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Abstract 

The study presented in this thesis investigated the flexural fatigue behaviour of non-corroded and 

corroded pretensioned beams and examined the use of externally bonded Carbon Fibre 

Reinforcement Polymer (CFRP) sheets as a repair technique aimed at restoring the loss in 

capacity due to corrosion. This was accomplished through an extensive experimental and 

analytical program. 

The experimental program was comprised of a material testing phase and a beam testing phase. 

The material testing phase consisted of testing seventy-two (72) material samples under 

monotonic and cyclic axial loading, full strand testing, and corrosion measurements of 

prestressing strands corroded while embedded in concrete prism. Material testing achieved 

multiple objectives: (a) it identified the rate of accelerated corrosion of the prestressing strands, 

(b) it quantified the distribution of the applied nominal tensile force among the seven wires 

within a single 7-wire strand in a prestressed strand, (c) it determined the material fatigue 

properties, and the stress-strain behaviour of the strand wires, and (d) it quantified the stress 

concentration factor in the prestressing strand due to corrosion. The beam testing involved 

constructing thirty-seven (37) 3.6 m long pretensioned T-beams and testing them in a four-point 

bending configuration. Twelve (12) beams were tested under monotonic loading, and twenty-five 

(25) beams were tested under cyclic loading. The main testing variables included: the corrosion 

level, the applied stress range, and a repair or the lack of it.  

Corrosion resulted in a significant deterioration of the monotonic and fatigue resistance of the 

beams in comparison to non-corroded beams, and repair using externally bonded CFRP sheet 

restored all or most of the monotonic and fatigue resistance lost due to corrosion. All beams 
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failed by rupture of the prestressing strand. Inspection of the strand’s fracture surface showed 

signs of surface fretting. In addition, the fracture profile was similar to that reported by Toribio 

and Ovejero (2005) for hydrogen induced stress cracking of heavily cold drawn prestressing 

wires. Strands having corrosion levels of 5% and 10% by mass loss exhibited an overall section 

loss together with distinct deep corrosion pits. 

In the analysis phase, fatigue data measured from smooth axial samples taken from the centre 

wire of a prestrssing strand was used to model the fatigue behaviour of the outer wires of the 7-

wire prestressing strand for corroded and non-corroded pretensioned beams. Strain-based 

fracture mechanics was employed in all the analyses, which included the flexure fatigue 

behaviour of: non-corroded and corroded single prestressing wires-in-air, a full 7-wire 

prestressing strand-in-air, and a non-corroded and corroded 7-wire prestressing strand in a beam. 

The mode results correlated well with the observed experimental results.  

This thesis presents extensive experimental work, along with an in depth fatigue analysis that is 

based on material fatigue properties obtained from simple single wire cyclic testing.  The 

resulting modelling approach offers a mechanistic explanation of 7-wire prestressing strand 

failure under various conditions. 
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Chapter 1 

Introduction 

Prestressing is a technique that has been widely used for decades in all sorts of concrete 

structures. Its ability to minimize reinforcement congestion, decrease deflection, and control 

cracking under service loads has made it a widely popular choice for large spans and for the 

precast industry. Prestressing a member can be achieved through pre-tensioning or post-

tensioning of tendons/wires as the main tension reinforcement. Pre-tensioning is widely adopted 

by the precast industry while post-tensioning is primarily used for cast in-place concrete 

structures. 

Bridge infrastructure in North America is aging with more than 40% percent of the bridges built 

in Canada and the United States being over 50 years old (Pakniat and Hammad 2008), and in 

need of significant maintenance, rehabilitation, or replacement. Many prestressed concrete 

bridge structures are subjected to corrosive environments. In addition, the Ontario highway 

network bridge latest inventory lists a total of 2802 bridges, out of which 1124 (40%) are 

prestressed concrete structures. One of the major reasons for this is the limited corrosion 

resistance of old structures and the continually increasing use of de-icing salts in cold regions, 

(PCI Bridge Design Manual Steering Committee 2011). Bridge infrastructure is also subjected to 

an increasing number of fatigue load cycles due to increased traffic demand.  

In evaluating bridge rehabilitation options, it is very important to consider the differences 

between pre-stressed/pre-tensioned structures and reinforced concrete structures in the form of 

the higher stresses in the prestressing strand. The classical rehabilitation approach of chipping 
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away spalled or delaminated concrete, and cleaning reinforcement or even replacing it, is not 

always viable for pretensioned concrete structures because of the risk involved in exposing a 

highly stressed, heavily corroded steel prestressing strand. Often in pretensioned members the 

prestressed strands are designed as the main flexural reinforcement, making their corrosion a 

critical deterioration of the structure that requires immediate intervention. Although corrosion 

effects on the fatigue performance of steel rebars are well documented and studied; only limited 

studies have focused on the corrosion fatigue of prestressing strand or wire (ACI 222.2R-14). 

To the author’s knowledge, only very limited research is available in the literature on the fatigue 

behaviour of corroded pretensioned concrete members. There are no available studies that 

address repair techniques to restore the capacity of corroded pretensioned concrete members 

subjected to cyclic/fatigue loading. This topic is of critical importance and needs to be addressed 

because of the aging bridge infrastructure and increased load demands. 

This study focuses on studying the impact of the corrosion of prestressing steel strands on the 

residual capacity of pretensioned concrete T-beams subjected to fatigue loading, and investigates 

a viable repair technique that uses Carbon Fibre Reinforced Polymer (CFRP) sheets. It consists 

of experimental and analytical phases. The experimental phase comprises of T-beam testing as 

well as material testing on 7-wire prestressing strands. The beam testing involves the 

construction and testing of thirty-seven (37) pretensioned concrete T-beams under monotonic 

and fatigue cyclic loading. The experimental variables are the corrosion level (0%, 5%, and 10% 

by mass loss), the repair condition (unrepaired beams and repaired beams using adhesively 

bonded CFRP sheets, and the fatigue stress range as a percentage of the monotonic ultimate load 

capacity. The material testing portion includes monotonic testing of a 7-wire strand to 
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experimentally quantify the stress distribution amongst individual wires, and fatigue testing of 

corroded and uncorroded single prestressing wires. The analytical program quantifies the 

material fatigue properties and analytically calculates the force distribution within a 7-wire 

prestressing strand to confirm experimental findings. Finally strain based fracture mechanics is 

used to model the fatigue life of pretensioned concrete members exposed to different corrosion 

levels, and to predict the life extension after CFRP repair.  

1.1 Research objectives 

This research aimed to investigate the monotonic and fatigue flexural behaviour of corroded 

pretensioned beams and their repair using CFRP sheets. Specific objectives of this study are as 

follows: 

 Experimentally quantify the effects of corrosion on pretensioned concrete beams under 

monotonic and fatigue cyclic loading through a series of monotonic and fatigue tests on 

pretensioned beams 

 Experimentally identify the material fatigue properties of 7-wire prestressing strands 

through a comprehensive material testing program comprised of non-corroded and 

corroded single wire specimens tested under fatigue cyclic loading. 

 Experimentally investigate the viability of CFRP repair of corroded pretensioned beams 

to restore their monotonic and fatigue capacity by testing corroded then repaired 

pretensioned beams. 

 Experimentally quantify and analytically verify the force distribution amongst individual 

wires forming the 7-wire prestressing strand. 
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 Experimentally quantify the mean stress effect on the fatigue response of prestressing 

strands. 

 Derive the closure-free fatigue crack growth rate curve from the effective stress data 

based on constant amplitude fatigue test results of smooth wire specimens. 

 Model the fatigue life of smooth wire specimens in air, corroded wire specimens in air, 

and prestressing strands in air. 

 Model the fatigue life of non-corroded and corroded pretensioned concrete beams.  

 Model the fatigue life extension of corroded pretensioned beams due to CFRP repair. 

1.2 Research methodology 

The research objectives are achieved through an extensive experimental program, which is 

divided in to a material testing and beam testing components that were designed with specific 

sub-objectives. Following the experimental program an in depth analytical program is explains 

the failure mechanisms of the 7-wire prestressing strand and provides a modelling approach that 

reasonably replicates that fatigue behaviour of non-corroded and corroded pretensioned beams. 

1.3 Thesis organization 

Chapter 2 presents an in-depth background and literature review of related topics and research 

studies. Chapter 3 presents the experimental program and details the experimental setups, 

variables and procedures. Experimental results are presented in Chapter 4, while Chapter 5 

presents a detailed analysis of the experimental results, describing the modelling approach, and 
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the modelling results. Finally, Chapter 6 offers a closing summary, conclusions, and 

recommendations.  
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Chapter 2 

Background and Literature Review 

In this Chapter an in-depth background in relevant topics and a comprehensive literature review 

are presented. 

2.1 Corrosion of Steel Reinforcement  

Corrosion is a destructive deterioration mechanism that gradually attacks metals. When in 

contact with the environment (oxygen), metals undergo an electrochemical oxidation resulting in 

the formation of rust products (Jones 1996). Corrosion requires the presence of an anode and a 

cathode within a common electrolyte to produce an electrochemical reaction similar to that of a 

galvanic cell. Typically the rust products are oxides of the metal. In essence corrosion returns the 

metal to its original state from which it was extracted (Masoud 2002). 

2.1.1 Corrosion mechanism 

Reinforced concrete structures if designed and constructed in accordance with the best practices 

should be protected against the corrosion reaction. “This is counter intuitive because we know 

that concrete is a porous material and it contains moisture, so why should steel not corrode?” 

(Broomfield 2007). Reinforcing steel is protected by a passive film, which remains intact as long 

as the surrounding concrete maintains its alkalinity, a pH above 12.5. This passive film is a thin 

layer of iron oxide that significantly slows down the corrosion process by limiting the further 

access of oxygen to the steel. There are two ways for this protective passive film to be destroyed: 

carbonation of concrete or chloride penetration into the concrete. Once the passive film has been 
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broken, the aqueous concrete medium acts as the electrolyte, whilst the reinforcing steel will act 

as the electrode and corrosion continues.  

Carbonation initiated corrosion 

In the presence of moisture, carbon dioxide will react with calcium hydroxide after penetrating 

the concrete to produce calcium carbonate. Calcium carbonate reduces the concrete pH to about 

8.5, which in turn destabilizes the passive protection film (Roberts 1981). Carbonation can be 

affected by multiple factors; a thin concrete cover, porosity, and cracking. The most aggressive 

environment for attacking the passive film would be the alteration between wetting and drying 

cycles and high temperature, with an ambient relative humidity of 60% (Tuutti 1977; ACI 222R-

01 2010; Beeby 1983). 

Chloride initiated corrosion 

Sources for chlorides in concrete can be de-icing salts, a marine environment, contaminants, a 

concrete admixture, or even industrial brine. The above mentioned chloride sources make the 

presence of chloride ions the dominant corrosion initiation mechanism (ACI 222R-01 2010). 

Chlorides can be introduced in concrete either during the mixing stage by error or by chloride 

containing admixtures, or they can be introduced after curing by diffusion. The diffusion rate 

varies based on a number of factors such as the cement type, the temperature, and the age of 

concrete (Mehta 1980; Page et al. 1986; Goto and Roy 1981a; Goto and Roy 1981b; Schonlin 

and Hilsdorf 1988).  When chlorides are introduced in concrete they may affect the corrosion 

process in multiple ways. Chlorides can reduce the resistivity of concrete and increase the rate of 

additional chloride ingress (Young 1988), increased conductivity of concrete thus accelerating 

the subsequent corrosion rate, alter the pH of concrete affecting chloride binding, and chlorides 
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introduced during the mixing stage can increase the corrosion rates in the plastic stages of the 

concrete (ACI 222R-01 2010). 

 Regardless of whether chlorides were added or penetrated the concrete, there is a threshold 

under which corrosion will not initiate. This threshold depends on several factors, some of which 

are contradictory. For instance a higher concrete pH means a higher level of chloride resistivity 

of the steel, but also means a higher chloride concentration (Stratfull et al. 1974; Clear 1974). It 

has been shown that the initiation of chloride corrosion depends on the chloride to hydroxide ion 

ratio (Cl
-
/OH

-
). Threshold values for this ratio are 0.3 at pH 13.3 (Evans 1961; Hansson and 

Sorensen 1990), and 0.29 at pH 12.6 (Page et al. 1986; Structures 1992). 

2.1.2 Types of corrosion cells 

There are two common corrosion mechanisms in steel; micro-cell and macro-cell corrosion, 

shown in Figure 2-1. Microcell corrosion refers to a corrosion process on a microscopic level. 

The cathode and anode exist on the same reinforcing bar. On the other hand, macro-cell 

corrosion indicates a separation of the anodic and cathodic sites. This occurs during a chloride 

attack which is associated with a high moisture content that creates a low electrical resistance 

allowing the anode and cathode to be further apart (Jones 1996). 
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Figure 2-1 – Schematic of (a) micro-cell versus (b) macro-cell corrosion (Poursaee and Hansson 

2009) 

2.1.3 Corrosion reactions 

Whether corrosion occurs due to chlorides or carbonation does not change the chemical reaction. 

As steel starts corroding it dissolves in water and releases two electrons. This is referred to as the 

anodic reaction, Equation (2-1).  In order to preserve electrical neutrality, these electrons are 

consumed by the cathodic reaction, Equation (2-2). The cathodic reaction releases hydroxide 

ions, which increase the alkalinity, and thus preventing corrosion at the cathode. 

 

           (2-1) 

 

 
                  (2-2) 

 

The hydroxide ions then migrate towards the anode through the electrolyte (moisture in the 

concrete). At the anodic site, the hydroxide ions react with the ferrous ions resulting in ferrous 

hydroxide, which then reacts with oxygen and water to form ferric hydroxide, and then finally 

becomes hydrated ferric oxide, Equations (2-3)-(2-5) (Jones 1996; Broomfield 2007). 
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                   (2-3) 

         

 
                

 
 (2-4) 

                        (2-5) 

The rust product can occupy up to six times the original volume of iron (Fe), Figure 2-2 

(Mansfeld et al. 1982). The forms of the rust products depend on the amount of dissolved oxygen 

in the surrounding environment (Phillips 1993). In an oxygen deprived environment such as the 

submerged portion of a marine structure, a black/greenish rust product (Fe3O4) is observed 

(Bentur 1997).  

 

Figure 2-2 – Volume comparison of oxide of iron (Mansfeld et al. 1982) 

2.1.4 Laboratory accelerated corrosion techniques 

Reinforced concrete members in their natural environment corrode at very low rates ranging 

between 10 to 15 A/cm
2
. In the laboratory, researchers have used two methods to simulate 

natural corrosion in a shorter period of time. 
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Artificial climate environment for accelerating corrosion 

In this method the corrosion process is accelerated by creating an artificially aggressive 

environment of high temperature, high humidity, repeated wetting and drying cycles, or wetting 

by spraying a salt solution (Yuan et al. 2007). 

Galvanostatic method of accelerating corrosion 

In this method an impressed current is introduced in the reinforcing steel while the member is 

exposed to salt. Impressed current densities reported in the literature have ranged from 25 up to 

10400 A/cm
2
 (Andrade, C. 1993).  An upper limit of 200 A/cm

2
 is recommended as higher 

current densities have a damaging influence on the steel/concrete interfacial bond and affect the 

corrosion cracking (El Maaddawy and Soudki 2003). The estimated time to achieve the required 

corrosion mass loss in the steel bar is calculated using Faraday’s law presented by Equation (2-6)  

(ACI 222R-01 2010). 

  
      

   
 (2-6) 

Where,   t = the corrosion time (sec) 

M = the mass loss of steel rebar 

a = the atomic weight of steel (for Fe = 56 g) 

i = the impressed current density 

z = the ionic charge (+2 for steel) 

F = Faraday’s constant (96,500 amp-sec) 

 = the metal density (7.86 g/cm
3
 for Fe) 
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2.2 Prestressed Concrete 

The prestressing concept is based on the application of an axial compression force, which creates 

a moment that counter acts tensile flexural stresses due to service loads. This in turn controls 

deflection and reduces or even eliminates cracking under service loads. The prestressing force is 

applied by an externally stressed high strength steel wires, strands, or bars, the force is then 

transferred to the concrete member by means of end anchorages or bond to the surrounding 

concrete. 

2.2.1 Methods of Prestressing Concrete 

There are two method of introducing a prestressing force to a concrete member: post-tensioning, 

which is used for onsite applications, and pre-tensioning which is used in precast plants. 

Post-tensioning - Post-tensioning can be achieved by running prestressing strands (tendons) 

through hollow ducts prior to casting the concrete. The ducts are laid with a specific profile 

within a member based on the required design. After the concrete is poured the strands are 

stressed against the concrete by a hydraulic jack to a pre-calculated stress. The force is 

transferred to the concrete by anchors at the end of the strands, Figure 2-3(a). This allows post-

tensioned strands to be either bonded or unbonded. If bonded, the void within the ducts is filled 

with grout after the strand has been stressed. 

Pre-tensioning - Pre-tensioned concrete generally applies to members prefabricated in a precast 

plant operation. The strands are prestressed before the concrete is poured. The strands are 

stressed and anchored at bulkheads outside of the member’s formwork. Once stressed the force is 

maintained by the stressing bulkhead while the concrete is poured into the formwork. After the 
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concrete reaches the designed strength for release the strands are cut and the force is transferred 

to the concrete by bond and a mechanical interlock between the strand and concrete, Figure 

2-3(b).  

 

(a) Post-tensioning setup for prestressed concrete 

 

(b) Post-tensioning setup for prestressed concrete 

Figure 2-3 – Prestressed concrete schematic: (a) post-tensioning, and (b) pre-tensioning 
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2.3 Fatigue of Reinforced Concrete Structures 

Many reinforced concrete structures undergo dynamic loads. Structures such as bridges are 

subjected to cyclic traffic loading. Typically such structures are expected to survive 710
8
 

loading cycles during their service life (Tilly 1979). Fatigue is a form of dynamic loading 

consisting of repetitive loading cycles that may lead to failure (ACI 215R-74 1974). The number 

of load cycles to failure (fatigue life) is influenced by a number of factors, such as the stress 

range, the loading rate, and the mean stress (Bannantine 1990). In general, most materials exhibit 

a lower strength under fatigue loading than under monotonic loading. To understand the overall 

fatigue response of a reinforced structure, it is important to understand the fatigue behaviour of 

each of its components. 

2.3.1 Fatigue of plain concrete 

The fatigue strength of plain concrete is considered to be the fraction of its ultimate monotonic 

capacity that it can withstand under repeated load cycles (ACI 215R-74 1974). When subjected 

to cyclic loading, concrete will exhibit excessive cracks and eventually fail, this may occur even 

if the applied load is lower than the monotonic load capacity. In addition concrete will show 

softening behaviour similar to that under monotonic loading (Neville 1996). The applied stress 

range (maximum-minimum applied stress) is the primary variable causing fatigue of concrete. 

Other factors such as the water/cement ratio, the type of aggregates, and the concrete age have 

been found to affect the fatigue life in the same way as they affect the concrete strength. For a 

maximum stress level lower than 75% of the monotonic capacity, a variation in fatigue loading 

frequency between 1-15 Hz has little to no effect on the fatigue life of concrete (ACI 215R-74 

1974; Mordock 1965). 
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A fatigue S-N curve (stress range versus the number of cycles to failure) for plain concrete 

beams is shown in Figure 2-4. The beams were loaded at 7.5 Hz. The figure shows the ratio of 

computed flexural tensile stress (Smax) to the rupture stress (fr) on the vertical axis, and the 

number of cycles to failure on a logarithmic scale on the horizontal axis. The figure shows that 

the fatigue strength decreases with an increasing number of cycles. Also, the S-N curves are 

linear between 10
2
 to 10

7
 cycles which means that a stress limit under which concrete life is 

considered infinite does not exist in this life range, and it is evident that as the stress range 

decreases the fatigue life increases (ACI 215R-74 1974). 

A modified Goodman diagram is used to predict the fatigue strength of plain concrete load in 

compression, Figure 2-5. This diagram presents the relationship between the stress range and the 

minimum applied stress in a constant amplitude compressive loading test, and the fatigue life 

(presented as the number of cycles). Using Figure 2-5 for a given minimum applied stress and a 

desired fatigue life the allowable maximum applied stress can be determined. 
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Figure 2-4 – Fatigue strength of plain concrete beams (Mordock 1965) 

 

Figure 2-5 – Modified Goodman's diagram (ACI 215R-74 1974) 
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2.3.2 Fatigue of steel deformed bars 

The S-N curves for reinforcing steel display a transition from a steep to a more flat response at 

around the one millionth loading cycle, Figure 2-6. This indicates that unlike plain concrete a 

reinforcing steel bar exhibits a practical fatigue limit stress (ACI 215R-74 1974). Figure 2-7 

shows a typical failure surface of a deformed 35M steel bar (35.7mm diameter). The smooth 

surface is the fatigue crack surface, while the rugged surface is the fracture surface (fracture 

occurs after the fatigue crack has reduced the bar strength significantly). In deformed steel bars, 

the deformations act as stress raisers, which is why the fatigue crack in Figure 2-7 initiated at the 

stress raiser at the bottom of the deformation (ACI 215R-74 1974). 

 

Figure 2-6 – Stress range vs. life curves for reinforcing bars (ACI 215R-74 1974) 
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Figure 2-7 – Fracture surface of 35M (35.7 mm diameter) deformed steel bar (ACI 215R-74 1974) 

Previous studies in the literature to determine whether the fatigue behaviour of steel bars tested 

in air resembles that of bars tested within a concrete beam are contradictory (ACI 215R-74 

1974). Some studies indicate higher fatigue strength for steel embedded in concrete versus steel 

tested in air, while other studies report otherwise (Rehm 1967). MacGregor et al. (1971) reported 

that as long as the geometry of the lugs is sufficient to provide proper bond, very little difference 

in fracture behaviour should exist. Physical characteristics of deformed steel bars that affect the 

fatigue strength include: the bar diameter, the geometry of the lugs, bent bars, and the yield 

strength with stress concentration factors varying between 1.5 and 2.0 (ACI 215R-74 1974). 

Bar diameter 

It was reported that the fatigue strength of steel bars decreases as the bar diameter increases. 

MacGregor et al. (1971) tested bars in air in tension, while (Wascheidt 1965; Kokubu and 

Okamura 1965) tested bars embedded in beams. Findings from these tests were in agreement that 
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#5 bars (16mm nominal diameter) exhibited an 8% higher fatigue life than #8 bars (25.4mm 

nominal diameter)). One theory to explain the higher fatigue strength for smaller diameter bars is 

that the notch root at the lugs in the larger diameter bars exhibits a higher stress raiser than that 

found at the notch root in the lugs in the smaller bars. 

Bar Deformation geometry 

Deformed steel bars rely on their lugs to provide the mechanical bond with concrete; however, 

those lugs are also the source of the stress concentrations where fatigue fracture initiates (Burton 

and Hognestad 1967; Pfister and Hognestad 1964). Differences in the rolling and cutting 

techniques during fabrication of deformed bars lead to variations in the deformation geometry of 

the bars. (Derecho and Munse 1966) found in their analytical study that the variations in the 

geometry can significantly influence the fatigue strength by affecting the magnitude of the stress 

concentration factor. The stress concentration factor varies from 1.5 to 2.0 (ACI 215R-74 1974). 

It was reported that when the base radius of the deformation is increased from 0.1 to 1-2 times 

the deformation height, the fatigue strength significantly increases (MacGregor et al. 1971; 

Helgason et al. 1976; Kokubu and Okamura 1965; Hanson et al. 1968). However, if the base 

radius of the lugs on the bar is increased beyond 5 times the height of the deformation bond 

capacity can deteriorate (Kokubu and Okamura 1965). 

Yield Strength and bending effect 

The yield strength of deformed steel bars has little effect on the fatigue strength (MacGregor et 

al. 1971; Pfister and Hognestad 1964; Lash 1969). On the other hand, it was shown that bent bars 

with a 45 degrees bend angle could exhibit 29-50% less fatigue strength than straight bars,(Rehm 

1967; Pfister and Hognestad 1964). 
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2.4 Fatigue of Prestressed Concrete Structures 

A properly designed prestressed member will remain uncracked under service loads, and as such 

the fatigue response of prestressing strand/wire is unlikely to be critical (Bondy 1970). As a 

result, the fatigue behaviour of steel in prestressed concrete has not been a major issue in design 

guides and specifications. However, with more prestressed structures subjected to repetitive 

loading and a higher probability of over loading, there is a growing concern regarding the fatigue 

behaviour of prestressed members, especially with partially prestressed members (ACI 215R-74 

1974; ACI 318-14). This concern is reflected in recent recommendations by ACI, ASCE, and 

PCI for unbonded construction that requires a prestressing steel and anchorage assembly to 

withstand a minimum of 500,000 cycles of a varying stress range from 60% to 66% of the 

specified ultimate strength of the assembly (ACI 318-14; ACI-ASCE 423-05).  

2.4.1 Fatigue of prestressing reinforcements 

Prestressing steel reinforcement can take the form of wires, strands or bars, each of which 

undergo different manufacturing and treatment processes, which greatly affect their fatigue 

strength. 

Wires 

Prestressing wires are usually made from drawn steel and have strengths ranging between 1720 

and 1930 MPa (250 and 280 ksi). Drawing has multiple benefits: it increases the tensile strength 

of wires, produces a grain structure which inhibits crack nucleation and provides a smooth 

surface that reduces stress concentrations due to surface irregularities (ACI 215R-74 1974). 

Properties of wires can vary based on the manufacturing process. A study carried out on different 
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wires from Germany, Czechoslovakia, Belgium, and Japan showed that the fatigue strength of 

wire was a 30 ksi (207 MPa) stress range at a fatigue life of 4 million cycles. Testing wires of 

different diameters showed that their fatigue characteristics are within 5% of each other, and that 

similar to normal deformed steel bars the fatigue characteristics depend on the geometry of their 

ribs. Wires with ribs of 0.3 mm height and 45 degrees in slope and no base radius had a 

theoretical stress concentration factor of 2.0, and exhibited a 57% reduction in fatigue strength 

(Baus and Brenneisen 1968). 

Strands 

Similar to wires, strands are made out of drawn steel. Strands are comprised of 6 wires wrapped 

helically around a centre wire (often referred to as the king wire), Figure 2-8. Tests conducted on 

11.1mm and 12.7mm 7-wire strands revealed a decrease in fatigue strength with increase in 

diameter (ACI 215R-74 1974). Figure 2-9 is a modified Goodman diagram that predicts the 

minimum or maximum allowable stress levels to achieve a desired number of cycles with a 

specific survival probability (Hilmes 1965). 
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Figure 2-8 – 7-wire prestressing strand 

 

Figure 2-9 – Strength envelopes for strand tested in United States (ACI 215R-74 1974) 
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Paulson el at (1983) conducted an in-depth literature review and an investigation on the fatigue 

performance of steel prestressing strand as an isolated element as part of a research project 

sponsored by the Federal Highway Administration (FHWA) and the Department of Highways 

and Public Transportation of the State of Texas. Part of their investigation was compiling a 

database of available prestressing strand fatigue testing. They compiled close to 700 fatigue test 

results from various researchers including their own test results. They analyzed the compiled 

database and used a regression analysis to develop a lower bound design expression for the 95
th

 

percentile of 97.5% probability of no failure, Equation (2-7). The authors state that a stress range 

of 138MPa (20ksi) is a reasonable fatigue limit, and emphasized that their equation is only 

applicable to strands as isolated elements. Figure 2-10 shows the complied experimental data the 

statistical design model as presented by Paulson et al. (1983). 

                   (2-7) 

Where, 

 

 Sr Stress range (ksi) 

  N Number of cycles 

Paulson et al. (1983) also noted that the fatigue behaviour of the prestressing strand varied from 

one manufacturer to another, and between strands from the same manufacturer. In addition, they 

observed that the fatigue resistance decreased with increased specimen length, which they 

attributed to the increased likelihood of flaws being present with a longer length. 
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Figure 2-10 – Complied fatigue test results for prestressing strand as an isolated element, the 

statistical design expression of 95% of no failure, Paulson et al. (1983)  

Bars 

Tests on bars ranging between 25 and 35 mm in diameter have shown that the fatigue limits of 

these bars are in excess of 0.1 times the tensile strength of the bar for 1 x 10
6
 cycles of loading 

with a minimum stress of 0.6 times the tensile strength (ACI 215R-74 1974). 

2.4.2 Fretting fatigue of prestressing strands 

Fretting fatigue occurs when two elements in contact under an applied lateral force exhibit 

relative movement in terms of slip or rotation under cyclic fatigue loading. This relative 

movement results in surface damage such as abrasive wear and corrosion. Surface abrasion 

results in the degradation of the protective surface oxide film, and without the oxide film the two 
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elements may fuse together (cold welding) at areas of local pressure exceeding the elastic limits. 

Furthermore, under cyclic displacement the adhesion formed between the two elements would 

break and another one would form; this cyclic behaviour eventually results in crack initiation, 

Waterhouse (1982), Wollmann et al. (1996).  

Fretting fatigue of metals is a well-known phenomenon and has been extensively investigated. 

For prestressed concrete elements research efforts in the literature appears to have been focused 

on fretting in post-tensioned members due to obvious rubbing/abrasion between the prestressing 

strand and the strand duct, Ryals et al. (1992).  

Wollmann et al. (1996) conducted an experimental investigation on fretting fatigue of post-

tensioned concrete beams. The experimental program consisted of beam and strand fatigue 

testing. They concluded that fretting between the strand and the duct, and between the individual 

strands, reduced the fatigue resistance of bonded post-tensioned beams. Moreover, they 

compared their strand fatigue test results to the Paulson et al. (1983) model, and stated that 

although the strand tests were in good agreement with the Paulson model, strand-in-air data are 

not adequate to evaluate the allowable stress range in post-tensioned beams. They also observed 

that fretting between the strand and the metal duct was the predominant fretting mechanism, and 

recommended the use of plastic ducts and epoxy-coated strands. Figure 2-11 presents the fatigue 

test results for post-tensioned beams with strand in metal ducts and the strand-in-air fatigue 

failure zone. 
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Figure 2-11 – Stress range vs. fatigue life for post-tensioned beams with strands in metal ducts 

(Wollmann, 1996) 

Little attention has been given to fretting fatigue in pretensioned members, however, steel 

strands with a similar formation to concrete prestressing strands are widely used in other 

applications; electro-mechanical cables, anchors/tethers for deep water platforms, and 

cable/stayed bridges to name a few. A significant amount to studies was carried out on the 

fatigue of strand ropes as early as the 1970s. Although the strand rope geometry and mechanical 

behaviour is similar to concrete prestressing strands the metallurgy, the size of the wires and the 

number of layers are different which have an impact on the fatigue resistance. 

For multilayered strands there are two types fretting mechanisms; longitudinal fretting and 

rotational fretting. Longitudinal fretting occurs between two adjacent wires with the same 
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lay/helix angle (inter-wire), while rotational fretting occurs at locations where two wires in 

different layers with opposite lay/helix angles cross each other (inter-layer). For concrete 

prestressing with 7-wire strands, longitudinal fretting is of concern since there is only one layer 

of helically wrapped wires.  

Bahke (1980) reported a study conducted by Pantucek (1977) in which fatigue tests were 

conducted on wire ropes under combined pulsating tensile stresses and transverse pressure. The 

transverse pressure was increased from 600 to 3600 N. As the magnitude of the transverse 

pressure increased the detrimental impact on the fatigue life increased. Pantucek inspected the 

fracture surface under a microscope and found that cracks typically initiated at the edge of the 

elliptical pressure mark where high plastic deformations occurred, See Figure 2-12. 

 

Figure 2-12 – Elliptical pressure mark on single wire and the fracture surface, Bahke (1980) 
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Blakeborough and Cullimore (1984) conducted a study on the fretting effects on the fatigue of 5 

mm diameter galvanized bridge-wires. They used fretting rigs to simulate the fretting of 

galvanized steel wires due inter-wire contact in ropes, and found that longitudinal fretting causes 

a significant reduction in the fatigue resistance with an increasing deterioration effect beyond 

1.5x10
5
 cycles, see Figure 2-13. They noted that the fretting scar had an elliptical shape and 

stated that as the impact is localized to the fretting area, the shape of the fretted body is of 

secondary importance. 

 

 

Figure 2-13 – Load range vs. fatigue life curves for non-fretted and fretted wire specimens 

(Cullimore, 1979) 
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2.4.3 Fatigue of pretensioned beams 

Overman et al. (1984) conducted an investigation on the fatigue behaviour of pretensioned 

concrete girders. The investigation was a continuation of the research project of Paulson et al. 

(1983). The investigation comprised of testing eleven (11) pretensioned girders, and compared 

their behaviour to previous experimental results in the literature. In addition, they gave design 

recommendation with an emphasis on predicting their fatigue behaviour based on the fatigue 

behaviour of the prestressing strand. The authors cited six (6) flexure fatigue studies on 

pretensioned girders that reported the strand stress range or gave sufficient information to 

calculate it, with a total of 47 data points. They then used a linear regression analysis with the 

least squares method to construct the mean regression line and compared it to that by Paulson et 

at (1983), see Figure 2-14. The solid data points represents girders tested under a single point 

load, which in general had longer fatigue lives in comparison to the remaining girders tested 

under four-point bending (having a constant moment zone). Overman et al. note that for stress 

ranges below 180 MPa (26 ksi) beams exhibit shorter fatigue lives in comparison to strand-in-air 

lives. 

Moreover, Overman et al. (1984) conducted a regression analysis on what they referred to only 

as large-scale beam tests, namely by Ozel (1962) and Rabbat et al. (1978), and compared the 

mean regression line to Paulson et al. model, see Figure 2-15. They commented that the 

regression lines are approximately parallel and that this type to behaviour is to be expected from 

a constant stress increase due to flexure cracking. 
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Figure 2-14 – Comparison of the mean regression line of pretensioned beam fatigue test results to 

Paulson et al. (1983) lower bound strand-in-air model, Overman et al. (1984) 
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Figure 2-15 – Comparison of the mean regression line of large scale pretensioned beam fatigue tests 

to the Paulson et al. (1983) lower bound strand-in-air model, Overman et al. (1984) 

Finally, Overman et al. (1984) tested eleven (11) large-scale beams measuring 14.65 m (48 ft) in 

length; four (4) beams with straight strands, four beams (4) with draped strands, and three (3) 

beams with supplementary crack control non-prestressed reinforcements. They compared their 

fatigue test results to Paulson et al. model, see Figure 2-16, and made the following notable 

conclusions: 

 The Paulson et al. (1983) strand-in-air model can be used to predict the fatigue life of 

pretensioned concrete beams, with the modification that no endurance limit can be set. 

However, they state that a stress range below 34.5 Mpa (5 ksi) would be insignificant. 
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 Conservative minimum prestress forces should be used in predicted the beams fatigue life 

as the prestress losses have a direct influence on the strand stress range. 

 The strand stress in a cracked concrete section can be calculated using an approximate 

manual cracked section analysis. 

 Premature failures could not be correlated to draping of the prestressing strand. 

 A small number of overload cycles of the order of 20 % above the applied load level can 

be detrimental and sharply decrease the fatigue life. 

 

Figure 2-16 – Large-scale pretensioned beams fatigue test results in comparison to Paulson et al. 

(1983) lower bound strand-in-air model, Overman et al. (1984) 
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Naaman, A. E. (1989) conducted an experimental study that was comprised of testing a total of 

38 partially and fully prestressed concrete beams. Twenty-four (24) pre-cracked prestressed 

concrete beams with rectangular sections were tested; twelve (12) beams were tested under 

monotonic loading and twelve (12) beams were tested under constant amplitude cyclic loading 

ranging between 40% and 60% of the monotonic beam capacity. Also fourteen (14) partially 

prestressed T-beams were tested under monotonic and variable amplitude cyclic loading. The 

beams tested under variable amplitude loading had a minimum load of 40 % of the monotonic 

beam capacity. 

Three (3) of the rectangular fully prestressed beams failed in less than 2 million cycles and the 

remaining beams after surviving 5 million cycles were tested monotonically to failure. Naaman 

reported a correlation between an increase in the strand’s stress level and the observed crack 

width. The beams failed in less than 2 million cycles had a crack width of 0.15 mm while the 

beams that survived to 5 million cycles had a crack width of 0.08 mm 

Of the T-beams tested under variable amplitude cyclic loading four (4) beams failed in less than 

2 million cycles. He reported that these beams had a measured crack width of more than 0.15 

mm and exhibited variability in the measured stress levels between the strands and between the 

wires of the same strand. However, the average measured wire stress was in agreement with his 

analytically calculated stress. Failure of the partially prestressed beams was by fracture of the 

reinforcing steel or the prestressing strand. 

Naaman suggested that in addition to the applied stress range, several parameters can 

significantly deteriorate the fatigue resistance; such as stress concentrations at anchoring 
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locations, fretting between adjacent wires or between the prestressing strand and the concrete. 

Finally he stated that the fatigue life of prestressing strands under minimal fretting conditions 

could be predicted by Equation (2-8) for stress ranges above 70MPa. 

 

   
                (2-8) 

Where, 

 

 S The stress range 

  fpu The ultimate strand tensile capacity 

  N Number to load cycles 

    

 

  



 

 35 

2.5 Corrosion of Prestressed Concrete Structures 

Prestressing steels are highly susceptible to corrosion attack due to the metallurgy associated 

with their high strength and the high stresses due to prestressing. This corrosion can significantly 

reduce the service life of prestressed concrete structures. Multiple factors contribute to the 

severity of corrosion in prestressing steels. This section presents the primary factors contributing 

to the corrosion of prestressing steel, and the impact of corrosion on prestressed structures. 

2.5.1 Fracture modes of prestressing reinforcement due corrosion and cyclic loading 

Depending on the loading condition, steel properties, and corrosion environment different 

fracture modes can occur in prestressing steel reinforcement (Nurnberger 2002; Ngoc et al. 

2009): 

 Brittle fracture. 

 Stress corrosion cracking induced fracture. 

 Fracture due to fatigue and corrosion influences. 

Brittle fracture 

Brittle failure may occur when a tensile stress is applied to high strength steels. Whether the 

fracture is brittle or not is influenced by general and local corrosion. In the case of general 

corrosion due to normal weathering, if a significant loss of cross section occurs, the residual load 

capacity of the high strength steel can be exceeded thus causing failure. On the other hand, if the 

local corrosion attack is characterized by deep pitting, the load bearing capacity can be severely 

affected at an early age of the structure. The latter case is more of a concern for post-tensioned 

ungrouted strands, where chlorides contaminated water, or bleed water can seep into ungrouted 
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ducts. Figure 2-17 shows the effect of pitting depth on the fatigue life of 5 mm cold deformed 

prestressing steel wire. 

 

Figure 2-17 – Fatigue properties of 5mm cold deformed prestressing steel in relation to the depth of 

local corrosion (Nurnberger 2002) 

Stress corrosion cracking (SCC) induced fracture 

Stress corrosion cracking (SCC) is defined as the initiation and propagation of a crack within a 

material in the presence of a corrosive medium (Nurnberger 2002). This is can be either Anodic 

or hydrogen induced stress corrosion cracking (H-SCC). Anodic stress corrosion cracking occurs 

in the presence of a non-alkaline nitrate contaminate electrolyte, especially in low-carbon 

reinforcement. However, currently used prestressing steels are highly resistant to it.  
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Hydrogen induced stress corrosion cracking (H-SCC) occurs as hydrogen atoms are set free and 

are absorbed by the prestressing steel during the corrosion process. Coupled with the high 

mechanical tensile stresses due to prestressing, it can cause pre-cracks along grain boundaries. 

This requires the presence of hydrogen and an acidic aqueous media, which is a common 

attacking medium for concrete. As corrosion occurs the pH within the pit drops due to hydrolysis 

of the Fe
2+

 ions, creating the required acidic environment for crack initiation. The latter case is 

referred to as pitting induced hydrogen induced stress corrosion cracking. 

Alonso et al. (1993) investigated the susceptibility of prestressing steel to stress corrosion 

cracking in a Sodium bicarbonate (NaHCO3) solution. They conducted electrochemical and slow 

strain rate tests on cold drawn prestressing steel rod with a tensile strength of 1650 MPa. The 

rods were machined down to 2.5 mm diameter and 25 mm in length. The main variables of the 

study were the concentration of NaHCO3, the aeration methods (air, Nitrogen or none), and the 

strain rate. They concluded that the prestressing steel tested was susceptible to stress corrosion 

cracking in NaHCO3 with the greatest susceptibility being at a critical concentration of 0.1M of 

NaHCO3. They also found that the susceptibility to cracking was affected by the solution’s pH, 

and that a solution alkalinity with a pH of about 9.7 is required for cracking to occur. 

Toribio and Ovejero (2005) studied the impact of the level of cold drawing of prestressing steel 

wires on their susceptibility to stress corrosion in the case of pure stress corrosion cracking 

(localized anodic dissolution, LAD) as well as fracture by hydrogen embrittlement (hydrogen 

assisted cracking, HAC).  



 

 38 

They noted that commercial prestressing steel undergoes a heavy cold drawing that alters the 

microstructure and induces anisotropy in the material. This change in the microstructure 

although it enhances the classical material properties such as yield strength, may affect the 

fracture behaviour and the stress corrosion cracking (SCC) performance.  

They obtained samples with different levels of cold drawing by taking samples from different 

stages of cold drawing from the manufacturing line, and referenced the samples by a steel 

designation from 0 to 6 based on the level of cold drawing, with 6 being the highest level. 

Samples were precracked to produce a transverse precrack with a crack depth = 0.30 × the 

diameter, then placed in a corrosion cell simulating the prestressing steel being surrounded by 

concrete. Low strain rate tests were performed on precracked steel wires with a constant 

displacement rate in the axial direction. The displacement rate for each test was proportional to 

each wire diameter, ranging from 1.7×l0
3
 mm/min for the fully drawn to 3.0×l0

3
 mm/min for the 

hot rolled bar (steel 0).  

They observed the fracture plane profile for both HAC and LAD and noted an increase in 

anisotropic behaviour with an increase in the level of cold drawing. For lower levels of cold 

drawing (steel 0 and 1) the crack grows perpendicular to the loading direction while for medium 

levels of cold drawing (steels 2 and 3) a deflection in the fracture plane was noticed. Finally for 

the heavily drawn specimens (steels 4 to 6), the crack deflection had an even high deviation 

angle, see Figure 2-18. They noted that although heavy cold drawing helps in resisting SCC by 

crack tip blunting, this is countered by the mixed mode crack propagation in the direction of 

minimum resistance due to the anisotropic behaviour. Finally, they concluded that their 

observations indicate that cold drawn prestressing steels are highly susceptible to SCC. 
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Figure 2-18 – Fracture profile of Hydrogen Assisted Cracking (HAC) at different level of cold 

drawing (Toribio and Ovejero, 2005) 

Ngoc et al. (2009) conducted a study on the stress-strain response of 8mm prestressing wires 

exposed to accelerated stress corrosion cracking. The main variable considered in the study was 

the prestressing stress level (0, 70, 80, and 100% of the elastic limit, 1500 MPa). X-ray 

diffractometry was used to compare the chemical composition of the rust products resulting from 

corrosion at different prestressing stress levels. The average life of a wire exposed to 100%, 

80%, and 70% of the elastic limit stress was found to be 164, 265, and 350 days, respectively. In 

addition, tensile tests were carried out on the prestressing wires at 60, 90 and 180 days of 

corrosion exposure. The test results showed that corrosion led a to considerable reduction in the 

elastic limit, elastic modulus, yield stress and the ultimate strain and also  led to brittle failure of 

the wire, Figure 2-19.  
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Figure 2-19 – A comparison between stressed and unstressed corroded wires (Ngoc et al. 2009) 

A significant difference in corrosion pattern was noticed: as the corroded stressed wire exhibited 

micro cracking perpendicular to the axial direction, which was not observed in the non-

prestressed wire. This is considered to be an indication of hydrogen induced stress corrosion 

cracking. The findings of this study highlight the impact of the prestressing stress level on the 

development of stress corrosion cracking, and also the influence this has on the corrosion mass 

loss. Highly prestressed wires can exhibit an additional 15% mass loss compared to  non-

prestressed wires. However, the prestressing stress level appears to have no effect on the 

composition of the rust products. 

Perrin et al. (2010) studied the damage evolution in prestressing strands due to hydrogen 

embrittlement and characterized the degradation mechanism though metallographic observations. 

They used the centre wire of a standard monolayer (7-wire) prestressing strand. Their wire was 
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subjected to a corrosive solution while under a tensile force equal to 75% of the ultimate tensile 

strength. The corrosive solution was an ammonium thiocyanate solution (NH4SCN). The test 

duration was 160 hours with an interruption for metallographic observations at 24, 48 and 96 

hours. Figure 2-20 shows the wire fracture plane before immersion in ammonium thiocyanate 

solution and after 96hrs of immersion, while Figure 2-21 shows the wire surface before an 

immersion in ammonium thiocyanate solution and after 96 hours of immersion. Notable 

observations by Perrin et al. are the change in fracture mode and the condition of the wire 

surface; the fracture mode changed from a ductile failure with significant necking before 

exposure to a brittle fracture with no necking after 96 hours of immersion, while the wire surface 

changed from a healthy surface elongated in the cold drawing direction before immersion to a 

surface with many obvious crack in the transverse direction after 96 hours of immersion. 

 

Figure 2-20 – Wire fracture plane before immersion (left) and after 96 hrs of immersion (right) in 

ammonium thiocyanate solution 
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Figure 2-21 – Wire surface before immersion (left) and after 96 hrs of immersion (right) in 

ammonium thiocyanate solution 

Fatigue and corrosion induced fracture 

In prestressed members cracks can occur due to the applied fatigue stresses caused by, for 

example, traffic loads on a bridge. Unlike stress corrosion cracking, fatigue cracking does not 

require a corrosive medium for the crack to initiate. However, if the prestressed steel strand is 

corroded, fatigue cracking of the strand will start earlier and progress faster than fatigue cracking 

in air without corrosion of the prestressing steel. In addition, fretting which is defined by the 

disintegration of the steel surface due to oscillating friction between the adjacent wires of a 

single strand, the strand and the surrounding concrete and/or adjacent strand is a likely initiation 

mechanism for cracks.  If chlorides make their way to the prestressed steel through cracks in the 

concrete, oxidation will take place and combine with the tensile stresses due to fretting, to 

deteriorate the fatigue behaviour of the prestressing steel.  

Nurnberger (2002) presented a comparison between the fatigue behaviour of cold drawn 

prestressing steel wires tested in air and the fatigue behaviour when tested in corrosion 
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promoting media (tap-water and sea water). The comparison clearly shows an increasing 

detrimental effect on the fatigue resistance when moving from testing in air to testing in tap-

water and then to testing in sea-water, see Figure 2-22. 

 

Figure 2-22 – Fatigue behaviour of cold drawn prestressing steel wire tested in air, tap-water and 

sea-water, (Nurnberger, 2002) 

2.5.2 Effects of corrosion on prestressed concrete structures 

Although corrosion induced deterioration of reinforced concrete structures has been observed 

throughout concrete’s history, it was not until the 1980s that such deterioration was observed in 

prestressed concrete structures (Darmawan and Stewart 2007). Two of the recent failures 

attributed to corrosion are: the collapse of the Saint Stefano bridge in Italy in 1999, and the 

collapse of a pedestrian bridge over Lowe’s Motor speedway in North Carolina in 2000 

(Proverbio and Ricciardi 2000; Goins 2000). 
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A corrosion attack on prestressed concrete elements can present more serious consequences than 

on reinforced concrete elements due to the high mechanical stresses applied to the strands 

(Rinaldi et al. 2010). In addition, the deterioration of unbonded tendons within a structure often 

shows no outward signs of distress (Harder and Rogowsky 1999). Typically prestressing strands 

are stressed between 60-75 % of the materials ultimate stress, and as the prestressing strand 

corrodes it exhibits an overall loss of cross section and localized pitting creating along the strand. 

The severity of a stress raiser is a function of the volume of mass loss, the geometry (depth, 

width, and radius of a pit), and location of the pits. The prestressing steel becomes highly 

susceptible to local yielding and/or fracture with a reduction in cross section (Darmawan and 

Stewart 2007). 

MacDougall and Bartlett (2002) tested six (6) - 13 mm-diameter 7-wire strands with one or two 

broken outer wires and subjected to accelerate corrosion by exposure to aggressive treatments. 

The test results indicated that corrosion significantly affected the behaviour of the unbonded 7-

wire strands with broken wires in comparison to that of identical non-corroded strands. They 

noted that the corrosion product could increase the apparent interwire friction coefficient 

resulting in maintaining sufficient force in the tendon that may mask wire breaks. Finally they 

concluded that mechanical interlock between the broken and unbroken wires may occur which 

would reduce the accuracy of the screwdriver penetration test.  

Darmawan and Stewart (2007) carried out a study to quantify the effects of pitting corrosion on 

the capacity of prestressing wires by obtaining a spatial distribution of pit depths along the 

prestressing wire length. Accelerated corrosion was used to simulate natural corrosion in the 

field. The variables considered were the type of prestressing steel (single wire and 7-wire 



 

 45 

strands), the level of induced current used to accelerate the corrosion process, and the percentage 

corrosion mass loss.  

The study was divided into two series; the first series focused on identifying the mode of failure 

of the prestressing wire (brittle, stress corrosion cracking, or yielding). The second series focused 

on the temporal and spatial variation pit depth along the length of the wire or strand. In series I, 

two 3 m  0.3 m  0.3 m beams were constructed with a single prestressing wire in the centre of 

the beam. The prestressing wire was 5.03 mm in diameter and was stressed to 74% of its ultimate 

strength. One beam was subjected to accelerated corrosion with an induced current density of 80 

A/cm
2
 while the second beam was kept as a control without corrosion.  

After 68 days, 1m sections of the prestressing wire were extracted from each beam, and tested 

under an axial tensile load to determine the change in the stress-strain behaviour. They measured 

the maximum pit depth for each 100 mm section of the 1m wires with the deepest pit measuring 

1.97 mm, and reported that a corrosion pit can be typically represented by a hemispherical pit 

configuration. The corroded wire failed at the location of the deepest pit and exhibited an 

approximately 40% reduction in tensile capacity.  

The fracture surface was examined using a scanning electron microscope and compared to that of 

a non-corroded wire, however, they go on to state that while SCC and brittle fracture were not 

observed in their study they cannot be ruled out as the likelihood of their occurrence depends  on 

various variables such as; the stress level, the chemical environment and the mechanical and 

chemical properties  of the wire. Their comparison revealed no sign of stress corrosion cracking 
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but showed a transition from a ductile to a less ductile mode of failure. Figure 2-23 presents a 

side-by side comparison of the non-corroded and corroded wires. 

 

Figure 2-23 – Fracture surface a) non-corroded wire, and b) corroded wire (Darmawan and 

Stewart, 2007) 

For Series II, six (6) concrete slabs 1.5 m  1.0 m  0.25 m in dimensions, were constructed and 

subjected to accelerated corrosion with an induced current density ranging from 150 to 418 

A/cm
2
 for up to 56 days. Nine (9) wires/strands were placed in each slab but were not stressed. 

After the accelerated corrosion exposure, the wires/strands were extracted, cleaned and weighed. 

Statistical data were collected from the samples and found to be best represented by the Gumbel 

EV-Type I distribution. The authors used the data to formulate a probabilistic model to predict 

the maximum pit depth, along any length of wire at any time during its service life, Equation 

(2-9).  

Darmawan and Stewart stated that the model is slightly conservative as it assumes that the pit has 

a fixed length/width, thus over predicting the pit depth. They used this model, Equation (2-9), to 
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simulate a real life corrosion scenario at a current of 1 A/cm
2
 for 20 years and found that the 

mean loss of cross section can exceed 30%, and there is a 5% chance of reductions in the cross 

section up to 45%. Also, after 10 years of corrosion there is a 15% chance of at least a 20% 

reduction in cross-sectional area. These results highlight the effect of pitting corrosion on the 

monotonic capacity of a prestressing strand. Figure 2-24 presents the distribution of the reduction 

in cross sectional area for a 20 m prestressing wire at a corrosion rate of 1 A/cm
2
 in relation to 

time in years. 

              
 

     
 

   
 

        
 

   
 

        
 (2-9) 

Where, 

 

 fa The probability distribution of maximum pit depth a 

  T Exposure duration of accelerated corrosion (years) 

  icorr Corrosion rate (A/cm2) 

  L Length of wire/strand 

  a Pit depth 

  ,  Constants based on the Gumbel distribution parameters 

   Ratio of increase in volume of corrosion products 
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Figure 2-24 – Distribution of cross sectional area reduction vs. time (Darmawan and Stewart, 2007) 

Rinaldi et al. (2010) conducted an experimental investigation to study the flexural behaviour of 

corroded prestressed concrete beams. The study comprised of 9 beams measuring 3 m  0.3 m  

0.2 m. The main variables of the study were the corrosion or mass loss level (7%, 14%, and 

20%) and concrete strength (34, 42, 47.4 MPa). All beams were partially prestressed with 3 7-

wire stands (12.7 mm in diameter), stressed to 66% of their ultimate stress. An induced current 

of 400 mA was used to accelerate the corrosion process in the presence of a 5% NaCl solution. 

Two beams were left un-corroded to serve as reference control beams. After the strands reached 

the desired corrosion level, all beams were tested monotonically up to failure in four point 

bending. The load, midspan deflection, and end-slip measurements were all recorded. 

Test results revealed that corrosion of the prestressing strand significantly affected the behaviour 

the prestressed members in terms of load bearing capacity, ductility, and failure mode. The 
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control beams failed by concrete crushing of the overly reinforced section, while the beams 

corroded to a 7% mass loss exhibited a combined failure of localized rupture accompanied by 

concrete crushing. Beams corroded to 14% and 20% mass loss failed by localized strand rupture. 

Figure 2-25 presents a comparison of load versus midspan deflection of an uncorroded beam and 

corroded beams at 14% and 20% mass loss. Results show a reduction in monotonic capacity of 

55%-65%, but no significant effect on the member stiffness. 

 

Figure 2-25 – Comparison of load versus midspan deflection for beams at different corrosion levels 

(Rinaldi et al. 2010) 

Rinaldi et al. attempted to predict the beam capacity based on the average mass loss of the 

prestressing strand by using the stress block approach. They found that uniformly reducing the 

cross sectional area (average mass loss) over the length of the strand contradicts the observed 
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pattern of localized pitting corrosion, and therefore over estimates capacity. When the corroded 

prestressing strand was extracted from the beam it was observed that the king wire (centre wire) 

was often undamaged while the remaining six (6) wires were severely corroded. Based on this 

observation the authors concluded that for uncorroded beams and beams with a low level (7%) of 

corrosion, the simplified stress block approach would suffice; however, for higher corrosion 

levels, 14% and 20%, predictions of the beam capacity can be made by assuming that only one 

or two wires out of the seven wires are intact. 

In summary, this section presented the available literature on the effects of corrosion on the 

monotonic capacity and ductility of prestressed members. The importance of these effects is 

evident, with prestressing strands being susceptible to corrosion of up to a 45% mass loss in 20 

years (Darmawan and Stewart 2007), and exhibiting a loss of monotonic capacity of up to 65% 

at a 20% mass loss (Rinaldi et al. 2010).  
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2.6 Rehabilitation of Non-Prestressed Concrete Structures Using Fibre Reinforced 

Polymer (FRP) 

The detrimental effects of corrosion on conventional concrete reinforced structures have been 

scrutinised by the research community for decades. However, for over two decades now Fibre 

Reinforced Polymers (FRP) have been gaining an ever increasing acceptance as a 

strengthening/rehabilitating method to restore degraded member capacity due to corrosion 

damage. The drive behind the increasing popularity of using FRP is the numerous researchers 

who have investigated their use in repairing corroded steel reinforced concrete beams. In this 

section a brief review of recent studies that have focused on the effectiveness of FRPs for repair 

purposes is presented. 

2.6.1 FRP strengthening and repair of RC beams subjected to monotonic loading 

Bonacci and Maalej (2001) compiled and analyzed an experimental database compiled from the 

literature of reinforced concrete beams strengthened by externally bonded Fibre Reinforced 

Polymers (FRP). The database contained 127 specimens from 23 different studies. All beams 

were simply supported with rectangular and T-cross-section and conventional reinforcement. 

Externally applied FRP strengthening were all glass (GFRP) or carbon (CFRP) fibres designed 

for flexural strengthening. The authors observed that almost one-third of the sample size 

exhibited a strength increase of at least 50%, however, it was evident that all the studies focused 

on strengthening and not rehabilitation. They concluded that future research should focus on the 

application of rehabilitation under conditions that resemble field conditions such as sustained 

loading and environmental attack. 
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Soudki and Sherwood (2000) conducted an experimental program comprised of constructing and 

testing 10 reinforced concrete beams. Beams had chloride levels varying from 0% to 3% and 

were subjected to accelerated corrosion to 5%, 10% and 15% corrosion by mass loss. Six beams 

were strengthened with external epoxy bonded CFRP laminate while the remaining four (4) 

remained non-strengthened. All beams were tested to failure under four-point bending. 

Strengthened beams exhibited an increased stiffness, yield and ultimate monotonic strength. 

Beams corroded to 15% by mass loss and strengthened using CFRP were able to regain their 

uncorroded monotonic capacity. Figure 2-26 presents load versus midspan deflection curves for 

the control non-corroded beam, the corroded non-strengthened beam, and corroded and 

strengthened beams. 

 

Figure 2-26 – Load vs. midspan deflection curves for control, corroded/non-strengthened and 

corroded/strengthened beams (Soudki and Sherwood, 2000) 

N-0: no strengthening, no corrosion 
N-15: no strengthening, 15% corrosion 
CF-0: strengthened, no corrosion 
CF-15: strengthened, 15% corrosion 
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Soudki et al. (2007) investigated the behaviour of CFRP-strengthened concrete reinforced beams 

in a corrosive environment. The investigation comprised of constructing and testing eleven (11) 

concrete reinforced beams. Beams where subjected to 300 cycles of wetting and drying in a 

corrosive solution (3% NaCl), and repaired using CFRP sheets. Test results showed that CFRP 

strengthening significantly enhanced the performance of reinforced concrete beams, and 

restoring them to 1.25 to 2 times the maximum monotonic load capacity of the non-corroded 

beams depending on the number corrosive cycles the beam was exposed to. 

 

Figure 2-27 – Load vs. midspan deflection curves for non-strengthened and strengthened beams 

subjected to no wetting and drying cycles (Soudki et al, 2007) 

2.6.2 FRP strengthening and repair of RC beams subjected to fatigue loading 

Shahawy and Beitelman (1999) tested 16 T-beams with different repair schemes to investigate 

the monotonic and fatigue performance of reinforced concrete beams strengthened with carbon-
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fibre-reinforced polymer (CFRP) laminates. The beams were under-reinforced 6 m (20 ft) long 

T-beams; ten (10) beams were tested under monotonic loading, while the remaining six (6) 

beams were tested under fatigue loading. Results showed that CFRP strengthening increased the 

monotonic load capacity by up to 70% with four layers of CFRP laminate, while the ductility 

decreased with the increased number of layers. In addition, results indicated that fatigue-critical 

beams could be effectively rehabilitated using CFRP laminates.  

Masoud et al. (2001) constructed and tested eight (8) reinforced concrete beams measuring 120 x 

175 x 2000 mm. Seven (7) beams were subjected to accelerated corrosion, and six (6) were 

strengthened with CFRP sheets. One (1) beam remained non-corroded and non-strengthened. All 

beams were tests to failure in a four-point bending configuration. Three specimens were tested 

under monotonic loading and five specimens were tested under cyclic loading. Beams 

strengthened using CFRP sheets had a fatigue life ranging from 2.5 to 6 times the fatigue life of 

an equivalent corroded but non-strengthened beam, but did not achieve the fatigue life of the 

control beam (non-corroded and non-strengthened). They concluded that CFRP strengthening is 

technique of capable of improving the structural behaviour of corroded reinforced concrete 

beams. 

Heffernan and Erki (2004) experimentally studied the fatigue behaviour of steel reinforced 

concrete beams strengthened with externally bonded CFRP laminates. The authors tested a total 

of 26 beams (20 - 3 m long and 6 - 5 m long) under monotonic and cyclic loading, and observed 

that all the fatigue failures were initiated by the fracture of one of the steel rebars. Moreover, the 

fatigue life of beams strengthened with CFRP increased in comparison to non-strengthened 

beams, with no significant degradation of the CFRP laminate. Finally, the authors concluded that 
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externally bonded CFRP strengthening is an appropriate method of extending the fatigue life of 

steel reinforced concrete when rehabilitation is required. Figure 2-28 compares the moment 

range versus fatigue response of non-strengthened and strengthened reinforced concrete beams. 

 

Figure 2-28 – Moment range versus fatigue life of non-strengthened and strengthened reinforced 

concrete beams (Heffernan and Erki, 2004) 

Aidoo el at. (2004) constructed and tested eight (8) 5.6 m long reinforced T-beam under constant 

amplitude cyclic loading to investigate the effects of externally bonded CFRP sheets and 

laminates on their flexural fatigue performance. They conclude that FRP repairs can extend the 

fatigue life of a reinforced concrete beam by reducing the stresses resisted by the steel. However, 

the fatigue performance is governed by the fatigue behaviour of the reinforcing steel and the 

bond between the carbon FRP and concrete substrate.  

Al-Hammoud el al. (2011) constructed thirty (30) steel reinforced concrete beams measuring 152 

mm x 254 mm x 2000 mm; all beams were tested to failure in a four-bending configuration. One 

NF: non-strengthened 

CF: strengthened 



 

 56 

(1) beam was tested under monotonic loading while the remaining twenty-nine (29) beams were 

tested under cyclic loading. The beams tested under fatigue loading were divided into; non-

corroded and non-repaired, corroded and non-repaired, and corroded and repaired using CFRP.  

Beams subjected to accelerated corrosion had an actual mass loss varying from 4.65% to 14.3%, 

and corrosion pitting was not observed below the corrosion level of 7% by mass loss. Corrosion 

resulted in decreases in the fatigue resistance of the beams that increased with corrosion level. 

The authors concluded that repairing with CFRP sheets increased the fatigue capacity of the 

beams with corroded steel reinforcement beyond that of the control unrepaired beams with 

uncorroded steel reinforcement, and stated that this conclusion was only applicable to medium 

corrosion levels (9% by mass loss) and for fatigue lives between 100,000 and 500,000 cycles. 

Oudah and El-Hacha (2013) conducted a comprehensive literature review on the fatigue 

performance of Reinforced Concrete (RC) beams strengthened using Fibre Reinforced Polymers 

(FRP) reinforcement. They reviewed the fatigue properties of the constituent materials, the 

effects of pre-damage, and environmental exposure on the fatigue behaviour of Reinforced 

Concrete (RC) beams strengthened using (FRP) and made recommendations for future research, 

which included but were not limited to: (1) revisiting into the fatigue limits provided by the 

design codes include the effects of other fatigue test variables on the fatigue life of tension steel 

such as the R ratio and the mean cyclic stress, (2) �investigations on types of FRP other than 

CFRP, (3) further experimental testing to investigate the effects of existing  pre-damage and the 

environmental conditions/exposures, (4) examine the effect of various/variable amplitude 

loading on the fatigue performance of RC beams strengthened using different types of FRPs and 

strengthening systems. 
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2.6.3 FRP strengthening and repair of prestressed beams subjected to monotonic and 

fatigue loading 

Takács and Kanstad (2000) obtained two (2) 11.2m long double-T bridge girders from the 

decommissioned Isakveien Bridge in Oslo, Norway. The two double-T girders were cut along 

the longitudinal direction to form four (4) T-beams. All beams were tested monotonically to 

failure in a four-point bending configuration. Two beams remained non-strengthened while the 

other two were strengthened using CFRP plates in the longitudinal direction. CFRP 

strengthening resulted in an increase in flexural moment capacity of up to 37%, and the observed 

failure by debonding of the CFRP plate from wide crack locations. They concluded that 

strengthening prestressed beams using CFRP plates is effective, however, they cautioned of the 

possibility of brittle failure due to a reduction in member ductility. 

Hassan and Rizkalla (2002) investigated the flexural behaviour of post-tensioned bridge slabs 

strengthened with various techniques. They constructed three (3) slabs with a centre span and 

two cantilevers (one on each side). Each slab underwent three monotonic tests under single point 

loading. The centre span was tested as a singly supported slab and the ends were tested as 

cantilevers. The strengthening techniques used were near surface mounted Leadline bars, CFRP 

bars and strips, and surface mounted sheets and strips.  

They reported that strengthening using CFRP increased the post-crack stiffness by at least 1.5 

times, and decreased crack opening in comparison to non-strengthened slabs. In addition, CFRP 

strengthening provided a substantial increase in monotonic load capacity of up to 50% depending 

on the type and configuration of strengthening. They concluded that externally bonded CFRP 

sheets were the most effective of the five (5) strengthening techniques in terms of strength 
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improvement, and that future research should investigate the impact of other parameters such as 

fatigue loading and temperature effects. 

Ford (2004) investigated the effects on fatigue behaviour of prestressted concrete beams when 

strengthened using externally bonded prestressed CFRP sheets. Five (5) rectangular beams 

measuring 3.6 m long were constructed and strengthened using CFRP sheets prestressed to 20% 

to 50% of their ultimate capacity. In addition three (3) were also subjected to 80 freeze/thaw 

cycles to assess the impact of the harsh exposure environment on the fatigue performance. Ford 

noted that the freeze/thaw and fatigue cycling may result in concrete softening, reduction the 

monotonic ultimate capacity and an increased ultimate deflection, concluded that the 

strengthening technique was effective and behaved adequately under fatigue loading. 

El-Hacha et al. (a) & (b) (2004) investigated the performance of partially prestressed concrete 

beams strengthened with post-tensioned CFRP sheets under sustained loading at room (+22 °C) 

temperature or at low (-28 °C) temperatures. They constructed and tested eight (8) – 4.5 m long 

T partially prestressed T-beams. The strengthened beams showed significant increases in flexural 

stiffness and ultimate capacity in comparison to the unstrengthened beams. The concluded that 

the long-term and low temperature effects did not adversely affect the strength of the beams 

indicating that strengthening by bonded prestressed CFRP sheets could be used to on damaged 

prestressed concrete girders under extreme environmental conditions. 

Larson et al. (2005) stated that although favourable results about FRP as strengthening technique 

are increasingly being reported in the literature, its impact on the fatigue behaviour of prestressed 

concrete members remains to be adequately evaluated. They conducted an experimental program 
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to study the fatigue behaviour of pretensioned T-beams strengthened with CFRP sheets. Five (5) 

5 m (16.5 ft) long pretensioned T-beams were constructed and tested in a four-point bending 

configuration. One beam was remained unstrengthened and was tested to failure under 

monotonic loading. Two beams were strengthened and then monotonically tested to failure, 

while the remaining two beams were strengthened and tested under fatigue loading, one to 

1million cycles and the other to 3 million cycles before being tested monotonically to failure.  

When the experimental results for identical beams tested under monotonic loading were 

compared to those tested under fatigue loading and then under monotonic loading to failure they 

found that the global beam stiffness remained the same while the load capacity was reduced for 

the beams subjected to fatigue loading. They stated that fatigue loading deteriorates the strength 

but not the stiffness of the beams. Finally they concluded that externally bonded FRP sheets were 

effective for strengthening concrete beams prestressed with straight strands. 

Rosenboom and Rizkalla (2006) and Rosenboom et al. (2006) investigated the monotonic and 

fatigue behaviour of strengthened partially prestressed bridge girders. They conducted an 

experimental program that consisted of strengthening and testing fifteen (15) decommissioned 

girders from two bridges in Eastern North Carolina. The girders were 9.14 m (30 ft) long C-

channel girders that had both straight and harped prestressing strands. They used multiple CFRP 

strengthening systems designed to achieve strengthening levels of a 20%, a 40% and a 60% 

increase in the monotonic capacity. The strengthening systems used were near-surface-mounted 

bars and strips, and externally bonded strips and sheets. 
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They stated that the near surface mounted CFRP systems were the most effective of the 

strengthening systems. They reported that CFRP strengthening achieved an up to 73% increase 

in the monotonic capacity and reduced the crack widths and spacing, and reduced the stress 

range in the prestressing strands under service loading conditions. However, the prestressing 

strand remained as the most fatigue critical component in a CFRP strengthened prestressed 

concrete bridge girder. 
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2.7 Summary 

A review of the literature on the corrosion effects on the fatigue behaviour of prestressed 

members was presented. Key findings are as follows: 

 Corrosion of a prestressed concrete member can be fatal, and can manifest itself in 

prestressed members without external signs of distress. Recent bridge collapses 

mentioned in Section 2.5.2 were attributed to corrosion of prestressing strands. 

 Corrosion induced failures in prestressed members are more severe than those in 

reinforced concrete members due the stored high mechanical energy. 

 Stress corrosion cracking could evolve from corrosion pitting, which would lead to the 

development of both micro cracking and micro-voids in the steel bulk.  

 The effects of corrosion on the monotonic capacity of prestressed concrete members are 

significant, and can lead to a major reduction in the member’s monotonic load capacity. 

 Cyclic loading significantly reduces the strength of reinforced and prestressed concrete 

members. 

 Repair of reinforced concrete beams using Carbon Fibre Reinforced Polymer is an 

effective technique for restoring monotonic and fatigue capacity to that of the non-

deteriorated beam. 

 Repair of prestressed concrete beams using Carbon Fibre Reinforced Polymer is an 

effective technique for restoring monotonic capacity, but its effectiveness under cyclic 

loading requires further evaluation. 
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 Repair of concrete beams using Carbon Fibre Reinforced Polymer techniques increases 

the post-cracking stiffness and reduces the crack opening. 

To the author’s knowledge only limited studies addressing the impact of corrosion on the 

monotonic and fatigue behaviour of pretensioned concrete beams, reported in Section 2.5.2, are 

available in the literature. Also no research was found that addresses repair using externally 

bonded CFRP sheets to restore the fatigue capacity of corroded pretensioned concrete members, 

but rather literature found and reported in this chapter focused on strengthening of non-corroded 

members. The study presented in this thesis addresses this gap in the literature by investigating 

the flexural monotonic and fatigue behaviour of corroded pretensioned beams and their repair 

with CFRP sheets. This topic is of importance to extending the life of our aging bridge 

infrastructure. 
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Chapter 3 

Experimental program 

3.1 General 

In this chapter, a description of the experimental program is given including: specimen 

fabrication, accelerated corrosion, CFRP repair, material testing, and monotonic and fatigue 

beam testing. 

3.2 Testing Phase 

Table 3-1 and Table 3-2 summarize the experimental program. The experimental program 

consists of the three phases described below. 

3.2.1 Phase I 

In Phase I ancillary tests were conducted with four objectives, (a) to investigate the rate of 

accelerated corrosion of the prestressing strands, (b) to quantify the distribution of the applied 

nominal tensile force among the seven wires within a single 7-wire strand, (c) to identify the 

material fatigue properties and the stress-strain behaviour of strand wires, and (d) to quantify the 

stress concentration factor in the prestressing strand due to corrosion. 

To achieve Objective (a), strands were embedded in prisms (100 mm  150 mm  300 mm) 

constructed from 30 MPa concrete mixed with NaCl salt solution at a 2.1% chloride 

concentration by weight of cement. The strands had a 50 mm cover, and were not prestressed, 

Figure 3-1. Nine prisms were constructed and corroded to three corrosion levels (2.5%, 5%, and 

10%). The galvanostatic accelerated corrosion approach was used, and the expected time to 

achieve the desired corrosion levels was calculated using Faraday’s law. When the theoretical 
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corrosion levels were reached, the corroded strands were extracted from the prisms and a 

gravimetric mass loss analysis was conducted to determine the actual corrosion level achieved. 

Based on the difference between the theoretical and actual corrosion levels a correction factor 

was computed to account for the variation in the required time to achieve a specified corrosion in 

the strands. 

 

Figure 3-1 – Schematic of the concrete prisms 

For the Objective (b), two 1 m long uncorroded 7 wire strands were tested under monotonic 

tensile loading with 2 mm strain gauges mounted on the six external wires at the same location 

along the strand’s length (a total of 6 strain gauges per strand). Using the strain measurements, 

the force distribution between the external helical twisted wires and centre king wire were 

determined. 

For the Objective (c), uncorroded 7-wire strands were unravelled and the centre wire was cut in 

130mm long samples. A total of 23 samples were prepared and tested in fatigue under fully 

reversed loading (R = -1). To avoid buckling of the wire due to fully reversed loading, a ratio of 

diameter to free wire length of 2:1 was used. Moreover the free length was machined down 

gradually to 2 mm diameter to prevent buckling, ensure failure in the free length zone, and avoid 
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anchor failure by avoiding stress concentrations due to the sudden change in diameters, Figure 

3-2. The samples were tested under different strain ranges. The results of the non-corroded 

samples are used to plot a strain versus number of cycles to failure (-N curve), which is used as 

the baseline data and is used to identify the material fatigue properties, and a stress versus strain 

curve that is used to describe the stress-strain behaviour of the wires. 

 

Figure 3-2 – Machined single wire specimens for fatigue testing 
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For Objective (d) 60 corroded wire samples were divided into two groups of 30 samples per 

corrosion level. The samples were obtained as follows; four prisms (100 mm  200 mm  1000 

mm) were constructed from 30 MPa concrete mixed with NaCl chloride solution at 2.1% 

chloride concentration by weight of cement. Each prism contained a single non-stressed 

prestressing 7-wire strand. Each prism was subjected to accelerated corrosion to achieve two 

corrosion levels (5% and 10% by mass loss). Upon completion of the corrosion process, the 

strands were extracted from the prisms, and the actual corrosion level was determined by 

gravimetric mass loss analysis. The corroded strands were unravelled to separate individual 

wires. A single one (1) metre of corroded strand when unravelled results in six (6) meters of 

corroded external helical wire. The corroded helical wire was cut into smaller samples. The 

centre (king) wire was disregarded as the more severe corrosion occurs on the external wires 

making them more critical to fatigue failure.  

Table 3-1 –Ancillary testing program 

Phase Specimen Type 

Number of 

Specimens 

Corrosion 

Level 

Testing Type 

I 

(a) 
Prism (100 150 300 mm) 

3 2.5% 

Mass loss analysis 3 5.0% 

3 10.0% 

(b) 7-wire strand (1000 mm) 2 0.0% 
Monotonic 

(tensile) 

(c) Single centre wire (200 mm) 

14 

0.0% 

Fatigue (R = -1) 

9 
+500 MPa mean 

stress 

(d) 
Single external wire  

(200 mm) 

30 5.0% Fatigue (tension-

tension) 30 10.0% 
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3.2.2 Phase II 

Phase II aimed to quantify the effect of corrosion of a 7-wire steel strand on the monotonic 

capacity of pretensioned beams. This phase comprised of 12 T-beams. Details of the specimen 

design are given in Section 3.4. To facilitate the corrosion process the bottom central region (1 m 

 0.15 m) of the beams was cast using salted concrete with 2.1% chloride concentration by 

weight of cement, while the rest of the beam was cast using unsalted concrete. This ensured that 

only the central tension region (1 m portion of the beam) corroded. The beams were subjected to 

accelerated corrosion to achieve three corrosion levels: low 2.5%, medium 5%, and high 10% of 

mass loss. Two beams were kept as controls (i.e. not corroded). Four beams were repaired using 

CFRP sheets following the medium and high corrosion exposure levels to examine the feasibility 

of using CFRP repair to restore the capacity of corroded pretensioned beams. All beams were 

tested under monotonic loading in four-point bending to failure to assess their flexural behaviour. 

3.2.3 Phase III 

Phase III investigated the fatigue behaviour of 25 pretensioned T-beams. The beams were 

constructed with the same beam dimensions and reinforcement details as those in Phase II 

(Details on specimen design are given in Section 3.4). The beams consisted of 15 non-repaired 

and 10 repaired beams. Five beams were left non-corroded and non-repaired to act as control 

beams. The remaining 20 beams were corroded to two corrosion levels (5% and 10% by mass 

loss) with 10 beams per corrosion level. At each corrosion level, five beams were corroded and 

were non-repaired, and five beams were corroded and repaired using CFRP sheets. Each set of 

five beams was tested in four point bending under fatigue loading at different stress ranges. The 
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data from this experimental phase is used to construct S-N curves under the different corrosion 

levels, and to verify the modelling results. 

 

Table 3-2 –Beam testing program 

Phase Specimen Type Number of 

Specimens  

Corrosion 

level 

Testing Type 

II 12  T-beam 

8 non-repaired 

2 0.0% 

Monotonic 

(flexural) 

2 2.5% 

2 5.0% 

2 10.0% 

4 repaired 2 5.0% 

2 10.0% 

III T-beam 

15 non-

repaired 

5 0.0% 
Fatigue 

(flexural) 

5 5.0% 

5 10.0% 

10 repaired 5 5.0% 

5 10.0% 

3.3 Beams Nomenclature 

The beam nomenclature will consist of 5 parts, the first part refers to the test loading condition 

(ST: monotonic loading, FT: fatigue loading). The second part indicates the number of 

prestressing strands (1S: 1 strand, 2S: 2 strands), while the third part refers to the corrosion level 

in mass loss percentage (2.5%, 5%, and 10%). The fourth part specifies whether the member in 

repaired by CFRP sheets or not (NW: not wrapped, W: Wrapped). The fifth part indicates the 

configuration of the cathode (stainless steel tube), (SC: straight cathode, LC: L-shaped cathode). 

For example, S-2S-10%-W-SC, would indicate a beam tested monotonically prestressed using 2 

strands, with a straight cathode corroded to 10% by mass loss, and then wrapped with CFRP 

sheets. 
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3.4 Beam Design 

The beams had a T-beam cross section with the following dimensions: a flange of 400 mm width 

by 50mm thickness, a web height of 250 mm and a thickness of 100 mm. The T-beam cross 

section was chosen to represent a scaled down single-T standard bridge girder section from the 

(CPCI 2008). The beams were designed with a prestressing force of 70% of the ultimate tensile 

strength of the strand with an allowance for an estimated 10% losses in accordance with (CPCI 

2008). Two configurations were designed; the first had a single strand at 60 mm from the 

bottom, while the second had two strands above one another with a 50 mm vertical spacing in-

between. The prestressing force was transferred to the beams at a nominal concrete strength of 

26 MPa. Figure 3-4 shows the beam dimensions and reinforcement details. 

3.4.1 Concrete 

Beams were constructed from 40 MPa concrete, with the concrete mix proportions presented in 

Table 3-3. The beams were manufactured at Hanson Pressure Pipe plant in Uxbridge, Ontario. 

The plant facilitated the use of their 40-foot long prestressing bed for pretensioning the strands 

and casting the T-beams.  

Table 3-3  - Mix proportions for a 1m
3
 batch 

Cement 

(kg/m3) 

Sand 

(kg/m3) 

Coarse aggregate 

(kg/m3) 

HRWA 

(l/m3) 

Water 

(L) 
w/c ratio 

475 729 1009 2.8 184 0.39 
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3.4.2 Prestressing strands 

Standard 7-wire low relaxation strands with a nominal diameter of 12.7 mm were used for 

prestressing. The strands were made from cold drawn steel and conform to (ASTM A416M 

2010) with yield strength at a 1% extension equal to 90% of the specified minimum tensile 

strength. Strands in all beams had 60 mm of concrete cover, and for beams with two (2) 

prestressing strands; the vertical spacing was 50 mm. All beams were prestressed to 70% of the 

ultimate tensile strength of the 7-wire low relaxation strand. Beams were all designed in 

accordance to the Canadian Precast Prestressed Concrete Institute (CPCI) Design Manual 4. The 

beams design satisfied all the stress requirements at transfer to avoid cracking as the prestress 

was applied. 

3.4.3 Non prestressed flexural reinforcement 

Shrinkage and temperature steel were placed in the flange. Five-8 mm plain bars were placed in 

the longitudinal direction in the compression zone, and 8 mm bars at 150 mm o/c were placed in 

the transverse direction. 

3.4.4 Shear Reinforcement 

Single legged 15M (16 mm diameter) epoxy-coated stirrups at 75 mm spacing were used in the 

shear zones to prevent shear failure. No stirrups were placed in the constant moment zone.  

3.5 Accelerated Corrosion 

The accelerated corrosion used the galvanostatic approach. This approach applies an impressed 

constant electrical current due to an external power supply, which maintains a constant current 

during the corrosion period. To form an artificial corrosion cell, a stainless steel hollow tube with 



 

 71 

8mm diameter was also embedded in the concrete and ran parallel to the prestressing strand. The 

prisms were connected to the external power supply, with the stainless tube connected to the 

negative terminal thus acting as the cathode, and the 7-wire strand connected to the positive 

terminal acting as the anode, as shown in Figure 3-3. In order to achieve a closed electrical 

circuit, the beam must be subjected to a moist environment to facilitate the conductivity between 

the anode and cathode. The impressed current density was set at 200 A/cm
2 

as recommended in 

the literature (El Maaddawy and Soudki 2003). 

 

Figure 3-3 – Schematic of the corrosion electrical circuit 

3.6 Beam Construction 

Thirty-seven (37) pretensioned beams were constructed in an off-campus precast plant that 

offered the use of their prestressing equipment for pretensioning the beams. Five steel forms 

were fabricated for casting; as a result four pours were carried out to cast all twelve beams. The 

beams had the same concrete dimensions; however, six beams had one prestressing strand and 

six beams had two strands. The prestressing strands were low relaxation 7-wire strands with a 
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nominal diameter of 12.7 mm, and a nominal tensile capacity of 1860 MPa. All strands were 

prestressed to 70% of their ultimate tensile capacity (128.9kN or 1302 MPa). The reinforcement 

configuration was described in Section 3.4 and shown in Figure 3-4. 

The steel forms were put together along the prestressing bed, then the steel cages were dropped 

in and the 7-wire strand was fed through the three forms, Figure 3-5. The strand was then 

prestressed and the prestressing force was locked by prestressing wedge anchors, see Figure 3-6. 

The middle 1000 mm long  150 mm high portion of the beams were cast first using the salted 

concrete mixed with NaCl solution to achieve a 2.1% chloride concentration by cement weight. 

Once the salted portion of the beams (1000  150 mm) were cast, the rest of the beams were cast 

with regular concrete and consolidated and then the plastic dividers used to confine the salted 

concrete were removed, Figure 3-7. 

Beams were steam cured for 24 hours after which standard concrete cylinders (100 mm  200 

mm) were tested for compressive strength. At a nominal compressive strength of 26 MPa after 

24 hours the prestressing force was transferred to the beams by cutting the strand. Table 3-4 

summarises the compressive strength at transfer for each pour.  
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Figure 3-4 – Beam dimensions and reinforcement details
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Figure 3-5 – Beam forms along the prestressing bed 
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Figure 3-6 – Prestressing wedge anchor 

 

Figure 3-7 – Salted portion of the beam 
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Table 3-4 – Average concrete compressive strength at transfer 

  Concrete compressive strength at transfer (MPa) 

1
st
 pour 28.20  1.12 

Beams prestressed with a one strand 

2
nd

 pour 26.35  0.49 

3
rd

 pour 30.10  1.56 

Beams prestressed with a two strand 

4
th

 pour 28.15  0.07 

3.7 Mass Loss Analysis 

Gravimetric mass loss measurements were carried out in accordance to (ASTM G1 2003). This 

was done following testing of the beams to determine the actual corrosion level reached in the 

strands versus the theoretical corrosion level imposed using accelerated corrosion. This is a 

destructive approach as it requires the beam to be broken and concrete removed to expose the 

corroded steel strands. Then samples are cut from the corroded strand. The samples were 

weighed and cleaned; the difference in weight before and after corrosion gives the percentage of 

mass loss.  

3.8 Carbon Fibre Reinforced Polymer (CFRP) repair  

Fourteen beams were repaired using CFRP sheets after the completion of the accelerated 

corrosion duration and prior to load testing. The type of CFRP sheet used was SikaWrap
®
 Hex 

230C, a unidirectional Carbon Fibre fabric that is used in conjunction with Sikadur
®
 330 epoxy 

resin.  

Table 3-5 gives the mechanical properties of cured SikaWrap
®
 Hex 230C laminate with 

Sikadur® 330 epoxy as published by the manufacturer. 
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Table 3-5 – Cured CFRP laminate properties with Sikadur® 330 epoxy 

 

Tensile 

strength (MPa) 

Modulus of 

elasticity (MPa) 

Tensile 

elongation (%) 

Thickness 

(mm) 

SikaWrap® Hex 230C 894 65,087 1.33 0.381 

 

All 14 repaired beams had the same CFRP repair configuration. The unrepaired beams were 

expected to fail in flexure, and corrosion was expected to cause a reduction in load bearing 

capacity. The repair configuration was designed to restore the reduction in load bearing capacity. 

A 100mm wide0.38mm thick flexural CFRP sheet was applied to the soffit of the beam in the 

longitudinal direction. In addition, two U-wraps were applied at the location of the loading points 

to provide confinement to the concrete in the corroded zone, and two more U-wraps were placed 

at the beam-ends to prevent delamination of the flexure sheet. The orientation of the fibres of the 

flexure sheet was in the longitudinal direction (parallel to the prestressing strand), while for the 

U-wraps the fibres were oriented in the direction transverse to the prestressing strand. Figure 3-8 

shows a schematic of the CFRP repair configuration, while Figure 3-9 shows the beams after 

CFRP repair application. 
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Figure 3-8 – CFRP sheets repair configuration 

 

Figure 3-9 – Beams after application of CFRP sheet repair  



 

 79 

3.9 Test setups 

This section describes the test equipment, instrumentation, and test procedure for each test. 

3.9.1 Ancillary tests 

Tensile monotonic test setup for 7-wire strands 

Standard monotonic tension test standards for multiwire strands (ASTM A1061M 2009; ASTM 

A931 2008) were adopted for the test setup and gripping of the strand. The strands were tested 

under tensile monotonic load in a closed loop servo-hydraulic MTS test frame equipped with the 

MTS controller-Flextest GT and a double ended MTS-244 actuator with 500 mm (20 inches) of 

stroke and a capacity of 500 kN (112 Kips). The strands were tested in load control at a rate of 

40 kN/min. A total of 12 - 2 mm strain gauges were mounted on 6 external wires of a strand at 

two different locations. The tests were controlled using a Multipurpose TestWare (MPT) 

environment with TestStar control software. Figure 3-10 shows the test setup and 

instrumentation for tensile monotonic test setup of 7-wire strands. 
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Single wire fatigue test setup 

These tests were carried out to determine the effect of corrosion on the fatigue life of a single 

prestressing wire characterised by the notch factor (Kt). Fatigue tests were carried out using an 

MTS servo-controlled closed-loop electro-hydraulic testing machine with a process control 

computer controlled by FLEX software to output constant strain and stress amplitudes in the 

form of sinusoidal waves. This setup was used for testing Phases II and (d). Phase II tests on 

samples of uncorroded centre wires was carried out in fully reversed strain control. At the 

beginning of each test it was determined whether the cyclic stress- strain response of the material 

was elastic for the specified strain range. If it was elastic the test was run in load control. If it was 

  

(a)      (b) 

Figure 3-10 – Monotonic test setup and instrumentation of 7-wire prestressing strand 
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not the test was run in strain control. The stress-strain limits for each specimen were recorded at 

logarithmic intervals throughout the test via a peak reading oscilloscope. Phase I (d) tests on 

corroded external wires were in stress control under tension-tension cyclic loading. Failure of a 

specimen for strain control was defined as a 50 percent drop in the tensile peak load from the 

peak load observed at one half the expected specimen life. Failure of a specimen for stress 

control was defined as the separation of the specimen into two pieces. Run-out tests were limited 

to 5 million cycles (10 million reversals). The loading frequency varied from 0.5 Hz to 3 Hz for 

strain control and from 40 to 80 Hz for load control. 

3.9.2 Monotonic beam test setup 

All beams were tested in four-point bending in a four post testing frame. The load was applied by 

a servo-hydraulic actuator of 280 kN capacity with a stroke of 250 mm, and controlled by a 407 

Material Testing System (MTS) controller. Figure 3-11 shows a schematic of the test setup.  The 

monotonic loading was applied in displacement control at a rate of 1mm/min. Failure during 

monotonic beam tests was defined by prestressing strand rupture or concrete crushing 

accompanied by a 20% drop in load. 

Instrumentations for the monotonic beam tests included a Linear Variable Differential 

Transducer (LVDT) to measure the midspan deflection. Crack opening measurements within the 

constant moment zone were monitored using LVDTs mounted across three cracks, Figure 3-12. 

This was achieved as follows; the beams were loaded to initiate cracking; the first three cracks 

within the constant moment zone were marked. The beams were then unloaded and three - ½ 

inch (12.7 mm) LVDTs were placed, one across each crack. The beams were then reloaded to 

failure at a rate of 1 mm/min while the LVDTs captured crack opening measurements. The 



 

 82 

concrete compression strain was measured by a 60 mm concrete strain gauge mounted onto the 

top concrete surface at midspan.  

 

Figure 3-11 – Schematic of beam test setup in four-point bending configuration 

The average tension strain at the concrete surface was also measured using a 500 mm long 

OSMOS fibre optic sensor (FOS) placed on the web at the location of the embedded prestressed 

strand, Figure 3-13. For beams wrapped with CFRP sheets, two 5 mm strain gauges were 

installed on the flexural CFRP sheet at midpoint in the longitudinal direction. A National 

instruments data acquisition system was used to acquire all measurements.  
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Figure 3-12 – LVDTs for crack opening measurements 

 

Figure 3-13 – OSMOS FOS across flexure zone for average strain readings at the level of the strand 
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3.9.3 Fatigue beam test setup 

The test setup for the fatigue test was identical to that of the monotonic test, however, the fibre 

optic sensors were not used during the fatigue testing.  

In this study the fatigue loading was applied as a load range between maximum and minimum 

load values that were calculated as a percentage of the ultimate monotonic load capacity. Fatigue 

tests were conducted in load control at a frequency of 1 Hz for the higher load ranges (short 

fatigue lives) and 2.5 Hz for the lower load ranges (long fatigue lives). The reason for lower 

cycling frequencies for short fatigue lives was to allow the hydraulics actuator to accurately meet 

the specified higher load range; however, the difference in cycling frequencies from 1 to 2.5 Hz 

does not have any impact on the testing results. At the start of the test the maximum load was 

applied manually then decreased to the mean load, after which the 407 Material Testing System 

(MTS) controller took over and started cycling at the chosen frequency. The load range and 

cycling frequency for each test after the first were selected based upon the result of the fatigue 

test. The aim was to have a uniform logarithmic distribution of fatigue lives with only the lowest 

load range as a run out, i.e. no failure at 1 million cycles. 

Instrumentation for the fatigue beam test included: external LVDT(s) monitoring the midspan 

deflection (Figure 3-14) and the flexure crack opening widths (Figure 3-16), a 280 kN load cell 

to monitor the applied load, a 60 mm strain gauge that monitored the compressive strain at the 

concrete’s top fibre (Figure 3-15), and two 10 mm strain gauges at mid-span to monitor the 

tensile strain in the CFRP sheets. A national instruments data acquisition system (DAQ) was 

used to record all the instruments’ readings. Fatigue tests were stopped upon rupture of the 

prestressing strand, concrete crushing, or after recording more than one million cycles. 
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Figure 3-14 – Midspan deflection measurement by an external LVDT  

 

Figure 3-15 – 60 mm strain gauge to monitor the concrete compressive strain 



 

 86 

 

Figure 3-16 – External LVDTs monitoring flexure cracks width 
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Chapter 4 

Experimental Results 

This chapter details the experimental results of the present study.  

4.1 Ancillary Testing – Phase I (a) 

This series of tests aimed at investigating the relationship between the experimental and the 

theoretical corrosion mass loss based on Faraday’s law. The test series comprised of 9 concrete 

prisms measuring 100 mm  150 mm  300 mm with one embedded non-stressed prestressing 7-

wire strand with a nominal diameter of 12.7 mm, Figure 3-1. The prisms were constructed from 

30 MPa concrete, mixed with a NaCl salt solution to achieve a 2.1% chloride concentration by 

cement weight. They were constructed and subjected to galvanostatic accelerated corrosion with 

an impressed current density of 200 A/cm
2
 as described in Section 3.5. 

The prisms were placed inside an enclosed corrosion chamber with misting nozzles located at the 

top of the chamber to ensure the presence of moisture and oxygen during the accelerated 

corrosion process. The nozzles were connected to water and pressurized air supplies to create the 

misting effect. Three corrosion levels (2.5%, 5%, and 10% mass loss) were used, and the time 

required to reach those levels with an induced current density of 200 A/cm
2
 was calculated 

using Faraday’s law. Upon completion of the accelerated corrosion process, the 7-wire strands 

were extracted from the prisms and a gravimetric mass loss analysis was conducted to determine 

the actual corrosion level achieved. 
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4.1.1 Gravimetric mass loss analysis 

A mass loss analysis was carried out in accordance with (ASTM G1 2003). The standard 

specifies six cleaning procedures for steel and iron, out of which only two are applicable at room 

temperature. Procedure C.3.5 was used, which uses a solution of 500 mL hydrochloric acid with 

3.5 g of hexamethylenetetramine and 500 mL of reagent water. The samples are submerged in 

the solution for a minimum of 10 minutes, then cleaned with water and wire brushed. The 

cleaning cycles are repeated with the samples being dried and weighted after each cleaning cycle 

until the weight remains constant, and the mass loss percentage is then calculated. It is worth 

noting that there was no significant difference in the actual mass loss due to corrosion between 

the cleaned strand as a whole and the cleaned strand as individual wires. This is explained due 

the vast majority of the rust products are accumulated on the external surface of the strand. 

Adham clarify Figure 4-1 shows a corroded 7-wire prestressing strand before and after cleaning 

as part of the gravimetric mass loss analysis. 

 

  

(a) Extracted strand   (b) Strand after mass loss analysis 

Figure 4-1 - 7-wire strand (a) before and (b) after cleaning showing pitting at a 5% mass loss 
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The results of the mass loss analysis showed that Faraday’s law over estimates the duration 

required for a 2.5% mass loss, but can reasonably predict the duration for a 5% mass loss, and 

underestimates the duration for a 10% mass loss. Based on these findings it was decided to 

decrease the corrosion duration for the 2.5% specimens and increase the corrosion duration of 

the 10% specimens by 25% of the theoretical required corrosion duration given by Faraday’s 

law. The 25% change in corrosion duration is equal to the difference between the theoretical and 

actual corrosion levels observed.  

4.2 7-Wire Strand Monotonic Testing  - Phase I (b) 

The purpose of this testing was to quantify the variation in stress distribution amongst the 

individual wires of the 7-wire strand. This variation occurs as a result of the inter-wire friction 

and the helical twist angle. The testing procedures were carried out as described in Section 3.9.1 

of this thesis. Standard monotonic tension tests of multi-wire strands (ASTM A1061M 2009; 

ASTM A931 2008) were adopted for the test setup and gripping of the strand. The strands were 

tested in load control at a rate of 40 kN/min.  

Quantifying the individual wire load carrying contribution is important as beam failure initiates 

by single wire(s) rupture inside the concrete beam. This is more common in corroded beams due 

stress concentrations at pitting locations, which is discussed in further detail in the beam test 

results Section 4.4. The knowledge of the individual wire load carrying contributions, primarily 

that of the external wires versus the centre/internal one is important to identify the stresses in 

each wire, which is important when modelling their behaviour.  
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To acquire this data, individual external wire strains were monitored and recorded via 2mm 

strain gauges mounted on each wire. Figure 4-2 shows the test setup and instrumentation for the 

tensile monotonic test setup for the 7-wire strands. By knowing individual wire strain, wire 

diameter, and modulus of elasticity the load carrying distribution amongst individual wires can 

be calculated. 

 

The following figures present the measured and observed response from individual wires and the 

strand as a whole. All external six (6) wires responded in a similar fashion. Figure 4-3 shows the 

load versus measured tensile strain for each external wire. The strain distribution amongst the six 

external wires was fairly uniform with no significant variations. In addition, the overall strand 

  

(a)      (b) 

Figure 4-2 – Monotonic test setup and instrumentation of 7-wire prestressing strand 
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elongation was measured, which when used to calculate the overall strand strain would yield a 

slightly higher value than the local strain readings for the individual wires, this is possibly due to 

unaccounted for seating in the gripping anchor. Figure 4-4 presents the applied load versus 

measured overall strand elongation. 

 

Figure 4-3  – Applied load versus individual external wire measured tensile strain 

 

Figure 4-4 – Applied load versus 7-wire strand elongation 
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The measured strain for each individual external wire was used to calculate the applied stress in 

each wire, which in turn was used to calculate the load carrying contribution of individual wires. 

It is worth noting, that this does not account for twisting of the external wires or bending stress 

induced by elongation of the helix, however, their impact on the longitudinal tensile strains is not 

expected to be significant.  

The load carrying contribution of the centre (king) wire was calculated by simply subtracting the 

summation of the external wires’ load carrying capacity from the total applied load. Figure 4-5 

presents curves of the applied wire load versus individual load carrying contributions as a 

percentage of the total applied load versus the applied load. It is observed that initially almost 

35% of the load is carried by the centre wire, while two of the external wires combined only 

contributed to less than 20%. As the applied load is increased the load carrying contributions of 

the external wires converges on an average value of 12-13%. This is caused by the seating, 

elongation, and change in helix angle of the helically wrapped external wires as they become 

fully engaged. Figure 4-6 presents the average load carrying contribution of individual wires. 
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Figure 4-5 – Applied load versus load carrying capacity per individual wire 

 

Figure 4-6 – Average load carrying contributions per wire as a percentage of the total load 
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4.3 Material Fatigue Testing – Phase I (c) and (d) 

These tests were carried out to determine the fatigue properties as well as the effects of mean 

stress and corrosion on the fatigue life of a single prestressing wire. Fatigue tests were carried 

out using the test setup described in Section 3.9.1. Phase II, testing of uncorroded centre wire 

specimens were carried out in strain controlled fully reversed cycling loading, in addition, a set 

of specimens were tested with a positive mean stress to evaluate the effect of mean stress on the 

material fatigue behaviour. Phase I (d) testing on corroded external wires was run in load control 

under tension-tension cyclic loading. Tests for both testing Phases II and (d) ran at cyclic 

frequencies varied from 0.5 Hz to 3 Hz for strain controlled tests and from 40 to 80 Hz for load 

controlled tests. 

Phase I (c)-Testing of uncorroded centre wire 

A total of (25) uncorroded centre wire samples where machined as described in Section 3.2.1. 

Two (2) samples where monotonically tested in tension to identify the monotonic material 

response and identify elastic and plastic loading zones. Twenty-three (23) specimens were tested 

under cyclic loading; fourteen (14) samples were tested under fully reversed (R=-1, zero mean 

stress) cyclic loading, and nine (9) samples were tested with an average positive mean stress of 

500Mpa.  

Table 4-1 – Breakdown of actual number of uncorroded samples tested for material properties 

25 samples 

2 Monotonic tension tests 

14 Zero mean stress cyclic loading 

9 Positive mean stress cyclic loading 
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Monotonic tension test results 

The monotonic response was typical of ductile metals, with an initial linear elastic zone, 

followed by yielding of the material, and a nonlinear plastic zone. The recorded ultimate capacity 

was approximately 2150 MPa, which is higher than the nominal ultimate capacity of 1860 MPa 

reported by the manufacturer. Also Rockwell Hardness Test was done and the average material 

hardness was found to be 53 HRC. 

Fatigue test results 

A total of 23 samples were test under cyclic loading with variable strain ranges to produce a 

strain range versus number of cycles (-N) curve. The fatigue behaviour of the uncorroded 

samples showed no significant scatter. Moreover, the set of nine (9) specimens tested with an 

average applied positive mean stress of 500 MPa showed no significant variation from the 

fourteen (14) samples tested at zero mean stress. Figure 4-7 presents a fatigue life versus strain 

amplitude curve, while Figure 4-8 shows the fatigue life versus stress amplitude curve for both 

sets of fatigue test specimens.  

Table 4-2 summarizes the testing parameters and test results for uncorroded centre wire 

specimens. Specimens were tested to cover a range of fatigue lives between 500 and 10 million 

reversals (250 to 510
6
 cycles). Based on the cyclic/fatigue testing data the cyclic material and 

fatigue properties for low relaxation 7-wire prestressing strands were calculated and are 

presented in Table 4-3. Figure 4-9 presents the experimental monotonic and cyclic true 

stress/strain response of the material, along with a fitted cyclic response. As expected the 

monotonic and cyclic responses are the same within the elastic region, and diverge beyond it due 

to cyclic softening the of the material. 
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Table 4-2 – Summary of cyclic testing data of non-corroded centre wire samples 

S
# 

Diameter Life 
Stress 

Amplitude 
Mean 
Stress 

Strain 
Amplitude Notes 

(mm) Cycles Reversals (MPa) (MPa) (%) 

1 2.01 755 1510 1532 57 1.263  

2 1.97 3673 7346 1339 39 0.861  

3 2.00 5000000 10000000 821 0 0.411 Runout 

4 1.95 5000000 10000000 864 0 0.432 Runout 

5 1.93 619021 1238042 882 0 0.441  

6 2.02 5000000 10000000 936 0 0.468 Runout 

7 2.05 40882 81764 1154 9 0.577  

8 2.01 8263 16526 1276 9 0.727  

9 2.01 10517 21034 1248 0 0.757  

10 2.03 13597 27194 1205 37 0.602  

11 1.97 647 1294 1476 177 1.460  

12 1.93 15981 31962 1169 144 0.585  

13 2.04 5000000 10000000 1028 0 0.514 Runout 

14 2.04 1480 2960 1487 55 1.172  

       
 

15 1.96 99491 198982 1014 398 0.507  

16 1.98 208477 416954 955 507 0.477  

17 1.94 114724 229448 822 619 0.411  

18 1.91 5000000 10000000 785 555 0.393 Runout 

19 2.04 5000000 10000000 835 523 0.418 Runout 

20 1.95 4580 9160 1266 301 0.732  

21 2.05 5006 10012 1073 600 0.729  

22 2 252 504 1275 559 0.769  

23 1.91 4183 8366 1236 524 0.618  
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Figure 4-7 – Fatigue Life versus strain amplitude of uncorroded centre wire samples 

 

Figure 4-8 – Fatigue Life versus stress amplitude of uncorroded centre wire samples 
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Table 4-3 – Cyclic material properties of low relaxation 7-wire prestressing strands 

Cyclic Properties 

Cyclic Yield Strength, (0.2% offset) 1338.5 

Cyclic Strength Coefficient, K’ 2415.6 

Cyclic Strain Hardening Exponent, n’ 0.095 

Fatigue Strength Coefficient, (σ’) 2329 

Fatigue Strength Exponent, b  -0.061 

Fatigue Ductility Coefficient, (ε’) 1.09 

Fatigue Ductility Exponent, c -0.707 

Cyclic Elastic Modulus (MPa) 196000 

 

 

Figure 4-9 – True strain amplitude versus true stress amplitude response for uncorroded centre 

wire sample 
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Phase I (d)-Testing of corroded external wire 

All corroded external wire samples were prepared as described in Section 3.2.1. Initially a total 

of 30 samples per corrosion level were planned to be tested, however, after a mass loss analysis 

was conducted on an extracted corroded sample it was noted that the targeted corrosion levels 

were not achieved. The set of samples that aimed to achieve 5% corrosion by mass loss had 

exhibited a higher average corrosion level of 8% by mass loss, while the second set achieved the 

required average 10% corrosion by mass loss. This presented the problem of two corrosion levels 

that were too close to each other that the inherent scatter of the amount of corrosion may result in 

an overlap between results. Therefore the complete set of thirty (30) specimens at an 8% 

corrosion were tested, followed by testing of enough specimens of the 10% corrosion level set to 

verify our expectation that the two corrosion levels were close enough that the fatigue results 

would overlap/ 

A total of twenty-nine (29) specimens corroded to 8% by mass loss, and seven (7) samples 

corroded to 10% by mass loss were tested. The two sets of experimental results (for the 

specimens at an 8% and a 10% corrosion by mass loss) did not exhibit a significant difference, 

between them as the 10% corrosion specimens’ results fell close to   the scatter band of the 8% 

corrosion results but with a slightly higher mean level at long fatigue lives – an unexpected 

result. 

At short fatigue lives the effect of the corrosion was not evident as the high stress amplitude 

governs the life of the material due to global high plastic strains. However, for medium to long 

life tests the effect of corrosion is apparent. This is attributed to stress raisers due to corrosion 

pitting which amplifies the lower nominal applied stress amplitude. The observation described 
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above can be clearly identified when comparing the fatigue response of non-corroded and 

corroded specimens. Figure 4-10 compares the stress amplitudes versus fatigue life curves for the 

entire life range of the specimens tested; including both corroded and uncorroded samples. Table 

4-4 summarizes the testing parameters and results for corroded external wire samples tested 

under cyclic fatigue loading. 

 

Figure 4-10 – Stress amplitude versus life for all material samples 
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Table 4-4 – Summary of cyclic testing data for corroded external wire samples 

 

SP # 
Dia.* 
(mm) 

Life 
(cycles) 

Reversals 

Stress 

Notes Max Min Amplitude Mean 

(MPa) (MPa) (MPa) (MPa) 

8
%

 C
o
rr

o
s
io

n
 b

y
 M

a
s
s
 L

o
s
s
  

1 3.8 5582 11164 1394 38 678 716  

2 3.8 8402 16804 1413 191 611 802  

3 3.8 6793 13586 1413 191 611 802  

4 3.8 10740 21480 1394 630 382 1012  

5 3.8 20288 40576 1413 745 334 1079  

6 3.8 35973 71946 1423 850 286 1136  

7 3.8 60242 120484 1413 1003 205 1208  

8 3.8 154590 309180 1423 1203 110 1313  

9 3.8 5000000 10000000 1413 1241 86 1327 Runout 

10 3.8 13550 27100 1394 411 492 902  

11** 3.8 0.5 1 1413 1241 86 1327  

12 3.8 581 1162 1413 57 678 735  

13 3.8 14077 28154 1413 611 401 1012  

14 3.8 21144 42288 1413 859 277 1136  

15 3.8 23790 47580 1413 993 210 1203  

16 3.8 162224 324448 1423 1203 110 1313  

17 3.8 8175 16350 1413 191 611 802  

18 3.8 9753 19506 1394 611 392 1003  

19 3.8 20485 40970 1413 859 277 1136  

20 3.8 168174 336348 1404 1098 153 1251  

21 3.8 121646 243292 1404 1098 153 1251  

22 3.8 238535 477070 1413 1241 86 1327  

23 3.8 909585 1819170 1413 1241 86 1327  

24 3.8 5000000 10000000 1413 1308 53 1361 Runout 

25 3.8 12349 24698 1385 411 487 898  

26 3.8 5000000 10000000 1413 1308 53 1361  

27 3.8 11140 22280 1404 401 501 902  

28 3.8 5000000 10000000 1413 1308 53 1361 Runout 

29 3.8 4620 9240 1385 48 668 716  

1
0
%

 C
o
rr

o
s
io

n
 b

y
 

M
a
s
s
 L

o
s
s
  

1 3.7 19329 38658 1394 611 392 1003  

2 3.7 30795 61590 1404 821 291 1112  

3 3.7 81800 163600 1366 955 205 1160  

4 3.7 6643 13286 1375 372 501 874  

5 3.7 470596 941192 1451 1241 105 1346  

6 3.7 4468 8936 1380 162 609 771  

7 3.7 125497 250994 1385 1089 148 1237  

 *Reduced average diameter based on mass loss analysis 

 **Outlier 
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4.4 Monotonic Beam Testing 

The monotonic testing phase of the experimental program (Chapter 3) was comprised of 12 T-

beams. It is worth noting that the location of the stainless steel tube (cathode) differed in the first 

pour from the remaining three. The first and second pours were for prestressed beams using two 

strands. The first pour consisted of three beams with a straight stainless steel tube running in 

between and parallel to the prestressing strands; the cathode was inserted from one beam end and 

terminated at the opposite end of the corrosion zone. For the remaining pours all beams had an 

L-shaped stainless steel tube that entered the beam vertically from the top just before the 

corrosion zone, then ran horizontally above and parallel to the prestressing strand(s), and 

terminated at the opposite end of the corrosion zone, see Figure 4-11.  

 

Figure 4-11 – Stainless steel tube configurations for the beams with two prestressing strands 

4.4.1 Accelerated corrosion results 

The beams were transported back to the structure’s laboratory at the University of Waterloo 

where they were placed in an enclosed corrosion chamber 28 days after casting. Ten (10) beams 

where connected to power supplies in the same manner as described in Section 3.5, with an 
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impressed current density of 200 A/cm
2
.  Three corrosion levels of 2.5%, 5%, and 10% were 

targeted. Two control beams remained uncorroded, one prestressed beam had a single strand 

while the other beam had 2 prestressing strands. Figure 4-12 shows the typical corrosion induced 

crack pattern for beams with one and two strands. The width of corrosion cracks at midspan was 

monitored and recorded during the corrosion period; Figure 4-13 shows the corrosion induced 

crack width measurements at midspan for beams with one and two strands. It is apparent that the 

variation of corrosion crack width is nonlinear with mass loss. As expected, higher crack widths 

were measured for the two strand beams versus the one-strand beams. Cracks were stable (no 

significant increase in width) up to 2.5% mass loss and then exhibited a sharp increase in rate of 

growth in width between 2.5% and 6%, and grew in width at a decreased rate afterwards. 

During the accelerated corrosion process it was noticed that the corrosion cracking for beams 

with two prestressing strands varied from one beam to the other, indicating that the beams were 

not corroding uniformly. Based on the observed cracking width, and by comparison to crack 

width for beams with a single prestressing strand, it was deduced that the targeted theoretical 5% 

corrosion level was not achieved. As a result of this observation it was decided that all remaining 

beams with the 2 strands would be exposed to accelerated corrosion with a targeted 10% mass 

loss. After completion of the corrosion process the six beams with 2 strands had reached the 

following actual corrosion levels; 1 beam at 0%, 1 beam at 2.5%, and 4 beams at 10%. 
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Figure 4-12 – Typical corrosion induced cracking in (a) beams with a single strand, and (b) beams 

with two strands 

 

Figure 4-13 – Corrosion induced crack measurements at midspan 

4.4.2 Monotonic test results 

Twelve (12) beams were divided into two groups; six beams were prestressed using one 7-wire 

strand, and six beams were prestressed using two strands. The purpose of having two sets of 
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specimens with different prestressing configurations was to examine the effect of the number of 

strands, if any, on the corrosion mechanism. Prior to monotonic testing, concrete cylinders were 

tested for compressive strength. The beams were tested under monotonic loading in four point 

bending. The tests were carried out in displacement control at a loading rate of 1mm/min. During 

testing the applied load, the mid span deflection, the crack opening, and the concrete 

compressive strain were recorded. In addition to the monitored testing parameters listed above, 

LVDTs were mounted on the prestressing strand at the beam-ends, Figure 4-14, to confirm that 

no end slip occurred during testing. All beams failed in flexure by strand rupture, except  for one 

(1) beam prestressed by two (2) prestressing strands that failed by concrete crushing. A detailed 

discussion of the failure modes in presented later in this chapter.  

 

Figure 4-14 – LVDT mounted at beam end to monitor end slip of prestressing strand 
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Beams prestressed with a single 7-wire strand 

Six beams were prestressed with a single 7-wire strand: one uncorroded (control beam) and five 

corroded beams. The experimental results for their monotonic tests were reported by El Menoufy 

and Soudki (2014). Table 4-5 summarizes the test results for beams prestressed with a single 

strand. The load deflection response of the control (uncorroded) beam was typical of a 

prestressed beam with a distinct change in stiffness beyond the cracking load.  

The load versus deflection curve of the control beam agreed well with the theoretical elastic 

response calculated based on the effective moment of inertia (ACI 318M-08 2008; CPCI 2008), 

Figure 4-15. The control beam had an internal linear load-deflection response with a distinct 

change in slope (stiffness) at cracking, followed by a gradual transition into a non-linear 

response. The beam did not exhibit a distinct yield plateau; this was expected, as prestressing 

strands do not have a yield plateau. On the other hand, the corroded beams had an initial linear 

load-deflection response that transitioned into a non-linear one with no distinct change in slope 

(stiffness) at the cracking load.  

Figure 4-16 shows load versus midspan deflection results for beams prestressed with a single 

strand at different corrosion levels (0%, 2.5%, 5%, and 10%). The stiffness of the beams was not 

affected by corrosion. However, the cracking load, the ultimate load and the midspan deflection 

at failure of the beams decreased as the corrosion level increased. The ultimate load capacity and 

deflection of the corroded beams were compared to those of the control beam. The beam with a 

2.5% corrosion level exhibited a 6.56% reduction in ultimate load and a 26.39% reduction in 

midspan deflection at failure, while the beam with a  5% corrosion level had a 9.93% and a 

44.43% reduction in ultimate load and midspan deflection, respectively. The beam with a 10% 
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corrosion level had a reduction of 26% in the ultimate load and a 76% reduction in ultimate 

midspan deflection.  

Table 4-5 – Monotonic testing result summary of beam prestressed with single strand 

Corrosion 
level 

Concrete 
Strength 

(MPa) 

Cracking Ultimate 

Load 
(kN) 

Deflection 
(mm) 

Load 
(kN) 

% 
Reduction 

in load 

Deflection 
(mm) 

% Reduction in 
deflection 

0.0% 48.69  3.49 33.6 3.0 65.3 - 141.4 - 

2.5% 48.69  3.49 31.4 2.9 61.0 6.6% 104.1 26.4% 

5.0% 49.89  4.66 24.0 2.0 58.8 9.9% 78.6 44.4% 

10.0% 49.89  4.66 23.0 1.8 48.3 26.0% 33.3 76.4% 
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Figure 4-15 – Experimental vs. theoretical elastic deflection response for beams with one strand 

The concrete midspan compressive strain was recorded and had a typical trend; increasing as the 

midspan deflection increased. In addition, the ultimate midspan deflection and the concrete 

compressive strain at failure decreased with higher corrosion levels. Beams with 2.5% and 10% 

corrosion levels exhibited a 26.87% and a 53.79% reduction in concrete compressive strain at 

failure respectively, which correlates well with the reduction in midspan deflection. However, 

the beam with a 5% corrosion level exhibited a reduction of 19.67% in concrete compressive 

strain versus a 44.43% decrease in midspan deflection. Figure 4-17 presents the applied load 

versus measured midspan concrete compressive strain for beams with different corrosion levels. 

Table 4-6 summarizes the measured ultimate concrete compressive strain. 

Cracking 

Design capacity 
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Table 4-6 – Summary of the measured ultimate concrete compressive strength for beams with a 

single prestressing strand 

Corrosion 
level 

Ultimate 

Compressive 
strain 

% Reduction in 
concrete compressive 

strain  

Deflection 
(mm) 

% Reduction in 
deflection 

0.0% 2069 - 141.4 - 

2.5% 1513 26.9% 104.1 26.4% 

5.0% 1662 19.7% 78.6 44.4% 

10.0% 956 53.8% 33.3 76.4% 

 

The crack opening widths of the first three (3) flexure cracks were measured, and the cumulative 

crack opening width versus load results are presented in Figure 4-18. In addition, the average 

tensile strain within the centre 600 mm constant moment zone was measured by an OSMOS 

Fiber Optic Sensor (FOS) and is plotted against the applied load in Figure 4-19. The FOS was 

damaged during testing of the control beam and no average tensile strain was recorded. As 

anticipated the average tensile strain at the prestressing strand level decreased with an increased 

corrosion level,  due to the decrease in monotonic load capacity.  
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Figure 4-16 – Load vs. midspan deflection at different corrosion levels for beams with one strand

 

Figure 4-17 – Load vs. midspan concrete compressive strain at different corrosion levels for beams 

with one strand 
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Figure 4-18 – Cumulative crack opening within the constant moment zone vs. load 

 

Figure 4-19 – Average tensile strain at the level of the strand vs. load at different corrosion levels 
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It is worth noting that the cracking pattern was observed to be a fairly uniform and equally 

spaced flexural cracking along the beam in the uncorroded beams, Figure 4-20. A similar pattern 

was observed for the corroded beams with the addition of a distinct corrosion induced 

longitudinal crack along the location of the prestressing strand. However, flexure cracks were not 

vertically continuous, as they shifted location below and above the horizontal corrosion crack, 

Figure 4-21.  

This indicates slip/movement between the strand and concrete along the horizontal plane of the 

corrosion crack. This can also be observed when comparing the interfacial concrete/steel surface 

above and below the prestressing strand. The concrete below the strand separates (spalls off) 

from the strand upon loading and therefore the strand imprint can be seen to be intact, Figure 

4-22, on the other hand, the concrete above the strand remains in contact with the strand and 

differential movement along the interface causes the imprint to be reduced to a smooth surface, 

Figure 4-23. 
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Figure 4-20 – Cracking pattern at failure for an uncorroded beam 

 

Figure 4-21 – Cracking pattern at failure for a corroded beam 
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Figure 4-22 – Concrete strand interface below the strand

 

Figure 4-23 – Concrete strand interface above the strand 
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Beam failures were defined by complete strand rupture or by a 20% drop in load, whichever 

occurred first. The control-uncorroded beam failed by strand yielding followed by multiple wire 

ruptures at one location, Figure 4-24. The failure pattern of the corroded beams differed. Failures 

were initiated by rupturing of one or two wires at a single location accompanied by a drop in 

load, shortly thereafter another wire ruptured at a nearby location, Figure 4-25. This second wire 

failure at a different location than the first is attributed to the varying location of the most severe 

pitting stress concentration locations for different wires.  

 

 

Figure 4-24 – Multi-wire rupture at the same location for the uncorroded beam 
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Figure 4-25 – Wires rupture at adjacent locations in a corroded beam 
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Beams prestressed with two7-wire strands 

Six beams were prestressed with two 7-wire strands: One beam was kept as control and five 

beams were subjected to accelerated corrosion. Table 4-5 summarizes the test results for beams 

prestressed with two strands. Similar to beams prestressed with one strand the load deflection 

curve of the control beam agrees well to the theoretical elastic response calculated based on the 

effective moment inertia (ACI 318M-08 2008; CPCI 2008), see Figure 4-26.  

The control beam had an initial linear load-deflection response with a distinct change in slope 

(stiffness) at cracking, and then gradually transitioned into a non-linear response with no distinct 

yield plateau. On the other hand, the corroded beams had an initial linear response that 

transitioned into a non-linear one with no distinct change in stiffness at the cracking load.  

Figure 4-27 shows load versus midspan deflection curves for all four beams prestressed with two 

strands at different corrosion levels (0%, 2.5%, and 10%). As shown in the slope of the curves 

the beams stiffness was not affected by the corrosion. However, the effect of the corrosion on the 

cracking load, the ultimate load, and the midspan deflection were similar to those for beams with 

a single strand with a 2.5% corrosion level, but significantly less pronounced at a corrosion level 

of 10%.  

The beam with a 2.5% corrosion level exhibited 6.13% and 24.55% reductions in load capacity 

and midspan deflection respectively compared to the control beam. At a 10% corrosion the load 

carrying capacity of the beam decreased by 10.63% and the midspan deflection decreased by 

38.8% for the beam with the L-shaped cathode (ST-2S-10%-NW-LC) compared to the control 
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beam. The beam with a straight cathode (ST-2S-10%-NW-SC) exhibited only 2.39% and 

15.43% decreases in the load carrying capacity and midspan deflection of the beam respectively.  

Table 4-7 – Monotonic testing result summary of beam prestressed with two strands 

Corrosion 

level 

Concrete 

Strength (MPa) 

Cracking Ultimate 

Load 

(kN) 

Deflection 

(mm) 

Load 

(kN) 

% Reduction 

in load 

Deflection 

(mm) 

% Reduction 

in deflection 

0.0% 41.26  3.49 48.0 4.1 107.6 - 104.0 - 

2.5% 48.33  3.67 40.8 3.4 101.0 6.1% 78.5 24.6% 

10.0%-LC 48.33  3.67 43.0 4.4 96.1 10.6% 63.7 38.8% 

10.0%-SC 41.26  3.49 40.2 2.8 105.0 2.4% 88.0 15.4% 
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Figure 4-26 – Experimental vs. theoretical deflection response for beams with 2 strands 

The concrete midspan compressive strain was monitored and similar observations to those made 

for the beams with one (1) strand were obtained. The concrete midspan compressive strain had a 

typical trend, increasing as the midspan deflection increased. In addition, the measured ultimate 

midspan compressive strain increased with increasing ultimate load and midspan deflection; the 

ultimate midspan deflection and the concrete compressive strain at failure decreased as the 

corrosion level increased. Beams with 2.5%, and 10% (L-shaped cathode) corrosion levels 

exhibited a 24.55% and a 38.8% reduction in concrete compressive strain at failure, which 

correlates well with the reduction in midspan deflection.  

Cracking 
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However, the ultimate concrete compressive strain for the beam with 10% corrosion and with a 

straight cathode (ST-2S-10%-NW-SC) appears to be an outlier. This may be attributed to the 

straight cathode acting as an additional longitudinal rebar and affecting the load deflection of the 

beam, which can be also observed in the beam’s load-deflection curve as it exhibited an ultimate 

midspan deflection almost equal to that of the control beam. Figure 4-28 presents the applied 

load versus the measured midspan concrete compressive strain for beams with two strands at 

different corrosion levels. Table 4-8 presents a summary of the measured ultimate midspan 

concrete compressive strain values. 

Table 4-8 – Summary of measured ultimate midspan concrete compressive strain for beams with 

two prestressing strands 

Corrosion 
level 

Ultimate 

Compressive 
strain 

% Reduction 
concrete 

compressive strain  
Deflection (mm) 

% Reduction 
in deflection 

0.0% 2393 - 104.0 - 

2.5% 2303 3.8% 78.5 24.6% 

10.0%-LC 2104 12.1% 63.7 38.8% 

10.0%-SC 3515 N/A 88.0 15.4% 

 

The crack opening widths of the first three (3) flexure cracks due to loading were measured, and 

the cumulative crack opening versus load is presented in Figure 4-29. In addition, the average 

tensile strain within the centre 600mm constant moment zone was measured by an OSMOS fibre 
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optic sensor (FOS) and plotted against the applied load, Figure 4-30. The average tensile strain at 

the prestressing strand level decreased with an increased corrosion level, this is due to the 

decrease in monotonic load capacity.  

The failure mechanism of the control (uncorroded) beam with two prestressing strands was 

similar to that of the control beam with a single strand. It failed by strand yielding followed by 

multiple wire rupture at a single location. In the corroded beams with 2.5% and 10% corrosion 

levels with L-shaped cathodes, the failure initiated by one or two wires rupturing at one location 

then shortly thereafter another wire rupturing at a nearby location. All failures of the corroded 

beams took place at a severe corrosion pit along the strand. However, the beam with a straight 

cathode and with 10% corrosion level (ST-2S-10%-NW-SC) failed by concrete crushing as 

shown in Figure 4-31. Three factors may have contributed to this change in beam failure; this 

beam was part of the pour that had the lowest concrete strength (41.26 ± 3.49 MPa) prior to 

testing of all the beams. Also a visual inspection of the exposed strands after failure revealed that 

the pitting was not as severe for this beam as that for the remaining beams. The strands did not 

seem to achieve the theoretical 10% mass loss due to corrosion. The location of the stainless 

steel tube in between and in close proximity to the two strands, together with corrosion led to a 

debonding of the strands within the flexure zone. This would have triggered the beam to behave 

as a tied arch, which would cause the stress in the concrete to flow directly from supports to the 

loading points causing very high concrete compressive stresses resulting in concrete crushing at 

midspan. 



 

 122 

 

Figure 4-27 – Load vs. midspan deflection at different corrosion levels for beams with 2 strands 

 

Figure 4-28 – Load vs. midspan concrete compressive strain for beams with two strand 
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Figure 4-29 – Cumulative crack opening within the constant moment zone vs. load 

 

Figure 4-30 – Average tensile strand strain vs. load at different corrosion levels 
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Figure 4-31 – Failure by concrete crushing of beam ST-2S-10%-NW-SC 

Beams repaired with CFRP sheets 

Two beams prestressed with a single strand and corroded to a 5% and 10% corrosion level by 

mass losses were repaired using CFRP sheets. The beams’ surface was prepared by grinding the 

surface to open the concrete pores, and the concrete edges were rounded. The beam surface was 

cleaned from dust and a layer of Sikadur
®
 330 epoxy was applied. The CFRP sheets (SikaWrap

®
 

Hex 230C) were then applied on top of the epoxy layer and all the excess epoxy was squeezed 

out by using a metal roller allowing the epoxy to fully impregnate the CFRP sheet in the process. 

The CFRP sheets were placed according to the manufacturer’s instructions as per the 

configuration presented in Section 3.8, Figure 3-8. 
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Upon installation of the CFRP sheets onto the beams, they were allowed to cure at room 

temperature for 7 days, after which the beams were tested to failure in four-point bending under 

a monotonically increasing load.  

Table 4-9 summarizes the test results for the repaired beams, the unrepaired beams, and the 

control beam. Figure 4-32 shows the load-deflection response of repaired and unrepaired beams. 

The load deflection response for all the beams was bi-linear with a distinct change in slope 

(stiffness) beyond the cracking load and then gradually changing to a nonlinear curve. Test 

results showed that the repaired beams had higher stiffness, and that the repairs restored the 

reduction in load capacity due to corrosion.   
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Table 4-9 – Test result summary for CFRP repaired, unrepaired, and control beams 

Corrosion 
level 

Concrete 
Strength 

(MPa) 

Cracking Ultimate 

Load 
(kN) 

Deflection 
(mm) 

Load 
(kN) 

% 
Reduction 

in load 

Deflection 
(mm) 

% Reduction 
in deflection 

0.0% 48.69  3.49 33.6 3.0 65.3 - 141.4 - 

5.0% 49.89  4.66 24.0 2.0 58.8 9.9% 78.6 44.4% 

5.0% 
repaired 

48.69  3.49 38.7 3.8 70.3 -7.6% 42.8 69.8% 

10.0% 49.89  4.66 23.0 1.8 48.3 26.0% 33.3 76.4% 

10.0% 
repaired 

49.89  4.66 31.6 2.6 63.2 3.1% 43.5 69.3% 

 

The concrete compressive strain and the CFRP tensile strain at midspan were monitored. It was 

observed that the concrete ultimate compressive strain decreased while the CFRP ultimate tensile 

strain increased with an increase in the corrosion level. This indicates that as the corrosion level 

increased corrosion pitting becomes more severe and further reduces the strand’s load bearing 

capacity, therefore in order to maintain the overall beam resistance the CFRP sheet has to resist a 

bigger portion of the applied load.  

Figure 4-33 shows load versus concrete compressive strain curves, and Figure 4-34 presents the 

applied load versus CFRP and concrete midspan strains for the corroded and the repaired beams. 

The repaired beams both failed in flexure by strand rupture followed shortly thereafter by rupture 

of the CFRP sheet. Figure 4-35 shows a typical repaired beam at failure. These results show that 

repair of corroded beam with CFRP sheets, up to a corrosion level of 10% by mass loss, is 

capable of restoring the beam’s uncorroded monotonic capacity. 
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Figure 4-32 – Load vs. midspan deflection comparison of the repaired and unrepaired beams 

 

Figure 4-33 – Load vs. concrete midspan compressive strain for corroded and repaired beams  
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Figure 4-34 – Load vs. CFRP strain at midspan for corroded and repaired beams 

 

 

Figure 4-35 – Typical failure of a prestressed beam repaired by CFRP sheets 
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Both repaired beams that were corroded to a 5% and a 10% corrosion by mass loss showed 

capacities close to their repair design capacity calculated in accordance with ACI 440.2R-08 

without applying the corresponding material reduction factors. Figure 4-36 presents the load 

deflection response for the control beam, and the repaired and unrepaired beams with a 5% 

corrosion level. Figure 4-37 presents the load deflection response for the control beam, and the 

repaired and the unrepaired beams with a 10% corrosion level.  

For the beam corroded to a 5% corrosion repaired with CFRP the load capacity exceeded that of 

the control (uncorroded) beam by 7.64%, while the midspan deflection was further decreased by 

an additional 25% in comparison to the reduction of the unrepaired beam corroded to the same 

corrosion level, adding up to a total reduction of 70% for the ultimate midspan deflection. In 

addition, the cracking load of the repaired beam increased in comparison to that of the unrepaired 

beams. This is attributed to the increased post-cracking stiffness of the beam due to the CFRP 

sheets.   

For the beam corroded to a 10% mass loss and repaired with CFRP, the load capacity was 

restored to a level only 3% below that of the control (uncorroded) beam, while the ductility 

remained roughly the same as the unrepaired corroded beam with the same corrosion level. 
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Figure 4-36 – Design repair load capacity compared to experimental response of the beam corroded 

to 5% by mass loss  

  

Figure 4-37 – Design repair load capacity compared to experimental response for the beam 

corroded to 5% by mass loss 
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4.5 Fatigue Testing 

The fatigue/cyclic loading testing phase of the experimental program (Phase III-Chapter 3) 

included twenty-five (25) prestressed T-beams. Table 4-10 gives the experimental matrix for the 

fatigue testing phase. All beams in this phase were prestressed using a single prestressing wire 

and the same L-shaped stainless bar (cathode) for the accelerated corrosion setup as previously 

described. The twenty-five beams were divided into three groups. Five (5) beams were left 

uncorroded, ten (10) beams were corroded to a 5% mass loss, and the final ten (10) beams were 

corroded to a 10% mass loss. Each set of ten (10) corroded beams is divided into two sets of five 

(5) beams. Five (5) beams were corroded and unrepaired, and five (5) beams were corroded and 

then repaired using CFRP sheets as described in Section 3.8.  

Table 4-10 – Fatigue testing matrix 

Number of specimens Corrosion Level Repair Condition 

25 Beams 

0% - 5 Beams N/A 

5% - 10 Beams 
5 Beams-repaired using CFRP 

5 Beams-unrepaired 

10% - 10 Beams 
5 Beams-repaired using CFRP 

5 Beams-unrepaired 

 

Beams were tested under fatigue load cycling between peak and a valley values determined as a 

percentage of the monotonic static capacity of their respective groups. For example, the 

monotonic static capacity of uncorroded prestressed beam was 65.3 kN, so when a similar beam 
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is tested under cyclic loading from valley to a peak values of 10% to 70% of the monotonic 

capacity, which corresponds to cycling between 6.5 kN to 45.7 kN. Each beam within a set of 

five (5) beams was tested under a different load range in order construct a complete load versus 

fatigue life curve. The applied load range was varied by changing the value of the peak 

(maximum) load, while the valley (minimum) load value was kept constant at 10% of the 

monotonic load capacity.  

The peak load was applied manually then the load was decreased to the mean load value before 

cycling, after which the 407 Material Testing System (MTS) controller took over and started 

cycling at a chosen frequency. The maximum cycling frequency used was 2.5 Hz. Beam failure 

was defined by rupture of a prestressing strand, rupture of the CFRP sheet, or concrete crushing. 

Fatigue tests were run to a maximum of 1 million cycles (2 million reversals). 

Instrumentation for the fatigue beam tests included: midspan deflection measurement by an 

external LVDT, a 280 kN load cell to monitor the applied load, a 60 mm strain gauge to monitor 

the compressive strain at the concrete’s top fibre, and two 10 mm strain gauges to monitor the 

tensile strain in the CFRP sheets within the constant moment region. A national instruments data 

acquisition system (DAQ) was used to record all the instrumentation’s readings.  

Table 4-11 presents a summary of the fatigue testing data including: the maximum and minimum 

cyclic load values, the testing load ranges, and the corresponding fatigue life for all the beams 

tested under cyclic loading. Figure 4-38 presents the load range versus fatigue life curves for 

each group.  
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Table 4-11 – Summary of fatigue testing of prestressed T-beams 

 

Peak Valley Range Life 
Notes 

 

%Pu kN kN kN # Cycles 
C

o
n

tr
o

l (
P

u
=6

5
.2

8
) 0.70 45.7 6.5 39.2 31000   

0.70 45.7 6.5 39.2 54000   

0.65 42.4 6.5 35.9 44950   

0.65 42.4 6.5 35.9 89300   

0.60 39.2 6.5 32.6 276000   

0.60 39.2 6.5 32.6 1000000 Runout 

0.55 35.9 6.5 29.4 1000000 Runout 

5
%

 (
P

u
=5

8
.8

) 0.70 41.2 5.9 35.3 12730   

0.65 38.2 5.9 32.3 30530   

0.60 35.3 5.9 29.4 58600   

0.55 32.3 5.9 26.5 208000   

0.50 29.4 5.9 23.5 1000000 Runout 

1
0

%
 (

P
u

=4
8

.2
9

) 0.83 40.1 4.8 35.3 82.5 Outlier 

0.83 40.1 4.8 35.3 15300   

0.77 37.2 4.8 32.4 66000   

0.68 32.8 4.8 28.0 185500   

0.60 29.0 4.8 24.1 385000   

0.60 29.0 4.8 24.1 1000000 Runout 

5
%

-W
 

(P
u

=7
0

.2
6

) 

0.75 52.7 7.0 45.7 3900   

0.61 42.9 7.0 35.9 65740   

0.56 39.7 7.0 32.6 91000   

0.56 39.7 7.0 32.6 62920   

0.52 36.4 7.0 29.4 851000   

1
0

%
-W

 

(P
u

=6
3

.2
4)

 0.67 42.2 6.3 35.9 55600   

0.62 39.0 6.3 32.6 214044   

0.56 35.7 6.3 29.4 243500   

0.51 32.4 6.3 26.1 328076   
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Figure 4-38 – Load range versus life of T-beams at different corrosion levels 

By examining Figure 4-38 the effect of corrosion on the fatigue life of the prestressed beams is 

evident. This can be observed by comparing the load range versus fatigue life experimental data 

of the beam corroded to 5% by mass loss to that of the non-corroded control beams. The 

deterioration results in a downward shift in the load range versus fatigue life data so that for a 

given load range the fatigue life resistance of the corroded beam is less than that of the control 

beam. However, while a drop in fatigue resistance of the corroded beams with 5% corrosion by 

mass loss in comparison to that of the non-corroded beams is observed; additional deterioration 

of the beams with 10% corrosion levels is not observed.  
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For the beams corroded and then repaired using CFRP sheets an improvement in their fatigue 

resistance is observed compared to the fatigue resistance of the corroded/non-repaired beams. By 

comparing the repaired and non-repaired beams with a 5% corrosion level, an upward shift is 

observed almost restoring the fatigue resistance to the same level as that of the non-corroded 

control beams. An improvement is also observed in the fatigue resistance of the repaired beams 

with a 10% corrosion level in comparison to that of the non-repaired beams with a 10% 

corrosion level; however, the fatigue resistance of the control beam was not restored. It is also 

observed that beams corroded to 10% by mass loss exhibited more scatter/variation in their 

response compared to both non-repaired and repaired beams with a 5% corrosion level. 

Figure 4-39 presents the midspan deflection versus the fatigue life for the control beams and the 

non-repaired beams with 5% and 10% corrosion levels. It should be noted here that because the 

applied load ranges were calculated as a percentage of the monotonic load capacity of each set, 

the load ranges are different for each set of beams (control, 5% & 10% corrosion), and therefore 

the midspan deflection values are not comparable. However, midspan deflection versus fatigue 

life curves for all the beams are grouped into a low, a medium, and a high load range categories. 

As expected, the midspan deflection increased with the increased applied load range, and more 

importantly, the midspan deflection versus fatigue life curves for all three load range categories 

remained flat throughout the fatigue life indicating that no significant prestress loss due to creep 

occurred. 
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Figure 4-39 –Midspan deflection versus fatigue life response of non-repaired beams with different 

corrosion levels 
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Chapter 5 

Fatigue Analysis and Discussion 

A wide range of testing was conducted in this study, ranging from beam testing to material 

fatigue testing of a single wire taken from a 7-wire prestressing strand.  The objective of this 

chapter is to develop a mechanistic model to predict the overall beam fatigue behaviour by 

accurately modelling the failure mechanism of a prestressing strand. In-depth discussions of the 

experimental results, followed by a mechanistic modelling of the fatigue behaviour are presented 

in this chapter.  

A prestressing strand failure is initiated by the fracture of a single wire; therefore the applied 

stress or strain on a single wire versus fatigue life experimental data is used when evaluating the 

fatigue life models. The nominal prestressing strand stress is calculated based on the applied load 

data, presented in Section 4.5. Once the nominal strand stress is known, the individual wire stress 

is calculated based on the calculated, and experimentally verified, force distribution amongst the 

seven (7) individual wires.  

5.1 Nomenclature 

In this chapter for the purpose of focusing on the type of specimen (strand or wire) and the 

medium within which it is tested; beam specimens are referred to as strand-in-beam specimens, 

and single wire specimens are referred to as wire-in-air specimens. 
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5.2 Prestressing strand nominal stress 

Using the applied peak and valley loads, the specimen’s cross sectional geometry, the initial 

prestressing level, and the calculated prestress losses, conventional beam sectional analysis was 

used to calculate the applied force in the prestressing strand. For the corroded beams, the cross 

sectional area of the prestressing strand was considered to have an overall reduction equals to the 

percent of actual mass loss due to corrosion. For example, at 10% corrosion by mass loss the 

strand’s cross sectional area is reduced from 98.7 mm
2
 to 88.8 mm

2
. Figure 5-1 presents a 

calculation flow chart for the strand nominal stresses. A summary of the experimental results and 

the calculated nominal strand stresses are presented in Table 5-1. 

5.2.1 Calculation of prestress loss 

A certain amount of the initial applied prestressing loss is lost during and after the force being 

transferred to the concrete member. Multiple factors contribute to the total prestress loss such as; 

anchorage seating loss, elastic shortening of the concrete, creep and shrinkage of concrete, and 

relaxation of the tendons. An accurate determination of the magnitude of the lost prestressing 

force is very important in determining the actual level of strand stresses under applied loads. 

Field measurements of the actual prestress losses were not possible; as the pretensioned beams 

were constructed at an off-campus facility and needed to be transported back our structures 

laboratory. The prestress losses were calculated in accordance with the Canadian Precast 

Prestressed Concrete Institute (CPCI) Design Manual 4, which indicates losses in the range of 

200-350 MPa are typical for normal density concrete members and recommends a value of 240 

MPa (or 21% of initial prestress force) for preliminary design purposes. Two methods are given 

to calculate the level of prestress losses; the simplified method and the detailed method. 
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The Simplified Method accounts for the level of concrete stress, type of prestressed 

reinforcement and ratio of volume to surface area, while the detailed methods accounts for 

additional factors affecting concrete creep and shrinkage. The simplified method is meant for 

calculating the prestress loss for an initial prestress level of 75% of the strand’s ultimate tensile 

capacity.  

For the pretensioned beams in the present study the prestress loss was calculation using both the 

simplified and the detailed methods, and was found to be 300 MPa and 252 MPa respectively. 

Since the initial prestress level was 70% and not 75% of the strand’s ultimate tensile capacity; 

the prestress loss based on the detailed method (252 MPa) was used in determining the strand’s 

stress levels under applied loads. 
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Figure 5-1 – Calculation flowchart for calculating the prestressing strand stress level due to 

moment applied on the beam 
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Table 5-1 – Summary of beam fatigue results and calculated nominal strand stresses 

 

Peak Valley Strand Stress (MPa) Life Notes 

 

%Pu kN %Pu kN Peak Valley Range # Cycles   
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65 42.4 6.5 1340 1011 329 44950   

65 42.4 6.5 1340 1011 329 89300   

60 39.2 6.5 1248 1010 238 276000   

60 39.2 6.5 1248 1010 238 1000000 Runout 

55 35.9 6.5 1163 1009 154 1000000 Runout 
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5.3 Force Distribution for the 7-wire Strand 

As previously discussed and experimentally investigated in Section 4.2, the first step in the 

fatigue life modelling is to analyze the force distribution in the strand to quantify the force/stress 

within individual wires. In this chapter an analytical approach suggested by Costello (1997) is 

used to identify the forces within the individual wires of a strand. This analytical approach is 

compared to our experimental results. 

This approach considers the change in the helix angle due to loading, and uses trigonometry to 

describe the change in helix geometry during loading. Figure 5-2 presents a schematic of (a) the 

7-were strand under axial load and (b) the various forces acting upon an individual external wire 

due an axial nominal load on the strand, and (c) the change of the external wire helix geometry 

(rotation and length) due to loading.  

Based on the change in the helix geometry due to loading, the number of external wires in the 

strand, and the material’s poisson’s ratio, the wire strain is related to the strand’s nominal strain. 

This approach relates the strand strain to the centre wire strain, and formulates the strains in the 

external wires as a function of the centre wire strain and strand geometry. Equations (5-1) and 

(5-2) define the final steps in calculating the forces for the centre and external wires respectively. 

The reader should refer to Castello’s Theory of Wires (1997) for the complete detailed procedure 

of calculating the individual wire force. 
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Figure 5-2 – (a) Schematics of 7-wire strand (b) Force diagram for an external wire, and (c) change 

in geometry (length and rotation) due to applied load F (Castello, 1997) 
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      (5-1) 

  

   
     

  

   
       

  
 

   
        (5-2) 

Where,  

F1 Force in the centre wire 

F2 Force in the external wires 

m2 Number of external wires in the lay 

R1 Radius of the centre wire 

R2 Radius of external wire 

T2 External wire axial tension 

N2 Shear component in an external wire in the y-direction 

E Modulus of elasticity 

 Helix angle 

1 Strain in centre wire = Nominal strand strain 

The analytical model predicts a load carrying contribution for each of the external wires to be 

14% of the total applied load on the strand assembly. This is slightly higher than the 

experimentally obtained external wire load carrying contribution, presented in Section 4.2, which 

ranged from 10.2% to 13.2% of the total applied load. However, the experimental results are 

based on a monotonic tension test up to only 80 kN. In addition, an evident trend was observed 
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of continuing force redistribution amongst the individual wires with increasing total load. The 

average load carrying contribution of the external wires increased at a decreasing rate, and load 

carrying contribution of the centre wire decreased at a decreasing rate (see Figure 4-5). Given 

that the maximum load of 80 kN is lower than the initial prestressing load (approximately 128 

kN, which represented 70% of the ultimate stress of the strand of 1860 MPa), and the observed 

force redistribution trends, it is reasonable to assume that had the monotonic tension test of the 

strand assembly reached the initial prestressing level, the load carrying contribution of the 

external wire would have reached 14% of the total applied load predicted by the analytical 

model. 
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5.4 Discussion of the Stress Range or Strain Range versus Fatigue Life Results 

Figure 5-3 presents the strain range versus fatigue life for all beam and non-corroded and 

corroded single wire testing. The strain range presented for the beam specimens is the calculated 

strain range in the external wire due to the applied loading. 

 

Figure 5-3 – Strain range versus fatigue life data for all the fatigue tests 

5.4.1 Fatigue resistance of a non-corroded wire in air, strand in air and a strand inside a 

beam specimens 

Figure 5-4 shows fatigue test results from the current study together with the fatigue results for 

strand specimens collected by Paulson et al. (1983) as presented in Section 2.4.1. The smooth 

wire-in-air specimens have a relatively flat curve that is typical of the behaviour of cold drawn 

steels, Dowling (1993).  
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Figure 5-4 – wire-in-air, strand-in-air, and strand-in-beam versus fatigue life 

Before discussing Figure 5-4, it is worth reiterating that all of the experimental data compiled by 

Paulson et al. (1983) from the literature was for prestressing strands as isolated elements, 

meaning that the strands were tested in air. The fatigue strength of the strand-in-air and strand-in-

beam specimens is much lower than the smooth wire-in-air specimens at long lives. The mean 

fatigue resistance of the strand-in-beam specimens suffers a greater deterioration in fatigue 

strength compared to the mean fatigue resistance of the strand-in-air specimens. The strand-in-air 

specimens differ from the wire-in-air specimens in only one way; the strand specimen comprises 

of 7-wire, a central straight wire with six (6) external wires helically wrapped around it.  
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A single smooth wire-in-air specimen has no external forces acting upon it other than the applied 

axial load. However, under axial loading of the strand the helically wrapped external wires 

extend and attempt to straighten, only to be resisted by the adjacent wires and the centre wire. 

This resistance results in a contact/clamping force between adjacent external wires, and between 

the external wires and centre wire causing rubbing/friction along the contact band. When cyclic 

fatigue loading is introduced, the oscillation in the contact/clamping force can cause inter-wire 

fretting damage from which fatigue cracks are likely to originate, grow and finally lead to wire 

fracture. This mechanism can be reasonably assumed to be causing the reduction in the fatigue 

resistance of the strand-in-air specimens in comparison to the fatigue resistance of the wire-in-air 

specimens.  

Since the strand-in-beam specimens have a lower fatigue resistance than the strand-in-air 

specimens; therefore a mechanism more severe than inter-wire fretting must govern the fatigue 

resistance. It is suggested that this mechanism is wire to concrete fretting adjacent to cracks in 

the concrete. When the bond is maintained between the strand in a beam and the surrounding 

concrete the strain compatibility is maintained and there is no relative slip between the strand 

and the concrete. However, when the beam is subjected to bending moment tensile stresses are 

introduced in the beam soffit causing the concrete to crack (flexural cracks) when tensile stresses 

exceed the tensile strength of the concrete. As a result, stress raisers in the prestressing strand are 

created at flexural crack locations causing debonding of the strand from the concrete on either 

sides of the crack. Relative slip may now occur at these locations giving rise to fatigue cracks 

that grow and finally lead to wire fracture. 
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To further investigate this inference non-corroded full 7-wire strand samples were extracted from 

the beams that were tested to failure and closely inspected for signs of fretting. Figure 5-5 shows 

a close up of a 7-wire strand sample extracted from the beam after failure. One of the external 

helical wires was removed to reveal the inter-wire contact zone. Obvious signs of abrasion along 

an inter wire contact band along the length of the wires can be observed between adjacent 

external wires and between an external and centre wire. 

Then the extracted strand samples were unwound so that each individual wire could be closely 

inspected at the fracture location. Figure 5-6 shows a 15x magnification of the fracture location 

in a centre wire. Again the markings of a contact band, approximately measuring 0.6 mm wide, 

on the side of an external wire is evident. Figure 5-7 and Figure 5-8 are both close-ups of 

fracture locations on opposite sides of the same external wire. Figure 5-7 shows the more 

aggressive abrasion/fretting signs on the wire at the wire-concrete interface. The strand-concrete 

fretted wire had typical elliptical shape observed by Pantucek (1977) and Blakeborough and 

Cullimore (1984) as presented in the literature review in Section 2.4.2, Figure 2-12.  

Figure 5-8 shows inter-wire abrasion/fretting. The fracture profile shown in Figure 5-8 and 

Figure 5-9 is consistent with the fracture profile observed by Toribio and Ovejero (2005) due to 

hydrogen assisted cracking of heavily cold drawn wires, shown in Figure 2-18. The difference 

between the two fretting interfaces (inter-wire and concrete-wire) can be distinguished by the 

continuous contact band on the inter-wire fretting side, while the signs of fretting on the 

concrete-wire interface are localized around the fracture location (at a concrete crack location).  
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Figure 5-9 and Figure 5-10 show close-ups of the fracture plane for the same wire shown in 

Figure 5-8. The fracture plane shown in shown Figure 5-10 shows a typical penny shaped fatigue 

crack propagation zone followed by a brittle fracture zone. An x200 magnification of the fracture 

planes are presented in Figure 5-11 and Figure 5-12, which reveal that the fatigue crack initiated 

from a surface flaw. These figures present physical evidence that failure under cyclic loading 

occurs due to the initiation of fatigue cracks from fretting induced surface damage. 

 

 

Figure 5-5 – Close up of a 7-wire strand as extracted from the beam after fatigue failure 
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Figure 5-6 – Close of the centre wire of a 7-wire prestressing strand at the failure location as 

extracted from the beam after failure  

 

Figure 5-7 – Close-up of concrete-wire fretting damage on an external wire of the 7-wire 

prestressing strand as extracted from the beam after failure 
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Figure 5-8 – Close-up of inter-wire fretting damage on an external wire of a 7-wire prestressing 

strand as extracted from the beam after failure 

 

Figure 5-9 – Close up of the fracture surface of the wire shown in Figure 5-7 & Figure 5-8 
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Figure 5-10 – Fatigue fracture plane of the wire shown in Figure 5-7 & Figure 5-8 

 

Figure 5-11 – 200× magnification of the fretting damage circled in Figure 5-10 
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Figure 5-12 – 200× magnification of a sample the fretting damage  
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5.4.2 Fatigue resistance of a corroded single wire-in-air and a corroded strand-in-a beam 

A second feature from Figure 5-3 is the significant degradation in the fatigue life resistance of 

corroded wire-in-air specimens compared to the resistance of the smooth wire-in-air specimens. 

For clarity of presentation Figure 5-13 shows these two data sets together with the wire in air 

data but without the remaining experimental results.  

 

Figure 5-13 – Strain range-fatigue life behaviour of wire-in-air, corroded-wire-in-air & (5% & 

10%) corroded strand-in-a beam 

At short fatigue lives the difference in behaviour between the wire-in-air specimens and the 

remaining data sets is small, but at long lives a the fatigue limit of the corroded wire-in-air and 

corroded strand-in-beam specimens drops almost 10 fold and 20 fold respectively in comparison 

to the smooth wire-in-air specimens. In addition, the corroded strand-in-beam specimens 
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exhibited further deterioration in comparison to the corroded wire-in-air specimens. An initial 

examination of the corroded wires reveals corrosion damage in the form of bold overall surface 

degradation and distinct corrosion pitting. Inspection of the fracture locations showed that the 

failures occurred at pit locations, and the fracture plane passed through pitted cross sections.  

Pitted cross-sections were inspected under a microscope to study the variations in pit shape and 

geometry. The observed pits were irregular in shape, with similar irregularities for different 

specimens but the pitting dimensions (depth and width) varied widely. The pitting surface was 

observed to be rough with many visible imperfections. Figure 5-14 and Figure 5-15 show a 

general view of corrosion pitting on a wire and on a strand specimen respectively. Figure 5-16 (a 

to f) presents six (6) samples of pitted cross sections with pit depths varying from approximately 

0.3 mm to 1.15 mm, with an average pit depth of 0.6 mm. It is worth noting here that the original 

(non-corroded) single wire diameter is approximately 4.2 mm, and the measured corroded wire 

diameter ranged approximately between 3.65 mm to 4.13 mm.  

Based on the above observations, it is reasonable to assume that the deteriorated fatigue 

resistance of corroded wire-in-air specimens is caused by a stress concentration due to corrosion 

pitting coupled with an amplification of the stress concentration due to an internal imperfection 

inside the pit probably due to stress corrosion cracking as reported in the review of the literature, 

in Section 2.5.1. As for the additional fatigue resistance degradation exhibited by the corroded 

strand-in-beam, this is the result of the combined impact of the corrosion pitting and concrete 

fretting. This impact can be observed by comparing the strain range-fatigue life data of the 

corroded-strand-in-beam to the corroded-wire-in-air data.  
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Figure 5-14 – Failure at a corrosion pit location on a wire specimen 

 

Figure 5-15 – Failure at a corrosion pit location on a strand specimen 
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(a) 

 

(b) 

 

(c) 

 

(d) 

(e) (f) 

Figure 5-16 – Pitting cross section through the failure plain on corroded single wire specimens 
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5.4.3 Comparison of the fatigue resistance of non-corroded and corroded strand-in-beam 

specimens 

In this section the impact of corrosion on the fatigue resistance of the corroded strands-in-beam 

specimens in comparison to the non-corroded strand-in- beam specimens is discussed. Figure 

5-17 presents the experimental data for the non-corroded and corroded strand-in-beam 

specimens. By comparison it is evident that corrosion further degraded the fatigue resistance of 

the strand-in-beam specimens. This is attributed to the added stress concentration due to 

corrosion pitting coupled by wire to concrete surface fretting for the corroded strand-in-beam 

data.  

Based on this observation it should be expected that the strand-in-beam specimens with the 

higher corrosion level (10% by mass loss) should exhibit more degradation in comparison to the 

strand-in-beams specimens with 5% corrosion level. However, this is not observed, rather the 

experimental data for the strand-in-beam specimens indicates that the strand-in-beam specimens 

with 10% corrosion level exhibit an improvement in their fatigue resistance in comparison to the 

stand-in-beam specimens with a 5% corrosion level. Further discussion about the cause of this 

apparent improvement is presented later in this chapter. 
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Figure 5-17 – Comparison of the Strain range-Life behaviour of non-corroded strand-in-beam & 

(5% & 10%) corroded strand-in-beam 

5.4.4 Fatigue resistance of corroded strand-in-beams repaired with CFRP 

Finally in this section in the impact of the using CFRP to repair corroded beams is discussed. 

Carbon Fibre Reinforced Polymer sheets typically contribute to the flexure strength of a member 

by acting as a supplementary reinforcement to the existing ones. The CFRP contributes in 

resisting the tensile stresses developed at the soffit of the beam, and therefore reduces the stress 

in the original reinforcement in comparison to what would have been applied in its absence.  

Figure 5-18 presents the strain range versus the fatigue life data for the corroded strand-in-beam 

repaired with CFRP specimens, and the data for the non-repaired corroded ones. For the 

specimens corroded to 5% by mass loss the improvement is evident and the fatigue resistance is 
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restored to that of the non-corroded strand-in-beam specimens. However, for the specimens 

corroded to 10% by mass loss the fatigue response of the repaired specimen exhibits similar 

scatter to that of the non-repaired specimens that it is unclear to whether any improvement 

occurred. 

 

 

Figure 5-18 – Strain range versus the fatigue life data for the corroded strand-in-beam non-

repaired and repaired with CFRP specimens 
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5.5 Fracture Mechanics of Fatigue Crack Propagation 

It is widely known that notches or flaws in a component are the usual sources of fatigue crack 

initiation. A component’s fatigue life is spent growing/propagating a crack from initiation in a 

crack or flaw until it reaches the critical/failure crack length (af) at which sudden fracture occurs. 

The impact of a notch or flaw on the fatigue life of a component depends on multiple factors; the 

notch or flaw geometry, the applied fatigue stress range, and the fatigue crack growth 

characteristics of the material. In order to analyze and model the fatigue behaviour of individual 

wires and the prestressing strand; fatigue crack propagation using fracture mechanics combined 

with simulated flaws representing the stress concentration due to the corrosion pitting and/or 

fretting due inter-wire contact and wire contact with concrete are utilized in this chapter. 

Before presenting an analysis of the results, basic fatigue and fracture mechanics terms that are 

used in the analysis of crack growth are introduced. Terms that define cycling loading are 

defined below and are presented graphically for constant amplitude load cycling, in Figure 5-19. 

 Mean nominal stress, is the average of the maximum and minimum nominal stress during 

a loading cycle, Equation (5-3) 

      
         

 
 (5-3) 

 The nominal stress range is the difference between the maximum and minimum nominal 

stress during a loading cycle, Equation (5-4). 

             (5-4) 

 The nominal stress amplitude is one half the stress range, Equation (5-5). 
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 (5-5) 

 The stress ratio is the ratio of the minimum nominal stress to the maximum nominal 

stress, Equation (5-6). 

  
    

    
 

(5-6) 

 

Figure 5-19 – Constant amplitude cyclic loading 

The range of the stress intensity factor K is a measurement of the severity of a crack or a crack-

like flaw and is the main variable affecting the growth rate. Using Fracture Mechanics (FM) K 

is given by Equation (5-7) for a linear elastic solution, or by Equation (5-8) for a plastic-elastic 

solution where it is given in terms of the strain range: 

          (5-7) 
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           (5-8) 

    F: a dimensionless shape factor 

    E: modulus of elasticity 

    S: Stress range 

    : Strain range  

a: Crack length 

Since K and S are proportional for a given crack length; then the range of the stress intensity 

factor can be written as follows: 

                                   (5-9) 

                                                                 (5-10) 

It should be noted that due to the dependence of K on the crack length (a) the crack propagation 

rate increases as the crack length increases. The fatigue crack growth is defined as an 

incremental increase in crack length (a) due to application of number of loading cycles (N), 

and therefore is the ratio of (a/N). If the crack length is plotted against the number of load 

cycles on logarithmic scales we have a curve such as the one shown in Figure 5-20. 
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Figure 5-20 – Graphical representation of the fatigue crack growth rate 

5.5.1 Fatigue crack growth rate 

Expressions defining the crack growth rate date back to the early 1960s. These expressions relate 

the crack growth rate (da/dN) to the stress intensity range (K) in the form of Equation (5-11), 

Paris (1964). 

  

  
      (5-11) 

The crack growth rate versus stress intensity range curve is considered to be a material property 

for a given stress ratio. Once defined it can be used, for given test conditions, to numerically 

propagate a crack within the specimen/component to a critical crack length (af) which will cause 

failure either by brittle fracture or by plastic yielding. By knowing the crack growth rate, the 
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crack growth life can be obtained by means of a numerical integration of the crack growth rate 

equation for a range of the crack length, ranging between the initial crack/crack-like-flaw length 

(ai) to the failure crack length (af). The fatigue life (crack growth life) is defined as the area under 

the curve of the dN/da versus the crack length (a) and expressed by the integral presented in 

Equation (5-12). 

     
  

  
   

  

  

 (5-12) 

A typical fatigue crack growth rate versus stress intensity curve would consist of an initial slow 

growth rate region followed by an intermediate rate (steady rate) region, and then a third region 

of rapid growth rate just before fracture.  

Figure 5-21 shows a graphical representation of the fatigue crack growth expression, Equation 

(5-11), by plotting (da/dN) on the y-axis against stress intensity range (K) on the x-axis on a 

log-log scale. For the low growth rate region the slope becomes vertical at the stress intensity 

range threshold value, denoted Kth in Figure 5-21. The stress intensity range threshold is 

defined as the value of K below which the crack does not grow for a given stress ratio, which 

brings us to the effect of the stress ratio on the fatigue crack growth rate 
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Figure 5-21 – Schematic of the different stages of fatigue crack growth 

5.5.2 Effect of the stress ratio (R) on the fatigue crack growth rate 

This effect is similar to the mean stress effect on the stress-life curves of some materials. The 

stress ratio increases with increasing mean stress, resulting in an increase in the fatigue crack 

growth rate and a decrease in fatigue life (i.e. the S-N curve shifts downwards). For fatigue crack 

propagation, as the mean stress increases a larger portion of the stress range becomes effective as 

the crack remains open for a larger portion of the applied stress range, and therefore the crack 

spends a greater portion of the fatigue life in a growing state. As the mean stress or stress 

intensity increases it reaches a stage at which the full stress range becomes effective (closure free 
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state, eff). This is known as the intrinsic crack growth state, in which the stress intensity range 

threshold (Kth) becomes the intrinsic stress intensity range (Ki), see Figure 5-22. 

 

Figure 5-22 – Schematic showing the effect of the stress ratio on the fatigue crack growth rate 

DuQuesnay el al. (1993) demonstrated that the strain-life data for all stress ratios fall on a single 

curve when the closure free strain range (the effective strain range, eff) is plotted versus the 

fatigue life. The authors also observed that if the applied minimum stress is greater than a certain 

stress level for each material; then the stress range at the fatigue limit becomes constant for 

ki 
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further increases in mean stress. They thought of this stress level as a material constant 

describing the intrinsic material fatigue resistance similar to the intrinsic stress intensity 

threshold presented by Beevers (1981), Ki. Another term introduced by the authors is *, 

which represents the portion of the effective strain range responsible for causing damage and 

crack propagation. The relation between the effective strain range, intrinsic strain range, and * 

is presented by Equation (5-13): 

              (5-13) 

    eff : is the effective strain range 

    I : is the intrinsic strain range 

    * : is the portion of the effective strain range causing damage 

Historically researchers have found that when fatigue fracture is initiated from an uncracked site 

(usually a notch) or by very small flaws crack growth rates for small cracks are higher than those 

predicted from long crack data, Shijve and Jacobs (1964), Pearson (1975), and Dowling (1976). 

In addition, it was observed that for very short cracks a transition occurs in which the critical 

stress for a crack to propagate becomes the fatigue limit stress rather than the threshold stress 

intensity. 

To account for the behaviour of short cracks with the crack tip near a free surface, El Haddad et 

al. (1979) proposed a modification factor that increases the effective crack length by adding a 

constant length that depends on the applied stress ratio the material and its condition. This 

constant, referred to as an intrinsic crack length (ao), is derived based on the premise that the 
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stress threshold for fatigue crack growth approaches the fatigue limit of a material for very short 

cracks. The above authors proposed the following expression: 

                         (5-14) 

   
 

 
 

   

     
 
 

 
(5-15) 

  

  
          

  
(5-16) 

   Where  ao : intrinsic crack length  

K : is the applied stress range 

     Ki : is the intrinsic stress range 

     A : a material constant 

     m: a material constant 

5.5.3 Effect of a notch on fatigue life 

Fatigue failure of a component occurs as a result of a fatigue crack that initiates from an area of 

stress concentration and continues to grow throughout the fatigue life. Such an area of stress 

concentration can be a notch, a surface imperfection, a casting flaw or any other sort 

discontinuity in the component.  Imperfections may be simulated by notches with various shapes 

based on their geometry. 

One of two approaches, the strain-life approach or the fracture mechanics approach, usually are 

used employed to model the effect of a notch on the fatigue life of a component. The strain-life 
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approach is a simplified approach and is typically adequate when modelling a blunt notch (not a 

sharp radius) with a smooth geometry and no interior flaws. A stress concentration factor is used 

to account for the stress amplification based on the notch geometry and dimensions. This results 

in a constant reduction in the fatigue resistance for medium to long fatigue lives. This 

phenomenon results in an S-N curve that is parallel to the stress or strain versus fatigue life curve 

of a smooth specimen. Figure 5-23 presents a schematic of the effect of a blunt notch on the 

fatigue resistance of a component. 

 

Figure 5-23 – Effect of a notch on the fatigue resistance  

Many researchers have employed the strain-life approach in their analysis of the fatigue 

behaviour of corroded reinforced concrete beams and found it to yield good agreement to 

experimental data, with a fatigue notch factor (Kt) varying based on the pit geometry between 2 

Kt 
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to 3 (Masoud et al., 2005; Soudki et al., 2007; and Al-Hammoud et al., 2011). Figure 5-24 

presents the load range versus the fatigue life curves for non-corroded and corroded reinforced 

concrete beams by Soudki et al. (2007). The parallel downward shift in the fatigue response as 

described above can be observed by comparing the corroded beam response to the non-corroded 

one. 

 

 

Figure 5-24 – Load range vs. fatigue life for non-corroded and corroded concrete reinforced beams 

(Soudki et al., 2007) 

Alternatively, if the notch is not blunt or has internal flaws using the strain-life approach is no 

longer adequate, since the imperfection within the notch acts as a secondary notch/flaw with the 

primary notch, resulting in additional stress amplification. Furthermore, as the fatigue crack 
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continues to propagate and grow out of the notch zone the stress concentration at the crack tip 

due to the secondary notch rapidly reduces to the stress concentration factor for the primary 

notch so that its influence is felt only for small crack sizes. 

The impact of a small notch or flaw within a larger notch on a crack is captured by the stress 

concentration factor for a flaw in a notch, which accounts for the geometry of the stress raiser 

and the length of the fatigue crack. An S-N curve for a specimen or component with a small flaw 

in a notch will show a decrease in its reduction in fatigue strength from that of a smooth 

specimen as the fatigue life decreases as schematically shown in Figure 5-25. 

 

Figure 5-25 – Schematic of the impact of notch/crack within a notch on fatigue resistance 

A fatigue response similar to that discussed above for a flaw within a notch was observed by 

Nurnberger and presented in Section 2.5.1, Figure 2-22 Nurnberger’s comparison of the fatigue 

K 
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resistance of cold drawn prestressing steel wires tested in air and in corrosion promoting aqueous 

medium (tap-water and sea-water) Figure 2-22 is presented again below as Figure 5-26.  

 

Figure 5-26  – Fatigue behaviour of cold drawn prestressing steel wire tested in air, tap-water and 

sea-water, (Nurnberger, 2002) 

Referring back to the observations made from comparing the experimental fatigue behaviour of 

the non-corroded strand-in-beam specimens to the behaviour of the smooth wire-in-air 

specimens; the above-described effect of a notch/crack within a notch on the fatigue behaviour of 

a component is representative of the observed experimental response. In the next section a 

fatigue crack growth analysis using fracture mechanics is employed to analyze and model the 

fatigue behaviour of the fatigue tests presented earlier in this chapter. 



 

 175 

5.6 Derivation of the Closure-free Crack Growth Rate Curve 

A brief background summary of the fracture mechanics analysis of fatigue crack propagation 

was presented in the previous section. In this section deriving the closure-free crack propagation 

rate curve for the prestressing strand is discussed. 

The derivation of the closure-free crack growth curve procedure used in this study is based on 

the procedure presented by Lam et al. (1998) using effective strain-life data. This procedure is 

suitable for this study as it takes an inverse problem approach by identifying a crack growth rate 

versus stress intensity range curve that would fit the observed experimental data.  Lam et al. 

(1998) employed a value of 2.5 MPa for the intrinsic stress range (Ki) for steels based on a 

large number of stress intensity factors collected by Taylor (1985). In this study that same value 

will be used. 

Prior to presenting the derivation procedure it is worth re-mentioning the observation that the 

prestressing strand material exhibited no/insignificant mean stress effect during the fatigue 

testing, recall Section 4.3 (Figure 4-8). This is important as it leads to the conclusion that the 

stress range applied during the fatigue material testing of the smooth-wire-in-air is representative 

of an effective strain range (i.e. closure-free state).  

Using the experimental strain-life data of the smooth-wire-in-air testing; the first step towards 

determining the fatigue crack growth rate is to assume an intrinsic strain range i that would 

result in a linear log-log curve of * versus Nf. Refer to Figure 5-27 which presents a schematic 

of the three curves of the eff,, i, and * against the fatigue life.  
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Knowing i and Ki, the intrinsic crack length (ao) can be calculated using Equation (5-15). 

Then assuming initial values of the material constants (A & m) and using numerical integration 

of Equation (5-16) for a = 0 to a = af, the crack growth life (fatigue life) is obtained. Where af can 

be conservatively assumed to be a value equal to half the specimen diameter. The diameter of the 

smooth-specimen-in-air was 2.2mm; therefore af was set to 1.1 mm.  

 

Figure 5-27 – Schematic showing fitting the experimental Strain-Life data by an assumed intrinsic 

strain range (i) 
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Figure 5-28 – Schematic of fatigue crack growth rate versus the stress intensity factor 

 

The calculated fatigue life is compared to the experimentally observed values; if the values are 

not in good agreement then the initial values of the material constants (A & m) are changed, 

where (A) affects the vertical position rate and (m) affects the slope of the calculated strain life 

curve. It is easiest to attempt fitting two data points, one at a short/medium targeted fatigue life 

and the second at a targeted long fatigue life. For the first point the value of (m) should be kept 

constant, typically a value of 2 is a reasonable starting point McEvily (1969), while varying the 

value of (A) to fit the experimental date (the target fatigue life). If the calculated life is longer 

than the experimental life then (A) should be decreased to decrease the growth rate and therefore 

shorten the calculated fatigue life, and vice versa. Once the first data point is in good agreement 

with the experimental data, the second point is fitted to the experimental data by varying the 
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value of (m) while maintaining the value of (A). It is worth noting that more than one iteration 

may be required to achieve a good fit to the experimental data. 

Finally, the crack is propagated using numerical integration for a range of values for the effective 

strain range (eff), and the calculated strain range versus life curve for smooth specimens is 

compared to experimentally obtained data to ensure that the calculated curve accurately 

represents the experimental data.  

The procedure described above along with an intrinsic strain range i = 0.0075, and a crack 

shape factor (F) = 0.65 for a semi-circular crack were used to derive the crack growth rate versus 

stress intensity range curve of the prestressing wire from fully reversed (R=-1) constant 

amplitude smooth-wire-in-air fatigue data. Figure 5-29 presents the derived crack propagation 

curve, while Table 5-2 presents the crack growth rate parameters. The derived crack growth rate 

was then used to derive a complete strain-life curve, which (as expected) shows a good 

correspondence to the experimental data since the “A” and “m” where selected so that the 

derived strain-life curve fits the smooth wire-in-air experimental data, Figure 5-30. 
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Table 5-2 – Fatigue crack growth rate parameters 

 

 

 

 

Figure 5-29 – Derived crack growth rate for 7-wire prestressing strand steel 
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Figure 5-30 – Comparison of the Strain-Life curve based on the fracture mechanics analysis of 

small fatigue cracks to the smooth specimen fatigue data 
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5.7 Modelling of Deterioration of the Fatigue Resistance Due to Fretting Induced 

Flaws  

As previously discussed in Section 5.4 the experimentally observed deterioration of the fatigue 

resistance between the single-wire-in-air data and the strand-in-air data was attributed to inter-

wire fretting induced damage. Moreover, further deterioration of strand-in-beam data in 

comparison to the strand-in-air data was attributed to a more detrimental fretting between the 

concrete and the strand at concrete crack locations. In addition, the observed trend of an increase 

in the reduction in fatigue resistance as the fatigue life increases; is attributed to the fatigue crack 

spending an increasing fraction the fatigue life propagating out the notch zone at a near fatigue 

limit stress level.  

In this section, the hypothesis described above is analytically examined by introducing an initial 

edge crack length of 0.001 mm into the smooth wire specimen to simulate fretting damage. The 

corresponding fatigue life is obtained by numerical integration of Equation (5-14) from a = 0.001 

mm to a = af = 1.1 mm, using the fatigue crack growth rates presented in Figure 5-29. A 

schematic of the fatigue crack propagation from the fretting induced flaw is presented in Figure 

5-31. 

For very short fatigue lives, there would be no fretting damage, and as the number of cycles 

increases the fretting damage will increase. Therefore, the expected response would give rise to a 

strain-fatigue life curve with an increased slope for shorter lives converging with the stain-

fatigue life curve of the smooth single-wire specimens. Hence simulating the fretting damage by 

introducing an initial crack at the beginning of the fatigue life (i.e. zero cycles) would not 

accurately represent the effect on fatigue life of the fretting damage mechanism at short lives. A 
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simple approach to incorporate the fretting damage in fatigue crack growth was utilized, and the 

modelled strain range versus fatigue life curve for the non-corroded-strand in beam specimens 

together with the experimental data is presented in Figure 5-32. 

 

Figure 5-31 – Schematic of the fatigue crack propagation from the fretting induced flaw is 

presented 

This approach assumes a linear correlation between the crack growth due to fretting damage and 

fatigue life (number of cycles). This was implemented in the fatigue life modelling by 

introducing an incrementally increasing initial crack size representing the fretting induced 

damage over the first 10,000 cycles (at zero cycles the initial fretting crack length is equal to zero 

and it linearly increases to ai = 0.001 mm at 10,000 cycles). Although there is no short life 

strand-in-beam experimental data for comparison, it can be seen in Figure 5-32 that this 

approach is representative of the expected fretting induced damage response at short lives as 

explained above. 
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Figure 5-32 – Strain versus fatigue life comparison of experimental and modelled non-corroded-

strand-in-beam specimens 

The modelled fatigue life response represented by the solid green line in Figure 5-32 reasonably 

represents the experimental results as it falls within the experimental scatter band. To further 

evaluate the goodness of fit, a Two One-Sided Test (TOST) equivalence test was conducted. It is 

worth noting the run-out experimental results were not included in the goodness of fit 

assessment. The lower and upper bounds for the TOST were based on the 95% confidence 

interval on the difference between the mean of the experimental results and the mean of a power 

regression trend line. The TOST results showed that the experimental and modelled fatigue 
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responses are equivalent, with the significance level set at 5% and therefore with a confidence 

interval on the difference between the means of 90%. 

The curve given by our fatigue life model is compared to the present experimental results and 

those previously presented in Section 2.4.3, by Ozell (1962), Rabbat et al. (1978), and Overman 

et al. (1984), see Figure 5-33. Although the majority the experimental results aggregated from 

the literature fall within a fatigue life region beyond our results (2 to 10 million cycles); by 

extending our modelled fatigue response, it is visually apparent that it is in a good agreement 

with the experimental data aggregated from the literature as it remains within their scatter band.  

 

Figure 5-33 – Experimental results from the literature for pretensioned beams and fatigue life 

results and modelling from the present study 
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Referring back to the previous work presented in the background, Section 2.4.1, on fatigue 

testing of full 7-wire strand-in-air collected by Paulson et al. (1983); the predicted fatigue 

responses of the non-corroded strand-in-air and non-corroded-strand-in-beam specimens are 

compared to the Paulson et al.’s compiled experimental results from the literature for strand-in-

air specimens, and the present fatigue data for our strand-in-beam tests Figure 5-34.  

Figure 5-34 presents the modelled fatigue response of strand-in-air specimens fitted to the mean 

of the experimental data by Paulson et al. (1983), and also presents the prediction model by 

Naaman (1989). The strain-in-air model uses the same modelling approach used for the strand-

in-beam predictions with an initial crack length of 0.0002 mm that was found to reasonably 

represent the mean strand-in-air experimental data of Paulson. 

It is evident that Paulson’s strand-in-air data and Naaman’s model are unconservative estimates 

if used to model the behaviour of our prestressing strand inside a beam fatigue data (pretensioned 

beam behaviour). This is in agreement with a similar statement by Wollmann et al. (1996) about 

post-tensioned beams, but contradicts Overman et al.’s (1984) conclusion that Paulson’s strand-

in-air model could be used to model the fatigue behaviour of pretensioned beams. This 

contradiction is easily explained; as Overman et al. (1984) did not account for the fact that 

Paulson’s model is a lower bound for fatigue life model of strand-in-air behaviour and not the 

mean. In order to accurately compare the strand-in-air fatigue model to the strand-in-beam 

behaviour, a model of the mean response of the strand-in-air specimens should be the reference 

rather than the lower bound one.  
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Figure 5-34 – Comparison of the modelled Strain-Fatigue life curve to Paulson et al. (1983) data 

using an incremental introduction of the fretting damage 
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5.8 Modelling of the Deteriorated Fatigue Resistance Due to Corrosion Pitting 

In this section modelling of the deteriorated fatigue resistance due to corrosion pitting is 

presented. There are two components of the modelling presented herein. This first, is modelling 

of the fatigue resistance of corroded-single-wire in air specimens, and the second is the 

modelling of the fatigue resistance of corroded-strand-in-beam specimens. 

5.8.1 Corroded single wire-in-air specimens 

The cause of the deteriorated fatigue resistance of corroded-wire-in-air specimens is corrosion 

induced pitting. Referring back to Section 5.4.2, the observed pit cross sections had pit depths 

varying from approximately 0.3 mm to 1.15 mm, with an average pit depth of 0.6 mm. For 

modelling of the fatigue resistance of corroded-wire-in-air specimens the corrosion pitting is 

modelled by a hemispherical notch with a depth and notch root radius equal to the measured 

average pit depth of 0.6 mm and a flaw at the notch root. The notch geometry is used to 

determine the stress intensity factor of a crack emerging from a corrosion pit.  

As previously discussed a component with a notch may be accurately modelled using strain-life 

approach by utilizing a stress concentration factor (Kt) to account the amplified stress at the 

notch location; which would result in a strain-fatigue life curve parallel to that of the smooth 

specimens (without a notch) strain-life curve but shifted downwards by division of the strain 

values by Kt (i.e. constant reduction is the fatigue resistance) 

Figure 5-35 presents modelled fatigue life curves for corroded-wire-in-air-specimens using the 

strain-life approach with a notch factors (Kt) = 2.19, as presented in Peterson’s Stress 

Concentration Factors, Pilkey (2008), to represent the average corrosion pit as a hemispherical 



 

 188 

edge notch, and another curve with a notch factor (Kt) = 10 to fit the long fatigue life 

experimental data.  

It is evident that the experimental fatigue behaviour of the corroded-wire-in-air specimens cannot 

be modelled using the strain-life approach and the corrosion pit as a blunt notch, since the 

predictions are extremely unconservative for medium to long fatigue lives.  A Kt = 10 value that 

fits the long life fatigue data implies a, the corrosion pit that is very sharp which does not 

represent the observed pit shape. Moreover, the modelled curve based on a Kt = 10 is overly 

conservative and does not represent the experimentally observed fatigue response. 

 

Figure 5-35 – Strain-fatigue life modelling using a strain-life approach (Kt=2.19 and 10) 
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Stress amplification at long fatigue lives of this magnitude, can only be explained by an initial 

crack or a flaw at the notch root, as previously discussed in Section 5.5.3. This leads to the 

second observation presented in Section 5.4.2 in regards to the observed roughness of the 

corrosion pit surface, which can be modelled as flaw at the notch (pit) root which can be 

accurately modelled using short crack strain based fracture mechanics solution for a fatigue 

crack propagating from a secondary interior notch at the root of the primary notch, see Figure 

5-36. 

 

(a) Longitudinal section 

 
(b) Transverse section 

Figure 5-36 – Schematic for a fatigue crack propagating from a secondary notch at the root of the 

primary notch 
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Multiple solutions for the stress intensity factor equations of a fatigue crack propagating from the 

notch root are available in the literature. In this study the solution by Xu et al. (1997) is used 

combined with a fatigue stress concentration factor (Kt) for a hemispherical notch of 2.19, and an 

initial flaw with an assumed depth of 0.0001mm is used to simulate the presence of a flaw at the 

notch root. 

Numerical integration of Equation (5-14) is used to compute the modelled fatigue life for a full 

range of applied strain ranges using the solution of the stress intensity factor for crack 

propagating from the notch root by Xu et al. (1997) as defined by Equations (5-18) to (5-23). 

The modelled strain range versus fatigue life response is presented in Figure 5-37. 
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                        (5-23) 

  Where   : notch root radius (mm) 

l : fatigue crack length (mm) 

Kt : surface stress concentration factor based on notch geometry 

Kc : stress concentration factor for symmetric cracks at the end of 

an elliptical hole (MPa√m) 

Ke : stress concentration factor for a crack at the root of an edge 

notch (MPa√m) 
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Figure 5-37 – Strain-fatigue life model of corroded-wire-in-air specimens 

The modelled fatigue life presented in Figure 5-37 is a reasonable representation of the 

experimental results for mid to long fatigue lives, but it is conservative in comparison to the 

short life experimental data and falls outside the experimental scatter band.  

Short fatigue lives corresponds to larger strain ranges, and respectively higher stresses. Coupled 

with the observation from Figure 5-35 that the modelled fatigue response using the strain life 

approach (that only accounts for the corrosion pit, Kt = 2.19) captures the experimental fatigue 

behaviour at short lives; it may reasonably concluded the effect of the flaw inside the corrosion 



 

 193 

pit diminishes at higher strains. At the high nominal stresses that prevail at short lives, this can  

be explained by the high values of Kt due to the internal flaw at the notch (pit) root, which would 

cause local strains higher than the yield strain, and the resulting cyclic creep would 

deform/stretch the internal flaw out of shape therefore reducing its stress concentration factor.  

This will lead to a reduction in the impact of the flaw at the notch root, and in turn lead to longer 

fatigue lives than those modelled for the original geometry. To implement this hypothesis, the 

value of the initial Kt is increased linearly from the value of a pit without an internal flaw to the 

value of a pit with an internal flaw over the range of lives where an increase in the fatigue life 

above that modelled by the pit plus flaw model is observed. 

The effectiveness of this simple approximation is examined in Figure 5-38, which presents a 

comparison of the modelled strain-life curve for corroded-wire-in-air specimens with the 

measured fatigue data. The dashed line represents specimens with a constant geometry of the 

flaw at the notch root, and the solid line represents the specimens with the altered flaw geometry 

due to high plastic strains. It is visually evident that using an incremental introduction of the flaw 

at the notch root as described above yields an improved modelling of the strain range versus 

fatigue life of the corroded-wire-in-air specimens, since the modelled curve falls within the 

experimental scatter band throughout the fatigue lives. 

The goodness of fit for the modelled fatigue curve was evaluated as previously described in 

Section 5.7 by conducting a Two One-Sided Test (TOST) equivalence test. The TOST results 

showed that the experimental and modelled fatigue responses are equivalent, with the 
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significance level set at 5% and therefore with a confidence interval on the difference between 

the means of 90%. 

 

Figure 5-38 – Strain-fatigue life modelling of corroded-wire-in-air specimens (incremental 

introduction of the flaw at the notch root) 

5.8.2 Corroded strand-in-beam specimens 

In this section the same modelling approach used for the fatigue resistance of a corroded-wire-in-

air is employed in modelling the fatigue resistance of the corroded-strand-in-beam specimens. 

However, unlike the corroded-wire-in-air specimens this is a strand inside a beam and therefore 

exhibits both inter-wire and strand to concrete fretting. A hemispherical edge notch of 0.6 mm in 

depth is used to simulate the observed average corrosion pit size, and an initial crack is used to 
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simulate a surface fretting flaw that intersects the edge of the pit. A value of Kt = 3 is used for 

the stress concentration at the notch edge. Since the fatigue crack is propagating from the edge 

and not the notch root, the shape of the crack is quarter-circular and not semi-circular. The same 

a crack shape correction factor for a semicircular crack (F = 0.65) was used as an approximation 

for the quarter-circular crack. Figure 5-39 presents a schematic of the flaw geometry. 

 
(a) Top view 

 
(b) Transverse section 

Figure 5-39 – Schematic showing a fatigue crack propagating from a fretting induced flaw 

intersecting the edge of a pit for a corroded strand-in-beam specimen 
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As previously discussed in Section 5.7 the fretting induced damage was modelled by introducing 

an initial crack into the smooth wire specimen, consequently, in order to account for the 

combined impact of the fretting and a flaw at the notch edge the initial crack length used in 

modelling the fatigue resistance of the corroded-strand-in-beam specimens was longer than the 

crack length used in modelling the fatigue resistance of the corroded-wire-in-air specimens to 

account for the severe concrete fretting damage. Multiple iterations were conducted with various 

crack lengths, and an initial crack length of 0.02mm was found to yield a good correlation of the 

fatigue model with the experimental results. 

Moreover, the same incremental approach of linearly introducing the flaw at the notch root and 

the fretting damage was used, however, an introductory period of the first 100,000 cycles was 

found to correlate well with the experimental results. Figure 5-40 presents the experimental and 

modelled strain range versus fatigue life data for the corroded-strand-in-beam (corroded beam) 

specimens in comparison to those for the corroded-wire-in-air specimens.  

The goodness of fit for the modelled fatigue curve was evaluated as previously described in 

Section 5.7, by conducting a Two One-Sided Test (TOST) equivalence test. The TOST results 

showed that the experimental and modelled fatigue responses are equivalent, with the 

significance level set at 5% and therefore with a confidence interval on the difference between 

the means of 90%. The modelled fatigue response is also visually representative of the 

experimental data and falls within their scatter band. 
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Figure 5-40 – Strain-fatigue life model of corroded-strand-in-beam specimens Adham correct 

spelling 

The improvement in the fatigue resistance of the corroded strand-in-beam with a 10% corrosion 

level in comparison to that of the corroded strand-in-beam specimens with 5% corrosion was 

previously mentioned in Section 5.4.3. Since the representation of the deterioration mechanism 

due to corrosion by a fatigue crack propagating from a secondary notch within the primary notch 

was shown to accurately model the observed experimental behaviour; the observed improvement 

at the higher corrosion level may be due to a smoother notch surface and smaller internal flaws 

for the larger corrosion value. 

5.8.3 Corroded strand-in-beam repaired with CFRP 

For the corroded strand-in-beam in a beam repaired with CFRP the same modelling approach 

and crack initiation assumptions for the corroded/non-repaired strand-in-beam specimens are 
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employed. The only difference is the applied stress range for the strand; due to the load 

resistance contribution of the CFRP sheet the reduced strand stress is calculated using sectional 

analysis and used in modelling the fatigue life. Figure 5-41 shows the modelled strain range 

versus fatigue life curves for the corroded strand-in-beam repaired with CFRP and corroded/non-

repaired strand-in-beam specimens in comparison to the experimental data.  

 

Figure 5-41 – Modelled and experimental strain range vs. fatigue life data for non-repaired and 

repaired corroded strand-in-beam specimens  
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The modelled curve shows only a marginal improvement in the predicted fatigue resistance of 

corroded strand-in-beam repaired with CFRP in comparison to the predicted fatigue resistance of 

corroded/non-repaired strand-in-beams specimens, and is not representative of the experimental 

data; this indicates that there is another factor that contributes to the improved fatigue resistance 

of the beams repaired with CFRP other than just simply reducing the applied strand stress. 

To analyse this behaviour we refer back to the observations made from the monotonic testing 

results for the corroded beam repaired with CFRP in Section 4.4.2.  Figure 4-32 is presented here 

again for clarity as Figure 5-43, and presents the applied load versus midspan deflection for non-

repaired beams and repaired beams.  

Notice the increased post-cracking stiffness (reduced midspan deflection for a given load) of the 

repaired beams beyond cracking load. A reduction in deflection leads to a reduction in crack 

opening and therefore a reduced concrete fretting of the strand. All of the strand-in-beam 

specimens we pre-cracked on the first load cycling during fatigue testing. This is consistent with 

the observations of researchers presented in Section 2.6.3, who reported that post-cracking 

stiffness increases and crack opening widths decreases with CFRP strengthening, Soudki and 

Sherwood (2000), Hassan and Rizkalla (2002), Rosenboom et al. (2006). 
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Figure 5-42 – Load vs. midspan deflection comparison of the repaired and unrepaired beams 

To simulate the effect of a reduction in the fretting damage due to the repair using CFRP sheet, 

the initial crack length of 0.02 mm that was used to simulate the fretting damage of the non-

repaired corroded strand-in-beam specimens was reduced to 0.001 mm for the corroded strand-

in-beam repaired with CFRP specimens.  

Figure 5-43 presents the predicted strand range versus fatigue life curve with a reduced fretting 

initial crack length due to the repair using CFRP. The modelled fatigue resistance of the corroded 

strand-in-beam specimens repaired with CFRP shows good representation of the experimental 

results, which confirms the hypothesis that CFRP repair improved the fatigue resistance not only 

by reducing the strand stress range but also increasing the stiffness of the cracked section; 

therefore the FRP reduces the crack width and consequently reduces fretting damage.  
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The goodness of fit for the modelled fatigue curve was evaluated as previously described in 

Section 5.7, by conducting a Two One-Sided Test (TOST) equivalence test. The TOST results 

showed that the experimental and modelled fatigue responses are equivalent, with the 

significance level set at 5% and therefore with a confidence interval on the difference between 

the means of 90%. The modelled fatigue response is also visually representative of the 

experimental data and falls within their scatter band. 

 

 

Figure 5-43 – Modelled strange range vs. fatigue life curve non-repaired and repaired corroded 

strand-in-beam specimens (assuming a reduced concrete fretting damage) 
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5.9 Summary 

In this chapter an in depth analysis was presented that mechanistically explains the fatigue life 

and failure behaviour of the 7-wire prestressing strand. The analysis presented in Chapter 4 was 

based on studying the behaviour by identifying the fatigue material properties and fatigue crack 

propagation response of a single wire. These properties were identified through an extensive 

experimental program comprised of testing a total of 61 single wire specimens (25 smooth wire 

specimens and 31 corroded wire specimens).  

Experimental samples from the single wire specimens as well as the full strands extracted from 

beams tested to failure were closely examined to identify the flaws that caused the fatigue 

fracture. Visually obvious signs of inter-wire fretting and wire to concrete fretting were observed 

and presented. Wire-in-air experimental results were compared to up to 700 strand-in-air fatigue 

tests results compiled by Paulson et al. (1983). Significant deterioration was observed at long 

fatigue lives, which was attributed to inter-wire fretting. Additional deterioration was observed 

for non-corroded strand-in-beam specimens in comparison to the strand-in-air specimens; 

indicating that concrete fretting is more detrimental than inter-wire fretting. On the other hand, 

for the corroded strands corrosion induced pitting was observed and a wide range of the pit 

geometries were found.  

Using a short crack strain based Fracture Mechanics approach the fatigue crack propagation rate 

was calculated, and then combined with a solution by Xu et al. (1997) for the stress intensity 

factor for a crack propagating from a notch root to model the fatigue resistance.  

The smooth wire in air had an initial zero crack length. The strand in air had a fretting crack. 

Moreover, an incremental introduction of the initial crack was utilized to simulate the time delay 
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(number of cycles) that are expected to be physically required for the full fretting damage to be 

manifested. 

Alternatively for the corroded wire-in-air specimens, corrosion induced pitting was represented 

by a hemispherical edge notch of a depth and a notch root radius of 0.6 mm based on the average 

physically measured corrosion pit dimensions. In addition, an initial crack length of 0.0001mm 

was incrementally introduced to simulate a flaw at the notch root. Similarly modelling of the 

corroded strand in beam utilized the same approach with the same notch geometry. However, an 

initial crack length of 0.02 mm was used to simulate the combined fretting and corrosion induced 

damage. Figure 5-44 presents all of the experimental data in comparison to their corresponding 

modelled fatigue resistance. The modelled fatigue behaviour is in good agreement with the 

experimental data indicating that an accurate mechanistic analysis of the fatigue behaviour of the 

prestressing strand is representative of the beam response. 

Finally the fatigue resistance of the corroded strand-in-beam specimens repaired with CFRP was 

modelled using the same modelling approach, notch geometry, and crack initiation assumption; 

but with a lower strand stress due to the CFRP contribution in resisting the applied stress, and a 

reduced initial crack length of 0.001 mm simulating the reduction in concrete fretting damage as 

a result of the increased cracked section stiffness due to the application of the CFRP repair. 

Figure 5-43 presented the predicted strand range versus fatigue life curve with a reduced fretting 

initial crack length due to the repair using CFRP, the predicted fatigue resistance was in good 

agreement with the experimental results of the 5% corroded/repaired strand-in-beam specimens 

repaired with CFRP. However for the specimens corroded to 10% by mass loss, scatter in the 

experimental results made it harder to quantify the difference in response between the non-
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repaired and repaired specimens. Figure 5-44 presents all of the modelled fatigue response and 

there corresponding experimental data sets. 

 

Figure 5-44 – Summary of fatigue resistance models versus experimental behaviour 

Finally, it is important to summarize the assumptions, the parameters and the limitation of the 

modelling approach. Assumptions were made in order to identify the material fatigue properties 

and to model the fatigue response; namely a) the material fatigue response is not affected by 

mean stresses b) an intrinsic strain range i = 0.0075 based on the smooth wire-in-air fatigue 

test results and c) the fatigue crack shape is semi-circular or quarter-circular. 

In addition, the primary fitting parameter for the modelled fatigue response was the initial crack 

length and shape used to simulate various flaw geometries that we were unable to get physical 
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measurements for. The initial crack lengths used ranged from 0.0001 mm to 0.02 mm. Although, 

the crack lengths are arbitrary fitting parameters, a pretensioned beam with a similar 

configuration and steel strand is expected to replicate the modelled fatigue response presented in 

this study 
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Chapter 6 

Summary, Conclusions and Recommendations 

This study presented an in depth investigation of the fatigue performance of pretensioned T-

beams subjected to different level of corrosion, and examined the effectiveness of using 

externally applied Carbon Fibre Reinforced Polymer (CFRP) sheets to repair and restore their 

monotonic and fatigue load carrying capacities. 

6.1 Summary 

The study comprised of an extensive experimental program and an in depth analysis. The 

experimental program consisted of multiple phases; a material testing phase, and a beam testing 

phase. For the material testing phase, a total of sixty-one (61) material samples under carious 

configuration were fatigue tested to identify the material’s monotonic and fatigue properties, the 

impact of corrosion pitting, and were the basis of the mechanics analysis and modelling.  For the 

beam-testing phase, a total thirty-seven (37) pretensioned concrete beams measuring 3.6m in 

length were tested under monotonic and fatigue loading. The beams were subjected to different 

corrosion levels and repair configurations to compare the behaviour of the prestressing strand 

inside a beam to the fatigue life models. 

In this chapter findings of the study are presented followed by recommendation for future work. 

The findings are divided as follows; experimentalbeam testing, material testing, and mechanics 

analysis and modelling. 
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6.1.1 Beam Testing 

Conclusions presented in this section are based on the experimental test results of thirty-seven 

(37) pretensioned concrete T-beams. Twelve (12) beams were testing under monotonic testing in 

four-point bending, and twenty-five (25) beams were tested under fatigue loading. Conclusions 

in this section are presented as monotonic and fatigue behaviour.  

Monotonic behaviour 

 Corrosion significantly affected the behaviour of the pretensioned T-beams, with 

significant reductions in their ultimate load carrying capacity and midspan deflection. 

 Beams with a 2.5% corrosion level by mass loss exhibited a 6.5% reduction in ultimate 

load and a 26.4% reduction in midspan deflection. 

 Beams with a 5% corrosion level by mass loss suffered reductions of 44% and 10% in 

load carrying capacity and midspan deflection, respectively. 

 The beams with the high corrosion level of 10% mass loss had 76% and 26% reductions 

in its load carrying capacity and midspan deflection, respectively. 

 The cumulative flexure crack widths and average strand tensile strains increased with 

increased corrosion levels, while the concrete midspan compressive strain decreased with 

an increased corrosion level.  

 Failure was characterized by rupture of the strand in all beams, but the rupture pattern 

differed between non-corroded and corroded beams.  
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 For the non-corroded beams a rupture of multiple wires occurred at the same location, 

while for the corroded beams wire failures occurred at adjacent locations depending on 

the pit location. 

 CFRP repair was effective in restoring the load carrying capacity of corroded 

pretensioned beams. The stiffness of the strengthened members increased in comparison 

to their unstrengthened counterparts. However, the reduction in ductility was not 

reversible. 

Fatigue behaviour 

 Corroded beams exhibited deterioration in their fatigue resistance in comparison to the 

non-corroded beams. 

 Beams corroded to a 5% by mass loss showed a uniform deterioration at different load 

ranges. 

 Beams corroded to a 10% mass loss did not exhibit an additional deterioration in fatigue 

resistance in comparison to beams corroded to a 5% mass loss. 

 Beams corroded to a 10% by mass loss showed more scatter in their fatigue response than 

the beams corroded to a 5% mass loss with the mean experimental response indicating a 

slight improvement in fatigue resistance in comparison to beams corroded to 5%. 

 Beams corroded to a 5% mass loss and repaired using CFRP sheets exhibited a uniform 

improvement in fatigue resistance, and the fatigue resistance was restored to the level of 

the non-corroded beams. 
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 Beams corroded to 10% by mass loss and repaired using CFRP showed a scatter in their 

fatigue response similar to that of the non-repaired beams with a 10% corrosion level. 

 The mean experimental fatigue response of the beams corroded to a 10% mass loss 

improved in comparison to that of the non-repaired beams, but the fatigue resistance level 

of the non-corroded beams was not restored. 

Material Testing 

This section presents conclusions derived from material testing of a total of sixty-one (61) single 

wire tests. Material testing samples were made out of a single wire of a 7-wire prestressing 

strand. Twenty-five (25) non-corroded specimens and thirty-six (36) corroded specimens were 

tested. Corroded specimens wire specimens were taken from a complete strand corroded inside a 

concrete prism.  Actual corrosion levels by mass loss achieved were 8% and 10%. 

 Fatigue response of non-corroded wire specimens was typical of cold drawn steel. 

 Non-corroded wire specimens tested under cyclic loading with an average positive mean 

stress of 500 MPa had a similar fatigue response to that of non-corroded wire specimens 

tested under zero mean (R = -1) cyclic loading. 

 No difference in fatigue response was observed between wire specimens corroded to 8% 

by mass loss and specimens corroded to 10% by mass loss. 

 Corroded wire specimens showed a deteriorated fatigue response in comparison to non-

corroded wire specimens. 
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Analysis and Modelling 

Samples from the single wire specimens as well as the full strands extracted from beams tested to 

failure were closely examined to identify the flaws that caused the fatigue fracture.  

 Inter-wire fretting was identified as the cause of the deterioration in the fatigue resistance 

for non-corroded strand-in-air specimens in comparison to that of the smooth wire-in-air 

specimens. Visible signs of inter-wire fretting induced damage were presented.  

 Concrete fretting was identified as the cause of the flaws causing fatigue fracture for non-

corroded strands-in-beam, and signs of concrete fretting induced damage were presented.  

 A comparison of experimental results compiled by Paulson et al. (1983) and an equation 

by Naaman (1989) for strand-in-air specimens to those of the strand-in-beam specimens 

from this study reveals an additional deterioration of the fatigue resistance for the strand-

in-beam specimens; indicating that concrete fretting is more detrimental than inter-wire 

fretting.  

 The fatigue crack propagation rate was calculated using a short crack strain-based 

fracture mechanics approach, and the constructed fatigue response of the smooth wire-in-

air specimens accurately represented of the experimental response. 

 Smooth wire-in-air specimens had a zero initial crack length, while the non-corroded 

strand specimens had an initial crack that simulated a fretting induced flaw. 

 Strand-in-air specimens had an assumed initial crack length of 0.0002 mm, and non-

corroded strand-in-beams specimens had an assumed initial crack length of 0.001 mm. 
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 A simplified approach of incrementally introducing the initial crack to simulate the time 

delay (number of cycles) that are physically required for the full fretting damage to be 

manifested resulted in a good correlation of modelling to the experimental results. 

 In the corroded specimens, corrosion induced pitting was observed, and a wide range of 

the pit geometries were found.  

 A short crack strain-based fracture mechanics approach, the average corrosion pit 

geometry and assumed flaw sizes were used to model the fatigue resistance of corroded 

wire-in-air and corroded strand-in-beam specimens.  

 A solution for the stress intensity factor for a crack propagating from a notch root by Xu 

et al. (1997) was used to model the fatigue resistance of the corroded wire-in-air 

specimens.  

 Corrosion induced pitting was represented by a hemispherical edge notch of a depth of 

0.6 mm based on the average physically measured corrosion pit, and an initial crack of 

length of 0.0001 mm was incrementally introduced to simulate a flaw at the notch root.  

 The strand-in-repaired-beam specimens had a reduced strand stress range due to the 

contribution to the moment resistance of the beam by the CFRP sheet. 

 Corroded strand-in-repaired-beam specimens had higher cracked section stiffness and 

smaller flexural crack widths in comparison to corroded strand-in-beam specimens, 

which reduced the cyclic displacement at the cracks and the fretting induced damage. 
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 Modelling of the corroded strand-in-beam specimens utilized the same approach with the 

same notch geometry as that for the corroded strands. However, an initial crack length of 

0.02 mm was used to simulate the combined fretting and corrosion induced damage for a 

non-repaired beam, and crack length of 0.001 mm was used for the repaired beams.  

 The modelled fatigue behaviour is a good representation of the experimental data 

indicating that the crack growth analysis of the fatigue behaviour of the prestressing 

strand is representative of the beam response. 

 The fatigue behaviour of non-corroded and corroded pretensioned beams can be 

accurately modelled by using short crack strain-based fracture mechanics and an 

appropriate description of fretting and corrosion flaws to construct the strand fatigue life 

curves. 

6.2 Conclusions 

This study has presented an extensive body of experimental work along with an in depth 

mechanistic analysis of the deterioration mechanisms of the primary prestressing reinforcement, 

the 7-wire strand, used for pretensioning applications. This study’s primary contribution is 

presenting a mechanistic understanding of the failure process of pretensioned beams, and 

demonstrating a modelling approach that is built on material properties obtained through simple 

material testing that accurately predicts the fatigue behaviour of non-corroded and corroded 

pretensioned concrete beams. Notable conclusions are summarized and presented below: 

 Corrosion significantly affected the behaviour of pretensioned beam; under monotonic 

loading reductions in load capacity and midspan deflection of 26% and 76% respectively 
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were observed at 10% corrosion by mass loss. Under cyclic loading a significant 

reduction in fatigue resistance was also observed. 

 Repair of corroded pretensioned beams using Carbon Fibre Reinforced Polymer Sheet 

(CFRP) successfully restored the monotonic ultimate load capacity and fatigue resistance 

to those of the non-corroded pretensioned beams. 

 The fatigue behaviour of the 7-wire prestressing strand-in-air was shown experimentally 

not to be representative of its fatigue behaviour inside a beam. 

 Various deterioration mechanisms were identified for the 7-wire prestressing strand 

subjected to cyclic loading under different conditions. The resulted in a major 

deterioration in the material’s fatigue resistance as a strand assembly in comparison to 

that of the single wire. 

 Employing short-crack strain based fracture mechanics along with the identified 7-wire 

prestressing strand deterioration mechanisms accurately modelled  the fatigue response of 

non-corroded and corroded pretensioned beams. 
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6.3 Recommendations for Future Work 

In this section, recommendations are made for future work that would expand on the findings of 

this thesis and contribute to a deeper understanding of parameters that were outside the scope of 

this study: 

 A study investigating the fatigue behaviour of beams with multiple corroded strands. 

 An investigation on the effect of overloads and variable amplitude cyclic loading on the 

fatigue behaviour of corroded pretensioned beams. 

 An experimental program to evaluate fretting induced surface damage in 7-wire strands 

and to quantify the fretting force in relation to the applied stress level. 

 A study aimed at to providing design recommendations based on a statistical analysis of 

the distribution of fatigue strengths of cyclically loaded beams with corrosion and fretting 

induced flaws. 

 A study to statistically quantify the depth of cracks due to stress corrosion in prestressing 

wires.  
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