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Abstract

Advanced modulation techniques and access technologies are enabling higher data-rate
communication at the cost of stringent signal requirements affecting radio transceivers’
efficiency and cost. One of the major problems is the high peak to average power ratios
(PAPRs) of modern signals, which are imposing contradictory linearity and efficiency con-
straints on radio frequency power amplifiers (PAs). One key solution to extend a PA’s
linearity and efficiency is the application of digital predistortion (DPD) techniques which
are fundamentally based on accurate modeling of the PA behavior. A second approach is
the deployment of crest factor reduction (CFR) techniques to effectively reduce the PAPR
of the signal. To date, significant progress has been reported in the literature in both of
these areas, but only in the context of single-band multi-carrier signals.

Recently, in an attempt to extend bandwidth and increase spectral efficiency, new
standards have been adopting multi-band multi-standard communication schemes. These
signals, also known as carrier aggregated signals, introduce two new challenges to the design
of efficient radio systems. First, the wide spectral separation of the different component
carriers (up to 1 GHz separation), challenges the fundamental assumption of conventional
modeling schemes and CFR techniques (i.e., the envelope only processor hypothesis). Ex-
tending or revising classical single-input single-output formulations and methods is not
viable, and a multi-input multi-output (MIMO) methodology needs to be developed. A
second challenge is the projected deployment of up to five component carriers per sig-
nal. Based on conventional methodology, this implies the expensive deployment of up to
five predistorters, five transmitter observation receivers (TORs) and five training engines
(TEs). This thesis presents a number of contributions addressing the above challenges and
paving the way for the deployment of carrier aggregated radios.

The first contribution of this thesis is the development of MIMO CFR and dual-band
DPD modules to enable the low-speed baseband processing of carrier aggregated signals.
A low-speed CFR solution is proposed and extended to different deployment scenarios (i.e.,
component carriers with different average powers, component carriers with different mod-
ulation schemes, and an arbitrary number of component carriers). Next, the conventional
PA behavioral modeling approach is reviewed and reformulated to effectively design a novel
dual-band DPD scheme.

The second contribution is the efficient hardware implementation of predistortion algo-
rithms. A symbolic optimization approach is proposed to enable the joint optimization of
the two dual-band predistorters sharing the same predistortion engine, effectively avoid-
ing duplication of the predistortion modules. Next, a time-shared 1-TOR 1-TE real-time
adaptive learning approach is proposed to effectively linearize a dual-band PA.
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Chapter 1

Motivation and Introduction

1.1 Introduction

In order to respond to the demand for increased data rates, the latest communication
standards are calling for a number of advanced access technology and modulation schemes
requiring stringent signals which are affecting radio transceivers’ efficiency and costs. For
example, modulation schemes have evolved from a quadrature phase shift keying (QPSK)
approach in the universal mobile telecommunications system (UMTS) release 99 3G stan-
dards, to a 16 quadrature amplitude modulation (QAM) approach for high-speed downlink
packet access (HSDPA) under 3.5G standards, and then a 64 QQAM-based scheme for long
term evolution advanced (LTE-A) 4G standards. This has enabled an increase in the
modulation index from 2 bits/symbol to 8 bits/symbol. As a result, the requirements on a
signal’s quality such as error vector magnitude (EVM) and signal to noise ratio (SNR) have
become significantly more stringent (e.g., from 17.5% EVM for QPSK down to 8% EVM for
QAM 64). Furthermore, access technologies such as code division multiple access (CDMA)
and orthogonal frequency division multiplexing (OFDM), have enabled the development of
more spectrally efficient radio access techniques with better immunity to multi-path fading
and inter-symbol interference. The CDMA approach is used in CDMAone (2G), WCDMA
(3G) and Cdma2000 (3G) technologies while OFDM has been adopted in long term evo-
lution (LTE) (3.9G) and LTE-A (4G) standards. As these access technologies involve the
summation of multiple modulated signals which have been independently phased, they
yield signals with high peak to average power ratios (PAPR) — exceeding 10 dB under the
LTE-A standards.

The stringent EVM constraints and problems of high PAPR, presented by advanced
modulated signals, are imposing contradictory linearity and efficiency requirements on
radio frequency (RF) power amplifiers (PAs). In order to respect transmission regulations
and guarantee signal quality, PAs must be linear. However, the average efficiency of a linear
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PA (which dominates the transceiver’s power consumption), ranges between 10-20%. This
means that only one fifth of the DC power consumed is converted to RF; the remaining
power dissipates as heat, requiring that expensive cooling systems be employed to prevent
overheating. PA efficiency and linearity enhancement solutions must be innovated in order
to develop functional and cost effective wireless communication infrastructure.

1.2 Carrier Aggregated Signals

Looking for greater bandwidth and better spectrum resource utilization, the new stan-
dards are adopting carrier aggregated communication signals. Under heavy network loads,
carrier aggregation will enable load balancing to occur across carriers, thus improving the
data rates of all users. Under low or medium network loads, carrier aggregation is able to
take advantage of unused resources, leading to significant data rate increases. Some carrier
aggregation scenarios have been specified within the communication standards and others
are under development. For example:

e 3GPP LTE release-10 supports the use of an up to 100 MHz signal bandwidth ob-
tained through carrier aggregation of as many as five component carriers. This en-
ables a peak data rate of 1 Gbps on downlink and 500 Mbps on uplink. The compo-
nent carriers can be any of the supported 3GPP LTE release-8 20 MHz signals.

e 3GPP HSDPA release-10 enables the carrier aggregation of up to eight component
carriers and a signal bandwidth of up to 40 MHz. As was the case for LTE, the
component carriers do not need to be adjacent.

e Carrier aggregation can also provide an architectural solution to support the effective
coexistence of emerging and legacy standards. In order to be backward compatible,
4G stations must support frequency bands used by 2G and 3G. Take the use case
scenario of two popular signals: 900 MHz HSDPA and 800 MHz LTE. Even though
there is limited spectrum availability for each of these signals, they are attractive for
use given their relative low frequency (e.g., making coverage within a building easier).
Carrier aggregation would enable the provision of the high data rates expected from
LTE services while simultaneously maintaining coverage for HSPA devices.

Given how crowded the radio spectrum currently is, a wide contiguous spectrum band
(i.e., from 40-100 MHz) is hard to provide, if not impossible. Therefore, LTE release-10
enabled component carriers to be allocated into narrow non-contiguous spectrum bands.
As a typical non-contiguous carrier aggregated signal is characterized by widely spaced
carriers, the aggregated channel bandwidth may be up to 1 GHz. This results in addi-
tional constraints on the analog and digital circuitry design of devices and infrastructure.
Furthermore, carrier aggregation can aggravate the signal’s PAPR by several dB.
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Figure 1.1: Legacy (a) vs. future (b) dual-band carrier aggregated transmitter

1.3 Multi-band Power Amplifiers

To generate carrier aggregated signals, current transceiver architecture modulates each
carrier separately and then combines the different carriers after the amplification phase,
thus requiring one amplifier for each of the bands (Fig. 1.1 a). This transceiver architecture
dramatically increases the deployment cost of the network and forces wireless infrastruc-
ture to design and maintain a product line-up of multiple PAs. A better solution, to be
adopted by next generation transceivers, consists of combining multi-band signals before
amplification, requiring the use of only one concurrent multi-band power amplifier (Fig.
1.1 b).

The deployment of multi-band PAs is conditional on the provision of acceptable lin-
earity and efficiency performance at least comparable to narrow band PAs. A number of
enhancement approaches exist for PAs such as:

e Improving the efficiency in the back-off region using advanced PA design techniques
and topologies (e.g., load and bias modulation techniques).

e Reducing the PAPR of the signal at the cost of slightly increasing the EVM by using
crest factor reduction (CFR) techniques.

e Extending the linear region thus requiring additional linearization techniques (e.g.,
digital predistortion or DPD)

However, the introduction of multi-band topology raises new research challenges: the accu-
rate multi-band behavioral modeling of concurrently driven multi-band PAs, the manage-
able implementation of multi-band predistorters, and the development of appropriate and
adequate CFR solutions. If classical baseband approaches are adopted, they will engender
excessive sampling rates in order to represent multi-band signals in baseband. It is part



of the fundamental assumptions for conventional modeling schemes and CFR techniques.
Hence, the extension or revision of classical formulations and methods is not adequate —
new multi-band centered methodology must be adopted.

1.4 Thesis Objectives

The above discussion revealed several system level challenges hindering the deploy-
ment of multi-band transceivers. This thesis contributes to addressing those challenges by
targeting the following objectives:

1. Development of a dual-band predistortion model for concurrent multi-band PAs.
In addition to mitigating the in-band distortion (already exhibited in single-band
scenarios), the proposed model handles the inter-band distortions resulting from the
interaction of the two bands’ signals. The model runs at a speed relative to the
signals’ bandwidth and is independent from their separation.

2. Development of a dual-band CFR technique for carrier aggregated signals. The pro-
posed technique handles the fundamental case of widely spaced component carriers
and is extended to cover different deployment scenarios. The proposed technique
runs at a speed proportional to the signals’ bandwidth and is independent from their
separation.

3. Development of an optimization approach for the efficient hardware implementation
of predistortion algorithms. The approach is characterized by automatic symbolic
optimization and automatic high level synthesis (HLS), effectively speeding-up the
model to gate flow.

4. Development of a dual-band training algorithm. The algorithm enables time sharing
of a single transmitter observation receiver (TOR) and training engine (TE) by the
different component carriers.

1.5 Thesis Outline

This thesis is organized as follow:

Chapter 2 introduces modern communication signals’ characteristics and the challenges
faced by PA designers in order to meet the standard requirements. It enumerates some of
the successful multi-band PA prototypes reported in the literature and presents a review
of behavioral modeling schemes and CFR techniques.



Chapter 3 presents a novel CFR solution for carrier aggregated signals. It starts with
a detailed analysis of the conventional clipping approach’s limitations in the case of two
carrier aggregated signals and proposes an adequate solution. Next, a number of gen-
eralized solutions tailored to different deployment scenarios are presented. The covered
scenarios are: (i) component carriers having different power levels, (ii) component carriers
with different EVM requirements, and (iii) an arbitrary number of component carriers.
This chapter concludes with the experimental validation of the proposed CFR solution
and compares its performance with the conventional technique.

Chapter 4 outlines the behavioral modeling and DPD of RF PAs. First, in an attempt
to find a modeling approach capable of handling carrier aggregated signals, a Volterra
series modeling approach applicable to a single-band scenario is proposed. This model is
applied to intra-band non-contiguous carrier aggregated signals and treats them as one
carrier single-band signals. Next, a dual-input dual-output (DIDO) Volterra series model
adequate for an inter-band two carrier aggregated signals scenario is derived and validated.

Chapter 5 presents an automated approach to optimizing the Volterra series DPD
hardware implementation in a field-programmable gate array (FPGA). First, a symbolic
tool is used to carry out a number of arithmetic transformations and optimize the model’s
expression. Next, automated fixed-point conversion and HLS tools are used to generate the
hardware description language (HDL) code of single- and dual-band Volterra series DPDs.

Chapter 6 proposes a novel linearization system using a single TOR and TE for PAs
driven with inter-band carrier aggregated signals. The proposed architecture implements
a recursive least squares estimator applied to a model reference adaptive control (MRAC)
learning approach. Unlike conventional architectures which simultaneously linearize both
bands, the 1-TOR/1-TE is switched between the two bands and the respective DPD tech-
niques are trained and applied.

The last chapter concludes the technical results of this thesis, enumerates the author’s
literature contributions and patent applications and proposes potential future research
directions.



Chapter 2

Background: Efficiency and Linearity of
RF PAs

The incessant progress of wireless communication standard are enabling higher data-
rate communication systems. The advance of modern access technology, such as wide-band
code division multiple access (WCDMA) and orthogonal frequency division multiplexing
(OFDM), enabled spectral efficient communication signals. However, this was achieved at
the cost of generating stringent signals affecting radio transceivers efficiency and develop-
ment complexity. Recently, LTE’s evolved universal terrestrial radio access (E-UTRA)[73|
enabled the use of frequency aggregated communication signals. These signals has more
stringent characteristics challenging the design of efficient radio transceiver. This chap-
ter describes the challenges arisen in order to maintain good signal quality and insure
acceptable radio efficiency.

2.1 Carrier aggregated Signal’s Characteristics

Recent modulation techniques and access technologies are generating stringent signals
characterized with higher bandwidth and PAPR. Meanwhile, the communication standards
are imposing strict signal qualities requirements such as EVM and adjacent channel leakage
ratio (ACLR), as detailed in the following sub-sections.

3

2.1.1 PAPR

Peak to average power ratio (PAPR) is a measure that quantifies the amount of variation
of the signal envelope. It is calculated as the peak amplitude squared (peak power) divided
by the root mean square (RMS) value squared (average power)

6
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Equivalently, crest factor is computed as the ratio of the peak amplitude of the waveform
divided by the RMS value of the waveform

¢ = et _/5apR
TRMS
For example, sine wave has PAPR of 3 dB, a 2G Global System for Mobile Commu-
nications (GSM) signal has a PAPR of 6 dB, 3G WCDMA modulated waveforms PAPR
typical value ranging from 6 to 9dB and 4G LTE signal have a PAPR higher than 10 dB.
The high PAPR characteristic considerably affects power amplifier efficiency and transistor
utilization factor. Assume for example a 10 dB PAPR signal to be transmitted with 10 W
average powers. It is then required to use a power amplifier able to handle up to a 100W.

2.1.2 Bandwidth

Both 3G and 4G standards allows up to 20 MHz bandwidth for a communication
channel. This correspond to the four-carrier WCDMA signal and 20 MHZ LTE signal,
respectively. This bandwidth restriction helped designer to predict a maximum required
bandwidth for the analog circuits and the maximum required sampling rate of the digital
components.

Seeking more data rate and better radio frequency resource utilization, 4G LTE-advanced
standard introduced the carrier aggregated radio scenario. Each aggregated carrier is re-



ferred to as a component carrier (CC). Basing on the operator frequency allocation sce-
narios, three possible cases are introduced |72, 73|, as in Fig. 2.1:

1. Intra-band contiguous: use contiguous CC within the same operating frequency band.
As a maximum of five component carriers can be aggregated, the maximum aggre-
gated bandwidth is 100 MHz [73].

2. Intra-band non-contiguous: use non-contiguous CC within the same operating fre-
quency band, separated with a band gap.

3. Inter-band non-contiguous: use non-contiguous CC within the different operating
frequency band. In this case, the aggregated communication channel bandwidth
may reach a couple of GHz.

The aggregated channel bandwidth become significantly large and has direct impact on
analog circuit bandwidth requirements and on digital processor speed and memory. Based
on hardware impact considerations, for the following chapters, two cases are distinguished.

1. Wide-band scenario: for both contiguous and non-contiguous intra-band aggregated
signals.

2. Multi-band scenario: for non-contiguous inter-band aggregated signals.

2.1.3 EVM

Error vector magnitude (EVM) is a figure of merit for evaluating digital modulated
signals quality. EVM measures the difference between the ideal 1/Q constellation values of
a demodulated symbol vs. the values of the real received ones. The error vector magnitude
is equal to the ratio of the power of the error vector to the root mean square (RMS) power
of the reference. It is defined in dB as:

reference

Perror

where P, is the RMS power of the error vector. Alternatively, a percentage measure of
the EVM is given by:

PCI‘I‘OI"

P, reference

EVM(%) = 100 -

Unlike bit error rate, EVM is more practical to microwave engineering because it embeds
both amplitude and phase errors information, and hence, enable better assessment of the
system distortion.



Table 2.1: EVM requirements |72]

| Modulation scheme | Required EVM (%) |

QPSK 175
16 QAM 1255
64 QAM 8

E-UTRA [72] specify that, for all bandwidths, the EVM measurement shall be per-
formed for each E-UTRA carrier over all allocated resource blocks and downlink subframes
within 10ms measurement periods. The EVM requirement depends on the modulation
scheme, and have to be better than the limits reported in table 2.1.

2.1.4 ACLR

Adjacent channel leakage ratio (ACLR) is yet another measure of the required trans-
mitted signal quality. It is defined as the ratio of the transmitted RF power on the assigned
RF channel to the power in the adjacent channel. It was introduced by UMTS (WCDMA)
standard as a replacement of the legacy measure adjacent channel power ratio (ACPR).
ACPR is a measure of the degree of signal spreading into adjacent channel, caused by non-
linearity in the power amplifier. It is defined as the power contained in a defined bandwidth
at a defined offset from the channel center frequency, divided by the power in the defined
bandwidth placed around the channel center frequency. The ratio will hence quantify the
amount of the interference of the transmitted signal with its neighbor channel.

Whether the transmitted signal is single or multi-carrier, the requirements shall apply
outside the base station RF bandwidth edges. E-UTRA [72] specifies that, in all transmis-
sion cases, whether in carrier aggregated case or not, the ACLR performance should be
better than -45 dB.

2.2 Power Amplifier Efficiency vs. Linearity

A solid state power amplifier uses one or more transistor as an active device to amplify
an input signal. A number of dedicated networks are designed to integrate the transistor
in a transmission chain, as illustrated in Fig. 2.2.

First, the transistor is biased in active mode for amplification purposes. The biasing is
performed by a set of passive components and forms the biasing network. The choice of the
bias point dictates the amplifier class of operation. Then, an input and output matching



Biasing network

EI
- Output signal
output matching
network

Input signal Input matching
network

Figure 2.2: Biasing and matching networks

networks are designed to adapt the source and load impedance to the input and output
impedance of the transistor, respectively. Load matching networks affects significantly the
bandwidth and gain performance of the amplifier.

The design of biasing, input and output matching networks directly affects the efficiency
and linearity performance of the power amplifier, and hence, forces designers to make design
trade-off as explained in the following sub-sections.

2.2.1 Efficiency

Two equivalent figures of merit are defined to quantify the power efficiency of a power
amplifier. The first one is the power added efficiency (PAE) and describes the amount of
power added to the signal over the consumed one.

Pou - Pz
pag = 100, Fout = Fin) (2.1)
DC
A second efficiency measure is drain efficiency (DE) and given by:
POU
DE = 100. -2 (2.2)
Ppc

Different Power Amplifier’s classes of operation have different efficiency performances.
These classes differs in the bias point of the device, or equivalently, the conduction angle.
Conventional classes of operations are classes A, AB, B, and C. As shown in Fig. 2.3,
efficiency is increased from Class A all the way to Class C. Drain efficiency increases
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sharply as the quiescent bias level is reduced. Unfortunately, this increase of efficiency is
made at the expanse of lower gain.

+5 dB 1 - 100%

Efficiency —»

RF power (dB)
A ]

<«— RF power (dB)

—5dB T T T T T T T T T 0%
2T T

o

» Conduction angle

(Class) A AB c

o]

Figure 2.3: Efficiency of classical amplifier architecture |74]

2.2.2 Distortion

Distortion of power amplifier is any deviation of the output signal from the linear
power amplifier response. It can be categorized into linear and nonlinear distortion. Lin-
ear distortion is characterized with change of scale implying variation of the gain factor
vs. frequency such as the action of a filter. However, nonlinear distortion is a more com-
plex phenomenon that produces modifications of gain vs. input power and frequency and
generates new frequencies components.

Power amplifiers are unfortunately characterized with both linear and nonlinear dis-
tortion. Linear memory effect is the distortion caused by the non-flat frequency response
of power amplifier input and output matching network which are designed for a specific
carrier frequency, and causes reflections in frequencies different from the central one. This
problem accentuates when wide-band signals are deployed and becomes significantly severe
in multi-band cases. However, nonlinear distortion is caused by the PA transistor, usually
known as static nonlinearity.

The distortion mechanism in PA gets more complicated as linear memory effect and
nonlinear static distortion interacts through a feedback process caused by the biasing net-
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work, as depicted in Fig. 2.2. This mechanism produces distortion commonly known as
nonlinear memory effect.

2.2.3 Linearity vs. Efficiency Trade-off

Linearity and efficiency are conflicting goals that a PA designer have to trade off be-
tween. Fig. 2.4 illustrates that at low output power level, linearity is high and efficiency
is too low. However, in higher and efficient output power, linearity is poor. Designers
compromises efficiency and linearity to operate the PA efficiently and with the minimum
possible distortion.

Linear
output
power‘\

Nonlinear
Output
power

N

Efficiency

Figure 2.4: Linearity vs. efficiency

2.3 Efficiency and Linearity Enhancement Techniques
in Single-band Scenario

As power amplifiers dominates the transmitter’s power consumption, efficiency and lin-
earity enhancement techniques have attracted major attention in the research community.
Three enhancement approaches exists; more efficient designs, clipping solutions and lin-
earization techniques. Indeed, the approach aims at improving PA’s efficiency over classical
design through novel topological and technological circuitry. Clipping techniques aims at
reducing the signal PAPR with minimal distortion generation in order to lower the PA’s
power back-off. The first two approaches increases PA efficiency at the cost of added signal
distortion. It is the duty of the third approach, i.e. linearization techniques, to improve
the linearity.

12
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Figure 2.5: Architecture of Doherty amplifier

2.3.1 Advanced PA Designs

Modulated signal’s high PAPR implies that power amplifiers, typically designed to be
most efficient at peak power, are now on average operating in significant back-off where
their efficiency is considerably reduced. The higher the PAPR, the higher the power back
off is, and hence, the lower the power efficiency is. Extensive research was conducted in the
literature, and advanced PA design techniques, such as load (Doherty [40, 41, 42, 43|) and
drain-supply (envelope tracking |44, 45, 46]) modulations, have been applied to improve
efficiency at the back-off region of single-band PAs. Envelop tracking (ET) solution was
found more suitable for hand-held mobile devices where the Doherty solution was found
more suitable for base stations. Being the device under test (DUT) used in this thesis,
Doherty power amplifier theory of operation is explained as below.

A Doherty power amplifier (DPA) system combines the outputs of two RF amplifiers,
called carrier and peaking amplifiers, through an impedance inverter as shown in Fig. 2.5.
The impedance inverter could be a quarter-wavelength transmission line or its equivalent
lumped-element circuit. It aims at converting the carrier device from a current source to
a voltage source. The carrier amplifier is biased in class AB and the peaking amplifier
is biased in class C. The power divider split the power between the carrier and peaking
amplifier. The quarter-wavelength delay (or equivalent circuit) in the input path of the
peaking amplifier compensate for the delay introduced by the quarter-wavelength delay in
the output of the carrier amplifier.

The fundamental idea of a DPA is to let the carrier amplifier to work at peak power
to yield a maximum efficiency, meanwhile the peaking amplifier deals with the modulation
peaks. The Doherty amplifier implements the technique known as load modulation. In
fact, at low power the peaking amplifier is off and the carrier one is usually designed to
reach saturation around the targeted average power. At high output power, the peaking
amplifier is on, and, being a current source, it dictates current amount pumped into the
load. Meanwhile, the carrier amplifier cascaded to the quarter-wavelength behaves as a
voltage source, and dictates voltage across the load. As a result to Kirchhoff laws, current
pumped by the carrier amplifier has to decrease. This is seen from the carrier device as
a load impedance decrease. This behavior implements the load modulation theory which
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Figure 2.6: Efficiency of Doherty power amplifier

guaranties maximum efficiency not only at peak power like classical amplifier classes, but
also at back-off levels.

DPA has shown significant power efficiency enhancements over the standard Class AB
amplifier, Fig. 2.6. It offers back-off efficiency improvements of 20 % and 40 % for signals
with 10 dB and 6 dB, respectively.

2.3.2 Crest Factor Reduction

The development of crest factor reduction (CFR) techniques was motivated by the fact
that time-domain multi-carrier signals usually exhibit large amplitude variations, which
can be approximately described by the Gaussian distribution. As a result, the envelope
and power of the signal satisfy the Rayleigh distribution and the exponential distribution,
respectively. These distributions tail reveal that signal comprises low probable large am-
plitudes, theoretically approaching infinity. Although those tails are very improbable, they
increase the signal PAPR significantly. A good idea is to limit those tails to significantly
reduce the signal PAPR while accepting a minimal distortion. With a powerful PAPR
reduction technique, we can expect high power efficiency, low nonlinear distortion, and
small dynamic-range requirement of the analog components. CFR is a useful tool to boost
the transceiver performance.

In the literature several techniques have been devised for crest factor reduction of
single-band signals. These techniques can be divided into two categories:

e Distortion-less methods (commonly called also linear CFR. techniques), such as se-
lected mapping [3], partial transmit sequence [4], tone injection, tone reservation,
and coding |5, 6].
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e Distortion-based methods (called also nonlinear CFR techniques) such as clipping
and windowing [7|, companding [8], active constellation extension (ACE) [9], and
generalized ACE methods [10].

Linear techniques can achieve more significant crest factor reduction than their nonlinear
counterparts and without altering the signal quality. However, they usually require modi-
fications of the receiver that may be incompatible with existing communication systems.

2.3.3 Digital Predistortion

Efficiency enhancement achieved by novel architectures has been compromised by the
accentuation of signal distortion problems. In order to conform to the radio access regu-
lations and standards, a solution to address the distortion has been a prolific area of re-
search leading to the development of several linearization techniques; namely feed-forward,
feedback and predistortion techniques. While the predistortion technique, particularly its
baseband digital form, has been widely adopted to mitigate the distortions generated by
RF PAs in 3G wireless base stations, more work is required to meet the challenges of 4G
wireless networks using wide-band signals. Investigators of digital predistortion (DPD)
have struggled with linearization capacity and implementation complexity.

The basic function of a predistorter is shown in figure 2.7. It consists in implementing
an inverse behavior of the nonlinear amplifier. The cascade of the predistorter with the
PA will engender a linear response at the output stage.

DPD PA
F() G(

Y Vout Vout

Figure 2.7: Predistortion concept

Over time, DPD schemes have evolved from simple memoryless models to more so-
phisticated types which attempt to mitigate the memory effects that gain intensity as the
signal bandwidth widens. Several DPD schemes with memory have been proposed, mainly
consisting of derivations of the low pass equivalent (LPE) Volterra series |15]. In order to
address the complexity burden of the LPE Volterra series [16], these derivations discard
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kernels that are considered negligible. One popular example is the memory polynomial
model [17]|, where several polynomials are applied to the delayed input signals’ samples
separately and delayed cross-terms are discarded. Another approach, dynamic deviation
reduction (DDR), has been employed to elegantly prune the LPE Volterra series [21]. It
begins by reformulating an LPE Volterra series expression to assemble terms with the same
dynamic distortion order. By setting a value for the maximum allowed dynamic order, such
a reformulation allows a simple elimination of distortion terms of higher dynamic order in
the LPE Volterra series, consequently reducing its complexity. A DDR based LPE Volterra
series with a preset value for the dynamic order equal to one or two has been used to lin-
earize various RF PAs and significant linearization results were reported for different types
of signals. Yet, as the signals’ bandwidth increases, and PA’s memory effects gain intensity,
a larger value for the dynamic parameter of the DDR technique is needed and eventually
the complexity of the pruned LPE Volterra series approaches the un-pruned series.

2.4 Efficiency and Linearity Enhancement Techniques
in Multi-band Scenario

The amplification of carrier aggregated signals by a single power amplifier poses several
challenges ( Fig. 1.1). Indeed, such a PA is required to maintain good power efficiency
over multiple frequency bands. This has motivated many recent research attempts to
develop high efficiency and multi-band and broadband PAs [2]. In addition, due to the
high CF of the carrier aggregated signals, these PAs are often required to operate in
the large back off region from their peak power to meet the linearity requirements, and
consequently they yield poor power efficiency. The simultaneous amplification of several
carriers aggravate also to the signal distortion due to the mutual distortion. The advance of
carrier aggregation radio challenged the microwave research community with new objectives
as detailed in the following subsections.

2.4.1 Advanced PA Designs

Processing multi-band signals using single multi-band PA, with RF performance (effi-
ciency, gain, output power) comparable to multiple single-band PA modules (Fig. (1.1), is
challenging.

Researchers focused first at previous efforts to improve the efficiency and linearity of
single-band PAs and identified their sources of bandwidth limitations and devised solutions
to mitigate them. It was also proven that, because of the high bandwidth of carrier aggre-
gated signals, the dual band signal fractional bandwidth ratio defined as the bandwidth of
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the signal over the carrier frequency, is very high and harden the design of matching net-
works. The bias network design, which bandwidth is normally 5 times the signal bandwidth,
is further complicated too. Those limitations were examined and several proof-of-concept
prototypes have been proposed and demonstrated excellent efficiency in the back-off region
over a wide range of frequencies [47, 2, 48, 49, 14].

2.4.2 Crest Factor Reduction

Linear techniques were successfully applied to multi-carrier single-standard signals
through proper modulation and coding [11]. However, their generalization to carrier aggre-
gated multi-standard signals is not possible due to the dissimilarity between the modulation
schemes employed in each carrier. Linear CFR solutions being unavailable, the PAPR of
the carrier aggregated multi-standard signal is expected to be significant, and hence, non-
linear methods are a must.

The nonlinear CFR techniques are generally carefully applied to obtain the highest
possible reduction while not exceeding a given distortion threshold. These techniques,
and in particular the clipping/windowing one, were applied to multi-carriers signals co-
located in the same spectrum band [12]. However, their application to carrier aggregated
signals, especially when each carrier is located in different and widely spaced band, is very
challenging as it will require high sampling rate.

As T will investigate on multi-band multi-standard scenarios, CFR techniques are cat-
egorized differently. Two types are distinguished:

e Baseband Methods: which are CFR techniques applied individually to baseband
components of the multi-carrier signal.

e [F Methods: which are CFR techniques applied to the multi-carrier signal combined
in IF.

IF methods could be divided to single-band multi-carrier techniques where the signal car-
riers are adjacent and belongs to the same band, and multi-band multi-carrier methods
where the signal carriers belongs to different bands, i.e. widely separated.

The later scenario was not investigated in the literature and is addressed in this thesis.
A low computational complexity and power overhead approach for the CFR in the case of
carrier aggregated signals s proposed.

2.4.3 Digital Predistortion

As the application of the LPE Volterra series approach to the linearization of single-
band PAs which exhibit significant memory effects was conditional on its successful pruning
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[16, 20] and is unmanageable and impractical in wide-band cases, researchers investigating
dual-band DPD schemes opt to discard the Volterra series option. Hence, most of the recent
work has concentrated on efforts to generalize the previously mentioned low complexity
schemes to the dual-band PA context, at the cost of linearization performance.

Several attempts to devise describing functions to implement a dual-band model was
reported in the literature.

Roblin et al. [58| proposed a third order frequency selective predistortion technique
to handle each band separately in order to model and/or linearize PAs exhibiting strong
“differential” memory effects (i.e., high imbalance between the upper and lower in-band and
inter-band distortion components). This technique was tested using a multi-carrier 20 MHz
WCDMA signal [58] and extended to address the 5th order inter-modulation distortions
of a PA driven with multi-tone signals [59]. Although this technique was applied to multi-
carrier single-band signals, it can be generalized to the dual-band case provided the required
sampling rate is reduced to cope with large frequency spacing.

Cidronali et al. [60] proposed an IF dual-band model implementing a Wiener Hammer-
stein DPD scheme using a sub-sampling feedback path. Although the reported simulation
results showed 10 dB spectrum regrowth reduction, the proposed architecture involved digi-
tal to analog converter (DAC) and analog to digital converter (ADC) with disproportionate
sampling rates and complicated IF processing.

Furthermore, starting with a 5th order memoryless model driven with a dual-band
signal, Bassam et al. [61] showed that the PA’s output in each band depends on both PA
input signals. This observation has been generalized to the memory polynomial model to
yield a two dimension DPD (2D-DPD) model. Reported linearization results |61, 62, 65,
63, 64] demonstrated a 12 dB improvement of the ACLR at the cost of a large number of
coefficients.

Quindroit et al. [68] and Yang et al. [69] proposed an orthogonal representation to
handle the ill-conditioning problem and numerical instability of the 2D-DPD model.

Alternatively, Liu et al. [70| proposed 2D Hammerstein and 2D Wiener models to
address the large number of coefficients required by the 2D-DPD model. When applied
to construct a behavioral model of a dual-band PA with a nonlinearity order equal to 5
and a memory depth equal to 5, the 2D Hammerstein and 2D Wiener models needed 40
coefficients in each band as opposed to the 2D-DPD which required 150 coefficients [70].
However, while the 2D-DPD model has been validated as a dual-band digital predistorter,
the application of the 2D Hammerstein and 2D Wiener models to the linearization of dual
PAs is problematic and only behavioral modeling results have been reported.

Ding et al. [66] pointed out the implementation complexity of the 2D-DPD and sug-
gested a two dimensional look-up table (LUT) based representation as an alternative. This
latter approach was further simplified to use single dimension LUTs. When applied to the
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linearization of a dual-band PA driven with dual-band signals (separated by 97 MHz), the
model demonstrated an ACLR of about -45dB, which barely passes the mask. However,
the proposed DPD scheme was operated with a sampling rate equal to 153.6 MHz and
consequently a large oversampling rate with a 10 MHz signal.

Other work has focused on devising more sophisticated Volterra series based dual- and
tri- band DPD models [84, 95, 87| and on augmenting these models to mitigate distortions
exhibited by dual-band envelope tracking PAs [96, 97, 98|.

In this thesis, the LPE Volterra series formulation, which has been at the center of
the majority of baseband DPD schemes, is reviewed. A novel modeling approach will be
proposed and used to model and linearize a concurrently driven dual-band PA. Special set
derivations will be followed to construct the dual-band Volterra to avoid the previously
highlighted complexity issue and the use of pruning methods.
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Chapter 3

Crest Factor Reduction of Carrier
Aggregated Signals

The absence of frequency bands that can support wide transmission bandwidths called
for the intra-band or inter-band aggregation of multiple carriers according to specific set
of technical requirements [1]. Such carrier aggregated signals inherit and accentuate the
challenging characteristics of the constituent carriers, such as the high peak to average
power ratio also commonly referred to as crest factor (CF), and wide bandwidth. As power
amplifiers efficiency and analog to digital converters dynamic range are heavily affected,
crest factor reduction (CFR) techniques were proposed in literature to mitigate the high
PAPR problem. Although several techniques have been devised for single-band signals,
solutions for multi-band signals are still lacking.

In the following sections, we propose an effective approach for the crest factor reduc-
tion of multiple, widely-spaced inter-band signals such as needed in 4G carrier aggregated
systems. This solution embeds a signal-amplitude estimator which provides the amount
of clipping to apply to the instantaneous samples of the different carriers that constitute
an inter-band carrier aggregated signal. Hence, the resulting CFR runs at a sampling
rate proportional only to the bandwidth of the constituent carriers and is not impacted
by the frequency spacing between the carriers. This allows for a significant decrease in
computational complexity and power overhead associated with classical multi-band CFR
techniques that need to operate at much higher rates.
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Figure 3.1: Carrier aggregated signals over two spaced bands

3.1 Challenges of SISO CFR for Carrier Aggregated Sig-
nals

For simplicity purposes, in this section, the following study is conducted for the number
of bands equal to two; in subsequent sections, the technique will be extended to arbitrary
numbers of bands. A carrier aggregated signal over two bands, x(¢), , as the one shown in
Fig. 3.1, can be expressed as

= Re (fl(t)e(jwlt) + Eg(t)e(jwzt))

where x1(t) and z5(t) are the mixed mode signals in each band, Z;(¢) and Z»(t) denote the
baseband envelopes of z;(f) and z2(f) around the angular frequencies w; and ws, respec-
tively. The carrier aggregated signal can be represented as a broadband signal with an
angular carrier frequency ((w; + w2)/2) as given by:

o) = Re (f(t)-e(jwt>>
~ Re ((au)e@wt) + Fo(t)el ”22“”)) e (“1?2”)) (3.1)

where Z(t) is the baseband envelope of the carrier aggregated signal given by

j(w1;“’2)t) 4(w2;w1)t).

() = 71 (0)el + Fa(t)el
x(t) can be amplified using a dual-band or broadband PA instead of two single-band
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PAs in order to reduce a transmitter’s costs and size. The carrier aggregation can result in
an increased CF, which unless reduced, will require the designer to operate the dual-band
PA in its large back-off region, inefficiently. The classical clipping/windowing nonlinear
CFR technique can be applied to Z(t). In such case the CFR module would be a single-
input single-output (SISO) unit that processes a digitized version of Z(t) which is sampled
at a frequency f., where f. > 2-(S + max(B,/2, By/2)), and S, B; and B, represent
the frequency spacing and the bandwidths of the two signals respectively. The digitized
baseband signal z(n’) can then be expressed as follows:

-(wl—wg)L, '(W2_w1)L/
’ J

f(n')zgl(n)e< 2 f5>+52(n’)€< 2 fs>_

The frequency spacing S is generally significantly greater than the bandwidths of z1(t)
and 5(t), i.e. By and B, especially in the case of inter-band aggregation scenarios. Hence,
f. would need to be considerably larger than f,; and f.,, needed to digitize 7, (t) and Z5(t),
respectively (fa > 2- By, feo > 2- B). As an example, assume a carrier aggregated
signal is composed of a 15 M Hz WCDMA signal around 2.1 GHz and a 10 M Hz LTE
signal centered in 2.4 GHz. The minimum theoretical sampling rate fs/ must therefore
be higher than 610 M sps. This sampling rate is significantly higher than the one needed
to represent the WCDMA and LTE signals themselves. The direct application of the
SISO clipping/windowing to Z(n’) is thus seen to imply a high and unpractical sampling
rate. To address this limitation, a new dual-input dual-output (DIDO) nonlinear CFR
technique suitable for carrier aggregated signals over two bands will now be introduced in
the following section.

3.2 Proposed CFR Techniques

The classical clipping/windowing method consists of monitoring the instantaneous am-
plitude of the signal envelope, and limiting it to a preset threshold to obtain the targeted
CF, as shown in Fig. 3.2(a). As can be seen, in addition to the clipping and filtering mod-
ules, the SISO CFR includes an up-sampler, a digital up-converter, a down-sampler and a
down-converter. As this technique is a nonlinear operation, in-band distortions and out of
band spectrum regrowth are induced. In order to meet the mask requirement in terms of
ACLR, the clipped signal needs to be filtered. The clipping threshold is set so that the CF
is reduced while respecting the EVM and ACLR specifications. The high sampling rate
requirement associated with the conventional clipping and windowing approach makes this
solution sub-optimal in the context of inter-band carrier aggregated signals.
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Figure 3.2: Conventional (a) vs. proposed (b) crest factor reduction technique

3.2.1 2CC-CFR

In the new proposed DIDO CFR technique, shown in Fig. 3.2(b), a peak estimator (PE)
is created and embedded to compute the instantaneous amplitude of the carrier aggregated
signal using the baseband signals of the two carriers as a first step of the CFR process.
First, the envelope of the carrier aggregated signal expression given in 3.1 can be rewritten
as follows:

w1—w2 wa—wy

7(t) = [ (1)) TH00) 4 [y (1) [ (7 re2(0) (32)

where ¢1(t) and ¢(t) are the instantaneous phase of 1 (t) and Z5(t), respectively. The

terms (£25%2¢) and (“25*1¢) imply additional phase difference between Z:(t) and Z(t),

which occurs at much higher speed than ¢;(f) and ¢o(t). In fact, the two terms in the

right side of 3.2 can be in-phase at a given instant ¢, before both baseband envelopes evolve
w1 —wa

noticeably, i.e. (52t (t) _ i (5% to+es(t)) — o(iee(t0)) | At instant to. the carrier
aggregated signal envelope is given by

(to) = (|71(to)| + [Za(to)]) eVPol0),
Hence, the carrier aggregation process yields an instantaneous full constructive addition

even if the two carriers’ envelopes are out of phase, i.e. |Z(to)| = (|Z1(to)| + |Z2(to)]). The
envelope of the carrier aggregated signal is therefore given by

PE(z(t) = |2:()] + [22(1)] (3-3)

Note that the triangular inequality of complex numbers ensures that the PE given will
never exceed the real value of the dual-band envelope |Z(t)|.
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In other words, the triangular approximation ensures that the proposed 2CC-CFR based
on the proposed PE will always guarantee a signal within the targeted PAPR. The proposed
derivations given in (3.2-3.3) prove that, given the large frequency spacing between the two
carriers forming the carrier aggregated signal, the two component carrier envelopes, 7 (t)
and Z(t), will always vectorially combine and reach a maximum magnitude at a given
instant, ty, despite their potentially random phases. This proves that the PE computes
the upper bound of the dual-band envelope |Z(¢)| and has the advantage of requiring a low
sampling rate.

As a result, the CF of the carrier aggregated signal can be estimated by monitoring
the magnitude of the two carriers’ baseband signals. Furthermore, 3.3 suggests that the
envelope of Z(¢) can be obtained using the envelopes of Z;(¢) and Z»(t) sampled at a rate

fs = max (fsla fsQ)-
PE (2(n)) = (|71(n)] + [22(n)]) -

For illustration purpose, two sine waves were combined and the resulting signal is
analyzed. According to Fig. 3.3, the summation of the two magnitudes of the two signals
provided a good estimate of the carrier aggregated signal’s envelope.

Given an arbitrary clipping threshold, C, and a carrier aggregate signal peak estimate
of S(n), S(n) = |Z1(n)| + |z2(n)|, where Z;(n) and Ty(n) are the envelopes of the two CCs,
a CFR can be implemented by subtracting (S(n) — C')/2 from the two CCs, as given in
3.4.

IfS(n) =1zi(n)| + |T2(n)| > C
|1 _ctippea()] (S(n) = C)/2 (3.4)
)| (S(n) = C)/2

n
=9~
‘$27clipped(n
The CFR of 3.4 is referenced hereafter as 2CC-CFR with equal peak reduction applied
to both CCs. Alternatively, the two CCs can be clipped proportionally to their contribution
to the peak estimate, S(n), as given in 3.5.
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Lf [z (n)] + [Ta(n)] > C

~ &1(n)]
|f170lipped(n)| mc (3.5)
|Z2_ctippea(M)| = GEmls oD

The CFR of 3.5 is referenced hereafter as 2CC-CFR with proportional peak reduction
method.

3.2.2 2CC-CFR with Unequal Power Levels

The average power of each CC of a two CC aggregated signal can be significantly
different in order to accommodate the radio link requirements. In such a case, the 2CC-
CFR of 3.4 or 3.5 will be inadequate as the PE must consider the average power difference
between the two bands. To ensure that an adequate clipping factor is applied to each of
the CCs’ envelopes, the 2CC-CFR. of 3.4 or 3.5 should be applied to the scaled envelope
signals, Gy - |71(n)| and Gy - |71(n)|. The scaling factors are expressed as follows:

\/mean (|z1(n)|? /100)7 G2 \/mean (|z2(n)]?/100)

where P, and P, represent the average power levels of the two CCs. The PE of the
carrier aggregated signal and the 2CC-CFR with unequal power levels can be implemented
as follows:
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Note that in the case of equal power levels for the two bands, 3.6 could be simplified
to 3.5.

3.2.3 2CC-CFR with Different EVM Requirements

In some carrier aggregation scenarios, different CCs may have different modulation
schemes that impose different EVM requirements. One example is a carrier aggregated
signal formed by a quadrature phase shift keying (QPSK) signal and a 64 quadrature
amplitude modulated (64 QAM) signal. As per [1], the maximum tolerable EVM distortion
is 17.5 % for the former signal and 8% for the latter. The 2CC-CFR solution in 3.4 applies
the same peak reduction factor to both CCs, whereas the 2CC-CFR solution in 3.5 does
not adapt to the signals’ EVM requirements but to their contribution to the aggregated
peak. Hence, in both methods 3.4 and 3.5, the clipping margin is limited by the lower
EVM bound (8 % in this example). A better approach is to exploit the extra EVM margin
offered by the simpler modulation scheme through unequal peak reduction factors, as given
by 3.7.

IfS(n) =1zi(n)| + |T2(n)| > C
N {lfﬁlcnpped(n)l = [T1(n)| = n - (S(n) = C)/2 (3.7)
()| = [72(n)] = az- (S(n) = C)/2

’E27clipped n

In 3.7, oy and ay are the two peak reduction factors which satisfy the condition a;+as =

1. Note that in 3.7, the computation of the peak reduced envelopes, ﬁiclipped(n) and
@jlipped(n) involves both aq and as, however, the PE remains the same as in 3.5, in other

words a7 and ay are not needed for the peak estimation. The values of a; and «y are
jointly varied until the two EVM requirements are met.

3.24 MCC-CFR

A carrier aggregated signal over multi-bands is given by:

x(t) = Z 2;(t) = Re <Z %i(t)e(jw"t)> ,
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where N is the number of carrier aggregated bands, x(¢) is the carrier aggregated signal,
z;(t) is the mixed mode signals in the " band, 7;(t) denotes the baseband envelopes of
x;(t) around the angular frequency w;.

In order to clip the signal z(¢) using the conventional way, it should be modeled as
one envelop signal around a carrier angular frequency wg given by middle point of the two
spectrum extremes

1
wozg(max(wi,i:1---N)+mm(wi,i:1---N))

In this case, sampling rate of the signal should be

/ B;
fs>2- (S—i— mam(;))
where f; is the required sampling rate for the mixed signal,

Sz%(mam(wi,izl---]\f) —mm(wi,izl---N)>
T

and B; is the bandwidth of signal 7;(¢). Alternatively, using similar proof to section 3.2,
it can be shown that,

N N
envelop (Z fi(t)e(j“it)> | Z 7 (t)].
i=1 i=1

As a result, the CF of the carrier aggregated signal can be estimated by monitoring the
magnitude of the different carriers’ baseband signals. The envelope of Z(¢) can be obtained
using the envelopes of 7;(t) sampled at a rate

1
fs =max (fsi = E,z = 1..N) ,

where B; is the bandwidth of signal

C, the CFR of carrier aggregated signal can be obtained by clipping each carrier baseband
signal as follows:

Ez(t)) Hence, given an arbitrary clipping threshold

(3.8)

ﬁk_clipped(n)‘ = %

{Vk e {L.NY, IfSN F@) >C

For the case of tri-band signal, the 3CC-CFR is implemented as per 3.9
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Lf (|g1(n)] + [Z2(n)] + [Z3(n)]) > C
Z1_cippea(n)| = FE T %EZLW?,(”)DC (3.9)
= 9 172 _aippea(M)l = g §§EZ§+|is<n>|>C '
1Z2_ctippea(M)] = gy ggz;ﬂ@(nm

3.3 Experimental Validation

In this section the performance of the proposed CFR techniques are assessed and com-
pared to the conventional SISO CFR one. Three clipping scenarios are presented in the
following sub-sections.

3.3.1 2CC-CFR

An inter-band carrier aggregated signal was synthesized, composed of a 10 M Hz 2C
WCDMA signal and a 15 MHz LTE signal, separated by 300 M Hz. Both the 2CC-CFR and
the conventional CFR approaches were applied to the synthesized carrier aggregated signal.
The SISO CFR technique was carried out at a sampling rate equal to f; = 610 M sps. Next,
the 2CC-CFR technique was applied to the two separate baseband components and was
performed at a sampling rate equal to f, = 92.16 M sps. EVM performance of the two
approaches vs. targeted PAPR is shown in Fig. 3.4 and spectrum regrowth due to the
nonlinear clipping operation is shown in Fig. 3.5.

—— CC1 w/ conventional CFR
“““ CC2 w/ conventional CFR
—e—CC1w/ 2CC-CFR
0 CC2w/2CC-CFR

PAPR (dB)

Figure 3.4: EVM of 2CC-CFR versus conventional CFR of 300 MHz dual-band signal
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Table 3.1: PAPR and EVM of original and peak reduced signals - 2CC-CFR with equal
power levels

] | Signal | PAPR (dB) | EVM (%) | ACLR (dBc) |
2C WCDMA @ band 1 7.9 0 68
Original signal LTE15 @ band 2 9.2 0 65
Frequency aggregated 10.5
2C WCDMA @ band 1 7.9 0.6 48
Clipped signal LTE15 @ band 2 9.2 0.8 50
Frequency aggregated 9
2C WCDMA @ band 1 7.9 1.3 68
Clipped & filtered signal LTE15 @ band 2 9.2 1.3 65
Frequency aggregated 9.1
-30F W el ]
_407 B -
§ =50 Conventional CFR 7
£
@ -60- ]
°
$ 70 1
(o)
a
-80f 2CC-CFR 2CC-CFR I
(after filtering) (before filtering)
_907 -
_100 1 1 1 1 1

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8
Normalized Frequency (xr rad/sample)

-

Figure 3.5: Simulated spectrum of 2CC-CFR versus conventional CFR, of 300 MHz dual-
band signal
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In order to remove the out of band spectrum regrowth attributed to the 2CC-CFR (red
curve in Fig. 3.5), the clipped signal is filtered as commonly known by filtering /windowing
process [7]. Filtering result is given by the black curve in Fig. 3.5. Tt is noted that the
filtering result is not applied to the SISO CFR due to its poor performance as explained
later. Table 3.1 summarizes the original signal characteristics and the results of the 2CC-
CFR with and without filtering. The PAPR of the original frequency aggregated signal is
decreased from 10.5 dB to 9 dB with around 0.7% EVM distortion and 15 to 20 dB spectrum
regrowth. The clipping/windowing iterations enabled the removal of the spectrum regrowth
at the cost of increasing the EVM to 1.3 %, which is still acceptable by different modulation
schemes [1].

Table 3.2: PAPR and EVM of original and Peak Reduced Signals - 2CC-CFR with equal
power levels

| [ Signal | PAPR (dB) | EVM (%) | ACLR (dBc) |
2C WCDMA @ band 1 7.9 0 68
Original signal LTE15 @ band 2 9.2 0 65
Frequency aggregated 10.5
2C WCDMA @ band 1 7.9 0.9 45
Clipped signal LTE15 @ band 2 9.2 1.1 48
Frequency aggregated 9
2C WCDMA @ band 1 7.9 1.3 68
Clipped & filtered signal LTE15 @ band 2 9.2 1.4 65
Frequency aggregated 9.1

Concerning the SISO CFR performance, in addition to its high sampling rate, it is
shown in Fig. 3.4 and Fig. 3.5 that EVM and spectrum regrowth is significantly poor when
compared to the 2CC-CFR case (blue vs red curves). In order to explain the reason, the
two signals separation is lowered to 60 MHz and the same analysis is repeated. The EVM
performance of the two approaches vs. targeted PAPR is shown in Fig. 3.6 and spectrum
regrowth due to the nonlinear clipping operation is shown in Fig. 3.7 and the original,
clipped, clipped and filtered signals characteristics are shown in Table 3.2. Although
the results are comparable with the high frequency separation case, the spectrum plot of
the SISO CFR signal in Fig. 3.7 (blue curve) reveals the existence of inter-modulation
distortion components due to the nonlinear clipping operation acting on the two signals
simultaneously, unlike the 2CC-CFR case where each signal is clipped separately. Hence,
the SISO technique is more prone to generate more distortion, both in-band and out of
band.
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—— CC1 w/ conventional CFR
- - -CC2 w/ conventional CFR
—e—CC1 w/ 2CC-CFR
0 CC2w/2CC-CFR

PAPR (dB)

Figure 3.6: EVM of 2CC-CFR versus conventional CFR, of a 60 MHz dual-band signal
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Figure 3.7: Simulated spectrum of 2CC-CFR. versus conventional CFR of a 60 MHz dual-
band signal
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3.3.2 2CC-CFR with Unequal Power Levels

A test signal composed of the same CCs chosen in the previous sub-section is reused
in this scenario. However, in this case, the two CC signals were assigned unequal average
powers (the second CC’s average power was set to be 10 dB higher than the first CC). Both
the 2CC-CFR of 3.6 for carriers with unequal power levels, and the conventional CFR
approach, were applied to the synthesized carrier aggregated signal. The conventional
CFR technique was carried out at a sampling rate equal to f. = 610 Msps. Next, the
proposed CFR technique was applied to the two separate CCs and was performed at a
sampling rate equal to f; = 92.16 Msps. The clipping/windowing iterations applied to
the proposed 2CC-CFR enabled the removal of the spectrum regrowth engendered by the
nonlinear clipping operation at the targeted CF. EVM performance of the two approaches
versus the targeted CF is shown in Fig. 3.8 and spectrum regrowth due to the nonlinear
clipping operation is shown in Fig. 3.9.

Table 3.3 summarizes the original signal characteristics and the results of the CFR with
and without filtering. The CF of the original frequency aggregated signal was decreased
from 9.9 dB to 7.9 dB with around 1.7 % and 2.7 % EVM distortion, and -50 dBc and -55
dBc ACLR for the first and second bands, respectively. It was found that the second band
was slightly more distorted than the first band (1 % higher EVM and 5 dB higher ACLR).
However, in the case of the conventional CFR, shown in Fig. 3.9, the first CC was severely
distorted as compared to the second CC with 20 % more EVM distortion and 10 dB more
ACLR distortion (-15 dBc and -25 dBe¢ ACLR for band 1 and band 2, respectively).

Table 3.3: PAPR and EVM of original and peak reduced signals - carriers with unequal
power levels

| | Signal | PAPR (dB) | EVM (%) | ACLR (dBc) |

2C WCDMA @ band 1 7.9 0 -68

Original signal LTE15 @ band 2 9.2 0 -65
Frequency aggregated 9.9

2C WCDMA @ band 1 7.9 1.7 -50

Clipped signal LTE15 @ band 2 9.2 2.7 -55
Frequency aggregated 7.9

2C WCDMA @ band 1 7.9 1.8 -68

Clipped & filtered signal LTE15 @ band 2 9.2 2.8 -65
Frequency aggregated 8
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Figure 3.8: EVM of the 2CC-CFR,  carriers with unequal power levels versus conventional

CFR
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Figure 3.9: Simulated spectrum of the 2CC-CFR — carriers with unequal power levels
versus conventional CFR
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3.3.3 2CC-CFR with Different EVM Requirements

A carrier aggregated signal composed of a 15 MHz LTE 64 QAM signal and a 15
MHz LTE QPSK signal, separated by 300 MHz was synthesized. The EVM specification
for the 64 QAM signal was 8% and for the QPSK signal was 17.5%. Both the CFR for
carriers with equal EVM requirements of 3.4, and the CFR for carriers with different EVM
requirements of 3.7, were applied to the synthesized carrier aggregated signal. Both 2CC-
CFR techniques were applied to the two separate CCs and were performed at a sampling
rate equal to f; = 92.16 Msps. In total, 4 clipping/windowing iterations were applied
to enable the removal of the spectrum regrowth engendered by the nonlinear clipping
operation at the targeted CF. EVM performance of the two approaches versus targeted
CF is shown in Fig. 3.10 and spectrum regrowth due to the nonlinear clipping operation
is shown in Fig. 3.11.

Table 3.4 summarizes the original, peak reduced and filtered signal characteristics of
the proposed CFR for CCs with different EVM requirements. The CF of the original
frequency aggregated signal was decreased from 11.8 dB to 9.05 dB with around 1.4 % and
3.2 % EVM distortion for the first and second bands, respectively, and -67 dBc ACLR for
the two CCs. It is shown that that the QPSK signal was more distorted than the 64 QAM
signal (2 % higher EVM and 7 dB higher ACLR before filtering). However, in the case
of the 2CC-CFR of 3.4 with equal EVM requirements (blue curves in Fig. 10), the two
bands were equally distorted with about -36 dBc ACLR distortion and the possible peak
reduction was limited by the 64 QAM signal requirements.

3 —— CC1 w/ 2CC-CFR w/ same EVM requirements
« CC2 w/ 2CC-CFR w/ same EVM requirements
6r —e—CC1 w/ 2CC-CFR w/ different EVM requirements

(-} <0 CC2 w/ 2CC-CFR w/ different EVM requirements
5F

EVM (%)

8 8.5 9 9.5 10 10.5 11
PAPR (dB)

Figure 3.10: EVM of the 2CC-CFR  carriers with different EVM requirements versus
conventional CFR
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Figure 3.11: Simulated spectrum of the 2CC-CFR,  carriers with different EVM require-
ments versus conventional CFR

Table 3.4: PAPR and EVM of original and peak reduced signals - carriers with different
EVM requirements

] | Signal | PAPR (dB) | EVM (%) | ACLR (dBc) |

64QAM LTE @ band 1 11.2 0 -67

Original signal QPSK LTE @ band 1 10.9 0 -67
Frequency aggregated 11.8

64QAM LTE @ band 1 11 1.4 -33

Clipped signal QPSK LTE @ band 1 10.7 3.2 -40

Frequency aggregated 9

64QAM LTE @ band 1z 11.1 1.4 -67

Clipped & filtered signal QPSK LTE @ band 1 10.8 3.2 -67
Frequency aggregated 9.05
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3.3.4 3CC-CFR

An inter-band carrier aggregated signal was synthesized, composed of a 15 MHz LTE
signal, 20 MHz WCDMA signal and 5 MHz LTE signal. The first and second signals are
separated by 100 MHz. The second and third signals are separated by 100 MHz too. Hence,
the overall signal separation is 200 MHz. Both the 3CC-CFR and SISO CFR approaches
were applied to the synthesized carrier aggregated signal. The SISO CFR technique was
carried out at a sampling rate equal to fs, = 420 M sps. Next, the 3CC-CFR technique was
applied to the two separate baseband components and was performed at a sampling rate
equal to f; = 92.16 M sps. EVM performance of the two approaches vs. targeted PAPR is
shown in Fig. 3.12 and spectrum regrowth due to the nonlinear clipping operation is shown
in Fig. 3.13. The original and clipped signals characteristics are summarized in Table 3.5.
It is shown that the tri-band CFR has outperformed the SISO CFR for the same reason
detailed in the previous sub-section.

9,
—— CC1 w/ conventional CFR
8t AN - = =CC2 w/ conventional CFR
\\ ++ CC3 w/ conventional CFR
U R ‘% CC1w/ 3CC-CFR
6 . —e— CC2 w/ 3CC-CFR
. R 0 CC3w/3CC-CFR
X 5+
=
T
3,
2,
1+
0
7 7.5 9.5 10

8.5
PAPR (dB)

Figure 3.12: EVM of 3CC-CFR versus conventional CFR in the case of three CCs
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Figure 3.13: Simulated spectrum of 3CC-CFR versus conventional CFR in the case of three

CCs

yany

Cor

ntional CFR

L

3CC-CFR
(after filtering)

_40 L

_50 L
g 60
) 3CC-CFR
5 (before filtering)
g -70r
o

-80

_90 L

-100 :

1 1
-04 -02 0

1
0.2

1
0.4

0.6

Normalized Frequency (xr rad/sample)

Table 3.5: PAPR and EVM of original and peak reduced signals

0.8 1

3CC-CFR case

| Signal | PAPR (dB) | EVM (%) | ACLR (dBc)
LTE15 @ band 2 9.2 0 65
. . 4C WCDMA @ band 1 9 0 65
Original signal
LTE5 @ band 3 9.1 0 65
Frequency aggregated 11.3
LTE15 @ band 2 9.2 0.6 48
. . 4C WCDMA @ band 1 9 0.7 51
Clipped signal
LTE5 @ band 3 9.1 0.5 50
Frequency aggregated 9.4
LTE15 @ band 2 9.2 1.3 65
Clivved & filtered sienal 4C WCDMA @ band 1 9 14 65
e ered signa
PP red sistt LTE5 @ band 3 9.1 1.7 65
Frequency aggregated 9.5
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As an application for the proposed technique, the output signal of the CFR was ap-
plied to two power amplifiers, a 45 W gallium nitride (GaN) single ended PA and a 250
W laterally diffused metal oxide semiconductor (LDMOS) Doherty PA. Hence, using the
threshold of 2% as a maximum tolerable EVM, the tri-band CFR allowed for about 2 dB
reduction in PAPR while the SISO approach was limited to a 0.5 dB reduction in PAPR.
Efficiency results are reported in Table 3.6. It is shown that the achieved CFR on the test
signal allows for significant improvement of the effective average power level by about 2
dB, and an increase in power efficiency, by up to 5%, when the test signal is applied to two
amplifiers under test.

Table 3.6: Effective power and efficiency increase of 2CC-CFR

PAPR EVM(%) EVM(%) EVM(%) Effective | Efficiency
(dB) Band 1 Band 2 Band 3 average (%)
power

Single ended 11.3 0 0 0 16
PA 9.5 1.3 1.4 1.7 +2 20

10.3 0 0 0 40
Doherty PA

8.6 1.3 14 1.7 +2 45
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Chapter 4

Digital PreDistortion of Multi-band
Power Amplifiers

Two RF PA modeling approaches exist in the literature [16|. The first approach approx-
imates the behavior of the PA using its pass band input and output signals. The inherent
complexity associated with this approach has limited the pass band model’s adoption in
the area of RF PA modeling and linearization. Instead, the LPE modeling approach is
preferred [22]. Tt is applied to the complex envelope of the RF input/output signals and
requires much simpler measurement hardware and reduced computation as compared to
its pass band counterpart. In fact, the LPE modeling approach capitalizes on the band
limited characteristics of communication signals, thus limiting approximation efforts to the
PA distortions which affect the signal envelope around the carrier frequency. Essentially,
the PA is treated as an envelope processing system [16]. Therefore, if the real RF PA
behavior is expressed as 4.1:

y(t) = f(z(t)), (4.1)

where x(t) is the real RF input signal, y(t) is the real RF output signal and f is a describing
function (modeling the RF PA behavior), then the LPE methodology, as shown in Fig. 4.1,
consists of modeling the equivalent envelope behavior of the PA. This is illustrated in 4.2

y(n) = f(z(n)), (4.2)
where Z(n) and y(n) denote the envelopes of the input and output signals, respectively,

around the carrier and f designates the LPE model.

Since a PA can be treated as a nonlinear dynamic system with fading memory, the
Volterra series outlined in 4.3 is a very suitable modeling framework to approximate its
behavior and/or synthesize the corresponding predistortion module [19].
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x(f) y(®) X(n) y(n)
—)

Low pass
transformation

y(1) = f(x(1)) F(n) = fpe (X(n))

Figure 4.1: Classical low pass equivalent modeling approach

p

y(t) :i/_:--/:hp(ﬁ,--- 7o) - [ [t = 7)dr. (4.3)

=1

In this model, z(¢) and y(¢) designate the input and output RF pass band signals
respectively, and h, denotes the Volterra series’ kernels. The direct application of the LPE
strategy to the discrete input and output signals’ envelopes yields the expression 4.4 which
is commonly used for RF PA behavioral modeling.

NL M M M % p
-~ . -~ ~k
g = > > > D > by [[E =) I T —dy)
p=1;p=p+2i1=0 Tpt1=tp—1 Ip41=0 ip=lp—1 7j=1 ]:L23

(4.4)

In 4.4, Z(n) and y(n) designate the input and output signals’ envelopes around the
carrier, with n, NL, M and h representing the sample index, the nonlinearity order, the
memory depth and the LPE complex Volterra kernels respectively.

The LPE Volterra model of 4.4 has been used extensively in RF research. The model has
been applied to develop solutions related to nonlinear communication system modeling and
estimation 24|, satellite communication [25], digital transmission channel equalization |26],
multichannel nonlinear CDMA system equalization [27], analysis and cancellation of the
inter-carrier interference in nonlinear OFDM systems [28|, decision feedback equalization
[29], nonlinear system and circuit analysis [30|, data predistortion |31], PA modeling |32,
33, 34|, and DPD [35, 36, 37]. Although computationally more efficient than its pass
band counterpart, the LPE Volterra series in its classical form 4.4 still suffers from a large
number of kernels. As stated earlier, this impediment has been the key limitation to its
widespread adoption for RF PA behavioral modeling and predistortion. Various attempts
[16, 21, 20| have been made to reduce the number of kernels required (e.g., Hammerstein,
Wiener, Parallel Hammerstein, Parallel Wiener, DDR based Pruned Volterra series) but
at the cost of reduced modeling accuracy.
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In the following section, a novel baseband equivalent (BBE) expression of the Volterra
series will be presented and the procedure to derive this new expression will be described
in detail. Then the complexity and performance of this compact BBE Volterra series will
be compared to those of the widely used LPE Volterra series expression. For purposes of
clarity, a simplified version of the LPE Volterra series 4.4, with nonlinearity order NL = 3
and memory effects order M =1 (i.e. Z(t — Ty)), will be used henceforward as per 4.5.

Jn) = D hiFn—i)+ Y>> hiF(n—i)T(n — in)F (n — i)

ﬁof(n) + En—1)+ EO,O; oZ(n)Z(n)T* (n) + ho o1 Z(n)Z(n)T* (n — 1)
2071705(71)5(71 — 1)z*(n) + h0717}v:%“(n)5(n —1)z"(n—1)
hLLOE(n — 1)%(’” — 1)%/*(71) + hl,l,lf(n — 1)5(77, — 1)35*(71 — ].) (45)

- -

4.1 Novel Baseband Equivalent Volterra Series Formu-
lation

4.1.1 Derivation of BBE Volterra Model

The investigation of the novel BBE Volterra series, suitable for the behavioral modeling
and predistortion of RF PAs, requires a number of steps as shown Fig. 4.2.

Step 1: Continuous-time real-valued Volterra series modeling

The Volterra series framework [23] is initially used to describe the relationship between
the real passband signals located at the system input and output stages as follows:

y(t) = i/: - /: ho(r1, e 7) - [ ot — ) (4.6)

j=1

where x(t) and y(t) represent the PA input and output RF signals and NL is the
nonlinearity order.

Step 2: Real-valued to complez-valued envelope signal transformation

The input signal x(t) is a band limited modulated signal that can be expressed as a
function of its envelope around the carrier angular frequency w,. as follows:

o(t) = Re{ a0 } = £ (7 (e + (1)), (4.7)
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Continuous-time real-valued Volterra series modeling

1
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Multi-frequency to passband only transformation
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Continuous time Passband Volterra series

I

Continuous-time Passband to baseband equivalent
transformation

1 |

Baseband equivalent Volterra series discretization

Figure 4.2: Baseband equivalent modeling approach

In 4.7, Z(t) represents the complex baseband envelope signal that modulates the angular
frequency w.. Substituting 4.7 into 4.6 yields an expression relating the output signal y(t)

to Z(t) and w, as follows:

y(t) = £ (3(t), e2) s p {1, ..,NL},

where the describing function f is used to represent the real valued Volterra series of 4.6.
Since the output signal y(t) in 4.8 has been altered by the application of a nonlinear
function to a band-limited RF signal, it now contains several spectrum components that
involve multiple envelopes, represented by u,(t). The spectrum components modulate the

mixing products of w, as follows:

1/
ue) = 30 (B 4 e

p=—NL
1 ~x% Ow.t ~ 10wt

= S (@0 + Gty
1/ .

+ (@B 4 e
1 _ .

+ 3 (j(t)e Fawet 3 yQ(t)eﬂ%ct)




. 1 ~% —jNLw ~ j N Lw

+ 5 (Trn et g i), (4.9)
where 7o(t) denotes the envelope at DC, 7;(¢) denotes the envelopes of the first order in-
band signals, 72(t) denotes the envelopes of the second order harmonic signals and ynp(t)
represents the N L™ order harmonics signal.

Step 3: Multi-frequency to passband only transformation

By equating the terms that share the same frequency range (fundamental, mixing prod-
uct) from the right sides of 4.8 and 4.9, a multi-frequency model is derived which consists
of several distinct equations relating the output envelopes y,(t) to z(¢) and w.. Since we
are mainly interested in the relationship between the envelopes of the output and input
signals around the carrier frequency, only the passhand component of the PA output is
considered in the equation below:

w() = 5 (O + )

(Wi (t) +1(t)), (4.10)

DN — DO =

where y;(t) = 71(t)e?“<". The output signal envelope y,, (t) in 4.10 has the form of a band
limited signal similar to 4.7.

Step 4: Continuous time passband Volterra series.

The following derivation is presented for the term around e’“<!only; however, the same
equation can be used to derive the conjugate term. The PA passband signal y;(t) can
be modeled as a summation of the Volterra series nonlinear order responses y; o541(t), or
as the nonlinear order envelope responses ¥ o+1(t), around the angular frequency w. as
follows:

yi(t) = Zy1,2k+l(t) = (Z 371,2k+1(t)> et (4.11)

Note that only odd powered terms are retained; even terms are discarded since they
do not appear around the carrier frequency. Equating the terms on the right sides of the
expanded equations in 4.8 and 4.10 yields a continuous BBE Volterra series that expresses
Y1,26+1(t) as a function of z(¢) and w.. Below is the expression derived using y; () and

Y1.3(1):
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yl,l(t> = / hl (7'1) . % (t — 7'1) . ijc(t_ﬁ) . dT1 (412)

yis(t) = /Z /Z /Z hs (71,72, 73) {

(F(t = 7)) (F (8= 7o) - D) (T (t = 75) - o)
+@t—m)- ejwc(t—ﬁ)) (F(t—m)- ejwc(t—Tz))* (F(t—s) - ejwc(t—‘rg))
+@t—m)- ejwc(t—ﬁ))* (F (t = 73) - 74eT2)) (F (t — 75) - 7))

} -~ drsdrydr (4.13)

Step §: Continuous-time passband to baseband equivalent transformation.

In order to be computed by a digital processor, with manageable complexity, a passband
model must be transformed to a BBE model. A BBE model includes the RF nonlinear
dynamic distortion and computes the terms in baseband with a low sampling rate. To
translate the passband model to baseband, the continuous time passband Volterra series
of 4.12 is first rewritten using convolution form. The convolution form for y;;(¢) is given
by:

y1.1(t) = hy () * (T (1) - 7°") (4.14)

As the kernel hg is tri-variate, hg(71,72,73), and the output y;3(¢) of 4.13 is mono-

variate, the output function is re-assigned as follows: y13(t) = y13(t1,te, t3)jimtomts—t =

y1,3(t,t,t) [38]. The convolution form is given below.

y13(t1, 12, t3) = h3(t1,t27t3)*{

(f (t) . ejwctl) ("f (t) . 6jwct2) (:’E (t) . ejwct3)*
F (@ (1) - ) (F(t) - eF012)" (T (£) - e4°1)
(

T(t)-eh) } (4.15)

=

+ (5 (t) . ejwch)* (’f (t) . ejwctz)

Next, the Laplace transformation is applied to the convolution form of the Volterra

series nonlinear order responses. The Laplace domain representation of (4.14-4.15) is given
by:
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Yia(s) L(yi1(t)) '
= L (hl(t))N- L (z(t)e™)
= Hi(s)  X(s— jwe). (4.16)

Yis(s1,80,83) = L (y13(t1,ta,13))
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(7 (1) - 1)) - L

D) L(E® ) L(FE o))
T () eh)) L

(@ @) e)) - L((F @) - "))
( (

z(t)- ejwctl)*) . L (5 (t) - ejwctz)) . L (f (t) - ejwct3)) }

Yi3(s1,82,83) = Hs(sq,52,53) - {
X (51— jwe) - X (55— jwe) - X* ((s3 — jwe)")
+X (81— jwe) - X ((82 — jwe)™) - X (83 — jwe)

+X* (51— jwe)) - X (52— jwe) - X (s3 — jwe) } (4.17)

The above derivation uses the distributivity and product transforms properties of multi-
variate Laplace transform [38]. he BBE form of 4.16 and 4.17 can be derived by applying
a frequency translation of jw,. to the constituent terms Y; ; and Y} 3 as follows:
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Yi1(s)

371,3(51, 52, 83)

Yi1(s + jwe)
Hi(s+ jwe) - X(s)
= Hl() X(s). (4.18)

Y13(s1 + jwe, S2 + jwe, S5+ jwe)
Hs(s1 + jwe, S2 + jwe, $3 + jwe) - {

X (s1) - X (s2) - X ((83)*)

X (s
+X (s1) - X" ((52)") - X (s9)

+X ((51)7) - X (52) - X (s9) }

X
ﬁ3(51752>53) : {
X 2) -

X (s1) X (s )?*((83)*)
+X (s1) - X" ((52)") - X (s3)

FX*((51)") - X (s2) - X (s3) } (4.19)

where }71,1 and 3?1,3 designate the BBE outputs and ﬁl and .F~13 denote the BBE kernels,
respectively. Applying the inverse Laplace to 4.18 and 4.19 yields the continuous-time BBE

model as follows:

Tia(t) = / h hy(m) -7 (t—7) - dn (4.20)

y13

o]

L[

T(t—m)) (@ (t—7)(T(t—13))

+( (t—=7)) (@ (t— 7)) (@ (t—T3))
+@(t—m) (@t —7) (@~ 73))
} - drsdrydn (4.21)
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Step 6: Discrete-time baseband equivalent Volterra series model.

Using the signal and system causality, the integral bounds of model 4.20 and 4.21 are
adjusted to oo — t and —oco — 0, respectively. The model is then given by:

Talt) = /0 hi(m)-Z(t—m)-dn

y1.3(t) ///hg T1, T2, T3) ({

T(t—m))(@(t—7)) (@ —73))
+( (t—m)) (@ (t—72))" (Z(t—73))
+@(E-—m) @E-n) (@ {t-T7))
}‘dngTQdT]_

Using the fading memory assumption for the steady-state (¢t > T.,) (the transient-
response, time-invariant Volterra series is defined as ¢ < Tl ), the model response can be
represented as:

5171(7';) :A w/ﬁl (Tl) . f(t —7'1) . dTl

Too [Too [Too _
513 / / / hs 7’1,7'2,7'3) {

T(t—m))(@(t—7)) (@ —73))
+( (t—m)) @ (t—7)) (T (t-T))
+@(E-m) @Et-n) (@ {t-T7))
} - drsdrmodr

Using the symmetry of the integrated function (distortion components are symmetrical
and Volterra kernels can be symmetrized [23|), the model can be simplified to:

i (t) :/0 Th(n)-F(t—m) - dn
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Too Too Too _
y13 / / / h3 71,72,73) {

T(t—m)) (@t —7)@(—7)
+< (t—10)) (@ (t = 2))° (F (t = 1))
+(@(t—7))" (@ (t— 7)) (@t —73))
}-drngzdﬁ

Digitization of the model yields:

y11 thl' n Z1

110

Ms Mz M3

913 Z Z Z iy i - Tl @1,22713)

11=012=11 i3=12

:’El (n, Zl) = E(n — 21)

53 (?’L,il,iQ,ig) = 5(71—@1)5(71—12) .Af* (n—z3)
+ %(n—zl)'f*(n—m)f(n—z?,)
+

where My, M3 denote the memory depth of the first and third order Volterra series. Simi-
larly to the above derivation, it could be shown that the fifth order Volterra kernel, 3, 5(n),
is given by:

Ms Ms M5 M5 Ms

y15 g E E g Ehi1i2i3,i4,i5' (” Z1J2>13,Z4,Z5)

11=012=11 i3=12 14=13 15=1i4

Ty (n,i1,09,13,14,75) = T(m—141)T(n—19) T (n —i3) T (n —ig) T (n —i5)
+ T(n—i1)xT(n—1i2)T" (n—1i3)T(n—1is) T (n —i5)
+ T(n—i1)T" (n—i2) T (n—i3) T (n —i4) T" (N —is5)
+ T (n—i1)T(n—i2)T(n—i3)T (n—i4) T" (n —is5)
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where M5 denotes the memory depth of the fifth order Volterra series. The complex valued
BBE Volterra series up to nonlinear distortion products 5 is then given by:

vi(n) =411(n) + y1.3(n) + y1.5(n) (4.22)

Higher order distortion products can be similarly derived. In addition, only odd pow-
ered terms are retained. The terms T3(n,i1,12,43) and Z5(n, i1, ia, i3, 14, i5) are linear com-
binations of 3 third order and 10 fifth order distortion products. An example of the BBE
Volterra model of 4.22 is given for NL = 3 and M =1 as follows

jn) = %hoi(n) + (= 1)+ ShogoF(n)Fn)F (n)

2 hoos (2E(m)E(n — 1F (0) + F0)E)F (0 - 1))

g
+;h0 11 (22(n)z(n —1)z"(n—1)+2(n — 1)z(n — 1)z"(n))
+2h1,1,1f(n )i — DF (1) (4.23)

Comparison of the classical expression 4.5 with the newly proposed BBE Volterra ex-
pression 4.23 results in several conclusions. For example, the different distortion products
which were assigned distinct kernels in 4.5 have been linearly combined to form a novel
term in the new model space proposed by 4.23, and hence, share the same kernel.

Table 4.1 summarizes the number of kernels needed for four different modeling scenarios
where the nonlinearity order has been set to seven and the memory depth M, equals
M, = M3 = My = M. The expressions for the number of coefficients were used to plot
Fig. 4.3. As can be seen, the newly proposed, compact model involved a significantly lower
number of coefficients than the full classical LPE Volterra series, especially as the memory
depth increased. However, the pruned LPE Volterra using the DDR approach also required
a smaller number of coefficients as it discarded distortion products with a dynamic order
> three [21]. Tt is worth mentioning that the proposed model included all of the distortion
products, while maintaining a similar number of coefficients due to its compact expression,
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Table 4.1: Complexity analysis for nonlinearity order of 7

Model

Number of coefficients for NL—=7

Classical LPE Volterra

43 451 2 1213 3 13 12T p 74
4+ 8BM+ZIM? + BEME +

5975 L Lag6 o L asT7
+2 M+ gM° + o M

Proposed BBE Volterra

1619 1973 7\ /2 o 1897 N /3 o 3T /4
4+ oM+ oM+ 25 M° + 55 M

13 Ar57, 1 276 127
+sg M + oM + M

DDR LPE Volterra R—2

44+ M+ 5 M

DDR LPE Volterra R—=3

A+ M + TM? + S M

Number of kernels

Figure 4.3: Tllustration

and did not require any pruning which could compromise its modeling and linearization
capability as memory effects intensify.

4.1.2 Model Identification

The signal transformations used to derive the new BBE expression 4.22 preserved the
linear property of the Volterra series with respect to its coefficients. Therefore, commonly
used model identification algorithms such as the least square error (LSE) can be applied
to identify the kernels in 4.22 for a given RF PA. Equation 4.24 suggests the expression

DDR LPE Volterra R=2
DDR LPE Volterra R=3 ===== Classical LPE Volterra

Proposed BBE Volterra

900
800
700
600
500
400
300+
200

100

| |

of the complexity of different Volterra formulations of NL=7

1 2 3
Memory depth M

used to deduce the LSE solution of 4.22

20




X-h=Y (4.24)

where X, h and Y denote the input signal non-square matrix, the vector that contains the
unknown kernels and the output signal vector as described below:

To(1) - ZTm(1) Zooo(l) -+ Tamm(l)
Y _ . . 5 .
%O(N) ...... %/M(N) 507070(]\7) ...... fMM,M(N>
ho
h= h;w
y(1)
Y = : ;
y(N)

In the above expression, N represents the total number of measurement data. The
solution to the problem defined in 4.24 is:

-1

h=(X"X) - X'Y

where h is the estimate of h.

4.1.3 Validation

To assess the performance of the newly proposed compact BBE Volterra model, the
model was used to linearize two RF PAs driven with different signals. Its linearization
performance was compared with that of the LPE Volterra model’s (pruned using the DDR
approach). Fig. 4.4 shows the mixed signal linearization test bench used. It consisted of
i) an arbitrary wave generator (N8241A) which was connected to a vector signal generator
(E8267D) for test signal generation, ii) a vector signal analyzer (N9030A) for output signal
capture, and iii) a host computer for test signal synthesis and upload, delay estimation
and alignment, and output signal download, in addition to model identification.

Tables 4.2 and 4.3 summarize the linearization results found with each demonstrator
amplifier using both the proposed compact and the pruned LPE Volterra models. For all
testing, the nonlinearity order was set to seven and the memory depth was set two and
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Figure 4.4: Broadband mixed signal linearization platform
Table 4.2: Linearization performance of a class AB GaN PA
Model Parameters Number of EVM (%) | ACLR (dBc)
Coefficients
Without DPD 5.5 -35
Classical LPE Volterra NL=7; M=2 231 2 -48
DDR LPE Volterra NL=7; M=3 ; r=2 91 2.1 -48
Proposed BBE Volterra NL=7; M=2 70 2 -48
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Figure 4.5: Linearization performance of a single ended GaN PA driven with 40 MHz
multi-standard signal using different Volterra series expressions

three. According to Table 4.2, both the pruned LPE Volterra and the compact models
allowed for similar linearization performance as the EVM was reduced from 5.5% to 2%
and the ACLR was increased from 35 dB to about 50 dB (after application of the lineariza-
tion). This excellent linearization capacity was successfully achieved despite the significant
reduction in the number of kernels required by the compact model (91 in the pruned LPE
Volterra model vs. 70 in the proposed model). It is worth mentioning that the full LPE
Volterra model required 231 kernels.

The linearization performance was further confirmed (see Fig. 4.5) by examining the
spectrum of the 45 W GaN PA output signals with and without predistortion. In the case of
the second RF PA demonstrator (see Table 4.3), the pruned LPE Volterra and the proposed

Table 4.3: Linearization performance of LDMOS Doherty PA

Model Parameters Number of EVM (%) | ACLR (dBc)
Coefficients
Without DPD 5.5 -35
Classical LPE Volterra NL=7; M=2 231 1.9 -50
DDR LPE Volterra NL=7; M=3 ;r=2 91 2.3 -46
Proposed BBE Volterra NL=7; M=2 70 1.9 -50
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Figure 4.6: Linearization performance of an LDMOS DPA driven with 40 MHz multi-
standard signal using different Volterra series expressions

model showed different linearization performance. While both the classical LPE Volterra
model and the compact BBE Volterra model achieved similar linearization results in terms
of ACLR (-50 dBc) and EVM (1.9%), the DDR LPE Volterra led to a 4 dB lower ACLR
and 0.4% higher EVM. The superiority of the linearization capacity of the new compact
model is confirmed in Fig. 4.6 which displays the spectra of the Doherty RF PA with and
without linearization. One can clearly observe a noticeable residual out of band spectrum
regrowth in the signal obtained using the pruned DDR LPE. As previously mentioned,
the DDR pruning approach while elegant, may suffer from reduced linearization capability
when the dynamic order is set to two as it eliminates a large number of distortion products.
The new compact BBE Volterra model did not suffer from this limitation as it maintained
all the distortion products. The pruned LPE Volterra linearization performance could be
improved if the dynamic order R were increased further, however, this would result in a
larger number of kernels (e.g., the number of kernels would be 162 for r—3).
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4.2 BBE Volterra Formulation for Concurrent Dual-band
PA

For simplicity purposes, the provided analysis in this thesis illustrates the dual-band
case; however, it can be easily generalized to the multi-band scenario. A dual-band signal
can be expressed as follows:

A carrier aggregated signal over two bands, as the one shown in Fig. 3.1, can be
expressed as

z(t) = x1(t) + x2(t)
= Re (51(t)€(j"’1t)—I—fg(t)e(j“’?t))

where z(t) is the carrier aggregated signal, z1(¢) and x5(t) are the mixed mode signals
in each band, 7;(¢) and Z5(t) denote the baseband envelopes of x;(t) and z5(t) around
the angular frequencies w; and wy, respectively. The carrier aggregated signal can be

represented as a broadband signal with an angular carrier frequency ((w; +ws)/2) as given
by:

#(t) = Re (‘f(t).e(f(‘”?”%)
= e (LT 4 el ) L5

where Z(t) is the baseband envelope of the carrier aggregated signal given by

i(0) = (0l T 4 gl T,

When the dual-band signal is amplified by a PA, the passband component of the output
signal, y,,(t), can be described as:

y(t) = wn(t) +y2(t)

= Re (g(t).eQWt))
— Re <<gl(t)e(f(°”5‘°2)t) + gg(t)e(j(”?l)t)) e(f‘(‘”l?’z”))
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where y(t) and y,(t) are multi-carrier output signals modulated around the angular fre-
quencies wy and wo respectively, and y;(t) and y2(t) denote the baseband envelopes of ()
and y»(t), respectively.

In the classical PA behavioral modeling approach, the PA behavior is modeled as a
single-input single-output (SISO) system where the PA output y,,(¢) is a function of the
PA input Z(t), as given in 4.25:

Tne(t) = f (F (1)) (4.25)

where f is the SISO describing function of the PA (see Fig. 4.7). Digitization of the SISO
model requires sampling both 7 (¢) and y,,(¢) at a high frequency rate as follows:

fs,SiSo = <S + 5-max (B;l B;2>>

where By and By represent the bandwidths of 7 (¢) and Z5(t), respectively, and S denotes
the frequency spacing between the two signals (i.e., S = fo — f1 = M ), where f;
and fy are the two bands’ carrier frequencies, respectively. The factor of 5 represents the
spectrum regrowth due to PA nonlinearity which is assumed equal to 5.

Alternatively, a dual-input dual-output (DIDO) approach would require a significantly
lower sampling rate. In such a formulation, the PA output in each band (i.e., y1(t) and
U2(t)), is expressed separately as a function of the two input signals’ envelopes 7;(t) and
To(t), as given by:

{@a@) = Li@(),%(1)
R(t) = fa@(1) (1)

where fl and fg form the PA’s dual-band descrlblng functions (shown in Fig. 4.7). The
construction of the two describing functions, f1 and fg, needed to model and /or to linearize
the dual-band PA, is performed in the digital domain. This requires the sampling of z;(t),
To(t), y1(t) and yo(t) at a frequency rate given by

B, B
fs,DiDo 2 (5mcw; (217 22))

This sampling rate is independent of the frequency separation, S, which may be very
large. Hence, fs pip, is significantly lower than f; s;5,. For example, if we assume a dual-
band signal composed of a 15M Hz WCDMA signal rate required for the SISO model. The

ratio between the two sampling rates is equal to J;SD’D" =0.11.
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Figure 4.7: SISO (upper) vs. DIDO (bottom) PA behavioral modeling approach

4.2.1 Derivation of BBE DIDO Volterra Model

The behavior modeling and linearization approaches outlined in the literature to date,
have been restricted to generalizing low complexity schemes for single-band PAs. Volterra
series has been avoided due to the unmanageable number of coefficients and consequent
complexity. However, theoretically, the Volterra series is a more appropriate modeling
framework for dual-band PAs which are recursive nonlinear dynamic systems with fad-
ing memory [19]. In [22|, Benedetto presented a series of transformations to derive the
well-known LPE Volterra series. The empirically pruned LPE Volterra series has been
successfully applied to model and linearize single-band PAs. In this section, a new BBE
dual-band Volterra series formulation is derived from the original passband real-valued
Volterra series [23] to model and linearize dual-band PAs. This approach does not require
pruning and the proposed derivation is particularly attentive to the problem of exponential
growth in the number of coefficients experienced with the LPE approach. In the subsequent
paragraphs, the steps followed to derive the proposed model are described:

Step 1: Continuous-time real-valued Volterra series modeling:

The Volterra series framework [23] is initially used to describe the relationship between
the real pass-band signals at the system input and output:

y(t) = Z/_OO /_Oo hy(r, - m) - [ [ 2t = 7)dr. (4.26)

J=1
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where x(t) and y(t) represent the PA input and output RF signals and N L is the nonlin-
earity order.

Step 2: Real-valued to complez-valued envelope signal transformation:

In the case of a dual-band PA, the band-limited input signal z(¢) can be expressed as:

2(t) = Re{@i()e + Ty}
1/ ) _ .
e 00
1/ ) _ .

+ 3 <x§(t)e_]“’2t + xg(t)e]w2t> (4.27)
where 7, (t) and T5(t) represent the two complex baseband envelope signals that modulate
the two different angular frequencies, w; and wy. Substituting 4.27 into 4.26 yields an
expression relating the output signal y(t) to Z1(t), To(t), w1 to wy as follows:
2

y(t) = [ (@100, (), 70 5921 (p,q) € {1,.., NL} (4.28)

where the describing function f is used to represent the real valued Volterra series 4.26.
Since the output signal y() in 4.28 is a result of the application of a nonlinear function to
a band-limited RF signal, it contains several spectrum components that involve multiple
envelopes, 4, ,(t), which modulate the mixing products, pw; £ qws, of wjand wy as shown
in 4.29:

1 ~% —7(pw w ~ j (pw W
y(t) = Z 5 (yp,q(t)e Jwtan)t 4 g (f)eleita 2)t)

1 . _ .
= = <§870(t)6_]0t + yo,o(t)e]m)

2
1/ ; ~ j
b 2 (Fa0T 4 o)
1/ . _ .
T3 (?/5,1(75)67%2’: + yo,l(t)GJMt)
1 | - <
I §<~;7_1(t)6—](2w1—w2)t + y27,1(t)e](2”1_w2)t> (4.29)
1/ ‘ _ ;
+ 2 <yi1,2(t)€_j(2w2_wl)t T Y-1,2 (t)ej@wz_wl)t)
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1 —J w ~ j w
+ 5(%;0(75)@ INLert g o(t)el N lt)

1 o~ —JjNLw ~ j N Lw
+ §<yO,NL(t)e INLewat 4 g0 N ()N 2t>7

Here, oo(t) denotes the envelope at DC, 7 0(t) and 9o 1(f) denote the envelopes of
the first order in-band signals, and ¥ () and y_;2(¢), denote the envelopes of the third
order inter-band signals. Finally, 9o x7(t) and Jyro(t), represent the first and second N L
harmonics, respectively.

Step 3: Multi-frequency to passband only transformation:

Equating the terms on the right sides of 4.28 and 4.29 that share the same frequency
range (fundamental, mixing products) yields a multi-frequency model consisting of several
distinct equations that relate the output envelopes y,,(t) to Z1(t), Z2(t), wy and w,. Since
we are mainly interested in the relationship between the envelopes of the output and input
signals around the two carriers’ frequencies, only the passband components of the PA
output are considered in the equation below:

i) = 5 (I O + Ty ()
LT 4 Gy (e

)+ 9 (1)) + 5 (0 0) F 20 (1) (430

TN N
Qﬁég N
£fE

(NN IEN NN I N
<
&

where y,, (t) = B, (£)€7" and g, () = Yo, ()"

In the following a number of additional derivations are applied to produce the detailed
expression for the first term in 4.30,y,,, (¢), around the first frequency. Similar derivations
can be used to produce the expression of the second frequency term, y,,(t).

Yor (t)can be modeled as a summation of the Volterra series nonlinear terms i, ox+1(%)
of order 2k + 1. Tt can also be expressed as function of the envelops of the nonlinear terms,
Yur 2k+1(t), denoted hereafter y,, op41(f) and the angular frequency w; as follows:

o) = 3 s (1) — (z gm,%m) w31)
k=0 k=0

It is worth noting that only odd powered terms are retained and even terms are dis-
carded since they do not appear in the passband response. Equating the terms on the
right sides of expanded 4.28 and 4.31 yields a continuous BBE DIDO Volterra series that
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expresses Y, ox+1(t) as functions of z(t), and w,. Below is the expression for y,, 1(¢) and
yw173(t>'

ywl,l(t) = / hl (7’1) . fl (t — T1) . €jw1(t77—1) . dT1 (432)

o0

/ [ et

:L"1 (t—m)- elrt=m ) ($1 (t—m9)- €jw1(t_72)) (‘%1 (t—m3)- ejwl(t_m))*
) - it ) (T (t —72) ej“’l(t_m))* (T2 (t —73) ) - et T”))
) elwr(t=m )* (:rl (t— ) e]wl(t 72)) (ml (t—73) ejwl(t T‘))
) . ejwl(t T ) ( t o 7_ 6]wg(t Tg)) ( (t o 7_) e]wg(t Tg))*

t— 7_1) . ejwl(t T1)) ( t _ 7_2 e]uu(t—’rz)) (1.2 (t _ 7_3 eng(t 7'3))
) . ejw2(t Tl))* (IL'1 t . 7_2 e]UJl(t 7—2)) (:L.2 (t - 7_3 e]UJ2(t 7'3))
) - elw2(t= Tl)) ( (t — 1) erl(t T2)) ( (t —73) - ewa(t— 73))*
) . plwa(t— Tl)) (:E2 t— 7—2 6Jw2(t*T2)) (1'1 (t _ Tg) . ejm(t*m))
) )’

. Jw2(t=m1) (:1:2 (t — 1) eJW(t 72)) (:1:1 (t—m3) - ejwl(t*m))

} . d7'3d7'2d’7'1 (433)

Step 4: Continuous-time Passband to baseband equivalent transformation:

In order to be implementable in digital processor with manageable complexity, a pass-
band model needs to be transformed into a baseband equivalent model. Such model en-
ables mimicking the RF nonlinear dynamic distortion while applying all the computations
in baseband at low sampling rate. The baseband equivalent model is obtained by frequency
translating the passband Volterra series model to baseband. For that purpose, the con-
tinuous time passband Volterra series expressions of 4.32 and 4.33 are first rewritten in
convolution form. The convolution form for y,, ;(¢) is given by:

Yor 1 (1) = ha (8) % (21 (t) - €F) (4.34)

As can be seen, the transform of y,, 5(f) is one-variable. However, the integrand in
the right-hand side consists of a multivariate kernel hs(7,72,73) and thus the relevant
transform would be a function of three variables sq, so, s3. To overcome this difference, it
is in order to reassign the output as follow y(t) = y(t1,to, t3)jn—tomts—t = y(t, ¢, 1) [38] and
the Laplace transform is given as below
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Yor3(t1,to, t3) = h3(t1,t2,t3)*{

+ (21 (t) - &7

+ (El (t1) eJert

+ (f1 (tl) el

+ (351 (t;) - e?rtn

+ (T2 (1) -

+ (52 (t;) - e?¥2h1 (%
+ (22 (t1)

+ (52 (t1) - /42"

(tQ) . ethQ) (52 (tg) . eildzts)*

1
. elwzt (fg (tg) . ejw2t2)* (51 (t3) . ejwlts)

(@ (1) - ) (3 (1) - #1%) } (4.35)

The application of the Laplace transform to 4.34 and 4.35 yield the following expres-

sions:

L (Y 1(1))

Yw1,3(51782753) = L(yw1,3(t17t27t3))

= L(hs(ty,ta, t3)) - {

L((71(t) - ™)
+L (21 (t1) - ) (71 (t2
+L((F1 (1) - )" (3 (¢
+L ((z )
+L (71 (t1) - €M) (T2 (t2
+L (72 (1) - e721)"

L(hy (t))N L (z:(t)e’)
Hi(s) - Xi(s — jw1).

) (1 (ta) - €72 (0 (¢

(t1) )‘ejwltg) (96'1 t3
(1) 2) - €112) (31 (1) - 1
(tl) . ejwltl (i’g (tg) . 6jw2t2) (%2 t3 GJthS)
(1) ) ) (3
(t1)

%1 (t2) . eJW1t2) (IQ t3 . glwats

(4.36)



+L ((EQ (tl) . eﬁ”zh) (”Z‘.’l (tg) . ejw1t2) (52 (tg) . eijtS)*)

+L ((fg (tl) . ejw2t1) (52 (t2) . ejw2t2)* (fl (tg) . ejwlta))

+L ((.Afg (tl) . €jw2tl)* (.Afg (tg) . €jw2t2) (fl (tg) . ej‘”lt?’)) } (437)

Yo, 3(81,82,83) = L (hs(ty,ta,t3)) { (4.38)

L)) LG ) L (5 -0
L (@ (0) - ) L((@ (1) - #42)) L (3 () - %)
(1)) L 00 o )5
+L (T (tr) - ™) L (2o ( t2 e“m) L (T2 (t3) - ejw2t3)*)
LB ) L () ) L ()
+L (T2 (h) - ™)) L (951 (752) 1) L (%, (t3) - €2%)
+L (To (t1) - 7)) L (T (t2) - €M2) L ((To (t3) - €2%3)7)
+L (T (t) - €2) L (T2 (t2) - €222)") L (T (t3) - €7112)

FL (T2 (1) - 1)) L (T2 (t2) - /) L (T (1) - 1) }

= H3(31,S2783) : {

Xy (81— jwr) - Xy (s2 — jwi) - X7 ((s3 — jwi)")
+X1 (51— jwr) - X7 ((s2 = jwr)") - X1 (83 — jeon)
X7 (51 = jwn)™) - X (52 = jwn) - X (83 — jwn)
+X1 (51— jwi) - Xa (52 — jwa) - X3 ((s3 — jwz)")
+X1 (51— jwi) - X3 (52 — jwa)") - Xo (55 — jwn)
X3 (51— jwa)") - X (52 = jwn) - Xp (53 — jwn)
+X2 (51— jws) - X1 (52 — jwi) - X3 ((s3 — jwz)")
+X, (51— jwa) - X3 (52 — jwn)") - Xy (s5 — jwr)

+X5 (81— jwa)) - Xa (52 — jws) - Xy (53 — jwi) } (4.39)
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The above derivation utilizes the distributivity and product transformation properties
of the multi-variate Laplace function [38|. Since X; and X, are band limited signals, the
third order distortion terms in 4.39 are non-zero only in a range of a frequency intervals.
For example, X; (s1 — jwi) - X2 (s — jwa) - X5 ((s3 — jwa)”) is non-zero only when s; € I
,So € Iy ,s3 € I, where

B B B B
I = w1—5,w1+§ NPES w2—§7w2+§

where B designates the bandwidth of the distortion term. Accordingly, one can redefine
H3(s1, s9,s3) as follows:

H; o(s1,89,83) for s;€ly,i=1,2.3
H37d1(51,82,83) fOT S1 € Il ,Si € IQ, 1= 2,3
Hj go(s1,89,83) for ss€ly ,s;€ly,i=1,3
H37d3(81,52,83) f07" S3 € Il , S € IQ, 1= 1,2

H3(81752>53) =

Hence, 4.39 can be rewritten as

Yo, 5(81, 82, 83) = Yo, 3.1(51, S2, 3) + Yo, 3.2(51, S2, S3) + Yo, 3.3(51, S2, S3) + Yo, 3,4(51, S2, S3)

where

Yw1,3,1(51782753) = H3,5(51782783)'{

X, (51— juwn) - ):(1 (s2— jwi) - X7 (83 — jw:)")

+X (51— jwi) - X ((s2 — jwn)®) - X1 (s3 — jun)

+X7 (51— jun)) - X (52 — jw:) - Xy (83 — jwi) }

Yw1,3,2(31782753) = H3,d1($1752;33)'{

X1 (51— jwr) - Xa (82 — jws) - X5 ((s5 — jwa)")

+X1 (51— jwi) - X5 ((s2 — jwa)") - Xa (53— jwa) }
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le,s, 3(817 S2, 53)

Yior.3.4(51, 82, 83)

H3,d2($1732;33) : {

X5 (81— jw2)") - X1 (52 — jwr) - Xo (85 — jws)

+X, (81 — jws) - X, (82— jwi) - X5 ((s3 — jwa)") }

Hj 43(s1, S2, 83) - {

X, (51— jwa) - X5 ((s9 — jwa)*) - X (s3 — jen)

+)?§ ((81 — ng)*) . )?2 (82 — jCL)Q) . )?1 (83 — jwl) } (440)

Exploiting the symmetry of Hsz(sy, $2, s3) [23], which yields the following relation

H3(817 52,33) = H3(52, 51, 83) - H3(537 52751)V51752, 53

One can deduce the following equalities

H3,d1(517 52, 83) = H3,d2(82731, 33) = H3,d3(537 52, 51)

Consequently a single kernel Hj, can be used instead of the three separate ones where
only the variable order is adjusted each time as shown below:

H3,d1(817 52, 53) = HS,d(Sh 52, 83)

H3,d2(517 592, 53) - HS,d(52> S1, 53)

HB,d3(51752;53) — HB,d(53732;51) (4-41)

Substituting 4.41 in 4.40 yields a new expression

Yw1,3,1(31732753) = H3,3(51,82,S3)'{
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)51 (s1 — jwr) - )51 (89 — jwr) - )?TS(S?, — jwi)”)
+X1 (51— jwi) - X7 ((s2 — jw)") - X1 (83 — jwi)

+X7 (81— jun)) - X (52 — jw:) - Xy (s3 — jwi) }

Yw1,3,2(51752753) = H3,d(51752753)'{

X1 (51— jwi) - Xa (82— jws) - X3 (83— jwz)")

X (51— jwi) - X5 (52 — jw2)") - Xa (53 — jws) }

Yo 3,3(51,82,83) = HS,d(52751;53)‘{

X5 (51— jwa)") - X1 (s2 — jwr) - Xo (85— jws)

+X5 (51— jwz) - X (52— jwi) - X5 (83— jwa)") }

Yo 3,4(51,82,83) = Hsq(ss,52,51) {
Xy (81— jwa) - X5 (52— jwa)™) - Xi (53 — jwr)

+X§ ((81 — j(x.)Q)*) . )?2 (82 — ng) . )?1 (83 — jwl) } (442)

The application of a frequency translation in Laplace domain to 4.36 and 4.42 allows
for passband to baseband equivalent transformation of y,, ;.and y,, 3(¢) in the time do-
main. The frequency translation of jw; is performed by replacing s; in 4.36 an 4.42 with
w; = 8; + jwy ; 1 —1,2,3. Hence, the application of the frequency translation to Y, 1(s),
Yo, 3(s1,82,83), Hi(s), Hss(s1,52,53), and Hs 4(s1,s2,53) yields the following baseband
equivalent expressions in the Laplace domain:

le,l(ul) = le,l(ul +jwl)
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Yo 3(ur, ug,us) =

where

Yw1,3,1(U1, Uz, Us) =

Yo 3,2(ur, ug, uz) =

= Hi(u + jon) - X (w)
= Hi(w) - Xi(w).

?w1,3,1(U1, Ug, ug) + Y, 3.0(ur, uz, us)

Yoo 3,3(ur, ug, ug) + ?w1,3,4(u1; U, Us)

Yoo 3, 1(ur + jwi, ug + jwr, ug + jwi)
Hj o(uy + jwi, ug + jwi, us + jwy) - {

551 (uq) - ):(1 (u2) )?T E(Us)*)
+X71 () - X7 ((u2)") - X7 (us)

+X7 ((w)") - X7 (u2) - X (us) }

ﬁs,s(ul,UQ,U?)) : {

)?1 (Ul) : )El (U2) : va E(ud)*)
+X1 (ur) - X7 ((u2)") - X (us)

+ X7 ((u1)") - X1 (u2) - Xy (ug) }

Yoo 3,2(ur + jwi, g + jwa, ug + jws)
Hj q(uq + jwi, us + jwa, uz + jws) - {
X (ur) - Xa (uz) - X3 ((uz)")

+ X1 (u1) - X5 ((u2)") - X (ug) }
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Y, 3,3(u1, ug, u3)

Yw1,3,4(u1, Ug, U3)

ﬁ3,d(U1,U27U3) : {

X1 (ur) - Xo (u2) - X3 ((us)")

+X (wr) - X5 ((u2)) - Xo (us) }

Yoo 3,3(ur + jwa, us + jwi, ug + jws)
Hj q(ug + jwi, ur + jwa, uz + jws) - {
X5 ((w)) - X, (u2) - X (up)

+5(:2 (u1) - Xl (u2) - X5 ((u3)") }

ﬁ3,d(u27ulyu3) : {
X5 ((u)") - X1 (uz) - Xs (us)

—i—)?z (u1) - X (uz2) - X5 ((uz)") }

Y3, 4(uq + jwa, ug + jwa, us + jwy)
Hj g(us + jwi, us + jwa, ug + jws) - {
)Z2 (u1) - )?5 ((UQ)*) ')?1 (u3)

+ X5 ((u1)") - Xa (u2) - X7 (ug) }

ﬁS,d(US,U%Ul) ) {
X () - X5 ((u2)") - X1 (us)

+X5 (1)) - Xa (up) - X1 (us) }

67



The application of the inverse Laplace to 4.43 and 4.44 yields the following time domain
expressions of the baseband equivalent terms:

oo a (1) = /OO hy(m) %y (t—70) - dmy

—00

Z7w1,31 / / / h3s 7—177—277—3)

+ (951 (t — 1)) (Z1 (t — 72))" (Z1 (t — 73))
L@ —1) @ (=) @t —T) } - drsdrydr,

Yy 32(t) = / / / hgd (11, T2, 73) {

£E1 t — 7'1) (LL'Q (t — 7'2)) (1’ (t — 7'3))
L@ (=) @ (t— 1) (@t — 7)) } - drydrydr,

Yun33(t) = / / / R (2,71, 73) {

(T2 (t = 71))" (T2 (t = 72)) (T2 (t — 73))
Y@t —7) @ (=) (Tt — 7)) } - drsdrydr,

Yy 3a(t) = / / / hgd (T3, T2, T1) {

(Zo (t —710)) (T2 (t — 72))" (T2 (t — 73))
@ (t—1)) @ (t— 1) (@ (t— 1)) } - drsdrydr,

Swapping 75 with 7yin 9, 33(t) and 75 with 7 in y,, 34 yields the following equality
Yun 32(1) = Yoy 3,3(t) = Yun 3,4(1)
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Self-distortion distortion

le,l

Ywi,3s

ym1,5

5 [I.

Inter-band distortion

l Yw,,5d1 g

Yw4,5,d2

i

Figure 4.8: Dual band BBE Volterra model

Hence, the third order baseband equivalent Volterra term could be re-written as:

Yo 3(1) = Yo 31 () + 30Uy 32(t) = Yo 3,5 (t) + Yur 3,4(t)

where U, 3.5(t) = U, 3.1(t) designates the PA third order single-band self-distortion term
and Yy, 3.4(t) = 3Yw,.3.2(f) denotes the PA third order dual-band inter-band-distortion term,
as shown in Fig. 4.8.

The same derivations were applied to construct the fifth order Volterra distortion term
expression which is found to be

Yo 5(1) = Yeon 5,5 (t) 4 Yoo 5,1 (t) 4 Yeon 5,02 (t)

where

o0 oo oo o0 o0 -
gwl,fhs (t) = / / / / / h5,8 (7—17 T2, T3, T4, 7-5) :
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f«fl (t —7'1)%1 (t —7'2) 5‘1 (t— 7'3) 576{ (t — 7'4) %T (t —7'5)

N N N N /N /N
5555555

— N — ~— ~— ~— ~—

o~ o~ o~ o~ o~ o~ —~

~— O~

I~ /N /N /N /S /N

~— O S~

N N N N N /N

~— N O~ S~

e I N N T N T
1111111

— O N — ~— ~— ~—

(t —7'2) 55; (t— 7'3) %2 (t — 7'4) 3}/2 (t —7'5) }
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Hence, the continuous-time dual-band baseband equivalent Volterra series model for
each band is given by:

gwl (t) - gwl,l (t) + gw1,3(t) + gw1,5(t) T+ (4'46)

Step 5: Discrete-time baseband equivalent Volterra series model:

In order to implement the dual band BBE Volterra model in a digital processor, the
following signal and systems properties and approximations are used to further simplify
4.46.

1. Truncation of the Volterra model to a finite nonlinearity order N L, generally in the
range of 5 to 7.

2. Limitation of the integral bounds (—oo,+00) to (0,7,,) using the signal and sys-
tem causality, and the fading memory assumption (transient response time invariant
Volterra series is defined as t < T,). Since the impulse responses of different Volterra
kernels, i.e. Ewhl,E‘,hg’s,ﬁwl,3,(1,7%17575,. .., represent different aspects of the system,
the memory spans used in the computation of the different distortion terms can be
set, to be different.

3. Using the symmetry of the terms inside the integral (Distortion components are
symmetrical and Volterra kernels can be symmetrized [23]), the number of required
kernels is significantly reduced.

Digitizing the dual band BBE Volterra model yields:

Yoor (1) = Yoo 1 () + Yoo 3(1) + Yoy 5(0) + -+ (4.47)

My
Jor1(n) = huy1 - T1 (n, 1)

i1=0

M3 s M3,s M3 s

Yor 3(n) = Z Z Z Euu,?;,s < T35 (N1, 02, 13)

11=0 i2=11 i3=1io
M3 s M3 s M3 s

+ Z Z Z 7Lw1,3,d . 537(1 (n, ’il, iQ, i3)

11=0 i9=0 i3=19
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Ms s M5, s Ms s Ms s Ms s

(n7 il) /L'Qa Z'37 i47 25)

* Ts,s

2.2 2D hass

(n) =

(ny il; Z.Qa Z‘37 7;47 15)

* Ls5,d2

hw1,5,d2

14

14

0 i5=i4

Ms g2 M5 g2 M5 g2 Ms a2 Ms 42

DIDIDID IS

13 15
13 15

My g1 Ms g1 Ms q1 Ms q1 Ms g1

+ E g E E E P, 5,41+ To.ar (0, 01,42, 03,44, U5)

i3 4
12 14

12 14

i1 13

i1 13
0 i3

0 72
0 ig
0 g

i1

i1
i1

Yw1,5

where

(n, Zl) = %(n — Zl)

T

(TL — 23)
(TL — ’LQ) El (’I’L — 23)

(TL — Zl) fl (TL — ’LQ) 51 (TL — 23)

1 (n— il)%l (TL —iz)

= T

(n,i1,142,13)

'773,5

~x
1

(n — Zl)

+ 21

~%
1

_|_

(n — 23)

(TL — Zg) %2 (’I’L — 23)

(n —Z.2>f

= %1 (n —’il)fg

(n, 1,142, 13)

T3.d

~x
2

(TL — Zl)

+ 7

T3 (n — i5)

(n — 24)
(TZ — 24)

(n — 23) 51 (TL — 24)

(n —i3)
(n — 23)

(n — ’LQ) El

a3

= fl (TL—Zl)

,8 (na 11,12,13, 14, 15)

Ts

(n — 25)

~%
1

T

(n — i) 77

(n — ’Ll) 5’,’/1

+ 2

(n — 15)

~x
1

+ T (- )T (0 —is) T
(TL — ’Ll) .Afl (n — ’LQ)

(TL — 25)
(n — 24) %1 (n — 25)

~%
1

(n — 23) 51 (Tl — 24)
(n - 23)

(n — 23)

T

~%
1

_|_

~%
1

(n — i) 77

(TL — ’Ll) 5’,’/1

+ 2

(TL — 24) %1 (n — 15)

77 (n — i2) Iy Ty
(TL — ’Ll) .’fl (TL — ’LQ)

(n — ’L])

+ 1

(Tl — 24) /i:l (TL — 25)

(n — 23) fl (n — 24) %1 (n — 25)
(n — 23) 51 (TL — 24) %1 (TL — 15)

(TL — ’LQ) El (n — 23) ’fl (Tl — 24) /fl (TL — 25)

(n — 23)

T

~%
1

_|_

~%
1
~x
1

(TL — 22)

(n — ZQ)

%
1
Ty
ok
1
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T5a1 (N, 01,19,13,14,15) = T1(n—1i1) T (n— i) T (n — 13) To (n — 14) T35 (0 — i5)
+ 71 (n—i1) 7] (n—i2) Ty (n —i3) Ty (N —i4) T5 (N — i5)
+ T7(n—i1) T (n—ia) Ty (n —i3) Ty (n — i4) T5 (0 — i5)
+ ZTi(n—i1) T (n—i2) T} (n—i3) T (n — iy) To (N — 15)
+ 71 (n—i1) 7] (n—i2) Ty (n —i3) T3 (n — i4) To (N — i)
+ 7 (n—i1) T (n—ia) Ty (n —i3) T5 (n — i4) Ty (N — i5)
Tsa0 (N, 01,19,13,14,15) = T1(n—1i1)Ta(n — i) To (n —13) T5 (n — 14) T5 (0 — i5)
+ 71 (n—i1) Ty (n —ig) x5 (n —i3) Ty (n — i4) T5 (N — i5)
+ Z7(n—iy1) x5 (n—iz) Ty (n—i3) To (N —ig) T3 (N — 15)
+ Z1(n—iy1) Ty (n—iz) Ty (n—i3) T (n —ig) To (N — 15)
+ 71 (n—i1) x5 (n —ia) Ty (n —i3) T5 (N — i4) To (N — i)
+ Ty (n—iy) x5 (n—i2) x5 (n—i3) Ta (N —iy) To (N — 15)

In 4.47, My, Ms g, M3 4,M5 s, M5 g1and Ms; 4o denote the memory depth of the first, third,
fiftth order Volterra series distortion terms. The dual-band complex valued BBE Volterra
Series in 4.47 includes only nonlinear distortion products of up to order 5. Expression
of the dual band BBE Volterra model with higher nonlinearity can be similarly derived.
In addition, only odd powered terms are retained and even terms are discarded since
they do not appear in the passband. It is worth mentioning that the distortion terms
T3(n,i1,992,13) and Tjs(n, iy, 12,173, 44,15) are linear combinations of three third and ten
fifth order distortion products, respectively. An example of the dual band BBE Volterra
model of 4.47 is given for NL =3 and My = M3, = M3, =1 in 4.48.

J(n) = Ty 1(0)F1(n) + Py 1 (DF1 (0 = 1)3hs, 5,50, 0,0)F1 (n) 1 (n) T (n)
+ }L/wl’gys(o, 0,1) 2z1(n)z1(n — 1) (n) + Z1(n)z1(n)Z](n — 1))
+ ﬁw17375(0, 1,1) (2z1(n)zy(n — D)xi(n — 1) + Z1(n — 1)@y (n — 1)Z](n))
+ 3%@,3,3(1, L, D)z (n— Dz (n — 1)zj(n — I)Qﬁwl737d(0, 0,0)Z1(n)xa(n)x5(n)
t+ huy3a(0,0,1) (Tu(n)Ta(n)T3(n — 1) + Ta()Ty" (n)Fa(n — 1))
+ 2ﬁw1737d(0, LDz (n)z2(n — 1)z5(n — 1) + 2hw1737d(1, 0,0)Z1(n — 1)Z2(n)z5(n)
+ Ewl737d(1, 0,1) (z1(n — D)Z2(n)x5(n — 1) + 21(n — 1)Z3(n)x2(n — 1))

73



2y, 3.4(1, 1, 1)F (n — D)Ea(n — D)T5(n — 1) (4.48)

The close examination of 4.47 reveals a number of important attributes of the proposed
dual band BBE Volterra model: Inclusion of all the possible distortion terms attributed to
the static and dynamic nonlinear behavior of the PA. These later involve either only the
envelope of the first band signal, e.g. T5(n)z%(n),and 75 (n)Z1(n)Z1(n—1), or result from the
mixing between the two bands’ envelopes, e.g. Z1(n)z5(n)Z2(n), and T1(n)z5(n — 1)T2(n).
A large number of the distortion terms included in 4.47 were not incorporated in the
2D-DPD model|61] (i.e., Z5(n)ZT2(n)Z1(n — 1) and Z3(n — 1)T2(n)z1(n — 1)).

While the proposed dual band BBE Volterra model includes larger number of distortion
products than other models, according to 4.47 these products are grouped into different
sets. Each set forms a distortion term, e. g. the distortion term '3 4(n, iy, is,i3) repre-
sents the grouping of the following distortion products Zi(n — i)z (n — i2)Zj(n — i3),
Ti(n — i1)x{(n — i9)T1(n — i3), Tj(n — i1)T1(n — i2)xT1(n — i3). The distortion prod-
ucts that belong to a given set share the same kernel. For example, for every possible
triplet (iy,142,13) € {0..M}3, three 3rd order distortion products are combined to form
T3 5(n, 1,192, 13) and consequently share one kernel Ewh&s(il,iz,ig) in 4.47. Similarly, for
every possible quintuplet (i1, s, i3, 4, i5) € {0..M}”, ten 5th order distortion products are
combined to form Ts 4(n, i1, 42, 3,94, 75) and share one kernel }z/wh&s(z’l, Q9,13 14,15) in 4.47.
Hence, despite the fact that the proposed models involves more distortion terms, it requires
comparable number of kernels compare to the 2D-DPD scheme.

4.2.2 Model Identification

The expression of the proposed of the dual band BBE Volterra model, 4.47, preserved
the linearity propriety with respect to its coefficients. Hence, the least square error (LSE)
estimator can be applied to identify the kernels in 4.47 for a given RF PA. Equation 4.49
details the expression used to compute the LSE solution of 4.47:

X h=Y (4.49)

where A denotes the distortion products matrix, h is the kernels’ vector to be estimated
and Y is the vector formed by the output signal sample. Each of these variables ( A,h and
Y') is defined in 4.50 where L representing the data stream size.

T (M +1) --- T1,(1) Z3,4(Ms,s+1,0,0,0)

z1,5(L) oo Te(L— My) 73,5(L,0,0,0)
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73,5(1, M3 s, M3 s, M3 ) 239(M3q+1,0,0,0) --- )

73,5(L — M35, M35, M3 s, M3 ) z3,4(L,0,0,0)

ho
: Yro(My +1)
ho0,0 y(L)
The LSE solution to 4.49 is computed using:
h=(x"Xx)"- X'y (4.51)

where h is the estimate of h.

4.2.3 Validation

To assess the performance of the proposed model, the novel formulation was used to
model and linearize a high power dual-band RF PA. The device under test was a broadband
45 W single ended GaN PA [71] driven with a dual-band multi-standard signal. Three test
scenarios are defined:

e Case 1: 15 MHz WCDMA and 10 MHz LTE signals centered @ 2.1 GHz and 2.4
GHz respectively

e Case 2: 20 MHz 4C WCDMA and 20 MHz LTE signals centered @ 2.1 GHz and 2.4
GHz, respectively

e Case 3: 20 MHz LTE and 20 MHz WCDMA signals centered @ 2.4 GHz and 2.1
GHz respectively

Fig. 4.9 shows the mixed signal linearization test bench used. It consisted of two vector
signal generators (ESG4438C), a vector signal analyzer (N9030A) for output signal capture,
and a host computer for test signal synthesis and upload, delay estimation/alignment,
output signal download and model identification.
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Figure 4.9: Dual-band DPD measurement setup

Both the proposed the dual band BBE Volterra model and the 2D DPD models are
implemented and used to linearize the DUT. The nonlinearity order and memory depth of
each model were individually set to achieve the best performance vs. complexity compro-
mise in each case. For the two first scenarios, it was found that NL = 7 and M = 3 for the
2D DPD and NL = 7, M1 = 2, M3’s = Mg’d == 1, M5’s == M5’d1 == M5’d2 =0 and M7 =0
for the dual band BBE Volterra are suitable. However, for the third case, NL = 7 and
M = 3 for the 2D DPD and NL = 9, M1 = 2, Mg,s = M37d = ]., M575 == M57d1 = M57d2 == 0,
M7 =0, My = 0 for the dual band BBE Volterra were found adequate.

The linearization results for the three tests scenarios are shown in Fig. 4.10-4.12 and
the corresponding performances are summarized in Table 4.4  4.6. According to the
linearization results obtained in all of the test scenarios, the dual band BBE Volterra
model succeeded to linearize the PA and significantly outperformed the 2D DPD in terms
of linearization capacity and model complexity. A reduction of the spectrum regrowth of
about 20dB and an ACPR of about 50dBc were achieved by the dual band BBE Volterra
in all test scenarios. However, the 2D-DPD linearization capacity was different in the
three scenarios and in some cases very limited improvement on the spectrum regrowth was
obtained.
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Table 4.4: Dual-band dual-standard linearization results case 1

Without DPD With Volterra DPD With 2D DPD
Band 1 Band 2 Band 1 Band 2 Band 1 Band 2
@ 2.1GHz | @ 2.4GHz | @ 2.1GHz | @ 2.4GHz | @ 2.1GHz | @ 2.4GHz
Number of coefficients 20 20 45 45
NMSE (dB) -41 -40 -31 -28
ACLR (dBc) 35 29 -53 -51 -40 -37

Table 4.5: Dual-band dual-standard linearization results case 2

Without DPD With Volterra DPD With 2D DPD
Band 1 Band 2 Band 1 Band 2 Band 1 Band 2
@ 2.1GHz | @24GHz | @ 2.1GHz | @ 24GHz | @ 2.1GHz | Q 2.4GHz
Number of coefficients 20 20 45 45
NMSE (dB) -39 -39 -31 -28
ACLR (dBc) -34 -28 -50 -50 -39 -34

Table 4.6: Dual-band dual-standard linearization results case 3

Without DPD With Volterra DPD With 2D DPD
Band 1 Band 2 Band 1 Band 2 Band 1 Band 2
@ 2.1GHz | @24GHz | @ 2.1GHz | @24GHz | @ 2.1GHz | Q 2.4GHz
Number of coefficients 25 25 84 84
NMSE (dB) -38 -33 -29 -32
ACLR (dBc) -31 -37 -50 -51 -34 -39
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Chapter 5

Automated Symbolic Optimization and
High Level Synthesis of Single- and
Multi- Band Digital Predistortion
Hardware in an FPGA

The choice of digital predistortion (DPD) scheme for the real-time linearization of radio
frequency (RF) power amplifiers (PA) is typically motivated by the hardware implementa-
tion complexity versus linearization capacity tradeoff. DPD schemes employing block-based
representation, which consists of adequately arranging a number of simple modules (e.g.,
static nonlinear functions, finite impulse response filters), are generally adopted where pos-
sible to alleviate the computational and implementation complexity of some models (e.g.,
memory polynomial (MP) [17], Weiner/Hammerstein). Such block-based representation is
geared towards complex-signal processing arithmetic rather than real-signal formulations
and suffers from limited linearization capacity when deployed with advanced PA systems
exhibiting significant distortions. This motivated the recent development of more sophisti-
cated Volterra series based schemes, such as the complexity reduced Volterra (CRV) |76],
baseband equivalent (BBE) Volterra [77] and dynamic deviation reduction (DDR) Volterra
[18] schemes which don’t have a simple block-based representation.

The trivial criteria to choosing a DPD scheme has typically been the number of coef-
ficient involved. Accordingly, it has been widely accepted that a model with fewer coeffi-
cients is usually easier to implement. This assumption motivated, in part, the adoption of
a number of Volterra series approximations where the cross terms were either completely
discarded (e.g., MP) or partially pruned (e.g., generalized MP or GMP, DDR and CRV
models). Yet in-depth analysis and extensive experimental investigation revealed the need
to increase the nonlinearity order of the static nonlinear part of the model as the cross
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terms are pruned to preserve the same linearization capacity. Hence, the apparent sim-
plicity of the MP approach compared to the Volterra series may not translate into easier
hardware implementation as it may actually require higher order nonlinear terms which
call for higher resolution (number of bits) and more logic gate counts. Therefore, in this
work, a non-pruned single- and dual-band BBE Volterra series [84, 77| DPD scheme was
selected.

This chapter presents an automated optimization approach for single- and dual-band
Volterra DPD hardware implementation in a field-programmable gate array (FPGA). This
approach first employs a symbolic arithmetic tool to transform the DPD expression in order
to minimize the arithmetic complexity, then uses a HLS tool to automate the hardware
synthesis. The proposed approach is DPD model agnostic and can be applied to any
variation of the reported Volterra series-based DPD schemes.

5.1 Review of Optimization Approaches

Three approaches are generally pursued to optimize DPD hardware implementation.

The first consists of substituting the nonlinear basis functions (or a subset of the equa-
tions) with Look-up Tables (LUT) in order to save on the number of multipliers and logic
gates for a specific accuracy. The LUT size and the entries’ length are determined based
on the type of nonlinear function and the required signals’ dynamic range [79, 78|. The
LUT based implementation complexity increases significantly when dealing with signifi-
cant memory effects and/or with multi-band DPD schemes (requiring multi-dimensional
LUT). For example, Ding et al. [66] and Roblin et al. [80] employed two-dimensional
LUT-based/spline-based representations of a 2D-DPD scheme [61] to simplify its imple-
mentation.

The second hardware implementation optimization approach relies on Time Domain
Multiplexing (TDM) by sharing the same hardware resource across different signal pro-
cessing blocks. TDM has been used to implement single-band [81] and dual-band DPD
schemes [68]. Nonetheless, the resulting TDM based DPD engine must run at a higher
speed to achieve the same latency and consequently trades circuit area for an increase in
power consumption.

The third approach addresses the hardware implementation burden of DPD by re-
formulating its expression. This includes the application of Horner’s rule to memoryless
polynomials initially, then eventually to MP DPD schemes [82]. Alternatively, authors in
[83] have suggested a reformulation of the polynomial DPD using a zero crossing approach
to determine its polynomial roots. Unfortunately, none of these expression reformulation
approaches are suited to Volterra series-based DPD schemes.
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5.2 Arithmetic Optimization

In this section, a number of arithmetic optimization techniques are presented. These
are used afterward for the symbolic optimization of section 5.3.

5.2.1 Complex Valued to Scalar Valued Conversion
The first step of optimization consists in transforming the complex-valued model into

a scalar-valued one to facilitate the arithmetic implementation. The following example is
provided to illustrate this concept.

E =a(n) 2" (n) = (I*(n) + Q*(n)) (5.1)

where x(n) = I(n) + j - Q(n) and * denotes the conjugate operator. Hence, instead
of computing x - z* using a complex multiplier, which would require 4 real multiplications
and 2 real additions, one can obtain the same result using 2 real multiplications and 1
real addition. The real-valued expression is more suitable to the application of algebraic
transformations which simplifies its hardware implementation.

5.2.2 Factorization
Subsequently, the resulting real-valued BBE Volterra series expression is transformed

through factorization to reduce the number of arithmetic multiplications. The following
example is provided to illustrate the benefit of this operation:

E=1FMmn)+In)-I(n—1)=1I(n)-(I(n)+I(n—1)) (5.2)

Equation 5.1 uses 2 multiplications and 1 addition, while 5.2 uses 1 multiplication and
1 addition.

5.2.3 Cascading

The factorized DPD expression undergoes cascading which consists of generating lower
nonlinearity order monomials and reusing them to produce higher order nonlinearity terms.
The following example is used for illustration purposes:

E=Qn)+I"(n) + I(n) - Q*(n) (5.3)
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Equation 5.3 requires 9 real multiplications and 2 additions. After factorization, this
expression is rewritten as

E =Q*(n)+ I’(n) - (I*(n) + Q*(n)) (5.4)

High Level Synthesiswhere 5.4 necessitates 5 multiplications and 2 additions. After
cascading 5.4 is rewritten as 5.5, and only 4 multiplications and 2 additions will be used

E=ts+t(t +1) (5.5)

with ¢; = I?(n); to = t1 - I(n); t3 = Q(n), where t1, ty and t3 represent the intermediate
terms.

5.2.4 Streamlining

Streamlining consists of time shifting some nonlinear terms in order to generate non-
linear memory terms rather than re-computing them. When applied to the Volterra series,
streamlining allows for the rearrangement of the series monomials in an efficient V-vector
format [85]. The following example is used to illustrate this point:

E=In)-In—1)4+1I(n—1)-I(n—2) (5.6)

Equation 5.6 uses 2 multiplications and 1 addition; after streamlining only 1 multipli-
cation and 1 addition are needed.

S(n)y=1I(n)-I(n—1); E=S8(Mn)+Snh—1)

The reduction in the number of operations described in the previous sub-sections is
significant when applied to Volterra series DPD, as will be shown in section 5.4.

5.3 Proposed Optimization and Implementation Flow

A systematic procedure for optimizing the implementation of Volterra series-based DPD
schemes is proposed, as depicted in Fig. 5.1. First, the various arithmetic transformations,
presented in section 5.2, are applied to the original DPD expression. These transformations
are automatically performed using the symbolic math tool, Maple ™ from Maplesoft. Then,
an HLS tool, the HDL coder™ from Matlab@®), is used to automatically generate the digital
hardware code with the minimum number of multipliers, adders and memory size needed to
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Figure 5.1: Proposed optimization and implementation flow

implement the model expression resulting from the previous step. Finally, the synthesized
design is compiled.

It is of note that the optimization procedure is model independent and can be applied
to any Volterra model.

Once the DPD expression undergoes the previously-mentioned transformations, the
model is converted into a fixed point form then synthesized into HDL code using the HLS
tool. The optimization steps enable successive multiplication and addition operations,
avoiding the direct computation of high order terms (e.g., I°(n) is no longer explicitly
computed), an approach characterized by more accurate and efficient fixed-point imple-
mentation. Simulation trials can then be conducted using a number of different signal
stimuli and PAs under test to determine the optimal numerical representations (number of
bits) for each of the intermediate terms (see Sub-section 5.2.3). The latter terms are opti-
mized to fit, whenever possible, in one unique configuration of the digital signal processor
(DSP) multiplier blocks (e.g., 18x18). One last optimization is then applied to the constant
multiplications resulting from the model optimization (e.g., I-Q+ Q-1 =2-1-Q) or from
the model preconditioning. Instead of using hardware multipliers, constant multiplications
are implemented using minimal shift and adder operations.

5.4 Application to BBE Volterra Model

The proposed hardware optimization procedure was used to implement single- and dual-
band BBE Volterra models [84, 77| in an FPGA and linearize a 45 W single-ended GaN
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Table 5.1: Hardware implementation complexity of BBE Volterra

N Number of multipliers/adders
Optimization step ool g ele-band | Dual-{)and
Original complexity 70 / 64 * 296 / 240 *
Complex to real conversion 280 / 268 1184 / 1072
Factorization 218 / 74 708 / 242

- Maple

Cascading 100 / 65 234 / 158
Streamlining 95 / 65 224 / 158
Fixed-point conversion Matlab 95 / 65 224 / 158
Constant multiplier optimization 71 /89 170 / 197
RTL synthesis Quartus 72 /89 178 / 197

* Number of complex operations

Table 5.2: BBE Volterra series hardware resources

‘ Model 4-input LUT | Register | Memory | DSP block
Single-band BBE Volterra 1680 1265 0 72
Dual-band BBE Volterra 2580 6185 0 178

PA. The experimental validation was conducted using the Altera Stratix IV professional
development and the MS-DPD board from Analog Devices. The PA was driven by a 20
MHz LTE signal for the single-band case and an inter-band carrier aggregated signal formed
by a 15 MHz WCDMA signal and 15 MHz LTE signal for the dual-band case (see Figs. 5.2
and 5.3). The models’” hardware complexity at each stage of the proposed implementation
flow is presented in table 5.1; the required hardware resources are reported in table 5.2.
For the single-band case, it can be seen that the overall complexity decreased from 280/268
multipliers/adders to 72/89 multipliers/adders, whereas for the dual-band case, the overall
complexity decreased from 1184/1072 multipliers/adders to 178/197 multipliers/adders.
Note that the final number of DSP blocks would be manageable for mid-range FPGA
families, and that no memory blocks were used in these experiments as the LUT approach
was not used. The DPD hardware ran at the speed of signal’s sampling rate (i.e., 122
Msps), as the time division multiplexing method was avoided.
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Chapter 6

Dual-band Digital Predistortion Using a
Single Transmitter Observation
Recelver and Single Training Engine

The carrier aggregation concept was recently adopted by wireless communication stan-
dardization bodies to meet the need for wider band communication signals and better
spectrum resource utilization. Accordingly, wireless communication signals can now be
composed of up to five component carriers (CC), each of which occupies up to 20 MHz.
This may compromise the practical viability of wideband and multi-band DPD schemes.
An intra-band CA signal with an aggregated bandwidth as high as 100 MHz, will yield a
PA output spectrum that occupies up to 500 MHz, necessitating a very power hungry and
expensive broadband transmitter observation receiver (TOR) to synthesize the DPD func-
tion. Researchers in [88] attempted to reduce the TOR bandwidth required by adopting
a band limited DPD Volterra scheme. Alternatively, authors in [89] adopted an iterative
approach for training the DPD function using a TOR with reduced bandwidth.

DPD in the case of inter-band carrier aggregation is even more complicated; as the
number of CCs increases, it is not practical to dedicate one TOR per CC for real-time
training of the multi-band DPD due to the power overhead. The usage of a single TOR,
which captures the different CCs in alternation, is feasible in a controlled laboratory envi-
ronment (fixed room temperature and average output power), as the distortions exhibited
by the PA remain unchanged as long as the same input signal is applied. In this case,
the input signal is repeated N times, where N is the number of CCs, and the single TOR
is switched N times to capture all of the CC envelopes. However, in a real world envi-
ronment, communication signals are not repeatable and consequently such an approach is
impractical.

To tackle this issue, authors in [65] proposed a subsampling receiver to train a dual-band
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2D-DPD. The subsampling receiver translated the two CCs to intermediate frequencies
with a smallest frequency separation. The new frequencies were then digitized using an
analog to digital converter (ADC). Although this approach needed only one TOR, and
suppressed the large frequency separation in a realistic transmission scenario, it required
an ADC with a sampling rate equal to 5N times the bandwidth of the CC (N is the number
of CCs and a factor of 5 is needed due to the PA output spectrum regrowth). Alternatively,
authors in [91] recently proposed a DPD system where the feedback receiver uses a single
TOR that switches between the different CCs. While this approach effectively reduces the
required number of TORs without increasing the required ADC sampling rate, it results
in significant power consumption due to the additional step needed for the DPD training.
This will be explained in the next section.

This chapter tackles the challenging hardware complexity of a dual-band DPD used
to linearize PAs driven with realistic (non-periodic) inter-band CA signals. A novel DPD
system employing one TOR is proposed which includes a single model-reference adaptive
control (MRAC) based training engine (TE) to identify the coefficients of the two DPD
functions needed to linearize the PA response (one function for each of the CCs).

6.1 Single Transmitter Observation Receiver System

While the previously mentioned works [65, 91, 90| succeeded in reducing the number
of TORs needed to capture the individual CC envelopes at the output of a PA driven with
inter-band CA signals, they suffered either from an increased ADC sampling rate [65], or
signal processing overhead for training the DPD [91, 90]. For instance, the training of the
DPD in [91] is preceded by the construction of a behavioral PA model based on its output
signal’s CC envelopes, successively captured while the PA is driven with real CA signals.
This step is essential as the resulting PA behavioral model is used to generate a new set of
input and output signal samples for training the multi-band DPD. A similar approach was
suggested in [90] where the dual-band PA behavior was first modeled then its 2D-Quasi
inverse deduced. Hence, both solutions [91, 90| pose additional signal processing burdens
and require longer training phases.

Furthermore, all three works |65, 91, 90| utilized the self-tuning regulator (STR) ap-
proach, commonly called the indirect learning approach, to train the multi-band DPD.
This approach relies on reversing the input and output signals of the PA to identify the
inverse functions. This training approach has been applied widely and successfully in
single-band DPD [92] due to its simplicity and effectiveness. However, when applied to
training a dual-band DPD, this approach requires simultaneous access to both CCs of the
PA output signal and one CC of its input signal in order to estimate the DPD for a given
band. Therefore, if one were to reduce the number of TORs through switching or time
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sharing a single TOR, the output signals would be captured at different time slots from
the input signals thus not meeting the requirement for simultaneous CC access.

In this work, a single TOR based dual-band DPD is devised which does not require PA
behavioral modeling [91, 90| or an increase to the ADC sampling rate [65]. The control
algorithm is performed using an MRAC approach where the controller (the DPD function),
is located inside of the feedback loop [92]. This is in opposition to the STR approach, which
is an open loop system where the controller is located outside of the feedback loop. The
MRAC approach has been applied previously in the context of single-band linearization
[78, 79]. Also known as a direct learning, the MRAC based learning approach eliminates
the requirement for simultaneous capture of the PA CCs’ output signals.

Fig. 6.1 presents the proposed single TOR based DPD system. The single TOR
module monitors and captures one CC output envelope signal at a time. A single TE
module is used to iteratively train the DPD module corresponding to the captured CC.
The training of the DPD modules corresponding to each of the CCs is performed using
the same TE, while the single TOR is switched to cover all the bands. In Fig. 6.1, the
two input CCs are noted z; and Zy and their predistorted counterparts are denoted 7y,
and Ty,. Tpyy designates the envelope of the input signal CC corresponding to the band
under linearization (BUL). The BUL is determined by the band-selection module (see Fig.
6.1) to undergo predistortion training in the current iteration (i.e would be either z; or T
depending on the iteration). ypyy is the envelope of the output signal’s CC corresponding
to the BUL. The TE module iteratively adjusts the DPD coefficients until the distortions,
dpyr, introduced in the output signal CC’s envelope, ypy 1, are fully cancelled.
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dBUL(n) = YBUL (n) — TpUL (n) (6-1)

In Fig. 6.1, the two DPD modules work together to execute a dual-band predistortion
function that pre-processes the two input CC envelopes according to the following equations

Ny J1 My Wi

Ty =222 2 WimaPisme (B1(0), Ta(n) (6.2)

No Jo My Vo

B = DD DD (). Ta) (63

where gp}mm’v and gp?mm’v represent the basis functions of the DPD modules correspond-
ing to each band and N; and J; (resp. Ny and Jy) represent the nonlinearity orders of the
inter-band and cross-band distortion in the first (resp. second) band DPD module. M;
and V] (resp. M, and V3) represent the memory depths of the inter-band and cross-band
distortion in the first (resp. second) band DPD, and 4, ,, , and @7, , denote the two DPD
models’ coefficients. Equations 6.2 and 6.3 can be rewritten in vector form as follows:

T, = A'-Xi(n) (6.4)
ng = AQXQ(TL)

where A (vesp. A2 ) is a vector comprising all the coefficients Qi mo(resp. @i, )
of the first band DPD (resp. the second band DPD). X;(n) (resp. Xs(n)) is a vector
comprising all basis functions ¢;; ., (vesp. ¢7; ) . The vectors X;(n) and X,(n) are

computed in basis function generator module shown in Fig. 6.1.

It is to note that the proposed approach enables the reuse of the pre-computed basis
functions vectors X;(n) and Xs(n) in the two DPD engines and training branches. In Fig.
6.1, Xpyr(n) is the basis functions vector for the band under linearization and can be
equal to either X;(n) or Xy(n) depending on the setting of the band selection module.

Different dual-band DPD schemes [61, 93, 84, 87] have used various forms of basis
functions ¢} ; ., and 7, . In this work, for the purposes of illustration, the dual-band
baseband equivalent (BBE) Volterra model defined in [84] is used. However, the proposed
system in Fig. 6.1 can be applied to any of the dual-band DPD schemes reported in the
literature.

Next section provides details of the dual-band recursive least squares (RLS) algorithm
which was applied to identify the dual-band DPD coefficients using a single TOR path.
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6.2 RLS Based MRAC Learning Approach

An RLS estimation algorithm was chosen to recursively adjust the DPD coefficients
using (6) until cost function, J, [92] is minimized.
2
(6.6)

In 6.6, dpyr(n) is the linearization error defined in 6.1, Apyr and X (n) are two vectors
comprised of the DPD modules’ coefficients and basis functions, respectively. AApyy
denotes the DPD coefficients estimation error.

J = min <Z ‘dBUL(n) — AABUL . XBUL(n)t

As the band selection module switches between the different bands, the corresponding
blocks of data, which are formed by the input CC Zpyy (n), the basis functions Xppy(n)
and the output CC ypyy (n), are used to estimate the corresponding DPD coefficients. In
each iteration, the estimated DPD coefficients error AABUL is exploited to compute the
new estimate of the DPD coefficients Agp, using a forgetting factor v according to 6.7.

Aprr(g+1) = Apyr(q) — - AApyy, (6.7)

The details of the developed dual-band RLS algorithm are presented in Algorithm I.
The vector W (n) represents the estimated error in the DPD’s coefficients vector and matrix
P is referred to as the inverse correlation matrix. The coefficients vector and the inverse
correlation matrix are initially set to be equal to W(0) = [1,0,...,0] and P(0) = A .1,
where [ is the identity matrix and A = 1le5. The gain vector G(n) is computed for each
time instance as

P(n) - Xpyr(n)'
G(n) = 1+ Xpyr(n) - P(n) - Xpyr(n)t

This gain vector is multiplied by the a priori estimation error d(n) — Xpgyr(n) - W(n)
and added to the coefficients vector to update the coefficients.

Wi(n+1)=W(n)+ G(n) - (dn) — Xpyr(n) - W(n))

Once the coefficients have been updated, the inverse correlation matrix is updated, and
the estimation resumes with the new input CCs samples.

Pn+1)=(I —G(n) - Xpur(n)) - P(n)
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A = 1eb
B A[l,O,...,O] ifq=0
wio) _{ Apur(q—1)if ¢#0 }

PO)=A-1
form=1:Q
_ P(n)-Xpyr(n)?
G(n) ~ 1+XpuL(n)-P(n)-Xpur(n)t

Pn+1)= (I —-G(n) - Xpur(n)) - P(n)
d(n) = ypur(n) — Tpyr(n)
M;(n +1) =W(n)+G(n) - (dn) — Xgur(n) - W(n))
) Apyp =W(Q+1)
Apur(q+1) = Apur(q) —v - AApur

Algorithm T: RLS algorithm applied to MRAC learning approach

6.3 Experimental Validation

The performance assessment of the proposed approach was conducted here by applying
it to linearize a PA under test fed with dual band signal. The measurement setup includes
two vector signal generators (ESG3348C from Agilent Technologies) and Vector signal
analyzer (PXA 9030A from Agilent Technologies) and a host computer that runs the
RLS estimation algorithms and emulates the dual DPD engine. The device under test
(DUT) was a 20W class F Doherty PA driven by CA signals. In addition the linearization
performance of the proposed single TOR and single TE DPD system and the RLS/MRAC
learning approach was compared to a conventional DPD system that exploits two TOR
paths and two training engines together with a LSE/STR indirect learning approach. In
the following experiments, an inter-band CA signal formed by a 15 MHz WCDMA signal
at 1.8GHz and a 15 MHz LTE signal at 2.1 GHz was synthesized and served as first stimuli.
As a second test signal, an intra-band CA signal was formed by a 15 MHz WCDMA signal
at 1.96 GHz and a 20 MHz LTE signal at 2.035 GHz. The BBE Volterra based dual band
DPD model which was used in these experiments has a nonlinearity order and memory
depth equal to 7 and 3, respectively.

The PA output spectra obtained using the first test signal, with and without DPD, are
shown in Fig. 6.2. According to Fig. 6.2, the proposed DPD system succeeded to cancel
the out of band emission yielding an adjacent channel leakage ratio (ACLR) of better
than -50dBc in both bands. Furthermore, as per Fig. 6.3, the proposed DPD system
necessitated about 4 iterations, per band, in order to converge to the lowest error vector
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magnitude (EVM) and ACLR values. In contrary, the DPD system that employed two
TOR paths converged only after 2 iterations. Similar linearization results were obtained
using the second test signal and shown in Fig. 6.4-6.5.

Hence one can conclude that the proposed single TOR and single TE DPD system along
with RLS/MRAC algorithm provided a good trade off between arithmetic complexity and
convergence speed with out compromising the linearization capacity.
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Figure 6.2: Linearization results for Class F Doherty PA driven by (upper) 15 MHz
WCDMA signal @ 1.8 GHz and (lower) 15 MHz LTE signal @ 2.1 GHz
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Chapter 7

Conclusion

The carrier aggregation concept was recently adopted by wireless communication stan-
dardization bodies to meet the need for wider band communication signals and better
spectrum resource utilization. The component carriers are either deployed in the same com-
munication band (i.e., intra-band carrier aggregation), or distributed over widely spaced
frequency bands (i.e., inter-band carrier aggregation). Being dependent on the component
carriers’ frequency separation and requiring unpractical sampling rates, carrier aggregated
signals challenged the application of conventional DPD and CFR techniques. This thesis
proposed novel behavioral modeling schemes and CFR techniques which are independent
of the component carriers’ separation and run at low sampling rates.

A second challenge introduced by carrier aggregated signals, is the projected use of
up to five component carriers requiring an equal number of predistorters, TORs and TEs.
This thesis proposed a joint optimization approach for predistortion and a time sharing
solution for the TOR and TE.

A summary of the different novel contributions made by this thesis work are presented
in the following sections.

7.1 Summary of Contributions

The first research contribution is a novel CFR technique for carrier aggregated signals.
The conventional SISO CFR approach was discussed and proven to be unsuitable for carrier
aggregation scenarios. A peak estimator was proposed to enable CFR implementation with
a significant decrease in the sampling rate proportional to the maximum of the bandwidth of
the two carriers rather than the spacing between them. The proposed solution was extended
to address carrier aggregation scenarios where the power levels and EVM requirements of
the individual CCs are different. The proposed approach was also extended to the case of
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an arbitrary number of CCs. The proposed solutions were demonstrated using multi-band
carrier aggregated signals composed of LTE and WCDMA signals. The proposed approach
appears suitable for driving RF PAs at higher efficiency and with effective average power.

Next, a novel BBE Volterra series formulation for the behavioral modeling of PAs was
proposed. The model was developed by modeling the RF PA input-output behavior, then
equating and demodulating both the input and output passband signals to baseband. The
novel formulation is inherently compact and calls for significantly fewer coefficients then
its LPE counterpart and, therefore, avoids the accuracy compromising pruning transfor-
mations widely applied to classical formulations in the literature. The experimental val-
idation proved the excellent modeling and linearization performance of the novel method
when compared to the classical non-pruned Volterra model. The new formulation also
outperformed pruned Volterra models while using a lower number of coefficients.

Utilizing the single-band BBE Volterra model, a novel DIDO BBE Volterra series pre-
distorter was proposed to linearize a dual-band PA driven by a carrier aggregated signal.
Starting with a real-valued, continuous-time, pass-band Volterra series, and using a number
of signal and system transformations, a low complexity complex-valued and discrete BBE
Volterra formulation was derived. While the proposed formulation included all possible
distortion terms, it involved fewer kernels than its 2D-DPD counterpart. The proposed
model was successfully applied to digitally predistort and linearize a dual-band 45 W class
AB GaN PA driven with different dual-band dual-standard test signals. For each band,
the model needed less than 25 coefficients to reduce the ACLR by up to 25 dB.

Research efforts then targeted the efficient hardware implementation of the predistor-
tion algorithm. An automated symbolic optimization methodology was proposed to opti-
mize the arithmetic representation of Volterra based predistortion schemes. When used in
conjunction with fixed point conversion tools and HLS tools, the proposed approach en-
abled an automated reduction of the predistortion hardware implementation burden. The
proposed approach was applied to single- and dual-band BBE Volterra series schemes and
used to linearize a 45W GaN PA driven by single and carrier aggregated signals. The pro-
posed methodology yielded an HDL code for the Volterra based DPD that is manageable
with typical commercial FPGAs and allowed the reduction of the total number of MAC
operations from 584 to 161 in the case of the single-band BBE Volterra and from 2256 to
375 in the case of the dual band BBE Volterra.

The final contribution of this thesis is a 1-TOR/1-TE architecture for adaptive real-time
predistortion of PAs driven by carrier aggregated signals. An RLS/MRAC observation and
TE was proposed to alternately estimate and adapt each of the component carriers’ pre-
distorter coefficients. The presented concept was used to linearize a 20 W Class F Doherty
PA under different multi-standard carrier aggregated signals with different bandwidths and
frequency separations.
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7.2 List of Publications

Refereed Journal Papers

1. B. Fehri, S. Boumaiza, “Baseband Equivalent Volterra Series for Digital Predistor-
tion of Dual-Band Power Amplifiers,” IEEE Transactions on Microwave Theory and
Techniques, vol. 60, no. 3, pp. 700 714, Mar. 2014.

2. B. Fehri, S. Boumaiza, “Baseband Equivalent Volterra Series for Behavioral Mod-
eling and Digital Predistortion of Power Amplifiers Driven With Wideband Carrier
Aggregated Signals,” IEEE Transactions on Microwave Theory and Techniques, vol.
62, no. 11, pp. 2594 — 2603, Nov. 2014.

3. B. Fehri, S. Boumaiza, “Crest Factor Reduction of Inter-band Multi-standard Carrier
Aggregated Signals,” IEEE Transactions on Microwave Theory and Techniques, vol.
62, no. 12, pp. 3286 - 3297, Dec. 2014.

4. B. Fehri, S. Boumaiza, “Single Transmitter Observation Receiver with Single Training
Engine for Linearization of Multi-band Power Amplifiers,” IEEE Transactions on
Microwave Theory and Techniques, in review.

Conference Papers

1. B. Fehri, S. Boumaiza, “Systematic Estimation of Memory Effects Parameters in
Power Amplifiers’ Behavioral Models,” IEEE MTT-S International Microwave Sym-
posium, pp. 1-4, Baltimore MD, Jun. 2011.

2. B. Fehri, S. Boumaiza, “Joint Dual-band Crest Factor Reduction and Digital Predis-
tortion of Power Amplifiers Driven by Inter-Band Carrier Aggregated Signals,” IEEE
MTT-S International Microwave Symposium Digest, pp. 1 4, Tampa Bay FL, Jun.
2014.

3. B. Fehri, S. Boumaiza, “Automated Symbolic Optimization and High Level Synthesis
of Single- and Multi-band Digital Pre-distortion Hardware in an FPGA,” IEEE MTT-
S International Microwave Symposium, pp. 1-3, Phoenix AZ, May 2015.

Patent Applications

1. B. Fehri, S. Boumaiza, and E. Sich, “Crest Factor Reduction of Inter-band Multi-
Standard Carrier Aggregated Signals,” Country US, Provisional Application No:
61/886,317, File Date October 3, 2013.
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2. B. Fehri, and S. Boumaiza, “Baseband Equivalent Volterra Series for Digital Predis-
tortion in Multi-band Power Amplifiers,” Country US, Provisional Application No:
61/886,907, File Date October 4, 2013.

3. B. Fehri, and S. Boumaiza, “Baseband Equivalent Volterra Series for Behavioral Mod-
eling and Digital Predistortion of Wideband Transmitters,” Country US, Provisional
Application No: 61/887,012, File Date October 4, 2013.

4. B. Fehri, and S. Boumaiza, “Method and Apparatus for Multi-band Predistortion
Using Time-Shared Adaptation Loop,” Country US, File Date March 31, 2015.

7.3 Future Work

LTE-A standards project the use of up to five component carriers’ communication sig-
nals. These component carriers can be deployed in different intra-band and inter-band
aggregation scenarios. The radio unit is expected to support flexible deployment in terms
of the number of component carriers, center frequencies and output power. The different
processing units, among them the CFR and DPD modules, impose contradictory require-
ments on handling the different component carriers as intra-band or inter-band signals.
Radios can be over-designed to handle the different scenarios separately, and inefficiently.
A close examination of the different deployment scenarios should identify an adequate
approach for efficient hardware implementation.

Predistortion models and CFR techniques are also challenged in pico and femto cells
scenarios. Their power consumption currently makes them inefficient for use in small cells.
The investigation of low power analog predistortion and CFR circuits may enable those
techniques to be altered and made appropriate for use in small cell radios.

Above all, research work towards 5G standards predicts a massive deployment of MIMO
systems. Dedicating one CFR and DPD module per antenna would be impractical. Inno-
vative approaches must be developed.
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