
Integrating Semantically
Configurable State-machine Models
in a C Programming Environment

by

Zhaoyi Luo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Zhaoyi Luo 2015

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Model-driven engineering is a popular software-development methodology, which re-
quires suitable domain-specific modelling languages (DSLs) to create models. A DSL
requires flexible semantics depending on the domain knowledge. Among DSLs, Big-Step
Modelling Languages (BSML) is a family of state-machine modelling languages that vary
semantically. In BSML, a model can respond to an environmental input with a big-step
which comprises a sequence of small-steps, each of which represents the execution of a set
of transitions. The semantics of BSMLs are decomposed into mostly orthogonal semantic
aspects with a wide range of semantic options. With configurable semantics, the mod-
eller is able to choose the proper option for each semantic aspect, thus to fulfil their per
domain/model semantic requirements.

In this thesis we present BSML-mbeddr, a state-machine modelling language with hi-
erarchical states, concurrent regions and configurable semantics, which has implemented a
large subset of BSML within the mbeddr C programming language environment. mbeddr
is a DSL workbench which provides a tool suite that supports the incremental construction
of modular DSLs on top of C, together with a set of predefined DSLs. By implementing on
mbeddr, BSML-mbeddr is integrated into mbeddr-C that supports programs made with
heterogeneous languages, including a combination of programming language and modelling
language.

iii

Acknowledgements

For the past years as a graduate student, Professor Joanne M. Atlee has been all I could
have asked for as a supervisor. She kindly gave me all the support I could have probably
asked. I would like to thank my thesis readers, Nancy and Krzysztof to spend time reading
my thesis and giving me very constructive feedback. Lastly, I would like to thank all the
people who made this thesis possible.

iv

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Contributions . 4

1.2 Organization . 5

2 Background on mbeddr 6

2.1 Language Workbench and Projectional Editor 6

2.2 MPS . 7

2.2.1 Structure . 8

2.2.2 Constraint . 9

2.2.3 Behaviour . 9

2.2.4 Type System . 10

2.2.5 Editor . 10

2.2.6 Generator . 11

2.3 mbeddr . 12

3 Background on BSML 13

3.1 BSML Syntax . 13

v

3.2 BSML Semantics . 14

3.2.1 Execution Semantics . 14

3.2.2 Big-step Maximality . 16

3.2.3 Concurrency and Consistency . 17

3.2.4 Event Lifeline . 20

3.2.5 Enabledness Memory Protocol . 23

3.2.6 Assignment Memory Protocol . 25

3.2.7 Order of Small-steps . 26

3.2.8 Priority . 27

3.2.9 Combo-step Maximality . 28

4 BSML-mbeddr 30

4.1 BSML-mbeddr Syntax . 30

4.1.1 Example-based Demonstration . 30

4.1.2 State-machine Elements in BSML-mbeddr 31

4.1.3 Language Features . 33

4.1.4 Interaction with Environment . 35

4.1.5 State-Region Hierarchy . 36

4.2 BSML-mbeddr Semantics . 37

4.2.1 Implemented Semantic Options . 37

4.2.2 Priority . 40

4.2.3 Modified Execution Semantics . 41

4.2.4 Present in Same and Negation of Triggers 45

4.2.5 External Event . 45

4.2.6 Granularity of Semantic Configuration 46

vi

5 Implementation 47

5.1 Syntax Implementation . 47

5.1.1 Interface Concepts . 47

5.1.2 Concrete Concepts . 49

5.1.3 Other Language Aspects . 52

5.2 Semantics Implementation . 53

5.2.1 Code Layout . 53

5.2.2 Template-based Generator . 55

6 Validation 57

6.1 Correctness . 57

6.2 Expressiveness . 58

6.2.1 Ground Traffic Control . 59

6.2.2 Dialler System . 64

6.2.3 State-Machine Factory . 67

7 Discussions 69

7.1 Designing Data Structure of Generated Code 69

7.2 Evolving Semantic Configuration . 71

7.3 Computational Complexity . 71

7.4 Language Usability . 72

7.5 Semantics of Added Language Features . 72

7.6 Event with Multiple Instances . 73

7.7 Big-step Semantics . 74

8 Related Work 76

8.1 Semantically Configurable Code Generator 76

8.2 Code-model Co-development . 77

vii

9 Conclusion 79

APPENDICES 81

A Implementation: Editor, Constraint, Type System and Behaviour 82

A.1 Editor . 82

A.2 Constraint . 83

A.3 Type System . 85

A.4 Behaviour . 86

B Implementation: Template-based Generator 88

B.1 Mapping configuration . 88

B.2 weave Common . 91

B.3 weave StateMachine . 91

B.4 reduce StateMachine . 93

B.5 reduce Region . 96

B.6 reduce Transition . 98

B.7 Miscellaneous . 98

References 103

viii

List of Tables

3.1 Big-step Maximality Semantic Options [7] 17

3.2 Concurrency and Consistency Semantic Options [7] 18

3.3 Event Lifeline Semantic Options [7] . 21

3.4 External Input/Output Event Semantic Options [7] 22

3.5 Interface Event Semantic Options [7] . 23

3.6 GC Memory Protocol Semantic Options [7] 24

3.7 Interface Variable in GC Semantic Options [7] 25

3.8 Order of Small-steps Semantic Options [7] 26

3.9 Priority Semantic Options [7] . 27

3.10 Combo-step Maximality Semantic Options [7] 29

4.1 BSML Semantic Aspects/Options. Semantic options implemented in BSML-
mbeddr are indicated with check marks. 39

8.1 Comparison between BSML-mbeddr and mbeddr.statemachine 78

ix

List of Figures

2.1 Illustration of how a projectional editor works compared to a traditional
parser. 6

2.2 MPS Structure . 8

2.3 MPS Constraint . 9

2.4 MPS Behaviour . 10

2.5 MPS Typesystem . 10

2.6 MPS Editor . 11

2.7 MPS Generator . 11

3.1 Process of a BSML Big Step [7]. The name of the associated semantic aspect
of each stage is shown in a parenthetical clause. 15

3.2 Preemption Example. t interrupts t′ in both cases. 19

3.3 Example of assigning priority by Negation of Triggers. 28

4.1 Illustration of an example model and its corresponding state hierarchy. . . 31

4.2 Code for Example Model and Environment 32

4.3 Illustration of Hierarchical Priority. 41

4.4 Comparison of flowgraph of BSML and BSML-mbeddr. 42

4.5 Example model demonstrating unintended behaviour when options Present
in Same and Negation of Triggers are selected together. 45

5.1 BSML-mbeddr Interface Hierarchy. mbeddr’s built-in concepts are high-
lighted in color. 48

x

5.2 Example Behaviours of Interface Concepts 49

5.3 BSML Syntax. mbeddr’s built-in concepts are highlighted in color. 50

5.4 Structure Example, Transition. 51

5.5 Example of Structural Code Layout . 53

5.6 Example of Behavioural Code Layout . 55

6.1 GTC Case Study [26] . 59

6.2 GTC Models . 61

6.3 GTC Testing Environment . 63

6.4 Model and Semantic Configuration of the Dialler System 65

6.5 Dialler Code . 66

6.6 State-Machine Factory Model . 67

6.7 State-Machine Factory Code . 68

7.1 Information Flow during Code Generation and Run-time Execution. 70

A.1 Editor Example. 83

A.2 Constraint Example. 84

A.3 TypeSystem Example. 85

A.4 Behaviour Example, mbeddr.ICallLike. By implementing this interface,
benefits such as argument type checking are gained for EventCall and SM-
GenEvent. 87

B.1 Mapping Configuration . 89

B.2 Mapping Configuration (continue) . 90

B.3 weave Common . 92

B.4 weave Common (continue) . 93

B.5 weave StateMachine . 94

B.6 weave StateMachine (continue) . 95

B.7 weave StateMachine (continue) . 96

xi

B.8 reduce StateMachine . 97

B.9 reduce Region . 98

B.10 reduce Transition . 99

B.11 reduce EventCall . 101

B.12 reduce SMStart . 101

B.13 reduce SMTrigger . 102

B.14 reduce SMTerminate . 102

xii

Chapter 1

Introduction

Model-driven engineering (MDE) is a popular software-development methodology which
requires suitable domain-specific languages (DSL) to create models. A DSL is a language
dedicated to a specific domain, which allows domain experts to build models efficiently
based on their domain knowledge and without concerning the underlying implementation
details [27]. Unlike a general-purpose language (GPL), a DSL requires a domain-specific
syntax and semantics since each domain has its own vocabulary and language for descrip-
tion and definition.

Among DSLs, state-machine modelling languages are widely applied to interactive and
reactive systems in various domains, such as network protocols, and control systems of
vehicles, elevators, and medical devices. However, modellers cannot agree on a single
semantics for the state-machine modelling language – there is ample evidence that suggests
the modellers want to use a wider set of notations and semantics [26]. Moreover, depending
on the characteristics of the domain, it can be significantly more concise and understandable
to model some behaviours in one semantics than in another [9]. Thus, modellers need to
be able to choose language features, especially semantic features on a domain-by-domain
or model-by-model basis.

Big-Step Modelling Languages (BSML [8]) is a family of state-machine modelling lan-
guages (UML StateMachines [24], Argos [21], Statecharts [17], Stateflow [6], etc.) that
vary semantically. In BSML, a model responds to an environmental input with a big-step,
which comprises a sequence of small-steps, each of which represents the execution of a
set of transitions. At the end of a big-step, the output of the model is delivered to its
environment. In the previous work of Esmaeilsabzali and Day [9], the variations of BSML
semantics have been systematically decomposed into several high-level, mostly orthogo-

1

nal aspects, each of which offers multiple semantic options. As a typical example of a
semantic aspect, Event Lifeline denotes how long a generated event shall be present in the
state-machine execution, to trigger other transitions. If option Present in Remainder
is chosen, the generated event shall be present during the rest of the big-step. Whereas if
option Present in Next is chosen, the generated event shall be present only during the
next small-step. By configuring semantic aspects with predefined options, the combination
of options can create a large design space of BSML semantics that covers a wide range of
domain-specific requirements. Under the framework of BSML1, we have developed BSML-
mbeddr, an implementation of BSML with configurable semantics, allowing the modeller to
choose the proper option for each semantic aspect and fulfil their per-domain or per-model
semantic requirements2.

Our work is built on MPS and mbeddr. The Meta Programming System (MPS) is
a projectional language workbench which provides a suite of language tools that support
efficient definition, extension and use of DSLs [25]. In MPS, languages to be created
are decomposed into various language aspects3 including structure, editor, constraint,
type system, generator as well as other aspects for supporting sophisticated IDE function-
ality. By defining the generator of a DSL, the DSL can be transformed into lower-level
DSLs with Java as the lowest-level DSL (i.e., the base language) in MPS, that generates
plain-text Java code.

mbeddr [35] provides C (mbeddr-C) as another base language on MPS. mbeddr pro-
vides a tool suite that supports the incremental construction of modular DSLs on top of
C, together with a set of predefined DSLs. mbeddr allows us to write programs with a
combination of low-level C code (e.g., embedded software) as well as high-level abstrac-
tions (e.g., coordination code or safety-kernel) in heterogeneous languages. For example,
the control system of an elevator is an embedded system normally developed in a low-level
language such as C, which requires tedious conditional checking that is both error-prone
and non-intuitive. For safety reasons, parts of the code might need to be model checked,
requiring significant work for programmer to abstract the code into an model suitable for
model checking. With mbeddr, the programmer is able to write normal C code mixed with
interoperable state-machine models. The mbeddr program (mbeddr-C and state-machine

1In the rest of the thesis, we use “BSML” to indicate the family of semantically deconstructed state-
machine modelling languages, with various semantic aspects and options.

2In BSML-mbeddr, a semantic configuration is associated to a mbeddr program, which may contain
the definition and usage of multiple state-machine types, whose execution semantics follow the same
semantic configuration. Details are discussed in Section 4.2.6.

3Please distinguish between semantic aspects and language aspects: semantic aspects in BSML are the
semantic variation points that result from the semantic deconstruction of BSML; language aspects in MPS
describe different language constructs of a language to be created.

2

model) can be transformed into plain-text C code for execution, whereas the state-machine
model can be transformed into NuSMV for verification [28]. mbeddr provides support for
basic state-machine models that have simple execution semantics, whereas BSML-mbeddr
extends mbeddr to support a large subset of the BSML family, including state machines
with hierarchical states, concurrent regions, and configurable semantics.

Our choice of the language (BSML) and platform (mbeddr) results in several advantages
for our work:

• By implementing within mbeddr, BSML-mbeddr allows creating programs
with a combination of code and model, which may interact with each
other. A DSL built with traditional compiler technologies supports only the defined
high-level domain-specific notation. Whereas with BSML-mbeddr, the modeller can
define high-level state-machine models surrounded by interoperable mbeddr-C code
which can, for example, send environmental inputs to the state-machines.

• With mbeddr, DSLs are highly extensible and modular so that the lan-
guage creator can easily evolve the language or build corresponding tools
for analysis. DSLs in mbeddr/MPS are divided into mostly orthogonal language
aspects. For example, the editor aspect (concrete syntax) can be changed without
changing the structure aspect (abstract syntax). We can easily change the concrete
representation for the logical and operator from ”&” to ”&&”, or change the con-
crete representations of binary operations from infix style to prefix style; multiple
generators can be created for the same source language, to generate various target
languages, without modifying aspects other than the generator. DSLs in mbed-
dr/MPS can be created as language modules or extensions, and analysis tools can be
built based on the shared language module, which are accessible in all the languages
that reuse the shared module.

• Configurable semantics of BSML allow the modeller to choose suitable
semantic options. As we discussed earlier, configurable semantics is critical for
BSML-mbeddr. It has been observed that modellers may abandon an existing mod-
elling language and create their own simply because the existing language does not
fit their semantic requirements [26]. BSML-mbeddr allows the modeller to config-
ure the execution semantics of their models to fulfil their per-domain or per-model
requirements.

• BSML-mbeddr supports sophisticated state-machine constructs that are
available in real-world notations used by professionals. Specifically, BSML-
mbeddr supports language features such as hierarchical states, concurrent regions,

3

event binding, static variables, entry blocks, cross-hierarchy transitions, which make
the language more usable and make it easier for the modeller to construct real-world
state-machine models.

Thesis Statement:

It is feasible to integrate multiple kinds of state-machine models into a pro-
gramming environment, thereby creating a programming environment where
a developer can create a program that intermixes C code with the developer’s
choice of state-machine models. A state-machine type can be semantically
configurable so that it may exhibit various behaviour semantics through easy-
to-change semantic parameters. It is feasible to support the evolution of the
semantic configuration, where the modeller is allowed to select and change se-
mantic options, thereby changing the execution semantics of a state-machine
model. State-machine models with sophisticated language features, along with
the configurable semantics, can be transformed into a low-level programming
language such as C for execution.

1.1 Contributions

The contributions of this thesis are as follows:

• We have built BSML-mbeddr, a proof-of-concept implementation of BSML within
mbeddr. BSML-mbeddr supports powerful state-machine modelling features includ-
ing hierarchical states, concurrent regions and configurable semantics. To the best of
our knowledge, this is the first attempt that validates that the semantically decon-
structed BSML is implementable.

• Our work is a non-trivial extension of the mbeddr eco-system that allows one to
create sophisticated state-machine models within mbeddr. We have shown that it
is feasible to seamlessly integrate state-machine models with configurable semantics
into a low-level C programming environment.

• We have evaluated the expressiveness of BSML-mbeddr by conducting several case
studies. Each case study exercises one or more features of BSML-mbeddr, including:
1) the big-step semantics; 2) hierarchical states and cross-hierarchy transitions; 3)
concurrent regions and inter-region communication; 4) configurable semantics; 5)
code-model integration and interaction.

4

1.2 Organization

The rest of the thesis is organized as follows. Chapter 2 introduces background knowledge
on MPS and mbeddr. Chapter 3 introduces background knowledge on BSML. Chapter 4
illustrates the syntax and semantics of BSML-mbeddr. Chapter 5 describes the implemen-
tation and code generation of BSML-mbeddr. Chapter 6 describes how BSML-mbeddr has
been tested and evaluated, including case studies that validates the big-step semantics,
hierarchical states, concurrent regions, configurable semantics and code-model interaction
of BSML-mbeddr. Chapter 7 discusses the challenges we encountered during the imple-
mentation. Chapter 8 summarizes related work and Chapter 9 concludes the thesis.

5

Chapter 2

Background on mbeddr

In this chapter, we provide a light overview of the background knowledge on mbeddr, the
language workbench within which we implement BSML. Readers who are interested in
more details about mbeddr may look at the mbeddr user guide [22].

2.1 Language Workbench and Projectional Editor

A language workbench is a platform and tool suite for efficient creation, composition,
evolution and use of DSLs [33]. With the help of a language workbench, new DSLs and
accompanying analysis tools can be created with a high degree of language modularization,
reusability and reduction of redundant work. Without understanding the underlying imple-
mentation details, the language creator can simply wield the tools provided by the language

(a) Parser-based approach (b) Projectional editor approach

Figure 2.1: Illustration of how a projectional editor works compared to a traditional parser.

6

workbench to describe the DSLs to be built. According to Martin Fowler [14], a DSL is
defined in a language workbench in three main parts: schema, editor and generator. The
schema defines the abstract syntax of the language. The abstract syntax of a model that
obeys the schema is persisted, often using XML or a database [34]. The editor defines how
the schema (abstract syntax) shall be projected to graphical or textual representations for
visualization (concrete syntax). The generator resembles the code-generation phase of a
traditional compiler – it transforms the abstract syntax into low-level textual code.

The mechanism described above is known as projectional editing. The most important
characteristic of a projectional editor is that the editor (concrete syntax) is separated and
derived from the schema (abstract syntax). In a traditional compiler (Figure 2.1a), a
program’s concrete syntax is retrieved from the source code and is parsed into an abstract
syntax; parsing is followed by code generation. In contrast, no textual code or concrete
syntax is stored for a projectional editor – when the user types, the abstract syntax of
the model is created and stored; the abstract syntax is projected to user-readable concrete
representations (Figure 2.1b). There are several advantages to projectional editing [34]:
a) no grammar or parser is used, which releases the language syntax from the limitations of
a parser (e.g., the limitation that a LR(1) parser can only parse a syntax with unambiguous,
context-free grammars); b) the model can be mapped to graphical, as well as textual
representations. This makes the visualization more flexible and intuitive, especially for
mathematical formulas; c) code auto-completion, error checking and syntax highlighting
is provided by defining the editor aspect. This is automatically done by the language
workbench (IDE) without input from the language creator; d) since projectional editing
separates the concrete syntax from the abstract syntax, it eases evolution of the editor,
and enables the construction of multiple projections without any changes to the abstract
syntax of the model.

One main challenge to projectional editing is to simulate textual editing. When us-
ing a projectional editor, the user cannot modify the visualized model in arbitrary ways
since arbitrary changes may introduces incomplete or inconsistent information. When the
user performs mouse and keyboard operations on the model, the IDE will “guess” the
user’s purpose and make valid changes to the abstract syntax of the model, which requires
understanding users’ interaction patterns with textual code.

2.2 MPS

JetBrains MPS [25] is an open-source language workbench based on projectional editing,
providing a suite of language tools that support efficient definition, extension and use of

7

Figure 2.2: MPS Structure

DSLs. Following Martin’s definition of a language workbench, MPS divides the definition of
a DSL into structure (schema), editor and generator aspects. In addition, MPS provides
language aspects such as constraint, type system, behaviour, as well as other aspects for
supporting sophisticated IDE functionality such as intention and action. MPS provides
language tools for the language creator to define each aspect of a DSL; these aspects are
described in greater detail in the following subsections.

2.2.1 Structure

The first step to creating a new DSL is to define its abstract syntax, which is done by
defining concepts that act as types of nodes in the abstract syntax tree. Concepts can be
defined hierarchically, similarly to Java’s class hierarchy; there are interface concepts and
abstract concepts that resemble Java’s interfaces and abstract classes. In this way, the
abstract syntax can evolve and be extended with no invasive changes made to existing lan-
guage concepts [34]. As an example, Figure 2.2 shows the structure of the FunctionCall1

concept. The FunctionCall concept extends the Expression concept and implements
several interface concepts. It contains zero-to-many Expression concepts which are the
actual arguments of the call. It contains a reference to a FunctionSignature node which
is the function declaration. In addition, a concept can have properties with types such as
string (e.g., denoting the name of a variable) or boolean (e.g., denoting whether a variable
is declared as static).

1In the rest of the thesis, we make the names of concepts in bold to ease the presentation.

8

Figure 2.3: MPS Constraint

2.2.2 Constraint

The constraint aspect imposes constraints on relationships between nodes – we can pre-
scribe whether a given node can be a child/parent/ancestor of the current node, and add
constraints on node properties or the search scope of a reference node. Figure 2.3 shows
the constraint aspect of FunctionCall, in which the search scope of the reference node
function is defined to be all visible FunctionSignature nodes under the scope of the
nearest enclosing IVisibleElementProvider node.

2.2.3 Behaviour

The behaviour aspect, which is analogous to Java methods, defines methods that re-
trieve meaningful information from a node. Abstract methods without a method body
can be defined in the behaviour of an interface concept, and a concrete concept that
implements the interface must override them with concrete methods. Figure 2.4 shows
the behaviour aspect of the FunctionCall concept. Two methods rebindToProxy() and
referencedModuleContent() are defined, which override abstract methods from the inter-
face concept IModuleContentRef.

9

Figure 2.4: MPS Behaviour

Figure 2.5: MPS Typesystem

2.2.4 Type System

MPS’s type system is based on unification. The type system aspect defines a set of
declarative type rules for concepts which are used by the MPS type solver to derive the
type of each node. The automated typing guarantees the absence of type mismatches;
otherwise a type error is thrown. The type system can be extended by adding new type
rules without changing existing rules.

In addition, MPS supports the definition of non-typesystem rules that can be checked
by the MPS type checker. Basically, such rules impose extra constraints on type confor-
mity. Figure 2.5 shows the non-typesystem rule of FunctionCall that checks whether the
number of actual parameters matches the number of formal parameters as declared.

2.2.5 Editor

In a traditional compiler, a program’s concrete syntax is retrieved from the source code,
and then parsed to an abstract syntax. In contrast, in MPS the abstract syntax of the

10

Figure 2.6: MPS Editor

Figure 2.7: MPS Generator

model is stored, and transformed to concrete representations defined by the editor aspect.
The editor consists of cells, as shown in Figure 2.6. Each cell can contain a combination
of literal text, symbols, and values of properties. In the figure, the FunctionCall node
is projected to the name of reference node function, followed by a literal “(”, followed by
a list of actual arguments, followed by another literal “)”. Then the editor of each actual
argument is applied, to project the argument node onto its concrete representation.

2.2.6 Generator

The generation process (semantics) in MPS is basically a model-to-model transformation.
The generator aspect defines how to transform the model either to a model in the base
language or to a model in an intermediate language; the generator of the intermediate
language is then applied to generate the corresponding model in the base language. Figure
2.7 shows the generator of a ForEachStatement, which transforms a for-each statement
into an equivalent for statement. In MPS, the transformation process is defined indepen-
dently from the language syntax, so that multiple generators can be defined to generate
models in different target languages from the same source model.

11

2.3 mbeddr

mbeddr [22][35] provides support for C on MPS by implementing C as a base language
(mbeddr-C). In addition, mbeddr provides a tool suite that supports incremental con-
struction of modular DSLs on top of C, together with a set of predefined DSLs such as
components, physical units and state machines. These DSLs, which greatly extend the
ability of the C developer to program from an abstract perspective, are transformed into
lower-level DSLs with mbeddr-C as the lowest-level DSL (i.e., the base language). The
state-machine modelling language of mbeddr is described in detail in the related work
(Chapter 8).

12

Chapter 3

Background on BSML

Big-Step Modelling Language (BSML) [7][8][9] is a family of state-machine modelling lan-
guages (UML StateMachines [24], Argos [21], Statecharts [17], Stateflow [6], etc.) that
vary semantically. In this chapter we give a light overview on BSML including its syn-
tax, basic execution semantics, and configurable semantics that are from the PhD thesis
of Esmaeilsabzali [7]. Although BSML-mbeddr is an implementation of BSML, it varies
from BSML in several ways. In Chapter 4 we will discuss the syntax and semantics of
BSML-mbeddr, and how it differs from BSML.

3.1 BSML Syntax

A BSML state machine contains control states. A control state has a name and a type,
which is either a simple state or a composite state. A composite state is either a And state
or a Or state. The set of control states of a model forms a hierarchy tree. A leaf node
of a hierarchy tree is a simple control state, whereas an And or an Or control state is a
non-leaf node of a hierarchy tree. If a model resides in an And control state, it resides in
all of its children. If a model resides in an Or state, it resides in one of its children, which
is by default its initial state.

Two control states overlap if they are the same or one is an ancestor of the other.
The least common ancestor of two control states is the lowest control state (closest to the
leaves of the hierarchy tree) that is an ancestor of both. Two control states are orthogonal
if neither is an ancestor of the other and their least common ancestor is an And control
state. The scope of a transition is the least common ancestor of its source and target

13

control states. The arena of a transition is the lowest Or control state in the hierarchy
tree that is the ancestor of both the source and target control states of the transition.

A transition has a name, a source and a target control state, and four optional parts:
1) a conjunction of triggering events, some of which may be negated; 2) a guard condition
which is a boolean expression over the set of state-machine variables; 3) a set of assignments;
and 4) a set of generated events.

3.2 BSML Semantics

In this section, we first describe the basic execution semantics of BSML, and we briefly
explain how semantic variation points (configurable semantics) reside in the process of the
basic execution semantics. Next, in the following sub-sections, we introduce each semantic
aspect and its options.

3.2.1 Execution Semantics

The execution semantics describes how a state-machine model handles an environmental
input, responds by executing transitions, and communicates its outputs. The basic unit of
handling an environmental input is a big-step. A big-step begins with the state machine
accepting a single environmental input from its environment, and ends with delivering
outputs, as a result of executing a sequence of small-steps. The process of a big-step can
be deconstructed into the stages described in Figure 3.1.

A big-step starts by accepting an environmental input. Then a small-step is started by
identifying transitions enabled by events and variables. Only transitions that satisfy certain
ordering constraints can be determined as enabled. Next, the maximality of combo-step
and big-step is determined. If the maximal big-step is reached, then the big-step ends and
environmental outputs are delivered. Otherwise, all maximal, consistent sets of transitions
are identified from the set of enabled transitions as candidates of the current small-step.
One of the identified sets with highest priority is chosen to be executed, which means that
variables in the RHS of assignments of the chosen transitions are evaluated and the new
status of the state machine is calculated.

Each stage in Figure 3.1 is associated with a semantic variation point (i.e., semantic aspect,
which is shown in a parenthetical clause in the figure) in the basic execution semantics of
a state machine. A semantic aspect may be decomposed into some semantic sub-aspects.

14

Figure 3.1: Process of a BSML Big Step [7]. The name of the associated semantic aspect
of each stage is shown in a parenthetical clause.

15

Each semantic aspect or sub-aspect has several semantic options to choose from. In the
rest of the thesis, we use font Sans Serif for the name of semantic aspects, and we use font
Small Cap for the name of semantic options. The Big-step Maximality semantic aspect
determines when a big-step ends, at which point environmental outputs are delivered and
a new big-step starts by sensing new environmental inputs. The Combo-step Maximal-
ity semantic aspect specifies when a combo-step ends, at which point a new combo-step
starts by committing the changes of values of variables and statuses of events in the cur-
rent combo-step. The Event Lifeline semantic aspect specifies how far within a big-step a
generated event can be sensed as present to trigger a transition. The Enabledness Mem-
ory Protocol semantic aspect specifies the snapshot from which the values of variables are
read to enable the guard condition of a transition. The Assignment Memory Protocol se-
mantic aspect specifies the snapshot from which the value of a variable in the right-hand
side of an assignment is read. The Order of Small-steps semantic aspect describes options
for constraining the order of transitions that execute within a big-step. The Concurrency
and Consistency semantic aspect specifies which enabled transitions can be executed to-
gether in the same small-step. Lastly, the Priority semantic aspect defines priorities among
transitions, which is used to choose from among the maximal, consistent sets of enabled
transitions to execute.

3.2.2 Big-step Maximality

The semantic aspect Big-step Maximality determines the extent of a big-step. A big-step
begins by accepting an environmental input, and Big-step Maximality determines when it
ends. The least restrictive option is Take Many: a big-step ends when no more transitions
can be executed. Take One imposes an additional constraint that whenever a transition
is executed, no transition with an overlapping arena can subsequently be executed in the
same big-step. Syntactic is appropriate when the modeller is able to syntactically tag a
state as being stable. With this option, whenever an executed transition lands in a stable
state, no transitions with an overlapping arena can subsequently be executed in the same
big-step. The advantages of the options Take One and Syntactic are that they are
simple, but their constraints that prevent overlapping transitions from executing in the
same big-step might be too restrictive for some models. The option Take One guarantees
that a big-step eventually terminates while the other two options do not.

16

Option Definition Pros and Cons
Take Many Small-steps continue until there

are no more enabled transitions.
(+) Expressive
(–) Non terminating big-step
is possible

Take One No two transitions with overlap-
ping arenas can be taken in the
same big-step.

(+) Simple
(+) Terminating big-step is
guaranteed
(–) Limited

Syntactic No two transitions with overlap-
ping arenas that enter designated
“stable” state can be taken in the
same big-step.

(+) Syntactical scope for big-
step
(–) Non terminating big-step
is possible

Table 3.1: Big-step Maximality Semantic Options [7]

3.2.3 Concurrency and Consistency

Concurrency

The semantic aspect Concurrency defines whether concurrent execution is allowed – that is,
whether a small-step can comprise the execution of multiple transitions. Option Single
allows only one transition to be executed in a small-step, whereas option Many allows
multiple transitions to be executed in a small-step. The semantics of the Single option
are simple and easy to understand, but might result in a nondeterministic model. Because
the Many option allows transitions to be executed concurrently, it is possible for a model’s
execution to have a race condition (e.g., the execution of multiple transitions in the same
small-step might write to the same share variable).

Consistency

For two enabled transitions where neither is an interrupt of the other and the semantic
aspect Concurrency is Many, the Consistency aspect determines whether they can be exe-
cuted in the same small-step. The option Arena Orthogonal requires the transitions’
arenas to be orthogonal in order for them to execute in the same small-step, whereas the
option Source-Target Orthogonal requires that the transitions’ source states and
target states are pairwise orthogonal in order for them to execute in the same small-step.

17

Option Definition Pros and Cons

Concurrency
Single Only one transition can be exe-

cuted in a small-step.
(+) Simple
(–) Nondeterministic

Many Multiple transitions can be exe-
cuted in a small-step.

(+) Low chance of nondeter-
minism
(–) Race conditions

Consistency
Arena Or-
thogonal

Two transitions whose arenas are
orthogonal can be executed in the
same small-step.

(+) Simple
(–) More restrictive

Source-
Target Or-
thogonal

Two transitions whose source
states and target states are pair-
wise orthogonal can be executed in
the same small-step.

(+) Less restrictive
(–) Complex

Preemption
Non-
Preemptive

Interrupter and interruptee can be
executed in the same small-step.

(+) Support of “Last wish”

Preemptive Interrupter and interruptee can
not be executed in the same small-
step.

(+) No “Last wish”

Table 3.2: Concurrency and Consistency Semantic Options [7]

18

main

t’

t

(a) case a

main

t’

t

(b) case b

Figure 3.2: Preemption Example. t interrupts t′ in both cases.

Note that option Source-Target Orthogonal is less restrictive than option Arena
Orthogonal since all pairs of transitions that are arena orthogonal are also source-target
orthogonal.

Preemption

When two transitions are enabled in the same small-step and the semantic aspect Con-
currency is Many, there is a special case called interruption where Consistency does not
apply. The semantic aspect Preemption governs the semantics of interruption, which is
useful when the execution of a transition that exits its enclosing control state needs to
interrupt the execution of transitions in orthogonal control states. Formally, we say that
transition t interrupts transition t′ if their source states are orthogonal, and either a) the
target state of t′ is orthogonal with the source state of t, and the target state of t is not
orthogonal with the source states of both transitions (Figure 3.2a); or b) the target states
of both transitions are not orthogonal with the source states of both transitions, and the
target state of t is descendant of the target state of t′ (Figure 3.2b)). To simplify our de-
scriptions below, we say that the transition that does the interrupting is the interrupter,
whereas the transition being interrupted is the interruptee.

Preemption has two options: Non-Preemptive and Preemptive. The Non-preemptive
option allows interrupter and interruptee to be executed in the same small-step, which
means that both transitions’ actions are executed, but the state machine lands in the tar-
get state of the interrupter as if only the interrupter is executed. When Preemptive is
chosen, interrupter and interruptee cannot be executed together in the same small-step.

19

Intuitively, the Preemption aspect is useful in situations where the execution of a high-
priority transition (e.g., when a system error, an exception, or some high-priority event
occurs) needs to abort the execution of lower-priority transitions. The difference between
Non-Preemptive and Preemptive is that the Non-Preemptive option allows the
lower-priority transition to finish its “last wish” actions, whereas the Preemptive option
does not. Note that the semantics of Preemption itself does not impose any bias towards
the interrupter. To impose a bias towards the interrupter, the modeller may use language
constructs such as negated triggering events or explicit priority.

3.2.4 Event Lifeline

The semantic aspect Event Lifeline determines how long a generated event remains present
in the big-step, and thus how long the event is able to trigger transitions. Table 3.3 shows
the five Event Lifeline semantics: 1) in the Present in Whole option, a generated event
is present throughout the big-step, from the beginning of the big-step; 2) in the Present
in Remainder option, a generated event is present in the snapshot after it is generated
and persists until the end of the big-step; 3) in the Present in Next Combo option, a
generated event is present only during the next combo-step; 4) in the Present in Next
Small option, a generated event is present only during the next small-step; and 5) in
the Present in Same option, a generated event is present only during the small-step in
which it is generated.

If option Present in Next Small or Present in Remainder is chosen, then a
big-step is causal, which means any executed transition in a small-step must be triggered
by events that are generated in some earlier small-step, whereas a big-step containing the
execution of transitions triggered by rendezvous events (which applies in option Present
in Same) may not be causal. The semantics of Present in Remainder lacks the
orderedness property: if event e1 is generated earlier than event e2, it need not be the
case that transitions triggered by e1 are executed earlier than traditions triggered by e2.
The Present in Next Combo was devised to alleviate this problem by having a “rig-
orous causal ordering” between combo-steps, while being insensitive to the order of event
generation within a combo-step [7]. The Present in Next Small semantics is ordered:
a transition triggered by an internal event can be executed only if the internal event is
generate by a transition in a previous small-step.

The Present in Remainder semantics can produce a globally inconsistent big-
step, when the big-step includes a transition that generates an event and a transition
triggered by the absense of that event. Global inconsistency is undesired because an

20

Option Definition Pros and Cons
Present in
Whole

A generated event in a big-step is
assumed to be present throughout
the same big-step.

(+) Modularity
(+) Global consistency
(–) No causality

Present in
Remainder

A generated event in a big-step is
sensed as present in the same big-
step after it is generated.

(+) Causality
(–) No orderedness
(–) Global inconsistency

Present in
Next Combo

A generated event can be sensed
as present only in the next combo-
step after it is generated.

(+) Causality
(–) Partial orderedness

Present in
Next Small

A generated event can be sensed as
present only in the next small-step
after it is generated.

(+) Causality
(+) Orderedness

Present in
Same

A generated event can be sensed as
present only in the same small-step
it is generated in.

(+) Instantaneous communi-
cation
(–) No causality

Table 3.3: Event Lifeline Semantic Options [7]

event is sensed both as absent and present in the same big-step. Present in Whole
is globally consistent, and the other options are globally inconsistent but by design. The
Present in Whole option is modular: an event generated during a big-step can be
conceptually considered the same as an environmental input event because it is present
from the beginning of the big-step. All other options except Present in Whole are
non-modular.

External Event

In BSML, we may choose distinct Event Lifeline options for environmental input event (in-
event), environmental output event (out-event), and internal event. The determination
of an in-event (out-event) depends on the semantic aspect External Input Events (External
Output Events). An event that is neither an in-event nor an out-event is treated as an
internal-event.

Option Syntactic for External Input Events is appropriate when the modeller syntac-
tically tags an event as being an in-event. If option Received in First Small is chosen,
then any event can be generated by the environment, but only those events that are re-

21

Option Definition Pros and Cons
Syntactic In-events or out-events are deter-

mined syntactically.
(+) Simple
(–) Syntax burden to modeller

Received in
First Small/
Generated in
Last Small

An event received in the first small-
step is determined to be an in-
event. An event generated in the
last small-step is determined to be
an out-event.

(+) Treats external and inter-
nal events uniformly
(–) No boundary between
model and environment

Hybrid An event that is received at the be-
ginning of a big-step and is never
generated in the model is deter-
mined to be an in-event. An event
that is generated in the last small-
step and is not a triggering event
for any transition in the model is
determined to be an out-event.

(+) No syntax burden to mod-
eller
(–) Complex

Table 3.4: External Input/Output Event Semantic Options [7]

ceived at the beginning of a big-step (i.e., generated by the environment, or received from
the input queue) are determined to be in-events. In the Hybrid option, an event that is
received at the beginning of a big-step and is never generated in any transition or entry
block is determined to be an in-event.

The Syntactic option for External Output Events regards any event that is syntactically
bound to a function as an out-event. If the semantic option Generated in Last Small
is chosen, only events that are generated in the last small-step are determined to be out-
events. In the Hybrid option, an event that is generated in the last small-step and is not
a triggering event for any transition in the model is determined to be an out-event.

Interface Event

In BSML, a state-machine model may be structured as a set of components, each of which
is a composite control state. Components communicate with each other only through
interface events or variables. Table 3.5 lists the three options of interface events for inter-
component communication. In the Strong Synchronous Event option, a generated
interface event is sensed as present throughout the big-step in which it is generated, from

22

Option Definition Pros and Cons
Strong Syn-
chronous
Event

A generated interface event of a
big-step is sensed as present from
the beginning of the big-step.

(+) Modularity
(–) No causality

Weak Syn-
chronous
Event

A generated interface event of a
big-step is sensed as present in the
snapshot after it is generated.

(+) Causality
(–) Globally inconsistency

Asynchronous
Event

A generated interface event of a
big-step is sensed as present in the
next big-step after it is generated.

(+) Modularity
(–) Previous big-step affects
current big-step

Table 3.5: Interface Event Semantic Options [7]

the beginning of the big-step (similar to Present in Whole). In the Weak Syn-
chronous Event option, a generated interface event is present in the big-step in which
it is generated, but only after it is generated (similar to Present in Remainder). In the
Asynchronous Event option, a generated interface event is present in the next big-step,
from the beginning of the big-step.

3.2.5 Enabledness Memory Protocol

The values of variables that a transition reads for its guard condition (GC) are determined
by the GC Memory Protocol (i.e., enabledness memory protocol) semantic aspect. During
the execution of a BSML state-machine model, three snapshots of variable values are kept
to be read: snapshot big retains the values that variables had at the beginning of the big-
step, snapshot combo retains the values that variables have at the beginning of the current
combo-step, and snapshot small retains the values that variables have at the beginning of
the current small-step. In addition, we have snapshot cur that holds the new values being
computed in the current small-step which will overwrite the values in snapshot small at the
end of the current small-step, and overwrite the values in snapshot combo at the end of the
current combo-step. The GC Big Step, GC Combo Step, and GC Small Step options
use the variable values stored in snapshot big, snapshot combo, and snapshot small when
evaluating expressions in guard conditions, respectively.

The GC Big Step option is non-interfering, which means an earlier small-step of a
big-step does not affect the read value of a later small-step. Non-interference relieves the

23

Option Definition Pros and Cons
GC Big Step Values of variables are read from

the snapshot at the beginning of
the big-step when evaluating ex-
pressions in guard conditions.

(+) Non-interference
(–) Non-sequentiality

GC Small
Step

Values of variables are read from
the beginning of the current small-
step when evaluating expressions
in guard conditions.

(+) Sequentiality
(–) Interference

GC Combo
Step

Values of variables are read from
the beginning of the current
combo-step when evaluating ex-
pressions in guard conditions.

(+) Some interference (+)
Some interference

Table 3.6: GC Memory Protocol Semantic Options [7]

modeller from considering the accumulative effects of assignments to a variable during a big-
step. In contrast, the GC Small Step is sequential, which means assignments to variables
are able to subsequently affect the execution of the following small-steps. Sequentiality
enables the modeller to decompose the computation process of the final output into multiple
stages, where each is carried out by a separate small-step.

Interface Variables in Guard Conditions

Components can communicate among each other through not only interface events but also
through interface variables. Table 3.7 lists the possible options for the Interface Variables
in GC semantic aspect, which determines when a change to an interface-variable value
becomes the value returned by a read of that variable in a guard condition. In the GC
Strong Synchronous option, either an interface variable is not written to during a big-
step, or all of its reads happen after it has been written to and the newly assigned value is
returned by a read of that variable. In the GC Weak Synchronous option, a write to an
interface variable can be read after the variable is written to, but the variable can also be
read before it is written to, in which case its value from the previous big-step is returned by
a read of that variable (similar to GC Small Step). In the GC Asynchronous option,
a write to an interface variable can be read by the guard condition of any transition in the
next big-step (similar to GC Big Step).

24

Option Definition Pros and Cons
GC Strong
Synchronous

Either an interface variable is not
written to during a big-step, or all
of its reads happen after it has
been written to and it returns the
newly assigned value.

(+) Modularity
(–) Blocking read and requir-
ing dataflow analysis

GC Weak
Synchronous

An interface variable can be read
before or after it is written to; in
the latter case, it returns the newly
assigned value.

(+) Non-blocking read
(–) Stale values for interface
variables

GC Asyn-
chronous

The value written to an interface
variable during a big-step can be
read in the next big-step.

(+) Non-blocking read
(+) Modularity
(–) Delayed read

Table 3.7: Interface Variable in GC Semantic Options [7]

The GC Strong Synchronous option blocks a read operation if there exists a
write operation in the same big-step. Thus, there should exist a dataflow order to ensure
that the value of an interface variable is read only after it has been assigned. In the
GC Weak Synchronous option, a read operation on a variable never blocks, but a
stale value from the previous big-step may be returned by a read of the variable. In
the GC Asynchronous option, a read operation on a variable never blocks, but the
communication among components is delayed.

3.2.6 Assignment Memory Protocol

The values of variables that a transition reads when evaluating the right-hand side (RHS) of
an assignment are determined by the RHSMemory Protocol (i.e., assignment memory protocol)
semantic aspect. Exactly the same semantic options as those of the enabledness memory
protocol (Section 3.2.5) exist: RHS Big Step, RHS Small Step, and RHS Combo
Step. The modeller is allowed to select distinct options for assignment memory protocols
from enabledness memory protocol. The same advantages and disadvantages as the se-
mantic options for enabledness memory protocols apply to corresponding semantic options
for assignment memory protocols.

25

Option Definition Pros and Cons
None Small-steps are not ordered. (+) Simplicity

(–) Nondeterminism
Explicit Execution of small-steps is ordered

syntactically.
(+) Control over nondeter-
minism
(–) Possible unintended order-
ing

Dataflow Small-steps are ordered so that an
assignment to a variable happens
before it is being read.

(+) Control over nondeter-
minism
(–) Possible cyclic orders

Table 3.8: Order of Small-steps Semantic Options [7]

Interface Variables in RHS

Similar to the usage of interface variables in the guard condition (GC) of transitions, as
described in Section 3.2.5, the semantics of interface variables are regulated by the Interface
Variable in RHS semantic aspect. Exactly the same semantic options as those for Interface
Variable in GC exist: RHS Strong Synchronous, RHS Weak Synchronous, and
RHS Asynchronous. The same advantages and disadvantages as the semantic options
for Interface Variable in GC apply to corresponding semantic options for Interface Variable
in RHS.

3.2.7 Order of Small-steps

The Order of Small-steps semantic aspect is introduced in BSML to reduce the number
of enabled transitions within a small-step, thereby increasing the understandability of the
model. The Order of Small-steps semantic aspect specifies a precedence relationship among
transitions, which means that each transition has a set of preceding transitions. A transi-
tion is enabled only if each of its preceding transitions either is disabled or has already been
executed in the current big-step. Table 3.8 lists all of the possible options for semantic
aspect Order of Small-steps. In the None option, no such precedence relationship exists
among transitions. In the Explicit option, each transition is explicitly and syntactically
associated with a set of preceding transitions. In the Dataflow option, the set of pre-
ceding transitions of each transition is determined by dataflow analysis: a transition t′ is a
preceding transition of a transition t if and only if the execution of t′ includes an assignment

26

Option Definition Pros and Cons
Hierarchical The priority of transition is im-

plicitly determined by the posi-
tions of the source and target con-
trol states in the state hierarchy.

(+) Simplicity
(–) Implicit prioritization

Explicit Explicit priority is assigned to
each transition.

(+) Exhaustive prioritization
(–) Tedious to use

Negation of
Triggers

A transition is given higher pri-
ority than another by strengthen-
ing the event trigger of the second
transition such that it is not en-
abled when the first transition is
enabled.

(+) Exhaustive prioritization
(–) Tedious to use

Table 3.9: Priority Semantic Options [7]

to a variable which is read by t. The Dataflow option guarantees that an assignment to
a variable happens before it is being read in a big-step. The Explicit and Dataflow
options can be used to avert undesired nondeterminism by disallowing the execution of
the small-steps that do not satisfy the ordering constraints. The Explicit option can be
difficult to use because a modeller may introduce an unintended order of transitions. The
Dataflow semantics can be difficult to use because an unintended cyclic dataflow order
might be introduced by the modeller.

3.2.8 Priority

For each small-step, all maximal, consistent sets of transitions are calculated as candidates
for execution in the current small-step. The Priority semantic aspect determines which
candidate to choose to execute as the current small-step. The comparison of transitions’
priorities is transitive. Table 3.9 lists semantic options for assigning a priority to a transi-
tion to avert nondeterminism. A set of transitions T has a higher priority than T ′ if there
is a transition in T whose priority is higher than or equal to the priority of every transition
in T ′.

The Hierarchical option determines the priority of transitions implicitly by the
positions of the source and target control states of transitions in the state hierarchy of
the model. The semantics of Hierarchical priority is defined by its sub-aspect Basis

27

main

t: e∧interrupt[true]

t’: e∧¬interrupt[true]

Figure 3.3: Example of assigning priority by Negation of Triggers.

which is one of Source, Target, Scope, and by its sub-aspect Scheme which is either
Parent or Child. For example, our default options Scope-Parent give a higher priority
to a transition whose scope is the parent (ancestor) of the scope of the other transition.
The Explicit option is appropriate when the modeller is able to syntactically assigning
a priority to a transition (e.g., by assigning numbers to transitions). The Hierarchical
option imposes no syntactic burden to the modeller but the priority is implicitly decided
which might be error-prone, whereas the Explicit option is the opposite. Note that the
order of precedence and priority in BSML are both partial orders.

The Negation of Triggers option is not an independent way to assign priority, but
uses the notation of negated triggering events to assign priorities. For example, in Figure
3.3 transition t is enabled by e∧interrupt and transition t′ is enabled by e. When both e and
interrupt are triggered, either t or t′ can be executed which might be undesirable. In order
to assign a higher priority to t, we change the triggering events of t′ to be e∧¬interrupt, so
that t′ is enabled only when event interrupt is not present in the set of generated events.

3.2.9 Combo-step Maximality

The Combo-step Maximality semantic aspect specifies the extent of a contiguous segment
(i.e., a combo-step) of a big-step where computation is carried out based on the statuses of
events and values of the variables at the beginning of the segment. Table 3.10 lists semantic
options for the Combo-step Maximality semantic aspect. These options are similar to the
options for the Big-step Maximality semantics, but specify the scope of a combo-step instead
of a big-step.

28

Option Definition Pros and Cons
Take Many Combo-steps continue until there

are no more enabled transitions.
(+) Expressive
(–) Non terminating combo-
step is possible

Take One No two transitions with overlap-
ping arenas can be taken in the
same combo-step.

(+) Simple
(+) Terminating combo-step
is guaranteed
(–) Limited

Syntactic No two transitions with overlap-
ping arenas that enter a designated
“combo stable” state can be taken
in the same combo-step.

(+) Syntactical scope for
combo-step
(–) Non terminating combo-
step is possible

Table 3.10: Combo-step Maximality Semantic Options [7]

29

Chapter 4

BSML-mbeddr

4.1 BSML-mbeddr Syntax

We first give a light introduction to state-machine elements that are used in the following
example, whereas details are introduced in Section 4.1.2. A state-machine model may
contain state-machine elements, including states, events, regions and transitions. A
state can be simple if it has no internal structure, or composite if it contains any sub-
region. A region contains states, events, transitions, and a reference to a contained state
to denote its current state. A transition comprises a source state, a target state, and
a triggering event. An event may trigger a transition, which means when an event is
generated, a transition whose source state is a current state of the machine’s execution
and who is triggered by this event can be executed. The execution of a transition makes
the current state switch from its source state to its target state.

4.1.1 Example-based Demonstration

Shown in Figure 4.1a, our example state-machine model contains a main region, within
which there are two states – state off and state on. States off and on can transition to
each other by triggering events turn on and turn off , respectively. State off is a simple
state with no internal structure, whereas state on is a composite state with two concurrent
regions r1 and r2, each of which contains two states as well as a transition triggered by
event trans.

Figure 4.1b depicts the state hierarchy of the example model, which is formed by
interleaved layers of states and regions. The source or target state of a transition may cross

30

off
turn_on

turn_off

interrupt

on
r1

r2

b1 b2

a1 a2
trans

trans

main

(a) Model

Region

StateMachine

State State

Region Region

State State State State

off on

main

r1 r2

a1 a2 b1 b2

turn_on
turn_off

interrupt

trans trans

(b) Hierarchy

Figure 4.1: Illustration of an example model and its corresponding state hierarchy.

the boundary of a region (called a cross-hierarchy transition), such as the transition from
state b2 to state off triggered by interrupt.

4.1.2 State-machine Elements in BSML-mbeddr

Figure 4.2a illustrates the code for the example model in Figure 4.1. A state machine (Line
1) is the root node of a state-machine model; it contains a main region. A region (Line
2) is a concurrent component of the full state-machine model. It comprises a sub-machine
that executes concurrently with other sub-machines; it contains one or more states, and
zero or more events, transitions, variables and other utility elements. Each region must
designate an initial state (Line 2) which is a reference to one of the contained states. A
state contains zero or more regions: a state containing no region is a simple state (Line
17), otherwise it is a composite state (Line 18). Such a state hierarchy forms a tree with
interleaved layers of states and regions (Figure 4.1b) – simple states are leaves in the
hierarchy, whereas regions and composite states are internal nodes in the hierarchy.

Two states (regions) overlap if they are the same or one is the ancestor of the other.
The lowest common ancestor of two states (regions) in the state hierarchy is the lowest
node that is an ancestor of both states (regions). Two states (regions) are orthogonal if
they do not overlap and their least common ancestor is a state, not a region. The scope of
a transition is the lowest common ancestor of the source and target state. The arena of a

31

1 statemachine SM {
2 region main initial = off {
3 in event turn_on();
4 in event turn_off();
5 in event interrupt();
6 in event trans(double arg);
7 event out(string msg) => handle_out;
8 boolean guard = true;
9 double cur_speed = 0.0;

10 static int count_on = 0;
11 Status status = ON;
12 SM instance;
13 transition turn_on[guard] off -> on;
14 transition turn_off[true] on -> off;
15 transition interrupt[true] b2 -> off {
16 out("interrupt"));}
17 state off { };
18 state on {
19 entry {count_on = count_on+1;}
20 region r1 initial = a1 {
21 state a1 { };
22 state a2 { };
23 transition trans && ¬interrupt[true] a1 ->

a2 {
24 cur_speed = compute(arg);
25 guard = false;
26 out("normal trans"); }}
27 region r2 initial = b1 { ... }}}}

(a) Code of Model

28 int main() {
29 SM* m1 = sm_start(SM);
30 trigger_events(m1);
31 sm_trigger(m1, turn_on());
32 SM* m2 = sm_start(sm);
33 SM var = *m2;
34 trigger_events(m2);
35 sm_trigger(&var, trans(2.0), interrupt());
36 sm_terminate(&var);
37 sm_terminate(m1);
38 return 0;
39 }
40
41 void trigger_events(SM* arg) {
42 sm_trigger(arg, turn_on());
43 sm_trigger(arg, trans(2.0));
44 sm_trigger(arg, turn_off());
45 }
46
47 void handle_out(string arg) {
48 printf("%s", arg);
49 }
50 state-machine function:
51 double compute(double speed) {
52 //This function is called in a action to conduct

computation or query status of environment.
53 }

(b) Code of Environment

Figure 4.2: Code for Example Model and Environment

transition is the lowest region that is an ancestor of both the source and target states.

An event is defined within a region (Line 3-7). The structure of an event in BSML-
mbeddr is similar to that of a function declaration – an event has a name and zero or
more arguments. Additionally, an event can have an optional binding to a function that
is defined in the environment. There are three types of events: in-event and out-event
determined depending on semantic aspects External Input/Output Event (Section 4.2.5), and
internal-event that is neither in-event nor out-event. An in-event (Line 3-6) is expected to
be triggered from the environment of the state-machine; an out-event (Line 7) is supposed
to be bound to a function which is called when the out-event is generated, acted as a way to
delivers the state-machine output to its environment; an internal-event is used for private
communication inside the model.

A transition (Line 13-15) contains a conjunction of triggering events, a guard condition,
a source state, a target state, and an optional code block called action. A triggering event
refers to a visible event declaration, and a guard condition is an expression with boolean
type. A transition is enabled if each of its trigger is present (or absent if trigger is negated)
and the guard condition is evaluated as true. An action is a list of statements which
is executed when the transition is executed. In an action, the modeller is allowed to
manipulate local variables, read arguments of triggering events, call functions, query the

32

state of the environment, or generate events (Line 24-26).

4.1.3 Language Features

In this section we highlight several language features of BSML-mbeddr. For each language
feature, we refer to the line number in Figure 4.2 in which the feature is used.

� Event with Arguments An event may have arguments (Line 6) of primitive type (e.g.,
boolean, int, double) or compound type (e.g., struct, enum, state-machine type).
When the event is generated, actual arguments must be provided, and their types
must match the declared types. Arguments of a generated event can be used in the
guard condition or the action of a transition triggered by the presence of the event.

� Event Binding An event can be bound to a function that is called when the event is
generated and is determined to be an out-event (Line 7). The number and types of
arguments in the event and in the bound function must match. The bound function
might be an imported library function (e.g., printf , memcpy, free).

� Negation of Triggers A transition may be triggered not only by the presence of events
but also by the absence of events; the latter is specified by tagging a triggering event
with a negation symbol “¬”. For example, the transition on Line 23 is triggered
when event trans is present and negated event interrupt is absent.

� Transition with Multiple Triggers A transition may have a conjunction of multiple
triggering events, so that the transitions is enabled only if all of its non-negated
triggering events are present, and all of its negated triggering events are absent (Line
23).

� Entry Block A state or region may optionally contain an entry block1 of actions that
modify values of state-machine variables, call functions, query the state of the en-
vironment, or generate events. An entry block is executed every time its associated
state or region is entered (Line 19).

� Cross-hierarchy Transition We call a transition local if its target state has the same
parent region as its source state. In other words, a local transition does not cross

1We have decided not to implement the exit block in the current version of BSML-mbeddr, considering
the complexity to implement it.

33

the boundary of a region. In addition to local transitions, BSML-mbeddr also han-
dles cross-hierarchy transitions that cross the boundaries of regions, including the
proper execution of the transitions’ actions and entry blocks of states or regions that
the transition enters. Specifically, when a transition is executed, all states and re-
gions along the way from the scope of the transition (exclusive) to the target state
(inclusive) are entered; before a region is entered, all its sibling regions are entered
cascadingly; the target state is entered cascadingly at last.

� Big-step Start (End) Block Inspired by the constructer() (finalizer()) function of a
Java class which is executed at the beginning (end) of the life cycle of a Java object,
we have introduced the concept of a big-step start (end) block to BSML-mbeddr
to improve integration of state-machine models and their C-code environment. Each
state machine may contain an optional big-step start (end) block of statements, which
is allowed to modify values of state-machine variables in addition to conduct any
operations that are allowed in the environmental code. A big-step start (end) block
is executed immediately before a big-step begins (after a big-step ends). Unlike an
entry block or an action of a transition, which is regulated by the execution semantics
of a big-step, a big-step start (end) block belongs to the environment and its execution
takes effect instantaneously.

� (Static) Variable A Variable that is defined inside a state-machine is accessible only
within the state machine (e.g., inside entry blocks, guard conditions, actions), and
variables defined in the environmental code are not accessible inside the state ma-
chines. The types of variables can be primitive (e.g., boolean, int, double) or com-
pound (e.g., struct, enum, state-machine type) types. A state-machine variable can
be static, meaning that it is initialized when the state-machine instance is created,
and its value persists as the execution re-enters the state or region where the variable
is declared. In contrast, a non-static variable is initialized every time its enclosing
state or region is entered. For example, static variable count on (Line 10) is initial-
ized with value 0, and incremented by 1 each time state on is entered (Line 19), thus
to count the number of times state on is entered.

� Function Call A function that does not change the status of the environment can be
tagged as a state-machine function and can be called inside a state machine (e.g.,
inside a region, action, entry block, or guard condition). For example, such functions
can be used to query the current values of variables in the environment, or they can
be used as helper functions within more complex computations (Line 24).

� Name Scoping For better modularity, each state and region defines a local-name scope

34

for the contained state-machine elements and variables. This is achieved by assigning
a fully qualified name to each state-machine element and variable, and by defining
an appropriate search scope for variable references. For example, on Line 19, we
can access local variables that are defined in the entry block or in the main region,
whereas variables defined in other entry blocks, actions and orthogonal regions are
not accessible. We may also define a local variable count on in the entry block
without conflicting with a similarly named variable count on defined the in main
region (Line 10).

� Multiple Instances of State Machine The modeller is able to create multiple in-
stances of the same state-machine model running concurrently (Line 29 and 32), and
may send environmental inputs to each of them without the machines interfering
with each other if the user keeps bound functions thread-safe (Line 31 and 35).

� Input with Multiple Events An environmental input may contain instances of mul-
tiple in-events (Line 35) that simulate a “combo” action (e.g., a passenger of elevator
pushes to multiple buttons at the same time). However, an environmental input is
not allowed to generate multiple instances of the same in-event.

4.1.4 Interaction with Environment

A state-machine model is defined similarly to a C struct/enum. The definition of a state-
machine is surrounded by environmental code (or simply the environment of the state
machine), including definitions of global variables, structs, enums and functions.

Figure 4.2b illustrates a possible case of environmental code that surrounds a state
machine. As shown, a local variable (Line 29) is defined with a pointer type pointing
to a SM type (the state-machine type defined on Line 1), which is initialized with a
sm start(sm ref) expression that creates an instance of a SM and returns a pointer to it.
A sm trigger(sm handle, event, ...) statement (Line 42-44) takes as arguments a pointer
to a state-machine type sm handle, and a set of in-events; it is used to generate an environ-
mental input with in-event instances, and put the environmental input into a queue that
the state machine is listening to, and where all environmental inputs are sequentialized.
A sm terminate(sm handle) (Line 36-37) statement safely terminates a state-machine
instance after all pending environmental inputs in the input queue are processed.

A variable of a state-machine type is implemented as a first-class citizen, which means
it can be assigned to other variables (Line 33), returned from a function, or passed as
an argument (Line 34). BSML-mbeddr imposes strict constraints and type-checking rules

35

which ensure that: 1) variables whose types are different kinds of state-machine types
cannot be assigned to each other, nor can they be assigned to variables of non-state-
machine types; 2) sm start(sm ref) can be assigned only to a variable of a pointer to
the same kind of state-machine type as sm ref ; 3) in sm trigger(sm handle, event, ...),
sm handle must be a pointer to a state-machine type, and all event arguments must
be events declared in the state-machine type that sm handle points to; 4) arguments to
in-events, if any, must be provided and their types must match the declared types; 5)
sm handle in sm terminate(sm handle) must be a pointer to a state-machine type.

Delivering output from a state machine to its environment is achieved through event
binding. For example, event out is bound to function handle out() on Line 7, and handle out()
is called whenever event out is generated and determined to be an out-event2.

In BSML-mbeddr, multiple instances of the same state-machine type can be declared
(Line 29 and 32). When sm start is executed, a thread representing the state-machine
instance is launched and an input queue is created. In order to guarantee that multiple
state-machine instances can run concurrently without interfering with each other (Section
7.7), it is the user’s responsibility to keep functions bound to out-events thread-safe.

4.1.5 State-Region Hierarchy

The state hierarchy of BSML comprises control states, including And state, Or state,
and Simple state (Section 3.1). In BSML-mbeddr, we have changed the state hierarchy
to an state-region alternation structure that is used in existing state-machine modelling
languages such as FORML [29]. Essentially, a region in BSML-mbeddr corresponds to
an Or state (when a region is entered, one of its sub-state is entered), whereas a state
in BSML-mbeddr corresponds to an And state (when a state is entered, all of its sub-
regions are entered). In addition, our change of form imposes two extra constraints on
the hierarchy: a) it forms interleaved layers of states and regions so that a state’s parent
or child must be a region, and vice versa; b) The source state and target state of each
transition is only a state, and not a region. This simplifies the implementation of BSML-
mbeddr by saving the process of checking whether a child, the parent, or a sibling of a
given control state is an And state or an Or state: 1) given a transition, it is known that
its source or target state is a state (an And state in BSML, correspondingly); and 2) given
a region (an Or state in BSML, correspondingly), it is known that its parent and children
are states, and its siblings are regions; and 3) given a state, it is known that its parent

2Whether an event is determined to be an out-event (i.e., is to be communicated to the state machine’s
environment) is specified in the semantic aspect External Output Events, which is discussed in Section 4.2.5.

36

and children are regions, and its siblings are states. For example, with our state-region
hierarchy, when computing the sequence of entry blocks (Section 4.1.3) to be executed for
a transition and a region is to be entered, we are able to know that its parent is a state
(And state), and its siblings are regions (Or states) who should be entered cascadingly
before the current region is entered.

4.2 BSML-mbeddr Semantics

In this section, we introduce the semantics of BSML-mbeddr. Basically, BSML-mbeddr
implements the semantic aspects and options of BSML as described in Section 3.2, so they
are not repeated here. Instead, we describe in this section how our implementation de-
viates from the semantics of the original BSML. To ease the presentation of descriptions,
we denote language syntax in bold font, semantic aspects in font Sans Serif, and semantic
options in font Small Cap. In section 4.2.1 we give an overview on which options are
implemented and which options are not implemented in BSML-mbeddr, and we explain
why we have decided not to implement semantic options that require dataflow analysis,
or that are related to combo-steps or components. In Section 4.2.2, we present the modi-
fied version of the Priority semantic aspect, where nondeterminism is resolved by turning
priorities among transitions from a partial order into a total order. In Section 4.2.3, we
present the modified process of a big-step. Based on the total ordering of priorities among
transitions, we are able to compute a valid small-step with drastically reduced time com-
plexity. We also explain how the modified process of a big-step leads to the decision of not
implementing options within the Order of Small-steps semantic aspect. Lastly, in Section
4.2.4, we introduce a changed way of implementing the Present in Same and Negation
of Triggers options due to the potential hazard for the original way of implementation.
Semantic aspects and options that are not discussed in this section are consistent with
those in the original BSML.

4.2.1 Implemented Semantic Options

The collection of semantic aspects and options in BSML-mbeddr semantics is a subset of
the semantic aspects and options defined in the original BSML [7][8][9]. Table 4.1 lists
all of the BSML semantic aspects and options and shows with check marks which ones
are implemented in BSML-mbeddr. Considering the limit of our effort and the fact that
BSML-mbeddr is a proof-of-concept implementation to study configurable semantics, we

37

did not implement semantic options that requires dataflow analysis, or that are related to
combo-steps or components.

We did not implement options that would require dataflow analysis because the dataflow
analysis would have been costly in terms of computational complexity and in terms of im-
plementation effort, compared to the knowledge we would gain from their implementation.
Affected options include option Present in Whole within aspect Event Lifeline, option
Dataflow within aspect Order of Small-steps, and option Strong Synchronous within
aspects Interface Event Lifeline, Interface Variable in GC, and Interface Variable in RHS.

A combo-step defines a coherent sequence of small-steps within a larger big-step, such
that a big-step comprises a sequence of combo-steps and a combo-step comprises a sequence
of small-steps. There are combo-step semantic options that specify how statuses of events
and variable values propagate across combo-steps, including option Present in Next
Combo within aspect Event Lifeline, option Generated in Last Combo within aspect
External Output Events, option GC Combo Step within aspect Internal Variable in GC,
and option RHS Combo Step within aspect Internal Variable in RHS. In addition, there
is a semantic aspect Combo-Step Maximality that defines the termination conditions of a
combo-step. In general, the combo-step options are similar to corresponding big-step and
small-step options. For example, option GC Combo Step within aspect Internal Variable
in GC is similar to GC Big Step and GC Small Step; and the options for Combo-Step
Maximality are similar to the options for Big-Step Maximality. Therefore, we did not believe
we would learn much from their implementation, so we left them unimplemented.

Components are used to decompose a state-machine model into encapsulated sub-
machines that communicate with each other only through interface events or variables.
Communication among components through interface events or variables is similar to com-
munication among the regions of a machine through internal events or variables. For ex-
ample, an internal event (or, correspondingly, an interface event) generated in one region
(component) can trigger transitions in another region (component), whose presence is regu-
lated by Internal Event Lifeline (Interface Event Lifeline). Although components add another
abstraction layer of encapsulation which allows distinct semantic options to be selected for
inter-component communication, we did not believe that we would learn much from their
implementation. Affected semantic options include all options for aspects Interface Events,
GC Memory Protocol: Interface Variables, and RHS Memory Protocol: Interface Variables.

38

Semantic Options Semantic Options
Big-step Maximality Interface Event Lifeline

Take One Strong Synchronous Event
Take Many Weak Synchronous Event
Syntactic Asynchronous Event

Concurrency GC Memory Protocol: Internal Variables
Single GC Big Step
Many GC Small Step

Small-step Consistency GC Combo Step
Source-Target Orthogonal GC Memory Protocol: Interface Variables
Arena Orthogonal GC Strong Synchronous

Preemption GC Weak Synchronous
Non-Preemptive GC Asynchronous
Preemptive RHS Memory Protocol: Internal Variables

Internal Event Lifeline RHS Big Step
Present In Whole RHS Small Step
Present In Remainder RHS Combo Step
Present In Next Combo RHS Memory Protocol: Interface Variables
Present In Next Small RHS Strong Synchronous
Present In Same RHS Weak Synchronous

External Input Events RHS Asynchronous
Syntactic Order of Small-steps
Received In First Small None
Hybrid Explicit

Input Event Lifeline Dataflow
same as Internal Event Lifeline Priority

External Output Events Explicit
Syntactic Hierarchical
Generated In Last Combo Negation of Triggers
Generated In Last Small Combo-step Maximality
Hybrid Combo Syntactic

Output Event Lifeline Combo Take One
same as Internal Event Lifeline Combo Take Many

Table 4.1: BSML Semantic Aspects/Options. Semantic options implemented in BSML-
mbeddr are indicated with check marks.

39

4.2.2 Priority

The Priority semantic aspect specifies the relative priorities among transitions. The priority
in BSML-mbeddr deviates from BSML in a way that the partial priority order of transitions
in BSML is resolved to a total order, so that nondeterminism is resolved.

Option Explicit in BSML-mbeddr is appropriate when the modeller is able to indicate
priority by syntactically assigning a positive integer to a transition. An unannotated
transition effectively has a priority value of infinite, indicating the lowest priority. If two
transitions have the same priority, we use the textual order of their declarations to resolve
nondeterminism – that is, the transition that is declared earlier in the mbeddr program
has higher priority.

Option Hierarchical in BSML-mbeddr determines the priority of transitions im-
plicitly by the state hierarchy of the model. The semantics of Hierarchical priority
is defined by its sub-aspect Basis which is one of Source, Target, Scope, and by its
sub-aspect Scheme which is either Parent or Child. For example, our default options
Scope-Parent give a higher priority to a transition whose scope is the parent (ancestor)
of the scope of the other transition. If the Basis (which is source, target, or scope) of one
transition is neither a descendant nor an ancestor of the Basis of another transition, we
resolve the nondeterminism as follows: a) if the transitions’ Basis states (or regions) are
siblings, we prioritize the transitions according to the textual order in which their Basis
states (or regions) are declared – the transition whose Basis is declared first has higher pri-
ority; b) otherwise, we compute the lowest common ancestor of the transitions’ Basis; and
then we prioritize the transitions according to the textual order in which the ancestors of
their Basis states (or regions) (i.e., the child of the lowest common ancestor) are declared.

For example, in Figure 4.3 the scopes of t1, t2, and t3 are a, r1 and b, respectively. Let’s
assume that the semantic aspect Priority is Hierarchical and its sub-aspects are Scope
and Parent, and let’s assume that a node’s left child in the state hierarchy is textually
declared earlier than its right child; then 1) t1 has higher priority than t2 because the scope
of t1 is an ancestor of the scope of t2; and 2) t1 has higher priority than t3 because the
scopes of t1 and t3 are siblings, and the scope of t1 is declared earlier than the scope of
t3; and 3) t2 has higher priority than t3 because a, which is the ancestor of the scope of t2
that is a sibling of the scope of t3, is declared earlier than the scope of t3 (which is b).

The technique to specify priorities among transitions by negation of triggers still exists
in BSML-mbeddr, but is not implemented as an semantic option. This is explained in
Section 4.2.4.

40

main

r2

b1 b2

b

r1

a1 a2

a

t1

t2

t3

Figure 4.3: Illustration of Hierarchical Priority.

4.2.3 Modified Execution Semantics

The execution semantics describes how a state-machine model handles an environmental
input, responds by executing transitions, and communicates its outputs. As shown in
Figure 4.4b, in BSML-mbeddr, a big-step starts by accepting an environmental input
comprising a list of in-event instances and activating the in-events so that they are sensed
as being present. Then a small-step is started by identifying enabled transitions. Next,
the enabled transitions are sorted according to their priority, and a maximal, consistent
subset of enabled transitions (called result set) with highest priority is deduced through
a greedy approach. A small-step ends by executing all transitions in the result set of the
current small-step and by calculating the new status of the state machine. At the end of
a small-step, if the result set is not empty then a new small-step starts repeatedly where
the previous result set is emptied and a new result set is calculated, otherwise the big-step
ends and outputs of the big-step are delivered to the environment.

Figure 4.4 compares the process of a big-step in BSML with the process for a big-step in
BSML-mbeddr. As shown in Figure 4.4a, BSML deduces all maximal, consistent subsets
(result sets) of the set of enabled transitions, of which one with the highest priority is
picked to execute as the current small-step. The aspect Order of Small-steps is introduced
in BSML to reduce the number of enabled transitions, and thus the number of result sets
within a small-step, thereby increasing the understandability of the model. The aspect
Order of small-steps specifies a precedence relationship among transitions, which means
that each transition has a set of preceding transitions. A transition is enabled only if each
of its preceding transitions either is disabled or has already been executed in the current
big-step. Note that the order of precedence and priority in BSML are both partial orders.

In contrast, in BSML-mbeddr, nondeterminism in deciding which enabled transitions
are included in the result set is resolved by the textual order in which model elements are

41

s

(a) BSML (b) BSML-mbeddr

Figure 4.4: Comparison of flowgraph of BSML and BSML-mbeddr.

declared, so that priority is a total order (Section 4.2.2). As shown in Figure 4.4b, BSML-
mbeddr constructs a single result set of the highest-priority enabled transitions using a
greedy process: firstly, enabled transitions are sorted by their priority, and an empty result
set is initialized; then each enabled transition, in decreasing order of priority, is considered
for inclusion in the result set – if the result set with the transition included remains
consistent, then the transition is added to the result set; otherwise it is not included.
Given an arbitrary set of enabled transitions, the result set constructed by BSML-mbeddr
is guaranteed to be one of the result sets with highest priority constructed by the BSML
big-step process. The proof is as follows:

Definition 4.2.1. For two transitions t1 and t2 in the same state-machine model, we say
that t1 <m t2 if t1 has higher priority than t2 in BSML-mbeddr; similarly, we say that
t1 <b t2 if t1 has higher priority than t2 in BSML. A transition can never have a higher
priority than itself.

Lemma 1. <m is a topological order of <b. That is, for any two transitions t1 and t2,
t1 <b t2 ⇒ t1 <m t2.

Proof. We prove it for semantic options Explicit and Hierarchical respectively. For

42

Explicit, t1 <b t2 means that t1 is assigned a smaller integer than t2, which in BSML-
mbeddr also indicates t1 has higher priority than t2 (Section 4.2.2), thus, t1 <m t2. For
Hierarchical, t1 <b t2 means that t1 is an ancestor or descendant node of t2, depending
on whether the sub-aspect Scheme is Parent or Child. In BSML-mbeddr t1 being an
ancestor or descendant node of t2 also indicates t1 has higher priority than t2 (Section
4.2.2), thus, t1 <m t2. �

Definition 4.2.2. Predicate Cr(t) is true if and only if t can be executed according to
the semantic aspect Big-step Maximality. Commutative predicate Cs(t1, t2) is true if and
only if t1 and t2 do not conflict with each other according to semantic aspects Concurrency,
Consistency, and Preemption. The consistency checking criteria C(T) checks whether a
set of transitions T is consistent, which is defined as: C(T)⇔ (∀t ∈ T : Cr(t))∧ (∀t1, t2 ∈
T : t1 6= t2 ⇒ Cs(t1, t2)).

Lemma 2. Given a transition t, a set of transitions T , and consistency checking criteria
C, it holds that C(T) ∧ Cr(t) ∧ (∀t′ ∈ T : Cs(t, t

′))⇒ C(T ∪ {t}).

Proof. To prove C(T ∪ {t}) holds, let us prove that (1) ∀t′ ∈ T ∪ {t} : Cr(t
′), and (2)

∀t1, t2 ∈ T ∪ {t} : Cs(t1, t2), according to Definition 4.2.2.

(1) According to Definition 4.2.2, C(T) ⇒ (∀t′ ∈ T : Cr(t
′)). Then Cr(t) ∧ (∀t′ ∈ T :

Cr(t
′)) ⇒ (∀t′ ∈ T ∪ {t} : Cr(t

′)). (2) According to Definition 4.2.2, C(T) ⇒ (∀t1, t2 ∈
T : t1 6= t2 ⇒ Cs(t1, t2)). Then ∀t1, t2 ∈ T ∪ {t} : t1 6= t2 ⇒ Cs(t1, t2)) holds if t1 6= t and
t2 6= t. Next, let us consider the situation that t1 = t, t2 6= t (or t2 = t, t1 6= t, equivalently):
∀t2 ∈ T : Cs(t, t2) holds by assumption. Therefore, C(T ∪ {t}) holds. �

Lemma 3. Given a set of transitions T , and consistency checking criteria C, it holds that
T ′ ⊆ T : C(T)⇒ C(T ′).

Proof. According to Definition 4.2.2, ∀T ′ ⊆ T : C(T) ⇒ (∀t ∈ T : Cr(t)) ∧ (∀t1, t2 ∈
T, t1 6= t2 : Cs(t1, t2))⇒ (∀t ∈ T ′ : Cr(t)) ∧ (∀t1, t2 ∈ T ′, t1 6= t2 : Cs(t1, t2))⇒ C(T ′). �

Definition 4.2.3. For two sets of transitions T1 and T2, we call T1 l T2 if T1 has higher
priority than T2 in BSML. T1 has higher priority than T2 if ∃t1 ∈ T1,∀t2 ∈ T2 : t1 <b t2
(Section 3.2.8).

Theorem 4. Given a set of enabled transitions T and consistency checking criteria C,
let Rm ⊆ T be the result set constructed by BSML-mbeddr; let R be the set of result
sets constructed by BSML, where ∀R ∈ R : R ⊆ T . It holds that (1) Rm ∈ R and (2)
∀R ∈ R : ¬(RlRm).

43

Proof. (1) With the same consistency checking criteria and the same set of transitions,
BSML constructs all maximal, consistent result sets R while BSML-mbeddr constructs a
single consistent result set Rm by a greedy process. First let us prove by contradiction
that Rm is maximal. Assume that ∃R′

m ⊆ T : Rm ⊂ R′
m. Then ∃t′ : t′ ∈ R′

m ∧ t′ /∈ Rm.
According to Definition 4.2.2, (t′ ∈ R′

m) ∧ C(R′
m) ⇒ Cr(t

′) ∧ (∀t′′ ∈ R′
m : Cs(t

′, t′′) ⇒
Cr(t

′) ∧ (∀t′′ ∈ Rm : Cs(t
′, t′′). Then according to Lemma 2, C(Rm) ∧ Cr(t

′) ∧ (∀t′′ ∈ Rm :
Cs(t

′, t′′)⇒ C(Rm ∪ {t′}). Then according to Lemma 3, ∀R′′
m ⊆ Rm : C(R′′

m ∪ {t′}). This
contradicts with the fact that when t′ is considered for inclusion in a subset of Rm, it is
not chosen to be included. Thus Rm is maximal. Therefore, Rm ∈ R.

(2) Assume that ∃Rb ∈ R such that Rb l Rm. Then ∃tb ∈ Rb,∀t ∈ Rm : tb <b t
according to Definition 4.2.3. According to Lemma 1, ∀t ∈ Rm : tb <m t. Because BSML-
mbeddr considers transitions for inclusion in the result set in order of decreasing priority,
tb would be considered before any transition t in Rm. Thus, the result set would be empty
when tb is considered for inclusion. According to Definition 4.2.2, (tb ∈ Rb) ∧ C(Rb) ⇒
Cr(tb), which further indicates that tb ∈ Rb would be added to the empty result set when
considered for inclusion, i.e., tb ∈ Rm. This contradicts the previous proposition ∀t ∈ Rm :
tb <m t because a transition can never have a higher priority than itself (Definition 4.2.1).
Therefore, ∀R ∈ R : ¬(RlRm) holds. �

BSML is a theoretical work where all possible maximal, consistent sets of enabled
transitions should be considered and explored. In particular, analysis of a state-machine
model should examine all possible result sets since all are acceptable responses to the
environmental input. However, BSML-mbeddr is a concrete implementation of BSML for
the purpose of execution. It is sufficient for BSML-mbeddr to construct a single acceptable
response to the environmental input. Given that all of the transition sets in BSML’s result
sets are equally acceptable, BSML-mbeddr constructs just one – using the textual order
of definitions to choose among equally acceptable choices. Our resolution strategy helps
to ensure that the modeller can predict what the result set will be and can use definition
order to effect some control on the result set. BSML-mbeddr does not employ the Order of
Small-steps aspect in its big-step process because after introducing a total priority order,
there is no obvious need to introduce Order of Small-steps to impose a partial precedence
order on the enabled transitions. Moreover, a particular Order of Small-steps might cause
confusion for the modeller. For example, if the modeller explicitly assigns a higher priority
to a transition than its preceding transitions, and if the transition’s triggering events are
present and its guard condition is true, the transition still cannot be enabled if any of its
preceding transitions are enabled, because Order of Small-steps applies before Priority. This
scenario might be counter-intuitive and unwanted for the modeller.

44

main
t: e1∧¬e2[true] {e2();}

t’: e1∧e2[true]

Figure 4.5: Example model demonstrating unintended behaviour when options Present
in Same and Negation of Triggers are selected together.

4.2.4 Present in Same and Negation of Triggers

In BSML, option Present in Same within aspect Event Lifeline indicates that any gener-
ated event is present only in the small-step in which it is generated, so that it can enable
other transitions in the same small-step. The option Negation of Triggers within
aspect Priority allows transitions to be triggered by the absence of events. However, we
find that the two options, when selected together, may cause confusion in a scenario where
multiple transitions that are triggered by either the presence or the absence of the same
event are enabled in the same small-step. For example, in Figure 4.5 if event e1 is present,
event e2 is absent, and Present in Same is chosen, then transition t is executed that
generates e2, which further triggers t′ in the same small-step. This results in an unintended
scenario where t and t′, triggered by the presence and the absence of e2, respectively, be-
ing enabled and executed in the same small-step. In BSML-mbeddr, Present in Same
and Negation of Triggers are supported, but not as semantic options. Trigger by
the absence of an event is a language feature that is always enabled. Similarly, Present
in Same is a language feature that is always enabled but only for a special type of event
called rendezvous event, which is syntactically specified. Thus, Present in Same applies
automatically when a transition has a rendezvous event as its triggering event.

4.2.5 External Event

Our implementation of semantic options within the External Event semantic aspect is con-
sistent with those in BSML (Section 3.2.4). However, BSML does not specify the concrete
notation to syntactically determine in-events and out-events. In BSML-mbeddr, the mod-
eller is able to tag an event as in’ event, whereas any event with event binding is syntacti-

45

cally determined to be an out-event. If option Syntactic is chosen for the External Input
Events semantic aspect, only events that are syntactically determined to be in-events can
be triggered from the environment. For a generated event that is bound to a function and
determined to be an out-event, the resulting function call (called event-binding call) is
executed at the end of a big-step; the event-binding call of an event that is not determined
to be an out-event is ignored.

4.2.6 Granularity of Semantic Configuration

It is not specified in BSML whether the execution semantics shall be configured per group
of state-machine types, per state-machine type, or per state-machine instance. In BSML-
mbeddr, a semantic configuration is associated to a mbeddr program, which may contain
the definition and usage of multiple state-machine types whose semantics follow the same
semantic configuration. It is theoretically possible to assign the semantic configuration
per state-machine type or per state-machine instance. However, mbeddr support only one
instance of such a configuration (from language module mbeddr.buildconfig) per mbeddr
program.

46

Chapter 5

Implementation

In this chapter we discuss the implementation of BSML-mbeddr. BSML is implemented
by defining each language aspect within mbeddr, the background of which is introduced
in Chapter 2. In Section 5.1, we present the implementation of the BSML-mbeddr syntax.
We first discuss the interface and concrete concepts of the structure aspect, and then we
briefly talk about the usage of the other aspects including constraint, editor, type system
and behaviour1. In Section 5.2, we present the implementation of the BSML-mbeddr
semantics. We first illustrate by example the layout of the generated code, and then we
briefly introduce the template-based generator aspect that transforms the source model
into C-code fragments.

5.1 Syntax Implementation

5.1.1 Interface Concepts

We have defined a set of interface concepts for expressing the abstract behaviour and
common properties of state-machine elements. This approach separates the abstract defi-
nitions of behaviours from their concrete implementations, so that the language definition
is modular and reusable.

Figure 5.1 shows the interface hierarchy of BSML-mbeddr (mbeddr’s built-in concepts
are highlighted in color). The most basic interface concept is ISMElement, which rep-

1IDE-related aspects such as intention and action are not discussed in this thesis but their source code
can be found in our github repository https://github.com/z9luo/BSML-mbeddr

47

https://github.com/z9luo/BSML-mbeddr

Figure 5.1: BSML-mbeddr Interface Hierarchy. mbeddr’s built-in concepts are highlighted
in color.

resents all state-machine elements. ISMNamedElement extends ISMElement and
IIDentifierNamedConcept, to represent all named state-machine elements. It inherits
method qualifiedName() from IIdentifierNamedConcept so that every state-machine
element is assigned a globally unique name (Figure 5.2a). Method id() in ISMNamedEle-
ment transforms a unique name in the model into a legal C variable name (Figure 5.2b).
IStateMachine, IRegion, IState, ITransition and IEvent all extend ISMNamedEle-
ment; whereas AbstractBlock implements ISMElement because entry blocks are not
named elements.

IRegion, IStateMachine and IState all extend ISMElementScopeProvider (Fig-
ure 5.2c), denoting that they each provide a container of ISMElement (retrievable through
calls to method getContainedElements()), and a local scope for the contained elements (re-
trievable through calls to method getV isibleElements()). ISMElementScopeProvider

48

(a) IIdentifierNamedConcept, qualifiedName().

(b) ISMNamedConcept, id().

(c) ISMElementScopeProvider, getContainedElements() and getV isibleElements()

Figure 5.2: Example Behaviours of Interface Concepts

extends IContainerOfUniqueNames, so that conflicts among global names are detected
automatically. IRegion extends ILocalVarScopeProvider indicating that local vari-
ables can be defined within a region.

5.1.2 Concrete Concepts

Figure 5.3 shows the structure of BSML-mbeddr concrete concepts as well as the exten-
sion points where a state-machine model is integrated into the mbeddr program (mbeddr’s
built-in concepts are highlighted in color). The root node of the mbeddr program is Imple-
mentationModule, which contains a list of IModuleContent. GlobalVariableDecla-
ration and Function implement interface IModuleContent, so that they can be created
under ImplementationModule to declare functions and global variables. A Function
node contains a StatementList as its function body. Finally, LocalVariableDeclara-
tion extends Statement, which provides additional properties such as name and type for
a local variable.

As for the extension points, SMGlobalDeclaration, which is the root node of a state
machine, implements IModuleContent, so that it can be created along with other global
variables, functions, enum and struct types in the mbeddr program. RegionLocalDecla-
ration and StateLocalDeclaration both extend LocalVariableDeclaration, whereas

49

Figure 5.3: BSML Syntax. mbeddr’s built-in concepts are highlighted in color.

50

Figure 5.4: Structure Example, Transition.

the other state-machine elements extend Statement. Each state-machine element container
(state machine, state, region) contains a StatementList, so that state-machine elements
can be defined within it. In the constraint aspect, we specify the types of state-machine
elements that can be contained in each container.

From Figure 5.1 and Figure 5.3, we highlight the points where language features in
Section 4.1.3 are implemented:

• ISMNamedElement provides qualified global names and ISMElementScope-
Provider provides the local scope for a state-machine element (Name Scoping).

• RegionLocalDeclaration implements ILocalVarScopeProvider that may con-
tain LocalVariableDeclaration; AbstractBlock and the action attribute of Tran-
sition both contain StatementList where LocalVariableDeclaration can be re-
ferred (Variables).

• SMTrigger and SMTerminate both extend Statement, whereas SMStart ex-
tends Expression. They are used in the environmental code to start and terminate
a state-machine instance, and to trigger environmental inputs (Interaction with En-
vironment, Section 4.1.4).

• Event contains a list of IArgumentLike (Event with Arguments) and an optional
reference to a Function (Event Binding); it has a tag to denote whether the event is
used locally or externally (External Event).

• Because FunctionCall is a subtype of Statement, a function call can be made
within an action or an entry block (Function Call).

51

• EntryBlock extends AbstractBlock, which extends Statement. It allows an
entry block that contains a StatementList to be defined within a region or state
(Entry Block).

• Transition contains a list of TriggerEventRef (Multiple Triggers). Each Trig-
gerEventRef contains a reference to an IEvent and a boolean variable indicating
whether the trigger is negated (Negation of Triggers).

5.1.3 Other Language Aspects

In this section, we briefly discuss the roles of the language aspects of editor, constraint,
type system and behaviour in BSML-mbeddr. More detailed descriptions of these can be
found in Appendix A.

� Editor It defines how the abstract syntax of a model is projected to concrete represen-
tations. Additionally, it plays as a key role in hiding and recovering syntax when
certain syntax needs to be disabled or re-enabled when the semantic configuration
is changed by the modeller. For example, the stable tags on states are visible only
when Big-step Maximality is Syntactic.

� Constraint It is used to achieve two goals: a) restrict which node can be a paren-
t/child/ancestor of another node, and b) specify the search scope of a reference node,
if it has any. For example, we impose constraints on RegionLocalDeclaration
that a) restrict the types of containing statements to LocalVariableDeclaration,
IEvent, ITransition, IState and AbstractBlock; and b) define the search scope
of its initial state to be all the contained states within the region.

� Type System It is used to derive or check types of concepts. A state-machine model
is defined similarly to a C struct, so that variables can be of a state-machine type.
We provide type derivation rules to make sure that variables of a state-machine type
are resolved correctly. We also provides type-checking rules that check whether in
event binding the declared types of arguments in the event match those in the bound
function, and that check whether there is a name conflict in an element container,
and so on.

� Behaviour It is used to define abstract methods in an interface to abstract away the
implementation detail, or to define concrete methods in a concrete concept; a concrete
method may implement an abstract method or override another concrete method. For

52

example, interface ICallLike defines several abstract methods in its behaviour, and
any concrete concept that implements ICallLike as well as its abstract methods
gains the benefit of argument type checking automatically.

5.2 Semantics Implementation

5.2.1 Code Layout

1 enum SM_StateEnum{
2 sm_main_off,
3 sm_main_on,
4 sm_main_on_r1_a1,
5 sm_main_on_r1_a2,
6 sm_main_on_r2_b1,
7 sm_main_on_r2_b2
8 };
9 enum SM_EventEnum {...};

10 enum SM_RegionEnum {...};
11 enum SM_TransEnum {...};
12 struct SM_SMStruct {
13 SM_StateEnum sm_main_cur_state;
14 SM_StateEnum sm_main_on_r1_cur_state;
15 SM_StateEnum sm_main_on_r2_cur_state;
16 //Collecting event bindings to functions,
17 //and execution at the end of a big-step.
18 GPtrArray* bindings;//Array of BindingCall*
19 //Other local variables
20 boolean sm_main_guard;
21 int sm_main_countOff;
22 Status sm_main_status;
23 ...
24 };
25 struct BindingCall {
26 void (*func)(void** args);
27 void** args;
28 };

(a)

29 struct SM_Transition {
30 SM_TransEnum trans_enum;
31 SM_StateEnum*[] _cur_states;
32 SM_StateEnum[] new_cur_state_value;
33 ActionRef action_ref;
34 BlockRef[] entry_refs;
35 SM_RegionEnum arena;
36 bool enter_stable_state;
37 int priority;
38 boolean is_interrupted
39 ...
40 };
41 void action_main_on_r1_t1(...) {
42 //body of transition action.
43 }
44 void on_entry_main_on_r1_a1(...) {
45 //re-initialize non-static variables; and execute

entry block.
46 }
47 struct Event {
48 uint32_t type;
49 void** args;
50 };
51 typedef GPtrArray as EnvInput;//Array of Event*
52 struct SMHandle {
53 GThread* instance;
54 GAsyncQueue* queue;
55 };

(b)

Figure 5.5: Example of Structural Code Layout

Figure 5.5 and Figure 5.6 illustrate by way of an example the layout of the struc-
tural and behavioural code, that is generated from the state-machine model as well as the
environmental code in Figure 4.2.

Figure 5.5 shows snippets of the structural code that is generated for the state-machine
model in Figure 4.2a. An enum type SM StateEnum (Line 1) is generated for the state-
machine type SM that lists all the state names as enum values. Similarly, enum types
are generated for the names of regions, events and transitions (Line 9-11). A struct
SM SMStruct (Line 12) is generated for SM that stores all of the run-time information
for the state-machine instance. State machine SM can have multiple instances running

53

concurrently, each of which has its own SM SMStruct instance. A state-machine’s run-
time information includes the current state of each region (Line 13-15), the values of
state-machine variables (Line 20-22), and an array of function calls of events bindings
for generated out-events (i.e., BindingCall) (Line 18). Struct BindingCall (Line 25) con-
tains a pointer to the bound function and a pointer to the actual arguments. A struct
SM Transition (Line 29) is generated for SM to store information about a declared transi-
tion and for holding some run-time information. Specifically, a Transition struct instance
records a transition’s enum value, its priority, a pointer to its action, a sequence of entry
blocks and some run-time information such as the memory addresses of the cur state vari-
ables that the execution of the transition will affect as well as the new cur state values.
Each action and entry block is transformed into a function (Line 41 and 44). A struct Event
(Line 47) that is generated once in an mbeddr program, contains an integer denoting its
type and a pointer to its arguments, storing a generated event instance; an environmental
input (i.e., EnvInput, Line 51) struct that is generated once in an mbeddr program, is a list
of Event instances. An instance of SMHandle (Line 52), containing a pointer to a thread
and an input queue, is generated for each state-machine instance. The SMHandle variables
are used in the environmental code to start and terminate the corresponding state-machine
instance, or to generate an environmental input and put it into the input queue.

Figure 5.6a shows snippets of the behavioural code that is generated for the state-
machine model in Figure 4.2a. A state-machine instance is launched by executing function
sm start() (Line 1). sm start() first instantiates a SMStruct to store all of the run-
time information associated with the instance (Line 2-3). Then it keeps listening on the
input queue that was passed in by argument, retrieving environmental inputs and calling
execute big step() for each environmental input (Line 4-9). In a big-step (Line 10-31),
small-steps are executed in a while-loop (Line 15-27) until no more transitions can be
executed. During a small-step, enabled transitions are identified, and a maximal, consistent
result set is derived; transitions in the result set are executed and event-binding calls are
collected. A big-step ends when no more small-steps can be executed. Afterwards, event-
binding calls of out-events are executed (Line 29-31). The predicate is consistent() is used
within the execution of a big-step to check whether a given transition can be added to the
result set without violating any semantic criteria (Line 32-35).

Figure 5.6b shows snippets of the environmental code that is generated for the source
environmental code in Figure 4.2b, which helps illustrate the translation for SMStart,
SMTerminate and SMTrigger. To start a state-machine instance, a SMHandle struct is
instantiated (Line 3-8) with an input queue and a thread executing sm start(). To trigger
an environmental input (Line 20-32), first the actual arguments of the generated events are
wrapped in a pointer array; then the event instances are created and stored in an EnvInput

54

1 void sm_start(GAsyncQueue* in_queue) {
2 SMStruct snapshot_big;
3 init_snapshot(&snapshot_big);
4 while(true) {
5 EnvInput* in=g_async_queue_pop(in_queue));
6 for (Event* e : in)
7 snapshot_big.present_events[e->type]=e;
8 execute_big_step(&snapshot_big);
9 }}

10 void execute_big_step(SMStruct* snapshot_big) {
11 SMStruct* snapshot_small=copy(snapshot_big);
12 SMStruct* snapshot_cur=copy(snapshot_big);
13 Transition** enabled_transitions;
14 //small-step
15 do {
16 nested switch-cases.//identify enabled

transitions
17 //calculate the result set
18 sort(enabled_transitions);//according to priority
19 result_set={};
20 for (Transition trans : enabled_transitions)
21 if(is_concsistent(result_set, trans, snapshot)
22 result.add(trans);
23 //execute transitions and
24 //collect binding of generated out-events
25 for (Transition trans : result_set)
26 handle_transition(trans, snapshot->bindings);
27 } while (result_set is not empty)
28 //end big-step
29 for(BindingCall* call in snapshot->bindings)
30 call->func(call->args);
31 }
32 boolean is_consistent(Transition** result_set,

Transition* trans, SMStruct* snapshot) {
33 \\check whether adding trans in result_set will

results in a consistent result_set
34 ...\\checking against each semantic aspect
35 }

(a) State-machine Behavioural Code

1 int main(int argc, char* argv[]) {
2 SMHandle* m1;
3 { //generated code for \concept{SMStart}
4 SMHandle* ret=(SMHandle*)(malloc(sizeof(SMHandle)

);
5 ret->queue=g_async_queue_new();
6 ret->instance=g_thread_new(&sm_start, ret->queue)

;
7 m1=ret;
8 }
9 trigger_events(m1);

10 { //generated code for SMTerminate
11 SMHandle* cur=m1;
12 ... //send a "terminate" event
13 //join its thread and free memory
14 g_thread_join(cur->instance);
15 g_async_queue_unref(cur->queue);
16 free(cur);
17 }
18 }
19 void trigger_events(SMHandle* m1) {
20 { //generated code for SMTrigger
21 //wrap actual arguments
22 void** args_0 = 0;
23 args_0 = (void**)(malloc(1 * sizeof(void*)));
24 int8_t* arg0 =(int8_t*)(malloc(sizeof(int8_t)));
25 *arg0 = 22; //the actual argument
26 args_0[0] = arg0;
27 //trigger environmental input
28 EnvInput* input = g_ptr_array_new();
29 g_ptr_array_add(input,
30 create_event(EventEnum_e1, args_0));
31 g_async_queue_push(m1->queue, input);
32 } ...
33 }

(b) Environmental Code

Figure 5.6: Example of Behavioural Code Layout

array; lastly the EnvInput instance is pushed onto an input queue. To terminate a state
machine (Line 10-17), a special “terminate” event is sent to the state-machine instance
which will be terminated after all pending environmental inputs in the input queue are
processed; afterwards the thread is joined with the main thread and the input queue is
released.

5.2.2 Template-based Generator

In this section, we briefly talk about the templates that reduce each element in the source
model to a code fragment in the target language. Detailed descriptions about the template-
based generator can be found in Appendix B.

� reduce StateMachine It maps a SMGlobalDeclaration element to the struct and

55

enum types shown in Figure 5.5 and the functions shown in Figure 5.6a. In the gener-
ated execute big step() function, reduce StateMachine calls template reduce Region
for each contained region, which generates code to collect enabled transitions. Then
reduce StateMachine generates code to calculate and execute the result set in a small-
step, finally generating code to execute the delayed event-binding calls at the end of
a big-step.

� reduce Region It maps a RegionLocalDeclaration element to a StatementList
that contains a switch-case statement within which reduce Region is recursively called
for each sub-region within sub-states of the current region, and another switch-case
statement that generates code to collect enabled transitions in the current region.

� reduce EventArgRef Event arguments of the triggering event can be referred in the
action or guard condition of a transition, . However in the generated code, the type
of event argument is not an argument: it is a struct member in an instance of Event.
reduce EventArgRef resolves an EventArgRef to the corresponding StructMem-
berRef.

� reduce LocalVarRef It resolves a LocalVarRef in a state machine onto a Struct-
MemberRef in a SMStruct instance.

� reduce EventCall It reduces an EventCall (event generation inside a state machine)
to a StatementList with code that wraps the actual arguments in a pointer array,
creates an Event instance, and collects event-binding calls.

� reduce SMStart/SMTrigger/SMTerminate These templates reduce SMStart, SMTrig-
ger, and SMTerminate to StatementList with corresponding code as shown in
Figure 5.6b.

� reduce SMType It reduces a SMType to a SMHandle struct.

56

Chapter 6

Validation

We have presented BSML-mbeddr, for building semantically configurable state-machine
models in mbeddr’s C programming environment. In this chapter we investigate the cor-
rectness and expressiveness of BSML-mbeddr.

6.1 Correctness

To demonstrate that our implementation of BSML matches its specification [7][9], we have
designed test suites that cover all implemented semantic options (Section 3.2 and Table 4.1)
and all language features (Section 4.1.3). For each test case, we identify the semantic option
or language feature it should exercise, and we design the state-machine model and semantic
configuration that forms a suitable context for the testing. Next, we group test cases that
use the same semantic configuration and that use the same state-machine model, and we
merge similar state-machine models used by different groups of test cases. Eventually, our
designed test forms a set of test suites, each of which has a structure as follows:

• A semantic configuration associated with an mbeddr program

• An mbeddr program comprising:

– One or more state-machine models

– Environmental code containing a set of test-case functions, each of which tests
the functionality of a single semantic option or a language feature. A test-case
function contains:

57

∗ Statements that create an instance of a state-machine model and trigger
environmental inputs.

∗ Statements that check whether the output matches the expectation.

In addition to test cases that test the functionality of a single semantic option or lan-
guage feature, we also have test cases with complex state-machine hierarchy and execution
behaviour that test the overall functionality, although not systematically. We did not cover
all valid combinations due to the huge search space.

A language feature or semantic option might be tested multiple times in different con-
texts. For example, cross-hierarchy transitions are tested in the situation where its target
state is the ancestor or descendant of the source, as well as in the situation where the target
state and source state are in orthogonal regions; variables are tested in situations where
they are used in guard conditions, entry blocks, actions, and where they are evaluated in
expressions and assigned to; the semantic option Arena Orthogonal is tested when two
transitions are: 1) arena orthogonal, 2) not arena orthogonal but source-target pairwise
orthogonal, and 3) neither source-target pairwise orthogonal nor arena orthogonal.

Our test cases use the mbeddr.unittest language extension, so that performing a test
case simply entails including the test in an ExecuteTest expression in the main function.
mbeddr.unittest allows the tester to include assertions in a test-case function, so that
an error will show when the assertion is not true. BSML-mbeddr state machines run
asynchronously whereas mbeddr.unittest requires that assertions of results are performed
in the same test-case function where the environment input is triggered; thus, we use
synchronization techniques to make sure the processing of a big-step has finished before
accessing and asserting the returned results.

6.2 Expressiveness

We have conducted several case studies to exercise the expressiveness of BSML-mbeddr.
Our motivation is to assess the applicability and integrability of BSML-mbeddr into mbeddr’s
C programming environment, and to check that one can use BSML-mbeddr to build real-
world state-machine models with various semantic requirements. We categorize our inten-
tions of exercising BSML-mbeddr into five categories: 1) big-step execution semantics, 2)
hierarchical states and cross-hierarchy transitions, 3) concurrent regions and inter-region
communication, 4) configurable semantics, and 5) code-model interaction and integration.

We have conducted three case studies with BSML-mbeddr: 1) a Ground Traffic Control
(GTC) system [26] which exercises concurrent regions and big-step semantics; 2) a Dialler

58

Figure 6.1: GTC Case Study [26]

System case study, adopted from example models in BSML [9], which exercises configurable
semantics, big-step semantics, concurrent regions, and cross-hierarchy transitions; and 3)
a State-Machine Factory case study that we created ourselves, and exercises the model-
environment interactions and integration. The third case study demonstrates an approach
to implement the synchrony hypothesis in BSML-mbeddr.

To conveniently visualize our model, we introduce some graphical notations in the
following figures: the notation “t1 : (e1∧ e2)[guard]/action;” denotes that a transition t1 is
enabled by the presence of two triggering events e1 and e2, whose guard condition is guard
and action is action; the initial state of a region is pointed by an arrow with black dot; a
stable state is notated by a check mark .

6.2.1 Ground Traffic Control

Our Ground Traffic Control (GTC) case study is adopted from a work by Prout [26],
originally developed by Bultan and Yavuc-Kahveci [37]. GTC simulates an airport control
system that receives and sends signals to schedule airplanes to exclusive access to runways
and taxiways that interconnect runways. We select GTC as one of our case studies because
of its complex logical inter-region communications through shared variables and events,
that helps to exercise the expressiveness of BSML-mbeddr.

Shown in Figure 6.1, GTC simulates an airport control system that schedules the usage
of two runways RW1 and RW2, three taxiways TW1, TW2 and TW3, and a hanger. The

59

airport may be used by an arbitrary number of airplanes that may take off or land on
either runway. Arriving airplanes landing on runway RW1 must taxi on a taxiway to reach
a hanger, during which the airplane needs to cross runway RW2. The following properties
must hold for the system:

1. Only one airplane can use a runway at a time.

2. Only one airplane can use a taxiway at a time.

3. An airplane can use runway RW1 (RW2) only if no airplane is using RW2 (RW1).

4. An airplane on a taxiway can only cross runway RW2 if no airplane is using it.

5. An airplane can land or take off on RW2 only if no airplane is on a taxiway.

As shown in Figure 6.2a, we model GTC as a state machine with several concurrent
regions: an Airport Controller, a Taxiway Controller for each taxiway, and a Runway
Controller for each runway. The regions for taxiways TW2, TW3 and runway RW2 are
not shown in the figure, but their structures are similar to those for TW1 and RW1; all
six regions are modelled in the BSML-mbeddr case study. The Airport Controller receives
a req(act) event with an argument act indicating the requested action (e.g., request to
take off, land, enter a taxiway) from an airplane, and generates an ack(act) event with an
argument act indicating the granted action (e.g., granted to take off on RW1, land on RW2,
enter TW1) if the request is safe to be granted. The generated ack event causes updates to
the status of a taxiway or a runway over the course of several small-step; at the end of the
big-step, the airplane is notified to take the requested action. A Taxiway Controller receives
ack events from the Airport Controller and complete events from airplanes, to update the
status of a taxiway. Similarly, a Runway Controller receives ack events from the Airport
Controller and complete events from airplanes, to update the status of a runway.

We modelled the airplane as a state machine AirPlane (see Figure 6.2b) with an arbi-
trary number of instances that interact with GTC through bound functions. An AirPlane
instance maintains its current mode of operation (e.g., flying, landing, taxiing), and re-
ceives an in-event trigger from the tester to move a step forward. It updates its status
when receiving ack events from the GTC to perform an action and generates complete
events when the action has been performed. A successful take-off/landing cycle of a plane
in our model is as follows:

1. Generate req(TAKEOFF) to request to take off.

60

Idle

Landing
OnRW1

AirportController

TaxiwayTW1

main

Idle InUse

t1(prio=1): req(act)[act==LAND&&!busyRW1
 &&!busyRW2]/ {ack(LAND_RW1);}

t1:ack(act)[act==ENTER_TW1&&!busyTW1]/
 {busyTW1=true;}

Taxiing

t2(prio=2): req(act)[act==LAND&&!busyRW1&&!
busyRW2&&
 !busyTW1&&!busyTW2&&busyTW3]/
 {ack(LAND_RW2);}

t3(prio=4): req(act)[act==TAKEOFF&&!busyRW1&&!busyRW2&&
!busyTW1&&!busyTW2&&busyTW3]/
 {ack(TAKEOFF_RW2);}

t4(prio=3): req(act)[act==TAKEOFF&&!busyRW1
 &&!busyRW2]/ {ack(TAKEOFF_RW1);}

t5(prio=1): req(act)[act==TAXI&&!busyTW1]/ {ack(ENTER_TW1);}

t6(prio=1): req(act)[act==TAXI&&!busyTW2]/ {ack(ENTER_TW2);}

t7(prio=1): req(act)[act==TAXI&&!busyTW3]/ {ack(ENTER_TW3);}
t8(prio=2): req(act)[act==LAND&&!
busyRW1&&!busyRW2&&
 !busyTW1&&!busyTW2&&busyTW3]/
 {ack(LAND_RW2);}

t9(prio=3): req(act)[act==TAKEOFF&&!
busyRW1&&!busyRW2&&
!busyTW1&&!busyTW2&&busyTW3]/
{ack(TAKEOFF_RW2)}

t10(prio=1): req(act)[act==CROSS_RW2&&!busyRW2]/{ack_crossRW2(p)}

RunwayRW1

t2:ack(act)[act==CROSS_RW2]/
 {busyRW2=true;}

CrossingRW2CrossedRW2

t3:complete(act)[act==CROSS_RW2]/
 {busyRW2=false;}

t4:complete(act)[act==TAXI_TW1]/
 {busyTW1=false;}

Clear

Takeoff Landing

Idle

t2:complete(act)[act==TAKEOFF_RW1]/
 {busyRW1=false;}

t3:ack(act)[act==TAKEOFF_RW1]/
 {busyRW1=true;}

t1:ack(act)[act==LAND_RW1]/
 {busyRW1=true;}

t4:complete(act)[act==LAND_RW1]

t5:ack(act)[act==ENTER_TW1]/
{busyRW1=false;}

t6:ack(act)[act==ENTER_TW2]/
{busyRW1=false;}

t7:ack(act)[act==ENTER_TW3]/
{busyRW1=false;}

t11: req/ {rej();}

t12: req/ {rej();}

t13: req/ {rej();}

(a) GTC Model

t1:trigger[!wait]/
{req(TAKEOFF);}

main

Idle Flying Landing

TaxiingCrossing
RW2

Crossed
RW2

t2:ack(act)[act==TAKEOFF_RW1]/
 {RW_inuse=RW1;}

t3:ack(act)[act==TAKEOFF_RW2]/
 {RW_inuse=RW2;}

t5:trigger[!wait]/
req(LAND);

t6:ack(act)[act==LAND_RW1]/
 {RW_inuse=RW1;}

t10:trigger[!wait]/
{req(TAXI);}

t11:ack(act)[act==ENTER_TW1]/
 {TW_inuse=TW1;}

t15:ack(act)[act==CROSS_RW2]

t14:trigger[!wait]/
{req(CROSS_RW2);}

t16:trigger/
 {complete(CROSS_RW2);}

t17:trigger/
{complete(TAXI_TW_inuse);}

TakingOff

Landing
Complete

WaitFor
Response

t18:ack[wait]/
{wait=false;}

Wait

AirPlane t4:trigger/
{complete(TAKEOFF_RW_inuse);}

t7:ack(act)[act==LAND_RW2]/
 {RW_inuse=RW2;}

t9:trigger[RW_inuse==RW2]/
{complete(LAND_RW2);}

t8:trigger[RW_inuse==RW1]/
{complete(LAND_RW1);}

t12:ack(act)
[act==ENTER_TW2]/
 {TW_inuse=TW2;}

t13:ack(act)[act==ENTER_TW3]/
 {TW_inuse=TW3;}

t19:req[wait]/
{wait=false;}

t20:req[!wait]/
{wait=true;}

(b) AirPlane Model for Testing

Figure 6.2: GTC Models

61

2. Upon receiving ack(TAKEOFF RW1/RW2), take off on RW1/RW2 and change sta-
tus from Idle to TakingOff.

3. Generate complete(TAKEOFF RW1/RW2) to notify GTC the completion of taking
off and change status to Flying.

4. Generate req(LAND) to request to land.

5. Upon receiving ack(LAND RW1/RW2), take off on RW1/RW2 and change status to
Landing.

6. Generate complete(LAND RW1/RW2) to nodify GTC the completion of landing.
Change status back to Idle if the airplane uses RW1 for landing, otherwise change
status of LandingComplete if the airplane uses RW1 for landing and continue the
following steps.

7. Generate req(TAXI) to request to enter a taxiway.

8. Upon receiving ack(ENTER TW1/TW2/TW3), enter the corresponding taxiway
and change status to Taxiing.

9. Generate req(CROSS RW2) to request to cross runway RW2, in order to reach the
hanger.

10. Upon receiving ack(CROSS RW2), cross the runway RW2 and change status to
CrossingRW2.

11. Generate complete(CROSS RW2) to notify GTC the completion of using RW2.

12. Generate complete(ENTER TW1/TW2/TW3) to notify GTC the completion of
taxiing and change status back to Idle.

Shown in Figure 6.3, in the environmental code, we write test cases that instantiate
multiple airplanes, and simulate their concurrent interaction with GTC. For verification,
we express the properties described previously as assertions that must hold; any property
violation is reported as error. For example, to verify property 3, in the entry blocks of
states Landing and Takeoff within region RunwayRW1, we check whether runway RW2 is
in use; an error is reported if so. Additionally, properties 3, 4, and 5 are verified at the end
of each big-step, to make sure that they hold when the state machine is in a stable status.

We have made several unsubstantial changes to the original GTC model discussed as
follows.

62

#constant MAX_TEST_ROUND = 1000000;
#constant PLANE_NUM = 16;
int main() {
GTC gtc=sm_start(GTC);
AirPlane*[PLANE_NUM] planes;
for (i ++ in [0..PLANE_NUM])

plane[i]=sm_start(AirPlane);
for (i ++ in [0..MAX_TEST_ROUND]) {

//randomly pick an airplane to trigger
int64 rand=random() & 017;
sm_trigger(planes[rand],trigger(planes[rand]));

}
sm_terminate(gtc);

}

Figure 6.3: GTC Testing Environment

First, the original GTC lacks building of the environment, whereas we have created an
AirPlane state machine that simulates the interaction between GTC and multiple AirPlane
instances, as described above.

Second, since the original model lacks an interacting environment, rejected requests by
airplanes are simply discarded by GTC, which might cause problem in our environment
– repeated requests sent by an airplane could be granted multiple times by GTC (e.g.,
GTC might grant the airplane to land on RW1 and RW2 simultaneously), which case
cannot be handled correctly by the original model. Therefore, we introduce a rej event
to communicate rejected requests to airplanes. Specifically, if a req event does not trigger
any transition in GTC, then a rej event is generated indicating the denial of the requested
action; in AirPlane, after sending a req event, the airplane cannot send more requests until
it receives response from GTC (ack or rej); if the request is rejected, the airplane sends the
same request again until it is granted. This is achieved by adding a low-priority transition
that generates rej to each state in Airport Controller (Figure 6.2a), and by adding a region
Wait in AirPlane, where the value of a boolean variable wait that indicates whether the
airplane can generate req events is maintained (Figure 6.2b).

Third, the original model uses rendezvous events for inter-region communication, to
guarantee that the statuses of taxiways and runways are updated instantly, to ensure that
the state machine is always in consistent status at the end of every big-step. In contrast,
BSML-mbeddr uses normal events for inter-region communication, which are sensed as
present from the next small-step. We only need to make sure the status of a state machine
at the end of a big-step is consistent because inconsistent statuses in between small-steps
are not observable by the environment. In a second version of GTC, we also modelled
inter-region communications using rendezvous events in BSML-mbeddr. Specifically, we
changed the ack event in the above model to a rendezvous event, which results in a model
that works correctly as well.

63

Lastly, we left a property (called priority property) in the original model – stating that
landing requests have higher priority than take-off requests – unimplemented. Because an
input queue is used for each state-machine instance to sequentialize all inputs, the priority
property cannot be enforced by assigning higher priority to transitions that handle landing
requests than transitions that handle take-off requests, as did in the original model. It is
meaningless in the context of the environment we build because each big-step can have only
one request from an AirPlane instance as input, whichever arrived first. However, there are
approaches to simulate the situation where landing requests are processed with a higher
priority than take-off requests, by prioritize requests in the environment. For example, we
could create another state machine that collects requests from AirPlane instances; requests
arriving during a certain period of time are treated as “requesting arriving simultaneously”;
a high-priority request (i.e., a landing request, if any) in the collected requests is selected
and sent to GTC, while the rest requests are rejected. To implement the priority property
in such way would complicate our case study whereas the expressiveness of BSML-mbeddr
would not be further explored. Therefore, we decide to left this property unimplemented.

6.2.2 Dialler System

Our Dialler System case study is adopted from Esmaeilsabzali’s thesis [7] to exercise big-
step semantics, hierarchical states, and inter-region communication of BSML-mbeddr. In
addition, we explain at the end of the section how the selection of different semantic options
distinctly affects the execution semantics of the model and how it affects the model’s
correctness. The user of the Dialler System is able to dial the digits of a phone number,
or simply redial the previously dialled number. In addition, if the maximum number of
concurrent calls is reached, the dialling process should be interrupted. Shown in Figure
6.4a, the Dialler System contains a state with two regions Dialler and Redialler, and a state
Max for checking whether the limit of concurrent calls is reached. Region Dialler receives
an in-event dial(d) when the user dials a digit d, thereby by triggering transition t1, which
transmits out-event out(d) to the environment (e.g., the phone system) to establish a phone
connection. More digits than the first 10 dialled digits are ignored until the user hangs up
the phone. When the user hangs up the phone, reset() is generated that triggers t10 to
reset the status of Dialler and save the previously dialled number in last lp. When in-event
redial() is received, the Dialler System dials all digits of the previous dialled number in a
single big-step with multiple small-steps. Specifically, region Redialler reacts to in-event
redial() by executing t5 and t6 that generates dial(d) for each digit d in last lp. Then
the generated rendezvous event dial(d) triggers transition t2 or t3 in the same small-step
which further generates out(d). Lastly, the Dialler System returns to WaitForDial and

64

WaitForRedial

WaitForDial DialDigits

t2: (dial(d)∧redial)[c==0]/
 {lp=d;c=c+1;out(d)}

Dialler

Redialler

events&variables:
uint8 c=0;
uint64 lp=0;
uint64 last_lp=0;
rendezvous event dial(uint8 d);
event redial();
event out(uint8 d)=>handle_dial;
event reset();

environmental functions:
uint digit(uint64 lp, uint8 digit);
uint8 num_of_digits(uint64 lp);
boolean env_limit;
boolean limit();
void handle_dial(uint8 d);

✔

main

Max

RedialDigits

t1: (dial(d)∧¬redial)[c<10]/
 {lp=lp*10+d;c=c+1;out(d)}

t3: dial(d)[c<10]/
 {lp=lp*10+d;;c=c+1;out(d)}

t4: [c==10]
✔

✔

t5: redial(d)[c==0]/
 {p=last_lp;dial(digit(last_lp,1);}

t6: [c<num_of_digits(p)]/
 {dial(digit(p,c+1);}

t10: reset[true]/
 {last_lp=lp;c=0;lp=0;}

t7: [c==num_of_digits(p)]

t8: [limit()==true] t9: [limit()==false]

(a) Dialler Model (b) Semantic Configuration

Figure 6.4: Model and Semantic Configuration of the Dialler System

WaitForRedial states after the redialling is done. In each small-step, the environmental
variable limit is checked, and t8 is executed if the maximum number of concurrent calls is
reached, which interrupts the dialling/redialling process. For thread safety, we use a mutex
to protect the access of environmental variable limit.

We delicately select semantic options that make the model work correctly, as shown in
Figure 6.4b, and as explained as follows:

• Syntactic is chosen for Big-step Maximality. State WaitForDial, WaitForRedial,
Max are tagged as stable states.

• Event dial is a rendezvous event that has a Present In Same event lifeline. If gen-
erated in a small-step, dial is enabled in the same small-step and might trigger more
transitions, which makes sure the generated dial in t5 (t6) will trigger corresponding
t2 (t3) in the same small-step.

• Concurrency is Many, which allows multiple transitions to be executed in the same
small-step, in order to support the rendezvous semantics.

• External Input Events is Received In First Small. Since dial is generated both
from the environment and inside the state machine, we want to be sure that the dial
events that are generated inside the state machine not determined to be in-events.
An alternative is to choose Syntactic for External Input Events and Present In
Next Small for Input Event Lifeline, but this will restrict other in-events from being

65

1 statemachine SM_Dialing {
2 region main initial = Dialing {
3 uint8 c = 0;
4 uint64 lp = 0;
5 uint64 last_lp = 0;
6 rendezvous event dial(uint8 d);
7 event redial();
8 state Dialing {
9 region Dialer initial = WaitForDial {

10 event out(uint8 d) => handle_dial;
11 event reset();
12 (stable) state WaitForDial { };
13 state DialDigits { };
14 t1: on dial && redial[c < 10]

WaitForDial -> WaitForDial {
15 c = c + 1;
16 lp = lp * 10 + d;
17 out(d);};
18 t2: on dial && redial[c == 0]

WaitForDial -> DialDigits {
19 lp = d;
20 c = 1;
21 out(d);};
22 t3: on dial[c < 10] DialDigits ->

DialDigits {
23 lp = lp * 10 + d;
24 c = c + 1;
25 out(d);};
26 t4: on [c == 10] DialDigits ->

WaitForDial;

(a)

27 t10: on reset[true] WaitForDial ->
WaitForDial {

28 last_lp = lp;
29 c = 0;
30 lp = 0;};
31 };
32 region Redialer initial = WaitForRedial

{
33 uint64 p;
34 (stable) state WaitForRedial { };
35 state RedialDigits { };
36 t5: on redial[c == 0] WaitForRedial ->

RedialDigits {
37 p = last_lp;
38 dial(digit(last_lp, 1));};
39 t6: on [c < num_of_digits(p)]

RedialDigits -> RedialDigits {
dial(digit(p, c + 1)); };

40 transition t7: on [c == num_of_digits(
p)] RedialDigits ->
WaitForRedial;

41 };
42 };
43 (stable) state Max { };
44 t8: on [limit()] WaitForRedial -> Max;
45 t9: on [!limit()] Max -> Dialing;
46 };
47 };

(b)

Figure 6.5: Dialler Code

present in the remainder of the big-step. Note that even though the internal-event
dial is a rendezvous event, the in-event dial that is received at the beginning of a
big-step does not have a Present In Same event lifeline because the event is not
generated in a small-step.

• Preemption is Preemptive, so that when t8 is enabled, any other enabled transitions
are interrupted and the dialling/redialling process is aborted.

• Priority is Hierarchical, with sub-options Scope-Parent. This ensures that t8
has higher priority than any transitions inside state Dialler, so that t8 can interrupt
them. An alternative is to choose Explicit priority and assign higher priority to t8
than the other transitions.

We have designed test cases that validate that the dialling, redialling, and limit checking
functionality work as expected.

66

t3: get_instance[true]/
 {set(ret, sm_start(NonSingleton), sizeof[Singleton]);}

t1: get_instance[true]/
 {if (ins==null) ins=sm_start(Singleton);
 set(ret, ins, sizeof[Singleton]);}

t2: get_instance[true]/
 {set(ret, ins, sizeof[Singleton]);}

genSingleton

genNonsingleton

main

events&variables:
Singleton* ins;
event set(void* dest, void* src,
 size_t bytes)=>memcpy;
event get_instance(Singleton* ret)
event get_instance(NonSingleton*
ret);

big-step end { unlock(&mutex); }

Figure 6.6: State-Machine Factory Model

6.2.3 State-Machine Factory

Lastly, we have modelled a State-Machine Factory which exercise the way that state ma-
chines interact with their environment. This case study also demonstrates how to support
the synchrony hypothesis in BSML-mbeddr, such that a reaction (big-step) of the state
machine is considered to be atomic. Shown in Figure 6.6, a state machine SMFactory is
responsible for creating instances for state machines Singleton and NonSingleton, through
in-events get singleton instance() and get nonsingleton instance(), respectively. SMFac-
tory keeps an instance of Singleton and delivers the reference of it to the user upon request,
whereas it creates a new instance of NonSingleton upon request.

As shown in Figure 6.7a, in the environment, the user creates an instance of SMFactory,
and triggers get singleton instance() and get nonsingleton instance() to get instances of
Singleton and NonSingleton (Line 6). Note that an environmental input may contain mul-
tiple in-events, and their instances are received and processed in the same big-step. The
user must provide the address of variables of state-machine types (Line 3-4) as arguments.
In order to make sure that SMFactory acts atomically (i.e., that the user proceeds only
when SMFactory finishes processing a big-step), we use a mutex to synchronize interac-
tions between the state machine and environment. A mutex is locked (Line 5) before a
sm trigger() statement. The mutex is also locked (Line 7) before the first time the re-
turned state-machine instance is accessed. This technique ensures that SMFactory reacts
atomically so that the environment proceeds only when the state machine has finished
processing the environmental input.

In SMFactory, reference to pre-existing Singleton machine is returned upon request.
Out-event set instance() is bound to library function memcpy() (Line 14) and is issued

67

1 int32 main(int32 argc, string[] argv) {
2 SMFactory* sm = sm_start(SMFactory);
3 Singleton ret_single;
4 NonSingleton ret_multi;
5 g_mutex_lock(&mutex);
6 sm_trigger(sm, get_singleton_instance(&ret_single),

get_nonsingleton_instance(&ret_multi));
7 g_mutex_lock(&mutex);
8 sm_trigger(&ret_single, e());
9 sm_trigger(&ret_multi, e());

10 return 0;
11 } main (function)
12 statemachine SMFactory {
13 region main initial = main_state {
14 event set_instance(void* dest, void* const src, size_t

bytes) => memcpy;
15 event unlock_mutex(GMutex* mutex) => g_mutex_unlock;
16 state main_state {
17 region genSingleton initial = off {
18 Singleton* instance = null;
19 event get_singleton_instance(Singleton* ret);
20 state off { };
21 state on { };
22 t1: on get_singleton_instance[true] off -> on {
23 instance = sm_start(Singleton);
24 set_instance(ret, instance, sizeof[Singleton]);};
25 t2: on get_singleton_instance[true] on -> on {
26 set_instance(ret, (void*)instance, sizeof[

Singleton]);}; };

(a)

27 region genNonsingleton initial = any {
28 event get_nonsingleton_instance(

NonSingleton* ret);
29 state any { };
30 t1: on get_nonsingleton_instance[true]

any -> any {
31 set_instance(ret, sm_start(

NonSingleton), sizeof[
NonSingleton]);

32 // unlock_mutex(&mutex)
33 };};};
34 big-step end { g_mutex_unlock(&mutex); };
35 };};
36 statemachine NonSingleton {
37 region main initial = AnyState {
38 event e();
39 state AnyState { };
40 t1: on e[true] AnyState -> AnyState;
41 };};
42 statemachine Singleton {
43 region main initial = AnyState {
44 event e();
45 state AnyState { };
46 t1: on e[true] AnyState -> AnyState;
47 };};

(b)

Figure 6.7: State-Machine Factory Code

for each request, ensuring that the actual assignment is performed at the end of a big-step.
Then SMFactory releases the mutex to unblock the user, after processing a big-step (Line
34). The generalized usage of this technique is to block the user depending on the status
of the state machine. For example, imagine a debugger state machine that processes two
kinds of environmental inputs: commands from the console as well as callback messages
from the running program. We might want the user to be prevented from issuing commands
unless the target program has finished running. This can be achieved by locking a mutex
before a command is issued by the user in the environment, and unlocking the mutex
when the debugger enters a certain state in the state machine that grants the user to issue
commands.

68

Chapter 7

Discussions

In this chapter we address several issues we have encountered from our experience during
implementing BSML-mbeddr, which could guide people who work on similar language
implementations.

7.1 Designing Data Structure of Generated Code

Considering the big gap between the low-level target language such as C, and the high-
level source language such as a state-machine modelling language, we believe that one
important issue is to delicately design the data structure of generated code so that the
required run-time information is efficiently accessible.

Figure 7.1 illustrates the information flow during code generation and run-time execu-
tion of BSML-mbeddr. During code generation, information is retrieved from state-machine
models and converted to proper data format in the generated code, such as structs Tran-
sition and SMStruct. Functions based on templates are generated for basic behavioural
semantics that execute big-steps, identify enabled transitions, check semantic consistency,
execute transitions, and so on. Information on semantic configuration is retrieved that
resolves variation points in the execution semantics of a state machine, such as the be-
haviour of consistency checking among transitions, and of retrieval of variable values from
a snapshot; information on semantic configuration is resolved during code generation and
thus not stored in the generated code. Information that can be determined statically is
identified and computed during code generation, instead of being pushed to run-time to
be computed. For example, the sequence of entry blocks that a transition need to execute

69

Figure 7.1: Information Flow during Code Generation and Run-time Execution.

is computed during code generation, and such an array of function pointers is stored in
the Transition struct as a constant. During run-time execution, functions that represent
the behavioural semantics of state machines are executed, which manipulate static and
run-time information stored in our designed data structure.

Reckless decisions on the data structure design may cause required run-time information
being inaccessible. For example, we may generate a function for each state machine and
store its run-time status as static variables of the function. However this approach allows
only one instance per state machine because multiple instances running simultaneously
have to share the same set of static variables. A more flexible solution as we adopted, is
to create a struct SMStruct to store all the run-time information, which allows multiple
instances of the same state machine running concurrently (Section 5.2.2).

Reckless decisions on the data structure design may also cause required run-time in-
formation being inefficiently accessed. For example, we may store the state hierarchy of a
state machine as a tree structure in the generated code, and query for relations between
two given nodes in the state hierarchy by tree searching. However, we find that at run-time
we only need the following information for a state hierarchy: 1) given two regions, whether
they are orthogonal; 2) given two transitions, whether one transition interrupts the other;
3) if semantic aspect Priority is Hierarchical, given two transitions, which one has higher
priority. Therefore, we have decided to store the state-hierarchy information as bitmaps
(e.g., a two-dimension bitmap orthogonal, where orthogonal[a][b] is true if regions a and b
are orthogonal.) in the generated code that returns the required run-time information in
constant time complexity.

70

7.2 Evolving Semantic Configuration

An obstacle to implement configurable semantics is to consider dependencies between syn-
tax and semantics – certain syntax must be enable or disabled when the semantic config-
uration is change by the modeller, which requires extra caution to handle.

This issue is alleviated on mbeddr – with the projectional editor natural of mbeddr,
we are able to preserve syntactic information in the model which is neither projectioned to
concrete notations nor resulted in the generated code. For example, when semantic aspect
Big-step Maximality is Syntactic, states can be tagged as stable. If the modeller change
the option from Syntactic to Take Many, then all the stable tags should be removed.
Instead of removing the syntax from the model, we hide stable tags from the user and
ignore them during the code generation. If Big-step Maximality is changed back to Syn-
tactic, the hidden stable tags will show up again and take effect during code generation.
It saves the model from information loss during evolving semantic configuration.

When a certain syntax is enabled but its value is absent, normally the modeller is
responsible to fill all absent values. For example, if the modeller changes the semantic
aspect Big-step Maximality from Take Many to Syntactic, the modeller shall specify
every state to be either stable or non-stable. In order to easy the burden from the modeller,
we impose default values for syntax whose values are absent, so that the modeller only need
to fix the syntax when the default value is incorrect. In the above example, all states are
non-stable states by default, and only states that are stable need to be tagged.

7.3 Computational Complexity

In BSML, the process of a small-step includes deriving all maximal, consistent result sets
of enabled transitions, which incurs high computational cost. In BSML-mbeddr, nonde-
terminism is resolved by the textual order in which model elements are declared, so that
priority is a total order based on which we are able to apply a greedy process to calculate a
single result set for execution (Section 4.2.3). Our approach reduces the computation com-
plexity drastically, whereas it is proved that given an arbitrary set of enabled transitions
and consistency checking criteria, the result set constructed by BSML-mbeddr is one of
the result sets with highest priority constructed by the BSML big-step process (Theorem
4).

71

7.4 Language Usability

Some functionality introduced by new language features of BSML-mbeddr has equivalence
in BSML, but presented in a complicated way. For example, the functionality of the new
feature entry block can be achieved in BSML by appending statements in the entry block
to the actions of all transitions that enter the state or region. Similarly, language feature
static variable can be achieved by defining these static variables as non-static, but in
the main region; variables defined within the main region are initialized only when the
state-machine instance is created. We add these language features to BSML-mbeddr not
to extend the expressiveness of BSML but to makes it easier for the modeller to use.

7.5 Semantics of Added Language Features

When adding a new language feature to BSML-mbeddr, we must make sure to give it
appropriate syntactic and semantic meaning that neither confuses the modeller nor incurs
conflict with existing syntax and semantics of BSML. With configurable semantics, we also
need to decide whether its semantics shall be fixed or configurable1.

For example, the language feature event binding is originally introduced to deliver
outputs from a state-machine model to its environment. Before adding this feature, we ask
ourselves the following questions: a) shall event binding apply to all types of events or just
out-event? b) if event binding applies to all types of events, then what semantic meaning
shall be given to bindings to internal-events and in-events? c) if event binding applies to
out-event only, how to deal with the case that semantic aspect External Output Events is
not Syntactic, where whether an event is an out-event is determined at runtime?

A reasonable potential usage for event binding to in-events is to trigger environmental
inputs. That is, an in-event is triggered whenever the bound function is called. However,
we are not able to implement this if there exists functions imported from a C library due to
the limitation of mbeddr. Another issue is that, if semantic aspect External Output Events
is Syntactic, we are able to syntactically tag an event as out-event, which might confuse
the modeller because only event bindings to out-events take effect, otherwise are ignored.

To resolve the above issues, our solution is to let event binding be the syntactic notation
that determines whether an event is an out-event. If External Output Events is Syntactic,

1For consistency with the semantic deconstruction of the original BSML, all our added language features
are given fixed semantics.

72

then any event-binding call is executed because an event with a binding is always an out-
event. If External Output Events is not Syntactic, then only event-binding calls whose
event is determined to be an out-event at run-time are executed. This semantics for event
binding are both consistent with BSML’s External Output Events semantic aspect, and
make sense for the modeller to use.

Fortunately, we did not encounter such problems for many of the added languages
features which have quite straightforward syntax and semantics.

7.6 Event with Multiple Instances

BSML-mbeddr allows an event to be defined with arguments so that each generated event
instance is distinct. The semantics of multiple generated instances of the same event need
to be carefully resolved.

For in-events, multiple environmental inputs containing instances of the same in-event
can be generated and put into an input queue, each of which is processed by the state
machine with a big-step. For out-events, all event-binding calls of generated out-events
are collected and executed at the end of a big-step. However, it is tricky to resolve mul-
tiple instances of the same internal-event, with consideration of the Internal Event Lifeline
semantic aspect. Internal Event Lifeline regulates how long a generated instance of internal-
event is sensed as present, so that it is possible that an internal-event instance disappears
after a small-step without being processed by any transition, or remains to be present after
being processed by a transition. Therefore, the semantics “processed exactly once” does
not apply to BSML-mbeddr’s internal-events. Our solution is to treat internal-events in
the same way as to internal variables: the execution of a transition may write to a shared
variable which may trigger transitions in another region and its value may be read in some
other executed transitions. If the shared variable is written several times by multiple ex-
ecuted transitions, then later values will overwrite earlier values. Similarly, the execution
of a transition may generate an internal-event, that enables transitions in another region,
and the values of its arguments may be read in some other executed transitions. If the
internal-event is generated multiple times in a big-step, then later arguments will overwrite
earlier arguments.

Esterel [3], a member of BSML family, allows multiple instances of the same out-event
being generated at the same time, because the generation of out-events in Esterel takes
effect instantaneously. Esterel allows the modeller to associate an associative, commutative
combination function with each out-event, so that simultaneous generation of multiple

73

instances of the same out-event are combined into a single instance by combining each
argument of the out-event. Because BSML-mbeddr collects all instances of out-events and
calls their bound functions at the end of a big-step, BSML-mbeddr is able to support
Esterel semantics by storing arguments of each out-event instance (e.g., by storing them
in static or global variables of array type) in the bound function and combine them in the
same way as in a combination function.

7.7 Big-step Semantics

In this section we address several issues considering the regulation of the big-step semantics.

First, BSML requires that the consequence of a big-step is not observable by the envi-
ronment until the end of a big-step. We use the following three strategies to achieve this
goal:

• The bound function of a generated out-event is not called immediately. Instead, we
collect all the event-binding calls and delay their execution to the end of a big-step.

• In the state machine, we banned any operation that might change the status of the
environment, including global variable reference on the left-hand-side (LHS) of an
assignment, pointer dereference on LHS, self incremental or decremental operation
on global variables, etc.

• A function can be called in a state machine only if it is tagged as a state-machine
function. A state-machine function must not change the status of the environment,
neither can it call any function that is not a state-machine function.

Second, the question raised that whether it should be allowed to call functions in a state
machine that is imported from a C library. Since the source code of a library function is
not accessible, we are not able to check whether the function will change the status of
environment or not. Thus, allowing to call functions in a library may conflict with the
semantics of a big-step, so we banned calls in a state machine to any function that is
imported from a library.

Third, it is a desirable property to let multiple instances of the same state machine
running concurrently without the machines interfering with each other. We address the
obstacles and our solutions to achieve this goal as follows:

74

• Multiple instances of the same state-machine might have different run-time statuses.
As a solution, we store all run-time information of a state machine instance in a
SMStruct struct, and each state-machine instance has its own SMStruct instance.

• Multiple state-machine instances might call the same function in the state machine.
Because we only allow state-machine functions to be called in a state machine, and a
state-machine function is thread-safe, multiple state-machine instances can call the
same function without interfering with each other.

• Multiple state-machine instances might call the same function through event bind-
ings to out-events. Because event-binding calls are executed at the end of a big-step,
an out-event is allowed to be bound to any environmental function, which does not
conflict with the semantics of a big-step. In this way, thread-safety for bound func-
tions cannot be guaranteed on the language side. Thus, we ask the modeller to keep
bound functions thread-safe if they are possible to be called by multiple state-machine
instances, and then non-interference among state-machine instances is achieved.

Last, we have added language features to improve integration of state-machine models
and their C-code environment, whereas we make sure that the added features do not
violate the semantics of a big-step. For example, a big-step start (end) block, inspired
by the constructor() (finalizer()) of a Java class, is a code block associated with a state
machine, which is executed immediately before the beginning (after the end) of a big-
step. Since the code block is out of the regulation of the big-step semantics, it belongs
to the environment that can contain any environmental code. In addition, we allow it to
instantaneously manipulate state-machine variables (i.e., instantaneously manipulate the
state-machine snapshot at the beginning (end) of a big-step). Big-step start (end) block
gives BSML-mbeddr the semantic power to execute some actions in between big-steps, and
it is guaranteed to be executed exactly once for a big-step.

75

Chapter 8

Related Work

Our work is based on high-level, systematic deconstruction of BSML semantics, which
covers a more comprehensive range of semantics than previous studies that compares dif-
ferent subsets of BSMLs [9] (e.g., Statecharts variants [36][18], Synchronous languages [16],
Esterel variants [4][31], UML StateMachines [30]). BSML-mbeddr has a powerful execu-
tion semantics which is regulated by big-steps and small-steps – in each small-step all
enabled transitions are identified, and the decision on which transitions shall be executed
is made based on the semantic configuration. In contrast, many other state-machine mod-
elling languages [6][22][13] have simpler execution semantics – all transitions starting from
the activated state are checked by some order, and the first transition found enabled is
executed.

By implementing within mbeddr, BSML-mbeddr gains the power to combine low-level
executable code and high-level state-machine models in the same development artifact,
whereas some previous works [26][11][9] create their language solely for modelling. For
code generation, BSML-mbeddr uses mbeddr generator language supported by the rich
Java library, which is more advanced than previous techniques such as code generation
based on Template Semantics [26].

8.1 Semantically Configurable Code Generator

Prout, Atlee, Day and Shaker [26] have provided a prototype of a semantically configurable
Code-Generator Generator (CGG) for a family of state-machine modelling languages. It
uses template semantics based on preprocessor directives and conditional compilation as

76

the technique for code generation. CGG supports 26 semantic parameters, 89 parameter
values and 8 composition operators, but not all combinations of parameter values result in
a consistent semantics definition – configuring CGG’s semantic requires expertise under-
standing of the consequences of the decisions and their interdependencies [26]. In contrast,
BSML raises the abstraction level of semantic deconstruction by decomposing the semantics
into only 12 mostly orthogonal semantic aspects and around 30 semantic options, which
makes the semantics easier and more intuitive to be configured. Concurrency in CGG
is achieved by composing multiple HTSs with various composition operators, whereas in
BSML-mbeddr, concurrency is achieved by regions and the Concurrency aspect. In BSML-
mbeddr, composition operators of CGG can be modelled via Concurrency, Consistency and
Event Lifeline semantic aspects [9].

Exelmans [11] has worked on semantically configurable step-execution algorithm that
accommodates various extended semantics of StateCharts and Class Diagram (SCCD).
The step-execution algorithm utilizes the semantic deconstruction of BSML, and it has
implemented semantic options within aspects Big-step Maximality, Internal Event Lifeline,
Input Event Lifeline, Concurrency and Priority. In contrast, we claim to implement BSML
the language itself and we have implemented more semantic aspects and options than in
this work.

Faghih and Day [12] has performed semantically configurable analysis on BSML, whereas
Lu, Atlee, Day and Niu [19] has done semantically configurable analysis on Template Se-
mantics. By providing a source model and a set of parameter values that encodes the
model’s semantics, the source model is translated into a SMV model suitable for model
checking. Esmaeilsabzali, Fischer and Atlee [10] has provided a framework that injects
aspect code into the generated code of BSML, to enhance it with the capability to monitor
a property at runtime. In addition, research by Cohen and Maoz [5] and research by Maoz,
Ringert and Rumpe [20] provide analysis tools for Live Sequence Charts and Class/Object
Diagrams, respectively. They have defined and formalized the variability in the semantics
of the source modelling languages using feature models with multiple features. They have
developed semantically configurable analysis solutions based on parametrized transforma-
tion, whose result complies with the selected feature configuration.

8.2 Code-model Co-development

mbeddr [22][27][35] provides a predefined DSL (mbeddr.statemachine [22]) that supports
for basic state-machine models, which have simple execution semantics without concurrent
regions. Similar to BSML-mbeddr, mbeddr.statemachine allows a mixture of code and

77

Language Features BSML-mbeddr mbeddr.statemachine
Configurable Semantics
Concurrent Region
Event Binding/Event Argument
Input with Multiple Events
Transition with Multiple Triggers
Negation of Triggers
Cross-hierarchy Transition
Entry Block
Variable
Function Call
Name Scoping
Priority
Multiple Instances of state machine
Asynchronous Execution

Table 8.1: Comparison between BSML-mbeddr and mbeddr.statemachine

state-machine models, and provides event binding and triggering event as methods for
communication between C code and the model. We have compared mbeddr.statemachine
with BSML-mbeddr comprehensively in Table 8.1. Rosenberger [28] has investigated the
transformation of mbeddr state-machine model into NuSMV code for model checking with
restrictions, such as no composite states, single assignment actions, no access to global
state, etc.

Umple [1][15][13] is a programming/modelling language with a development environ-
ment in heterogeneous languages, where highly abstracted modelling notations (e.g., class
diagrams, state machines) are integrated in the same development artifact of a program-
ming language (e.g., Java, PHP, C++). Umple supports most of UML StateMachines
[24] semantics, including events, signals, guards, transition actions, entry or exit actions,
composite states and concurrent states. However, the execution of Umple state-machine
is not regulated by big-step and no configurable semantics is provided. Badreddin et al.
[2] has investigated code generation process of state-machine model in Umple, providing a
concise and scalable code generation approach for state-machine models.

78

Chapter 9

Conclusion

This thesis have provided BSML-mbeddr, a state-machine modelling language with hier-
archical states, concurrent regions and configurable semantics, which has implemented a
large subset of BSML within the mbeddr C programming language environment. By im-
plementing on mbeddr, BSML-mbeddr is integrated into a C programming environment
that supports programs made with heterogeneous languages, including a combination of
programming language and modelling language.

We introduced background knowledge about projectional editor, MPS, and mbeddr.
mbeddr is a DSL workbench which provides a tool suite that supports the incremental
construction of modular DSLs on top of C, together with a set of predefined DSLs. mbeddr
allows low-level code and high-level state-machine models being developed in the same
artifact in heterogeneous languages; they together are transformed into textual C code for
execution.

We described the basic syntax and semantics, as well as configurable semantics of
BSML-mbeddr. BSML-mbeddr supports sophisticated state-machine constructs that are
available in real-world notations used by professionals. The modellers are allowed to choose
the proper option for each semantic aspect and fulfil their per-domain or per-model seman-
tic requirements. We summarized the differences between BSML-mbeddr and the original
BSML, and explained the rationale behind the changes we made. We briefly showed the
overall syntactic structure of the design, and the layout of the generated code for our
implementation.

We validated the correctness and expressiveness of BSML-mbeddr by testing and case
studies. We systematically designed test cases that covers all semantic options and lan-
guage features in BSML-mbeddr. We have conducted case studies to assess the applica-

79

bility and integrability of BSML-mbeddr into mbeddr’s C programming environment, and
to check that one can use BSML-mbeddr to build real-world state-machine models with
various semantic requirements. We discussed the challenges we encountered during imple-
menting BSML-meddr, that might be of interest of people who work on similar language
implementations.

Finally, we compared our language implementation with previous works, including the
current support of state-machine modelling language for mbeddr, CGG with template
semantics, and Umple which is a code-model co-development platform, etc. We showed
the advantages of our language against previous works.

80

APPENDICES

81

Appendix A

Implementation: Editor, Constraint,
Type System and Behaviour

Here we discuss the roles of the language aspects of editor, constraint, type system and
behaviour in BSML-mbeddr in detail. Readers who are interested in the complete source
code of BSML-mbeddr may access our github page https://github.com/z9luo/
BSML-mbeddr to install BSML-mbeddr and view the full version of our source code.
Installation instructions are also on the web page.

A.1 Editor

The editor aspect is to define how abstract syntax of the model is projected to concrete
representations viewed by the modeller. Additionally, it acts as a key role to hide or
recover syntax when certain syntax need to be enabled or disabled along with semantic
configuration change. The editor aspect of a language concept is based on cells. A cell
contains either a constant or a property from one of its child nodes or reference nodes.
Shown in Figure A.1, the editor of StateLocalDeclaration is projected to a constant
stable, followed by its type which is state, followed by its name and lastly its content
which is a list of statements surrounded by open brackets. Then, the editor of Statement
(or the sub-concepts of Statement) defines how each statement is projected to its concrete
representation. The syntax ?(stable) means the projection of constant stable is optional,
depending on a condition function defined in the inspector window shown in Figure A.1b:
stable is projected only if BigStepMaximality is Syntactic.

82

https://github.com/z9luo/BSML-mbeddr
https://github.com/z9luo/BSML-mbeddr

(a) Editor, StateLocalDeclaration.

(b) Inspector of cell “?(stable)” in A.1a, Editor, StateLocalDeclaration.

Figure A.1: Editor Example.

A.2 Constraint

We use the constraint aspect for two kinds of usage: 1) specify whether a given node can be
parent/child/ancestor of the current node, and 2) specify the search scope of its reference
node, if any. Shown in Figure A.2, the constraint aspect of RegionLocalDeclaration
specifies that a region can only contain definitions of states, variables, events, transitions,
blocks, and empty statements. In addition, it defines the search scope of the initial state
to be its contained states.

A trickier situation is where the type of the current node is considered in combination
with constraints. For example, a sm trigger statement is to trigger environment inputs
comprising multiple generated in-events (a list of SMGenEvent nodes), to a given state-
machine instance. According to BSML-mbeddr semantics, only events defined within the
given state machine and determined to be in-events can be generated. As shown in Fig-
ure A.2b, to define the search scope of in-events that can be generated in a sm trigger
statement, we need first resolve the type of an Expression which represents the referred
state-machine instance, to a pointer type that points to a SMType. By the resolved type,
we are able to refer to the state-machine declaration that associated with the type, as
well as all the in-event declared within it. Resolving the type of an expression is achieved
by importing the language module mps.lang.typesystem to the language that we used to
define constraint, and use the type resolving operation provided by mps.lang.typesystem.

83

(a) Constraint, RegionLocalDeclaration.

(b) Constraint, SMGenEvent.

Figure A.2: Constraint Example.

84

(a) typeof SMStart

(b) check Event

(c) check ContainerOfUniqueNames

Figure A.3: TypeSystem Example.

A.3 Type System

The type system aspect is used to derive types or check types of concepts. Variables
in the environment with type SMType are correctly resolved by defining proper type
derivation and checking rules, so that they can be assigned by sm start, and used in
sm trigger, sm terminate, as well as passing around through variable assignments and
function arguments as first-class citizens (Figure A.3a.

We use type-checking rules as an extension of constraint aspect, to impose type confor-
mity (e.g., check whether the types of actual arguments match their declarations, or check
conflict of unique names). For example. the type system of Event (Figure A.3b) checks

85

type matching for its event binding. Specifically, it makes sure that 1) the number of argu-
ments in an event is the same as the number of arguments in the bound function; and 2)
the type of each argument in the event is a sub-type of that of the corresponding argument
in bound function. Another example is the type-system of IContainerOfUniqueNames
(Figure A.3c), which checks conflict of unique names. We also use type-checking rules to
make sure the execution of a big-step is not observable by the environment until the end
of the big-step, by banning operations that may modify the status of the environmental in
a state machine, as well as in functions that are called in a state machine.

A.4 Behaviour

The behaviour aspect of an interface concept is used to define abstract or concrete methods,
whereas that of a concrete concept is used either to define functions that ease the task of
retrieving information from the model by language creators, or to implement abstract
functions required by the interface. For example, EventCall and SMGenEvent are
used to generate in-event and internal-event of a state machine, respectively. They both
implement the interface ICallLike so that type checking of arguments of function calls is
performed automatically. Shown in Figure A.4, the behaviour aspect of ICallLike contains
four abstract functions and two concrete functions. It also defines the type system aspect
that performs type checking on arguments, based on the information from the six functions
defined in its behaviour. Any concrete concept that implements ICallLike and the four
abstract functions gains the benefit of automatic type checking of arguments.

86

Figure A.4: Behaviour Example, mbeddr.ICallLike. By implementing this interface, ben-
efits such as argument type checking are gained for EventCall and SMGenEvent.

87

Appendix B

Implementation: Template-based
Generator

Here we discuss in detail about the usage of template-based generator in BSML-mbeddr.
Readers who are interested in the complete course code of BSML-mbeddr generator may ac-
cess our github page https://github.com/z9luo/BSML-mbeddr to install BSML-
mbeddr and view the full version of our source code. Installation instructions are also on
the web page.

B.1 Mapping configuration

The generator aspect of BSML-mbeddr contains a mapping configuration and a list of
reduction templates. The mapping configuration is a container of generator rules, mapping
label declarations and references to pre/post-processing scripts. It is the overall controller
for the generation process.

The mapping configuration specifies a list of reduction rules, that apply correspond-
ing reduction templates, such as reduce StateMachine, reduce Region, reduce EventCall to
given nodes. Some of the templates are in-line which are equivalent to normal templates.
There are weaving rules that generates code from nothing. We have two weave templates
weave Common and weave SM which is applies for each mbeddr program and each state
machine, respectively, in order to generate auxiliary data structures and functions. Reduc-
tion and weaving templates are discussed in the following sections.

88

https://github.com/z9luo/BSML-mbeddr

Figure B.1: Mapping Configuration

BSML-mbeddr use only one label: terminate event. It tracks a special “terminate”
Event to its EnumLiteral value in the generated code. With this label, template re-
duce SMTerminate is able to get the enum value of the “‘terminate” event, and generate
code that send it to a state-machine instance and expect the state machine to terminate
after processing the “terminate” event.

We use a preprocess script to make sure the semantic configuration exists in the mbeddr
program before code generation.

89

Figure B.2: Mapping Configuration (continue)

90

B.2 weave Common

Template weave Common is applied once for each mbeddr program, which generates:

• A message list containing a list of messages for debugging purpose, such as big step start,
small step start, transition executed, transitions enabled (with the number of en-
abled transitions as arguments).

• A list of auxiliary data structures functions that are shared among different state
machines. This includes data structures for Event, EnvInput, SMHandle, Binding
Call as well as functions for creating event instances and for reset/free a pointer
array.

B.3 weave StateMachine

Template weave StateMachine is applied once for each state machine, which generates data
structures that cannot be shared among different state machines, including:

• Enum types for states, regions, events, and transitions. A special “terminate” event
enum is also generated and labelled here.

• Struct type SMStructStatic that holds static information for a state machine that
can be retrieved at run-time in constant time complexity, such as the information
whether two given regions are orthogonal, whether a given event is used as triggering
event or generated in an action/block.

• Struct SMStruct that stores all the run-time information of a state-machine instance.
Each state-machine instance has its own SMStruct instance so that their concurrent
executions do not interfere with each other.

• Struct Transition that stores the static and run-time information of a transition
instance.

• Some auxiliary functions that manipulate on the above data structures.

91

Figure B.3: weave Common

92

Figure B.4: weave Common (continue)

B.4 reduce StateMachine

Template reduce StateMachinei is the most important template for BSML-mbeddr, it gen-
erates:

• Initialization function and entry function for each state and region.

• Action function for each transition with an action block.

• sm start() function that is the entry function of a state-machine instance thread.
It keeps listening to the input queue, retrieving environmental input, and calling
execute big step() for each environmental input.

• execute big step() function that process a big-step. It contains a while-loop handling
small-steps. Within a small-step, template reduce Region is called for the main re-
gion that generates code for identifying all the enabled transitions. Then it generates
function is consistent() that is called for calculating the result set. All transitions in
the result set are executed by calling function handle transition(), which is also gen-
erated by template reduce StateMachine. Function handle event lifeline() is called

93

Figure B.5: weave StateMachine

94

Figure B.6: weave StateMachine (continue)

95

Figure B.7: weave StateMachine (continue)

at the end of a small-step to deactivate event instances that should not exist in the
following small-steps.

• Functions is consistent(), handle transition() and handle event lifeline() as men-
tioned above.

B.5 reduce Region

Template recude Region generates:

• A switch-case statement for each sub-region within its sub-states, where template
reduce Region is recursively called.

• A switch-case statement for collecting enabled transitions in the current region, where
template reduce Transtition is called for each transition whose source state is con-
tained in the current region.

96

Figure B.8: reduce StateMachine

97

Figure B.9: reduce Region

B.6 reduce Transition

Template reduce Transition generates:

• If-else statements that checks whether the transition should be enabled. This includes
checking whether all triggering events are present (or absence if negated) and the
guard condition is true.

• statements that generate transition instance if it is enabled. This includes filling
static and run-time information in the instance for usage by consistency checking
and transition execution. The transition structure also contains information that
specifies the status change of the state machine and entry blocks to be executed as
effect of executing the transition.

B.7 Miscellaneous

reduce EventCall It generates statements that create an event instance, with proper
type and actual arguments. If the generated event is bound to a function, then a

98

Figure B.10: reduce Transition

99

BindingCall instance is created as well, to delay the call of the bound function to the
end of a big-step.

reduce SMStart It generates statements that create an input queue and a thread that
executes sm start(). The result is stored in a SMHandle struct.

reduce SMTrigger It generates statements that create an environmental input compris-
ing the generated in-event instances. Then the environmental input is put into an
input queue referred by the state-machine handle as specified in SMTrigger, as an
expression. The generation of an in-event is similar to that of EventCall, but their
search scopes are different.

reduce SMTerminate It generates statements that send an “terminate” in-event to a
state-machine instance, join the thread, and destroy the input queue.

reduce LocalVar It recognizes and resolves reference to a state-machine variable (ei-
ther for write or for read) onto its correct location in a SMStruct instance. This is
implemented as an in-line template in the mapping configuration.

100

Figure B.11: reduce EventCall

Figure B.12: reduce SMStart

101

Figure B.13: reduce SMTrigger

Figure B.14: reduce SMTerminate

102

References

[1] O. Badreddin and T.C. Lethbridge. Model oriented programming: Bridging the code-
model divide. In Modeling in Software Engineering (MiSE), 2013 5th International
Workshop on, pages 69–75, May 2013.

[2] Omar Badreddin, Timothy C. Lethbridge, Andrew Forward, Maged Elaasar, Hamoud
Aljamaan, and Miguel A. Garzon. Enhanced code generation from uml composite state
machines. Model-Driven Engineering and Software Development (MODELSWARD),
2014 2nd International Conference on, pages 235–245, Jan 2014.

[3] Gérard Berry and Georges Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Sci. Comput. Program., 19(2):87–152, November
1992.

[4] Frederic Boussinot. Sugarcubes implementation of causality. Technical report, 1998.

[5] Barak Cohen and Shahar Maoz. Semantically configurable analysis of scenario-based
specifications. Fundamental Approaches to Software Engineering, 8411:185–199, 2014.

[6] James B. Dabney and Thomas L. Harman. Mastering SIMULINK. Prentice Hall
Professional Technical Reference, 2003.

[7] Shahram Esmaeilsabzali. Prescriptive Semantics for Big-Step Modelling Languages.
PhD thesis, University of Waterloo, Waterloo, Ontario, Canada, 2011.

[8] Shahram Esmaeilsabzali and Nancy Day. Prescriptive semantics for big-step modelling
languages. In Proceedings of the 13th International Conference on Fundamental Ap-
proaches to Software Engineering, FASE’10, pages 158–172, Berlin, Heidelberg, 2010.
Springer-Verlag.

103

[9] Shahram Esmaeilsabzali, Nancy Day, Joanne M. Atlee, and Jianwei Niu. Decon-
structing the semantics of big-step modelling languages. Requirements Engineering,
15(2):235–265, 2010.

[10] Shahram Esmaeilsabzali, Bernd Fischer, and Joanne M. Atlee. Monitoring aspects
for the customization of automatically generated code for big-step models. In Pro-
ceedings of the 10th ACM International Conference on Generative Programming and
Component Engineering, GPCE ’11, pages 117–126, New York, NY, USA, 2011. ACM.

[11] Joeri Exelmans. Configurable semantics in the sccd statechart compiler. http:
//msdl.cs.mcgill.ca/people/joeri/files/semantic_options.pdf,
2014.

[12] Fathiyeh Faghih and Nancy Day. Mapping Big-Step Modeling Languages to SMV.
Grace Hopper Celebration of Women in Computing, pages 1–57, 2011.

[13] Andrew Forward, Omar Badreddin, Timothy C. Lethbridge, and Julian Solano.
Model-driven rapid prototyping with umple. Softw. Pract. Exper., 42(7):781–797,
July 2012.

[14] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Lan-
guages? 2004.

[15] M.A. Garzon, H. Aljamaan, and T.C. Lethbridge. Umple: A framework for model
driven development of object-oriented systems. Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference on, pages 494–
498, 2015.

[16] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Springer-Verlag,
Berlin, Heidelberg, 2010.

[17] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, June 1987.

[18] C. Huizing and R. Gerth. Semantics of reactive systems in abstract time. Real-Time:
Theory in Practice, 600:291–314, 1992.

[19] Yun Lu, J.M. Atlee, N.A. Day, and Jianwei Niu. Mapping template semantics to smv.
In Automated Software Engineering, 2004. Proceedings. 19th International Conference
on, pages 320–325, Sept 2004.

104

http://msdl.cs.mcgill.ca/people/joeri/files/semantic_options.pdf
http://msdl.cs.mcgill.ca/people/joeri/files/semantic_options.pdf

[20] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically configurable
consistency analysis for class and object diagrams. In Proceedings of the 14th Interna-
tional Conference on Model Driven Engineering Languages and Systems, MODELS’11,
pages 153–167, Berlin, Heidelberg, 2011. Springer-Verlag.

[21] Florence Maraninchi and Yann RéMond. Argos: An automaton-based synchronous
language. Comput. Lang., 27(1-3):61–92, April 2001.

[22] mbeddr Team. mbeddr C user guide. https://github.com/mbeddr/mbeddr.
core/releases/download/0.8.1-EAP/mbeddr-userguide-0.8.1-EAP.
pdf, 2014.

[23] Jianwei Niu, Joanne M. Atlee, and Nancy Day. Template semantics for model-based
notations. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 29:149–158,
2003.

[24] OMG. Omg unified modeling language (omg uml). Superstructure, 2007.

[25] Vaclav Pech, Alex Shatalin, and Markus Voelter. Jetbrains mps as a tool for extending
java. In Proceedings of the 2013 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
’13, pages 165–168, New York, NY, USA, 2013. ACM.

[26] Adam Prout, Joanne M. Atlee, Nancy Day, and Pourya Shaker. Code generation for a
family of executable modelling notations. Software and Systems Modeling, 11(2):251–
272, 2012.

[27] Daniel Ratiu, Markus Voelter, Zaur Molotnikov, and Bernhard Schaetz. Implementing
modular domain specific languages and analyses. In Proceedings of the Workshop on
Model-Driven Engineering, Verification and Validation, MoDeVVa ’12, pages 35–40,
New York, NY, USA, 2012. ACM.

[28] Christoph Rosenberger. Model checking for state machines
with mbeddr and nusmv. http://mbeddr.com/files/
modelcheckingforstate-machineswithmbeddrandnusmv.pdf, 2013.

[29] P. Shaker, J.M. Atlee, and Shige Wang. A feature-oriented requirements modelling
language. In Requirements Engineering Conference (RE), 2012 20th IEEE Interna-
tional, pages 151–160, Sept 2012.

105

https://github.com/mbeddr/mbeddr.core/releases/download/0.8.1-EAP/mbeddr-userguide-0.8.1-EAP.pdf
https://github.com/mbeddr/mbeddr.core/releases/download/0.8.1-EAP/mbeddr-userguide-0.8.1-EAP.pdf
https://github.com/mbeddr/mbeddr.core/releases/download/0.8.1-EAP/mbeddr-userguide-0.8.1-EAP.pdf
http://mbeddr.com/files/modelcheckingforstate-machineswithmbeddrandnusmv.pdf
http://mbeddr.com/files/modelcheckingforstate-machineswithmbeddrandnusmv.pdf

[30] Ali Taleghani and Joanne M. Atlee. Semantic variations among UML statemachines.
In Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes
in Computer Science, pages 245–259. Springer Berlin Heidelberg, 2006.

[31] Olivier Tardieu. A deterministic logical semantics for pure esterel. ACM Trans.
Program. Lang. Syst., 29(2), April 2007.

[32] F. Tomassetti, A. Vetro, M. Torchiano, M. Voelter, and B. Kolb. A model-based
approach to language integration. In Modeling in Software Engineering (MiSE), 2013
5th International Workshop on, pages 76–81, May 2013.

[33] M. Voelter and E. Visser. Product line engineering using domain-specific languages.
In Software Product Line Conference (SPLC), 2011 15th International, pages 70–79,
Aug 2011.

[34] Markus Voelter. Language and ide modularization and composition with mps. In
Ralf Lmmel, Joo Saraiva, and Joost Visser, editors, Generative and Transformational
Techniques in Software Engineering IV, volume 7680 of Lecture Notes in Computer
Science, pages 383–430. Springer Berlin Heidelberg, 2013.

[35] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. Mbeddr: An ex-
tensible c-based programming language and ide for embedded systems. In Proceedings
of the 3rd Annual Conference on Systems, Programming, and Applications: Software
for Humanity, SPLASH ’12, pages 121–140, New York, NY, USA, 2012. ACM.

[36] Michael von der Beeck. A comparison of statecharts variants. Formal Techniques in
Real-Time and Fault-Tolerant Systems, 863:128–148, 1994.

[37] Tuba Yavuz-Kahveci and Tevfik Bultan. Specification, verification, and synthesis of
concurrency control components. In Proceedings of the 2002 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’02, pages 169–179, New
York, NY, USA, 2002. ACM.

106

	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Background on mbeddr
	Language Workbench and Projectional Editor
	MPS
	Structure
	Constraint
	Behaviour
	Type System
	Editor
	Generator

	mbeddr

	Background on BSML
	BSML Syntax
	BSML Semantics
	Execution Semantics
	Big-step Maximality
	Concurrency and Consistency
	Event Lifeline
	Enabledness Memory Protocol
	Assignment Memory Protocol
	Order of Small-steps
	Priority
	Combo-step Maximality

	BSML-mbeddr
	BSML-mbeddr Syntax
	Example-based Demonstration
	State-machine Elements in BSML-mbeddr
	Language Features
	Interaction with Environment
	State-Region Hierarchy

	BSML-mbeddr Semantics
	Implemented Semantic Options
	Priority
	Modified Execution Semantics
	Present in Same and Negation of Triggers
	External Event
	Granularity of Semantic Configuration

	Implementation
	Syntax Implementation
	Interface Concepts
	Concrete Concepts
	Other Language Aspects

	Semantics Implementation
	Code Layout
	Template-based Generator

	Validation
	Correctness
	Expressiveness
	Ground Traffic Control
	Dialler System
	State-Machine Factory

	Discussions
	Designing Data Structure of Generated Code
	Evolving Semantic Configuration
	Computational Complexity
	Language Usability
	Semantics of Added Language Features
	Event with Multiple Instances
	Big-step Semantics

	Related Work
	Semantically Configurable Code Generator
	Code-model Co-development

	Conclusion
	APPENDICES
	Implementation: Editor, Constraint, Type System and Behaviour
	Editor
	Constraint
	Type System
	Behaviour

	Implementation: Template-based Generator
	Mapping configuration
	weave_Common
	weave_StateMachine
	reduce_StateMachine
	reduce_Region
	reduce_Transition
	Miscellaneous

	References

