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Abstract 

 

 In this age of advancing technology, people often perform multiple tasks at the same 

time, which actually requires either dividing or switching attention. The ability to switch 

attention between two tasks is used often in daily life and the timing of switching can be 

critical. When switching attention, there is a behavioural switch cost, measured as delays in 

reaction times. It is important to understand the mechanisms of the switch cost to better address 

age and disease related changes in attention switching. This thesis, comprised of two studies, 

investigated the behavioural and electrophysiological aspects of attention switching and the 

resulting switch cost in young healthy adults. Study 1 evaluated an approach to measure switch 

cost with temporal precision when switching attention between tasks of two modalities and 

determined the relationship between task challenge and switch cost. This approach involved a 

background auditory choice reaction time task and switching to a visual reaction time task at an 

unpredictable time point. Results revealed, in contrast to the hypothesis, that as the task 

difficulty increased, the switch cost decreased. Study 2 used electroencephalography to 

examine differences in an event-related potential, the P3, when switching attention to probe the 

underlying neurophysiology of the switch cost. When comparing switch and non-switch trials, 

P3 latency was longer in switch trials, but there was no difference in P3 amplitude. This 

indicates that when switching, there are other possible processes that are associated with the 

delay in the P3, such as disengagement, which could involve the updating of the mental 

representation of the task in working memory and this is revealed in the switch cost. Future 

work could investigate task switching performance using this paradigm in other populations 

such as older adults and those with certain neurological disorders as well as investigating 

switch cost components (eg disengagement) in more detail.         
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Chapter 1: Introduction 

1.1 Background 

In this age of advancing technology, people are increasingly trying to perform multi-

tasking (eg walking and talking on a cell-phone). The act of multitasking can be viewed as 

being achieved in two ways: 1) dividing resources between two tasks (divided attention) and/or 

2) switching resources back and forth between two tasks (attention switching) (Pashler, 2000). 

While both may well play a role, there is a view that attention switching is particularly 

important (Monsell, 2003). Attention switching, the ability to disengage from one task and 

engage in another, is an executive function that allows for cognitive flexibility in an 

environment that is constantly changing (Klanker et al., 2013). This permits individuals to 

disengage and engage attention elsewhere when required, in order to adapt to the dynamic 

environment in the world around us (Pesce and Audiffren, 2011). This ability is not only 

important for specific groups of people, like elite athletes, but also in the everyday lives of 

normal individuals and the speed at which attention switching is performed can be critical. It 

may not be critical in certain situations like switching between watching television and writing 

a grocery list; however in other situations, where timing of responses is important, like texting 

and driving which could result in a car accident, this capacity for attention switching is critical. 

The speed at which people switch attention declines with age (Kray and Lindenberger, 2000), 

as well as in certain diseases, like Parkinson’s disease (Cameron et al., 2010). As a result 

advancing our understanding of the processes that underpin the ability to attention switching 

are important for understanding the determinants of performance and age and disease related 

changes.    
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One experimental measure of attention switching is behavioural switch cost. It is 

measured as the difference in reaction times between trials involving switching between two 

tasks and non-switch trials (Wylie and Allport, 2000). As attention switching is related to the 

speed of information processing in the central nervous system (CNS), this switch cost is 

associated with speed of processing of a certain stage or multiple stages of information 

processing. There are discrepancies in the literature as to whether such switch cost involves the 

response selection stage or more perceptual stages (Hsieh, 2006). Furthermore, investigating 

electrophysiological correlates of attention switching can provide further insight into the 

underlying mechanisms or factors contributing to the switch cost, allowing for stages of 

information processing to be examined.   

In the present study, young healthy adults were recruited to examine behavioural and 

electrophysiological aspects of attention switching. The main objectives of this thesis were to 

evaluate an approach to precisely measure switch cost with temporal precision when switching 

attention between tasks involving different modalities and to examine changes in cortical 

activity and electrophysiological markers associated with transient moments of attention 

switching. Electrophysiological correlates, with a focus on the P3, were examined in switch 

and non-switch trials to investigate differences in various stages of information processing. 

This research leads to a greater understanding of the switch cost and underlying mechanisms, 

which could indicate ways in which to improve poor performance in attention switching in our 

everyday lives as well as in the growing aging population and in certain disease states.    
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Chapter 2: Literature Review 

2.1  Cognition 

2.1.1  Cognition and executive function  

In general, cognition involves higher level information processing that allows for online 

perception of a stimulus and subsequent goal-driven response. Executive functions are required 

in order to regulate cognitive sub-processes during the completion of complex tasks (Audiffren 

et al., 2009). Executive functions include scheduling, mental-set shifting, planning, inhibition, 

working memory and the coordination of complex cognitive functions (Colcombe and Kramer, 

2003; Hillman et al., 2008; Audiffren et al., 2009). These higher level conscious processes 

demand increased effort (Hillman et al., 2003) and are controlled mainly by the frontal lobe of 

the brain (Audiffren et al., 2009).           

2.1.2  Attention 

Attention allows for the processing of relevant sensory information, while ignoring or 

suppressing irrelevant distractor information. Attention can be automatic or voluntary and 

directed towards particular objects or spatial locations (Herrmann and Knight, 2001). There are 

two primary mechanisms by which attention is controlled and processed. Top-down processing 

is goal-driven, based on knowledge, expectation and experience. The second mechanism, 

bottom-up processing, is stimulus-driven, gathering information from sensory input to 

perception of a stimulus, recruiting higher brain areas, and subsequent motor response. The 

primary areas of the brain responsible for attention encompass the prefrontal and parietal 

cortices (Sarter et al., 2001; Corbetta and Shulman, 2002). Top-down control involves mainly 
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the dorsal parietal cortex, specifically intraparietal sulcus and superior parietal lobule, as well 

as the dorsal frontal cortex alongside the precentral sulcus and near the frontal eye field. A 

ventral frontoparietal network is responsible for stimulus-driven control which includes 

temporoparietal junction cortex, middle frontal gyrus, inferior frontal gyrus, frontal operculum, 

and anterior insula (Corbetta et al., 2008). While there are multiple domains of attention, 

including selective, sustained, and divided attention (Sarter et al., 2001), this thesis will focus 

on switching attention, due to the temporal aspects and link to the speed of processing.  

2.1.3  Attention switching and switch cost 

Attention switching is an executive function involving the disengagement from one 

stimulus or task and engagement to another (Posner and Presti, 1987). In the literature, it is 

alternatively termed “task switching”, “shifting attention” or “attention shifting” (Wager et al., 

2004). Some authors differentiate between different types of attention switching, including 

switching between locations, objects, object attributes, rules, and tasks, although they activate 

similar brain regions (Wager et al., 2004). In spite of the modality of the task conditions, the 

ability to switch attention rapidly is required in the midst of constantly changing environments.   

When switching attention there is a resulting switch cost. This is the decreased level of 

performance, as reflected by errors and delays in timing, when switching between two tasks 

compared to performing a single repetitive task. The switch cost is measured as the difference 

in reaction times between switch trials and non-switch trials (Wylie and Allport, 2000). During 

switch trials, response times are approximately 200 ms longer than during non-switch trials 

(Monsell, 2003) and error rates increase (Gajewski and Falkenstein, 2011). This indicates the 

extra cost of the involved control processes necessary for setting new task parameters, ending 

previously bound task parameters and overcoming interference from previous tasks 
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(Vandierendonck et al., 2010). Reducing the switch cost may indicate an increase in the speed 

of processing, suggesting more efficient executive functioning (Monsell, 2003). For the 

purposes of this thesis, reaction time is defined as the time from stimulus onset to the initiation 

of the muscular response, as measured through the onset of electromyography. Movement time 

is from the onset of the muscular response to the completion of the response. Therefore, 

response time is the period from stimulus onset to the completion of the response, hence, the 

sum of reaction time and movement time (Chang et al., 2009).     

2.1.3.1  Factors contributing to switch cost 

There are two prominent views of the switch cost origin: 1) the interference view and 2) 

the reconfiguration view (Vandierendonck et al., 2010). The interference view presumes that 

residual parameters from a previous task may hinder or interfere with processing of novel 

parameters of another task during switching. This in turn produces a switch cost that is 

measured as the extra time required to overcome interference. The interference itself could be 

due to task-set inertia, which is the continued activation of task-set parameters from a previous 

task interfering with responding to a stimulus that has previously been processed for another 

task. A task-set is necessary to perform a task and encompasses the control settings or task 

parameters to carry out stimulus identification, response selection and execution 

(Vandierendonck et al., 2010). The task-set inertia hypothesis expects switch costs to be 

dependent on the original task an individual is switching from (Wylie and Allport, 2000). 

Besides task-set inertia, there are other factors that may contribute to task interference. When 

the stimulus is involved in both tasks, termed bivalent, switch costs are larger as there is more 

interference between the tasks (Kiesel et al., 2010). Task-rule congruency effects result in more 

interference for task-rule incongruent responses. This occurs when the required response to the 
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stimulus varies between the two tasks. Therefore, the interference view attributes switch cost to 

the time required to resolve interference between task-sets  (Vandierendonck et al., 2010).     

The reconfiguration view proposes when switching tasks, extra time is required to 

reconfigure the task-set (Vandierendonck et al., 2010) including initiating the relevant 

stimulus-response rules (Yeung and Monsell, 2003). Reconfiguration is not necessary during 

non-switch trials as the task-set is already active from the previous trial. This view predicts that 

if adequate preparation time is given to switch tasks, the switch cost as measured by errors can 

be reduced. Increasing preparation time means there is more time to reconfigure the task-set 

before switching to the next task. The reaction time decreases for both switch and repetition 

trials, but for switch trials there is a greater reduction. The term residual switch cost describes 

the switch cost following a long preparation period (Vandierendonck et al., 2010).  

There are other factors that contribute to switch cost which may or may not be present 

in certain paradigms. Depending on the tasks and stimuli involved, the processing of a new 

stimulus may be affected by task-set priming. If the task performed in the last few minutes had 

the same stimuli as the current task, this results in slower responses (Monsell, 2003). It is 

thought that stimuli, responses and task goals are bound together, where task-set priming is due 

to retrieval of these relationships when the stimulus is presented (Yeung and Monsell, 2003). 

Furthermore, some authors suggest that task-set inhibition takes place as a component of the 

reconfiguration process or to settle interference (Vandierendonck et al., 2010). When a new 

task-set becomes active, the irrelevant task-set is inhibited, and this inhibition could be carried 

over to subsequent trials. Yeung and Monsell (2003) proposed that during a switch trial, 

inhibition either results in lengthening the time for a certain control process or brings forth 
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additional control processes necessary to overcome the inhibition. Switch costs are reduced 

when a cue is presented prior to switching to the new task (Kieffaber and Hetrick, 2005).        

2.1.3.2  Task-switching paradigms  

 Several paradigms are used in task-switching literature, such as the list paradigm 

(Vandierendonck et al., 2010), alternating-runs paradigm, task-cueing paradigm, and 

intermittent-instruction paradigm (Monsell, 2003). The original protocol used to investigate 

task-switching was termed the list paradigm, in which two types of list conditions were 

employed. One list required the participant to perform a single task for all stimuli while the 

other list involved completing two tasks that alternated in order (Vandierendonck et al., 2010). 

The resulting switch cost was determined by taking the mean difference in time to complete the 

lists (Wylie and Allport, 2000). The alternating-runs paradigm involves switch and repetition 

trials within a single block, switching tasks after a predetermined number of trials (Rogers and 

Monsell, 1995). A pre-specified task sequence can also be given to the participant so they 

know when to switch tasks. Task-cueing paradigms are unpredictable, as a cue appears prior to 

or at stimulus presentation in order to indicate which task to complete. The intermittent-

instruction paradigm is a form of task-cueing that involves occasional instructions to the 

participant as to which task to perform after the instruction (Monsell, 2003). The cueing 

protocol can be useful as the timing between the cue and stimulus, as well as between the 

response and next cue, can be manipulated to allow the switching to be less predictable. 

Differences in switch cost between different paradigms may be due to added control processes 

that are required in one but not the other (Vandierendonck et al., 2010).    
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2.1.3.3  Tasks used in task-switching paradigms 

Just as there are different paradigms to study task-switching, there is a wide range of 

tasks included within these paradigms. Quite often, two tasks are completed that have different 

task-sets, of either varying stimuli or responses to the same stimuli (Kiesel et al., 2010). A 

common set of tasks involves determining if a number is odd or even, and then if a letter is a 

consonant or vowel. The computerized task, depicted in a two-by-two grid, switches every two 

trials dependent on the stimulus’ position in the grid. Switch cost is determined through 

differences in response time when switching to the next task as opposed to the repetition of the 

same task (Rogers and Monsell, 1995; Coles and Tomporowski, 2008). Another specific 

example involves participants classifying faces as either male or female and switching to the 

categorization of words as having two syllables or not (Yeung et al., 2006). Other studies have 

used stimuli from the Stroop task and have switched between reading the word and then 

reading the colour of the word (Wylie and Allport, 2000). Some paradigms include tasks in 

various modalities, such as switching between a visual and auditory task in a study by Strobach 

and colleagues (2012). Participants were to respond to the spatial location of a circle on a 

computer screen for the visual task and then switch to discriminating between three tones of 

different frequencies for the auditory task (Strobach et al., 2012). The Madrid card sorting task, 

similar to the Wisconsin card sorting task, has been used in the study of task-switching, where 

cards are sorted based on certain attributes, like colour and shape, and the categorization of the 

cards is switched between certain trials (Barceló, 2003). All these studies employing the 

various tasks have found slower performance for switch trials as opposed to non-switch trials, 

demonstrating a behavioural switch cost.  

Task-switching studies seem to mainly employ three different types of tasks: tasks like 

the Wisconsin card sorting task (Barceló, 2003; Buchsbaum et al., 2005), a computerized 
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switching of rules like in the 2 by 2 grid (Rogers and Monsell, 1995; Coles and Tomporowski, 

2008), and tasks involving switching between two modalities (Strobach et al., 2012). While the 

Wisconsin card sorting task is a simple task applicable as a clinical tool, it does not allow 

single trials to be examined in order to determine any trial effect. Furthermore, there is no 

direct measure of the processing time, as indicated through reaction time. In modified 

computerized versions, button presses indicate which sorting pile to put the choice card into 

and so response time can be measured (Barceló, 2003). However, again, there is no direct 

measure of the reaction time. The computerized rule switching tasks offer a method to quantify 

timing for individual trials. Responses are completed through a button press and although the 

contribution of movement time to the response time may be minimal, it is unknown and 

therefore, so is the reaction time. Furthermore, this task switching occurs between tasks that are 

dependent on the vision modality which may limit the potential to explore early stages of 

processing as performed in attention studies using electrophysiological markers of attention 

switching (Staines et al., 2014). Strobach et al. (2012) employ a task-switching paradigm 

involving switching between a visual and auditory task; however, the visual task involved 

determining the spatial location of a circle on the screen. With this type of task there would be 

increased eye movements, presenting a challenge to electroencephalographic recording, as well 

gaze time adds difficulty to the interpretation of reaction time processing.          

2.2 Cognition and Electrophysiology  

2.2.1 Attention  

Electrophysiological and neuroimaging techniques have been used to examine 

cognitive function and associated changes in neural activity. Imaging techniques, such as 

functional magnetic resonance imaging (fMRI) and positron emission tomography, have great 
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spatial resolution effectively defining specific active brain regions. Electroencephalography 

(EEG), with its millisecond scale temporal resolution, is employed to examine changes in 

electric potential that are time-locked to certain events, called event-related potentials (ERPs; 

Hillyard and Anllo-Vento, 1998). ERPs allow for the measurement of information processing 

under various task conditions (Barceló, 2003), so timing of cognitive processing can be 

characterized (Luck et al., 2000). These tools can be used to study cortical activity during 

attentional tasks.  

  Examining ERPs related to the attention of a stimulus have revealed three main 

components related to different phases of attentional processing: N1, P1 and P300 (P3) 

(Herrmann and Knight, 2001). The N1 and P1 component generators are centred within the 

auditory or visual cortices depending on the modality. These components are indicative of the 

first stages of attentional processing suggesting mainly exogenous contributions (Herrmann 

and Knight, 2001).           

2.2.2 N1 

 The N1 is a negative component, influenced by attention (Luck, 2005), that indicates 

discriminative processing of stimulus attributes in early stages of information processing 

(Fonaryova Key et al., 2005). Differences exist in the N1 component between the vision and 

auditory modalities. The visual N1 component peaks approximately 150 to 200 ms after the 

presentation of the stimulus when examined posteriorly (Luck, 2005). The auditory N1 has a 

greater amplitude and shorter latency in comparison to the visual N1. The auditory N1 

amplitude is greatest over frontocentral areas or the Cz electrode site while the visual N1 has 

peak amplitude in occipital areas (Fonaryova Key et al., 2005). The primary auditory cortex in 

the temporal lobe generates the auditory N1 while the visual N1 is generated in the extrastriate 
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occipital cortex, as well as dorsal occipito-parietal and ventral occipito-temporal areas 

(Herrmann and Knight, 2001).      

2.2.3 P3 

 The P3 is a positive component of the ERP peaking around 300 ms after the 

presentation of a stimulus; however, its latency can vary. The P3 is evoked when individuals 

attend to a stimulus and distinguish its characteristics (Herrmann and Knight, 2001). The P3 

sometimes displays two distinct peaks, referred to as P3a and P3b. The presentation of a novel 

stimulus evokes an earlier positive peak (P3a) which is more frontally distributed. The later 

peak (P3b) displays more centro-parietal distributed topography (Herrmann and Knight, 2001) 

and is evoked at the presentation of the target stimulus (Sussman et al., 2003). Therefore, there 

are multiple brain regions involved in the generation of the P3 in response to a visual or 

auditory stimulus, including the thalamus, temporal lobe, hippocampus/parahippocampal areas 

and the insula. Specifically for the P3 elicited by a visual or auditory stimulus, activity has 

been found over the occipital cortex and temporal lobe, respectively (Herrmann and Knight, 

2001).     

Several theories exist in determining the underlying meaning of the P3. The context-

updating theory describes the P3 as an indicator of the updating of a mental representation of 

an event in working memory. For example, if a new stimulus is presented, a P3 response will 

be observed, representing the attentional resources required to change the stimulus 

representation. Furthermore, it is also thought that the P3 represents the amount of attentional 

resources available for a specific task. Therefore, for an easy task, the P3 tends to be larger 

with a shorter latency as fewer resources are consumed by the task and are available (Polich, 

2007). The P3 amplitude tends to be larger in parietal electrode sites compared to frontal sites 
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(Polich and Kok, 1995). Its amplitude is comparative to the amount of attentional resources 

allocated to a specific task, while the latency reflects the speed of processing and the time 

taken to evaluate a stimulus (Kamijo et al., 2007). Generally, P3 latencies are commonly 

shorter in duration in frontal areas and longer over parietal areas. Shorter latencies are 

correlated to better cognitive performance on tasks (Polich, 2007) and latencies increase when 

target discriminability becomes more difficult (Linden, 2005). Not only is the P3 elicited when 

attending to a stimulus but also when switching attention between different stimuli (Herrmann 

and Knight, 2001). The electrophysiological component of this thesis will focus on changes in 

N1 and P3 amplitude and latency when attention switching. 

2.2.4 Attention switching 

 Particular brain regions are active during attention switching as revealed through 

neuroimaging studies. Studies employing fMRI have shown activations in the dorsal lateral 

prefrontal cortex (DLPFC; Brass and von Cramon, 2004; Hyafil et al., 2009) as well as the 

parietal cortex (Shomstein and Yantis, 2004; Yeung et al., 2006) with some suggestion of 

contribution from the cerebellum and other subcortical regions (Monsell, 2003; Krumbholz et 

al., 2009). The posterior parietal cortex is often associated with switches of attention within the 

visual domain, however recent research suggests that it has a similar role in the auditory 

modality (Shomstein and Yantis, 2004; Krumbholz et al., 2009; Lee et al., 2014). The temporal 

nature of how these generators contribute to overall attention switching is unclear, but some 

suggest that parietal cortical activity may precede frontal activity (Green and McDonald, 

2008). According to the guided activation theory, the prefrontal cortex (PFC) directs task-

relevant activity to other brain regions in order to perform the task (Miller and Cohen, 2001). 

Consistent with this theory, task-relevant regions of the PFC are more active when switching 
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between two tasks (Yeung et al., 2006). Furthermore, Yeung et al. (2006) found increased 

activity in the anterior cingulate cortex and pre-supplementary motor area to be associated with 

a greater switch cost, indicating increased levels of interference. However, across individuals it 

appears that alternative strategies may be employed as increased activity to task relevant 

stimuli in these areas presents as improved performance in some and prolonged processing in 

others. Within a subject, fluctuations in attentional control and interference can occur across 

trials (Yeung et al., 2006). These changes in brain activity indicate regions that are active 

during attention switching and the study of the P3 can indicate further details regarding 

attentional processing during switching.  

 The P3 component of an ERP can be utilized to examine attentional processing during 

switching between two tasks, in terms of its amplitude and latency. In task-switching literature, 

the P3 is often examined time-locked to the presentation of a cue, target stimulus, or response 

analyzing the preparation, implementation and execution of a task-set. The cue-locked P3, 

which tends to have a greater amplitude in switch trials, can be interpreted as the 

reconfiguration of stimulus and response sets (Gajewski and Falkenstein, 2011). With a cue, 

switching between tasks evokes a clear P3a over fronto-central electrodes, and a P3b-like 

component later over parieto-occipital electrodes (Kieffaber and Hetrick, 2005). The amplitude 

of a stimulus-locked parietal P3 is lower in switch trials compared to non-switch trials 

(Gajewski and Falkenstein, 2011). This indicates that there is greater demand for attentional 

resources and when switching to the other task, there is interference as well as resources being 

taken up resulting in a decreased amplitude (Polich, 2007). It has also been suggested that the 

lower amplitude is due to the complex cognitive nature of task switching yielding more 

variable data. The greater amount of variability in the P3 leads to a smaller average waveform 
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(Gajewski and Falkenstein, 2011). Furthermore, Gajewski and Falkenstein (2011) indicated 

that the attenuated P3 amplitude may be due to a more enhanced N2 component during 

switching. It is assumed that tasks that have greater response selection demands and are more 

difficult elicit a greater N2 amplitude, reducing the P3 amplitude (Gajewski and Falkenstein, 

2011). An increase in N2 amplitude during switch trials has also been interpreted as 

suppression of a habitual response (Gajewski et al., 2010). The response-locked P3 has been 

less extensively studied with varying results of either no difference between switch and 

repetitive trials or a decreased amplitude for switching (Gajewski and Falkenstein, 2011).  

 This thesis will focus on the stimulus-locked P3 during switch and non-switch trials. 

Following switching, there is an associated P3-like ERP with decreased amplitude, but similar 

latency, compared to non-switch trials (Kieffaber and Hetrick, 2005). When switching 

attention, a P3a is evoked in frontal regions and a P3b in parietal regions. It is debatable which 

part of the process is demonstrated by the P3a; it may indicate the disengagement phase or the 

entire attention switching process. The parietal P3b elicited during task switching has been 

suggested to signify the activation of the relevant task set (Hölig and Berti, 2010). Depending 

on the specific task conditions, some studies have found difficulty distinguishing between the 

P3a and P3b sub-components (Hölig and Berti, 2010). Hsieh (2006) found similar P3 peak 

latencies between switch and non-switch trials in a paradigm involving switching task-sets. 

This research provides an indication of the electrophysiological correlates time-locked to 

stimulus presentation in attention switching paradigms.           
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2.3 Reaction Time 

2.3.1 Reaction time determinants 

 In this thesis, reaction time is the primary behavioural measurement used in order to 

compute switch cost and is an index of speed of processing. As previously stated, reaction time 

is defined as the time from the presentation of the stimulus to the onset of muscular activity, as 

measured through electromyography (Chang et al., 2009). Reaction time has been studied for 

the past five decades, with many experiments being developed from the work by Donders on 

the speed of mental processes (Donders, 1969). The development of electrophysiological 

techniques has allowed for a greater understanding of the processes involved in reaction time 

(Falkenstein et al., 1993). Throughout the vast amount of research, numerous determinants of 

reaction time have been discovered.    

An extensive amount of factors can modulate reaction time including: age (Verbrugge 

et al., 1996), gender (Adam et al., 1999), practice (Klapp, 1995), handedness (Dane and 

Erzurumluoglu, 2003), physical fitness (Spirduso, 1980), exercise (Audiffren et al., 2008), 

fatigue (Langner et al., 2010) and arousal (Eason et al., 1969). In addition, the use of a cue or 

warning signal prior to stimulus presentation provides an indication that the stimulus is 

approaching, allowing for preparation. However, the length of time between the cue and 

stimulus, the foreperiod, can be varied, introducing a dimension of uncertainty. When the 

foreperiod is varied and the stimulus timing is unpredictable, reaction times are longer 

compared to reaction times using constant foreperiods. Generally, as foreperiod length 

increases, reaction time is slower due to the increased time uncertainty of when the stimulus 

will appear (Niemi and Näätänen, 1981).    
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     Additionally, several stimulus characteristics can impact reaction time, including 

intensity and modality. As the intensity of the stimulus increases, the reaction time decreases 

up to a certain level (Pins and Bonnet, 1996). In terms of stimulus modality, visual reaction 

times are generally longer than auditory reaction times, by approximately 30 to 50 ms (Freides, 

1974). This is likely due to the greater number of synaptic connections required for visual 

processing (Kandel et al., 2013), and therefore a slower sensory conduction time than for 

auditory stimuli (Brebner and Welford, 1980).   

 When examining attentional effects on reaction time, voluntary and involuntary 

attention are explored, thought to operate under different mechanisms. In this sense, with 

voluntary attention, perceptual resources are allocated to the probable target area whereas 

involuntary attention involves an orienting response even when the target location is not 

properly cued (Prinzmetal et al., 2005). It has been observed that time taken to detect a 

stimulus decreases when a cue specifies where the stimulus will occur. It is thought that this 

relates to aligning the attentional system with the required pathways to process the stimulus 

(Posner et al., 1980). The warning cue puts the body into a state of preparation for detecting 

and appropriately responding to a stimulus more quickly through orienting attention (Petersen 

and Posner, 2012).       

2.3.2 Simple and choice reaction time  

There are several different types of reaction time experiments employed, including 

simple and choice reaction time tasks. Simple reaction time involves the presentation of a 

single stimulus with only one response while in choice reaction time tasks, multiple stimuli 

could be presented with different responses (Klapp, 1995). As the number of possible stimuli 

increases in a choice reaction time task, the reaction time increases, following a logarithmic 
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relationship (Hick, 1952). Therefore, simple reaction times are shorter than choice reaction 

times. The flanker task is a choice task involving distractors around the target, which are 

required to be inhibited (Eriksen and Eriksen, 1974). In modified versions of the flanker task, 

the stimuli are arrows pointing in either the left or right direction. In the congruent condition, 

the flanker arrows or distractors point in the same direction as the target, while in the 

incongruent condition, the distractors point in the opposite direction as the target. Incongruent 

trials, in particular, present conflict due to competition between responses. The added 

inhibition process leads to a longer reaction time, as well as decreased accuracy (Botvinick et 

al., 1999).  

For the purposes of this dissertation, the stages of information processing will be 

referred to as stimulus detection/discrimination, stimulus evaluation, response selection, and 

response execution. In simple reaction time tasks, as there is only one stimulus and one 

subsequent response, the stimulus is simply detected and the response is executed. As it is 

known in advance, the response can be pre-programmed prior to stimulus onset (Klapp, 1995). 

In choice reaction time tasks, as there is the possibility of many stimuli to be presented 

requiring different responses, stimulus discrimination and evaluation, as well as response 

selection stages may be longer than in simple tasks resulting in longer reaction times. 

However, it is important to note that the pre-programming of the response in simple reaction 

time tasks requires undivided attention (Frith and Done, 1986). Therefore, in dual-task 

situations, the addition of the secondary task actually increases simple reaction time up to the 

same level as choice reaction time (Frith and Done, 1986; Goodrich et al., 1990). Undivided 

attention is not present to pre-program the response as attention is required by the secondary 

task (Goodrich et al., 1990).      
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2.4 Rationale 

Switching attention between two tasks is often used in daily life allowing for cognitive 

flexibility in an environment that is constantly changing and the speed at which people switch 

can be critical. Furthermore, the speed at which people switch attention declines with age 

(Kray and Lindenberger, 2000) and in certain diseases like Parkinson’s disease (Cameron et 

al., 2010). In order to better understand these changes it is first important to gain a better 

understanding of the factors that contribute to the behavioural switch cost in healthy adults. In 

the current work both behavioural and electrophysiological markers are used to explore the 

relationship between task complexity and switch cost. 

In order to study behavioural and electrophysiological aspects of attention switching, 

tasks are needed that demonstrate excellent temporal precision and can be used to examine 

electrophysiological markers associated with attention switching. In addition, recording 

reaction times, as opposed to response times, will permit for excellent temporal precision 

computing more precise switch costs indicating the speed of processing and improving the 

ability to link behavioural events to electrophysiological changes.  

One essential need is a paradigm that will permit measurement of event related 

potentials tightly time locked to behavioural events. In this respect there is a need for a 

behavioural task with precise measures of the stimulus to onset of reaction time (not 

confounded by movement times). It is also necessary that individuals switch between two 

different modalities in order to separate the event related potentials between the two different 

tasks. This is due to the potential to examine early stages of processing as performed in 

attention studies, such as work conducted by Staines and colleagues (2014). Finally, it is 

necessary that the tasks performed can be monitored and task challenge can be controlled in 
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order to be able to ensure participants are directing attention to the appropriate stimulus 

response relationship.   

Previously conducted studies do not employ tasks that satisfy these important criteria 

necessary to conduct the study focused on temporally coupled electrophysiological events. As 

a result, it was considered important in study 1 to develop a unique approach that may allow 

for a better understanding of the behavioural and underlying electrophysiological 

characteristics associated with the switch cost. Historically, the three main types of tasks used 

in task-switching paradigms include: the Wisconsin card sorting task or modified versions 

(Barceló, 2003; Buchsbaum et al., 2005), computerized rule switching like in the 2 by 2 grid 

(Rogers and Monsell, 1995; Coles and Tomporowski, 2008) and tasks involving switching 

between two modalities (Strobach et al., 2012). While these tasks may have their advantages, 

they have disadvantages which make it difficult to precisely compute switch cost and examine 

associated electrophysiological markers. Overall one of the main issues with these tasks is that 

response time is measured as opposed to reaction (premotor) time or in terms of the Wisconsin 

card sorting task, the time taken to sort all the cards. Response time encompasses both reaction 

time (processing time) and movement time, so the processing time is an indirect measure not 

ideal for the temporal precision required in the current work.  

It is proposed that the development of a unique task, requiring participants to switch 

between a near-continuous background auditory task and an unpredictable visual reaction time 

task, could demonstrate a switch cost and allow for electrophysiological markers to be 

examined. Norrie et al. (2002) employed a similar task studying attention switching and 

balance, demonstrating a consistent switch cost. Reaction times to the visual stimulus will be 

measured, as well as visually evoked potentials. Determining potential electrophysiological 
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markers could provide further insight into executive control functioning of the brain and 

specific changes in cortical activity that occur with attention switching. As electrophysiological 

measurements have excellent temporal resolution and can be time-locked to stimulus onset, 

they can provide an understanding of the processes that occur after stimulus presentation 

(Hillyard and Anllo-Vento, 1998). This research has the potential to influence our 

understanding of the important links between speed of information processing and associated 

electrophysiology. A greater understanding of the associated switch cost could lead to possible 

ideas on ways in which to improve poor performance when switching attention.  

2.5 Research objectives 

 This thesis is comprised of two studies designed to address the following research 

objectives:  

Study 1: Evaluating a novel approach to measure the temporal properties of task 

switching 

 To evaluate an approach to measure switch cost with temporal precision when 

switching attention between tasks of two different modalities. 

 To determine the relationship between task challenge and switch cost duration.  

Study 2: Examining changes in cortical activity and electrophysiological markers 

associated with attention switching between tasks of different modalities   

 To determine changes in cortical activity when switching attention from an 

auditory to visual reaction time task and associated electrophysiological 

markers. 
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Chapter 3: Study 1 – Evaluating a novel approach to measure the temporal 

properties of task switching  

3.1 Introduction 

The ability to switch between tasks is important in order to successfully perform 

multiple tasks that are often executed concurrently or serially during everyday behaviour. 

Attention switching, an essential element of task switching, is an executive function required in 

daily life that is of importance in an environment that is constantly changing. For example, 

when driving on a busy highway, individuals must constantly switch their attention between 

different objects in the visual scene (cars, signs, pedestrians) and still remain capable of rapid 

reactions to avoid potential accidents (Anstey and Wood, 2011). Of particular importance in 

the present study is the time it takes to switch between tasks, which can be an important 

determinant of success. The speed at which people switch attention can deteriorate with age 

(Kray and Lindenberger, 2000), as well as in certain diseases, like Parkinson’s disease 

(Cameron et al., 2010). In terms of timing, when comparing reaction times between trials 

involving switching and non-switch trials, there is a decreased level of performance, as 

demonstrated through a delayed reaction time, termed the switch cost (Wylie and Allport, 

2000). This increase in reaction time for switch trials indicates the extra time needed for 

control processes so new task parameters may be set, previous task parameters terminated, and 

interference from previous tasks overcome (Vandierendonck et al., 2010). The focus of the 

current study is to evaluate a novel approach to quantity the temporal properties of task 

switching. Timing when switching attention between two tasks or stimuli can be quite critical 

and focusing on the timing can provide us with information regarding the speed of processing 

during multitasking activities. 
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 In task-switching literature several different paradigms exist to examine this specific 

executive function. These paradigms vary with respect to the aspects of the characteristics of 

the tasks and methods of assessing task switching behaviour. With respect to the characteristics 

of the tasks, switching has been assessed between two tasks that differ on several features 

including the sensory, cognitive or motor determinants of the task, how the switch cost is 

measured and the task instructions. One of the most common approaches in the literature is to 

reduce the complexity of the switch elements by maintaining similar sensory and motor 

components and switching between different cognitive components. A common version of this 

is the ‘rule’ switch paradigm where individuals are required to switch between different 

stimulus-response rules. For example, in the presence of a number, they may need to switch 

between a response decision based on a rule for the size of the number or whether the number 

is odd or even (Rogers and Monsell, 1995). Different types of rule switch tasks are employed: 

the Wisconsin card sorting task and modified versions (Barceló, 2003; Buchsbaum et al., 2005) 

and a computerized switching of rules (Rogers and Monsell, 1995; Coles and Tomporowski, 

2008).  Alternatively there have been a few studies that have used a task switching model 

involving switching between stimulus modalities (eg vision and auditory stimuli) (Strobach et 

al., 2012; Williams et al., 2013). Whether a rule-switching paradigm or switching between 

stimulus modalities is employed, it is proposed that either approach provides the same 

message. It is suggested that the underlying processes involved in the resulting switch cost 

would be the same as both methods involve common task elements including disengaging from 

the first task (inhibition), and engaging in the second task. Whether the switch occurs between 

two sets of rules or two different modalities, there’s a switch between two different tasks even 

though the specific aspects of the task may vary (eg different modalities or task instructions). 
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The switch cost is still the extra time required to respond to a specific stimulus when switching 

away from another task (switch) as compared to performing the task alone (non-switch).  

With respect to how the task switching is measured, these vary from composite 

measures of overall performance (eg standard Wisconsin card sorting task) to computerized 

tools that provide measures of response or reaction time (eg responding to the specified task 

through button press). While composite measures have important clinical utility they provide 

little information about the performance of a single trial and do not provide adequate temporal 

resolution as they are based on number of correct responses or total time for performance. In 

modified computerized versions, button presses allow for response time to be measured for 

individual trials (Barceló, 2003). When timing can be measured, switch cost has been 

estimated in a wide range from 12 ms (Strobach et al., 2012) up to 500 ms (Barceló, 2003). 

The factors that appear to influence the duration of the switch cost are stimulus discriminability 

and familiarity, task cueing (Barceló, 2003), compatibility of stimulus-response maps, amount 

of preparation time, variations in task expectancy, task recency (Vandierendonck et al., 2010), 

as well as the task difficulty or rule complexity (Rubinstein et al., 2001).   

Of particular interest in the present study is to develop an approach to provide precise 

timing information to explore trial related differences in switch cost linked to task difficulty 

performance and to eventually couple to electrophysiological markers to better understand the 

source for the switch cost. Utilizing two different stimulus modalities (switching between 

different stimulus inputs) may provide an opportunity to examine electrophysiological markers 

of the early sensory processing stages of switching without interference of the other task. In 

addition, to challenge the temporal properties of task switching one would need to utilize a 

near-continuous background task to measure switch cost timing (and avoid the potential for 
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individuals to pre-emptively switch attention during lapses in demand for attention). Such a 

method has been previously employed in a balance study to compute the timing of attention 

switching (Norrie et al., 2002). 

 With respect to task difficulty, simple and choice reaction time tasks can be used to 

vary the level of difficulty. In general, slower reaction times are found for simple versus choice 

reaction time tasks. For simple reaction time, the response can be prepared in advance of the 

stimulus and is considered to be “pre-programmed” (Frith and Done, 1986). The route from 

stimulus to response is fast compared to choice reaction time, as it is only necessary to detect 

the stimulus and initiate the response and does not require the stimulus to be identified (Frith 

and Done, 1986). Importantly, undivided attention is essential for this preparatory process 

(Goodrich et al., 1990). Studies exploring the impact of distraction on simple and choice 

reaction time have found a greater effect on simple reaction time, increasing reaction time in 

the simple tasks more than in the tasks requiring a choice (Frith and Done, 1986; Goodrich et 

al., 1990). With the dual task, simple reaction times were similar to choice reaction times (Frith 

and Done, 1986). Furthermore, the performance of the secondary distraction task was 

completed less accurately. These results may occur as dedicated attention required for 

preparing the response in simple reaction times is not present, as attention is required by the 

secondary task (Goodrich et al., 1990). Given the results of these dual-task studies, the 

increased reaction time in simple tasks in the dual-task condition may relate to an increased 

switch cost. This indicates that switching to a task of lower difficulty would result in a greater 

switch cost. However, there is some debate in this relationship as another study explicitly using 

a switching paradigm revealed a greater switch cost with increasing the task difficulty 

(Rubinstein et al., 2001).  
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 This study investigated whether this approach can adequately quantify the behavioural 

switch cost. There were two objectives of this study: 1) evaluate an approach to measure 

switch cost with temporal precision when switching attention between tasks of two different 

modalities and 2) determine the relationship between task challenge and switch cost duration. 

It was hypothesized that: 1) there would be a significant switch cost in visual reaction times 

when comparing reactions with and without the concurrent performance of a near-continuous 

auditory tracking task and 2) the switch cost would increase as the difficulty of the visual 

reaction time task increased (switch cost greater for flanker vs choice vs simple reaction time 

tasks). The results of this study were considered important steps for subsequent studies to be 

focussed on revealing the neurophysiological substrate for switch cost. 

3.2 Materials and methods 

3.2.1 Participants 

Ten young healthy right-handed adults (5 females; mean age±1 SD: 25±3.9) were 

recruited for this study. This study received ethics clearance through a University of Waterloo 

Research Ethics Committee and all participants provided written consent prior to study 

participation.    

3.2.2 Protocol 

Participants were seated in a chair with their right arm and hand rested on a table with 

the thumb pointing upwards. A computer monitor was set up approximately 60 cm in front of 

them. In this randomized block design study, participants completed two cognitive tasks: a 

near-continuous auditory tracking task (the task the subjects switched from) and a visual 

reaction time task (the task the subjects switched to). There were 4 switch blocks and 4 non-
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switch blocks, which were randomized. Each block included 12 trials (except 24 trials for 

flanker blocks) with 5 seconds in between each trial. Each switch trial included 11 auditory 

stimuli and 1 visual stimulus, while a non-switch trial involved the presentation of a single 

visual stimulus. The switch blocks involved the participant switching between the two 

cognitive tasks (Figure 3-1). They performed the auditory tracking task until the visual reaction 

time task appeared on the screen and were instructed to respond to the visual stimulus 

immediately, and then return back to the auditory tracking task until the end of the trial. The 

non-switch blocks involved the completion of only the visual reaction time task with no 

auditory tracking. In all trials, the participants were instructed to fixate on a cross in the middle 

of the screen. Prior to the start of the testing blocks, practice trials were completed in order to 

minimize any learning curve. Two trials of the auditory tracking task, consisting of 11 

consecutive tones each were completed, along with 10 trials of the visual reaction time task, 

using the Flanker task. Also, two trials of the switching task were completed.  

3.2.2.1 Background auditory tracking task  

The auditory tracking task involved the presentation of tones of either a high (1000 Hz) 

or low (200 Hz) frequency (at approximately 75 dB), which were randomized. Prior to the start 

of the trials, the two different tones were presented to the participant so it was known how the 

two frequencies differed. In testing trials, each individual tone had a duration of 150 ms with 

600 ms between each tone. Using their left hand, the participant pressed the left mouse button 

after the presentation of a high frequency tone and the right mouse button after a low frequency 

tone. The participants were instructed to respond as quickly as possible. The auditory tracking 

task was performed continuously until the visual stimulus appeared on the screen, which 

randomly occurred after the presentation of 2 to 8 auditory tones and was presented for 900 ms.  
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 Response times for the background auditory task were calculated by measuring the 

timing of mouse clicks in response to auditory tones, sampled at approximately 12000 Hz. 

Errors were determined based on which mouse button was pressed with respect to the specific 

tone frequency. 

3.2.2.2 Visual reaction time task 

There were four different blocks of the visual task. One block was a simple reaction 

time task involving the presentation of a left pointing arrow, after which the participant was to 

flex their right wrist as quickly as possible, while keeping their arm stationary. In the second 

simple reaction time task, the stimulus was a right pointing arrow, and the participant then 

extended their wrist. Another block was a choice reaction time task where the participant was 

presented with either a left or right arrow. They were to subsequently extend their wrist if the 

arrow was pointing to the right, and flex their wrist if the arrow was pointing in the left 

direction. The left and right conditions were randomized. The fourth block involved the use of 

a modified Eriksen Flanker task (Eriksen and Eriksen, 1974; Botvinick et al., 1999). There 

were four task conditions for this block: right congruent, right incongruent, left congruent, and 

left incongruent which were randomized. The congruent trials involved an arrow flanked by 

four arrows facing in the same direction of the middle arrow. In incongruent trials, an arrow 

was flanked by four arrows facing in the opposite direction of the middle arrow. There were 

equal numbers of incongruent and congruent trials. The participant was required to respond to 

the arrow in the middle while ignoring the flanker arrows by either wrist extension or flexion 

as in the other blocks. For all visual reaction time task blocks, participants held their right hand 

in a neutral position, with the thumb up, before wrist extension or flexion, and then returned it 

back to the neutral position following contraction. Reaction time to the presentation of the 
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visual stimulus was measured using the onset of electromyography and accelerometers were 

used for a kinematic verification of the EMG.   

 

Figure 3-1: Set-up of a switch trial illustrating the presentation of the auditory and visual stimuli. Each 

rectangle represents a stimulus. Auditory tones were presented until the presentation of the visual stimulus, 

which occurred randomly after the presentation of 2 to 8 auditory stimuli, and then auditory tones were 

presented again until the end of the trial. 

 

3.2.2.3 Electromyography (reaction time for visual reaction time task)  

Electromyography (EMG) was collected from the extensor carpi radialis and flexor 

carpi radialis of the right wrist and was the primary measure of reaction time to the visual 

stimulus. The self-adhesive electrodes (Kendall Foam Electrodes) were placed in close 

proximity, over the muscle belly, in alignment with the muscle fibers. A ground electrode was 

placed on the clavicle. Prior to the application of the electrodes, the skin was abraded with 

NuPrep skin preparation gel and then cleaned with rubbing alcohol. EMG was collected 

continuously using a custom LabVIEWTM (National Instruments, Austin, Texas, USA) 

program, amplified at a gain of 500, band-pass filtered on-line from 10-1000 Hz and digitized 

at 1000 Hz.  
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3.2.2.4 Accelerometers (error rate for visual reaction time task) 

 Accelerometry was used to confirm the direction of the movement. A tri-axial MTw 

accelerometer (Xsens, Enschede, The Netherlands) was strapped onto the palm of the right 

hand. Accelerometer data were collected for each block using Xsens MT Manager, sampled at 

100 Hz. The data was then exported to be analyzed for acceleration in the Z direction.  

3.2.3 Data analysis 

A customized LabVIEWTM program was used to analyze the collected data. 

Synchronization pulses were sent to the collection program at the presentation of the visual 

stimulus, so EMG onset could be determined, time-locked to the visual stimulus. A 

synchronization pulse was sent from the LabVIEWTM program collecting the EMG data to the 

Xsens MT Manager program.  

EMG signals were dual band-passed filtered at 20-450 Hz using a 2nd order Butterworth 

filter, baseline corrected, full-wave rectified, and smoothed using a dual pass low-pass 5 Hz 2nd 

order Butterworth filter. EMG onset occurred when the full-wave rectified signal crossed a 

threshold of the baseline (200 ms prior to stimulus presentation) mean plus 3 standard 

deviations and the smoothed data remained above the threshold for 25 ms (adapted from an 

approach by Hodges and Bui (1996)). Mean reaction times for switch trials and non-switch 

trials were computed for all the blocks based on EMG onset latencies. The switch cost was 

calculated as the difference in reaction times between switch and non-switch trials. 

Accelerometer data were dual-passed through a low-pass 20 Hz 4th order Butterworth 

filter and then baseline corrected by subtracting the mean. Accelerometer onset was determined 

at the point where the signal crossed a threshold of the mean of the baseline (20 ms prior to 

stimulus presentation) plus 5 standard deviations. The direction of the acceleration was 
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determined as either positive or negative at onset, indicating left or right wrist movement 

respectively.      

Visual trials were deemed an error in direction if the wrong wrist was moved in the 

incorrect direction. Directional errors for the auditory task occurred if the wrong button was 

pressed (demonstrating an incorrect left/right response). In addition if the visual reaction time 

was longer than 1200 ms, that trial was coded as an error in timing and disregarded for 

subsequent analysis. Overall, 22 out of 1200 trials, or 1.83%, of visual trials were errors and 

therefore excluded. The highest visual error rate, 4.58%, was in the switch condition for the 

flanker task, with all other error rates being 2.50% and below. Responses to auditory tones 

were also considered errors in timing if the response time was shorter than or equal to 150 ms 

or longer than 750 ms. Overall, prior to the presentation of the visual stimulus, 368 auditory 

responses were determined errors out of 2999 trials, or 12.27% of trials. Of the 2999 trials, 216 

trials (7.20%) were directional errors in which the incorrect button was pressed, 115 trials 

(3.83%) were slow errors (>750 ms) and 37 trials (1.23%) were anticipation errors (≤150 ms). 

Auditory errors were excluded from response time analysis.      

3.2.4 Statistical analysis 

To test the initial hypothesis that a significant switch cost will occur between single and 

dual task conditions and to examine differences in the switch and non-switch conditions 

between tasks, a 2-factor repeated measures analysis of variance (ANOVA) was performed. 

The two factors were: 1) switch condition (2 levels: switch and non-switch) and 2) task 

difficulty (4 levels: simple-left, simple-right, choice, and flanker). To test the second 

hypothesis that switch cost will increase as task difficulty increases, a 1-way ANOVA was run 

on the calculated switch cost, the factor being task difficulty (4 levels). A significance level of 
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α=0.05 was used for statistical analysis. The original data was tested for normality and found to 

be in slight violation, as the data was skewed to the right. This data was subsequently log-

transformed to normalize the distribution. A Tukey-Kramer adjustment for multiple 

comparisons was made on the log-transformed data. 

3.3 Results 

Hypothesis 1: Reaction times (switch versus no switch)   

The grand mean reaction times for each level of task difficulty for switch and non-

switch trials are shown in Figure 3-2. There was a main effect of switch condition on reaction 

time, in that reaction times were longer in the switch condition than the non-switch condition 

(F(1,9)=156.27, p<0.0001). Post-hoc analysis revealed statistically significant differences in 

reaction times between switch and non-switch conditions for the simple and choice levels of 

task difficulty (Figure 3-2; p<0.0001). For the flanker task, the differences approached 

statistical significance between switch and non-switch conditions (p=0.0739). There was a 

main effect of congruency for the flanker task where reaction times were longer for 

incongruent than congruent trials (F(1,9)=21.02, p=0.0013) as well as a significant interaction 

between congruency and switch condition (F(1,9)=7.35, p=0.024). Reaction times for the 

flanker task separated by congruency are shown in Figure 3-3.  
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Figure 3-2: Average reaction times (n=10) for switch and non-switch trials across each level of task 

difficulty. The blue bars represent the non-switch trials while the orange bars represent the switch trials. 

The flanker data is collapsed across congruent and incongruent trials. Error bars represent standard error. 

The * denotes statistical significance (p’s <0.0001); # denotes a trend towards statistical significance 

(p=0.0739).   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Average reaction times (n=10) for switch and non-switch trials for the flanker task, separated 

by congruency. Error bars represent standard error.  The * denotes statistical significance (p’s <0.0029).  
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Hypothesis 2: Task difficulty  

There was a main effect of task difficulty (F(3,27)=15.21, p<0.0001) on reaction times. 

The higher levels of difficulty had longer reaction times in the non-switch condition. There was 

a significant interaction between switch condition and task difficulty (F(3,27)=32.86, 

p<0.0001) with post hoc test showing significantly longer reaction times in the switch 

condition for both simple tasks compared to the flanker and choice levels of difficulty 

(p<0.0001). There were no differences found in reaction times for switch trials between the 

four tasks (p>0.76). In addition, there were no statistically significant differences in reaction 

times between the two simple tasks (L vs R) in either switch condition (p>0.96).   

When expressing differences as switch costs, there was a main effect of task difficulty 

level (F(3,27)=22.05, p<0.0001), where the switch cost was the lowest for the flanker task, 

greater for the choice reaction time task, and then largest for the simple tasks. Mean switch 

costs for each task are presented in Figure 3-4. Computed switch costs were 151.9 ms, 147.9 

ms, 83.4 ms, and 33.1 ms, for the simple-left, simple-right, choice, and flanker tasks, 

respectively. Significant differences were measured between flanker, choice and simple tasks. 

There was no statistically significant difference between the switch costs for the two simple 

tasks (L vs R) (p=0.99).  
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Figure 3-4: Average (n=10) switch costs for each task. Switch cost was calculated as the difference in mean 

reaction times for switch trials and non-switch trials. Error bars represent standard error. The * denotes 

statistical significance (p’s <0.032).   

 

Background auditory tracking task performance 

In order to assess task performance on the background auditory task, response times 

were measured and compared. There was no main effect of task difficulty on response times 

measured in correct trials (F(3,27)=0.14, p=0.935), presented in Figure 3-5a. Error rates for the 

auditory tracking task were analyzed for the auditory stimuli that occurred prior to the onset of 

the visual stimulus. Individual participant error rates, as well as the number of errors, separated 

into directional, anticipation (fast), or slow error categories are displayed in Table 3-1. Error 

rates across subjects ranged from 0.00% to 26.53% across all error types. Focusing on only 

errors in direction, a main effect of task difficulty level on error rate approached statistical 

significance (F(3,27)=2.81, p=0.059).  
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Figure 3-5a: Average (n=10) auditory response times for each task, as measured from the presentation of 

the auditory tone to the click of the mouse.  Error bars represent standard error.  

 

 

Figure 3-5b: Average (n=10) auditory directional error rates for each level of task difficulty. Error bars 

represent standard error.    
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Given the differences in error rates it is possible that certain individuals may have 

performed differently during background auditory task and that may have led to different 

visual switch costs. In order to determine if there was a relationship between the visual switch 

cost and the auditory error rates across individuals a correlational analysis was performed for 

each task condition. Overall there was no statistically significant association in error rate 

versus the switch cost performance within specific task conditions (0.061>r>-0.129, p>0.72) 

(Figure 3-6).   

   

Figure 3-6: Relationship between average error rates (within subjects) of the background auditory task and 

average switch cost when executing the visual reaction time test during switch trials. Each data point 

reflects a single participant. There was no statistically significant relationship between visual switch cost 

and auditory error rates (p’s>0.72).  
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Table 3-1: Error rates and number of errors in the background auditory task for each participant, separated into 3 categories for each 

level of task difficulty. 

Participant 

Simple-Left  

(% (# of errors)) 
Simple-Right 

(% (# of errors)) 
Choice 

(% (# of errors)) 
Flanker 

(% (# of errors)) 

D F S D F S D F S D F S 

1 1.72 

(1) 

0.00 

(0) 

3.45 

(2) 

7.14 

(4) 

0.00 

(0) 

0.00 

(0) 

1.89 

(1) 

0.00 

(0) 

1.89 

(1) 

0.00 

(0) 

0.00 

(0) 

0.00 

(0) 

2 10.61 

(7) 

3.03 

(2) 

13.64 

(9) 

4.92 

(3) 

1.64 

(1) 

1.64 

(1) 

10.00 

(6) 

1.67 

(1) 

10.00 

(6) 

9.82 

(11) 

0.89 

(1) 

8.04 

(9) 

3 4.48 

(3) 

2.99 

(2) 

4.48 

(3) 

3.51 

(2) 

3.51 

(2) 

3.51 

(2) 

1.61 

(1) 

0.00 

(0) 

1.61 

(1) 

5.31 

(6) 

1.77 

(2) 

3.54 

(4) 

4 26.53 

(13) 

0.00 

(0) 

12.24 

(6) 

19.67 

(12) 

6.56 

(4) 

21.31 

(13) 

10.91 

(6) 

0.00 

(0) 

5.45 

(3) 

10.14 

(14) 

4.35 

(6) 

5.07 

(7) 

5 3.12 

(2) 

1.56 

(1) 

0.00 

(0) 

1.79 

(1) 

0.00 

(0) 

0.00 

(0) 

2.04 

(1) 

0.00 

(0) 

2.04 

(1) 

1.89 

(2) 

0.00 

(0) 

0.00 

(0) 

6 15.15 

(10) 

0.00 

(0) 

4.55 

(3) 

5.88 

(4) 

0.00 

(0) 

7.35 

(5) 

6.76 

(5) 

1.35 

(1) 

2.70 

(2) 

11.38 

(14) 

0.81 

(1) 

4.07 

(5) 

7 4.92 

(3) 

3.28 

(2) 

1.64 

(1) 

11.54 

(6) 

1.92 

(1) 

1.92 

(1) 

4.84 

(3) 

0.00 

(0) 

0.00 

(0) 

8.80 

(11) 

0.80 

(1) 

0.00 

(0) 

8 15.15 

(10) 

0.00 

(0) 

11.11 

(1) 

5.88 

(4) 

0.00 

(0) 

4.55 

(3) 

6.76 

(5) 

1.35 

(1) 

2.70 

(2) 

11.38 

(14) 

0.81 

(1) 

4.07 

(5) 

9 0.00 

(0) 

0.00 

(0) 

0.00 

(0) 

3.51 

(2) 

0.00 

(0) 

0.00 

(0) 

2.08 

(1) 

0.00 

(0) 

2.08 

(1) 

0.90 

(1) 

0.00 

(0) 

0.00 

(0) 

10 14.06 

(9) 

1.56 

(1) 

9.37 

(6) 

12.50 

(7) 

0.00 

(0) 

3.57 

(2) 

1.85 

(1) 

3.70 

(2) 

1.85 

(1) 

8.33 

(10) 

3.33 

(4) 

4.17 

(5) 

Mean 9.57 

(6) 

1.24 

(1) 

5.39 

(3) 

7.63 

(5) 

1.36 

(1) 

4.67 

(3) 

4.87 

(3) 

0.81 

(1) 

3.03 

(2) 

6.80 

(8) 

1.28 

(2) 

2.90 

(4) 

Standard 

Error 

2.61 

(1.43) 

0.45 

(0.29) 

1.52 

(0.92) 

1.72 

(1.01) 

0.69 

(0.42) 

2.04 

(1.27) 

1.13 

(0.71) 

0.39 

(0.22) 

0.88 

(0.53) 

1.40 

(1.77) 

0.47 

(0.62) 

0.88 

(1.05) 

D=directional error (wrong button pressed); F=fast or anticipation error (≤150 ms); S=slow error (>750 ms) 



 
 

3.4 Discussion 

The results of this study supported the first hypothesis revealing differences in reaction 

times between switch and non-switch trials resulting in a behavioural switch cost. In terms of 

the second hypothesis, while it was originally hypothesized that switch cost would increase as 

the level of difficulty of the visual reaction time task increased, opposing results were found. 

On average, the switch cost was lower for more challenging task conditions (choice reactions) 

as compared to simpler tasks. 

The novel task involving the quantifiable background auditory task and switching to 

visual reaction time tasks appeared to be an effective approach to reveal the behavioural switch 

cost and control task challenge. On average in this study the switch cost was between 33 ms 

and 152 ms (depending on the visual task) which is within the range of those observed in other 

task-switching studies. When switching between two modalities, Strobach et al. (2012) 

demonstrated a lower mean switch cost (12 ms) in the visual modality and studies employing 

rule-based switching, have presented average switch costs of greater than 200 ms (Rogers and 

Monsell, 1995). While the current study was within this range, the very wide range of switch 

costs across different studies does raise some concern about comparing studies. This variability 

in switch costs may arise from methodological differences. As a result, it is difficult to directly 

compare the results of this study to another study due to differences in the task switching 

paradigm.      

 One important difference in terms of methodology featured in this study is the near-

continuous nature of the background auditory task. This was an attempt to maintain attention 

directed to the background task as continuously as possible to avoid anticipatory attention 

switching. The auditory tones were rapidly presented and randomized in an attempt to ensure 
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the participant focused their attention on the auditory task, when required to do so. The 

cognitive processing time after the presentation of the visual stimulus was measured through 

the onset of EMG, which allowed for a precise measure of the visual reaction time. This visual 

stimulus was also presented at a random time point, with no cueing, in order to lower the 

predictability of when the switch will occur, as predictability and cues have been shown to 

lower switch cost (Vandierendonck et al., 2010). According to the two prominent views in 

task-switching literature, switch cost may be due to interference from the previous task or the 

extra time required to reconfigure the task-set (Vandierendonck et al., 2010). While an 

adequate amount of preparation time before switching tasks may lower this switch cost 

(Vandierendonck et al., 2010), this task does not give the participant preparation time between 

tasks due to the near-continuous nature of the auditory task. In this task, there is only 600 ms in 

between each tone and was selected to avoid pre-emptively switching but preserve one’s ability 

to perform the task. Increasing the interstimulus interval would provide time between stimuli 

that may allow subjects to switch attention, even briefly, in anticipation of the visual stimulus 

which would lower the switch cost. This was actually confirmed in pilot studies where longer 

interstimulus intervals lowered switch cost by presumably resulting in a greater possibility of 

pre-emptively switching attention. The work by Norrie et al., (2002) used a continuous 

tracking task in order to maintain attention on the background task. However that approach 

makes it more difficult to document the background task performance which was possible in 

the current design using response time and error rates. The benefit to the latter was ability to 

confirm, in this study, no difference in the performance of the background task across the 

different task conditions providing indirect support for the idea that subjects maintained 

attention directed to the background task prior to the presentation of the switch task.           
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In regards to the second hypothesis, the greatest switch cost was demonstrated when 

switching to the visual simple reaction time task, whereas switching to the flanker task resulted 

in the lowest switch cost duration. This is interesting considering the flanker task is the most 

difficult, while the simple reaction time task is the least difficult. While task difficulty or rule 

complexity are factors affecting switch cost duration (Rubinstein et al., 2001), in the case of 

this task, it does not appear to impact the switch cost as expected. It is unlikely that this is 

associated with any unique task-specific performance of the specific tasks (simple, choice, and 

flanker) as the reaction times for this in non-switch conditions were similar to the literature. In 

contrast, as discussed in more detail later, it is proposed that this unusual finding of greater 

switch cost in simple tasks is due to an inability to pre-program a response in the switch task 

conditions due to the nature of the near continuous auditory background task. 

As anticipated, reaction times in the non-switch trials were shortest for the simple task, 

longer for the choice task, and longest for the flanker task. Whereas, mean reaction times in the 

switch condition for each of the visual reaction time tasks were very similar. When switching 

to the simple reaction time tasks, the reaction time increased up to approximately the same 

reaction time as in the choice and flanker tasks. This is comparable to results seen in studies 

utilizing dual-task paradigms with simple versus choice reaction time where adding in a 

secondary task increases reaction times for the simple task by a greater amount than with the 

choice task (Frith and Done, 1986; Goodrich et al., 1990). These results have also been 

revealed using multiple modalities (Goodrich et al., 1990). Overall the timing of the 

background task was the same across different switch conditions tasks so that differences in 

background task are unlikely to account for differences in switch cost. While the error rates on 

the auditory tracking task varied between individuals, overall, error rates were fairly low 
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indicating that participants were focused on that task prior to switching to the primary visual 

task. There was no statistically significant correlation found between switch cost and the 

auditory error rates for any task. Overall it is unlikely that the switch cost differences between 

tasks can be attributable to differences in auditory task performance.    

Potential factors leading to the greater switch cost with lower levels of task difficulty 

are: 1) ability to pre-program a response and 2) disengagement from the background task. 

From studies of simple reaction time, it has been postulated that there is a preparatory process, 

requiring undivided attention, allowing for the response to the stimulus to be pre-programmed 

since there is only one response. In choice reaction time tasks, the response cannot typically be 

pre-programmed as it is not known in advance of the stimulus onset (Frith and Done, 1986; 

Goodrich et al., 1990). In the case of the switching task examined in this study, attention would 

be required by the auditory tracking task and so undivided attention is not available in order to 

pre-program the response for the visual task. As the response cannot be pre-programmed, in 

theory, there would be an added response selection processing stage, resulting in a longer 

reaction time for the switching condition, much like a choice task. The theoretical differences 

in information processing for simple and choice reaction time for non-switch trials are 

highlighted in Figure 3-7. 
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Alternatively, the task-related differences in switch-cost may be associated with the 

disengagement process. This is the process involved when switching attention from the first 

task to inhibit the task-set in order to engage in the next task (Monsell, 2003). It is 

hypothesized that this disengagement process may run in parallel with stimulus identification 

and evaluation. However, response selection may not occur until disengagement from the 

previous task has fully occurred. As a result, the timing of response selection would be 

delayed. As the level of task difficulty of the visual task increases, the time taken to evaluate 

the stimulus increases. It would take the longest to evaluate the stimulus in the flanker 

condition, as it involves making a choice between two responses, as well as the inhibition of 

the distractors (Eriksen and Eriksen, 1974). If disengagement can occur at the same time as 

stimulus evaluation and disengagement timing is the same across all levels of task difficulty, 

then this would result in lower switch costs as the stimulus evaluation time increases. This may 

Figure 3-7: Information processing in simple non-switch and switch trials as well as choice reaction time non-

switch trials. SE=Stimulus detection and evaluation; RS=Response selection; RE=Response execution.   
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be the reason for the lowest switch cost when switching to the flanker task and an even lower 

switch cost when switching to incongruent flanker trials, if separated by congruency. Figure 

3-8 illustrates the non-switch and switch conditions for each level of task difficulty, 

highlighting the potential role of the disengagement process and the resulting switch costs.   

 

3.5 Conclusions 

In conclusion, this approach utilizing a near continuous background auditory tracking 

task with an unpredictable switch to a visual reaction time task is effective at measuring switch 

cost with temporal precision. The outcome of this study indicates that for this switching task, 

the visual task demonstrating the greatest switch cost in terms of magnitude was the simple 

reaction time task. It was also determined that as the difficulty of the task increased, the switch 

cost decreased. This task can be used in subsequent studies to examine the electrophysiological 

aspects of the switch cost. Electrophysiological markers at multiple stages of information 

processing should be studied to give an indication as to differences in processing between 

switch trials and non-switch trials. Future studies, employing electrophysiology, could examine 

Figure 3-8: Information processing in the non-switch and switch conditions for simple, choice, and flanker 

tasks. The resulting switch cost is shown by the double arrows. For the simple task, the total calculated 

switch cost is shown by the double arrows plus the timing of the added response selection stage. SE=Stimulus 

detection and evaluation; RS=Response selection; RE=Response execution.  
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switch cost using this attention switching paradigm in order to further understand information 

processing when switching attention between tasks of different modalities. This future work 

may provide an indication as to which processes are impacted by the switch cost and the source 

of this delay in reaction time with task switching.  
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Chapter 4: Study 2 – Examining changes in cortical activity and 

electrophysiological markers associated with attention switching between 

tasks of different modalities 
 

4.1 Introduction 

Multi-tasking, a common demand of daily life, involves switching attention between 

two tasks, termed attention switching. This ability to disengage from one task and engage in 

another is an executive function allowing for cognitive flexibility in a dynamic environment 

(Hyafil et al., 2009). Attention switching can, however, result in a decreased level of 

performance as demonstrated by a behavioural switch cost (Monsell, 2003). This switch cost is 

the difference in reaction times between trials involving a switch between tasks and trials in 

which a single task is performed (non-switch) (Wylie and Allport, 2000). Attention switching 

is associated to the speed of information processing and may reveal an increased length of a 

specific stage of information processing or the addition of another process (Hsieh, 2006). There 

are inconsistencies in the literature as to whether the switch cost is more involved in the 

response selection or perceptual stages (Hsieh, 2006). Investigating the electrophysiological 

correlates of attention switching at early and late stages of information processing can provide 

further insight into the underlying mechanisms or factors contributing to the switch cost. 

There are a number of various techniques used to assess switch cost, which vary on 

specific factors, including the characteristics of the tasks and how the switching is measured. 

The two tasks may differ on several features such as the sensory, cognitive or motor 

determinants of the task and the task instructions; however, to reduce complexity, a common 

approach is to maintain similar sensory and motor components and switch between cognitive 

elements. This ‘rule’ switch paradigm requires individuals to switch between different 
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stimulus-response rules. For example, when presented with a number, the individual may need 

to switch between a rule-based response based on the size of the number or if the number is 

odd or even (Rogers and Monsell, 1995). Some task switching paradigms involve a switch 

between stimulus modalities, such as auditory to visual stimuli (Strobach et al., 2012; Williams 

et al., 2013). The methods in which switch cost is measured involve composite measures of 

overall performance (eg standard Wisconsin card sorting task) (Buchsbaum et al., 2005) and 

computerized tools providing response or reaction times for individual trials (Rogers and 

Monsell, 1995). While composite measures have clinical utility, they do not provide adequate 

temporal resolution as they are based on a number of correct responses or total time for 

performance. With the use of computerized tools, there is more information regarding timing 

for individual trials; however, it is usually known when the switch will occur, as tasks are 

alternated every couple of trials or every other trial.     

 Previous work (Study 1 of this thesis; Chapter 3:) evaluated a novel approach to 

precisely measure and assess timing information related to the switch cost. The task consisted 

of a background task involving a choice response to auditory stimuli and then switching to a 

visual reaction time task. An important rationale for this task was the use of two different 

stimulus modalities allowing for electrophysiological markers of early sensory processes to be 

examined attempting to reduce interference of the previous task. In addition, the measurement 

of reaction time using electromyography (EMG) provides a precise index of processing time to 

be used during data analysis of electrophysiological responses. The utilization of a background 

task that is near-continuous allows for attention to be focused on this task without the potential 

to switch attention during lapses in attentional demand. This previous work revealed a 

significant switch cost when switching from this background auditory task to a visual reaction 
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time task, as measured through the mean difference in reaction times to the visual stimulus 

when switching between the two tasks, and when performing the visual task alone. This switch 

cost was apparent even when switching to a simple visual reaction time task, in which the same 

single stimulus was presented requiring the same response. While this previous study focused 

on the behavioural aspects of the switch cost, examining electrophysiological markers during 

this task could help reveal the neurophysiological basis of the switch cost.   

Electrophysiological measurements have excellent temporal resolution and when time-

locked to the presentation of a stimulus can give an indication of the processes that are taking 

place after stimulus onset (Hillyard and Anllo-Vento, 1998). To examine changes in brain 

activity in the early and later stages of information processing, it was the intent to examine the 

N1 and P3 components of an event-related potential, time-locked to the presentation of the 

visual stimulus. The N1 and P3 components are both influenced by attention, and can therefore 

indicate attentional resource allocation when completing a task. The visual N1 component, 

peaking approximately 150 to 200 ms after stimulus presentation (Luck, 2005), reflects 

discriminative processing of stimulus attributes (Fonaryova Key et al., 2005). The P3, a 

positive component peaking 300 ms or more post-stimulus, is evoked when individuals attend 

to a stimulus and distinguish its characteristics (Herrmann and Knight, 2001). The P3 

amplitude is reflective of the amount of attentional resources allocated to a specific task, while 

its latency indicates the speed of processing and stimulus evaluation (Polich, 2007).   

In terms of task switching, imaging studies have demonstrated increased activation in 

areas of the dorsal lateral prefrontal cortex (Brass and von Cramon, 2004) and the parietal 

cortex, with task-relevant regions in the prefrontal cortex being more active when switching 

between two tasks (Yeung et al., 2006). In EEG studies, a large negative posterior slow wave 
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has also been noted following stimulus presentation in non-switch trials, but not in switch 

trials. This negativity is thought to indicate anticipatory activity involving thalamo-cortical 

pathways (Goffaux et al., 2006). Furthermore, there may be differences in the length of a 

specific stage of information processing or an additional process between the switch and non-

switch conditions and inconsistencies in the literature on whether the switch cost is more 

involved in perceptual or response selection stages warrants further investigation (Hsieh, 

2006).  

Studies specifically examining the stimulus-locked P3 component of an event-related 

potential (ERP) during task-switching have demonstrated attenuated amplitude and similar 

latency during switch trials as opposed to non-switch trials (Hsieh, 2006; Gajewski and 

Falkenstein, 2011). This attenuated amplitude indicates that when switching there is greater 

demand for attentional resources and interference from the previous task consuming the 

resources (Polich, 2007). An enhanced N2 component during switching could also lead to the 

attenuated P3 amplitude, meaning task switching has greater response selection demands and is 

difficult (Gajewski and Falkenstein, 2011). Similar P3 latencies indicate that the time taken to 

evaluate the stimulus is comparable between switch and repetition trials (Kamijo et al., 2007).  

The lack of delay in the P3 in the face of significant switch cost is somewhat surprising given 

the relationship between speed of processing and P3 timing (Polich, 2007). Arguably the 

absence of a delay in P3 during switch trials may suggest no relationship between the temporal 

properties of the P3 and behavioural responses (reaction time) or that the delay in processing is 

not linked to attentional processes associated with the P3. In contrast, it is possible that the 

methodological approaches adopted (eg strategy to maintain attention directed to the 

background task and provide a precise timing of the onset of switching) may have limited the 
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ability to detect changes in P3 latency. As a result, the current study set out to investigate the 

timing and amplitude of cortical potentials during switch and non-switch trials. Using the task 

developed in study 1 of this thesis that employs a near continuous auditory background task 

and an unpredictable switch to the visual task allows for the switch cost to be precisely 

measured and  coupled with electrophysiological measures will provide insight on the 

neurophysiological substrate for the switch cost.      

The objective of this study was to examine changes in cortical activity and 

electrophysiological markers associated with attention switching between tasks of different 

modalities to reveal the neurophysiological basis of the switch cost. Furthermore, this study 

investigated the relationship between switch cost timing specific electrophysiological markers 

specifically the N1 and the P3. There was some concern with potential interference of the 

cortical events associated with the background auditory task and the early N1 so this was 

specifically investigated prior to analyzing the N1 response. A primary focus was on the P3 

waveform. In spite of previous literature, it was hypothesized under the current paradigm, that 

the P3 component of a stimulus-locked event-related potential will have decreased amplitude 

and delayed latency in switch trials as compared to non-switch trials. It is proposed that this 

would reflect a delay in the stages of processing, specifically the events related to attending to 

the visual stimuli that underpin the behavioural switch cost. In light of the hypothesized link 

between the reaction time and the delays measured cortically it was also hypothesized that 

there would be a positive correlation between the switch cost and differences in P3 latency 

between the switch and non-switch condition.  
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4.2 Materials and Methods 

4.2.1 Participants 

 Twenty young healthy right-handed adults (10 females; mean age±1SD: 25±3.7) were 

recruited for this study. This study received ethics clearance through a University of Waterloo 

Research Ethics Committee and all participants provided written consent prior to study 

participation. Participants were instructed to refrain from heavy physical activity on the day of 

the testing session and to perform their normal daily activities.    

4.2.2 Protocol 

 Participants were seated in a chair with their head approximately 60 cm in front of a 

computer monitor. Their right arm and hand rested on a table with their thumb pointing 

upwards, while their left hand was positioned on a computer mouse. The 

electroencephalography (EEG) cap was set-up on the participant’s head according to the 

international 10-20 system and connected to a digital EEG amplifier (NeuroScan SynAmps2). 

In this randomized block design, participants completed two cognitive tasks including: 1) a 

near-continuous auditory tracking task and 2) a visual simple reaction time task. The switch 

blocks involved switching from the background auditory tracking task to the visual reaction 

test, while the non-switch blocks involved responding to the visual task only. There were 8 

testing blocks including 4 switch and 4 non-switch; each block consisting of 25 trials. Each 

trial was 8 seconds in duration with 5 seconds in between each trial. In switch trials 

participants began with the auditory tracking task until the visual stimulus appeared on the 

computer monitor and were instructed to respond to the visual stimulus immediately and then 

return back to the auditory tracking task until the completion of the trial. In all trials, 

participants were instructed to fixate on a cross in the centre of the computer screen. 



51 

  

Participants were given a 2 minute break after every second block. Practice trials were 

completed before the 8 testing blocks in order to minimize a learning curve. Two trials (22 

beeps total) of the auditory tracking task were completed, followed by 10 trials of the visual 

simple reaction time task, and then 2 trials of the switching task. The entire testing session was 

approximately 2 hours long and all testing was conducted in the morning, starting between 

8:00 am and 9:30 am. 

4.2.2.1 Background auditory tracking task 

 The auditory tracking task involved the presentation of a series of randomized tones of 

either high (1000 Hz) or low (200 Hz) frequency at approximately 75 dB level. These tones 

were presented to the participant prior to the practice trials so they were familiar with how the 

two frequencies differed. For this task, each tone was 150 ms, with a fixed interstimulus 

interval of 600 ms. Participants were instructed to respond as quickly as possible, pressing the 

left mouse button after a high frequency tone and the right mouse button after a low frequency 

tone. This task was performed continuously until the visual stimulus appeared on the screen for 

900 ms, which randomly occurred after 2 to 8 auditory tones were presented.  

 Response times for the auditory tracking task were calculated by measuring timing of 

mouse clicks in response to auditory tones, sampled at approximately 30000 Hz. Errors were 

determined based on which mouse button was pressed with respect to the specific tone 

frequency.   

4.2.2.2 Visual Reaction Time Task  

 For the visual reaction time task, the participant began with their right arm resting on 

the table with their thumb pointing upwards. A left pointing arrow was presented for 900 ms 
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and the participant was instructed to flex their right wrist as quickly as possible, pointing in the 

direction of the arrow.  

4.2.2.3 Electromyography (reaction time for visual reaction time task) 

 Electromyography (EMG) was collected from the flexor carpi radialis of the right wrist 

to measure reaction time to the visual stimulus. The skin was first abraded with NuPrep skin 

preparation gel and then cleaned with rubbing alcohol. Two self-adhesive electrodes (Kendall 

Foam Electrodes) were placed close together over the muscle belly, in alignment with the 

muscle fibers. The ground electrode was placed on the right clavicle. EMG was collected 

continuously using a custom LabVIEWTM (National Instruments, Austin, Texas, USA) 

program, amplified, band-pass filtered on-line from 10-1000 Hz and digitized at 1000 Hz.  

4.2.2.4 Electroencephalography (EEG) and Electrooculography (EOG) 

The skin above and below the left eye, lateral to both eyes and on mastoid processes 

was abraded with NuPrep skin preparation gel and then cleaned with rubbing alcohol. 

Electrodes were filled with conductive gel and attached to these sites with adhesive tape. The 

participant’s head was measured and marked halfway between the nasion and inion as well as 

halfway between the pre-auricular points on either side of the head. A Lycra cap containing 

electrodes was placed on the participant’s head, so that electrode Cz was at the connection of 

the markings that were just made. A disposable, blunt needle was inserted into the reservoir 

between the electrode and scalp through a hole in the electrode. It was moved in a circular 

motion to move the hair out of the way and conductive gel was released from the syringe into 

the reservoir. This was repeated for 32 electrodes (Figure 4-1), according to the 10-20 

international system, on a 64 channel Quik-Cap (Compumedics Neuroscan, Charlotte, North 

Carolina, USA). EEG and EOG were collected continuously through SCAN 4.3 throughout 
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each of the testing blocks, amplified (x19) and filtered at a band-pass of DC to 200 Hz and 

digitized at 1000 Hz. Synchronization voltages were also collected on the EEG system to 

denote the timing of the presentation of the visual and auditory stimuli. Impedances were kept 

below 8 kΩs.   

 

 

 

4.2.3 Data Analysis 

 A customized LabVIEWTM program was used for visual reaction time and auditory 

response time data analysis. Synchronization pulses were sent to the collection program 

indicating the presentation of the auditory and visual stimuli, so that EMG could be time-

locked to the visual stimulus and EEG data epoched around auditory and visual stimuli.  

 EMG signals were run through a 60 Hz notch line filter and dual-passed through a 

band-pass 2nd order Butterworth filter at 20-450 Hz. They were then baseline corrected, full-

wave rectified and smoothed using a dual-pass low-pass 5 Hz 2nd order Butterworth filter. 

EMG onset was determined as the time at which the full-wave rectified signal crossed a 

Figure 4-1: Locations of the electrodes used on the Quik-cap, including the mastoid processes. 
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threshold of the baseline (200 ms pre-stimulus) mean plus 3 standard deviations and the 

smoothed data remained above the threshold for 25 ms (adapted from an approach by Hodges 

& Bui (1996)). These latencies were used to determine mean reaction times for all testing 

blocks. Switch cost was then computed as the difference in mean reaction times between 

switch and non-switch trials. 

 EEG data was analyzed using EEGLAB (http://sccn.ucsd.edu/eeglab). EEG data was 

digitally filtered with a high-pass filter of 0.1 Hz and low-pass filter of 50 Hz, re-referenced to 

the mastoid processes and down-sampled to 250 Hz. Epochs were extracted 200 ms before 

stimulus presentation to 1000 ms after stimulus onset. Baseline correction was performed using 

a baseline of 200 ms prior to the presentation of the auditory stimulus and for visual epochs, a 

baseline of 150 ms prior to stimulus onset to 50 ms prior to stimulus presentation was used. 

Epochs were visually inspected for excessive noise. An Independent Component Analysis 

(ICA) was run for each condition (switch and non-switch) separately and components were 

removed based on the occurrence of artifacts. 

Auditory epochs were separated into those directly before a switch to the visual and 

epochs not including the tone directly before a switch. The average auditory ERPs were 

overlapped with the visual switch and non-switch average ERPs to visually determine the 

extent to which the auditory ERP is included in the visual switch ERP, as this could affect the 

interpretation of the visual ERP.   

To examine visual ERPs, the waveforms were dual-pass low-pass filtered at 30 Hz. 

Following the pattern of the visual ERP in the non-switch condition, the switch waveform was 

compared to match up deflections. The N1 was identified as the largest negative component 

within 150 to 200 ms post-stimulus at the Pz electrode site. The P3 component was identified 
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as the largest positive peak following the N1-P2-N2 complex, if present in the average 

waveform, or as identified following the non-switch waveform pattern. The latency was 

determined from the presentation of the stimulus to the time point of maximum amplitude. The 

P3 was examined at the Pz electrode site. The mean P3 amplitude and latency were determined 

for each individual as well as the overall grand average (n=19) for each condition. One 

participant was excluded from the P3 analysis, as given the average ERP it was unclear as to 

which component of the waveform was the P3 peak.   

 For behavioural data, trials were deemed an error in direction if the incorrect button 

was pressed. Errors in timing were determined as a visual reaction time longer than 1200 ms or 

an auditory response time shorter than or equal to 150 ms or longer than 750 ms. Overall, 12 

out of 3988 trials, or 0.30%, of visual trials were errors and therefore excluded. Examining 

visual errors separated into the switch and non-switch conditions, error rates were 0.35% and 

0.25%, respectively. Focusing on the auditory tones prior to the presentation of the visual 

stimulus, 1048 auditory responses were errors out of 9906 trials, or 10.58%. Of the 9906 trials, 

706 trials (7.13%) were directional errors, 262 trials (2.64%) were slow errors (>750 ms) and 

80 trials (0.81%) were anticipation errors (≤150 ms). These trials were excluded from reaction 

time and response time analysis. 

 In terms of electrophysiological data, for auditory epochs, 1033 out of 20834 epochs 

(4.96%) were rejected. For epochs time-locked to the presentation of the visual, 122 out of 

1900 epochs (6.42%) were rejected in the switch condition, while 167 out of 1900 epochs 

(8.79%) were rejected in the non-switch condition. The average number of epochs that were 

used in the computation of the grand average ERPs are depicted in Table 4-1. 
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Table 4-1: The average number of epochs used in the computation of average event-related potentials in the 

auditory domain and the switch and non-switch condition for the visual domain.  

 Average number of epochs  Standard deviation Range 

Auditory ERP 1042 112.77 699-1097 

Visual ERP – switching 94 12.68 48-100 

Visual ERP – non-

switch 

91 2.96 50-100 

 

4.2.4 Statistical analysis 

 For the behavioural reaction time data, a 1-way analysis of variance (ANOVA) was 

performed, with the switch condition (2 levels: switch or non-switch) as the factor. The 

original reaction time data was found to be in slight violation of the normality assumption and 

was subsequently log-transformed to normalize the distribution. To test the initial hypothesis 

that the P3 ERP will have a decreased amplitude and delayed latency in switch compared to 

non-switch trials, both P3 amplitude and P3 latency measures were examined using separate 1-

way ANOVAs. To test the second hypothesis, a Spearman’s rank correlation was run between 

the individual differences in P3 latency between switch and non-switch conditions and the 

associated switch cost. A significance level of α=0.05 was used for all statistical analysis.  

4.3 Results 

Reaction time data 

 Overall, there was a main effect of switch condition on reaction time demonstrating 

longer reaction times for the switch condition as opposed to the non-switch condition 

(F(1,19)=174.43, p<0.0001). For non-switch trials, the mean reaction time was 319.7 ms (SD: 

30.62), while for the switch trials, the mean reaction time was 469.1 ms (SD: 61.46). The mean 

switch cost was 149.4 ms (SD: 57.43) and switch costs ranged from 52.1 ms to 282.8 ms. Even 
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though there was variability across subjects, every subject demonstrated a switch cost (delay in 

reaction time in switch trials compared to non-switch trials). 

 Visually evoked potentials 

The visually evoked potentials in the non-switch condition are displayed in Figure 4-2. 

The data highlights a large P3 response. Generally the N1 response was more difficult to detect 

in some individuals and not strongly reflected in the average data. More problematic was that 

the N1 response due to the visual stimulus may be influenced by the events associated with the 

background auditory task during the switch tasks. Overlap of visual switch and auditory ERPs 

are shown in Figure 4-3 and reveal that the auditory-related potential extends into the timing 

that would be associated with the visually evoked N1 response. This made it difficult to 

detect/interpret the expected N1 response. As a result the current study focused on the P3 

waveform properties. 

Hypothesis 1: P3 amplitude and latency 

 There was no main effect of switch condition on P3 amplitude (F(1,18)=1.27, 

p=0.2743); however, there was a main effect of switch condition on P3 latency (F(1,18)=23.40, 

p=0.0001). In the switch condition, the P3 latency was longer. The grand average visual ERPs 

presented in Figure 4-2 illustrate differences in P3 latencies between the conditions. In the 

switch condition, the peak P3 amplitude was 15.84 µV at a latency of 478.1 ms while the non-

switch peak P3 was 14.16 µV at a latency of 406.9 ms. Therefore, the mean difference in P3 

amplitude was 1.68 µV (SD: 6.49) and mean difference in P3 latency was 71.2 ms (SD: 64.12). 

Individual P3 amplitude and latency data are presented in Table 4-2. Of specific note, in spite 

of the variability across subjects, 18 of the 19 subjects demonstrated a delay in the P3 

responses in the switch condition. 
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Table 4-2: Individual participant data for P3 peak amplitude and latency in switch and non-switch 

conditions and difference values between the two conditions. 

Participant # 
P3 peak amplitude (µV) P3 latency (ms) 

Non-switch Switch Difference Non-switch Switch Difference 

1 12.6431 17.8520 5.2089 372 440 68 

2 6.4781 6.9644 0.4863 308 420 112 

3 16.1808 17.8055 1.6247 376 400 24 

4 2.8517 14.9780 12.1263 348 552 204 

5 16.7689 18.9437 2.1748 376 540 164 

6 17.8620 19.6526 1.7906 424 468 44 

7 16.9559 15.2881 -1.6678 284 476 192 

8 10.6961 12.9229 2.2268 368 384 16 

9 12.1901 12.2655 0.0754 364 396 32 

10 27.8436 28.5360 0.6924 432 508 76 

11 27.9334 34.9275 6.9941 412 468 56 

12 21.7287 21.9345 0.2058 392 440 48 

13 8.5574 7.9207 -0.6367 564 520 -44 

14 7.6096 20.2709 12.6613 416 500 84 

15 21.9219 3.2210 -18.7009 396 456 60 

16 5.4963 9.6236 4.1273 356 368 12 

17 1.7103 6.6221 4.9119 760 816 56 

18 18.4629 14.6036 -3.8593 412 540 128 

19 15.1848 16.6203 1.4355 372 392 20 

Average (n=19) 14.16 15.84 1.68 406.9 478.1 71.2 

Standard 

deviation 7.66 7.69 6.49 102.58 99.62 64.12 

Standard error 1.76 1.76 1.49 23.53 22.85 14.71 
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Figure 4-2: The overall average (n=19) visual event-related potentials for the switch and non-switch 

conditions at the Pz electrode site. The presentation of the visual stimulus is at time 0 ms. The P3 is seen as 

the largest positive potential and there is a statistically significant difference in P3 latency between the two 

conditions (p=0.0001).   
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Figure 4-3: The overall average (n=19) visual event-related potential for the switching task and auditory 

event-related potential for the auditory tracking task showing the overlap (Pz electrode). The presented 

average auditory event-related potential does not include auditory trials directly before the presentation of 

the visual stimulus. The onset of the auditory stimulus occurs at time 0 ms, while the presentation of the 

visual stimulus occurs at 150 ms on the time scale.    

 

The individual average event-related potentials show the between-subject variability for 

switch and non-switch conditions (Figure 4-4 and Figure 4-5). These figures display the shape 

of the waveforms and provide a clear picture of the individual ERPs that comprise the grand 

average waveform. Examining the variability between these individual waveforms may aid in 

the explanation of observed differences in mean P3 amplitude and latency. First, in both 

conditions, P3 responses were consistently evident across all subjects. It also appears in both 

conditions that the P3 waveforms are centralized within a certain time frame, which occurs 

later in the switch condition. This contrasts a possible scenario where differences in the P3 

waveform observed on grand averages are associated with significant between-subject 
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variability. In these cases, at least qualitatively, the waveform patterns appear relatively 

consistent. The individual ERPs in the non-switch condition show very clear P3 peaks and also 

appear to be relatively consistent with respect to timing.          

 

 

Figure 4-4: Individual average visual event-related potentials at the Pz electrode for the switching condition 

(grey). The black line represents the overall average event-related potential (n=19) time-locked to the 

presentation of the visual at time 0 ms. 
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Figure 4-5: Individual average visual event-related potentials at the Pz electrode site for the non-switch 

condition (grey). The black line represents the overall average event-related potential (n=19) time-locked to 

the presentation of the visual at time 0 ms. 

 

Hypothesis 2: Correlation between switch cost and P3 latency differences 

 As noted all subjects (19) demonstrated a behavioural switch cost and 18 of 19 

demonstrated a delay in the P3 latency. However, in contrast to the hypothesis, the correlation 

between the behavioural switch cost and differences in P3 latency between switch and non-

switch conditions was not statistically significant (r(19)=0.20, p=0.41). Figure 4-6 displays the 

relationship between the behavioural switch cost and the delay in P3 latency across subjects.  
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Figure 4-6: Relationship between differences in P3 latency between the switch and non-switch conditions 

and the behavioural switch cost. No statistically significant relationship was observed (p=0.41).   

 

Background auditory task performance 

 Performance of the auditory task, as measured by response time and error rates, was 

compared across the task conditions to determine if the participants’ attention was focused on 

the background task. Errors prior to the presentation of the visual stimulus were analyzed for 

the auditory task. Three types of errors were determined: 1) directional errors (responding in 

wrong direction), 2) anticipatory errors (responding too fast; ≤150 ms) and 3) responding too 

slowly (>750 ms). The error rates, for each participant, are displayed in Table 4-3, separated 

into directional, anticipation (fast) or slow errors. The error rates of greatest interest were the 

directional error rates as these demonstrate an incorrect response and provide an indication of 

the ability to choose the correct response during the auditory task. However, the anticipation 
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indication, in addition to reaction time, of the subject’s focus of attention during performance 

of the background auditory task. Overall, the error rates were low at 7.15%, 0.80% and 2.66% 

for the directional, fast, and slow errors, respectively. Across subjects errors ranged from 

0.00% to 19.29% across all error categories. Including correct trials only, the mean response 

time was 388.4 ms (SD: 40.1).   

Table 4-3: Error rates and number of errors in the background auditory task during the switch 

cost trials for each participant, separated into 3 categories of errors.  

Participant 
(% (# of errors)) 

Directional Anticipation Slow 

1 1.95 (10) 0.19 (1) 0.58 (3) 

2 1.22 (6) 0.41 (2) 1.01 (5) 

3 9.26 (49) 3.97 (21) 4.54 (24) 

4 11.06 (53) 2.30 (11) 12.32 (59) 

5 5.19 (24) 0.22 (1) 4.55 (21) 

6 4.39 (22) 0.00 (0) 5.19 (26) 

7 19.29 (93) 2.07 (10) 1.04 (5) 

8 4.96 (27) 0.92 (5) 2.21 (12) 

9 3.56 (18) 0.99 (5) 1.58 (8) 

10 7.11 (35) 0.61 (3) 1.02 (5) 

11 5.08 (26) 0.20 (1) 1.76 (9) 

12 12.75 (63) 1.62 (8) 5.67 (28) 

13 11.18 (55) 0.81 (4) 0.81 (4) 

14 3.90 (18) 0.22 (1) 0.87 (4) 

15 14.60 (74) 0.39 (2) 1.38 (7) 

16 3.06 (15) 0.41 (2) 1.84 (9) 

17 2.04 (10) 0.82 (4) 0.00 (0) 

18 7.58 (37) 0.41 (2) 3.69 (18) 

19 9.87 (47) 0.21 (1) 1.26 (6) 

20 4.85 (24) 0.00 (0) 1.01 (5) 

Average 

(n=20) 

7.15 (35) 0.80 (4) 2.66 (13) 

Standard 

Error 

1.07 (5.22) 0.22 (1.15) 0.63 (3.02) 

 

4.4 Discussion 

The behavioural data of this study demonstrates a significant switch cost, as observed 

through statistically significant differences in reaction times between switch and non-switch 
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trials. In terms of electrophysiological data, the results of this study support the hypothesis that 

there would be a delay in the P3 latency during switch versus non-switch trials. There was, 

however, not a significant difference in P3 amplitude. Also in contrast to the hypothesis, while 

there were slowing of both reaction times and P3 latencies there was no significant positive 

correlation between switch cost and differences in P3 latency.   

 In terms of P3 amplitude, it was originally hypothesized that there would be decreased 

amplitude in switch trials as opposed to non-switch trials; however, in this study, there was no 

statistically significant difference in peak amplitude between switch and non-switch trials. 

Previous studies examining a stimulus-locked P3 component during task switching have 

observed an attenuated amplitude but not a latency shift (Gajewski and Falkenstein, 2011).  

Since P3 amplitude is linked to the amount of attentional resources (Kok, 2001) this might 

indicate that there is interference from the previous task consuming attentional resources 

(Polich, 2007). However, in this study, there was no observed amplitude attenuation but rather 

a delay in the response latency. One possibility is that more variability in the reaction time and 

P3 latency data from trial to trial as well as inter-individual variability could result in smaller 

amplitudes when waveforms are averaged together (Goffaux et al., 2006). This study forces 

subjects to maintain attention to the background task and then to switch as soon as the visual 

stimulus is presented, which may reduce some of the temporal variability that may occur if 

participants were able to pre-emptively direct attention to the primary task. A second 

possibility is the potential influence of the ERPs from the auditory task influencing P3 

amplitude in the visual task. Due to the near-continuous nature of the background auditory task 

used in this study, the interval between the presentation of the visual stimulus when switching 

and the previous auditory tone was 150 ms. As these potentials are stimulus-evoked, when the 
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visual stimulus was presented, the processing of an auditory tone may still be occurring. This 

can be seen visually in Figure 4-3, where the P3 of the average auditory ERP peaks is during 

the time period in which the visual N2 component would occur. It has been shown that the P3 

amplitude can be affected by the amplitude of the N2, where a more negative N2 component is 

associated with an attenuated P3 (Gajewski and Falkenstein, 2011). Due to the overlap of the 

auditory ERP, the N2 component may be more positive, resulting in no attenuation of the P3 

amplitude in switch trials. While this slight overlap of ERPs may somewhat affect the ability to 

interpret the P3 amplitude, this would not greatly impact the visual P3 latency and this is the 

primary measure of interest.         

 The P3 latency of switch trials was found to be longer than non-switch trials, which is 

consistent with the original hypothesis. As P3 latency reflects the time taken to evaluate a 

stimulus (Polich, 2007), this result infers that in switch trials, the stimulus evaluation stage of 

information processing takes longer or is delayed in switch trials. However, it is thought that 

this delay is reflective of other processes involved in the switch, possibly disengagement 

including the updating of the mental representation of the task in working memory. As noted, 

this result is inconsistent with previously conducted studies which demonstrate no differences 

in P3 latency between switch and non-switch trials (Hsieh, 2006; Gajewski and Falkenstein, 

2011). Hsieh (2006) also examined the stimulus-locked lateralized readiness potential (LRP) 

component finding differences between switch and non-switch trials. It was suggested that 

switching occurs after stimulus evaluation involving response selection (Hsieh, 2006). Results 

from above, of this thesis, indicated that when switching to the primary task, the response 

selection stage of information processing was delayed until disengagement from the previous 

task had taken place, suggesting that the switch occurs prior to response selection. When 
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switching to a simple reaction time task, the response can no longer be pre-programmed as in 

the performance of repetitions of just the simple task as this preparatory process requires 

undivided attention to the stimulus, not present in the switching tasks (Goodrich et al., 1990). 

The added response selection component to the processing of the visual stimulus causes the 

reaction time to be longer, as well as the disengagement from the auditory task, which may be 

required prior to the response selection phase. It is interesting to note that when examining the 

ERPs at an individual level for the switch and non-switch conditions, as presented in Figure 

4-4 and Figure 4-5 respectively, the P3 waveforms do centralize around a certain time period. 

There appears to be less variability in the timing at which these P3 components peak across 

subjects and is delayed in the switch condition compared to the non-switch. This indicates that 

this delay in latency in the switch condition cannot simply be due to inter-individual 

variability.   

In spite of the significant differences in switch cost and P3 latency, there was no 

statistically significant relationship found between the behavioural switch cost and differences 

in P3 latency between switch and non-switch trials. While no statistically significant 

relationship was observed, examining Figure 4-6, it appears as if there is some trend between 

differences in P3 latency and switch cost where greater differences in P3 latency result in a 

longer switch cost. Potential reasons for this result are: 1) underpowered to detect change (too 

few subjects relative to the effect size and variability), 2) the delay in latency of the P3 may 

account for only a portion of the duration of the switch cost or 3) a delay in the timing of the 

P3 may not be related at all to the delay in reaction time.  

Increasing the power of the study may allow for the ability to detect a correlation and 

so more subjects may be required to demonstrate a statistically significant correlation. Based 



68 

  

on the current data a sample size of 29 would be required to reveal a moderate association 

(r=0.50). While there is no definitive evidence of the link between delay in P3 and switch cost 

the fact that 18 out of the 19 subjects demonstrated a delay in P3 latency while all showing a 

switch cost leads to speculation about an association. However, the mean difference in P3 

latency between switch and non-switch trials was 71.2 ms while the mean switch cost was 149 

ms. This result may be accounted for if some of the timing of the switch cost may be 

attributable to a longer stimulus evaluation phase of information processing but there are other 

processes increasing the reaction time in switch trials. Finally it is possible that the timing of 

the P3 is not at all related to the switch cost timing.  

Even though examining the mean values for the different conditions provides value, 

there is some between-subject variability, as seen through P3 amplitude and latency values for 

each individual and standard deviations of the means as well as on the overlapped individual 

waveform graphs for each condition. These inter-individual differences could be due to many 

factors; natural factors such as circadian rhythms and arousal levels, as well as environmental 

factors like exercise, sleep deprivation, caffeine, and alcohol (Polich and Kok, 1995). There is 

some evidence that these factors can influence P3 amplitude and/or latency. While 

performance on tasks varies with time of day, weak relationships have been found between 

circadian rhythm and P3 measures; however, this may be influenced by several factors. For 

example, physiological changes occurring throughout the day, such as increases in body 

temperature and heart rate, have been associated with decreases in P3 latency. This is linked to 

changes in arousal levels of the individual. Some studies have found that P3 amplitude 

increases and latency decreases with exercise, while caffeine has been shown to lead to a small 

increase in P3 amplitude, not affecting latency. Factors that lower arousal levels, namely sleep 
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deprivation and alcohol, decrease P3 amplitude and increase latency, demonstrating a lower 

availability of attentional resources and slower speed of processing (Polich and Kok, 1995). 

Some of these factors were controlled for in this study by executing the protocol near the same 

time of day (morning) for all participants, while maintaining regular daily activities, without 

fatiguing exercise before the study.    

While one of the original objectives of this study was to examine electrophysiological 

markers in early and late stages of information processing, by analyzing the N1 and P3 ERP 

components, the N1 component was not always present in the average visual ERPs of 

individuals even when examined more occipitally. This may be due to the number of trials 

used to create the average ERPs for each individual. On average there were 94 visual epochs 

and 91 visual epochs averaged for the switch and non-switch conditions, respectively. As these 

are small components, they may actually require 300 to 1000 trials in order to be accurately 

quantified (Woodman, 2010). However, with the task used in this study, especially in the non-

switch condition, with increasing the number of trials, this could lead to larger alpha waves due 

to the participant becoming bored or sleepy, increasing noise in the data (Woodman, 2010). 

Another potential reason is due to the simplicity of the visual stimulus. The stimulus was a 

single black left arrow presented on a white screen. There are few attributes to discriminate, 

and as this was a simple task requiring only one response, there may not have been much 

discriminative processing taking place. The N1 component is larger when performing a 

discrimination task as opposed to a simple detection task (Luck, 2005). While the early 

perceptual stages of information processing could not be examined with this dataset, the 

analysis of the later P3 component provides interesting details about information processing 

involved in stimulus evaluation stages in switching attention between tasks.  
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 The properties of this task switching paradigm allowed for timing information of the 

switch cost to be examined from both behavioural and electrophysiological perspectives. Due 

to the near-continuous nature of the background auditory task, participants could focus 

attentively on this task before switching at an unpredictable time point to the visual task. The 

low error rates for the auditory task (mean of 7.15% for directional errors) as well as average 

response time (mean of 388.4 ms) demonstrate that participants were attending to the auditory 

task. As the auditory task was near-continuous, this did not allow participants to switch 

attention prior to the presentation of the visual stimulus. Due to this property as well as the 

unpredictability (random time point and not cued) of when the switch would occur really 

probed the timing of the switch cost allowing for the source of the delayed reaction time to be 

examined with temporal precision. While these properties allowed for a temporally precise 

measure of the switch cost, there are some limitations. The interpretation of the visual ERPs 

was limited by the overlap of auditory processing. The approach of using a real continuous task 

(Norrie et al., 2002) may be a more effective choice in order to avoid potential overlap of event 

related potentials from different stimuli. The trade-off using that approach would be the ability 

to precisely confirm task performance on the background task.     

4.5 Conclusions 

The results from this study revealed differences between switch and non-switch trials in 

terms of behaviour as well as electrophysiology. Switch trials resulted in longer reaction times 

as well as P3 latencies compared to non-switch trials. However, no differences were found in 

P3 amplitudes. Differences in P3 latency indicate that more processes are involved when 

switching to the second task including disengagement, which may include the updating of 

working memory, and suggests that some of the resulting switch cost encompasses time prior 
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to response selection. Future studies could utilize this paradigm to evaluate exercise-induced 

changes on the temporal characteristics and electrophysiological events associated with 

attention switching to determine if exercise can be employed to improve switching 

performance.     
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Chapter 5: General Discussion 
 

5.1 General discussion 

In this age of advancing technology, people are constantly trying to multi-task, which 

actually involves attention switching; that is, disengaging from one task or stimulus and 

engaging in another (Posner and Presti, 1987). The speed at which people switch attention can 

be critical in certain situations, like while driving a car, and this seems to decline with age 

(Kray and Lindenberger, 2000) and with specific diseases, like Parkinson’s disease (Cameron 

et al., 2010). The purpose of this thesis was to further investigate the behavioural and 

electrophysiological properties of the switch cost associated with attention switching through 

the use of a paradigm requiring switching between tasks of different modalities.  

In Study 1, the unique approach utilizing a background auditory choice reaction time 

task and unpredictably switching to a primary visual reaction time task proved to demonstrate a 

consistent behavioural switch cost. Results revealed a relationship between the difficulty of the 

primary task and the switch cost, in that as the task difficulty increased, the switch cost 

decreased. In other words, switching to a simple reaction time task as opposed to a flanker task 

resulted in a greater switch cost. It was interpreted that this unexpected relationship was 

associated with the influence of preventing pre-programming during simple reactions in the 

switch condition when switching and disengagement processes require time. It is hypothesized 

that the disengagement processing runs parallel with stimulus identification and evaluation; 

however, the response selection stage of information processing does not occur until 

disengagement from the previous task, in turn, delaying response selection. Overall, the 

paradigm was an effective method of evoking a behavioural switch cost and in light of the 
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larger delay associated with the simple reaction time task, was considered an appropriate 

model for use in study 2 to explore electrophysiological markers of the switch cost.  

Study 2 investigated an electrophysiological marker of attention switching, the P3, 

utilizing the same paradigm as in Study 1. Results revealed a difference in P3 latency between 

switch and non-switch trials, but no difference in P3 amplitude. While this did contrast 

previous studies, the results supported a model that there may be more involved processes 

when switching (eg disengagement and updating of mental representation in working memory) 

and the increase in reaction time with the switch cost is partially occurring in the stimulus 

evaluation stage of processing, prior to response selection. However, in spite of delays in both 

P3 timing and reaction time during switch trials the amplitude of the delays were not correlated 

suggesting that while the time taken to evaluate the stimulus does account for some of the 

switch cost duration, there are other processes involved in delaying the reaction time. Together 

these results help to further our understanding of the neurophysiological substrate for switch 

cost and linked the behavioural data to electrophysiology.   

5.2 Limitations 

While this study investigated the electrophysiological aspects of attention switching, it 

was limited by the ability to examine early visual ERP components due to the overlap of 

auditory ERPs with the visual switch ERPs. This resulted in the inability to examine early 

stages of information processing which would potentially have provided more information on 

which components are delayed that may be associated with an increase in reaction time in 

switch trials. Furthermore, as this study focused on a population of healthy young adults, it is 

limited by its generalizability to other populations, such as older adults. Certainly, in the future, 

the use of this approach would be appropriate in order to determine the ability to detect age-
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related differences in the capacity for attention switching. This work may also have been 

limited by the sample size for study 2. Increasing the sample size for the electrophysiological 

study may provide a better opportunity to reveal associations between changes in P3 latency 

and switch cost. Part of the limitation in relying on ERPs is the need to average across trials in 

order to reduce noise to reveal time-locked signals such as the P3. Unfortunately this means 

that analyses of associations across measures are performed using average data rather than 

exploring associations across individual trials. As a result one loses the opportunity to explore 

within-subject trial to trial variability which may provide important insight into associations 

between electrophysiological events and behavioural responses potentially hidden by between 

subject variability.      

5.3 Future directions and applications 

Future research could be targeted towards further investigation of specific components 

of the switch cost (eg disengagement timing). Previous studies investigating disengagement 

timing from stimuli have used saccadic eye movements, both in the auditory and visual 

modalities, to determine disengagement of attention (Braun and Breitmeyer, 1988; Shafiq et 

al., 1998), so this method could possibly be applied to disengagement from tasks when 

switching. The relationship between time taken to disengage and the resulting switch cost 

could be examined to provide insight on the timing of this switch cost component. If utilizing 

this method measuring saccadic reaction time, it would be beneficial to use visual stimuli for 

the background task with gaze fixed in order to provide more accurate measures. It is 

hypothesized that the time taken to disengage would be greater for more difficult tasks. In this 

task switching paradigm, the background task could be manipulated by either adding more 
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stimuli and responses (more choices) to the task or altering the interstimulus interval while still 

maintaining the near-continuous nature of the task.  

Furthermore, while this study was limited by its ability to examine the N1 component 

during switching, some changes to the task may allow for this early ERP to be explored. 

Jittering the timing of the last tone of the background task prior to the switch to the visual 

stimulus may result in less overlap of the auditory ERPs with the visual switch ERPs to 

observe a clearer N1 component. This suggestion, along with the addition of more trials, may 

provide a better opportunity to examine this electrophysiological marker, so that it can be 

confirmed whether early stages of information processing are impacted in switch situations.    

Future applications of this research could probe individual characteristics that influence 

switch cost. As attention switching capabilities have been shown to decrease in aging (Kray 

and Lindenberger, 2000) populations and those with certain neurological disorders (Cameron 

et al., 2010), this task switching paradigm could potentially be used in two different manners. 

One of which is as a diagnostic test for attention switching. The studies in this thesis focused 

on populations of young healthy adults providing a foundation of performance for this 

paradigm with which to compare to other populations. So performance on this test could 

indicate if attention switching is impaired depending on the resulting switch cost. Secondly, 

this paradigm could be used as a functional assessment of an individual (eg for driving). As 

attention switching is an important component of driving, and is affected by age, individual 

performance on this task could be an indication of how well individuals would be able to 

rapidly switch attention to an unpredictable stimulus.  
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If attention switching capabilities are impaired, there is the possibility for improvement. 

It has been shown that with extensive practice, task switching performance can be improved 

(Strobach et al., 2012). In a study by Strobach et al. (2012) participants completed 7000 trials 

of task switching dispersed over 8 sessions resulting in lower switch costs after the extensive 

practice. The task employed in this thesis could be a useful tool for practicing attention 

switching to improve performance, especially as it involves switching to an unpredictable task. 

Furthermore, as aerobic exercise has been shown to affect the speed of processing as well as 

attentional processes (Tomporowski, 2003), it may prove to be another method in order to 

improve attention switching capabilities. Future work employing an exercise protocol with this 

attention switching paradigm may lead to a greater understanding of the important connections 

between aerobic exercise and cognitive function.   
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