate
in further detail the benefits and downsides of the trading strategy.

Starting with the S&P500 shown in Figure 2.2 we can see that the major benefit is the
result of the sale of the asset just before the 2008 crisis and the prompt repurchasing in
2009 leading to a large gain over this period.
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Figure 2.2: Asset price, stock held and wealth processes using our strategy of the S&P500.
A large initial gain is due to the optimal sale of the asset before the 2008 financial crisis,
followed by a prompt repurchasing of the asset in 2009.

The benefit of this strategy prevails until a sudden drop in asset price mid-2011 which
forced the method to sell off the asset and go short one share. When this occurred, the
continued rise in the asset was not sudden enough to trigger the closing of the short position
until the very end of 2015 leading to heavy losses in the later part of the dataset. Overall,
the method generated excellent returns for the majority of the time, especially in large
market swings.

We can now contrast these results with that of the NASDAQ shown in Figure 2.3.

16



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

−1

0

1

GBM with Disorder Strategy (NASDAQ)

Time (years)

Sh
a

re
s 

H
e

ld

0

1000

2000

3000

4000

5000

6000

V
a

lu
e

 (
$

)

 

 

Wealth

Amount of Stock Held

NASDAQ Index

Figure 2.3: Asset price, stock held and wealth processes using our strategy of the NASDAQ.
Due to poor calibration the application of the trading strategy eventually leads to a series
of poor trades and financial ruin in 2012.

In this case we see the effect of poor parameterization on the execution of a trading
strategy. We noted earlier that the NASDAQ has a decay parameter of λ = 7, which was
more than twice the size as the very similar S&P500. This difference leads to terribly poor
performance due to an early decision to exit the market at any small change in market
conditions. Essentially this means that the strategy was overly sensitive to a temporary
market correction early on which lead to a reduction in the ability to purchase assets and
eventually lead to entering a short position in mid-2009 when the recession was undergoing
a recovery. This massive drop in wealth eventually lead to a default, which we define as
the point where personal wealth becomes zero. At this point we stop the trading strategy
as we do not allow the borrowing of assets without claimable wealth.

For the SSE Composite index, the situation is rather different. Due to the smaller
difference between the optimal buy and sell levels that were calculated, there was a higher
propensity to trade. Shown in Figure 2.4 we can clearly see that the number of trades is
much larger than that of the last two datasets.
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Figure 2.4: Asset price, stock held and wealth processes using our strategy of the SSE
Composite. The optimal trading boundaries are much closer for the SSE Composite which
leads to a larger number of trades. The sale of the asset and short positioning during the
large market drop generates a soaring wealth.

Once again we see that the early sale and shorting of the asset around 2008 leads to
a large generation of wealth, however in the current case, there exists a larger number of
profitable trades at later dates. For example from 2011 and onward there is a pattern of
bear markets and temporary corrections which flatten out the asset price. The method
was able to take advantage of these smaller changes and generate vast wealth until around
2014 where the beginning of China’s speculative bubble begins.

2.3 Discussion

It is clear from the presented data that the mathematical model presented by [11] can
indeed be used to generate significant gains during times of unbounded market growth. In
the S&P500 and SSE Composite cases, the ability to exit out of the 2008 crisis early, and
repurchase at optimal times lead to vast wealth growth over that period. This scenario
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is exactly what the model was designed to capture and it did so well. The major issue
however is when the market returns to a non-volatile state of healthy growth. In all
cases the method was not able to continue generating wealth after the market corrections
finished. This result is perhaps not at all surprising due to the model and its assumptions.

In the model we specify that the bull expected rate of return (µ+) and the bear rate of
return (µ−) were symmetric. This assumption holds true in times where speculation drives
the market and leads to large gains and fast drops. However, in times of healthy market
growth, these assumptions do not hold. It may be the case that in these times the model
would need to be changed to allow for a non-symmetric disorder to occur, or necessitate
the use of a completely different market model.

Another difficulty as highlighted in the dreadful performance of the strategy applied to
the NASDAQ is that poor parameterization can cause the method to become useless. This
issue is inherent with any models that need calibration to market data. Since we chose
calibration datasets that contained market crashes, the parameterization was pushed to
capture these events, which partially lead to the poorer performance during strong market
growth.
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Chapter 3

Application to Real Markets

In this section we focus on developing a variety of trading strategies which will be applied
and calibrated to real market data from the S&P500, NASDAQ and SSE Composite indices.
In each of these models we use market data from 2000-2005 as our calibration data set and
optimize the various parameters for each model. We then use these parameters to apply
our strategy from 2005-present. For each model we assume an all or nothing type trading
strategy, where we can only hold either a position in stock or a risk-free asset that gives
some return (r = 2%). At the start of the method we assume that we currently hold a
single share in the market, and we must make a trading decision in some set period of time
to either continue to hold the stock or sell the stock and invest all returns at the risk-free
rate. If at some later point in time we decide to repurchase some stock, we must extract all
wealth from the risk-free account and purchase Wt/St shares where Wt defines our wealth
process and St is the stock process. Note that at the initial time (t = 0) we hold one share
and therefore W0 = S0.

3.1 Relative Return Strategy

When an investor is presented with the opportunity to buy or sell an asset they must take
many things into account. For example, what is their current position, how risky is the asset
and how has this asset been performing in the past in response to certain situations. In
order to characterize this type of logic, the Relative Return strategy compares the historical
returns between two differently size time windows ∆th and ∆tp. We define ∆th as the size
of the historical time window which acts as a baseline of comparison to ∆tp < ∆th which
characterized the asset performance in the past. The idea is to look at how the stock
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has done overall and compare this to how it did in the last period. If we calculate the
mean return in these two windows as µh and µp, we can say that if µp > µh, the recent
performance of the asset is better than the historical expectation which means the stock
is trending upwards and it is time to buy the next time we have that option. In the case
that µp < µh the asset has recently been performing poorly and if we currently have a
position in the asset it may be time to liquidate into a risk-free investment. In the current
set up we can also set some limit on what we define to be a significant change. Define
r∗µ = (µp − µh)/µh as the relative return boundary which can be adjusted and optimized
for a given asset or index. Using this set up we can write a simple algorithm in pseudo
code to solve this problem outlined in Algorithm 1.

In the relative mean algorithm we first define the historical date range ∆th and the
date range of the partition ∆tp. These are specified as the amount of days to look back
upon. For example, if we made the presumption that the return of an asset over the last
one year is correlated in some way to the return over the previous month, which would
tell us something about the current trend of the asset, we would assign ∆th = 365 and
∆tp = 30 in calendar days. We then calculate the return over these two horizons as µh
and µp. The relative value between these two returns rtµ is calculated at each time step
and compared to our defined significance boundaries r+

µ and r−µ . If rtµ ∈ [−∞, r−µ ] then we
expect that the current performance of the asset is poor compared to its history, and we
should make a trading decision accordingly. If rtµ ∈ [r+

µ ,∞] the asset has recently been
performing well and this may indicate an upswing in the asset. In the case rtµ ∈ (r−µ , r

+
µ )

then the performance is in line with past performance and we cannot extract much new
information.

In the algorithm we define St, at and wt as the stock price, asset state and wealth state
at time t. The asset state is the total number of shares that we currently hold at time t.
Whenever a trading decision is made we either liquidate all of our assets at the market
value and place it into a risk-free holding, or convert all of our holdings into purchasing
the maximal amount of assets we can buy at that time.

In the end we are left with the wealth and stock position over time which can then be
analyzed and optimized based on some given measure (terminal wealth, mean time wealth
etc.).

We apply our method to the S&P500, NASDAQ and SSE Composite indexes using
historical adjusted closing data from 2000 to the present day. To begin we must make
some assumptions in our model. First we assume that at the start of any given trading
day we have the ability to make a trading decision. This condition is equivalent to setting
∆tp = 1 in days. Next we select three historical date ranges to compare our last daily
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Algorithm 1 Relative Mean Algorithm

1: procedure runRMA
2: Set ∆tp, ∆th
3: Set r+

µ , r−µ
4: for t ≤ tend do
5: Calculate µtp, µth
6: rtµ = (µth − µtp)/µth
7: if rtµ > r+

µ then
8: j = t
9: if at==0 then
10: at = wt/St
11: for j ≤ t+ ∆tp do
12: aj = aj−1

13: wj = aj ∗ Sj
14: else
15: for j ≤ t+ ∆tp do
16: aj = aj−1

17: wj = aj ∗ Sj
18: else if rtµ < r∗µ then
19: j = t
20: if at==0 then
21: for j ≤ t+ ∆tp do
22: wj = wj−1 ∗ (1 + r)
23: aj = 0

24: else
25: for j ≤ t+ ∆tp do
26: wj = wj−1 ∗ (1 + r)
27: aj = 0

28: else
29: j = t
30: if at==0 then
31: for j ≤ t+ ∆tp do
32: wj = wj−1 ∗ (1 + r)
33: aj = 0

34: else
35: for j ≤ t+ ∆tp do
36: aj = aj−1

37: wj = aj ∗ Sj
38: t = t+ ∆tp
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return (µp) to the current historical return (µh) which is rolled over each day. By rolled
over it is meant that the mean return is recalculated as we move forward in time such that
we are always calculating µh on the last ∆th days. For this study we choose three different
ranges which are ∆th = {250, 90, 5} representing roughly a year, four months and one week
of trading. The last parameter in this method is the relative return cutoff value r∗µ. Since
this is a somewhat free parameter we calibrate our model using the closing data from the
years 2000-2005 optimizing the value defined by,

MRR =
1

n

n∑
i=1

wi
Si

(3.1)

where n is the number of trade days in the time period, wi/Si is the current wealth/stock
price at time i. This definition is the average ratio of the wealth compared to the asset
price over time. This is a proxy for comparison between our strategy and a buy and hold
type method. The parameter is then applied to the data from 2006-2015. The reason for
choosing to optimize on average wealth is because as an investor, it is important to be able
to fulfill obligations at any given time. This is a kind of liquidity condition that is place
on the investor. If we chose to optimize on the maximum wealth at the end of the year
2015 then it would be possible that our wealth could have been very low for the majority
of time and simply jumped at the end which of course limits our value over time.

Ideally, in order to calculate our optimal relative return (r∗µ) which maximizes the
average wealth on the calibration set we would use something like a Newton iteration
method to find the root of the derivative of the wealth as a function of rµ. However when
working with actual historical data the outcome is not always a smooth function, therefore
such methods are not appropriate for this problem. In light of this we simply use a set of
equally spaced points of rµ ∈ [0, 10] and choose the maximizing parameter. Once this is
found we can apply our parameter set on the testing set and look at the results. Below
is a table showing the sets of calibrated parameters for SP500, NASDAQ and the SSE
Composite indices at the three ∆th values (Table 3.1).

S&P 500 NASDAQ SSE Composite
∆th (days) 250 90 5 250 90 5 250 90 5

r∗µ 0.05 8.4 8.75 6.56 9.88 1.35 2.67 7.27 3.07

Table 3.1: Calibration parameters for the three indices and three historical baseline (∆th).
The above results use ∆tp = 1 and the calibration is done over the range of rµ ∈ [0, 10].
The results vary greatly between the indices tested and don’t show a specific trend.
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Using the calibrated parameters, we now apply the same strategy starting from 2005.
This is essentially an investor living in 2005 and using all of the historical data available in
order to make a decision for the next day. An extension to this would be to recalibrate the
model every ∆tc days in order to keep up with current trends and have the most recent
calibrations, however in the current example we only calibrate once and proceed until 2015.
In Figures 3.1, 3.3 and 3.5 we see the three outcomes of the strategy using the calibrated
parameters in Table 3.1.

Figure 3.1: Application of the Relative Return strategy on the S&P500 index starting from
the year 2005. The grey shows the index value over time which is equivalent to a buy and
hold type of strategy. In the case of ∆th = 90, 250 we see a larger gain over time signifying
that we are able to beat the market in these situations. This also indicates that short term
fluctuations (for example 5 days or less) are not indicative of future outcomes. The details
of these results are discussed later in this work.

24



Figure 3.2: Stock holdings for the Relative Return strategy on the S&P500 index. The
plot shows a comparison between the index price and the amount shares that have been
purchased at a given time. The red bars indicate three times where the index began a
downtrend, and the corresponding response in the trading strategy. In times of downturn
we are able to repurchase shares at a discount and resell at a later time when the stock
recovers. In the grey region the index is doing well and our methods performance is
impacted negatively.

When applying the strategy to the S&P500 index we see that we are able to beat the
market when using a reference time of ∆th = 90, 250. In Table 3.2 we show the MRR
defined in Equation 3.1 as well as the number of transactions that occurred for each ∆th.
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S&P 500
∆th (days) 250 90 5

# of Transaction 1266 682 224
MRR (Mean Return Ratio) 1.1394 1.2637 0.9249

NASDAQ
∆th (days) 250 90 5

# of Transaction 798 578 917
MRR (Mean Return Ratio) 1.2066 1.2176 0.9080

SSE Composite
∆th (days) 250 90 5

# of Transaction 1025 511 441
MRR (Mean Return Ratio) 0.7247 0.8055 1.3453

Table 3.2: This table shows the results of the Relative Return strategy applied to the
S&P500, NASDAQ and SSE Composite indices for ∆th = {250, 90, 5}. In each case we
tabulate the number of transactions that occurred in the 10 years of trading as well as the
MRR. The bolded MRR’s highlight the parameter set that resulted in the best performance.

The value in this strategy is shown when there are times of large market drops, for
example around the 2008 crisis. In this situation when looking at the history for the last
3 months to a year it is clear that the market is in a downtrend and it is time to exit
our position. However it is also able to capture rebounds in this downtrend and recover
some of the value lost in previous periods. Taking the results for ∆th = 90 we can look at
the stock position over time of the applied strategy (Fig. 3.2). In the graph we see that
the major value we attain comes from the cheap purchasing of stock in situations of an
economic downturn. Not only during the 2008 crisis do we see this, we also see it during
the partial market dips in 2010 and 2012 (Red bars).

While this cheap repurchasing during times of financial downturn allows us to turn a
profit when the stock recovers, in times of stability and growth the method is not able
to gain an advantage leading to a dwindling of the stock position as shown in the greyed
section past 2012. In light of this, a method that ties the probability of being in a large
downturn with this strategy would enable us to apply our method only in the appropriate
time frames. Another issue with this method is that there is a large amount of transactions
occurring which would drive our profits down. If we were to apply our method taking into
account a transaction cost, the calibration would have given us a much larger cutoff value
r∗µ in order to reduce the number of transactions we perform.

Given that the S&P500 is a rather large index with many institutional investors our

26



method may not be best suited for this type of environment.

We can also apply the method to the NASDAQ to see how the strategy performs. In
Figures 3.3 and 3.4 we see a very similar strategy being applied as the S&P500.

Figure 3.3: Application of the Relative Return strategy on the NASDAQ index starting
from the year 2005. The grey shows the index value over time which is equivalent to a buy
and hold type of strategy (ignoring dividends). In the case of ∆th = 90, 250 we see a larger
gain over time signifying that we are able to beat the market in these situations. This
also indicates that short term fluctuations (for example 5 days or less) are not indicative
of future outcomes. The details of these results are discussed later in this work.
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Figure 3.4: Stock holdings for the Relative Return strategy on the NASDAQ index. The
plot shows a comparison between the index price and the amount of shares that have been
purchased at a given time. The red bars indicate three times where the index began a
downtrend, and the corresponding response in the trading strategy. In times of downturn
we are able to repurchase shares at a discount and resell at a later time when the stock
recovers. In the grey region the index is doing well and our method’s performance is
impacted negatively.

This is very much expected due to how highly correlated these two indices are to one
another (about 0.93 according to Ref [39]). In order to see how the method can be applied
to a different type of market we investigate next the SSE Composite index.

Recently the SSE Composite Index has been in a large market downturn and is generally
a more volatile environment. Below we look at the method as applied to the SSE Composite
and contrast and compare the outcome. Figure 3.5 and the corresponding Table 3.2 shows
that our method applied to the SSE Composite Index only shows an increase in performance
when the historical trending is applied to ∆th = 5. Shown in the accompanying table, in
this case the strategy produced an average value 135% of the index with somewhat low
trading volume. What this seems to indicate is a view on how the collective market
participants act in certain market conditions. As said earlier, the S&P500 index has a
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larger number of institutional investors, while the SSE Composite is heavily burdened by
private investors whom are more weary of and sensitive to market conditions. In the case
of an institutional investor, a certain position is usually not a speculative investment in
the hopes of making a quick profit, instead the positions held are meant to fulfill a larger
more diversified portfolio. This means that a drop in the market in the short term doesn’t
result in a quick response, either because the current position as a whole is still a benefit,
or because of certain liquidation issues if the company is holding a vast position in a
certain investment. In the case of a private investor, the responsiveness is much quicker
since liquidation of one’s position is easy, and the position is not always a part of a larger
portfolio.

Figure 3.5: Application of the Relative Return strategy on the SSE Composite index
starting from the year 2005. The grey shows the index value over time which is equivalent
to a buy and hold type of strategy. In the case of ∆th = 5 we see a larger gain over time
signifying that we are able to beat the market in these situations. The short term outlook
on the market indicates that the market dynamics in the SSE are very different from the
S&P 500 possibly due to the composition of institutional and private investors in each
market.
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Figure 3.6: Stock holdings for the Relative Return strategy on the SSE Composite index.
The plot shows a comparison between the index price and the amount of shares that have
been purchased at a given time. The red bars indicate the time where the index began a
downtrend, and the corresponding response in the trading strategy. In the grey region the
index is doing poor and our methods performance is impacted for the better.

3.2 Drawdown Strategy

When trying to determine when to buy or sell an asset another aspect to look at is how
large the asset fluctuations have been in recent history. While looking just at the return
of an asset gives some indication of future performance, if in that same period there were
large fluctuations then it is possible that the large return was perhaps an artifact of this
high volatility in this period and perhaps our decisions may be effected by this. In order
to capture this behaviour we define the drawdown factor as,

d =
µ∆th

S+
∆th
− S−∆th

(3.2)
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where ∆th is the look back time, µ∆th is the return over the look back time and S
+(−)
∆th

are the max and min stock prices in the time period ∆th. This factor weighs the return in
an asset against its lowest and highest points in the period. Therefore, in a given period
∆th we may have µ∆th be rather large, however if S+

∆th
−S−∆th is also large, then the impact

is less and d takes on a smaller value.

We employ a similar strategy to the Relative Mean algorithm (Algorithm 1) with some
modifications. We first note that on every trading day we are able to make a decision
based on the drawdown factor calculated in the previous period ∆th. We also must specify
a boundary on what we define as a significant factor to drive our decisions (δd). This is a
free parameter which will be calibrated using historical data before being applied to the
strategy similar to the Relative Mean method. Once again we calibrate this parameter on
the data from 2000-2005 for the S&P500, NASDAQ and SSE Composite indices and apply
the calibrations starting from 2005 to 2015. We use the same MRR factor to quantify the
success of the method. For details on the method see Algorithm 2 below.

Starting with the calibrations of δd on the calibration dataset we have compiled the
optimal drawdown factors in Table 3.3. The calibration was done until the number of
trades went to zero and ∆th = {250, 90, 30}.

S&P 500 NASDAQ SSE Composite
∆th (days) 250 90 30 250 90 30 250 90 30
δd (10−6) 0.2 4.4 21.4 0 2.1 1.7 0.1 1.3 8.4

Table 3.3: Calibration of the drawdown cutoff parameters for the three indices and three
historical baseline (∆th). This table seems to show a trend that an increase in the number
of historical days ∆th seems to cause the calibrated parameters to go to zero.

We now apply the calibrated parameters to our test datasets starting from the year
2005. Table 3.4 provides a summary of the major results of this trading strategy.
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Algorithm 2 Drawdown Algorithm

1: procedure runDA
2: Set ∆th
3: Set δd
4: for t ≤ tend do
5: Calculate µt∆th
6: Calculate S+

∆th
, S−∆th

7: d = µt∆th/(S
+
∆th
− S−∆th)

8: if d > δd then
9: if at==0 then
10: at = wt/St
11: at+1 = at
12: wt+1 = at+1 ∗ St+1

13: else
14: at+1 = at
15: wt+1 = at+1 ∗ St+1

16: else if d < −δd then
17: if at==0 then
18: wt+1 = wt ∗ (1 + r)
19: at+1 = 0
20: else
21: wt+1 = wt ∗ (1 + r)
22: at+1 = 0

23: else
24: if at==0 then
25: wt+1 = wj−1 ∗ (1 + r)
26: at+1 = 0
27: else
28: at+1 = at
29: wt+1 = at+1 ∗ St+1

30: t = t+ 1
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S&P 500
∆th (days) 250 90 30

# of Transaction 11 17 21
MRR (Mean Return Ratio) 1.0827 1.1106 1.1026

NASDAQ
∆th (days) 250 90 30

# of Transaction 19 15 109
MRR (Mean Return Ratio) 0.9887 1.0193 0.8844

SSE Composite
∆th (days) 250 90 30

# of Transaction 19 25 41
MRR (Mean Return Ratio) 0.9270 1.5908 1.3058

Table 3.4: Number of transactions and MRR for using the Drawdown strategy with the
S&P500, NASDAQ and SSE Composite indices. The bolded numbers indicate the best
results for a given index. A rather large benefit is found for ∆th = 90 in the SSE Composite
result.

The results show that in all three test datasets we are able to generate a MRR value
greater than one, indicating that this strategy produces more wealth than simply holding
the asset. In all cases the optimal historical timeframe to calculate the drawdown param-
eters was ∆th = 90. In the case of the S&P500 and NASDAQ we see very similar results.
The S&P500 found an MRR of 1.1106 as compared to the NASDAQ with an MRR of
1.0193. In addition, the number of trades executed in both cases were also very close at 17
and 15 for the S&P500 and NASDAQ, respectively. The fact that the strategy produces
such similar results indicates that the drawdown method taps into similar behaviours of
both indices.

A major difference between the Drawdown strategy and the Relative Return is in the
stock purchasing behaviour. In the Relative Return we see a large amount of transactions
occurring in order to generate a good return, however in the Drawdown strategy we only
execute a trade once or twice a year. In Figures 3.7 ,3.8 and 3.9, 3.10 we see the wealth
and stock purchasing behaviour for the S&P500 and NASDAQ.

33



Figure 3.7: Returns generated by applying the drawdown trading strategy on the S&P500
index. In all cases the method is able to on average produce a greater return than a simple
buy and hold method.

34



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

0

0.5

1

Stock Purchasing Behaviour for ∆ t
h
=90 (S&P 500)

Time (years)

Sh
a

re
s 

H
e

ld

 

 

0

1000

2000

3000

V
a

lu
e

 (
$

)

Amount of Stock Held

S&P500 Index

Figure 3.8: Choosing the best outcome of ∆th = 90 we see some key features of the
drawdown strategy. As opposed to the Relative Return method, the drawdown has a very
small number of trades only at key times. It is clear that in times where the index is
performing poorly we liquidate our position in exchange for a risk free asset.

35



Figure 3.9: Returns generated by applying the drawdown trading strategy on the NASDAQ
index. Only in the case of ∆th = 90 do we see a benefit from this strategy.
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Figure 3.10: Choosing the best outcome of ∆th = 90 we see some key features of the
drawdown strategy. As opposed to the Relative Return method, the drawdown has a very
small number of trades only at key times. It is clear that in times where the index is
performing poorly we liquidate our position in exchange for a risk free asset. This is very
similar to the results for the S&P500 due to the large correlation between these two indices.

It is clear when looking at the stock purchasing process that we are able to detect large
drops in the asset value quite early on. This lets us sell off the assets before the value
plummets and repurchase the asset at a large discount. For example observe the stock
process around the 2008 financial collapse and see how we sell off our position very early
into the drop. This also occurs for minor drops as well, shown around mid-2011. The only
downside of this method is in times of stable market growth. In this scenario, we more
often jump the gun and sell off our position expecting a large drop, only to have the asset
price rebound and leave us at a loss.

A similar behaviour is also observed in the Chinese market shown in Figures 3.11 and
3.12.
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Figure 3.11: Returns generated by applying the drawdown trading strategy on the SSE
index. The outcome here is largely due to the massive bubble occurring in 2008. Since the
method capitalizes on exiting before an extremely large deficit has occured, we were able
to repurchase the stock at a discount and scale our wealth accordingly.
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Figure 3.12: Choosing the best outcome of ∆th = 90 we see some key features of the
drawdown strategy. As opposed to the Relative Return method, the drawdown has a very
small number of trades only at key times. It is clear that in times where the index is
performing poorly we liquidate our position in exchange for a risk free asset.

3.3 Max/Min Strategy

The Max/Min strategy is by far the most simplistic method we present in this section.
The idea is that when looking at the past history of a stock asset for some lookback time
∆l, if the maximum in that time region has occurred more recently than the minimum, we
expect that we are in a market upswing. If we see the minimum occurs more recently than
the maximum then the market is in a downturn and we should sell the asset. For a more
detailed description please see Algorithm 3.

Since this model is so simple, we use historical data to help us determine what the best
lookback time size should be using the calibration data from 2000-2005. This calibration
is shown in Table 3.5.
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Algorithm 3 Max/Min Algorithm

1: procedure runMM
2: Set ∆tp
3: Set δd
4: for t ≤ tpredict do
5: Calculate t+p , t−p
6: if t+p > t−p then
7: j = t
8: if at==0 then
9: at = wt/St
10: for j ≤ t+ ∆tp do
11: aj = aj−1

12: wj = aj ∗ Sj
13: else
14: for j ≤ t+ ∆tp do
15: aj = aj−1

16: wj = aj ∗ Sj
17: else
18: j = t
19: if at==0 then
20: for j ≤ t+ ∆tp do
21: wj = wj−1 ∗ (1 + r)
22: aj = 0

23: else
24: for j ≤ t+ ∆tp do
25: wj = wj−1 ∗ (1 + r)
26: aj = 0

27: t = t+ ∆tp
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S&P 500 NASDAQ SSE Composite
∆tl (days) 87 16 20

Table 3.5: Calibration of the Max/Min strategy for the S&P500, NASDAQ and SSE
Composite. The values of ∆tl represent the optimal lookback times which generated the
greatest returns on the calibration datasets (2000-2005).

Using these values we now look at the performance of the trading strategy in comparison
to the standard buy and hold method. A comparison between this strategy and the stock
price as well as the stock purchasing process is shown for the S&P500, NASDAQ and SSE
Composite in Figures (3.13,3.14), (3.15, 3.16) and (3.17,3.18), respectively. A summary of
the MRR and number of executed trades for this method is shown in Table 3.6.

S&P 500 NASDAQ SSE Composite
Number of trades 27 145 103

MRR (Mean Return Ratio) 1.0086 0.8464 1.0985

Table 3.6: Results of applying the optimized Max/Min trading strategy on the three
indices. The overall performance was rather poor, only producing marginal gains in the
case of the S&P500 and SSE Composite index. The number of trades in all datasets were
varied indicating that this trading strategy may be too simplistic to generate reasonable
performance.

Looking at the S&P500 results we see a marginal increase in wealth compared to the
buy and hold strategy. While the method was able to capture the market drop in 2008,
the overall performance was rather poor.

41



Figure 3.13: A comparison between the S&P500 market index (grey) and the optimized
Max/Min strategy for a loopback time of ∆tl = 87. We can see that the overall performance
is weak, however early exits out of the market in 2008 and the end of 2011 lead to some
significant gains.
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Figure 3.14: The stock purchasing process for the S&P500 with a lookback time of ∆tl = 87.
This figure clarifies the benefits arising from the 2008 slump where the method exited the
position before the majority of the downturn. After this however the method does not
bring much of a benefit.

Looking at the stock process for the S&P500 in Figure 3.14 we see that the only real
gains that occur were from the cheap repurchasing of the stock after the 2008 crisis.

Moving on to the NASDAQ results we see that the Max/Min method actually produced
a worse outcome than simply holding the index. In contrast to the outcome in the S&P500,
the strategy was not able to capitalize on an early exit from the market during the 2008
financial crisis. Moreover, there was a very large amount of trading going on (145) during
the entire period.
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Figure 3.15: A comparison between the NASDAQ market index (grey) and the optimized
Max/Min strategy for a lookback time of ∆tl = 16. We can see that the overall perfor-
mance is weak and the number of trades performed was much higher than that of the
S&P500. This increased trading during 2008 generated a loss of benefit and eventually
large underperformance of the method.
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Figure 3.16: The stock purchasing process for the NASDAQ with a lookback time of
∆tl = 16. This figure makes it much more clear the amount of trades occurring. While we
see a small increase in stock position during the 2008 crisis, the large amount of trading
quickly diminished these gains.

What is most interesting about this result is that it is so different from the outcome of
the S&P500. In general we would expect that since the general market dynamics between
the two are so similar, that the trading strategy should have been able to tap into a similar
trend. This was true in the previous two methods (Relative Return and Drawdown). This
may indicate that the Max/Min model is just too simplistic to extract any real value.

Finally we look at the results from the SSE Composite index. Once again we see a
similar result where we have a large amount of trading (103) and a failure to capture the
large market drop in 2008 (Figures 3.17 and 3.18). The only difference here is the gains
acquired in the continuous fall from 2011-2015.
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Figure 3.17: A comparison between the SSE Composite market index (grey) and the
optimized Max/Min strategy for a lookback time of ∆tl = 20. While the method was not
able to capture the large market drop in 2008 as well as previous strategies, it was able to
gain traction in the constant decline from 2011-2015.
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Figure 3.18: The stock purchasing process for the SSE Composite with a lookback time
of ∆tl = 20. This figure makes it much more clear the amount of trades occurring. The
consistent rise in stock from 2011-2015 indicates that this method may be best suited for
times of constant economic decline.

It is interesting to note that the gain during 2011-2015 is the first time we have seen
one of the methods actually produce a consistent improvement during less volatile market
conditions. While this method may not be suited to describe asset bubbles and financial
crises, it may find use in more stable market environments.

3.4 Strategy Comparisons

In this chapter we explored the application of three different trading strategies which varied
in complexity. The Relative Return strategy which applied a trading rule based on the
day over day return relative to some historical benchmark performed well in all cases and
was capable of constant gains compared to the buy and hold strategy. The only major
downside of this strategy was the amount of trades performed. All datasets had the number
of trades to be around 500 and above which means that over a 10 year interval we were
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trading weekly. While this may not seem to be very frequent, every trade incurs a cost
which drives our wealth down.

The drawdown method added an extra layer of complexity since it also characterized a
measure of volatility. Applying this method to the S&P500, NASDAQ and SSE Composite
lead to a better return than the buy and hold strategy with a massive reduction in the
number of trades performed over the same time frame. Since the drawdown was able to
take advantage of market drops early on and repurchase the assets at a discount it was
able to generate significant gains during major market events. In contrast to the Relative
Return method however, it was not sensitive to small market shifts later on. This can be
attributed to the extra information we attain by looking at the drawdown over the time
period.

The last method (Max/Min) showed very poor performance. The model’s oversimplifi-
cation lead to erratic trading behaviour and inconsistent results. As opposed to the other
two methods, it was not able to characterize the trading behaviour in a sensible way. This
is obvious when comparing the performance between the S&P500 and the NASDAQ. In the
Max/Min method, the trading strategies between these two datasets were very different,
even though the stocks are very correlated and are likely driven by similar factors.

In comparing the three models we have found that in order to generate the best advan-
tage over the buy and hold strategy it may be necessary to incorporate a measure of the
relative volatility of the asset. Since this was implemented within the Drawdown strategy,
this method gave the best returns while minimizing the number of transactions needed.
In the future it would be interesting to study the effect of transaction costs on the three
methods in order to quantify the effect this reduction in trades has.
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Chapter 4

Summary and Conclusion

In this thesis we investigated the application of a mathematically driven trading strategy,
as well as three simplistic deterministic trading rules. The mathematical method extended
the results of Ref. [11] to multiple trading periods and was applied to real market data of
the S&P500, NASDAQ and SSE Composite indices. The original intent of the mathemat-
ical method was to allow the modelling of asset bubbles by modelling the asset price as a
geometric Brownian motion with a disorder. The assumption was that in times of specula-
tive growth, followed by collapse, the expected return exhibited symmetric behaviour. By
applying this model we found that the strategy was very successful in telling us when to
exit large market corrections such as the 2008 crisis and other major speculative bubbles,
however it was unable to generate gains in situations where the market was exhibiting
healthy growth. This was shown to be true in all of the tested markets. While this is
somewhat disappointing it is not surprising since the model was initially designed with the
intent to model asset bubbles only, and by this measure it performed well.

Another issue that was found with the mathematical model was the specification of
the momentum decay parameter λ was very poor in the case of the NASDAQ. Upon
calibration of this dataset the λ value was found to be roughly twice the size of the very
similar S&P500. This misspecification lead to a trading strategy which eventually caused
the investor’s wealth to hit zero around 2012 (the investor defaulted). It was discussed
that the selection of correct calibration data is difficult since the model tries to capture
very rare market events.

To contrast with the mathematical model, we also look at three simple deterministic
trading strategies called the Relative Return, Drawdown and Max/Min strategies. These
models provided simple sets of rule for executing a trade under certain conditions. The
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strategies here did not use advanced mathematical techniques, rather they were based
on common sense and understanding of the markets. It was found that these practical
methods were able to produce similar trading behaviours and returns when compared to
the mathematical method. However when looking at the final MRR results, the S&P500
and SSE Composite generated much better wealth in the mathematical model than any of
the practical methods. For example under the GBM with disorder method the MRR for
the S&P500 was 1.3939 while for the best of the practical methods (Relative Return) only
produced an MRR of 1.2637 (and with fewer trades). In the case of the NASDAQ however,
the mathematical model lead to a default scenario, where the wealth generated by applying
the strategy lead to zero value. This goes back to the issue of mis-parameterization.

Overall this research has shown that we were able to extend the works of Ref. [11] to
apply the method to multiple periods and real market data and we were able to generate
returns that beat the market. We also compared these results to the practical method which
were also able to consistently produce MRR > 1. From this we can see that there is room
for both mathematical as well as practical approaches when developing trading strategies.
In the future it would be interesting to explore the effect of modifying the mathematical
model to allow for a non-symmetric disorder parameter to be allowed. This would bring a
time dependence to the µ+ and µ− and would perhaps lead to better performance during
health market growth. It would also be useful to quantify the effect of transaction costs on
the practical methods in order to calculate the benefits of using the less transaction heavy
Drawdown method in comparison to the Relative Return strategy. Finally, another issue
that was not addressed was the effect of dividends paid on a held stock. It was mentioned
early that we ignored dividends for this work, however it would be very interesting to see
how this addition would play into the optimization and performance of these methods.
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