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Abstract

One of the most common therapies for treatment of cancer patients is chemotherapy. Ther-
apeutic agents (drugs) can kill cancer cells by damaging their DNA and interrupting their
extensive proliferation. Successful chemotherapy depends on the injected drug dosages and
their timings. A high dosage of the therapeutic agents is toxic to normal cells, whereas
a low dosage leads to an unsuccessful treatment. Distribution of drugs within solid tu-
mors and their efficacy depend on the drug biophysical properties as well as physiological
properties of solid tumor under treatment; therefore, the chemotherapy regimen should be
determined and personalized for a specific patient and drug. Finding the optimal schedul-
ing of chemotherapy for a specific drug and tumor condition using clinical or preclinical
studies is almost impossible, as many parameters are involved and examining all of them
is costly and lengthy. Mathematical models, instead, can be used to overcome these lim-
itations. The objective of this study is to introduce a method for finding the optimal
chemotherapy regimen that can be applied to a wide range of tumor microenvironments.
We first use transport phenomena equations such as Darcy’s law, the continuity equation,
and Startling’s equation to model the fluid flow within a tumor microenvironment. Two
main mechanisms of drug transport is convection and diffusion; thus, an advection-diffusion
equation is utilized to calculate spatio-temporal distribution of chemotherapeutic drugs.
Then, a novel algorithm is developed to calculate the distribution of fluid and drug within
an ideal image of a solid tumor, in which the tumor boundary and vasculature are perfectly
recognized. Using this computational framework, we study the effects of important fea-
tures of tumor microenvironment such as microvascular density and vessel locations on the
drug macromolecule distribution. Finally, built upon these computations, we develop an
algorithm for finding the optimal regimen for injection of drug nanoparticles to a specific
tumor microenvironment. Firstly, different drug delivery steps including traveling within
blood vessels, penetration from vessel walls to tumor tissue, distribution within tumor
tissue, binding to cancer cell receptors, and internalization within cancer cells are mathe-
matically modeled. Then, an objective function is defined based on the efficiency of drug
macromolecules in killing cancer cells. We use an optimization algorithm to find an opti-
mal dosage regimen that maximizes the eradication of cancer cells over treatment period
while satisfying specific constraints. Constraints are set to make sure the toxicity level of
drugs is tolerable by the patient. This computational framework is applied to conventional
chemotherapy and chemotherapy using drugs encapsulated in liposomes. Moreover, the
efficacy of two delivery approaches, bolus injection and continuous infusion, when optimal
dosages are applied is investigated.
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Chapter 1

Introduction

Cancer is the one of the foremost cause of death. Although many anticancer drugs have
been developed, they are often ineffective. The ineffectiveness of cancer drugs is related
to complex solid tumors’ microenvironments, properties of the drugs, and the amount
of their use in chemotherapy regimens. Therefore, better understanding of the complex
microenvironment and mechanisms of drug delivery to solid tumors is crucial in designing
an effective treatment strategy. Another problem in chemotherapy is that although solid
tumors’ properties vary extensively from one case to another, treatment protocols are not
highly flexible; the ideal strategy would be to design specific treatment protocols for specific
patients. Since many factors are involved in the delivery of drug molecules, it is almost
impossible to experimentally and economically investigate all factors thorough clinical and
preclinical studies. In contrast, mathematical modeling can play a very effective role.
Thus using mathematical modeling, the aim of this work is to comprehensively investigate
variables that affect chemotherapy, and then to propose a strategy that can determine
optimal treatment conditions, personalized to a specific patient.

First, in Ch.2, a physically relevant tumor microenvironment, surrounded by a vascular
network is modeled. Then, to model fluid flow within both tumor and normal tissue, the
continuity equation and Darcy’s law with appropriate boundary conditions are applied.
Starling’s equation is applied to model the fluid extravasating from vessel walls into the
tumor interstitium. To solve these equations accurately in this complex environment, we
have employed the finite element method with an adaptive mesh generation that combines
high accuracy with a high calculation speed. Furthermore, by using advection-diffusion
equation in normal and tumor tissue, the spatio-temporal concentration of drug molecules
in the complex microenvironment of a tumor is calculated. Finally, we analyze how different
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properties of tumors, their vasculature, drug molecules affect drug movements within tumor
microenvironments.

Various solid tumors show a variety of tumor shapes and sizes with different vascular
structures. A novel approach is developed in Ch. 3 to address this diversity in tumor
microenvironments and extend the basics introduced in Ch. 2 to a personalized approach
that can be applied to a specific tumor image, and thus to a specific patient. In these
chapters, the computational framework developed in Ch. 2 to model fluid flow and drug
transport within tumor and normal tissue are applied to an idealized tumor image model,
where tumor and vasculature are completely detectable. This image presents a typical
tumor model with a general vascular structure, which can come from a high-resolution
image taken from a patient under treatment. Furthermore, several tumor models are
created to investigate the effect of microvascular density (MVD), tumor size, and the
vessel locations on fluid flow and drug transport within tumor microenvironments. Some
parts of this chapter is already published in the Journal of Microvascular Research [67].

Choosing the right dosages and right times of injection are important factors that de-
termine the the efficacy of chemotherapy. In Ch. 4, an algorithm is developed to address
how to determine optimal drug dosages to be injected in specific times. This optimization
approach is built upon the computational frameworks presented in Ch. 3. The goal of this
optimization approach is to find a series of drug dosages which satisfies two constraints
related to the toxicity and maximize the fraction of killed cancer cells at the end of treat-
ment. This approach is applied to bolus injection and continuous infusion strategies for
two cases of conventional therapeutic and liposome drugs. Finally, we have investigated
the effect of different tumor microenvironment and drug properties on the optimal regimen
and the treatment outcome.

The objectives of this work are:

• To calculate the distribution of drug macromolecules in a tumor microenvironment
with a heterogeneous vascular network and investigate the effect of tumor and vas-
culature physiological properties on drug delivery.

• To develop an algorithm that is able to calculate spatio-temporal distribution of drug
macromolecules in a generic tumor model, which can come from a high resolution
tumor image with specified tumor boundary and vasculature.

• To analyze the effect of crucial features of tumor microenvironment such as microvas-
cular density and vessel locations on the distribution of drugs.
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• To develop an algorithm for finding the optimal chemotherapy dosages that can be
applied to a specific patient. This algorithm takes into account the drug and tumor
properties as well as drug toxicity.

3



Chapter 2

Mathematical Modeling of Tumor
Microenvironment and Transport of
Drug particles

2.1 Introduction

The most important limitation of therapeutic drugs is their inability to reach most of the
cancer cells because of the physiological barriers such as elevated Interstitial Fluid Pressure
(IFP) in tumors, clearance by blood flow, and compact media of solid tumors. In addition
to this difficulty, most of the anticancer drugs have toxicity effects on normal cells and
even they cannot prevent regrowth of tumors if they reach cancer cells [56].

Tissue space consists of three parts, which have important roles in drug delivery: the
vascular network, the interstitium and cellular space. the vascular network comprises of
blood vessels and capillaries. The interstitium is a gel-like space between vasculature and
cells and includes collagen that gives structural stability to proteins located in interstitium
[6, 7, 8]. To reach cancers cells, drug molecules should permeate from vasculature and
pass through vessel wall to enter tumor interstitium. However, the elevated IFP blocks
this transportation and results in a heterogeneous distribution of drug molecules in solid
tumors.

High IFP in solid tumors is one of the main barriers to drug delivery [55, 5]. Lack
of lymphatic drainage in solid tumors and leaky abnormal vasculature contribute to the
elevated IFP [6]. For the first time, Boucher et al.[10] experimentally confirmed that for an
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isolated tumor, IFP is very high and close to the microvascular pressure within the tumor,
whereas it decreases suddenly at the tumor periphery. In contrast, in normal tissue, due
to the existence of the lymphatic system, the IFP value is almost zero [55]. It is shown
a dependency between the blood flow and IFP [70, 71], and IFP in the center of a tumor
detached from the host tissue, follows the dynamic of blood pressure with a small delay in
order of 10 seconds. Elevated IFP produces Interstitial Fluid Flow (IFF) outward from the
tumor center and conveys tumor-produced macromolecules such as Vascular Endothelial
Growth Factors (VEGFs) toward the normal tissue and also hinders drugs reaching most
of the cancerous cells [54]. Studied by Jain et al. [55], IFP may cause metastasis and
intensify tumor invasion by conducting cancerous cells toward the leaky vessels. Baxter
and Jain [7] modeled IFP for a radially symmetric solid tumor with a homogeneously
distributed vasculature. In their model, leaky vessels are distributed everywhere in the
tumor and distributed uniformly, which are a source for fluid and macromolecules in the
tumor interstitium. They mathematically confirmed that IFP plateaus in the tumor center
at its maximum value, equal to the blood pressure, but decreases suddenly to zero at the
tumor periphery, a finding in agreement with experimental data for an isolated tumor, a
tumor detached from the normal tissue[10].

In contrast to the homogenous vascular model, real tumors show a complicated hetero-
geneous vascular structure: a high density of weak and leaky microvasculature at the tumor
periphery owing to angiogenesis, creation of new vessels from the normal vessels surround-
ing tumor tissue [16, 17], and a lack of functional vasculature and the presence of a few
dilated vessels inside the tumor [46, 47, 25, 24]. Due to the important role of vasculature
in drug delivery, many researchers have developed different models for vascular network.
Many of these researchers have modeled the formation of neo-vasculature in response to
the molecular factors produced by tumor cells[18, 14]; however, these models capture only
macroscopic features of tumor vasculature and are unable to consider microscopic phe-
nomena such as branching and anastomosis. To consider microscopic features, Anderson
and Chaplain[2] have modeled angiogenesis as a discrete lattice of endothelial cells. In this
model, neo-vasculature growth from a parent vessel is shaped by certain probabilities. Tip
cells in each lattice migrate to the adjacent tumor cells according to these probabilities,
which are calculated as a function of different cellular phenomena such as branching rules,
VEGF concentration, and endothelial cell density. Welter et al.[94, 96, 95] have proposed a
more-realistic vascular remodeling that includes relevant physiological phenomena such as
vessel co-option and regression. They use an arterio-venous vascular structure [39] as their
pre-existing vasculature and as tumor grows, this structure is remodeled by the following
phenomena: 1) based on the VEGF concentration, the tumor co-opts its vascular struc-
ture to form new vessels by the process of angiogenesis; 2) inside the tumor, high VEGF
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concentration causes vessel dilation rather than angiogenesis; 3) the proliferation of cancer
cells inside the tumor exerts mechanical forces on vessels inside the tumor. These vessels
may collapse if the normal stress exerted by blood flow on their vessel walls cannot stand
up to the normal stress applied by the tumor cells.

In addition to works on the modeling of IFP in a homogenous vasculature in solid
tumors, which means vessels are located uniformly everywhere in the solid tumor [5, 6,
55], some recent studies have investigated the effect of physiological properties of tumor
microenvironment surrounded by vascular network on IFP [101]. Wu et al. [99, 15] have
calculated the IFP in a network of vasculature that grows toward the tumor from two
parent vessels. Recently, Wu et al. [101] have calculated IFP in a continuos growth model
of solid tumor with a dynamic formation of angiogenesis. Then, they studied the effect
of IFP on oxygen extravasation from the vasculature and its consequent effects on tumor
growth.

Although extensive studies have been done on tumor growth modeling, and recently, on
dynamic vasculature modeling and calculation of IFP, just few studies have been conducted
on the transport of drug molecules into solid tumors. The first formulation to calculate
the concentration distribution in solid tumors is presented by Baxter et al. [5, 6, 7, 8].
They have studied the concentration distribution of two drugs, Fab and IgG, in an isolated
circular tumor with uniform distribution of vasculature. In a very recent work, Welter et
al. [97] , for the first time, have studied the transportation of drug in a very sophisticated
tumor microenvironment model that dynamically evolves. This complex microenvironment
model includes the various parameters such as oxygen concentration distribution, VEGF
and network of vasculature.

This study proposes a modeling framework to calculate the IFP, IFF, filtration rate
of drug molecules from tumor vasculature and the blood flow vascular velocity within an
environment of tumor tissue surrounded by normal tissue and located in a heterogeneous
vascular network. In addition, the transport of drug molecules and drug concentration
distribution has been simulated.

First, a physically relevant tumor microenvironment, surrounded by a vascular net-
work is modeled. Then, the continuity equation, Darcy’s law and Starling’s equation with
appropriate boundary conditions for normal and tumor tissues are developed to calculate
the IFP and IFF. To solve these equations accurately in this complex environment, we
have employed the finite element method with an adaptive mesh generation that combines
high accuracy with a high calculation speed. Furthermore, by using advection-diffusion
equation in normal and tumor tissue, dynamic concentration profile of drug molecules in
the complex microenvironment of tumor is calculated. Finally, the effect of physiologi-
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cal properties of tumor and vasculature and physical properties of drug molecules on the
transportation of drug in tumor microenvironment are analyzed.

2.2 Vascular network modeling

Neovascularization of the tumor during angiogenesis is based on physiological conditions
of tumor microenvironment, such as oxygen concentration and vascular endothelial growth
factors (VEGFs). Proposed by Welter et al. [94, 95, 96, 50], the model involves a network
of vasculature around and inside the tumor. To grow beyond 1mm3, a tumor releases
some growth factors, mainly VEGFs, to provide more nutrients and oxygen [16, 33]. These
VEGFs diffuse to the periphery of the tumor and stimulate the production of the neovas-
cularization from the pre-existing vessels [46, 60]. Based on this model, at the center of
a vascular network, the tumor is modeled as a circle whose radius increases linearly over
time. This vascular network is modeled as a network of pipes with the laminar Poiseulles
flow inside it [36]; therefore, the pressure difference between two ends of each vessel, ∆P
is calculated by

∆P =
8µLQ

πr4
(2.1)

where µ is fluid viscosity, Q is volume flow rate of the fluid inside the vessel, and L,r are
length and radius of the vessel, respectively. It has been assumed that the top-left corner of
vascular network is connected to the artery at the pressure 15 mmHg and the bottom-right
corner is connected to the vein at the pressure 0 mmHg, as shown in Fig. 2.1.

The algorithm for vascular network remodeling is composed of the following steps:
Initial configuration of the model consists of blood vessels with the same size and radius
arranged as a square lattice with a circular tumor at its center. Having set the initial
configuration for the tumor and vasculature, the following steps remodel the vasculature
in each time step:

1. By assuming sufficient oxygen in the tumor neighborhood, the tumor radius increases
by one lattice site at each time step.

2. Due to the lack of oxygen inside the tumor, tumor cells start to produce VEGFs.
The maximum concentration of the VEGFs is at the tumor center, and then they
diffuse to the tumor periphery as a consequence of the concentration gradient. It is
assumed that the distance of the diffusion region outside the tumor is ∆angio, which
is equal to half of the initial tumor radius. Angiogenesis is modeled as an addition of
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Pin	  

Pout	  

Figure 2.1: Blood fluid enters the network at the relative pressure Pin = 15 mmHg and
exits at the relative pressure Pout = 0 mmHg

“+” vessel to the pre-existing vasculature in the angiogenesis region by a pre-defined
probability.

For the vessels inside the tumor, two scenarios are possible:

3. Instead of new blood vessel formation, VEGFs contribute to an increase of the vessel
radius, dilation.

4. Vessels collapse if they cannot resist against the stress applied by the tumor cells

Criteria 3 and 4 depend on the amount of blood fluid flow rate through a vessel, which
causes normal stress on the vessel wall. Less blood flow in the vessel causes less normal
stress against normal stress exerted by tumor cells, and consequently, the more likelihood
of vessel collapse [46, 3]; in contrast, more blood flow results in greater likelihood of vessel
dilatation inside the tumor.

Fig. 2.2 shows the final vascular network after tumor growth, angiogenesis, vasculature
collapse and dilation for a 30 by 30 square lattice. Vessels within the tumor are presented
in red and vessels within normal tissue are blue. The white background represents both
normal and tumor tissues. Irregularity of the vascular network inside the tumor and its
periphery is shown in this figure; the highest density of vessels is in the tumor periphery,
while most of the vessels close to the tumor center are collapsed because of the tumor cell
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stress. This result also demonstrates that except a few thick vessels inside the tumor, the
other functional vessels are collapsed due to the high stress from tumor cells. Moreover,
the diffusion of VEGFs toward the tumor periphery initiates the formation of new blood
vessels and causes high microvascular density at the tumor periphery. Unlike the regular
network in normal tissue, regression, angiogenesis and dilation together create an irregular
network of vessels at the priphery and within the tumor.

Figure 2.2: Vascular network with tumor and normal tissue for a lattice 30 × 30. Vessels
inside the tumor are red, in normal tissue are blue, and white space is tissue, both normal
and tumorous

2.3 Interstitial pressure calculation

2.3.1 Method

Like the real situation for tumors, the presented model consists of three parts each with
different physiological properties: the vascular network, tumor tissue and normal tissue
[60, 103]. The vascular network has a regular shape within the normal tissue but is irregular
at the tumor periphery, where the high density of vasculature occurs, and there are a few
functional vessels inside the tumor [32]. Considering these different regions, first developed
by Baxter and Jain[5], we can calculate Interstitial Fluid Pressure (IFP) using transport
phenomena equations. Since normal and tumor tissues are porous media, Darcy’s law can
explain fluid transport in this media:

ui = −K∇Pi (2.2)
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where ui [cm/sec], K [cm2/mmHg.sec] and Pi [mmHg] are Interstitial Fluid Velocity
(IFV), hydraulic conductivity and IFP, respectively. Assuming a steady-state flow inside
the media, we can utilize the continuity equation to calculate ui:

∇.ui = φV − φL (2.3)

where φV [sec−1] is the tumor’s fluid source originated from the vasculature and φL [sec−1]
is the fluid sink that arises because of the lymphatic system. Different values exist for φV
according to the different regions: vasculature region and interstitium. Since there is no
accumulation of fluid in normal tissue, we can assume that in this region, considering its
vasculature, the amount of fluid source and fluid sink are equal. Inside the tumor, each
vessel acts as a source term for fluid and macromolecules; however, there is no sink inside
the tumor due to the lack of a lymphatic drainage. Consequently, the modified continuity
equation is

∇.ui =

{
φV for vasculature

0 elsewhere
(2.4)

where the source term, φV , can be calculated using Starling’s equation given by

φV =
LPS

V
(PV − Pi − σ(πV − πi)) (2.5)

where Lp [cm/mmHg.sec] is hydraulic conductivity of the vessels inside the tumor;
S/V [cm−1] is surface area of the vasculature per unit volume within the tumor; PV [mmHg]
is blood pressure in vasculature; Pi [mmHg] is IFP; σ is average osmotic reflection coef-
ficient for plasma proteins; πV [mmHg] is plasma osmotic pressure; and πi [mmHg] is
interstitial fluid osmotic pressure. Combining Eq. 2.4 and Eq. 2.2 gives us

−∇.(K∇Pi) =

{
φV for vasculature

0 elsewhere
(2.6)

Assuming constant hydraulic conductivity for tumor tissue (K), Eq. 2.6 can be simplified
to

∇2Pi =

{
−φV /K for vasculature

0 elsewhere
(2.7)
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Substitution of φV from Eq. 2.5 into Eq. 2.7 gives

∇2Pi =

{
−LPS

KV
(PV − Pi − σ(πV − πi)) for vasculature

0 elsewhere
(2.8)

Then the effective pressure, Pe, can be defined as a pressure at which fluid is extravasated
from a vessel:

Pe = PV − σ(πV − πi) (2.9)

The dimensionless variables can be defined as x∗ = x/Leq, y
∗ = y/Leq, and P ∗

i = Pi/Pe
where Leq = 5mm, the size of lattice edge, and x∗, y∗, P ∗

i are dimensionless variables for
axis x, y, and Pi, respectively. Plugging these variables into Eq. 2.8 gives

∇2P ∗
i =

{
LPS
KV

L2
eq(P

∗
i − 1) for vasculature

0 elsewhere
(2.10)

By defining α = Leq
√
LPS/KV , this equation can be written as

∇2P ∗
i =

{
α2(P ∗

i − 1) for vasculature

0 elsewhere
(2.11)

To solve this equation for P ∗
i , dimensionless IFP, the boundary conditions are necessary.

The first such condition is the continuity of IFP and the interstitial fluid flux at the
periphery of the tumor:

P ∗
i |R− = P ∗

i |R+ (2.12)

− (K∇P ∗
i )|R− = −(K∇P ∗

i )|R+ (2.13)

Second boundary condition is the IFP at the edges of the lattice, which is assumed to have
a value equal to that in normal tissue:

P ∗
i |x=0,L = P ∗

i |normal tissue = 0 (2.14)

P ∗
i |y=0,L = P ∗

i |normal tissue = 0 (2.15)

To calculate Pi, based on Eq. 2.8, the only unknown variable is blood pressure inside the
vascular network (PV ), which changes throughout the network and should be calculated
properly to reflect those changes. Having set these values at two corners, blood pressure
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can be computed at the other nodes of the network using mass balance for each node:

k∑
m=1

Qm,n = 0 1 ≤ k ≤ 4 (2.16)

where k is the number of connected vessels to node n, and Qm,n is the net flow rate of the
fluid from node m to node n. As shown in Fig.2.3, for each vessel connected to node n, two
flow rates exist: the vascular flow rate, Qm,n

V , which comes from the adjacent node m and
the transvascular flow rate, Qm,n

t , which is due to the leaky permeable vessel and shows
the flow rate of the fluid leakage from the vessel to the tumor interstitium. Therefore, the
net fluid rate Qm,n is given by

Qm,n = Qm,n
V −Qm,n

t (2.17)

Figure 2.3: Vascular flow rate (red) and transvascular flow rate (blue) for each vessel

The vascular flow rate Qm,n
V can be calculated by Poiseulles’s law as follows:

Qm,n
V =

πr4
m,n(Pm

V − P n
V )

8µlm,n
(2.18)

where Pm
V is the vascular pressure at node m; P n

V is the vascular pressure at the node n;
and rm,n , lm,n are the radius and the length of the vessel that connects node m to node
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n. In addition, the transvascular flow rate Qm,n
t can be calculated by Starling’s law:

Qm,n
t = LP (2πrm,nLm,n)(P̄m,n

V − P̄m,n
i ) (2.19)

where P̄m,n
V and P̄m,n

i are the average values of the vascular pressure and the IFP between
node m and node n respectively. Combining Eq. 2.16, Eq. 2.17, Eq. 2.18, and Eq. 2.19
results in

k∑
m=1

(
πr4

m,n(Pm
V − P n

V )

8µlm,n
− LP (2πrm,nLm,n)(P̄m,n

V − P̄m,n
i )

)
= 0 1 ≤ k ≤ 4 (2.20)

Eq. 2.8 and Eq. 2.20 are coupled and should be solved simultaneously. Using an iterative
method, first an initial value for Pi in all nodes is guessed and then PV for all nodes in
the network is calculated using Eq. 2.20. Then, we update Pi by solving Eq. 2.8 until the
convergence for both of Pi and PV for all nodes in the network occurs. Finally, the vascular
flow velocity, Um,n

V , and transvascular velocity, Um,n
t , as two important physiological factors,

can be calculated by the following equations:

Um,n
V =

Qm,n
V

πr2
m,n

(2.21)

Um,n
t =

Qm,n
t

2πrm,nlm,n
(2.22)

The parameters used in these equations has been measured experimentally by Baxter and
Jain [5] and listed in Tab. 2.1.

2.3.2 Results and Discussion

Coupled equations for IFP have been solved numerically using the finite element method.
Fig. 2.4 shows the mesh generated for this vascular structure where the mesh density
is very high at the vessel locations inside the tumor because the IFP equation depends
on the vascular structure located in the tumor region. Due to the complexity of tumor
microenvironment, to solve coupled equations of IFP and the mass conversation in each
node of the network, an adaptive mesh generation for numerical calculations has been used.
Using uniform mesh to solve this PDE may result in different answers for different mesh
sizes because the size of mesh affects the value of the source term, as in Eq. 2.8. Using
adaptive mesh is essential, especially when vessels are sparse, which is the case inside the
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Table 2.1: Physiological parameters used in the numerical simulation, as taken from [5]

Parameter Tissue Baseline value Refrence

Lp[cm/mmHg.s] Normal 0.36× 10−7 [76]
Tumor 2.8× 10−7 [5]

K [cm2/mmHg.s Normal 8.53× 10−9 [84]
Tumor 4.13× 10−8 [5]

S/V [cm−1] Normal 70 [74]
Tumor 200 [45]

πB [mmHg] Normal 20 [11]
Tumor 20 [11]

πi [mmHg] Normal 10 [98]
Tumor 15 [5]

σ Normal 0.91 [4]
Tumor 0.82 [23]

tumor and close to its center. Using an iterative method allows blood pressure and IFP

Figure 2.4: Generated adaptive mesh to solve IFP equation coupled with blood flow equa-
tion

to be computed. Blood pressure distribution is shown in Fig. 2.5, in which the maximum
pressure occurs at the artery source, the top-left corner, but it gradually decreases until
drops to zero at the vein connection point, the right-bottom corner. Obviously, in the
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tissue where there are no vessels, vascular pressure is zero. Vascular pressure, as shown in
Fig. 2.5, changes very slowly at the tumor periphery, where angiogenesis happens. In this
region, the value for vascular pressure is 7.4 ± 1.6, which is about 10% of all changes in
network. At the angiogenesis region, the high number of vessels causes the blood flow rate
to be divided to the many branches; thus, the flow rate in each vessel decreases significantly,
which results in considerable reduction in vascular pressure gradient.

Figure 2.5: Blood pressure PV (mmHg) distribution within the vascular network

IFP distribution, shown in Fig.2.6, demonstrates that the dimensionless maximum IFP
with value 0.784 occurs inside the tumor where vasculature density is the highest. This
figure also shows that IFP plateaus at the tumor tissue and decreases from the center
toward the normal tissue. We found that vascular morphology affects IFP distribution,
where a strong correlation exists between them, as shown in Fig.2.6. Moreover, comparing
IFP distribution in this figure with the homogenous case presented in the literature[5, 55]
shows that the maximum dimensionless IFP in heterogeneous vasculature, 0.78, is less than
that in homogenous case which is 1. In the homogenous vasculature, it has been assumed
that vessels exist everywhere inside the tumor; however, in the heterogeneous one, just
a few vessels are inside the tumor and most of them are collapsed due to the tumor cell
stresses. Consequently, the less the vasculature, the less source is for extravasated fluid,
and therefore, the less IFP in the tumor. After calculation of IFP, interstitial fluid velocity
(IFV) can be obtained using Darcy’s law (Eq.2.2). As shown in Fig.2.7, IFV is the highest
at the tumor periphery, 0.022 µm/sec, due to the high gradient of IFP at this region. In
contrast, its value is almost zero inside the tumor. High IFV, shown in Fig. 2.7, at the
tumor periphery causes most of drug molecules to accumulate at the periphery of the tumor
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Figure 2.6: Dimensionless IFP (P ∗
i ) distribution within tumor microenvironment

Figure 2.7: Interstitial fluid velocity (µm/s) distribution in tumor and normal tissue
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and so they cannot reach the tumor center. However, drug molecules can reach the tumor
center and stay there if there is functional vasculature in it because the IFV is almost
zero and there is no driving force to repel the drug molecules. Here, the maximum IFV
is 0.022 µm/sec compared with the homogenous vasculature inside the tumor, which is
0.17 µm/sec [5, 55]. This difference in IFV is due to the less number of vessels in this case,
which results in less gradient of pressure and consequently less IFV in tumor periphery.

Fig.2.8 presents transvascular velocity distribution, the velocity in which macromolecules
can pass through vessel wall and perfuse to the interstitium. The maximum value for
transvascular velocity is 0.01 µm/sec and happens in the peripheral to the tumor where
vessels are leaky and weak, IFP is relatively low, and pressure difference between vessel and
interstitium as a driving force for transferring of materials from vessels is high . Further-
more, in normal tissue, for vessels close to the artery, transvascular velocity is higher than
that of vessels in the vein’s neighborhood. Differing from transvascular velocity intravas-

Figure 2.8: Transvascular velocity (µm/s) distribution in the network

cular velocity, shown in Fig. 2.9,-the velocity of blood inside the vessels- is very high in the
vessels in the vicinity of artery and vein connection points, whereas it decreases toward the
tumor. The maximum intravascular velocity is 6200 µm/sec, which is much higher than
the maximum value for transvascular velocity, 0.01 µm/sec. The effects of parameters
used in this modeling on IFP are shown in Fig. 2.10. This figure demonstrates that IFP
increases when the hydraulic conductivity of the tumor interstitium decreases. Hydraulic
conductivity of a porous media represent the degree of compactness of that media. Denser
media have lower hydraulic conductivity. When hydraulic conductivity a tumor is higher,
interstitial fluid easier flows through the tumor, leading to lower IFP. In contrast, IFP
increases with the increase of the hydraulic conductivity of microvascular walls. In higher
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Figure 2.9: The intravascular velocity (µm/s) distribution inside the network

hydraulic conductivity of a vessel, blood flow easier perfuse through the vessel wall to the
tumor tissue resulting higher IFP in tumor. Finally, increasing the surface area of vessels
per tumor volume conveys higher amount of blood fluid from vessel media to the tumor
tissue contributing to elevation of IFP.

2.4 Transport of drug molecules to a solid tumor

2.4.1 Method

Drug molecules transport from microvasculature to tumor tissue with two mechanisms of
diffusion and convection. In diffusion transportation mechanism, size and shape of drug
are important factors. However, convection is affected by blood flow pressure, interstitial
pressure, and interstitial fluid velocity. The transportation of drugs to the interstitial space
of the tumor can be obtained using this advection-diffusion equation:

∂C

∂t
+∇.(uiC) = ∇.(D∇C) + φS − φR (2.23)

where C [g/ml] is the interstitial concentration of drug;t [sec] is time; D [cm2/sec] is the
diffusion coefficient of drug in interstitium; ui [cm/sec] is the IFV , which can be calculated
from the IFP value by utilizing Darcy’s law; φR [g/ml.sec] is the amount of drug that is
consumed by reacting with interstitium; and φS [g/ml.sec] is the source term for drug
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Figure 2.10: Dimensionless IFP P ∗
i for different values of K, LP , S/V
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molecules extravasating from the vasculature, which is given by the following equation:

φS = LPS(PV − Pi)(1− σ)
Cpe

Pe − C
ePe − 1

(2.24)

where Pe = LP (1−σ) (PV −Pi)
P

is the Peclet number across the vessel wall; P is the vascular
permeability (cm/sec); and Cp is the plasma concentration of the drug macromolecules.
This equation demonstrates that the amount of perfused drug molecules to tumor tissue
depends on the permeability of vessel wall and difference between concentration of plasma
and drug concentration in tissue next to the vessel wall. By combining Eq.2.23 and Eq.2.24
and neglecting the reaction of drug macromolecules with the tumor interstitium result in:

∂C

∂t
+∇.(uiC) =

{
D∇2C + LPS(PV − Pi)(1− σ)CpePe−C

ePe−1
for vasculature

D∇2C elsewhere
(2.25)

Since the drug concentration in plasma decreases over time, it can be assumed that the
reduction happens exponentially and depends on the residence time of a drug in vasculature
(τ):

Cp/Cp0 = exp(−t/τ) (2.26)

To solve this partial differential equations and obtain the concentration profile of macro-
molecules, it is necessary to set the initial condition and boundary conditions. For the
initial condition, the concentration at the time of drug injection is zero:

C|t=0 = 0 (2.27)

Two types of boundary conditions exist for both. First, the drug concentration and its
flux are continuous at the boundary (Ω) between tumor and normal tissue :

C|Ω− = C|Ω+ (2.28)

{−D∇2C +∇.(uiC)}|Ω− = {−D∇2C +∇.(uiC)}|Ω+ (2.29)

It can be assumed that at a sufficient distance from the tumor the concentration is zero:

C|x=0,L = C|y=0,L = 0 (2.30)

As a case study, Fab (fragment-antigent binding) drug [5], which is widely used in
monoclonal antibody therapy, is utilized for simulation and calculation of concentration
distribution. The physical properties for Fab drug, listed in Tab. 2.2.

20



Table 2.2: Physical properties used in simulation, as taken from [5]

Parameter Tissue Baseline value Refrence

D [cm2/sec] Normal 1.2× 10−8 [38]
Tumor 4.4× 10−8 [38]

P [cm/sec] Normal 19.1× 10−7 [38]
Tumor 149× 10−7 [38]

τ [hr] Plasma 3 [21]

2.4.2 Results and Discussion

Two case studies for calculation of drug concentration distribution have been considered:
1) constant drug concentration within plasma (in case of continuous injection) 2) drug
concentration in plasma decays exponentially over time (bolus injection). To calculate
the concentration profile in solid tumor surrounded by a normal tissue with vasculature
(Fig. 2.2), Eq. 2.25 should be solved with the boundary conditions introduced in Eq. 2.28,
and Eq. 2.29, Eq. 2.30.

Fig.2.11 shows the concentration profile inside the solid tumor for different times when
the injection is continuous, first case study. This figure reveals a strong correlation between
vascular morphology and concentration distribution of the drug molecules shortly after
injection.

At the early times of injection the maximum concentration of drug molecules occurs
at the place of maximum density of vessels. The profile shows for the continuous injection
of drug the ratio of maximum concentration to the plasma concentration is 0.9 that hap-
pens in a region close to maximum vascular density. However, the parameter analysis, as
shown in Fig. 2.19, Fig. 2.20, Fig. 2.21, and Fig. 2.22 proves that this value depends on the
physiological properties of tumor tissue and drug.

Fig. 2.11 also shows that the concentration profile of the drug does not change after
20 hours, which means, at this time, the amount of penetrated drug from vasculature
to the tumor is equal to the amount of drug molecules washed away by interstitial fluid
flow in normal tissue. To compare the change of concentration profiles over time, the
maximum value of normalized concentration is shown in Fig. 2.12. This figure shows
maximum dimensionless concentration (C∗) of drug in the solid tumor increase over time
and plateaus at time 20 and at the value 0.93.

Fig.2.13 shows the concentration gradient of drug over time, which illustrates the share
of diffusion in drug distribution. Shortly after injection, there is a high drug concentration
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Figure 2.11: Dimensionless concentration profile within the vascular network for continuous
injection
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Figure 2.12: The distribution of maximum normalized concentration within the vascular
network for continuous injection during 64 hours

gradient between vasculature and tumor tissue. However, after about 20 hrs, the concen-
tration of drug in the tumor is constant and consequently the concentration gradient is
close to zero. In contrast, at the tumor boundary, drug molecule permeated from vas-
culature wash away towards normal tissue by interstitial fluid flow. Consequently, high
concentration gradient remains around at the tumor’s boundary. Fig. 2.14 shows the max-
imum concentration of drug over time. Based on this figure, after the time 20 hrs the
maximum of drug concentration gradient in tumor which implicates no change in diffusion
rate after this time and steady-state of drug concentration profile.

For the second case study, exponential decay in drug molecules concentration in plasma,
simulation is implemented for Fab drug. The data for Fab drug, obtained experimentally
by Baxter et al. [6], shows the residence time (τ) of 3 hours, which means after 3 hrs
the concentration of drug in plasma decreases to 37% of its initial value. For Fab drug,
solving Eq. 2.25 with τ = 3 results the drug concentration distribution in the tumor over
time,which is shown in Fig. 2.15. As this figure shows, drug concentration in tumor tissue
increases at first, but it decreases eventually when the concentration of drug decreases in
plasma.

Fig.2.15 shows the asymmetry profile of concentration in the early times because of the
heterogeneity of vasculature, but concentration profile changes to a symmetry behaviour
after 30 hours. The reason is that after 14 hours the amount of drug in plasma drops
below 1% of its initial value; therefore, practically there is no source after this time. This
reduction in drug concentration in plasma results in drug concentration reduction due to
its penetration from tumor tissue towards the neighbouring normal tissue and to the center
of tumor, leading to a symmetry concentration profile after 30 hours.

Fig. 2.16 presents the maximum concentration of drug molecules during 64 hours after
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Figure 2.13: Dimensionless concentration gradient profile within the vascular network for
continuous injection
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Figure 2.14: Dimensionless maximum concentration gradient profile within the vascular
network for constant plasma concentration during 64 hours

injection. The drug concentration reaches its maximum value after 5 hours and then decays
exponentially over time such that after 35 hours the maximum value is less than 10% of
the its initial concentration in plasma.

It should be noted that the concentration profile changes for drugs with different value
of τ . Fig. 2.17 shows the effect of residence time of a drug on the maximum concentration
distribution. Presented in this figure, drugs with residence time more than 20 hours reach
the maximum concentration value after 15 hours. This figure also shows that the increase
in drug residence time results in longer time in which drug has its maximum concentration.
The drug’s residence time in plasma(τ) depends on the size and shape of drug. The smaller
drugs have smaller clearance time by blood flow and consequently smaller value of τ .

The maximum Concentration gradient of drug for different residence time is shown in
Fig. 2.18. This figure illustrates that increase in residence time of drugs (τ) leads to being
more effective for a longer time, that means drugs with bigger size (bigger τ) have longer
effective time to kill cancerous cells.

The effect of different parameters on concentration distribution of drugs has been in-
vestigated. Fig. 2.19 shows the maximum normalized concentration of drug molecules for
different values of drug diffusion coefficient. As shown in this figure, increase in diffusion
coefficient causes drug molecules to diffuse easier to normal tissue and be washed away
by interstitial fluid flow and results in lower concentration but more homogenous profile
in the solid tumor. Thus, increase in diffusivity of drugs results in two opposite effects:
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Figure 2.15: Dimensionless concentration profile within the vascular network for bolus
injection of Fab drug
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Figure 2.16: Dimensionless maximum concentration of drug molecules for bolus injection
of Fab drug during 64 hours
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Figure 2.17: maximum dimensionless concentration of drug molecules for bolus injection
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Figure 2.18: maximum dimensionless concentration gradient of drug molecules for bolus
injection and different residence times during 64 hours

positive side that is homogenous distribution in solid tumors, which means drug molecules
can reach most of the cancerous cells; and its negative side, which is its high clearance rate
due to the faster diffusion towards normal tissue.

In addition to the drug properties, tumor microenvironment physical properties also
have significant effects on drug concentration distribution. Fig. 2.20 shows the effect of
tumor hydraulic conductivity on maximum drug concentration. Hydraulic conductivity
illustrates the degree of easiness of fluid to move through a porous media, here solid tumor.
If porous media is very compact flowing of fluid to pass through it is difficult, so hydraulic
conductivity would be low. Drugs and other macromolecules can be transferred through
the solid tumor easier, traveled by interstitial fluid flow, when hydraulic conductivity of
tumor tissue is higher, resulting in lower concentration in solid tumor, as demonstrated in
Fig. 2.20.

Physical properties of tumor vasculature also affect the drug distribution in solid tu-
mors. Shown in Fig. 2.21, higher vascular hydraulic conductivity (Lp) results in lower
maximum concentration of drug molecules in the solid tumor. Higher Lp, as explained in
Fig. 2.10, results in higher IFP, and consequently higher interstitial fluid flow repels drug
toward the normal tissue.

Finally, the effect of vascular permeability is displayed in Fig. 2.22. As shown in this
figure, increase in vascular permeability results in increase in drug concentration in the
solid tumor. Higher permeability leads to higher penetration of drug from vessels to the
tumor tissue and consequently higher drug concentration.
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Figure 2.19: Maximum dimensionless concentration of drug molecules for continuous in-
jection for different values of drug diffusion coefficient
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Figure 2.20: Maximum dimensionless concentration of drug molecules for continuous in-
jection and for different values of tumor tissue hydraulic conductivity
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Figure 2.21: Maximum dimensionless concentration of drug molecules for continuous in-
jection and for different values of vascular hydraulic conductivity
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Figure 2.22: Maximum dimensionless concentration of drug molecules for continuous in-
jection and for different values of vascular permeability
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Chapter 3

Effect of Microvascular Distribution
and its Density on Interstitial Fluid
Pressure and drug distribution in
Solid Tumors: A Computational
Model

3.1 Introduction

Elevated interstitial fluid pressure (IFP) in solid tumors has been recognized as one of
the main barriers to drug delivery [55, 5]. Angiogenesis, formation of neovasculature from
pre-existing vessels, forms an abnormal and leaky vascular structure in solid tumors. This
abnormal vascular accompanied by the lack of a lymphatic system leads to elevated IFP
in solid tumors [5, 6, 87, 55]. Unlike in tumor tissue, in normal tissue, the lymphatic
system acts as a sink for interstitial fluid, and the value of IFP is low, close to zero
[54, 55]. Chemotherapy, uses toxic drug macromolecules to kill cancer cells or stop their
proliferation. Drug macromolecules can be delivered to tumor sites using oral, intravenous-
bolus, or isolated-infusion methods [66, 73]. Transport of these drug macromolecules to
most cancerous cells is impeded due to the increased IFP. IFP elevation within the tumor
induces interstitial fluid flow (IFF) from the tumor center toward the tumor edge and
transports drug macromolecules and other particles produced by tumor cells toward the
tumor periphery, where they accumulate and thus unable to function as desired[8, 97]. IFF
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may promote metastasis by applying shear stress to cancerous cells and forcing them to
move toward the lymphatic system adjacent to the solid tumor [55, 77].

IFP and transport of macromolecules for an isolated solid tumor was first modeled by
Baxter and Jain [5, 6]. They assumed a spherical solid tumor with a homogenous vascular
structure located throughout the tumor tissue. They showed that IFP is maximum at
the tumor center and suddenly drops to zero at the tumor periphery, concurring with
experimental data [9]. They also studied the transport of different drugs under two methods
of delivery: continuous and bolus injection. They found that for continuous injection the
drug concentration within the tumor increases over time; however, for bolus injection,
first the interstitial concentration increases, and then decreases due to plasma clearance.
Moreover, the concentration values depend on tumor physiological parameters and drug
properties such as the molecular weight of drug macromolecules.

Unlike this model, real tumors show a heterogeneous vascular structure. This het-
erogeneity arises from angiogenesis at the tumor periphery and vessel collapse within the
tumor tissue [52, 32, 10]. Angiogenesis leads to high microvascular density (MVD) at the
tumor periphery[88, 32, 35]; whereas within the tumor, the solid stress exerted by can-
cers cells on vessel walls during tumor growth causes vessel collapse [83] and consequent
reduction of MVD.

To consider the effect of angiogenesis and vessel collapse inside solid tumors during
tumor growth, many models have been developed for vascular structure. Anderson and
Chaplain [2] developed a model for angiogenesis, in which new vessels start to grow from
a parent vessel in keeping with a certain probability calculated based on physiological
conditions such as VEGF concentration and endothelial cell density. Welter et al. [94, 95,
96] developed remodeling of vascular structure based on phenomena such as co-option of
neighboring vasculature to the tumor, tumor growth, and vessel collapse within the tumor.

In recent studies, the spatial and temporal distribution of drug macromolecules are
calculated in the presence of heterogeneous vascular structure. Welter and Rieger [97]
have studied IFP and drug delivery in a three dimensional arteriole-venous vascular net-
work with simulated angiogenesis, vessel cooperation and regression phenomena [96]. They
found that the interplay of diffusion and convection transport mechanisms in this hetero-
geneous vascular network results in heterogenous drug distribution. Very recently, Wu et
al. [100] utilized a two dimensional rectangular vascular network model, as a pre-existing
vascular network, to investigate the transport of therapeutic agents. These vascular models
are beneficial when investigating the interplay of different physiological phenomena within
the tumor during drug transportation; however, they cannot be applied to a specific pa-
tient’s tumor model, as tumor microenvironments change widely from one case to another.
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Therefore, unlike these vascular models, in this study, we use an novel approach to cal-
culate the spatiotemporal distribution of drug macromolecules within an arbitrary tumor
microenvironment.

Association between MVD and many intra-tumor incidents during tumor growth has
been revealed by many studies. Weidner [93] has found a strong correlation between
MVD and patient survival rates in many types of cancer. Other clinical studies have
compared patients with and without metastasis and found higher MVD in patients with
this secondary condition [92, 51, 42, 37, 63].

This study explores how MVD, tumor size and the location of vessels affect IFP, IFF,
and the distribution of drug macromolecules within tumor microenvironments. First, an
drawing-based model of a solid tumor microenvironment is constructed. In this model, a
solid tumor is surrounded by normal tissue, with both having a physiologically relevant
vascular structure. Then, using Darcy’s law and Starling’s equation, IFP and IFV are
calculated for different cases of tumor microenvironment. Finally, an advection-diffusion
equation is utilized to calculate tempo-spatial distribution of drug macromolecules within
different tumor models. This computational framework can be applied for a wide range of
tumor images, in which the vasculature and tumor boundary are completely recognized.

3.2 Methods

Distribution of drug macromolecules inside solid tumors depends on the tumor microen-
vironment and distribution mechanisms. Therefore, a physiologically relevant tumor mi-
croenvironment model is necessary, and then using transport phenomena equations, the
distribution of drug macromolecules over time can be calculated.

3.2.1 Vascular network modeling

When a tumor grows beyond 1 mm3, the lack of oxygen at the region far from the tumor
periphery, causes the release of certain growth factors, mainly endothelial growth factors
(VEGFs) [16, 33]. These growth factors diffuse to the tumor periphery, and by co-opting
the vessels proximal to the tumor periphery, cause neovasculature to form [46, 60]. These
formations lead to increased microvascular density (MVD) at the tumor periphery. Unlike
the vessels at a tumor’s periphery, vessels within the tumor are affected by high density of
cancer cells, which exert normal and shear stresses on the vessel walls, resulting in vessel
collapse and consequent reduced MVD within the tumor [46, 3, 96, 83].
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We have used a schematic tumor microenvironment, as shown in Fig. 3.1, to calculate
the distribution drug macromolecules within this microenvironment. This figure depicts
a typical shape for a solid tumor, surrounded by normal tissue and is assumed to be an
ideal high-resolution image in which tumor boundary and vascular locations are perfectly
detectable. Vessels within normal tissue (blue lines) have a regular structure compared to
the vessels within the tumor (red lines), which have an abnormal structure. In addition,
the heterogeneous distribution of tumor vasculature in Fig. 3.1, represents high MVD at
the tumor periphery and low MVD in the area close to the tumor center.

Figure 3.1: A typical solid tumor microenvironment surrounded by normal tissue and its
vasculature. Blue lines are vessels in normal tissue and red lines are vessels within the
tumor.

3.2.2 Transport of fluid and drug macromolecules

Drug macromolecules are distributed inside tissue thorough two different mechanisms: 1)
Diffusion: drug macromolecules travel from a high concentration area to a low one. The
diffusion flux can be calculated by Fick’s law. 2) Convection: drug macromolecules travel
with the bulk of fluid flowing within tissue. Since experimental data show fluid flow from
the center of tumors outward [5, 6, 7], both diffusion and convection should be considered
in macromolecule transport in solid tumors. To calculate the effect of convection on drug
distribution, the fluid velocity inside the tumor interstitium should be computed first.
Interstitial fluid velocity (IFV) can can be calculate using the Darcy’s law, continuity

34



equation, and Starling’s law, as introduced in Sec.2.3.1. Then, the IFV values can be used
in an advection-diffusion equation (as shown in Sec. 2.4.1) to calculate spatio-temporal
distribution of drug macromolecules.

Two major differences exist between the tumor microenvironment model presented
here and the one in Ch. 2: 1) In Ch. 2, we used a mathematical model to construct the
tumor microenvironment, but the tumor model here can come from a reconstructed high
resolution image, in which tumor and vasculature are well-defined. 2) Using a mathematical
model imposes some limitations on the shape and the structure of tumor microenvironment,
such as spherical tumor shape and square lattice vascular structure (as shown in Fig. 2.2),
whereas, here, tumors can have any arbitrary shape and size and vascular structure are
randomly distributed within tumor and surrounding normal tissue.

Here are the steps required to calculate IFP and concentration profile within an arbi-
trary tumor microenvironment:

1. Here we assume the tumor image is ideal, which means tumor boundary and vas-
culature within tumor and surrounding normal tissue are recognized and colored
differently (as shown in Fig. 3.1, tumor is yellow, normal tissue is grey, tumor vascu-
lature is red, and normal vasculature is blue). If the tumor image has a low resolution,
an extra image-processing step is required to recognize mentioned elements in it and
label them with different color.

2. Finite element method (FEM) consisting of triangle elements (as shown in Fig. 3.2)
can be applied to solve IFP and advection-diffusion equations. We use MATLAB
PDE toolbox to generate an adaptive mesh where the maximum number of triangles
is allowed to be 104. The number of triangle elements and their size change during
iterations of solving IFP and advection-diffusion equations.

3. Equivalent to image presented in Fig.3.1 is a 3-D numeric array (m×n×3) represent-
ing the RGB (Red, Green, Blue) value of each pixel of the image. To determine the
parameter values in Eq. 2.8 and Eq. 2.25, we look at the center of triangle elements
of generated mesh. If a triangle center is located on a pixel with color blue, red,
yellow, or grey, therefore equation parameters of the vessels in normal tissue, vessels
in tumor tissue, normal tissue, or tumor tissue will be applied, respectively.
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Figure 3.2: Adaptive mesh generated for the tumor model presented in Fig. 3.1.

3.3 Results

For the tumor microenvironment presented in Fig.3.1, the interstitial fluid pressure (IFP),
interstitial fluid velocity (IFV), and concentration profile for a specific drug (Fab) [5]
are calculated, and then the effects of the microvascular density (MVD), tumor size and
vascular location on IFP, IFV, and concentration profile of different tumors are investigated.

3.3.1 Interstitial fluid pressure and macromolecule transport in
a solid tumor

To calculate concentration distribution within the tumor, first, it is necessary to calculate
the to take into account the convection mechanism of drug transport in the interstitium.
The interstitial fluid pressure (IFP) and associated IFV can be calculated from Eq. 2.8
and Darcy’s law (Eq. 2.2), respectively. Fig. 3.3 presents the distribution of both the IFP
and IFV. This figure demonstrates that IFP is maximum at the region close to the tumor
center and slowly reduces toward the tumor periphery, whereas maximum IFV occurs at
the tumor periphery, and its value is almost zero at tumor center. Arrows in this figure
present the magnitude and direction of interstitial fluid flow, indicating that the interstitial
fluid flows from the tumor center toward the periphery.

Snapshots of concentration profile for the bolus injection of Fab drug over time are
presented in Fig. 3.4 (see also Video A.1). The data for Fab drug, obtained experimentally
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(a) (b)

Figure 3.3: (a) IFP and (b) IFV distribution for the tumor in Fig. 3.1. Arrows in (a) show
the direction and magnitude of interstitial fluid flow.

by Baxter et al. [6], shows the value τ = 3 hr, which means that after 3 hr post-injection
the drug concentration in plasma decreases to 37% of its initial value. Fig. 3.4 reveals
a strong correlation between vascular morphology and concentration distribution of the
drug macromolecules early post-injection. The maximum concentration occurs where the
maximum density of vessels exists, and the concentration profile correlates with the pattern
of vasculature. As this figure shows, drug concentration in the tumor interstitium increases
early post-injection but decreases thereafter when the drug concentration diminishes in the
plasma.

Shown in Fig. 3.5, the drug concentration reaches its maximum value after 5 hours and
then decays exponentially over time such that after 27 hours the maximum value of drug
concentration is below 1% of its initial concentration in plasma.

3.3.2 Effect of microvascular density on interstitial fluid pressure

Six cases of tumor microenvironment (Fig.3.6), which have the same tumor size and shape
but different MVD inside and the same vascular structure in surrounding normal tissue,
were constructed to investigate the effect of MVD on IFP, IFV, and drug macromolecule
distribution.

Fig. 3.7 shows the maximum of IFP and the average of IFP for different cases of the
tumor microenvironment presented in Fig.3.6. Fig.3.7 demonstrates that maximum values
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Figure 3.4: Concentration profile of Fab drug within tumor microenvironment presented
in Fig. 3.1 at different times.
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Figure 3.5: Dimensionless maximum concentration profile within the solid tumor over 75
hours.

(b) (a) 
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(c) 

Figure 3.6: Tumors with different MVD values. The MVD values are: (a) 0.14, (b) 0.26,
(c) 0.39, (d) 0.56, (e) 0.83, and (f) 0.99.
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Figure 3.7: Maximum and average Dimensionless IFP for tumors with the same shape and
size but different MVDs.
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Figure 3.8: Maximum and average IFV (µm/sec) for tumors with the same shape and size
but different MVDs.
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of IFP increase with increased MVD. For example, an increase in MVD from 0.2 to 0.5
enhances the maximum and average values of IFP by 50%. Similar to the IFP results,
Fig. 3.8 demonstrates that IFV also increases with increased MVD, so that an increase in
MVD from 0.2 to 0.5 leads to a 50% increase in IFV. Increased IFP and IFV associated
with IFP enhances a barrier to the delivery of chemotherapeutic agents, preventing them
from reaching most cancerous cells.

The averaged drug concentrations for different MVD values is shown in Fig. 3.9. This
figure demonstrates that increased MVD results in an increased concentration of drug
macromolecules in solid tumors. Moreover, for all cases, the concentration of macro-
molecules increases immediately post-injection, peaks after 5 hours, and then starts to
decline, and drops to almost zero after 40 hours. The rate of drug concentration decline is
not the same for all tumors, being faster in solid tumors with higher values of MVD, due
to the higher IFV.
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Figure 3.9: Average dimensionless concentration for tumors with different MVDs but the
same shape and size.
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3.3.3 Effect of tumor size with constant MVD on IFP, IFV, and
drug concentration distribution

Tumor models (Fig. 3.10) of different sizes but the same shapes and the same vascular
structures are constructed to investigate the effect of tumor size on the distribution of
drug macromolecules.

(a) (b)

(c) (d)

Figure 3.10: Different tumor sizes with the same MVD, vascular network structure, and
tumor shape.

Fig. 3.11 and Fig. 3.12 demonstrate that increasing the tumor size raises both IFP
and IFV. The average macromolecule concentration for different tumor sizes is shown in
Fig.3.13 (see also Video A.2 for spatiotemporal distributions). This figure shows that bigger
tumors with the same MVD are seen to accumulate higher values of drug macromolecules,
although they have higher IFV.
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Figure 3.11: Maximum and average dimensionless IFP for tumors with the same MVD,
vascular network structure, and tumor shape but different tumor size.
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Figure 3.12: Maximum and average IFV (µm/sec) for tumors with the same MVD, vascular
network structure, and tumor shape but different tumor size.
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Figure 3.13: Average dimensionless concentration for tumors with different tumor sizes
but the same MVDs, shape and vascular structure.

3.3.4 Effect of vascular location with constant MVD on IFP,
IFV, and distribution of drug macromolecules

To investigate the effect of vascular location on IFP, IFV, and the distribution of drug
macromolecules, three tumors with the same shape, size and MVD value, but different
vascular structures are modeled (Fig.3.14). In the first tumor, all vessel locations are close
to the tumor periphery. In the second, half of the vessels are located close to the tumor
periphery and the other half at its center. In the third, all vessels are located at the region
close to the tumor center. IFV profiles for these cases are also presented in Fig. 3.14,
demonstrating that the IFV distribution is highly correlated with the vessel locations.

Fig. 3.15 shows the average and the maximum value of IFP. Interestingly, the average
value of IFP is the same in all three cases, but the maximum value of IFP increases when
most of the vessels are located closer to the tumor center. Fig. 3.16 shows that change in
the location of the vasculature has a very small effect on the IFV within the tumor.

Fig. 3.17 shows the average value of macromolecule concentrations over time for these
three different tumor microenvironments (Video A.3 also shows the spatio-temporal dis-
tribution of macromolecule concentrations over time for these three cases). These figures
also demonstrate that although changes in IFV are negligible on average, the concentra-

44



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.14: (a)–(c)Tumors with different locations of vessels but the same MVD, tumor
size and shape, (d)–(f) show IFP , and (g)–(i) show IFV (µm/sec) distribution for each
tumor.
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Figure 3.15: Maximum and average dimensionless IFP distribution for tumors with the
same size, shape and MVD but different vessel locations.
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Figure 3.16: Maximum and average IFV (µm/sec) distribution for tumors with the same
size, shape and MVD but different vessel locations.
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tion average values change significantly. The tumor with the vasculature at the center
reaches a higher maximum value of drug concentration; however, 5 hours post-injection,
the concentration values drop faster than in the two other cases.
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Figure 3.17: Average dimensionless concentration for tumors with the same size, shape
and MVD but different vessel locations.

3.4 Discussion

Antiangiogenesis drugs decrease microvascular density (MVD) and tumor vessel pore size,
resulting in the reduction of interstitial fluid pressure (IFP) [53, 40, 82]. Since this reduction
in IFP depends on the tumor and vasculature’s physiological parameters, a quantitative
approach that can be applied to a wide range of tumor and vascular types is essential.

Here, we have developed a computational framework to calculate IFP, IFV, and spatio-
temporal distribution of macromolecules for general cases of tumor size and shape that have
a typical vascular network structure. We found that IFP within the tumor not only depends
on the MVD but also changes according to tumor size. IFP increases with increased MVD.
For a constant MVD, bigger tumors show higher values of IFP. These findings are in
agreement with recently published experimental work, in which Rofstad et al. [77] studied
the association between MVD and IFP for R-18 and T-22 human melanoma cell lines.
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They found that IFP increases nonlinearly with increased MVD. Moreover, we have used
t-test for IFP values within tumors presented in Fig. 3.14 and found that, statistically, the
location of vessels within a tumor has no significant effect on IFP on average; however, it
can change the distribution of IFP. For the case where most of the vasculature is located
at the tumor center, accumulation of fluid in the same region leads to a higher value of
IFP at that region.

Comparing IFP distribution in Fig. 3.14 for three cases shows that there is a high
correlation between the IFP distribution and the tumor vasculature distribution and that
the maximum IFP is close to the region with the highest density of vasculature. This finding
adds to the finding of the previous studies [5, 55] that have stated that the maximum IFP
occurs at the tumor center. Furthermore, the maximum interstitial pressure is 0.9 when
MVD is close to 1 (Fig. 3.7). Comparing this value with that for a spherical tumor with
homogenous vasculature [5, 55], where vessels are everywhere inside the tumor, reveals
that this difference may be a result of the effect of tumor shape on the IFP distribution
and consequently on the maximum value of IFP.

High interstitial fluid velocity (IFV) at the tumor periphery and its outward flow from
the tumor center result in drug macromolecule accumulating at the tumor periphery and
prevent them penetrating from the vessels located at the tumor periphery to the cancerous
cells far from the tumor edge. However, an IFV close to zero for regions far from the tumor
periphery shows that if there are functional vessels inside the tumor, drug macromolecules
can stay there, with no driving force to wash away them from that region. Therefore, it
is important for antiangiogenesis drugs to mostly reduce the vessels close to the tumor
periphery and leave vessels far from the tumor periphery intact.

Furthermore, We found that an increase of MVD leads to an increased accumulation of
macromolecules. This finding is in agreement with recently published experimental data,
in which Ekdawi et al. [29] found a significant positive correlation between liposome con-
centration, measured by volumetric analysis of CT data, and tumors’ MVD. Although
tumors with higher MVD present a higher accumulation of macromolecules in their inter-
stitium, they also show a faster drop in drug concentrations about 5 hours post-injection.
High MVD leads to increased IFP and associated IFV [67], resulting in faster depletion
of macromolecules from tumor microenvironments. Moreover, MVD is not the only factor
affecting the distribution of macromolecules; tumor size and vessel locations can also in-
fluence it. For the case where all vessels are located at the region close to the center of the
tumor, macromolecules accumulate at the tumor center and form higher concentrations
than occurring in the two other cases early post-injection. Despite this initially raised con-
centration, the concentration subsequently drops rapidly owing to high IFV values at the
tumor center and a high concentration gradient. In contrast, for tumors with vasculature
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at the tumor periphery, macromolecules are distributed more uniformly and stay longer
within the tumor interstitium. We also found that the distribution of macromolecules is
highly correlated with the pattern of vascular network within solid tumors; higher concen-
trations of macromolecules were found in locations with higher-density vasculature.

3.5 Conclusions

A general framework to calculate the spatio-temporal distribution of therapeutic agents and
interstitial fluid velocity (IFV) in a typical tumor microenvironment has been presented.
This framework can be applied on a high-resolution image of a specific tumor with its
vasculature to follow chemotherapy drug distribution over period of treatment.

In agreement with experimental studies, we found that an increase in microvascular
density (MVD) leads to elevation in IFP. Moreover, for a constant MVD, tumor size af-
fects IFP values, and increased tumor size results in IFP elevation. We also found that
an increase in both MVD and tumor size leads to higher drug accumulation early post-
injection, but faster depletion thereafter. Furthermore, the vessel locations within a tumor
affect the distribution of therapeutic agents. When vessels are located more uniformly,
drug distribution is also more uniform with longer residence within the tumor interstitium.
Furthermore, IFV and drug profile distribution are highly correlated with the vascular
network structure, and the maximum of IFP and drug concentration occur at the region
with the highest MVD. This observation generalizes the results of previous studies for a
solid tumor with a homogenous vascular structure, in which the maximum of IFP occurs
at the tumor center. Although the vascular morphology affects the IFP distribution within
the tumor, the average value of IFP within the tumor is constant for tumors with constant
MVD but different vessel locations. There are some limitations for this model. First, we
have neglected the interactions between drug macromolecules and cancer cells, which may
result in a higher drug accumulation within the tumor tissue. The advection-diffusion
equation can be extended to reflect the effect of drugs that have high binding rates with
cancer cells. We have also assumed constant blood pressure within the vascular network
and neglected the effect of red blood cells, both of which can have effect on IFV, and there-
fore on drug macromolecule distribution. A constant hydraulic conductivity is assumed
for tumor tissue, which can be modified for cases with heterogeneously compacted tu-
mor tissue. This study provides insights related to the administration of anti-angiogenesis
drugs that alter the MVD and vascular structure within tumor microenvironments. Our
computational framework can determine how these changes affect chemotherapy and drug
distribution within a specific solid tumor.
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Chapter 4

Determination of Optimal
Chemotherapy Dosage in Solid
Tumors

4.1 Introduction

Tumor microenvironments are heterogenous due to phenomena such as angiogenesis and
vessel collapse. Angiogenesis occurs because solid tumors in need of extra oxygen and
nutrients send chemical signals to neighboring vessels, stimulating them to form neovascu-
lature towards the tumor edge [16, 17]. In contrast to vessels in normal tissue, these new
vessels are weak, leaky, and have a dense abnormal structure. Within tumors, however, the
high proliferation of cancer cells and lack of space lead to tightly compacted environment.
This compactness applies stresses on vessels and the lymphatic system within a tumor,
resulting in their collapse [10, 83]. Leaky vasculature and the lack of lymphatic drainage
within solid tumors result in enhanced permeability and retention (EPR) [75, 54]. To take
advantage of EPR, liposomes have been widely used to encapsulate therapeutic agents
for higher efficiency in drug delivery and less toxicity to normal cells compared with con-
ventional chemotherapy [26]. Encapsulated drugs such as Doxil can penetrate from leaky
vessels into tumor tissue and stay there for a long time due to their low diffusivity [102]
and the lack of drainage. Eventually, the nanoparticles release the drugs in a controlled
way so that they can travel freely within the tumor interstitium, bind to cancer cells and
be internalized within them. The amount of drug nanoparticles that reach cancer cells
determines the efficacy of treatment; thus determining the correct drug dosage is crucial:
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too low a dosage can result in unsuccessful treatment, whereas too high a dosage can be
very toxic. Therefore, chemotherapy protocols set limits on anti-cancer drug dosages to
minimize toxicity to normal cells while maximizing the annihilation of cancer cells [20].
Chemotherapy regimens define the frequency and dosage of drugs to be delivered [57].

Using randomized clinical and pre-clinical trials to find the most effective regimen for
nanoparticle injection is costly and lengthy. Moreover, tumor physiological properties such
as vascular structure, vessel permeability and hydraulic conductivity of the interstitium,
as well as drug nanoparticle properties such as size , shape and rate of drug release, can
also affect the amount of drug that reaching cancer cells [19, 82, 67, 97, 100]. Taking into
account all of these factors when attempting to find the most effective regimen is almost
impossible in clinical and preclinical trials. However, these limitations of experimental
studies can be overcome using mathematical modeling. Several studies have defined finding
optimal regimens to be an optimal control problem [65, 64, 86, 85, 1]. They introduced
models for tumor growth and also drug toxicity and resistance, with the goal of finding
the best injection policy that minimizes the tumor burden over a specific treatment period
while satisfying the toxicity and resistance limitations. Although these models give some
insights about how different injection approaches alter the effectiveness of chemotherapy,
they do not take into account tumor microenvironment heterogeneity and the biophysical
properties of therapeutic agents.

Clinical and preclinical studies have demonstrated that the delivery of liposomes to
solid tumors occurs differently from one patient to another, even if both have the same
type of tumor, owing to high variation in the heterogeneity of tumor microenvironments
[27, 43]. Some studies have also shown that the differences in tumor microenvironments,
including in microvascular morphology and permeability, result in variations in EPR and
liposome accumulation [79, 89, 75]. Due to the crucial role of tumor microenvironments,
especially their vascular structure, recent studies have used high resolution imaging such as
photoacoustic tomography (PAT), magnetic resonance imaging (MRI), diffusion-weighted
magnetic resonance imaging (DW- MRI), and computed tomography (CT) to investigate
the effect of tumor physiological properties on different phenomena within tumors, such as
angiogenesis [91], the response of vascular structure to anti-angiogenesis therapy [30], and
changes in interstitial fluid pressure (IFP) [48, 49, 78].

In this study, we introduce a computational framework for finding the optimal regimen
for delivering injected drug nanoparticles to a specific tumor microenvironment. First, a
drawing-based approach is utilized to model the tumor microenvironment, assuming to be
an idea tumor image. This tumor model can be produced using high-resolution images of
the solid tumor under treatment taking using methods such as photo-acoustic tomography
(PAT) [91], magnetic resonance imaging (MRI), and computed tomography (CT). Then, to
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consider the effect of different tumor physiological parameters on nanoparticle transport,
we use specific transport phenomena equations: Darcy’s law and the continuity equation, to
calculate the fluid movement within the tumor interstitium; Starling’s equation, to model
the transport of drug nanoparticles across the vessel wall; and the advection-diffusion
equation, to calculate the transport of nanoparticles within the tumor tissue, and also
their bindings to cancer cell receptors and their internalization.We can then find the optimal
dosage schemes, in which drug injections happen consistently at the correctly time intervals
to maximize cancer cell eradication over a specific period of treatment, while the dosage are
limited such that the toxicity level can be tolerated by the patient. Finally, this framework
is applied to two different case studies: conventional chemotherapy and liposome drugs.

4.2 Tumor microenvironment model

In setting optimal chemotherapy protocols, drug dosages depend on the tumor microenvi-
ronment and the mechanisms of therapeutic agent transport within this microenvironment.
This section presents a physiologically relevant tumor model and uses it as the basis for a
computational framework that is able to determine the optimal amount of chemotherapy
drug to be injected at constant time intervals over a specified period of treatment.

The heterogeneous structure of the vasculature in solid tumors results from different
phenomena such as angiogenesis and vessel regression. Growing tumors send chemical sig-
nals to neighboring vasculature in normal tissue to form new vessels through which extra
oxygen and nutrients can be provided [47, 53, 32, 12]. This phenomenon, called angiogene-
sis, leads to high microvascular density (MVD) at the tumor periphery. In contrast, within
the tumor and far from the tumor edge, the high proliferation of cancer cells apply normal
stresses to the vessel walls, leading to vessel collapse [10, 83, 95], and therefore, low MVD
at the tumor center [67, 77]. Here, we have utilized a schematic tumor microenvironment
(Fig. 4.1) as an image of a tumor and its vasculature. In this figure, the vasculature is
heterogeneous and has a regular structure in normal tissue (blue lines) but irregular struc-
ture within the tumor (red lines). It also presents the MVD reduction from the tumor
periphery toward the tumor center, imitating real tumor microenvironments.

The tumor model presented in Fig. 4.1 is used as a basis to investigate the the optimal
chemotherapy regimen for two cases of chemotherapy using free drugs and chemotherapy
of drugs encapsulated in liposomes.
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Figure 4.1: A typical tumor microenvironment, including solid tumor, normal tissue and
vasculature. Vessels are blue in normal tissue and red within tumor.

4.3 Case I: Optimal regimen of conventional chemother-

apy

Transport of drug nanoparticles within tumor microenvironments includes multiple steps.
After being injected intravenously, drug nanoparticles, suspended in the blood flow, are
carried by blood vessels to the tumor site, then extravasate into the tumor interstitium by
crossing through the vessel wall. Once they are within tumor tissue, these drug nanoparti-
cles move freely due to the concentration gradient and convection by interstitial fluid flow.
They can also bind to cancer cell receptors and then be internalized within them.

4.3.1 Methods

Drug transport modeling

Each step of drug transport can be modeled mathematically. When traveling through blood
vessels, the concentration of drug nanoparticles decays due to blood clearance [5]. The
dynamic of drug concentration inside plasma can be described by the following equation:

dCp
dt

= ξ(t)− 1

τ
Cp (4.1)
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where Cp is the plasma concentration of drug nanoparticles, ξ(t) is the rate of drug
injection (M/hr) and τ corresponds to drug’s half-life in plasma. For numerical purposes,
this equation can be written as

δCp = u(t)− 1

τ
Cpδt (4.2)

where, using bolus injection, u(t) = ξ(t)δt is the amount of drug enters to plasma at the
short time interval of δt.

The transport of the drug nanoparticles within the tumor interstitium, their bindings
to cancer cell receptors, and the internalization within cancer cells can be described by
following equations [82]:

• Concentration of free drug within interstitium:

∂Cf
∂t

+∇.(uiCf ) =

{
Df∇2Cf − 1

φ
KonCeCf +KoffCb + φS for vasculature

Df∇2Cf − 1
φ
KonCeCf +KoffCb elsewhere

(4.3)

• Concentration of drug bound to cancer cell receptors:

∂Cb
∂t

=
1

φ
KonCeCf − (Koff +Kint)Cb (4.4)

• Concentration of internalized drug

∂Cint
∂t

= KintCb (4.5)

where ui is the interstitial fluid pressure, which can be calculated using equations intro-
duced in Sec. 2.3.1; Df is the diffusion coefficient of the free drug; Cf , Cb, Cint, and Ce
are the concentration of free drug, bound drug, internalized drug, and cancer cell recep-
tors, respectively; Kon, Koff , and Kint are rate constants for drug binding to cancer cell
receptors, unbinding, and internalization within cancer cells, respectively; φ is the tumor
volume fraction that can be reached by the drug nanoparticles; φS is the amount of drug
traveling across vessel walls and can be calculated using Starling’s equation [5]:

φS = LP
S

V
(PV − Pi)(1− σ)

Cpe
Pe − Cf

ePe − 1
(4.6)
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where Pe = LP (1 − σ) (PV −Pi)
P

is the Peclet number, and P (cm/sec) is the vessel perme-
ability.

Initial and boundary conditions

Initial conditions as well as boundary conditions are necessary to solve Eq.4.3, Eq.4.4, and
Eq.4.5. For the initial conditions, the concentrations are zero at the time of first injection:

(Cf , Cb, Cint)|t=0 = 0 (4.7)

The two boundary conditions for Eq.4.3 are that the free drug concentration is continuous
at the boundary of the tumor and normal tissue and that the concentration is zero at the
domain edges:

Cf |Ω− = Cf |Ω+ (4.8)

Cf |x=0,L = Cf |y=0,L = 0 (4.9)

The parameter values used in these equations are listed in Tab. 4.1.

Optimal scheduling of chemotherapy

Therapeutic agents can be delivered to patients by injection of different dosages and fre-
quencies. The goal of chemotherapy regimens is to kill as many cancer cells as possible,
with a minimum toxicity to normal cells. The fraction of surviving cells (SF ) when the
drug doxorubicin is used relates to the internalized drug concentration (Cint), which is
given by [81]:

SF = exp(−106.ω.Cint) (4.10)

where ω = 0.4938. This equation is fitted based on the experimental data for doxorubicin
[58]. The number of killed cancer cells based on Eq. 4.10 is (1 − SF ). The total time
of treatment is assumed to be T , and the bolus injections with the amount of {ui}ni=1 are
assumed to happen at n fixed times {ti}ni=1, where ∆t = ti−ti−1 , the time interval between
successive injections, is constant. Therefore, u(t) is described as

u(t) =


u1 if t = t1 = 0

u2 if t = t2
...

un if t = tn < T

(4.11)
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Table 4.1: Model parameter values used in our computation

Parameter Tissue Baseline value Reference

Lp[cm/mmHg.s] Normal 4× 10−10 calculated from [81]
Tumor 4× 10−8 calculated from [81]

K [cm2/mmHg.s] Normal 8.5× 10−9 [84]
Tumor 4.1× 10−8 [5]

S/V [cm−1] Normal 70 [74]
Tumor 200 [45]

σ Normal 0.0427 calculated from [81]
Tumor 4.6× 10−4 calculated from [81]

P [cm/s] Normal 2.1× 10−7 calculated from [81]
Tumor 3.1× 10−7 calculated from [81]

τ [hr] Plasma 15 [90]
Df [cm2/sec] 3× 10−6 [81]
Kon [M−1s−1] 1× 103 [82]
Koff [s−1] 8× 10−3 [82]
Kint [s−1] 5× 10−5 [82]
Ce [M ] 1× 10−5 [82]
φ 0.3 [82]
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Table 4.2: The value of parameters used in optimization problem

Parameter value

T [hr] 400
∆t [hr] 30
n 6
umax [M ] 1× 10−2

umaxaccum [M.hr] 7× 10−4

Some constraints can be placed on the amount of drug injected, to guarantee that the
toxicity level can be tolerated by the patient under treatment. First, the amount of drug
injected should be less than the maximum value umax

0 < u(t) < umax for all 0 < t < T (4.12)

Second, the amount of a drug delivered over the period of treatment should be less than
the maximum value umaxaccum

T∫
0

∫∫
R

C dAdt < umaxaccum (4.13)

where C = (Cf +Cb +Cint), and R is the tumor microenvironment region. Therefore, the
optimization problem is to find {ui}ni=1 values that maximize the fraction of killed cancer
cells after the period of treatment, while satisfying the toxicity constraints presented in
Eq. 4.12 and Eq. 4.13:

Maximize J(u1, . . . , un) = (1− SF (T )) (4.14)

The resulting {ui}ni=1 values are the optimal drug dosages that should be injected at the
times fixed by {ti}ni=1.

Optimization method

We found that the gradient-based and trust-region [68, 13, 61] optimization algorithms do
not converge to an optimum solution and stay around the initial guess for this optimal
regimen problem. Therefore, to have a higher chance of finding the optimal solution, we
use Genetic Algorithm (GA) [34, 22, 31], which is a heuristic optimization algorithm. GA
has been used in a wide range of applications such as water resource system designs [104],
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DNA sequencing [41], and control engineering [72, 62]. The advantage of GA is a very high
chance of finding the best optimal solution. However, its disadvantage is that it is very slow
compared with gradient-based algorithms. Global Optimization toolbox of MATLAB is
used to implement GA for our optimal regimen problem. In GA algorithm, we use default
values from the toolbox except that “the number of generations” and “population size”
are set to 100 and 20, respectively.

4.3.2 Results

Two approaches for the delivery of therapeutic agents are used here: bolus injection and
continuous infusion. To find the optimal dosages for these two approaches, we have utilized
the tumor microenvironment presented in Fig. 4.1 as the tumor under treatment. It is
assumed that the total time for the treatment (T ) is 400 hours, and that six injections
happen at constant time intervals of 30 hrs, ti = {0, 30, 60, 90, 120, 150}. To avoid toxicity,
we assume that the maximum concentration that can be injected (umax) is 0.01 M and
that the maximum total accumulated therapeutic agents (umaxaccum) is half of the accumulated
drugs when the maximum drug concentrations are applied with each injection, (1.4×10−3).
The parameters used to find the optimal dosages are listed in Tab. 4.2.

Optimal chemotherapy regimen for bolus and continuous infusion

An optimization algorithm has been utilized to find the injection dosages that maximize
the fraction of killed cancer cells, but stay in a range that satisfies the toxicity constraints
of Eq. 4.12 and Eq. 4.13. The optimized dosages when bolus injection is applied are
ui = {0.54, 0.48, 0.77, 0.15, 0.73, 0.32} × 10−2, which leads to eradication of 62% of the
cancer cells. Moreover, the optimize dosages when continuous infusion is applied are found
to be ui = {0.58, 0, 0.20, 0.64, 0.05, 0} × 10−2, leading to the same degree of eradication as
when bolus injections are applied (62%). The spatio-temporal concentration distributions
of therapeutic drugs in tumor tissue, and bound and internalized drugs, when optimal
bolus injections are applied, are shown in Fig. 4.2, Fig. 4.3, and Fig. 4.4, respectively (see
also Video A.4). It should be noted that all concentration results in this section are nor-
malized (divided by umax). Additionally, Fig. 4.5 shows how the fraction of killed cancer
cells increases over time and space. To compare the results for bolus injection and con-
tinuous infusion, the drug concentration within plasma, the average concentration of the
drug within tumor microenvironment, the bound and internalized drugs, as well as the
fraction of killed cancer cells over time are shown in Fig. 4.6. This figure demonstrates
that the average concentrations of drugs within the tumor have very similar trend to that
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Table 4.3: The optimal dosages (normalized to umax) applied for bolus injections for dif-
ferent blood half-life values of drugs

τ {u∗i }6
i=1 1− SF (T )

5 {0.98, 0.96, 0.9963, 0.90, 0.97, 0.94} 0.46
15 {0.54, 0.48, 0.77, 0.15, 0.73, 0.32} 0.62
500 {0, 0, 0.11, 0.12, 0.004, 0.001} 0.59

drug concentrations within plasma for both bolus and continuous injection. In contrast,
the average concentration for bound drugs consistently increases over time, until about 150
hours after the first injection, and then decreases. Additionally, the average concentration
for the internalized drugs and the fraction of killed cancer cells ascend over time. This
figure also reveals that despite the different injected concentrations for bolus and continu-
ous infusion, the bound and internalized drugs show quite similar trends in their average
concentration, which leads to the same efficacy.

Effect of the blood half-life of therapeutic agents on optimal regimens

The shape, size and other biophysical properties of therapeutic agents affect their distribu-
tion within tumors and their efficacy. In this section, we investigate how the blood half-life
of a drug can result in different optimal dosages and consequent distributions within a
tumor microenvironment. The strategy for finding optimal dosages is applied to cases,
each with a different blood half-life of τ = {5, 15, 500} hours. Tab. 4.3 shows the optimal
dosages and the fraction of killed cancer cells when bolus injection is used. Average concen-
trations and the fraction of killed cancer cells over time for different τ values are presented
in Fig. 4.7. This figure and the table show that the dosages near the maximum allowed
concentration (umax) are applied for the case with the lowest blood half-life, whereas, the
dosages are very small and close to zero for the case with (τ = 500). Despite the very low
injected dosages, the drug with (τ = 500) has high bound and internalized concentration
values, comparable to those values of drug with (τ = 15), and more than those of drug
with (τ = 5). Thus, the optimal dosages results in the highest efficacy for the drug with
(τ = 15) and (τ = 500). The figure also shows that the concentrations of drugs within
a tumor and bound drugs are in the same range, but are two orders of magnitude bigger
than the internalized drug concentrations.
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0 0.005 0.01 0.015

Figure 4.2: Normalized concentration profile of free drugs (C∗
f ) when optimal bolus injec-

tions are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.3: Normalized concentration profile of bound drugs (C∗
b ) when optimal bolus

injections are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.4: Normalized concentration profile of internalized drugs (C∗
int) when optimal

bolus injections are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.5: Fraction of killed cancer cells when optimal bolus injections are applied; injec-
tion times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.6: Results from optimal regimens for bolus and continuous infusion strategies: (a)
normalized drug concentration within plasma, (b) normalized drug concentration within
tumor tissue, (c) normalized concentration of bound drugs, (e) normalized concentration
of internalized drugs, and (f) fraction of killed cancer cells
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Figure 4.7: Results from optimal regimens for different τ values of drugs: (a) drug normal-
ized concentration within plasma, (b) drug normalized concentration within tumor tissue,
(c) normalized concentration of bound drugs, (d) normalized concentration of internalized
drugs, and (f) fraction of killed cancer cells
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Table 4.4: The optimal dosages (normalized to umax) applied for bolus injections for dif-
ferent drug diffusion coefficinets

Df {u∗i }6
i=1 1− SF (T )

1× 10−8 {0.90, 0.99, 0.70, 0.87, 0.38, 0.97} 1
3× 10−6 {0.54, 0.48, 0.77, 0.15, 0.73, 0.32} 0.62
1× 10−4 {0.31, 0.93, 0.02, 0.49, 0.82, 0.27} 0.07

Effect of the diffusivity of therapeutic agents on optimal regimens

One important mechanism of the movement of therapeutic agents within tumor tissue
is diffusion. Diffusivity affects the residence time of drugs within tumor tissue and con-
sequently affects the number of bound particles and the concentration of drugs inter-
nalized in cancer cells. This section investigates how different drug diffusion coefficients
change optimal dosages and drug efficacy. The optimal dosages obtained and the frac-
tion of killed cancer cells at the end of treatment for the drugs with diffusion coefficients
Df = {10−8, 3 × 10−6, 10−4} are presented in Tab. 4.4. Concentrations of drugs within
tumor, bound and internalized drugs, and also the fraction of killed cancer cells over time
are shown in Fig. 4.8. The table and figure demonstrate that there are no tangible differ-
ences between the optimal dosages obtained. However, the concentration values for the
drugs within a tumor, bound and internalized prove that the drug with the lowest diffu-
sion coefficient (Df = 10−8) has the highest drug concentration. Moreover, the drug with
the (Df = 10−8) leads to eradication of all cancer cells, while the one with the highest
diffusivity (Df = 10−8) kills only 7% of them.

Effect of binding rate of the therapeutic agents with cancer cell receptors on
the optimal regimen

The rates at which drugs bind and unbind to cancer cell receptors impact their internalized
concentration in cancer cells and consequent effectiveness. Here, we investigate the results
of changing the drug binding rate so: Kon = {10, 102, 103}. The optimal dosages and the
efficacy of drugs for these different cases are presented in Tab. 4.5. The average values
of drug concentration within plasma, tumor tissue, bound and internalized drug, and the
fraction of killed cancer cells over time are shown in Fig. 4.9. The table shows that the
increased Kon leads to a reduced dosages of injected drugs. Concentration within the
tissue has a trend similar to the concentration within plasma. However, the bound and
internalized concentrations are the highest for the the drug with the highest binding rate
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Figure 4.8: Results from optimal regimens for different diffusivity values of therapeutic
agents: (a) drug normalized concentration within plasma, (b) drug normalized concen-
tration within tumor tissue, (d) normalized concentration of bound drugs, (e) normalized
concentration of internalized drugs, and (f) fraction of killed cancer cells
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Table 4.5: The optimal dosages (normalized to umax) applied for bolus injections for dif-
ferent drug binding rates

Kon {u∗i }6
i=1 1− SF (T )

10 {0.88, 0.90, 1, 0.97, 0.95, 0.99} 0.02
102 {0.97, 0.98, 0.90, 0.99, 0.76, 0.91} 0.16
103 {0.54, 0.48, 0.77, 0.15, 0.73, 0.32} 0.62

(Kon = 103). Consequently, the drug with the highest binding rate leads to the highest
efficacy (62% of killed cancer cells at the end of treatment), while the drug with the lowest
binding rate (Kon = 10) kills only 2% of cancer cells.

4.3.3 Discussion

We have developed a method for finding the optimal dosages for therapeutic agents to be
injected either using bolus injection or continuous infusion. Previous studies on optimal
chemotherapy regimens [69, 28, 44] have examined only the effect of drug concentration
within plasma and toxicity effects, and the tumor microenvironment has been considered
as a lump, where the mixing of drug with plasma is immediate and delivery to the tumor
is instantaneous. However, the physiological properties of tumor microenvironments, such
as the hydraulic conductivity of tumors, vascular density, and morphology, impact drug
distribution with [9, 71, 97, 67], and therefore, their effects are incorporated in our study.
Moreover, drug biophysical properties such as blood half-life and their diffusivity within
tumor and normal tissue are integrated into the presented model.

We found that although the optimal dosages for bolus injection and continuous infu-
sion are quite different, they lead to the same fraction of cancer cells being eradicated.
Therefore, it can be concluded that if the tumor microenvironment and drug properties
are the same, different injection strategies (bolus or continuous) – used with optimal drug
dosages – result in the same efficacy. As demonstrated in Fig. 4.7, change in the blood
half-life of a drug alters the resulting optimal drug dosages; a higher blood half-life results
in lower drug dosages and a lower blood half-life results in higher dosages. However, this
change in drug dosages has an insignificant consequence on drug efficacy, as the fraction of
killed cancer cells increases by only 3% when drug blood half-life changes from 500 hour
to 15 hour. In contrast, Fig. 4.8 indicates that change in the diffusion coefficient of a drug
does not alter the optimal applied dosages, but does significantly affect drug efficacy; the
fraction of killed cancer cells increases from 7% to 100% when drug the diffusion coefficient
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Figure 4.9: Results from optimal regimens for different binding rates of therapeutic agents:
(a) drug normalized concentration within the plasma, (b) drug normalized concentration
within tumor tissue, (d) normalized concentration of the bound drugs, (e) normalized
concentration of the internalized drugs, and (f) fraction of killed cancer cells
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decreases from 10−4 to 10−8. Moreover, the results demonstrate that an increase in the
binding rate of drugs slightly reduces the optimal dosages, but significantly increases drug
efficacy, with the fraction of killed cancer cells increasing by 60% when Kon increases from
10 to 103. These results concur with the recent experimental study [90] showing that the
accumulation of nanoparticles within tumors only weakly depends on the blood half-life
but is highly dependent on their bindings with cancer cell receptors.

In this study, the total number of injections and the time interval between them are
fixed, however, we suspect that variable time intervals or change in the number of injections
may improve drug efficacy for the same tumor microenvironment and drug properties.
Moreover, the blood flow complexities within the vascular structure have been ignored
here; however, they can affect the distribution of drugs by changing the blood pressure and
associated interstitial fluid pressure. This model can be extended further to incorporate
these effects and also add more constraints on drug dosages to take into account other
important factors such as cancer drug resistance.

4.3.4 Conclusions

One important aspect of chemotherapy effectiveness is to inject the right dosages of ther-
apeutic agents at the right time. These right dosages maximize the eradication of cancer
cells but at toxicity levels tolerable by the patient. The distribution of drugs depends on
the physiological properties of the tumor microenvironment and drug particle properties;
thus, these factors can affect the optimum dosages that should be delivered to a specific
patient. Since taking into account most tumor microenvironments and drug properties
is not possible thorough clinical and preclinical studies, a mathematical model that in-
corporates the most effective factors can give helpful insights for designing chemotherapy
protocols. In this study, we have developed a computational procedure for finding optimal
chemotherapy dosages and personalizing them for delivery to a specific tumor. An image-
based approach has been utilized to model the tumor microenvironment. Moreover, the
physiological properties of tumor microenvironments, such as vascular permeability, tumor
hydraulic conductivity, and the morphology of vasculature, are integrated in our model.
Two approaches – bolus injection and continuous infusion – for the delivery of therapeutic
agents have been investigated. Results demonstrate that both approaches result in the
same efficacy when optimal dosages are injected. Furthermore, drug biophysical properties
such as the blood half-life, diffusivity within a tumor, and binding rate with cancer cell
receptors have also been investigated to determine their effect on treatment efficacy and
optimal dosages. We have demonstrated that even though blood half-life hugely affects
optimal dosages, it has a insignificant affect on drug efficacy; whereas the diffusivity and
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binding rate of drugs significantly impact their efficacy. This model can be extended fur-
ther to incorporate more sophisticated cases such those in which the number of injections
and the time interval between them are variable.

4.4 Case II: Optimal regimen of liposomes

Delivery of liposome drugs has one more consists of one more step than conventional
chemotherapy; first, liposomes penetrate through vessel walls and then release their encap-
sulated therapeutic agents.

4.4.1 Methods

Similar to the mathematical modeling for the transport of conventional chemotherapy
(Sec.4.3.1), liposome transport can also be modeled using transport phenomena equations.
The penetration of liposome nanoparticles from vascular walls, their transport within the
tumor, as well as the release of encapsulated therapeutic agents, their free movement,
binding, unbinding and their internalization within cancer cells can be described by the
following equations [81, 19]:

• Concentration of liposome nanoparticles within tumor microenvironment:

∂Cn
∂t

+∇.(uiCn) =

{
Dn∇2Cn −KrelCn + φS for vasculature

Dn∇2Cn −KrelCn elsewhere
(4.15)

• Concentration of free therapeutic agents:

∂Cf
∂t

+∇.(uiCf ) = Df∇2Cf + αKrelCn −
1

φ
KonCeCf +KoffCb (4.16)

• Concentration of therapeutic agents bound to cancer cell receptors:

∂Cb
∂t

=
1

φ
KonCeCf − (Koff +Kint)Cb (4.17)

• Concentration of internalized therapeutic agents:

∂Cint
∂t

= KintCb (4.18)
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Table 4.6: Parameter values employed in model equations

Parameter value Reference

Dn [cm2/sec] 7× 10−8 [81]
Krel [s−1] 1× 10−4 [81]
φ 0.08 [82]
α 20 [81]

where Dn is the diffusion coefficient of the liposome nanoparticles and therapeutic agents
(drugs); Cn is the concentration of liposome nanoparticles; Krel is the rate constant for the
release of encapsulated drugs from liposomes; and α is the number of therapeutic agents
encapsulated within each liposome nanoparticle.

Similar to the first case study, Initial and boundary conditions are needed to solve
Eq. 4.15, Eq. 4.16, Eq. 4.17, and Eq. 4.18. The concentrations are zero at time zero, just
before the first liposome injection:

(Cn, Cf , Cb, Cint)|t=0 = 0 (4.19)

The boundary conditions for Eq.4.15 and Eq.4.16 are, firstly, concentrations are continuous
at the boundary (Ω) of tumor and normal tissue, and secondly, concentrations are zero at
edges of domain :

Cn|Ω− = Cn|Ω+ and Cf |Ω− = Cf |Ω+ (4.20)

Cn|x=0,L = Cn|y=0,L = 0 and Cf |x=0,L = Cf |y=0,L = 0 (4.21)

Parameter values used in these equations are listed in Tab. 4.6.

Same optimal regimen method introduced in Sec. 4.3.1 can be applied here to find the
best dosages of liposome to be injected. The only difference is that in Eq. 4.13, C =
(Cn + Cf + Cb + Cint).

4.4.2 Results

To find the optimal dosages to be injected into the tumor microenvironment presented in
Fig. 4.1, we assume that the injections happen 6 times, at the consistent time intervals of
30 hours; therefore, ti = {0, 30, 60, 90, 120, 150}. Since the effect of a drug endures even
long after the last injection, it is assumed here that the total treatment time (T ) is 400
hours. Moreover, we have assumed that that the maximum injected liposome concentration
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Table 4.7: The parameter values used in optimization problem

Parameter value

T [hr] 400
∆t [hr] 30
n 6
umax [M ] 1
umaxaccum [M.hr] 1.8925× 10−4

(umax) is allowed to be 1 to avoid toxicity. When the liposome dosages are injected at the
maximum allowable value, the total accumulation of drug within a tumor over a period
of treatment is (3.78 × 10−4). To avoid toxicity, it is also assumed that the total drug
accumulation over the treatment period must be less than half of (3.78 × 10−4). The
summary of parameter values used in this optimization problem are listed in Tab. 4.7. It
should be noted that all concentrations presented in this section are normalized to umax,
which is the maximum liposome concentration allowed to be injected.

Optimal regimen for bolus and continuous infusion strategies

The procedure for finding the optimal regimen presented in Sec.4.3.1 is applied to two differ-
ent injection strategies: bolus and continuous infusion. The optimal dosage regimens of li-
posome nanoparticles for bolus injection were found to be ui = {0.75, 0.55, 0.63, 0.44, 0.43, 0.19},
and for continuous infusion, to be ui = {0.98, 0.12, 0, 1, 0.08, 0}. Interestingly, both bolus
and continuous infusions result in 34% killed cancer cells within the tumor, meaning that
both methods have the same efficacy when optimal drug dosages are used.

For the optimal bolus injections, the spatio-temporal concentration of the liposome
nanoparticles, plus the free, bound, and internalized drugs within tumor tissue are shown
in Fig.4.10, Fig.4.11, Fig.4.12, and Fig.4.13, respectively (see also Video A.5). The spatio-
temporal distribution of the fraction of killed cancer cells is also presented in Fig. 4.14 (see
also Video A.5).

The drug concentration within plasma over time and the average concentration val-
ues of the liposome nanoparticles, plus the free, bound and internalized drugs, as well as
the fraction of killed cancer cells for both bolus and continuous infusion are presented in
Fig. 4.15. These figures demonstrate that the concentration of liposome changes similar to
liposome concentration within plasma. Moreover, the concentration of liposome nanopar-
ticles within plasma and tumor tissue is almost zero after 200 hours from the beginning of
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Figure 4.10: Normalized concentration profile of liposome nanoparticles (C∗
n) when optimal

bolus injections are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.11: Normalized concentration profile of free drugs (C∗
f ) when optimal bolus injec-

tions are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.12: Normalized concentration profile of bound drugs (C∗
b ) when optimal bolus

injections are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.13: Normalized concentration profile of internalized drugs (C∗
int) when optimal

bolus injections are applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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Figure 4.14: The fraction of killed cancer cells (1− SF ) when optimal bolus injections are
applied; injection times (hour) are ti = {0, 30, 60, 90, 120, 150}.
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treatment. Average concentration values of liposomes (C∗
n) and free drugs (C∗

f ) follow a
similar trend; however, the free drug concentration is lower than the liposome concentra-
tion by 3 orders of magnitude. Results for bound and internalized concentration reveal that
the fluctuation of liposome concentration within plasma are completely damped within the
tumor; the bound-drug concentration rises to a maximum after about 200 hours of the first
injection, then starts to decline, whereas, the internalized concentration consistently rises.
Based on this figure, although the liposome concentrations within the plasma and tumor
differ between bolus and continuous infusions, their bound and internalized concentration
values are quite similar, resulting in the same efficacy.

Effect of blood half-life of liposome nanoparticles on optimal regimen

The biophysical properties of liposomes affect how they are distributed in plasma and tumor
tissue. Consequently, these properties may influence the dosages that should be applied for
highest efficacy. Here, we investigate how blood half-life affects the optimal dosages and the
drug efficacy when using bolus injection. The optimal dosages and the resulting fraction of
killed cancer cells obtained for different blood half-lives, τ = {5, 22, 40, 200}, are preseneted
in Tab. 4.8. The average concentration values and the fraction of killed cancer cells over
time when the the optimal dosages are applied are also shown in Fig. 4.16. The figure for
the liposome concentration within plasma (C∗

p) indicates that the optimal regimen results
in the highest injected dosages for the liposome with the lowest blood half-life (τ = 5).
Moreover, the liposome nanoparticles with the lowest blood half-life (τ = 5) show the
lowest concentration values in all forms of drugs (free, bound, internalized), despite their
highest injected concentrations. In contrast, the optimal regimen of the liposome with the
highest blood half-life (τ = 200) results in the lowest injected concentrations. However,
the concentration values associated with the liposome with (τ = 200) arise over time and
pass those of liposomes with (τ = 5). Fig. 4.16 indicates that the optimal regimen leads to
the highest concentration values within tumors for the liposomes with the blood half-life
(τ = 22) and (τ = 40). As a result, these two liposomes show the highest efficacy compared
with other cases.

Effect of diffusivity of liposome nanoparticles on optimal regimen

Another important property of liposome nanoparticles is their diffusivity within tumor
tissue. Here, we investigate how the liposome diffusion coefficient affects both treatment
efficacy and optimal chemotherapy dosages. The optimal dosages of liposome and the
fraction of killed cancer cells at the end of the treatment period for different liposome
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Figure 4.15: Results from optimal regimens for bolus and continuous infusion strategies:
(a) liposome concentration within plasma, (b) liposome concentration within tumor tissue,
(c) concentration of free drugs, (d) concentration of bound drugs, (e) concentration of
internalized drugs, and (f) fraction of killed cancer cells
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Figure 4.16: Results from optimal regimens for different τ values of liposome nanoparti-
cles: (a) liposome normalized concentration within plasma, (b) liposome normalized con-
centration within tumor tissue, (c) normalized concentration of free drugs, (d) normalized
concentration of bound drugs, (e) normalized concentration of internalized drugs, and (f)
fraction of killed cancer cells 81



Table 4.8: The optimal liposome dosages applied for bolus injections for different blood
half-life values of drugs

τ {ui}6
i=1 1− SF (T )

5 {0.98, 0.99, 0.94, 0.89, 1, 0.91} 0.16
22 {0.75, 0.55, 0.63, 0.44, 0.43, 0.19} 0.34
40 {0.006, 1, 0.004, 0, 0.55, 0.10} 0.33
200 {0.04, 0.03, 0.04, 0.02, 0.27, 0.06} 0.27

Table 4.9: The optimal liposome dosages applied for bolus injections for different liposome
diffusion coefficients

Dn {ui}6
i=1 1− SF (T )

1× 10−9 {1, 0.99, 0.96, 0.94, 0.96, 0.94} 0.55
7× 10−8 {0.75, 0.55, 0.63, 0.44, 0.43, 0.19} 0.34
1× 10−5 {0.06, 0.12, 0.59, 0.01, 0.21, 0.31} 0.003

diffusion coefficients are presented in Tab. 4.9. The average concentrations and also the
fraction of killed cancer cells over time are shown in Fig. 4.17. The plasma concentration
profile (C∗

p) implies that the optimal regimen suggests the highest injected liposome dosages
for the drug with the lowest diffusion coefficient. Moreover, liposome nanoparticles with the
highest diffusivity are found to have the lowest concentration within tumor tissue. This low
liposome concentration results in very low free, bound and internalized drug concentrations,
leading to very low efficacy; while liposome nanoparticles with (Dn = 10−9) kill more than
50% of cancer cells, those with (Dn = 10−5) eradicate less than 1%.

4.4.3 Discussion

We have introduced a computational procedure to find the optimum dosage of liposome
nanoparticles to be injected for chemotherapy purposes. Different dosage variables includ-
ing the number of injections, total treatment period, and different time intervals between
each injection, can be investigated using this methodology to find the optimal dosages.
Moreover, this method takes into account the physiological properties of tumor microen-
vironments, such as the hydraulic conductivity of tumor tissue, vascular permeability and
morphology, as well as drug nanoparticle properties, including blood half-life and diffusiv-
ity.
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Figure 4.17: Results from optimal regimens for different diffusivity values of liposome
nanoparticles: (a) liposome normalized concentration within plasma, (b) liposome nor-
malized concentration within tumor tissue, (c) normalized concentration of free drugs,
(d) normalized concentration of bound drugs, (e) normalized concentration of internalized
drugs, and (f) fraction of killed cancer cells 83



In this study, we have demonstrated that when bolus injections are applied to a tumor,
dosages are in almost in the middle of the acceptable range. In contrast, for continuous
infusion, dosages are either close to zero or close to the maximum allowed value. Addition-
ally, although optimal dosages for continuous and bolus injections are different, both lead
to the same fraction of killed cancer cells (34%) at the end of the treatment. We also found
that a drug’s biophysical properties such as the blood half-life and diffusion coefficient af-
fect both optimal dosages and the liposome efficacy. The optimal dosages are highest for
the liposome with the lowest blood half-life; liposomes with a low blood half-life clear very
fast from the plasma; therefore, higher dosages are required to ensure enough toxicity to
kill cancer cells. Although very high dosages are applied for the liposome with the lowest
blood half-life, our findings demonstrate that it has the lowest concentration within a tu-
mor. Additionally, Fig. 4.16 reveals that the increase in liposome blood half-life (τ) from
22 to 200 does not improve drug efficacy significantly, a finding that is in agreement with
the recent experimental study [90]. In contrast, changes in the diffusion coefficient of lipo-
some nanoparticles significantly affect their concentration distribution within tumors and
consequent toxicity to cancer cells (Fig. 4.17). Liposomes with lower diffusion coefficients
stay longer within a tumor, which leads to higher accumulation and also higher chance of
their binding to cancer cell receptors and internalization, whereas liposomes with higher
diffusivity move faster into surrounding normal tissue, resulting in lower accumulation and
efficacy.

In this study, the the number of injections as well as the time intervals between injections
were fixed; however, for specific dosages, changes in injection times may improve efficacy.
Moreover, increasing or decreasing the number of injections may improve the treatment
outcomes. Another limitation of this study is that we have assumed that a perfect high
resolution image is provided in which the tumor boundary and vasculature are clearly
detectable. However, in most cases, resolution of images is not high enough to detect all
capillaries. Therefore before employing the optimal algorithm presented in this study, extra
image processing steps are necessary to construct vascular architecture [59, 80]. Finally,
the complexities of blood fluid flow within the network of vasculature have been neglected
here, although these complexities can affect the transport of fluid and consequently the
transport of nanoparticles within tumors.

4.4.4 Conclusions

Many believe that the emergence of personalized treatment will shape the future of medicine.
Cancer patients differ in many factors such as tumor type and stage of progress. Even for
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the same tumor type, individuals show a variety of tumor microenvironments. One impor-
tant aspect of personalized treatment is to find the right dosages of drug to be injected at
the right times. Here, we have tried to develop a computational basis for finding optimal
liposome dosages to apply to a specific patient. This computation algorithm can be ap-
plied to a high resolution tumor image taken from the patient. Moreover, our algorithm is
personalized to incorporate physiological properties of tumor microenvironments such as
the shape and size, and vascular structure of the tumor and the compactness level of cancer
cells. Additionally, the algorithm takes into account the parameters that are related to the
liposome nanoparticles and encapsulated drugs particles. We have shown that liposome
nanoparticle properties such as diffusivity can have a significant impact on drug effective-
ness, whereas nanoparticle blood half-life had a negligible effect. Moreover, our findings
show that although different injection strategies result in different liposome dosages, these
strategies lead to an identical efficacy when drugs are applied in their optimal dosages.
Drug toxicity is integrated into our model, but some other important aspects of treatment
such as cancer drug resistance, which some believe to be related to the drug dosage, are
not included. To develop a more-precise model, the complexity of blood flow in tumor
vascular networks can also be incorporated.
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Chapter 5

Summary and Future Works

5.1 Summary

An idealized image-based approach was introduced in this study to investigate the transport
of therapeutic agents and the effect of tumor microenvironment physiological properties
on fluid flow and drug delivery. We also introduced an approach for finding the optimal
dosages of liposome nanoparticles and determining the effect of nanoparticle properties on
the optimal dosages.

In Ch. 2, we introduced the computational framework for modeling tumor microenvi-
ronments, including their vascular network, fluid flow and macromolecule transportation.
Simulation results prove that three factors affect drug distribution in solid tumors: the bio-
physical properties of drugs, and physiological properties of both the tumor tissue and vas-
culature. To investigate the interplay of these factors during transport of drug molecules,
a tumor and its neighbouring tissue, including the vascular network were modelled, and
then fluid flow equations and mass transport equations were derived and simulated. The
tumor microenvironment was modelled by incorporating different physiological features
such as tumor growth over time, angiogenesis at the tumor periphery, collapse of vessels
inside the tumor and vessel dilation. The resulting vascular network reproduces impor-
tant features of the tumor microenvironment, observed in experimental studies: a regular
network in neighbouring normal tissue, an irregular network in the solid tumor, a high
density of vasculature at the tumor periphery, and a few thick vessels inside the solid
tumor. Experimental studies show that the elevated Interstitial Fluid Pressure (IFP) is
the main barrier to drug delivery and causes a heterogenous distribution of drugs. To
address the effect of IFP on drug delivery, numerical simulation of the fluid flow in a solid
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tumor surrounded by normal tissue was implemented. This simulation demonstrated that
the maximum IFP is at the maximum microvascular density inside the tumor. Analyzing
parameters of transport equations have proven that the physiological properties of the tu-
mor tissue and vasculature significantly affect IFP. Higher hydraulic conductivity of tumor
tissue leads to lower IFP and consequently better drug transportation in tumor tissue.
Furthermore, the advection-diffusion equation coupled with a continuity equation, Darcy’s
law, and Starling’s equation were simulated to discover the transportation mechanisms of
drug molecules. Two case studies were implemented, drug continuous injection and one
time injection (bolus injection). Numerical simulation proved a heterogeneous distribution
of drug concentration due to the IFP and heterogeneous vascular structure. This simula-
tion also shows a strong correlation between vascular morphology and drug concentration
profile. Furthermore, results demonstrate that the drug residence time, arising from the
shape and size of the drug, changes drug effectiveness in killing cancer cells. A higher
residence time of drug molecules results in a smaller clearance time by the blood flow, and
consequently higher effectiveness against cancer cells. In addition to drug properties, the
effects of physiological properties of tumor tissue and vasculature on drug concentration
distribution were investigated.

In Ch.3, we have further extended the method presented in Ch.2, to calculate IFP and
drug delivery within an image of a tumor microenvironment model. The IFP in a very
general tumor microenvironment surrounded by normal tissue was calculated in Ch.3. We
found that an increase in microvascular density (MVD) leads to elevated IFP, a result
in agreement with experimental studies. For a constant MVD, tumor size affects IFP
values, and increased tumor size results in IFP elevation. Furthermore, IFP distribution
is correlated with the vascular network structure, and the maximum of IFP occurs at the
region with the highest MVD. This observation generalizes the results of previous studies
for a solid tumor with a homogenous vascular structure, in which the maximum IFP occurs
at the tumor center. Although the vascular morphology affects the IFP distribution within
the tumor, the average value of IFP within the tumor is constant for tumors with constant
MVD but different vessel locations. We have also introduced a general framework for
calculating the spatio-temporal distribution of therapeutic agents in an ideal tumor image
model, which can come from a high resolution image. We found a high correlation between
the early post-injection concentration profile of drugs and vascular structure. Furthermore,
the effect of MVD, tumor size, and vascular location on drug distribution were investigated.
High MVD and bigger tumor size were found to increase drug accumulation within the
tumor a few hours after injection but result in fast depletion afterwards, when compared
with tumors with smaller size or low MVD. Additionally, tumors with more uniformly
distributed vessels were found to have more uniformly distributed drugs. Moreover drug
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particles stay longer within the interstitium of those tumors.

To find the right drug dosages to apply to a specific patient at the right time, an op-
timal chemotherapy regimen procedure was developed in Ch. 4. The goal was to find a
series of drug dosages that maximize the fraction of killed cancer cells while not exceed-
ing a toxicity level acceptable to the patient under treatment. The model developed in
this chapter incorporates the physiological properties of tumor microenvironment as well
as drug biophysical properties. Two injection strategies, bolus injection and continuous
infusion, were investigated. We found that although the optimal procedure results in com-
pletely different dosages for these injection strategies, both lead to the same efficacy at the
end of treatment. Investigation of liposome and drug biophysical properties proved that
the blood half-life of drugs changes the optimal dosages drastically, however, change in
their efficacy was insignificant at the end of treatment. In contrast, the diffusivity of drug
and liposome nanoparticles as well as the binding rate of drugs with cancer cell receptors
significantly affect treatment efficacy; increased drug binding rate for drugs and decreased
diffusivity of drugs and liposomes substantially increase efficacy.

5.2 Limitations

Although our computational framework can be applied to a wide range of tumors, several
assumptions were made to simplify the problem. The limitation of the methods presented
in this work are:

• In all presented models, tumor microenvironment is considered as a 2-D model, while
real tumors are 3-D.

• Blood fluid in vasculature is assumed Newtonian, however, the presence of red blood
cells makes blood fluid non-Newtonian

• Tumor image is assumed to be ideal, which means the tumor boundary and vascular
network are completely detectable. In real images, however, often capillaries cannot
be detected very well.

• The blood pressure within tumor image models is considered to be constant. Al-
though, in real tumors, the fluctuation of blood fluid and the random pattern of
vascular network result in a very complex blood pressure distribution.
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5.3 Future work

The main goal of future study of this research is to extend the optimal drug regimen
algorithm to incorporate more complex case studies and also extend the idealized image-
based tumor model to cover the following gaps in the literature:

• Image-based algorithms used in this study were based on the assumption that a per-
fect image of a tumor and its microenvironment is available. Although the direction
of new imaging techniques makes this assumption true for the near future, most avail-
able tumor images are not of high enough resolution to clearly present capillaries and
tiny vasculature. Therefore, it is necessary to develop an algorithm that can recon-
struct vascular structures. This algorithm should be able to recognize vessels and
their connections to other vessels. Furthermore, it should predict the most probable
missing vessels and the whole vascular architecture in 2D and 3D.

• More complexity of the tumor microenvironment can be investigated in future studies.
Changes in blood vessel diameters along the vascular network, the effect of blood
rheology and red blood cells on interstitial fluid pressure (IFP) and on drug delivery,
changes in blood viscosity, and fluctuation of blood flow within vascular network can
be further investigated. Additionally, a model can be built to merge these phenomena
with a real image to accurately predict the transport of drug nanoparticles within a
solid tumor.

• The optimal chemotherapy regimen algorithm presented in this study can be further
extended to integrate the following complexities:

– Being able to vary the time interval between injections may improve the chemother-
apy outcome. The algorithm can be extended to include the injection times and
number of injections as decision variables, to find the best timings and dosages
to maximize drug efficacy

– Drug resistance is one of the crucial problems in drug delivery, and many believe
that it might be related to drug concentration and time of exposure. A model for
cancer drug resistance can be incorporated in the presented optimal algorithm
to determine the most efficient drug regimens.

– A combination of drugs is usually used for chemotherapy, these may have dif-
ferent toxicities, with different limitations. Our algorithm can be extended to
take into account situations where multiple drugs are presented to a patient.
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• A tumor microenvironment has a multiscale nature, and a genotype of solid tu-
mors affects cell-signalling of cancerous cells, and conversely, cell-signalling dictates
special features in the tumor microenvironment. IFP as a macroscopic phenomena
may change the signalling of cells through the shear and normal stresses exerting
on cancerous cells. A multiscale model that incorporates cellular interactions and
macroscopic features such as elevated IFP can be developed.

• Anti-angiogenesis drugs block VEGF factors secreted by tumor cells and consequently
change the vascular structure of the solid tumors over time. One strategy for treat-
ing cancer patients is to use the combination of chemotherapy and anti-angiogenesis
drugs. A dynamic model can be constructed to incorporate the remodeling of the
vascular network when exposed to anti-angiogenesis drugs and also the transport
of therapeutic agents within this dynamic microenvironment. This model can help
to provide a better understanding of anti-angiogenesis effects and to help a bet-
ter decision-making about the optimal timings and dosages of anti-angiogenesis and
therapeutic drugs.
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Appendix A

Videos from Simulation Results

This chapter includes videos showing the spatio-temporal distributions of drugs for different
tumor microenvironments presented in this document 1.

Video A.1: This video shows the distribution of drug macromolecules over 72 hours (cor-
responds to Fig. 3.1 and Fig. 3.4).

1Note: To play these videos, this document must be opened by Adobe Acrobat on a computer with
installed Adobe Flash Player.
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(a) (b)

(c) (d)

Video A.2: These videos show the concentration distribution of drug macromolecules for
tumors with different sizes (correspond to Fig. 3.10 and Fig. 3.13)
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(a) (b)

(c)

Video A.3: These videos show the concentration distribution of drug macromolecules for
tumors with different vessel locations (correspond to Fig. 3.14 and Fig. 3.17)
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(a) (b)

(c) (d)

Video A.4: These videos show the spatio-temporal normalized concentration distribution
of (a) free drugs, (b) bound drugs, and (c) internalized drugs, as well as (d) fraction of
killed cancer cells (correspond to Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5).
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(a) (b)

(c) (d)

(e)

Video A.5: These videos show the spatio-temporal normalized concentration distribution
of (a) liposome nanoparticles, (b) free drugs, (c) bound drugs, and (d) internalized drugs,
as well as (e) fraction of killed cancer cells. (correspond to Fig. 4.10, Fig. 4.11, Fig. 4.12,
Fig. 4.13, and Fig. 4.14) 96
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