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Abstract

Image segmentation refers to the process of subdividing an image into a set of non-
overlapping regions. Image segmentation is a critical and essential step to almost all higher
level image processing and pattern recognition approaches, where a good segmentation
relieves higher level applications from considering irrelevant and noise data in the image.
Image segmentation is also considered as the most challenging image processing step due
to several reasons including spatial discontinuity of the region of interest and the absence
of a universally accepted criteria for image segmentation.

Among the huge number of segmentation approaches, active contour models or simply
snakes receive a great attention in the literature. Where the contour/boundary of the region
of interest is defined as the set of pixels at which the active contour reaches its equilibrium
state. In general, two forces control the movement of the snake inside the image, internal
force that prevents the snake from stretching and bending and external force that pulls
the snake towards the desired object boundaries. One main limitation of active contour
models is their sensitivity to image noise. Specifically, noise sensitivity leads the active
contour to fail to properly converge, getting caught on spurious image features, preventing
the iterative solver from taking large steps towards the final contour. Additionally, active
contour initialization forms another type of limitation. Where, especially in noisy images,
the active contour needs to be initialized relatively close to the object of interest, otherwise
the active contour will be pulled by other non-real/spurious image features.

This dissertation, aiming to improve the active model-based segmentation, introduces
two models for building up the external force of the active contour. The first model builds
up a scale-based-weighted gradient map from all resolutions of the undecimated wavelet
transform, with preference given to coarse gradients over fine gradients. The undecimated
wavelet transform, due to its near shift-invariance and the absence of down-sampling prop-
erties, produces well-localized gradient maps at all resolutions of the transform. Hence,
the proposed final weighted gradient map is able to better drive the snake towards its final
equilibrium state. Unlike other multiscale active contour algorithms that define a snake at
each level of the hierarchy, our model defines a single snake with the external force field is
simultaneously built based on gradient maps from all scales.

The second model proposes the incorporation of the directional information, revealed
by the dual tree complex wavelet transform (DT CWT), into the external force field of the
active contour. At each resolution of the transform, a steerable set of convolution kernels
is created and used for external force generation. In the proposed model, the size and the
orientation of the kernels depend on the scale of the DT CWT and the local orientation

iii



statistics of each pixel. Experimental results using nature, synthetic and Optical Coherent
Tomography (OCT) images reflect the superiority of the proposed models over the classical
and the state-of-the-art models.
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Chapter 1

Introduction

Image segmentation refers to the process of subdividing an image into a set of non-
overlapping regions. Image segmentation is a critical and essential step to almost all higher
level image processing and pattern recognition approaches, where a good segmentation re-
lieves higher level applications from considering irrelevant and noise data in the image.
Image segmentation is also considered as one of the most challenging image processing
steps due to several reasons including the spatial discontinuity of the region of interest and
the absence of a universally accepted criteria for image segmentation.

Among the huge number of segmentation approaches, active contour models or simply
snakes receive a great attention in the literature [1] [2]. Where the contour/boundary of
the region of interest is defined as the set of pixels at which the active contour reaches
its equilibrium state. In general, two forces control the movement of the snake inside the
image, internal force that prevents the snake from stretching and bending and external
force that pulls the snake towards the desired object boundaries.

One main limitation of active contour models is their sensitivity to image noise. Specif-
ically, noise sensitivity leads the active contour to fail to properly converge, getting caught
on spurious image features, preventing the iterative solver from taking large steps towards
the final contour. Additionally, active contour initialization forms another type of limita-
tion. Where, especially in noisy images, the model needs to be initialized relatively close to
the object of interest, otherwise it will be pulled by other non-real/spurious image features.

recently, the multi-resolution wavelet representation and analysis of images and curves
have been the subject of significant research attention [3] [4] [5]. Certainly wavelets are
widely used for compression and denoising, and the wavelet transform maxima indicate the
locations of image edges, however for orthogonal wavelets the decimation at coarser scales
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means that the transform is not invariant to translations. This translation sensitivity leads
to undesirable spatial variations in how an image gradient would be transformed into the
wavelet domain, similar to the ringing artifacts around image singularities or edges when
an image is reconstructed after modifying its wavelet coefficients [6].

In this thesis, aiming to improve accuracy of the active contour convergence, two models
for building up the external force field of the active contour are proposed. The first model
(Chapter 3), builds on the gradient vector flow GVF [7] and the vector field convolution
(VFC) [8], and uses the undecimated wavelet transform [9] to form a resolution-based
weighted gradient map for external force generation. The undecimated wavelet transform,
due to its near shift-invariance and the absence of down-sampling properties, produces
well-localized gradient maps at all resolutions of the transform. So, salient features of an
image tend to survive at coarse scales of the transform where noise contribution becomes
minimum. Also, fine structures and details of the image are localized and maintained at fine
scales of the transform, however, noise contribution becomes more significant. Hence, in
order to better drive the active contour towards its final equilibrium state, the first model
builds the external force map of the snake using a resolution-based weighted gradient
map with preference given to coarse gradients over fine gradients. Unlike other multiscale
active contour algorithms [10] [11] that define a snake at each level of the hierarchy with
the previous/coarser scale being the initialization of the snake in the current/finer scale,
the model proposed in Chapter 3 defines a single snake with the external force field is
simultaneously built based on the gradient maps from all scales.

The second model (Chapter 4) incorporates the directional information, revealed by the
dual tree complex wavelet transform (DT CWT) [12], into the external force field of the
active contour. At each resolution of the transform, a steerable set of convolution kernels is
created and used for external force generation of the active contour. The size of the kernels
depends on the scale of the DT CWT, with bigger kernels used at coarse scales and smaller
kernels at fine scales. Moreover, the orientation of the kernel to be used for generating
the force vector at each pixel is determined based on the local orientation statistics of the
pixel and its neighbors. With big oriented kernels at coarse scales, the model is capable of
taking larger steps towards the dominant/strong features of the object of interest, and is
less sensitive to noise. At fine scales, the small oriented kernel allows the model to capture
the fine details of the underlying object.

Finally, because Optical Coherent Tomography (OCT) technology is based on visible
light, media opacity highly affects the quality of the images. Moreover, the light reflections
during the imaging process make speckle noise an inherent feature of OCT images, which
makes OCT image segmentation a very challenging problem. Hence, Chapter 5 address
corneal OCT image segmentation and proposes solutions to four OCT-related problems.
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First, low SNR and the lack of light reflections at the peripherals of the cornea causes the
classical active models to give inaccurate segmentation results. We address this problem
through the usage of a spatially varying kernel that is able to restore the signal at the
peripherals. Second, the problem of automatic initialization of the active contour in the
noisy OCT images is addressed using the generalized Hough transform (GHT). Finally,
we propose solutions to the problems of calculating the epithelium layer thickness and
compensating for the eye motion.
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Chapter 2

Background

2.1 Image Segmentation

Image segmentation refers to the process of subdividing an image into its constituent
meaningful regions or objects. In other words, image segmentation is the process of labeling
image pixels, such that pixels that share certain predefined characteristics are assigned the
same label [13]. If I denotes the input image, then image segmentation aims to partition
I into N subregions R1, R2, . . . , RN such that

I = ∪Ni=1Ri

Ri ∩Rj = φ, for i 6= j

H(Ri) = true, for i = 1, 2. . . . , N

H(Ri ∪Rj) = false, for i 6= j

(2.1)

where H() is a logical predicate that measures the homogeneity of a certain region against
a predefined set of features.

Image segmentation is a critical and essential step in most higher level image processing
and computer vision applications such as pattern analysis and recognition. Proper segmen-
tation of an image ignores noise and irrelevant data introduced by other objects/background
and reduces processing complexity that higher levels need to carry out to produce an inter-
pretation of the image. It is likely that successful image segmentation leads to successful
higher level results. In pattern recognition for example, a correct segmentation of the object
of interest helps constructing a good representative feature vector of that object, which in
turn eases the recognition process. Due to its importance, image segmentation algorithms
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are found in a very wide range of applications including medical image processing [14],
content-based image retrieval [15] and remote sensing [16].

Image segmentation is considered as one of the most difficult tasks in image processing
[17]. The difficulty arises from a variety of reasons including, and not restricted to, non-
stationary environment, spatial discontinuity of the objects and determination of the level
to which the subdivision or segmentation is carried.

Generally speaking, image segmentation approaches can be divided into two categories:
similarity/homogeneity based segmentation and discontinuity based segmentation [18]. In
similarity based segmentation, pixels having similar predefined features are grouped in the
same partition. Discontinuity based segmentation, on the other hand, partitions the image
based on abrupt changes in image features such as color. Both similarity based and discon-
tinuity based segmentation try to answer the same question of “what is the best labeling
of image pixels?”, and hence should ideally give the same segmentation results. Sections
2.1.1 and 2.1.2 give more details about similarity and discontinuity based segmentation
respectively.

Related to similarity-discontinuity categorization, segmentation techniques can also
be divided to Bottom-Up (BU) and Top-Down (TD) techniques. BU approaches mainly
depend on the continuity principle and group pixels according to their similarity to each
other with no prior information used during the segmentation process. Discarding image
priors aims to make BU algorithms capable of automatically segmenting images under
all environments and for all applications [19]. However, for a variety of reasons, this
aim is to some extent not achievable. One reason is that most real images suffer from
irregular illumination, shadows, reflections and partially occluded objects. Additionally,
the presence of different types of noise, with each noise type treated in different way. Finally
and more importantly, the non-fixed definition of “object”, the level of details to which
segmentation process should continue differs from one application to another. In some
applications the purpose of segmentation might be to find the outer boundary of the object,
while in other applications finding different textures that constitute the object may be the
goal of segmentation [20]. the aforementioned reasons cause a BU algorithm to accidentally
split a single object to different objects or merge parts of the object with background due
to the unavoidable lake of information that can only be resolved by incorporating prior
information.

In Top-Down (TD) approaches, as opposed to BU approaches, segmentation is guided
by prior object information such as outer shape or orientation [21]. One limitation of TD
approaches is that prior information in most cases cannot capture all variability that a
certain object can have. Using higher volume of prior information could overcome this
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limitation with the side effect of restricting the approach to a very specific type of image
and increasing the processing time.

Recently, hybrid solutions of both BU and TD have been proposed that use both image
data and general prior information [22] [23] [24]. Using image data makes hybrid approaches
as general as BU while using general prior information helps improving and customizing
segmentation results [25].

Although a great number of segmentation techniques have been developed, there is
still no universally accepted evaluation criteria for segmentation accuracy, which explains
the relatively little research done on the segmentation assessment field. Subjective and
objective evaluation are two main approaches for segmentation quality assessment [26].
Subjective approaches use human observers to evaluate segmentation results [27]. The two
main disadvantages of this approach are: 1) evaluation may significantly differ from one
person to another. 2) it is a time consuming process and hence cannot be used for real
time application. Objective approaches on the other hand use quantitative criteria for
segmentation evaluation [28], and can be further divided to supervised and unsupervised
[29] [30]. Supervised approaches require manually segmented images (ground truth) to
compare against [29] [31], while unsupervised approaches evaluate segmentation results
based only on the segmented image. Examples of used metrics in the later approach could
be measuring the intra-object features such as shape regularity or inter-object features
such as contrast [32].

In summary, image segmentation is a critical and essential image processing task in
which the underlying image is partitioned into meaningful segments. Similarity and dis-
continuity properties are the most common used features that judge whether a certain
pixel belongs to one class or the other. Both approaches are complementary and can be
combined to improve segmentation quality. The two following subsections are discussing,
in more details, the similarity and discontinuity based segmentation. Segmentation assess-
ment is not an easy task due to the lack of standard quantitative criteria that judge the
effectiveness of a segmentation technique. Most segmentation assessment approaches use
ground truth databases to evaluate segmentation results.

2.1.1 Similarity Based Segmentation

Similarity based segmentation approaches subdivide the image into regions with each region
containing pixels that have similar predefined features. Pixels may be grouped based on one
or more features such as intensity, texture and orientation. Similarity based approaches are
suitable for segmenting images where objects are homogeneous and have strong contrast
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Figure 2.1: For a non-bi-modal histogram, histogram thresholding does not produce good
segmentation results

to each other. For textured objects or objects that have poor contrast relative to other
objects, similarity based approaches fail to give good results. Thresholding, region growing,
splitting and merging and watershed are considered the main similarity based approaches
[33].

Thresholding is the simplest form of similarity based segmentation where a threshold
value T is used to segment the image according to

ft(x, y) =

{
c1 if f(x, y) > T

c2 if f(x, y) ≤ T

where f(x, y) is the gray level of the image I at the spatial coordinate (x, y), ft(x, y) is
the thresholded image and c1 and c2 are two different labels (e.g. object and background).
Due to its simplicity and intuitive properties, image thresholding received a great research
attention in the literature [34] [35]. The key issue in thresholding approaches is the proper
selection of the T value that optimally separates image objects. In Otsu method [36], the
value of T is selected as the intensity value that maximizes the between-classes variance
and minimizes the in-class variance through iterating the dynamic intensity range of the
image. Relying only on the intensity value as a measure of discrimination and segmentation
restricting the Otsu method to images where objects have high contrast relative to each
other and hence restricting the method to images having bi-modal histogram with deep
valley between them. In situations where objects in the same image share common intensity
values this method fails to properly segment the image (see figure 2.1).

In order to improve the ability of thresholding methods to discriminate objects having
common gray values, image can be thresholded based on both gray level information and
the spatial correlation between image pixels. A 2-D histogram was developed in [37] with
the first dimension represents pixel gray values and the second dimension represents the
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average gray values of each pixel and its neighbors. The final threshold T is then selected
as the average value of the optimal thresholds on both dimensions T1 and T2. The main
advantage of this method is its ability of properly separating objects that share common
gray values. On the other hand, this method adds the burden of considering both gray level
dimension and average gray level dimension when selecting the optimal threshold, which in
turn increases the computational complexity of the method. Addressing the computational
cost of image thresholding using more than one feature, both pixel gray value and pixel
neighborhood gradient were used in [38] to build the 2-D histogram. Pixel neighborhood
gradient is the difference between the pixel gray value and its neighbors average gray value.
Using pixel neighborhood gradient instead of neighborhood average decreases the dynamic
range of this dimension and hence improves the computation time.

Region growing is another similarity based segmentation approach in which each pixel
is checked against its neighbors, if the pixel has similar attributes as its neighbor then it
is considered as belonging to the same object. Otherwise it forms its own class and this
repeats until all pixels are labeled. Region growing assumes spatially continuous objects,
which means that all the object pixels are spatially adjacent which is not true in many
real images. If the object is scattered along the image, then region growing approaches
will consider each group of adjacent object pixels as a separate object (a phenomenon
known as over-segmentation). Recognizing the fact that pixels that belong to the same
object often appear in spatially scattered location in the image, a method called hierarchical
segmentation or simply HSeg was proposed in [39]. HSeg allows spatially disjoint regions to
have the same label if they share similar features. In this method, merging spatially disjoint
regions is controlled by a parameter Swght which vary from 0.0 to 1.0. This parameter
reflects the importance of merging spatially disjoint regions (0-not important and 1-highly
important). A dissimilarity criterion value d is calculated between all pairs of regions. A
merging threshold Tmerge is set as the minimum value of d between adjacent regions. Finally,
two spatially disjoint regions i and j are given the same label if di,j ≤ Swght × Tmerge. The
obvious benefit of this method is the solution of the over-segmentation problem. However,
the intercomparison between each pair of regions in order to compute the dissimilarity
value d comes on the expense of computation time. To address this problem, a recursive
method called RHSeg was introduced in [40]. In RHSeg the image is first divided into
subsection and then the HSeg is applied to each subsection individually. Finally, HSeg is
applied to merge subsections.

In region splitting and merging approaches [41] [42], a single region/object that covers
all the image is initially assumed. This region is then split into parts, typically four equal
parts. For each part Ri, H(Ri) (see (2.1)) is evaluated and only non-homogeneous regions
are considered for further splitting. While regions where H() evaluates true are considered
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Figure 2.2: split and merge image segmentation

Original I Watershed(I)

Figure 2.3: Watershed over-segmentation phenomenon

for merging with their homogeneous neighbors. Figure 2.2 gives an explanatory example
for split and merge approaches.

Region split and merge approaches suffer major difficulties such as (i) computation
complexity, (ii) parallel implementation is difficult due to dependencies between splitting
and merging processes, (iii) Highly depended on selected features and thresholds (merging
and splitting), (iv) boundaries between regions are always not smooth. Addressing prob-
lems (iii) and (iv), authors of [42] dynamically selected splitting and merging thresholds
based on inter- and intra-variances of image regions. At the final step of their algorithm,
any region that is less than 6% of its neighbor region size is considered as a part of the
larger region.

Finally, watershed segmentation [43] is a similarity based segmentation with its intu-
itive idea comes from geography. The image can be seen as a topographic relief with pixels
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intensity represent their altitude. Each local minimum in the image intensity or gradient
represents a catchment basins. The basic idea of watershed segmentation is to place a
water source in each regional minimum of the image, and to build barriers at places where
the water from different catchment basins meet. Those barriers are the boundaries be-
tween image regions. Watershed approaches have been successfully integrated with other
discontinuity based segmentation approaches (e.g. active contours) for better segmentation
results. However, one main issue regarding watershed in its original definition is that it
produces severe over-segmentation of the image due to the large number of local minimas
in the image or its gradient [44] (see Figure 2.3).One solution to that problem is to use a
set of markers that refer to the objects to be segmented [45]. This solution can be used
only in cases where these markers can be defined a head before watershed method runs,
which in many cases is not possible. Another solution to the over-segmentation problem is
to use a hierarchical watershed approach [46] which aims at merging the catchment basins
of the watershed image that belong to similar regions.

2.1.2 Discontinuity Based Segmentation

Discontinuity based approaches for image segmentation aim to locate positions where
abrupt changes in the image features such as intensity or gradient happen. Those po-
sitions are then recognized as the boundaries between different image regions. Basically,
there are three types of discontinuities in a digital image [17]: point, line and edge. In this
section detecting the first two types of discontinuities (point and line) is covered, while
edge detection is covered in more details in the following section. In the literature, the
most common approach to locate different types of discontinuities is to run a mask through
the image and evaluate the response of image pixels to that mask [17]. Figure 2.4 shows a
3× 3 mask that could be used to locate point discontinuities.

The center of mask is located at each pixel in the image and the response R is calculated
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Figure 2.5: Line detection masks for Horizontal, 45◦, Vertical and −45◦ directions

according to

R = w1z1 + w2z2 + . . .+ w9z9

=
9∑
i=1

wizi.
(2.2)

where zi is the gray level of the pixel corresponding to the mask coefficient wi.

Point discontinuity is the first type of abrupt change that could happen in an image and
can easily be detected by running a mask as the one shown in Figure 2.4. If there is a pixel
that is highly different in color form its neighbors then locating the mask center at that
pixel and computing R will give a result that is much higher in magnitude than computing
R for any other pixel in the neighborhood. A simple thresholding process |R| > T will
detect all point discontinuities in the image, where T is a non-negative threshold and R is
given by (2.2).

Line discontinuity is the second type of abrupt change that happen in an image. Now
the problem is no longer to detect an abrupt change at a single pixel, but instead to detect
abrupt changes for a series of pixels along a specific direction. Modifying the mask of
Figure 2.4 to accommodate this new challenge gives the set of masks in Figure 2.5

To detect a line in an image, four responses R1, R2, R3 and R4 are computed for each
pixel in the image, and the larger response (in magnitude) gives an indication that this
pixel most likely lies on a line in the direction of the mask that produced the highest
response. Figure 2.6 shows the result of applying the 45◦ mask to the original image and
threshold the responses.

2.2 Edge Detection

Edge Detection is the process of locating the third type of discontinuities that happen
in an image, namely edges. An edge is defined as a set of connected pixels that lie on
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Figure 2.6: Line detection using 45◦ mask (a) original image, (b) thresholded 45◦ mask
responses

the boundary between two regions [17]. An edge can also be defined as locations where
significant local changes of image intensity occur [47]. There are several sources that cause
sharp changes in image intensity such as inherent image structures (textures), lighting
(shadows) and noise. Noise is considered as the main challenge in the process of edge
detection since noise has the same definition as edges “an abrupt change in image intensity”.
Edge detection and boundary extraction are generally ill-posed image processing problems
[48] [49]. It is impossible to design an edge detector that only responds to true edges
and ignores all other non-real edges and noise. Reducing image noise affects edges (e.g.
blurring) and strengthen edges also strengthen noise.

According to their intensity profiles, there are three types of edges (see Figure 2.7):

• Step edge where the abrupt change in the intensity occurs in a very short distance,
ideally one pixel. This type of edge usually found in synthesis images and rarely
found in real life images.

• Ramp edge where the abrupt changes in the intensity takes a distance longer than one
pixel which means that the transition crossing the ramp edge is gradual as opposed
to sharp transition in step edges. This gradual transition happens as a result of many
factors such as noise and imaging system deficiencies.

• Roof edge, this type of edge happens when a line cut a smooth region of the image.
The width of the roof basically depends on the width of the passing line.

First and second derivatives of the image are the common approaches for edge detection.
First derivative detectors are covered in the following section, while second derivative
detectors are covered in Section 2.2.2.
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Figure 2.7: Edge models

2.2.1 First Derivative Edge Detectors

One of the most important tools for locating edges in an image I is to compute the first
derivative, or simply gradient as follows

∇I =

[
gx
gy

]
=

[
∂I
∂x
∂I
∂y

]
where ∂I

∂x
and ∂I

∂y
are the partial derivatives of the image in x and y directions respectively.

In digital image processing, partial derivatives are approximated by forward, backward or
symmetric difference. Forward difference in the x direction for example is achieved by:
gx = I(x+ 1, y)− I(x, y) and in the y direction gy = I(x, y + 1)− I(x, y). Image gradient
provide us with two important pieces of information. First, the edge strength which is
equal to the magnitude value of ∇I and is calculated as M(x, y) =

√
g2
x + g2

y. Gradient
magnitude is used to locate edges in the image by selecting pixels that have high M(x, y).
Second, the edge direction which is the direction perpendicular to the gradient direction.
The vector ∇I at certain point (x, y) points at the direction of the greatest change of I at
that point. The direction is given by

θ(x, y) = tan−1

[
gy
gx

]
In the literature there are many symmetric filters that approximate derivatives in the x

and y directions such as Prewitt and Sobel filters [50] (Figure 2.8). All masks coefficients
in Figure 2.8 sum to zero which gives a response of zero in constant intensity regions of
the image. Building symmetric 3× 3 approximation filters involves data from the opposite
sides of the center pixel and hence better extracts the edge direction information. The only
variation between Prewitt and Sobel masks is the use weight 2 in the center coefficient,
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Figure 2.8: Examples of partial derivative approximations

Original I |∇(I)| Thresh(|∇(I)|)

Figure 2.9: Gradient image usually has thick edges that need to be thresholded

which has the effect of noise suppression. As a direct result of having ramp edges in the
image, first derivative filters produce thick edges that need to be thresholded. Figure 2.9
illustrates the problem of thick edges and how to solve this problem using thresholding.
Threshold selection is a key issue when using gradient information for edge detection.
Selecting one global threshold for the whole gradient image almost produces irrelevant
edges that are of no concern to human visual system. Addressing this issue, in [51] [52]
different set of local thresholds were used in order to produce perceptually better edge
maps. The gradient image is firstly thresholded using a low threshold value to find all
potential edges in the image. Secondly, for each potential edge pixel, weak edges in the
5 × 5 local region of this pixel are removed based on the activity masking property of
human visual system. In brief, the activity masking property states that edges near loose
edges or in smooth regions are more noticeable to our eyes than edges in textured regions.

In his pioneering work [53], Canny defined three objectives to be satisfied by the edge
detector

1. Low error rate, which means that only true edges should be detected,

2. Edge localization, which means that detected edges should be as close as possible to
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the actual edges and

3. Single edge response, which means that only a single response to a true edge point
should be recorded.

Canny’s approach can be summarized as follows:

• Smooth the image using a Gaussian filter

• Compute the magnitude and angle of the gradient image.

• Apply non-maxima suppression to the gradient magnitude image

• Use hysteresis thresholding and connectivity analysis to detect and connect edges

The Canny method first convolves the image with a Gaussian filter to reduce noise effect.
After calculating the gradient magnitude M and the direction θ, For each edge point (x, y)
in θ image, quantize the edge normal at this point to one direction of a predefined set
of directions (for example, four directions horizontal, vertical, −45◦ and +45◦). If the
magnitude value of the edge pixel (x, y) is less than one of its two neighbors along the
quantized direction, then this pixel is suppressed. Which means that the pixel was not a
true edge pixel and hence removed from the final edge map. After noise suppression step,
the final image is then thresholded in order to remove any weak edges. Canny used two
threshold values Tlow and Thigh. All pixels having gradient magnitude ≥ Thigh are marked
as true edges and all pixels having values < Tlow are removed from the final edge map.
Finally, All pixels having values in the interval [Tlow, Thigh[ are considered edge pixels only
if connected to an edge pixel through neighbors of value ≥ Tlow.

Despite the fact that the Canny detector is one of the most used methods for edge
detection, Canny’s method has some issues regarding its performance. One issue is related
to the selection of two thresholds Thigh and Tlow which is difficult to select and usually
produces broken and false edges. Another issue is related to the Gaussian blurring step
which in fact weaken both noise and edge pixels. Addressing these issues, [54] uses a
self-adaptive smoothing filter that changes its weights according to the features of the
underlying region. In smooth regions large weights are used and in regions where high
intensity changes are detected smaller weights are used. Regarding the broken and false
edges problem of the Canny method, an edge linking step was added in [54] to the maximum
suppression step of the Canny algorithm. The condition states that after calculating the
quantized direction of the normal to the edge pixel in the θ image, at least one neighbor
pixel to the current pixel should have the same quantized direction in order to label the
current pixel as an edge pixel. This condition excludes noise pixels which by nature have
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random directions and preserves edge pixels that have consistent directions. Which in turn
improves edge connectivity and error rate.

2.2.2 Second Derivative Edge Detectors

Image second derivative ∇2 is another tool that is highly used for edge detection in the
literature [55] [56]. The second derivative of an image I in the x direction is approximated
as

∂2I

∂x2
= I(x+ 1, y)− 2× I(x, y) + I(x− 1, y)

and in the y direction as

∂2I

∂y2
= I(x, y + 1)− 2× I(x, y) + I(x, y − 1)

Ideally, the second derivative of an image should have zero crossing at edge pixels as
opposed to low or high values for the first derivative. The second derivative operator ∇2

has the advantage of being isotropic as opposed to the directional first order operator ∇,
which means that there is no need to run multiple masks in order to compute the strongest
edge response. Using second derivatives for edge detection facing two limitations: (1) it
has a strong response to fine detail, such as thin lines, isolated points, and noise, and
(2) it produces a double-edge response to image edges (the positive pixel on one side and
the negative one on the other). Addressing those limitations, Marr-Hildreth [57] proposed
their second derivative based edge detector known as Marr-Hildreth detector.

In their method, Marr and Hildreth addressed the noisy sensitivity problem of the
second derivative by initially smoothing the image with a Gaussian blurring filter. Using
Gaussian blurring mask reduces image noise, and more importantly because Gaussian
function is smooth in both spatial and frequency domains, it is less likely to introduce
ringing artifacts compared to any other averaging masks. After blurring the image, the
second step is to compute the second derivative of the smoothed image. The two steps can
be written together as

g(x, y) = ∇2 [G(x, y) ∗ I(x, y)]

where ∗ is the convolution operator and G(x, y) is a 2-D Gaussian function given by

G(x, y) = e−
x2+y2

2σ2
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Figure 2.10: Noise sensitivity and double edge response of Marr-Hildrith approach

Because ∇2 and ∗ are linear processes, the above equation can be rewritten as

g(x, y) =
[
∇2G(x, y)

]
∗ I(x, y)

where ∇2G(x, y) is called Laplacian of Gaussian (LoG) and is given by

∇2G(x, y) =
∂2G(x, y)

∂x2
+
∂2G(x, y)

∂y2

=

[
x2 + y2 − 2σ2

σ4

]
e−

x2+y2

2σ2

(2.3)

LoG can be approximated using Difference of Gaussian (DoG) as follows

DoG(x, y) =
1

2πσ2
1

e
−x

2+y2

2σ21 − 1

2πσ2
2

e
−x

2+y2

2σ22

the last step of Marr-Hildreth approach is to find all zero crossing locations in the resulted
image g(x, y) and mark them as edge pixels. In practice, a thresholding step is still needed
in order to remove all false and double response edges (see Figure 2.10).

2.2.3 Edge Linking

Edge linking is an essential step that usually comes after edge detection with the aim of
producing a consistent and connected set of edge pixels. Local and Global processing are
the two main approaches for edge linking. In local edge linking, the neighborhood of each
edge pixel is checked for similarity according to a set of predefined criteria. If a certain
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level of similarity between them exists, they are connected. the gradient magnitude M
and the direction θ are the most used criteria for connecting edge pixels [58] [17]. For each
pixel (xn, yn) in the neighborhood of an edge pixel (x, y) let:

e(xn, yn) =

{
1 if |M(x, y)−M(xn, yn)| ≤ E and |θ(x, y)− θ(xn, yn)| ≤ A

0 otherwise

where E and A are positive thresholds and e() is the final edge map. Finally, a last step
of filling (set to 1) all gaps that do not exceed a specified length K between edge pixels is
carried out.

Global approaches for edge linking are applicable in situations where there is no prior
information about the location or the shape of the region of interest in the edge map image.
The Hough transform is considered as one of the most popular global methods for edge
detection and linking [59]. The Hough transform is usually used to connect edge pixels
that lie on a line, a circle or any other parametric curves. Assuming linking edge pixels
that lie on lines for simplicity, the simple idea behind the Hough method is to convert the
slope-intercept equation of all lines yi = mxi + b passing through an edge point (xi, yi)
which is an infinite number of (m, b) pairs to another plane (m − b plane or parameter
plane) where all solutions to that equation form a line in the new plane. The new equation
becomes b = −xim + yi. The new representation has the limitation of being unable to
represent vertical or semi vertical lines (slope approaches infinity). A simple solution to
this problem is to use the polar representation of a line x cos θ + y sin θ = ρ. In the new
ρ− θ space all solutions to the equation will from a sinusoidal curve. To link edges using
the Hough transform, an accumulator H that divides the ρ− θ space into cells or bins of
a predefined resolution is set and initialized to zero (see Figure 2.11). The algorithm goes
as follows

for all image pixels (xi, yi) do
if (xi, yi) is an edge point then

for −90◦ ≤ θ ≤ 90◦ do
compute ρ = xcosθ + ysinθ
increment the cell corresponding to (ρ, θ) in the accumulator H by 1

end for
end if

end for

after scanning all edge pixels in the image, a value v in an accumulator cell H(i, j) means
that v edge points encourage an edge line to be exist between them. This line is defined by
the pair (ρ, θ) corresponding to that cell in the accumulator. Although the Hough transform
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(a) (b) (d)

Figure 2.11: The Hough transform: (a) The accumulator H. (b) Two points connected by
an edge in xy plane (i.e. the image). (c) Sinusoidal curves which represent all lines passing
by (xi, yi) and (xj, yj) intersect at (ρ1, θ1) which identifying the line passing by the two
points, this increments the corresponding cell of (ρ1, θ1) in H by 1.

is a robust edge linking method that is extensively used in the literature [60] [61] [62], it still
suffers the major bottlenecks of computational complexity and high storage requirements
especially when the Hough transform is used to link edges that have complex shapes like
circles and parabolas.

In [63], both problems of the traditional Hough transform were addressed using a new
probabilistic version of the transform. The new method called Random Hough Transform
(RHT) with the basic idea of randomly sampling points from the edge map and increment-
ing the corresponding bins in the accumulator H instead of visiting every single pixel in
the image. Authors of the RHT stated that if the random sampling process continued long
enough, the local maximas locations in H will be the same for the both traditional Hough
transform and the RHT. The problem arises again, running RHT “long enough” would be
computationally and storage expensive. A hierarchical version of the Hough transform was
presented in [64] where the parameter space (ρ-θ in the simple case of line edges) is divided
recursively from coarse to fine scale. An initial run of the Hough transform is performed
on a low resolution parameter space where a single bin in the accumulator H represents
relatively big area of the space (low resolution accumulator). Then a higher resolution H
is generated that only considers bins which exceed a threshold value T from the previous
lower resolution H. The process continues until a predefined resolution is reached or there
are no cells that exceed the threshold T .

19



Figure 2.12: Building image pyramid using approximation and interpolation filters. Ap-
proximation is a lower image resolution while prediction residual encodes differences be-
tween predicted and real image.

2.3 Multiresolution Image Processing

Multiresolution approaches provide a powerful tool in the field of image processing where
the underlying image features/structures can be handled at more than one resolution. The
simple idea behind multiresolution theory [65] is that features that are undetectable at one
resolution might be easily detectable at another one. Objects that are large in size or high
in contrast are normally examined at low resolutions while objects that are small in size
or low in contrast are examined at high resolutions.

Image pyramid [66], as the simplest multiresolution method, is a collection of the orig-
inal image at decreasing resolutions arranged in a pyramid shape. The pyramid base
contains a high resolution approximation of the image (usually the original image itself)
and the apex contains a low resolution approximation. Usually both size and resolution
decrease as you move up the pyramid. The size of the base level J is 2J × 2J and the
apex level 0 is of size 1 × 1. Most multiresolution approaches stop away before the level
0, as an image of size 1 × 1 is indeed of a little value. Figure 2.12 gives a simple system
for generating two intimately related layers of the pyramid. The 2 ↑ and 2 ↓ in the figure
refer to upsampling and downsampling respectively. The approximation filter could be
an averaging filter which produces a mean pyramid [67], a lowpass Gaussian filter which
produces a Gaussian pyramid [68] or other filters. The interpolation filter could be as
simple as nearest neighbor, bilinear or cubic filter. In order to build a P layers pyramid,
the following three steps are repeated P times, assume starting from level j

1. A low resolution version of the approximation image at level j is generated through
filtering followed by downsampling. The resulted approximation image is the level
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j − 1 approximation image.

2. An estimate of the level j image is generated through upsampling followed by filtering
the image generated in the previous step.

3. The difference between the generated image from step 2 and the input image from
step 1 is stored as the prediction residual in level j of the pyramid

The importance of the last step is that it both enables the full reconstruction of the original
image and more importantly, unlike approximation image, residual images tend to have
histograms that are mostly centered at zero. This gives the chance of highly compressing
those images by assigning fewer bits to non-frequent intensity values in the image. Which
in turn makes signal/image compression using pyramid technology extensively used in the
literature [69] [70].

A more generalized multiresolution representation that uses any function as opposed
to Gaussian function in the Gaussian pyramid is the wavelet transform which is covered in
the following section.

2.3.1 Wavelet Transform

Wavelet transform is a multiresolution transform based on small functions (called wavelets)
that are localized in both time and frequency [71]. Talking about wavelet inherently means
talking about a pair of functions namely, the scaling ϕ and the wavelet ψ functions. The
scaling function ϕ is used to generate the image approximations while wavelet function ψ is
used to encode the difference in information between successive approximations (i.e. detail
images). According to series expansion, a function f(x) can be represented as a weighted
sum of ϕ as follows

f(x) =
∑
k

αkϕk(x) (2.4)

where αk are the expansion coefficients and ϕk are the expansion functions. Functions that
can be expressed by the set {ϕk(x)} forms a function space that is referred to as the closed
span of the expansion set, denoted as

V = Spank{ϕ(x)}

the set of expansion functions that are composed of translations and scalings of the original
expansion function is

ϕj,k(x) = 2j/2ϕ(2jx− k) (2.5)
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where j and k ∈ Z. The position of ϕj,k(x) along x-axis is controlled by k while its width is
controlled by j. The amplitude of the function is controlled by the term 2j/2. Restricting
the set {ϕj,k(x)} to a specific value j0 produces a subset {ϕj0,k(x)} that spans a subspace
of L2(R). This new subspace is defined as

Vj0 = Spank{ϕj0,k(x)} (2.6)

hence, if f(x) ∈ Vj0 then it can be decomposed as

f(x) =
∑
k

αkϕj0,k(x) (2.7)

as j increases the subspace Vj increases which allows scaling functions with small variations
and fine details to be included. One fundamental requirement of multiresolution analysis
[65] is that subspaces spanned by low resolution scaling functions must be nested within
those subspaces spanned by higher resolution functions, which can be written as

V−∞ ⊂ . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ V∞ (2.8)

hence, expansion functions in arbitrary subspace Vj can be represented as a weighted sum
of expansion functions in a higher resolution subspace Vj+1 using (2.4) as follows:

ϕj,k =
∑
n

αnϕj+1,n(x) (2.9)

where the summation index k is replaced with n to avoid confusion. Using (2.5), the above
equation can be rewritten as

ϕj,k =
∑
n

hϕ(n)2(j+1)/2ϕ(2j+1x− n) (2.10)

where hϕ(n) are called the scaling function coefficients. Because ϕ0,0(x) = ϕ(x), both j
and k can be eliminated from the previous equation to have the simpler equation of

ϕ(x) =
∑
n

hϕ(n)
√

2ϕ(2x− n) (2.11)

Equation (2.11)is called the refinement equation and simply means that expansion functions
in any subspace can be built from expansion function in the next higher resolution subspace.
The most simple scaling function is the Haar function [72] shown in Figure 2.16. The Haar
scaling function ϕ is given by

ϕ(x) =

{
1 if x ∈ [0, 1)

0 otherwise
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(a) (b)
Standard Harr function ϕ0,0(x) Scaled-translated version ϕ2,3(x)

Figure 2.13: Haar functions, higher resolution scaling functions (e.g. (b)) can be used to
construct lower resolution functions (e.g. (a))

Details are encoded using the wavelet function ψ. The set of wavelets that are composed
of translations and scalings of the original wavelet can be written as:

ψj,k(x) = 2j/2ψ(2jx− k) (2.12)

as with the scaling function, a subspace Wj is defined as

Wj0 = Spank{ψj0,k(x)} (2.13)

the scaling and wavelet subspaces are related by

Vj+1 = Vj ⊕Wj (2.14)

where ⊕ denotes the union of spaces. Using (2.11) a wavelet function can be expressed as

ψ(x) =
∑
n

hψ(n)
√

2ϕ(2x− n) (2.15)

where hψ(n) are called the wavelet function coefficients, and are related to scaling coeffi-
cients by

hψ(n) = (−1)nhϕ(1− n)
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(a) (b)
Standard Harr wavelet ψ0,0(x) Scaled-translated version ψ2,3(x)

Figure 2.14: Haar wavelets, low resolution wavelets (e.g. (a)) are used to encode details
in lower resolution layers, while details in higher resolution layers are encoded with high
resolution wavelets (e.g. (b))

Haar wavelet is a well known wavelet that is used in the literature [73] [74] and is given by

ψ(x) =


1 if x ∈ [0, 0.5)

−1 if x ∈ [0.5, 1)

0 otherwise

Figure 2.14 shows the original Haar wavelet and one of its scaled-translated versions.
Putting things together, a function f(x) ∈ L2(R) can now be represented by a scaling func-
tion expansion at certain subspace Vj0 and wavelet expansions at subspaces Wj0 ,Wj0+1 . . .
as follows

f(x) =
∑
k

cj0(k)ϕj0,k(x) +
∞∑
j=j0

∑
k

dj(k)ψj,k(x) (2.16)

where cj0(k) are approximation coefficients and dj(k) are detail coefficients. The one-
dimension wavelet transform is easily extended to the two-dimension space, where two
dimensions scaling function is defined as follows

ϕ(x, y) = ϕ(x)ϕ(y)

and three wavelet functions are defined as

ψH(x, y) = ψ(x)ϕ(y)
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ψV (x, y) = ϕ(x)ψ(y)

ψD(x, y) = ψ(x)ψ(y)

where ψH , ψV and ψD measure the image variations along horizontal, vertical and diagonal
directions respectively. Now, for an image f(x, y) of size M ×N , the wavelet transform is
computed as follows

Wϕ(j0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ϕj0,m,n(x, y) (2.17)

W i
ψ(j0,m, n) =

1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ψij0,m,n(x, y), i = {H,V,D} (2.18)

where Wϕ(j0,m, n) is the image approximation at certain scale j0 and W i
ψ(j0,m, n) is

the wavelet coefficients for the different i values. The inverse wavelet transform can be
obtained using:

f(x, y) =
1√
MN

∑
m

∑
n

Wϕ(j0,m, n)ϕj0,m,n(x, y)

+
1√
MN

∑
i=H,V,D

∞∑
j=j0

∑
m

∑
n

W i
ψ(j,m, n)ψij,m,n(x, y)

(2.19)

Discrete Wavelet Transform (DWT) can be implemented using successive lowpass, highpass
filtering and downsampler, where the lowpass filters produce the approximation images at
different scales and the highpass filters produce the detail images. Both the approximations
Wϕ(j,m, n) and the details W i

ψ(j,m, n) of scale j can be computed by convolving Wϕ(j +
1,m, n) with the filters hϕ(−n), hψ(−n), hϕ(−m) and hψ(−m) as shown in Figure 2.15.
As can be seen from the figure, the separable filters are applied first in one dimension (e.g.
vertically) then to the other dimension.

2.4 Overcomplete Wavelet Transforms

The basic idea behind the overcomplete wavelet transforms is very simple. After applying
the lowpass and highpass filters to the data, the downsampling step is skipped. Hence,
the output sequences (after the filtering step) have the same dimensions as the input data.
However, the used filters are upsampled by 2 each time. Since more output information
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Figure 2.15: Wavelet decomposition (a) and reconstruction (b) of the j + 1 layer approx-
imations. The wavelet transform and its inverse is implemented using lowpass, highpass
filters and down/up-sampler
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Figure 2.16: The undecimated wavelet transforms. The basic idea is to cancel the down-
sampling step of the classical wavelet transform. The direct result is a redundant, overcom-
plete, and shift invariant transform. The used filters in each level are up-sampled versions
of the previous filters.

is kept at each level of the transform, overcomplete wavelet transforms have been called
redundant transforms in the literature [6].

The lose of the translation invariance property, due to the downsampling step, in the
classical wavelet transform makes the results of applying this transform to problems such
as deconvolution, detection and data analysis, far from optimal [75]. These non-optimal
results are basically because of the large number of artifacts happening when reconstructing
the image after modifying the wavelet coefficients. On the other hand, the absence of
the downsmapling in the oversomplete transforms makes them translation invariance and
eliminates the reconstruction artifacts. Figure refUDWTFiltrers illustrates the idea of
the undecimated wavelets where, as mentioned earlier, the basic idea is to cancel the
downsampling step and upsample the filters themselves by 2 each time.

2.5 Snakes: Active Contour Models

Active contour models, or simply snakes, are deformable curves used to contour and edge
detection. The process of locating image boundary through active contour models is con-
trolled by two types of forces, a force coming form the active contour itself (internal force)
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that controls the prior behavior or curvature of the snake, and the other force coming from
the image data (external force) that pulls the snake towards features of interest.

Active contours models can generally be classified as either parametric or geometric
models. In the first type, contours are explicitly represented as parameterized curves, while
in the second category contours are implicitly represented as level sets of two dimensional
scalar functions. Sections 2.5.1 and 2.5.2 give more details about the two models.

2.5.1 Parametric Active contours

Parametric Active Contour (PAC), introduced by Kass et al. [76], is an energy minimizing
curve that deforms over a series of time steps. The parametric snake curve is defined as

υ(s) = (x(s), y(s)) and s ∈ [0, 1] (2.20)

where x(s) and y(s) are the active contour coordinates in terms of a normalized arc length
s. There are three ways for representing curves in the literature [77]

• Explicit y = f(x), where one variable is defined in terms of the other.

• Implicit f(x, y) = 0, where the curve is represented as the zeros of a specific formula.
The formula implicitly defines the relation between its arguments and its value.

• Parametric υ(s) = (x(s), y(s)), where the curve parameters are represented as func-
tions of another parameter.

The explicit representation of curves prevents one parameter (e.g. y) form having multiple
values for a single value of the other parameter (x). Closed curves like circles can not be
represented with the explicit representation. Another limitation with this type of repre-
sentation is the difficulty of representing curves with infinite slope. With implicit curve
representation the equation may have more solutions than we want, for example in the
circle equation x2 + y2 = 1, a half of that circle can not be represented with out adding
an extra constraint such as x ≥ 0. The parametric curve representation overcomes the
limitations of both other representation methods where multiple values of one term y can
be computed with respect to another term x since both of them are computed with respect
to another term s. Additionally, the infinite slope problem is solved by replacing geometric
slope with parametric tangent which never has infinite slope.

Active contour model tries to segment the image by minimizing the snake energy

Esnake = Einternal + Eexternal (2.21)
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where Einternal is the snake internal energy that aims to keep the curve smooth by prevent-
ing stretching and bending, and Eexternal is external energy that pulls the snake towards
the desired object boundaries. More formally the above equation can be written as

E =

∫ 1

0

1

2
[α(s)|υ′(s)|2 + β(s)|υ′′(s)|2] + Eexternal(υ(s))ds (2.22)

where α and β are weighting parameters, υ
′

and υ
′′

are the first and second derivative of
υ(s) with respect to s. The external energy Eexternal is derived from the image data such
that it has a minimum value at the features of interest. Typically, the contour should locate
edges, so Eexternal could be assigned the negative value of image gradient −|∇I(x, y)| or
its smoothed version −|∇[Gσ(x, y) ∗ I(x, y)]|. For numerical implementation purposes, the
energy function E needs to be discretized.

The traditional active contour method [76] has some limitations [10] [78] [24] including
the inability of capturing complex-curvature shapes, inability to detect multiple objects,
noise sensitivity, initialization sensitivity, small capture range, slow convergence and pa-
rameter dependency.

Addressing small capture range, noise sensitivity and slow convergence problems, most
developed approaches altered the external energy term. In [79] the external energy term
was modified by considering the curve as a balloon and adding a new inflation force term
(called pressure force) defined as

Epressure = k1n(s), (2.23)

where n(s) is the normal unitary to the curve at υ(s) and k1 is the amplitude of the force.
The sign of k1 determines wether the balloon will be inflated or deflated. The pressure
force prevents the active contour from being trapped by the local minimas (spurious edges
and noise). Ideally, the pressure force dynamically can either inflate or deflate the balloon
to reach its final destination, hence eliminates the need to initialize the model near the
object boundaries. The inflation force also prevents the curve from turning to a point or
a line when is not submitting to external force. One limitation of the balloon model is
that the model needs to be initialized either inside or outside the object to be detected.
Another limitation of this model is that if the pressure force is not set properly, a leakage
problem occurs at broken edges.

The Gradient vector flow (GVF) [7] is another variation of the traditional active contour
mode,l which addresses the initialization and the complex-curvature problems. The main
idea of the GVF is to extend the gradient force away from edges and into homogenous
regions via computational diffusion process. By doing this, homogeneous regions no longer
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have no/weak external force, which is the main reason behind the slow and the mis-
convergence problems. A gradient vector flow field g(x, y) = [u(x, y), v(x, y)] is defined to
minimize the following energy function

E =

∫∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2|g −∇f |2dxdy (2.24)

where µ is a regularization parameter and f is the image edge map. According to (2.24),
when |∇f | is large (near edges), setting g to large value minimizes E and when |∇f | is small
(homogeneous regions), squares of the partial derivatives of g dominate the energy function
which gives the effect of slowly-varying in homogeneous regions as opposed to no-force in
the traditional active contour model. In [80] a Generalized version of the GVF called GGVF
is proposed to increase the ability of the GVF to capture narrow boundary concavities by
dynamically controlling the regularization parameter µ to decrease smoothing effect near
strong gradients (edges). Although the GVF and the GGVF have been used extensively in
the literature [81] [82] [83], they suffer some limitations such as small capture range, noise
sensitivity, parameter sensitivity and high computational cost [10] [78].

Li and Acton [8] addressed the aforementioned GVF problems via replacing the stan-
dard external force term by a Vector Field Convolution (VFC) force term fvfc. A vector
field kernel k(x, y) = [u(x, y), v(x, y)] is defined where all the vectors point to the kernel
origin. The VFC external force fvfc is then calculated as the convolution of the vector field
kernel k and the image edge map f(x, y) as follows

fvfc(x, y) =f(x, y) ∗ k(x, y)

[f(x, y) ∗ u(x, y), f(x, y) ∗ v(x, y)]
(2.25)

where k(x, y) is the product of a scalar function m(x, y) that assigns magnitudes to the
forces and a unit vector field n(x, y) that controls the vectors orientation. m and n are
defined as

n(x, y) = [−x/r,−y/r] (2.26)

m1(x, y) = (r + ε)−γ or m2(x, y) = exp(−r
2

ς2
) (2.27)

where the kernel radius r =
√
x2 + y2 and ε is a small constant that prevents division

by zero. The range of VFC is governed by r in case of m1 is used or by ς in case of the
Gaussian decay m2 is used.

Because the edge map f(x, y) is non negative and has large values near image edges, the
edges contribution to the new external force fvfc is larger than homogeneous regions which
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in turn attracts the snake to the object boundary. The convolution in (2.25) simulates
the diffusion process carried in [7] via one step convolution that can be computed in the
Fourier domain which in turn reduces the computation time of the method. Nevertheless
that VFC has a large capture range and a low computation cost, VFC has its shortcomings.
The kernel size is one limitation of the method. Large kernels improve the capture range of
the model, but at the same time, overwhelm fine details in the image, while small kernels
improve fine details preservation but decrease the capture range.

All parametric based active contour models discussed so far have the limitation of being
parameter dependent, which in most cases prevents the model from giving good results
under different circumstances. Non parametric active contour models provide a solution
to this limitation via processing the active contour in the context of level set method. Non
parametric models are discussed in the following section.

2.5.2 Non Parametric Active contours

One limitation of parametric active contour models is the lack of parametrization indepen-
dence. Level set methods [84] provided an alternative way for evolving the active contour
by considering the active contour as a zero level set of a scalar function in a higher di-
mension which in turn allows curve splitting and merging. The first non parametric active
contour (also called Geometric Active Contour GAC) model was introduced by Caselles
in [85] and Malladi [86] where the curve evolves using only geometric measures and hence
independently of the curve parameters. If φ(x, t) is a 2-D scalar function with its zero level
set defines the active contour such that the function is positive inside the contour, zero on
it and negative outside, then φ can evolve according

φt = c(k + V0)|∇φ| (2.28)

where k is the curvature, V0 is a constant and c is the edge potential derived from the
image as follows

c ≡ c(x) =
1

1 + |∇(Gσ(x) ∗ I(x))|
(2.29)

the term c(k + V0) in (2.28) controls the evolution speed of the level sets of φ(x, t), while
the curvature term k controls the smoothness of the contour.

The above mentioned geometric model works well when objects are highly distinguish-
able and have high contrast comparing to the background. But in cases when object
boundaries are indistinct or broken, a leakage problem occurs. An extra stopping term
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A PAC method [7] A GAC method [87]

Figure 2.17: A parametric vs. a geometric active contour method. The parametric model
is capable of locating only one object while the geometric model, due to the thresholding
step in the level set method, can definitely accommodate multiple objects

was added to (2.28) in [88], the new term pulls back the contour in case it passes the
object boundary. The new equation becomes

φt = c(k + V0)|∇φ|+∇c.∇φ (2.30)

Although (2.30) has the new stopping terms, employing this equation does not prevent
GAC models suffering the edge leakage problem. The direct reason behind the edge leakage
problem is that, except for edge gradient, no local edge information is considered in most
conventional GAC models. A new framework of GAC that uses local features of the image
was proposed in [89].

Despite the fact that GAC models overcome some of the limitations of classical paramet-
ric models such as curve splitting/merging and parameter independence (see Figure 2.17),
GAC models have their own limitations such as noise sensitivity and computation com-
plexity. Defining the active contour model in the context of level set method makes the
models sensitive to noise since the level set method generates local minima of the energy
function. Also, the level set method is known to by computationally expensive.

Addressing the noise sensitivity and the computation complexity problems, graph-cut
based GAC models were developed in [90] [91]. Graph-cut based GAC methods use the
graph cut method to evolve the active contour instead of the level set method. The graph
cut method is known to produce global minima and is less computationally expensive
than the level set method [91]. Multi-resolution GAC [92] is another way to tackle the
aforementioned problems of traditional GAC models. The simple idea behind the approach

32



is to use the image at lower resolutions in order to get a rough estimate of object(s)
boundaries and then use those estimate to better localize the final active contour at the
highest resolution of the image.
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Chapter 3

Multi-resolution Undecimated Active
Contours

3.1 Noise Sensitivity of Active Contour Models

Sensitivity of both active contour models (parametric and geometric) to noise is considered
one of their main limitations. Many solutions to noise sensitivity have been proposed in
the literature [94] [95]. As mentioned in Section 2.5.1, the balloon model, the GVF, the
GGVF, the TVF, the VFC and many others are all aiming to address the noise sensitivity
problem. The aforementioned methods still poorly behave under high levels of noise.
Figure 3.1 illustrates the behavior of the GVF method [7] and the Active Contour Without
Edges [87] under different noise levels. The GVF belongs to the PAC model and the Active
Contour Without Edges belongs to the GAC model. Under a high PSNR value (50 in the
figure), both methods locate the object of interest easily with the GAC method having
the privilege of being able to split to locate the fine details inside the object (e.g. choroid
plexus). At a lower PSNR value of 20, the split property of the GAC method turned out
to be a disadvantage. The GAC method –being highly affected by the noise– identified too
many objects that almost all of them are not true. Both methods misconverge, with the
PAC method showing some resistance to the noise. At a PSNR value of 10, both methods
give final segmentation results that are far away from the correct ones.

Alternatively, the multiresolution processing of the active contour is considered as the
current state-of-the-art in approach for addressing the noise sensitivity issue of the active

Some parts of this chapter are excerpted verbatim from [93], where the thesis author is one of the
co-authors.
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contours [96] [97]. The dominant features of the object of interest (e.g. edges and strong
textures) are used to guide the active contour at low resolutions, where these features
are most likely to survive. At fine resolutions, the active contour is permitted to take
small movements in order to capture the fine details of the underlying image. Hierarchical
methods for active contours are discussed in the following section.

3.2 Hierarchical Active Contours

Addressing the noise sensitivity of active contour models in the context of the multireso-
lution framework helps to overcome this problem and is considered as the state-of-the-art
in the literature. The first multiresolution active contour model was proposed in [98] as a
hierarchical version of the balloon model proposed in [79]. The basic idea was to initialize
the active contour in a low resolution image to roughly locate object boundaries. Intu-
itively, at lower resolutions of the image, only strong features (e.g edges) are survivable
while other spurious features (e.g noise) have less contribution. After locating the image
boundaries at the lowest resolution, which most likely are the true edges, these boundaries
are then used to initialize the active contour at a higher resolution image. The process
continues until the active contour is initialized in the finest version of the image (original
image). In the same paper [98], another multiresolution active contour model that uses the
Fourier transform was proposed. The model defines the scale as the number of harmonics
used to describe the curve. The elliptic Fourier representation of a closed curve is

υ(θ) =

(
x(θ)
y(θ)

)
=

N∑
k=0

Ak

(
cos(θk)
sin(θk)

)
(3.1)

where Ak is a 2 × 2 matrix, N is the number of used harmonics and θ is the angular
parametrization index. The algorithm uses an initialization curve υ1 to find another curve
υ?1 that could be described by one harmonic and minimizes the energy function of the
model. Iteratively, the number of harmonics p increases from 2 to N and each time the
previous curve υ?p−1 is used to find a finer curve υ?p described by p harmonics. One limitation
of the Fourier approach happens when the underlying object has a complex curvature, in
such situation a large number of harmonics are needed to accurately locate the object.

The Multiscale Tensor Vector Field (MTVF) was introduced in [10] as a noise robust
active contour model, where the VFC kernel is adaptively modified using the image tensor
Γ that is defined as:

Γx,y =

(
σx,x σx,y
σy,x σy,y

)
(3.2)
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Figure 3.1: The segmentation results of the GVF [7] vs. The AC without Edges [87] active
contour methods under different levels of noise. It is clear that both contours misconverge
to incorrect object boundaries in noisy images
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where σx,x, σy,y are weighted variances and σx,y is the weighted covariance of the image
gradient. The coarsest image is used to initialize the first snake then finer resolutions
make use of the snake position in their predecessor coarser resolutions in a manner similar
to [98].

Due to the kernel size dependency of [8] that introduces a trade off between fine details
preservation and large capture range, a Multiscale Vector Field Convolution (MVFC) [99]
is introduced. The method convolves the image edge map with a bank of vector kernels as
follows

Fv(x, y; t) = f(x, y) ∗ kt(x, y) (3.3)

where kt(x, y) = m(x, y; t).n(x, y) (see 2.26 and 2.27) and t ∈ [tmin, tmax]. At each location
of the image, Fv for all t values are computed and stored. For each pixel, the optimal scale
topt is then determined as the scale at which the computed force is maximum:

topt = arg max
tmin≤t≤tmax

|Fv(x, y; t)| (3.4)

the final multiscale force field is created by combining the selected forces at each pixel into a
single force field. However, MVFC has some limitations including the method dependency
on the edge map, which is not usually available especially in noisy images. Moreover, the
kernel size are arbitrary and do not depend on actual image features (e.g. edge strength),
which in most cases requires a different bank for each image.

3.3 Undecimated Active Contours

Using the wavelet transform as a multiresolution framework to improve active contour
models is extensively proposed in the literature [100] [101]. The zero-crossing of the wavelet
coefficients is used in [101] to build a vector ZCSi,j = (ZCSx, ZCSy) whose components
are the wavelet zero-crossing of x and y directions. The vector ZCSj,j represents the
orientation and strength of a zero-crossing point. The vector field ZCS is then used to
build a new image force that better drives the active contour. Statistical proprieties of
the wavelet transform were analyzed in [100] using Principle Component Analysis (PCA)
and used as priors during the contour deformation process. The global shape priors are
obtained from the low resolution approximations of the transform, while the local shape
priors are obtained from the detail images of the transform. One main limitation of the
classical wavelet transform when used in image processing application is its down sampling
property. At each resolution of the transform, the image is downsampled by 2, which, in
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most cases, throws out important image information. Edge delocaliztion is one direct side
effect of the downsampling step.

A key strength of undecimated wavelet transforms is their edge preservation prop-
erty at coarse resolutions, made possible by their near shift-invariance and the absence
of down-sampling [6] [102]. Figure 3.2 demonstrates the near-shift invariant property of
the undecimated discrete wavelet transform as opposed to the traditional discrete wavelet
transform. In the figure, no matter that both curves are just shifted versions of each
other (shifted by 21), the first resolution detail coefficients of the traditional wavelet trans-
form, due to the shift variant property, are unable to discriminate the two signals. While
the first resolution detail coefficients of the non-decimated wavelet transform, due to the
shift-invariant property, can easily be used to discriminate the two signals. The important
properties of being shift-invariant and the absence of down sampling make the undeci-
mated wavelet transforms a perfect choice for image segmentation applications. Using the
undecimated wavelet transform, important image features such as edges and textures are
guaranteed to have the same exact location, no matter which resolution of the transform
is used for processing. Such phenomena (known as localization) makes the undecimated
wavelet transform a perfect choice for multiresolution based active contours. Of course,
being an over-complete transform, data redundancy and the need for more storage space
can be considered as down sides of the undecimated wavelet transform. However, the
great advances in the storage and processing capacities of the modern computing devices
reduces the worries about time complexity issues behind the usage of the undecimated
wavelet transforms.

As illustrated in Section 2.5.1, the movement of the active contour is controlled by two
types of forces (internal and external). To build up the external force of the active contour,
a force vector that measures the strength and the orientation of the image feature (e.g.
edge) at each pixel is calculated. Collectively, the force vectors of the image pixels form the
external force field of this image. The force field drives the active contour towards the object
of interest. Since salient features of an image are most likely to survive at coarse resolutions
of the UDWT, our proposed undecimated wavelet active contour (UWAC) model aims to
build the external force map of the active contour using the gradient information from all
resolutions of the transform, with preference given to coarser over finer resolutions. Since
image noise is not expected to survive at coarse resolutions, favoring coarse resolutions over
fine resolutions ensures that noise contribution in the final external force is suppressed.
Moreover, this favoring ensures that the final external force is primarily influenced by
the dominant features in the image, which hopefully, are the true edges of the object of
interest. The new map accurately drives the active contour and improves edge localization.
The proposed UWAC builds on both Gradient Vector Flow and Vector Field Convolution
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Figure 3.2: The shifted two signals in the first row are not distinguishable using the
traditional DWT first resolution coefficients (second row), while the two signals are easily
distinguishable using UDWT first resolution coefficients (third row) due to shift invariant
property.

active contours. Comparisons to classical and state-of-the-art methods show a dramatic
improvement in active contour convergence for all levels of noise.

Unlike other multi-resolution active contour algorithms [10] [11] that define a snake
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Figure 3.3: A schematic diagram of the proposed model (UWAC). The final gradient map
is simultaneously built up by combining the resolution-based weighted wavelet gradients,
αjςj, of the UDWT. The external force field of the UWAC is generated using the final
gradient map.

at each level of the hierarchy, with the previous/coarser resolution being the initialization
of the snake in the current/finer resolution, the UWAC drives a single snake with an
external force field based on the gradient information from all resolutions of the transform.
Figure 3.3 shows a schematic diagram of the proposed model, where the weighted gradient
information from all UDWT resolutions are combined to build up a final gradient map.
This final gradient map is then used to generate the external force field of the active
contour. The proposed model builds on both the Gradient Vector Field (GVF) [7] and
the Vector Field Convolution (VFC) [8]. Experimental results show superior improvement
of the UWAC, in terms of capture range and noise sensitivity, over the GVF and VFC
methods.

3.4 Multi-resolution Gradient Maps

To address the problem of noise sensitivity of the active contour, our model uses the UDWT
coefficients of all resolutions to build a weighted gradient map. The external force of the
snake is then developed based on this map. Aiming to decrease noise participation in the
developed map, gradients at coarser resolutions are weighted more highly than gradients
at finer resolutions. However, the fact that UDWTs filters do not need to be orthogonal or
bi-orthogonal [9] imposes no relation between the amplitude of the wavelet coefficients in
different resolutions. Hence, the direct favoring of coarser resolution gradients without this
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Figure 3.4: An average ASD [24] convergence using the test image set for different values
of α in (3.7). Favoring fine resolutions (α < 1) leads to worse ASD values. While favoring
coarse resolution gives better ASD results.

relation between wavelet coefficients in different resolutions becomes of almost no sense.
Therefore, as a first step, the UWAC normalizes the wavelet coefficients based on their
local moment statistics.

Assuming a high correlation between the variances of the wavelet coefficients in a local
neighborhood ℵ(k), then for each w(k) ∈ ℵ(k) σ2(k) ≈ σ2(ℵ). An estimate of σ2(k) for
each coefficient w(k) is computed using maximum likelihood (ML)

σ̂2(k) = arg max
σ2≥0

Πk∈ℵP (w(k)|σ2)

= max

(
0,

1

K

∑
k∈ℵ

w2(k)− σ2
n

)
(3.5)

where σ2
n is the noise variance and K is the number of coefficients in ℵ . σ̂2

n, an estimate of
the noise variance, is calculated by applying the robust median estimator on the coefficients
of the finest resolution [103] [104]. To suppress the participation of noisy coefficients in
forming the final force map, the wavelet coefficients are non-linearly normalized using
an inverse logarithmic function F such that ŵ = F(w). F is designed such that noisy
coefficients are mapped into a smaller range of the the new dynamic range.
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At each resolution j, the normalized wavelet sub-bands of the x-details w1
j and the y-details

w2
j are used to calculate the gradient map

ςj =
√

(ŵ1
j )

2 + (ŵ2
j )

2 (3.6)

The idea of non-linear and resolution based weighting of wavelet coefficients has been
subject to researchers’ investigation as a tool for noise reduction [105] [106]. The idea is to
give high weights to low resolution bands of the wavelet transform, where salient features of
the image are dominant. While high resolution bands, where noise contribution is expected
to be high, are given lower weights. In our proposed UWAC, to further suppress the noise
participation in the final external force map, an exponential weighting map is used to give
resolution-based preference to coarse gradient maps over fine gradient maps as follows

ςt =
1

Z

L∑
j=1

αjςj (3.7)

where Z is a normalization parameter. Figure 3.4 shows the empirical results of using
different α values in (3.7). It can be seen from the figure that for α values less than one,
which basically means giving higher weights to fine resolutions gradient maps, the resulted
external force misleads the active contour model to incorrect segmentation boundaries.
Which is expected and intuitive due to the high contribution of the noise in fine resolutions
compared to coarse resolutions. On the other hand, Favoring coarser resolutions using α
vales grater than 1 leads to more reliable final external force fields that correctly lead the
active contour model to the object boundaries, and hence low segmentation metric (in this
case, the Average Shortest Distance – ASD [24]) values are achieved. Again, these low
ASD values are because of the higher contribution of image salient features (compared to
noise contribution) in coarse resolutions. Section 3.5 gives more details about the ASD
metric. In this chapter experiments, α is set to 2.

To illustrate the noise effect on the external force of the active contour, Figure 3.5
shows the external forces of the GVF and the VFC for three different images. No doubt
the external forces of the first two images (Starfish and Leaf) will lead the active contour to
a very poor segmentation result. While the external force of the Ushape image, even with
the high contrast between the object and background, is still not consistent, especially in
the concave part of the image.

Figure 3.6, on the other hand, shows the UWAC external forces of the same three
images. Using only one resolution of the transform (second row), our model is able to
produce a consistent gradient maps that correctly point to the object boundaries, which

42



N
oi

sy
im

ag
es

noisy imagenoisy imagenoisy image
F

or
ce

fi
el

d

edges after thresholding

normalized GVF field

GVF iteration 60

normalized VFC with ndwt  field

VFC with ndwt  iteration 60

edges after thresholding

normalized GVF field

GVF iteration 60

normalized VFC with ndwt  field

VFC with ndwt  iteration 60

edges after thresholding

normalized GVF field

GVF iteration 60

normalized VFC with ndwt  field

VFC with ndwt  iteration 60

Figure 3.5: The external force fields of the VFC at PSNR=20. The noise causes the force
field (blue arrows) to mistakenly point to spurious features even in the relatively high
contrast U-shaped image, right. Relying only on the edge map of the image to generate
the force field could be problematic, especially in case of noisy images.

in turn improves the resulted force fields compared to Figure 3.5. However, the influence
of the noise on the 1-resolution gradient maps is still noticeable, especially in the Leaf
and Starfish images, where the gradient maps misleadingly guide the active contour model
towards non-real edges. The reason why the noise influence is still noticeable in these force
fields is that using only one UDWT resolution is not enough to suppress noise contribution
since there is not enough weighting of coarse resolution features in this case. As the number
of the used resolutions increases and due to the property of edge preservation at coarser
resolutions of the UDWT and the resolution-based weighting property (3.7) of our model,
the consistency of the force maps increases. It can be seen from the figure that in case
of using 3 resolutions the final maps of all images are, to a great extent, improved. For 5
resolutions, the noise effect on the final maps starts to disappear and the gradient maps are
still pointing towards the actual edges. At 8 resolutions and due to the absence of UDWT
down-sampling, the edges are still localized and the noise effect is almost not there. The
final maps correctly point towards the edges of the objects of interest.
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VFC with ndwt  iteration 60Figure 3.6: The external force fields of the UWAC model using one, three, five and eight
resolutions of the UDWT at PSNR=20. The edge preservation property of the UDWT
reduces the noise impact at coarse resolutions (compared to Figure 3.5). The consistency
of the force field improves and the edges are not de-localized as the number of resolutions
increases.
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Figure 3.7: The image set used for testing. Images are selected to impose different chal-
lenges to the proposed model (e.g. weak edges, high curvature and high texture.)

3.5 Segmentation Results and Discussion

The UWAC model is tested using the Weizmann single object database [107]. A set
of 20 images has been selected and used to demonstrate the effectiveness of the model.
Figure 3.7 shows the images used for testing our proposed models. The first two images
in the figure (namely the Starfish and the Brain images) are well known images in the
active contours literature, while the remaining images in the first line of the figure are
synthetic images created to illustrate different aspects our work. The remaining images
of the figure are from the Weizmann database, and are selected such that they contain
different types of challenges (e.g. high texture, curvature, weak and incomplete edges).
Each image is contaminated with different amounts of zero-mean Gaussian noise. To
ensure fair comparisons, the same noisy image is passed to all of the tested methods —
UWAC, GVF, VFC, MVFC, and MTVF — with the active contour initialized at the same
location for all methods. The average shortest distance (ASD) [24] is used to measure the
dissimilarity between the converged contour υc and the true (ground truth) contour υt,
where the ASD is defined as the average shortest distance of the converged contour from
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Figure 3.8: Our proposed UWAC model, building on GVF (blue) and VFC (red), compared
to the classical GVF [7] and VFC [8] using one image (Leaf image). UWAC achieves better
ASD values as the number of used resolutions increases. The other methods give poor
segmentation results, even under relatively high PSNR values.

the true contour and the true contour from the converged contour:

ASD =
1

2q

√√√√ q∑
i=1

minj=1,2...n(‖υt(sj)− υc(si)‖) (3.8)

+
1

2n

√√√√ n∑
j=1

mini=1,2...q(‖υt(sj)− υc(si)‖)

where q and n are the numbers of points in the converged and true contours, respectively.
Since ASD computes average shortest distance, q and n need not to be equal.

Figure 3.8 shows the performance of the UWAC, using different number of resolutions,
compared to classical GVF and VFC. The figure shows, quantitatively, the segmentation
results of the UWAC compared to other methods. A total of twenty runs of the algorithms
using only one image (the Leaf image – textured with cluttered background) are used to
generate this figure. For each run, the image is subjected to randomly induced Gaussian
noise and passed to all methods. Also, the active contour is initialized at the same location
for all methods. It can be seen from the figure that all methods give a good performance
(with VFC better than GVF) at very high PSNR values (50), where there is almost no noise
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Figure 3.9: The average performance over 20 images of UWAC, building on GVF (blue)
and VFC (red), compared to the classical GVF and VFC. Due to the resolution based
weighting nature of the UWAC, the resulting segmentation metric outperforms the other
methods under all levels of noise.

influence. As the noise contribution starts to increase, both GVF and VFC are misguided
by the noise, and the final segmentation metric starts to increase. As the PSNR goes
lower, the performance of the other methods gets worse. Our model on the other hand,
gives better results compared to the other methods even using only one resolution of the
UDWT. Thanks to the resolution-based weighting nature of the UWAC, as the number of
used resolution increases, the final segmentation metric improves. The figure shows that
the UWAC gives considerably consistent and accurate segmentation results even under
high levels of noise.

To generalize the performance of the proposed model, Figures 3.9 shows the average
performance of the UWAC, over the entire test set using different numbers of UDWT reso-
lutions, compared to the classical GVF and VFC. Again, each image is contaminated with
60 different amounts of noise, and for each image a total of twenty runs are averaged. Even
at high PSNR values, the cluttered backgrounds of the images mislead the active contour
in the GVF and VFC, a problem which gets even worse at lower PSNR. UWAC, on the
other hand, overcomes the noise sensitivity problem and outperforms its competitors at all
levels of noise.

Figure 3.10 shows the performance of the UWAC compared to other state-of-the-art
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Figure 3.10: A comparison of the average performance of our proposed UWAC (building
on VFC), MVFC [99], and MTVF [10] using 20 images. The proposed model outperforms
both other multiscale methods under all levels of noise.

multiresolution methods (namely MVFC and MTVF). The weak behavior of the MVFC
is due to two reasons. First, the parameters of the smoothing kernel set depend on the
features of the underlying image and hence the method gives poor results in generalization
tests. Second, the MVFC uses Canny edge map [53] instead of the gradient map to build
up the external force field of the active contour. Canny edge detector is not a good tool to
use for noisy images. The performance of the MTVF, on the other hand, can be related to
the edge delocalization nature of the classical wavelet transform due to the down sampling
step. The UWAC gives the best performance over its competitors for all levels of noise.
The two figures, 3.9 and 3.10, show that our method outperforms both classical and mul-
tiresolution methods under all levels of noise and for all types of images. The results in
this figure are based on the Matlab code provided by the authors of the competing methods.

To qualitatively illustrate the superiority of the UWAC model over other models, Fig-
ure 3.11 illustrates the ability of the UWAC to accommodate fine details and complex
curvature under all levels of noise compared to GV, VFC, MVFC and MTVF. Eight reso-
lutions of the UDWT transform were used to generate the external force field of the UWAC.
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PSNR=20
– UWAC using GVF
– Classical GVF

– UWAC Using VFC
– Classcial VFC

– UWAC Using VFC
– MVFC

– UWAC Using VFC
– MTVF

Figure 3.11: Comparisons between converged contours of the UWAC using GVF and VFC
(green) against the classical GVF [7], VFC [8], MVFC [99] and MTVF [10] (red). Con-
verged contours of the our model (using 8 resolutions) accommodate fine details and com-
plex curvatures even under low PSNR. Other methods are not able to correctly segment
the underlying objects
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Figure 3.12: Segmentation accuracy versus number of wavelet scales. Though strong fea-
tures (e.g edges) are most likely to survive at coarse scales, a significant increase in the
number of scales negatively affects the accuracy of the final segmentation.

In the figure, even under high noise level (PSNR=20), UWAC is able to correctly force the
active contour properly into the concave parts of the U-shaped and the Starfish images,
while GVF, VFC, MVFC and MTVF contours failed. Fine details in both the Leaf and the
Brain images were captured by the proposed model, for which the other methods failed.

The last question to address in this section is about the number of wavelet resolutions
that should be used to generate the gradient map. As mentioned before, salient features
are most likely to survive at coarse scales, and fine features contributes in fine scales. So,
does this mean that we can use as many scales as we want? The answer of this question is
revealed in Figure 3.12. Though salient features of the image (e.g. strong edges) survive
and are well localized at coarse scales of the undecimated wavelet transform, as the number
of scales significantly increases these features start to get weaker and weaker. The figure
shows that, at least for the images used in this study, using 5-9 scales of the undecimated
wavelet resolutions give the best ASD values. For number of scales less than 5, noise
contribution prevents the active contour from accurately locating the object of interest.
Also, for number of scales greater than 9, the salient features contribution in the final force
map starts to get weaker resulting in higher ASD values.
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In summary, this chapter proposed a multi-resolution active contour model that builds
on the GVF and the VFC, and uses the undecimated wavelet transform to simultaneously
build the external force map from all resolutions of the transform. Our model favors coarse
scale features over fine scale features based on the fact that salient image features are most
likely to survive at coarse scales. Experimental results showed the superiority of our model
over the sate-of-the-art and classical models. However, in noisy images, favoring features
of coarse scales might not be enough for good segmentation results. Hence, in the following
chapter, we introduce our second multi-resolution active contour model which incorporates
the directional information revealed by the dual tree complex wavelet transform for better
guiding the active contour towards the correct object boundaries.
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Chapter 4

Multi-resolution Directional Active
Contours

A common limitation of active contour models is their poor convergence in case of complex
object shapes and noisy backgrounds. Though Chapter 3 proposed a model that addresses
the noise sensitivity problem through favoring coarse scale features of the undecimated
wavelet transform, when object complexity increase, the favored gradient maps will not be
able to correctly drive the active contour to the correct segmentation, especially in complex
areas of the image (e.g. intersecting edges). For such circumstances, many solutions have
been proposed in the literature, with the current state-of-the-art based on incorporating
additional information into the active contour model such as texture cues [108] and gra-
dient directions [109]. However, these solutions become not suitable when the complexity
of the object is combined with a high noise level. The high noise level makes both tex-
ture information and gradient directions less reliable and misleading to the active contour.
Hence, in this chapter, we aim to incorporate a more reliable and rich directional informa-
tion source into the active contour model so that it can be correctly guided to the correct
boundaries of noisy and complex shape objects.

A key strength of the dual tree complex wavelet transform (DT CWT) [12] is its rich
directional selectivity compared to other transforms. Moreover, the near shift invariant
property of the transform preserves image feature from being delocalized or distorted at
coarse resolutions of the transform, which makes the DT CWT an attractive candidate for
image segmentation problems. Therefore, the work in this thesis is extended to incorporate
the multi-resolution directional information of the dual tree complex wavelet transform into
the external force of the active contour in order to achieve better segmentation results for
noisy backgrounds and complex object shapes. Unlike other directional active contour
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Figure 4.1: The real (top row) and imaginary parts of the DT CWT. The six directionally
selective filters of the DT CWT (compared to 3 filters in case of real wavelets) makes
orientation analysis more accurate using the transform.

models that add an extra directional term to the snake energy, our method implicitly
incorporates the orientation information into the external force term of the energy function.
The proposed method builds on the Vector Field Convolution active contour and the results
show a dramatic improvement in active contour convergence for both real and synthetic
images with different objects and backgrounds complexity. In order to make this chapter
a self-contained one, the following section gives a brief introduction to the DT CWT, then
the remaining of the chapter will be describing our second proposed model.

4.1 The Dual Tree Complex Wavelet Transform

Since the introduction of the dual tree complex wavelet transform in 1998 by Kingsbury
[12], it has been successfully used in a wide range of image processing and computer
vision applications including segmentation [110], compression [111], classification [112],
watermarking [113] and object tracking [114]. Two different paralleling wavelet filter banks
compose the DT CWT, with the two filters orthogonal, approximate half sample delay and
linear phase. The DT CWT is nearly shift invariant and has good directional selectivity
of six directions for each subband as opposed to only three directions in the classical
discrete wavelet transform. The DT CWT decomposes a 2-D image I(x, y) using a complex
scaling function φ(x, y) and a complex wavelet function ψ(x, y) oriented at different six

53



orientations, namely {15◦, 45◦, 75◦105◦135◦165◦}, as follows

I(x, y) =
∑
l∈Z2

sj0,lφj0,l(x, y) +
∑
θ∈Θ

∑
j≥j0

∑
l∈Z2

cθj,lψ
θ
j,l(x, y). (4.1)

where Z is the set of integer numbers, j and l are the indices of shifts and dilations
respectively, sj0,l are the scaling coefficients, cj,l are the wavelet coefficients and Θ is the
six directions set.

The inherent features of being nearly shift invariant and having good directional selec-
tively make the DT CWT a very attractive choice for image segmentation applications.
Additionally, the perfect construction using short linear phase filters, the limited redun-
dancy (2m : 1 for m−D data) and the efficient order-N computation of the DT CWT make
it a good choice for real time applications. Hence, in this study, the directional information
provided by the DT CWT is incorporated into the active contour model in order to build
more reliable external force fields with the aim to give better directions to the active con-
tour in noisy images and complex shape objects. The experimental results in this chapter
show a dramatic improvement in the final convergence accuracy of the proposed active
contour model over classical and state-of-the-art methods.

4.2 Multi-resolution and Directionality

This section analyzes the directional selectivity property of the DT CWT, and how di-
rectional information at different scales of the transform can be combined, while the next
section is describing the second proposed model, namely the multi-resolution directional
vector field convolution (MDVFC) model, that incorporates the directional information
revealed by the DT CWT into the active contour model.

To demonstrate the direction selectivity property of the DT CWT and the benefits of
combing the information from different resolutions of the transform, let Il,θ be the wavelet
coefficients at resolution l ∈ L and direction θ ∈ Θ of the original image I. And let T
be a transformation function that takes a set of coefficient images Il,θ and returns T (I).
Choosing T to be simply the summation over resolutions of the maximum responses of
wavelet subbands, we get:

T (I) =
∑
l∈L

max
θ∈Θ
|Il,θ| (4.2)

Figure 4.2 shows the T (I) for each individual orientation θ = {15, 45, 75, 105, 135, 165}
over three resolutions of the transform. It can be seen that edges along the same orientation
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Figure 4.2: Summation over individual orientations of DT CWT three resolutions. Features
along the same direction of the underlying wavelet band have noticeably higher responses
than other image features.
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of the DT CWT wavelet have noticeably higher responses than other features. By simply
summing the wavelet coefficients of maximum response orientations at all resolutions we
get Figure 4.3. The figures shows that after applying T in (4.2), the disc boundary in the
resulted image T (I), even under a high noise level, still has a noticeably higher response
than other features, which make it easily distinguishable and traceable by the active con-
tour.

At coarse resolutions of the DT CWT, dominant features of the underlying image are
most likely to survive. Consequently and due the lower contribution of noise, the orien-
tation information generated by the DT CWT is more accurate and consistent at coarse
resolutions. As we move towards fine resolutions, noise contribution becomes stronger and
the orientation information revealed by DT CWT becomes less accurate. Hence, coarse
scales directional information of the DT CWT can be used, with high confidence, in con-
nection with other information (e.g. edge data) to locate the dominant features of the
underlying object of interest. On the other hand, DT CWT fine scales can be used, with
caution, to fine tune the detection through incorporating the directional information of the
object fine structures.

4.3 Multi-resolution Directional Vector Field Convo-

lution

In this section, we propose the second model for active contour external force generation.
The proposed Multi-resolution Directional Vector Field Convolution (MDVFC) model, uti-
lizes the directional information revealed by the DT CWT to guide the active contour in
noisy and complex shape images. Starting from the coarsest resolution, the model incor-
porates directional information into the external force field using a resolution-dependent
convolution kernel Kl,θ. At coarse resolutions, where reliable orientation information and
wavelet responses exist, large size kernels are used. At finer resolutions, where orientation
information and wavelet responses are less reliable, small size kernels are used. Moreover,
the profile of the kernel changes according to the local orientation statistics of the image.
At each resolution l, a set of six kernels Kl,θ steered at the same orientation of the DT
CWT is generated, where θ ∈ Θ. Compared to the classical VFC kernel, the MDVFC
kernel has the following unique attributes:

1. Size: the size of the kernel Kl,θ adaptively changes based on the DT CWT resolution.
At coarser resolutions of the transform, where salient features of the image dominate,
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Disc image I T (I)

Noisy image I +N T (I +N)

Figure 4.3: Applying T in (4.2) for the disc image. By simply summing the wavelet
coefficients of the maximum responses over the three resolutions, the real object boundary
has noticeably higher responses than noise pixels, which makes T (I) a good image to build
a more robust external force field for active contour segmentation.

large size kernels are used to allow the iterative solver to take larger steps towards the
final solution. At finer resolutions, where spurious features contribution increases,
small size kernels are used to accommodate fine details of the underlying object.
Hence, the kernel size is positively correlated to the resolution l as moving from the
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finest resolution l = 1 to the coarsest resolutions l = L as follows:

Kl,θ ={Kl(x, y);R = el; 1 ≤ l ≤ L;

x, y = −R, . . . ,−1, 0, 1, . . . , R}
(4.3)

2. Directionality: at each pixel, the directional information revealed by the DT CWT
is used to steer the kernel to a direction that best drives the active contour to the
nearby edges. Hence, Kl,θ can adapt its profile to local structures of the image, which
increases the robustness of the active contour model and decreases its initialization
sensitivity.

3. Neighborhood: as the directionality can not be attributed to noise, considering the
neighborhood directionality adds more robustness to the proposed method. For each
pixel, a dominant direction is calculated and used to select the best kernel, Kl,θ, to
calculate the force vector at this pixel. The calculation of the dominant direction at
each pixel depends on the local directional statistics of the pixel neighborhood. Again,
because directionality can not be attributed to noise, considering the neighborhood
directional information makes the proposed method less sensitive to noise.

At each resolution l of the DT CWT, two images are generated, 1) a direction image ϑ?l ,
defined as follows

ϑ?l = argmax
θ
|Il,θ| (4.4)

where the value of each pixel in ϑ?l equals to the the orientation of the wavelet subband
that has the maximum response in l. 2) a maximum response image Il,ϑ? , defined as

Il,ϑ? = max
θ∈Θ
|Il,θ| (4.5)

Hence, ϑ?l describes the best orientation of each pixel in the image at resolution l, and
Il,ϑ? records the wavelet responses of the orientations in ϑ?l . Also, at each resolution l, a
set of six oriented convolution kernels Kl,θ are generated to be used for external force field
calculations. Unlike other methods (e.g. VFC and MVFC) where the convolution kernels
do not reveal anything about directional information of the underlying pixel, the proposed
kernels are steered based on the DT CWT information to incorporate the orientation in-
formation of each pixel.

The proposed method works as follows: for each pixel in the response image Il,ϑ?(x, y),
a single convolution kernel is selected for force vector calculation. To calculate the force
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vector associated with each pixel in Il,ϑ? , the directional information of ϑ?l is used to select
the best convolution kernel amongst the six kernels in l. The kernel selection depends
on the orientation information of the underlying pixel and its neighborhood. One main
characteristic of the convolution kernels is that their sizes are resolution dependent. Big
kernels are used at coarse resolutions of the DT CWT, and smaller kernels are used as we
move towards fine resolutions. This dynamic nature (in both size and orientation) of the
used convolution kernels dramatically decreases the noise sensitivity of the active contour,
and increases convergence accuracy. The proposed model works scale by scale, meaning
that the active contour is initialized at the coarsest resolution and then moves to the next
finer layer with the convergence coordinates of the previous layer taken as the initialization
coordinates in the current layer. The process continues until the convolution kernel set with
the smallest size is used to build up the force field of the finest resolution. Moreover, unlike
other directional active contour methods [89] [108] that add an extra directional term to
the snake energy model proposed in (2.22), so that the model energy function becomes:

E =

∫ 1

0

1

2
[α(s)|υ′(s)|2 + β(s)|υ′′(s)|2] + Eexternal(υ(s) + Edirectional(υ(s))ds (4.6)

our method keeps the model in (2.22) unchanged. Alternatively, the directional informa-
tion is implicitly embedded into the Eexternal(υ(s)) term of the energy function through
convolving each pixel with the kernel that best describes the directional information of
that pixel and its neighborhood. Keeping the model unchanged allows our method to
build on the already exist active contour models such as the VFC, also it keeps the model
complexity and computational time low.

Figure 4.4 illustrates the differences between the classical VFC kernel and the proposed
kernels. The figure gives only three examples out of the six kernels Kl,θ. Using the classical
VFC kernel, all pixels at the same distance from the origin of the kernel will have equal
influence on the force vector at the origin. Hence, if two pixels Pe (edge pixel) and Pn
(noise pixel) are at the same distance from the kernel center Pc and both points have the
same intensity, then no matter a free particle is placed over the true edge pixel Pe or the
noise pixel Pn, the particle will be affected by the same force. Which means that both
points, Pe and Pn, will have the same effect on the final force vector formed at Pc.

On the other hand, using the proposed kernels and since Pe will most likely have the
same orientation as Pc, the corresponding kernel Kl,θ will give Pe higher weight than Pn
when forming the force vector at Pc. Now, using the proposed kernels, a free particle
placed over Pe will be strongly pulled towards Pc more than if the particle were to be
placed over Pn. Hence, noise and spurious features of the image will have less effect on the
final external force field than real edges. By doing this, the proposed method adds another
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Figure 4.4: The classical VFC kernel versus the proposed kernels Kl,θ. Using the classical
VFC kernel, all pixels at the same distance from the center of the kernel ( e.g. two red
rectangles) are affected be equal amount of force, and hence contribute equally in the final
force vector. While using the proposed kernels, features along the same direction of the
used kernel are affected by stronger forces, and hence contribute more in forming the final
force vector.

level of robustness to the active contour model. Figure 4.5 illustrates the idea of giving less
weights to noise pixels compared to real edge pixels. In the figure, since the VFC kernel
gives equal weights to all points at the same distance from the kernel center, the resulted
force filed is highly affected by the noise pixels. The force vectors formed at the noise
pixels, even those that are relatively close to the real edge, are pointing towards incorrect
directions. The force field of our method, on the other hand, correctly points towards
the diagonal edge. The kernel steerability property of the proposed method gives higher
weights to the pixels along the same direction of the used kernel (in this case K1,135◦), and
less weight to other pixels. Hence, the resulted force vectors correctly point towards the
real edges and the noise effect is minimal.
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VFC external force MDVFC external force

Figure 4.5: External force fields of VFC and our MDVFC method. Noise pixels affect the
resulted force vectors, and hence the vectors are not consistently pointing to the real edge.
The force field of our method, due to kernel steerability, gives less weights to noise pixel,
and hence the resulted force vectors correctly point to the real edge.

4.4 Local Statistics and Dominant Orientation Calcu-

lation

To add another level of robustness to our proposed method, the local orientation statistics
is taken into account when building the force vector at the underlying pixel Pc. The process
of selecting which kernel to be used for the external force calculation does not depend only
on the orientation of Pc, it also depends on the orientation of the pixels in Pc neighbor-
hood. The dominant direction of Pc and its neighbors is calculated and used to select the
appropriate kernel Kl,θ. Taking the local directional information into account makes the
final force field less sensitive to noise. For example, during the convolution of the kernel
with Il,ϑ?(x, y), if the origin of the kernel Pc is placed over a noise pixel Pn, then based
on the dominant orientation of the neighborhood, a kernel that has the correct orientation
will be selected and the effect of having a noisy pixel inside the kernel will be eliminated.
Figure 4.5 shows that incorporating the neighborhood orientation information in the pro-
cess of selecting which kernel to be used for the external force calculation produces more
robust force fields compared to the classical VFC kernel
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It is important to make it clear that the calculation of the dominant orientation is
carried out using the directional information stored in ϑ?l . Hence, ϑ?l is used primarily to
select the most appropriate convolution kernel. But, to calculate the actual value of the
force vector at a certain pixel, the selected kernel is convolved with Il,ϑ?(x, y).

Assuming a high correlation between pixel orientations in a local neighborhood ℵ cen-
tered at the pixel ϑ?l (x, y). When convolving Kl,θ with the image, three scenarios could
happen

1. there is no dominant edge information in the area of Il,ϑ?(x, y) covered by the kernel
(smooth area or just noise).

2. there is only one dominant edge information in the area covered by the kernel

3. the kernel covers more than one edge (i.e. two or more dominate edges).

In the experiments of this work, edge information inside the kernel is defined as dom-
inate if the number of pixels having the same orientation hits a threshold D, which is
empirically set to 20% of the kernel size. Intuitively, in the first scenario, the dominate
orientation of the neighborhood will be the same as ϑ?l (x, y). In the second scenario, the
dominate orientation will be equal to the direction of the covered edge, and kernel that has
a perpendicular orientation to the dominate orientation will be used to calculate the force
vector. In the last scenario, since the neighborhood size is relatively small compared to
the image size, we assume that there will be at most two true edges in ℵ. Hence, the two
orientations that have the highest occurrences in ℵ will be considered during the kernel
selection process. In this case, the dominate orientation θ̄ of the neighborhood is calculated
as follows

θ̄ = Q
(
θi +

( θj − θi
M +N

)
×N

)
(4.7)

where θi and θj are the orientations of the two edges, with M and N counts respectively and
M ≥ N . Q is a quantization function that maps its parameter to the nearest orientation
in Θ. The dominate orientation θ̄ is then used to select the best kernel Kl,θ. Since there
are two edges competing to label the center point as belonging to one of them, a kernel
Kl,θ that has the closest direction (not perpendicular, as in the second scenario) to θ̄ will
be used for the force vector generation.

Figure 4.6 illustrates two different synthetic examples of using the dominate orientation
to select the best kernel in the cases where there is one and two edges in the neighborhood.
In the first row of the figure, since there is only one main edge in the neighborhood ℵ, Kl,θ
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Figure 4.6: Synthetic examples of dominant orientation calculation and kernel selection
(for visualization: all pixels having dominant orientation are drawn in black and other
pixels in white). In the top row, since there is only one edge, the kernel Kl,θ is chosen to be
perpendicular to kernel center (red) orienation. In the bottom row, the kernel orientation
is chosen to be the closest to θ̄, in this case Kl,θ = Q(98.57◦) = 105 according to (4.7)

is chosen so that it is perpendicular to the calculated dominant orientation. The dominant
orientation in this case is equal to the edge orientation, namely 135◦. So, the kernel Kl,45

is used to calculate the external force at the kernel center (red point). In this scenario,
even though the orientation of the pixel at the kernel center is a noisy (105 instead of
135), our method is able to pick the correct kernel, thanks to the calculation of the local
orientation statistics. In the second row of the figure, the kernel center is located between
to main edges at orientations 75◦ and 135◦. ℵ has 17 and 11 occurrences for each direction
respectively. After applying (4.7), the dominant orientation becomes Q(98.57) = 105◦.
Based on that, the corresponding kernel that is equal to the dominant orientation, Kl,105,is
used to compute the force vector. Again, with a noisy orientation of the pixel at the ker-
nel center (15 instead of 75 or 135), our method is able to select the best kernel for this
scenario. Choosing the kernel orientation to be the same as the dominant orientation in
the case of competing edges helps the active contour to go easily through concave/convex
parts of the image. Using the kernel Kl,105 to generate the force vector of the second row
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example of Figure 4.6 will result in a vector that points towards the 75◦ edge but slightly
to the south (the concave part), which enables the active contour to go through this area.
On the other hand, choosing the orientation of the kernel to be perpendicular to θ̄ in case
of a single edge, helps the active contour to be guided to the true edges even in noisy images.

4.5 Segmentation Results

In this section, the proposed model is tested using the same set of images in Section 3.5.
The images are carefully selected to proposed different challenges to our model such as
cluttered backgrounds, strong textures and sharp and complex edges. Additionally, our
proposed model is compared to the state-of-the-art multi-resolution based methods, namely
MVFC and MTVF as well as our UWAC model (Chapter 3).

Figure 4.7 illustrates the ability of the proposed model to segment complex shape
objects in noisy images. The figure compares the proposed model to the state-of-the-art
methods. In order to reflect the superiority of the proposed method over the other methods,
Gaussian noise as well as a hand made noise (big speckles in the concave part) were added
to the original image. It can be seen from the figure that, due to the complexity of the
underlying object and the high level of noise, the other methods are not able to locate the
correct boundaries of the object. The problem gets worse as the level of the noise increases.
Our approach, on the other hand, is able to segment the object under all levels of noise.
Due to the directional information incorporation and the local neighborhood consideration,
our proposed method is able to pass over the hand made noise in the concave part to the
correct boundaries, while other methods got caught by the noise. Moreover, as the noise
level increases, our method is still able to correctly segment the object due to the use of
adaptive kernel sizes. In such noisy images, the big kernels drive the active contour safely
to near the true boundaries, while small kernels are allows the active contour to capture
the fine details of the object.

Figure 4.8 shows an enlarged part of the external forces of both the MDVFC and MTVF
at resolutions 5, 3 and 1 of the DT CWT. At resolution 5, both methods perform well due
to the less impact of the noise. However, at resolution 3 and due to the decreased kernel size
and the directional selectivity of the proposed method, the force field vector (blue arrows)
still consistently points towards the correct edge. The noise impact starts to be clear on
MTVF at this resolution. At resolution 1, the kernel small size makes the noise impact
on our method very less compared to the other method. It is very clear that the force
vectors of the proposed method near the edge are still consistently pointing to the correct
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Figure 4.7: A comparison of converged contours for MVFC, MTVF and MDVFC. Incor-
porating the directional information of the DT CWT and the usage of steerable, adaptive
kernels make the proposed MDVFC capable of locating correct edges in the concave part
of the image even under high noise levels.
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Figure 4.8: Enlarged external force fields (of the red rectangle) of MDVFC and MTVF
at resolutions 5, 3 and 1. At resolution 5, both MDVFC and MTVF force fields point
correctly to the exact edge location. However, at resolution 3 and 1 the, the directional
selectivity and the adaptive kernel size make the noise impact on the MDVFC much less
than the impact on the MTVF. Notice also that the force magnitudes (the blue arrow size)
at resolution 1 in the MDVFC are less than the MTVF, which prevents the snake from
taking large steps in such noisy environment
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UWAC MDVFC UWAC MDVFC

Figure 4.9: Comparisons of the final segmentation results of MDVFC and
UWAC(Chapter 3). The figure shows the ability of the MDVFC, due to its oriented con-
volution kernels, to capture the fine details and sharp edges of the two images compared
to UWAC.

direction, while the other method force vectors are pointing inconsistently everywhere.
Another point to be noted from the figure is that the sizes of the blue arrows (force
magnitude) are decreasing from resolution 5 to 1 in the proposed method. This allows the
iterative solver of the active contour to take larger steps towards the final solution in the
coarse resolution (5 and 3), while at finer resolution where the small details of the object
need to be segmented, the small force magnitudes allow the model to take small steps to
fine tune the final segmentation in order to capture these details. The other method have
the force magnitudes almost the same across the entire resolutions which make the final
segmentation results inaccurate as shown in Figure 4.7.

Figure 4.9 compares the final segmentation results of the MDVFC and the UWAC
model developed in the previous chapter. Using two images from the Microsoft Research
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Figure 4.10: Segmentation results of the MDVFC under different noise models. MDVFC,
using the adaptive oriented kernels, is able to correctly detect the object boundaries under
different noise models.
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Figure 4.11: A comparison of the average performance of our proposed model (MDVFC)
with MVFC [99], MTVF [10] and UWAC of the previous chapter, using 20 images. The
proposed model outperforms all other methods under all levels of noise.

Asia (MSRA) Database [115], the figure qualitatively illustrates the ability of the MDVFC
to capture the fine details and sharp edges of the underlying object due to the incorporation
of the directional information revealed by the DT CWT. Compared to UWAC, the small
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size of the kernels used at the fine resolutions of transform as well as the selection the
convolution kernel based on the dominant orientation and local statistics allow the active
contour to get into the complex structures of the images, especially when two edges intersect
(as can be seen in the enlarged parts of the images – bottom row). Figure 4.10 illustrates
the performance of the MDVFC under different noise models (namely: Poisson, Speckle
and Gaussian). The figure shows that our model is capable of correctly locating the object
of interest under the three models of noise. At coarse scales, the noise noise contribution
is limited and hence the big oriented kernels enable the active contour to take big steps
towards the edges of the object of interest. Additionally, the over-complete nature of the
transform ensures that the object features are well localized and that small structures are
preserved, which in turn drive the active contour to the correct boundaries. At fine scales,
the fine structures of the object of interest are detected using the small oriented kernel of
our model.

Figure 4.11 shows the average segmentation results using the same image set of the
previous chapter, It can be seen from the figure that incorporating the directional informa-
tion revealed by the DT CWT enables the MDVFC model to outperform all of the other
methods including UWAC. The difference in the performance of the MDVFC and UWAC
can be related to the usage of the oriented convolution kernels which increases the ability of
the MDVFC to capture the fine details of the underlying object as discussed in Figure 4.9.

Figure 4.12 illustrates the idea of allowing the iterative solver to take large steps at the
coarse resolutions while taking smaller steps at fine resolutions. The idea in the proposed
method is to use the coarsest resolution image IL,ϑ? , where image strong features survive
and noise contribution is minimum, to initialize and deform the model using the largest
kernel KL,θ. Using bigger kernels at coarse resolutions produces stronger force fields, which
allow big steps towards the edges. Again, because presumably strong features (like edges)
will be dominant in coarse resolutions, taking bigger steps in such safe environments does
make sense. After reaching its equilibrium state, the snake is then initialized in the next
finer resolution using the previous resolution coordinates. Now, using smaller kernel will
produce weaker external forces that allow the active model to take less aggressive steps to-
wards the object of interest. At fine resolutions, noise becomes more influential, and hence
using smaller kernels makes a good sense. The process continues until the finest resolution
image I1,ϑ? is convolved with the smallest kernel K1,θ, which allows the accommodation
of the object fine details as well as ensuring that the snake is not pulled towards spurious
noise. It can be seen form the figure that, at coarse resolutions (5 and 3) the iterative
solver takes large steps (the distance between the blue lines) towards the object. While at
fine resolutions (resolution 1), only small steps are allowed to accommodate the fine details
of the underlaying objects. Examples of these fine details are the corner of the concave
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Figure 4.12: Iterative solver steps towards the final segmentation. At coarse resolutions, the
model can take big steps towards the final solution, where noise contribution is minimum.
At fine resolutions, the small size kernels allow the model to take smaller and less aggressive
steps, and hence the proposed method is able to capture the fine details of the three images.
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Figure 4.13: Segmentation accuracy versus number of wavelet scales. Though strong fea-
tures (e.g edges) are most likely to survive at coarse scales, a significant increase in the
number of scales negatively affects the accuracy of the final segmentation.

71



part of the disk image and the high irregularities of the outer boundaries of the brain and
the flower images.

Finally Figure 4.13 addresses the question of how many resolutions of the DT CWT
should be used. The figure shows that using 5-9 scales of the transform gives the best ASD
metric. As we go higher in the number of scales, salient features become weaker which
consequently influences the consistency of the directional information in these scales. This
explains the high ASD values when a high number of scales is used. On the other hand,
when a low number of scales is used, the noise contribution in the force maps of these
scales increases which results in higher ASD values.
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Chapter 5

Optical Coherent Tomography
(OCT) Corneal Image Segmentation

With the modern advances in medical imaging technologies, contactless modalities, that
require no physical contact with the sample, have become more convenient for patients.
However, the contactless property of these modalities adds new challenges that affect the
quality of the images, such as the low signal to noise ration (SNR). Recently, OCT imaging
modalities have become very useful and widely used for imaging different human organs.
However, OCT images suffer from different challenges that affect their quality, including
speckle noise cause be ligh reflections and signal roll-off. Particularly, in this chapter, the
automatic segmentation of corneal optical coherent tomography (OCT) images is proposed.
The chapter tackles a number of corneal OCT-related problems such as active contour
initialization and motion correction. Since the work of Chapters 3 and 4 addressed the
problems of noise sensitivity and complex object segmentation, the OCT segmentation
problem could be seen as a good domain for the direct implementation of our work.

To make this chapter self-contained, Sections 5.1 and 5.2 give brief introductions to
the human cornea anatomy and the optical coherent tomography technology, respectively.
The rest of the chapter is organized as follows: Section 5.3 illustrates our proposed method
and gives solutions to a number of OCT-related problems such as low SNR, epithelium
thickness and motion correction. Finally, Section 5.4 illustrates the segmentation results
of our proposed method and gives comparisons to other methods.

Some parts of this chapter are excerpted verbatim from [116], [117] and [118], where the thesis author
is on of the co-authors.
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5.1 Human Cornea

The cornea is the transparent front part of the eye that covers the iris, pupil and anterior
chamber [119]. Both the cornea and the lens refract light of approximately 2/3 of the
optical power of the eye. Since transparency is of key importance, cornea does not receive
its nutrients via blood vessels. Instead, tear fluid, aqueous humour and the neurotrophins
supplied by nerve fibres are the main sources of cornea nutrients. Normally, a human
cornea has a diameter of 11.5 mm and is thicker at the periphery 600-800 µm than the
center 500-600 µm.

Figure 5.1 illustrates the human cornea anatomy. Typically, a human cornea is a
dome-shaped membrane with five layers [120]:

1. Epithelium: a layer, with thickness of 5-6 cells, that covers the cornea. The ep-
ithelium is a self-healing layer in the sense that its cells are fast-growing and easily
regenerated. The typical thickness of the epithelium layer is 60 µm.

2. Bowman’s membrane: is a tough layer mainly composed of randomly organized
type I collagen fibrils, and lies just under the epithelium. It’s typical thickness is
10− 15µm.

3. Stroma: is the thickest layer of a human cornea with a typical thickness 500µm, and
consists of regularly arranged collagen fibers which gives the cornea its transparent
feature. Stroma lies just under Bowman’s membrane.

4. Descement’s membrane: a thin, elastic, and perfectly transparent cellular layer
composed mainly of collagen type IV fibrils (less rigid than type I). Descement’s
membrane lies between the stroma and the endothelium and has a typical thickness
of 5− 20µm.

5. Endothelium: a single cellular layer, with a typical thickness of 5µm, that maintains
the dehydration level of the cornea required for optical transparency. If exposed to
physical damage, the endothelium will not be regenerated.

Recently, a new layer, “Dua’s layer” [122], was discovered to be exist between the corneal
stroma and Descemets membrane. Dua’s layer is composed primarily of collagen and is so
strong to the extent that certain types of corneal surgeries that inject air bubbles into the
cornea could rely more on that layer rather than the other fragile layers.
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Figure 5.1: Human cornea anatomy [121].

Human cornea can be affected by a number of diseases [123] including allergies, conjunc-
tivitis, dystrophies and keratoconus. Among the different corneal diseases, Keratoconous
cornea (KC) is of our main interest in this research. KC is a corneal disease that affects
around 0.1% of the population causing breakage of the collagen fibrils that control the
normal rounded shape of the cornea, which in turn changes the cornea curvature to be to a
cone-shaped. In early stages of KC, rigid contact lenses are used for treatment, while in its
severe stages, KC can lead to distorted or blurred vision and a surgical treatment is usu-
ally needed. Figure 5.2 shows the differences between a normal and a Keratoconus cornea.
Surgical treatment of KC requires precise calculations of the thickness and the curvature
of both the donor/healthy and the patient/diseased corneas [116]. Clinical examination of
KC is currently accomplished using instruments that are unable to visualize the internal
structure of the cornea, such as slit lamp biomicroscopes and corneal topographers. Other
instruments that have the ability to visualize the internal structure of the cornea are suf-
fering from the disadvantage of imaging a very small area of the cornea (typically 1mm
x 1mm) such as confocal microscopy and specular microscopy. Recently, OCT technology
started to take its place in imaging human eyes with the two major advantages of be-
ing non-contact technology (which increases patients comfortability) and producing higher
resolution and speed images (which enables more investigation of the eye structures).
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Figure 5.2: Normal versus keratoconus cornea. Due to the breakage of the collagen fibers,
the dome-shape healthy cornea changes to a cone-shape KC cornea [124].

5.2 Optical Coherent Tomography

Optical Coherent Tomography (OCT) [125] is a non-invasive imaging technology that uses
light waves to provide real-time and high-resolution (micron scale) cross sectional images
of tissue structure. Unlike other modalities, such as ultrasound, X-ray and MRI, that
are relatively slow, use ionising radiation, or require a physical contact with the sample,
OCT has the attractive attributes of a short acquisition time, non-ionising radiation, and
contactless imaging, making OCT more tolerant to sample motion, safer for long exposure
times, and generally more convenient for patients [126].

Currently used instruments for clinical examination of KC corneas prior to and after surgery
such as slit lamp biomicroscopes or corneal topographers lack the ability to visualize the
internal layer structure of the cornea [127] [128]. High resolution microscopy techniques
such as confocal microscopy and specular microscopy can visualize individual corneal cells
such as endothelial, epithelium and keratocyte cells, as well as the fibrous structure of
the Bowmans and Descement’s layers [129]. However, because of the high magnification
requirements, the imaged area of the cornea is very small (typically 1 mm x 1 mm), and
physical contact with the cornea is often required which causes considerable discomfort for
patients.

OCT has proven to be very useful for clinical evaluation of KC corneas [130], as it provides
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Figure 5.3: The swept-source setup is based on a fiber-optic Michelson interferometer. This
configuration consisting of three 50:50 fiber couplers allows dual balanced detection while
minimizing the residual DC-signal caused by the wavelength-dependent coupling ratio.
The long focal length objective provides a long depth of focus and reduces the geometric
distortion of the field of view [116].

cross-sectional images of the cornea with a contact-free measurement. Research-grade
ultrahigh-resolution optical coherence tomography (UHR-OCT) systems, that have been
developed over the past few years [131] [132] enable visualization of thin corneal layers,
precise measurement of the layer thickness [133], and in some cases, visualization and
counting of individual corneal cells [134]. Until now, state-of-the-art UHR-OCT systems
based on spectrometers could only provide a very limited imaging depth range (1 mm)
due to the low pixel number of available detector arrays. This is insufficient for covering
the full volume of a cornea, especially in the case of keratoconus where the curvature can
be significantly steeper than normal. Recently, high-speed imaging of the entire anterior
segment of the eye using a spectral-domain OCT (SD-OCT) system equipped with a new
prototype line camera was demonstrated [135]. However, the long imaging range of 6 mm
(×2 after removal of the complex conjugate mirror image) is only possible with moderate
axial resolution (10µm in air), and there is a strong signal roll-off for longer probing depths.
In contrast, swept-source OCT (SS-OCT) systems relying on rapid wavelength-swept laser
light sources enable high-speed imaging with a long depth range [136]. Commercial swept
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GVF segmentation – leakage at peripherals

Figure 5.4: In a typical corneal OCT image, the inherent speckle noise as well as the signal
roll-off at the peripherals of the cornea mislead the GVF active contour [7] to spurious
image features causing segmentation leakage.

sources have become available that provide high axial resolution and support depth ranges
longer than 5 mm with little signal roll-off [137], which is sufficient for imaging the entire
cornea.

During this research, our team members, at the Physics and Astronomy department
of the University of Waterloo, have developed a new SS-OCT modality for examining KC
corneas (Figure 5.3). The proposed modality is a high-speed, high-axial-resolution, long-
scanning-range SS-OCT system. A commercially available swept source operating at a
sweep rate of 100 kHz, which enables fast acquisition of large datasets, has been applied
in the proposed modality. With 106 nm total bandwidth centered at 1040 nm, it provides
∼ 7µm axial resolution in air (5.1µm in corneal tissue). The scanning range of 5.6mm
is sufficient to image the entire cornea down to the iris plane, enabling a comprehensive
assessment of the cornea shape.

5.3 OCT image segmentation

Because OCT is based on visible light, media opacity highly affects the quality of the
images. Moreover, the light reflections during the imaging process make speckle noise an
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inherent feature of OCT images. Corneal OCT images, in particular, have rather weak
signals towards the sides of the cornea due to the reduced amount of reflected light. Addi-
tionally, corneal OCT images usually have poor signal-to-noise ratio, particularly because
images are sampled quickly, at high resolutions, and in-vivo (with no physical contact
with the cornea). With such challenges, classical segmentation methods such as histogram
thresholding [36], region growing [40] and watershed [33], give very poor segmentation re-
sults. Hence, active contour based-methods emerge as potential solutions to OCT image
segmentation [118], due to their ability to accommodate some of the OCT aforementioned
problems, such as signal absence and low SNR. However, even with the usage of classical
active contour methods, such as GVF and VFC, the results are still not good enough.
Figure 5.4 illustrates some OCT image segmentation challenges. It can be seen from the
figure that both the speckle noise and the signal roll-off at cornea peripherals make the
GVF [7] unable to properly segment the image. Hence, a call for more advanced active
contour-based segmentation techniques, that can handle such challenging circumstances
with a high level of accuracy, is important. In this chapter, our developed method in the
previous chapter (Chapter 4) will be used to tackle the high noise problem of OCT im-
ages. Moreover, the problems of signal roll-off and active contour initialization, specifically
in OCT images, are subject to more investigation and study in the remaining of the chapter.

The following sections are organized as follows: Section 5.3.1 addresses the problems
of low SNR and signal roll-off, while Section 5.3.2 addresses the problem of active contour
initialization. Epithelium layer thickness and motion correction are addressed in Sec-
tions 5.3.3 and 5.3.4, respectively. Finally, Section 5.4 shows different segmentation results
of human corneas.

5.3.1 OCT Signal Enhancement

Speckle noise [138] and the signal roll-off at corneal peripherals [118] are the two main
challenges for OCT segmentation methods. Figure 5.4 shows the segmentation result of
the bottom layer of a human cornea using the classical GVF method [7]. It can be seen
that, due to the signal roll-off and the speckle noise, the active contour is misguided
towards the spurious features of the image, which in turn leads to incorrect final results.
In addressing this problem, the authors of [139] estimated the locations of low SNR using
the second derivative of the converged active contour. Linear interpolation is then used to
fit the contour in these regions of low SNR. Admittedly, the use of curve interpolation to
estimate the missing data in OCT could be misleading, especially in KC where the shape
of the cornea changes significantly, compared to healthy corneas, from one spatial point to
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Examples of h(x) (red patches)

Enhanced image Î

Figure 5.5: The spatially varying kernel, h, used to enhance the received signal, especially
at cornea peripherals. The direction of the kernel changes to be aligned with the cornea
layers. Prior information about the cornea structure is used to steer h.

another. Alternatively and to avoid linear interpolation problems, our proposed method
uses a spatially varying kernel, h(x), to enhance the received signal as follows:

Î(x) = h(x) ? I (5.1)

where Î is the enhanced image, ? is the convolution operator and I is the original image.
Based on the prior knowledge of the cornea shape, the orientation of the kernel h changes
according to its location inside I. The width and the height of h are modality dependent,
and are empirically selected of to be 5 and 15 pixels respectively. The prior information
about the cornea curvature (whether it is healthy or KC) [140] [141] is used to change the
orientation of h on a pixel basis to accommodate the underlying cornea structure. Fig-
ure 5.5 shows the spatially varying kernel h and how its orientation changes to be aligned
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Figure 5.6: The Generalized Hough Transform (GHT) search space. GHT tries to find the
best (x0, y0) through which a dilated parabola with curvature k and thickness ∆ passes.
The thickness of the dilated parabola should be slightly wider than the actual cornea
thickness, so that active contour is not pulled towards the inner layers of the cornea (e.g.
Bowman’s membrane).

with the real edges in the image. Having h(x) steered towards real edge orientations, the
received signal in the enhanced image Î is dramatically improved, especially at cornea
peripherals where the amount of the reflected light is very limited. Looking at the pe-
ripherals of the cornea in the enhanced image, it can be seen how the edge information is
present, which eases the task of the active contour and prevents the leakage problem (see
Figure 5.4).

5.3.2 Active Contour Initialization

Initializing the active contour near the object of interest is considered one main issue of
active contour-based methods [24] [142], especially in noisy images (such as OCT) where
the risk of the active contour being trapped by spurious image features is high. Since KC
corneas, in most, cases have complex shapes, and since this work aims to segment both
healthy and non healthy OCT cornea images, our proposed method uses the generalized
Hough transform (GHT) [143] to find the best initialization of the active contour inside the
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Figure 5.7: Active contour initialization using the GHT. The active contour is initialized
at the boundary of the best dilated parabola R∗i (red mesh) found by the GHT.

images. GHT is a modification of the original Hough transform [59], that is able detect not
only analytically defined shapes (e.g., line, circle), but also any arbitrary object described
with its model. In order to find a good estimation of the cornea in the image, GHT scans
image pixels (xi, yi) to find the best pixel (x0, y0) through which a set of dilated parabolas
Rn passes. Figure 5.6 illustrates the idea of using the GHT to estimate the cornea loca-
tion inside the image and uses this information to initialize the active contour. The best
parabola R∗i with curvature k and thickness ∆ should cover an area that is slightly wider
than the actual cornea thickness, which in turn protects the active contour from being
pulled towards the inner layers if the cornea (e.g. Bowman’s membrane), and reduces the
risk of the active contour being trapped by the speckle noise.

To that end, the image blurring step carried out in the previous subsection using the
kernel h helps achieve two goals. First, to reduce the impact of the speckle noise and
any artifacts that might happen during the image acquisition process. Second, and more
importantly, to diffuse the highly bright pixels lying on the anterior and posterior layers
of the cornea. This diffusion increases the brightness of the set of pixels right above the
anterior and right below the posterior. By increasing the brightness of these pixels, most
likely they will be included in the search space of the GHT, and hence guarantees that R∗i
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has a thickness that is slightly wider than the actual cornea thickness.

Before evaluating the pixels covered by each parabola using the GHT, the parabola
is dilated in order make it thicker, which ensures that it covers the whole cornea. The
amount of dilatation ∆ is determined from the thickness space [∆min ∆max] [141] [144].
Also, image pixels are penalized to give preference to corneal data over non corneal data.
Assuming that the cornea pixels are brighter than other pixels in the image (if this is not
the case, the image is flipped Î = 255− Î), the penalization process happens as follows:

Îp(xi, yj) =

{
Î(xi, yj) if Î(xi, yj) ≥ T

P otherwise
(5.2)

where Îp is the penalized image, T is the penalization threshold and P is the penalization
parameter. The value of T is empirically calculated using the image data at the upper
right and left corners, where there is a guarantee that no cornea is present. The GHT
scans Îp to find the pixel (x0, y0) that makes the parabola

y − y0 = k(x− x0)2 (5.3)

with a curvature ki and thickness ∆j covers the largest set of pixels having intensity values
higher than T . Figure 5.7 shows the best dilated parabola R∗i found by the GHT. It can
be seen that the found parabola covers a slightly wider area than the actual cornea in the
image. This ensures that the active contour will not be misguided by any other layers inside
the cornea (e.g. Bowman’s membrane) or by any spurious features such as speckle noise.
Now, the problem turns out to be an optimization of the following evaluation function E

E = GHT (Ip, x, y, k,∆) (5.4)

such that
|(y − y0)− k(x− x0)2| ≤ ∆/2 (5.5)

In order to speed up the above optimization, the size of the search space needs to be
reduced. Hence, the prior information about the thickness, curvature and the apex of
normal and keratoconus corneas [140] [141] are used as the boundaries of the GHT search
space. Figure 5.8 shows the initialization results for different KC corneas. The figure
shows three different cases of KC corneas, 1) severe KC cornea, 2) intacs cornea, where
two small crescent-shaped plastic polymer pieces are inserted into the cornea to reshape it,
3) Penetrating Keratoplasty (PKP), where the damaged cornea is replaced with a donor
cornea. In the figure, regardless of the big shape deformation in the three images, it can
be seen that our proposed method accurately accommodates the different shapes of the
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cornea, and correctly finds the best dilated parabola R∗i to initialize the active contour
close to the actual upper and lower boundaries of the cornea.

After estimating the best initialization of the active contour using the above method,
the MDVFC, developed in Chapter 4, is fed with this estimation and the upper and the
lower layers segmentation of the cornea is calculated. With the segmentation coordination
of both layers in hand, the following sections address the problem of epithelium thickness
and motion correction.

5.3.3 Epithelium Layer Thickness

It has been well documented that Stromal thinning is a KC characteristic, particularly at
the apex of the cone [145]. However, the limitations of imaging modalities make the effect
of the disease on other corneal layers unclear [146]. Recently, a number of researchers
have shown that epithelium thinning is another characteristic of KC eyes. In [147], the
epithelium layer profile is generated by manually selecting 11 points on the interface of the
layer. Then, a spline interpolation is carried out to get the first estimate of the layer profile.
Subsequently, around the initial estimate, a±5 pixel region is searched for the highest signal
intensity. Finally, the highest intensity pixels are fitted using a fifth order polynomial to
generate the final epithelium. The method in [147] has a number of issues. First, the
manual selection of the 11 points could be time consuming and inaccurate, especially in
the scenarios where a large amount of data is to be processed. Second, searching for the
brightest pixels in a ±5 area certainly will be misleading, especially with the high amount
of speckle noise due to the light reflections. Third, the polynomial fitting using a fifth
order function could be, in most KC eyes, inaccurate since the curvature of the epithelium
layer changes significantly from one spatial point to another. Hence, in this section, a
novel method for accurately and automatically measuring the epithelium layer thickness is
developed.

Given the converged MDVFC active contours of the anterior and posterior layers of the
cornea, ya(x) and yp(x), the maximum thickness of the cornea is calculated as:

∆ = max
x
|ya(xi)− yp(xi)| (5.6)

It is well known from the literature that out of the approximately 540µm thickness of the
healthy cornea, the epithelium thickness is 53.4 ± 4.6µm [148]. Also, for KC cornea, it is
known that the epithelium thickness is 45.7± 5.9µm [149]. This prior information is used
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Figure 5.8: Active contour initialization using the GHT for different types of KC corneas.
It can be seen that our proposed method is able to accommodate the different curvatures
of the human cornea for all different cases.

to limit the search space of our method to only the upper part, U, of the cornea, where
the epithelium layer is guaranteed to be found. U is a modality dependent parameter and
is proportional to the calculated ∆. Empirically, U is set to 1/8 of the maximum cornea
thickness ∆ during our experiments.
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(a)

(b)

Figure 5.9: Epithelium Layer segmentation. (a) The curvature of the converged MDVFC
contour ya(x) is used flatten Ï in Equation 5.8. It can be seen that epithelium pixels have
high intensity values compared to other non-epithelium pixels. (b) The final segmentation
of the epithelium layer
.

To detect the epithelium layer, a kernel ℵ(x) with height 2α and width 2γ is defined.
Each snake point (snaxel) in ya(xi) is perpendicularly shifted by a distance d which guar-
antees that the new snaxel is not lying on the bright upper boundary (anterior layer) of
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the cornea. d is a modality dependent parameter and is empirically set to 8 pixels in our
experiments. The new contour ynew(x) is iteratively perpendicularly shifted by a distance
ε to generate another contour as follows

ynew(x) = yold(x)− ε ∀ yold(x) ∈ U (5.7)

where the subtraction happens along the perpendicular direction of each snaxel. For each
pixel I(x, α) lying on ynew, a new value Ï(x, α) is calculated as follows:

Ï(x, α) =
1

N

δ∑
i=−δ

γ∑
j=−γ

I(x− i, α− γ) (5.8)

where N is the number of pixels covered by ℵ. The parameters of the kernel, α and γ,
are modality dependent, and based on the empirical experiments of this study they are set
to 5 and 15 pixels respectively. For efficient calculation of the epithelium thickness, the
curvature of the converged MDVFC contour, ya(x), is used to generate a flattened version
of Ï. Figure 5.9a shows the flattened version of Ï with inverted brightness. Due to the fact
that the new contours, ynew, are perpendicular shifted versions of the converged anterior
contour, ya(x), and that the kernel is elongated in the direction parallel to the anterior
layer, the epithelium layer pixels have higher intensity values compared to non-epithelium
pixels. The image in 5.9a is searched vertically (column by column) to locate the pixel
with the maximum intensity for each column. Figure 5.9b shows an example of the final
segmentation of the epithelium layer. It can be seen from the final result that our method
is capable of locating the correct epithelium layer even at the peripherals where the SNR
is very low. The averaging that ℵ does over the vertical direction (5 pixels) reduces the
impact of the speckle noise in Ï. Additionally, this averaging bridges the gaps in the areas
where the epithelium layer data is missing due to the signal roll-off.

5.3.4 Motion Correction

Constructing a 3-D cornea from the series of OCT 2-D slices is essential for many applica-
tions including cornea thickness calculation for KC diagnosis [150]. Since it is very difficult
to keep the patient’s eye looking at the same exact spot during the imaging session, the
constructed 3-D cornea is usually ragged and has a rough surface. Hence, a motion cor-
rection algorithm to fix for eye movement is needed. To that end, during patients imaging
sessions in our experiments, a set of reference frames/images are captured. A reference
frame is an image slice that is captured perpendicular to the scanning direction. So, if
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the eye is being scanned by the laser beam vertically, a number of N reference frames IRn
where n = 1 . . . N are captured horizontally. These reference frames are basically used to
align the whole captured vertical slices to compensate for the eye motion.

To correct for the eye motion, let ` be the spatial distance between successive slices.
Let yi(x) be the final segmentation of the anterior layer of slice Ii. Also, let yRn (x) be the
final segmentation of the anterior layer of the reference frame IRn and let X be the frame
width. Then, a motion corrected frame Īi could be constructed using

Īi(x, y) = Ii(x−
X

2
+ xMi , y − yi(xMi ) + yRn (xMi + ` · (i− U

2
))) (5.9)

where xMi is the x coordinate of the apex point in yi(x) and U is the total number of slices.
Figure 5.10 shows the spatial locations (black bars) of the five reference frames, IRn=1...5, in
one OCT image. The frames were, perpendicular to the scanning direction, captured at
the spatial locations x = 176, 264, 351, 439 and 526. Figure 5.11 shows the surface elevation
map of a human cornea before and after the proposed motion correction algorithm. It can
be seen that the elevation map in (a), due to the eye motion, is ragged and irregular. After
applying the motion correction algorithm, one can qualitatively see that resulted elevation
map is more consistent and smooth. It is worth to mention here that only 400 out of 1000
frames were used to generate these elevation maps.
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Figure 5.10: Spatial locations of the reference frames in one OCT slice. Reference frames
are used to align OCT slices for motion correction.
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Figure 5.11: Cornea elevation map before and after applying the motion correction algo-
rithm. It can be seen that the ragged surface of the uncorrected map, due to eye movement,
is corrected after applying the motion correction method. Correcting for eye motion pro-
vides accurate measurements for calculating the cornea thickness.
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5.4 Segmentation Results

During the course of this study, our proposed work, in this chapter and in Chapter 4,
was applied to a wide range of healthy and diseased human corneas imaged using the new
SS-OCT modality. Moreover, 10 sets (each set consists of 1000 images) of different contact
lenses, with known thickness and curvature parameters, were used to verify the accuracy of
the proposed model (MDVFC) compared to other imaging modalities segmentation (e.g.
pentacam) [117]. Our model was also compared to the state-of-the-art multi-scale active
contour based methods such as Multi-scale Tensor Vector Field (MTVF) [10] and Multi-
scale Vector Field Convolution (MVFC) [99], as well as a classical method used for medical
image segmentation, namely Intelligent Scissors(IS) [151]. The results we got, in terms
of initialization and segmentation accuracy, prove the superiority of the proposed model
compared to the state-of-the-art and classical methods.

To illustrate the effectiveness of the MDVFC model, Figure 5.12 shows the perfor-
mance of the model, compared to the other methods, without the preprocessing steps of
sections 5.3.1 and 5.3.2. Hence, the same initialization is given to all methods without
and signal enhancement or noise reduction. The reason why the figure was intentionally
restricted to only the upper part of the cornea is to have a relatively ideal environment
(strong signal where upper and lower cornea boundaries are distinguishable) for all meth-
ods to work. Later in this section, our proposed model will be used to segment the whole
cornea with the big challenge of the signal roll-off at cornea peripherals. Regardless of the
fact that both upper and lower edges have strong signals, the competitor methods fail to
segment this small part of the cornea correctly. Our proposed model, on the other hand,
demonstrates a higher level of accuracy compared to aforementioned methods. Regarding
the cornea peripherals and, again, with the relatively strong signal, the figure shows also
that all other methods suffer from leakage at the peripherals, while the proposed method
achieves a high accuracy result for the whole cornea.
For quantitative assessment and to ensure accurate comparisons, two segmentation met-

rics are used; namely the Jaccard index [152] and the average shortest distance measure
(ASD) [24]. For Jaccard index calculation, ground truth images of the middle 400 frames
of human cornea and contact lens sets were manually segmented to compare our results
against. Table 5.1 quantitatively compares our proposed method to the same methods in
Figure 5.12 using the aforementioned measures, and convincingly demonstrates the supe-
riority of the proposed method over the others under high noise levels. It can be seen from
the table that our method achieves the lowest ASD measure (the ideal case happens when
ASD=0) and the highest Jaccard measure(the ideal case happens when Jaccard=1). The

90



Intelligent scissors [151] MVFC [99]

MTVF [10] MDVFC

Figure 5.12: Final segmentation example of MDVFC, IS, MVFC and MTVF. The MDVFC
method outperforms all other methods.

Measurement IS MVFC MTVF Proposed

ASD 17.609 ± 3.68 18.176 ± 5.31 10.515 ± 2.31 5.910 ± 1.02

Jaccard 0.732 ± 0.21 0.698 ± 0.29 0.8673 ± 0.15 0.909 ± 0.09

Table 5.1: Quantitative performance comparisons. The proposed method outperforms all
others using both the ASD metric, having an ideal value of zero, and the Jaccard metric,
having an ideal value of one.
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other methods provide lower levels of accuracy for the two metrics. It worth mentioning
here that the comparison results of our method to any other method is based on the code
provided by the authors of the competing method.

Since being able to image the entire cornea with high resolution is a key characteristic
of the developed SS-OCT modality, our segmentation method is tested using image sets
scanned by this modality. More than 15 data sets for healthy and KC corneas, plus 10
sets of contact lenses are segmented using the proposed method for elevation map and
thickness calculations, with each set having 1000 images. However, because cornea/lens
data appears only in the middle of each set, only the middle 400 images of each set are
segmented. The segmentation results for the all sets reflect the superiority of our proposed
method over the other methods. Figure 5.13 shows the segmentation results of our method
using two entire KC corneas from different sets. Our method is capable of segmenting the
anterior, posterior and the epithelium layers accurately. It can be seen from the figure
that the high noise level does not prevent our method form correctly segment the 3 layers.
Another point to note in this figure is that the GHT initialization module of the proposed
method is not affected by the non corneal data on both sides of the image and is able
to start the model relatively close to the actual cornea, and hence the final results are
accurate. Moreover, the figure demonstrates the ability of our method to correctly detect
the anterior and posterior layers of the cornea near the peripherals, thanks to the spatial
variant kernel h. Also, the figure reflects the ability of our proposed method to correctly
detect and accommodate the deformation happened in the epithelium layer due to the
illness. Finally, one can note that due to the hierarchical nature of the proposed method
and the adaptive kernel size discussed in Chapter 4, our method is able to correctly and
accurately segment the three layers in the two images without being caught by the speckle
noise.
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Figure 5.13: Illustrative examples of anterior, posterior (red) and epithelium layers (green)
segmentation for different KC eyes. The proposed method is able to accurately segment
the 3 layers under the high noise condition of the underlying image sets.
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Chapter 6

Conclusions

In my thesis research, two models for improving the the external force field of multi-
resolution active contours are proposed. After highlighting the limitations of classical
active contour segmentation approaches, Chapter 3 proposed the usage of the over-complete
multiresolution transforms (namely, the undecimated wavelet transform) to build up the
external force field of the active contour. The wavelet coefficients are first normalized to find
a direct relation between the amplitude of the wavelet coefficients in different resolutions.
Then, a resolution-based favoring scheme of the gradient maps of each layer is used to
simultaneously build up the external force of the active contour. The key features of noise
robustness and edge preserving of the UDWT in addition to coarser gradient favoring make
the proposed method outperforms classical and state-of-the-art methods.

Incorporating directional information in the external force of the active contour is ad-
dressed in Chapter 4. The directional information revealed by the (DT CWT) is utilized
to generate a steerable set of kernels to be used for external force generation. The di-
rectional information of each pixel as well as the local directional statistics are used pick
up the appropriate kernel to calculate the force vector at each pixel. Incorporating the
directional information during the process of external force generation makes the proposed
model able to segment objects with complex shapes in noisy images. Experimental results
using synthetic and real images show the superiority of the proposed method over classical
and stat-of-the-art methods.

OCT corneal segmentation is proposed in Chapter 5. Basically, the proposed method
of Chapter 4 is used to segment the upper and lower layers of the cornea. Moreover,
Chapter 5 proposed a signal enhancement approach, based on a spatially varying kernel,
to overcome the signal roll-off and the low SNR problems of OCT modalities. Also, the
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chapter proposed a solution to the problem of automatic active contour initialization in
corneal OCT images using the generalized Hough transform. Chapter 5 also addressed two
other OCT segmentation-related problems. First, the calculation of the epithelium layer
thickness. Second, the motion correction. The proposed model is tested using healthy and
KC corneas as well as contact lenses. The comparisons with other methods show that our
proposed method is able to give better results for all images.

The work in this thesis results a number of general outcomes and directions of signifi-
cance. One main outcome is the advances achieved by using overcomplete wavelet trans-
forms for generating the external force of the active contour. Having the image salient
features localized at the coarse scales of the transform gives the active contour the well-
desired feature of converging to the correct boundaries in noisy environments. Moreover,
favoring the image features at coarse scales gives the active contour more robustness against
noise. The question about the best way to favor the coarse scales is touched during this
research, however, a more detailed research about the nature of this favoring is one of the
main future extensions of this work. Also, All experimental results in this thesis use up
to 8 resolutions of the wavelet transform. Though the improvement in the segmentation
metrics after the fifth resolutions is not big, the questions of, up to how many scales of the
transform should we use? and what is the relation between the number of scales and the
noise level of the underlying image? remain as future extensions to the work of this thesis.

Convergence improvement of the active contour due the the incorporation of directional
information into the external force field is another main outcome of this thesis. The
incorporation of the directional information revealed by the dual tree complex wavelet
transform into the external force field gives the active contour more resistance to noise
and ability to capture fine details in the image. The selection of the dual tree complex
wavelet transform as the tool to learn the directional information of the image meant to
keep the calculation complexity low. Also, the near shift invariance property of the dual
tree complex transform is another reason why we use this specific transform. However,
there are other redundant steerable wavelets, which give a richer directional information
such as Gabor wavelets, could be used to learn the directional information. One main
future direction to the work in this thesis is to look deeply at the aspect of learning the
directional information for better active contour segmentation results.

Finally, the work in this thesis is mainly applied to the corneal OCT images. However,
with the wide spread of using different medical imaging modalities, we are aiming to expand
the application of this work to other imaging technologies such as X-rays, ultrasounds and
magnetic resonance imaging (MRI).
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