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Abstract

Longevity risk refers to uncertainty surrounding the trend in human life expectancy. Stan-

dardized hedging instruments that are linked to broad-based mortality indexes can be used

to offload longevity risk from pension plans and annuities. However, hedges that are based

on such instruments are subject to population basis risk, which arises from the difference

in mortality improvements between the hedger’s population and the reference population

to which the hedging instruments are linked. This thesis attempts to address some issues

that are related to longevity risk hedging in the presence of population basis risk.

In the first chapter, a graphical risk metric is proposed to intuitively measure population

basis risk, which is believed to be a major obstacle to market development. It allows market

participants to not only visually evaluate the extent of population basis risk, but also

determine the most appropriate reference population. Compared to existing population

basis risk metrics which are mostly numerical, the proposed graphical risk metric is more

informative in that it captures more aspects of population basis risk. Along with the

existing numerical risk metrics, the proposed graphical risk metric may help hedgers better

understand population basis risk and hence make their risk management decisions.

In the second chapter, the feasibility of dynamic longevity hedging with standardized

hedging instruments is studied. To this end, the dynamic hedging strategy developed by

Cairns (2011) is generalized to incorporate the situation when the hedger’s population

and the reference population are different. The empirical results indicate that dynamic

hedging can effectively reduce the longevity risk exposures of a typical pension plan, even

if population basis risk is taken into account. Further, by considering data from a large
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group of national populations, it is found that population basis risk and small sample

risk can possibly be diversified across different hedgers. Hedgers may therefore be able to

completely eliminate their longevity risk exposures by removing the underlying trend risk

with a dynamic index-based hedge and transferring the residual risks through a reinsurance

mechanism.
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Chapter 1

Towards a Large and Liquid

Longevity Market: A Graphical

Population Basis Risk Metric

1.1 Introduction

Rapid, unexpected increases in human life expectancy have posed what is known as

longevity risk. On a macroeconomic level, longevity risk affects current account (Lee and

Mason, 2010), GDP (Skirbekk, 2004), and productivity (van Groezen et al., 2005). From a

microeconomic viewpoint, longevity risk undermines the profits and growth opportunities

of corporations offering defined-benefit pension schemes, ultimately affecting their share

prices. According to the International Monetary Fund (2012), if individuals live three years

1



longer than expected, then the already large pension costs would increase by 50% of the

2010 GDP in advanced economies and 25% of the 2010 GDP in emerging economies.

Recently, some pension plan sponsors and annuity providers have chosen to offload

longevity risk from their balance sheets. One way to accomplish this act is by transferring

the risk to capital markets, through standardized derivative securities that are linked to

broad-based mortality indexes. The first of such transactions occurred in 2008 when Lucida

PLC passed part of its longevity risk exposure onto J.P. Morgan by means of a mortality q-

forward contract. The risk was subsequently transferred to various institutional investors,

who accepted the risk exposure for a risk premium (Blake et al., 2013). Compared to other

risk transfer methods such as reinsurance, capital markets solutions are advantageous in

terms of being less costly and having, in theory, no capacity constraint (Cummins and

Trainar, 2009).

Nevertheless, at this point the market for standardized mortality-linked securities is

small and lacks liquidity. The industry leaders believe that one major obstacle to market

development is an inadequate understanding of population basis risk, the residual risk that

originates from the difference in mortality improvements between the hedger’s population

and the reference population to which the hedging instrument is linked (Life and Longevity

Markets Association (LLMA), 2012). This problem has been studied by several researchers,

who quantified the risk by numerical metrics including percentage reduction in expected

shortfall (Ngai and Sherris, 2011), percentage reduction in variance (Cairns et al., 2014; Li

and Hardy, 2011; Li and Luo, 2012), and minimal required buffer (Stevens et al., 2011). 1

1The minimal required buffer refers to the minimum asset value (in excess of the best estimate value
of the liabilities) such that the probability that the insurer or pension fund will be able to pay all future
liabilities is sufficiently high.
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However, as the existing methods cannot be easily communicated to market participants,

they still cannot meet the industry’s need for a simple, intuitive metric for population basis

risk.

To aid in filling this gap, in this chapter we contribute a graphical risk metric for

assessing population basis risk. The graphical risk metric is constructed from a series of

joint prediction regions, allowing users to visually evaluate the ranges of possible outcomes

at various confidence levels. Our contribution also enables hedgers to determine, out of

all available reference populations, the population that results in the minimum amount of

population basis risk. We believe that our contribution is likely to gain wide acceptance

among practitioners, who are increasing relying on graphical methods such as survivor

fan charts (Blake et al., 2008), longevity fan charts (Dowd et al., 2010), and heat maps of

mortality improvement rates (Continuous Mortality Investigation Bureau, 2009) in making

their risk management decisions.

We explain the construction of the graphical population basis risk metric in the next

section, followed by a section that includes a demonstration based on a hypothetical ex-

ample and real mortality data. Finally the last section concludes the chapter with some

suggestions for future research.

1.2 Methodology

Let us consider a pension plan whose liability value is proportional to a random survivor

index, S(H), where H represents the population of individuals associated with the plan. To
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hedge its longevity risk exposure, the plan trades a longevity-linked derivative, whose payoff

is proportional to another random survivor index, S(R), where R denotes the derivative’s

reference population. We let I(H) = S(H) − E(S(H)) and I(R) = S(R) − E(S(R)) be the

exceedances of S(H) and S(R) over their expected values, respectively. We base the graphical

risk metric on I(H) and I(R) rather than S(H) and S(R), partly because users’ primary

interest are the possible deviations from the expected outcomes, and partly because the

use of I(H) and I(R) ensures all resulting risk metrics are centered at the origin, thereby

allowing users to compare the risk metrics for different reference populations readily.

The first step in constructing the graphical population basis risk metric is to simulate

realizations of I(H) and I(R) from a multi-population stochastic mortality model, examples

of which include the augmented common factor model (Li and Lee, 2005) and the gravity

model (Dowd et al., 2011). Such a model incorporates the correlation between the uncertain

mortality improvements of the populations being modeled, and exhibits mean-reversion to

avoid resulting in anti-intuitive diverging long-term mortality forecasts.

The second step is to optimize the longevity hedge. We consider a static hedge, which

seems more feasible than a dynamic hedge in today’s market for longevity risk transfers. 2

Specifically, we aim to find, per dollar amount of the pension liability, the notional amount

h(R) of the longevity-linked derivative that would lead to a perfect hedge in the ideal situa-

tion when population basis risk is absent, i.e., when I(H) and I(R) are perfectly correlated.

We find h(R) by a linear approximation, which implies h(R) = ∂I(H)

∂I(R) . The value of h(R) is

estimated by the slope of the first order linear regression of I(H) on I(R), derived from the

2Static hedging is more realistic, because dynamic hedging requires liquid longevity-linked securities
that are not yet available in the current market for longevity risk transfers. See Fung et al. (2014).
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simulated values of I(H) and I(R) obtained in the first step.

Our choice of h(R), which can be expressed as

h(R) =
Cov(I(R), I(H))

Var(I(H))
,

is justified in the sense that it minimizes the variance of the hedged portfolio; that is, h(R)

is the value of h that minimizes the following expression:

Var(I(H) − hI(R)) = Var(I(H)) + h2Var(I(R))− 2hCov(I(H), I(R))

= Var(I(R))

(
h− Cov(I(H), I(R))

Var(I(R))

)
+ c,

where c is a constant that is free of h.

Of course, when population basis risk is actually present in reality, I(H) is not necessarily

equal to h(R)I(R). If I(H) > h(R)I(R), then the pension liability is under-hedged, and if

I(H) < h(R)I(R), then the opposite is true. Population basis risk can therefore be understood

as the variability associated with the random deviations between I(H) and h(R)I(R).

The third step is to express the uncertainty surrounding I(H) and h(R)I(R) by a series

of joint prediction regions. Mathematically, Jα is a joint prediction region for the duplet

(I(H), h(R)I(R)) with coverage probability 0 < 1− α ≤ 1 if

Pr((I(H), h(R)I(R)) ∈ Jα) = 1− α.

The region Jα should encompass 100(1 − α)% of the possible combinations of I(H) and
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h(R)I(R). For a given value of α, a larger Jα reflects a higher amount of population basis

risk. We construct nine joint prediction regions, with α = 0.1, 0.2, . . . , 0.9.

Finally, the graphical risk metric is created by plotting on a Cartesian coordinate plane

the 10% joint prediction region with the darkest shading, surrounded by the 20%, 30%,

..., 90% joint prediction regions with progressively lighter shadings. From the areas of

the prediction regions and the degrees of shading, one can visualize ranges of possible

hedging outcomes and their associated probabilities of occurrence. The proposed risk

metric is somewhat similar to the well-known Bank of England inflation fan chart, which

simultaneously depicts interval forecasts of future inflation rates at different confidence

levels by using different shades of colour (Wallis, 2003). It also has a close resemblance to

the existing survivor/longevity fan charts (Blake et al., 2008; Dowd et al., 2010).

1.3 An Illustration

We now illustrate the graphical population basis risk metric with a hypothetical example.

Let us suppose that H, the population associated with the pension plan (the hedger), is

Canadian males. Suppose further that at the time when the hedge is established, there

is no longevity-linked derivative linked to Canadian males. However, the plan may use a

longevity-linked derivative that is linked to an alternative reference population (R), which

can be either U.S. males, German males, Dutch males, or English and Welsh males.3

The survivor index used is the ex post probability that an individual currently aged 65

3As a matter of fact, the LLMA provides mortality indexes for these four national populations. Deriva-
tive securities can be written on LLMA’s mortality indexes.
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will survive to age 90:

S(i) =
24∏
t=0

(1− q(i)65+t,t), i = H,R,

where q
(i)
x,t is the probability that an individual from population i dies in year t, given that

the individual is alive and aged x at the beginning of year t. This survivor index is very

similar to the one that is associated with the 25-year longevity bond that was announced

by BNP Paribas and the European Investment Bank in 2004 (Blake et al., 2013).

We use the augmented common factor model proposed by Li and Lee (2005) to con-

currently model the future mortality of all five populations. The model can be expressed

as

ln(m
(i)
x,t) = a(i)x +BxKt + b(i)x k

(i)
t + ε

(i)
x,t, i = H,R,

where m
(i)
x,t denotes population i’s central death rate at age x and in year t, a

(i)
x is a

parameter measuring population i’s average level of mortality at age x, Kt is a time-varying

index that is shared by all populations being modeled, k
(i)
t is the time-varying index that

is specific to population i, parameters Bx and b
(i)
x respectively reflect the sensitivity to Kt

and k
(i)
t at age x, and ε

(i)
x,t is the error term.

Following Li and Lee, we estimate a
(i)
x by setting it to the average of ln(m

(i)
x,t) over the

data sample period. To estimate Bx and Kt, we apply a first order singular value decom-

position (SVD) to the matrix of
∑

iw
(i)
x,t(ln(m

(i)
x,t)− â

(i)
x ), where w

(i)
x,t represents population

i’s number of exposures at age x and year t and the ˆ sign denotes an estimate. Another

first order SVD is applied to the matrix of ln(m
(i)
x,t) − â

(i)
x − B̂xK̂t to obtain estimates of

parameters b
(i)
x and k

(i)
t .
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The evolution of Kt over time is modeled by a random walk with drift:

Kt = C +Kt−1 + ξt,

where C is the drift term and {ξt} is a sequence of i.i.d. normal random variables with

zero mean and constant variance, whereas the evolution of k
(i)
t over time is modeled by a

first order autoregressive process:

k
(i)
t = φ

(i)
0 + φ

(i)
1 k

(i)
t−1 + ζ

(i)
t ,

where φ
(i)
0 is a constant, φ

(i)
1 is another constant whose absolute value is strictly less than

one, and {ζ(i)t } is a sequence of i.i.d. normal random variables with zero mean and constant

variance. The process for k
(i)
t is mean-reverting, so that the projected mortality rates for

different populations do not diverge indefinitely over time.

The model is fitted to historical data covering the age range of 60 to 89 and the sample

period of 1960 to 2009. Most of the required data are obtained from the Human Mortality

Database (2014). The only exception is the data for German males prior to 1991 (when

the Berlin Wall fell), which are obtained from the LLMA.

Under the augmented common factor model, the probability distribution of S(i) cannot

be written in closed-form; thus, the joint prediction regions cannot be derived analytically

as was done by Chan et al. (2014). Instead, we obtain the joint prediction regions with

the following numerical procedure:

1. Simulate 50,000 future values of m
(i)
x,t from the estimated augmented common factor

8



Population h(R)

The US 1.3121
Germany 1.3804

The Netherlands 1.3718
England and Wales 1.3203

Table 1.1: The calculated values of h(R) for the four reference populations under consider-
ation.

model. Using these simulated values and the approximation q
(i)
x,t = 1− exp(−m(i)

x,t),
4

calculate realizations of I(H) and I(R).

2. Using the realized values of I(H) and I(R), calculate the value of h(R) using the

previously described linear regression methodology. The calculated values of h(R)

for the four reference populations under consideration are displayed in Table 1.1.

3. Let Y = (I(H), h(R)I(R))′. For each simulated realization of Y , calculate its Maha-

lanobis distance to the best estimate as Y ′Ŝ−1Y , where Ŝ is the sample covariance

matrix of Y . Note that the best estimate of Y is E(Y ) = (0, 0)′. Geometrically speak-

ing, the Mahalanobis distance may be viewed as the physical distance between the

realization of Y and the origin, weighted by the standard deviations and covariance

of I(H) and h(R)I(R). 5

4. Sort the 50,000 simulated realizations by their Mahalanobis distances to the best

estimate. Choose the 50, 000(1− α) realizations with the shortest Mahalanobis dis-

tances.

5. Draw a convex hull to enclose the 50, 000(1− α) chosen realizations. In geometrical

4The approximation is exact if the force of mortality between two integer ages is constant.
5See Gnanadesikan and Kettenring (1972) for further information about Mahalanobis distances.
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terms, the convex hull is the smallest convex set that contains the selected 50, 000(1−

α) pairs of I(H) and h(R)I(R).

The convex hull drawn is a 100(1 − α)% joint prediction region for I(H) and h(R)I(R),

because by construction it contains a randomly selected pair of I(H) and h(R)I(R) in the

simulated sample with a probability of 1−α. The use of a convex hull (the smallest convex

set) prevents the joint prediction region from overstating the underlying uncertainty.

Figure 1.1 shows the graphical population basis risk metric when the reference popula-

tion is English and Welsh males. The two dotted lines divide the diagram into four quad-

rants. The upper-right (lower-left) quadrant contains the outcomes when future mortality

of both populations improves faster (slower) than expected, while the upper-left (lower-

right) quadrant encompasses the outcomes when the mortality of Canadian males improves

slower (faster) than expected and the mortality of English and Welsh males improves faster

(slower) than expected. The dots in the diagram represent the 50,000 simulated pairs of

I(H) and h(R)I(R). These dots should align perfectly on the 45-degree line in the ideal case

when there is no population basis risk. The region below the 45-degree line contains the

under-hedging outcomes, while the region above contains the over-hedging outcomes. The

vertical (or equivalently, horizontal) distance from an outcome to the 45-degree line indi-

cates the extent of over- or under-hedging associated with that outcome. The likelihood of

an outcome is visible from the colour shade of the region in which the outcome is located.

Essentially, the darker the shading, the more likely the outcome.

The area spanned by the risk metric indicates the overall level of population basis risk.

Therefore, one may determine the reference population that leads to the minimum amount
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of basis risk by comparing the areas of the risk metrics for all available reference popula-

tions. Figure 1.2 displays the graphical risk metrics for all four reference populations under

consideration. It is clear that the risk metric for U.S. males is smaller than the risk metrics

for the other three available reference populations. Hence, for this hypothetical example,

the hedger should choose to trade a derivative that is linked to U.S. male mortality.

1.4 Conclusion

In this chapter, we have proposed a graphical metric to intuitively communicate informa-

tion about the level of population basis risk that an index-based longevity hedge is exposed

to. The graphical risk metric is composed of a series of joint prediction regions of possible

hedging outcomes, which are simulated from an assumed multi-population stochastic mor-

tality model. Various aspects of population basis risk are reflected in the graphical risk

metric. First, the area of a prediction region indicates the overall level of the population

basis risk. Second, the shade of a prediction region reflects the likelihood of the hedging

outcomes enclosed by the region. Third, the shape of the prediction region reveals how the

hedger’s liability is correlated with the survivor index to which the standardized hedging

instrument is linked.

Compared to existing population basis risk metrics which are mostly numerical and

only measure the overall risk level, the proposed metric is more informative in that it

captures more aspects of population basis risk. Along with the existing numerical metrics,

the proposed graphical metric may help potential hedgers better understand population

basis risk and hence make their risk management decisions.
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We have also illustrated the graphical population basis risk metric by a hypotheti-

cal example, in which the hedger’s liability is associated with Canadian mortality while

the available hedging instruments are linked respectively to the populations of the U.S.,

Germany, the Netherlands and England and Wales. Given the resulting joint prediction

regions, one can easily tell that among the four reference populations, the U.S. is the

most appropriate for the hypothetical hedger. We believe that as the market grows and

standardized instruments linked to different reference populations become available, the

proposed technique can assist hedgers with their choices of hedging instruments.

The graphical population basis risk metric depends on the assumed multi-population

stochastic mortality model. Admittedly, the conclusions derived from the graphical met-

ric may turn out to be different if another stochastic mortality model is assumed. It is

warranted to explore in future work the robustness of the graphical risk metric relative

to model choices. From a practical viewpoint, it would be useful to incorporate the pro-

posed technique into existing stochastic mortality modeling software such as the LLMA’s

LifeMetrics. Such a development would allow potential hedgers to customize the graphical

population basis risk metric on the basis of their own choices of mortality models and data

sets.
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Figure 1.1: The graphical population basis risk metric for the situation when the hedger’s
population (H) is Canadian males and the derivative’s reference population (R) is English
and Welsh males. The dots represent the 50,000 simulated pairs of I(H) and h(R)I(R).
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Figure 1.2: The graphical population basis risk metrics for the situations when the hedger’s
population (H) is Canadian males and the derivative’s reference populations (R) are U.S.
males, German males, Dutch males and English and Welsh males, respectively.
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Chapter 2

Dynamic Longevity Hedging in the

Presence of Population Basis Risk: A

Feasibility Analysis from Technical

and Economic Perspectives

2.1 Introduction

The market for longevity risk transfers started in about 10 years ago when the European

Investment Bank and BNP Paribas experimented a 25-year longevity bond. Since then,

the market has seen some significant developments, most notably in terms of the number

and size of deals (Blake et al., 2014). However, relative to the size of the global longevity
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risk exposure, the present longevity risk transfer market is still very small. A small market

not only impedes longevity risk management, but also poses systemic concerns, because

when longevity risk is shifted from the corporate sector to a limited number of (re)insurers,

with global interconnections, there may be systemic consequences in the case of a failure

of a key player (Basel Committee of Banking Supervision, 2013).

The underdevelopment of the longevity risk transfer market may be attributed to the

marked imbalance between demand and supply. To date, most of the longevity risk trans-

fers executed are insurance-based, typically in the form of pension buy-ins, pension buy-

outs or bespoke longevity swaps. While the insurance industry has the scope and financial

stability to assume longevity risk, it does not generate sufficient supply for acceptance of

the risk because of its capacity constraints. Using the assets for pension plans, in excess

of 31 trillion USD, as a proxy for demand and the assets of 2.6 trillion USD held by the

global insurance industry to cover non-life risks as a proxy for supply, Graziani (2014)

concluded that the demand for acceptance of longevity risk exceeds supply by a multiple

of 10. Michealson and Mulholland (2014) also reached a similar conclusion by comparing

the potential increase in pension liabilities due to unforeseen longevity improvement with

the aggregate capital of the global insurance industry.

The demand and supply imbalance will only become worse if the reliance on the insur-

ance industry to assume longevity risk continues. On one hand, the demand is expected to

rise when pension plans in North America, where longevity risk was not widely recognized,

begin to realize the materiality of the risk as they replace older mortality assumptions with

the recently launched industry standards (the MP-2014 Scale for the US and the CPM-B

Scale for Canada), which reflect the acceleration of mortality improvement happened over
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the past two decades.1 On the other hand, as Solvency II and its equivalence come into full

effect, the insurance industry will be subject to more stringent capital requirements, which

further compress the industry’s ability to accept longevity risk exposures from pension

plans.

The growth of the longevity risk transfer market therefore depends highly on the cre-

ation of supply, most likely by inviting participation from capital markets, which are capa-

ble of assuming a larger portion of the longevity risk exposures from pension plans around

the world. 2 The longevity asset class offers capital market investors a risk premium, plus

potential diversification benefits due to its very low correlation with literally every other

asset class, including inflation, foreign exchange, commodities and equities (Ribeiro and

di Pietro, 2009). However, drawing interest from such investors requires the longevity risk

transfer market to package the risk as standardized products that are structured like typical

capital market derivatives and linked to broad-based mortality indexes. The act of stan-

dardization is important in part because it fosters the development of liquidity, and in part

because it removes the information asymmetry arising from the fact that hedgers (pension

plans) have better knowledge about the mortality experience of their own portfolios.

Towards the goal of standardization, the market for longevity risk transfers has to over-

come two technical challenges which discourage hedgers from using standardized hedging

instruments. The first challenge is to find out how standardized instruments can be used

to form a hedge that can eliminate a meaningful portion of the hedger’s longevity risk

exposure. Hedging strategies have to be developed so that hedgers know the type and

1See the Society of Actuaries (2014) and the Canadian Institute of Actuaries (2014).
2According to Roxburgh (2011), the total value of the world’s financial stock, comprising equity market

capitalization and outstanding bonds and loans, is 212 trillion USD at the end of 2010.
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notional amounts of hedging instruments they need to acquire. The second challenge is

to understand and more importantly mitigate the residual risks that are left behind by

a standardized, index-based longevity hedge. Of the residual risks the most significant

constituent is population basis risk, which arises from the difference in future mortality

improvements between the population associated with the hedger’s own portfolio and the

population(s) to which the standardized instruments are linked. However, as explained

below, the research questions on longevity hedging strategies and population basis risk are

still open.

A significant portion of the existing literature on longevity hedging strategies focuses

on static hedging (Cairns, 2013; Cairns et al., 2006b, 2014; Coughlan et al., 2011; Dowd

et al., 2011; Li and Hardy, 2011; Li and Luo, 2012). Broadly speaking, the static hedg-

ing strategies were derived by matching the sensitivities of the liability being hedged and

portfolio of hedging instruments with respect to changes in the underlying mortality rates.

Static hedging strategies are generally subject to the shortcoming of the need for long-dated

hedging instruments. For example, in an illustrative static hedge for a 30-year pension li-

ability, Li and Luo (2012) used five securities, of which the longest time-to-maturity is 25

years. Such long-dated securities do not seem appealing to capital market investors. A

few researchers including Cairns (2011), Dahl (2004), Dahl and Møller (2006), Dahl et al.

(2008) and Luciano et al. (2012) proposed dynamic longevity hedging strategies. Except

the work of Cairns (2011), the existing dynamic longevity hedging strategies were devel-

oped from continuous-time models, which provide mathematical tractability but are not

straightforward to implement in practice. Further, although some existing static hedging

strategies include an adjustment for population basis risk (Dowd et al., 2011; Li and Hardy,
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2011; Li and Luo, 2012), none of the aforementioned dynamic longevity hedging strategies

takes population basis risk into account.

For the problem of population basis risk, researchers have recently contributed signif-

icantly to the development of multi-population stochastic mortality models (Ahmadi and

Li, 2014; Cairns et al., 2011; Dowd et al., 2011; Hatzopoulos and Haberman, 2013; Jarner

and Kryger, 2011; Li and Hardy, 2011; Li and Lee, 2005; Yang and Wang, 2013; Zhou et al.,

2013, 2014). Such models can be regarded as a pre-requisite for understanding population

basis risk, because they allow users to gauge the range of possible mortality differentials

between two related populations, with biological reasonableness taken into consideration.

Researchers have also introduced metrics for quantifying population basis risk, for example,

reduction in expected shortfall (Ngai and Sherris, 2011), reduction in portfolio variance

(Coughlan et al., 2011; Li and Hardy, 2011) and minimal required buffer (Stevens et al.,

2011). However, to our knowledge, little attention has been paid to how population basis

risk can be mitigated.

In this chapter, we attempt to address the limitations of the current literature by inves-

tigating how a dynamic, index-based longevity hedge can be performed when population

basis risk is present and how the residual risks left behind by the hedge can be mitigated.

Figure 2.1 provides a graphical illustration of the general framework on which this chapter

is based. One part of the framework is a dynamic hedging strategy with which a pension

plan can transfer the ‘trend risk’ (i.e., the risk surrounding the trend in longevity im-

provement) to capital markets, even if the securities available are linked to a broad-based

mortality index. Another part of the framework is a specially designed reinsurance treaty,

called a ‘customized surplus swap’, which transfers the residual risks to a reinsurer who
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collectively manages the residual risks from the index-based longevity hedges of various

pension plans. 3

The dynamic hedging strategy we propose is obtained by generalizing the dynamic

‘delta’ hedging strategy of Cairns (2011) to incorporate the situation when the populations

associated with the hedger’s portfolio and the hedging instruments are not the same. The

generalization is derived on the basis of a multi-population stochastic mortality model,

under which the mortality dynamics of different populations are non-trivially correlated.

When implementing the proposed hedging strategy, the hedger needs to hold one only

hedging instrument at a time and the hedging instrument can be shorter-dated. The

former property helps the market to concentrate liquidity, while the latter property better

meets the appetite of capital market investors. Adding further to the contribution of

Cairns (2011) is a study of the robustness of the dynamic hedging strategy relative to

different factors including model risk, small sample risk and the properties of the hedging

instruments used.

The customized surplus swap we design eliminates all residual risks that are left be-

hind by the dynamic longevity hedge. Therefore, the combination of a dynamic longevity

hedge and customized surplus swap should produce the same hedge effectiveness as a typ-

ical bespoke longevity swap. Using real mortality data from 25 different populations, we

demonstrate that the residual risks can potentially be diversified away when a reinsurer

write customized surplus swaps with a range of hedgers. A reinsurer should thus have a

3A similar concept was mentioned by Cairns et al. (2008). In their set-up, hedgers transfer all their
longevity risk exposures by writing bespoke longevity swaps with a special purposed vehicle (SPV), and
the SPV in turn issues a standardized longevity bond which transfers the trend risk to the bondholders.
The residual risks are borne by the SPV manager.
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Figure 2.1: A graphical illustration of the general framework on which this chapter is
based.
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much larger capacity to write customized surplus swaps than contracts such as pension

buy-outs which involve significant systematic risk. Overall, our proposed risk management

framework is likely to be more economical than traditional longevity risk transfers that

are entirely insurance-based, because in theory it is less costly to transfer the systematic

trend risk through liquidly traded standardized securities than tailor-made (re)insurance

contracts.

The rest of this chapter is organized as follows. Section 2.2 presents the technical details

of the proposed dynamic hedging strategy. Section 2.3 illustrates the proposed dynamic

hedging strategy and evaluates its robustness relative to various factors. Section 2.4 defines

the proposed customized surplus swap and demonstrates the diversifiability of the residual

risks. Finally, Section 2.5 concludes the chapter and discusses in more detail why the

proposed risk management framework is likely to be more economical.

2.2 The Dynamic Longevity Hedging Strategy

2.2.1 The Assumed Model

The dynamic hedging strategy requires an assumed stochastic mortality model, from which

quantities such as hedge ratios can be derived. In the single-population set-up of Cairns

(2011), the original Cairns-Blake-Dowd model (a.k.a. Model M5) was assumed. In our

multi-population generalization, we assume the augmented common factor (ACF) model

proposed by Li and Lee (2005). The ACF model concurrently models the mortality dy-
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namics of multiple, say P , populations as follows:

ln(m
(i)
x,t) = a(i)x +BxKt + b(i)x k

(i)
t + ε

(i)
x,t, i = 1, . . . , P,

where m
(i)
x,t represents population i’s central rate of death at age x and in year t, a

(i)
x is a

parameter indicating population i’s average level of mortality at age x, Kt is a time-varying

index that is shared by all P populations, k
(i)
t is a time-varying index that is specific to

population i, parameters Bx and b
(i)
x respectively reflect the sensitivity of ln(m

(i)
x,t) to Kt

and k
(i)
t , and ε

(i)
x,t is the error term that captures all remaining variations. Following Li and

Lee (2005), we estimate the ACF model by the method of singular value decomposition.

The trend in Kt determines the evolution of mortality over time for all populations

being modeled. As in the original Lee-Carter (Lee and Carter, 1992) model, Kt is assumed

to follow a random walk with drift:

Kt = C +Kt−1 + ξt,

where C is the drift term and {ξt} is a sequence of i.i.d. normal random variables with

zero mean and constant variance σ2
K .

Departures from the common time trend are captured by the population-specific index

k
(i)
t , which is assumed to follow a first order autoregressive process:

k
(i)
t = φ

(i)
0 + φ

(i)
1 k

(i)
t−1 + ζ

(i)
t ,

where φ
(i)
0 and φ

(i)
1 are constants, and {ζ(i)t } is a sequence of i.i.d. normal random variables
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with zero mean and constant variance σ2
k,i. We require |φ(i)

1 | < 1 so that the process for k
(i)
t

is mean-reverting. This property ensures that the resulting forecasts are coherent, which

means the projected mortality rates for different populations do not diverge indefinitely

over time. To incorporate any correlation that is not captured by the common trend

Kt, we further assume that ζ
(i)
t and ζ

(j)
t for i 6= j are constantly correlated, despite such

correlations are not taken into account in the original ACF model.

2.2.2 The Set-up

We let

S
(i)
x,t(T ) =

T∏
s=1

(1− q(i)x+s−1,t+s) (2.1)

be the ex post probability that an individual who is from population i and aged x at time

t (the end of year t) would have survived to time t+ T , where q
(i)
x,t denotes the probability

that an individual from population i dies between time t−1 and t (during year t), provided

that he/she has survived to age x at time t− 1. When computing q
(i)
x,t from m

(i)
x,t (on which

the ACF model is based), we use the approximation q
(i)
x,t ≈ 1 − exp(−m(i)

x,t).
4 It is clear

from the definitions that S
(i)
x,t(T ) is not known prior to time t+ T , while q

(i)
x,t is not known

prior to time t.

Define by Ft the information about the evolution of mortality up to and including

time t. Due to the Markov property of the assumed stochastic processes, the value of

E(S
(i)
x,u(T )|Ft) for u ≥ t depends only on the values of Kt and k

(i)
t but not the values of Kv

4The approximation is exact if the force of mortality between two consecutive integer ages is constant.
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and k
(i)
v for v < t. Hence, we have

p(i)x,u(T,Kt, k
(i)
t ) := E(S(i)

x,u(T )|Kt, k
(i)
t ) = E(S(i)

x,u(T )|Ft).

We call p
(i)
x,u(T,Kt, k

(i)
t ) a spot survival probability when u = t and a forward survival

probability when u > t.

Let us suppose that the hedger intends to hedge the longevity risk associated with a

pension plan for a single cohort of individuals, who are all from population H and aged x0

at time 0. The plan pays each pensioner $1 at the end of each year until death. It follows

that the time-t value of the pension plan’s future liabilities (per surviving pensioner at

time t) can be expressed in terms of spot survival probabilities as

FLt =
∞∑
s=1

(1 + r)−s p
(H)
x0+t,t(s,Kt, k

(H)
t ),

where r is the interest rate for discounting purposes.

The hedging instruments are q-forwards that are associated with population R. A

q-forward is a zero-coupon swap with its floating leg proportional to the realized death

probability at a certain reference age during the year immediately prior to maturity and

its fixed leg proportional to the corresponding pre-determined forward mortality rate. In

this application, the hedger should participate in the q-forwards as the fixed-rate receiver,

so that he/she will receive a net payment from the counterparty when mortality turns out

to be lower than expected.

Consider a q-forward that is linked to reference population R and age xf . Suppose
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that the q-forward is issued at time t0 and matures at time t0 + T ∗. The payoff from the

q-forward depends on the realized value of q
(R)
xf ,t0+T ∗ . The corresponding forward mortality

rate qf is chosen so that no payment exchanges hands at inception (time t0). It is assumed

that qf = E(q
(R)
xf ,t0+T ∗|Ft0), which is equivalent to saying that no risk premium is given to

the counterparty accepting the risk. 5 At t = t0, . . . , t0 + T ∗ − 1, the value of the hedger’s

position of the q-forward (per $1 notional) can be expressed as

Qt(t0) = (1 + r)−(t0+T
∗−t)(qf − E(q

(R)
xf ,t0+T ∗ |Ft))

= (1 + r)−(t0+T
∗−t)(qf − (1− E(S

(R)
xf ,t0+T ∗−1(1)|Ft)))

= (1 + r)−(t0+T
∗−t)(qf − (1− p(R)

xf ,t0+T ∗−1(1, Kt, k
(R)
t )).

Under our pricing assumption, we have Qt0(t0) = 0. Note that both FLt and Qt(t0) are

related linearly to values of p
(i)
x,u(T,Kt, k

(i)
t ), where i = H,R and u ≥ t.

The main idea behind the dynamic hedging strategy is that at each discrete time point

t, the q-forward portfolio is adjusted so that FLt and the adjusted q-forward portfolio have

similar sensitivities to changes in the underlying common mortality index Kt. Hence, at

each discrete time point t, we need to compute FLt and Qt(t0) and their partial derivatives

with respect to Kt. However, because of the way in which S
(i)
x,t(T ) depends on Ku and k

(i)
u

for u = t + 1, . . . , T , the values of p
(i)
x,u(T,Kt, k

(i)
t ) for u ≥ t (and thus FLt and Qt(t0))

cannot be computed analytically. It follows that nested simulations are required, making

5Because the counterparty accepting longevity risk from the hedger deserves a risk premium, in practice

qf should be smaller than E(q
(R)
xf ,t0+T∗ |Ft0), so that payoff to the counterparty is positive in expectation

terms. However, because our focus for now is the technical aspects rather than the associated costs, we

assume qf = E(q
(R)
xf ,t0+T∗ |Ft0) for simplicity.
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the dynamic hedging framework strategy computationally challenging.

In more detail, let us assume that the hedging horizon is Y years and that the q-forward

portfolio is adjusted annually. Suppose that N sample paths of future mortality (i.e., values

of Kt, k
(H)
t and k

(R)
t for t = 1, . . . , Y ) are used to evaluate the hedge’s performance. For

each of these N sample paths, we need to evaluate, at each time point t for t = 1, . . . , Y ,

FLt and Qt(t0) on the basis of the realized values of Kt, k
(H)
t and k

(R)
t in that particular

sample path. If we calculate each FLt and Qt(t0) with M sample paths of mortality beyond

time t, then in total we need to generate N ×M ×Y sample paths. Because N and M are

typically very large, say 10,000, the computational burden is huge.

To reduce computation burden, in the next subsection we derive formulas to approxi-

mate p
(i)
x,u(T,Kt, k

(i)
t ) for u ≥ t so that the need for some of the simulations can be avoided.

The accuracy of the approximation formulas is evaluated in Appendix A.

2.2.3 The Approximation Methods

The approximation formula for p
(i)
x,u(T,Kt, k

(i)
t ) depends on whether u = t or u > t.

Approximating p
(i)
x,u(T,Kt, k

(i)
t ) when u = t

Following Cairns (2011), we approximate p
(i)
x,t(T,Kt, k

(i)
t ) by applying a Taylor expansion to

its probit transform, f
(i)
x,t(T,Kt, k

(i)
t ) := Φ−1(p

(i)
x,t(T,Kt, k

(i)
t )), where Φ denotes the standard

normal distribution function. The Taylor expansion is made around K̂t = E(Kt|K0) and
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k̂
(i)
t = E(k

(i)
t |k

(i)
0 ). We consider a second-order approximation, which means

f
(i)
x,t(T,Kt, k

(i)
t ) ≈ D

(i)
x,t,0(T ) +D

(i)
x,t,1(T )(Kt − K̂t) +D

(i)
x,t,2(T )(k

(i)
t − k̂

(i)
t )

+
1

2
D

(i)
x,t,3(T )(Kt − K̂t)

2 +
1

2
D

(i)
x,t,4(T )(k

(i)
t − k̂

(i)
t )2

+D
(i)
x,t,5(T )(Kt − K̂t)(k

(i)
t − k̂

(i)
t ),

where

D
(i)
x,t,0(T ) = f

(i)
x,t(T, K̂t, k̂

(i)
t ), D

(i)
x,t,1(T ) =

∂f
(i)
x,t(T,Kt,k̂

(i)
t )

∂Kt

∣∣∣∣
Kt=K̂t

,

D
(i)
x,t,2(T ) =

∂f
(i)
x,t(T,K̂t,k

(i)
t )

∂k
(i)
t

∣∣∣∣
k
(i)
t =k̂

(i)
t

, D
(i)
x,t,3(T ) =

∂2f
(i)
x,t(T,Kt,k̂

(i)
t )

∂K2
t

∣∣∣∣
Kt=K̂t

,

D
(i)
x,t,4(T ) =

∂2f
(i)
x,t(T,K̂t,k

(i)
t )

∂k
2,(i)
t

∣∣∣∣
k
(i)
t =k̂

(i)
t

, D
(i)
x,t,5(T ) =

∂2f
(i)
x,t(T,Kt,k

(i)
t )

∂Kt∂k
(i)
t

∣∣∣∣
Kt=K̂t,k

(i)
t =k̂

(i)
t

.

The values of D
(i)
x,t,j(T ) for j = 1, . . . , 5 are computed numerically as follows:

D
(i)
x,t,1(T ) ≈ (f

(i)
x,t(T, K̂t + h, k̂

(i)
t )− f (i)

x,t(T, K̂t, k̂
(i)
t ))/h,

D
(i)
x,t,2(T ) ≈ (f

(i)
x,t(T, K̂t, k̂

(i)
t + h)− f (i)

x,t(T, K̂t, k̂
(i)
t ))/h,

D
(i)
x,t,3(T ) ≈ (f

(i)
x,t(T, K̂t + h, k̂

(i)
t ) + f

(i)
x,t(T, K̂t − h, k̂(i)t )− 2f

(i)
x,t(T, K̂t, k̂

(i)
t ))/h2,

D
(i)
x,t,4(T ) ≈ (f

(i)
x,t(T, K̂t, k̂

(i)
t + h) + f

(i)
x,t(T, K̂t, k̂

(i)
t − h)− 2f

(i)
x,t(T, K̂t, k̂

(i)
t ))/h2,

D
(i)
x,t,5(T ) ≈ (f

(i)
x,t(T, K̂t + h, k̂

(i)
t + h) + f

(i)
x,t(T, K̂t − h, k̂(i)t − h)

− f (i)
x,t(T, K̂t + h, k̂

(i)
t − h)− f (i)

x,t(T, K̂t − h, k̂(i)t + h))/4h2,

where h is an arbitrarily small positive value.
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To calculate the above partial derivatives for a fixed t, we require nine sets of M

sample mortality paths, which are respectively based on nine different sets of starting

values, including (Kt = K̂t, k
(i)
t = k̂

(i)
t ), (Kt = K̂t +h, k

(i)
t = k̂

(i)
t ), (Kt = K̂t, k

(i)
t = k̂

(i)
t +h)

and so on. For a hedging horizon of Y time steps, the number of sample paths required to

generate the partial derivatives is 9×M × Y .

Suppose again that N mortality scenarios are used to evaluate the hedge’s performance.

Because the partial derivatives are independent of these N mortality scenarios, the total

number of sample paths we need to generate is N + 9 × M × Y , which is significantly

smaller than N ×M × Y when N and M are large.

Approximating p
(i)
x,u(T,Kt, k

(i)
t ) when u > t

Using a first-order approximation, it can be shown that

p(i)x,u(T,Kt, k
(i)
t ) ≈ Φ

 −E(V
(i)
u |Ft)√

Var(V
(i)
u |Ft)

 ,

where

E(V (i)
u |Ft) = −D(i)

x,u,0(T )−D(i)
x,u,1(T )(E(Ku|Ft)− K̂u)−D(i)

x,u,2(T )(E(k(i)u |Ft)− k̂(i)u ),

Var(V (i)
u |Ft) = 1 + (D

(i)
x,u,1(T ))2Var(Ku|Ft) + (D

(i)
x,u,2(T ))2Var(k(i)u |Ft),

E(Ku|Ft)− K̂u = Kt −K0 − Ct,

E(k(i)u |Ft)− k̂u = (φ
(i)
1 )u((φ

(i)
1 )−tk

(i)
t − k

(i)
0 ) +

(φ
(i)
1 )u(1− (φ

(i)
1 )−t)

1− φ(i)
1

φ
(i)
0 ,
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Var(Ku|Ft) = σ2
K(u− t) and Var(k

(i)
u |Ft) =

1−(φ(i)1 )2(u−t)

1−(φ(i)1 )2
σ2
k,i. A proof of the above approxi-

mation formula is provided in Appendix B.

2.2.4 Deriving Hedge Ratios

Our goal is to ensure that at each discrete time point t, the q-forward portfolio and the

pension plan’s future liabilities have similar sensitivities to changes in the underlying com-

mon mortality index Kt. To achieve this goal, the hedge ratio ht (i.e., the notional amount

of the q-forward) at time t is chosen in such a way that

∂FLt
∂Kt

= ht
∂Qt(t0)

∂Kt

.

Because we match the first derivatives only, only one q-forward contract is needed at each

t. For the same reason, our hedge may be considered as a ‘delta’ hedge. In principle, one

may create, for example, a ‘gamma’ hedge by matching also the second order derivatives.

The next chapter explores ‘delta’ and ‘gamma’ hedges in a static set-up.

The partial derivative of FLt with respect to Kt is computed as follows:

∂FLt
∂Kt

=
∞∑
s=1

(1 + r)−s
∂p

(H)
x0+t,t(s,Kt, k

(H)
t )

∂Kt

=
∞∑
s=1

(1 + r)−s
∂Φ(f

(H)
x0+t,t(s,Kt, k

(H)
t ))

∂Kt

≈
∞∑
s=1

(1 + r)−sD
(H)
x0+t,t,1

(s)φ(f
(H)
x0+t,t(s,Kt, k

(H)
t )),
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where φ represents the probability density function for a standard normal random variable.

The partial derivative of Qt(t0) with respect to Kt depends on the value of t relative to

the q-forward’s maturity date t0 + T ∗. If t = t0 + T ∗ − 1,

∂Qt(t0)

∂Kt

= (1 + r)−1
∂p

(R)
xf ,t

(1, Kt, k
(R)
t )

∂Kt

≈ (1 + r)−1D
(R)
xf ,t,1

(1)φ(f
(R)
xf ,t

(1, Kt, k
(R)
t )).

If t = t0, . . . , t0 + T ∗ − 2,

∂Qt(t0)

∂Kt

=(1 + r)−(t0+T
∗−t)

∂p
(R)
xf ,t0+T ∗−1(1, Kt, k

(R)
t )

∂Kt

≈(1 + r)−(t0+T
∗−t) ∂

∂Kt

Φ

 −E(V
(R)
t0+T ∗−1|Ft)√

Var(V
(R)
t0+T ∗−1|Ft)


=(1 + r)−(t0+T

∗−t)φ

 −E(V
(R)
t0+T ∗−1|Ft)√

Var(V
(R)
t0+T ∗−1|Ft)

 −D(R)
xf ,t0+T ∗−1,1(1)√

Var(V
(R)
t0+T ∗−1|Ft)

.

2.2.5 Evaluating the Hedge

As previously mentioned, N mortality scenarios are simulated to evaluate the effectiveness

of the dynamic hedge.

Define by PLt the time-0 value of all pension liabilities, given the information up to
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and including time t; that is,

PLt = E

(
∞∑
s=1

(1 + r)−sS
(H)
x0,0

(s)

∣∣∣∣Ft
)

=

 FL0, t = 0∑t
s=1(1 + r)−sS

(H)
x0,0

(s) + (1 + r)−tS
(H)
x0,0

(t)FLt, t > 0.
(2.2)

The value of PL0 is non-random, as it is simply a function of K0 and k
(H)
0 whose values

are fixed. For t > 0, the values of PLt are different under different simulated mortality

scenarios. In particular, the values of S
(H)
x0,0

(s) for s = 1, . . . , t depend on the realized values

of Ks and k
(H)
s for s = 1, . . . , t, whereas the value of FLt depends on the realized values of

Kt and k
(H)
t .

It is assumed that at each time point t, the hedger writes a new q-forward contract

(i.e., a q-forward with inception date t0 = t) with a notional amount of ht. The value of

this position is htQt(t) = 0 at time t and becomes

htQt+1(t) = ht(1 + r)−(T
∗−1)(qf − E(q

(R)
xf ,t+T ∗|Ft+1))

= ht(1 + r)−(T
∗−1)(E(q

(R)
xf ,t+T ∗|Ft)− E(q

(R)
xf ,t+T ∗|Ft+1))

= ht(1 + r)−(T
∗−1)(p

(R)
xf ,t+T ∗−1(1, Kt+1, k

(R)
t+1)− p

(R)
xf ,t+T ∗−1(1, Kt, k

(R)
t ))

at time t+ 1. 6 At time t+ 1, the position written at time t is closed out, and another new

q-forward contract is written. The process repeats until the end of the hedging horizon

Y is reached. For simplicity, we assume that all q-forwards used over the hedging horizon

6The second step is due to our pricing assumption.
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have the same maturity T ∗ and reference age xf .

Let PAt be the time-0 value of the assets backing the pension plan at time t. We

assume that PA0 = PL0. For t = 1, . . . , Y , we have

PAt = PAt−1 + (1 + r)−tht−1Qt(t− 1).

If PAt is very close to PLt for t = 1, . . . , Y , then the dynamic hedge can be said as

successful. The potential deviation between PAt and PLt is the residual risk that is

not mitigated by the hedge. Using this reasoning, we measure hedge effectiveness by the

following metric:

HEt = 1− Var(PAt − PLt|F0)

Var(PLt|F0)
.

A value of HEt that is close to one indicates the hedge is effective. Similar metrics have

been used by Cairns (2011, 2013), Cairns et al. (2014), Coughlan et al. (2011) and Li and

Hardy (2011).

2.3 Analyzing the Dynamic Longevity Hedge

2.3.1 Assumptions

The following assumptions are used in the baseline calculations.

1. The hedger wishes to hedge the pension liabilities that are payable to a single cohort

of individuals, who are all aged x0 = 60 at time 0. The mortality experience of these
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individuals is identical to that of the UK male insured lives.

2. The pension plan pays each individual $1 at the end of each year until death or age

90, whichever the earliest. 7

3. The hedging horizon is Y = 30 years (i.e., the hedge stops when the liabilities have

completely run off).

4. The q-forwards used are linked to England and Wales (EW) male population. They

all have a time-to-maturity (from inception) of T ∗ = 10 years and a reference age of

xf = 75.

5. The market for the q-forwards is liquid and no transaction cost is required.

6. The interest rate for all durations is r = 4% per annum. The interest rate remains

constant over time.

7. The hedger can invest or borrow at an interest rate of r = 4% per annum.

8. The values of D
(i)
x,t,j(T ) for i = H,R and j = 0, . . . , 5 are computed from an ACF

model that is estimated to the data from the populations of EW males and UK male

insured lives over the period of 1966 to 2005 and the age range of 60 to 89. 8

9. To match the end point of the data sample period, time 0 is set to the end of year

2005.

7We assume that no pension is payable beyond age 90, because the upper limit of the age range to
which the ACF model is fitted is 89. This assumption may be relaxed if one assumes a parametric curve
to extrapolate death probabilities beyond age 89.

8The data for EW males are provided by the Human Mortality Database (2014), while the data for UK
male insured lives are obtained from the Institute and Faculty of Actuaries by a written request.
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10. The evaluation of hedge effectiveness is based on N = 10, 000 mortality scenarios

that are generated from the model described in Assumption (8).

11. There is no small sample risk.

2.3.2 Baseline Results

Let us first study the calculation of hedge ratios at different time points. The fan charts

in Figure 2.2 show the distributions of ∂FLt

∂Kt
|F0,

∂Qt(t)
∂Kt
|F0 and ht|F0 for t = 0, . . . , 29. 9

The values of ∂FLt

∂Kt
for t = 0, . . . , 29 are negative, because the value of future liabili-

ties reduces when Kt is larger (i.e., mortality becomes higher). As the liabilities run off,

the magnitude of ∂FLt

∂Kt
reduces gradually to zero. The uncertainty surrounding ∂FLt

∂Kt
|F0

increases with time initially but then reduces gradually to zero. The initial increase in

uncertainty is because ∂FLt

∂Kt
is a function of Kt whose randomness (given F0) increases

with time, while the reduction afterwards is because the liabilities run off.

The values of ∂Qt(t)
∂Kt

for t = 0, . . . , 29 are also negative, because from the viewpoint

of the hedger (who participates in the q-forward as a fixed rate receiver), the value of

the q-forward portfolio is smaller if the floating rate goes up, which happens when Kt

is larger. The value of ∂Qt(t)
∂Kt

approaches (slowly) to zero, because the value of q
(R)
75,t+10 on

which Qt(t) depends tends slowly to zero as mortality improves over time. The uncertainty

surrounding ∂Qt(t)
∂Kt
|F0 increases with t, because ∂Qt(t)

∂Kt
is a function of Kt which is subject

to increasing randomness over time. The slow reduction in q
(R)
75,t+10 may have an impact on

9Each fan chart shows the central 10% prediction interval with the heaviest shading, surrounded by the
20%, 30%, ..., 90% prediction intervals with progressively lighter shading.
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Figure 2.2: Fan charts showing the distributions of ∂FLt
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the uncertainty but is negligible.

The value of ht, which is the ratio of ∂FLt

∂Kt
to ∂Qt(t)

∂Kt
, increases first but then decreases.

This pattern may be explained by the gradients of the trends in ∂FLt

∂Kt
and ∂Qt(t)

∂Kt
. In

particular, the initial increase in ht is because the magnitude of ∂Qt(t)
∂Kt

reduces much more

rapidly than that of ∂FLt

∂Kt
. As expected, the value of ht reduces to zero at t = 30 when the

liabilities run off completely.

We now move on to studying the hedged and unhedged liabilities over time. The gray

(larger) fan chart in Figure 2.3 depicts the distributions of (PLt−PL0)|F0 (or equivalently

PLt|F0) for t = 0, . . . , 30. When there is no longevity hedge, the time-0 value of the assets

backing the pension plan is always FL0, because we assume PA0 = PL0 = FL0. Hence,

PLt − PL0 can be regarded as the shortfall in assets in the absence of a longevity hedge.

The uncertainty surrounding PLt|F0 increases with t, but becomes stable as t→ 30. The

increase in uncertainty is because in comparison to PLt−1, PLt depends on two additional

random variables, Kt and k
(H)
t . The reduction in the rate of increase can be explained by

the following equation:

PLt − PLt−1 = (1 + r)−t(S
(H)
60,0(t) + S

(H)
60,0(t)FLt − (1 + r)S

(H)
60,0(t− 1)FLt−1),

t = 2, . . . , 30, which is obtained straightforwardly from equation (2.2). As t→ 30, S
(H)
60,0(t),

FLt, (1 + r)−t and hence PLt − PLt−1 tend to zero. The sample paths of PLt there-

fore become flat gradually, which implies the distribution of PLt|F0 becomes increasingly

invariant with time.

The green (smaller) fan chart in Figure 2.3 shows the distributions of (PLt − PAt)|F0
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for t = 0, . . . , 30. We can regard PLt − PAt as the shortfall in assets when a dynamic

longevity hedge is in place. Over the entire hedging horizon, (PLt−PAt)|F0 is significantly

less dispersed than (PLt − PL0)|F0, indicating that the longevity hedge is effective. The

hedge effectiveness can be seen more clearly from the red line in Figure 2.4, which shows

that the value of HEt is consistently larger than 90%.

To assess the extent of population basis risk, we repeat the calculations by assuming,

hypothetically, that q-forwards linked to the population of UK male insured lives are avail-

able and used. The hedging results are shown in Figure 2.5. 10 The degree of population

basis risk can be observed from the difference in the widths of the green fan charts in Fig-

ures 2.3 and 2.5. It can also be assessed by comparing the values of HEt when population

basis risk is present and hypothetically absent in Figure 2.4.

2.3.3 Robustness

In this subsection, we test the robustness of the hedge effectiveness relative to model risk,

small sample risk, the q-forwards’ reference age and the q-forwards’ time-to-maturity.

Robustness Relative to Model Risk

We now study how hedge effectiveness may change when the actual underlying model is

not the ACF model on which valuation and calculation of hedge ratios are based. To

10When modeling only one population, the ACF model degenerates to the original Lee-Carter Model.
The results shown in Figure 2.5 are therefore derived from the original Lee-Carter model which is fitted to
data from UK male insured lives only. Because different models are used, the gray fan charts in Figures 2.3
and 2.5 are slightly different.
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mimic this situation, we use an alternative stochastic model to generate the N mortality

scenarios for assessing hedge effectiveness, while the ACF model is still used for valuation

and calculation of hedge ratios. The following two alternative models are considered.

• An asymmetric multi-population Lee-Carter model (M-LC)

Originally proposed by Cairns et al. (2011), the M-LC model has the following

structure:

ln(m
(i)
x,t) = α(i)

x + βxκ
(i)
t + e

(i)
x,t, i = 1, . . . , P,

where α
(i)
x and βx are age-specific parameters, κ

(i)
t is a time-varying parameter and

e
(i)
x,t is the error term. The model is considered as asymmetric, because one population

being modeled (say population id) is assumed to be dominant, driving the mortality

dynamics of the other populations. The evolution of κ
(id)
t over time is modeled by

a random walk with drift, while the differential κ
(id)
t − κ(i)t for i 6= id is modeled by

a first order autoregressive process. These processes ensure the resulting forecast is

coherent.

In our illustration, we estimate the M-LC model to data from EW males and UK

male insured lives, with the assumption that the dominant population is EW males.

The method of singular value decomposition is used to estimate the model.

• A multi-population Cairns-Blake-Dowd model (M-CBD)

The M-CBD model is an extension of the original Cairns-Blake-Dowd model (Cairns
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et al., 2006a). It can be expressed as

ln

(
q
(i)
x,t

1− q(i)x,t

)
= κ∗1,t + κ∗2,t(x− x̄) + κ

(i)
1,t + κ

(i)
2,t(x− x̄) + e

(i)
x,t, i = 1, . . . , P,

where x̄ denotes the average age over the sample age range, κ∗1,t and κ∗2,t are time-

varying parameters that are shared by all P populations, κ
(i)
1,t and κ

(i)
2,t are time-varying

parameters that apply only to population i, and e
(i)
x,t is the error term. We estimate

the M-CBD model to data from EW males and UK male insured lives with the

method of least squares.

The vector of κ∗1,t and κ∗2,t is modeled by a bivariate random walk with drift. Each

κ
(i)
1,t is modeled by a first order autoregression, with a mean-reverting property that

ensures the resulting projection is coherent.

The hedge effectiveness under the alternative simulation models is calculated with the

procedure below.

1. Generate N mortality scenarios from either the M-LC or M-CBD model.

2. For each mortality scenario and t = 1, . . . , Y ,

(a) calculate the values of S
(H)
x0,0

(s), s = 1, . . . , t, in PLt by using equation (2.1) and

the simulated death probabilities;

(b) estimate the realized values of Kt, k
(H)
t and k

(R)
t by minimizing the following
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sum of squares:

∑
x

(
ln(m̃

(i)
x,t)− â(i)x − B̂xKt − b̂(i)x k

(i)
t

)2
, i = H,R,

where m̃
(i)
x,t denotes the value of m

(i)
x,t simulated from the alternative model, and

â
(i)
x , B̂x and b̂

(i)
x are the estimates of a

(i)
x , Bx and b

(i)
x in the assumed ACF model,

respectively;

(c) using the values of Kt, k
(H)
t and k

(R)
t obtained in step (b), compute FLt, Qt(t),

∂FLt

∂Kt
, ∂Qt(t)

∂Kt
and ht; the values of D

(i)
x,t,j(T ), i = H,R, j = 0, . . . , 5, involved in

these quantities remain unchanged, because the valuation model is still the ACF

model.

(d) using the results from steps (a) and (c), calculate PAt and PLt.

3. Calculate Var(PAt − PLt|F0), Var(PLt|F0) and finally HEt for t = 1, . . . , Y .

The middle and right panels in Figure 2.6 show the hedging results when the simulation

model used is M-LC and M-CBD, respectively. For ease of comparison, the left panel in

the same figure shows the baseline hedging result that is based on mortality scenarios

generated from the ACF model.

The hedging result when the simulation model is M-LC is quite close to the baseline

result. This outcome may be attributed to the fact that the ACF and M-LC models are

similar. Both models are generalizations of the single-population Lee-Carter model, and

both models contain only one time-varying factor that is shared by all populations being

modeled. Also, as the M-LC model contains one less stochastic process than the ACF
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Figure 2.6: Fan charts showing the distributions of (PLt − PL0)|F0 (in gray) and (PLt −
PAt)|F0 (in green) when the simulation models are ACF (the left panel), M-LC (the middle
panel) and M-CBD (the right panel). The corresponding values of HE30 are displayed on
the top of the diagrams.
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model, 11 it may imply less stochastic uncertainty, which may explain why it leads to a

hedging result that is even better than the baseline result.

The hedging result when the simulation model is M-CBD is not as good as the baseline

result. This outcome may be explained by the fact that the M-CBD model contains two

stochastic factors that are common to both populations, but the hedge is composed of only

one instrument at a time. Nevertheless, the value of HE30 produced under this simulation

model is still above 90%, indicating that the hedge remains highly effective even if the true

underlying model is different and more sophisticated.

Robustness Relative to Small Sample Risk

Next, we investigate the impact of small sample risk (a.k.a. sampling risk and Poisson risk)

on hedge effectiveness. The cohort of pensioners is now treated as a random survivorship

group, so that given the values of lx0+s−1 and q
(H)
x0+s−1,s,

lx0+s ∼ Binomial(lx0+s−1, 1− q
(H)
x0+s−1,s),

s = 1, . . . , Y , where lx represents the number of pensioners who survive to age x. Note

that lx0 is non-random.

The procedure and assumptions for calculating hedge effectiveness remain the same,

except that the values of S
(H)
x0,0

(s), s = 1, . . . , t, in PLt are now calculated with an additional

11In this application, the ACF model contains three stochastic processes (one for Kt, one for k
(H)
t and

one for k
(R)
t ), whereas the M-LC model contains two stochastic processes (one for κ

(R)
t and another for

κ
(H)
t − κ(R)

t ).
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simulation routine. Specifically, for each of the N mortality scenarios generated, we simu-

late a realization of lx0+s using the above binomial process, and then calculate the realized

value of S
(H)
x0,0

(s) as l̃x0+s/lx0 , where l̃x0+s denotes the realized value of lx0+s. Because small

sample risk affects only the pension plan’s realized mortality experience, the values of FLt,

Qt(t) and ht are unaffected.

In Figure 2.7 we show the hedging results when the pension plan begins at time 0 with

l60 = 10,000, 3,000 and 1,000 individuals aged x0 = 60. To ease comparison, also shown in

the same figure is the baseline hedging result that is based on the assumption that there

is no small sample risk.

The hedge effectiveness is still very high (HE30 is close to 90%) when l60 = 10, 000.

However, the impact of small sample risk becomes apparent as l60 reduces to 3,000. These

observations are in line with the results produced by Li and Hardy (2011) who considered

a static longevity hedge.

Although the impact of small sample risk is significant, we believe that it can be

mitigated by an appropriately designed reinsurance treaty that is executed in tandem

with the dynamic longevity hedge. The design of such a reinsurance treaty is detailed in

Section 2.4.3.

Robustness Relative to the q-Forwards’ Reference Age

In early stages of market development, the availability of q-forwards is likely to be lim-

ited. It is therefore important to understand how hedge effectiveness may change if the

characteristics of the q-forwards used are different.
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Figure 2.7: Fan charts showing the distributions of (PLt − PL0)|F0 (in gray) and (PLt −
PAt)|F0 (in green) when l60 = 10, 000, 3, 000, 1, 000 and when there is no small sample
risk. The corresponding values of HE30 are displayed on the top of the diagrams.
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We hereby test the robustness of the hedge effectiveness relative to the reference age

xf of the q-forwards used. Figure 2.8 shows the hedging results when xf = 65, 70, 75, 80.

It can be seen that changes in xf have only a negligible effect on the hedging result. For

all four choices of xf , the values of HE30 are over 90%.

Recall that the dynamic longevity hedge is constructed by matching the sensitivities

of the pension plan’s liabilities and the hedge portfolio with respect to Kt. Therefore, a

hedging instrument tends to be effective if its payoff is heavily dependent on the randomness

associated with Kt (which affects both the hedging instrument and the liabilities being

hedged) but not so much on the randomness associated with k
(H)
t (which affects the hedging

instrument but has little effect on the liabilities being hedged). In particular, for a q-

forward with reference age xf , the resulting hedge effectiveness tends to be high if

Var(BxfKt+T ∗|Ft)� Var(b(H)
xf
k
(H)
t+T ∗|Ft).

Given the parameter estimates, we haveBxf � b
(H)
xf for xf = 65, . . . , 80 and Var(Kt+T ∗ |Ft) =

T ∗σ2
K � Var(k

(H)
t+T ∗|Ft) = (1−(φ

(H)
1 )2T

∗
)σ2

k,H/(1−(φ
(H)
1 )2) for T ∗ = 10. Therefore, the rela-

tion above holds and the hedging results shown in Figure 2.8 are generally good. The four

choices of xf lead to slightly different hedging results, because there exist small variations

in the estimates of Bx and b
(H)
x over the age range of 65 to 80.

Robustness Relative to the q-Forwards’ Time-to-Maturity

Finally, we study the robustness of the hedge effectiveness relative to the time-to-maturity

T ∗ of the q-forwards used. We implement the dynamic longevity hedge using q-forwards
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Figure 2.8: Fan charts showing the distributions of (PLt − PL0)|F0 (in gray) and
(PLt−PAt)|F0 (in green) when xf = 65, 70, 75, 80. The corresponding values of HE30 are
displayed on the top of the diagrams.
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with maturities of 5, 10, 15 and 20 years. The hedging results are displayed in Figure 2.9.

The dynamic longevity hedge is more effective when the q-forwards used have a longer

time-to-maturity. This result is because as T ∗ increases, Var(Kt+T ∗|Ft) grows linearly

while Var(k
(H)
t+T ∗|Ft) approaches gradually to a constant, which in turn means that the

random underlying mortality rate becomes relatively more dependent on the randomness

associated with Kt (which affects both the q-forward and the liabilities being hedged) but

less on the randomness associated with k
(H)
t (which has little effect on the liabilities being

hedged). 12

Still, even when T ∗ is as small as five years, the value of HE30 is higher than 80%. The

high effectiveness can be attributed to the dynamic nature of our hedging strategy. Because

we adjust the hedge annually and hold each q-forward for only one year, each q-forward is

responsible for hedging the uncertainty that is one year ahead only. For this reason, short-

dated q-forwards still lead to highly satisfactory results, despite the liability payments last

for 30 years. This feature distinguishes our method from static hedging strategies, such

as that in the next chapter or proposed in Li and Luo (2012), which generally require

longer-dated instruments to achieve a satisfactory result.

2.4 Managing the Residual Risks

In this section, we explain how the residual risks from a dynamic, index-based longevity

hedge can be managed through a reinsurance mechanism. We begin with a description of

the assumptions used, followed by an exploratory analysis of the potential diversifiability of

12This property can be visualized from Figure A.1 in Appendix A.
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Figure 2.9: Fan charts showing the distributions of (PLt − PL0)|F0 (in gray) and (PLt −
PAt)|F0 (in green) when T ∗ = 5, 10, 15, 20. The corresponding values ofHE30 are displayed
on the top of the diagrams.
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the residual risks. We then define a reinsurance treaty which we call a ‘customized surplus

swap’ and demonstrate how it works with real mortality data.

2.4.1 Assumptions

As we expand our analysis to include more than two populations, some of the previously

made assumptions have to be modified accordingly. Below we list the assumptions that

are used in this section.

(i) There are 25 pension plans wishing to hedge their longevity risk exposures. The

25 pension plans have respectively identical mortality experience to the 25 male

populations listed in Table 2.1. 13

(ii) Each pension plan contains initially l60 = 3, 000 pensioners who are all aged x0 = 60.

For x = 61, 62, . . ., lx follows the binomial process described in Section 2.3.3.

(iii) At any time point during the hedging horizon, the only hedging instrument available

is a q-forward that is linked to EW male population with a time-to-maturity (from

inception) of T ∗ = 10 years and a reference age of xf = 75.

(iv) The values of D
(i)
x,t,j(T ) for i = 1, . . . , 25 and j = 0, . . . , 5 are computed from an

ACF model that is estimated to the data from the 25 male populations listed in

Table 2.1. 14

13The chosen 25 male populations are the same as the 25 populations that are classified as the ‘males
West-cluster’ by Hatzopoulos and Haberman (2013).

14The mortality data for all 25 male populations are obtained from the Human Mortality Database
(2014). The data used cover a sample period of 1959 to 2009 and a sample age range of 60 to 89.
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Index (i) Population Index (i) Population

1 England & Wales (EW) 14 Spain (ESP)

2 Scotland (SCO) 15 The United States (USA)

3 East Germany (DEUE) 16 Luxembourg (LUX)

4 West Germany (DEUW) 17 The Netherlands (NLD)

5 France (FRA) 18 Sweden (SWE)

6 Portugal (PRT) 19 Ireland (IRL)

7 Switzerland (CHE) 20 Norway (NOR)

8 Belgium (BEL) 21 Australia (AUS)

9 Finland (FIN) 22 Iceland (ISL)

10 Canada (CAN) 23 Japan (JPN)

11 Austria (AUT) 24 Czech (CZE)

12 Italy (ITA) 25 Denmark (DNK)

13 New Zealand (NZL)

Table 2.1: The 25 male populations that are considered in Section 2.4.
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(v) To match the end point of the data sample period, time 0 is set to the end of year

2009.

(vi) The evaluation of hedge effectiveness is based on N = 10, 000 mortality scenarios

that are generated from the model described in Assumption (iv).

Assumptions (2), (3), (5), (6) and (7) stated in Section 2.3.1 remain unchanged.

2.4.2 An Exploratory Analysis

Let us first study the hedging results for the 25 pension plans (see Figure 2.10). As

expected, the hedging result for the plan associated with EW males is the best, because

there is no population basis risk involved in the hedge. For the remaining 24 plans, the

hedging results vary significantly, withHE30 ranging from 38% to 77%. The results indicate

that the dynamic longevity hedge may leave substantial residual risks.

The residual risks include small sample risk and population basis risk. As small sample

risk is inversely related to the number of individuals in a portfolio, it is quite obvious

that it can be diversified away by pooling different pension plans. The diversifiability

of population basis risk is not that apparent, but may be understood by comparing the

correlation matrices which we now present.

In Table 2.2 we show the sample correlation coefficients of the log central death rates at

age 75 for the 25 male populations listed in Table 2.1. In general, the correlation coefficients

are very close to one, indicating the uncertainty surrounding the mortality rates of the 25
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Figure 2.10: Fan charts showing the distributions of (PLt−PL0)|F0 (in gray) and (PLt−
PAt)|F0 (in green) for the 25 pension plans under consideration. The corresponding values
of HE30 are displayed on the top of the diagrams.
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male populations is largely systematic. This result supports the use of an index-based

hedge to remove the portion of longevity risk that is common to all populations.

In Table 2.3 we show the sample correlation coefficients of ln(m
(i)
75,t) − B̂75K̂t, i =

1, . . . , 25, where B̂75 and K̂t are respectively the estimates of B75 and Kt in the ACF

model that is fitted to the data from the 25 male populations. We can interpret the quantity

ln(m
(i)
75,t)− B̂75K̂t to mean the log central death rate at age 75 after removing the random

component that is shared by all 25 male populations. Also, because the dynamic longevity

hedge described in Section 2.2 is constructed to eliminate the uncertainty associated with

the common trend Kt, we can understand the sample correlation coefficients in Table 2.3

as the residual correlations between the log mortality rates that are associated with the 25

pension plans after implementing the dynamic longevity hedge.

The off-diagonal portion of Table 2.3 contains a mixture of positive and negative values,

with some quite close to zero. More importantly, they are significantly smaller than the

corresponding values in Table 2.2. These observations suggest that the uncertainty not

captured by the dynamic longevity hedge may possibly be diversified away by pooling

different pension plans.

2.4.3 A Customized Surplus Swap

Motivated by the results of the exploratory analysis, we propose a customized surplus swap

that permits pooling of the residual risks from different dynamic longevity hedges. When

implementing such a swap in tandem with a dynamic index-based hedge, the pension plan

would in theory be immunized from longevity risk.
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EW SCO DEUE DEUW FRA PRT CHE BEL FIN CAN AUT ITA NZL ESP USA LUX NLD SWE IRL NOR AUS ISL JPN CZE DNK

EW 1.00 0.98 0.98 0.99 0.91 0.97 0.99 0.98 0.96 0.99 0.93 0.98 0.95 0.98 0.99 0.95 0.98 0.92 0.92 0.89 0.98 0.97 0.89 0.68 0.98

SCO 0.98 1.00 0.97 0.97 0.90 0.97 0.98 0.96 0.95 0.98 0.94 0.97 0.94 0.96 0.97 0.94 0.97 0.90 0.91 0.88 0.97 0.96 0.89 0.66 0.97

DEUE 0.98 0.97 1.00 0.96 0.83 0.98 0.98 0.96 0.97 0.98 0.87 0.98 0.98 0.99 0.96 0.90 0.98 0.96 0.86 0.82 0.98 0.97 0.88 0.63 0.98

DEUW 0.99 0.97 0.96 1.00 0.92 0.95 0.98 0.97 0.95 0.98 0.93 0.97 0.93 0.96 0.98 0.94 0.99 0.89 0.93 0.89 0.98 0.96 0.90 0.67 0.99

FRA 0.91 0.90 0.83 0.92 1.00 0.85 0.89 0.89 0.84 0.91 0.96 0.86 0.78 0.84 0.92 0.94 0.89 0.70 0.95 0.94 0.88 0.88 0.83 0.69 0.89

PRT 0.97 0.97 0.98 0.95 0.85 1.00 0.98 0.96 0.96 0.97 0.89 0.98 0.96 0.98 0.96 0.91 0.96 0.95 0.85 0.85 0.97 0.97 0.88 0.66 0.96

CHE 0.99 0.98 0.98 0.98 0.89 0.98 1.00 0.98 0.96 0.98 0.92 0.98 0.96 0.98 0.98 0.93 0.98 0.93 0.89 0.88 0.98 0.98 0.89 0.68 0.98

BEL 0.98 0.96 0.96 0.97 0.89 0.96 0.98 1.00 0.95 0.97 0.93 0.97 0.94 0.97 0.97 0.93 0.96 0.91 0.90 0.87 0.96 0.96 0.88 0.73 0.96

FIN 0.96 0.95 0.97 0.95 0.84 0.96 0.96 0.95 1.00 0.96 0.88 0.97 0.97 0.98 0.95 0.88 0.97 0.94 0.86 0.82 0.97 0.95 0.84 0.64 0.97

CAN 0.99 0.98 0.98 0.98 0.91 0.97 0.98 0.97 0.96 1.00 0.93 0.97 0.95 0.97 0.98 0.94 0.99 0.91 0.93 0.88 0.99 0.96 0.89 0.66 0.99

AUT 0.93 0.94 0.87 0.93 0.96 0.89 0.92 0.93 0.88 0.93 1.00 0.89 0.84 0.88 0.94 0.95 0.92 0.76 0.95 0.92 0.92 0.91 0.84 0.72 0.92

ITA 0.98 0.97 0.98 0.97 0.86 0.98 0.98 0.97 0.97 0.97 0.89 1.00 0.97 0.99 0.97 0.91 0.97 0.95 0.87 0.84 0.98 0.97 0.88 0.66 0.97

NZL 0.95 0.94 0.98 0.93 0.78 0.96 0.96 0.94 0.97 0.95 0.84 0.97 1.00 0.98 0.93 0.85 0.95 0.97 0.80 0.76 0.96 0.95 0.85 0.60 0.95

ESP 0.98 0.96 0.99 0.96 0.84 0.98 0.98 0.97 0.98 0.97 0.88 0.99 0.98 1.00 0.96 0.90 0.97 0.96 0.85 0.83 0.97 0.97 0.86 0.65 0.97

USA 0.99 0.97 0.96 0.98 0.92 0.96 0.98 0.97 0.95 0.98 0.94 0.97 0.93 0.96 1.00 0.94 0.98 0.89 0.92 0.90 0.97 0.97 0.88 0.65 0.98

LUX 0.95 0.94 0.90 0.94 0.94 0.91 0.93 0.93 0.88 0.94 0.95 0.91 0.85 0.90 0.94 1.00 0.93 0.80 0.92 0.93 0.92 0.91 0.84 0.68 0.93

NLD 0.98 0.97 0.98 0.99 0.89 0.96 0.98 0.96 0.97 0.99 0.92 0.97 0.95 0.97 0.98 0.93 1.00 0.91 0.92 0.86 0.99 0.96 0.89 0.64 1.00

SWE 0.92 0.90 0.96 0.89 0.70 0.95 0.93 0.91 0.94 0.91 0.76 0.95 0.97 0.96 0.89 0.80 0.91 1.00 0.73 0.71 0.93 0.92 0.81 0.55 0.91

IRL 0.92 0.91 0.86 0.93 0.95 0.85 0.89 0.90 0.86 0.93 0.95 0.87 0.80 0.85 0.92 0.92 0.92 0.73 1.00 0.89 0.91 0.88 0.84 0.72 0.92

NOR 0.89 0.88 0.82 0.89 0.94 0.85 0.88 0.87 0.82 0.88 0.92 0.84 0.76 0.83 0.90 0.93 0.86 0.71 0.89 1.00 0.86 0.86 0.79 0.63 0.86

AUS 0.98 0.97 0.98 0.98 0.88 0.97 0.98 0.96 0.97 0.99 0.92 0.98 0.96 0.97 0.97 0.92 0.99 0.93 0.91 0.86 1.00 0.96 0.90 0.63 0.99

ISL 0.97 0.96 0.97 0.96 0.88 0.97 0.98 0.96 0.95 0.96 0.91 0.97 0.95 0.97 0.97 0.91 0.96 0.92 0.88 0.86 0.96 1.00 0.89 0.68 0.96

JPN 0.89 0.89 0.88 0.90 0.83 0.88 0.89 0.88 0.84 0.89 0.84 0.88 0.85 0.86 0.88 0.84 0.89 0.81 0.84 0.79 0.90 0.89 1.00 0.63 0.89

CZE 0.68 0.66 0.63 0.67 0.69 0.66 0.68 0.73 0.64 0.66 0.72 0.66 0.60 0.65 0.65 0.68 0.64 0.55 0.72 0.63 0.63 0.68 0.63 1.00 0.64

DNK 0.98 0.97 0.98 0.99 0.89 0.96 0.98 0.96 0.97 0.99 0.92 0.97 0.95 0.97 0.98 0.93 1.00 0.91 0.92 0.86 0.99 0.96 0.89 0.64 1.00

Table 2.2: The sample correlation coefficients of the log central death rates at age 75 for
the 25 male populations under consideration.

58



EW SCO DEUE DEUW FRA PRT CHE BEL FIN CAN AUT ITA NZL ESP USA LUX NLD SWE IRL NOR AUS ISL JPN CZE DNK

EW 1.00 0.36 0.13 0.59 0.30 0.00 0.27 0.44 0.01 0.55 0.34 0.14 -0.43 -0.23 0.54 0.61 0.56 -0.44 0.46 0.14 0.42 0.37 0.35 0.15 0.56

SCO 0.36 1.00 -0.35 0.58 0.79 -0.20 0.70 -0.20 0.16 0.63 0.81 -0.62 -0.00 0.45 0.66 0.65 0.29 -0.82 0.75 0.76 -0.11 0.08 0.17 0.38 0.29

DEUE 0.13 -0.35 1.00 -0.10 -0.54 0.08 -0.51 0.22 -0.00 0.16 -0.54 0.42 0.10 -0.37 -0.29 -0.27 0.38 0.50 -0.31 -0.57 0.44 0.10 0.22 -0.36 0.38

DEUW 0.59 0.58 -0.10 1.00 0.65 -0.35 0.56 0.11 0.04 0.72 0.64 -0.25 -0.19 0.22 0.70 0.61 0.69 -0.70 0.77 0.51 0.26 0.23 0.40 0.31 0.69

FRA 0.30 0.79 -0.54 0.65 1.00 -0.29 0.86 -0.24 0.20 0.60 0.93 -0.71 0.05 0.65 0.76 0.72 0.27 -0.92 0.88 0.94 -0.19 0.05 0.11 0.53 0.27

PRT 0.00 -0.20 0.08 -0.35 -0.29 1.00 -0.33 0.16 -0.35 -0.16 -0.28 0.32 -0.29 -0.45 -0.29 -0.05 -0.29 0.22 -0.29 -0.30 0.08 0.15 0.19 -0.12 -0.29

CHE 0.27 0.70 -0.51 0.56 0.86 -0.33 1.00 -0.19 0.08 0.50 0.82 -0.70 0.09 0.62 0.72 0.61 0.16 -0.76 0.73 0.86 -0.19 0.10 0.11 0.52 0.16

BEL 0.44 -0.20 0.22 0.11 -0.24 0.16 -0.19 1.00 -0.19 0.07 -0.09 0.60 -0.47 -0.51 0.05 0.11 0.21 0.04 -0.02 -0.38 0.38 0.31 0.26 0.14 0.21

FIN 0.01 0.16 -0.00 0.04 0.20 -0.35 0.08 -0.19 1.00 0.20 0.24 -0.18 0.34 0.32 0.13 0.04 0.27 -0.18 0.23 0.19 0.08 -0.06 -0.21 0.12 0.27

CAN 0.55 0.63 0.16 0.72 0.60 -0.16 0.50 0.07 0.20 1.00 0.58 -0.30 -0.10 0.23 0.61 0.64 0.74 -0.62 0.75 0.47 0.37 0.16 0.31 0.23 0.74

AUT 0.34 0.81 -0.54 0.64 0.93 -0.28 0.82 -0.09 0.24 0.58 1.00 -0.62 -0.02 0.53 0.78 0.75 0.29 -0.91 0.88 0.86 -0.07 0.15 0.10 0.56 0.29

ITA 0.14 -0.62 0.42 -0.25 -0.71 0.32 -0.70 0.60 -0.18 -0.30 -0.62 1.00 -0.36 -0.71 -0.39 -0.31 0.07 0.51 -0.49 -0.80 0.49 0.18 0.14 -0.35 0.07

NZL -0.43 -0.00 0.10 -0.19 0.05 -0.29 0.09 -0.47 0.34 -0.10 -0.02 -0.36 1.00 0.41 -0.06 -0.23 -0.15 0.14 -0.07 0.10 -0.29 -0.13 -0.09 -0.07 -0.15

ESP -0.23 0.45 -0.37 0.22 0.65 -0.45 0.62 -0.51 0.32 0.23 0.53 -0.71 0.41 1.00 0.42 0.26 -0.03 -0.48 0.43 0.71 -0.47 -0.24 -0.20 0.34 -0.03

USA 0.54 0.66 -0.29 0.70 0.76 -0.29 0.72 0.05 0.13 0.61 0.78 -0.39 -0.06 0.42 1.00 0.67 0.45 -0.75 0.75 0.67 0.10 0.25 0.20 0.30 0.45

LUX 0.61 0.65 -0.27 0.61 0.72 -0.05 0.61 0.11 0.04 0.64 0.75 -0.31 -0.23 0.26 0.67 1.00 0.37 -0.78 0.73 0.65 0.08 0.17 0.17 0.40 0.37

NLD 0.56 0.29 0.38 0.69 0.27 -0.29 0.16 0.21 0.27 0.74 0.29 0.07 -0.15 -0.03 0.45 0.37 1.00 -0.36 0.52 0.11 0.62 0.11 0.35 -0.03 1.00

SWE -0.44 -0.82 0.50 -0.70 -0.92 0.22 -0.76 0.04 -0.18 -0.62 -0.91 0.51 0.14 -0.48 -0.75 -0.78 -0.36 1.00 -0.87 -0.81 0.09 -0.11 -0.17 -0.55 -0.36

IRL 0.46 0.75 -0.31 0.77 0.88 -0.29 0.73 -0.02 0.23 0.75 0.88 -0.49 -0.07 0.43 0.75 0.73 0.52 -0.87 1.00 0.77 0.10 0.14 0.22 0.56 0.52

NOR 0.14 0.76 -0.57 0.51 0.94 -0.30 0.86 -0.38 0.19 0.47 0.86 -0.80 0.10 0.71 0.67 0.65 0.11 -0.81 0.77 1.00 -0.31 -0.02 -0.00 0.47 0.11

AUS 0.42 -0.11 0.44 0.26 -0.19 0.08 -0.19 0.38 0.08 0.37 -0.07 0.49 -0.29 -0.47 0.10 0.08 0.62 0.09 0.10 -0.31 1.00 0.23 0.37 -0.28 0.62

ISL 0.37 0.08 0.10 0.23 0.05 0.15 0.10 0.31 -0.06 0.16 0.15 0.18 -0.13 -0.24 0.25 0.17 0.11 -0.11 0.14 -0.02 0.23 1.00 0.37 0.14 0.11

JPN 0.35 0.17 0.22 0.40 0.11 0.19 0.11 0.26 -0.21 0.31 0.10 0.14 -0.09 -0.20 0.20 0.17 0.35 -0.17 0.22 -0.00 0.37 0.37 1.00 0.09 0.35

CZE 0.15 0.38 -0.36 0.31 0.53 -0.12 0.52 0.14 0.12 0.23 0.56 -0.35 -0.07 0.34 0.30 0.40 -0.03 -0.55 0.56 0.47 -0.28 0.14 0.09 1.00 -0.03

DNK 0.56 0.29 0.38 0.69 0.27 -0.29 0.16 0.21 0.27 0.74 0.29 0.07 -0.15 -0.03 0.45 0.37 1.00 -0.36 0.52 0.11 0.62 0.11 0.35 -0.03 1.00

Table 2.3: The sample correlation coefficients of the log central death rates at age 75
less the common time trend (i.e., ln(m

(i)
75,t) − B̂75K̂t) for the 25 male populations under

consideration.

59



A pension plan is immunized from longevity risk over the hedging horizon if PAt−PLt =

0 for t = 1, . . . , Y . We can regard |PAt−PLt| as the pension plan’s surplus if PAt > PLt

and short fall in assets if PAt < PLt. The swap we design has a maturity of one year

and is written at each time point when the dynamic index-based hedge is established or

adjusted. We call it a ‘surplus’ swap, because its net cash flow at maturity is derived from

the surplus process PAt − PLt, t = 1, . . . , Y , of the pension plan.

Our goal is to ensure that PAt − PLt = 0 for t = 1, . . . , Y . We let NCFt be the net

cash flow (payable at time t from the reinsurer to the pension plan) for the customized

surplus swap that is written at time t− 1. With the swap in place, the recursion formula

for PAt can be rewritten as

PAt = PAt−1 + (1 + r)−t(ht−1Qt(t− 1) +NCFt), t = 1, . . . , Y, (2.3)

where PA0 = PL0. Using equations (2.3) and (2.2), we obtain

PLt − PAt = PLt−1 − PAt−1 + (1 + r)−t(S
(H)
x0,0

(t)(1 + FLt)− (1 + r)S
(H)
x0,0

(t− 1)FLt−1)

− (1 + r)−t(ht−1Qt(t− 1) +NCFt), t = 1, . . . , Y.

To stipulate PAt − PLt = 0 for t = 1, . . . , Y , we require

NCFt = S
(H)
x0,0

(t)(1 + FLt)− ht−1Qt(t− 1)− (1 + r)S
(H)
x0,0

(t− 1)FLt−1, t = 1, . . . , Y.

The expression for NCFt is intuitive. It says that there is no net cash flow from the swap
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if what the pension plan has at time t− 1 accumulated with interest (i.e., (1 + r)S
(H)
x0,0

(t−

1)FLt−1) plus the proceed from the index-based hedge at time t (i.e., ht−1Qt(t− 1)) is just

sufficient to cover the plan’s financial obligations at time t (i.e., S
(H)
x0,0

(t)) and beyond (i.e.,

S
(H)
x0,0

(t)FLt).

Given Ft−1, the value of (1+r)S
(H)
x0,0

(t−1)FLt−1 is known, but the values of S
(H)
x0,0

(t)(1+

FLt) and ht−1Qt(t−1) are random as they both depend on the values of Kt, k
(H)
t and k

(R)
t

which are not known until time t. It follows that for a customized surplus swap written

at time t − 1, the fixed and floating legs should be set to (1 + r)S
(H)
x0,0

(t − 1)FLt−1 and

S
(H)
x0,0

(t)(1 + FLt) − ht−1Qt(t − 1), respectively. The exchange of cash flows at maturity

(time t) is illustrated diagrammatically in Figure 2.11.

Given how the cash flows are defined, the following should be incorporated into the

terms of a customized surplus swap written at time t− 1:

• the method and assumptions used to calculate FLt−1 and FLt;

• the hedge ratio ht−1;

• the rate r at which the cash flows are discounted;

• the forward mortality rate qf associated with the q-forward written at time t− 1.

For simplicity, we assume that the swap is costless in the following illustration. In

practice, of course, the reinsurer demands a reward for taking on the risk and therefore a

fixed payment (the risk premium) has to be paid by the pension plan to the reinsurer at

either inception or maturity.
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Figure 2.11: An illustration of the exchange of cash flows between the pension plan and
reinsurer at time t when the customized surplus swap written at time t− 1 matures.
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2.4.4 An Illustration

We now revisit the index-based longevity hedges for the 25 pension plans. Let us suppose

that on top of the index-based hedges, all 25 pension plans write customized surplus swaps

with the same reinsurer to eliminate their exposures to the residual risks. Assume further

that the assumptions used in formulating the index-based hedges also apply to the terms

of the customized surplus swaps.

The fan charts in Figure 2.12 show the distributions of NCFt|F0 for the 25 pension

plans. They are in line with the hedging results presented in Figure 2.10: the more effective

the index-based hedge is, the less variable NCFt is.

To study the diversifiability of the residual risks from the index-based hedges, let us

consider the cash flows from the viewpoint of the reinsurer who writes customized surplus

swaps with the 25 pension plans. The fan chart in Figure 2.13 depicts the distributions

(conditioned on F0) of the average net cash flows payable to each pension plan over the

hedging horizon. The variability of the reinsurer’s average net cash flows is small compared

to the variability of NCFt for individual pension plans. The diversifiability can be observed

more clearly from Figure 2.14, which compares the variances of the reinsurer’s average net

cash flows with the variances of the net cash flows arising from individual customized

surplus swaps.
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Figure 2.12: Fan charts showing the distributions of NCFt|F0 for the 25 pension plans
under consideration.
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Figure 2.13: The distributions (conditioned on F0) of the average net cash flows payable
from the reinsurer to each pension plan over the hedging horizon.
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Figure 2.14: The values of Var(NCFt|F0), t = 1, . . . , 30, for the individual customized
surplus swaps (the dotted lines) and the corresponding variances of the reinsurer’s average
net cash flows payable to each pension plan (the solid line).
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2.5 Discussion and Conclusion

In this chapter, we consider a risk management framework in which longevity risk is split

into trend risk and residual risks. With the proposed dynamic hedging strategy, a pension

plan can transfer its trend risk exposure to capital markets through standardized instru-

ments. Using the proposed customized surplus swap, the pension plan may also transfer

the residual risks left behind by the dynamic hedge to a reinsurer, who collectively manages

the residual risks from various pension plans. As a whole, our risk management framework

allows pension plans to completely eliminate their longevity risk exposures, just as what

they can achieve from traditional, entirely insurance-based pension de-risking solutions.

What we propose allows the longevity risk transfer market to package the trend risk as

standardized securities that are structured like typical capital market derivatives. Com-

pared to products such as pension buy-ins, standardized longevity-linked derivatives are

more appealing to capital market investors who generally desire liquidity and transparency.

When put in practice, our risk management framework may attract participation from cap-

ital markets, thereby ameliorating the demand and supply imbalance in the present market

for longevity risk transfers. The enhancement of liquidity through standardization may also

result in lower risk management costs to pension plans, as the illiquidity premium payable

to the counterparty can be reduced. Although there is no sufficient data to test the inverse

relationship between liquidity and compensation to investors (typically measured by the

Sharpe ratio) in the longevity risk market, there is profound evidence for such an inverse

relationship in several financial markets.

For stock markets, the inverse relationship between liquidity and risk-adjusted rate
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of return was identified by Lo et al. (2003), who introduced liquidity to the standard

mean-variance portfolio optimization framework by constructing three-dimensional mean-

variance-liquidity frontiers on the basis of several measures of liquidity including trading

volume and percentage bid/offer spreads. They studied the tangency portfolios of the

liquidity-constrained mean-variance-liquidity efficient frontiers for some randomly selected

stocks, and found that the Sharpe ratio of the tangency portfolio reduces as the liquidity

threshold becomes less stringent.

For mutual fund markets, the relationship between liquidity and risk-adjusted rate of

return was revealed by Idzorek et al. (2012), who investigated whether mutual funds that

hold less liquid stocks tend to outperform those that hold more liquid stocks. They first

grouped the population of mutual funds under consideration by size and valuation, and

further categorized the funds in each group into five liquidity levels on the basis of the

stock-level ‘turnover’ measure. It was found that, on average, mutual funds that held less

liquid stocks possessed higher Sharpe ratios than those that held more liquid stocks.

For hedge fund markets, Getmansky et al. (2004) studied the potential relationship

between liquidity and returns on hedge funds by developing an econometric model from

which smoothing-adjusted Sharpe ratios were calculated. It was found that among 908

hedge funds from the TASS Hedge Fund Combined databases, the most illiquid hedge

funds (e.g., fixed income directional) had the highest smoothing-adjusted Sharpe ratios,

supporting the inverse relationship between liquidity and risk-adjusted required rate of

return.

It has been argued that the market for longevity risk transfers has many similarities
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compared to a typical financial market (Loeys et al., 2007). Hence, it is reasonable to

conjecture that the inverse relationship between liquidity and Sharpe ratio found in stock,

mutual fund and hedge fund markets also applies to the market for longevity risk trans-

fers. Should this conjecture holds, then our risk management framework would be more

economical than the comparable entirely insurance-based methods, because it could trans-

fer the trend risk at a lower cost. A reduced cost may encourage more pension plans to

transfer their longevity risk exposures, thereby not only facilitating market growth but also

strengthening the stability of the pension industry.

To focus on the design and execution of the proposed risk management methods, we

have made no attempt to estimate the associated costs. It thus warrants further studies

to investigate how much the proposed risk management methods may cost. To determine

the cost associated with the dynamic longevity hedge, one may replace qf with a forward

mortality rate that is derived from the pricing methods proposed by Chuang and Brockett

(2014), Deng et al. (2012) and Li et al. (2011). As a reinsurance treaty, the customized sur-

plus swap may be priced under the Solvency II framework. In particular, its profit margin

may be calculated by multiplying the present value of the solvency capital requirements

with the spread over risk-free rate which the reinsurer is required to earn on its equity

(see Zhou et al., 2014). Also, to understand the value for money of our risk management

framework, it would be interesting to compare the total cost required by the proposed risk

management methods with that required by a full pension buy-out.15

As the proposed dynamic hedging strategy matches only the first partial derivatives

15Mercer provides pension buy-out indexes, which track the estimated cost of a full pension buy-out in
the US, the UK, Ireland and Canada over time.
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(with respect to the common time trend Kt), it requires the hedger to hold only one

hedging instrument at a time. This property may be seen as advantageous, because it

helps the market to concentrate liquidity. In future research, it may be fruitful to extend

the proposed dynamic hedging strategy to match also the higher order derivatives, and to

investigate whether such an extension would lead to an improvement in hedge effectiveness

that worths the dilution of liquidity arising from the use of additional instruments.

The results of various robustness tests indicate that the effectiveness of the dynamic

longevity hedge is reasonably robust relative to model risk, small sample risk, the q-

forwards’ reference age and the q-forwards’ time-to-maturity. They also offer some useful

insights to market participants. For example, because the dynamic hedge still yields satis-

factory hedging results even if the time-to-maturity of the q-forwards is only five years, the

market may choose to launch shorter-dated q-forwards, which are more likely to attract

capital market investors. As robustness is important in gaining trust from various stake-

holders, we believe that future research warrants a more extensive analysis of robustness

which considers additional aspects of the longevity hedge (e.g., hedge ratios) and additional

factors that may affect hedge effectiveness (e.g., parameter risk).

In illustrating the customized surplus swap, mortality data from a group of distinct

national populations are used. In reality, however, a reinsurer may possibly write cus-

tomized surplus swaps with pension plans that are located in the same country, so it is

also important to understand the diversifiability of residual risks across sub-populations

with the similar geographical locations but different social-economic statuses. Such an un-

derstanding may be developed by considering the Club Vita data set of UK occupational

pension schemes that was used by Haberman et al. (2014).
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Appendix A

Evaluating the Quality of the

Approximation Methods

In this appendix, we evaluate the quality of the methods used to approximate p
(i)
x,u(T,Kt, k

(i)
t ).

The evaluation is based on the ACF model that is fitted to data from EW males and

UK male insured lives. As in Section 2.3, in the following discussion we assume that

the hedger’s population (H) is UK male insured lives whereas the q-forwards’ reference

population (R) is EW males.

Let us first consider the quadratic approximation method for the situation when u = t

(Section 2.2.3). This approximation method is used when calculating FLt and its deriva-

tives, which are functions of p
(H)
x0,t(s,Kt, k

(H)
t ) for s = 1, 2, . . .. For brevity, we present the

evaluation results for p
(H)
x0,t(s,Kt, k

(H)
t ) computed at t = 5, x0 = 60 and s = 5, 10, 20 only.

The evaluation results for other combinations of t, x0 and s are similar.
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The evaluation results for the chosen values of t, x0 and s are shown graphically in

Figure A.1. The dots in the diagrams represent 1,000 simulated pairs of (K5, k
(H)
5 ) given

F0. The cloud of dots may therefore be seen as the possible range of (K5, k
(H)
5 ). The

centroid of the cloud represents (K̂5, k̂
(H)
5 ), where, by definition, the approximation is

exact.

In the left panels, the solid contour lines represent the ‘actual’ values that are calculated

by full simulations on the basis of values of K5 ranging from −30 to −5 and k
(H)
5 ranging

from −0.3 to 0.3. The dashed contour lines represent the approximated values that are

computed by using the quadratic approximation formula derived in Section 2.2.3. The gap

between each pair of dashed and solid contour lines is very narrow, indicating that the

quadratic approximation is highly accurate.

The degree of accuracy may also be assessed from the right panels, in which the contour

lines represent the percentage errors in approximating p
(H)
60,5(s,K5, k

(H)
5 ). At the centroid of

the cloud of dots, the percentage error is zero as the approximation is exact at (K̂5, k̂
(H)
5 ).

As the distance from the centroid increases, the percentage errors become higher. How-

ever, within the boundary of the cloud, the percentage errors are no greater than 0.01%,

suggesting that the accuracy of the quadratic approximation is very high over the possible

range of (K5, k
(H)
5 ). Outside the boundary of the cloud, the percentage errors remain low.

We now move on to evaluating the linear approximation method for the situation when

u > t (Section 2.2.3). This approximation method is used when calculating Qt(t0) and its

derivatives, which are functions of p
(R)
xf ,t0+T ∗−1(1, Kt, k

(R)
t )). In what follows we present the

approximation results for this forward survival probability when it is evaluated at xf = 75,
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t = t0 = 5 and T ∗ = 10, 15, 20. 1

The approximation results for the chosen values of xf , t, t0 and T ∗ are displayed in

Figure A.2. As in Figure A.1, the left panels compare the actual and approximated values,

while the right panels show the percentage errors. Within the region which the cloud of

dots spans (i.e., possible values of K5 and k
(R)
5 ), the percentage errors are generally less

than 0.01%, indicating a very high degree of accuracy. Beyond the cloud’s boundary, the

accuracy of the approximation still remains satisfactory.

We have some additional comments on the left panels of Figure A.2. As lower values

of K5 and k
(H)
5 represent lower mortality, the value of the forward survival probability

p
(R)
75,5+T ∗−1(1, K5, k

(R)
5 ) increases when the values of K5 and k

(H)
5 decrease. However, the

sensitivity to k
(H)
5 is inversely related to T ∗, as indicated by the flattening of the contour

lines when T ∗ increases. This observation offers an explanation as to why a q-forward with

a longer time-to-maturity T ∗ is relatively more dependent on Kt (which affects both the

q-forward and the pension plan) than k
(H)
t (which has little effect on the pension plan) and

hence provides a better hedge effectiveness.

1The baseline results in Section 2.3 are generated under the assumption that xf = 75. Also, because
it is assumed that a freshly launched q-forward is written every time when the hedge is adjusted, we are
particularly interested in the case when t = t0.
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Figure A.1: Contour plots that show the degrees of accuracy in estimating p
(H)
x0,t(s,Kt, k

(H)
t )

for t = 5, x0 = 60 and s = 5, 10, 20.
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Figure A.2: Contour plots that show the degrees of accuracy in estimating
p
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xf ,t0+T ∗−1(1, Kt, k

(R)
t )) for xf = 75, t = t0 = 5 and T ∗ = 10, 15, 20.
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Appendix B

Deriving the Approximation Formula

for p
(i)
x,u(T,Kt, k

(i)
t ) when u > t

Let Z be a standard normal random variable that is independent of Kt and k
(i)
t . Using a

first-order approximation, we have

p
(i)
x,t(T,Kt, kt) ≈ Φ(D

(i)
x,t,0(T ) +D

(i)
x,t,1(T )(Kt − K̂t) +D

(i)
x,t,2(T )(k

(i)
t − k̂

(i)
t ))

= Pr(Z ≤ D
(i)
x,t,0(T ) +D

(i)
x,t,1(T )(Kt − K̂t) +D

(i)
x,t,2(T )(k

(i)
t − k̂

(i)
t )|Kt, k

(i)
t )

= E(I
Z≤D(i)

x,t,0(T )+D
(i)
x,t,1(T )(Kt−K̂t)+D

(i)
x,t,2(T )(k

(i)
t −k̂

(i)
t )
|Kt, k

(i)
t )

= E(I
Z≤D(i)

x,t,0(T )+D
(i)
x,t,1(T )(Kt−K̂t)+D

(i)
x,t,2(T )(k

(i)
t −k̂

(i)
t )
|Ft)

where IA is an indicator function which equals 1 if event A holds and 0 otherwise. The last

step is due to the Markov property of the assumed stochastic processes for Kt and k
(i)
t .
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For u > t, we have

p(i)x,u(T,Kt, k
(i)
t ) = E(p(i)x,u(T,Ku, k

(i)
u )|Ft)

≈ E(E(I
Z≤D(i)

x,u,0(T )+D
(i)
x,u,1(T )(Ku−K̂u)+D

(i)
x,t,2(T )(k

(i)
u −k̂

(i)
u )
|Fu)|Ft)

= E(I
Z≤D(i)

x,u,0(T )+D
(i)
x,u,1(T )(Ku−K̂u)+D

(i)
x,u,2(T )(k

(i)
u −k̂

(i)
u )
|Ft)

= Pr(Z ≤ D
(i)
x,u,0(T ) +D

(i)
x,u,1(T )(Ku − K̂u) +D

(i)
x,u,2(T )(k(i)u − k̂(i)u )|Ft)

= Pr(Z −D(i)
x,u,0(T )−D(i)

x,u,1(T )(Ku − K̂u)−D(i)
x,u,2(T )(k(i)u − k̂(i)u ) ≤ 0|Ft).

Let V
(i)
u = Z −D(i)

x,u,0(T )−D(i)
x,u,1(T )(Ku− K̂u)−D(i)

x,u,2(T )(k
(i)
u − k̂(i)u ). On the basis of the

assumed stochastic processes, Ku|Ft, k(i)u |Ft and thus V
(i)
u |Ft are normally distributed. It

immediately follows that

p(i)x,u(T,Kt, k
(i)
t ) ≈ Φ

 −E(V
(i)
u |Ft)√

Var(V
(i)
u |Ft)

 ,

where

E(V (i)
u |Ft) = −D(i)

x,u,0(T )−D(i)
x,u,1(T )(E(Ku|Ft)− K̂u)−D(i)

x,u,2(T )(E(k(i)u |Ft)− k̂(i)u )

Var(V (i)
u |Ft) = 1 + (D

(i)
x,u,1(T ))2Var(Ku|Ft) + (D

(i)
x,u,2(T ))2Var(k(i)u |Ft)

+ 2D
(i)
x,u,1(T )D

(i)
x,u,2(T )Cov(Ku, k

(i)
u |Ft).
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Under the assumed stochastic processes, we have

E(Ku|Ft)− K̂u = E(Ku|Kt)− E(Ku|K0)

= Kt + C(u− t)−K0 − Cu = Kt −K0 − Ct,

E(k(i)u |Ft)− k̂u = E(k(i)u |k
(i)
t )− E(k(i)u |k

(i)
0 )

= (φ
(i)
1 )u−tk

(i)
t +

1− (φ
(i)
1 )u−t

1− φ(i)
1

φ
(i)
0 − (φ

(i)
1 )uk

(i)
0 −

1− (φ
(i)
1 )u

1− φ(i)
1

φ
(i)
0

= (φ
(i)
1 )u((φ

(i)
1 )−tk

(i)
t − k

(i)
0 ) +

(φ
(i)
1 )u(1− (φ

(i)
1 )−t)

1− φ(i)
1

φ
(i)
0 ,

Var(Ku|Ft) = Var(Ku|Kt) = σ2
K(u− t),

Var(k(i)u |Ft) = Var(k(i)u |k
(i)
t ) =

1− (φ
(i)
1 )2(u−t)

1− (φ
(i)
1 )2

σ2
k,i,

and Cov(Ku, k
(i)
u |Ft) = 0.

Note that if a second-order approximation is used, then the derivation would require us

to evaluate Pr(Z−D(i)
x,u,0(T )−D(i)

x,u,1(T )(Ku−K̂u)−D(i)
x,u,2(T )(k

(i)
u − k̂(i)u )− 1

2
D

(i)
x,u,3(T )(Ku−

K̂u)
2 − 1

2
D

(i)
x,u,4(T )(k

(i)
u − k̂(i)u )2 −D(i)

x,t,5(T )(Ku − K̂u)(k
(i)
u − k̂(i)u ) ≤ 0|Ft), which cannot be

accomplished analytically.
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