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Abstract

In this work, we studied the class of lattice path matroids L, which was first introduced
by J.E. Bonin. A.D. Mier, and M. Noy in [3]. Lattice path matroids are transversal, and
L is closed under duals and minors, which in general the class of transversal matroids is
not. We give a combinatorial proof of the fact that lattice path matroids are Rayleigh.
In addition, this leads us to several research directions, such as which positroids are
Rayleigh and which subclass of lattice path matroids are strongly Rayleigh.
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Chapter 1

Introduction

This thesis is motivated by finding classes of matroids that admit the Rayleigh property,
which is an algebraic condition on bases enumerator of matroids. Consider the following
graph G:

a b

c d

1

2

34

5

Figure 1.1. G

It is easy to verify that G has 8 spanning trees {124, 134, 345, 245, 123, 125, 235, 135}. Let
those spanning be chosen equally likely. Then we choose a pair of them, and consider the
following two cases: one of these two contains both edge 1 and 4 and the other does not
contain either of them (case 1); one of these two contains edge 1 but not edge 4 and the
other one contains edge 4 but not 1 (case 2). The probability of case 1 is 1/14, which is
less than or equal to the probability of case 2 that is 3/14. When this happens we say edge
1 and 4 are negatively correlated. In addition, it is not hard to check not only edges 1
and 4 are negatively correlated. Every pair of edges for this graph is negatively correlated.

People who study matroid theory abstract this concept from graphs to matroids.
Consider a cycle matroid of a connected graph, then the edges of the graph correspond to
the elements in the ground set of the matroid and the spanning trees are the corresponding
bases of the matroid . LetM = (E,B) be this matroid with ground set E and collections
of bases B. Define the bases enumerator as follows,

M(x) =
∑
B∈B

xB, where xB =
∏
i∈B

xi

1



Consider a pair of elements e and f in E, and partition B into 4 sets

• Bfe = {B ∈ B : e ∈ B, f ∈ E −B}.

• Bef = {B ∈ B : f ∈ B, e ∈ E −B}.

• Bef = {B ∈ B : e, f ∈ B}.

• Bef = {B ∈ B : e, f ∈ E −B}.

If we can partition M(x) corresponding to these 4 sets, then the difference of probabilities
that we mentioned above will be generalized as the following expression∑

B∈Bfe x
B
∑

B∈Bef
xB −

∑
B∈Bef x

B
∑

B∈Bef x
B∑

B1,B2∈B x
B1xB2

If we set every xi = 1, then we get the original probability. Since we consider the
difference compared to 0, we can ignore the denominator. In this thesis, we study the
the more general result, if we assign any value for xi, what will happen? In fact, for some
matroids if we give positive real assignment, then the result will always be greater than
or equal to 0. Such matroids we call Rayleigh matroids. Not all matroids are Rayleigh,
so we wonder which classes of matroids are Rayleigh.
Define M e and Mf as follows:

M e = M(x)
∣∣
xe=0

, and Mf =
∂M(x)

∂xf

Then we can write
M(x) = M ef + xeM

f
e + xfM

e
f + xexfMef (1.1)

For elements e, f ∈ E, e and f are said to be negatively correlated if

Me

M(x)
≥ Mef

Mf

, when xi ≥ 0 for all i ∈ E

The concept of negative correlation was firstly introduced by Seymour and Welsh in
[12](1975) for the case xi = 1 for all i in the ground set of a matroid. After that Feder and
Mihail defined balance matroids according to this in [9], a matroid is negatively correlated
if for every e, f ∈ E

Me

M(x)
≥ Mef

Mf

And a matroid M is balanced if every minor of M is negatively correlated.

It is not hard to show the above inequality is equivalent to to the following by several
substitutions

M e
fM

f
e −MefM

ef ≥ 0

2



Define Rayleigh difference of a matroid M with respect to e, f as

∆M(e, f) = M e
fM

f
e −MefM

ef

Then the problem will become to determine whether ∆M(e, f) is non-negative. A
matroid is said to be Rayleigh if ∆M(e, f) is non-negative for any pair of e and f with
nonnegative real assignment for xi, where i is the element in ground set. Choe and Wag-
ner gave this definition and proved several classes of matroids admits this property in [7],
such as graphical matroids, sixth-root-of-unity matroids, uniform matroids and so on. I
will give a more detailed review in 2.2.

People studying this desired to determine which classes of matroid are Rayleigh. In
this thesis, we will study a subclass of transversal matroids L, called lattice path matroids,
which was first introduced by Bonin, de Mier and Noy in [3]. I will give a brief review of
this class of matroids in the first half chapter 3. In the rest of chapter 3, I will present
the main result as the following theorem. For all lattice path matroids M , ∆M(e, f) ≥ 0
where xi ≥ 0 for all i of the ground set of M . That is L is a class of Rayleigh matroids.
The proof that I will give is a combinatorial proof by constructing an injective function
from Bef ×Bef to Bfe ×Bef which preserves elements in pairs of the corresponding bases,
which implies that in the expression

M e
fM

f
e −MefM

ef

all terms in MefM
ef are included in M e

fM
f
e . Hence, the Rayleigh difference of a lattice

path matroid is just a polynomial where each term has a non-negative coefficient. There-
fore, if we give any non-negative real assignment, then the value of Rayleigh difference is
greater that or equal to 0. In the last chapter, I introduce generalized Catalan matroids
which is a subclass of L, we wonder does this class admits strong Rayleigh property. In
addition, I have also introduce positroid which is a larger class of matroid that has L as
its subclass.

3



Chapter 2

Preliminaries

2.1 Matroids

In this section, I will give a brief review of matroid theory. Most of the fact I have
reviewed can be found in Oxley’s book [11].

2.1.1 Definitions

A matroid M is a pair of sets (E, I), where set E is a finite set and I is a collection of
subsets of E that satisfy the following conditions:

• (I0) ∅ ∈ I.

• (I1) If I ∈ I and I
′ ⊆ I, then I

′ ∈ I.

• (I2) If I1 and I2 are in I and |I1| < |I2|, then there exists an element e of I2 − I1
such that I1 ∪ {e} ∈ I.

The set E is called the ground set of M (denoted as E(M)) and sets in I are called
independent sets of M (denoted as I(M)).

Lemma 2.1.1. Let M = (E, I) and X ⊆ E. Let I1 and I2 be two maximal independent
set in X, then |I1| = |I2|.

Proof. Suppose not, then there exist I1, I2 such that |I1| < |I2|. By (I2), there exists e
in I2 − I1 such that I1 ∪ {e} is in I. This contradicts to the maximality of (I1). Hence,
|I1| = |I2| if they are both maximal.

Let M = (E, I) and X ∈ E, define rankM(X) = max{|I| : I ∈ X and I ∈ I}. A
maximum independent set is called a basis of M .

Lemma 2.1.2. Let B1 and B2 be two bases of a matroid M , then |B1| = |B2|.

Proof. Suppose for the sake of contradiction, there are two bases such that |B1| < |B2|.
Then by (I2), there exists e ∈ B2−B1 such that B1∪{e} is also an independent set. But
this contradicts to the maximality of a basis. Hence, the desired result is obtained.

4



Lemma 2.1.3. Let B denote the set of bases of a matroid M . Then

• (B1) B 6= ∅.

• (B2) For each B1, B2 ∈ B and e ∈ B1 − B2, there exists f ∈ B2 − B1 such that
(B1 − {e}) ∪ {f} ∈ B.

Proof. (B1 ) follows from (I0 ). Then consider two bases B1, B2 ∈ B, by (I2 ) the result
follows.

Theorem 2.1.4. Let B be a collection of subset of E, then B is the collection of bases
of a matroid if and only if it satisfies (B1) and (B2).

Proof. Clearly by lemma 2.1.3, if B is the collection of bases of M , then (B1 ) and (B2 )
hold.
For the other direction, let I be the collection of subsets of E that are contained in some
B in B. (I0 ) is satisfied since (B1 ). (I1 ) is satisfied since the choices of I. For (I1 ),
let I1 ⊆ B1 and I2 ⊆ B2 where |I1| < |I2|. If B1 = B2, then we are done. So assume B1

is not equal to B2.

We can define a matroid by Theorem 2.1.4. This is the bases definition of a ma-
troid. One of the amazing parts of matroid theory is that there are plenty of equivalent
definitions of a matroid for different purposes of study.

There are also a circuit definition, and a rank functions definition for matroids. How-
ever, in this work the bases definition is what we need.

2.1.2 Examples

In this section, we will introduce several classes of matroids, including graphic matroids,
uniform matroids and representable matroids. They are all important classes of matroids
in matroid theory.

For a graph G = (V,E), define M(G) = (E, I) where I = {F ⊆ E : G =
(V, F ) is a forest }. This is called the cycle matroid of G. Clearly, the set of all spanning
forests is B of M(G).

Example 2.1.5. Consider the following graph. The independent set of M(G) will be the
subsets of [7] where the indicated edges do not contain a cycle. For example, {1, 3, 6} ∈ I.

The class of matroids that is related to graphs is an important subject in matroid
theory. A matroid is graphic if it is isomorphic to the cycle matroid of a graph. However,
a graphic matroid is not enough to determine the graph. If G is a graph, then adding
any single vertex to G will not change its cycle matroid. So to determine a graph from a
graphic matroid, we may assume the desired graph G has no single vertex. Even though
this is not enough. In Oxley’s book [11] section 5.3, he introduced three operation on

5
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7

Figure 2.1. G

graph, which are vertex identification, vertex cleaving and twisting (or ”Whitney flips”).
These operations all result in cycle matroids of two different graphs being the same. Since
none of those operations can be applied on a 3-connected loopless graph, such a graph
can be determined by its cycle matroid uniquely. Proof of this fact can also be found in
[11] Section 5.3.

Example 2.1.6. Let r ≤ n be non-negative integers. Let E be a set with n elements.
Define Ur,n = (E, I) where I = {I ⊆ E : |I| ≤ r}. This is called a uniform matroid. We
can easily check, B(Ur,n) = {B ⊆ E : |B| = r} is the set of bases of this matroid.

Example 2.1.7. Let E be [n] and A be an r by n matrix over a field F. Define M(A) =
(E, I), where I = {I ⊆ E : if I gives linearly independent columns in A}. Then M(A) is
a matroid. The matroid obtained from A is called the column matroid or vector matroid
of A.
Consider the graph G from example 2.1.5, and give an orientation to it,

a b

c d

1 2

3

4

5 6

7

Figure 2.2. Directed G

Then consider the signed incidence matrix of the directed graph over rational field,

A =


1 2 3 4 5 6 7

a −1 1 −1 1 0 0 0
b 0 0 1 −1 −1 1 0
c 1 −1 0 0 0 0 −1
d 0 0 0 0 1 −1 1


6



It is easy to verify that M(A) and M(G) have the same independent sets and bases.

A matroid M is F-representable if M is the column matroid of a matrix A over F,
denoted by MF(A). Clearly, in the above example, A is a representation of M(G). And
we have the following lemma for graphic matroids.

Lemma 2.1.8. Let D(G) be an arbitrary orientation of a graph G, let F be a field. Then
the incidence matrix of D(G) is a matrix representation of M(G) over F.

Proof. In [11], Lemma 5.1.3.

A GF (2)-representable matroid is called binary.

It is not hard to check that Example 2.1.7 is a GF (2)-representable matroid if we
replace every −1 by 1 and let the ground field be GF (2).

A matroid is regular if it is representable over all fields.

Theorem 2.1.9. Graphic matroids are regular.

Proof. People can find the proof in [11], Proposition 5.1.5.

Therefore, Example 2.1.7 is a regular matroid as well.

Of course, there are matroids which are not representable, one of the smallest examples
is the Vámos matroid.

2.1.3 Operations on Matroids

Dual of a matroid

Let M = (E,B) be a matroid, and define B∗ = {B ⊆ E : E −B ∈ B}.

Theorem 2.1.10. M∗ = (E,B∗) is a matroid.

Proof. It can be found in [11], Theorem 2.1.1.

This M∗ is called the dual matroid of M . Of course there is a rank function definition,
and a circuits definition (we did not provide rank and circuits definition in this work
because we do not use it) for dual of a matroid, and so on. However, the basis definition
for dual is a better choice than others in this paper. And it is very easy to verify (B1 )
and (B2 ) to prove the above theorem.

Example 2.1.11. Dual graph G∗ of example 2.1.5 shown in figure 2.3. Consider M(G∗),
it is the matroid dual ofM(G) in example 2.1.5. Moreover, we have the following theorem.

Theorem 2.1.12. G is planar if and only if M(G∗) is graphic.

7
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Figure 2.3. G∗ dual of G

Proof. In [11], Theorem 5.2.2.

Let F be any field. Given a finite set E, let V be a subspace of FE, define V ⊥ = {x ∈
FE : xTy = 0, for each y ∈ V }. V ⊥ is called the orthogonal space of V .

Theorem 2.1.13. Let A1 ∈ Fr1×E and A2 ∈ Fr2×E. If Rowspace(A1)
⊥ = Rowspace(A2),

then M(A1)
∗ = M(A2).

Proof. In [11], Theorem 2.2.8.

Theorem 2.1.13 tells us that the class of representable matroid is dual-closed.

Deletion and contraction

Let M = (E, I) be a matroid, S be a subset of E. Define I ′ = {I ⊆ (E − S) : I ∈ I}.

Lemma 2.1.14. Let M\S = (E − S, I ′), then M\S is a matroid, called deletion of M
with respect to S.

Proof. The proof can be found in [11] Section 3.1. It is easy to verify I0,I1,I2.

After deletion a representable matroid is still representable, since given a representa-
tion of the primal matroid and deleting the corresponding column will give the represen-
tation of the resulting matroid.

Define M/S = (M∗\S)∗ to be the contraction of M with respect to S.

A matroid M
′
obtained by applying deletions and contractions to M is called a minor

of M .

Example 2.1.15. Consider the graph G from Example 2.1.5, G/{7} is shown in figure
[2.4] It is easy to verify that M(G/{7}) = M(G)/{7}.

8
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Figure 2.4. G/{7}

Theorem 2.1.16. If N is a minor of M , then N can be written as M/I\I∗, where
I ∈ I(M) and I∗ ∈ I(M∗).

Proof. This proof can be found in [11] Theorem 3.3.2

Clearly, the class of representable matroids is closed under minors since they are
closed under duals and closed under deletions. However, class of representable matroid is
a big class of matroids. Later we will introduce a class of matroids, transversal matroids.
This class of matroids is not closed under minors.

Direct Sums

Let M1 = (E1, I1) and M2 = (E2, I2) be matroids with E1 ∩ E2 = ∅, define M1 ⊕M2 =
(E1 ∪E2, I) where I = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}. M1⊕M2 is a matroid, and it is called
the direct sum of M1 and M2.
For example, if we have two edge disjoint graphs G1 and G2, then M(G1) ⊕M(G2) =
M(G1 ∪G2). Later, we will show a example of direct sum of two lattice path matroids.

2.1.4 Binary Matroids and Regular Matroids

Characterizing a class of matroids by its excluded minors is one of the main streams in
matroid theory. In this section, we will introduce some characterizations for the class of
binary matroids and regular matroids.

Recall, a matroid M is binary if it is representable over GF (2). There are plenty
of characterization of binary matroids, and the following theorem show that uniform
matroid U2,4 can not be a minor of a binary matroid. In fact, if a matroid has no minor
that is isomorphic to U2,4 then it is binary matroid.

Theorem 2.1.17. Let M be a matroid, then M is binary if and only if M has no U2,4-
minor.

Proof. In [11], Theorem 6.5.4.

Recall, a matroid M is regular if it is representable over all field.

9



Theorem 2.1.18. Let M be a matroid, then the following statements are equivalent

1. M is regular.

2. M is GF (2)-representable and GF (q)-representable for some odd q.

3. M is GF (2)-representable and Q-representable.

4. There exists a matrix representation A of M , where A is totally unimodular.

Proof. This is Theorem 6.6.3 in [11]

Recall Theorem 2.1.9. To prove it, we need to prove the sign incidence matrix of a
graph is totally unimodular.

2.2 Rayleigh Matroids

In this section, I will give the definition of Rayleigh matroid and give a literature review
of the work done in this area.

2.2.1 Definitions

Bases Enumerator

Let M = (E,B), let xe for all e ∈ E} be indeterminants that are indexed by the ground
set E. For a subset S of E, let xS =

∏
e∈S xe. Define the basis enumerator of M is as

the following polynomial

M(x) =
∑
B∈B

xB

where B is the set of bases of a matroid M .

Rayleigh Difference

Recall in the introduction, we can partition B into 4 sets according to a pair of elements
e, f ∈ E(M) which are not loops as follows

• Bfe = {B ∈ B : e ∈ B, f ∈ E −B}.

• Bef = {B ∈ B : f ∈ B, e ∈ E −B}.

• Bef = {B ∈ B : e, f ∈ B}.

• Bef = {B ∈ B : e, f ∈ E −B}.

10



Define M e and Mf as follows:

M e = M(x)
∣∣
xe=0

, and Mf =
∂M(x)

∂xf
.

Then we can write

M ef =
∑
B∈Bef

xB (2.1)

Mef =

∑
B∈Bef

xB

xexf
(2.2)

M f
e =

∑
B∈Bf

e

xe
(2.3)

M e
f =

∑
B∈Be

f

xf
(2.4)

So we have the following expression

M(x) = M ef + xeM
f
e + xfM

e
f + xexfMef (2.5)

Define Rayleigh difference of M with respect to e, f is defined as

∆M(e, f) = M e
fM

f
e −MefM

ef

Then the question of determining whether a pair elements has negative correlation

Me

M(x)
≥ Mef

Mf

will be translated to determine whether the following Rayleigh difference is non-negative.
If the Rayleigh difference is non-negative for every pair of elements with all non-

negative real assignment, then the corresponding matroid is Rayleigh. Rayleigh matroid
was first introduce by Chow and Wagner in [7]

If the Rayleigh difference is non-negative for every pair of elements with all real
assignment, then the corresponding matroid is strongly Rayleigh.

2.2.2 Rayleigh Matroids

Some examples

In other word, if a matroid is Rayleigh then ∆M(e, f) ≥ 0 for all ~x in RE−{e,f}
≥0 . Following

theorem indicate known classes of Rayleigh matroids and some connection between some
other classes of matroids.

Theorem 2.2.1. The following classes of matroids are Rayleigh:

11



1. Regular matroids.

2. Uniform matroids.

3. Matroids with rank or corank no more than 3.

4. Vámos matroid is Rayleigh.

1 and 2 are proved in [7] Section3. 3 is proved in [13] Theorem 1.1. 4 can be verified
through Theorem 3(c) in [16].

The following theorem indicates that the class of Rayleigh matroids is closed under
those operations. It can be found in [7].

Theorem 2.2.2. Let R be class of Rayleigh matroids

1. R is closed under duals and minors.

2. R is closed under 2-sums.

Theorem 2.2.3. • Every Rayleigh matroid is balanced.

• A binary matroid is Rayleigh if and only if it does not contain S8 as a minor.

• A binary matroid is balanced if and only if it is Rayleigh.

Reader can find the proof of 2.2.2 and 2.2.3 in [7] if interested. The proof is technical
and not important to this thesis, hence it is omitted here. And it is important to noticed
that not all balanced matroid are Rayleigh, in [??] Choe and Wagner give an example of
this in Theorem 5.11.

Half Plane Property and Strongly Rayleigh Property

A polynomial P (x) =
∑

α cαx
α in several complex variables xe e ∈ E} has the half plane

property if when Re(xe) > 0 for all e ∈ E, then P (x) 6= 0. A matroid M = (E,B) is
a half plane property matroid if its bases enumerator has the half plane property. This
class of polynomial was first introduced by Choe, Oxley Sokal and Wagner in [6]. Later
Brandén proved the following theorem in [1].

Theorem 2.2.4. A matroid is a half plane matroid if and only if it is a strongly Rayleigh
matroid.

It is a surprising result that a complex conditions of multinomial is equivalent to a
real non-negative conditions. Reader can find the proof of this theorem in [1] Section 5
if interested.

In this thesis, I will provide a combinatorial technique to prove the Rayleigh property
of lattice path matroid which will be introduced in next chapter. Unfortunately, I have
not found a good combinatorial approach for the strongly Rayleigh property.
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Chapter 3

Lattice Path Matroids

In this chapter, we will first introduce a widely studied class of matroids, the transversal
matroids. Then we will introduce a subclass that can be identified from a pair of lattice
paths from (0, 0) to (n,m), which was first introduced by Joseph Bonin, Anna de Mier
and Marc Noy, in [3] (2002). The class of lattice path matroids is a subclass of transversal
matroids and it is minor-closed and dual-closed. Furthermore, L is closed under direct
sum operation, and a particular case of 2-sum operation. We will demonstrate the basic
structure properties of lattice path matroids. Then we will present the main theorem of
this paper.

3.1 Transversal Matroids

3.1.1 Definition

A set system is a pair of sets (E,A), where E is a finite set and A = {A1, A2, · · · , Am}
is a set with element being subsets of E. For i 6= j, Ai is not necessarily distinct from
Aj. We denote the indices of A as J = [m]

Example 3.1.1. Let E = {1, 2, 3, 4, 5, 6, 7}, and A = {A1, A2, A3} where A1 = {1, 2, 7},
A2 = {3, 4, 7} and A3 = {5, 6, 7} and J = {1, 2, 3}. Then (E,A) is a set system as
described above.

A transversal of the set system (E,A) is a subset B of E, such that there exists a
bijection

φ : J → B

where φ(j) ∈ Aj for all j in J .

Example 3.1.2. Consider the previous example 3.1.1, let B = {1, 4, 7}, we can have
φ(1) = 1, φ(2) = 4 and φ(3) = 7.

13



A partial transversal of a set system (E,A) with A = {Aj : j ∈ J} is a transversal of
some subsystem (E,A′) where A

′
is a subset of A. Thus a partial transversal of (E,A)

is a subset I of E such that there is an injection

ψ : I → J

where for all i ∈ I, i is in Aψ(i).

Example 3.1.3. Consider the set system in example 3.1.1, let I = {1, 7}, then we can
have I be a transversal of (E, {A1, A2}). However, we can also have I be a transversal
of (E, {A1, A3}).

From the above example, we noticed that the bijection between a subset of E and J
may not be unique. That indicates a transversal or a partial transversal does not give
the bijection or injection.

Theorem 3.1.4. Let (E,A) be a set system where A = {Aj : j ∈ J}, let I be the
collection of its partial transversals. Define M = (E, I). Then M is a matroid.

Proof. Let A be a 0-1 matrix over rational field where rows of A are indexed by J and
columns of A are indexed by E, and the entry of i-th row and j-th column is 1 if and only
if j is in Ai. Then linearly independent columns of A correspond to partial transversals.
Hence, we realize that M is a matroid. Such a matroid is called a transversal matroid.

Remark 3.1.5. For a set system and the corresponding transversal matroid M ,

1. Transversals are bases of M .

2. Partial transversals are independent sets of M .

3. Every transversal matroid is representable over all sufficiently large fields, and it is
representable over all infinite fields. See the proof in [2] Theorem 2.5.

This class of matroids was first introduced by Jack Edmonds and D. R. Fulkerson in
[8] in the 1960s. It is easy to check all uniform matroids are transversal. Some graphic
matroids are transversal and some are not. In the following example we will introduce
a non-transversal graphic matroid. In [11] Chapter 10, Theorem 10.4.7 gives the precise
characterization of which graphic matroids are transversal.

3.1.2 Facts

Theorem 3.1.6. The following statements are equivalent for a matroid M :

1. M is graphic and transversal.

2. M is regular and transversal.

14



3. M is binary and transversal.

Example 3.1.7. Consider example 2.1.15, we will show M(G/{7}) is not transversal.

Assume M(G/{7}) is a transversal matroid for a set system, then the set system will
have ground setE = [6]. From the figure, we can easily checkAmust be {{1, 2}, {3, 4}, {5, 6}}
since {1, 2}, {3, 4}, {5, 6} are not independent. However this gives {1, 3, 5} is indepen-
dent, and those three edge is a circuit in G/{7}. Hence, this arises a contradiction.
Therefore, M(G/{7}) is not transversal.

Theorem 3.1.8. Transversal matroids are not minor-closed and not dual-closed.

Proof. Consider Example 2.1.5 it is easy to check M(G) is transversal. Clearly, Example
3.1.7 show that transversal matroids are not minor-closed. Assume transversal matroids
are dual closed, since transversal matroids are deletion closed we will arise transversal
matroids are minor-closed. This contradicts the fact they are not minor-closed. Hence,
the desired result is obtained.

A gammoid is a minor of a transversal matroid. It is stated in [11] Proposition
3.2.10 and 3.2.12 that every transversal matroid is a gammoid and the class of gammoids
is closed under minors and under duality. Because of this, the class of gammoids is the
smallest minor-closed class that contains all transversal matroids. It is a natural question,
what is the largest minor-closed class that is contained in the class of transversal matroids.
In this paper, we will study a subclass of transversal matroids that is called lattice path
matroid, which is minor-closed.

3.2 Lattice Path Matroid

A lattice path is a sequence of steps {(1, 0), (0, 1)} going from (0, 0) to (n,m). We can
also consider a lattice path as a sequence of letters ’E’ and ’N ’ with E = (1, 0) and
N = (0, 1). Let P = p1p2 · · · pm+n and Q = q1q2 · · · qm+n be two lattice paths from (0, 0)
to (n,m), then we say P is weakly above Q if for all 1 ≤ i ≤ m+ n the total number of
N steps in P is greater than or equal to the total number of N steps in Q up to step i.
Every lattice path L between P and Q from (0, 0) to (n,m) has m north steps, Denoted
the indices of north steps of L as B(L). Define M [P,Q] = (E,B), where E = [m+ n], B
is collection of all B(L) where L is a lattice path between P and Q.

Theorem 3.2.1. (Theorem 3.1 in [3]) M[P,Q] is a transversal matroid, and B is the
collection of bases.

Proof. Let {ps(1), ps(2), · · · , ps(m)} be the set of N -steps of P where s(1) < s(2) < · · · <
s(m); for Q, let {qt(1), qt(2), · · · , qt(m)} be the set of N -steps. Since P is weakly above Q,
s(i) ≤ t(i) for all i ∈ [m]. Let Ni be the interval [si, ti] of integers. Let E = [m + n]
and A = {N1, N2, · · · , Nm}. Let L be a lattice path between P and Q, and the indices
of its north steps are B(L) = {l(1), l(2), · · · , l(m)}. Since if L is a lattice path between
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P and Q, s(i) ≤ l(i) ≤ t(i) for all i ∈ [m]. Hence we can construct a bijection from [m]
to B(L) by letting φ(i) = l(i). So B(L) is a transversal of (E,A). Therefore, M [P,Q] is
the transversal matroid of set system (E,A).

Let M be a matroid. Then M is a lattice path matroid if M is isomorphic to some
M [P,Q]. We denote the class of lattice path matroids by L.

Example 3.2.2. Let P = NNENEEENEE and Q = EENEENEENN , then E =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, N1 = {1, 2, 3}, N2 = {2, 3, 4, 5, 6}, N3 = {4, 5, 6, 7, 8, 9},N4 =
{8, 9, 10}

Figure 3.1. Lattice presentation

Theorem 3.2.3. L is closed under duals.

Proof. A basis for M∗ is the complement of a basis for M . By definition, a basis of M
is the set of N -steps of a lattice path, and its complement is the set of E-steps. Hence,
simply by reflecting the representation of M along the line of y = x, then we will obtain
a the representation of M∗.

Example 3.2.4. For example, the dual representation of Example 3.2.2 is transversal
matroid of (E,A), where E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {N1, N2, N3, N4, N5, N6},
N1 = {1, 2, 3}, N2 = {2, 3, 4, 5}, N3 = {4, 5, 6}, N4 = {5, 6, 7}, N5 = {7, 8, 9}, N6 =
{8, 9, 10}. And the lattice path presentation is shown as follow:

Figure 3.2. Lattice presentation of the dual matroid
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Remark 3.2.5. According to the definition of L the following fact can be verified easily.
Given M [P,Q].

1. rank(M [P,Q]) = m.

2. Independent sets of M [P,Q] are partial transversals of ([m+ n], {N1, · · · , Nm}).

3. If s(i) = t(i) for some i, then s(i) is an isthmus of M [P,Q]. An isthmus is an
element that appears in every basis.

4. Let B is a basis of M [P,Q], we can find its lattice path presentation L as

L = s1s2 · · · sm+n

with

si =

{
N, if i ∈ B
E, if i 6∈ B

3.3 L is minor-closed, and closed under direct sum

In this section, we will show that L is minor-closed by the corresponding operations on
lattice path presentation of a lattice path matroid.

3.3.1 Deletion and contraction

Consider single element deletion of M [P,Q]. Delete element e can be realized as an
operation on the lattice path presentation of M [P,Q]. It will be in the following 3 cases:

1. For an isthmus e, we delete e from both P and Q to get a new pair of P
′

and Q
′
.

M [P,Q]\{e} ∼= M [P
′
, Q
′
].

2. For a loop e (it means e is not in any Ni for all i ∈ [m]), we delete e from both P
and Q get a new pair of P

′
and Q

′
. M [P,Q]\{e} ∼= M [P

′
, Q
′
].

3. For neither an isthmus nor a loop e, if e is north step on P , delete the first east
step after e from P ; if e is east step, delete e from P . If e is north step on Q, delete
the last east step before e from Q; if e is east step on Q, delete e from Q. These
deletions will give a new pair of P

′
and Q

′
. M [P,Q]\{e} ∼= M [P

′
, Q
′
]. For details,

people can find this in [4] Theorem 3.1.

Consider single element contraction, we can just apply the deletion on M [P,Q]∗. For
an isthmus or a loop e, we can just delete from both P and Q as before. For e is neither
an isthmus nor a loop, if e is north step on P , delete e from P ; if e is east step, delete
the last north step before e from P . If e is north step on Q, delete e from Q; if e is east
step on Q, delete the first north step after e from Q. These deletion will give a new pair
of P

′
and Q

′
, and M [P,Q]/{e} ∼= M [P

′
, Q
′
].
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Example 3.3.1. Consider another pair of lattice paths,

P = NNEENNENEENEE

Q = EEENEEENENNNN

Then the lattice path presentation of M [P,Q] is shown in Figure 3.3 (left), we simply
omit the edge in between P and Q consider M [P,Q]\{4}, then the step 4 in P is an east
step; the last east step in Q before 4 is 3. Delete this two, we will have

P
′
= NNENNENEENEE

Q
′
= EENEEENENNNN

Then the lattice path presentation of M [P,Q] is shown in Figure 3.3 (right) Consider

Figure 3.3. Example 3.3.1

M [P,Q]/{4} then the last north step before 4 in P is 2; the step 4 is north step in Q.
Delete this two, we will have

P
′
= NEENNENEENEE

Q
′
= EEEEEENENNNN

The lattice path presentation of M [P
′
, Q
′
] is shown in Figure 3.4.

Figure 3.4. Example 3.3.1
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Example 3.3.2. Consider

P = NNEEENNEENNENEENEE

Q = EENNEEENNNEEEEENNN

The lattice path presentation of M [P,Q] will be Figure 3.5(left). Clearly 5 is a loop and
10 is an isthmus. Deleting or contracting 5 and 10 will give the same result as Figure
3.5(right).

Figure 3.5. Example 3.3.2

3.3.2 Direct sum

Let M [P1, Q1] and M [P2, Q2] be two lattice path matroid, then M [P,Q] = M [P1, Q2]⊕
M [P2, Q2] has the lattice path presentation P = P1P2 and Q = Q1Q2. Simply, just put
two lattice path presentation together identify the ending point of P1 and starting point
of P2.

Example 3.3.3. Consider
P1 = NENEENEENE

Q1 = EEENEEENNN

P2 = NEENEENE

Q2 = EEEENENN

Then the M [P,Q] = M [P1, Q2] ⊕M [P2, Q2] will have the following lattice path presen-
tation

Theorem 3.3.4. L is closed under minors, duals and direction sum.

Proof. This is really a proof by picture. According to the description of each operation on
a lattice path matroid ML, we can easily find the corresponding lattice path presentation
of the minor derived from ML by deletions and contractions. There is more detailed
description in [4] Section 3.
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Figure 3.6. Example 3.3.3

3.3.3 Excluded Minors

As we mention in chapter 1, characterizing a minor-closed class of matroids by finding
its excluded minors is a major topic in matroid theory. The following theorem is proved
by J.E. Bonin is in his work [5] Theorem 3.1. The notation for these excluded minors is
explained there.

Theorem 3.3.5. A matroid is a lattice path matroid if and only if it has none of the
following matroids as minors:

1. An = P
′
n + x, for n ≥ 3.

2. Bn,k = Tn(Un−1,n ⊕ Un−1,n ⊕ Uk−1,k) and its dual Cn+k,k, for n ≤ k ≤ 2.

3. Dn = (Pn−1 ⊕ U1,1) + x and its dual En, for n ≥ 4.

4. the rank-3 wheel, W3, the rank-3 whirl, W3.

5. the matroid R3 and its dual R4.

3.4 Rayleigh Property

Recall that the Rayleigh difference of a matroid is defined as

∆M(e, f) = M e
fM

f
e −MefM

ef .

Let M be a lattice path matroid. Then for each term in M f
e , the corresponding basis

has lattice path presentation that uses step e as a north step and does not use f as
a north step, that is a lattice path representation of element B ∈ Bfe . For the other
three polynomials, they have the respective corresponding lattice paths. Hence, if we can
find a injective function F : Bef × Bef → Bef × Bfe such that for F (B1, B2) = (B

′
1, B

′
2)

xB1xB2 = xB
′
1xB

′
2 , then we will conclude that for a lattice path matroid M , ∆M(e, f)

has only positive terms. Hence, the lattice path matroid is Rayleigh. It turns out we can
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find such an injective function for any lattice path matroid. Therefore, the class L is a
subclass of class of Rayleigh matroids.

Theorem 3.4.1. For all lattice path matroids M , ∆M(e, f) ≥ 0 where xi ≥ 0 for all i
of the ground set of M .

Unfortunately, we are not able to find a natural injective function from Bef × Bef to
Bef×Bfe . However, we are still able to prove this theorem through a careful construction of

an injective-like correspondence. First, we pick a pair of bases (B1, B2) in Bef×Bef , then
find the corresponding lattice path presentation of these two bases (P1, P2). Record the
steps that they agree on and ignore them. We will have a pair of lattice paths (G1, G2)
symmetric across the line y = x. After this, we have five cases to discuss. For each of
them we find a corresponding pair (G

′
1, G

′
2). Then we put back the information that we

ignored from the first step. This will give a pair of lattice paths which are presentation of
a pair of bases (B

′
1, B

′
2) in Bef × Bfe . According the operations that we do, the condition

F (B1, B2) = (B
′
1, B

′
2) x

B1xB2 = xB
′
1xB

′
2 has been satisfied, which finishes the proof. Let

us look into the details.

The constructions in of the proof are complicated. So, I provide the following example
to be a reference for how it works step by step.

Example 3.4.2. Let M [P,Q], where

P = NNEENNNEEEENNEEEENEE

Q = EEEEENNEEEENEEENNNNN

then according the definition, we have M = ([20],A), where

A1 = {1, 2, 3, 4, 5, 6}
A2 = {2, 3, 4, 5, 6, 7}
A3 = {5, 6, 7, 8, 9, 10, 11, 12}
A4 = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
A5 = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}
A6 = {12, 13, 14, 15, 16, 17, 18}
A7 = {13, 14, 15, 16, 17, 18, 19}
A8 = {18, 19, 20}

Then the lattice path presentation of M is shown in Figure 3.7

3.4.1 A forgetting function

Let M [P,Q] be a lattice path matroid, and let (B1, B2) ∈ Bef×Bef . Then take the lattice
path presentation of (B1, B2), denoted as (P1, P2). So P1 and P2 are two lattice paths
from (0, 0) to (m,n) between P and Q. Consider P1 and P2 as words formed by Ns and
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Figure 3.7. Lattice Path presentation of M [P,Q]

Es. Then P1 = s1s2 · · · sm+n where se = E and sf = E, P2 = t1t2 · · · tm+n where te = N
and tf = N , and each si, ti ∈ {N,E}. Let C(P1, P2) = {i : si = ti} and also record Cr =
{(i, si) : si = ti} (for remembering them later). Let D(P1, P2) = [m + n]\C(P1, P2). Let
k = |D(P1, P2)| so that D(P1, P2) = {i(1), i(2), · · · , i(k)} where i(1) < i(2) < · · · < i(k).
Define the forgetting function f by:

f(B1, B2) = (G1, G2, Cr)

where G1 = si(1) · · · si(k) and G2 = ti(1) · · · ti(k).

Lemma 3.4.3. G1 and G2 are two lattice paths from (0, 0) to (k
2
, k
2
), for k = |D(P1, P2)|,

which are symmetric across the line x = y.

Proof. By the construction of forgetting function G1 and G2 are different at every step
and end at the same point. So they are symmetric along y = x and end at y = x. Clearly,
k is an even number. Hence the total number of N -step is k/2.

Lemma 3.4.4. f is an injective function.

Proof. Since we recorded Cr, which indicates the position of steps that we have forgotten,
and also indicates whether the step is N or E, we can retrieve (P1, P2) by adding back
those steps to the corresponding position. Hence, for each (G1, G2, Cr), it can only be
derived from an unique pair of (P1, P2). Therefore, there is an unique pair (B1, B2) such
that f(B1, B2) = (P1, P2, Cr).

Remark 3.4.5. Write G1 = si(1)si(2) · · · si(k), then se = E and sf = E must be left in
G1. Similarly, write G2 = ti(1)ti(2) · · · ti(k), then te = N and tf = N must be left in G2.
And we let i(c) = e and i(d) = f for later convenience.

Example 3.4.6. In example 3.4.2, pick e = 7 and f = 16, then

P1 = NENENN E︸︷︷︸
s7

ENEEENEE E︸︷︷︸
s16

NENE

P2 = EENEEN N︸︷︷︸
t7

EEEEEEEN N︸︷︷︸
t16

ENNN
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Figure 3.8. Lattice Path representation of P1 and P2

Then C(P1, P2) = {2, 3, 4, 6, 8, 10, 11, 12, 14, 19}, so c = 3 and d = 7 for later reference.

G1 = NN E︸︷︷︸
s7

NNE E︸︷︷︸
s16

NEE

G2 = EE N︸︷︷︸
t7

EEN N︸︷︷︸
t16

ENN

The figure of G1 and G2 is given as follow:

Figure 3.9. G1 (in blue) and G2 (in red)

3.4.2 A 1-to-1 correspondence, and a 2-to-2 correspondence

From the last section, we get (G1, G2) by applying the forgetting function to a pair of
lattice paths that is a lattice path presentation of (B1, B2) ∈ Bef × Bef . In this section,
we will find the corresponding pair (G

′
1, G

′
2) of applying forgetting function to a pair of

bases (B
′
1, B

′
2) ∈ Bef × Bfe . Write G1 and G2 as

G1 = si(1)si(2) · · · si(k)
G2 = ti(1)ti(2) · · · ti(k)

From the forgetting function we observe that G1 and G2 differ at each step. Define
altitude by

alt(l) = y − x
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where (x, y) are the coordinates of the ending point of step si(l) and 1 ≤ l ≤ k.

And to find the correspondence that we want for (G1, G2), we will need to consider
the following 5 cases:

Before I introduce the correspondence, I will draw the following diagram to help
readers to follow the complicated case analysis for cases 2-5. According to the following
Figure 3.10, consider node A is (G1, G2).

1. If case 2 or case 3 happens, then we have node C as (G
′
1, G

′
2) in the correspondence.

Hence, a 1-to-1 correspondence holds for these cases

2. If case 4 or case 5 happens, then we discover that we have another two nodes
B corresponding to (G∗1, G

∗
2) and D corresponding to (G

′′
1 , G

′′
2). Hence, a 2-to-2

correspondence holds for theses cases

A C

B D

case 2 and case 3

case 4 and case 5

Figure 3.10. Reference for the correspondence

Now we are ready for the case analysis,

• Case 1: If there exist a l such that e ≤ i(l) < f and alt(l) = 0, that is G1 and
G2 touch the diagonal y = x between step se and sf at step si(l), then we say the
corresponding G

′
1 and G

′
2 is the pair of lattice paths obtained by exchanging the

steps in G1 and G2 after si(l) as follows:

G
′

1 = si(1) · · · si(l)ti(l+1) · · · ti(k)
G
′

2 = ti(1) · · · ti(l)si(l+1) · · · si(k)

To avoid ambiguity, we choose i(l) = min{i(l) : e ≤ i(l) < f , alt(si(l)) = 0}.

Example 3.4.7. Suppose that after the forgetting function, we have the following

G1 = NE E︸︷︷︸
s7

ENN E︸︷︷︸
s16

ENN

G2 = EN N︸︷︷︸
t7

NEE N︸︷︷︸
t16

NEE
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Notice that alt(6) = 0 is the first index after s7 with altitude 0, so we will switch
every step after si(6), the result is

G
′

1 = NE E︸︷︷︸
s
′
7

ENN N︸︷︷︸
s
′
16

NEE

G
′

2 = EN N︸︷︷︸
t
′
7

NEE E︸︷︷︸
t
′
16

ENN

This operation is shown in figure 3.11

case 1 operation
7→

Figure 3.11. G1 (blue) and G2 (red) G
′
1 (blue) and G

′
2 (red)

• Case 2: For all e ≤ i(l) < f we have alt(l) < 0, that is between e and f , G1 is
totally bellow G2. We know alt(d − 1) < 0 (recall i(d) = f), so there must exist
steps f < i(b) such that alt(b) = alt(d − 1). To avoid ambiguity, choose the one
with smallest index i(b). Then switch the steps from i(d) including i(d) to i(b) both
on G1 and G2. After this, let G

′
1 be the result path of G1 and G

′
2 be the result path

of G2, then the result can be realized as follows:

G
′

1 = si(1) · · · si(d−1)tf ti(d+1) · · · ti(b)si(b+1) · · · si(k)
G
′

2 = ti(1) · · · ti(d−1)sfsi(d+1) · · · si(b)ti(b+1) · · · ti(k)
Example 3.4.8. Suppose that after the forgetting function, we have the following

G1 = NE E︸︷︷︸
s7

ENE E︸︷︷︸
s16

NNN

G2 = EN N︸︷︷︸
t7

NEN N︸︷︷︸
t16

EEE

Notice that alt(6) = −2 and si(8) is the first position after f that has altitude
equaling to −2. Then we will switch steps si(7) and si(8), the result is

G
′

1 = NE E︸︷︷︸
s
′
7

ENN N︸︷︷︸
s
′
16

NEE

G
′

2 = EN N︸︷︷︸
t
′
7

NEE E︸︷︷︸
t
′
16

ENN

This operation is shown in Figure 3.12

25



case 2 operation
−→

Figure 3.12. G1 (blue) and G2 (red) G
′
1 (blue) and G

′
2 (red)

• Case 3: For all e ≤ i(l) < f we have alt(l) > 0, that is between e and f , G1 is
totally above G2. We know alt(c) > 0 (recall i(c) = e), so there must exists steps
i(1) ≤ i(a) < e such that alt(a) = alt(c). To avoid ambiguity, choose the one with
largest i(a). Then switch the steps from i(a+ 1) to i(c) both on G1 and G2. After
this, let G

′
1 be the resulting path of G2 and G

′
2 be the resulting path of G1. Since

we want G
′
1 to be the path using f but not e and G

′
2 be the path use e but not f .

Then the result can be realized as follows:

G
′

1 = ti(1) · · · ti(a)si(a+1) · · · si(c)ti(c+1) · · · ti(k)
G
′

2 = si(1) · · · si(a)ti(a+1) · · · ti(c)si(c+1) · · · si(k)

Example 3.4.9. Suppose that after the forgetting function, we have the following

G1 = NN E︸︷︷︸
s7

NEN E︸︷︷︸
s16

NEE

G2 = EE N︸︷︷︸
t7

ENE N︸︷︷︸
t16

ENN

Notice that altitude(si(3)) = 1 and si(1) is the last position that has altitude equaling
to 1, then we will switch steps si(2) and si(3), the result is

G
′

1 = EN E︸︷︷︸
s
′
7

ENE N︸︷︷︸
s
′
16

ENN

G
′

2 = NE N︸︷︷︸
t
′
7

NEN E︸︷︷︸
t
′
16

NEE

This operation is shown in Figure 3.13

Remark 3.4.10. We call operation in case 2 and case 3 flip in since the action
moves closer to line y = x.

• Case 4: This case has the same initial condition as case 2: for all e ≤ i(l) < f
alt(l) < 0. We know alt(d − 1) < 0, so there must exist steps f < i(b) such that
alt(b) = alt(d − 1). However, we may reach ambiguity here. In case 2, we switch
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case 3 operation
−→

Figure 3.13. G1 (blue) and G2 (red) G
′
1 (blue) and G

′
2 (red)

the steps from i(d) to i(b) (recall i(d) = f) to get (G
′
1, G

′
2), but operation in case 2

on (G1, G2) may end up with the same (G
′
1, G

′
2) as operation in case 3 on another

pair of (G∗1, G
∗
2). Under this circumstance, we realize that it is legal to switch steps

of (G1, G2) from i(a) to i(c) (recall i(c) = e), since (G
′
1, G

′
2) and (G1, G2) have the

same steps between i(a) and i(c). Then for this (G1, G2), we are allowed to switch
steps from i(a) to i(c) without making the lattice go over the boundary. Here, the
’boundary’ is the smallest shape containing all of G1, G2, G

∗
1 and G∗2. We require

this because we want the result of the remembering function(will introduced in
Section 3.4.3) is still between P and Q. Doing as stated, then G

′′
1 be the result

of path G2 and G
′′
2 be the result of path G1, since we want G

′′
1 be the path use f

but not e and G
′′
2 be the path use e but not f . Then the result can be realized as

follows:

G
′′

1 = ti(1) · · · si(a) · · · si(c)ti(c+1) · · · ti(k)
G
′′

2 = si(1) · · · ti(a) · · · tesi(c+1) · · · si(k)

Example 3.4.11. Suppose that after the forgetting function, we have the following

G1 = EN E︸︷︷︸
s7

EEN E︸︷︷︸
s16

NNN

G2 = NE N︸︷︷︸
t7

NNE N︸︷︷︸
t16

EEE

Notice that alt(7) = −2 and si(9) is the first position after step i(7) that has altitude
equaling to −2, then we will switch steps si(8) and si(9). The result is as follows
and figure 3.14

G
′

1 = EN E︸︷︷︸
s
′
7

EEN N︸︷︷︸
s
′
16

ENN

G
′

2 = NE N︸︷︷︸
t
′
7

NNE E︸︷︷︸
t
′
16

NEE
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case 2 operation
−→

Figure 3.14. G1 (blue) and G2 (red) G
′
1 (blue) and G

′
2 (red)

As we mentioned above, this (G
′
1, G

′
2) may also be obtained from a pair of (G∗1, G

∗
2)

by operation in case 3. Consider the following

G∗1 = NN E︸︷︷︸
s∗7

NNE E︸︷︷︸
s∗16

NEE

G∗2 = EE N︸︷︷︸
t∗7

EEN N︸︷︷︸
t∗16

ENN

Clearly, for all step from i(3) to i(8), alt(l) > 0, and si(1) is the last position that has
the same alititude as si(3). Then switch si(2) and si(3), and exchange the resulting
two paths, we will have the same (G

′
1, G

′
2), this operation is shown in Figure 3.15

case 3 operation
−→

Figure 3.15. G∗1 (blue) and G∗2 (red) G
′
1 (blue) and G

′
2 (red)

Therefore, we switch si(2) and si(3) for (G1, G2), we will get the following, and it
slattice presentation in Figure 3.15

G
′′

1 = NN E︸︷︷︸
s
′′
7

NNE N︸︷︷︸
s
′′
16

EEE

G
′′

2 = EE N︸︷︷︸
t
′′
7

EEN E︸︷︷︸
t
′′
16

NNN

And this (G
′′
1 , G

′′
2) can not be obtained from any other pair of (G1, G2).

• Case 5: This case is an analogue of case 4. (G1, G2) has the same initial condition
as case 3. Operation in case 3 on (G1, G2) may end up with the same (G

′
1, G

′
2) as
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case 4 operation
−→

Figure 3.16. G1 (blue) and G2 (red) G
′′
1 (blue) and G

′′
2 (red)

operation in case 2 on another pair of (G∗1, G
∗
2). Then switch the steps from i(d)

(recall i(d) = f) to i(b) both on G1 and G2. The result can be realized as follows:

G
′

1 = si(1) · · · ti(d)ti(d+1) · · · ti(b)si(b)+1 · · · si(k)
G
′

2 = ti(1) · · · si(d)si(d+1) · · · si(b)ti(b)+1 · · · ti(k)

Example 3.4.12. According example 3.4.2 we have

G1 = NN E︸︷︷︸
s7

NNE E︸︷︷︸
s16

NEE

G2 = EE N︸︷︷︸
t7

EEN N︸︷︷︸
t16

ENN

We will have Figure 3.9 as (G1, G2). It belongs to case 3, and we can figure out that its
correspondence as follows

G
′

1 = EN E︸︷︷︸
s
′
7

EEN N︸︷︷︸
s
′
16

ENN

G
′

2 = NE N︸︷︷︸
t
′
7

NNE E︸︷︷︸
t
′
16

NEE

case 3 operation
7→

Figure 3.17. G1 (blue) and G2 (red) G
′
1 (blue) and G

′
2 (red)

However, this (G
′
1, G

′
2) can be obtained from
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G∗1 = EN E︸︷︷︸
s∗7

EEN E︸︷︷︸
s∗16

NNN

G∗2 = NE N︸︷︷︸
t∗7

NNE N︸︷︷︸
t∗16

EEE

case 3 operation
7→

Figure 3.18. G∗1 (blue) and G∗2 (red) G
′
1 (blue) and G

′
2 (red)

From this, we figure out that we are in case 2, so we switch si(7) and si(8) in G1, and
then we will have the following in Figure 3.19

G
′′

1 = NN E︸︷︷︸
s
′′
7

NNE N︸︷︷︸
s
′′
16

EEE

G
′′

2 = EE N︸︷︷︸
t
′′
7

EEN E︸︷︷︸
t
′′
16

NNN

case 5 operation
7→

Figure 3.19. G1 (blue) and G2 (red) G
′′
1 (blue) and G

′′
2 (red)

Remark 3.4.13. We call operation in case 4 and case 5 flip out since they make the
corresponding path further towards to line y = x

Remark 3.4.14.

1. What we desired to find is a one-to-one correspondence. However we may not be
able to find it for every pair of (G1, G2), since we may reach the same image through
case 2 and case 3.
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2. In case 4, we will end up with a 2-to-2 correspondence. We will have (G1, G2)
in case 2 condition, if its correspondence (G

′
1, G

′
2) can also be reach from a pair

(G∗1, G
∗
2) in case 3, then we will have (G

′′
1 , G

′′
2) that is not correspondence for any

thing we have already covered. We can set (G
′′
1 , G

′′
2) be the correspondence for

(G1, G2) and set (G
′
1, G

′
2) be the correspondence for (G∗1, G

∗
2).

3. In case 5, it is analogous to case 4. We can consider (G∗1, G
∗
2) as our initial condition

in case 3, and its correspondence is (G
′
1, G

′
2). Then there exists (G1, G2) in case

2 has this (G
′
1, G

′
2) as a correspondence. Then we can do the other operation on

(G∗1, G
∗
2). This will give us a pair (G∗

′
1 , G

∗′
2 ) that is never reached before. We can

set this to be the correspondence pairs.

3.4.3 Remembering function

Define the remembering function rem by

rem(G
′

1, G
′

2, Cr) = (P
′

1, P
′

2)

where (P
′
1, P

′
2) is the lattice path presentation of (B

′
1, B

′
2). The way to obtain P

′
1 and P

′
2

is according to Cr, since when we forget the common steps we record which steps and
whether each step is N or E. We can just put it back into positions where we delete( or
contract ) them accordingly. Then we will have P

′
1 and P

′
2, which are lattice paths from

(0, 0) to (m,n) as well.

Lemma 3.4.15. The remembering function is injective.

Proof. We define it to be the inverse of forgetting function, by lemma 3.4.4 it is an
injective function as well.

Lemma 3.4.16. P
′
1 is the representation of a basis in Bef and P

′
2 is the representation

of a basis in Bfe .

Proof. Under case 1, case 2 and case 3. G
′
1 and G

′
2 are staying between G1 and G2 since

the parts we modified moved closer towards to y = x line. Under case 4 and case 5, G
′
1

and G
′
2 are not bounded by G1 and G2, however the parts we flip out are legal since there

are another pair G∗1 and G∗2 bounding G
′
1 and G

′
2. Then after we apply the remembering

function to G
′
1 and G

′
2, P

′
1 and P

′
2 are bounded by P and Q. Hence, they are lattice paths

in between P and Q. Then take their indices of north step will give a basis of M [P,Q].
Moreover, by construction we have for the correspondence, we know for G

′
1 the i(c) step

is E and the i(d) step is N ; similarly for G
′
2 the i(c) step is N and the i(d) step is E.

Then after the remembering function, the eth step of P
′
1 is E and the fth step of P

′
1 is

N . So the associated basis has f as an element but not e. Similarly, the associated basis
of P

′
2 has e as an element but not f . This gives us the desired result.
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Example 3.4.17. Continue the example we start from this chapter and in case 5, we
have

G
′′

1 = NN E︸︷︷︸
s7

NNE N︸︷︷︸
t16

EEE

G
′′

2 = EE N︸︷︷︸
t7

EEN E︸︷︷︸
s16

NNN

from Example 3.19 and from Example 3.4.2 we have

Cr = {(2, E), (3, N), (4, E), (6, N), (8, E), (10, E), (11, E), (12, E), (14, E), (19, N)}

Then, applying rem to (G
′′
1 , G

′′
2 , Cr) gives

P
′

1 = NENENN E︸︷︷︸
s7

ENEEENEE N︸︷︷︸
s16

EENE

P
′

2 = EENEEN N︸︷︷︸
t7

EEEEEEEN E︸︷︷︸
t16

NNNN

And the correspondence bases of P
′
1 and P

′
2 are:

Figure 3.20. P
′
1 (blue) and P

′
2 (red)

B
′

1 = {1, 3, 5, 6, 9, 13, 16, 19}
B
′

2 = {3, 6, 7, 15, 17, 18, 19, 20}

And from example 3.4.2, we know the correspondence bases for P1 and P2 are :

B1 = {1, 3, 5, 6, 9, 13, 17, 19}
B2 = {3, 6, 7, 15, 16, 18, 19, 20}

As one may notices, this construction preserves the elements of the pair of bases. Now
we are ready to prove Theorem 3.4.1.
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3.5 L is Rayleigh

In this section, we will prove Theorem 3.4.1

Proof. Let M [P,Q] be a lattice path matroid. Let (B1, B2) be in Bef × Bef .
Claim: For each choice there is a corresponding (B

′
1, B

′
2) in Bef ×Bfe such that xB1xB2 =

xB
′
1xB

′
2 and the function F : Bef × Bef → Bef × Bfe is injective.

By Lemmas 3.4.4 and 3.4.15, we can find a(B
′
1, B

′
2) corresponding to (B1, B2). Now, let

us see why (B
′
1, B

′
2) has the same elements as (B1, B2). In order to find this (B

′
1, B

′
2),

we apply forgetting function on (B1, B2). To accomplish this, first we derive the lattice
path presentation of (B1, B2), that is P1 and P2. Indices of those north steps in P1, P2

are exactly the elements in (B1, B2). Then we ignore those steps which agree on P1 and
P2, record the forgetting function in Cr. Element in Cr is (i,W ), where i indicates the
position of the step and W indicates whether this step is N or E. So if (i, N) in Cr, then
both B1 and B2 contains i as an element. After we ignore the common information on
P1 and P2, we have G1 = si(1) · · · si(k) and G2 = ti(1) · · · ti(k). Since G1 and G2 differ at
each step, for every 1 ≤ l ≤ k either ti(l) = N or si(l) = N . That is, for every 1 ≤ l ≤ k
i(l) is either in B1 or B2. Then go through the construction in Section 3.2.2, we find the
corresponding (G

′
1, G

′
2). Apply the remembering function on (G

′
1, G

′
2) to get P

′
1 and P

′
2.

The indices of north steps of P
′
1 and P

′
2 are elements in B

′
1 and B

′
2.

Let S be the set of elements in both B1 and B2. Then S = {i : (i,W ) ∈ Cr and W = N}.
Since we add {i : (i,W ) ∈ Cr} back in (G

′
1, G

′
2) to get P

′
1 and P

′
2, S = {i : i ∈ B′1, i ∈ B

′
2}.

And for those elements appear only in one of B1 and B2, they are i(l) for 1 ≤ l ≤ k.
They also appear only in one of B

′
1 and B

′
2, when i(l) is in B

′
1 then the i(l) step in G

′
1

is north step; similarly if i(l) is in B
′
2 then the i(l) step in G

′
2 is north step. Hence, we

obtained that B1 ∩B2 is equal to B
′
1 ∩B

′
2, and B1∆B2 is equal to B

′
1∆B

′
2 as well.

Let ∆M(e, f) be the Rayleigh difference with respect to e, f ,

∆M(e, f) = M f
eM

e
f −MefM

ef

Recall that

M ef =
∑
B∈Bef

xB

Mef =

∑
B∈Bef

xB

xexf

M f
e =

∑
B∈Bf

e

xe

M e
f =

∑
B∈Be

f

xf

∆M(e, f) =

∑
(B1,B2)∈Bfe×Bef

xB1xB2 −
∑

(B1,B2)∈Bef×Bef x
B1xB2

xexf
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According to the injective F showed by the construction, every term left in ∆M(e, f)
has positive coefficient. Hence, ∆M(e, f) ≥ 0 for all x ≥ 0.
We can conclude that, given any lattice path matroid M [P,Q] for any pair e, f ∈
E(M [P,Q]) ∆M(e, f) ≥ 0 for all x ≥ 0. Therefore, the class of lattice path matroid
L is Rayleigh.

Corollary 3.5.1. Uniform matroids are Rayleigh.

Proof. Consider the lattice path matroid M [P,Q] with the following lattice path presen-
tation, which is a rectangular shape,

P = N · · ·N︸ ︷︷ ︸
r terms

E · · ·E︸ ︷︷ ︸
n−r terms

Q = E · · ·E︸ ︷︷ ︸
n−r terms

N · · ·N︸ ︷︷ ︸
r terms

Then this is a transversal matroid with set system (E,A) where E = [n], Ai = {i, i +
1, i + 2, i + n}. And Ur,n can be realized to be this transversal matroid as well. Hence,
every uniform matroid is isomorphic to a rectangular shape lattice matroid. Therefore,
uniform matroids are Rayleigh.
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Chapter 4

Future Direction

In this chapter, we will review classes of matroids with stronger condition, which is called
the Strong Rayleigh property, and how it is related to half-plane property of polynomials.
We wonder whether lattice path matroids satisfies negative correlated condition for more
than two elements, for example three elements. Then we will introduce a large class
of matroids that includes L, called positroids. We ask the natural question, whether
positroids are Rayleigh. If not, what is the boundary between lattice path matroids and
positroids.

4.1 Strong Rayleigh Property,

and Generalized Catalan matroids

Recall in section 2.2.2, if a matroid is Rayleigh then ∆M(e, f) ≥ 0 for all ~x in RE−{e,f}
≥0 .

A matroid is strongly Rayleigh if ∆M(e, f) ≥ 0 for all ~x in RE−{e,f}. Matroids that are
strongly Rayleigh are clearly Rayleigh, but the converse is not always true. Hence, it is
a natural question to ask which Rayleigh matroids are also strongly Rayleigh matroids.
Choe, Oxley, Sokal and Wagner proved that regular matroids are strongly Rayleigh in [6].

In our work, we showed L is Rayleigh. It is natural to ask is L strongly Rayleigh? Un-
fortunately, the answer is no. So we want to ask which subset of L is strongly Rayleigh.
Consider the following class of lattice path matroids.

A lattice path matroid M [P,Q] is a generalized Catalan matroids if the lattice path
presentation of Q is

E · · ·E︸ ︷︷ ︸
n

N · · ·N︸ ︷︷ ︸
m

.

Example 4.1.1. Let Q = EEEEEEENNNNN and P = NEENNNENENNE,
then M [P,Q] has the following lattice path presentation.

Generalized Catalan matroids are somehow easier to study, using Corollary 2.2 in [15]
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Figure 4.1. Generalize Catalan Matroid

Consider the following weight bases enumerator

MC(x) =
∑
B∈B

cBx
B

where cB is the weight on base B. By carefully choosing cB for each B, we might
artificially make the bases enumerator satisfy the half-plane property. This suggests we
could have a C-Rayleigh property for the class of generalized Catalan matroids.
Quesion 1: Can we prove for some generalized Catalan matroids M thatMC(x) satisfies
half-plane property for all cB = 1. That is, is there a subclass of Generalized Catalan
matroids is strongly Rayleigh.

4.2 Positroid

In [10], Oh introduced a class of matroids, called positroids. A positroid is a matroid
that can be represented by a k× n matrix with nonnegative maximal minors. In section
6 Lemma 21, Oh proved that all lattice path matroids are positroids. Since we know
lattice path matroids are Rayleigh, we want to ask the following question:
Question 2: Is the class of positroids Rayleigh? If not, what is the largest subclass of
it is Rayleigh? That is, can we characterize what property will a positroid need to be a
Rayleigh matroid.
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