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Abstract 

 

With a rise in the prevalence of obesity worldwide, behavioural, as well as physiological changes 

after consumption of a high-fat diet are becoming increasingly recognized. In addition to 

increased risk of chronic and degenerative diseases, obesity has also been linked with cognitive 

impairment, particularly in hippocampal-dependent behaviours such as spatial learning and 

memory retention. Maternal obesity is also becoming an issue across the globe, with an 

alarmingly high percentage of women of reproductive age who are either overweight, or obese. 

Past studies have not only revealed that early-life nutrition can impact brain development and 

subsequent behaviours across the lifespan, but also that exposure to a high-fat diet in utero may 

be particularly detrimental to susceptible structures such as the hippocampus. The present study 

hoped to elucidate the effects of a high-fat diet (45% kcal from fat) on spatial learning and 

memory retention in female Sprague-Dawley rats. Further, we examined whether maternal 

obesity could have intergenerational effects on spatial learning and memory retention in 

offspring. Although high-fat diet consumption was sufficient to induce obesity in the female 

animals, these dams did not demonstrate impaired spatial learning or memory retention in the 

Morris water maze task. Interestingly, in adolescence, male, but not female offspring of the 

obese dams were impaired in their performance on the Morris water maze task. However, the 

difference normalized by adulthood. Future research should aim to examine why females appear 

to be resilient to diet-induced cognitive impairment.  
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1.0 Overview 

Although the ability to survive on large, sparse meals for extended periods of time was 

once considered evolutionarily favourable, individuals in many modern societies are increasingly 

at risk of developing degenerative disorders due to increased access to foods high in saturated 

fats and refined sugars (Beilharz, Maniam, & Morris, 2014; Marrisal-Arvy et al., 2014).  In 

Canada alone, approximately one quarter of the population is obese (National Center for Health 

Statistics, 2011), and estimates suggest that more than $4.3 billion dollars are spent per year on 

costs directly and indirectly related to obesity (Public Health Agency of Canada, 2012).  

 Obesity is most commonly described as a body mass index (BMI) of 30 kg/m
2
 or more, 

while individuals who score within 25.0 – 29.9 kg/m
2 

are considered overweight (Allison et al., 

2008). However, it does not account for general body composition or location of store body fat, 

suggesting that the BMI, although commonly used in clinical settings, may not be the most 

accurate measure of obesity (Frankenfield, Rowe, Cooney, Smith, & Becker, 2001). This 

important point could explain why not all individuals classified as obese using the BMI will 

experience poor health; body fat stored viscerally is most predictive of poor health (Arnold et al., 

2014).  

Due to issues such as underreporting and ethical limitations that exist when trying to 

explore the underlying mechanisms, much of what we know about the effects of obesity on 

physiology has come from animal models. A diet consisting of approximately 30% energy (kcal) 

from fat is adequate to induce an obese phenotype in animals (Hariri & Thibault, 2010), and 

although the diets chosen across studies vary in their composition of fat content (30-78%), a 

positive relationship has been found between the fat content of the diet and weight gain, 

suggesting that increased energy consumed from fat may be proportional to body fat composition 

(Hariri & Thibault, 2010).  
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As the obesity epidemic cannot be easily explained by genetic determinants, or by the 

abundance of high-fat and sugary foods available in the environment alone, it has been suggested 

that the true root of this health concern is an imbalance between food consumption and the 

expenditure of this energy. When intake exceeds output for an extended period of time, adipose 

tissue and gut microbiota trigger a cascade of changes resulting in a low level of inflammation in 

the body (Boitard et al., 2014; Hariri & Thibault, 2010). Further, the development of an obese 

state can occur very differently in male versus female individuals, influencing risk of associated 

chronic and metabolic diseases (Palmer & Clegg, 2015). For example, in the male body, fat 

stores are found primarily in the abdominal, or visceral area, while fat is usually stored 

subcutaneously in a gluteal-femoral pattern in premenopausal women. Although subcutaneous 

body fat is predictive of lower risk of cardiovascular disease and other obesity-related health 

outcomes, visceral fat, which surrounds primary organs can be particularly detrimental as 

adipocytes secrete proinflammatory markers once they expand to a certain degree, leading to 

problems such as insulin resistance over time (Palmer & Clegg, 2015).  

Chronic consumption of a high-fat diet can lead to the metabolic syndrome (Arnold et al., 

2014; Kanoski & Davidson, 2011), as well as increased risk of type 2 diabetes mellitus, 

cardiovascular disease (Anderson et al., 2013; Kanoski & Davidson, 2011; Lindqvist et al., 

2006), as well as some cancers (e.g., primarily thyroid, uterine and breast in women, colorectoral 

and kidney in men; Hariri & Thibault, 2010). Quite unexpectedly, studies have also reported 

increased risk of mental illness such as depression, anxiety, schizophrenia, and an increased 

prevalence of Alzheimer’s disease in individuals exhibiting symptoms of the metabolic 

syndrome (Anderson et al., 2013).  
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To further propagate the issue, the obese phenotype also stimulates a cascade of changes 

in neurochemical signalling which can modify hypothalamic regulation of food consumption 

(Stachowiak et al., 2013), as well as behaviours dependent on other susceptible structures in the 

brain, such as the hippocampus (Kanoski & Davidson, 2011; Sharma & Fulton, 2013).  As a 

result, there is a general consensus in the literature that two domains are primarily affected by 

diet-induced obesity: the cascade of physiological changes that lead to increased risk of chronic 

and metabolic dysfunction and cognitive performance. More recently, researchers have also 

recognized that maternal obesity may have transgenerational effects, influencing offspring 

development and behaviour across the lifespan (Bilbo & Tsang, 2010; Howie et al., 2013). It can 

be argued that further study is required to extend our current understanding of the neurological 

and behavioural changes following chronic consumption of a high-fat diet, and any sex 

differences, and transgenerational effects that may be present. 
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2.0    Diet-induced Cognitive Impairment 

Epidemiologists and nutrition-focused scientists are becoming increasingly mindful that 

diet can influence brain and behaviour, while brain and behaviour can also affect diet. For 

example, mild cognitive deficits have been reported in individuals newly diagnosed with type 2 

diabetes mellitus (Soares et al., 2013), and impaired insulin sensitivity has also been associated 

with cognitive decline related to the effects of aging (McNay et al., 2010). It has been suggested 

that as individuals become obese, the accumulation of adipocytes leads to a proinflammatory 

state through the secretion of cytokines and an increase of macrophages, influencing insulin 

sensitivity (Lee et al., 2011), and leptin signaling (Lumeng & Sailtiel, 2014). Beyond the 

detrimental effects inflammation can have on visceral organs, the permeability of the blood brain 

barrier is also compromised after consumption of high-energy diets (Kanoski et al., 2010; Tucsek 

et al., 2014). The change in permeability allows inflammatory markers such as cytokines to pass 

through to the central nervous system, causing a proinflammatory cascade in the brain (Lee et al., 

2011; McNay et al., 2010) and interfering with brain function and associated behaviour. 

While polyunsaturated fats are generally considered to be beneficial for cognitive 

functioning throughout the lifespan, a population-based prospective study by Morris et al. (2003) 

found that the proportion of saturated fatty acids (SFAs) was associated with risk for 

Alzheimer’s disease and other forms of cognitive impairment after 4- and 6 years of 

consumption. Further, the negative effects of a diet high in SFAs appear to selectively damage 

certain domains of learning and memory, such as prospective, episodic and delayed verbal 

memory in humans, while poor performance on tasks of hippocampal-dependent spatial learning 

and memory are most often observed in rodent models (Kanoski & Davidson, 2011). For 

example, a longitudinal study by Whitmer et al. (2005) found that overweight middle-aged adults 

were more likely to be diagnosed with dementia compared to their normal weight counterparts, 
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and this risk was further enhanced for individuals who were characterized as obese. The effects 

have also been noted elsewhere as an obese phenotype in midlife is suggested to increase 

susceptibility for dementia and Alzheimer’s Disease in both women and men in North America 

(Hwang et al., 2010; Martin et al., 2011).  In a study by Arnold et al. (2014) using 8 week old 

male C57BL/6J mice found that a 60% kcal HFD for 17 days, or a 45% kcal from fat diet for 8 

weeks, was able to induce hippocampal-dependent memory impairments in the T-maze 

compared to their control diet counterparts. The HFD fed mice also demonstrated abnormal 

dendritic growth in the CA3 region of the hippocampus (Arnold et al., 2014). 

2.1 Impairments in hippocampal-dependent spatial learning and memory following a 

high-fat diet  

The hippocampus, which is a limbic structure located bilaterally in the medial temporal 

lobes of both the human and rat brain, is most widely recognized for its role in a wide range of 

learning and memory processes (Neves et al., 2012). Research has demonstrated that the 

hippocampus has a multitude of connections with its surrounding structures (e.g., prefrontal 

cortex, amydgala, subiculum, hypothalamus), suggesting that any morphological, or functional 

changes in this region may have implications for a range of behaviours including: episodic 

memory, working memory, cognitive flexibility, emotional regulation, stress reactivity, and 

eating behaviours, in addition to hippocampal-dependent behaviours like spatial learning and 

memory retention  (Lucassen et al., 2013; Neves, Cooke, & Bliss, 2008).  

In both human and animal models, research has demonstrated that the hippocampus is a 

structure that is particularly vulnerable to insult (Hsu & Kanoski, 2014; Kanoski & Davidson, 

2011; Neves et al., 2012). For example, the hippocampus is often the first to be affected in 

neurodegenerative diseases, such as Alzheimer’s disease (Hsu & Kanoski, 2014), and is a prime 
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target of both structural and functional modification following exposure to environmental toxins 

(Hsu & Kanoski, 2014), ischaemic injury (Gee et al., 2006; Nikoneko, Radenovic, Andjus, & 

Skibo, 2009), as well as metabolic disruption resulting from a diet high in saturated fats (Kanoski 

& Davidson, 2011; Neves et al., 2012).  As proper functioning in the hippocampus has 

implications for many behavioural and self-regulating processes, the reasons and mechanisms 

underlying its vulnerability to exogenous insult has been studied for many years.  

The hippocampus develops mostly between gestational day 18 and post-natal week three 

in rats, making it particularly sensitive to early-life experience and highly modifiable by 

undesirable circumstances (Lucassen et al., 2013). For example, nutrition in early-life may 

influence hippocampal neurogenesis, dendritic branching, synaptic density and the size of 

granule cells in the dentate gyrus, changes that together may influence performance on 

hippocampal-dependent tasks. Most notably, impairments in neurogenesis and long-term 

potentiation have been associated with impairments in spatial orientation tasks, declarative 

memory and pattern separation (Lucassen et al., 2013). Further, the metabolic demands of the 

large pyramidal cells present in the CA regions of the hippocampus could put the structure at risk 

of insult when changes in mitochondrial energy production or oxidative phosphorylation occur 

(Hsu & Kanoski, 2014).  

Although animals may consume a Western type diet, or high-fat diet (HFD), for 30 days 

and not exhibit any deficits in non-spatial reference memory, spatial reference memory can be 

selectively affected even after consuming an obesogenic diet for only 72 hours (Hsu & Kanoski, 

2014).  Beilharz et al. (2014) illustrated that even short-term exposure to a HFD was sufficient to 

impair hippocampal-dependent memory in a group of male Sprague-Dawley rats using a place 

recognition task. With a tendency as a species to demonstrate interest in novelty, the animals 
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exposed to the HFD were less likely to recognize a novel location, while no diet-induced 

behavioural differences were found when a novel object (not hippocampal-dependent) was 

placed into a familiar location. In addition, Pistell et al. (2010) used a common measure of 

spatial ability, the Stone T-maze, to demonstrate that consumption of a HFD (60% kcal from fat) 

could impair memory performance in male C57BL/6 mice relative to their control group. These 

results were further corroborated by Arnold et al. (2014), who also reported impairments in the 

T-maze task when testing male mice fed a 60% HFD for 17 days, or 45% HFD for 8 weeks from 

young adulthood. These animals exhibited poorer performance in the alternation task in 

comparison to their matched controls, regardless of the concentration of saturated fat in the diet 

(Arnold et al., 2014). 

In addition, a study by Valladolid-Acebes et al. (2013) found five week old male mice 

subjected to a high-fat diet (45% kcal from fat) for eight weeks were impaired in a novel location 

recognition task, while the same dietary protocol did not cause any impairments when the diet 

was introduced at eight weeks of age. The experiment was designed to ensure the cognitive 

impairments observed were not a result of excess energy consumption, therefore food intake was 

restricted for an additional five weeks post-HFD consumption to confirm deficits (Valladolid-

Acebes et al., 2013). Other cognitive deficits, such as relational learning flexibility (Boitard, 

2012), contextual fear conditioning (Hwang et al., 2010) and conditioned place preference 

(Privitera, 2011), have also been observed following chronic consumption of a HFD suggesting 

that networks associated with the hippocampus are likely to also be affected. 

 One of the most well-established behavioural techniques employed to measure 

hippocampal-dependent spatial learning and memory in rodent models is the Morris Water Maze 

(MWM; Vorhees & Williams, 2006).  By making use of distal reference cues, rodents learn to 
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navigate through a tank of water with a platform hidden just below the surface. As long as the 

platform is not moved throughout training, this paradigm can be used as a test of hippocampal-

dependent spatial learning with latency to platform (measured in seconds) as the dependent 

measure. At the end of the training period (usually 3-4 days), the submerged platform is 

removed, and the rodents are allowed to perform a ‘free swim’ for one minute; referred to as the 

“probe test”. During this final testing day, investigators record time spent in the quadrant where 

the platform used to be (i.e., the ‘correct’ or ‘target’ quadrant), as well as average distance from 

the previous platform location (Maei et al., 2009; Vorhees & Williams, 2006). As high-energy 

feeding studies have found marked impairments on spatial learning as measured by latency to 

find platform (Kuang et al., 2014), and less time spent in the correct quadrant during the probe 

test of the MWM (Soares et al., 2013), it was presumed that similar impairments should result 

from diet-induced obesity.   

Some studies, such as Mielke et al. (2006), have found no impairments in MWM 

performance even after male C57BL/6 mice consumed an ad libitum HFD for up to 10 months, 

while Boitard et al. (2014) were able to induce long-term spatial reference memory impairments 

on the task after only 1-2 months of consumption using male Wistar rats. Possibly, certain 

periods of development might be more susceptible to the effects of a HFD, for the rodents used 

in the study by Boitard et al. (2014) were three weeks old at the start of the diet, while an adult 

cohort of rats tested in the same study were not impaired in their performance on the probe 

portion of the MWM task. The conflicting nature of existing literature suggests there may be 

critical-periods of development where animals may be more susceptible to diet-induced 

impairments in hippocampal function. Although it is suggested that behavioural deficits may 

stem from low-grade inflammation (Erion et al., 2014; Pistell et al., 2010), impairments in 
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insulin and leptin signalling, as well as modifications to neurotrophin release and synaptic 

plasticity, the exact mechanisms triggering the behavioural changes following diet-induced 

obesity are still unclear.  

Further complicating the issue, it is known that neuronal connectivity is inherently 

different in female and male brains (Ingalhalikar et al., 2014; Miller & Halpern, 2014). While 

women have a tendency towards more interhemispheric connectivity, as well as an advantage 

when it comes to verbally mediated memory and social cognition, men tend to be more 

intrahemispherically connected, with a tendency towards better motor coordination, spatial 

orientation and mathematical reasoning (Miller & Halpern, 2014; Wojniusz et al., 2013), as well 

as physical aggression (Ingalhalikar et al., 2014). Studies using rodent models have discovered 

that while male animals are more resilient than female animals to the effects of chronic stress on 

depression and anxiety-like behaviours, female rodents tend to be more resilient on tasks of 

object and place recognition (Russo et al., 2012). Given clear differences in the structure and 

function of the male and female brain, it is possible that the effects of a chronic HFD also present 

differently.   
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3.0  Maternal Obesity 

 As the rise in obesity has become a public health concern worldwide, it is important to 

also consider the effects this trend might have on future generations. In 2012, approximately 

45% of women over 18 years old in Canada were considered to be overweight, if not obese 

(Statistics Canada, 2013), and recent reports note that women of reproductive age are becoming 

increasingly overweight in developed countries worldwide (Howie, Sloboda, Reynolds, & 

Vickers, 2013; Rodriguez et al., 2012; Tozuka et al., 2010). Obese women of childbearing age 

are at increased risk of gestational complications, such as prolonged labor and delivery (Shaw, 

Rasmussen, & Myers, 1997), gestational diabetes and impaired glucose tolerance, maternal 

hypertension, preeclampsia, and neonatal death (White et al., 2009), in addition to increased risk 

of post-partum depression (Hanson, 2012).  Further, these pregnancy-related complications may 

affect their offspring by altering their developmental trajectory and possibly increasing risk for 

disease later in life. 

3.1 Developmental programming  

  The notion of developmental programming stems from the developmental origins of 

health and disease theory (DOHaD), which is often traced back to work conducted by Barker and 

colleagues. In the late 1980s, the researchers used birth and death records to reveal an interesting 

relationship between the geographical location of infant mortality and mortality from certain 

diseases later in life (Barker & Osmond, 1986; Barker, Osmond, Golding, Kuh, & Wadsworth, 

1989). More specifically, the researchers found that in the least affluent areas of England and 

Wales, poor nutrition in early life was associated with risk of ischaemic heart disease in later 

adulthood (Barker & Osmond, 1986). For decades, birth size has also been correlated with 

mortality from chronic disease in later life, and has been associated with risk of symptoms of the 
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metabolic syndrome, most notably insulin resistance and glucose intolerance, as well as 

dyslipidemia across the lifespan (Gluckman & Hanson, 2004).  

 According to the DOHaD theory, offspring development can be modified or programmed 

by early-life experiences (in utero, infancy and early childhood). Due to the extensive length of 

the maternal-offspring interaction (both pre- and post-natal), this critical span of development 

has been studied for decades (Champagne, 2008). Notably, exposure to external insult during the 

prenatal period seems to be more impactful on development and behaviour than stressors in 

adulthood (Champagne, 2008; Boitard et al., 2014). Although prospective cohort studies in 

humans do not exist due to time and cost, animal research has provided a means to model this 

phenomenon (Langley-Evans, Bellinger, & McMullen, 2005). For example, animal models of 

gestational growth restriction, as well as studies which modify macronutrient and micronutrient 

intake during gestation, have consistently been shown to influence the maternal-fetal endocrine 

exchange and led to issues such as increased adiposity, insulin resistance, glucose intolerance, 

and hypertension (Gluckman & Hanson, 2004; Langley-Evans et al., 2005). For example, White 

and colleagues (2009) found that male offspring born to Long-Evans rats C57BL/6L mice fed a 

HFD for four weeks before breeding, and throughout pregnancy and lactation, weighed more and 

had heavier retroperitoneal fat pads than offspring born to CD dams. These differences were 

further exaggerated if the HFD offspring continued to consume the HFD post-weaning, and this 

has also been found in a more recent study (Yokomizo et al., 2004).  

  The early post-natal period also seems to be unique in a way where risk of chronic and 

degenerative disease in later life can be determined by the cells and tissues developing at the 

time of experience (Harris & Seckl, 2011). For example, Heidbreder et al. (2000) found that 

rearing rats in isolation can increase motor activity, decrease performance on tasks of attention 
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and impair neurotransmission in the amygdala and pre-frontal cortex (PFC). In addition, Purcell 

et al. (2011) found brief exposure to restraint stress during the first week of life is sufficient to 

lead to impaired glucose tolerance and increased weight gain by the point of weaning at 21 days 

old. Further, Hertzman (1999) noted that appropriate handling of rats during critical periods of 

hypothalamic-pituitary-adrenal (HPA) axis development can be beneficial for stress reactivity. 

As overexposure to glucocorticoids during a stressful situation can be detrimental to processes 

such as neurogenesis and neuronal viability in the hippocampus, handling can prime the system 

to deal with stressful experiences later on in the lifespan. For example, handled rats tend to have 

better stress reactivity and lower CORT levels compared to non-handled rats when tested in the 

MWM in old age (Hertzman, 1999); whereas an influx of glucocorticoids (i.e., stress hormones) 

experienced by non-handled rats has been shown to inhibit synaptic plasticity in the 

hippocampus (Schmidt et al., 2013), as well as the hypothalamus and pre-frontal cortex (both of 

which are connected to the hippocampus), leading to changes in function and behaviour.  

As another type of early-life adversity, maternal obesity impacts multiple aspects of 

development in the offspring, influencing not only appetite regulation, but also cognitive and 

mood-related behaviours. Notably, most research that currently exists to explain the effect of 

maternal obesity on offspring development is sex-specific, with a primary focus on male 

offspring.  

3.2 The effects of maternal obesity on offspring health  

A history of maternal obesity puts children at risk for increased body fat percentage, 

BMI, cardiovascular disease, and insulin resistance (Bilbo & Tsang, 2010; Howie et al., 2013). 

Some articles have also reported a decrease in energy expenditure over a 24 hour period, which 

can be exacerbated by changes in genotype and hormonal signalling (Ainge, Thompson, Ozanne, 
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& Rooney, 2011). Offspring born to obese mothers tend to have higher levels of triglycerides 

circulating throughout the body (Chang, Gaysinskaya, Karatayev, & Leibowitz, 2008), and 

maternal hyperglycemia and hyperinsulinemia put offspring at higher risk for obesity and higher 

concentrations of leptin in plasma when compared with those born to normal weight mothers 

(Ainge et al., 2011; Bilbo & Tsang, 2010; Tozuka et al., 2010).  For example, using a rodent 

model, Sun et al. (2012) found that changes in plasma leptin concentrations may occur as early 

as post-natal day (PND) 7 in pups born to a dam fed a high-fat diet. An increased predisposition 

to hyperphagia may be one factor leading to increased adiposity and higher circulating leptin 

levels found in these offspring (Ainge et al., 2011).  In addition to a predisposition to an obese 

phenotype, consumption of a HFD throughout pregnancy may lead to increased risk of sedentary 

behaviour and vascular dysfunction in the offspring (Elahi et al., 2009).  

Beyond its peripheral effects, maternal obesity has also been seen to impact development 

of certain structures in the brain, which may influence behaviour. For example, research has 

demonstrated that gestational diabetes, hyperinsulinemia, and excessive sweet food consumption 

were associated with increased susceptibility to neural tube defects in offspring (Kuang et al., 

2014). Therefore, properly monitoring blood glucose throughout pregnancy may reduce risk of 

congenital irregularities.  

Behavioural impairments resulting from maternal obesity may develop through the 

impact of excessive energy intake on neuronal viability in utero (Kuang et al., 2014); affecting 

structural and functional organization in the hypothalamus and hippocampus, as well as related 

structures, and modifying dopaminergic, serotonergic and opioidergic signalling pathways 

(Rodriguez et al., 2012). Maternal obesity has been noted to increase offspring appetite through 

its impact on the hypothalamic feeding pathways and the upregulation of orexigenic 



14 
 

Neuropeptide-Y (Chen, Simar, & Morris, 2009; Stachowiak et al., 2013; Tozuka et al., 2010). 

Further, studies using rodents and non-human primate models have demonstrated that maternal 

high-fat feeding might have implications for reward-related behaviours, risk of mental illness, 

and stress reactivity, in addition to cognitive performance (Sullivan, Nousen, & Chamlou, 2014).   

3.3 Maternal obesity and hippocampal-dependent behaviour in the offspring   

Evidence from both human and animal models suggests that, in addition to peripheral and 

metabolic disruption, maternal obesity increases the likelihood of cognitive impairment in the 

offspring. For example, Rodriguez et al. (2012) note that children in a prospective study of 

maternal obesity were more likely to have problems with emotional regulation and inattention at 

five-years of age, in comparison to children of normal weight mothers. Further, animal studies 

have demonstrated that hippocampal-dependent behaviours such as spatial learning and memory 

retention, and anxiety appear to be most affected by maternal obesity.  

To study the effects of maternal obesity, Peleg-Raibstein et al. (2012) fed C57BL/6L 

mice a 60% HFD or CD beginning at 12 weeks of age for three weeks before pregnancy, and 

throughout gestation and lactation. Using food neophobia (i.e., likelihood of trying a novel food), 

and the elevated plus maze (EPM), which is a behavioural measure where anxiety is measured by 

time spent in the open arms of the maze (indicative of less anxiety), in comparison to the time 

spent in the closed arms of the maze (indicative of anxiety-like behaviours), the authors were 

able to demonstrate that maternal consumption of a HFD was sufficient to enhance anxiety-like 

behaviours in the offspring as measured by time spent in the open arm of the EPM and delayed 

consumption of novel foods. Further, the authors found that maternal HFD increased GABAergic 

and serotonergic receptor expression in the ventral hippocampus, and nearly doubled the 

expression of BDNF in the dorsal hippocampus.  
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Another study of maternal HFD in Sprague-Dawley rats found elevated serum levels of 

pro-inflammatory cytokines (IL-6) and microglial activation in the hippocampus accompanied by 

increased anxiety in the EPM; however they also found enhanced performance in the MWM 

after gestational exposure to a HFD, with male rats spending more time in the target quadrant, 

and making more platform crossings than those who consumed a low-fat diet (Bilbo & Tsang, 

2010). In contrast to the aforementioned studies, Rodriguez et al. (2012) did not find any diet-

induced differences in anxiety as measured by the EPM in male offspring Wistar rats, but found 

reduced anxiety in the maternal HFD offspring exposed only in gestation when scored in an open 

field test against control offspring.  

Looking specifically at spatial memory, Tozuka et al. (2010) performed an interesting 

experiment where they tested spatial learning and memory retention in male offspring born to 

female mice fed a HFD for six weeks before breeding. At four and ten weeks of age, the 

maternal HFD offspring exhibited impaired dendritic growth, and a longer latency to find the 

escape platform in the Barnes maze, however no differences were found for spatial memory 

retention (Tozuka et al., 2010).  

Further, White et al. (2009) reported that maternal consumption of a 60% HFD for four 

weeks before breeding, and throughout gestation and lactation was sufficient to impair memory 

retention in male offspring, as shown across the later training days of the MWM. However, these 

differences were only found when the diet was consistently consumed across the lifespan, and no 

other behavioural differences were found despite microglial activation, inflammation (as 

indicated by circulating IL-6 levels), and increased fat pad weight in the maternal HFD group 

(White et al., 2009).   
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Finally, a study by Page et al. (2014) using adult Sprague-Dawley rats fed a 45% HFD, or 

10% CD for one month, found that male offspring born to the HFD dams  demonstrated altered 

performance in the MWM at PND 110, as measured by increased latency to find the platform, 

increased distance traveled, and faster swim speed. Further, the control animals spent more time 

in the correct reference quadrant during the probe task than the animals exposed to a HFD, 

regardless of whether the HFD exposure took place during gestation and lactation, only post-

weaning, or pre- and post-weaning (Page et al., 2014).      
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4.0 Study Rationale 

 The main purpose of the present study was to explore the effects of a maternal high-fat 

diet on metabolic function and spatial learning and memory performance in both female and 

male offspring. 

4.1 Experimental questions 

1. Will consumption of a high-fat diet for ten weeks induce an obese phenotype and 

spatial learning and memory impairments in adult, female Sprague-Dawley rats?  

2. a) Will offspring born to mothers fed a HFD, prior to and during gestation and 

lactation, exhibit altered metabolic function, in comparison to offspring born to CD 

mothers? 

b) Will any observable differences be dependent on the sex of offspring? 

3. a)  Will offspring born to mothers fed a high-fat diet demonstrate impairments in 

spatial learning and memory?  

b) Will any observable differences be dependent on the sex of offspring? 

4.2 Hypotheses 

 Based on existing literature, deficits in metabolic function and hippocampal-dependent 

behaviours were expected to be found in the maternal generation consuming the high-fat diet. 

Further, it was expected that any cognitive impairment induced by the high-fat diet consumed by 

the maternal generation would be observable in the offspring by way of developmental 

programming. Further, as female animals tend to be less susceptible to impairments in spatial 

learning post-adversity (Russo et al., 2012), it was hypothesized that male offspring would be 

more affected by exposure to maternal obesity.   
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5.0 Methods 

5.1 Experimental animals: Maternal generation 

All experiments with animals received ethical clearance through the University of Waterloo 

Animal Care Committee, in accordance with the guidelines for use of experimental animals as 

mandated by the Canadian Council on Animal Care. Please see Figure 1 for a detailed outline of 

all feeding and experimental protocols.  

Sixty female, non-sibling, Sprague-Dawley rats were delivered on post-natal day (PND 21) 

and housed in polypropylene cages with wood chip bedding, PVC tubes and shredded paper 

towel for enrichment. The rats were fed a standard Harlan Teklad rodent diet for one week while 

being acclimatized to their environment. At PND 28, the animals were randomly assigned to 

either a high-fat (45% kcal from saturated fat), or control diet (CD; 10% kcal from fat; see Table 

1 for the complete composition of each diet), with ad libitum access to their respective diets and 

water for ten weeks. The animals were identified using non-toxic markers, and group housed 

(three animals per cage) in a room with a constant temperature of 23°C and a 12 hour light/dark 

cycle. Body weight (g) was measured weekly throughout the feeding period. Each week, food 

hoppers were weighed and topped up to 500 g.  

In order to determine the maternal generation’s ability to handle a glucose load, oral glucose 

tolerance tests (OGTTs) were performed on a subset of the animals after four and eight weeks on 

their respective diets. Prior to being gavaged with a 50% glucose solution (4 g/kg), all animals 

were fasted for 10-12 hours with access to water only. At baseline, as well as 30, 60, 90, and 120 

minutes after administration of the glucose bolus, blood glucose levels were recorded by tail vein 

poke using a standard glucose meter. Results were calculated using area under the curve (AUC) 

to compare blood glucose over time between the two dietary conditions.   
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 5.1.1 Breeding protocol 

 After behavioural testing at 10 weeks on the diet, one female from each cage was selected 

to breed with a sexually naive, adult Sprague-Dawley male. All male breeders were maintained 

on a standard rat chow diet prior to breeding. After one week of breeding, dams were presumed 

to be pregnant and were individually housed, with continued access to their respective diets 

throughout breeding, gestation and lactation. As humans do not consume a HFD throughout only 

pregnancy or lactation, feeding a HFD pre-pregnancy in addition to gestation makes for a more 

ecologically relevant model of studying maternal obesity (Elahi et al., 2009).  

 Reproductive success was similar across maternal groups, and all dams from each diet 

condition delivered litters that were of sufficient size to allow litter size and sex distribution 

among offspring to be standardized in order to control for access to maternal resources. On PND 

1, all litters were sexed (see protocol in Rodriguez et al., 2012) and culled to eight pups (four 

male and four female). Offspring body weights were recorded and averaged by sex each week 

after birth until weaning at PND 21 (See Table 3).  

5.2 Behavioural testing: Morris water maze task 

All animals were handled for three minutes/day, for three days prior to the first day of 

testing. All behavioural testing took place between 9:00 a.m. and noon. During experiments, 

animals were individually housed in clear polypropylene cages, and were returned to their group-

housed environments at the end of testing each day. After each swim in the pool, the rats were 

towel dried and heating pads were placed beneath their cages to keep them warm during testing. 

All behavioural assessment was alternated by diet and/or sex condition, and all experiments were 

monitored and recorded using Noldus Ethovision XT v8.5 video tracking system (The 

Netherlands).  
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5.2.1 Maternal generation: spatial learning 

 To evaluate whether chronic consumption of a high-fat diet influenced spatial learning 

and memory retention in female Sprague-Dawley rats, CD and HFD animals (N = 15 each 

group) were assessed after ten weeks on their respective diets (PND 98), using an adapted 

version (Maei et al., 2009; White et al., 2009; Vorhees & Williams, 2006) of the water maze task 

originally developed by Morris et al. (1982).  

Animals were trained to navigate through a water tank (1.52 m in diameter) and find a 

hidden platform (18.2 cm in diameter) submerged approximately 3 cm below the water. Black 

non-toxic paint was added to make the water opaque, and water temperature was always 

maintained at 23°C ± 1°C. The water tank was divided into virtual quadrants using Ethovision 

XT v8.5 software, and distal visual cues were located on nearby walls in the south, north, east 

and west quadrants.  

Throughout spatial learning training, the platform was always located in the southwest 

(SW) quadrant (Maei et al., 2009; Vorhees & Williams, 2006), and animals were randomly 

assigned to one of four starting locations each day for each trial (NW, N, E, SE). The starting 

locations were selected for their relatively even distance from the platform (Vorhees & Williams, 

2006).    

Spatial learning training consisted of three days of testing, with four trials each day. The 

inter-trial interval was approximately five minutes for each rat. On the first day of training, rats 

were placed on the platform for 15 s to acclimatize to the pool environment before starting their 

first trial. In each trial, the rats were allowed to swim until they found the platform, or were 

guided to the platform after 60 s. Each rat was then allowed 15 s on the platform before being 
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returned to a heated cage until the next trial. Latency (s) and distance traveled (cm) were 

recorded throughout training. 

5.2.2 Maternal generation: reference memory 

To assess reference memory, a probe test was used 24 hours after the last training trial 

(Kuang et al., 2014; Vorhees & Williams, 2006). The submerged platform was removed and rats 

were placed in the water tank facing the north wall for a single 60 s free-swim. Throughout the 

probe test, time spent in the target quadrant (SW), time spent in the opposite quadrant, and 

average distance (cm) to previous location of the platform (Maei et al., 2009) were recorded for 

later analysis using the Noldus software.  

5.3 Offspring generation 

  5.3.1  Experimental protocol 

 At the point of weaning, male and female siblings were group housed by sex (3-4 animals 

per cage) in the same room conditions as described for the maternal generation. All offspring 

were raised in similar environments and received the CD, regardless of the maternal diet. Each 

rat was marked for identification using a non-toxic marker, and body and food weights were 

recorded weekly until PND 60. Behavioural testing was performed in late adolescence (PND 40-

48), and again in middle adulthood (PND 90-98). Around PND 120, all offspring were sacrificed 

for further analyses. Animals were placed in an induction chamber and were anesthetized with a 

60%     gas before being decapitated. Two hour fasting blood glucose was measured using 

trunk blood and a standard glucose meter, and organ weights (liver, spleen, adrenal glands, and 

retroperitoneal fat pads) were also recorded.   
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5.3.2  Behavioural testing 

To observe the effects of maternal obesity on hippocampal-dependent spatial learning 

and reference memory across the lifespan, all pups were assessed using the MWM task in late 

adolescence (PND 40-48) and young adulthood (PND 90-98; Gray, Chaouloff, & Hill, 2015). 

The same protocol used with the maternal generation was employed when testing the offspring in 

adolescence. However, when testing the animals the second time (PND 90-98), only one training 

day of four trials and one probe day 24 hours post-training were used as the animals remembered 

the platform location after the first training trial.   

5.4 Data analysis 

Outliers were removed from further analyses using Grubb’s test. All dependent measures for 

the maternal generation were analyzed through unpaired, two-tailed Student’s t-tests, as well as 

two-way analyses of variance (ANOVAs) in GraphPad Prism 6. Offspring data were stratified by 

sex and analyzed using two-way repeated measures ANOVAs with Tukey’s post-hoc analyses 

where necessary, as well as unpaired Student’s t-tests. Power calculations were performed to 

ensure a sufficient sample size was available to detect any differences present. 
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6.0 Results 

6.1 Maternal generation: Biometric data 

Although there were no initial baseline differences (see Figure 2A) in body weight (CD:  

71.00 g ± 1.68 g; HFD: 72.27 g ± 1.66 g; t (58) = 0.053; p = 0.59), the HFD female animals 

weighed significantly more than those in the CD group after consuming the HFD for ten weeks 

(CD: 263.1 g ± 3.33 g; HFD: 272.9 g ± 2.99 g; t(58) = 2.18; p = 0.03, Figure 2B). The HFD 

dams also consumed significantly more energy (kcal) in total than the CD dams over the ten 

week period (CD: 990.3 kcal ± 42.16 kcal; HFD: 1122 kcal ± 25.63 kcal; t(18) = 2.67; p = 0.016, 

Figure 4b).  

No significant differences in area under the curve (AUC) for ability to handle a glucose 

load were found after one month on the HFD, however, the female animals were trending toward 

impaired glucose tolerance after two months of HFD consumption (CD: 233.9 ± 15.6; HFD: 

286.4 ± 21.8; t (34) = 1.96; p =0.058, Figure 5a).  As a result, a two-way repeated measures 

ANOVA was conducted with the month two data, revealing an interaction between diet and time 

(F (4, 132) = 2.73, p = 0.032). Follow-up analyses using the Bonferroni post-hoc test revealed a 

significant difference at 30 minutes post administration of glucose bolus (p < 0.05).  

No significant differences were found between the HFD and CD females in regards to 

their terminal spleen, liver and adrenal gland weight (Table 2). However, the HFD group had 

significantly heavier retroperitoneal fat pads than the CD animals at sacrifice (%BW: CD, 0.42 ± 

0.024; HFD, 0.52 ± 0.031; t (28) = 2.63; p = 0.014; Figure 6). 

6.2 Maternal generation: Morris water maze test 

 To ensure there were no differences in swim speed between the two diet conditions, an 

unpaired Student’s t-test was conducted to compare swim speed during the very first trial of 
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training. No significant differences were detected (CD: 31.71 cm/s ± 0.76 cm/s; HFD: 31.77 

cm/s ± 0.66 cm/s; t (28) = 0.0631; p = 0.95), confirming that any performance deficits observed 

on the task were due to cognitive impairment (Figure 7).   

6.2.1  Spatial learning 

Using a two-way repeated measures analysis of variance (ANOVA; diet condition x 

training day), no diet differences were detected between the CD and HFD animals in their ability 

to acquire spatial information as measured by latency to find the platform throughout water maze 

training (F (1, 28) = 0.33, p = 0.86), although a main effect of time (training day) was revealed 

confirming that both groups were able to learn across training days, regardless of diet condition 

(F (2, 56) = 40.07, p < 0.001, Figure 8). Further, no differences were found between diet 

conditions when distance traveled (cm) across training days was assessed using a two-way 

repeated measures ANOVA, (F (1, 28) = 0.39, p = 0.53), although a main effect of time was 

found once again (F (2, 56) = 0.32.57, p < 0.001, Figure 9).  

6.2.2  Spatial memory retention  

 When spatial memory retention was tested, no diet effects were observed between the 

two groups for average distance (cm; average proximity), to the previous platform location 

during the free swim probe test (CD: 44.94 cm ± 2.00 cm; HFD: 44.95 cm ± 1.94; t (28) = 0.003; 

p = 0.99; Figure 10a). Further, no effect of diet was found when percent of time spent in the 

target quadrant was compared to time spent in the opposite quadrant across the diet conditions (F 

(1, 56) = 0.61, p = 0.44). Although time spent in the correct quadrant is the most popular 

dependent measure to examine the MWM probe test, average distance from the center of the 

previous platform location is said to be most sensitive for detecting treatment group differences 

(Maei et al., 2009).   
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6.3 Offspring generation: Biometric data 

 6.3.1 Breeding data 

 Using t-tests, litter size, sex distribution and offspring body weight on PND 1 and 7 were 

analyzed across the two diet conditions. Although litter size was not significantly different 

between the HFD and CD dams, there was a significant effect on sex distribution, with more 

female pups born to the HFD dams than the CD dams (CD: 6.00 ± 0.91; HFD: 10.40 ± 1.33; t (7) 

= 2.58; p = 0.04; Table 3).  Notably, two of the five HFD dams delivered three or more stillborn 

pups, and one female HFD pup was euthanized by CO2 on PND 12 as she was emaciated and no 

longer receiving sufficient maternal care.   

6.3.2 Body weight and food consumption 

Overall, female offspring body weight on PND 1 was significantly higher for the 

maternal CD group (CD: 7.50 g ± 0.51 g; HFD: 6.20 g ± 0.20 g; t (7) = 2.54; p = 0.04), although 

these differences normalized by PND 7 (CD: 21.59 g ± 0.52 g; HFD: 20.24 g  ± 1.00 g; t (7) = 

1.27; p = 0.24; Table 3). Male offspring did not differ significantly in body weight on either PND 

1 (CD: 7.65 g ± 0.45 g; HFD: 6.73 g ± 0.06 g; t (7) = 1.99; p = 0.09), or PND 7 (CD: 21.73 g ± 

0.65 g; HFD: 21.25 g ± 0.65 g; t (7) = 0.51; p = 0.62).  

As well, maternal diet did not appear to influence terminal body weight for either male 

offspring (CD: 473.20 g ± 10.30 g; HFD: 468.00 g ± 8.79 g; t (18) = 0.38; p = 0.71; Figure 11b), 

or female offspring (CD: 294.00 g ± 12.67 g; HFD: 281.10 g ± 3.67 g; t (18) = 0.98; p = 0.34; 

Figure 12b). Further, the offspring generation did not differ in their consumption of the CD (in 

both grams and energy) when measured across five weeks (PND 21-56; Figures 13 and 14).   

Maternal diet did not significantly influence organ weights at sacrifice (spleen, liver, 

adrenal glands, and retroperitoneal fat pads) for male (Table 4), or female (Table 5) offspring. 

Further, no significant differences were found when terminal blood glucose was measured for 
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either male (CD: 6.61 ± 0.14; HFD: 6.98 ± 0.14; t (18) = 0.83, p = 0.41; Figure 15a), or female 

offspring (CD: 7.18 ± 0.14; HFD: 7.81 ± 0.38; t (18) = 1.61, p = 0.12; Figure 16a). 

6.4  Offspring generation: Morris water maze test 

6.4.1  Adolescence (PND 40-48) 

 Swim speed was examined for the first trial of testing to ensure the offspring groups did 

not differ in their mobility while performing in the MWM. No significant differences were found 

between the maternal diet conditions when examining speed (cm/s) in adolescence (male CD 

offspring: 27.52  cm/s ± 1.17 cm/s; male HFD offspring: 24.83 cm/s ± 1.02 cm/s; t(8) = 1.73; p = 

0.12; female CD offspring: 29.46 cm/s ± 0.81 cm/s; female HFD offspring: 29.84 cm/s ± 0.75 

cm/s; t(8) = 0.34; p = 0.74; Figure 16). 

6.4.1.1  Spatial learning 

 Data were separated by sex and two-way repeated-measures ANOVAs were conducted to 

test for an interaction between diet condition and spatial learning as measured by average latency 

to reach the platform across the three training days.  

When the average latency of male offspring was measured in adolescence (PND 40-48), no 

main effect of diet (F (1, 4) = 4.82, p = 0.093; Figure 17) was found, however an effect of 

training day (F (2, 8) = 26.42, p < 0.001) on spatial learning was observed. Using a Student’s t-

test, an effect of maternal diet condition was found for the third day of training (CD: 16.39 ± 

2.05; HFD: 29.87 ± 4.53; t (8) = 2.71, p = 0.02). Further, analyzing distance traveled (cm) over 

training days in adolescence, a main effect of time was once again revealed (F (2, 16) = 20.27, p 

< 0.001), while the effect of maternal diet was trending toward significance (F (1, 8) = 4.72, p = 

0.06; Figure 18). 



27 
 

For the female offspring, no effect of diet of maternal diet was found (F (1,8) = 1.48; p = 

0.25) on ability to acquire spatial information, however a main effect was found to confirm that 

these rats learned across training days (F (2,16) = 23.66; p < 0.001; Figure 19). Looking at 

distance traveled (cm) over the three training days, a main effect of time on ability to acquire 

spatial information (F (1, 8) = 1.48; p = 0.25), and no effect of maternal diet (F (1,8) = 0.47; p = 

0.51; Figure 20), were once again observed. 

6.4.1.2   Spatial memory retention  

Next, short-term spatial memory retention over a 24 hour period was examined using the 

probe test of the MWM. In comparison to the male offspring born to HFD dams, those born to 

CD dams were more accurately able to recall where the platform was previously located during 

the free swim probe test, as there were significant differences in average distance from the 

platform location (CD: 49.10 cm ± 1.51 cm; HFD: 60.44 cm ± 2.56 cm; t (8) = 3.82, p = 0.005, d 

= 2.70, r = 0.80; Figure 21A). Further, we found there to be an interaction when percent of time 

spent in the target versus opposite quadrants during the probe test was compared across maternal 

diet conditions (F (1, 16) = 5.09, p = 0.03). A multiple comparisons test revealed that male 

offspring born to the CD dams spent more time in the correct quadrant, while those exposed to 

the maternal HFD condition spent more time in the opposite quadrant (Figure 21B).   

No differences were found in memory retention for female offspring exposed to a 

maternal HFD when average distance to previous platform location (CD: 51.97 cm ± 1.42 cm; 

HFD: 55.68 cm ± 1.91 cm; t (8) = 1.55, p = 0.16; Figure 22A), or percent time spent in the target 

quadrant versus opposite quadrant (F (1, 16) = 1.64, p = 0.21; Figure 22B).  
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           6.4.2    Adulthood (PND 90-94) 

 Swim speed was also recorded for the first training trial in adulthood. No significant 

differences were found between the maternal diet conditions when examining speed (cm/s) in 

adulthood (male CD offspring: 24.59 cm/s ± 0.70 cm/s; male HFD offspring: 25.08 cm/s ± 0.53 

cm/s; t(8) = 0.56; p = 0.59; female CD offspring: 25.81 cm/s ± 0.47 cm/s; female HFD offspring: 

26.76 cm/s ± 0.88 cm/s; t(8) = 0.94; p = 0.37; Figure 23). 

6.4.2.1   Spatial learning and memory retention   

 Comparing latency to find the platform for the first training trial in adulthood, male 

offspring born to a HFD dam were no different in their latency to find the platform (CD: 15.95 s 

± 1.29 s; HFD: 19.05 s ± 5.42 s; t (7) = 0.49; p = 0.63), or distance traveled (CD: 308.7 cm ± 

22.65 cm; HFD: 403.6 cm ± 120.1 cm; t (7) = 0.69; p = 0.51; Figure 24) relative to male 

offspring born to a CD dam. However, a significant difference was found on trial 2 using a 

Student’s unpaired t-test for both latency to find the platform (CD: 12.44 s ± 2.86 s; HFD: 24.64 

s ± 2.18 s; t (8) = 3.40; p < 0.001, d = 2.40, r = 0.77), and distance traveled (CD: 238.1cm ± 

80.42 cm; HFD: 495.4 cm ± 58.34 cm; t (6) = 2.59; p = 0.04, d = 2.11, r = 0.73).  

Upon analyzing female offspring performance in the MWM in adulthood, latency to find the 

platform (CD: 21.07 s ± 2.47 s; HFD: 22.56 s ± 5.04 s; t (8) = 0.27; p = 0.79) and distance 

traveled (CD: 411.6 cm ± 76.12 cm; HFD: 517.2 cm ± 156.3 cm; t (8) = 0.61; p = 0.56; Figure 

25) were not found to be affected by maternal diet.  

Spatial memory retention was once again examined weeks after initial training (PND 48 

vs. PND 94) and occurred 24 hours after the first training day in adulthood (further training days 

were not completed as the animals appeared to recall their MWM experience from adolescence). 

Examining male offspring data, no significant differences were found in average proximity to the 
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previous platform location during the probe test (CD: 49.03 cm ± 2.96 cm; HFD: 42.72 cm ± 

1.30 cm; t (8) = 1.95, p = 0.08; Figure 26A), while our second dependent variable revealed that 

male offspring born to the CD dams spent more time in the correct quadrant than the male 

offspring exposed to maternal HFD in utero and throughout lactation (F (1, 16) = 100.8, p < 

0.001; Figure 26B). 

Similarly for female offspring, no differences were found when average distance to previous 

platform location (CD: 48.11 cm ± 2.61 cm; HFD: 43.53 cm ± 0.71 cm; t (8) = 1.69, p = 0.13) 

was examined. However, the maternal CD female offspring spent more time in the target 

quadrant than the HFD exposed female animals (F (1, 16) = 104.7, p < 0.001; Figure 27B).   
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7.0 Discussion 

 Previous research suggests that consumption of a HFD leads to an obese phenotype and 

hippocampal-dependent cognitive impairment. However, most of these studies have focused on 

male rodents (Arnold et al., 2014; Beilharz et al., 2014; Boitard et al., 2014; Hsu & Kanoski, 

2014; Mielke et al., 2006). Further, researchers have recognized that the timing of exposure may 

be relevant when determining the long-term effects. For example, Boitard et al. (2014) and 

Valladolid-Acebes et al. (2013) have demonstrated that a chronic HFD fed to male adult rats 

does not cause any spatial memory impairments, but that impairments become visible when the 

rodents are exposed to the diet earlier in life. As mentioned, women are increasingly becoming 

obese leading to a range of negative health concerns, but the presence of an obese state during 

pregnancy has also been noted to influence developing offspring. Unfortunately, due to a lack of 

focus in the literature, it is largely unknown how chronic consumption of a HFD may affect 

female animals, as well as their offspring.   

Aiming to fill these gaps in the literature, I examined female Sprague-Dawley rats to see 

if an obese phenotype and a resultant impairment in spatial memory could be induced by chronic 

consumption of a HFD starting in the juvenile period. Based on differences in body weight, 

retroperitoneal fat pads, and glucose tolerance, chronic consumption of a HFD beginning prior to 

adulthood appeared sufficient to induce an obese phenotype in female rodents. In addition to 

Warneke et al. (2014) who demonstrated an effect of a Western diet on glucose regulation in 

adulthood (see Ainge et al., 2011 for a review of impaired glycemic control in maternal and 

offspring generations), Hwang et al. (2010) found that after 8-11 months of HFD feeding, male 

mice developed symptoms of the metabolic syndrome (i.e., hyperglycemia, hyperinsulinemia, 

hypercholesterolemia, and hyperleptinemia), while female animals did not demonstrate 
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hyperglycemia, and had lower grades of hypercholesterolemia and hyperinsulinemia. Similarly, 

our CD and HFD animals were not different in their basal glucose levels although the HFD 

group did demonstrate impaired glucose tolerance, as well as increased weight gain after ten 

weeks of consumption.  

 Although there were demonstrable biometric changes after the ten week feeding protocol, 

the regimen was not sufficient to induce any spatial learning, or memory retention deficits. As 

power calculations revealed that the behavioural analyses were sufficiently powered to detect an 

effect, a type II error is not suspected. Therefore, the finding suggests that female rats may be 

less susceptible to the effects of a HFD, as previous work with male rats and mice have found 

that both longer term (Arnold et al., 2014; Valladolid-Acebes et al., 2013), and shorter (Beilharz 

et al., 2014; Boitard et al., 2014) term high-fat feeding regimens were able to induce spatial 

learning and memory impairments.  

7.1 Consumption of a HFD and reproductive success 

 In addition to the metabolic changes demonstrated after ten weeks on a HFD, we also 

found interesting results after examining data collected from our breeding protocol. In our study, 

three out of five HFD dams gave birth to two or more stillborn pups.  Past research has shown 

that, in addition to factors such as maternal age, previous caesarean delivery and congenital 

abnormalities, maternal obesity and gestational diabetes can contribute to the risk of stillbirth 

(Frias et al., 2011; Starikov et al., 2015); notably, obese women displayed a 2-5 fold increased 

risk of stillbirth in comparison with normal weight women (Yao et al., 2014). Examining 

reproductive success in a large sample of female Sprague-Dawley rats, Shaw et al. (1997) found 

that 70% of dams consuming a HFD from PND 27-65 lost one or more pup, in comparison to 

only 33% of dams consuming a CD. Further, the surviving pups of the HFD dams grew less well 
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during the first ten days of life (Shaw et al., 1997). As glucose concentrations increase in the 

blood, an abundance of reactive oxygen species can lead to cell and tissue damage, impairing 

placental development (Starikov et al., 2015), as well as decreasing vasodilation in the uterus 

(Frias et al., 2011; Gluckman & Hanson, 2004). 

 We found that the HFD dams gave birth to more female pups on average, and that these 

female offspring weighed significantly less on PND 1 than the female offspring born to the CD 

dams. Although reduced birth size does not always result in negative health outcomes, any 

modification to the developmental trajectory could put individuals at risk of catch up growth in 

environments abundant in high-fat and energy-dense foods (Boersma & Tamashiro, 2015; 

Gluckman & Hansson, 2004; Williams et al., 2013).     

Previous studies have found a range of results when investigating the effects of maternal 

obesity on reproductive markers, such as litter size, sex distribution, and birth weight. While 

some reports suggest HFD dams may give birth to smaller pups on average (Ainge et al., 2011; 

Williams et al., 2013), others have found similar weight offspring between control and HFD 

dams (Stachowiak et al., 2013). It has also been noted in the literature that excess exposure to 

insulin, glucose, amino acids and lipids can lead to mitogenesis of adipocytes, inducing increased 

fat accumulation in the developing fetus (Starikov et al., 2015). Further, under optimal 

conditions pregnant female animals are said to be more likely to give birth to male offspring as 

these offspring are more likely to be successful breeders, yet, others have found conflicting 

results (Alexenko et al., 2007; Grant & Chamley, 2010). For example, Alexenko et al. (2007) 

found that mice fed a diet very high in saturated fats (54% kcal from lard) gave birth to more 

male offspring (60%) than did CD dams. According to Grant and Chamley (2010), pregnant 

animals may be more likely to deliver male offspring when exposed to chronic stress, or poor 
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environmental conditions, due to an influx of testosterone in peripheral tissues as a result of 

stress reactivity. Although these are in contrast to our finding of more female offspring being 

delivered by HFD dams, the type of species (i.e., mice vs. rats) might be influential in the effect 

observed.  

 7.2 The effects of maternal obesity on offspring development and cognition 

 Due to the heterogeneity of experimental protocols often used in the literature, which 

include length of feeding and composition of diet, as well as age, strain and sex of animals 

exposed, a consensus regarding the effects of a maternal HFD on markers of metabolic and brain 

development, as well as cognitive impairment in the offspring, does not exist (Ainge et al., 

2011).  

 Previous studies have noted that prenatally stressed rats are at increased risk of affective 

disorders (Watson et al., 1999), altered stress reactivity through modifications to the HPA axis 

(Boersma & Tamashiro, 2015), and altered metabolic function. Further, exposure to maternal 

stress during the first week of pregnancy can alter body weight and food consumption patterns in 

later development (Boersma & Tamashiro, 2015). For example, in one study by Boersma and 

Tamashiro (2015), offspring tended to be hyperphagic when consuming a standard chow diet, 

but surprisingly gained less weight when consuming a HFD. However, it should be noted that 

within each population of certain strains of animals (e.g., Sprague-Dawley rats) lies a subset of 

vulnerable, as well as resistant animals (Boersma & Tamashiro, 2015; Levin et al., 1997). 

Therefore, it is possible that exposure to different types of stressors may impact different strains 

of animals differently depending on their genetic background and age of exposure (Boersma & 

Tamashiro, 2015).  
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 In addition to in utero effects of stress, exposure to postnatal maternal behaviours, such 

as consumption of a HFD throughout lactation, has been demonstrated to also impact 

development of the offspring (Niculescu & Lupu, 2009). Typically, humans do not consume a 

HFD throughout only pregnancy or lactation, therefore feeding a HFD pre-pregnancy in addition 

to gestation makes for a more ecologically relevant model of studying maternal obesity (Elahi et 

al., 2009). In our model of maternal obesity, dams consumed their respective diets (HFD or CD) 

for ten weeks prior to gestation, as well as throughout gestation and lactation until offspring were 

weaned at PND 21. Through the analysis of body weights, food consumption, retroperitoneal fat 

pad weight, terminal glucose tolerance, and other terminal measures of organ weights, we found 

that maternal obesity did not impair the metabolic profile of the offspring.  

 In contrast to our results, Page et al. (2014) found that Sprague-Dawley rats exposed to a 

45% kcal HFD for one month before pregnancy delivered male offspring with metabolic 

impairments demonstrable into adulthood. Around PND 110, male offspring born to obese dams 

weighed more, had higher blood glucose concentrations, higher concentrations of CORT, and 

larger retroperitoneal fat pads, independent of whether they were also exposed to a HFD 

throughout postnatal development (Page et al., 2014). Further, a systematic review by Ainge et 

al. (2011) noted earlier studies finding that male offspring born to HFD dams exhibited impaired 

tolerance for glucose at weaning after being exposed throughout gestation and lactation only. 

Therefore, it is unclear why we were unable to detect any statistically significant differences in 

metabolic function in the offspring exposed to a HFD during gestation and lactation.  

 Spatial learning and memory retention in offspring of HFD female rats have been less 

well studied than their metabolic profile, but some researchers have found that male offspring 

born to HFD fed, or obese mothers exhibit increased latency and longer path length in the 



35 
 

training, or learning, portion of the Morris water maze (Page et al., 2014), while others have only 

demonstrated impaired spatial memory retention on the probe part of the task (White et al., 

2009). In the present study, exposure to a HFD throughout gestation and lactation was found to 

impair spatial learning, as measured by latency to find platform (s) and distance traveled (cm), in 

only male adolescent offspring. Further, the male offspring demonstrated less accurate memory 

retention in the probe portion of the water maze task, as their average distance from the previous 

platform location was significantly different from that of the CD offspring, and the HFD 

offspring spent less time in the target, or correct quadrant than the CD offspring. When spatial 

learning and memory retention were measured again in adulthood, the previously apparent 

differences in latency had normalized, although the CD exposed offspring continued to spend 

more time in the correct quadrant than the HFD exposed offspring. Further, although no 

significant differences were found when the female offspring were tested in adolescence, the CD 

exposed offspring were more accurate than the HFD exposed female offspring in their memory 

for the platform location as per their time spent in the target quadrant when tested in adulthood.  

7.3 Possible mechanisms underlying diet-induced cognitive impairment 

 7.3.1 Insulin 

Insulin has a primary role of glucoregulation in the body, stimulating the absorption of 

glucose into adipose tissue, skeletal muscle and the liver and also works to inhibit processes, 

such as gluconeogenesis in the liver, as well as lipolysis and proteolysis in muscle and adipose 

tissues (Martyn et al., 2008). Insulin resistance is characterized by a decreased response to 

insulin in the blood due to changes at the level of signal transduction, despite excess plasma 

levels which attempt to compensate for decreased sensitivity (Lee et al., 2011; Martyn et al., 
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2008). Diagnosed in nearly all individuals who become obese (Martyn et al., 2008), it may be 

one factor mitigating cognitive disruption in these individuals.  

 Research suggests that impaired insulin signalling in the hippocampus may contribute to 

the cognitive deficits observed after consumption of a high-fat, or high-sucrose diet (Anderson et 

al., 2013; Arnold et al., 2014; Mielke et al., 2005; Soares et al., 2013). Greenwood et al. (2003) 

noted impairments in delayed, but not immediate, verbal memory, following poor post-prandial 

glycemic control, and another study reported decreased hippocampal volume in individuals 

diagnosed with type 2 diabetes (Gold et al., 2007). Stranahan & Mattson (2011) also mentioned 

that cognitive functioning is correlated with glycemic control in non-diabetic individuals, 

supporting a broad metabolic-neurocognitive relationship, even outside of obesity research. As 

mentioned earlier, individuals diagnosed with diabetes are also at increased risk of Alzheimer’s 

disease, and poor glycemic control can exacerbate existing dementia (Stranahan & Mattson, 

2011). 

Research using animal models has also supported a role for insulin in cognition. For 

example, Mielke et al. (2005) demonstrated impaired insulin signalling pathways and decreased 

hippocampal synaptic plasticity in hamsters fed a high fructose diet. Additionally, Pathan et al. 

(2008) showed that administering an insulin sensitizer (rosiglitazone) was sufficient to restore 

Morris water maze performance following the consumption of a high-fat diet. Other animal 

studies have also found that diet-induced diabetes was able to impair synaptic transmission 

throughout the downregulation of insulin receptor substrate 2 (IRS-2), which appears to be 

important for long-term potentiation and memory formation, although the exact role of IRS-2 is 

not entirely understood (Martin et al., 2012). However, Ross et al. (2012) did not find impaired 
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insulin signalling when male rats were fed a high-fructose diet, despite deficits in hippocampal-

dependent memory in the MWM.  

7.3.2 Leptin 

The main role of leptin rests in its ability to alter the hypothalamic feeding pathway to 

increase energy expenditure and reduce appetite, however leptin receptors are also expressed in 

the cerebellum, amygdala, brainstem and hippocampus (White et al., 2009). As a hormone, leptin 

acts as an afferent signal of adiposity to the brain, increasing in concentration relative to obesity 

in humans (Hariri & Thibault, 2010). Increases in leptin concentration can also be found in 

healthy males after consumption of a high-fat meal (Hariri & Thibault, 2010). However, despite 

the increased levels seen in obese individuals, the hypothalamus eventually becomes resistant 

and is no longer able to receive messages of satiety to support the control of appetite (White et 

al., 2009).  

Similarly, the hippocampus, which relies on leptin for the maintenance of synaptic 

plasticity and memory formation, can develop leptin resistance (Grillo et al., 2011; Hwang et al., 

2010). An important role for leptin in learning and memory has been shown by studies revealing 

that rodents without functional leptin receptors were unable to properly learn hippocampal-

dependent memory tasks, such as the MWM (Stranahan & Mattson, 2011). Consumption of a 

HFD for 8 weeks has also been shown to sufficiently impair downstream leptin signaling in 5 

week old male C57BL/6L mice, in addition to hippocampal-dependent memory (Valladolid-

Acebes et al., 2013). Leptin also influences synaptic function in the hippocampus. Noted by 

Irving and Harvey (2014), exogenous administration of leptin to the rat hippocampus can 

enhance long-term synaptic transmission. 
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Although it was not directly examined for the offspring generation in the present study, 

leptin resistance could provide some explanation for the sex differences in cognitive impairment 

seen between male and female offspring of HFD dams. For example, Deroo and Korach (2006) 

noted in their review that estrogen may inhibit lipolysis. Although excess storage of fat in 

adipocytes may cause inflammation leading to cognitive-impairment, estrogen can alter 

adipocyte levels, indirectly altering leptin signaling. This might explain why female offspring in 

the present study did not demonstrate impaired spatial learning or memory retention in 

adolescence, while the male offspring were impaired. 

7.3.3 Neurogenesis 

 Despite the initial controversy over the adult brain’s ability to generate new neurons, it is 

now accepted that certain regions of the brain, such as the hypothalamus and dentate gyrus of the 

hippocampus, do continue to proliferate new neurons throughout the lifespan (Boitard, 2012; 

Jackson-Guilford et al., 2000; Lindqvist et al., 2006). Hippocampal neurogenesis, which is 

impaired after chronic consumption of a HFD, supports cognitive flexibility in rodents and 

declarative memory in humans; both of which have been found to be impaired after diet-induced 

metabolic dysfunction (Boitard, 2012; Jackson-Guilford et al., 2000; Lindqvist et al., 2006).  

Researchers have suggested that increased concentrations of corticosterone and 

neuroinflammation after chronic consumption of a HFD might impair hippocampal neurogenesis 

(Boitard, 2012; Lindqvist et al., 2006; Park et al., 2010; Pistell et al., 2010).  Inflammation in the 

brain is inversely associated with brain-derived neurotrophic factor (Pistell et al., 2010), and 

while the exact mechanisms are still unclear, proinflammatory cytokines such as IL-6 and TNF-α 

may inhibit neurogenesis through the production of reactive oxygen species, leading to cell 

damage (Pervaiz & Hoffman-Goetz, 2011). 
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7.3.3.1  Brain-derived neurotrophic factor (BDNF) 

A neurotrophin responsible for the growth, maintenance, and survival of many types of 

neurons, brain-derived neurotrophic factor (BDNF) is found throughout the hippocampus and 

thought to influence both synaptic plasticity and neurogenesis in this structure (Kanoski & 

Davidson, 2011). After chronic consumption of an obesogenic diet, research has demonstrated 

that BDNF levels, as well as synaptic plasticity and hippocampal-dependent memory, are 

impaired in the rat hippocampus (Molteni et al., 2002; Stranahan et al., 2008). However, in 

contrast, Ross et al. (2012) found that impairments seen in MWM performance of male rats fed a 

high-fructose diet were not associated with BDNF levels.  

7.4 Possible explanations for a sex-stratified effect of a HFD on the brain 

As early as 1948, a report on a birth cohort from the United Kingdom revealed that low 

birth weight and increased weight gain was able to influence age of menarche (Sloboda et al., 

2009). As seen with cases of early life stress in humans, female animal offspring who experience 

poor maternal-child interaction (including parental support and bonding, increased stress 

reactivity, as well as exposure to maternal HFD) are at increased risk of early pubertal 

maturation and an altered stress response as measured through CORT and ACTH levels (Connor 

et al., 2012). Developmental programming of such a phenotype is likely to be evolutionarily 

adaptive as pubertal aging in females ensures early reproductive success in animals otherwise 

predisposed to adverse development (Connor et al., 2012; Sloboda et al., 2009).  Although we 

did not directly measure CORT or pubertal maturation in early adolescence, it is possible that the 

female offspring in the present study also experienced early pubertal aging due to HFD exposure 

in utero and during lactation.  

 In rat models, experience of early life adversity through malnourishment, or exposure to 

excess glucocorticoids can lead to increased risk of obesity, insulin resistance, hyperphagia, a 
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preference for fatty foods, and reduced energy expenditure through unwillingness to exercise 

(Sloboda et al., 2009). Using Wistar rats, Connor et al. (2012) demonstrated that consumption of 

a HFD during pregnancy and lactation only was sufficient to induce obesity, hyperinsulinemia 

and hyperleptinemia in the offspring, and decrease maternal behaviours, such as licking and 

grooming, throughout early development. Despite standardization of litter size and sex 

distribution to account for maternal resources, it is possible that exposure to the HFD impaired 

endocrine changes in the pregnant dams that help to enhance natural maternal behaviour. 

Observed in our study, Connor et al. (2012) also noted that HFD pups tend to be smaller at birth 

and exhibit catch up growth by weaning. 

 Since the 1940s, it has been known that women are at increased risk of diabetes and 

cardiovascular disease at menopause, and some of these physiological changes can be improved 

through exogenous administration of estrogen-like compounds (Gitlow & Kurschner, 1943; 

Meyer, Clegg, Prossnitz, & Barton, 2011). Newer research has found that estradiol, which can 

fluctuate throughout the lifespan, can be produced in the brain, and may act as a transcriptional 

factor (slowly impacting long-term development), or may bind to membrane receptors for a fast, 

direct action (Luine, 2014; Wei et al., 2014).  A study by Wei et al. (2014) found that when 

Sprague-Dawley rats were exposed to chronic stress, female animals were resilient to structural 

changes in the hippocampus, such as shrinkage of apical dendrites in the CA3 region, as well as 

impaired dendritic branching in the second and third layer of the medial prefrontal cortex, while 

male animals demonstrated such effects. Interestingly, when the female animals were 

prepubescent or ovariectomized, they were no longer resilient to these structural changes and 

were comparable to their male counterparts (Wei et al., 2014). The authors suggested that 

estradiol produced in the female brain during the reproductive years might mediate the inhibition 
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of corticosterone on the synapse by upregulating serotonin levels in the synaptic cleft when 

exposed to subchronic stress (Wei et al., 2014).  

 A study by Connor and colleagues (2012) noted that exposure to a HFD during gestation 

and lactation alone was able to induce early pubertal maturation as indicated by progesterone and 

androstenedione levels by PND 35 in 40% of male offspring, and 60% of female offspring, even 

if the animals consumed a standard chow diet post-weaning (Connor et al., 2012). Interestingly, 

if female offspring continued to consume the HFD post-weaning, nearly 80% went through 

pubertal changes by PND 32 (Connor et al., 2012). Similar results were also found in an earlier 

study by Sloboda et al. (2009) that did not test for reproductive success directly, but found 

increased progesterone levels and ovarian function indicative of early pubertal maturation in 

offspring of HFD dams consuming a 45% kcal from fat diet either pre-pregnancy, or during 

pregnancy and lactation. Although the neuroprotective effects of estradiol on diet-induced 

obesity in animal models are not well understood, it is known that estrogen can block signal 

transduction which would normally lead to proinflammatory cytokine production (Vegeto et al., 

2008). As mentioned previously, estradiol is also said to prevent the inhibition of CORT on the 

synapse by upregulating 5HT in the synaptic cleft  under conditions of subchronic stress (Wei et 

al., 2014), and more recent work by Yokomizo et al. (2014) has also recognized a protective role 

of estradiol on pancreatic β-cells, which could explain why female animals may have reduced 

risk of insulin deficiency and glucose intolerance (see summary schematic in Figure 28). As we 

did not test for the association between estrogen levels and cognition directly, it remains unclear 

whether the female offspring were resilient to impairment due to the neuroprotective effects of 

estrogen, or if some other mechanism was at play. As it is known that obesity and consumption 
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of a HFD impact male and female adult animals differently, premature reproductive development 

in the female offspring might be one explanatory factor in this dimorphism.  

7.5 Future Directions  

 As chronic consumption of a HFD and diet-induced obesity can have a profound impact 

on the individual, it is crucial to continue examining the effects chronic consumption of a HFD 

and diet-induced obesity can have on the brain. The notion that estrogen can mediate 

inflammation in the brain caused by diet-induced obesity is interesting, and should continue to be 

examined for future interventions in a population that is becoming increasingly obese. As few 

researchers in the past have studied these effects in female models, and the present study did not 

directly test for pubertal changes due to a HFD, this should continue to be examined in future 

studies so sex differences after consumption of a HFD can be further understood. In addition, it 

is important for future generations that we continue to examine the transgenerational effects of 

maternal obesity on the brain and behaviour. Although we found differences in spatial learning 

and memory retention in the male adolescent offspring, the underlying mechanisms are still 

unknown. Further, we are unsure whether there would have been structural changes in the 

hippocampus of adult offspring, despite finding no behavioural impairment in MWM 

performance. 
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Appendix A: Tables 

 CD HFD 

Composition   %gram %kcal %gram %kcal 

Protein 19.2 20 24 20 

Carbohydrate 67.3 70 41 35 

Fat 4.3 10 24 45 

Total - 100 - 100 

kcal/gram 3.85 - 4.73 - 

 

Ingredients gram Kcal gram Kcal 

Casein, 30 Mesh 200 800 200 800 

Corn Starch 550 2200 72.8 291 

Maltodextrin 10 150 600 100 400 

Lard 20 180 177.5 1598 

Sucrose 0 0 172.8 691 

Cellulose 50 0 50 0 

Soybean Oil 25 225 25 225 

L-Cystine 3 12 3 12 

Mineral Mix 10 0 10 0 

DiCalcium Phosphate 13 0 13 0 

Calcium Carbonate 5.5 0 5.5 0 

Potassium Citrate, 1 H2O 16.5 0 16.5 0 

Vitamin Mix 10 40 10 40 

Choline Bitartrate 2 0 2 0 

Red Food Dye 0.025 0 0.05 0 

Blue Food Dye 0.025 0 0 0 

Total 1055.05 4057 858.15 4057 

Table 1. Composition of Control and High-fat Diets. CD = Control Diet, HFD = High-fat Diet. 
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CD HFD P-value t-value df 

Spleen (%BW) 0.26 ± 0.0093 0.24 ± 0.0038 0.13 1.56 28 

Liver (%BW) 3.00 ± 0.071 3.01 ± 0.036 0.90 0.13 28 

Adrenal Glands 

(%BW) 
0.024 ± 0.00043 0.024 ± 0.0006 0.72 0.37 28 

Retro-Peritoneal 

Fat Pads 

(%BW) 

0.42 ± 0.024 0.53 ± 0.031 0.01 2.63 28 

Table 2. Terminal Biometrics from Maternal Generation. Data are presented as mean ± S.E.M.  

N = 15. BW = Body Weight, CD = Control Diet, HFD = High-fat Diet.   

 

 

 
mCD mHFD P-value t-value Df 

Total Litter Size 12.00 ± 1.05 14.25 ±  0.48 0.12 1.78 7 

Average Number of Male 

Offspring/Litter 
6.50 ± 1.32 6.60 ± 1.66 0.97 0.05 7 

Average Number of 

Female Offspring/Litter 
6.00 ± 0.91 10.40 ± 1.33 0.04 2.58 7 

Average Male Offspring 

Body Weight on PND 1  
7.65 ± 0.45 6.73 ± 0.06 0.09 1.99 7 

Average Female Offspring 

Body Weight on PND 1 
7.50 ± 0.51  6.20 ± 0.20 0.04 2.54 7 

Average Male Offspring 

Body Weight on PND 7 
21.73 ± 0.65 21.25 ± 0.65  0.62 0.51 7 

Average Female Offspring 

Body Weight on PND 7 
21.59 ± 0.52 20.24 ± 1.00 0.24 1.27 7 

Table 3. Litter Size and Offspring Body Weight. Data are presented as mean ± S.E.M. N = 5 

litters per diet condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet, PND 

= Post-natal Day.   
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mCD mHFD P-value t-value Df 

Spleen (%BW) 0.16 ± 0.0043 0.17 ± 0.011 0.93 0.086 8 

Liver  (%BW) 3.17 ± 0.081 3.14 ± 0.16 0.85 0.19 8 

Adrenal Glands 

(%BW) 
0.021 ± 0.0091 0.021 ± 0.0096 0.95 0.065 8 

Retro-Peritoneal 

Fat Pads (%BW) 
0.55 ± 0.011 0.60 ± 0.076 0.51 0.70 8 

Table 4. Terminal Biometric Data from Male Offspring. Data are presented as mean ± S.E.M.  

N = 10. BW = Body weight, mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   

 

 

 

 

 
mCD mHFD P-value t-value Df 

Spleen (%BW) 0.21 ± 0.0069 0.22 ± 0.012 0.78 0.29 8 

Liver (%BW) 2.90 ± 0.077 3.03 ± 0.092 0.32 0.11 8 

Adrenal Glands 

(%BW) 
0.022 ± 0.0011 0.022 ± 0.00095 0.90 0.13 8 

Retro-Peritoneal 

Fat Pads 

(%BW) 

0.37 ± 0.047 0.42 ± 0.061 0.51 0.70 8 

Table 5. Terminal Biometrics Data from Female Offspring. Data are presented as mean ± S.E.M. 

N = 10. BW = Body Weight, mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   
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Appendix B: Figures 

Feeding Protocol 

  

 

 

 

 

 

Behavioural Protocol 

Maternal Generation  

 

 

 

 

 

 

  

Offspring Generation  

 

 

 

 

 

 

 

 

 

Figure 1. Experimental outline for both maternal and offspring generations. 

SD = Sprague-Dawley, CD = Control Diet, HFD = High-fat Diet, PND = Post-natal Day.  

 
 

Female SD Rats 

PND 28 

 

Body weight and 

food consumption 

monitored each 

week.  

Oral glucose 

tolerance test after 

4 and 8 weeks on 

diet. 

 

Control Diet (CD) 

(10% kcal from fat) 

N = 30 

High-fat Diet (HFD) 

(45% kcal from fat) 

N = 30 

Morris Water 

Maze testing 

after 10 weeks 

on diet (N = 30) 

Rats were 

handled for 3 

minutes per 

day for 3 days 

prior to 

training. 

Breeding:  

one female rat from 

each cage was bred with 

a naive male rat for one 

week; all dams 

remained on their 

respective diets through 

gestation and lactation. 

 

Spatial 

Learning 

Training:  

three days, four 

60 s trials per 

day. 

Spatial 

Retention 

Test:  

fourth day of 

testing,  

one 60 s trial 

without the 

platform. 

On PND 1, all 

litters were 

sexed and culled 

to four male and 

four female pups 

per dam.  

(N = 10) 

Pups were 

weaned 

onto the CD 

on PND 21 

and housed 

with same-

sex 

siblings. 

Using the 

same protocol 

as the 

maternal 

generation, all 

pups were 

tested using 

the Morris 

Water Maze 

between PND 

40-48. 

On PND 93, 

all pups were 

retested using 

the Morris 

Water Maze 

(one training 

day, one 

probe day). 

Around 

PND 120, 

all pups 

were 

sacrificed 

by 

decapitation 

for further 

analyses. 
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Figure 2. Maternal body weight throughout the feeding period (A), and after ten weeks (B). Data 

are presented as the mean ± S.E.M. *p < 0.05; + p < 0.01 using unpaired Student’s t-tests; N = 30 

for each diet condition. CD = Control Diet, HFD = High-fat Diet.  
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Figure 3. Maternal food consumption as total mass of food ingested per cage of three animals 

throughout the feeding period per diet condition (A), and as a grand total over the ten week 

period (B). Data are presented as the mean ± S.E.M. *p < 0.01 using unpaired Student’s t-tests; N 

= 10 cages per diet condition. CD = Control Diet, HFD = High-fat Diet.  
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Figure 4. Maternal food consumption as energy (kcal) ingested per cage of three animals 

throughout the ten week period per diet condition (A), and as a grand total over the ten week 

period (B). Data are presented as the mean ± S.E.M. *p < 0.05, +p < 0.01 using unpaired 

Student’s t-tests; N = 10 cages per diet condition. CD = Control Diet, HFD = High-fat Diet. 
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Figure 5. Maternal oral glucose tolerance presented as area under the curve (A) after one and 

two months consuming the High-fat Diet (HFD), or Control Diet (CD) diet. A two-way ANOVA 

was also conducted to examine the interaction between diet and time on oral glucose tolerance 

(B). Data are presented as the mean ± S.E.M. N = 18 per diet condition. *p < 0.05. 
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Figure 6. Maternal retroperitoneal fat pad mass. Data are presented as the mean ± S.E.M.  

*p < 0.05; N = 15 per group. CD = Control Diet, HFD = High-fat Diet.  

 

 

 

Figure 7. Average maternal swim speed, as shown in seconds. Data are presented as the mean ± 

S.E.M.  N = 15 per group. CD = Control Diet, HFD = High-fat Diet.  
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Figure 8. Spatial learning for maternal generation, as measured by latency in seconds, across 

training days (A), and displayed within each training day (B). Data are presented as the mean ± 

S.E.M. N = 15 per group. CD = Control Diet, HFD = High-fat Diet.  
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Figure 9. Spatial learning for maternal generation, as measured by distance traveled (cm), across 

training days (A), and displayed within each training day (B). Data are presented as the mean ± 

S.E.M. N = 15 per group. CD = Control Diet, HFD = High-fat Diet.  
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Figure 10. Maternal spatial reference memory, as measured by average distance to the previous 

platform location (cm) and percent time spent in the target quadrant (SW) and opposite quadrant 

(NE). Data are presented as the mean ± S.E.M. N = 15 per group. CD = Control Diet, HFD = 

High-fat Diet.  
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Figure 11. Body weight (g) for male offspring across 11 weeks from PND 1-PND 77 (A), and 

final body weight at sacrifice (B). Data are presented as the mean ± S.E.M. N = 10 per diet 

condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.  
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Figure 12. Body weight (g) for female offspring across 11 weeks from PND 1-PND 77 (A), and 

final body weight at sacrifice (B). Data are presented as the mean ± S.E.M. N = 10 per diet 

condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   
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Figure 13. Total food consumption as measured in both grams (A), and energy ingested (B) per 

cage of three-four animals over a five week period post-weaning (PND 21-56) for male 

offspring. Data are presented as the mean ± S.E.M. N = 10 per diet condition. mCD = Maternal 

Control Diet, mHFD = Maternal High-fat Diet.   
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Figure 14. Total food consumption as measured in both grams (A), and energy ingested (B) per 

cage of three-four animals over a five week period (PND 21-56) post-weaning for female 

offspring. Data are presented as the mean ± S.E.M. N = 10 per diet condition. mCD = Maternal 

Control Diet, mHFD = Maternal High-fat Diet.   
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Figure 15. Terminal blood glucose levels as measured at sacrifice using a glucose monitoring 

system for male (A) and female (B) offspring. Data are presented as the mean ± S.E.M. N = 10 

per diet condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   
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Figure 16. To ensure there were no initial differences in swim speed, or mobility when testing 

began in adolescence, swim speed (cm/s) was compared for the first training trial. Data are 

presented as the mean ± S.E.M. N = 10 per diet condition.  mCD = Maternal Control Diet, 

mHFD = Maternal High-fat Diet.  

  

mCD mHFD mCD mHFD

0

10

20

30

40

S
w

im
 S

p
e
e
d

 (
c
m

/s
)

 Male                         Female



76 
 

 

 
 

 

 

Figure 17. Hippocampal-dependent spatial learning for male offspring in adolescence, as 

measured by latency to reach platform (in seconds) across three training days in the water maze 

(A), and within each training day (B). mCD male offspring were faster to learn the platform 

location than the mHFD male offspring. Data are presented as the mean ± S.E.M. *p < 0.05, 

using a two-way repeated measures ANOVA; N = 10 per diet condition. mCD = Maternal 

Control Diet, mHFD = Maternal High-fat Diet.  
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Figure 18. Hippocampal-dependent spatial learning for male offspring in adolescence, as 

measured by distance traveled to find hidden platform (cm), across three training days in the 

water maze (A), and within each training day (B). Data are presented as the mean ± S.E.M.  

N = 10 per diet condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.  
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Figure 19. Hippocampal-dependent spatial learning for female offspring in adolescence, as 

measured by latency to find hidden platform (in seconds), across three training days in the water 

maze (A), and within each training day (B). Data are presented as the mean ± S.E.M. N = 10 per 

diet condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.  
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Figure 20. Hippocampal-dependent spatial learning for female offspring in adolescence, as 

measured by distance traveled to find hidden platform (cm), across three training days in the 

water maze (A), and within each training day (B). Data are presented as the mean ± S.E.M.  

N = 10 per diet condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.  
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Figure 21. Spatial memory retention as measured by average proximity to previous platform 

location (A), and percent of time spent in the target and opposite quadrants during the probe task 

in adolescence for male offspring. Data are presented as the mean ± S.E.M. *p < 0.05, using an 

unpaired Student’s t-test; N = 10 per diet condition. mCD = Maternal Control Diet,  

mHFD = Maternal High-fat Diet. 
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Figure 22. Spatial memory retention as measured by average proximity to previous platform 

location (A), and percent of time spent in the target and opposite quadrants during the probe task 

in adolescence for female offspring. Data are presented as the mean ± S.E.M. N = 10 per diet 

condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   
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Figure 23. Swim speed (cm/s) was measured for the first trial in adulthood to ensure there were 

no initial differences in mobility for either male, or female offspring. Data are presented as the 

mean ± S.E.M. N = 10 per diet condition. mCD = Maternal Control Diet, mHFD = Maternal 

High-fat Diet. 
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Figure 24. Hippocampal-dependent spatial learning on training day one in adulthood for male 

offspring, as measured by latency to reach platform (A) and distance traveled (B).  

Data are presented as the mean ± S.E.M. *p < 0.05, using an unpaired Student’s t-test; N = 10 

per diet condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   
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Figure 25. Hippocampal-dependent spatial learning on training day one in adulthood for female 

offspring, as measured by latency to reach platform (A) and distance traveled (B).  

Data are presented as the mean ± S.E.M. N = 10 per diet condition. mCD = Maternal Control 

Diet, mHFD = Maternal High-fat Diet.   
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Figure 26. Spatial memory retention as measured by average proximity to previous platform 

location (A), and percent of time spent in the target and opposite quadrants during the probe task 

in adulthood for male offspring. Data are presented as the mean ± S.E.M. N = 10 per diet 

condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.    
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Figure 27. Spatial memory retention as measured by average proximity to previous platform 

location (A), and percent of time spent in the target and opposite quadrants during the probe task 

in adulthood for female offspring. Data are presented as the mean ± S.E.M. N = 10 per diet 

condition. mCD = Maternal Control Diet, mHFD = Maternal High-fat Diet.   
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Maternal obesity influences offspring development:  

 

 

 

 

 

 

Possible reasons pubescent female animals may be resilient to the developmental and 

cognitive effects of a high-fat diet compared to male offspring: 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 28. A summary schematic outlining the possible reasons for a sex-stratified effect of a 

maternal high-fat diet on metabolic and cognitive development in offspring. mHFD = Maternal 

High-fat Diet, CORT = corticosterone.  
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