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Abstract

There is much interest in using self-assembly to build materials at the microscopic
level by using soft matter systems such as block copolymers and DNA coated
colloids. Self-consistent field theory (SCFT) has seen much success in examining
the equilibrium structure of polymer systems. We have designed a model using
SCFT that describes a system of isotropically interacting particles. This model
can be used a starting point to exploring different types of soft matter systems
that exhibit self-assembly. This approach is a quick and efficient approach to
finding equilibrium structures, and can be used as a high throughput method for
finding equilibrium structures. We present here two different systems: a triblock
star polymer and a colloidal system. We show that our approach, while extremely
coarse grained can replicate the robust phases of those systems. In the triblock
copolymer system we can show that the honeycomb lattice phase, the lamella
phase and the lamella with beads phase are easily obtained. We compare the
phases found in our model to the most common phases found using SCFT for
polymers systems. In the colloidal system, we can replicate some of properties
of a large colloidal particle surrounded by a solution of much smaller solution
particles.
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Chapter 1

Introduction

1.1 Motivation

Creating designer materials using self-assembly has been a long time goal for ma-

terial scientists. Daan Frenkel has stated that in order to design a material at the

microscopic level using self-assembly: “the target structure needs to be thermody-

namically the most stable among all possible arrangements, as well as kinetically

accessible under the same conditions to avoid the self-assembly process getting

trapped in unwanted, metastable structures” [18]. In order to meet both those

requirements, control of the material at the microscopic level is needed and would

allow one to endow the material with a variety of different properties, depend-

ing on the building blocks used and the microstructures they form. There are

a variety of different materials that can possibly fit this scheme, including DNA

coated colloids (DNACCs) as well as block copolymers. Both of these systems have

been thoroughly studied in a theoretical nature, and have been tested successfully

against experiment [7, 17, 32]. There is however still much to be done: there is a

large knowledge gap between what is desired in these materials and how to build

them.

Block copolymers have been of much theoretical and practical interest as a means

of producing engineered materials through self-assembly. Much work has been
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Introduction.

done studying different polymer systems with field theories. Field theories are an

ideal starting point to exploring other soft matter systems, including DNACCs,

that might be able to undergo self-assembly. Self-consistent field theory (SCFT)

has seen much success in examining diblock copolymer systems [14, 17]. It is

well suited to being used to study the equilibrium phases of DNACCs as well

[23, 46]. This method has the advantage of being computationally quick and

efficient [37]. It also allows the computation of a variety of different phases based

on the interactions between particles [42]. As a research tool this allows for an

extensive exploration of the equilibrium phases, with the goal of discovering the

design rules for a given system.

Over the past decade there has been much research into the viability of using

DNACCs as the building blocks to engineer materials at the microscopic scale.

Using the specificity of DNA base pair interactions, it is possible that a system

will self assemble to a desired morphology at equilibrium. Controlling these inter-

actions at the micrometer scale would allow one to tailor the optical or electronic

properties of the materials [34]. Colloids can be mixed and matched by their prop-

erties in order to build novel materials that meet a desired set of qualifications. It

is not presently possible to accurately predict what types of coatings are necessary

to form any particular structures, as well as whether or not the system will even

be kinetically accessible [18, 28].

DNACCs as well as block copolymers both undergo self-assembly under the right

conditions and the study of the equilibrium morphologies of each of the systems

would provide much insight into their real world use. SCFT is a powerful tool

in studying self-assembling systems, with years of proven use in polymer systems

and some success in DNACCs, it is in a unique position to study the self-assembly

of these systems [10, 32]. As such, a coarse grain model in the spirit of SCFT

can be used to study both DNACC’s and block copolymers. A simplistic coarse

grain approach using isotropic interacting particles is the ideal starting point to

obtaining a SCFT description that works roughly for both DNACCs and polymer

systems.

2



Introduction.

In this thesis a simple particle-based coarse grain model is presented in which the

particles interact isotropically with one another. It is possible that this approach

can replicate some of the phases that are found in both the polymer and colloidal

systems. This approach is the lower bound of how simple a self-assembling system

can be, and the phases that are found with this system will be the simplest possible.

As Xu et al. points out [53], we can use a simple and fast algorithm to generate

a large number of equilibrium structures and these results can be used to build

phase diagrams. The phases found with the simple coarse grain model should be

used as a starting point to find more complicated structures theoretically with a

more accurate model. Finding the conditions for a simple model of phases is a

good starting point to engineer these phases experimentally.

1.2 Brief Overview

Using the model developed by von Konigslow et al. [23, 46] as the starting point,

we can generalize that model to a system of many different particles. If all the

particles are held to the same parameters it is easy to imagine that the equilibrium

phase would need to be invariant under the relabelling of particles. This limits

the amount of different types of morphologies that one might get for that type of

system. This type of system will exhibit simple phases that should be robust and

stable. As one can imagine, increasing the system to even more species of particles

will drastically increase the complexity of the different morphologies.

The model used by von Konigslow et al. [23, 46] has a system of particles that

interact with each other through some predetermined potential. Through this

potential the particles have a spatial extent and through this potential one can ar-

gue that this type of coarse grain model, with particles, will have some similarities

with a polymer model. Figure 1.1 represents a basic schematic on how a miktoarm

polymer may transfer over its basic shape over to our particle model. It is in this

vein that this model can be used to examine block copolymer systems; under the

right conditions the results of our coarse grain model should reflect the results of
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Introduction.

a polymer model. There has been significant research into triblock polymer melts

using SCFT, and a lot of research on the different types of phases obtainable under

different conditions. We focus on the results for two dimensional phases for tri-

block copolymers, since these results are more plentiful than the three dimensional

counter parts. We can however generate phases in three dimensions. We aim to

compare the phases of the coarse grain model to the full SCFT polymer models

to show that there is indeed some overlap between the two different systems.

Figure 1.1: A Schematic comparsion between particle based model and
polymer based model. The polymer themselves have a basic shape but our
particle model does not contain explicit information on the shape of the
particles. The clouds represent a general area of influence the particles excert
through the potential. It is through this potential that both system can
behave similarly

Our coarse grain particle model can also be slightly modified to examine the case

of two particles which differ in size by a large disparity (i.e. the size difference

between a colloid and the solution). This type of change is more closely related

to real world systems, and studying the affect of this on the equilibrium phases

is important. This type of size disparity causes a variety of different numerical

issues, but our model can be used in a limited degree to examine the equilibrium

case in at least one and two dimensions. It is possible to show that some features

of a system which has particle disparity are present using a field theory approach.
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We hope to show the flexibility of SCFT and its modified form in this regard, by

showing how a simple particle model with isotropic interactions can be used to

study different types of soft matter systems in a numerically efficient matter. Since

we are using SCFT, we are only interested in the equilibrium of a given system,

and constructing a catalogue of the possible phases at equilibrium. We do not

take into account how the equilibrium structure can be reached or if it is stable

and instead focus on the first of Frenkel’s design rules on how the parameters

of the system effect the equilibrium. We compare our approach to ABC star

triblock copolymers. The ability to specify the interactions between the particles

will allow one to examine a variety of different microphase structures and we

hope to show that the most robust of the structures match the triblock copolymer

phases. When comparing to colloidal systems we show that this approach using

isotropically interacting particles can be modified to examine a system of a colloid

suspended within a solution.

5



Chapter 2

Background

Self-assembly is the idea that a system, without external influence, will reach a

desired equilibrium state. The system will do this due to some sort of interactions

between the constituents of the system. The main goal with self-assembly is being

able to design materials at a microscopic level by tailoring the interactions between

the building blocks of the material so that a wanted phase forms. Aside from very

simple structures, our ability to control the interactions at a level in which more

complicated structures would form is meagre [18]. There are two general design

requirements; the target structure needs to be the most thermodynamically stable

of all possible arrangements, and the system has to be able to access the structure

without getting stuck in an unwanted state [18]. Focusing on the first general rule

raises the question: under what conditions will a system enter a targeted stable

state? Given a set of conditions on a system, what does the thermodynamically

stable morphology look like?

Self-consistent field theory is an important tool in the research of self-assembling

systems. SCFT is used on systems that have many different constituents that

interact with each other. This is done by replacing the many body effects of all

the particles on a single particle with an averaged field on the same particle. This

turns a many body system into an effective one body problem. SCFT is a mean

field theory that can be viewed as a saddle point approximation to the partition

function [17]. Since designing materials using self-assembly inherently means that
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Background.

we are using the equilibrium points to design our material, SCFT is well positions

to study the equilibrium points that can be obtained.

Two fields which show promise in the area of designer materials are: diblock,

triblock and higher polymer systems, and colloidal systems, both DNA covered,

and polymer covered as well. It is important to look at the successes of using

SCFT in both of these systems, and to see the merit of using SCFT for a variety

of different soft matter systems.

2.1 Polymer Systems

2.1.1 Linear and Miktoarm Copolymers

It is well known that block copolymer systems will under go some level of self-

assembly [17, 29, 37, 44], given the right conditions. If a polymer chain only has

one type of monomer in it, it is known as a homopolymer. If two or more different

types of monomers are used then the polymer chain becomes a copolymer chain,

and if multiple monomers are used in a “block”, all A polymers on one side and

all B polymers on the other, then these polymers are called block copolymers. Of

course three different types of monomers can be used, and these monomers would

form what is called a triblock copolymer system. A linear ABC triblock (figure

2.1) is when three different types of monomers are connected in an end to end

chain from one end to another.
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Figure 2.1: This is a schematic a of linear ABC triblock copolymer. The
polymers are connected end to end. The three colors reperesent different
monomers.

A miktoarm or star shaped polymer (figure 2.2), is one in which all the polymer

segments are attached at one end. In most mean field theories the interactions

between polymers are binary and, when the polymers are in contact there is a force,

when they are not in contact there is no interaction. In a linear ABC triblock the

A and C polymers do not interact as much. In a ABC miktoarm they are attached

at one end; thus they all feel an interaction. For this reason we choose to focus

more on miktoarm polymers, as a comparison point between this particle based

system and the polymer system, since in the particle based system the interactions

are chosen for simplicity to be between all particles of different types.
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Figure 2.2: A schematic of a simple ABC miktoarm (star shaped) polymer.
The colors represent the different polymer types ABC and the polymers are
connected at one end.

Modelling these types of systems is a matter of deciding the amount of complexity

one wants to have. The most complex of course, would be one in which all the

constituents of the system are modelled, such as a molecular dynamics type simu-

lation [17]. Of course these types of simulations are computationally prohibitive;

they require larger of amounts of both computing power and time in order to

be accurate. However, using a field theory to model these systems can be very

beneficial in terms of time and simplicity of execution.

2.1.2 Self Consistent Field Theory as Applied to Polymer

Systems

Self-consistent field theory (SCFT) is an approximate mean field theory that has

seen much success in the study of polymer melt systems. A mean field theory is

merely a theory in which the system is assumed to ignore the effect of thermal

fluctuations. Using this in conjunction with the fact that the free energy can be

written in terms of density fields and chemical potential fields, one can calculate

the density morphology that minimizes the free energy. It has been used to study
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many different properties such as the excluded volume effect and the order-disorder

phase boundary of polymer melt systems [17], and has had great success in doing

so.

When simulating these polymer interactions using field theory the interactions

between polymers are treated as zeroth order interactions specified by the Flory-

Huggins parameter χ. In terms of SCFT simulations the value of the χ parameter

determines the strength of the interaction between two different species of polymer,

but only if they are in direct contact. Multiple different polymers can be attached

at a single end (miktoarm or star) or attached linearly (end to end), and for each

polymer there is a χ parameter associated that determine the strength. Since

the polymers themselves have length to the individual polymer strands they have

spatial extent, and with this extent the interaction also has spatial extent. With

this type of interaction they are able to self assemble into a variety of different

micro structures, depending on the total amount of unique polymer types in the

system and the total volume they occupy.

Work by Matsen and Schick allowed the computation of these equilibrium mor-

phologies of diblock copolymer systems by expanding the spatially dependent fields

so that the expansions mimic the symmetry of the phases under consideration.

Doing so allowed the study of the stability of the equilibrium of these phases by

looking at the free energies of these systems, a lower free energy resulting in a more

stable final state. It is easy to see that one can explore the different types of mor-

phologies and compare the free energies to see if one is stable over the other. They

also showed and confirmed with experiment that the perforated lamella phase was

only meta stable and would eventually become a gyrodial phase after enough time

[30, 31]. The drawback of their method is that it requires knowledge of the mor-

phology in question, but allowed the precise calculation of the free energy [29],

which can be used to study stability.

Work by Fredrickson et al. [17] explored the parameter space of the system in

order to search for new phases for copolymer melts. Using this model for an ABC

miktoarm system, while keeping the amount of two of the polymer types equal,
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Fredrickson found a total of 6 different phases in two dimensions. The different

phases found are found in figure 2.3.

Figure 2.3: A plot of the of the results in [17]. These 6 phases represent the
phases found for a triblock copolymer in which χA = χB = χC . The volume
fractions (fA, fB, fC) are changed accordingly to each run with fB = fC and
fA is increased. (a) Lamella (0.2,0.4,0.4) (b) octagon-octagon-tetragon
(0.22,0.39,0.39) (c) Honeycomb Hexagon (0.38,0.31,0.31) (d) (0.46,0.27,0.27)
(e) (0.54,0.23,0.23) (f) (0.62,0.19,0.19). Taken from [17]

Work by Tang et al. [42] improved further the implementation of Fredrickson

by differing the amount of different polymers present and how that affected the

equilibrium of the system. Tang found that by varying the volume fractions in

a deliberate, way a variety of different microphase structures could form . Using

SCFT simulations, they have found a total of nine ordered stable phases for ABC

triblock star polymers, using symmetric and non-symmetric interaction parame-

ters. Using just symmetric parameters they found a total of seven unique phases

represented in figure 2.4.
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Figure 2.4: A schematic of the of the results in [42]. These 7 phases
represent the phases found for a triblock polymer in which χA = χB = χC .
The volume fractions (fA, fB, fC) are changed accordingly to each run, and the
sizes of the computational box are adjusted to optimize the free energy. (a)
hexagonal lattice phase (0.1,0.8,0.1) (b) core-shell hexagonal phase (0.1,0.7,0.2)
(c) three color lamella (0.1,0.5,0.4) (d) three color hexagonal honeycomb phase
(0.3,0.4,0.3) (e) knitting pattern (0.1,0.7,0.2)(f) octagon-octagon-tetragon
phase (0.2,0.5,0.3) (g) lamella with beads (0.2,0.6,0.2). Taken from [42]

Work by Zhang et al. [54] has found that an even more systematic study of the

ABC triblock copolymer system resulted in more possible phases. They chose

to focus on the phases possible that are based on Archimedean tiling patterns,

which are based on tessellation of simple polygons. Some the tiling patterns found

by Zhang for ABC star triblock copolymers, represented in figure 2.5, agreed

with experiment and other simulations in two dimensions. These studies show

the ability for these polymers to self assemble in even more exotic structures.

These structures are extremely intricate and some of them have not been not been

confirmed with experiment as of yet [54].

12
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Figure 2.5: A schematic of the of the results found in [54]. These 8 phases
represent the phases found for a triblock copolymer in which χA = χB = χC

for a small section of the parameter space (see figure 4.3). Using notation in
which [A,B,C] represents the number of connections each polymer makes with
the other polymer types. For example [6,6,6] represents that polymer A is
surrounded by 6 independent shapes. For cases in which the shapes are
alternating through the overall pattern multiple notations are used. Taken
from [54]

Using a set of χ parameters and varying the volume fraction it is possible to explore

a variety of different phases. Fredrickson finds a total of 6 different phases, by

setting χAB = χAC = χBC and fB = fC , and varying the final volume fraction

[17]. Tang et al. [42] examines the same situation, and finds seven possible phases

for miktoarm copolymers. Tang’s results do not agree with Fredrickson’s exactly

but they do a more extensive search of the parameter space of volume fractions,

and as such they have found 7 different phases for this type of polymer system.

The work by Zhang et al. does a more specific search of the parameter space,

when the global volume fractions are close to being equal. Zhang finds a total of

4 more complicated phases in this region of the parameter space.

Figure 2.3, 2.4 and, 2.5 are morphologies from Fredrickson et al. Tang et al. and

Zhang et al. respectively. The honeycomb lattice phase, lamella phase, the lamella

with beads phase and the octagon-octagon-tetragon are present in all the results.

Tang’s results are more specific and broader than the results of Fredrickson. Notice

that Zhang has 4 phases that are not found in the results of Tang. These results

are chronological in order, and it is expected that more phases could be found,

using more specific techniques. Zhang has the most complete of the results, but

there is some disagreement between the 3 results. In figure 2.3 the fourth result d)
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is a phase that does not appear in the other 2 papers. It is reasonable to assume

that the phases that are found to be in common between these three papers are the

ones that are the most common and robust phases for a ABC miktoarm system.

As such, any model wishing to replicate the results of a miktoarm polymer should

be able to recreate these results.

2.2 Colloidal Nano-Particles

A colloid is a system in which a particulate is suspended in some type of solution,

like milk or an aerosol. The particles themselves are on the micrometer scale and

thus are mainly affected by thermal fluctuations. There are a variety of different

methods one can use to cause colloidal particles to self assemble or aggregate in a

desired way. One method is to use heterogeneously charged particles to form the

aggregates in solution [6]. By giving the particles themselves different charges, the

equilibrium state can be altered. The charge on the particles can be altered in

this case by changing the pH values in the solvent.

Another method for self-assembling nano-particles is the use of polymer grafted

colloids to cause aggregation among the particulates [1]. By varying the amount of

polymers grafts onto the colloids, the final equilibrium state can be altered from

sheets to aggregate clumps. This provides yet another tool in designing micro-

structures, with the user controlling the concentration in polymers to affect the

ground state of the system. Akcora et al. showed that just like polymer systems,

colloids, under the right conditions, were able to self assemble.

Polymers grafted onto colloids, DNA can be grafted on to the colloids instead.

Due to the unique bonding properties of DNA and the programmable nature of

the interactions, they are well suited to be used as the building blocks of a self-

assembled material [32]. The pairing is well suited to controlling the aggregation of

the colloids due to thermal reversibility of the system as well as the specification of

the interactions [49]. By having complementary DNA strands on different colloids

the colloidal species will attract to one another through the DNA and aggregate
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[32]. Alternatively one can use two competing DNA strands and in the solution

a series of “linker” DNA can be used. The upside of linkers is that one can use a

single type of DNA strand to mediate the reaction, however as a two step reaction

the system is prone to unwanted binding between different linkers [32].

Mirkin et al. demonstrated that DNA grafted onto gold nano-particles will form

crystalline structures in equilibrium [34, 35]. They also showed that higher temper-

atures were necessary for the formations of the crystals. Mirkin showed the ability

to control the optical properties of the solution material, which is dependent on the

particle size, and the inter-particle distance [34]. Near the same time Alivisatos et

al. used DNA coated gold nano-particles to self-assemble into aggregate clumps

that are well defined and soluble [2].

In theory any sort of non-interacting base can be used as the colloid. This gives

further control to the different electronic and optical properties a material can

have.

Figure 2.6: A simple schematic of a pair of colloids that interact with each
other using complementary DNA. The pair have matching nucleotides on the
DNA and thus can attach to each other and form a bond. By choosing the
DNA correctly one can tailor the interactions between multiple species.

The enthusiasm for using DNA coated colloids (DNACCs) for building materials

at the nano-level waned following the work of Mirkin, mostly due to the difficulty

in growing engineered structures. One of the main problems is in knowing how to

tailor the interactions so that the microstructure that is obtained is the one that

is desired. Proper simulation of DNACCs will allow one to explore the different
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equilibrium structures and the interactions that result in those structures. Di

Michele et al. states that the most successful strategy is in using smaller nano-

sized colloids, since the decreased interaction strength and the increased mobility

of the colloids increase the chances of crystallization [32]. Micrometer colloids

with a higher amount of DNA strands attached have the tendency to become

kinetically trapped in an unwanted configuration due to the higher number of

bondings that can occur. Furthermore, almost no work has been done on using

more than two types of colloids or with two colloids that have different densities

to design materials [32]. It has been shown that self-assembly using DNA can

be achieved in one and two dimensions [24, 27], with the difficulty being in 3

dimensions.

Nykypauchuk et al. [19] have developed strategies to build three dimensional

nano-structures. They have shown that DNACCs will form crystalline structures

at the right temperature. Nykypauchuk also showed that at certain temperatures

crystalline structures will form reliably. Even with these successes, using DNACCs

is still a relatively new technique that still has a number of hurdles to overcome

[32].

2.2.1 Modelling For Self-Assembling DNA Colloids

In order for a system of colloids to self assemble into a certain phase the com-

ponents have to be interacting with one another in some way. In order to model

these systems it is important to look at different ways that this interaction can

come about. In terms of the interaction, Martinez-Veracoechea et al. [28] has

mentioned that the phase of the system cannot be captured by an isotropic pair

potential between the colloids. However Tindemans et al. [43] have stated that

with the use of a two length scale interaction that goes beyond nearest neighbour,

this restraint can be circumvented.

Tindemans et al. have taken a lattice approach to solving for the equilibrium

state for a system of DNA colloids [43]. Using a simple lattice based model to
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determine interaction strength, they were able to simulate a system of many inter-

acting particles. The design rules for a system with a number of different particles

interacting is of much interest when choosing a model for DNACCs. The Tinde-

mans model is a simple lattice based method in which each lattice site is occupied

by a particular particle type (A,B,C, ...). Since the particles are on a lattice the

distances are defined by the lattice length constants. Nearest neighbours to a par-

ticular particle type will have a certain interaction strength, and the next nearest

neighbour will have a different particle interaction. This method can be used to

put a restriction on the length scale necessary to design wanted morphologies,

since interaction distances are determined entirely by the lattice used. Based on

the lattice type, the minimum interaction distance was found to be different; for a

triangular lattice the distance was nearest neighbour for example, and for a square

lattice the distance was the second nearest neighbour.

Tindemans found that a two length scale interaction can lead a system of inter-

acting particles to form a unique ground state. Nearest neighbor attraction with

long range repulsion was found to be a simple recipe to guarantee a unique ground

state [43]. A two length scale interaction is an important starting point in deciding

how the potential will look in general for systems that are not bound on a lattice.

Archer et al. [3, 4] looked at a case of interacting particles in a fluid using mean

field density functional theory (DFT). Like Tindemans et al. they used a two

length scale interaction between the colloids, but they also included a term for

the hard sphere interaction. They found phases that shared similarities with the

phases found using SCFT for diblock copolymers. They applied their technique

only to two dimensional phases.

The field theory based simulations developed by Fredrickson et al. were first used

to study the different phases for polymer melts. SCFT can also be applied to

theoretically similar systems such as DNACCs in a solution, such as what Varilly

et al. has done [48]. The interaction between two DNACCs was examined using

self-consistent field theory. Varilly’s goal was to find the potential felt between two

DNACCs, and to quantify how this potential scaled with distance. They found
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that the interaction strength depended on the amount of DNA that was grafted

onto the colloid itself.

The work of Martinez-Veracoechea et al. found that the phases possible is highly

dependent on the amount of DNA strands on the particles themselves [28]. When

the amount of DNA coated on the colloid is too low the ability for the system to

crystallize is impossible. They found that with more strands the colloid was able

to form bonds with more colloids around it. This means that with more strands

a more mechanically stable material is more easily obtained.
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Theory

3.1 Phase Separation

When two species mix together and do not form a homogeneous mixture they will

macrophase separate from one another. For example when oil and water are mixed

together two distinct regions will form, one with just water and one with just oil.

The interactions between oil and water force the system to favour a system in

which the two species are distinct.

In a copolymer mix, the different blocks can be incompatible to one another and

will have a tendency to unmix and form two distinct regions in the solution.

However, the polymer blocks are bonded to one another so they can only separate

so far from each other. The same basic process can happen in DNA coated colloids

[32] with the colloids attracting to each other through DNA strands. This is called

microphase separation and it is important to the forming of nano scale micro-

structures. The forming of these structures is dependent on the system finding

a balance between increasing its entropy and minimizing the energy between the

different components.
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3.2 N Particles with Isotropic Interactions

A simple model has been developed between two particles that interact under

an isotropic potential, a potential that is uniform in all orientations [23]. This

model can be easily expanded to a N particle system with ns particles of species s,

where N different particle species interact with N different potentials. We want to

expand this type of system into the language of SCFT so as to analyse the effect

of more species on the equilibrium morphologies.

3.2.1 Hamiltonian

The Hamiltonian for a system of ns particles of species s, that interact under some

potential will take the form of:

H =
ns∑
i=1

p2i
2m

+
1

2

ns∑
i=1

ns∑
j=1

U(|ri − r′j|). (3.1)

The potential U(|ri − rj|) represents interactions between particles, and the term

i = j represents self interactions. Let us note that these self interaction terms will

add up to a constant and do not affect the free energy and can be ignored.

It is useful to define the idea of a density function to describe the spatial densities

of the particles. For a species s:

ϕ̂s(r) = vs

ns∑
i=1

δ(r− ri,s) (3.2)

where vs is the volume that particle s occupies and ri,s represents the position of a

particle of species s. The particle at position ri,s is localized entirely at that point,
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the delta function acts as the mechanism in which this localized particle is spread

about some volume vs. Integrating both sides of this equation over the volume

size we get:

∫
drϕ̂s(r) = vs

∫
dr

ns∑
i=1

δ(r− r′) = nsvs = fsV (3.3)

where fs is the volume fraction of species s and V is volume of the system in

question. This is a smoothed out version of the density function equation 3.2.

Here we defined the volume fraction as:

fs = ns
vs
V

(3.4)

which can be thought of as the amount of volume that a species s will occupy

in the total volume. Since the system can be described as incompressible, which

means the total density in the volume V is constant. It necessarily follows that

the sum of all the volume fractions has to equal one.

We can also define the particle size measure:

vs
v0

= αs (3.5)

where v0 is some reference volume which can be chosen for convenience.

We will also need the potential written in terms of the density function. For a

system of N different species there will be a certain number of pair potentials that

can be described. For example if we have two particles (A, B) we can have three

different potentials UAA, UAB, UBB. In general the number of pair wise potentials

that can be given with N species is:
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N !

(N − 2)!2!
+N. (3.6)

The first term in 3.6 accounts for the different pairings between particles and the

second term is for pairing between like particles. With this in mind we can write

the total potential of the system as a sum of these individual pair wise potentials.

U({rA)}, {rB)}, ...) =
N∑
s=1

(
ns∑
i=1

ns∑
j<i

Uss(|ri − rj|)

)
(3.7)

+
N∑
s=1

N∑
s′>s

(
ns∑
i=1

ns∑
j=1

Uss′(|ri − rj|)

)
.

The first term represents the potentials of a species s interacting with itself (UAA, UBB...),

the second term represents the interactions between species of different types. Us-

ing equation 3.2 we can write the potential in terms of the density functions by

integrating over the two spatial positions for ns different species:

U(ϕ̂A(r), ϕ̂B(r), ...) =

∫ ∫
drdr′

[ N∑
s=1

1

2v2s
ϕ̂s(r)Uss(|r− r′|)ϕ̂s(r

′) (3.8)

+
N∑
s=1

N∑
s′>s

1

vsvs′
ϕ̂s(r)Uss′(|r− r′|)ϕ̂s′(r

′)

]
.

Instead of dealing with the specific positions of all the different particles, we have

a potential that only deals with the densities of particles at any particular point.

This lets us phrase the overall potential in terms of different species, and now the

individual particle positions no longer need to be tracked.

Now we can assume that the system is incompressible, which can be placed into

the equations as the constraint:
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1 =
N∑
i=1

ϕ̂i(r). (3.9)

With this constraint we can eliminate terms in potential, by rephrasing it in terms

of effective interactions between different species. The constraint can be applied to

the potential 3.8 and then terms with the same density products can be collected

in the form of:

ϕ̂s

(
1

2
Uss − Uss′ +

1

2
Us′s′

)
ϕ̂s′ . (3.10)

s ̸= s′

If we can call the new potential term Uss′ which is the effective interaction between

two particles of different species s and s′

U(ϕ̂A(r), ϕ̂B(r), ...) =

∫ ∫
drdr′ × (3.11)

N∑
s=1

N∑
s′>s

1

vsvs′
ϕ̂s(r)Uss′(|r− r′|)ϕ̂s′(r

′))

This describes the total potential now in terms of the density function and the

effective potential.

3.2.2 Partition Function

Now we can calculate the partition function for this type of system. The classical

canonical partition function for a system of ns interacting particles of species s:
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Z =
N∏
s=1

1

ns!h3n

∫ ∫
drnsdpnse−βH(r,p) (3.12)

Z =
N∏
s=1

1

ns!h3n

∫ ∫
drnsdpnse

−β(
∑ns

i=1

p2i
2m

+σ6
∫ ∫

dr
σ3

dr′
σ3

∑N
s′>s

1
vsvs′

ϕ̂s(r)Uss′ (|r−r′|)ϕ̂s′ (r))

where an arbitrary length scale σ is introduced to make the argument of the

integral dimensionless and n =
N∑
s=1

ns. We have written here the total partition

function, which the reader can note is just the product of the individual partition

functions for each species s. The h term is Planck’s constant and accounts for

the discrete nature of the phase space when integrating. Integrating over the

momentum in the partition function we get:

Z =
N∏
s=1

1

ns!h3nλ3ns
T,s

∫
drnse

−β(
∫ ∫

dr
σ3

dr′
σ3

∑N
s′>s

σ6

vsvs′
ϕ̂s(r)Uss′ (|r−r′|)ϕ̂s′ (r)) (3.13)

where λT is equal to [38]

λT =

(
2~2

mkbT

) 1
2

. (3.14)

This term is known as the classical thermal de Broglie wavelength, where T is

the temperature in Kelvin, the kb is Boltzmann’s constant, m is the mass of the

particle, and ~ is the reduced Planck’s constant.

Now we transform the partition function into a functional integral, using the known

identity [17]:

∫
Dϕδ(ϕ− ϕ̂) = 1. (3.15)
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Equation 3.15 is a functional integral, which is an integral where the domain is

no longer a set of numbers, but over a space of functions. Just like in the regular

integral case, the integral over a Dirac delta function will equal 1. This identity

can be used to rewrite the partition function as a functional integral over the

density functions representing the particles.

Z =
N∏
s=1

1

ns!h3nλ3ns
T,s

∫
drns

∫
Dϕsδ(ϕs − ϕ̂s)× (3.16)

e
−β(

∫ ∫
dr
σ3

dr′
σ3

∑N
s′>s

σ6

vsvs′
ϕs(r)Uss′ (|r−r′|)ϕs′ (r).

We then follow the same procedure as illustrated in [17] and express the delta

functional as an integral over a set of real fields. The Dirac delta function can be

defined as an integral over a set of Fourier variables. As such the single variable

form takes the form of:

δ(x− x̂) =

∫ i∞

−i∞
dkek(x−x̂). (3.17)

where x and k are conjugate Fourier variables. For the functional representation

we replace the regular real variable with functions that represent the density and

chemical potential fields and the integral is now a functional integral over W .

δ(ϕ− ϕ̂) =

∫ i∞

−i∞
DWe

∫
dr
v0

W (r)(ϕ−ϕ̂)
. (3.18)

Using this identity in the partition function it is important to note that you get a

series of products for each different species of particles in the system.

We can take definition 3.16 and write the partition function as a functional integral

over the real density fields ϕ and the chemical potential fields Ws.
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Z =
N∏
s=1

1

ns!h3nλ3ns
T,s

∫ ∫
DϕsDWsQ

fsV
vs

s × (3.19)

e
−β(

∫ ∫
dr
σ3

dr′
σ3

∑N
s<s′

σ6

vsvs′
ϕs(r)Uss′ (|r−r′|)ϕs′ (r))+

∫
dr
v0

ϕs(r)Ws(r))
.

We can now define the weighting term for the partition function for a single particle

of species s as Qs

Qs =

∫
dr

v0
e
− vs

v0
ωs(r). (3.20)

We can now apply the saddle function approximation onto this functional integral.

This approximation is used to determine the value of integrals by setting the value

of the integral equal to the maximum value of the integral (which will minimize

the free energy).

We look to the discussion by Das [5] to motivate the use of the saddle function

approximation in this context. We are looking to approximate a functional integral

in the form:

U =

∫
DxeS[x]. (3.21)

There exists a path that will satisfy:

δS[x]

δx

∣∣∣∣
x=xc

= 0 (3.22)
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where xc represents the minimum of the functional S[x]. We can expand the

functional S[x] by defining x(t) ≡ xc(t)+η(t) and expanding around the minimum

of the functional.

S[x] = S[xc] +
1

2

∫ ∫
dt1dt2η(t1)

δ2S[xc]

δxc(t1)δxc(t2)
η(t2) + ... (3.23)

We can use this expansion in equation 3.21 to calculate the value of the integral.

By assuming the higher order terms in the expansion are small and only keeping

the lowest term we see that equation 3.21 becomes:

U ≈ N eS[xc] (3.24)

where we have N is a constant of normalization.

In this case we are looking for the set of fields that minimize the action of the

Hamiltonian. This strategy is the basis of performing a mean field approximation

for a system. Fluctuations around the equilibrium point are assumed to be small

and negligible, which is the basis for allowing the argument of the exponential to

be replaced by the value it takes near equilibrium. Quantitatively we have the

conditions:

δH[ϕ(r),W (r)]

δϕ(r)

∣∣∣∣
ϕ(r)=ϕ(r)′

= 0 (3.25)

δH[ϕ(r),W (r)]

δW (r)

∣∣∣∣
W (r)=ω(r)′

= 0 (3.26)
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where ϕ(r)′, ω(r)′ represent the fields that minimize the action of the Hamiltonian.

These two primed variables represent the conditions for equilibrium. With this we

can approximate the partition further by:

Z ≈
N∏
s=1

1

ns!h3nλ3ns
T,s

Q
fsV
vs

s × (3.27)

e
−β(

∫ ∫
dr
σ3

dr′
σ3

∑N
s<s′

σ6

vsvs′
ϕs(r)Uss′ (|r−r′|)ϕs′ (r))+

∫
dr
v0

ϕs(r)ωs(r))
.

In using the saddle function approximation we have ignored the normalization

constant N , overall it will just add a constant to the free energy and thus can be

ignored.

The prime on ϕ, ω was dropped for convenience. With this we can calculate the

approximate Helmholtz free energy functional using F = −kbT log(Z), where log

is the natural logarithm.

v0F

kbTV
= −

N∑
i=1

log

(
1

ni!h3nλ3n
s,T

)
− fi

αi

log(
v0Qi

V
) +

v0
V

∫
dr

v0

{∫
dr′

v0

1

2
×

N∑
i=1

N∑
j=1

[ϕi(r)− fi]
Uij(|r− r′|)
αiαjkbT

[ϕj(r
′)− fj]

−
N∑
i=1

wi(r)ϕi(r) +
κ

2

( N∑
i=1

ϕi(r)− 1)

)2}
(3.28)

where we have scaled the free energy by average kinetic energy kbT and v0
V

to

create the free energy density, and we have added a term not originally present

in the Hamiltonian. The volume fractions have been subtracted to readjust the

zero of the free energy. The final term is the incompressibility term which adds an

energy penalty to the system for violating incompressibility, with a numerical term

κ chosen high enough to ensure that globally the excluded volume is conserved.

This technique was developed by Eugene Helfand to ensure global conservation of
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the incompressibility and this technique has been used numerous times in polymer

models that use SCFT [16, 21]. In principle the incompressibility energy penalty

could have been included as a term in the Hamiltonian and carried through the

derivation. Since our particles have no particular structure a mechanism is needed

to keep the ensemble averaged excluded volume in place. It is easier to place this

incompressibility mechanism into the free energy as we wish to have the global

excluded volume effect to be obeyed. It allows us to design a system with no fixed

size for the particle, so that a hard sphere interaction does not need to be included

in order to maintain structure. The incompressibility will mimic the hard sphere

interaction very close to the center of the particle, but does allow some flexibility in

the radius of the particles themselves. The constant total volume of the mixture

gives the ensemble average excluded volume, but since at the particle level the

excluded volume is not enforced, the packing structure of the system is lost [46].

In order to find the equilibrium density of this system we take the functional

derivative of the free energy with respect to the density and the chemical potential

and set both equal to zero. Doing so yields a system of coupled and non linear

equations representing the density and chemical potential fields for all the different

species in the system.

ϕi(r) =
fiV

v0Qi

e−αiωi(r) (3.29)

ωi(r) =

∫
dr′

v0

N∑
j=1

ϕj(r
′)
Uij(|r− r′|)
αiαjkbT

+ κ(
N∑
k=1

ϕk(r)− 1) (3.30)

where:

Qi =

∫
dr

v0
e−αiwi(r). (3.31)
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These equations represent the equilibrium conditions of the system. There is a set

of two equations for each of the different types of particles in the the system.

The ϕs(r) terms are similar in nature to the Boltzmann distribution, a probability

distribution that is weighted by the energy. ϕ(r) represents the volume fraction of

a particular species at a point r, which is weighted by a term that looks similar

to a regular Boltzmann weight. The ωs(r) represent something akin to a chemical

potential field, the function itself describes the “energy landscape”. The energy

landscape describes the regions where there are energy penalties and advantages

based on where the other particles in the system are. This landscape is of course

dependent on the particle-particle interaction, and the incompressibility which

puts a limit on the particle density at a given point. It is easy to see that both of

these conditions are dependent on each other and this is the reason as to why this

is called self consistent field theory, as the solution needs to be self consistent.

3.2.3 Potential

So far the potential Uij has been undefined, only representing some form of inter-

action between two species. The potential is really the central point of the problem

as it is how we can control the phase of the system. We wish to restrict ourselves to

isotropic pair potentials as the interaction scheme of choice. Martinez-Veracoechea

et al. [18] states that no self-assembly can take place between two interacting par-

ticle under a purely isotropic interaction. Frenkel et al. explains that the work of

Tindemans [43] indicates that as long as the isotropic potential does not interact

only with nearest neighbours, the concerns of Martinez-Veracoechea are not mer-

ited. Thus, unlike basic polymer models, we need an interaction that is spatially

expansive. Tindemans et al. [43] state that in order to have non-trivial morpholo-

gies develop the particles have to interact on 2 different length scales not counting

any excluded volume interaction. Tindemans uses a latticed based approach and

thus the potential is defined by the lattice constant. The interaction is broken up

into attractive nearest neighbour interactions and repulsive next nearest neighbour
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interactions. Thus we look to implement a potential that is non-local and has two

different interaction regions.

Buldyrev et al. and Hoye et al. used a potential that has a hard core, and a soft

repulsion as the potential for their systems [9, 22]. The hard core of the potential

defines the size of the particle, while the soft repulsions define the interactions

between the particles themselves. Wang et al. used soft core potentials to allow

for particle “overlapping” or a non fixed radius for the particles, which is well

suited to studying the equilibrium properties of soft matter systems [51].

Since we are mainly interested in looking at soft matter systems we choose not to

use a hard core potential. Since we have an energy penalty in the free energy to

avoid too much overlapping of the particles, we do not need a hard core potential

to maintain structure.

We also restrict the potential to be everywhere continuous and the derivative must

also be continuous in that range. This feature is necessary since, when using a

Fast Fourier Transform (FFT) based algorithm, the potential itself will need to be

discretized, and any singularities in the potential will change the behaviour of the

potential near the singularity depending on the descritization [23]. This means a

standard potential, such as Lennard-Jones, will not meet these requirements since

it diverges at the origin, and is not a two length scale potential excluding the core

repulsion.

Using the potential that is prescribed in reference [23], we make a slight modifica-

tion to the potential by reversing the attractive and repulsive sections in order to

account for the fact that our potentials describe the interaction between different

species and the original potential describes like species interactions:

Uij

kbT
=


A1+A2

2
cos(πr

λ
) + (A1−A2)

2
, r ≤ λ

−A2 exp
[
−(r−λ)2

2γ2

]
, otherwise

i ̸= j (3.32)

where:
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• A1 is the max height of the repulsive part of the potential

• A2 is the max depth of the attractive part of the potential

• λ is the length to the minimum of the potential

• γ is the standard deviation of the attractive Gaussian of the potential

A1, A2 are dimensionless, and scale inversely with the temperature of the system.

As such setting A1 = A2 = 0 is equivalent at looking at the infinite temperature

case. Conversely A1 = A2 = ∞ is equivalent at looking at a system that is at

absolute zero. λ controls the length scales of the potential, how far the repulsive

part extends and γ controls the width of the long range attraction, respectively.

One of the length scales in the potential can be normalized out, by setting it equal

to one, and having all the other lengths in the model be in terms of one of the

potential length scales.

Figure 3.1: A plot of the potential used in this model. The x-axis represents
the separation scaled by the chosen standard lengths scale. The y-axis
represents the scaled strength of the potential.

3.2.4 Computation of SCFT equations

The self consistent equations 3.29 are both coupled and non linear. We have several

different parameters that can be adjusted in the computation of this system which
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can increase the difficulty of finding a solution. A numerical method is needed

that is both stable and numerically efficient.

It is possible to use the spectral methods pioneered by Matsen and Schick, by

expanding the field functions in a Fourier basis. These methods, however, require

some pre-existing knowledge of the symmetries of the system [29]. This is a draw-

back when one is considering using this type of particle based model to explore

a variety of different equilibrium solutions for different potential parameters. We

instead will use the same method as von Konigslow et al., and do an iterative

approach over the densities.

To lower the number of computational variables we choose the potentials for the

different particle interactions to be the same. This means that all particles interact

with every other type of particle using the same potential parameters, thus only

one set of potential parameters have to be passed at the beginning of the run. In

order to differentiate the particles from one another we use the volume fractions

to break the natural symmetries of the system.

It is convenient to specify the standard length scale in this problem to be γ, the

standard deviation of the attractive Gaussian part of the potential. This choice

fixes γ to be unity further reducing the amount of parameters, as each of the

length scales are now measured in units of γ. Choosing either of the two length

scales is sufficient to lowering the overall number of variables.

3.2.4.1 Computational Approach

The basic iterative approach for solving equations 3.29 takes the form:

ϕ(r)n+1 = (1− ρ)ϕ(r)n + ρϕ(r)n+1/2 (3.33)

where n is the current step and n+ 1
2
is the step just calculated by inputting ϕn into

the SCFT equations, and ρ is a mixing parameter. This kind of mixing increases

stability, with respect to direct substitution, but can cause the system to spend
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a long time converging especially if ρ is chosen to be small. In order to speed

up convergence of the system the κ term in the chemical potential equation 3.29

can be varied along with the mixing parameter. Having a large incompressibility

creates a larger energy penalty for incompressibility violations but may cause the

system to diverge if it is too high, and the mixing parameter is too low. This

is countered by making the mixing parameter decrease as the incompressibility

increases, which we call a variable incompressibility method.

The two most important parameters for stability are the mixing parameter and the

incompressibility. Raising κ has the effect of causing small differences between the

densities and unity to have a much larger energy penalty. Making κ larger means

that the step size needs to be smaller in order to resolve the densities correctly.

A common problem is that when the step size is too small, the system will not

converge in a realistic number of steps. κ needs to be large enough so that these

differences are minimized, but not so large that the system can’t converge at that

number of steps. This is the reason a variable step size method is used. κ is

limited to 1000 at its maximum and the inverse of it is used as the lowest possible

step size needed.

3.2.4.2 Fourier Transforms and Convolutions

The most difficult computational part of the equations are the integrals over the

potentials and the density fields, in the chemical potential equation 3.29. It is

important to note that integrals in the form:

h(x) =

∫
dx′f(x′)g(x− x′) (3.34)

are called convolution integrals, as they produce a third function that is the area

overlap of the original two functions. The equations that govern the chemical

potentials contain these convolutions. There is a famous theorem called the con-

volution theorem which states:
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F{f ⋆ g} = K ∗ F{f}F{g} (3.35)

which means that the Fourier transform ( denoted by F) of the convolution be-

tween two functions is equal to the Fourier transform of each individual function

multiplied together, along with some normalization constant K. It is easy to see

the power of such a theorem here, if we can Fourier transform the two individual

functions, multiply them together and then inverse Fourier transform the result.

This process will get us the final result of the convolution integral, without hav-

ing to explicitly perform the integration. We can do this by applying periodic

boundary conditions to the system as a whole so that we can Fourier transform

the densities, and the potential.

Normally doing this type of computation would not be faster then explicitly com-

puting the convolution integral and applying the boundary conditions. However,

in 1965 Cooley and Tukey published a more efficient form of a Discrete Fast Fourier

Transform (FFT) that allowed for quick computation of Fourier transforms and

thus quick computation of convolutions. Before this, simple application of the def-

inition of the Discrete Fourier Transform would result in a complexity of O(n2),

with this new algorithm the complexity decreased to O(n ln(n)) where n is the

size of the system [13].

If we apply periodic boundary conditions to our problem we can leverage this

theorem for quicker computation of the chemical potential fields.

3.2.4.3 Computation Parameters

The box size was fixed to L = 10 in units of γ, which was deemed large enough

that a periodic phase would present itself without finite size effects. In theory the

length and the width can be adjusted to get rid of any distortions present in the

final phase.
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It was decided that the the vector norm will be used as our measure for knowing

when to stop the program which in this case takes the form:

∫
dr
vr

(
ϕ
n+ 1

2
i (r)− ϕn

i (r)
)2

∫
dr
vr
(ϕn(r)2

(3.36)

where i in this case is just a chosen density. The algorithm finishes once ϕn+1
i −

ϕi ≤ τ or n = nmax, where τ is some tolerance (that is sufficiently small) or the

maximum number of iterations have passed. If τ is chosen to be too high then

there is a chance that the solution found will be one that is not the true solution

to 3.29. τ = 10−7 was chosen to be the limit for most of the runs and is sufficiently

small enough to avoid most of these problems.

3.2.4.4 Algorithm

We start the system at some random distribution centred around each of the

specimen’s volume fraction. Calling this density ϕ0
i , we plug it into equation 3.29

and using the predetermined potential we calculate the corresponding chemical

potentials ω0
i , where i represents the different species. With this new chemical

potential we can calculate ϕ
1
2
i and use equation 3.33 to calculate ϕ1

i . These new

densities can be used to calculate new chemical potentials, and the iteration can

continue to calculate ϕn
i , ω

n
i where n represents the current iterative step.

We choose one of the densities to be used to measure convergence. Using equation

3.36 we can see if the new density and the old density are roughly the same within

the chosen tolerance. If so, then the solution has been found. However if the max-

imum number of iterations has been reached we use the variable incompressibility

method to attempt to reach a convergent solution. We attempt to raise κ three

times and if the solution is still not found during that time then the program is

terminated.
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3.3 Two Species of Particles with Large Particle

Disparity

The particle size measure α has a larger effect on the stability of solving equations

3.29. The current set of equations cannot resolve particle disparity of greater than

100 [23]. It is necessary to rewrite the equations in a more tractable form when

looking to analyse systems with large particle disparity.

3.3.1 Issues with SCFT and Particle Size

These two equations:

ϕi(r) =
fiV

v0Qi

e−αiωi(r) (3.37)

ωi(r) =

∫
dr′

v0

N∑
j=1,j ̸=i

ϕj(r
′)
Uij(|r′ − r|)
αiαjkbT

+ κ(
N∑
i=1

ϕi(r)− 1) (3.38)

represent the equilibrium volume fractions and chemical potential fields of a system

of N particles which interact with one another with some potential Uij where i

and j represent the the respective particles and no species interacts with itself.

Where Qi is the single particle partition function:

Qi =

∫
dr

v0
eαiωi(r). (3.39)

Now we can examine what happens to 3.37 and 3.39 when the α parameter becomes

very small for one of the particles. It is easy to see that when αi is taken to the

limit α → ∞, the arguments in the exponential become very large and these

equations cannot be resolved numerically on a computer.
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For the system in question, looking at equations 3.39 it can be seen that since no

matter the argument of the exponential the result will always be positive. This

means that the integral over the exponential will also result in a positive number,

forcing the ϕ(r) term to always be between zero and one. This is a helpful feature

in standard SCFT since the volume fractions are naturally normalized. However,

when adjusting one of the αi’s to be small we get results which are not tractable

numerically. One of the exponentials will blow up and the results are not resolvable

on any computer, meaning the iterative approached outlined before will fail. Using

arbitrary floating point implementations are not an option since this will increase

the amount of time needed to solve these equations numerically. We would like to

be able to use floating point arithmetic and explore systems in which αi can range

as low as 10−6 as this is the typical size disparity between nanometer colloid and

solution, and with this in mind we need to rewrite the equations.

3.3.2 Derivation of a New Fixed Point Equation

Starting with the free energy (equation 3.28) we can exactly remove the chemical

potential fields ω(r) through substitution and get:

Fv0
kbTV

=
v0
V

∫
dr

v0

{
ϕi(r)

αi

[
log

(
ϕi(r)

fi

)
− 1

]
(3.40)

+
1

2

∫
dr′

v0

N∑
i=0

N∑
j=0,j ̸=i

[ϕi(r)− fi]
Uij(|r′ − r)

αiαjkbT
[ϕj(r

′)− fj]

+
κ

2

(
N∑
i=0

ϕi(r)− 1

)2}
.

The free energy is now written in terms of the densities only.

At this point we will assume that there are only two types of particles in the

system, a much larger particle (A), and a particle that is much smaller (B). This

is to mimic the situation of a particle inside some solution. We can further modify
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the free energy equations to enforce strict incompressibility with equation ϕA(r)+

ϕB(r) = 1. In doing so we can rewrite the free energy in terms of one density field

ϕA(r) = ϕ(r):

Fv0
kbTV

=
1

V

∫
dr

ϕ(r)

αA

[
log

(
ϕ(r)

fA

)
− 1

]
(3.41)

+
1

V

∫
dr

1− ϕ(r)

αB

[
log

(
1− ϕ(r)

fB

)
− 1

]
− 1

V v0

∫
dr′
∫

dr[ϕ(r)− fB]
Uij(|r′ − r|)
αAαBkbT

[ϕ(r′)− fA]

+
κ

2

[
fA − 1

V

∫
drϕ(r)

]2

where we adjusted the zero of the free energy in order to remove the volume

fractions from within the convolution term. Since the zero of the free energy is

arbitrary, this does not change the physics of the system but only turns it into a

more convenient form.

The use of the strict incompressibility makes this equation weaker as the volume

fraction is no longer globally conserved. The final term in 3.41 forces global con-

servation of the volume fraction, which corrects this problem by adding an energy

penalty to the free energy. Notice the first terms in the free energy have the form

of the translational entropy found in standard density functional theory (DFT)

[3, 4, 46]. Thus we have rewritten the problem in a form that more closely re-

sembles DFT. However unlike DFT we do not have an implicit solvent in our

equations.

Using this new free energy we can take the derivative with respect to ϕ(r) and

find an expression for the minimization of the free energy. By varying 3.41 and

setting it equal to zero we get:
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0 =
1

αA

log

(
ϕ(r)

fA

)
− 1

αB

log

(
1− ϕ(r)

fB

)
(3.42)

− 2

∫
dr′

v0
[ϕ(r′)− fA]

Uij(|r′ − r|)
αAαBkbT

− κ

[
fA − 1

V

∫
drϕ(r)

]
.

This can be framed in terms of a fixed point equation by adding or subtracting

ϕ(r) to both sides of 3.42.

ϕ(r) = ϕ(r)− 1

αA

log

(
ϕ(r)

fA

)
− 1

αB

log

(
1− ϕ(r)

fB

)
(3.43)

+ 2

∫
dr′

v0
[ϕ(r′)− fA]

Uij(|r′ − r|)
αAαBkbT

− κ

[
fA − 1

V

∫
drϕ(r)

]

where ϕ(r) has been subtracted from both sides to avoid divergence from a phys-

ically meaningful solution.

3.3.3 Computation

3.3.3.1 Fixed Point Equations

Fixed point equations are often found in science and engineering stability problems,

and have obvious similarities to root finding problems. A regular fixed point

equation, is one in which a function will map back onto itself for a specific point.

Mathematically this is means if we have some number a it is a fixed point if and

only if:

f(a) = a. (3.44)
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The standard procedure for solving fixed point equations is to choose some initial

guess for the variable, find the value at that point and check to see if they match.

If they do not match you continue to input the result until the match is found.

This take the form:

f(xn) = xn+1 (3.45)

where n is the current iteration. Convergence of these equations are dependent on

3 different conditions [15]. If I is some closed interval then:

• xk ∈ I, for each k

• limk→∞xk = x∗ where x∗is the solution

• x∗ is the only solution in the interval

These conditions mean that in order to get to a solution, there has to exist a

solution and that each subsequent iteration must get closer to that solution while

staying inside the closed interval. It is important to note that fixed point equations

have no built in mechanism to ensure that subsequent iterations stay within the

closed interval.

3.3.3.2 Calculating Equilibrium Solutions

For equation 3.43 we are looking for a function ϕ(r) that will map back onto itself.

Equation 3.43 can be solved using fixed point iteration for ϕ(r), which represents

the solution for the lowest free energy for a system with potential UAB. This

equation has no built in mechanism for keeping ϕ(r)n+1 between zero and one,

which presents a problem since the right hand side of equation 3.43 cannot resolve

functions which are not bounded between zero and one because of the logarithmic

terms.
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A very simplistic solution to his problem is to threshold the resulting density at

each iteration so that any value above one and below zero is placed between zero

and one. When solving fixed point equations it is important to pick reasonable

stopping criteria for the solution. In this case the stopping criteria was chosen to

be

|(ϕ(r)n+1 − ϕ(r)n)| ≤ τk = kmax (3.46)

which means that the program will stop when the new computed solution differs

from the last computed solution by some user chosen amount τ or when the pro-

gram reaches some maximum number of iterations. There is a subtle problem

with the first set of stopping criteria, if we change the value of ϕ(r)n+1 then it

is not warranted to compare it to the previous density in the stopping criteria.

This means the threshold procedure needs to be done after the stopping criteria is

calculated. However, this threshold means that the stopping criteria will not ever

be met since the values being inputted are not the true next iterative step.

We can further get past this limitation by examining systems close to the weak

segregation limit, looking at systems that do not fully microphase separate when

in equilibrium. This is equivalent to choosing a temperature that is close to the

phase transition between a uniform state and the microphase separated state.

This condition restricts the possible choices in parameters for the problem, the

temperature cannot be lowered too much or the system will not converge properly

because of the threshold issue.

For very large disparities in the sizes between the “solvent” molecules and the

regular colloids, instead of choosing an initial condition that is random, choosing

an initial condition that is closer to a microphase separated structure can result

in better convergent properties. Using this along with the threshold technique we

are able to get sensible results for some cases.
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3.3.3.3 Algorithm

In order to decide the next guess for the algorithm a mixing procedure needs to

be decided on. When finding the next iterative input for a fixed point method

we can mix the old input with the newly calculated input. The simplest way to

achieve this is to take some fraction of the new result to use with the old result.

This is called simple mixing and is represented by:

ϕ(r)n+1 = (1− ρ)ϕ(r)n + ρϕ(r)n+1/2 (3.47)

where n is the iterative step and the 1
2
represents the pure computed density.

Using this method increases stability, however ρ is fixed and if chosen poorly, can

cause the system to converge slowly or not at all. There exists linear extrapolation

methods like Anderson mixing, which have had success in field theory simulations

of diblock copolymer melts [45]. Unlike simple mixing, Anderson mixing uses

the output of several iterations to calculate the best mixing parameters possible.

However, Anderson mixing requires the use of a deviation function to calculate

the best new mixing parameter. This strategy is incompatible with the use of

a threshold procedure, and as such cannot be used to converge the system more

rapidly.

Instead of using Anderson Mixing we use a pseudo variable mixing method in

which we use a small mixing parameter initially and measure the rate of conver-

gence. Once the rate goes below a certain value, or a certain number of steps

have preceded then the step size is increased temporarily. This improves the con-

vergence rate while not being big enough to cause divergences. The choice of the

small and large step size is mostly left up to trial and error. We found through

experimentation that using a big step size, 10 times larger than the small step

size, was sufficient to speed up convergence.

Now our algorithm proceeds very similarly to the standard SCFT algorithm except

there is now only one equation. First we pick a random initial guess for ϕ(r)
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deviated around the global volume fraction (fA, fB ,...). This initial guess ϕ0(r)

is used to calculate ϕ 1
2
(r) where the 1

2
is used to signify that this is not the final

form for the density. We then use ϕ 1
2
(r) and ϕ0(r) to calculate ϕ1(r) using 3.47.

If the conditions for termination have not been met then the calculated density

needs to be checked to make sure that it does not have elements that go above one

or below zero. If it does the result is thresholded correspondingly and the process

is continued until the stopping conditions have been met.
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Results and Discussion

4.1 Three Species Case

We look to apply our approach to the situation of 3 different particle species

isotropically interacting with one another. The two species case has been covered

extensively by von Konigslow et al. [23] using the same approach. In the two

species case von Konigslow showed that the phases found using our approach

matched very closely to the standard SCFT results for diblock copolymers. He

found that through varying the volume fraction of one of the particles he could

mimic the phase progression seen in diblock copolymers systems. He was able to

replicate all the major phases of the diblock system; including the lamella, gyroid

and spherical phases [23].

4.1.1 Parameters

Using multiple distinct species increases the amount of total parameters that can

be used to specify the system. We focus on the three species case as this is the

next simplest case, and further assume that the potentials for the different species

have the exact same parameters to reduce the complexity. The parameters that

can be specified are:

45



Results and Discussion.

• The strength of the interactions A1, A2

• The length of the repulsive part of the interaction λ

• The set of volume fractions for the system fA, fB, fC with fA + fB + fC = 1

• The size of the computational box

• The strength of the incompressibility penalty κ

• The particle size ratio α.

Additionally we have to set the size of the computational box big enough to explore

the parameter space freely, as well as set the incompressibility high enough to get

a physically meaningful solution. Therefore these are not free parameters as they

need to be set to allow for a proper solution.

The interaction strength parameters, A1, A2 are chosen to be high enough that

the system does not tend toward a uniform state, in which the local volume frac-

tions are equal to the global volume fractions over the space. We can examine

what happens to the phases for certain choices of the strength parameters. If for

example A1 = 1 and A2 = 0 the potential will effectively be just a repulsive poten-

tial between the particles. This means that the system will tend to macrophase

separation, in which the A, B and C particles will aggregate together, and any

structure will be lost. With the converse, A1 = 0 and A2 = 1 we get a system that

will tend to a uniform local volume fraction since the potential is purely attractive

between different particles and this will maximize the entropy.

The incompressibility term needs to be chosen to be sufficiently high that the

system will converge and obey the incompressibility requirements. The box size

will also need to be sufficiently large as to allow for a repeatable micro-structure

to form. The initial state for the system was chosen to be a randomly varying

about the volume fractions for all of the different particles. Given enough runs

the system should converge into all of the possible fixed points, and meta stability

can be checked by comparing the free energy of the system to that of a uniform

distribution.
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The particle size measure was kept to a constant α = 1 for all three particles. This

was done in order to better compare to results for triblock star polymer melts. We

are not looking at a particulate in a solution; so having a large disparity is not an

effective way of describing the system.

The main way to vary the different phases will be in adjusting the volume fractions

for each of the particles. By creating asymmetries in the system by having more

of one particle than the other, the final equilibrium will change to account for this

mismatch. We will match the triblock volume fractions used by others in order to

compare our approach to theirs.

4.1.2 Relation to Copolymer Melts

The three species case has many similarities to the case of an ABC triblock copoly-

mer melt. This type of system has been studied before extensively using SCFT

with a wide degree of success [17, 42, 54]. There are a large number of examples of

this type of system being studied using field theory in two dimensions. We choose

to focus our comparisons to the copolymer melt simulations made in two dimen-

sions, since there are more results to compare to. Our approach however is not

limited to two dimensional calculations and is in fact easily scalable to studying

three dimensional morphologies.

Fredrickson et al., Tang et al. and Zhang et al. [17, 42, 54], have results using

SCFT for ABC miktoarm triblocks in two dimensions and we look to compare

the phases they obtain for a certain set of volume fractions to what we can do

for the same set of global volume fractions. Since the polymers in a star triblock

are all attached at one end, they all feel an interaction due to the other polymers.

In a linear triblock this is not true since the polymers are joined end to end.

We compare to star polymers since in our approach a specific species of particle

interacts with all the other species, which is analogous to what is happening in

the star polymers.
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The SCFT model for polymers has the added benefit of using only the Flory-

Huggins (χ) parameter to determine the strength of the interaction between two

different polymer types. In our case the potential is highly modular, and takes

3 parameters to specify. While keeping the strength of the potential the same

it is possible, while adjusting the length scale of the potential, to replicate some

of Tang’s results. We want to replicate the most robust of the phases found for

two dimensional copolymer melt simulations. Since χ is inversely proportional to

temperature [17], and the interaction strength for our model is as well, it is natural

to fix the potential strength for any comparison.

For figure 4.1, A1 = A2 = 2.8 is set constant for all runs with a box size L = 10,

while the volume fractions are changed depending on the phase to be compared

to in Tang’s results [42]. Only five of the seven results can be replicated with the

particle based model, and this is done by manipulating the length scale in the

potential, through a trial and error approach. The plots themselves were created

using a majority scheme, if the density of a particular particle is above 0.5 then

then it is considered the majority at that point and is plotted as a single color.

Any discolourations in the actual plot itself are regions in which the densities of

two particles are roughly equal, and need to be smoothed out. These points are

the particle-particle interfaces, where two areas of particles meet. The potential

length scale needs to be adjusted between each of the runs.

If we consider honeycomb hexagon phase, lamella phase, lamella with beads and

octagon-octagon-tetragon phase, to be the most common since these phases appear

in all three papers [17, 42, 54], our approach can replicate three of those phases.

The octagon-octagon-tetragon phase is the one phase that our approach is unable

to replicate. This phase may need the specific connectivity of the polymers in order

to form. Since our model deals with particles that interact through a potential

instead, it lacks that same type of connectivity. This may be the reason why that

specific phase cannot be found as of yet. One way to recreate the tight binding

between polymers in our model is to increase the strength of the attractive part of

the potential, mimicking the binding of the polymer strands at one end. However

making the binding strength of the particles too strong, can cause the system to
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(a) Hexagonal Packed (b) Core Shell

(c) Three Color Lamella (d) Lamella With Beads

(e) Three Color Hexagonal Honeycomb

Figure 4.1: Majority plots for the 5 phases using our model using a grid size
of 128 by 128. The figures represent the different particles as a color, If there
is more of a particular species at any given point it is assigned a color. Each
figure has the following volume fractions fA, fB, fC (a) Hexagonal Lattice
Phase (0.8,0.1,0.1) λ = 0.95 (b) Core-Shell Hexagonal phase (0.1,0.7,0.2)
λ = 0.7(c) Three Color Lamella (0.5,0.1,0.4) λ = 0.8 (e) Lamella With Beads
Phase (0.6,0.2,0.2) λ = 0.95 (e) Three color Hexagonal Honeycomb Phase
(0.3,0.4,0.3) λ = 0.8. The last term is the length of the repulsive section of the
potential.
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become numerically unstable. This problem with increasing A2 is evident even in

the two particle model, where a more clear exploration of the parameter space was

made [23]. This is not to say that the the coarse grain particle model cannot get

to these phases, it however requires a way to examine this region of the parameter

space that is more numerically tractable.

Figure 4.2: This is a ternary plot of the volume fractions for an ABC star
triblock copolymer melt created by Tang et al. [42]. The numbers represent
the regions where a certain choice of volume fraction will lead to that phase.

1. Hexagonal Packed 2. Core Shell Hexagonal 3. Three color Lamella

4. Lamella with Beads 5. Knitting Pattern 6.

Octogon-Octogon-Tetragon 7. Honeycomb Hexagon . The kitting phase
and the octogon tetragon phase do not appear in our results, instead those
areas of the plot is a combination of lamella with beads and lamella phases.
Those two phases are small and the general structure of the plot is recoverable
in our approach. Taken from [42]

Figure 4.2 is a ternary plot made up of the volume fractions from Tang’s paper [42].

We wish to note that the larger areas of the plot are recoverable using our approach.

The only two phases that cannot be recovered are the more complex phases of the

seven that Tang found. Since we are after the most common and robust phases

this result does not really interfere with this goal. Figure 4.3 represents the more

complex phase diagrams from Zhang et al. [54]. Zhang does a more complete

search of the center of the phase plot and finds an additional 4 phases in that

region, that Tang et al. did not find. Notice when comparing the two phase

diagrams that in the same areas they find roughly the same phases. Those results

correspond to our own results, as we can mimic the broad strokes of these two
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Figure 4.3: This is a ternary plot of the volume fractions for a ABC star
triblock copolymer melt created by Zhang et al. [54]. It is a more specific
version of figure 4.2. The more robust phases seem to have the largest areas in
the phase plot. This is consistent with our results in which the honeycomb
lattice phase , lamella phase and lamella with beads phase take prominence
over the other possible phases. The different sections are represented by 1.
[6.6.6] 2. [8.6.4;8.6.6] 3. [8.8.4] 4. [10.6.4;10.6.4;10.6.6] 5. [12.6.4] 6.
[8.6.4;8.8.4;12.6.4;12.8.4].The notation [A,B,C] represents the number of
connections each polygon makes. For example [6,6,6] means that each polygon
is surrouned by 6 other polygons. With more complicated patterns the
number of connections can vary depending on pattern. See figure 2.5 for
corresponding images. Taken from [54]

phase diagrams. Since we aim to use our approach to find the most common and

robust phases a specific search in a region of the phase digram is outside of the

scope of what this approach is for.

4.1.3 Effect of the Length Scale

For the hexagonal honeycomb packed phase λ = 0.8 was used. If we lower this

number the system will become disordered since the potential becomes much closer

to a purely attractive potential. If we raise the value of λ to approximately 1.5

we will change the equilibrium structure of the system, to become more like the

lamella with beads phase, see figure 4.4. If λ is increased even further we will get

a state in which the particles are separated into large aggregate chunks. This is

due to the fact that when λ is increased far enough the potential looks mostly

repulsive over the domain, which will cause particles alike in type to come closer
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together. In manipulating λ we can replicate some of Tang’s results but we can

also use it to explore different phases as λ is increased.

Figure 4.4: This is the majority plot for a lamella with beads plot. This plot
was obtained by keeping the volume fractions for a hexagonal honeycomb
phase (0.3,0.4,0.3) and increasing the value of λ to 1.5. Changing the length
scale will change the final equilibrium structure. Tang’s results are repeatable
in our approach for only a small subset of the length, which is due to increased
complexity of our interaction.

Our model is highly dependent on the length scale of the potential. Through

simple adjustment of the length scale the morphology of the system completely

changes. This spatial extent adds complexity, allowing us to examine a larger

phase space of possible solutions. Adjusting the potential length scale to match

the polymer results is justified in the following way; while polymers have actual

spatial extent our particles are effective point particles that interact spatially. It is

in this way one can compare the two models, as they both have some sort of long

range interaction, one through the physical length and one through the interaction

potential. The length of the potential, in the polymer model, does not have an

explicit value like it is in our model. This gives us the ability to examine the effect

of an extra parameter on the final local volume fraction in the system.

Otherwise the only values that are changed between the different runs are the

global volume fractions of the different particles. The differences between the par-

ticle model and the miktoarm polymer model, is that the polymers are all attached

at one end. This is an architectural restriction on the polymers themselves that
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our particle system does not inherently have. This may be the reason as to why

our model cannot replicate the knitting pattern, and the octagon-octagon-tetragon

phase.

Looking at the work of others who examine triblock star polymers we find a wide

degree of different phases can be found [10, 17, 42, 54]. It is important to note that

in some cases the phases that are found do not match up completely but there

are a set of phases that appear in all the works. Phases such as the honeycomb

lattice phase and the lamella phase appear consistently, in the literature and also

in our own work. It gives evidence that the phases found by our approach are

the ones that are the most robust and easiest to find in the parameter space. It

is easy to see that we could just use the standard SCFT approach for triblock

copolymers, but we want to focus on a method that has a high throughput. A

strategy that has been outlined by both Xu et al. [53] and Matsen et al. [30]

is using a combination of fast algorithms and novel initializations we can explore

even more of the parameter space for potential morphologies. Using a variety

of different initialization procedures instead of just using random distributions as

the initial input, Xu states that this will allow us to explore even more potential

phases. Our approach, at least for two dimensions, can very quickly and simply get

out the robust phases and if needed a more accurate, but slower model, can be used

for more complicated phases. Our approach is well suited to being an important

part of an algorithm that can explore the stable and metastable morphologies for

a wide degree of parameters and initial inputs.

4.1.4 Three Dimensional Phases

We focused on the existence of morphologies in two dimensions but the exten-

sion to three dimensions is straightforward. Many interesting three dimensional

morphologies are easily obtainable. We choose not to focus on benchmarking this

approach in three dimensions since the results for SCFT for three dimensional

star triblock copolymer melts are sparse. As such figure 4.5 represents some of the

simpler phases found in three dimensions.
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(a) Hexagonal Packed (b) Beaded Lamella (c) Lamella

Figure 4.5: This is an isosurface plot (the surfaces enclose volumes where
each particle is represented at a majority) for a hexagonal phase in 3
dimensions with a box size of L = 6. This plot was obtained by keeping the
volume fractions (fA, fB, fC) for each plot at A) (0.33,0.33,0.33) and λ = 1.5.
B) (0.46,0.27,0.27) λ = 1.6 C) (0.2,0.4,0.4) λ = 1.6.

Figures 4.5 were generated by looking at the work done by Fredrickson [17] for

two dimensional phases. Using the same volume fractions as the two dimensional

phases we can assume that a similar structure will exist in three dimensions, by

stacking the two dimensional results. Unlike some of the other simulations that

involve particles interacting isotropically [3, 4] our approach is easily scaled to

three dimensions. We have the equivalent to the honeycomb hexagon phase, the

lamella with beads phase and lamella phase in three dimensions. In comparison

to the three dimensional results from Xu et al. [53] we find that Xu was able to

also get these phases for a star triblock copolymer.

4.1.5 Improvements and Future Work for Polymer Sys-

tems

The main drawback of using the coarse grain particle approach on polymer systems

is it does not capture all the properties of the polymer system. There are still

phases that cannot be found using this approach, though it may still be possible

using a slightly different potential to replicate the knitting pattern, and octagon-

octagon-tetragon phase. Also we kept the potential for each of the particles the

same to lower the complexity and to compare with polymer results that have the

χ parameter the same for all parameters. However, there exists many situations in

triblock polymers where this is not true, and this approach could also be verified

against those types of systems. The paper by Xu et al. [53] indicates that there

is merit in possibly using a wide variety of initial conditions to study the possible
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morphologies. The runs done in our approach used random initial conditions. It is

possible that the use of more specific initial conditions will yield the more complex

results from the papers by Tang et al. and Zhang et al. [42, 54].

This approach still needs be benchmarked more thoroughly for three dimensional

morphologies of triblock copolymers. The results for three dimensional triblocks

are not as plentiful as their two dimensional counterparts but there are still cases

that can be compared to [37, 40, 53]. This is an important next step in seeing

how this coarse grain particle approach works with polymer systems. Also this

approach needs to be modified so that it can be benchmarked against linear tri-

block copolymers. Tang et al. also have a series of SCFT solutions to a system of

linear ABC triblocks [41], which gives a solid benchmark to compare to.

There is also no restriction on increasing the number of particles in the model to

mimic high block copolymer systems. There exists simulations for two dimensional

4-block copolymers [50], and our approach could be benchmarked against the

common robust phases for that type of system as well.

4.2 Particle Disparity

Using the standard SCFT equations 3.29 there is a computational limit to how

far the particle size measure can be lowered. When looking at the effect of solvent

molecules when interacting with diblock copolymers in traditional SCFT it has

been shown that looking at a particle disparity of less than α = 0.01 causes

numerical instability [25]. For our system in the standard SCFT implementation,

a disparity limit of α = 0.01 was also reached [23]. As the particle size is decreased

the entropy dominates and as a result the temperature needs to be decreased for

any microphase structures to form [23]. This results in the step size having to be

decreased in order to get convergence, which for extreme cases of the particle size

difference, the system would never converge. In order to look at systems with lower

levels of particle disparity, the DFT like equations (equation 3.43) are necessary,
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as the scaling of the exponential due to particle size has been removed by framing

the problem in terms of logarithms.

Getting down to much smaller α requires a more careful procedure, which we have

outlined. We aim to bring the size disparity of the particles to α = 10−6, which

simulates the natural size difference between a nano-colloid and the solution that

it is suspended in. Using our model we had some success in 1D and 2D simulations

of this system. The sharp temperature cutoff, the temperature where the system

goes from disordered to ordered is troublesome for our method. The translational

entropy terms in the free energy are each weighted by the inverse of their respective

α terms, which means when the particle size is very small these terms dominate

the free energy. This makes the system much more favorable to a disordered state

at high temperatures, as one would expect. The decrease in particle size, for one

of the particles, amounts to being able to fit more particles in the same amount

of space as the other species.

4.2.1 Two Different Sized Particles in 1D

For one dimensional systems we were able to get a convergent solution to our

free energy minimum. The sharp temperature cut off for a weakly segregated

system still exists but that phase is observable for some choice of the A1 and A2

parameters. Depending on the choice of the particle size α, we have found that

the choice of the κ term, that maintains proper volume fractions, needs to be at

least 100 × α−1 in magnitude. Choosing this term to be too small will result in

the volume fractions not being conserved in the final solution.
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Figure 4.6: This is a plot of the 2 particle case, with 1024 computation
points. The blue line represents the solvent and the green line represents the
larger particle. In this case the size of one of the particles is much smaller than
the other. The y-axis represents the volume fraction of a particle at a
particular point. This is a much more realistic size ratio between a colloid and
a particle in a solution vB

vA
= 10−6. A1 and A2 = 0.36

The results in figure 4.6 are what one would expect when one of the particles

is much smaller than the other. Realistically one does not expect that any one

portion of the box will contain only one particle. The smaller particles will always

be able to mix, to some degree, with the larger particles and this is represented

here. Even though mean field theory obscures any information about detailed

packing structure, we can still use it to recover some large scale detail of the

underlying structure. The decrease in size of one of the particles also has the

effect of increasing the strength of the interaction in order to counter the entropic

gains of a smaller particle size.

4.2.2 Two Different Sized Particles in 2D

The two dimensional case is much more difficult to get accurate solutions of equa-

tion 3.43 with the right level of size difference between the particles. In the one

dimensional case wew were able to fine tune the strength of the interaction to get

to the weakly segregated limit. This strategy avoids the use of continuously having
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to threshold the outputs after they have been compared which can lead to a con-

tinuous loop. The problem encountered in 2D is that the boundary from weakly

segregated system and a system which cannot be resolved with this algorithm may

be very small. Meaning that at some point increasing the strength by even a tiny

amount will result in a system that diverges due to the threshold scheme.

Figure 4.7: This is a plot of the 2 particle case, in which a single local
volume fraction for one of the particles is plotted on a 64 by 64 grid. In this
case the size of one of the particles is much smaller than in the other case.
This is a much more realistic size ratio between a colloid and a particle in a
solution αB

αA
= 10−6. The scale represents the amount of any given particle in a

particular region.

The only obtainable microstructure with this particle size was a lamella type

morphology, figure 4.7. Using A1 = A2 = 0.035, λ = 4, and γ = 1.0, we are able

to obtain a structure that exhibits an interesting microstructure. One of the issues

with this method is the need to specify an initial condition that is not going to

be a random seed. A structure that already exhibits lamella properties is used

as the initial input. The temperature is then adjusted around the order-disorder

transition, to find a structure in the weak segregation limit. Using a non-random

initial input, allows us to get closer to the solution allowing the system to converge

without going into a threshold loop.
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Just like the one dimensional case the structure reflects the fact that one of par-

ticles is much smaller than the other. From the scale in figure 4.7, the maximum

amount of the larger particle is about 0.8, and since incompressibility is strictly

enforced, the smaller particle takes up the rest of the space. The density for the

larger particles never reaches the maximum, reflecting that smaller particles will

be able to fit in between larger ones. This is a good check that the model replicates

this in one and two dimensions, as this is what is expected to happen in reality.

4.2.3 Convergence

Choice of the potential parameters becomes increasingly difficult due to the large

parameter space of the system. Since the potential strength is tied inversely to the

temperature, lowering the temperature is equivalent to raising the strength. In

general when lowering α and then choosing the strength to be high the system will

not converge to a final solution. This is due to the problem mentioned previously,

the values that can be imputed into equation 3.43 have to be bounded between 0

and 1. However the values that are outputted do not have to be bounded, thus

the outputs need to be put under some sort of threshold in order to be used in

the fixed point equation. This happens when the temperature is lowered, however,

it is at lower temperatures where you expect that the system will be able to self

assemble. Choosing too high of a temperature results in a divergence that will

never get below a certain value. Raising the value of A1, A2 above 0.36 results in

a divergent system, at this point the threshold starts to become a factor and the

system will never converge.

If it is a matter of choosing the right system parameters to get a meaningful result,

a parameter space search would be a good starting point. The problem being that

just considering the potential itself, there are 3 parameters that need to be set.

This is already a large parameter space to explore. We explored the parameter

space of the potential using a computing cluster, with no results for phases other

than lamella. A brute force approach to finding the right set of parameters will

not work.
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This issue was not inherently present in the SCFT equations due to the self limiting

nature of the exponentials that determined the densities. Using the logarithmic

form of the equations removed this inherent property of the SCFT equations.

In using an equation that can handle the numeric problems of lowering the α

parameter we have inherently introduced a new problem of being unable to resolve

solutions for a larger number of different parameter sets.

4.2.4 Improvements and Future Work for Particle Dispar-

ity

Inability to freely explore the parameter space using this DFT like model is a hin-

drance to its usefulness for studying particle disparity effects. The most prominent

issue is that the fixed point method can give outputs that cannot be used as inputs

in the fixed point equation. Even in the two dimensional case some knowledge of

the end phase is needed in order to use get a useful equilibrium solution. Having

a method that has a way to use bounded inputs that does not result in an infinite

loop, is one area that can see improvement.

Three dimensional results are of the utmost interest because of the real world

comparisons that can be made. Being able to explore the parameter space in

three dimensions is one area of interest. Getting the current model to work in

three dimensions is challenging, with the parameter restrictions that are present

in two dimensions being even more pronounced. The methods used in 1D and 2D

do not carry over explicitly in 3D, so new ideas will have to come into play.

The use of high performance computing may be able to make up some of the

difference. If it is a matter of choosing the right potential parameters in order to

get a convergent and meaningful result, being to explore a large amount of the

parameter space might provide some insight. The total number of parameters is

quite high, so some sort of reduction of the total parameters is needed in order to

narrow the search field, or to discover what are the most important parameters in

the system.
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Conclusions

We have found some success using a system of interacting particles to examine a

variety of different soft matter systems. Using particles that interact with short

range repulsive and long range attraction, we were able to replicate some of the

different phases found in ABC triblock miktoarm copolymer systems. By keeping

the particle size constant as well as the potential the same between all of the

particles we can go through some of the different triblock phases by varying the

volume fractions as well as one of the length scales of the potential.

Of the seven available phases found by Tang we have been able to replicate at least

five of those phases. In the more thorough search of the phase space by Zhang et

al. four more phases were found that are more complicated but the phases that are

the most common among star triblock copolymer studies were also found. Those

phases were the hexagonal lattice phase, core shell hexagonal phases, three color

honeycomb hexagonal phase, three color lamella phase and lamella with beads

phase. The two phases that have not occurred in our model, knitting pattern and

octagon-octagon-tetragon phase, may be out of reach simply because the miktoarm

system has extra restriction due to the fact they are attached at one end. The most

robust of the phases are recoverable using our approach, and match up well with

other findings for ABC star triblock copolymers systems. We adhere to the idea

that this approach can be used to find many different equilibrium phases quickly,

and can be used as a launching point for finding more complicated structures.
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With modifications to the SCFT equations we were able to explore systems in

which the size difference between two particles was at least greater than it was

before. There was some success in one and two dimensions, finding the lamella

phase for both those dimensions. We were able to show that some features of a

system with a realistic size disparity such as the inability for the system to fully

separate. Divergence due to functional properties of the fixed point equation in

2D result in concessions having to be made on calculating equilibrium densities.

The use of a pre-determined initial condition as well as only being able to explore

the weak segregation limit are problems that still need to be resolved. Difficulties

in finding solutions in three dimensions persist due to the nature of the modified

equations, and work still needs to be done on creating a more successful approach

when dealing with particle disparity.

We have used this approach to explore the robust phases of different types of soft

matter systems, copolymer melts and colloidal solutions. This method is quick and

efficient; and can find the robust phases using an easily characterized potential.

This approach in conjunction with more complicated models can be used to find

even more complicated phases and construct more accurate phase diagrams.
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Appendix A. Functional

Integration

A functional is a generalization of the idea of a function. Instead of a real or

complex number as the argument, a functional takes as its argument a function

and returns a number for each function for which the functional is defined. For

example a functional can take the form:

I[f(x)] =

∫ a

b

f(x)dx (A.1)

The solution to this equation, if it exists, is the value associated for the chosen

function f(x). The functional can be thought of as the limit in which the number

of variables of the function becomes infinite.

Functional integration is analogous to the regular integration of functions. For

standard integration we have some function f(x, y) and the integral of such a

function is
∫
f(x, y)dxdy. The function is taken over every point and multiplied

by the discrete volume at each step. In functional integration we instead have a

set of functions S and a functional F is evaluated at every point and multiplied

by a measure of the ‘volume’ of the function space [8].
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In principle the set of functions that are being integrated over are infinite dimen-

sional, with an infinite number of variables needed to parametrize the problem.

This is obviously not a tractable method practically and thus we replace the func-

tional with a multiple variable function and do a multi variable intgration over

these variable. In the limit of an infinite number of variables this method should

be equivalent to the functional integral [8].

To further illustrate this, we look at an example outlined by J. J. Binney [8]. We

wish to integrate the functional:

A[f ] = exp

[
−k

∫ L
2

−L
2

f 2dx

]
. (A.2)

The functional integral takes the form of:

K =

∫
Df exp

[
−k

∫ L
2

−L
2

f 2dx

]
. (A.3)

where Df means integration over all possible values of f . First let us note that:

lim
n→∞

exp

[
−kL

n

n∑
i=1

f 2
i dx

]
= A[f ]. (A.4)

We can then replace the sum over all functions with a regular integral over the

variable fi

Kn =

∫
df1...dfn exp

[
−kL

n

n∑
i=1

f 2
i dx

]
. (A.5)

solving for K exactly we get:

Kn =
(πn
kL

)n/2
(A.6)
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since K is equal to Kn as n → ∞. Kn is divergent in the limit n → ∞; a

normalization factor needs to be used to make the limit exist. However a different

normalization needs to be used for each factor of k. This means that functional

integration needs to have a different normalization for each functional in order for

the answer to be finite. This is not the same as the case for a regular function

integration.

In essence this means that functional integration is only useful if the number of

functions that can be used are finite. This property is apparent in physical prob-

lems such as the integration of the partition function, in which the Hamiltonian

is dependent on a function. The physically realizable set of functions can be used

as the integration space, meaning a functional integral can be performed mean-

ingfully.
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