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Abstract

Arbitrage is a widely sought after phenomenon in financial markets: profit without any

risk is very desirable. Statistical arbitrage is a related concept: the idea is to take advan-

tage of market inefficiencies using statistical techniques and mathematical models. It is by

no means risk-free however. We focus on the statistical arbitrage technique ”pairs trad-

ing” utilizing both cointegration and minimum distance pairs. We discuss the algorithms

involved and simulate these based on data from the NASDAQ 100.

There have been recent forages into financial applications and time series with wavelets.

However, ideas surrounding pairs trading through the use of wavelets have been little to

non-existent. Our contribution is the application of wavelets and costationarity as an ap-

proach to pairs trading. We applied the concept of estimating the evolutionary wavelet

spectrum, which is analogous to the spectrum for time series but for wavelets. Following

the estimation of the evolutionary wavelet spectrum, we find variance stationary linear

combinations of the differenced stock prices. This is essentially the concept of costation-

arity: finding variance stationary linear combinations from non-stationary processes using

time-varying coefficients. We then compare the results of the application of the costation-

arity method to the minimum distance method and to the cointegration method. We find

that there are significant improvements on the minimum distance method, but that it does

not have a large improvement over the cointegration method.
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Chapter 1

Introduction

In this chapter, we will introduce basic concepts regarding time series and the idea of pairs

trading, including the three main approaches used in this particular type of statistical

arbitrage.

1.1 Time Series

In the analysis of time series, we wish to discover temporal relationships in our data. For

this reason, we study stochastic processes.

Definition 1. A stochastic process Xt is described as weakly stationary if its mean and

variance are constant, and if its autocovariance only varies with the length of the time

interval. That is, a stochastic process Xt is weakly stationary if for all t and any s,

E [Xt] = E [Xt−s] = µ

E [(Xt − µ)2] = E [(Xt−s − µ)2] = σ2

E [(Xt − µ)(Xt−s − µ)] = γs ,

(1.1)

where µ, σ2, and γs are constants.

1



Definition 2. A stochastic process {Xt}∞t=−∞ is a sequence of random variables that is

indexed by time. In contrast to sampling data from a population where the random

variables are independent, the ordering of the random variables is very important here

because we wish to capture the dependence between observations.

Definition 3. Let Xt ∼ i.i.d.(0, σ2). Then {Xt}∞t=−∞ is known as a white noise process

with E [Xt] = 0, Var [Xt] = σ2, and Cov (Xt, Xt−s) = 0 for all t 6= s and is denoted by

WN(0, σ2).

Definition 4. A stochastic process Xt is an autoregressive process of order p, or an AR(p)

process if it can be written in the form

Xt − µ = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt,

where µ is a constant and εt is a i.i.d. WN(0, σ2) process.

The lag operator L can be defined as the following:

LkXt = Xt−k.

This AR(p) process Xt can be written as:

Φ(L)Xt = µ+ εt,

where Φ(L) = 1− φ1L
1 − φ2L

2 − ...− φpLp.

For this AR(p) process to be stationary, the roots of the equation

1− φ1L
1 − φ2L

2 − ...− φpLp = 0

must not lie on the unit circle.

A stochastic process Xt is a moving average process of order q, or an MA(q) process if

it can be written in the form

Xt − µ = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q,

where µ is a constant and εt is a i.i.d. WN(0, σ2) process.
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An AR(p) process uses past data to model the current data. This results in correlation

between the past and present at each point in time, and as a result, the autocorrelation

function decays to zero gradually. However, the MA(q) process is advantageous when

correlation is only required for very few lags. When both AR(p) and MA(q) processes are

used together to model a time series, the result is an ARMA(p, q) process.

Definition 5. A stochastic process Xt is an autoregressive moving average process with

paramaters p, q, or an ARMA(p, q) process if it can be written in the form

Xt − µ = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q,

where µ is a constant and εt is a i.i.d. WN(0, σ2) process.

Often, time series are not stationary. As the AR(p), MA(q), and ARMA(p, q) processes

are used to model stationary series, it is useful to make data stationary before modelling.

This can be done through the process of differencing the process.

Definition 6. The first difference of a stochastic process Xt is defined as:

∆Xt = Xt −Xt−1,

and for any d ≥ 1, the dth order difference is defined as:

∆dXt = ∆ (∆d−1Xt)

A stochastic process is integrated of order d if the dth order difference of Xt is a weakly

stationary process.

Definition 7. A stochastic process Xt is said to be an autoregressive integrated mov-

ing average model with parameters p, d, q, or an ARIMA(p, d, q) process, if ∆dXt is an

ARMA(p, q) process.
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1.1.1 Wiener Processes

We will briefly discuss Wiener processes, as the stocastic spread method of pairs trading

uses stochastic calculus.

The weak form of the efficient market hypothesis states that future prices cannot be

predicted from the past
(
Ross et al. (2013)

)
. Whether or not this is true in the markets

today, it is one of the assumptions that Markov processes model well.

A Markov process is a type of stochastic process where only the present value of a

variable is relevant for predicting the future
(
Hull (2009)

)
. A Wiener process {Zt} has the

following properties:

Property 1. (Increments are independent)

For all 0 = t0 < t1 < ... < tm, the increments

Zt1 − Zt0 , Zt2 − Zt1 , ..., Ztm − Ztm−1

are independent.

Property 2. (Increments are normal)

The increments Zt − Zs are independent normally distributed with

Zt − Zs ∼ N(0, t− s) ,

for any 0 < s < t.

Property 3. Zt is continuous in t.

The continuous case generalized Wiener process Xt which can be defined by the follow-

ing stochastic differential equation:

dXt = a dt+ b dZt ,
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where a and b are constants, and where Zt is a Wiener process on some defined probability

space.

The constants a and b describe the mean change per unit of time and variance per unit

time respectively. These are known as the drift of the process and the diffusion of the

process respectively.

A process Yt is called an Ito process if it can be represented in the following form:

dYt = at dt+ bt dZt .

Note that now at and bt are functions of t, and hence, can be also functions of Yt. Yt is

also known as an Ito diffusion.

A particular type of Ito processes has the very useful property of being able to model

mean reversion, which is exactly what is desired in pairs trading. These processes, known

as Ornstein-Uhlenbeck processes, have the following form:

dYt = θ(µ− Yt) dt+ σ dZt . (1.2)

Mean reversion occurs in the state variable Y . This can be seen in the drift term θ(µ−Yt).
If Yt < µ, the drift is positive. If Yt > µ, the drift is negative. In both cases, Yt moves

towards µ at a speed of θ.

1.2 Pairs Trading

The idea of arbitrage has been identified and researched heavily by hedge funds for many

years. The possibility of positive returns on investments without any risk has garnered huge

amounts of interest in both the industry and the academic world. Statistical arbitrage is

a related concept, although it is not risk-free by any means. The idea is to take advantage

of market inefficiencies using statistical techniques and mathematical models.

One of the most basic investment practices is to buy a stock long: taking an ownership of

a unit of stock and hoping that the stock appreciates in value. Another form of investment
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is to short sell a stock. Short selling involves the borrowing of a stock, selling it at the

current time, and a promise to return the stock back to its original owner at a later time.

The stocks to be returned are purchased at a later date, with a possibly different price.

Of course, the profit potential here is that the short-seller expects the price of the stock

to drop, resulting in a positive difference between the sold stocks at the beginning and the

stocks repurchased at a later date.

Pairs trading, one of the many techniques in statistical arbitrage, involves choosing two

stocks which have very similar historical price movements. If at any point the two stock

price movements diverge significantly from each other, there is an opportunity for profit if

the prices are expected to converge back to a long-run equilibrium eventually. At a point

of divergence, the overvalued stock is sold short and the undervalued stock is bought in a

long position. When they converge back to their equilibrium, the positions are closed and

the profit is realized.

Jacobs and Levy (1993) state that long/short equity strategies can be split into three

categories: market neutral, equitized, and hedge strategies. Market neutral strategies

attempt to eliminate market exposure to systematic risks, while profiting from the excess

returns from both the long position and the short position versus a benchmark index. These

excess returns are referred to as alphas. The systematic risks can be quantified through

betas. The other two long/short strategies attempt to earn returns on not only the two

alphas, but also a return on the beta. Market neutral strategies maintain a portfolio beta

of zero. There is less risk, but also less return involved. Fung and Hsieh (1999) state that

market neutral funds actively seek to avoid major risk factors, but take bets on relative

price movements. Pairs trading is attributed to being a market neutral strategy by Nath

(2003) and Vidyamurthy (2004). Alexander and Dimitriu (2002) demonstrate it is possible

to create a market-neutral strategy using cointegrated pairs of stock not with each other,

but with the index.

Pairs trading is not a new concept. Since the mid-1980s, when Nunzio Tartaglia and her

group of academics started researching arbitrage opportunities in the market, this technique
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has been used in hedge funds ever since (Vidyamurthy (2004)). To this day, three main

approaches towards pairs trading have been consistently referenced: the minimum-distance

method, the stochastic spread method, and the cointegration method.

1.2.1 Minimum-Distance Method

Gatev et al. (2006) introduced a method of selecting the pair of stocks based on two steps;

first constructing an index of cumulative total returns for a number of liquid stocks, and

then finding a second stock by minimizing the sum of squared differences between the two

normalized price series. A normalized price series is obtained as follows: having each price

series start at 1, and each following value of the series is generated from the returns of the

stock. This is the first stage of their pairs trading implementation; they call this stage the

pairs formation stage which takes place over a period of 12 months.

The second stage of the implementation is called the trading period, where the pairs

with the smallest distances are used to trade over a period of 6 months. The trading rule

Gatev et al. (2006) propose is to open a position in the pair when the prices diverge by

more than two historical standard deviations. When the prices meet again, they will close

the position. If the prices do not meet, the positions are closed at the end of the trading

period. One dollar worth of the higher priced stock is sold short, and one dollar worth of

the lower priced stock is bought long.

Nath (2003) also administered an alternative version of the minimum-distance method.

For each stock, the sum of squared differences of the normalized prices is recorded between

every other stock. When the price difference is greater than the 15th percentile of all the

other differences, the long/short positions are opened. When the price difference hits the

median or the trading period is over, the positions are closed. Nath (2003) also considers

risk management in the form of a stop-loss trigger. When the price difference hits the 5th

percentile, the positions are automatically closed to prevent any further loss.

As it is mentioned by Do et al. (2006), the issue with the minimum-distance method is
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that there is an assumption that the price level difference is level through time. However,

this is only the case in short periods of time with pairs of securities in which the risk and

returns are very similar. Do and Faff (2010) also mention that the profits of this strategy

have been declining, for the reason that many pairs do not converge together within their

specified trading period. Do and Faff (2012) also measure whether pairs trading is viable

after considering transaction costs. The results are not very positive; pairs trading is

unprofitable on average. However, better matched pairs that are formed within refined

industry groups are mildly profitable.

1.2.2 Stochastic Spread Method

The stochastic spread method is an attempt by Elliott et al. (2005) to introduce a para-

metric model for pairs trading. The observed spread Yk, which is defined as the difference

between two prices, is modelled by the discrete process

Yk = Xk +Dωk , (1.3)

for k = 0, 1, 2..., where the ωk are i.i.d. N (0,1) and D > 0.

The state variable Xk follows a discretized Ornstein-Uhlenbeck process at time tk = kτ

for k = 0, 1, 2, ... :

Xk+1 −Xk = τb
(a
b
−Xk

)
+ σ
√
τ εk+1 , (1.4)

where the εk are i.i.d. N (0,1) and independent of the ωk in 1.3 , a ∈ R, b > 0, σ ≥ 0, and

τ > 0 is the time step.

Then Xk ∼ N(µk, σk), where

µk =
a

b
− a

b
(1− bτ)k + (1− bτ)kµ0

σ2
k = σ2τ

[
1− (1− bτ)2k

1− (1− bτ)2

]
+ (1− bτ)2k σ2

0 .
(1.5)
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As k →∞,

µk =
a

b

σ2
k =

σ2τ

1− (1− bτ)2
.

(1.6)

as long as τ > 0 and |1− bτ | < 1.

Equation 1.4 can also be written in the form:

Xk+1 = A+BXk + Cεk+1 . (1.7)

with A = aτ , 0 < B = 1− bτ < 1, and C = σ
√
τ .

Equations 1.3 and 1.7 are transition and measurement equations that are linear and

Gaussian, which means that they can be used with the Kalman filter procedure. The

Kalman Filter procedure is used by Elliott et al. (2005) to calculate the linear least square

forecasts of the state vector Xk with the observed data through k:

X̂k+1|k = Ê [Xk+1|γk] . (1.8)

where γk = (yk, yk−1...y1, xk, xk−1, ..., x1).

The forecasts are calculated recursively, with X̂1|0 being generated first, followed by

X̂2|1, X̂3|2, ...X̂k|k−1. The values of A,B,C, and D are estimated with the E-M Algorithm,

as detailed by Shumway and Stoffer (1982).

Instead of using the discretized Ornstein-Uhlenbeck process as in 1.7, it is also pos-

sible to start with the continuous version Xkτ where {Xt|t ≥ 0} satisfies the stochastic

differential equation

dXt = θ(µ−Xt) dt+ σ dZt . (1.9)

Do et al. (2006) build on this method in their paper, and then discretize the transition

equation to facilitate econometric estimation in a state space setting. One of the advantages

of doing this is that there are explicit results for the first passage times for the standardized

Ornstein-Uhlenbeck process.
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The observation process is given by:

Yt = Xt +Dωt . (1.10)

As before, the mean-reversion in the spread is modelled by Xt and noise is modelled

through ωt. The model suggested by Elliott et al. (2005) is known as the Vasicek model

for modelling interest rates. One of the primary concerns when modelling interest rates

with the Vasicek model is that the model produces negative results, which is not seen in

reality. However, this is not of concern here as the spread can definitely take on negative

values while trading.

The model is very useful because there are closed form solutions for the conditional

expected time and variance in a Vasicek model, given the current spread. This is shown

below. For a function f(Xt, t) = Xte
θt, applying Ito’s lemma results in

df(Xt, t) = eθt dXt + θxte
θt dt,

and from Equation 1.2,

df(Xt, t) = µθeθt dt+ σeθt dZt .

Taking the integral from 0 to t on both sides,

Xte
θt −X0 =

∫ t

0

µθeθs ds+

∫ t

0

σeθs dZs .

So

Xt = X0e
−θt + µ(1− e−θt) +

∫ t

0

σeθs dZs . (1.11)

Furthermore, taking the conditional expectation of Xt given X0 results in has

E [Xt|X0] = X0e
−θt + µ(1− e−θt).

The conditional variance is derived as follows:

Var

(
Xt|X0

)
= Var

(∫ t

0

σeθ(s−t)dZs

)
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= E

[
(σ

∫ t

0

eθ(s−t)dZs)
2

]
(1.12)

= E

[
σ2

∫ t

0

e2θ(s−t)ds

]
(1.13)

=
σ2

2θ
[1− e−2θt] ,

where 1.12 to 1.13 is a result of Ito’s isometry.

The discretized version of Equation 1.11 is

Xk = Xk−1e
−θ∆ + µ(1− e−θ∆) + εk , (1.14)

where ∆ is the time interval in years between two observations.

The discretized time measurement equation is

Yk = Xk +Dωk .

These two discretized transition and measurement equations are linear and Gaussian,

which means that they can be used with the Kalman filter procedure to get optimal esti-

mates of the parameters θ, µ, σ,D.

Do et al. (2006) mention that this model is too restrictive as it assumes that the stocks

will always return to equilibrium in the long run. This greatly restricts the number of

plausible stocks available for the statistical arbitrage. Do et al. (2006) propose a model

that generalizes the current stochastic spread model, the stochastic residual spread model.

In the stochastic residual spread model, there is an assumption that there is an equilib-

rium in the relative valuation of the two stocks measured by some spread. Any mispricing

can be quantified by a residual spread function G(RA
t , R

B
t , Ut), where RA

t and RB
t are the

returns of the two stocks, and Ut denotes an exogenous vector that may be needed to create

the equilibrium.
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The state space representation is very similar to the previous model 1.9, with the state

being driven by Xt, the state of mispricing:

dXt = θ(µ−Xt) dt+ σ dZt , (1.15)

and the observed mispricing:

Yt = Gt = Xt +Dωt . (1.16)

The difference here is that the observed mispricing G is driven by the Arbitrage Pricing

Theory from Ross (1976). The APT model describes the return of a risky asset as the sum

of the risk premiums times the exposure to each factor and the risk free rate. Do et al.

(2006) assert that the relative APT on two stocks can be written as

RA
t = RB

t + Γrmt + et , (1.17)

where rm = Rm−rf denotes the excess of market return over the risk free rate, Γ = βA−βB,

where βA and βB describe the movement of A and B to the market, and et is a residual

noise term.

The residual spread function is then defined as:

Gt = G (RA
t , R

B
t , Ut) = RA

t −RB
t − Γrmt . (1.18)

The discrete state space model is then constructed with the transition equation being:

Xk = Xk−1 e
−θ∆ + µ(1− e−θ∆) + εk , (1.19)

and the measurement equation:

Yk = Xk + Γrmk +Dωk . (1.20)

Again being a linear and Gaussian state space model, the Kalman Filter and the E-M

Algorithm can be used to estimate the linear least square forecasts of the state vector and

the parameters of the state-space system.
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1.2.3 Cointegration Method

The following section is focussed on the main topic of this thesis: the cointegration method.

First is a discussion on the problems of using correlation in pairs trading, followed by a

historical review of the cointegration approach and its limitations.

Discussion on Correlation

Using the concept of correlation has been a staple in investment analysis, being used

extensively in both portfolio and risk management. However, the theory for correlation

only works for stationary processes. Alexander and Dimitriu (2002) mention that the use

of correlation analysis in many financial applications means that valuable information is

lost in the process of making financial time-series stationary. This might occur in the

process of taking the first differences of log prices so that all analysis is done on returns of

assets instead of on the prices themselves. One advantage of using cointegration instead of

correlation, is that cointegration allows the usage of all the information from the financial

variables. Furthermore, a cointegration relationship characterizes the long run relationship

of the time series’ involved, whereas correlation is usually only a short run measure.

As such, pairs trading, which is predicated on the hypothesis that the stocks chosen

have similar price movements in the long run, is clearly more suited to cointegration rather

than correlation analysis.

Cointegration

Similar to the method proposed by Elliott et al. (2005), the cointegration method attempts

to use statistics to show that a pair of stocks can have a mean-reverting return with the

concept of cointegration, introduced by Engle and Granger (1987). For two time series

that are integrated of order d, if there is a linear combination of the two that results in a

time series of order (d− b), b > 0, then the two time series are cointegrated of order (d,b),
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which can be written as CI(d, b). The most relevant case to pairs trading occurs when

d = b = 1, which results in a stationary time series as the linear combination is integrated

of order 0 (i.e. a stationary time series).

Because a weakly stationary process has a constant mean and a constant variance across

time, when the process departs from the mean, it is expected to revert back eventually.

The constant variance also restricts the process from departing too far from the mean.

We refer to this property as mean-reversion. Hence, for a pair of cointegrated stocks, it

is expected that the spread generated by the linear combination of the two stocks will be

mean-reverting. A trading position of shorting the spread will then be taken when the

spread is above its historical mean, and closed when it reverts back to the mean. Similarly,

a long position in the spread will be taken when the spread is below its historical mean,

and closed when it reaches the mean.

Engle and Granger (1987) also introduced the idea of capturing the dynamics of cointe-

gration with an error correction model (ECM). In this model, there is an assumption that

the two time series have a long-run equilibrium. If either of the time series move away from

this equilibrium, the error correcting term will force a return towards the equilibrium. The

error correction model representation is represented by:

∆Yt = λ0 + γY (Yt−1 − α− βXt−1) +
t−1∑
i=1

λY,i ∆Yt−i +
t−1∑
i=1

λX,i ∆Xt−i + εY,t

∆Xt = ψ0 + γX (Yt−1 − α− βXt−1) +
t−1∑
i=1

ψY,i ∆Yt−i +
t−1∑
i=1

ψX,i ∆Xt−i + εX,t ,

(1.21)

where λ0 and ψ0 represent the deterministic trends in the time series, Yt−1 − α − βXt−1

represents the long-run equilibrium, the γ term represents the speed at which the time

series reverts to the long-run equilibrium, the sums represent short-run lag dynamics, and

the ε terms are white-noise. The γ terms must be opposite in sign to facilitate the return

to the long-run equilibrium.

Given that the two time series are cointegrated, this model allows for simple forecasts

given the past data. The essential step is then to ensure that the two time series are coin-
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tegrated. This is done using the Engle and Granger 2-step approach
(
Engle and Granger

(1987)
)
. A regression is first performed with the two time series integrated of order 1:

Yt = α + βXt + εt for t = 1...T . (1.22)

The β term is known as the cointegration coefficient. The second step is that the estimated

residuals ε̂t from the regression are tested for stationarity using the Augmented Dickey-

Fuller test.

It is worth noting that if the variables Yt and Xt are cointegrated, it has been shown by

Stock (1987) that the OLS estimates of α and β converge to their true values faster than

the OLS estimates in the case where Yt and Xt are stationary variables. Hence Stock (1987)

has described this phenomenon as the regression yielding ”superconsistent” estimators for

α and β.

Augmented Dickey-Fuller Test

The Dickey-Fuller test was developed as a stationarity test. More specifically, Dickey and

Fuller (1979) consider three different regression equations that can be used to test for the

presence of a unit root. These regression equations represent a first-order autoregressive

process, as follows:

∆Yt = γYt−1 + εt (1.23)

∆Yt = a0 + γYt−1 + εt (1.24)

∆Yt = a0 + γYt−1 + a2t+ εt . (1.25)

These equations represent a random walk, a random walk with drift, and a random

walk with drift and a linear time trend respectively. The null hypothesis of γ = 0 is

tested through the estimation of these regression equations by ordinary least squares. The

estimates, γ and its standard error, are used towards a t-statistic that is used in conjunction

with tables developed by Dickey and Fuller in the testing of this hypothesis.
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The regression equations 1.23, 1.24, and 1.25, are extended in the Augmented Dickey-

Fuller (ADF) test. They incorporate multiple lags of the time series in the regression:

∆Yt = γYt−1 +

p∑
i=2

βi ∆Yt−i+1 + εt (1.26)

∆Yt = a0 + γYt−1 +

p∑
i=2

βi ∆Yt−i+1 + εt (1.27)

∆Yt = a0 + γYt−1 + a2t+

p∑
i=2

βi ∆Yt−i+1 + εt . (1.28)

The additional lags incorporated here are intended to render the residuals approx-

imately independent. This is to facilitate the critical values tabulated by Dickey and

Fuller, as those tables are simulated under the assumption of i.i.d. residuals. The issue of

incorporating moving average components is not a problem. An invertible MA model can

be represented by an AR model, and Ross (1984) showed that an unknown ARIMA(p, 1, q)

process can be well approximated by an ARIMA(n, 1, 0) autoregression of order n. The

selection of lag length can be determined by an information criterion such as the AIC.

A disadvantage of using the Engle-Granger two step method is that it is often not

known which series should be chosen as the independent variable in the regression and

which should be the dependent variable. Depending on the choices in this regard, the

cointegration coefficient changes and testing takes much longer in overall procedure as

testing for valid pairs is typically done on a vast number of assets. Phillips and Ouliaris

(1990) and Johansen (1988) have proposed different tests which are independent of this

choice. We will discuss the Johansen test in more depth later.

For a test of cointegration, recall that we have generated the estimated residuals from

Equation 1.22, ε̂t. Then the typical test for stationarity is of the autoregressive form:

∆ ε̂t = a1 ε̂t−1 + et . (1.29)
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As the residuals are being generated from a regression, there is no need for an intercept

term. The null hypothesis for the test is then a1 = 0. If this can be rejected, then the

residuals can be concluded to be stationary, and hence, the two time series are cointegrated

of order (1,1).

As mentioned previously, the additional lags in Equations (1.26), (1.27), and (1.28) are

incorporate to render the residuals approximately independent so that the tables simulated

by Dickey and Fuller can be used. However, another problem arises from the testing of

stationarity of the residuals from a cointegrating regression.

Often in practice, when testing the residual time series obtained from the cointegrating

regression for stationarity, it is not possible to use the Dickey-Fuller tables. This is because

the residuals are being estimated, and as the values of α and β are minimizing the sum of

squared residuals, the residuals are biased towards stationarity. This is a major problem

when the number of variables used in the regression varies and when the sample size is

small. MacKinnon (1990) developed critical values towards this issue using response surface

analysis for any finite sample size.

Johansen Cointegration Test

As noted before, the Engle-Granger two step method has a disadvantage: it is not certain

which of the variables should be picked as the the cointegrating regressor and which should

be picked as the regressand. Additionally, the residuals are being estimated from the

regressions, which has required the use of different critical values than the standard t-

tables offer. Johansen (1988) developed a procedure that relies on maximum likelihood

estimators and allows the testing for multiple cointegrating vectors. The procedure is a

multivariate generalization of the Dickey-Fuller test that utilizes the relationship between

the rank of a matrix and its characteristic roots.
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Consider the following:

∆Xt = A1Xt−1 −Xt−1 + εt

= (A1 − I)Xt−1 + εt

= πXt−1 + εt

(1.30)

where π = A1− I, Xt and εt are n× 1 vectors, A1 is an n× n matrix of coefficients, and I

is an n× n identity matrix.

Johansen (1988) showed that the rank of π is then the number of cointegrating vectors.

If rank(π)=0, then there exists no linear combination of the processes in Xt that are

stationary.

This can then also be generalized to allow for higher order autoregressive terms:

∆Xt = πXt−1 +

p−1∑
i=1

∆Xt−i + εt , (1.31)

where π = (
∑p

i=1Ai − I) and πi = −
∑p

j=i+1Aj.

The matrix π can be decomposed into the form of π = αβ′ of size p × r. β is the

matrix of cointegrating vectors and α represents the rate at which the variables return to

the long-run equilibrium in the form of error-correcting coefficients. The parameter p can

be selected again using maximum likelihood criterion such as the AIC.

The number of distinct cointegrating vectors is determined by checking the significance

of the characteristic roots of π. Johansen’s method involves finding the residuals e1t and

e2t from the following two regressions:

∆Xt = B1 ∆Xt−1 + ...+Bp−1 ∆Xt−p+1 + e1t

∆Xt−1 = C1 ∆Xt−1 + ...+ Cp−1 ∆Xt−p+1 + e2t .
(1.32)

Then the product moment matrices are calculated from these residuals: Sij = T−1
∑T

t=1 eite
′
jt.

The eigenvalues λi are obtained as the solutions to

|λiS22 − S12S
−1
11 S

′

12| = 0 . (1.33)
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These λ̂i are ordered such that λ̂1 > λ̂2 > ...λ̂n, which are then used towards two test

statistics Johansen derived. The first one, the trace statistic, tests the null hypothesis

under a restricted model that the number of distinct cointegrating vectors is less than or

equal to r against the alternative of the unrestricted model.

λtrace = −T
n∑

i=r+1

ln(1− λ̂i) , (1.34)

for r = 0, 1, 2, ...n− 1.

The second test statistic, the maximal eigenvalue statistic, is used to test the null

hypothesis of r cointegrating vectors against the alternative of r+ 1 cointegrating vectors:

λmax = −T ln(1− λ̂r+1) . (1.35)

The Johansen methodology is very useful for cases when there is a possibility of multi-

ple cointegrating vectors. However, for pairs trading, often the Engle-Granger two-step

methodology is preferred for its simplicity. Note also that given the Johansen cointegra-

tion test is a procedure using maximum likelihood estimation, it also assumes Gaussianity

on the distribution of the data. The Johansen cointegration test is therefore not an ideal

test to use on stock data.

Use of Cointegration in Pairs Trading

Vidyamurthy (2004) takes a variation on the Engle Granger 2 step approach in terms of

finding pairs of stocks suitable for pairs trading. Instead of requiring the residuals to be

stationary, Vidyamurthy (2004) only requires that they be mean-reverting. This is done

in two ways: modelling the residuals parametrically with a mean-reverting process such as

the ARMA process, or by measuring the number of times that the time series transitions

across its long time mean. This measurement of transitions is known as the number of

zero crossings of a time series. Vidyamurthy (2004) chooses not to define pairs for trading

using the strict rules of cointegration, because it limits the number of actual pairs in the

stock market that this strict definition can be applied to.
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This is a very interesting and valid point to make, but the criteria that Vidyamurthy

(2004) selects pairs with has a lot of room for error. In the worst case scenario, the

estimated mean-reverting spread series could be very different from the true series, making

any attempts at statistical arbitrage highly risky and potentially very unprofitable.

Lin et al. (2006) performed another study on pairs trading using the cointegration

methodology. Three assumptions were made about the pairs to simplify the arbitrage

strategy:

Assumption 1. The two-share price series are always cointegrated over the pairs trading

period;

Assumption 2. The long and short positions always apply to the same shares in the

share pair. For any trade, S1 always represents the short position while

S2 represents the long position;

Assumption 3. At the opening of any trade, the price for the shorted share S1 is always

higher than the price of the share in long position S2.

Define

NSk
(tj) is the number of shares of Sk at time tj

PSk
(tj) is the price of Sk at time tj

for k = 1, 2 and j = 0, c (where c is the time at the close of the positions).

At the opening of the trade, NS2(t0) shares of S2 are bought for NS2(t0)PS2(t0). NS1(t0)

shares of S1 are sold short to fund this purchase for a gain of NS1(t0)PS1(t0). At the close,

the shares of S2 are sold for NS2(tc)PS2(tc) and the shares of S1 are returned at a price

of NS1(tc)PS1(tc). It should be noted that the stocks being considered are non-dividend

paying stocks.

Thus the profit equation is given as

TPt = NS2(t0) [PS2(tc)− PS2(t0)] +NS1(t0) [PS1(t0)− PS1(tc)] . (1.36)
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Assuming that the trader wants a positive profit, there is a starting condition of TPt >

K > 0 where K is determined by the trader. Also the opening trades must be covered

entirely by the short-sell, so we need

NS1(t0)PS1(t0) ≥ NS2(t0)PS2(t0). (1.37)

Lin et al. (2006) define two conditions for opening and closing trades. These opening trade

conditions and closing trade conditions are denoted OTC and CTC respectively. The OTC

states that a trade can be opened if for a positive integer a,

PS1(t0)− β PS2(t0) = εt0 > a > 0 . (1.38)

This strategy requires β > 0, as we are selling S1 and using the funds from that to buy

βS2. In practice, this condition occurs in many cointegrated share price series, so it is not

very restrictive.

For both 1.37 and 1.38 to be true, a condition on the number of shares bought and sold

is needed. For a buyer to purchase β shares of S2, n shares of S1 must be sold short. For

n = 1, the initial outlay is then:

PS1(t0)− β PS2(t0) = εt0 > 0 (1.39)

The profit at time tc can also be calculated:

NS2(t0) [PS2(tc)− PS2(t0)] +NS1(t0) [PS1(t0)− PS1(tc)]

= β [PS2(tc)− PS2(t0)] + [εt0 + β PS2(t0)− εtc − β PS2(tc)]

= [εt0 − εtc ] .

(1.40)

The trading strategy can be summarized in several steps. They name this strategy the

cointegrating coefficient weighting (CCW) strategy as the dollar amounts of investment in

each pair depends on the cointegrating coefficients.

Step 1. Select a, b such that a > b. Lin et al. (2006) set b to be the mean of εt and a to

be b+ kσ for varying values of k.
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Step 2. Open a trade at time t0 when PS1(t0) > PS2(t0) and when 1.38 is true.

Step 3. Buy β shares of S2 and sell 1 share of S1 at time t0

Step 4. Close the trading positions when εtc < b.

Then, the profit from the trade will be

(εt0 − εtc)

≥ a− b

≥ b+ kσ − b

≥ kσ

(1.41)

since εt0 > a and εtc < b.

The strategy outlined here is opened when εt0 > a. This is a condition that means that

the price of S1 is overvalued compared to the price of S2, which is undervalued. Hence S1

is sold short and β shares of S2 are bought long. This is in fact the same as shorting the

spread created by the difference of PS1 − β PS2 should be shorted until the spread reaches

the equilibrium value (the mean of the historical spread).

The strategy in reverse can be applied when εt0 < −a. Here, the price of S1 is under-

valued compared to the price of S2, which is overvalued. Then S1 is bought long and β

shares of S2 are sold short, which is the same as going on on the spread. The position is

closed when the spread hits the historical mean.

1.3 Application of Pairs Trading on Data

Some examples will be provided below to provide a better understanding of how some of

these pairs trading methods work. By generating data from simulations we can see how

the arbitrage works with known outcomes before applying it further to real data.
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1.3.1 Minimum Distance Method

The data used in the following example are mainly generated from a simplified form of

equation 1.21:

∆Yt = γY (Yt−1 −Xt−1) + εY,t

∆Xt = γX (Yt−1 −Xt−1) + εX,t .
(1.42)

Four pairs of cointegrated prices are generated, and one extra set is generated from two

different ARIMA(p,d,q) models. This is done to show that the cointegrated pairs tend

to be the ones matched up by both the minimum distance method and the cointegration

method with varying values of γY and γX , and different means and standard deviations for

εY,t and εX,t.

As in the minimum distance method, the sum of squared deviations are calculated for

each possible pair out of the
(

10
2

)
total pairs in the 10 generated stock prices. The 5 pairs

with the lowest sum of squared deviations are chosen to be traded together. The spread

is calculated here simply as the difference between the two prices. Of the 1000 stock price

values generated by the models, the first 600 data points are used as a training set to

determine the minimum distance pairs to be used for trading. The last 400 data are used

as the test set on which the trades are made. A simple trading rule is established: if the

spread price exceeds two standard deviations above or below the mean spread price, a

position is opened. The mean and standard deviations for the spread are calculated using

the entire history out of the training set. When the spread converges back to the mean,

the position is closed. The positions are also closed at the end of the trading period (at

t = 1000 days), regardless of whether or not the spread is near the mean price or not.

Transaction costs are not considered here for simplicity. Figure 1.1 shows the price paths

of the generated asset pairs.

Trades that result from the pairs generated from the ECM move together as expected

and as a result, the trading rule results in a profit. The last pair that was chosen with the

minimum distance method was, also as expected, not a particularly well behaving pair.

This is because one stock is generated from one of the ECM, and the other follows an
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Figure 1.1: The price paths for ten stocks of 1000 days each. The first four pairs are

simulated from a simplified ECM.
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ARIMA process. The spread here is not stationary and thus it is dangerous to trade on

such a spread. The example here demonstrates a negative profit value when the spread is

not generated necessarily mean-reverting. Figure 1.2 and the first pair in Figure 1.3 show

the spreads and their trade positions for the pairs generated by the ECM. The last pair in

figure 1.3 shows the spread and the trade positions of the non-stationary spread pair. This

demonstrates the importance of finding pairs which have mean-reverting spreads. With

real data, finding pairs that have small sum of squared deviations might not necessarily

translate to a profitable pair in the future because the spread may not be stationary.

Previous papers regarding the minimum distance method often have tried to minimize

this risk by only choosing the pairs with the lowest minimum distance. However, as the

cointegration method relies on the concept of finding stationary spreads, there is a much

stronger case for mean-reversion in cointegrated pairs than when compared to the minimum

distance method. Hence, it is useful to also examine an application of the cointegration

method to simulated data.
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Figure 1.2: The spreads for the first three pairs in the minimum distance simulation and

the days that the trade positions are open and closed. The black portion of the spread

represents the training set and the green portion of the spread represents the test set. The

upper bounds and lower bounds of the spreads (the mean +/- 2 standard deviations) are

represented by the blue horizontal lines, and the red line represents the historical mean of

the training set.
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Figure 1.3: The spreads for the fourth and fifth pairs in the minimum distance simulation

and the days that the trade positions are open and closed. The black portion of the spread

represents the training set and the green portion of the spread represents the test set. The

upper bounds and lower bounds of the spreads (the mean +/- 2 standard deviations) are

represented by the blue horizontal lines, and the red line represents the historical mean of

the training set.
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1.3.2 Cointegration Method

The data used in this following example are again generated from a simplified form of

equation 1.21, but the relationship between Yt−1 and Xt−1 is slightly more generalized

with an intercept and a coefficent term for Xt−1:

∆Yt = γY (Yt−1 − α− βXt−1) + εY,t

∆Xt = γX (Yt−1 − α− βXt−1) + εX,t .
(1.43)

Ten pairs of cointegrated prices are generated, with the first five pairs using the simple

relationship from the minimum distance method (α = 0, β = 1), and the next five pairs

with varying α and β. For each pair, 1000 data points are generated again, with varying

values of γY and γX , with different means and standard deviations for εY,t andεX,t. The

price paths for the 20 assets can be seen in Figure 1.4.

Here the Engle Granger (EG) two step methodology is used in determining whether

each pair of stock prices is cointegrated. As mentioned before, there are several weaknesses

to using this methodology. The decision on which variable to take as the regressor and

which as the regressand is a problem. As such, we will require both the EG and the

Johansen methodologies to pass for cointegration before labelling a pair as such. Small

sample sizes and the number of variables being considered in the cointegration inhibit the

use of the ADF test for stationarity. This is not as much of a problem as the previous one

because only two stocks are considered for cointegration at each time. As well, the number

of sample values we are using for the training period is at minimum a year of trading days.

Thus, we consider the ADF test a suitable choice for our simulations and tests.

However, a caveat to note here is that because the time series are generated by the

ECM, the prices are not necessarily integrated of order 1. Some of the time series are

generated as stationary processes to begin with. As such, even though we have generated

mean reverting pairs, the cointegration method does not necessarily recognize these as

suitable options to trade on. Following the test for integration, they are fitted to a linear

model for estimation of α and β. The spread is calculated from the residuals of the model,

28



Assets 1 and 11

Day

P
ric

e

0 200 400 600 800 1000

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

Assets 2 and 12

Day

P
ric

e

0 200 400 600 800 1000

1.
5

2.
0

2.
5

3.
0

Assets 3 and 13

Day

P
ric

e

0 200 400 600 800 1000

1.
8

1.
9

2.
0

2.
1

Assets 4 and 14

Day

P
ric

e

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

Assets 5 and 15

Day

P
ric

e

0 200 400 600 800 1000

1.
1

1.
3

1.
5

1.
7

Assets 6 and 16

Day

P
ric

e

0 200 400 600 800 1000

1.
5

2.
5

3.
5

4.
5

Assets 7 and 17

Day

P
ric

e

0 200 400 600 800 1000

1.
5

2.
0

2.
5

Assets 8 and 18

Day

P
ric

e

0 200 400 600 800 1000

2.
0

2.
5

3.
0

3.
5

Assets 9 and 19

Day

P
ric

e

0 200 400 600 800 1000
0.

8
1.

2
1.

6
2.

0

Assets 10 and 20

Day

P
ric

e

0 200 400 600 800 1000

1.
6

1.
8

2.
0

2.
2

2.
4

Figure 1.4: The simulated price paths for ten stocks of 1000 days each. The first five pairs

are simulated from the simplified ECM as in the minimum distance method example. The

next five pairs have varying intercepts and coefficient terms.

and tested for stationarity through the ADF test. Here, the assumption is that the errors

follow an AR(1) process. If this test of stationarity is passed, then the same procedure

is done on the same two pairs but with the regressor and regressand switched. If these
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tests are passed, then we consider the pair of prices to be cointegrated and the trading rule

established by Lin et al. (2006) is used.

It is possible that pairs that were not generated together using the ECM can be coin-

tegrated, and this is certainly the case in the example. It is still possible to trade on these

pairs, but a trade must proceed with caution even after finding the tests for cointegration

are passed, as the possibility of false positive is a definite problem. The possibility of a se-

ries being cointegrated over the training period and then diverging is also a problem. Thus

the training period cannot be too long to avoid including data where there are structural

breaks, but also cannot be too short so that the trading rule can be established well. For

this simulation, an arbitrary value of 600 time points was used for the training period. The

rest of the 400 time points generated were used for the trading period. The results can be

seen in Figure 1.5.

1.3.3 Application of the Cointegration Method to Stock Data

In this section, we will apply the same methodology used in the simulation in the above

example to real data. As it has been mentioned before, pairs trading is a statistical

arbitrage strategy. Ideally, the strategy would be risk-free and result in profits based on

the assumption that the spreads are mean-reverting. Unfortunately, there are other items

of importance to consider. Again, transaction costs that would cut returns significantly are

not considered here for the strategy. As well, it was mentioned that the price of the short

stock sold should cover the price of the long stock, and hence, there should not need to be

any capital invested at the beginning of the trades. However, in reality, brokers require a

margin account on the side. Since shorting a stock is the act of selling a borrowed stock,

this margin account is used as a guarantee that the short seller will be able to pay up,

as well as accounting for the fact that the shorted stock may rise in price. Regulation

T, stipulated by the Federal Reserve, states that 50% of the value of the shorted stocks

must be in the margin account at the beginning of the sale. Following the initial sale, the

maintenance margin is 25%, meaning that the account must have 25% or more of the value
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Figure 1.5: The spreads for the six cointegrated pairs in the cointegration simulation and

the days that the trade positions are open and closed. The first 600 days comprise the

training set and is indicated in black. The test spread is for the next 400 days and are

labeled in green. The red line represents the historical mean of the training set. The blue

lines represent the upper and lower bounds of the trades, given by the mean +/- 2 standard

deviations of the training set.
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of the shorted stocks at any point, but as this may differ from broker to broker, we will not

consider that in our return calculations. Hence, we will only consider the simple return r

for the trades as follows:

r =
1

N

N∑
i=1

(
ki

Sli + 0.5Ssi

)
. (1.44)

where N is the total number of trades, ki is the profit or loss from trade i, Sli is the value

of the long stock at the open of trade i, and Ssi is the value of the short stock at the open

of trade i.

The total profit TP and average profit per trade AP will also be calculated as follows:

TP =
N∑
i=1

ki. (1.45)

AP =
TP

N
(1.46)

The stock prices are gathered from the constituents of the NASDAQ 100. There are

107 constituents in this Index, made up the largest non-financial companies listed on the

NASDAQ. We only consider the companies with historical stock data as far back as May

2009. Although historical data was available for many companies before this, we wanted

to avoid the stock crash of 2008. As a result, only 91 constituents were actually considered

in our tests.

A time frame for the training and the trading periods needed to be selected: 1, 2 and

3 years were considered for the training period. The number of cointegrated pairs found

for each training period was 17, 21 and 13 respectively. We chose to focus on the 3 year

training period rather than the 1 and 2 year training periods. This was because as the

training spreads generated by the 1 and 2 year spreads did not revert back to the mean

often, although having passed the ADF test and the Johansen test. Two different trading

periods were used: 6 months and 12 months.
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1.3.4 Upper and Lower Bound of Two Standard Deviations from

the Mean

Recall that in the trading rule established by Lin et al. (2006), we choose a value k for

which the upper and lower bounds (b + kσ and b − kσ) are established, where b is the

historical mean and σ is the historical standard deviation of our training spread. In our

first simulation we test k = 2. Note that because of this, although 13 pairs of stocks

were found to be cointegrated in the training set, only 11 were actually traded on in the

first test period because the threshold of two standard deviations was exceeded at some

point. The training periods and the test periods can be seen in Table 1.1. Two sets of

6 month trading periods are tested, one immediately following the other. This emulates

a cointegrating pair being traded in practice. However, for the second testing period, the

current cointegrating pairs are updated with the most recent 3 yeras of training data, and

are tested for cointegration again. This ensures that the pairs are still cointegrated before

trading once again. In the 12 month trading period, this is not done and as such, pairs

that are cointegrated at the beginning but not so after 6 months are still traded on. It is

important to note that only 3 of the 13 cointegrated pairs at the end of the first training

period are still cointegrated at the end of the second training period. This is evidence

that cointegration relationships may undergo structural breaks and change or disappear

altogether.

The training and test spreads for the 6 month test spread for the testing period May

21 2012 - November 21 2012 can be seen in Figures 1.6 and 1.7. The corresponding results

are summarized in Tables 1.2, 1.3, and 1.4.

For the testing period November 21 2012 - May 28 2013, the spreads can be seen in

Figure 1.8. The corresponding results are summarized in Table 1.5.

The 12 month test spread from the period May 21 2012 - May 28 2013 can be seen in

Figures 1.9, 1.10, and 1.11. The corresponding results are summarized in Tables 1.6, 1.7,

and 1.8.
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The 3 year training period and the 6 month trading periods

Training Period Testing Period

May 20 2009 - May 21 2012 May 21 2012 - November 21 2012

November 18 2009 - November 21 2012 November 21 2012 - May 28 2013

The 3 year training period and the 12 month trading period

Training Period Testing Period

May 20 2009 - May 21 2012 May 21 2012 - May 28 2013

Table 1.1: The training and testing periods for the 91 elligible stocks in the NASDAQ 100
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Figure 1.6: The training spread (in black) and the 6 month test spread (in green) for the

first six cointegrated pairs using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period May 21 2012 - November 21 2012.
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Figure 1.7: The training spread (in black) and the 6 month test spread (in green) for the

last four pairs cointegrated pairs using data from the stocks of the NASDAQ 100. The

trades are done on an upper and lower bound of two standard deviations from the mean,

and traded on the period May 21 2012 - November 21 2012.
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Figure 1.8: The training spread (in black) and the 6 month test spread (in green) for the

cointegrated pairs using data from the stocks of the NASDAQ 100. The trades are done

on an upper and lower bound of two standard deviations from the mean, and traded on

the period November 21 2012 - May 28 2013.
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Figure 1.9: The training spread (in black) and the 12 month test spread (in green) for the

first 6 cointegrated pairs using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period May 21 2012 - May 28 2013.
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Figure 1.10: The training spread (in black) and the 12 month test spread (in green) for

the 7th to 12th cointegrated pairs using data from the stocks of the NASDAQ 100. The

trades are done on an upper and lower bound of two standard deviations from the mean,

and traded on the period May 21 2012 - May 28 2013.
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Figure 1.11: The training spread (in black) and the 12 month test spread (in green) for

the 13th cointegrated pair using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period May 21 2012 - May 28 2013.
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Asset Pair ADBE,YHOO ADSK,LLTC BBBY,CERN BIDU,SRCL CELG,INTC

Total Profit -0.492 -1.049 3.473 -13.513 -2.45

Total # of Trades 1 1 2 1 2

Avg Profit per Trade -0.492 -1.049 1.736 -13.513 -1.225

Return -1.99% -2.41% 6.42% -11.02% -6.64%

Annualized Return -3.97% -4.82% 12.85% -22.05% -13.28%

Table 1.2: Trading results on the (out of sample) data of 6 months using training data of

3 years with a threshold of 2 standard deviations from May 21 2012 - November 21 2012

(pairs 1 to 5)
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Asset Pair CHKP,COST CTSH,LLTC FOXA,MAT GRMN,INTC MAT,SBUX

Total Profit -17.582 0.452 4.653 0.746 -0.2

Total # of Trades 1 1 2 2 2

Avg Profit per Trade -17.582 0.452 2.326 0.373 -0.1

Return -16.82% 1.09% 10.11% 2.27% -0.26%

Annualized Return -33.63% 2.17% 20.22% 4.55% -0.53%

Table 1.3: Trading results on the (out of sample) data of 6 months using training data of

3 years with a threshold of 2 standard deviations from May 21 2012 - November 21 2012

(pairs 6 to 10)

Asset Pair NVDA,YHOO

Total Profit -1.25

Total # of Trades 1

Avg Profit per Trade -1.25

Return -5.22%

Annualized Return -10.43%

Table 1.4: Trading results on the (out of sample) data of 6 months using training data of

3 years with a threshold of 2 standard deviations from May 21 2012 - November 21 2012

(pair 11)
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Asset Pair BBBY,CERN FOXA,MAT PCLN,SIAL

Total Profit -1.582 -0.244 -1.218

Total # of Trades 1 1 1

Avg Profit per Trade -1.582 -0.244 -1.218

Return -3.04% -0.47% -1.11%

Annualized Return -6.08% -0.94% -2.22%

Table 1.5: Trading results on the (out of sample) data of 6 months using training data of

3 years with a threshold of 2 standard deviations from November 21 2012 - May 28 2013

(pairs 3,8,13)

Asset Pair ADBE,YHOO ADSK,LLTC BBBY,CERN BIDU,SRCL CELG,INTC

Total Profit -6.226 -4.155 1.337 -31.511 -13.997

Total # of Trades 1 1 2 1 2

Avg Profit per Trade -6.226 -4.155 0.669 -31.511 -6.998

Return -25.13% -9.55% 2.31% -25.7% -40.45%

Annualized Return -25.13% -9.55% 2.31% -25.7% -40.45%

Table 1.6: Trading results on the (out of sample) data of 12 months using training data of

3 years with a threshold of 2 standard deviations from May 21 2012 - May 28 2013 (pairs

1 to 5)
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Asset Pair CHKP,COST CTSH,LLTC FOXA,MAT GRMN,INTC MAT,SBUX

Total Profit -37.583 -5.445 0.005 5.076 -4.606

Total # of Trades 1 1 2 3 2

Avg Profit per Trade -37.583 -5.445 0.002 1.692 -2.303

Return -35.95% -13.09% 0.78% 15.49% -11.7%

Annualized Return -35.95% -13.09% 0.78% 15.49% -11.7%

Table 1.7: Trading results on the (out of sample) data of 12 months using training data of

3 years with a threshold of 2 standard deviations from May 21 2012 - May 28 2013 (pairs

6 to 10)

Asset Pair NVDA,YHOO PAYX,YHOO PCLN,SIAL

Total Profit -8.354 -6.065 -2.126

Total # of Trades 1 1 1

Avg Profit per Trade -8.354 -6.065 -2.126

Return -34.86% -23.38% -1.99%

Annualized Return -34.86% -23.38% -1.99%

Table 1.8: Trading results on the (out of sample) data of 12 months using training data of

3 years with a threshold of 2 standard deviations from May 21 2012 - May 28 2013 (pairs

11 to 13)
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1.3.5 Upper and Lower Bound of One Standard Deviation from

the Mean

The same tests on the stock data from the last section are repeated with a threshold of

one standard deviation from the mean. The trades here find the same cointegrated pairs

as in the previous test, as we are using the same training data. The only difference is that

with a lower threshold, the number of cointegrated pairs stays the same at 13, but all of

them are traded on in the trading period. The possible profits are not as large for each

trade as the quantity kσ is now smaller, but there are more possible trades that open and

close. This is both an advantageous property and a disadvantageous one at the same time.

For the pairs that diverge significantly from the mean, the higher trading upper and lower

bounds from using 2 standard deviations provides more of a safety net against loss as the

trades are not opened as close. However, this can be protected against by using stop-loss

triggers in practice. The advantage of using 1 standard deviation can be highlighted by

comparing the three pairs that have been found to still be cointegrated at the 6 month

mark. That is, comparing pairs 3,8 and 13, we can see that the profits are higher as more

trades are executed since the threshold for profit is not as extreme. This can be seen in

the Figures 1.19 and 1.16.

The training and test spreads for the 6 month test spread for the testing period May 21

2012 - November 21 2012 can be seen in Figures 1.12 and 1.13. The corresponding results

are summarized in Tables 1.9, 1.10, and 1.11.

For the testing period November 21 2012 - May 28 2013, the spreads can be seen in

Figure 1.15. The corresponding results are summarized in Table 1.12.

The 12 month test spread from the period May 21 2012 - May 28 2013 can be seen

in Figures 1.16, 1.17, and 1.18. The corresponding results are summarized in Tables 1.13,

1.14, and 1.15.

The most important thing to note in these tests for cointegration on stock data is that

there are many false positives from the cointegration test. Traders should be very cautious
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of the results from the ADF test and the Johansen test when trying to find cointegrated

pairs to trade on, as the cointegration relationship either changes over time, breaks down,

or doesn’t exist at all.

May 20
2009

May 03
2010

May 02
2011

May 01
2012

−
3

−
2

−
1

0
1

2

Spread of ADBE.Adjusted and YHOO.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

−
2

0
2

4

Spread of ADSK.Adjusted and LLTC.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

−
4

0
2

4
6

8

Spread of BBBY.Adjusted and CERN.Adjusted

Portfolio Position

Day

0 200 400 600 800

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800

C
LO

S
E

D
O

P
E

N

May 20
2009

May 03
2010

May 02
2011

May 01
2012

−
10

0
5

10
20

Spread of BIDU.Adjusted and SRCL.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

−
6

−
2

0
2

4

Spread of CELG.Adjusted and INTC.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

−
5

0
5

10
20

Spread of CHKP.Adjusted and COST.Adjusted

Portfolio Position

Day

0 200 400 600 800

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800

C
LO

S
E

D
O

P
E

N

Figure 1.12: The training spread (in black) and the 6 month test spread (in green) cointe-

grated pairs (1 to 6) using data from the stocks of the NASDAQ 100. The trades are done

on an upper and lower bound of two standard deviations from the mean, and traded on

the period May 21 2012 - November 21 2012.
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Figure 1.13: The training spread (in black) and the 6 month test spread (in green) for the

cointegrated pairs (6 to 12) using data from the stocks of the NASDAQ 100. The trades

are done on an upper and lower bound of two standard deviations from the mean, and

traded on the period May 21 2012 - November 21 2012.
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Figure 1.14: The training spread (in black) and the 6 month test spread (in green) for the

cointegrated pair (13) using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period May 21 2012 - November 21 2012.
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Figure 1.15: The training spread (in black) and the 6 month test spread (in green) for the

cointegrated pairs 3,8,13 using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period November 21 2012 - May 28 2013.
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Figure 1.16: The training spread (in black) and the 12 month test spread (in green) for the

first 6 cointegrated pairs using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period May 21 2012 - May 28 2013.

50



May 20
2009

May 03
2010

May 02
2011

May 01
2012

Apr 30
2013

−
4

0
2

4
6

8

Spread of CTSH.Adjusted and LLTC.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

Apr 30
2013

−
6

−
4

−
2

0
2

Spread of FOXA.Adjusted and MAT.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

Apr 30
2013

−
4

−
2

0
2

Spread of GRMN.Adjusted and INTC.Adjusted

Portfolio Position

Day

0 200 400 600 800 1000

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800 1000

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800 1000

C
LO

S
E

D
O

P
E

N

May 20
2009

May 03
2010

May 02
2011

May 01
2012

Apr 30
2013

−
10

−
5

0
5

Spread of MAT.Adjusted and SBUX.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

Apr 30
2013

0
5

10

Spread of NVDA.Adjusted and YHOO.Adjusted

May 20
2009

May 03
2010

May 02
2011

May 01
2012

Apr 30
2013

−
4

0
2

4
6

8
10

Spread of PAYX.Adjusted and YHOO.Adjusted

Portfolio Position

Day

0 200 400 600 800 1000

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800 1000

C
LO

S
E

D
O

P
E

N

Portfolio Position

Day

0 200 400 600 800 1000

C
LO

S
E

D
O

P
E

N

Figure 1.17: The training spread (in black) and the 12 month test spread (in green) for

the 7th to 12th cointegrated pairs using data from the stocks of the NASDAQ 100. The

trades are done on an upper and lower bound of two standard deviations from the mean,

and traded on the period May 21 2012 - May 28 2013.
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Figure 1.18: The training spread (in black) and the 12 month test spread (in green) for

the 13th cointegrated pair using data from the stocks of the NASDAQ 100. The trades are

done on an upper and lower bound of two standard deviations from the mean, and traded

on the period May 21 2012 - May 28 2013.
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Asset Pair ADBE,YHOO ADSK,LLTC BBBY,CERN BIDU,SRCL CELG,INTC

Total Profit -0.208 -2.32 4.408 -16.735 -3.537

Total # of Trades 2 1 3 1 2

Avg Profit per Trade -0.104 -2.32 1.469 -16.735 -1.769

Return -0.4% -5.47% 7.24% -13.77% -10.34%

Annual Return -0.8% -10.93% 14.48% -27.54% -20.67%

Table 1.9: Trading results on the (out of sample) data of 6 months using training data of

3 years with a threshold of 1 standard deviation from May 21 2012 - November 21 2012

(pairs 1 to 5)
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Asset Pair CHKP,COST CTSH,LLTC FOXA,MAT GRMN,INTC MAT,SBUX

Total Profit -20.156 -0.624 7.141 -0.283 1.954

Total # of Trades 1 1 3 2 4

Avg Profit per Trade -20.156 -0.624 2.38 -0.142 0.488

Return -19.06% -1.52% 16.91% -1.01% 5.82%

Annual Return -38.11% -3.04% 33.83% -2.01% 11.64%

Table 1.10: Trading results on the (out of sample) data of 6 months using training data

of 3 years with a threshold of 1 standard deviation from May 21 2012 - November 21 2012

(pairs 6 to 10)

Asset Pair NVDA,YHOO PAYX,YHOO PCLN,SIAL

Total Profit -1.815 1.048 13.511

Total # of Trades 1 2 2

Avg Profit per Trade -1.815 0.524 6.756

Return -7.73% 4.64% 13.35%

Annual Return -15.46% 9.29% 26.71%

Table 1.11: Trading results on the (out of sample) data of 6 months using training data

of 3 years with a threshold of 1 standard deviation from May 21 2012 - November 21 2012

(pairs 11 to 13)
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Asset Pair BBBY,CERN FOXA,MAT PCLN,SIAL

Total Profit -1.582 -1.569 -3.873

Total # of Trades 1 1 1

Avg Profit per Trade -1.582 -1.569 -3.873

Return -3.04% -3.07% -3.7%

Annual Return -6.08% -6.15% -7.4%

Table 1.12: Trading results on the (out of sample) data of 6 months using training data

of 3 years with a threshold of 1 standard deviation from November 21 2012 - May 28 2013

(pairs 3,8,13)

Asset Pair ADBE,YHOO ADSK,LLTC BBBY,CERN BIDU,SRCL CELG,INTC

Total Profit -5.941 -5.425 2.272 -34.733 -15.085

Total # of Trades 2 1 3 1 2

Avg Profit per Trade -2.971 -5.425 0.757 -34.733 -7.542

Return -23.46% -12.78% 3.12% -28.58% -44.15%

Annual Return -23.46% -12.78% 3.12% -28.58% -44.15%

Table 1.13: Trading results on the (out of sample) data of 12 months using training data

of 3 years with a threshold of 1 standard deviation from May 21 2012 - May 28 2013 (pairs

1 to 5)
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Asset Pair CHKP,COST CTSH,LLTC FOXA,MAT GRMN,INTC MAT,SBUX

Total Profit -40.158 -6.521 2.493 2.929 -2.452

Total # of Trades 1 1 3 3 4

Avg Profit per Trade -40.158 -6.521 0.831 0.976 -0.613

Return -37.97% -15.86% 7.3% 8.79% -5.45%

Annual Return -37.97% -15.86% 7.3% 8.79% -5.45%

Table 1.14: Trading results on the (out of sample) data of 12 months using training data

of 3 years with a threshold of 1 standard deviation from May 21 2012 - May 28 2013 (pairs

6 to 10)

Asset Pair NVDA,YHOO PAYX,YHOO PCLN,SIAL

Total Profit -8.919 -5.357 9.321

Total # of Trades 1 2 3

Avg Profit per Trade -8.919 -2.678 3.107

Return -37.99% -20.51% 9.34%

Annual Return -37.99% -20.51% 9.34%

Table 1.15: Trading results on the (out of sample) data of 12 months using training data

of 3 years with a threshold of 1 standard deviation from May 21 2012 - May 28 2013 (pairs

11 to 13)
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Figure 1.19: The training spread (in black) and the 6 month test spread (in green) coin-

tegrated pairs (3,8, 13) using data from the stocks of the NASDAQ 100. The top row

of spreads shows the trades with bounds of 2 standard deviations from the mean, while

the second row shows the trades with bounds 1 standard deviation from the mean. These

pairs are traded on the period May 21 2012 - November 21 2012, but are used mainly

as a comparison for using different standard deviations on the bounds. The pairs have

been selected retrospectively after the trades have happened and have been determined to

remain cointegrated.
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Asset Pair BBBY,CERN FOXA,MAT PCLN,SIAL

k = # of Std Dev 2 1 2 1 2 1

Total Profit 3.473 4.408 4.653 7.141 N/A 13.511

Total # of Trades 2 3 2 3 N/A 2

Avg Profit per Trade 1.736 1.469 2.326 2.38 N/A 6.756

Return 6.42% 7.24% 10.11% 16.91% N/A 13.35%

Annual Return 12.85% 14.48% 20.22% 33.83% N/A 26.71%

Table 1.16: A comparison of the trading results on the (out of sample) data of 6 months

using training data of 3 years from May 21 2012 - November 21 2012 (pairs 3,8,13) for

trading bounds of 1 and 2 standard deviations from the mean. Only the pairs that remain

cointegrated after the trading period have been selected for the comparison.
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Chapter 2

Wavelet Analysis of Time Series

2.1 Introduction

As we have seen, the concept of cointegration can be quite important to pairs trading as

our trading strategy depends on the mean reversion and stationarity of our residual spread

series. In practice, there are issues that lie even after finding suitable cointegrated pairs.

For one, it is often not clear how long the trading period can be because it is not known how

long the cointegration relationship exists for. This can be seen in the earlier application to

real data. The data is stationary for the training data but several pairs have spreads that

depart significantly from the mean and do not seem to be reverting to the training data

mean.

In a related direction, the idea of global stationarity for the spread may be too re-

strictive to find many viable pairs for trading. This is where the idea of costationarity

can conceivably make a big difference. The concept, introduced by Cardinali and Nason

(2011), has been a recent attempt to adapt the concept of cointegration for locally station-

ary processes. Recall that a weakly stationary process has a autocovariance and mean that

does not change with time. The alternative is a non-stationary process that does depend

on time. The idea for locally stationary processes lies in between these two extremes: if the
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function’s statistical properties change very slowly over time, then for localized sections

of the time series, the process will be stationary. The approach taken by Cardinali and

Nason (2011) revolved around the usage of wavelets. The topics relevant to local stationary

processes regarding wavelets will be discussed in the following sections.

2.2 Fourier Series and Fourier Transforms

Fourier analysis is one of the most predominant methods for the analysis of stationary

processes. We start with Fourier series: any periodic, absolutely integrable function gp(t)

can be written as a linear combination of sine and cosine terms with varying amplitude,

phase and frequency. This can be represented in the form:

gp(t) =
∞∑

n=−∞

cn

(
2πint

T0

)
, (2.1)

where

cn =
1

T0

∫ T0/2

−T0/2
g(t) exp

(
−2πint

T0

)
dt . (2.2)

The sine and cosine functions are embedded in the complex exponential function in

Equation 2.2 by Euler’s formula:

eit = cos(t) + i sin(t) . (2.3)

The functions wt = eit form an orthonormal basis. For a function g(t) that is aperiodic,

the idea is to represent it with Equation 2.1 and let the period become infinitely large:

g(t) = lim
T0→∞

gp(t) (2.4)

By defining

∆ω =
1

T0

,

ωn =
n

T0

,
(2.5)
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and

G(ωn) = cnT0, (2.6)

where ∆ω is the frequency, we can rewrite Equation2.1 as:

gp(t) =
∞∑

n=−∞

G(ωn) exp(2πiωnt)∆ω , (2.7)

where

G(ωn) =

∫ T0/2

−T0/2
gp(t) exp(−2πiωnt) dt . (2.8)

Now, taking the limit as T0 approaches infinity, we get:

g(t) =

∫ ∞
−∞

G(ω) exp(2πiωt) dω, (2.9)

where

G(ω) =

∫ ∞
−∞

g(t) exp(−2πiωt) dt, (2.10)

which are known as the inverse Fourier transform of G(t) and the Fourier transform of g(t)

respectively. Through this, it is possible to present any aperiodic, square integral process

in terms of exponentials and to transform a function of time (t) into a function of frequency

(ω).

Define the total energy over the interval [−π, π], as∫ π

−π
g2
p(t)dt = 2π

∞∑
n=0

c2
n. (2.11)

This is known as Parseval’s relation. Calculating the energy over all time for a periodic

function is not relevant, as it would be infinite. However, the concept of energy per unit

time, also known as power, is quite useful:

Total power =
Total energy over [−π, π]

2π
=
∞∑
n=0

c2
n. (2.12)
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For a non-periodic function g(t), the analogous form for Parseval’s relation is:

Total energy over (−∞,∞) =

∫ ∞
−∞

g2(t)dt

=

∫ ∞
−∞
|G(ω)|2 dω .

(2.13)

Here, |G(ω)|2 dω represents the contribution to the total energy from the components

in g(t) whose frequencies lie between ω and ω + dω. As such, |G(ω)2| can be considered a

density function of the energy contribution by the components in g(t). The total energy

of a non-periodic function that is square integrable is finite, in comparison to that of a

periodic function, in which the energy over the interval (−∞,∞) is infinite.

However, for a zero-mean stationary series Xt, there is no guarantee that we may have

a Fourier series representation, as there is no reason for it to be periodic. Similarly, there

is no reason for it to possible for Xt to be represented by a Fourier integral as it does not

necessarily have to be absolutely integrable. By defining a new function:

Xt,T =

Xt, if −T ≤ t ≤ T ,

0, otherwise.
(2.14)

where T is some arbitrary defined chop off point for the realization of Xt. Xt,T can now be

represented by a Fourier integral, as it is aperiodic and absolutely integrable only on the

finite interval (−T, T ). Then |GT (ω)|2 dω would be analogous to that in Equation 2.13,

but for GT (ω). Unfortunately, in this case, we cannot just let T → ∞, as this would just

be the same as trying to represent Xt with a Fourier integral. The energy that would be

represented in this interval would be infinite, as in the periodic process case. The power,

on the other hand:

lim
T→∞

|GT (ω)|2

2T
. (2.15)

may be finite.

However, this is just the contribution to the power for one realization. Thus we define
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the power spectral density function of Xt, or the spectrum of Xt as:

S(ω) = lim
T→∞

[
E

{
|GT (ω)|2

2T

}]
, (2.16)

which is just the average over all realizations of the contribution to the total power from

the components in Xt with frequencies between ω and ω + dω.

It can be shown that the Fourier transform of the autocovariance function is exactly

this: the spectrum of Xt. Then, S(ω) dω is again just the contribution to the total variance

of Xt for frequencies in the range (ω, ω + dω).

Returning to the representation for the zero-mean stationary stochastic process, Xt, we

reiterate that a more general Fourier expansion is needed than a straightforward Fourier

series or a Fourier integral. Priestley (1983) showed that it can be written in the form:

Xt =

∫ π

−π
eiωt dξ(ω) =

∫ π

−π
eiωt |dξ(ω)|ei arg{dξ(ω)} . (2.17)

This is known as the spectral representation theorem, where dξ(ω) is a process known

as an orthonormal increments process, arg{dξ(ω)} represents random phases, and |dξ(ω)|
represents random amplitudes of the process. The process ξ(ω) has the following properties

for all |ω| ≤ π.:

Property 1. E{dξ(ω)} = 0

Property 2. E{|dξ(ω)|2 } = dSI(ω), where SI(ω) is the integrated spectrum of {X(t)}.

Property 3. For any two distinct frequencies ω and ω′,

cov{dξ(ω), dξ(ω′)} = E{dξ(ω)dξ(ω′)} = 0.

Then, the autocovariance γs can be written as:

γs = E{XtXt+s} = E{X∗tXt+s}

= E

{∫ π

−π
e−iω

′t dξ∗(ω′)

∫ π

−π
eiω(t+s) dξ(ω)

}
=

∫ π

−π

∫ π

−π
eit(ω−ω

′)eisω E

{
dξ∗(ω′) dξ(ω)

}
.

(2.18)
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By Property 3 of the orthogonal increments process, E

{
dξ∗(ω′) dξ(ω)

}
= dSI(ω) iff ω′ = ω.

Then,

γs =

∫ π

−π
eisω dSI(ω) . (2.19)

If the the integrated spectrum SI(ω) is differentiable everywhere, we have:

d SI(ω) = S(ω)dω, (2.20)

and so:

γs =

∫ π

−π
S(ω)eisω dω. (2.21)

Thus the autocovariance function of Xt, γs, is the inverse Fourier transform of the spectrum

of Xt, S(ω). If the spectrum is square integrable, then S(ω) is the Fourier transform of γs,

and we have a Fourier transform pair.

One major flaw of using Fourier transforms for analysis is that Fourier coefficients are

not localized in time. For example, a discontinuity or a change in g(t) will cause all of the

coefficients to be affected. Wavelets are however, localized in time, and as such are very

suited to the problem of finding and coping with concepts such as local stationarity.

2.3 Wavelets

In Fourier analysis, a function can be represented as a linear combination of coefficients and

complex exponential basis functions. Wavelets analysis takes a very similar path, but the

basis functions must decay to 0 rapidly. With a mother wavelet ψ, one can then compute

the basis generated by dilation and translation:

ψj,k(x) = 2j/2 ψ(2jx− k) , (2.22)

for j, k ∈ Z.

For an orthogonal basis, this requires

< ψj,k, ψj′,k′ >=

∫ ∞
−∞

ψj,k(x)ψj′,k′(x) dx = δj,j′ δk,k′ , (2.23)
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where δa,b is the Kronecker delta. That is,

δa,b =

1, if a = b,

0, otherwise.
(2.24)

With an orthogonal basis, a function f(x) can be written as a linear combination of

coefficients of these wavelets and coefficients as follows:

f(x) =
∞∑

j=−∞

∞∑
k=−∞

dj,k ψj,k(x) , (2.25)

where

dj,k =

∫ ∞
−∞

f(x)ψj,k(x)dx =< f, ψj,k > . (2.26)

These dj,k are known as the wavelet coefficients of f . We will return to this approxi-

mation of f(x). What do the j in the coefficients actually represent? This is the concept

of ’scale’ in the breakdown of our function. With wavelets, we will always be working

with dyadic data. That is, data that is of the length 2J . At the finest scale, the wavelet

coefficients capture the most detail in the data. As we move to ’lower’ or coarser scales,

the detail that is captured by the various coefficents becomes more spread out, giving a

rougher estimate of the function. As it can be seen in Equation 2.25, the function can be

estimated using only the coefficients dj,k and the wavelets ψj,k. However, it is useful to

introduce new coefficients and a new wavelet. Define the Haar father wavelet as:

φ(x) =

1, if x ∈ [0, 1],

0, otherwise.
(2.27)

and the finest-level father wavelet coefficients to be

cJ,k =

∫ 1

0

f(x) 2J/2 φ(2Jx− k) dx, (2.28)

for k = 0, ...2J − 1. By Equation 2.22, we can write the father wavelets with the same

notation:

cJ,k =

∫ 1

0

f(x)φJ,k(x) dx. (2.29)
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This is just the integral of f(x) over the interval [2−Jk, 2−J(k+1)], which is proportional

to the local average of f(x) over that interval. Through these coefficients and the dilated

and translated father wavelets, f(x) can be approximated by the following:

fJ(x) =
2J−1∑
k=0

cJ,k φJ,k(x). (2.30)

However, note that this is approximation that changes by scale. The level of detail of the

approximation decreases with J. It can be seen that the father wavelet coefficients can be

calculated from the integral in Equation 2.29. In practice, this is not needed as there is a

way of deriving coarser scale coefficients from the finer scale coefficients. It is important

to note for the Haar father wavelet,

φ(x) = φ(2x) + φ(2x− 1) . (2.31)

This relationship can be seen in Figure 2.1.

With this, we can write the father wavelet coefficient cj−1,k as follows:

cj−1,k =

∫ 2−(j−1)(k+1)

2−(j−1)k

f(x)φj−1,k(x) dx

= 2−1/2

∫ 2−j(2k+2)

2−j2k

f(x) 2j/2φ(2j−1x− k) dx

= 2−1/2

{∫ 2−j(2k+1)

2−j(2k

f(x) 2j/2φ(2jx− 2k) dx+

∫ 2−j(2k+2)

2−j(2k+1

f(x) 2j/2φ(2jx− 2k − 1)) dx

}
= 2−1/2

{∫ 2−j(2k+1)

2−j(2k

f(x)φj,2k(x) dx+

∫ 2−j(2k+2)

2−j(2k+1

f(x)φj,2k+1(x) dx

}
=

1√
2

(cj,2k + cj,2k+1) .

(2.32)

As such, we only require the finest level father wavelet coefficients to obtain all the father

wavelet coefficients. With discrete dyadic data, the finest level father wavelet coefficients
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Figure 2.1: A father wavelet on the left plot. The right plot shows that the relationship

described in Equation 2.31: the Haar father wavelet can be written as a sum of dilated

and translated father wavelets.

are just the data points themselves. We have now obtained the algorithm to determine

the father wavelet coefficients for our data. However, the function cannot be approximated

well by linear combinations of father wavelets and father wavelet coefficients only. The

difference between levels of approximations is the detail that was initially discussed with

the mother wavelets and the mother wavelet coefficients dj,k. Considering the two coarsest

level approximations f0(x) and f1(x), we have:

f0(x) = c0,0 φ0,0(x) (2.33)

and

f0(x) = c1,0 φ1,0(x) + c1,1 φ1,1(x). (2.34)
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The difference between the two is:

f1(x)− f0(x) = c1,0 φ1,0(x) + c1,1 φ1,1(x)− c0,0 φ1,0(x)

= c1,0 21/2φ(2x) + c1,1 21/2φ(2x− 1)− c0,0 φ(x)

= c1,0 21/2φ(2x) + c1,1 21/2φ(2x− 1)− 2−1/2(c1,0 + c1,1)φ(x)

= c1,0 21/2φ(2x) + c1,1 21/2φ(2x− 1)− 2−1/2(c1,0 + c1,1) [φ(2x) + φ(2x− 1)]

= 2−1/2

[
(2c1,0 − c1,1 − c1,0)φ(2x) + (2c1,1 − c1,0 − c1,1)φ(2x− 1)

]
= 2−1/2

[
(c1,0 − c1,1)φ(2x)− (c1,0 − c1,1)φ(2x− 1)

]
= 2−1/2(c1,0 − c1,1)

[
φ(2x)− φ(2x− 1)

]
.

(2.35)
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Figure 2.2: The Doppler function in the top left plot (1). The other plots (2),(3), and (4)

are projections of the Doppler function into father wavelet spaces J = 2, 4 and 6. Notice

that each plot has the doppler function being projected onto 2J different coefficients (4,

16, 64).
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Defining the Haar mother wavelet as:

ψ(x) = φ(2x)− φ(2x− 1)

=


1, if x ∈ [0, 1

2
),

−1, if x ∈ [1
2
, 1),

0, otherwise.

(2.36)

and the Haar mother wavelet coefficients dj,k as

dj,k = 2−1/2(cj+1,2k − cj+1,2k+1), (2.37)

we have
f1(x)− f0(x) = d0,0 ψ(x)

f1(x) = f0(x) + d0,0 ψ(x)

= c0,0 φ(x) + d0,0 ψ(x).

(2.38)

With this, the approximation for a higher scale approximation to f can be presented as the
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Figure 2.3: A Haar mother wavelet (left) and a mother wavelet child ψ2,2 (right)

next coarser scale approximation to f and the detail that is obtained from the difference
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between scales. For any scale, we can write:

fj+1(x) = fj(x) +
2j−1∑
k=0

dj,k ψj,k(x)

=
2j−1∑
k=0

cj,k φj,k(x) +
2j−1∑
k=0

dj,k ψj,k(x).

(2.39)

Note that these are the j-th scale approximations for f . If we wanted the finest scale

approximation for f , Equation 2.39 can be telescoped to arrive at a final approximation:

fJ(x) = c0,0(x)φ(x) +
J−1∑
j=0

2j−1∑
k=0

dj,k ψj,k(x) . (2.40)

This can be seen as a smooth, averaging approximation from the coarsest father wavelet

coefficient, and all the detail for the function coming at different scales from the mother

wavelet coefficients. This, in its entirety, is the basis behind the discrete wavelet trans-

form. From the data, we can find our finest level mother wavelet coefficients with simple

differences from the finest level father wavelet coefficients. Again, these finest level father

wavelet coefficients are just the data points for discrete dyadic data. Then the next finest

father wavelet coefficients can be formed from the data as well. From there, it is just a

matter of applying the same method on the father wavelet coefficients until all the wavelet

coefficients are found.

It is important to note here that we have been only discussing the formulation for Haar

wavelets, the simplest mother and father wavelets possible. Daubechies (1988) developed

families of orthogonal wavelets that were much smoother than the Haar wavelets, and yet

still compactly supported. Other wavelets such as the Shannon wavelet and Meyer wavelets

also exist and are mentioned in detail in Daubechies (1992) and a summary exists in Nason

(2008). These other wavelets do not have a structure as simple as the Haar, and as such,

their coefficients are also more complicated. This begs for a generalization to the formulas

we have derived so far. Recall that for the Haar father wavelets, they can be written as:

φ(x) = φ(2x) + φ(2x− 1) . (2.41)
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This can be generalized for other wavelets as:

φ(x) =
∑
n∈Z

hn φ1,n(x) . (2.42)

For the Haar case, h1 = h0 = 1√
2
, as:

φ(x) = h0 φ1,0(x) + h1 φ1,1(x)

= h0 21/2 φ(2x) + h1 21/2φ(2x− 1) .
(2.43)

As the mother wavelet can also be written as a linear combination of coefficients and

father wavelets, we have a similar generalization here:

ψ(x) =
∑
n∈Z

gn φ1,n(x) , (2.44)

where

gn = (−1)n−1 h1−n. (2.45)

For the Haar mother wavelet, g0 = −1√
2

and g1 = 1√
2
.

This representation becomes much more useful for wavelets more complicated than the

Haar wavelet family, but we will only focus on the Haar family for the sake of simplicity.

2.4 Non-decimated Wavelet Transform

Notice that in Equations 2.32 and 2.37 that we have the coarser mother and father coeffi-

cients coming from a sum of the finer coefficients, but mainly that they are coming from a

sum or difference of k = 2k or k = 2k+ 1. This is known as dyadic decimation by a factor

of 2. By obtaining the coefficients in this manner, we obtain an orthogonal transformation.

However, we also lose some information between data points. For example, for a data set

of 4 points {y1, y2, y3, y4}, c1,0 = 2−1/2 (y1 + y2) and c1,1 = 2−1/2 (y3 + y4). The coefficients

d1,0 and d1,1 are also obtained using differences between the same data values. We do not
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have any information on the sums and differences between y2 and y3 however. By shifting

the decimation 1 data point, we can obtain this information. This is the idea behind the

non-decimated wavelet transform. Both versions of the decimated transform are computed

and then combined together. These two versions can be used separately, but it is useful

to put them together in one time-ordered package of coefficients in the analysis of time

series. We can refer to these decimated shifts as the even and odd decimations. Return-

ing to our data set {y1, y2, y3, y4}, the finest scale father wavelet coefficients would be the

two sets: one as our original decimated version, and the other as c1,0 = 2−1/2 (y2 + y3),

c1,1 = 2−1/2 (y1 + y4), d1,0 = 2−1/2 (y2 − y3), d1,1 = 2−1/2 (y1 − y4). The even and odd

decimations are applied to the coefficients at each and every scale J − j, resulting in 2j

sets of coefficients of length 2−jn for j = 1, 2, ...J . This results in 2−jn 2j = n wavelet

coefficients at each scale, and with J scales, there are a total of Jn coefficients produced

by the non-decimated wavelet transform. With regards to locally stationary processes, a

different notation for the discrete wavelets is taken by Nason et al. (2000) :

ψ−1,n =
∑
k

gn−2kδ0,k = gn, for n = 0, ...N−1 − 1, (2.46)

ψj−1,n =
∑
k

hn−2kψj,k, for n = 0, ...Nj−1 − 1, (2.47)

Nj = (2j − 1)(Nh − 1) + 1, (2.48)

where δ0,k is the Kronecker delta, and Nh is the number of non-zero elements of {hk}.

2.5 Locally Stationary Processes

Recall that with the spectral representation theorem, we can write a stationary process Xt

as:

Xt =

∫ π

−π
eiωt dξ(ω) =

∫ π

−π
eiωt |dξ(ω)|ei arg{dξ(ω)}. (2.49)

In this representation, |dξ(ω)| represents the random amplitudes of Xt, but it does not

depend on time. Nason et al. (2000) introduced the locally stationary wavelet (LSW)
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process {Xt,T}t=0,1...T−1, for T = 2J − 1:

Xt,T =
−1∑

j=−J

∑
k

wj,k,T ψj,k(t) ξj,k, (2.50)

where {ξj,k} is an orthonormal increment sequence, and where {ψj,k(t)} is a discrete non-

decimated family of wavelets for j = −1,−2, ... − J, k = 0, 1...T − 1, and {wj,k,T} is a

set of amplitudes. The parallel with the spectral representation of a stochastic stationary

process should be very apparent now; we are just replacing the complex exponential basis

functions with the mother wavelets. There are random amplitudes here as well, in the form

of wj,k,T}, and the orthonormal increment sequence is the same. The difference is that this

is a discrete approximation, as we are using the DWT to form our wavelet coefficients.

There are an extra three conditions set by Nason et al. (2000) on the representation in

Equation 2.50 for them to be LSW processes:

1. E{ξj,k} = 0 .

2. Cov{ξj,k, ξl,m} = δj,l δk,m .

3. supk |wj,k;T −Wj(
k
T

)| ≤ Cj

T
, where {Cj} is a set of constants that have a finite sum:∑−1

j=−∞ Cj ≤ ∞ .

The first two conditions are analogous to Properties 1 and 3 that were introduced for

the orthonormal increments previously. The first condition also means that LSW processes

have zero-mean; and any data that we wish to model as a LSW process will have to be

de-trended before doing so. This problem will be addressed later. The second property

states that the orthnormal increments must be uncorrelated, as before. The third property

controls the rate the wj,k;T are allowed to change over time, by limiting the difference

between it and a function Wj(z), for z ∈ (0, 1). This is needed for estimation purposes, as

the slower wj,k;T changes, the more data can be used for the estimation of Wj(z).
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The concept for LSW processes that is analogous to the spectrum for Fourier represen-

tations of stationary processes is the evolutionary wavelet spectrum (EWS):

Sj(z) = |Wj(z)|2 (2.51)

for j = −1,−2, ...− J , and z ∈ (0, 1). The EWS is, like the spectrum, a way to determine

how the variance is distributed. Instead of a measure of how it is distributed across

frequencies, it is a measure of scale (j) and location (z). By using the rescaled time z = k
T

,

this allows increasing amounts of data to contribute to the estimation of the local structure

of Wj(z).

Figure 2.4 shows the spectrum Sj(z):

ΨH(u) =


cos2(4πz), for j = −6, z ∈ (0, 1),

1, for j = −3, z ∈ (300/1024, 400/1024),

1, for j = −1, z ∈ (800/1024, 900/1024),

(2.52)

At the level J = −6, we have the coefficients that form the coarse level structure of the

right plot in Figure 2.4. From z = 300 to z = 400, there is a burst that increases the

variance of the function at a finer level J = −3, and again from z = 800 to z = 900 at

an the finest level J = −1. We can see that these bursts add ”noise” as we approach the

finest levels to the function.

The introduction of rescaled time also allows us to understand the reasoning behind the

switch of notation in equations 2.46 and 2.47. In this notation, the data lie on scale 0, and

starting with scale −1 the wavelet coefficients start from the finest and gradually become

coarser as the scale moves toward −J . By using this numbering scheme, the support of the

wavelets on the finest scale is fixed and constant with respect to the length of the observed

time series, T . The addition of extra data means that coarser wavelets can be included,

which means that −J should approach to −∞ as T gets larger.

Nason et al. (2000) also define the autocorrelation wavelets, Ψj(s), of the discrete
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Figure 2.4: A spectrum Sj(z) from Equation 2.52 on the left. The resulting function that

is simulated from the spectrum is plotted on the right.

wavelets as:

Ψj(s) =
∑
k

ψj,k(0)ψj,k(s). (2.53)

for all j < 0 and s ∈ Z.

The Haar continuous autocorrelation wavelets are:

ΨH(u) =

∫ ∞
−∞

ψH(x)ψH(x− u) dx =

1− 3 |u|, for |u| ∈ [0, 1/2],

|u| − 1, for |u| ∈ (1/2, 1],
(2.54)

where ψH(x) is the continuous Haar mother wavelet in equation 2.36. With the formula

Ψj(s) = ΨH(2j|s|), we can obtain the discrete autocorrelation wavelets from the continu-

ous version. This can be extended to other families of wavelets such as the Daubechies’

compactly supported wavelets, but unlike the Haar, they do not have a simple closed form

solution.
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2.5.1 Estimation of the EWS

With the non-decimated wavelet transform, we can obtain the non-decimated wavelet

coefficients dj,k;T using the realizations of the process x1, x2, ...xT :

dj,k;T =
T∑
t=1

xt ψj,k(t). (2.55)

The raw wavelet periodogram is constructed using these wavelet coefficients through:

Ijk,T = |dj,k;T |2. (2.56)

This is a result that comes from the fact that Xt,T can be represented as a linear

combination of the wavelets and the coefficients wj,k;T ξj,k, or the inverse wavelet transform

of these coefficients. As such, taking the wavelet transform of the realizations {xt} will

result in an estimate for wj,k;T . Using this, and the fact that wj,k;T is close to Wj(z) by

the third condition of LSW processes, we can take the square of the wavelet coefficients

to obtain an estimate of Sj(z). However, the estimate is biased. Nason et al. (2000) also

demonstrate that the vector I(z) of raw wavelet periodograms for j = −1.. − J have an

expectation of

E{I(z)} = AS(z) +O(T−1), (2.57)

for all z ∈ (0, 1), S(z) = {Sj(z)}j=−1,...−J , where

I(z) =

{
IjbzT c,T

}
j=−1,...,−J

, (2.58)

and A is the inner product matrix of the autocorrelation wavelets:

Ajl =< Ψj,Ψl >=
∑
s

Ψj(s) Ψl(s). (2.59)

Then, the corrected wavelet periodogram can be constructed by:

L(z) = A−1I(z), (2.60)
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which has an expected value of

E{L(z)} = S(z) +O(T−1). (2.61)

In addition to this, the variance of the raw wavelet periodogram is also biased:

var{I(z)} = 2

{∑
l

AjlSl(z)

}2

+O(2−j/T ). (2.62)

Fortunately, there is a straightforward solution for this, and that is to smooth the corrected

wavelet periodogram in 2.61. However, Nason et al. (2000) suggest that it is often easier to

smooth the raw wavelet periodogram before correcting it, as the distributional properties

of I(z) are easier to examine compared to L(z). Hence the smoothing parameters are easier

to find for the raw wavelet periodogram.

Smoothing is a vast topic that we will not discuss in depth here, but the general idea

of smoothing begins with the assumption that our estimates of the wavelet coefficients are

part noise, part signal. For large coefficients, they are assumed to be representative of the

true signal and noise, but for small coefficents, they are assumed to only be contributions

from noise. Thus, by removing all the wavelet coefficients below a designated threshold,

the noise can be effectively removed from our estimates. For reference, Nason (2008) covers

this topic in much more detail.

2.6 Costationarity

With the understanding of the estimation of the EWS in the last chapter, we can now

direct our attention to the concept of costationarity. Cardinali and Nason (2011) derived

this concept by combining the concept of cointegration with locally stationary wavelet pro-

cesses. Recall that two processes Xt and Yt that are integrated of order 1 are cointegrated

if there is a linear combination of the two that is stationary. That is, if we can form Zt:

Zt = αXt + βYt , (2.63)
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such that Zt is stationary, then Xt and Yt are cointegrated. This notion is extended by

allowing α and β to vary with time. This is a less restrictive model as we wish to find

Zt = αtXt + βtYt, (2.64)

where αt and βt are complexity constrained sequences with constraint C, and Xt and Yt are

locally stationary processes. Cardinali and Nason (2011) mention that locally stationary

processes are not limited to just the locally stationary wavelet (LSW) processes ; the ones

defined by Dahlhaus (1997), the locally stationary Fourier processes are also applicable in

their costationarity framework. However, we will focus purely on the LSW processes here.

The constraint C is needed is because without it, the αt and βt may then be set to follow

the data perfectly. These solutions would not be useful under an out-of-sample test.

We believe a piecewise-constant function with C being a constraint on the number

of breaks that are allowed is suitable for the context of pairs trading. This is because we

hope that our pairs are, in informal terms, ”cointegrated locally”. We hope to find that the

pairs of stocks are cointegrated, but we admit the possibility of a shift in the cointegration

coefficients as time passes, and we hope to identify this with costationarity.

As LSW processes are required to be zero mean processes, we only have to worrry about

whether or not the covariance varies with time. This can be done by applying the covariance

operator to Zt. However, in practice, this is not feasible as it is too computationally

complicated. Cardinali and Nason (2011) turn to the spectrum instead. In the case of LSW

processes, we use the metric of the EWS. If this can be found to be a constant measure

with respect to time for a given set of vectors (αt, βt), then Xt and Yt are recognized to

be costationary. The solutions obtained by finding (αt, βt) are not necessarily unique. The

algorithm that is used in Cardinali and Nason (2011) finds many costationary solutions

and then determines at the end which differ the most from each other.

The algorithm for finding costationary solutions is computed in the following steps

using realizations {Xt, Yt} for t = 1...T :

1. Randomly compute input vectors (αt, βt) for t = 1...T .
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2. Form the combination Zt = αtXt + βt Yt.

3. Compute the spectral estimate (the EWS) p̂Z(z, j) = Sj(z) for {Zt}, where, recall

that z = t/T for the notion of rescaled time.

4. Compute the constancy of the spectral estimate using the test statistic τ(p̂Z). The

constancy is tested in a hypothesis that is described below.

Regarding the first step of the algorithm, we first numerically optimize estimates of

the test statistic τ(p̂Z) over the vectors (αt, βt). With the numerically optimized estimates

(α∗t , β
∗
t ), a statistical test of stationarity is then applied to Zt = α∗t Xt + β∗t Yt through the

test statistic τ(p̂Z).

Here we are testing the null hypothesis of:

H0 : Sj(z) is a constant function of z ∈ (0, 1) for all j (2.65)

versus the alternative:

HA : Sj(z) is not constant for some j. (2.66)

The test statistic that is being used in Cardinali and Nason (2011) is the following:

τp = J−1

J∑
j=1

∫ 1

0

{Sj(z)− S̄j}2 dz, (2.67)

where S̄j =
∫ 1

0
Sj(z) dz. If the spectrum does not depend on time, then this statistic τp

should equal zero for all j.

The test is carried out using a parametric bootstrap based on the assumption of Gaus-

sianity of the innovations in the LSW processes. Then the bootstrap test for stationarity

is as follows:

1. Evaluate τp on the data set; this is referred to as τ
(1)
p .
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2. From the sample, compute p̄(j), the spectral estimate that assumes the data are

stationary.

3. Repeat for i = 2 to B ([B − 1] number of repetitions):

(a) Simulate Zt from the stationary model using the squared amplitudes from p̄(j)

using Gaussian innovations.

(b) Compute the same test statistic as beforeon the simulated data. This test

statistic will be referred to as τ
(
pi).

4. The p-value of the entire test will be given by p = {Number of τ
(i)
p > τ

(1)
p }/B.

As per the usual hypothesis tests, if p is very small, we will reject the null hypothesis that

the spectrum of Zt is constant, and hence Xt and Yt are not costationary for the given

numerically minimized αt and βt.

The estimator for the EWS Cardinali and Nason (2011) use and prove to be consistent

is the time average of the corrected wavelet periodogram:

1

T

T∑
k=1

Lk, (2.68)

where Lk is the same as in 2.60.

2.7 Pairs Trading based on Costationarity on Stock

Data

In this chapter we apply the concept of costationarity to stock data. However, first we

must address an issue that prevents us from using stock prices in our pairs trading strategy.

As mentioned before, because the LSW processes require our data to be zero-mean,

we cannot use stock prices anymore in the estimation of the evolutionary wavelet spec-

trum. There have been examples of log returns being used in the context of pairs trading:
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Chen et al. (2014) trade using a strategy of modelling the volatility through a three-regime

threshold nonlinear GARCH model. However, note that they trade using thresholds com-

puted in their model based on the log returns, and not simply based on the historical mean

+/- k standard deviations. A hedge ratio is not considered in their model, as they only

short and long each respective stock when they meet the thresholds. Because costationar-

ity does not allow us to find thresholds for the trades as a function of the log returns, we

cannot emulate Chen et al. (2014)’s strategy entirely.

Let PA
t represent the first stock price in our pairs trade and PB

t represent the second

stock price. Let Xt and Yt represent the log returns of the stocks respectively, that is:

Xt = log
( PA

t

PA
t−1

)
and Yt = log

( PB
t

PB
t−1

)
.

Through costationarity we are able to find αt and βt such that our linear combination

Zt = αtXt + βtYt is stationary. Unfortunately, having a stationary Zt which is a linear

combination of log returns is not useful in terms of trading the stocks themselves, as the

αt and βt cannot be used directly to calculate the quantity of PA
t and PB

t to purchase long

and sell short. We can very easily get the price level back from the log returns of one stock,

but to do so for a linear combination is a different matter altogether.

That is, for

Xt = log
( PA

t

PA
t−1

)
(2.69)

and through the following:

PA
1 exp

{ j∑
t=2

log
( PA

t

PA
t−1

)}
for j = 2, . . . , n

= PA
1 exp

{
log
(PA

j

PA
1

)}
for j = 2, . . . , n

= PA
j for j = 2, . . . , n

(2.70)

since log returns can be telescoped in a sum. However, for a linear combination,

Zt = αXt + β Yt

Zt = α log
( PA

t

PA
t−1

)
+ β log

( PB
t

PB
t−1

) (2.71)
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we do not have the same application of being able to convert this back to a linear combina-

tion in terms of the price level of the stocks PA
t and PB

t . That is, if we take the exponential

of the cumulative sum of the linear combination, we arrive with

exp

{ j∑
t=2

(
α log

( PA
t

PA
t−1

)
+ β log

( PB
t

PB
t−1

))}
for j = 2, . . . , n

= exp

{
α log

(PA
j

PA
1

)
+ β log

(PB
j

PB
1

)}
for j = 2, . . . , n

=

(
PA
j

PA
1

)α(PB
j

PB
1

)β
for j = 2, . . . , n .

(2.72)

Thus, we cannot get a useful interpretation out of α and β from the costationary

solution from log returns as our Xt and Yt. This demonstration is obviously not time-

varying as in our costationary solution, which makes using the log-return measure even

more complicated to trade from. Hence a measure we used for Xt and Yt, whilst fulfilling

the zero-mean requirement, is the difference of the stock prices. That is,

Xt = ∆(PA
t ) = PA

t − PA
t−1

Yt = ∆(PB
t ) = PB

t − PB
t−1

(2.73)

Using this measure, we can obtain the estimates αt and βt that form the costationary

solution Zt = αtXt+βtYt and the α’s and β’s can used directly towards the amount of each

of stock A and B we want to purchase or short. Since we have a costationary solution Zt,

we can add this to the differenced values αtP
A
t−1 +βtP

B
t−1 to get P S

t = αtP
A
t +βtP

B
t . Ideally,

since Zt constitutes the change in the spread of αtP
A
t + βtP

B
t , and the price differences

follow a relatively constant variance in contrast to before (when they were not stationary),

the spread P S
t should also be more stable. Of course, this relies on the relationship between

PA
t and PB

t to still lie close to each other. If that relationship breaks, ultimately there will

be no profitable opportunity anymore. We use Cardinali and Nason (2011)’s R package

”costat” and Nason’s R pacakge ”wavethresh” to obtain our solutions.

82



2.8 Comparison of the Costationarity Method with

the Minimum Distance Method

We saw in the cointegration examples previously that for a training set of 3 years of

historical data, 13 cointegrated pairs were found. However, after 6 months, only 3 remained

cointegrated. For our test, we prefer to test pairs whose relationships remain relatively

stable for longer periods of time. The minimum distance method was much better at

finding such pairs. Using training data of 512 trading days, or roughly 2 years, the 10 pairs

of stocks in the NASDAQ 100 (91 total stocks) with the smallest least squared distance

were used to find costationary solutions using our spread metric in Equation 2.73. For

the algorithm we used, the training data length had to be a power of 2, so we used the

most relevant set to our previous simulation. Using 512 data points instead of 1024 also

shortened the algorithm running time by a huge margin.

Taking the differenced stock prices of each stock, and finding a costationary solution

meant that we found αt and βt. We restricted the changing values of αt and βt to 4, as it

would be difficult to arrive at a suitable test set if we allowed α and β to vary any further.

That is, each α and β was allowed to last for 128 trading days in the training set. The

test set then utilized the last known α and β to trade on the stocks for a period of 50

trading days (i.e. for each solution we had computed values for α1, α2, α3, α4, β1, β2, β3, β4,

and the α4 and β4 were the coefficients used to trade on the test set). We wanted to be

able to trade the stocks for a short period of time before another change in the α or β,

but also a long enough time for the spread to be able to diverge and revert for profit. For

each training set, the algorithm from Cardinali and Nason (2011) generates a number of

solutions that all can be considered stationary, but with different α and β for each solution.

The reason this is so is because the α’s and β’s are formed from a randomized starting

point, so many different solutions are possible. We generated 10 solutions per training set,

but ideally much more should be generated and averaged to get a good idea whether this

method can work with many different coefficients that all try to achieve costationarity.
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In the solutions, not all tests have 10 usable solutions because the algorithm does not

necessarily find convergent solutions. In addition, we only accept the solutions with our

test set α and β being of opposite sign, as we wish to still use a long-short strategy.

For each stock pair, the training and testing was repeated 10 times, with each consec-

utive training period covering the last 512 trading days, moving 50 trading days forward

after each test. A list of the training and testing periods can be seen in Table 2.1.

For a comparison, the minimum-distance simple spread of the difference between the

pairs of stocks was used to contrast with the profits from the costationarity method. Ul-

timately, because the αt’s and βt’s were computed numerically, there are some very dras-

tically different values in many of the simulations. As a result, the total profit, and the

average profit for each test cannot be compared very well as the investment value also

varies very greatly. However, the number of trades and return on income is still very rele-

vant and is the metric we compare on. As before, with the cointegration application, the

return on income is calculated as in Equation 1.44.

Again, as we have generated 10 solutions from each training set, there are a significant

amount of returns to compare. For simplicity, we have averaged all the returns with the

arithmetic mean from each possible solution and have arrived at one return value for each

test set. The average returns of each pair can be seen in Tables 2.2, 2.3, and 2.4. If

we examine the values in these figures, we can see that the costationarity method (CM)

outperforms the minimum distance method (MDM) quite often. There are cases when the

MDM does perform slightly better, but these are not altogether that common. There are

also some cases when the MDM does drastically better than the CM; but by and large the

CM is relatively stronger while the stocks are still quite close together. We can examine

this in Figure 2.5. Looking at the stock pairs’ movement, as several stocks reach around

the 5th test set they are apart from each other much more than in the general training set

and in the first 4 test sets. Thus if we only compare the profits from the first 4 tests, there

are no significant outliers where the MDM vastly outperforms the CM.

As a general rule, as in the cointegration method, the stocks can be re-evaluated at the
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end of 4 tests for new minimum-distance pairs, and the algorithm can be reset from there.

The difference in the returns between the CM and the MDM can be seen in Table 2.8. If

we sum these differences up from tests 1 to 4, we can see that the CM as a whole has a

59.18% higher return than the MDM. This is in stark contrast to the 2.80% overall higher

return from the CM to the MDM if we include all 10 tests.

One final note about the CM is that there are also more trades in general being executed

in the test period. This is a good thing typically because for every solution that has more

than 1 trade means that there is at least one positive profit even if the second trade is not

completed by the end of the test period (and possibly results in an overall loss). However,

the best metric to compare results by is still the averaged returns. The average number of

trades executed per test and pair can be seen in Tables 2.5, 2.6, and 2.7.

For brevity, we have not included all 1000 plots for each solution, test, and stock (there

are 10 solutions per test, 10 test periods per pair, and 10 stock pairs in total). We have

only included plots from the pair with the lowest minimum distance. The 10 solutions for

the first test of this pair can be seen in Figures 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13,

2.14, and 2.15.

For these figures, it is useful to explain what each plot represents in detail. In Figure 2.6,

in the first plots on the top left, ”SYMC.Adjusted” and ”YAHOO.Adjusted” displays the

difference metric in Equation 2.73. The plot titled ”SYMC.Adjusted YAHOO.Adjusted”

with the blue and black lines represent the training data of the two stocks, with SYMC

in black, and YAHOO in blue. For each next set of four plots, the different solutions are

represented. The plot with the title ”Mean-Removed Spread” displays the trajectory of

the spread following the trades using αt and βt with the respective means of each section

with different coefficients removed. This is done because the coefficents from section to

section can vary drastically. The test set for the costationary solution is in green. The plot

below displays the full training set and test spread of the MDM, and has the title ”Min-

Dist Spread”. The test spread is highlighted in green. Beside these two, the plots titled

”CM Test Spread” and ”MDM Test Spread” are zoomed-in versions of the previous plots
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starting from the start of the time when coefficients α4, and β4 were in effect. The blue

horizontal lines representing the trade boundaries and the red horizontal line representing

the historical mean. The test spreads in each are again highlighted in green. This plot

arrangement is repeated for each test set in the other figures.

The 2 year training period and the 50 day trading periods

Training Period Testing Period

May 20 2009 - May 31 2011 June 1 2011 - August 10 2011

July 31 2009 - August 10 2011 August 11 2011 - October 20 2011

October 12 2009 - October 20 2011 October 21 2011 - January 3 2012

December 22 2009 - January 3 2011 January 4 2011 - March 15 2012

March 8 2010 - March 15 2012 March 16 2012 - May 25 2012

May 18 2010 - May 25 2012 May 29 2012 - August 7 2012

July 29 2010 - August 7 2012 August 8 2012 - October 17 2012

October 8 2010 - October 17 2012 October 18 2012 - January 2 2013

December 20 2010 - January 2 2013 January 3 2013 - March 15 2013

March 3 2011 - March 15 2013 March 18 2013 - May 28 2013

Table 2.1: The training and testing periods for the MDM and CM elligible stocks in the

NASDAQ 100
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SYMC,YHOO CMCSA,MXIM INTC,MDLZ AMAT,FOXA

Costat Mindist Costat Mindist Costat Mindist Costat Mindist

Test 1 -4.171 -5.431 1.290 11.863 4.562 -3.205 7.777 12.765

Test 2 10.194 14.824 5.572 7.424 4.653 10.189 -3.609 -5.684

Test 3 -7.433 1.217 3.167 5.483 3.687 2.601 -5.507 -10.737

Test 4 10.983 -2.028 2.045 -0.480 5.178 -0.651 9.953 0.979

Test 5 8.066 11.003 -4.070 -8.524 0.895 6.124 -2.822 -9.023

Test 6 3.750 6.219 -18.683 -12.655 -3.123 8.627 -12.108 -14.578

Test 7 5.460 7.031 -6.871 -12.689 -8.529 -12.317 -9.352 -12.337

Test 8 -6.769 -1.581 4.170 7.909 1.598 2.018 1.506 -1.933

Test 9 1.122 10.227 -0.480 0.034 -4.616 -5.174 -12.819 -11.521

Test 10 -0.883 -11.474 2.283 -10.246 -7.212 -0.979 4.754 -3.686

Table 2.2: The averaged returns across the useable solutions for each test and for each

method (CM and MDM). The rows indicate which test number the return is representing.

Each value is a percent return (%)
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DISCA,MAT FOXA,SBUX FOXA,QVCA FISV,LLTC

Costat Mindist Costat Mindist Costat Mindist Costat Mindist

Test 1 3.382 2.186 -1.455 -19.248 15.689 12.830 3.656 -0.753

Test 2 -0.714 -2.776 0.464 -9.322 12.132 8.858 6.737 9.391

Test 3 -0.099 -3.771 -0.742 -4.110 3.975 15.899 6.764 0.419

Test 4 -3.327 -5.448 -6.644 -9.449 2.393 3.157 -0.011 -3.040

Test 5 9.944 15.093 0.821 -7.011 11.686 -0.436 -4.115 -8.448

Test 6 3.294 1.660 -27.657 42.530 -9.097 -10.401 2.328 6.502

Test 7 -1.632 10.004 -8.619 0.795 -2.622 -3.165 -1.171 -7.692

Test 8 -2.654 0.000 2.561 21.256 0.704 -5.160 2.984 4.695

Test 9 -4.489 -2.247 -16.581 1.228 -6.509 -13.394 1.761 -1.260

Test 10 0.324 10.781 -3.379 4.245 0.010 -5.023 -4.111 -4.162

Table 2.3: The averaged returns across 10 solutions for each test and for each method (CM

and MDM). The rows indicate which test number the return is representing. Each value

is a percent return (%)
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MAT,VOD MAT,MYL

Costat Mindist Costat Mindist

Test 1 5.345 10.068 -0.099 -1.678

Test 2 7.581 12.341 -16.274 -21.711

Test 3 6.784 6.771 9.502 15.958

Test 4 -9.094 -17.271 -8.186 -11.508

Test 5 4.709 7.547 6.403 0.198

Test 6 2.260 -0.614 5.030 -7.249

Test 7 9.087 -13.020 0.037 -3.123

Test 8 -4.993 -4.509 -1.879 14.705

Test 9 0.788 -9.765 2.919 -0.037

Test 10 -5.242 -6.988 1.034 -2.427

Table 2.4: The averaged returns across the useable solutions for each test and for each

method (CM and MDM). The rows indicate which test number the return is representing.

Each value is a percent return (%)
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SYMC,YHOO CMCSA,MXIM INTC,MDLZ AMAT,FOXA

Costat Mindist Costat Mindist Costat Mindist Costat Mindist

Test 1 1.167 1.000 1.625 1.000 1.000 1.000 1.625 1.000

Test 2 1.429 1.000 1.286 1.000 1.000 1.000 1.000 1.000

Test 3 1.000 1.000 1.000 1.000 1.571 1.000 1.571 1.000

Test 4 1.167 1.000 1.333 1.000 1.000 1.000 1.750 1.000

Test 5 2.000 2.000 1.111 1.000 2.000 1.000 1.000 1.000

Test 6 1.000 1.000 1.000 1.000 1.200 2.000 1.000 1.000

Test 7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Test 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Test 9 1.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Test 10 1.250 1.000 1.375 1.000 1.000 1.000 1.000 1.000

Table 2.5: The total number of trades executed on each of the 10 tests for CM and MDM.

The stock pairs that are relevant are labelled at the top of each column.
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DISCA,MAT FOXA,SBUX FOXA,QVCA FISV,LLTC

Costat Mindist Costat Mindist Costat Mindist Costat Mindist

Test 1 1.333 1.000 1.625 1.000 2.667 2.000 1.429 1.000

Test 2 1.000 1.000 1.000 1.000 2.000 2.000 1.429 2.000

Test 3 1.000 1.000 1.000 1.000 1.000 3.000 1.556 1.000

Test 4 1.000 1.000 1.000 1.000 1.000 1.000 1.571 1.000

Test 5 1.200 1.000 1.200 1.000 1.000 1.000 1.000 1.000

Test 6 1.429 1.000 1.500 2.000 1.333 1.000 1.000 1.000

Test 7 1.000 1.000 1.000 1.000 1.000 1.000 1.200 1.000

Test 8 1.556 1.000 1.000 1.000 1.200 1.000 1.167 1.000

Test 9 1.000 1.000 1.000 1.000 1.000 1.000 1.667 1.000

Test 10 1.167 1.000 1.000 1.000 1.000 1.000 1.111 1.000

Table 2.6: The total number of trades executed on each of the 10 tests for CM and MDM.

The stock pairs that are relevant are labelled at the top of each column.
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MAT,VOD MAT,MYL

Costat Mindist Costat Mindist

Test 1 1.000 1.000 1.625 2.000

Test 2 2.000 2.000 1.000 1.000

Test 3 1.000 1.000 1.000 1.000

Test 4 1.000 1.000 1.000 1.000

Test 5 1.000 1.000 1.286 1.000

Test 6 1.333 1.000 1.667 1.000

Test 7 1.000 1.000 1.000 1.000

Test 8 1.000 1.000 1.429 1.000

Test 9 1.286 1.000 1.444 1.000

Test 10 1.200 1.000 2.000 1.000

Table 2.7: The total number of trades executed on each of the 10 tests for CM and MDM.

The stock pairs that are relevant are labelled at the top of each column.
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Pair

1 2 3 4 5 6 7 8 9 10

Test 1 1.26 -10.57 7.77 -4.99 1.20 17.79 2.86 4.41 -4.72 1.58

Test 2 -4.63 -1.85 -5.54 2.08 2.06 9.79 3.27 -2.65 -4.76 5.44

Test 3 -8.65 -2.32 1.09 5.23 3.67 3.37 -11.92 6.35 0.01 -6.46

Test 4 13.01 2.52 5.83 8.97 2.12 2.80 -0.76 3.03 8.18 3.32

Test 5 -2.94 4.45 -5.23 6.20 -5.15 7.83 12.12 4.33 -2.84 6.20

Test 6 -2.47 -6.03 -11.75 2.47 1.63 -70.19 1.30 -4.17 2.87 12.28

Test 7 -1.57 5.82 3.79 2.98 -11.64 -9.41 0.54 6.52 22.11 3.16

Test 8 -5.19 -3.74 -0.42 3.44 -2.65 -18.70 5.86 -1.71 -0.48 -16.58

Test 9 -9.11 -0.51 0.56 -1.30 -2.24 -17.81 6.88 3.02 10.55 2.96

Test 10 10.59 12.53 -6.23 8.44 -10.46 -7.62 5.03 0.05 1.75 3.46

Table 2.8: The difference between the averaged returns of each method (CM and MDM)

for each test and each pair. The rows indicate which test number the return is representing.

Each value is a percent return (%), with positive values representing the CM performing

better than the MDM, and negative values representing the MDM performing better than

the CM. The pairs in order from 1 to 10 are SYMC & YHOO, CMCSA & MXIM, INTC

& MDLZ, AMAT & FOXA, DISCA & MAT, FOXA & SBUX, FOXA & QVCA, FISV &

LLTC, MAT & VOD, and MAT & MYL.
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Figure 2.5: The plots of the prices of the stock pairs. The black and blue lines represent

the stock prices of the first and second of the stocks in the title of each plot respectively.

The green line is where the stocks start to diverge in some cases, and this corresponds with

the 5th test set. It is for this reason why we consider comparing the returns only from

tests 1-4 with the tests from 1-10, and there is a noticeable difference albeit mainly from

one outlier.
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Figure 2.6: The plots of the 1st test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.7: The plots of the 2nd test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.8: The plots of the 3rd test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.

97



Oct 13
2009

Feb 01
2010

May 03
2010

Aug 02
2010

Nov 01
2010

Feb 01
2011

May 02
2011

Aug 01
2011

−
1.

5
−

0.
5

0.
5

1.
5

SYMC.Adjusted

Oct 13
2009

Feb 01
2010

May 03
2010

Aug 02
2010

Nov 01
2010

Feb 01
2011

May 02
2011

Aug 01
2011

−
1.

0
0.

0
1.

0

YHOO.Adjusted

Oct 12
2009

Feb 01
2010

May 03
2010

Aug 02
2010

Nov 01
2010

Feb 01
2011

May 02
2011

Aug 01
2011

12
14

16
18

SYMC.Adjusted YHOO.Adjusted

Oct 12
2009

Feb 01
2010

May 03
2010

Aug 02
2010

Nov 01
2010

Feb 01
2011

May 02
2011

Aug 01
2011

−
4

−
2

0
2

is cointegrated: FALSE

R
es

id
ua

ls

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
0.

2
0.

0
0.

2

Solution 3 Mean−Removed Spread

V
al

ue

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
4

−
2

0
2

Solution 3 Min−Dist Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
0.

5
−

0.
3

−
0.

1

Solution 3 CM Test Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
5

−
3

−
1

1

Solution 3 MDM Test Spread

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
0.

4
0.

0
0.

2

Solution 4 Mean−Removed Spread

V
al

ue

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
4

−
2

0
2

Solution 4 Min−Dist Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
0.

2
0.

0
0.

2
0.

4

Solution 4 CM Test Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
5

−
3

−
1

1

Solution 4 MDM Test Spread

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
0.

5
0.

0
0.

5

Solution 5 Mean−Removed Spread

V
al

ue

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
4

−
2

0
2

Solution 5 Min−Dist Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

1.
2

1.
6

2.
0

2.
4

Solution 5 CM Test Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
5

−
3

−
1

1

Solution 5 MDM Test Spread

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
0.

3
−

0.
1

0.
1

0.
3

Solution 7 Mean−Removed Spread

V
al

ue

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
4

−
2

0
2

Solution 7 Min−Dist Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
0.

4
−

0.
2

0.
0

Solution 7 CM Test Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
5

−
3

−
1

1

Solution 7 MDM Test Spread

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
20

0
0

10
0

20
0

Solution 8 Mean−Removed Spread

V
al

ue

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
4

−
2

0
2

Solution 8 Min−Dist Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

10
0

20
0

30
0

Solution 8 CM Test Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
5

−
3

−
1

1

Solution 8 MDM Test Spread

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
0.

5
0.

0
0.

5

Solution 9 Mean−Removed Spread

V
al

ue

Dec 22
2009

Apr 01
2010

Jul 01
2010

Oct 01
2010

Jan 03
2011

May 02
2011

Sep 01
2011

Jan 03
2012

−
4

−
2

0
2

Solution 9 Min−Dist Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

0.
5

1.
0

1.
5

Solution 9 CM Test Spread

V
al

ue

Jul 01
2011

Aug 01
2011

Oct 03
2011

Dec 01
2011

Jan 03
2012

Mar 01
2012

−
5

−
3

−
1

1

Solution 9 MDM Test Spread

Figure 2.9: The plots of the 4th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.10: The plots of the 5th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.11: The plots of the 6th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.12: The plots of the 7th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.13: The plots of the 8th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.14: The plots of the 9th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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Figure 2.15: The plots of the 10th test in the costationary solutions versus the minimum-

distance solutions of the stock pair SYMC,YAHOO.
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2.9 Comparison of the Costationarity Method with

the Cointegration Method

The costationarity method (CM) is more suited to compare with the minimum distance

method (MDM) as the requirement of the stock pairs being cointegrated severely limits

the number of available pairs, as well as the possible problem of having false positive pairs

and the possibility of the cointegration relationship dissapearing. However, there is still

a comparison to be made with the cointegration method (CIM). Thus, we attempt to

compare the costationarity method (CM) with the cointegration method (CIM) between

pairs which seem to have a lasting cointegrating relationship, and contrast this with pairs

that do not.

For this comparison we do not use the cointegrated pairs in the previous application of

just the cointegration method. This is because the costationarity method must use data

sets with lengths that are powers of 2, and again we use a training set of 512 trading days.

However, seeing as the stocks may not remain cointegrated for that long, we limit the num-

ber of tests to 5 consecutive periods, or 250 trading days. That is roughly around the same

as 12 months of trading. The first two pairs, (CMCSA,GILD) and (CSCO,WYNN), have

been deliberately selected for comparison after noticing that the cointegration relationship

breaking down very quickly. The last two pairs, (HSIC,LBTYA) and (QVCA,SIAL), have

strongly persisting cointegration relationships. These trajectories of the stock prices and

the corresponding cointegrating relationships can be seen in Figure 2.30. The training and

testing periods for the stocks can be seen in Figure 2.9.

As the stocks pairs here are found using the cointegration method, it is not as simple as

the costationarity application on the pairs found using the minimum distance method. We

can no longer just apply the algorithm on the differenced stock prices of each pair. Rather,

we do so on the differenced regression relationship and the corresponding differenced stock

price. That is, for PA
t and PB

t , the prices of the stocks of a cointegrated pair, they have
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the cointegration relationship:

PB
t = α + βPA

t + εt . (2.74)

Then, as before, we can take the differences of PB
t and α + βPA

t for our spread metric in

Equation 2.73:

∆PB
t = PB

t − PB
t−1 and

∆(α + βPA
t ) = α + βPA

t − (α + βPA
t−1)

= β(PA
t − PA

t−1)

= β∆(PA
t ) .

(2.75)

Stationary linear combinations are then found using the costationarity algorithm with

this spread metric. That is, for the original solution

Zt = αtXt + βtYt , (2.76)

we will let
Xt = ∆PB

t and

Yt = β∆(PA
t )

(2.77)

Beware that the αt and βt are the time-varying coefficients found from the costationarity

algorithm and the α and β are the coefficients from the regression of the stock prices of

the stock pair.

Again, for this comparison we look at the averaged returns across the useable solutions

generated from the costationarity algorithm. The solutions that don’t converge and the

solutions without opposite signed α4’s and β4’s are not used. It turns out that the returns

for the cointegrated stocks that stay cointegrated (HSIC,LBTYA) and (QVCA,SIAL), ac-

tually perform much better with the cointegration method than the costationarity method.

Where the cointegration relationship actually is a false positive, or just disappears relatively

quickly, with the pairs (CMCSA,GILD) and (CSCO,WYNN), the costationarity method

performs much better across the five tests. The relative return table with the difference

between the two methods can be seen in Table 2.12.
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However, that is just a relative measure: if we take a look at the absolute returns for

the pairs which have the faltering cointegration relationship, we notice that the returns

altogether are not very good. The costationarity method (CMCSA,GILD) gives quite a

negative return on Test 1, and performs much better on Tests 2,4, and 5, but that is

just because the cointegration method performs spectacularly poorly. The costationarity

method returns are quite small with returns of 0.452% 0.877%, and 4.772% in Tests 2, 4

and 5. Similarly with the (CSCO,WYNN) pairing, the CM only outperforms CIM when

the CIM performs very poorly. In general, both these stock pairs are not tradeable with

either method, although the cointegration mitigates the loss quite a bit better.

With one of the pairs that do remain cointegrated however, (HSIC,LBTYA), the coin-

tegration method performs much better than the costationarity method. There is a stark

contrast between the returns of the two methods in Tests 1 and Test 4. However a closer

look at the spread diagrams shows why this is the case. This can be seen in Figures 2.20

and 2.23. For the cointegration method, there is a profit when the stock rises from the

lower threshold to the mean, then again when it jumps up to the upper threshold and

immediately back down and up again. It can be seen that the costationarity solutions are

quite similar; however they do not spike like the cointegration spread and as such there is

only one profitable trade. For Test 4, the spreads are quite similar but there is one solution

for the costationarity method that results in quite a large loss so the returns average out

to a lot less. In the stock pair (QVCA,SIAL), there is not much of a difference in the

returns of the two methods. All of the solutions of each of the stock pairs can be seen in

Figures 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, and 2.29.

We have chosen only to include the first two tests for the solutions to the first two stock

pairs (CMCSA,GILD) and (CSCO,WYNN), because we do not believe that they should be

traded beyond those two test periods. The cointegration relationship clearly disintegrates

and as such, should not be traded once this is clear.

The number of trades here is quite similar for both methods: sometimes the costation-

arity method has more trades executed than the cointegration method; but sometimes it is

the other way around. In this regard, we can reasonably conclude that the costationarity
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method is not a huge improvement over the cointegration method for these tests.

The 2 year training period and the 50 day trading periods

Training Period Testing Period

May 12 2010 - May 21 2012 May 22 2012 - August 01 2012

July 23 2010 - August 01 2012 August 02 2012 - October 11 2012

October 04 2010 - October 11 2012 October 12 2012 - December 26 2012

December 14 2010 - December 26 2012 December 27 2012 - March 11 2013

February 25 2011 - March 11 2013 March 12 2013 - May 21 2013

Table 2.9: The training and testing periods for the CIM and CM elligible stocks in the

NASDAQ 100

CMCSA,GILD CSCO,WYNN HSIC,LBTYA QVCA,SIAL

Costat CIM Costat CIM Costat CIM Costat CIM

Test 1 -14.777 4.005 -7.509 -11.639 1.305 16.524 4.032 6.681

Test 2 0.452 -17.555 21.435 29.149 -11.996 -12.919 9.927 9.444

Test 3 -1.780 -4.526 -2.832 1.356 1.373 5.011 3.137 2.830

Test 4 0.877 -19.942 -9.410 -2.931 -0.980 10.494 0.803 N/A

Test 5 4.772 -27.192 -3.156 -13.384 -3.590 5.665 3.801 4.259

Table 2.10: The averaged returns across the solutions used for each test and for each

method (CM and CIM). The rows indicate which test number the return is representing.

Each value is a percent return (%).
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CMCSA,GILD CSCO,WYNN HSIC,LBTYA QVCA,SIAL

Costat CIM Costat CIM Costat CIM Costat CIM

Test 1 1.000 1.000 1.000 1.000 1.571 3.000 1.667 2.000

Test 2 1.000 1.000 1.000 1.000 1.000 1.000 3.000 3.000

Test 3 1.000 1.000 1.250 1.000 1.000 1.000 1.000 1.000

Test 4 1.125 1.000 1.000 1.000 1.667 2.000 1.125 0

Test 5 1.714 1.000 1.000 1.000 1.000 1.000 2.500 2.000

Table 2.11: The total number of trades executed on each of the 5 tests for CM and CIM.

The stock pairs that are relevant are labelled at the top of each column.

CMCSA,GILD CSCO,WYNN HSIC,LBTYA QVCA,SIAL

Test 1 -18.78 4.13 -15.22 -2.65

Test 2 18.01 -7.71 0.92 0.48

Test 3 2.75 -4.19 -3.64 0.31

Test 4 20.82 -6.48 -11.47 0.80

Test 5 31.96 10.23 -9.25 -0.46

Table 2.12: The difference between the averaged returns of each method (CM and CIM)

for each test and each pair. Each value is a percent return (%), with positive values

representing the CM performing better than the CIM, and negative values representing

the CIM performing better than the CM.
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Figure 2.16: The plots of the 1st test in the costationary solutions versus the cointegration

solutions of the stock pair CMCSA,GILD.
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Figure 2.17: The plots of the 2nd test in the costationary solutions versus the cointegration

solutions of the stock pair CMCSA,GILD.
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Figure 2.18: The plots of the 1st test in the costationary solutions versus the cointegration

solutions of the stock pair CSCO,WYNN.
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Figure 2.19: The plots of the 2nd test in the costationary solutions versus the cointegration

solutions of the stock pair CSCO,WYNN.
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Figure 2.20: The plots of the 1st test in the costationary solutions versus the cointegration

solutions of the stock pair HSIC,LBTYA.
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Figure 2.21: The plots of the 2nd test in the costationary solutions versus the cointegration

solutions of the stock pair HSIC,LBTYA.
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Figure 2.22: The plots of the 3rd test in the costationary solutions versus the cointegration

solutions of the stock pair HSIC,LBTYA.
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Figure 2.23: The plots of the 4th test in the costationary solutions versus the cointegration

solutions of the stock pair HSIC,LBTYA.
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Figure 2.24: The plots of the 5th test in the costationary solutions versus the cointegration

solutions of the stock pair HSIC,LBTYA.
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Figure 2.25: The plots of the 1st test in the costationary solutions versus the cointegration

solutions of the stock pair QVCA,SIAL.
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Figure 2.26: The plots of the 2nd test in the costationary solutions versus the cointegration

solutions of the stock pair QVCA,SIAL.
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Figure 2.27: The plots of the 3rd test in the costationary solutions versus the cointegration

solutions of the stock pair QVCA,SIAL.
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Figure 2.28: The plots of the 4th test in the costationary solutions versus the cointegration

solutions of the stock pair QVCA,SIAL.
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Figure 2.29: The plots of the 5th test in the costationary solutions versus the cointegration

solutions of the stock pair QVCA,SIAL.
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Figure 2.30: The plots of the trajectories of the stock pairs (PB
t ) and their cointegration

relationship counterpart (α + βP t
A) over the 5 test periods. The pairs CMCSA,GILD

and CSCO,WYNN are false positives for cointegration, while the pairs HSIC,LBTYA and

QVCA,SIAL have much longer lasting cointegrating relationships. The red lines represent

the training set and the green lines represent the test set. The blue lines represent PB
t (the

second stock in the titles), while the black lines represent α + βP t
A, where P t

A is the first

stock in the titles.
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Chapter 3

Conclusion

There has been much research done on the topic of pairs trading in the past, with many

focussing on cointegration, stochastic spread and minimum-distance methods. However,

most of these stay confined to application onto new data sets and refining the methods

used. We focussed our work on the application of wavelets to pairs trading, and its effects

on the current methods. By allowing the parameters of α and β to change over time, we

compensate for the temporal changes in the relationship between the stock pairs. This has

resulted in a generally improved minimum-distance method through the use of costationary

solutions, but has not been particularly fruitful in the application to cointegration. This

has been the result of, in part, the fact that the algorithm for finding cointegrated pairs

is very stringent, allowing very few pairs. On top of this, after finding the pairs, the false

positives highly outnumber the amount of truly cointegrated pairs.

It is for that reason, that we advocate for the use of the costationarity method towards

improving the minimum distance method, but we also strongly want to iterate that the

entire method of costationarity is just another potential tool to add to the trading tech-

niques available. We feel that with extra work in this topic, there may be some significant

breakthroughs in the advancement of pairs trading.
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3.1 Future Work

1. Spread Metric

Related to the zero-mean limitation above, our spread metric of the differenced stock

prices was used simply because it was the most convenient for converting the coef-

ficients back into relatable terms for purchasing and shorting the respective stocks.

This is by no means a perfect metric; it may be interesting to compare how other

metrics perform in comparison if a way to use the coefficients with log returns is

possible.

2. Training and Testing Period

With the training and testing periods we used, they were not rigorously tested to be

the most optimal periods for finding cointegrating relationships. However, the issue

with this is that finding an ”optimal” training period for a set of data will result in

the problematic phenomenon known as data snooping. We will be biased towards this

set of data, but perhaps there can be something done about the optimal training and

testing periods for the costationarity algorithm, with the interest between comparing

sample sizes with different powers of two, and different numbers of time varying

coefficients allowed per set.

3. Stock Choices

In our work, we tried using the NASDAQ 100 to find minimum-distance and cointe-

grated pairs. However, there have been studies comparing the stocks from different

industries and different countries, which have resulted in cointegrated pairs of stocks

or indexes. This may be interesting to look at as the application of the costationar-

ity method to more truly cointegrated pairs may be very interesting to look at. The

small sample size of working cointegrated pairs our study has been done on consider-

ably limits the conclusions we can make. The complications begin when comparing

returns between different countries or different commodities as the regulations can

be vastly different from country to country. Nevertheless, as a pilot study it may be
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of interest to do so in the future.

4. Gaussianity of Innovations in LSW Processes

The assumption that the innovations in locally stationary wavelet processes are Gaus-

sian is what drove the test of spectral constancy to be carried out using a parametric

bootstrap. This assumption may be invalid in the case of pairs trading, when we in-

herently believe that the stocks have very similar price paths. Future work could look

into expanding this assumption to a less restrictive distribution for the innovations.

5. Stop-Loss Triggers The returns obtained from all three methods are not particu-

larly high. In fact, returns are quite poor in several of our tests. Given this fact, it

may be beneficial to see if we can limit this in the future through stop-loss triggers

at a given point and compare those results to the ones obtained in this thesis.
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Appendix A

Table of Stocks Used
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Stocks Used in Training and Testing

1 AAPL 2 ADBE 3 ADI 4 ADP 5 ADSK 6 AKAM

7 ALTR 8 ALXN 9 AMAT 10 AMGN 11 AMZN 12 ATVI

13 BBBY 14 BIDU 15 BIIB 16 BRCM 17 CA 18 CELG

19 CERN 20 CHKP 21 CHRW 22 CMCSA 23 COST 24 CSCO

25 CTRX 26 CTSH 27 CTXS 28 DISCA 29 DISH 30 DLTR

31 DTV 32 EBAY 33 EQIX 34 ESRX 35 EXPD 36 EXPE

37 FAST 38 FFIV 39 FISV 40 FOSL 41 FOXA 42 GILD

43 GMCR 44 GOOGL 45 GRMN 46 HSIC 47 INTC 48 INTU

49 ILMN 50 ISRG 51 KLAC 52 LBTYA 53 QVCA 54 LLTC

55 MAR 56 MAT 57 MDLZ 58 MNST 59 MSFT 60 MU

61 MXIM 62 MYL 63 NFLX 64 NTAP 65 NVDA 66 ORLY

67 PAYX 68 PCAR 69 PCLN 70 QCOM 71 REGN 72 ROST

73 SBAC 74 SBUX 75 SIAL 76 SNDK 77 SPLS 78 SRCL

79 STX 80 SYMC 81 TSCO 82 TXN 83 VIAB 84 VIP

85 VOD 86 VRTX 87 WDC 88 WFM 89 WYNN 90 XLNX

91 YHOO

Table A.1: The 91 stocks used from the NASDAQ 100 that had data points from May

20th, 2009 to May 12th, 2015
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Appendix B

R Code

########################################################################

###################−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######################

################## mind i s t vs c o s t a t ########################

###################−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######################

########################################################################

l ibrary ( egcm)

l ibrary ( t s e r i e s )

l ibrary ( quantmod )

l ibrary ( co s t a t )

##g e t t i n g s t o c k data

# s t o c k s<−nasdaq 1 0 0 [ , 1 ]

# s t o c k s 2<−as . c h a r a c t e r ( s t o c k s )

# #ge tSymbo l s ( s t o c k s 2 )

#

# c l o s e . p r i c e . names<−pa s t e ( s t o c k s , ” [ , 6 ] ” , sep = ’ ’)

#

# news t r i n g<−””

# f o r ( i in c l o s e . p r i c e . names ){
# news t r i n g<−pa s t e ( news t r ing , i , ” , ” , sep=””)

# }

########################################################################

###################−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######################

################## g e t t i n g and c l e an i n g data ########################

###################−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######################

########################################################################

# c l o s e . p r i c e<−cb ind (AAPL[ , 6 ] ,ADBE[ , 6 ] , ADI [ , 6 ] ,ADP[ , 6 ] ,ADSK[ , 6 ] ,AKAM[ , 6 ] ,

ALTR[ , 6 ] ,ALXN[ , 6 ] ,AMAT[ , 6 ] ,AMGN[ , 6 ] ,AMZN[ , 6 ] ,ATVI [ , 6 ] ,AVGO[ , 6 ] ,BBBY[ , 6 ] ,

BIDU[ , 6 ] , BIIB [ , 6 ] ,BRCM[ , 6 ] ,CA[ , 6 ] ,CELG[ , 6 ] ,CERN[ , 6 ] ,CHKP[ , 6 ] ,CHRW[ , 6 ] ,

CHTR[ , 6 ] ,CMCSA[ , 6 ] ,COST[ , 6 ] ,CSCO[ , 6 ] ,CTRX[ , 6 ] ,CTSH[ , 6 ] ,CTXS[ , 6 ] ,DISCA [ , 6 ] ,

DISH [ , 6 ] ,DLTR[ , 6 ] ,DTV[ , 6 ] ,EBAY[ , 6 ] ,EQIX [ , 6 ] ,ESRX[ , 6 ] ,EXPD[ , 6 ] ,EXPE[ , 6 ] ,FAST[ , 6 ] ,

FB[ , 6 ] , FFIV [ , 6 ] , FISV [ , 6 ] ,FOSL[ , 6 ] ,FOXA[ , 6 ] ,GILD [ , 6 ] ,GMCR[ , 6 ] ,GOOG[ , 6 ] ,

GOOGL[ , 6 ] ,GRMN[ , 6 ] , HSIC [ , 6 ] , INTC [ , 6 ] , INTU[ , 6 ] , ILMN[ , 6 ] ,

ISRG [ , 6 ] ,KLAC[ , 6 ] ,KRFT[ , 6 ] ,LBTYA[ , 6 ] ,QVCA[ , 6 ] ,LLTC[ , 6 ] ,LMCA[ , 6 ] ,
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MAR[ , 6 ] ,MAT[ , 6 ] ,MDLZ[ , 6 ] ,MNST[ , 6 ] ,MSFT[ , 6 ] ,MU[ , 6 ] ,MXIM[ , 6 ] ,MYL[ , 6 ] ,

NFLX[ , 6 ] ,NTAP[ , 6 ] ,NVDA[ , 6 ] ,NXPI [ , 6 ] ,ORLY[ , 6 ] ,PAYX[ , 6 ] ,PCAR[ , 6 ] ,PCLN[ , 6 ] ,

QCOM[ , 6 ] ,REGN[ , 6 ] ,ROST[ , 6 ] ,SBAC[ , 6 ] ,SBUX[ , 6 ] , SIAL [ , 6 ] ,SNDK[ , 6 ] , SPLS [ , 6 ] ,

SRCL[ , 6 ] ,STX[ , 6 ] ,SYMC[ , 6 ] ,TSCO[ , 6 ] ,TSLA[ , 6 ] ,TRIP [ , 6 ] ,TXN[ , 6 ] ,VIAB [ , 6 ] ,

VIP [ , 6 ] ,VOD[ , 6 ] ,VRSK[ , 6 ] ,VRTX[ , 6 ] ,WDC[ , 6 ] ,WFM[ , 6 ] ,WYNN[ , 6 ] ,XLNX[ , 6 ] ,YHOO[ , 6 ] )

##c l e an i n g p r i c e s by removing NA’ s

# mis s ing . p r i c e s<−rep (0 , l e n g t h ( c l o s e . p r i c e [ 1 , ] ) )

# f o r ( i in 1 : l e n g t h ( mi s s ing . p r i c e s ) ){
# temp<−FALSE

# fo r ( j in c l o s e . p r i c e [ , i ] ){
# temp<−temp | i s . na ( j )

# }
# miss ing . p r i c e s [ i ]<−temp

# }
#

#which ( l s ()==” t e s t . c l o s e . p r i c e ”)

#save ( l i s t=l s ( ) [ c ( 4 2 , 2 13 ) ] , f i l e = ” s t o c k p r i c e s . RData ”)

c l ean . close . p r i c e<−close . p r i c e [600:1111 ,−which (missing . p r i c e s ==1)]

t e s t . close . p r i c e<−close . p r i c e [600:2104 ,−which (missing . p r i c e s ==1)]

############################################################################

############################################################################

l ibrary ( egcm)

l ibrary ( t s e r i e s )

l ibrary ( quantmod )

l ibrary ( co s t a t )

l ibrary ( xts )

o r i g d i r e c t o r y<−#s e t o r i g i n a l d i r e c t o r y here

setwd ( o r i g d i r e c t o r y )

##### min d i s t c a l c u l a t i o n

c l ean . close . p r i c e<−close . p r i c e [600:1111 ,−which (missing . p r i c e s ==1)]

t e s t . close . p r i c e<−close . p r i c e [600:2104 ,−which (missing . p r i c e s ==1)]

min . d i s t . pairs<−function ( ){
t o t a l s t o c k s<−length ( c l ean . close . p r i c e [ 1 , ] )

MSD<−c ( )

counter<−0
for ( s tock1 in 1 : t o t a l s t o c k s ){

i f ( s tock1+1<=to t a l s t o c k s ){
counter<−stock1+1

for ( s tock2 in counter : t o t a l s t o c k s ){
#pr i n t ( pa s t e ( s tock1 , s tock2 , sep=” ”) )

MSD<−rbind (MSD, c ( stock1 , stock2 ,sum( ( coredata (

c l ean . close . p r i c e [ , s tock1 ])− coredata ( c l ean . close . p r i c e [ , s tock2 ] ) ) ˆ 2 ) ) )

}
}

}
colnames (MSD)<−c ( ” stock1 ” , ” stock2 ” , ” d i s t ance ” )

return (MSD)

}
MSD<−min . d i s t . pairs ( )

so r t ed . d i s t . pairs<−MSD[ order (MSD[ , 3 ] ) , ]

minimum . d i s t . pairs<−head ( so r t ed . d i s t . pairs , 2 0 )

minimum . d i s t . pairs
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###########################

ROImat=matrix ( rep (NA, 20 ) ,nrow=2,ncol=10)

rownames(ROImat)=c ( ” co s t a t ROI” , ”mindist ROI” )

numtradesmat=matrix ( rep (0 , 20 ) ,nrow=2,ncol=10)

rownames( numtradesmat)=c ( ” co s t a t avg t rades ” , ”mindist Avg t rades ” )

##########

##########l i s t o f ROI/number o f t r a d e s/average p r o f i t ma t r i c e s

ROIl i s t=l i s t ( s tock1=ROImat , s tock2=ROImat , s tock3=ROImat , s tock4=ROImat ,

s tock5=ROImat , s tock6=ROImat , s tock7=ROImat , s tock8=ROImat , s tock9=ROImat ,

stock10=ROImat , stock11=ROImat , stock12=ROImat)

numtrades l i s t=l i s t ( s tock1=numtradesmat , s tock2=numtradesmat , s tock3=numtradesmat ,

s tock4=numtradesmat ,

s tock5=numtradesmat , s tock6=numtradesmat , s tock7=numtradesmat ,

s tock8=numtradesmat , s tock9=numtradesmat , stock10=numtradesmat ,

stock11=numtradesmat , stock12=numtradesmat )

for (q in 1 :10){
d i r e c t o r y s t o ck<−paste ( o r i gd i r e c t o r y , ”/ s tock ” , as . character (q ) , sep=”” )

i f ( ! f i l e . exists ( d i r e c t o r y s t o ck )){
dir . create ( d i r e c t o r y s t o ck )

}
setwd ( d i r e c t o r y s t o ck )

pairtA<−t e s t . close . p r i c e [ , s o r t ed . d i s t . pairs [q , 1 ] ]

pairtB<−t e s t . close . p r i c e [ , s o r t ed . d i s t . pairs [q , 2 ] ]

#new type o f r e t u rn s

s i z e d a t l a g<−512

s i z eda t<−s i z e d a t l a g+1

##time . frame f o r s h i f t i n g o f t e s t s

time . frame<−matrix (nrow=10,ncol=2)

start<−1
t rad ing . per iod<−50
time . frame [ 1 , ]<−c ( start , start+s i z eda t l ag −1)

for ( i in 2 : length ( time . frame [ , 1 ] ) ) {
time . frame [ i , ]<−time . frame [ i −1,]+ trad ing . per iod

}
one . step . time . frame<−time . frame+1

fu l l r e t u rn sA<−pairtA−l ag ( pairtA )

f u l l r e t u rn sB<−pairtB−l ag ( pairtB )

######fo r each t e s t t ime frame

for ( t e s t . no in 1 : length ( time . frame [ , 1 ] ) ) {
#s e t to d i r e c t o r y f o r t e s t number

d i r e c t o r y j k<−paste ( d i r e c to ry s t o ck , ”/” , as . character ( t e s t . no ) , sep=”” )

i f ( ! f i l e . exists ( d i r e c t o r y j k )){
dir . create ( d i r e c t o r y j k )

}
setwd ( d i r e c t o r y j k )

#s e t data f o r t r a i n i n g

r0A<−pairtA [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

r0B<−pairtB [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

retA<−f u l l r e t u rn sA [ one . step . time . frame [ t e s t . no , 1 ] : one . step . time . frame [ t e s t . no , 2 ] ]

retB<−f u l l r e t u rn sB [ one . step . time . frame [ t e s t . no , 1 ] : one . step . time . frame [ t e s t . no , 2 ] ]
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pdf (paste ( ” r e tu rns p r i c e s ” ,q , ” . pdf ” , sep=”” ) , width=12, he ight=6)

par ( mfcol=c ( 2 , 2 ) )

plot ( retA , main=paste (colnames ( r0A ) ) )

plot ( retB , main=colnames ( r0B ) )

plot ( r0A , type=’ l ’ , yl im=c (min( r0A , r0B ) ,max( r0A , r0B ) ) ,

main=paste (colnames ( r0A ) , colnames ( r0B ) ) )

l ines ( r0B , col=’ blue ’ )

model1<−egcm(X=r0A ,Y=r0B )

plot ( r0B−model1$beta∗r0A−model1$alpha ,

main=paste ( ” i s c o in t eg ra t ed : ” , i s . c o i n t eg ra t ed (model1 ) ) , ylab=”Res idua l s ” )

dev . of f ( )

#BootTOS( retA )

#BootTOS( retB )

#not s t a t i o n a r y

#t e s t<−f i n d s t y s o l s ( Nsims=10 , Ncoefs =3, retA , retB )

#saveRDS ( t e s t , p a s t e (” t e s t ” , t e s t . no , ” . rds ” , sep =””))

t e s t<−readRDS(paste ( ” t e s t ” , t e s t . no , ” . rds ” , sep=”” ) )

par ( mfcol=c ( 2 , 2 ) )

t e s t$convergence

#p l o t ( t e s t , s o l no =1)

t e s t l i s t<−l i s t ( t e s t )

n . t e s t s=10

Ncoefs=3

TT = length ( t e s t$ t sx )

Zmat = matrix (nrow = TT, ncol = n . t e s t s )

a lphas<−matrix (nrow=Ncoefs+1,ncol=n . t e s t s )

betas<−matrix (nrow=Ncoefs+1,ncol=n . t e s t s )

for ( so ln in t e s t l i s t [ ] ) {
N = length ( so ln$convergence )

noso l = so ln$convergence == 1 | so ln$convergence == 10 | so ln$pva l s < 0 .05

N2 = N − sum( nosol , na .rm = TRUE)

i f (N2 == 0){
stop ( ’ the re are no converg ing co s t a t i ona ry s o l u t i o n s ’ )

#comp l e t e s o l<−s eq ( 1 :N)

} else i f (N2==N){
comple te so l<−seq ( 1 :N)

} else {
comple te so l<−seq ( 1 :N)[−which ( noso l ) ]

}
for ( i in comple te so l ){

alpha<−so ln$endpar [ i , 1 : Ncoefs ]

betaseq . start<−Ncoefs+1

betaseq . end<−Ncoefs∗2

beta<−so ln$endpar [ i , betaseq . start : betaseq . end ]

c o e f s<−c o e f t o f n ( alpha , beta ,TT)

Zmat [ , i ]= c o e f s$alpha∗ so ln$ t sx+co e f s$beta∗ so ln$ t sy

a lphas [ , i ]<−c ( c o e f s$alpha [ 1 ] , c o e f s$alpha [ 1 2 9 ] , c o e f s$alpha [ 2 5 7 ] , c o e f s$alpha [ 3 8 5 ] )
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betas [ , i ]<−c ( c o e f s$beta [ 1 ] , c o e f s$beta [ 1 2 9 ] , c o e f s$beta [ 2 5 7 ] , c o e f s$beta [ 3 8 5 ] )

}

}

a l l t o t a l p r o f i t<−c ( )

a l l a v e r a g e p r o f i t<−c ( )

a l l t o ta lROI<−c ( )

a l lnumtrades<−c ( )

##p l o t t i n g t h e t e s t s p r ead s f o r c o s t a t so ln , min d i s t so ln , c o i n t e g r a t i o n s o l n .

for (A in comple te so l ){
#solnum<−which ( t e s t $ p v a l s==max( t e s t $ p v a l s ) )

solnum<−A

alpha<−so ln$endpar [ solnum , 1 : Ncoefs ]

betaseq . start<−Ncoefs+1

betaseq . end<−Ncoefs∗2

beta<−so ln$endpar [ solnum , betaseq . start : betaseq . end ]

c o e f s<−c o e f t o f n ( alpha , beta ,TT)

newP<−Zmat [ , solnum]+ co e f s$alpha∗r0A+co e f s$beta∗r0B

s e c t i on1<−newP[1:128]−mean(newP [ 1 : 1 2 8 ] )

s e c t i on2<−newP[129:256]−mean(newP [ 1 2 9 : 2 5 6 ] )

s e c t i on3<−newP[257:384]−mean(newP [ 2 5 7 : 3 8 4 ] )

s e c t i on4<−newP[385:512]−mean(newP [ 3 8 5 : 5 1 2 ] )

t o t a l s e c t<−c ( s ec t ion1 , s ec t ion2 , s ec t ion3 , s e c t i on4 )

#p l o t . t s (newP)

t e s t l e n g th<−50
t e s t s t a r t<−time . frame [ t e s t . no ,2 ]+1

tes tend<−t e s t s t a r t+te s t l eng th −1
t e s tp<−c o e f s$alpha [ s i z e d a t l a g ]

∗pairtA [ t e s t s t a r t : t e s tend ]+ co e f s$beta [ s i z e d a t l a g ]∗pairtB [ t e s t s t a r t : t e s tend ]

s e c t i on l e ng th<−length ( t e s t$ t sx )/ ( Ncoefs+1)

#fo r c a l c u l a t i n g t h e mean o f t h e l a s t a l pha c o e f f i c i e n t s e t

l a s t . set . start<−s i z eda t l a g−s e c t i on l e ng th+1

l a s t . set<−newP [ l a s t . set . start : s i z e d a t l a g ]

#pr i n t ( pa s t e (”SOLUTION” ,A) )

#p r i n t ( ad f . t e s t ( l a s t . s e t ) )

######

pdf (paste ( ” s o l u t i on ” ,A, ” . pdf ” , sep=”” ) , width=12, he ight=6)

par ( mfcol=c ( 2 , 2 ) )

plot (c ( t o t a l s e c t , testp−mean( l a s t . set ) ) ,

main=paste ( ” So lu t i on ” ,A, ”Mean−Removed Spread” ) , ylab=”Value” )

l ines ( testp−mean( l a s t . set ) , col=’ green ’ )

abline ( v = as . POSIXct ( index (newP [ 1 2 8 ] ) ) , col = ’ blue ’ , l t y = 3 , lwd = 2)

abline ( v = as . POSIXct ( index (newP [ 2 5 6 ] ) ) , col = ’ blue ’ , l t y = 3 , lwd = 2)

abline ( v = as . POSIXct ( index (newP [ 3 8 4 ] ) ) , col = ’ blue ’ , l t y = 3 , lwd = 2)

abline ( v = as . POSIXct ( index (newP [ 5 1 2 ] ) ) , col = ’ blue ’ , l t y = 3 , lwd = 2)

#####################################

s imple . spread<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s tend ]−pairtA [ time . frame [ t e s t . no , 1 ] : t e s tend ]

mean . s s<−mean( s imple . spread )

sd . s s<−sd ( s imple . spread )

ub . s s<−mean . s s+sd . s s

lb . s s<−mean . ss−sd . s s

plot ( s imple . spread , main=paste ( ” So lut i on ” ,A, ’Min−Dist Spread ’ ) , ylab=”Value” )
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l ines ( s imple . spread [ 5 1 3 : 5 6 2 ] , col=’ green ’ )

abline (mean . ss , 0 , col=’ red ’ )

abline (ub . ss , 0 , col=’ blue ’ )

abline ( lb . ss , 0 , col=’ blue ’ )

##########################

#####t e s t s e t f o r c o s t a t

plot (c ( l a s t . set , t e s tp ) , main=paste ( ” So lut i on ” ,A, ”CM Test Spread” ) , ylab=’ Value ’ )

l ines ( testp , col=’ green ’ )

mean . d i<−mean( l a s t . set )

sd . d i<−sd ( t o t a l s e c t )

ub . d i<−mean . d i+sd . d i

lb . d i<−mean . di−sd . d i

abline (mean . di , 0 , col=’ red ’ )

abline (ub . di , 0 , col=’ blue ’ )

abline ( lb . di , 0 , col=’ blue ’ )

#ab l i n e ( v=513 , c o l =’ b lue ’ )

#############################

####t e s t s e t f o r min d i s t

l a s t . set . s imple . spread<−s imple . spread [ l a s t . set . start : length ( s imple . spread ) ]

plot ( l a s t . set . s imple . spread , main=paste ( ” So lut i on ” ,A, ”MDM Test Spread” ) )

l ines ( s imple . spread [ 5 1 3 : 5 6 2 ] , col=’ green ’ )

abline (mean . ss , 0 , col=’ red ’ )

abline (ub . ss , 0 , col=’ blue ’ )

abline ( lb . ss , 0 , col=’ blue ’ )

dev . of f ( )

p r o f i t s<−p r o f i t c a l c ( )

a l l t o t a l p r o f i t<−c ( a l l t o t a l p r o f i t , p r o f i t s $ t o t a l p r o f i t )

a l l a v e r a g e p r o f i t<−c ( a l l a v e r a g e p r o f i t , p r o f i t s $ avgp ro f i t )

a l l t o ta lROI<−c ( a l l tota lROI , p r o f i t s $totalROI )

a l lnumtrades<−c ( al lnumtrades , p r o f i t s $numtrades )

}
#pr i n t ( pa s t e (” s t o c k ” , q , ” t e s t . no ” , t e s t . no ) )

avgROI<−round(100∗mean( a l l tota lROI ,na .rm=TRUE) ,3 )

ROI l i s t [ [ q ] ] [ 1 , t e s t . no ]<−avgROI

numtrades l i s t [ [ q ] ] [ 1 , t e s t . no ]<−mean( al lnumtrades ,na .rm=TRUE)

mindist p r o f i t s<−mindist p r o f i t c a l c ( )

md ROI<−round(100∗mindist p r o f i t s $totalROI , 3 )

md numtrades<−mindist p r o f i t s $numtrades

ROI l i s t [ [ q ] ] [ 2 , t e s t . no ]<−md ROI

numtrades l i s t [ [ q ] ] [ 2 , t e s t . no ]<−md numtrades

setwd ( d i r e c t o r y s t o ck )

}
setwd ( o r i g d i r e c t o r y )

}

#########################################################################################

#########################################################################################

### p r o f i t c a l c u l a t i o n s

p r o f i t c a l c<−function ( ){
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spreadL<−length ( t e s tp )

tradesopen<−c ( )

t r ad e s c l o s ed<−c ( )

t rade . p o s i t i o n<−” c l o s ed ”

inve s t edva l<−c ( )

l a s t . p r o f i t<−0
#i f a l pha i s −ve , s h o r t i n g a l pha to l ong t h e spread , l ong b e t a

#i f a l pha i s +ve , s h o r t i n g b e t a to l ong t h e spread , l ong a lpha

shor t alpha<−FALSE

i f ( c o e f s$alpha [ s i z e d a t l a g ]>0 & c o e f s$beta [ s i z e d a t l a g ]<0){
shor t alpha<−FALSE

dontcount<−FALSE

} else i f ( c o e f s$alpha [ s i z e d a t l a g ]<0 & c o e f s$beta [ s i z e d a t l a g ]>0){
shor t alpha<−TRUE

dontcount<−FALSE

} else{
print ( ”ERROR, alpha and betas are not oppos i t e ” )

print (paste ( ”q=” ,q , ” t e s t . no =” , t e s t . no , ”A =” ,A) )

i f ( f i l e . exists (paste ( ” s o l u t i on ” ,A, ” . pdf ” , sep=”” ) ) ){
f i l e . remove(paste ( ” s o l u t i on ” ,A, ” . pdf ” , sep=”” ) )

}
dontcount<−TRUE

}

###fun c t i o n to g e t t h e v a l u e i n v e s t e d a t t h e t ime o f opening t h e s t o c k

return i nve s t ed va l<−function ( long shor t spread ){
t e s tpa i rA<−pairtA [ t e s t s t a r t : t e s tend ]

t e s tpa i rB<−pairtB [ t e s t s t a r t : t e s tend ]

i f ( long shor t spread==”LONG”){
#long spread

i f ( shor t alpha==TRUE){#sho r t a lpha , l ong beta ,

##a lpha i s ne ga t i v e , b e t a i s p o s i t i v e

i n v e s t va l<−0 .5∗abs ( c o e f s$alpha [ s i z e d a t l a g ] )

∗ t e s tpa i rA [ k]+ co e f s$beta [ s i z e d a t l a g ]∗ t e s tpa i rB [ k ]

} else {#sho r t be ta , l ong a lpha , a l pha i s p o s i t i v e , b e t a i s n e g a t i v e

i n v e s t va l<−c o e f s$alpha [ s i z e d a t l a g ]

∗ t e s tpa i rA [ k ]+0.5∗abs ( c o e f s$beta [ s i z e d a t l a g ] ) ∗ t e s tpa i rB [ k ]

}

} else i f ( long shor t spread==”SHORT”){
#sho r t spread

i f ( shor t alpha==TRUE){#sho r t be ta ,

# long a lpha , a l pha i s ne ga t i v e , b e t a i s p o s i t i v e

i n v e s t va l<−abs ( c o e f s$alpha [ s i z e d a t l a g ] ) ∗
t e s tpa i rA [ k ]+0.5∗ c o e f s$beta [ s i z e d a t l a g ]∗ t e s tpa i rB [ k ]

} else {#sho r t a lpha , l ong beta , a l pha i s p o s i t i v e , b e t a i s n e g a t i v e

i n v e s t va l<−0 .5∗ c o e f s$alpha [ s i z e d a t l a g ]∗
t e s tpa i rA [ k]+abs ( c o e f s$beta [ s i z e d a t l a g ] ) ∗ t e s tpa i rB [ k ]

}
}
return ( i nv e s t va l )

}

i n v e s t va l<−0
for ( k in 1 : spreadL ){

#pr i n t ( pa s t e ( t r ad e . p o s i t i o n , t e s t p [ k ] , ”mean . d i =”,mean . di , ” k=”, k ) )

#t rad e i s c l o s e d

i f ( t rade . p o s i t i o n==” c l o s ed ” ){
i f ( t e s tp [ k]>ub . d i ){#i f spread i s g r e a t e r than the upper bound , s h o r t spread
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#open t r ad e

#record p r i c e

#s e t s t a t u s to be above mean

spread . p o s i t i o n<−”SHORT”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”above mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−return i nve s t ed va l ( spread . p o s i t i o n )

i nve s t edva l<−rbind ( inves t edva l , i nv e s t va l )

} else i f ( t e s tp [ k]< lb . d i ){# i f spread i s l e s s than the l ower bound , l ong spread

spread . p o s i t i o n<−”LONG”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”below mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−return i nve s t ed va l ( spread . p o s i t i o n )

i nve s t edva l<−rbind ( inves t edva l , i nv e s t va l )

}
} else {#trade i s open

i f ( o r i g i n a l . p o s i t i o n==”above mean” ){#po s i t i o n above mean

i f ( t e s tp [ k]<=mean . d i ){#pr i c e i s be low mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}

} else {#boo l ean i s be low mean

i f ( t e s tp [ k]>=mean . d i ){#pr i c e i s above mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}
}

}

}
i f ( t rade . p o s i t i o n==”open” ){

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

}

i f ( length ( tradesopen )>=1){
i f ( t rade . p o s i t i o n==”open” ){

i f ( o r i g i n a l . p o s i t i o n==”below mean” ){
l a s t . p r o f i t<−coredata ( t r ad e s c l o s ed )−coredata ( tradesopen )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

} else {
l a s t . p r o f i t<−coredata ( tradesopen)−coredata ( t r ad e s c l o s ed )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

}
}

i f ( length ( tradesopen ) !=1){
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p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

p r o f i t l e n g t h<−length ( p r o f i t )−1

p r o f i t<−c ( p r o f i t [ 1 : p r o f i t l e n g t h ] , l a s t . p r o f i t )

} else i f ( length ( tradesopen==1)&t rade . p o s i t i o n==” c l o s ed ” ){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

} else {
p r o f i t<−l a s t . p r o f i t

}

#number o f t r a d e s

numtrades<−length ( p r o f i t )

#p r o f i t s t a t s f o r one s o l u t i o n

t o t a l p r o f i t<−sum( p r o f i t )

a v e r a g ep r o f i t<−t o t a l p r o f i t /numtrades

totalROI<−sum( p r o f i t / i nv e s t edva l )

i f ( dontcount==TRUE){
return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA, numtrades=NA))

} else {
return ( l i s t ( t o t a l p r o f i t=t o t a l p r o f i t ,

a vgp ro f i t=ave ragep ro f i t , totalROI=totalROI , numtrades=numtrades ,

tradesopen=tradesopen , t r ad e s c l o s ed=t r ad e s c l o s ed ) )

}
} else {

#pr i n t (” no t r a d e s e x e cu t ed ”)

#p r i n t ( pa s t e (” t e s t . no =”, t e s t . no , ”A =”,A) )

return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA, numtrades=NA))

}

}

#min d i s t p r o f i t c a l c

mindist p r o f i t c a l c<−function ( ){
s imple . spread<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s t end ]−pairtA [ time . frame [ t e s t . no , 1 ] : t e s t end ]

Bval<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s t end ]

Aval<−pairtA [ time . frame [ t e s t . no , 1 ] : t e s t end ]

#spread i s l ong B, s h o r t A

mean . s s<−mean( s imple . spread )

sd . s s<−sd ( s imple . spread )

ub . s s<−mean . s s+sd . s s

lb . s s<−mean . ss−sd . s s

t e s tp<−s imple . spread [ 5 1 3 : 5 6 2 ]

spreadL<−length ( t e s tp )

tradesopen<−c ( )

t r ad e s c l o s ed<−c ( )

t rade . p o s i t i o n<−” c l o s ed ”

inve s t edva l<−c ( )

i nv e s t va l<−0
l a s t . p r o f i t<−0
for ( k in 1 : spreadL ){

#pr i n t ( pa s t e ( t r ad e . p o s i t i o n , t e s t p [ k ] , ”mean . d i =”,mean . di , ” k=”, k ) )

#t rad e i s c l o s e d

i f ( t rade . p o s i t i o n==” c l o s ed ” ){
i f ( t e s tp [ k]>ub . s s ){#i f spread i s g r e a t e r than the upper bound , s h o r t spread

#open t r ad e
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#record p r i c e

#s e t s t a t u s to be above mean

spread . p o s i t i o n<−”SHORT”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”above mean”

#s t o r e va l u e i n v e s t e d , s h o r t spread : l ong A, s h o r t B

i n v e s t va l<−0 .5∗Bval [ k]+Aval [ k ]

i nv e s t edva l<−rbind ( inves t edva l , i nv e s t va l )

} else i f ( t e s tp [ k]< lb . s s ){# i f spread i s l e s s than the l ower bound , l ong spread

spread . p o s i t i o n<−”LONG”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”below mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−0 .5∗Aval [ k]+Bval [ k ]

i nv e s t edva l<−rbind ( inves t edva l , i nv e s t va l )

}
} else {#trade i s open

i f ( o r i g i n a l . p o s i t i o n==”above mean” ){#po s i t i o n above mean

i f ( t e s tp [ k]<=mean . s s ){#pr i c e i s be low mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}

} else {#boo l ean i s be low mean

i f ( t e s tp [ k]>=mean . s s ){#pr i c e i s above mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}
}

}

}
i f ( t rade . p o s i t i o n==”open” ){

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

}

i f ( length ( tradesopen )>=1){

i f ( t rade . p o s i t i o n==”open” ){
i f ( o r i g i n a l . p o s i t i o n==”below mean” ){

l a s t . p r o f i t<−coredata ( t r ad e s c l o s ed )−coredata ( tradesopen )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

} else {
l a s t . p r o f i t<−coredata ( tradesopen)−coredata ( t r ad e s c l o s ed )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

}
}

i f ( length ( tradesopen ) !=1){
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p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

p r o f i t l e n g t h<−length ( p r o f i t )−1

p r o f i t<−c ( p r o f i t [ 1 : p r o f i t l e n g t h ] , l a s t . p r o f i t )

} else i f ( length ( tradesopen==1)&t rade . p o s i t i o n==” c l o s ed ” ){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

} else {
p r o f i t<−l a s t . p r o f i t

}

#number o f t r a d e s

numtrades<−length ( p r o f i t )

#p r o f i t s t a t s f o r one s o l u t i o n

t o t a l p r o f i t<−sum( p r o f i t )

a v e r a g ep r o f i t<−t o t a l p r o f i t /numtrades

totalROI<−sum( p r o f i t / i nv e s t edva l )

return ( l i s t ( t o t a l p r o f i t=t o t a l p r o f i t , a vgp ro f i t=ave ragep ro f i t , totalROI=totalROI ,

numtrades=numtrades , tradesopen=tradesopen , t r ad e s c l o s ed=t r ad e s c l o s ed ) )

} else{
#(”no t r a d e s e x e cu t ed ”)

return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA,

numtrades=NA, tradesopen=NA, t r ad e s c l o s ed=NA))

}

}

########################################################################

###################−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######################

################## co i n t e g r a t i o n vs c o s t a t ########################

###################−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######################

########################################################################

l ibrary ( egcm)

l ibrary ( t s e r i e s )

l ibrary ( quantmod )

l ibrary ( c o s t a t )

co in t eg ra t ed . pairs<−function ( ){
t o t a l . s t o ck s<−length ( c l ean . close . p r i c e [ 1 , ] )

counter<−0
co in t eg ra t ed<−c ( )

for ( s tock1 in 1 : t o t a l s t o c k s ){
i f ( s tock1+1<=to t a l s t o c k s ){

counter<−s tock1+1

for ( s tock2 in counter : t o t a l s t o c k s ){

x<−coredata ( c l ean . close . p r i c e [ , s tock1 ] )

y<−coredata ( c l ean . close . p r i c e [ , s tock2 ] )

model<−egcm(x , y , i 1 t e s t=” adf ” , u r t e s t=” adf ” ,

p . value =0.03)

model2<−egcm(x , y , i 1 t e s t=” adf ” , u r t e s t=” jo−e” ,

p . value =0.03)

co in t eg ra t ed . bool<−
i s . c o i n t eg ra t ed (model)&is . c o in t eg ra t ed (model2 )

co in t eg ra t ed<−
rbind ( co integrated , c ( stock1 , stock2 , co in t eg ra t ed . bool ) )

print (paste ( stock1 , s tock2 ) )
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}
}

}
co in t eg ra t ed . pairs<−co in t eg ra t ed [which ( co in t eg ra t ed [ , 3 ]==1) , ]

return ( co in t eg ra t ed . pairs )

}

c l ean . close . p r i c e<−close . p r i c e [846:1357 ,−which (missing . p r i c e s ==1)]

t e s t . close . p r i c e<−close . p r i c e [846:2104 ,−which (missing . p r i c e s ==1)]

c o s t a t co in t<−co in t eg ra t ed . pairs ( )

c l ean . close . p r i c e<−close . p r i c e [600:1357 ,−which (missing . p r i c e s ==1)]

t e s t . close . p r i c e<−close . p r i c e [600:2104 ,−which (missing . p r i c e s ==1)]

#threeyearmat<−c o i n t e g r a t e d . p a i r s ( )

threeyearmat

co s t a t co in t

#######################################################################

#######################################################################

l ibrary ( egcm)

l ibrary ( t s e r i e s )

l ibrary ( quantmod )

l ibrary ( co s t a t )

o r i g d i r e c t o r y<−#s e t top l e v e l d i r e c t o r y here

setwd ( o r i g d i r e c t o r y )

c l ean . close . p r i c e<−close . p r i c e [846:1357 ,−which (missing . p r i c e s ==1)]

t e s t . close . p r i c e<−close . p r i c e [846:2104 ,−which (missing . p r i c e s ==1)]

###########################

ROImat=matrix ( rep (NA, 20 ) ,nrow=2,ncol=10)

rownames(ROImat)=c ( ” co s t a t ROI” , ”mindist ROI” )

numtradesmat=matrix ( rep (0 , 20 ) ,nrow=2,ncol=10)

rownames( numtradesmat)=c ( ” co s t a t avg t rades ” , ”mindist Avg t rades ” )

##########

##########l i s t o f ROI/number o f t r a d e s/average p r o f i t ma t r i c e s

ROIl i s t=l i s t ( s tock1=ROImat , s tock2=ROImat , s tock3=ROImat , s tock4=ROImat ,

s tock5=ROImat , s tock6=ROImat , s tock7=ROImat , s tock8=ROImat ,

s tock9=ROImat , stock10=ROImat , stock11=ROImat ,

stock12=ROImat , stock13=ROImat)

numtrades l i s t=l i s t ( s tock1=numtradesmat , s tock2=numtradesmat ,

s tock3=numtradesmat , s tock4=numtradesmat ,

s tock5=numtradesmat , s tock6=numtradesmat ,

s tock7=numtradesmat , s tock8=numtradesmat ,

s tock9=numtradesmat , stock10=numtradesmat ,

stock11=numtradesmat , stock12=numtradesmat ,

stock13=numtradesmat )

for (q in c (2 , 3 , 9 , 11 ) ){
d i r e c t o r y s t o ck<−paste ( o r i gd i r e c t o r y , ”/ s tock ” ,

as . character (q ) , sep=”” )

i f ( ! f i l e . exists ( d i r e c t o r y s t o ck )){
dir . create ( d i r e c t o r y s t o ck )

}
setwd ( d i r e c t o r y s t o ck )
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pairtA<−t e s t . close . p r i c e [ , c o s t a t co in t [q , 1 ] ]

pairtB<−t e s t . close . p r i c e [ , c o s t a t co in t [q , 2 ] ]

#new type o f r e t u rn s

s i z e d a t l a g<−512

s i z eda t<−s i z e d a t l a g+1

##time . frame f o r s h i f t i n g o f t e s t s

time . frame<−matrix (nrow=10,ncol=2)

start<−1
t rad ing . per iod<−50
time . frame [ 1 , ]<−c ( start , start+s i z eda t l ag −1)

for ( i in 2 : length ( time . frame [ , 1 ] ) ) {
time . frame [ i , ]<−time . frame [ i −1,]+ trad ing . per iod

}
one . step . time . frame<−time . frame+1

#f u l l r e t u r n sA<−pairtA−l a g ( pa i r tA )

f u l l r e t u rn sB<−pairtB−l ag ( pairtB )

######fo r each t e s t t ime frame

for ( t e s t . no in 1 :5 ){
#s e t to d i r e c t o r y f o r t e s t number

d i r e c t o r y j k<−paste ( d i r e c to ry s t o ck , ”/” ,

as . character ( t e s t . no ) , sep=”” )

i f ( ! f i l e . exists ( d i r e c t o r y j k )){
dir . create ( d i r e c t o r y j k )

}
setwd ( d i r e c t o r y j k )

#s e t data f o r t r a i n i n g

r0A<−pairtA [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

r0B<−pairtB [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

#r e c a l i b r a t e model

model1<−egcm(X=r0A ,Y=r0B )

pairA t r a j e c t o r y<−model1$alpha+model1$beta∗pairtA

fu l l r e t u rn sA<−pairA t r a j e c t o ry−l ag ( pairA t r a j e c t o r y )

#s e t data f o r t r a i n i n g

r0A<−pairA t r a j e c t o r y [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

r0B<−pairtB [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

retA<−f u l l r e t u rn sA [ one . step . time . frame [ t e s t . no , 1 ] : one . step . time . frame [ t e s t . no , 2 ] ]

retB<−f u l l r e t u rn sB [ one . step . time . frame [ t e s t . no , 1 ] : one . step . time . frame [ t e s t . no , 2 ] ]

pdf (paste ( ” r e tu rns p r i c e s ” ,q , ” . pdf ” , sep=”” ) , width=12, he ight=6)

par ( mfcol=c ( 2 , 2 ) )

plot ( retA , main=paste ( ” pa i r ” ,q ) )

plot ( retB , main=paste ( time . frame [ t e s t . no , 1 ] , ” : ” , time . frame [ t e s t . no , 2 ] ) )

plot ( r0A , type=’ l ’ , yl im=c (min( r0A , r0B ) ,max( r0A , r0B ) ) ,

main=paste (colnames ( r0A ) , colnames ( r0B ) ) )

l ines ( r0B , col=’ blue ’ )

plot ( r0B−r0A , main=paste ( ” i s c o in t eg ra t ed : ” , i s . c o in t eg ra t ed (model1 ) ) )

dev . of f ( )
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#BootTOS( retA )

#BootTOS( retB )

#not s t a t i o n a r y

#t e s t<−f i n d s t y s o l s ( Nsims=10 , Ncoefs =3, retA , retB )

#saveRDS ( t e s t , p a s t e (” t e s t ” , t e s t . no , ” . rds ” , sep =””))

t e s t<−readRDS(paste ( ” t e s t ” , t e s t . no , ” . rds ” , sep=”” ) )

par ( mfcol=c ( 2 , 2 ) )

t e s t$convergence

#p l o t ( t e s t , s o l no =1)

t e s t l i s t<−l i s t ( t e s t )

n . t e s t s=10

Ncoefs=3

TT = length ( t e s t$ t sx )

Zmat = matrix (nrow = TT, ncol = n . t e s t s )

a lphas<−matrix (nrow=Ncoefs+1,ncol=n . t e s t s )

betas<−matrix (nrow=Ncoefs+1,ncol=n . t e s t s )

for ( so ln in t e s t l i s t [ ] ) {
N = length ( so ln$convergence )

noso l = so ln$convergence == 1 |
so ln$convergence == 10 | so ln$pva l s < 0 .05

N2 = N − sum( nosol , na .rm = TRUE)

i f (N2 == 0){
stop ( ’ the re are no converg ing co s t a t i ona ry s o l u t i o n s ’ )

#comp l e t e s o l<−s eq ( 1 :N)

} else i f (N2==N){
comple te so l<−seq ( 1 :N)

} else {
comple te so l<−seq ( 1 :N)[−which ( noso l ) ]

}
for ( i in comple te so l ){

alpha<−so ln$endpar [ i , 1 : Ncoefs ]

betaseq . start<−Ncoefs+1

betaseq . end<−Ncoefs∗2

beta<−so ln$endpar [ i , betaseq . start : betaseq . end ]

c o e f s<−c o e f t o f n ( alpha , beta ,TT)

Zmat [ , i ]= c o e f s$alpha∗ so ln$ t sx+co e f s$beta∗ so ln$ t sy

a lphas [ , i ]<−c ( c o e f s$alpha [ 1 ] ,

c o e f s$alpha [ 1 2 9 ] , c o e f s$alpha [ 2 5 7 ] , c o e f s$alpha [ 3 8 5 ] )

betas [ , i ]<−c ( c o e f s$beta [ 1 ] , c o e f s$beta [ 1 2 9 ] ,

c o e f s$beta [ 2 5 7 ] , c o e f s$beta [ 3 8 5 ] )

}

}

a l l t o t a l p r o f i t<−c ( )

a l l a v e r a g e p r o f i t<−c ( )

a l l t o ta lROI<−c ( )

a l lnumtrades<−c ( )
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##p l o t t i n g t h e t e s t s p r ead s f o r c o s t a t so ln ,

##min d i s t so ln , c o i n t e g r a t i o n s o l n .

for (A in comple te so l ){
#solnum<−which ( t e s t $ p v a l s==max( t e s t $ p v a l s ) )

solnum<−A

alpha<−so ln$endpar [ solnum , 1 : Ncoefs ]

betaseq . start<−Ncoefs+1

betaseq . end<−Ncoefs∗2

beta<−so ln$endpar [ solnum , betaseq . start : betaseq . end ]

c o e f s<−c o e f t o f n ( alpha , beta ,TT)

newP<−Zmat [ , solnum]+ co e f s$alpha∗r0A+co e f s$beta∗r0B

s e c t i on1<−newP[1:128]−mean(newP [ 1 : 1 2 8 ] )

s e c t i on2<−newP[129:256]−mean(newP [ 1 2 9 : 2 5 6 ] )

s e c t i on3<−newP[257:384]−mean(newP [ 2 5 7 : 3 8 4 ] )

s e c t i on4<−newP[385:512]−mean(newP [ 3 8 5 : 5 1 2 ] )

t o t a l s e c t<−c ( s ec t ion1 , s ec t ion2 , s ec t ion3 , s e c t i on4 )

#p l o t . t s (newP)

t e s t l e n g th<−50
t e s t s t a r t<−time . frame [ t e s t . no ,2 ]+1

tes tend<−t e s t s t a r t+te s t l eng th −1
t e s tp<−c o e f s$alpha [ s i z e d a t l a g ]∗

(model1$beta∗pairtA [ t e s t s t a r t : t e s tend ]+model1$alpha )

+co e f s$beta [ s i z e d a t l a g ]∗pairtB [ t e s t s t a r t : t e s tend ]

s e c t i on l e ng th<−length ( t e s t$ t sx )/ ( Ncoefs+1)

#fo r c a l c u l a t i n g t h e mean o f t h e l a s t a l pha c o e f f i c i e n t s e t

l a s t . set . start<−s i z eda t l a g−s e c t i on l e ng th+1

l a s t . set<−newP [ l a s t . set . start : s i z e d a t l a g ]

#pr i n t ( pa s t e (”SOLUTION” ,A) )

#p r i n t ( ad f . t e s t ( l a s t . s e t ) )

######

pdf (paste ( ” s o l u t i on ” ,A, ” . pdf ” , sep=”” ) , width=12, he ight=6)

par ( mfcol=c ( 2 , 2 ) )

plot (c ( t o t a l s e c t , testp−mean( l a s t . set ) ) ,

main=paste ( ” So lu t i on ” ,A, ”Mean−Removed Spread” ) , ylab=”Value” )

l ines ( testp−mean( l a s t . set ) , col=’ green ’ )

abline ( v = as . POSIXct ( index (newP [ 1 2 8 ] ) ) ,

col = ’ blue ’ , l t y = 3 , lwd = 2)

abline ( v = as . POSIXct ( index (newP [ 2 5 6 ] ) ) ,

col = ’ blue ’ , l t y = 3 , lwd = 2)

abline ( v = as . POSIXct ( index (newP [ 3 8 4 ] ) ) ,

col = ’ blue ’ , l t y = 3 , lwd = 2)

abline ( v = as . POSIXct ( index (newP [ 5 1 2 ] ) ) ,

col = ’ blue ’ , l t y = 3 , lwd = 2)

#co i n t e g r a t i o n . spread<−pa i r tB [ t e s t s t a r t : t e s t e n d ]

−model1$beta∗pairtA [ t e s t s t a r t : t e s tend ]−model1$alpha

co i n t e g r a t i on . spread<−pairtB [ t e s t s t a r t : t e s tend ]

−pairA t r a j e c t o r y [ t e s t s t a r t : t e s tend ]

mean . c s<−mean(model1$residuals )

sd . c s<−sd (model1$residuals )

ub . cs<−mean . c s+sd . c s

lb . cs<−mean . cs−sd . c s

co in t . t r a i n . spread<−r0B−r0A
t o t a l . c o i n t e g r a t i on . spread<−rbind ( co in t . t r a i n . spread ,
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c o i n t e g r a t i on . spread )

plot ( t o t a l . c o i n t e g r a t i on . spread , main=paste ( ” So lut i on ” ,

A, ’ Co integrat ion Spread ’ ) )

l ines ( c o i n t e g r a t i on . spread , col=’ green ’ )

#ab l i n e ( v=513 , c o l =’ b lue ’ )

abline (mean . cs , 0 , col=’ red ’ )

abline (ub . cs , 0 , col=’ blue ’ )

abline ( lb . cs , 0 , col=’ blue ’ )

#########

plot (c ( l a s t . set , t e s tp ) , main=paste ( ” So lut i on ” ,

A, ”CM Test Spread” ) , ylab=’ Value ’ )

l ines ( testp , col=’ green ’ )

mean . d i<−mean( l a s t . set )

sd . d i<−sd ( t o t a l s e c t )

ub . d i<−mean . d i+sd . d i

lb . d i<−mean . di−sd . d i

abline (mean . di , 0 , col=’ red ’ )

abline (ub . di , 0 , col=’ blue ’ )

abline ( lb . di , 0 , col=’ blue ’ )

####t e s t s e t f o r c o i n t e g r a t i o n

s imple . spread<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s tend ]

−pairtA [ time . frame [ t e s t . no , 1 ] : t e s tend ]

l a s t . set . s imple . spread<−t o t a l . c o i n t e g r a t i on . spread

[ l a s t . set . start : length ( s imple . spread ) ]

plot ( l a s t . set . s imple . spread ,

main=paste ( ” So lu t i on ” ,A, ”CIM Test Spread” ) )

l ines ( t o t a l . c o i n t e g r a t i on . spread [ 5 1 3 : 5 6 2 ] , col=’ green ’ )

abline (mean . cs , 0 , col=’ red ’ )

abline (ub . cs , 0 , col=’ blue ’ )

abline ( lb . cs , 0 , col=’ blue ’ )

dev . of f ( )

p r o f i t s<−p r o f i t c a l c ( )

#pr i n t ( p r o f i t s )

a l l t o t a l p r o f i t<−c ( a l l t o t a l p r o f i t , p r o f i t s $ t o t a l p r o f i t )

a l l a v e r a g e p r o f i t<−c ( a l l a v e r a g e p r o f i t , p r o f i t s $ avgp ro f i t )

a l l t o ta lROI<−c ( a l l tota lROI , p r o f i t s $totalROI )

a l lnumtrades<−c ( al lnumtrades , p r o f i t s $numtrades )

}
#pr i n t ( pa s t e (” s t o c k ” , q , ” t e s t . no ” , t e s t . no ) )

avgROI<−round(100∗mean( a l l tota lROI ,na .rm=TRUE) ,3 )

ROI l i s t [ [ q ] ] [ 1 , t e s t . no ]<−avgROI

numtrades l i s t [ [ q ] ] [ 1 , t e s t . no ]<−mean( al lnumtrades ,na .rm=TRUE)

co in t p r o f i t s<−co in t p r o f i t c a l c ( )

cd ROI<−round(100∗ co in t p r o f i t s $totalROI , 3 )

cd numtrades<−co in t p r o f i t s $numtrades

ROI l i s t [ [ q ] ] [ 2 , t e s t . no ]<−cd ROI

numtrades l i s t [ [ q ] ] [ 2 , t e s t . no ]<−cd numtrades

setwd ( d i r e c t o r y s t o ck )

}
setwd ( o r i g d i r e c t o r y )

}
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#####################################################################

#####################################################################

### p r o f i t c a l c u l a t i o n s

p r o f i t c a l c<−function ( ){
spreadL<−length ( t e s tp )

tradesopen<−c ( )

t r ad e s c l o s ed<−c ( )

t rade . p o s i t i o n<−” c l o s ed ”

inve s t edva l<−c ( )

l a s t . p r o f i t<−0
#i f a l pha i s −ve , s h o r t i n g a l pha to l ong t h e spread , l ong b e t a

#i f a l pha i s +ve , s h o r t i n g b e t a to l ong t h e spread , l ong a lpha

shor t alpha<−FALSE

i f ( c o e f s$alpha [ s i z e d a t l a g ]>0 & c o e f s$beta [ s i z e d a t l a g ]<0){
shor t alpha<−FALSE

dontcount<−FALSE

} else i f ( c o e f s$alpha [ s i z e d a t l a g ]<0 & c o e f s$beta [ s i z e d a t l a g ]>0){
shor t alpha<−TRUE

dontcount<−FALSE

} else{
print ( ”ERROR, alpha and betas are not oppos i t e ” )

print (paste ( ”q=” ,q , ” t e s t . no =” , t e s t . no , ”A =” ,A) )

i f ( f i l e . exists (paste ( ” s o l u t i on ” ,A, ” . pdf ” , sep=”” ) ) ){
f i l e . remove(paste ( ” s o l u t i on ” ,A, ” . pdf ” , sep=”” ) )

}
dontcount<−TRUE

}

###fun c t i o n to g e t t h e v a l u e i n v e s t e d a t t h e t ime o f

##opening t h e s t o c k

return i nve s t ed va l<−function ( long shor t spread ){
t e s tpa i rA<−pairA t r a j e c t o r y [ t e s t s t a r t : t e s tend ]

t e s tpa i rB<−pairtB [ t e s t s t a r t : t e s tend ]

i f ( long shor t spread==”LONG”){
#long spread

i f ( shor t alpha==TRUE){
#sho r t a lpha , l ong beta , a l pha i s nega t i v e , b e t a i s p o s i t i v e

i n v e s t va l<−0 .5∗abs ( c o e f s$alpha [ s i z e d a t l a g ] )

∗ t e s tpa i rA [ k]+ co e f s$beta [ s i z e d a t l a g ]∗ t e s tpa i rB [ k ]

} else {#sho r t be ta , l ong a lpha , a l pha i s p o s i t i v e , b e t a i s n e g a t i v e

i n v e s t va l<−c o e f s$alpha [ s i z e d a t l a g ]∗ t e s tpa i rA [ k ]

+0.5∗abs ( c o e f s$beta [ s i z e d a t l a g ] ) ∗ t e s tpa i rB [ k ]

}

} else i f ( long shor t spread==”SHORT”){
#sho r t spread

i f ( shor t alpha==TRUE){
#sho r t be ta , l ong a lpha , a l pha i s ne ga t i v e , b e t a i s p o s i t i v e

i n v e s t va l<−abs ( c o e f s$alpha [ s i z e d a t l a g ] ) ∗ t e s tpa i rA [ k ]

+0.5∗ c o e f s$beta [ s i z e d a t l a g ]∗ t e s tpa i rB [ k ]

} else {#sho r t a lpha , l ong beta , a l pha i s p o s i t i v e , b e t a i s n e g a t i v e

i n v e s t va l<−0 .5∗ c o e f s$alpha [ s i z e d a t l a g ]∗ t e s tpa i rA [ k ]

+abs ( c o e f s$beta [ s i z e d a t l a g ] ) ∗ t e s tpa i rB [ k ]

}
}
return ( i nv e s t va l )

}

i n v e s t va l<−0
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for ( k in 1 : spreadL ){
#pr i n t ( pa s t e ( t r ad e . p o s i t i o n , t e s t p [ k ] , ”mean . d i =”,mean . di , ” k=”, k ) )

#t rad e i s c l o s e d

i f ( t rade . p o s i t i o n==” c l o s ed ” ){
i f ( t e s tp [ k]>ub . d i ){#i f spread i s g r e a t e r than the upper bound , s h o r t spread

#open t r ad e

#record p r i c e

#s e t s t a t u s to be above mean

spread . p o s i t i o n<−”SHORT”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”above mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−return i nve s t ed va l ( spread . p o s i t i o n )

i nve s t edva l<−rbind ( inves t edva l , i nv e s t va l )

} else i f ( t e s tp [ k]< lb . d i ){# i f spread i s l e s s than the l ower bound , l ong spread

spread . p o s i t i o n<−”LONG”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”below mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−return i nve s t ed va l ( spread . p o s i t i o n )

i nve s t edva l<−rbind ( inves t edva l , i nv e s t va l )

}
} else {#trade i s open

i f ( o r i g i n a l . p o s i t i o n==”above mean” ){#po s i t i o n above mean

i f ( t e s tp [ k]<=mean . d i ){#pr i c e i s be low mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}

} else {#boo l ean i s be low mean

i f ( t e s tp [ k]>=mean . d i ){#pr i c e i s above mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}
}

}

}
i f ( t rade . p o s i t i o n==”open” ){

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

}

i f ( length ( tradesopen )>=1){
i f ( t rade . p o s i t i o n==”open” ){

i f ( o r i g i n a l . p o s i t i o n==”below mean” ){
l a s t . p r o f i t<−coredata ( t r ad e s c l o s ed )−coredata ( tradesopen )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

} else {
l a s t . p r o f i t<−coredata ( tradesopen)−coredata ( t r ad e s c l o s ed )
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l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

}
}

i f ( length ( tradesopen ) !=1){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

p r o f i t l e n g t h<−length ( p r o f i t )−1

p r o f i t<−c ( p r o f i t [ 1 : p r o f i t l e n g t h ] , l a s t . p r o f i t )

} else i f ( length ( tradesopen==1)&t rade . p o s i t i o n==” c l o s ed ” ){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

} else {
p r o f i t<−l a s t . p r o f i t

}

#number o f t r a d e s

numtrades<−length ( p r o f i t )

#p r o f i t s t a t s f o r one s o l u t i o n

t o t a l p r o f i t<−sum( p r o f i t )

a v e r a g ep r o f i t<−t o t a l p r o f i t /numtrades

totalROI<−sum( p r o f i t / i nv e s t edva l )

i f ( dontcount==TRUE){
return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA, numtrades=NA))

} else {
return ( l i s t ( t o t a l p r o f i t=t o t a l p r o f i t , a vgp ro f i t=ave ragep ro f i t ,

totalROI=totalROI , numtrades=numtrades , tradesopen=tradesopen ,

t r ad e s c l o s ed=t r ad e s c l o s ed ) )

}
} else {

#pr i n t (” no t r a d e s e x e cu t ed ”)

#p r i n t ( pa s t e (” t e s t . no =”, t e s t . no , ”A =”,A) )

return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA, numtrades=NA))

}

}

#min d i s t p r o f i t c a l c

mindist p r o f i t c a l c<−function ( ){
s imple . spread<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s t end ]−pairtA [ time . frame [ t e s t . no , 1 ] : t e s t end ]

Bval<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s t end ]

Aval<−pairtA [ time . frame [ t e s t . no , 1 ] : t e s t end ]

#spread i s l ong B, s h o r t A

mean . s s<−mean( s imple . spread )

sd . s s<−sd ( s imple . spread )

ub . s s<−mean . s s+sd . s s

lb . s s<−mean . ss−sd . s s

t e s tp<−s imple . spread [ 5 1 3 : 5 6 2 ]

spreadL<−length ( t e s tp )

tradesopen<−c ( )

t r ad e s c l o s ed<−c ( )

t rade . p o s i t i o n<−” c l o s ed ”

inve s t edva l<−c ( )

i nv e s t va l<−0
l a s t . p r o f i t<−0
for ( k in 1 : spreadL ){
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#pr i n t ( pa s t e ( t r ad e . p o s i t i o n , t e s t p [ k ] , ”mean . d i =”,mean . di , ” k=”, k ) )

#t rad e i s c l o s e d

i f ( t rade . p o s i t i o n==” c l o s ed ” ){
i f ( t e s tp [ k]>ub . s s ){#i f spread i s g r e a t e r than the upper bound , s h o r t spread

#open t r ad e

#record p r i c e

#s e t s t a t u s to be above mean

spread . p o s i t i o n<−”SHORT”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”above mean”

#s t o r e va l u e i n v e s t e d , s h o r t spread : l ong A, s h o r t B

i n v e s t va l<−0 .5∗Bval [ k]+Aval [ k ]

i nv e s t edva l<−rbind ( inves t edva l , i nv e s t va l )

} else i f ( t e s tp [ k]< lb . s s ){# i f spread i s l e s s than the l ower bound , l ong spread

spread . p o s i t i o n<−”LONG”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”below mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−0 .5∗Aval [ k]+Bval [ k ]

i nv e s t edva l<−rbind ( inves t edva l , i nv e s t va l )

}
} else {#trade i s open

i f ( o r i g i n a l . p o s i t i o n==”above mean” ){#po s i t i o n above mean

i f ( t e s tp [ k]<=mean . s s ){#pr i c e i s be low mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}

} else {#boo l ean i s be low mean

i f ( t e s tp [ k]>=mean . s s ){#pr i c e i s above mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}
}

}

}
i f ( t rade . p o s i t i o n==”open” ){

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

}

i f ( length ( tradesopen )>=1){

i f ( t rade . p o s i t i o n==”open” ){
i f ( o r i g i n a l . p o s i t i o n==”below mean” ){

l a s t . p r o f i t<−coredata ( t r ad e s c l o s ed )−coredata ( tradesopen )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

} else {
l a s t . p r o f i t<−coredata ( tradesopen)−coredata ( t r ad e s c l o s ed )
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l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

}
}

i f ( length ( tradesopen ) !=1){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

p r o f i t l e n g t h<−length ( p r o f i t )−1

p r o f i t<−c ( p r o f i t [ 1 : p r o f i t l e n g t h ] , l a s t . p r o f i t )

} else i f ( length ( tradesopen==1)&t rade . p o s i t i o n==” c l o s ed ” ){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

} else {
p r o f i t<−l a s t . p r o f i t

}

#number o f t r a d e s

numtrades<−length ( p r o f i t )

#p r o f i t s t a t s f o r one s o l u t i o n

t o t a l p r o f i t<−sum( p r o f i t )

a v e r a g ep r o f i t<−t o t a l p r o f i t /numtrades

totalROI<−sum( p r o f i t / i nv e s t edva l )

return ( l i s t ( t o t a l p r o f i t=t o t a l p r o f i t , a vgp ro f i t=ave ragep ro f i t ,

totalROI=totalROI , numtrades=numtrades , tradesopen=tradesopen ,

t r ad e s c l o s ed=t r ad e s c l o s ed ) )

} else{
#(”no t r a d e s e x e cu t ed ”)

return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA, numtrades=NA,

tradesopen=NA, t r ad e s c l o s ed=NA))

}

}

#co i n t e g r a t i o n p r o f i t c a l c

co in t p r o f i t c a l c<−function ( ){
r0A<−pairtA [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

r0B<−pairtB [ time . frame [ t e s t . no , 1 ] : time . frame [ t e s t . no , 2 ] ]

model1<−egcm(X=r0A ,Y=r0B )

co in t . t r a i n . spread<−r0B−model1$alpha−model1$beta∗r0A

co i n t e g r a t i on . spread<−pairtB [ t e s t s t a r t : t e s tend ]−model1$beta∗pairtA [ t e s t s t a r t : t e s tend ]

−model1$alpha

# head ( r0B−pairA t r a j e c t o r y [ t ime . frame [ t e s t . no , 1 ] : t ime . frame [ t e s t . no , 2 ] ] )

Bval<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s t end ]

Aval<−model1$beta∗pairtA [ time . frame [ t e s t . no , 1 ] : t e s tend ]+model1$alpha

#spread i s l ong B, s h o r t A

mean . s s<−mean( co in t . t r a i n . spread )

sd . s s<−sd ( co in t . t r a i n . spread )

ub . s s<−mean . s s+sd . s s

lb . s s<−mean . ss−sd . s s

t e s tp<−c o i n t e g r a t i on . spread

spreadL<−length ( t e s tp )

tradesopen<−c ( )

t r ad e s c l o s ed<−c ( )

t rade . p o s i t i o n<−” c l o s ed ”

inve s t edva l<−c ( )
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i n v e s t va l<−0
l a s t . p r o f i t<−0
for ( k in 1 : spreadL ){

#pr i n t ( pa s t e ( t r ad e . p o s i t i o n , t e s t p [ k ] , ”mean . d i =”,mean . di , ” k=”, k ) )

#t rad e i s c l o s e d

i f ( t rade . p o s i t i o n==” c l o s ed ” ){
i f ( t e s tp [ k]>ub . s s ){#i f spread i s g r e a t e r than the upper bound , s h o r t spread

#open t r ad e

#record p r i c e

#s e t s t a t u s to be above mean

spread . p o s i t i o n<−”SHORT”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”above mean”

#s t o r e va l u e i n v e s t e d , s h o r t spread : l ong A, s h o r t B

i n v e s t va l<−0 .5∗Bval [ k]+Aval [ k ]

i nv e s t edva l<−rbind ( inves t edva l , i nv e s t va l )

} else i f ( t e s tp [ k]< lb . s s ){# i f spread i s l e s s than the l ower bound , l ong spread

spread . p o s i t i o n<−”LONG”

trade . p o s i t i o n<−”open”

tradesopen<−rbind ( tradesopen , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”below mean”

#s t o r e va l u e i n v e s t e d

i n v e s t va l<−0 .5∗Aval [ k]+Bval [ k ]

i nv e s t edva l<−rbind ( inves t edva l , i nv e s t va l )

}
} else {#trade i s open

i f ( o r i g i n a l . p o s i t i o n==”above mean” ){#po s i t i o n above mean

i f ( t e s tp [ k]<=mean . s s ){#pr i c e i s be low mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}

} else {#boo l ean i s be low mean

i f ( t e s tp [ k]>=mean . s s ){#pr i c e i s above mean

t rade . p o s i t i o n=” c l o s ed ”

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

o r i g i n a l . p o s i t i o n<−”NA”

#c l o s e t r ad e

#record p r i c e

#s e t s t a t u s to be n e u t r a l

}
}

}

}
i f ( t rade . p o s i t i o n==”open” ){

t r ad e s c l o s ed<−rbind ( t r ade s c l o s ed , t e s tp [ k ] )

}

i f ( length ( tradesopen )>=1){

i f ( t rade . p o s i t i o n==”open” ){
i f ( o r i g i n a l . p o s i t i o n==”below mean” ){
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l a s t . p r o f i t<−coredata ( t r ad e s c l o s ed )−coredata ( tradesopen )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

} else {
l a s t . p r o f i t<−coredata ( tradesopen)−coredata ( t r ad e s c l o s ed )

l a s t . p r o f i t<−l a s t . p r o f i t [ length ( l a s t . p r o f i t ) ]

}
}

i f ( length ( tradesopen ) !=1){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

p r o f i t l e n g t h<−length ( p r o f i t )−1

p r o f i t<−c ( p r o f i t [ 1 : p r o f i t l e n g t h ] , l a s t . p r o f i t )

} else i f ( length ( tradesopen==1)&t rade . p o s i t i o n==” c l o s ed ” ){
p r o f i t<−abs ( coredata ( t r ad e s c l o s ed )−coredata ( tradesopen ) )

} else {
p r o f i t<−l a s t . p r o f i t

}

#number o f t r a d e s

numtrades<−length ( p r o f i t )

#p r o f i t s t a t s f o r one s o l u t i o n

t o t a l p r o f i t<−sum( p r o f i t )

a v e r a g ep r o f i t<−t o t a l p r o f i t /numtrades

totalROI<−sum( p r o f i t / i nv e s t edva l )

return ( l i s t ( t o t a l p r o f i t=t o t a l p r o f i t , a vgp ro f i t=ave ragep ro f i t ,

totalROI=totalROI , numtrades=numtrades , tradesopen=tradesopen , t r ad e s c l o s ed=t r ade s c l o s ed ) )

} else{
#(”no t r a d e s e x e cu t ed ”)

return ( l i s t ( t o t a l p r o f i t=NA, avgp ro f i t=NA, totalROI=NA,

numtrades=NA, tradesopen=NA, t r ad e s c l o s ed=NA))

}

}

#####p l o t o f p r o f i t f o r our s t r a t e g y

plot (c ( l a s t . set , t e s tp ) , main=paste ( ” s o l u t i on ” ,A, ” pval=” , t e s t$pva l s [ solnum ] ) )

l ines ( testp , col=”green ” )

mean . d i<−mean( l a s t . set )

sd . d i<−sd ( t o t a l s e c t )

ub . d i<−mean . d i+sd . d i

lb . d i<−mean . di−sd . d i

abline (mean . di , 0 , col=’ red ’ )

abline (ub . di , 0 , col=’ blue ’ )

abline ( lb . di , 0 , col=’ blue ’ )

points ( tradesopen , pch=18, col=’ black ’ )

points ( t r ade s c l o s ed , pch=18, col=’ red ’ )

##########

#p l o t o f min d i s t p r o f i t

s imple . spread<−pairtB [ time . frame [ t e s t . no , 1 ] : t e s tend ]−pairtA [ time . frame [ t e s t . no , 1 ] : t e s tend ]

mean . s s<−mean( s imple . spread )

sd . s s<−sd ( s imple . spread )

ub . s s<−mean . s s+sd . s s

lb . s s<−mean . ss−sd . s s

plot ( s imple . spread , main=’ s imple spread ’ )

145



l ines ( s imple . spread [ 5 1 3 : 5 6 2 ] , col=’ red ’ )

abline (mean . ss , 0 )

abline (ub . ss , 0 , col=’ red ’ )

abline ( lb . ss , 0 , col=’ red ’ )

points ( tradesopen , pch=18, col=’ black ’ )

points ( t r ade s c l o s ed , pch=18, col=’ red ’ )

##########

p r o f i t s<−p r o f i t c a l c ( )

#average p r o f i t s t a t s f o r a l l s o l u t i o n s

a l l t o t a l p r o f i t<−c ( a l l t o t a l p r o f i t , p r o f i t s $ t o t a l p r o f i t )

a l l a v e r a g e p r o f i t<−c ( a l l a v e r a g e p r o f i t , p r o f i t s $ avgp ro f i t )

a l l t o ta lROI<−c ( a l l tota lROI , p r o f i t s $totalROI )

###

mean( a l l t o t a l p r o f i t )

mean( a l l a v e r a g e p r o f i t )

mean( a l l t o ta lROI )

a l l t o t a l p r o f i t<−c ( )

a l l a v e r a g e p r o f i t<−c ( )

a l l t o ta lROI<−c ( )

146



References

Alexander, C. and Dimitriu, A. (2002). The cointegartion alpha: Enhanced index tracking

and long-short equity market neutral strategies. Discussion paper, Finance ISMA Center,

University of Reading, UK.

Cardinali, A. and Nason, G. P. (2011). Costationarity of locally stationary time series.

Journal of Time Series Econometrics, 2:1–35.

Cardinali, A. and Nason, G. P. (2013). Costationarity of locally stationary time series

using costat. Journal of Statistical Software, 55.

Chen, C. W. S., Chen, M., and Chen, S.-Y. (2014). Pairs trading via three-regime threshold

autoregressive garch models. In Modelling Dependence in Econometrics, pages 127–140.

Springer International Publishing.

Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. The Annals

of Statistics, 25:1–37.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communica-

tions on Pure and Applied Mathematics, 41:909–996.

Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM.

Dickey, D. and Fuller, W. (1979). Distribution of the estimators for autoregressive time

series with a unit root. Journal of the American Statistical Association, 74:427–431.

147



Dickey, D. and Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series

with a unit root. Econometrica, 49:1057–1072.

Do, B. and Faff, R. (2010). Does simple pairs trading still work? Financial Analysts

Journal, 66:83–95.

Do, B. and Faff, R. (2012). Are pairs trading profits robust to trading costs? Journal of

Financial Research, 35(2):261–287.

Do, B., Faff, R., and Hamza, K. (2006). A new approach to modeling and estimation for

pairs trading. Working paper, Monash University.

Elliott, R., van der Hoek, J., and Malcolm, W. P. (2005). Pairs trading. Quantitative

Finance, 5:271–276.

Enders, W. (2003). Applied Econometric Time Series. John Wiley and Sons, Incorporated.

Engle, R. and Granger, C. (1987). Co-integration and error correction: Representation,

estimation and testing. Econometrica, 55:251–276.

Fung, W. and Hsieh, D. A. (1999). A primer on hedge funds. Journal of Empirical Finance,

6:309–331.

Gatev, E., Goetzmann, W. N., and Rouwenhorst, K. G. (2006). Pairs trading: Performance

of a relative value arbitrage rule. The Review of Financial Studies, 19(3):797–827.

Haykin, S. S. (1983). Communication Systems. John Wiley and Sons Inc.

Hull, J. (2009). Options, futures and other derivatives. Pearson Prentice Hall.

Jacobs, B. I. and Levy, K. (1993). Long-short equity investing. Journal of Portfolio

Management, 1:52–64.

Johansen, S. (1988). Statistical analysis of cointegrating vectors. Journal of Economic

Dynamics and Control, 12:231–254.

148



Lin, Y.-X., McCrae, M., and Culati, C. (2006). Loss protection in pairs trading through

minimum profit bounds: A cointegration approach. Journal of Applied Mathematics and

Decision Sciences, pages 1–14.

MacKinnon, J. (1990). Critical values for cointegration tests. Working paper, Queen’s

University.

Nason, G. P. (2008). Wavelet Methods in Statistics with R. Springer-Verlag New York.

Nason, G. P., Von Sachs, R., and Kroisandt, G. (2000). Wavelet processes and adaptive

estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 62:271–292.

Nath, P. (2003). High frequency pairs trading with us treasury securities: Risks and

rewards for hedge funds. Working paper, London Business School.

Phillips, P. and Ouliaris, S. (1990). Asymptotic properties of residual based tests for

cointegration. Econometrica, 58:165–193.

Priestley, M. B. (1983). Spectral Analysis and Time Series. Academic Press Inc.

Ross, S., Hillier, D., Westerfield, R., Jaffe, J., and Jordan, B. (2013). Corporate Finance.

Mcgraw-Hill.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic

Theory, 13:341–360.

Ross, S. A. (1984). Testing for unit roots in autoregressive-moving average models of

unknown order. Biometrika, 71:599–607.

Shumway, R. and Stoffer, D. (1982). An approach to time series smoothing and forecasting

using the em algorithm. Journal of Time Series Analysis, 3(4):253–264.

Stock, J. H. (1987). Asymptotic properties of least squares estimators of cointegrating

vectors. Econometrica, 55:277–302.

149



Vidyamurthy, G. (2004). Pairs Trading: Quantitative Methods and Analysis. New York:

John Wiley.

150


	List of Tables
	List of Figures
	Introduction
	Time Series
	Wiener Processes

	Pairs Trading
	Minimum-Distance Method
	Stochastic Spread Method
	Cointegration Method

	Application of Pairs Trading on Data
	Minimum Distance Method
	Cointegration Method
	Application of the Cointegration Method to Stock Data
	Upper and Lower Bound of Two Standard Deviations from the Mean
	Upper and Lower Bound of One Standard Deviation from the Mean


	Wavelet Analysis of Time Series
	Introduction
	Fourier Series and Fourier Transforms
	Wavelets
	Non-decimated Wavelet Transform
	Locally Stationary Processes
	Estimation of the EWS

	Costationarity
	Pairs Trading based on Costationarity on Stock Data
	Comparison of the Costationarity Method with the Minimum Distance Method
	Comparison of the Costationarity Method with the Cointegration Method

	Conclusion
	Future Work

	Appendices
	Table of Stocks Used
	R Code
	References

