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Abstract)

As the conventional nanofabrication methods are reaching their limits of miniaturization, new 

methods are being studied to overcome this miniaturization challenge. Among the new 

emerging nanofabrication methods, bottom-up self assembly of Block Copolymers (BCPs) is 

gaining significant popularity among the researchers and the semiconductor industries. BCP 

self assembly has many advantages among which, low processing cost, high resolution, and 

large scale processing are the more prominent ones. Controlling the polymer fraction in the 

BCP mix leads to variety of different morphologies, these morphologies can be used to create 

nanofabrication masks and templates. A great amount of research has been conducted on how 

to control BCP morphologies. However, orientation of these BCP morphologies are very 

important and crucial to the nanofabrication technologies. Ideally, morphologies with 

perpendicular orientation to the surface of the substrate with very high aspect ratios are 

preferred for pattern transfer. To obtain this unique orientation many different methods have 

been studied, however in this research we employed a unique method to modify the surface 

energy of the substrate and create perpendicular morphologies for the BCP of PS-b-PMMA.  

Further, electron beam lithography was used to modify the properties of the PS-b-PMMA 

block copolymer in order to obtain different morphologies within the same BCP thin film. 
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Chapter)1)

1.1)Introduction)
 

In the recent years miniaturization of semiconductor devices has slowed down due to 

the limits of commercial lithography technologies. The state-of-the-art immersion technology 

is now limited to ~22nm feature size [1]. Hence, new alternative fabrication technologies need 

to be developed in order to keep up with the Moores Law and further miniaturization. 

Although, there are some top down technologies that can fabricate feature sizes smaller than 

22nm i.e. e-beam lithography. But, they are not appealing to the industry for large production, 

because of their low throughput, high cost, and small scale processing. A viable alternative to 

the top-down nanofabrication method is the bottom-up method. Where, instead of deposition 

and etching to sculpt the desired structures, one uses the chemical properties of the materials 

to form the desired structures by the self assembly of the molecules. Block Copolymer (BCP) 

self assembly has attracted many attentions in the past two decades and is being studied by 

many scientists in hope of achieving better results for nanolithography, nanotemplating, 

nanoporus memberanes, and ultra high density storage media [2]. Some groups have reported 

feature sizes down to 3nm by the use of BCP self assembly techniques [3], and efforts are 

being made to even further miniaturize the feature sizes down to sub-nanometer scale [4].  

Although, IBM [4], and HGST [4] have announced the first manufacturing application of BCP 

self assembly in a conventional chip fabrication line. However, there are many challenges 

associated with the usage of BCPs for nanofabrication. Following are some of the more 

prominent challenges of BCPs: 1) In general, BCPs self assemble in an isotropic manner in the 
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absence of surface forces and external fields [5,6]. 2)There are very few self assemble BCP 

who can reach domains that are smaller than 10nm and still maintain their properties [3]. 3) 

They are very good for high throughput and large scale device fabrication for industrial use. 

However, many BCPs annealing process takes hours to days and limit this technology for 

commercial use [3]. 4) Achieving directed self assembled structure can be very expensive due 

to the high cost of instruments and processing setups such as e-beam lithography, which 

requires a large amount of capital and is very time consuming when it comes to fabrication of 

large area structure [3].  

Many groups have set to tackle the above mentioned challenges and have developed different 

technologies to direct the self assembly of BCP film. Among which, graphoepitaxy, chemical 

prepatterning, solvent annealing, mechanical flow fields, electric or magnetic fields, thermal 

gradients, and salt doping or homopolymer blending [3], and surface wettability control [7] 

have shown promising results. In this work we will be focusing on a novel surface 

neutralization method to control the morphology and direction of the micro-domains. 

Furthermore, by employing e-beam lithography and using the results from the surface 

neutralizing method it was shown that thin film of BCP can be processed to have controlled 

areas of micro-domains with different morphologies.   

1.1.1)Thesis)Contribution)

 

Chemical modification of the substrate surface with a self-assembled monolayer 

(SAM) neutral to both components of a diblock copolymer is an effective way to create 



 

 3 

perpendicular structures to the surface of the substrate [7]. In this paper, a novel method to 

modify the surface energy of the substrate and to promote the formation of the perpendicular 

structures to the surface of the substrate is introduced. Further, efforts have been made to 

transfer the self assembled patterns onto to the substrate. An additional study was done to 

produce multiple patterns on the same BCP film by the use of E-beam lithography. The specific 

contributions of this thesis paper are listed below:  

1) Novel surface treating method to neutralize the surface energy and to control the BCP’s 

orientation and morphology. SAMs monolayer of 3MPTS polymer was evaporated on the 

substrate to wet both blocks of the BCP thin film.   

2) Study of PS-b-PMMA morphology under different temperatures and time.  

3) Controlling and modifying the BCP thin film properties by the use of e-beam lithography to 

produce a film with different morphologies.  
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Chapter)2)

2.1)Block)Copolymers)
 

By representing two different monomers A and B in figure 1 and different arrangements 

of the AB monomers we can organize the copolymers in 4 general classes.  When a single 

monomer is polymerized into a macromolecule, the product is called a homopolymer as is 

depicted in figure 1.(1). When the two monomers (A and B), alternate in a regular fashion 

along the polymer chain they produce an alternating copolymer as it is depicted in figure 1.(2). 

The copolymer with relatively random distribution of the monomers (A and B) or repeat unit 

in its structure is called the random copolymer as is depicted in figure 1.(3). A linear polymer 

with one or more long uninterrupted sequences of each monomer (A or B) in the chain is called 

the block copolymer (BCP) which is the basis of this paper and is depicted in figure 1.(4). Graft 

copolymer is another class of copolymers which has a black bone polymer (A) and one or more 

side chains of other polymers (B) and is depicted in figure 1.(5).  

 

Figure 1: Different classes of copolymers. 1) Homo-polymer. 2) An alternating arrangement of A 

and B monomers, Alternating copolymer. 3) Random arrangement of monomers A and B in the 
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chain, Random copolymer. 4)  Sequential arrangement of blocks of A and B monomers, Block 

copolymer. 5) Attachment of side chain polymer to a backbine polymer, Graft polymer. 

 

2.1.1)Block)Copolymer)SelfJAssembly)

 

If two polymers are combined together, they will undergo phase separation on the 

macroscale, this is because of the unfavorable entropy of mixing between the two chains of the 

macromolecule. In another word, a polymer chain is comprised of chemically connected, 

mutually immiscible or incompatible blocks, when mixed it with another polymer chain they 

undergo what is termed micro-phase separation [8] and create nanoscale domains. At a certain 

volume fractions and polymer chain lengths, these nanoscale structures can form variety of 

periodic structures shown in figure 2.  

 

Figure 2: Formation of different micro-phase domains in a block copolymer mix [14]. 

As it is shown in figure 2, shape of these micro domains primarily depends on the volume 
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fraction (f) of the polymer blocks. By adjusting the volume fraction of the polymer blocks one 

can obtain one of the following shapes: spherical, cylindrical, gyroid, diamond, and lamellar. 

Thin films containing these microdomain structures can then be used as nanolithographic etch 

masks to create dot or line patterns on solid surfaces. Similarly, size of these micro domains is 

determined by the molecular weight (MW) of the BCP chain. Since the polymer chains are 

covalently bonded together, the size scale of the domains should be proportional to the size of 

the polymer chain, typically on the tens of nanometres length scale or less [9].  

2.1.2)Key)Components)of)Self)Assembly)

 

Self assembly of the BCPs is best described by the Flory-Huggins equation [10]:  

 (1) 

Where, ΔGmix is the Gibbs free energy of mixing, kb is the Boltzmann constant, T is the 

temperature, NA is the degree of polymerization for the polymer A, and NB is the degree of 

polymerization for the polymer B, fA is the fraction composition of polymer A, and fB is the 

fraction composition of polymer B,  is the A-B Flory-Huggins interaction parameter. As it is 

evident in equation 1 the Gibbs free energy of the system, which dictates whether BCPs phase 

separate or not, is directly proportional to the degree of polymerization (N), volume fraction 

of the polymers (f), and the Flory-Huggins interaction parameter ( ).  

The likelihood for block copolymers to phase separate into periodic micro-domains is 

determined by the strength of the repulsive interaction as characterized by the product N. 



 

 7 

Micro-phase separation can occur when this value exceeds the critical value of χN>10.5 for 

the order-disorder transition [11]. If χN<10.5, then the blocks of the BCP will mix, forming a 

homogeneous or phase-mixed morphology [11]. So, to decrease the size of the micro-domains 

and maintain a microphase-separated morphology, N must decrease and χ must increase to 

compensate.  
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Chapter)3)

3.1)Block)Copolymer)ThinJFilms)
 

Up to this point we have been looking at the properties of BCPs in bulk. However, in 

order to utilize BCPs in fabrication of nanostructures we need to be able to deposit thin film of 

BCP on a substrate for the variety of applications such as: nanowire arrays, patterned magnetic 

media, and photonic crystal wave guides [12]. BCP thin film is subject to strong boundary 

conditions from the substrate surface and the air-polymer interface [13], and since block 

copolymer assembly is highly dependent on surface energies these boundaries can effectively 

dictate the orientation of nano-domains that were previously discussed in the thin film of BCP 

[13].  

3.1.1)Thin)Film)Deposition)

 

There are variety of methods for coating BCP film on a substrate, some common 

methods are: 1) Drop casting, BCP is dissolved in a solvent and a drop of liquid is placed on 

top of the substrate to dry, this method will leave drying spots and give non-uniform coverage. 

2) Dip coating, in this method substrate is dipped into the BCP solution and is pulled out to be 

covered by a thin film of BCP after solvent evaporation, this method does not allow for a good 

control of film thickness and it results in non-uniform coverage. 3) Spin coating, is the most 

common method for coating of BCP on a substrate. In this methods drops of BCP solution are 

dispensed on top the substrate and spun at ~1000-5000rpm [11] to obtain thin film of BCP with 

very uniform and homogenous coverage. Film thickness is controlled by the spinning speed, 
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concentration of the solution and molecular weight of the BCP. Typically, after BCP coating, 

films are annealed so the solvent is driven away from the film and also it allows the polymer 

segments to move and phase separate faster.  

3.1.2)Block)Copolymer)Thin)Films)Wettability))

 

For different applications of nanofabrication and template fabrication, it is crucial to 

form structures that are vertical to the substrate surface. In achieving this, we need to consider 

the preferential wetting of the polymeric blocks. In a hypothetical case as shown in figure 3, 

A-b-B BCP is spin coated on a substrate with a final goal to achieve lamellae structure. 

However, there are two possibilities for the lamellae structure to orient itself, either vertical or 

horizontal to the substrate surface. In order to achieve horizontal lamellae orientation, substrate 

must have a preferential wetting affinity for one the polymeric blocks (either A or B). In this 

case, the preferred block will first attach itself to the substrate and the other block will follow 

the same direction as the underlying block. figure 3.1 shows the preferential wetting of block 

B and its horizontal orientation. It’s important to note that if block A was preferred by the 

substrate it would attach to the substrate first and would reverse the ordering of the polymers 

in the horizontal orientation (Block A would attach first then B).  
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Figure 3: Preferential wetting of the substrate. 1) Lamellae structure parallel to the substrate. 2)  

Lamellae structure perpendicular to the substrate. 

To achieve the vertical lamellae, both blocks must have a similar affinity for wetting the 

substrate. In other word substrate should almost exhibit a neutral surface energy, so the 

polymer blocks (A and B) will have an equal opportunity to wet the substrate, only under this 

condition a vertical ordination is possible as shown in figure 3.2. The key factors that control 

the wetting characteristic of a substrate are: a) composition, b) hydrophobicity and 

hydrophilicity, c) surface charges [13]. All these factors effect the surface energy of the 

substrate and the wetting affinity of the BCPs. In chapter 5, a novel surface energy modification 

method is utilized to neutralize the surface energy of the silicon substrate, and to promote the 

vertical alignment of the BCP micro-domains.  

3.1.3)BCP)Morphologies)in)Thin)Film)

 

In thin films, formation of morphologies primarily depends on two factors: 1) 

interaction of the film with the entrapping interfaces (air/substrate), and 2) compatibility of 

periodicity of the BCP blocks with the film thickness [14]. In contrast to the bulk BCPs, in thin 
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films that are thick enough to accommodate multiple domain layers the micro-domains do not 

follow the same pattern near the interfaces of the film. the interlayer spacing can be affected 

especially in the layers closest to the interfaces bounding the thin film (Air/Substrate). In this 

section, we present the effect of these two factors on formation of different BCP morphologies 

in thin films.   

Lamellae morphology in thin films: In this morphology each interface (air/substrate) has 

affinity to wet one of the block copolymers, therefore, the block with the higher affinity for 

that surface will align itself parallel to the respective interface and forms the lamellae 

morphology. For the symmetric wetting condition where, the same block wets both surfaces, 

figure 4.a, film thicknesses (d) must be quantized to integer multiples (n) of the lamellae 

spacing (L0),  d = nL0 [14]. However, for the asymmetric wetting where, the two surfaces are 

not wetted by the same block figure 4.b, film thicknesses must quantize to d = (n+1/2)L0 [14]. 

If the film thickness does not follow these conditions, then Islands and holes (or “Terraces”) 

will form[14]. This is because the energetic penalty for creating more film surface area is less 

than the penalty caused by altering the domain periodicity (chain stretching or compression) 

or by putting an energetically disfavored block in contact with one or both surfaces [15]. If d 

< L0, perpendicular morphologies are possible [15].  
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Figure 4: Schematics of symmetric and asymmetric wetting of the substrate for the lamellar phase. 

Cylindrical morphology in thin films: Just like the lamellae phase, the preferential wetting 

of the substrate by on of the blocks will orient the cylinders parallel to the surface. If the surface 

has higher affinity for the minority block, then a brush like structures (perpendicular cylinders) 

will form [15]. Similarly, for the cylindrical phase, discrete film thicknesses are allowed. If the 

thickness does not follow the discrete thicknesses then interesting morphologies such as 

perpendicularly oriented cylinders and perforated lamellar structures form [15]. At certain 

thicknesses the cylindrical morphology will transition to a close-packed spherical morphology 

because of the high energy cost of distorting the cylinders away from their preferred spacing 

[15]. 

Spherical morphology in thin films: If the minority block wets the surface micro domains 

will stack themselves parallel to the surface.  In bulk, the spheres pack into a bcc lattice, 

however in thin films, a monolayer of spheres packs into a close- packed configuration, which 

may be viewed as a distorted ⟨1 1 0⟩ plane of the bcc structure, as there are no longer any 

neighboring layers to break the in-plane symmetry [15].  
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3.1.4)Controlling)The)OutJofJPlane)Orientation))

 

The orientation of the micro domains in BCP thin films are very important in the 

applications of nanofabrication. In the case of dry etching which is widely used to pattern 

transfer [3, 11], in order to achieve a certain etch depth, the thickness of the etching mask and 

the selectivity of the mask compared to the substrate material is very crucial. Micro domains 

with upright orientation give a better control for etching, because they have a high aspect ratio 

and are better for pattern transfer. However, forming micro-domains with perpendicular 

orientation is very challenging, because naturally block components of BCPs have different 

affinity for the bounding interfaces (air/substrate) and this preferential wetting mechanism as 

we have discussed in the previous section leads to parallel orientation of the domains rather 

than the perpendicular orientation. In order to reach this unique orientation blocks must not 

show preferential affinity for either surface. In this section we present some of the most 

common and effective ways to reduce the surface energy in order to reach the perpendicular 

orientation.   

3.1.4.1)Neutralization By The Use of Monolayers 

 

Many groups have reported the neutralization of the surface by employing different 

monolayers of material as a primer for the BCP film. A common method is to graft a random 

block copolymer to the surface of the substrate, this step will ensure that surface energy is 

neutralized and the substrate has an equal affinity for both blocks, hence promotion of the 

perpendicular orientation of the micro-domains. Mansky et al. found the optimal PS content 
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(	 60%) in a PS-r-PMMA copolymer to neutralize the surface for a lamellae-forming PS-b-

PMMA [16, 17]. Han et al. later showed that the range of PS content in the random copolymer 

yielding perpendicular cylinders for PS-b-PMMA was slightly different than the range yielding 

perpendicular lamellae [18]. Peters et al. used self-assembled monolayers of 

octadecyltrichlorosilane (OTS) that were chemically altered by X rays in the presence of air to 

generate aldehyde and hydroxyl groups which, at the proper level, can yield a neutral surface 

for PS-b-PMMA [19]. Kim et al. used self assembled monolayer (SAM) of silanes on silicon 

substrate to reduce the surface energy and successfully induced the upright orientation of the 

BCP lamellae and cylindrical morphologies [20]. In our work we will employ similar technique 

to Kim’s method which will be discussed in more details in the later chapters. 

3.1.4.2)Corrugated Surfaces 

 

Rough surfaces can also promote the upright orientation, this is because penalty is 

incurred for elastic deformation to conform to a rough substrate, Sivaniah et al. observed 

perpendicular orientations in lamellae-forming PS-b-PMMA on a rough substrate [21]. Also, 

chemically patterned surfaces have been generated that have periodic affinities to each block, 

which causes a lamellae-forming block copolymer to orient perpendicularly to the surface [15]. 

Figure 5.a shows the AFM image of diblock copolymer with upright morphology on 

corrugated substrate. Figure 5.b and c. are representation of the underlying mechanism for the 

lateral orientation of the micro-domains on corrugated substrate.  
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Figure 5: Induced upright orientation for a corrugated surface [11].  

3.1.4.3)Addition of Additives In The BCP 

 

This reorientation is due to segregation of the additive particles at the interface and 

mediate the block copolymer/substrate interactions. Lin et al. added cadmium selenide 

nanoparticles to a cylinder-forming PS-b-P2VP block copolymer, which caused reorientation 

of the microdomains perpendicular to the substrate [22]. A cylinder-forming blend of PS-b-

PMMA with poly(ethyleneoxide)-coated gold nanoparticles (Au-PEO) can be induced to 

orient perpendicular to the substrate by annealing in humid air [23]. Jeong et al. showed that 

addition of dry-brush PMMA homopolymer to a cylinder-forming PS-b-PMMA block 

copolymer will stabilize the perpendicular orientation of the microdomains in thicker films 

(hundreds of nanometers) [24]. Wang et al. induced a perpendicular orientation of a lamellae-

forming block copolymer by adding lithium chloride to PS-b-PMMA [25]. 

3.1.4.4)Applying External Forces  

 

Another method to reorient the micro-domains into perpendicular orientation is by 
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applying electric field to the BCP thin film. Thurn-Albrecht et al. have demonstrated the use 

of electric fields in orienting cylinder-forming PS-b-PMMA block copolymers perpendicular 

to the substrate, as sufficient contrast in dielectric permittivity exists between these two blocks 

[26]. In their experiment, electric field was applied to BCP film which, was bounded in 

between two aluminum electrode with Kapton spacer to avoid shorting [26], figure 6 represent 

the schematic of the setup. They have managed to measure the minimum voltage required to 

achieve upright micro-domains in films with up to 30um [26]. Xu et al. were able to align 

lamellae-forming PS-b-PMMA with an electric field, although not for all thicknesses (thin 

films stubbornly remained parallel, whereas very thick films, >10L0, had parallel orientations 

near their surfaces) [27]. 

 

Figure 6: Schematic of high-density nanowire fabrication in a polymer matrix. (a) An asymmetric 
diblock copolymer annealed above Tg under an applied electric field, forming a hexagonal array of 

cylinders oriented normal to the film surface. (b) After removal of of the minor component, a 
nanoporous film is formed. (c) By electrodeposition, nanowires can be grown in the porous 

template [26]. 

In thin films, the electric field is useful for fabricating micro-domains oriented perpendicular 

to the substrate with high aspect ratio. 
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3.1.4.5)Solvent Casting of The Block Copolymers 

 

In this method micro-domains align themselves perpendicular to the substrate because 

of solvent evaporation is very directional, solvent evaporation rate is one of the key factors that 

determines the orientation of the domains [15]. Another characteristic of this method is that in 

general solvents promote the mobility of the blocks and speed up the grain growth [15]. Even 

though, there has been multiple reports for orienting micro-domain employing this method, A 

careful temperature control, vapor pressure, vapor extraction speed make this method very 

difficult to use. Moreover, due to the uniaxial degeneracy of perpendicular lamellae and 

vertically oriented cylinders, this approach cannot result in a good lateral order [15].  

3.1.4.6)Thickness Gradient   

 

As it was discussed in section 3.1.3 lamellae structures have a natural repeat spacing of 

the domain structure of nL0 for the symmetric wetting condition, and (n+1/2)L0 for the 

asymmetric wetting condition. We’ve also learned that if the film thickness is not 

commensurate with this spacing a series of islands and holes will form. So when the film is 

spun on the substrate is the film thickness matches the natural thickness of the BCP polymer 

then a smooth surface is visible for the case of parallel orientation of the BCP film, however if 

the film thickness does not follow the nL0 criteria for the symmetric wetting and (n+1/2)L0 for 

asymmetric wetting, then lamellae phase with perpendicular orientation will form. In sphere 

and cylinder forming block copolymers, islands and holes form when the film thickness does 

not closely match a natural thickness given approximately by h = an + b, where a is the sphere 
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(or cylinder) layer-to-layer distance and b is the thickness of the brush adsorbed on the surfaces 

(if such a brush forms) [28]. Figure 7 helps to visualize the thickness gradient of the BCPs. In 

it, surface reconstructions of a cylindrical block copolymer including reorientation of 

nanodomains, wetting layers, and perforated lamellae is clearly observable and this because of 

the interplay between surface fields and confinement effects [28]. 

 
Figure 7: Thickness gradient of poly(styrene-b-butadiene-b-styrene) triblock copolymer. Parts (a) 
and (b) are phase SPM images of the triblock copolymer which reconstructs as a function of film 
thickness. Part (c) is a schematic height profile of the phase images shown above, while part (d) is 

a simulation of the same block copolymer [28].  

 

3.1.4.7)Mechanical Flow Fields  

 

An interesting mechanism for aligning the BCP domains is to use shearing forces to 

orient the micro-domains. Albalak et al. [30] used roll-casting, wherein a block copolymer 

solution is allowed to evaporate while an extensional flow is induced between two co-rotating 
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rolls to orient cylinders and lamellae parallel to the extension direction [30]. This method 

produced films with high thickness of 30um, however other methods were developed to obtain 

film with lower thicknesses. Kimura et al. [31] used the flow of a droplet pinned to a tilted 

surface in conjunction with solvent evaporation to orient a cylinder forming PS-b-PB thin film 

[31]. The pinning of the drop causes directional flow within the droplet normal to the pinned 

edge, which induces ordering as the solvent evaporates. Another variation of this method is to 

use sphere forming BCP to create cylindrical micro-domains, in this method sphere forming 

BCP, which is close to the sphere/cylinder phase boundary is put under the shear force to 

transform the spheres into cylinders along the direction of the applied force [32].  

3.1.4.8)Temperature Gradient  

 

Berry et al. [33] developed a method in which a temperature just below the order 

disorder temperature and above the glass transition temperature of PS-b-PMMA was applied 

to the BCP film in the direction of the front motion on a rolling substrate. Temperature gradient 

was created by passing the sample (at a controllable rate) across a hot block between two cold 

blocks, which creates a bell-shaped temperature profile for each spot in the film as a function 

of time. This resulted a more rapid motion of the defects and increased reorientation of the 

micro-domains as the velocity of the sample decreased [33]. They attribute the ordering to the 

creation of an in-plane spatiotemporal mobility gradient that biases the grains as they form 

[33].  

 



 

 20 

Table 1 summarizes the most common methods to orient the micro-domains in an upright 

position for both bulk and thin film forms.  In general, these methods are bottom up approach 

and fall under the self assembly mythology. There are other methods which produce better and 

more controllable orientations such as: epitaxy, directional crystallization of a solvent–

polymer solution, and graphoepitaxy, but these methods rely on pre-patterning of the substrate 

with various lithography techniques, and they can not be categorize under the full self assembly 

orientation of the BCP, and therefore are beyond the scope of this report. 

Table 1: Summary of common methods to orient the micro domains later and/or perpendicular to the substrate 

surface [14]. 
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3.1.5)PSJbJPMMA)Thin)Film)

 

Though, there are many different block copolymers available, we have focused our 

attention to PS-b-PMMA (poly (styrene) and poly (methyl methacrylate)) block copolymer 

due to variety of reasons. Figure 7 depicts the chemical structure of the PS-b-PMMA block 

copolymer.  

 

Figure 8: Chemical structure of PMMA-b-PS. 

 
There are variety of good reasons for why the PS-b-PMMA block copolymer is used in this 

study. First, PS-b-PMMA is readily available as a commercial BCP. Second, it has narrow 

molecular weight distributions of each block. Third, PMMA is a standard photoresist and a PS 

is negative e-beam resist. Fourth, the surface energies of PS and PMMA are very similar which 

make it easier to control the orientation of the nano-domains within the film [9]. Fifth, PS-b-

PMMA has a small Flory-Huggins interaction parameter (~0.043 at 25C) compared to the other 

BCPs as listed in table 2. These properties of PS-b-PMMA make it a great candidate for 

nanolithography and pattern transfer applications. Thurn-Albrecht et al. [9] first reported the 

application of PS-b-PMMA to fabricate a porous polymer template. In their method they 

degraded the PMMA block by exposing it to the UV light, and cross linking the PS block.  
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Further, they developed (removed the PMMA block) the pattern by the use of Acetic Acid,  

which resulted in a nanoporous template on top of their substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Flory–Huggins parameter for different BCPs [9]. 
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Chapter)4)

4.1)Block)Copolymer)Lithography)

4.1.1)Dry)Etching)

 

In the semiconductor industry dry etching is widely used to transfer the pattern on the 

mask to the substrate. The main reason that dry etch is used over the wet etch is that it allows 

for directional etching of the substrate, whereas the wet etch allows for isotropic etching of the 

material. In dry etching, etchant gas is ionized by high radio frequency (RF) field. An applied 

electric field accelerates the ions towards the substrate, these ions create a chemical reaction 

with the surface molecules of the substrate to physically remove the material by a sputtering 

mechanism. The feature size on the mask determines the lateral resolution of the transferred 

pattern, and the achievable depth of the etch profile is limited by the thickness of the mask 

material, selectivity of the etchant and fidelity of the etch.  

Similar to conventional lithography techniques, in the BCP lithography a thin film of the BCP 

is spun coated on top of a substrate, based on the discussions in the previous chapter, BCPs 

can self assemble to form one the possible morphologies (spherical, lamellae, cylindrical) on 

the substrate. Again, a detailed explanation was presented in the previous chapters on how to 

achieve morphologies with upright or perpendicular orientation with respect to the substrate. 

Achieving high aspect ratio perpendicular morphologies are very important in BCP pattern 

transfer due to higher selectivity and usefulness of the patterns in nanolithography.  Once, the 

desired morphology is reach on the surface of the substrate, Oxygen plasma is used to 
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selectively remove PMMA component and the underlying films, C2F8 and O2 [34] are used 

to remove the polymer and finally SF6 is used to etch the silicon. Figure 8 depicts the pattern 

transfer of the Lamellae structure into silicon substrate with and under-layer of PS-OH to 

neutralizes the surface. Typically, to achieve periods smaller than 20nm, usually the thickness 

of the BCP template must be very small, this film thickness reduction limits the fidelity of the 

pattern transfer, due to low selectivity in the etching rate of the BCP blocks. In dry etching of 

BCPs oxygen gas is used to oxidize and remove the organic polymers. Since the selectivity of 

most BCPs are very close to each other, therefore the fidelity of the transfer can be 

compromised when the film thickness is low.  

To solve the selectivity issue, additional step is introduced in pattern transfer of PS-b-PMMA 

to stay faithful to the fidelity of the pattern transfer. Just like the pattern development process 

in lithography technique. In some cases, aside from the RIE, UV exposure and solvent 

development is employed to remove PMMA micro-domains from the PS-b-PMMA masking 

pattern. A film with higher selectivity is deposited on top of the PS-b-PMMA masking layer 

to create a negative replica of the template. Next, the new mask (usually a metal layer) with 

the negative pattern is used to transfer the pattern into the substrate material. Black et al. [8] 

showed that PS-b-PMMA block copolymer can be used as an etching mask to pattern transfer 

using the fluorine (SF6) Reactive Ion Etching (RIE).  

For silicon (Si) and metals, fluorine-based etch chemistry, using fluorinated gases, such as 

SF6, C2F8 or CHF3, in combination with argon (Ar) gas, are most effective [8]. The etch rates 

depend on the different ionization and acceleration conditions. Typically, a higher RF power 

increases the ion density, and, consequently, the etch rate. Ion milling, which is physical 
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bombardment of the substrate surface by the ions, is typically using Ar ions. Ion milling is 

similar to RIE, but based on a directional sputtering process.   

 

Figure 9: Pattern transfer using the PS-b-PMMA block copolymer as an etching mask [34]. 

4.2)Fundamentals)of)Electron)Beam)Lithography)
 

Electron beam lithography (EBL) is one the most popular top-down nanolithography 

techniques for the research and development, lithography mask production, biosensors, 

MEMS/NEMS, LEDs, biosensors. EBL’s popularity is mainly due to its maskless processing, 

which reduces the fabrication cost and the fabrication capability. In e-beam lithography the 

main objective is to produce arbitrary patterns in the resist with high resolution, high density 

and high reliability. Many other applications are being developed in R&D, we will explore one 

of these applications in the next chapter. In general, e-beam lithography is comprised of three 

main steps: 1) exposure of the sensitive material (resist), 2) development of the resist and 3) 

pattern transfer. It is important to note that all of these steps and their sub processes are very 
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important in obtaining very high resolutions features. A great number of parameters are 

involved in each step of e-beam lithography, which contribute to the quality of the results. 

Choosing a right resist is very important for EBL. Among all EBL resists, Polymethyl 

methacrylate (PMMA) is the most popular positive resist, and is specially interesting when it 

is used in BCPs, because its properties can be modified and controlled by EBL. Although, 

PMMA is one of the first materials originally tested for EBL, but still, it remains as the most 

popular EBL resist, because it has high resolution and easy processing.  

A more detail processing of EBL presented in the following section, however in short, EBL 

operates by exposing a very high sensitive resist to very narrow and focused electron beam. 

Due to the interaction of the electrons with the molecules of the resist, molecules either degrade 

(in the case of positive tone resist) or crosslink (in the case of negative tone resist). Modified 

molecules by the means of electron exposure can then be removed (developed) by a solvent to 

create structures in the resist film, further pattern transfer process will allow for the permanent 

pattern transfer of the structures into a substrate. The main steps in EBL lithography are 

discussed in more details in the subsequent sections.  

4.2.1)Electron)Transport))

 

A very crucial step in EBL is electron beam formation. In order to be able to expose 

very fine features on the film (resist), a very stable and high quality e-beam is required.  A 

common technology to produce this high quality e-beam is the use of thermal field emission. 

Beam’s spot size, which is a very essential parameter in EBL, is controlled by the electron 
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optics that are integrated in the EBL system, and the degree to which the beam can be focused. 

Parameters such as stigmation and aperture alignment are also very essential in determining 

the beam spot size and shape.  Another, factor to obtain very stable and focused e-beam is to 

create high vacuum inside the e-beam chamber to reduce the scattering of the beam and 

electrostatic repulsion by the electrons. Most commercial EBL systems are now able to 

produce e-beam spot sizes down to 10nm however, there has been reports of e-beam spot size 

down to 2nm [35].  

Once the a focused and stable beam is produced, the interaction of the electrons and the resist 

become important in determining the beam shape inside the resist. When electrons enter the 

resist they exhibit low energy elastic collision. and will deflect from their original path, this 

phenomenon is called the forward scattering of the e-beam. Deflection of the electrons from 

their original path will broaden the beam diameter inside the resist, the broadening of the beam 

due to forward scattering is dependent on the thickness of the film, which will reduce the 

resolution of the features. Aside from the forward scattering, another scattering phonon can 

take place inside the film called back scattering. When electrons are accelerated into the resist 

most of them pass through the resist and end up in the substrate, however a tiny fraction of 

them reflect back into the resist at some distance away from the original point of entry and will 

expose the resist on their journey back. This undesired exposure of the film in the vicinity of 

the point of first exposure is called the proximity effect and is caused due to the backward 

scattering of the electrons. This effect can limit the production of the dense patterns in EBL. 

One way to minimize this effect is to reduce the film thickness.   
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Another important factor about e-beam is the electrostatic charging, which needs to be taken 

into account when high resolutions are needed. When, electrons are accelerated towards the 

resist if there is no path way for the absorbed electrons to dissipate, they will start to locally 

accumulate in the resist or substrate and will distort the beam focus. Therefore, it is crucial to 

coat the resist with conductive polymers or metals to create a scape pathway for excess the 

electrons. This is also important when working with BCPs. It is important to deposit a 

conductive layer on top of the BCPs in order to be able to characterize them with SEM. 

Chromium was used in our studies to reduce the charging effect on the BCP.  

4.2.2)EBL)Resists))

 

As we mentioned before, resist is very essential in determining the final resolution of 

the e-beam lithography and can be manipulated by the e-beam for different purposes. As it was 

mentioned in the previous section, when electrons enter the resist, they exhibit an inelastic 

collision with the resist and ionize the resist, which create secondary electrons. Resist 

ionization will lead to chemical changes in the resist, just like the typical lithography process. 

There are two classes of resists: 1) positive tone resist, 2) negative tone resist. In positive resist, 

with the most important one being PMMA, chemical properties will change by the exposure 

to e-beam so that the solubility of the resist changes from low to high. When exposed to e-

beam, PMMA’s long polymeric chains are broken into smaller fragments, this will allow the 

smaller fragments to be dissolved in the solvent more easily. This concept is the bases for the 

process we employ to create different morphologies in the BCP thin film of PS-b-PMMA. In 

negative resist, a reverse phenomenon happens, which means, small chains in polymer undergo 
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chemical overhaul to create longer chains, and become less soluble in the solvent. Among the 

popular negative tone resists for EBL are HSQ (hydrogen silsesquioxane), SU8, and 

Polystyrene (PS). Figure 10 represent the schematic process of polymer scission by the 

exposure to the e-beam. As it is shown in figure 10.b, high energy electron interaction with the 

polymer will break the bonds in the long polymeric chains and will create smaller polymeric 

units as it is depicted in figure 10.a.  

The typical masses of PMMA polymer ranges from 496 to 950 kDa [36]. To break these long 

chains, many scission events are required to create small soluble fragments of the PMMA 

chains. In order to control the scissioning events one needs to control the exposure dose of the 

EBL and the development behavior of the polymer. Figure 11 shows the distribution of the 

fragment sizes of PMMA for different exposure doses. As it is evident in this figure, higher 

exposure doses create a narrower distribution, and smaller fragments, therefore higher 

solubility is expected. These parameters can be exploited in the formation of different BCP 

 

Figure 10: Polymer scission from the exposure to e-beam. A) sub-unit of PMMA after the 

exposure to e-beam, B) High energy electron interaction with the polymer chain, and breaking of 

the long chain [36]. 
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morphologies, essentially by controlling the exposure dose we can control the length of the 

PMMA chain in the PS-b-PMMA BCP. As we have discussed earlier if the polymer fraction 

in the BCP mix is varied different morphologies can be obtained.  

 

Figure 11: Distribution of PMMA fragment sizes as a function of exposure dose [36]. 

4.2.3)Resist)Development))

 

Once the desired pattern is exposed on the resist, the next step is to develop the resist. 

In this process, the exposed resist is washed away (in the case of positive resist, for the negative 

resist non-exposed areas will be washed) with a developer. In this process, solvent will 

surround the small fragmented chains of the resist polymer, and remove the polymer fragments 

from the original polymer matrix leaving the non-exposed areas with the negative of the 

original pattern. Longer polymer fragments are more strongly bonded to the matrix, therefore 

a longer development time and stronger developer is required to remove them from the matrix.  
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Exposure and development are interrelated, as short exposure with long or aggressive 

development can be equivalent to heavier exposure with short development [36].  

4.2.4)Process)Parameters))

 

As it was mentioned previously, though there are three major steps in EBL processing. 

There are many other sub-categories that can effect the final resolution and results of the EBL. 

Table 3, summaries some of the most important factors that play a significant role in 

determining the final results of EBL process.   

Table 3: Parameters affecting the EBL process [36].

 

To summarize the e-beam lithography, there are three main steps involved in producing 

nanostructures, e-beam formation and control, e-beam/resist interaction, development and 

pattern transfer. The key parameters that determine the quality and resolution of the EBL are: 

e-beam quality and size, quality of the resist material, interaction of the developer and the 

resist, e-beam energy and exposure dose, development time and temperature. In this report 

EBL was used to manipulate the properties of PS-b-PMMA BCP in order to obtain different 

morphologies of BCP.   
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Chapter)5)

5.1)Experimental)Work)and)Results)
 

In this chapter we will discuss the method and material used to produce perpendicular 

lamellar nano-domains in thin film of PS-b-PMMA block copolymer. In addition, effect of 

different annealing temperature and time on the lamellar forming BCP of PS-b-PMMA is 

studied. Further, experimental process with E-beam lithography in order to achieve multiple 

nano-domain morphologies on the same film of BCP is presented.     

5.1.1)Coating)PSJbJPMMA)BCP)Thin)Film)

 

In the first experiment, numerous efforts have been made to coat the silicon wafer with 

PS-b-PMMA copolymer. A 1:1 polymer composition of PS-b-PMMA (65.3 Kg/mol- 66.6 

Kg/mol) was mixed in (1%) Toluene solvent by the Advanced Polymer Materials Inc. (APM) 

chemical company. The solution was spin coated (at 2000 rpm, 40 sec) on a clean silicon wafer 

(solvent cleaning and Oxygen RIE was done to clean the surface) and ~40nm thick film was 

obtained. Next, Sample was baked at 90oC for 3 minutes to drive off the solvent. The film was 

then annealed on a hotplate at 190oC for 20 minutes in a nitrogen glove box to drive off the 

defects and to obtain finger print (lamellar) morphology.  

In order to check the results, the BCP was exposed to O2 plasma, as we have discussed 

previously, oxygen plasma oxidizes the organic polymer which leads to the etching of the 

organic polymer.  Exposure of the BCP to oxygen plasma for 10 second under 20 Watt RF 
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power, 1mTorr pressure, and 20 sccm gas flow leads to ~30nm etching of PMMA and ~10nm 

etching of PS. This etching process reveals the pattern on the surface of the substrate, which 

can then be seen either by the use of Atomic Force Microscope (AFM) or Scanning Electron 

Microscope (SEM). SEM images for this sample are shown in figures 12 and 13. 
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Figure 12: SEM image of coated PS-b-PMMA BCP on untreated silicon substrate.  

 

Figure 13: SEM image of coated PS-b-PMMA BCP on untreated silicon substrate.  

 



 

 35 

As it is depicted in figure 12 the finger print pattern is not visible on the surface of the 

substrate, except around the edges of the available artifacts on the sample, which is visible in 

figure 13. This is not unexpected, because as we have discussed in section 3.1.4, in order to 

get the upright orientation for the lamellar morphology we must neutralize the surface energy 

of the substrate and create an equal opportunity for both blocks to attach themselves to the 

surface of the substrate in the upright position. Thus, as it is shown in the SEM images above 

it is clear that substrate has shown higher affinity to one of the blocks in the BCP mix and 

forced the micro-domains to align in the lateral direction, hence the flat and smooth looking 

images.   

5.1.2)Coating)PSJbJPMMA)BCP)Thin)Film)With)a)Surface)Neutralizing)
Underlayer)

 

The coating process that was used in the first trial was employed again to coat the PS-

b-PMMA BCP on the silicon wafer. With an exception, that this time a surface neutralizing 

monolayer was deposited under the BCP layer. B.H. Sohn and S.H. Yum first reported the use 

of 3-(p-methoxyphenyl) propyltrichlorosilane (3-MPTS) monolayer to reduce the surface 

energy of the substrate in order to produce upright lamellar morphology for the PS-b-PMMA 

BCP [7]. They coated the 3MPTS monolayer first, then the BCP, to get very well defined and 

perpendicular micro-domains. Although, their method produced very good results, but their 

monolayer (3MPTS) coating process took 48hrs [7], which is a great issue and is not acceptable 

for high throughput fabrication.  

In our second trial we modified B.H Sohn and S.H. Yum’s method to obtain perpendicular 
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lamellar morphology. Prior to coating the BCP, a Self Assembled Monolayer (SAM) of 

3MPTS was formed on a clean (solvent cleaning and then O2 plasma was used) substrate by 

the means of evaporation. This was done by placing a 1cm x 1cm piece of silicon wafer on top 

of few droplets of 3MPTS in a wafer-box without allowing the substrate to touch the droplets. 

As shown in figure 14, 3MPTS has both phenyl and O groups. The phenyl group tends to to 

wet the polystyrene, figure 15, and the O group tends to wet the PMMA, figure 15.  

 

Figure 14: Schematic of 3MPTS molecule. 

 

Figure 15: Schematic of PS-b-PMMA BCP. 

 
This non preferential wetting of the BCP will make the 3MPTS monolayer neutral, and can 

allow for perpendicular orientation of the lamellar structures.  The wafer was then removed 

from the wafer box after 2 hours, and ~40nm PS-b-PMMA film was spun coated on the SAM 

layer, followed by 3 minutes of baking at 90oC, and 20 minutes of annealing at 190oC. The 

same O2 plasma as the previous trial was carried over and an AFM image was taken to see the 
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result. Figure 16 shows the self assembly of BCP on a 3MPTS treated silicon substrate. As it 

was expected very well defined upright lamellae (finger print pattern) of the BCP is visible in 

this image, which confirms the successful coating of the 3MPTS monolayer. As it is shown, 

the characteristic finger print patterns are visible with some defects and contaminants.  The 

formation of the bubbles in the film can be caused by the trapped solvent in the film and its 

escape path during the baking or annealing of the film.   

 

Figure 16: AFM image of the perpendicular self-assembled lamellar PS-b-PMMA with monolayer 

of 3MPTS as an underlayer.  

 
Obtaining a smooth SAM of 3MPTS over an entire wafer is a very challenging task.  If the 

optimum time and the distance between the drops and the substrate the is not reached the SAM 

of 3MPTS will not uniformly cover the substrate surface. This non-uniform coating of the 

substrate will lead to formation of the islands (patches) of lamellar structures as it is shown in 
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in figure 17.  Areas that don’t show the finger print lamellar structure exhibit preferential 

wetting by the substrate, hence the lateral orientation of the polymer make the film look smooth 

with no patterns.  

 

Figure 17: SEM image of the self assembled upright BCP lamellar structure on 3-MPTS treated 

silicon wafer with low coverage of 3MPTS. 

 
In order to solve the uniform coating of the substrate with the 3MPTS monolayer, the 

experimental setup was modified in a way so that the wafer is directly above the 3MPTS 

droplets, with a uniform exposure to the droplets. Also, the volume of the droplets under the 

substrate were increase so that a greater area of the substrate would be covered by the 

evaporated molecules. The process was repeated and this time a uniform coverage of 3MPTS 

and BCP was observed as shown in figure 18.   
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Figure 18: AFM image of the self assembled upright BCP lamellar structure on 3-MPTS treated 

silicon wafer with high coverage of 3MPTS.  

5.1.3)Different)Annealing)Temperature)For)The)Self)Assembly)Of)BCP)

 

Once satisfying results were obtained for coating of PS-b-PMMA on 3MPTS, we took the 

optimization process a little further and studied the effects of different annealing temperature 

on the formation of the lamellae micro-domains. The same procedure as the previous section 

was used to coat 3MPTS. The same process was also used to coat BCP on top of the 3MPTS, 

however, we kept the annealing time constant at 5 minutes and the annealing temperature was 

varied to 160 oC, 190 oC, 220 oC, and 250 oC. The process was followed by O2 plasma etching 

to reveal the final BCP morphologies. Next, SEM and AFM images were taken to study the 

results. Figures 19 to 26 show the AFM and SEM images of these annealing temperatures.  
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Figure 19: SEM image of the annealed BCP at 160 oC for 5min.  

 

Figure 20: AFM image of the annealed BCP at 160oC for 5min.  
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Figure 21: SEM image of the annealed BCP at 190oC for 5min.  

 

Figure 22: AFM image of the annealed BCP at 190oC for 5min.  
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Figure 23: SEM image of the annealed BCP at 220oC for 5min.  

 

Figure 24: AFM image of the annealed BCP at 220oC for 5min.  
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Figure 25: SEM image of the annealed BCP at 250oC for 5min. 

 

Figure 26: AFM image of the annealed BCP at 250oC for 5min.  
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5.1.4)Different)Annealing)Time)For)The)Self)Assembly)Of)BCP)

 

After studying the effects of different annealing temperatures on morphologies of 

BCPs, we repeated the same procedure with varying times at 2 min, 6min, 20min, 60min, and 

a constant temperature of 190oC. All other steps were followed as in the previous section except 

the annealing time and temperature. SEM and AFM images were taken and are presented in 

figures 27 to 34.  
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Figure 27: SEM image of the annealed BCP at 190oC for 2min. 

 

Figure 28: AFM image of the annealed BCP at 190oC for 2min.  
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Figure 29: SEM image of the annealed BCP at 190oC for 6min.  

 

Figure 30: AFM image of the annealed BCP at 190oC for 6min.  
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Figure 31: SEM image of the annealed BCP at 190oC for 20min.  

 

Figure 32: AFM image of the annealed BCP at 190oC for 20min.  
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Figure 33: SEM image of the annealed BCP at 190oC for 60min.  

 

Figure 34: AFM image of the annealed BCP at 190oC for 60min.  
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5.1.5)Induced)Morphologies)On)The)Same)BCP)Thin)Film)By)EBL)

 

It is important to note that the centre-to-centre distance and the pore diameter in porous 

PS-b-PMMA templates can be controlled in several ways. One approach is to vary the 

molecular weight of the BCP. In this case, both the period and the diameter of the Lamellar 

microdomains will be varied together. In another approach, if the length of the PMMA block 

is varied either by adding more PMMA homopolymer to the BCP mix, or by cutting the chain 

shorter by breaking the PMMA chain. This modification can affect centre-to-centre distance 

by an amount that is commensurate with the length of the PMMA block. In this section we 

present the process by which PMMA blocks were selectively decomposed by the exposure to 

the electron beam. Areas that were exposed to the electron beam showed new induced 

morphologies. In this process, a clean (solvent and O2 plasma cleaned) silicon wafer was 

treated with 3MPTS as was done in the previous section. PS-b-PMMA BCP was spin coated 

to get ~40nm thick film, the film was then baked at 90°C for 3mins. Next, the sample was 

exposed to e-beam at 5KeV, with I:118.7 pA, and a ranging dose of 5-40 µC/cm2. Next, the 

exposed sample was developed in MIBK:IPA (1:3 ratio) for 1minute to removed the loos 

PMMA molecules, and was then annealed at 190oC for 20 minutes. In order to reveal the BCP 

patterns oxygen plasma (1 mtorr, 20 mW, 20 sccm, 10 sec) was performed. For a better 

visibility in the SEM and reduction of the charging effect during the SEM imaging, 10nm 

Chromium was deposited on top of the BCP film by the use of electron beam evaporation. 

Figure 32 shows the SEM image of the exposed BCP thin film with different dose for each 

square block ranging from 5 to 40µC/cm2. The patchy coverage of the BCP film is due to non-
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uniform coverage of 3MPTS underlayer in this image.  

 

Figure 35: SEM image of the exposed BCP thin film by e-beam.  

 
Selective zoomed-in SEM images of the exposed squares in figure 35 are presented next, this 

is to show the formation and the transition of the morphologies from lamellar to cylindrical in 

these areas.  As it is evident from these images, when the exposure dose increases the 

morphology of the BCP changes. In Figure 36 the exposure dose is small so no significant 

damage is caused to the PMMA chain, however in figure 37 the dose is high enough to break 

the PMMA chains and create new morphology (close to cylindrical) in the exposed area. At 

very high exposure dose the surface energy could be modified so that preferential wetting of 

BCP blocks are more favored, hence promoting the lateral orientation of BCP. Another 

possibility is that at very high exposure dose, electron flux may damage the 3MPTS under-
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layer and make it less resistive to the developer. These concepts may explain the appearance 

of the flat and smooth areas in figure 38.  

 

Figure 36: SEM image of the exposed BCP square at 5µC/cm2. 
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Figure 37: SEM image of the exposed BCP square at 12.60µC/cm2.  

 

Figure 38: SEM image of the exposed BCP square at 40µC/cm2.  
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Chapter)6)

6.1)Discussion)

In this section an analysis for each process is presented in greater details. 

6.1.1)Coating)PSJbJPMMA)BCP)Thin)Film)

 

As it was shown in figures 12 and 13, BCP thin film of PS-b-PMMA did not form 

perpendicular lamellae structure. This was expected because non-treated silicon wafer has a 

native oxide which has higher affinity to wet the PMMA block in the the BCP. This preferential 

wetting of the BCP will lead to lateral stacking of the micro-domains within the thin film and 

hence, a flat and uniform film is formed.  In figure 13, some finger print structures are visible, 

this formation could be possible due to different film thickness of the BCP in close proximity 

of the contaminates and artifacts. As we have discussed in section 3.1.4 film thickness could 

also change the orientation of the BCP. Therefore, in order to obtain perpendicular BCP 

morphologies surface treatment is a must.   

6.1.2)Coating)PSJbJPMMA)BCP)Thin)Film)With)a)Surface)Neutralizing)
Underlayer)

 

One of the most popular methods to obtain neutralize surface for the perpendicular self 

assembly of PS-b-PMMA block copolymer is to graft a random PMMA-r-PS copolymer brush 

with the same PS/PMMA ratio as the BCP. However, PMMA-r-PS with –OH terminated group 

is expensive and takes a long time to be grafted. Due to these limitations other alternatives are 

being studied. In section 3.1.4 we have summarized some of the most promising methods to 
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achieve perpendicular orientation for the lamellar structures and surface neutralization. In this 

report we make use of 3MPTS polymer which is neutral to both PS and PMMA blocks. B.H. 

Sohn and S. H. Yun first used SAM monolayer of 3MPTS to neutralize the interface, they 

coated the substrate by emerging the substrate into the solution of 3MPTS for 48 hours. Their 

coating process was very long which limits this method to lab testing and not for larger 

production purposes. In our experimental method we showed that evaporation of 3MPTS can 

be very effective since only a very small volume of 3MPTS is used, this process is very fast 

and can coat many substrates at a time if stacked together, this process is also free of 

contaminants compared to the liquid coating process. Both SEM and AFM imaging confirmed 

our hypothesis.  

6.1.3)Different)Annealing)Temperature)For)The)Self)Assembly)Of)BCP)

 

Different annealing temperatures were experimented in section 5.1.3, the main purpose 

was to decrease the annealing time required to form the perpendicular BCP structures. In doing 

so we found out that perpendicular structures can be formed in temperatures as low as 160oC 

and as high as 250oC. Both SEM and AFM images suggested that for temperatures of 220oC 

and 250oC the coherence length (how many fingerprint repeat units before it changes direction) 

of BCP is higher. Also, it was in our interest to find out whether high temperatures would affect 

the bonding of the films to each other or to the substrate. Polymer degradation and oxidization 

were among the other factors that were of the interest, however the images obtained for these 

studies confirmed that both monolayer and BCP layer stay attached to the interface, no sign of 

polymer degradation was visible in any of the images.  
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6.1.4)Different)Annealing)Time)For)The)Self)Assembly)Of)BCP)

 

Similar to temperature studies, effect of varying time under constant annealing 

temperature was studied. The main purpose of this experiment was to reduce the annealing 

time for as much as possible to increase the throughput of the process. For the constant 

temperature of 190oC we learned that the annealing time can be reduced 2 minutes and still 

produce well defined perpendicular lamellar structures. Both SEM and AFM images confirm 

this finding.  

6.1.5)Induced)Morphologies)On)The)Same)BCP)Thin)Film)By)EBL)

 

Lastly, e-beam lithography was used to modify the ratio of the PS-b-PMMA blocks 

locally and produce different morphologies within a same film. As it was mentioned before in 

this report, PMMA is a standard e-beam lithography resist. Exposure of the PMMA chains to 

electrons degrades the polymer and can reduce the polymer chain length. Degraded PMMA 

polymer can be removed by the developer. Annealing of the exposed BCP film allows the BCP 

blocks to move around and reach their stable energetic state, however since the PS and PMMA 

chains don’t have equal chain lengths anymore, BCPs morphology will shift from lamellae to 

other morphologies according to the new ratio of the PS and PMMA blocks. In our experiment 

we were able to create two different morphologies by employing this technique. This effect 

clearly is visible in figures 40, which is a blown up section of the exposed square of the PS-b-

PMMA with 5KeV and the exposure dose of 12.60µC/cm2. 
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Figure 39: SEM image of exposed PS-b-PMMA BCP by e-beam.  

 

Figure 40: SEM image of exposed PS-b-PMMA BCP by e-beam. a) Non-exposed area which shows 

the well defined finger print patterns. b) Exposed area by e-beam which shows morphologies other 

than finger print.  
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