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Abstract

Energy loss and energy theft are two serious problems in modern grid which produce
huge waste and cost. The smart grid with its ability to collect information about the
behaviors of suppliers and customers is expected to be better equipped than the existing
grid to detect loss and theft. The following two questions are the main focus of our works:
1). “Can we locate the source of theft ?” 2).“How much energy is stolen?” We deal with
two types of theft: tampering with a smart meter and tapping a line.

For tampering, we propose a framework based on the measurement of energy, electric
current and voltage to make theft detection feasible. In this framework, when measure-
ments (of energy, electric current and voltage) are available everywhere, theft can be easily
detected. The interesting case is, if measurements are not everywhere, theft detection
is still feasible under some conditions. For different cases of measurement scenarios, we
propose different solutions and provide the conditions under which our solutions work. In
particular, assuming that the smart grid has a tree structure and has a single source of
energy, we show via simulation the following results: 1) With the measurement of electric
current at the entry of each user and at the source of energy, we can locate the source
of theft if the electric power is stolen in a constant rate and the measurement noise is
comparatively small; 2) With the measurement of the energy production and each user’s
energy consumption plus the measurement of electric current at the entry of each user, we
can accurately estimate the resistance of each link as long as the amount of stolen energy
is comparatively small; 3) With the measurement of the voltage and electric current at the
source of energy and at the entry of each user, we can accurately estimate the resistance
of each transmission link if there is no theft.

For tapping, we apply clustering algorithms to analyze the anomalies in the usage data
of all customers. We propose a hierarchical clustering algorithm which recursively bi-
partitions the data along the principle eigenvector and separate the usage data of normal
users and abnormal users.

Our theft detection framework employs the `1 minimization under non-negative con-
straint, i.e., min

x≥0
∥Y − Ax∥`1 . As a theoretical verification of our work, we prove that

under some suitable conditions on the matrix A, the `1 minimization problem has a unique
minimizer and the unique minimizer is equal to the real underlying result.
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Chapter 1

Introduction

1.1 Smart Grid

With the increasing demand for energy in different areas, power loss in smart grid has
become an issue. Energy loss can be caused by various reasons such as leaks, theft, and
inefficiencies. With the development of new sensing, communication and control infras-
tructure for the power grid, a large amount of information become observable for us to
localize the source of loss. A smart meter is an embedded electronic device that regularly
records electric energy consumption of each user in every fixed time interval. Each cus-
tomer’s usage information recorded by the smart meter is sent back to the hydro company
for billing [26]. Located at the customer ends of the smart grid, the smart meters can play
an essential role in monitoring anomalies in the electric power system.

Electric power systems produce and distribute electricity to consumers. Figure 1.1 [1]
shows a simple diagram of an electric power system. Electricity is produced at the gener-
ating station (the red part of the figure) and transmitted to customers via the transmission
lines. In order to reduce the energy loss during the transmission, the step-up transformer
boosts up the voltage to over 10 kilovolt (KV). The extremely high voltage is not suitable
for customers to use. Then the step-down transformer at the other end of the transmission
lines lowers down the voltage to 200∼240 volt and delivers the electric power to customers.

In the following, we focus on a distribution system and assume a tree topology, as
shown in Figure 1.2, to model the electric power system. The distribution transformers
are at the non-leaf nodes while the customers are at the leaves. Input power is supplied
to the distribution transformer (DT) at the root. The distribution transformers transfer
the energy from top to bottom layer by layer and the electrical power finally reaches the
leaves. The measurement points (MPs) are set at the red points in Figure 1.2, i.e., at the
root and at the leaves.

The power in an alternating current (AC) circuit consists of two components, the active
power and the reactive power [15]. The portion of the power that transfers net energy only
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Figure 1.1: Diagram of an electric power system [1]

in the single direction towards customers is known as active power. Reactive power occurs
when reactive currents flow back to the source of energy production due to stored energy.
If the loads of the grid are purely resistive, then only active power is transferred. If the
loads of the grid are purely reactive, then only reactive power flows. In practice, the loads
of the grid have both resistance and reactance, and hence both active and reactive power
exist. In this thesis, the distribution network that we measure is assumed to be purely
resistive and thus only active power is considered.

1.2 Issues Linked to Electricity Theft

Electricity theft refers to the dishonest behavior of a customer that prevents the utility
company from correctly measuring his (her) real energy consumption and thus gets himself
(herself) fully or partially free from payment. There are various ways to steal electrical
power, including tampering with the energy meter or tapping a line. Electricity theft is an
illegal, dangerous and environmentally unfriendly activity.

Electricity theft brings huge amount of economic losses globally each year. Currently,
the utility companies all over the world lose 89.3 billion dollars per year due to electricity
theft [22]. In the developing countries, electricity theft is especially severe and it causes
an annual loss of 58.7 billion dollars [22]. For example, in Southeast Asia the amount
of theft can even reach 40% [20]; in India only 55% of energy production is billed [12].
A significant amount of electricity theft also takes place in the developed countries. In
Canada, B.C Hydro, a utility company located in British Columbia (BC), identified over
2,600 electricity thefts from 2008 to 2013. They announced that the cost of electricity
theft had grown from 500 GWh (gigawatt-hours) in 2006 to at least 850 GWh in 2013 [13].
In Netherlands, electricity thieves are skillful, well organized and mostly related to some
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Figure 1.2: Tree Topology of the Distribution Network
The non-leaf nodes represent the distribution transformers. The leaves represent the cus-

tomers. The energy is supplied at the root of the tree. The DTs distribute the electricity
layer by layer and eventually deliver the energy to the leaves. The measurement points are
located at the red points, i.e., at the root and the leaves.
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other criminal activity such as illegal drugs. Different camouflaging techniques plus rapid
changes of the theft locations make the detection more difficult [12].

Electricity theft also poses potential dangers to the community [22]. When electricity
theft occurs, stronger electric currents may flow through the lines than the maximum that
the grid can safely handle. The overloads may cause fires and even explosions. In addition,
illegal connections to the power grid are usually installed by unprofessional people and
hence create a potential of electricity leaks. This is dangerous to anyone who may get close
to the illegal connections, especially young children.

1.3 Challenges in Theft Detection

In the traditional grids, only energy (the supply and consumption) is measured at time
intervals of an hour or less. The inconsistency between the supply and total consumption
is called loss. The losses mainly consist of two components, technical and non-technical
losses. Technical losses includes ohmic losses caused by the resistance of transmission lines,
conversion losses at distribution transformers, leaks due to imperfect isolation and so forth
[20]. Technical losses occur naturally during transmission and hence are inevitable. Non-
technical losses are caused by human actions such as electricity theft, non-payment by
customers, and record errors, and hence can be easily eliminated (or largely decreased)
once detected. Measuring only supply (at the root) and consumption (at the leaves)
cannot distinguish theft from technical losses. As a result we need additional types of
measurements to estimate the technical losses. The amount of stolen energy can potentially
be estimated from the inconsistency between the supply and total consumption with the
exclusion of the estimated technical losses.

Tampering with the smart meter and tapping from a line are two typical types of
electricity theft. Using the conservation of electric current, which says the input electric
current (to the grid) is equal to the sum of electric currents that flow to each smart meter,
we may detect and locate the tampering of a smart meter. However, the unknown illegal
connections may break the conservation of electric current. That is to say, if two types of
theft occur simultaneously, then the prior knowledge of the physical laws in electricity are
not applicable and this makes the detection very difficult.

1.4 Literature Review

In this section, we review the previous works related to theft detection.

Smart meters normally measure energy production and energy consumption only. Using
the measurements of energy production and each customer’s energy consumption, Arya et
al. provide a solution to estimate the path loss rate and localize the lossy links [3]. Their
estimation of path loss rate results from the least squares solution to an over-determined
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linear system. The localization of lossy links is based on a strong assumption that the
lossy links are sparse and thus it does not always work. In addition, Arya et al. does not
mention how to distinguish theft from the total losses [3].

Salinas et al. propose a theft detection method which estimates each customer’s honesty
coefficient [24], where the honesty coefficient is actually the multiplicative inverse of the
path loss rate. They require an extra measurement point (MP) to measure the total energy
consumption of the customers in a certain service area. The energy consumption of each
customer is measured as well. If a customer’s honesty coefficient is one, then this user
is honest; if a customer’s honesty coefficient is much higher than one, then he (she) is
suspected to be a thief [24]. The estimation of each user’s honesty coefficient in [24] shares
much similarity with the estimation of path loss rate in [3]. Both of them formulate an
over-determined system based on the conservation of energy and estimate the unknowns
by least squares estimation. The limitation of the method in [24] is that the technical
losses such as ohmic losses that occur at the transmission line between the extra MP (that
measures the total energy consumption) and each customer’s smart meter are ignored.

Nizar et al. apply several supervised machine learning methods to classify customers
into a group of thieves and a group of honest users [21]. Without considering the topology
of distribution network as well as the physical laws in electricity, Nizar et al. just simply
applied the existing popular machine learning models such as support vector machine and
neural network to the theft detection problem. Even though they obtain small errors in
training the model, the testing accuracy is not satisfactory.

Based on the measurements of each user’s consumption and the electric current that
flows to each user, Nikovski et al. propose a theft detection method to determine when
theft occurs and estimate how much energy is stolen [20]. However, the theft detection
method by Nikovski et al. is only limited to the single-layer system where there is only
one distribution transformer. In practice, smart distribution networks have multiple layers
of distribution transformers. Worse still, their method fails to locate the source of theft,
which is unhelpful for the removal of theft.

1.5 Contribution

This thesis deals with mainly two types of theft: tampering with the smart meter and
tapping a line. In particular, our objective is to estimate the resistance of each link,
estimate the theft amount and locate the users who are stealing energy.

To deal with the theft in the form of tampering with the smart meter, we propose
a unified theft detection framework based on the measurements of supply, consumption,
transmission voltage and electric current. This framework provides different approaches to
estimate theft based on the types of measurements that are available. Our model makes
the following assumptions:
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� The power distribution system has a tree structure. The source of electricity energy
is provided at the root and the customers are located at the leaves. All the leaves
are located at the same layer. Each intermediate node represents a distribution
transformer and each edge represents a link.

� Electricity theft occurs only in the form of tampering with the smart meter; that is
to say, this framework assumes an unknown link is never introduced.

Our framework provides three alternative solutions for the three scenarios depicted in Fig-
ure 1.3. In these three scenarios, the energy is supplied to the root of the tree, distributed
from the top to the bottom of the tree and consumed at the leaves; the measurement points
(MP) marked as the red points are set at the root and the leaves of the tree. Here are the
difference of these three scenarios:

� As indicated in Figure 1.3a, the MP at the root measures the energy supply; the
smart meters at the leaves record each customer’s energy consumption (KWatt-h) at
time intervals of half an hour.

� As indicated in Figure 1.3b, the MP at the root measures the energy supply; the
smart meters at the leaves record each customer’s energy consumption (KWatt-h) at
time intervals of half an hour and the incoming instantaneous electric current every
half an hour.

� As indicated in Figure 1.3c, the MP at the root and the smart meters at the leaves
measure the voltage and the incoming instantaneous electric current every half an
hour.

Our theft detection framework may not be able to locate an unknown link that is secretly
introduced by a known user. To deal with the theft in the form of tapping into a power line
from a point ahead of the energy meter by a known user, we apply clustering algorithms
to analyze the anomalies in the usage data of all customers. We make a hypothesis that
the usage data of a user who is stealing energy by directly hooking to a line indicates an
abnormal pattern compared to the honest users who are not stealing energy. Under our
hypothesis, we run clustering algorithms on the usage data of all customers and partition
the data points into two groups, where one group is expected to correspond to the honest
users and the other group is expected to include the suspects.

The main contributions of this thesis are listed as follows:

� We propose a measurement-driven framework of theft detection that provides a solu-
tion according to which of the above three scenarios of measurements is given. This
framework extends the previous theft detection model for a one-layer tree topology
[20] to a more general model based on a multi-layer tree topology.
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(a) Scenario 1: energy (b) Scenario 2: energy and current

(c) Scenario 3: energy, current and voltage

Figure 1.3: Three Senarios of Different Available Measurements
The energy is supplied to the root of the tree. The non-leaf nodes represent the distribution
transformers. They distribute the energy layer by the layer and eventually deliver the energy
to the leaves. The leaves represent the customers. The measurement points are located at
the red points, i.e., at the root and the leaves. s(⋅), d(⋅), I(⋅), V (⋅), respectively, represent
the measurements of energy supply, energy consumption, electric current and voltage. In
Figure 1.3a, the energy supply is measured at the root, and the the smart meter at the
entry of each leaf measures the energy consumption. In Figure 1.3b , in addition to the
measurement of energy, the incoming electric current is also measured at the measurement
points. In Figure 1.3c, both the voltage and the incoming electric current are measured at
the measurement points.
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� With respect to each of the above three scenarios of measurements, we provide a
theoretical analysis to investigate under what conditions our framework correctly
estimate the transmission resistance and detect the theft.

� We propose a hyperplane separation method, which recursively looks for a hyperplane
to detect time-varying theft.

� In the simulated tests based on real data recorded by smart meters, we demonstrate
the effectiveness of our framework in locating the source of electricity theft, estimating
the transmission resistance and recognizing the time-varying theft.

� We propose a novel hierarchical bi-partition algorithm based on the principle eigen-
vector to detect anomaly patterns in the energy usage of customers. In the simulated
tests, we show that our clustering method is effective in discovering and locating the
anomalies in the usage data of customers.

The structure of this thesis is as follows.

In Chapter 2, we give three different formulations of the theft detection problem based
on three different sets of measurements, where the three different sets of measurements are
shown in Figure 1.3 and the three different formulations respectively estimate the loss along
each path from the root to a leave in the tree, locate the source of stealing, and estimate
the resistance of each link in the distribution network. These three different formulations
have a unified mathematical expression, min

x≥0
∥y −Ax∥1, where the unknown variable x has

different meanings for different scenarios.

In Chapter 3, we first review linear programming and `1 minimization. As a theoretical
verification of our work, we prove that under some suitable conditions on the matrix A, the
`1 minimization problem min

x≥0
∥y −Ax∥1 has a unique minimizer and the unique minimizer

is equal to the real underlying result that we want to estimate. This theoretical result is
fundamental to the theft detection problem since the problem in different scenarios can be
formulated into the same form min

x≥0
∥y −Ax∥1, which is an `1 minimization problem under

the non-negativity constraint. The unique minimizer to min
x≥0

∥y −Ax∥1 presumes that the

electricity theft is time independent. In the rest of chapter 3, we propose an algorithm to
estimate time-varying electricity theft.

In Chapter 4, we first introduce two existing popular clustering algorithms, K-means
and spectral clustering, then we propose a simple two-group clustering that projects to
the data points to their first principle eigenvector and bi-partition the one dimensional
projection by minimizing the sum of the variance of two groups; we also extends our bi-
partition method to hierarchical clustering which recursively bi-partitions the data points
until the variance of each group is lower than a manually tuned threshold.

In Chapter 5, we simulate electric power theft based on real smart grid data. We present
the testing results of our theft detection framework as well as the clustering results.
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Chapter 2

A Framework for Theft Detection

In this chapter, assuming that the theft occurs only in the form of tampering with the
smart meter, we propose a unified theft detection framework based on the measurements
of supply, consumption, voltage and electric current. This framework provides different
solutions to estimate theft based on what types of measurements are available. The mea-
surement points of this framework are set the at the root and the leaves of the tree, and
measurements are made every half an hour. This framework deals with the following three
scenarios:

1. Only energy is measured;

2. Energy and instantaneous electric current are measured;

3. Instantaneous voltage and electric current are measured.

The formulations of the theft detection problems in scenario 1 and scenario 2 have already
been discussed in existing literature [3] [20]. We propose a simple improvement for the
existing formulation [20] of the problem in scenario 2. Scenario 3 has not been considered
in existing literature, and we propose a novel formulation for the problem in this scenario.
The outline of this chapter is as follows.

In Section 2.1, we describe the basic physical laws that the system should satisfy. In
Section 2.2, with respect to scenario 1, we review how to estimate path loss rate from
the measurements of energy supply and energy consumption of each customer [3]. In
Section 2.3, with respect to scenario 2, we show how to locate the electricity theft from
the measurements of the electric currents that flow to the root distribution transformer
and all the customers. In Section 2.4, with respect to scenario 2 and 3, we show how to
estimate the resistance of each link in the electrical grid based on single-layer tree topology.
In Section 2.5, still with respect to scenario 2 and 3, we extend the work in Section 2.4 to
a multi-layer tree topology.
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2.1 Physical Laws in Electricity

This section describes the physical laws that the system should satisfy if there is no theft.

2.1.1 The Single-layer Topology

The single-layer tree topology is shown in Figure 2.1. The root of the tree represents the
distribution transformer (DT). There are n branches at the root and each branch directly
goes to a leaf of the tree. The leaves represents the customers. The MPs are set at the
red points. The DT is configured with a constant distribution parameter α, which can be
known in advance. The distribution parameter α is the ratio of input voltage potential
and output voltage potential of the DT. In a sequence of time t1, t2,⋯, tm, we let V in

0 (i)
denote the real voltage at the entry of the root at time ti, V out

0 (i) denote the real output
voltage of the root at time ti , then the equation

α = V in
0 (i)

V out
0 (i)

(2.1)

holds at any time ti. Let I in0 (i) be the real electric current that flows to the root at time ti,
I inj (i) be the real electric current that flows to the leaf at the jth branch at time ti. Since
the input power and output power of the DT should be equal, if there is no theft, then it
follows that

I in0 (i)V in
0 (i) = V out

0 (i)
n

∑
j=1

I inj (i),

⇒ I in0 (i)(αV out
0 (i)) = V out

0 (i)
n

∑
j=1

I inj (i),

⇒ αI in0 (i) =
n

∑
j=1

I inj (i),

at any time ti. Thus the distribution parameter can be equivalently written as

α =

n

∑
j=1
I inj (i)

I in0 (i)
. (2.2)

Let Rj be the resistance of the link on the jth branch (in Figure 2.1b), V in
j (i) be the real

voltage at the entry of the leaf located at the jth branch (in Figure 2.1b)) at time ti, for
all 1 ≤ j ≤ n. Then the Ohm’s law says that

αV in
0 (i) − V in

j (i) = I inj (i)Rj(i), ∀1 ≤ j ≤ n, (Ohm)

at any time ti.
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(a) Scenario 1: energy and current

(b) Scenario 2: energy, current and voltage

Figure 2.1: Three Senarios of Different Available Measurements
The energy is supplied to the root of the tree. The root represents the DT. The leaves rep-
resent the customers. The DT distributes the energy to the customers. The measurement
points are located at the red points, i.e., at the root and the leaves. s(⋅), d(⋅), I(⋅), V (⋅),
respectively, represent the measurements of energy supply, energy consumption, electric
current and voltage. In Figure 2.1a , in addition to the measurement of energy, the incom-
ing electric current is also measured at the measurement points. In Figure 2.1b, both the
voltage and the incoming electric current are measured at the measurement points.
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2.1.2 The Multi-layer Topology

The structure of the multi-layer tree topology is shown in Figure 2.2. The tree is full and
complete. It has n̄ layers, n̄ > 2. Let the layer number range from 0 to n̄ − 1, i.e., the
root is at layer 0 while the leaves are at layer n̄− 1. The root and intermediate nodes (the
nodes located at the layers from layer 1 to layer n̄−2) of the tree represents the DTs. MPs
are set at the red points as indicated in Figure 2.2. The physical laws introduced in the
single-layer tree topology are also applicable to each layer of the multi-layer tree.

Each DT is configured with a constant distribution parameter. For simplicity, we
suppose that the DTs located at the same layer have the same distribution parameter. Let
the distribution parameter of the DTs located at layer l be αl for all 0 ≤ l < n̄−1. We label
the leaves from 1 to n. In a sequence of time t1, t2,⋯, tm, I inj (i) denotes the real electric
current that flows to the jth leaf at time ti, I in0 (i) denotes the electric current that flows
to the root at time ti. If there is no theft, then we can apply Equation (2.2) at each node
that is not a leaf from top to bottom (of the tree), layer by layer, and get

I in0 (i) =
n

∑
j=1

(
n̄−2

∏
l=0

1

αl
)I inj (i).

Let α ∶=
n̄−2

∏
l=0
αl, then

α =

n

∑
j=1
I inj (i)

I in0 (i)
(2.3)

Notice that Equation (2.2) and (2.3) have the same form. To make the meaning of these
two equations consistent, we define the distribution parameter of the entire system
to be the product of the distribution parameters of the DTs at all layers. In a single-
layer system, we only have one layer of DT, thus the distribution parameter of the entire
system is the distribution parameter of the DT at the root. As we have shown above, the
distribution parameter of the entire system can be written as the ratio of the sum of the
electric currents flowing to the leaves to the electric current flowing to the root.

2.2 Estimation of Path Loss Rate

Energy loss is the difference between the supplied energy and the energy consumption.
Path loss refers to the energy loss that occurs on a path while path loss rate refers to the
ratio of path loss to the total energy transferred along this path. In this section, we first
review the model in [3], which uses the measurements of energy supply and each user’s en-
ergy consumption to estimate the path loss rate of each path from the root to a user. Then
we propose a simple improvement to the model in [3] by adding a non-negativity constraint.
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Figure 2.2: The nodes that are not at the bottom layer represents distribution transformers.
The nodes located at the bottom of the tree are the leaves and they represent customers.
The measurement points are located at the red points, i.e., at the root and the leaves.

Settings of Our Model

The tree model introduced in [3], which we call Arya Tree Model, is defined as
follows.

Definition 1 The tree topology of Arya Tree Model is depicted by Figure 1.3a, where
the distribution transformers are located at the non-leaf nodes while the users are at the
leaves. There are n leaves in the tree and the leaves are correspondingly labeled as 1,2,⋯, n.
The MPs are set at the root and the leaves, i.e., the red points in Figure 1.3a. The supplied
energy and the energy consumption are regularly measured at the MPs at a time interval of
length T , and m measurements are collected in total, namely, the measurements of energy
are taken at the time intervals [t0, t1],[t1, t2], ⋯, [tm−1, tm], where ti = i ⋅ T , 0 ≤ i ≤ m. Pj
denotes the path from the root node to the leaf labeled as j, 1 ≤ j ≤ n.

In this section, we use the settings described by Definition 1 to model the smart grid.

For any 1 ≤ i ≤m and 1 ≤ j ≤ n, βj(i) denotes the fraction of the total supplied energy
flowing to the leaf labeled as j along the path Pj in the time interval [ti−1, ti]; s(i) denotes
the measurement of the energy supply of the entire grid in the time interval [ti−1, ti]; dj(i)
denotes the measurement of the energy consumption of the user at the leaf node labeled
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as j in the time interval [ti−1, ti]; πj(i) denotes the path loss rate of Pj in the time interval
[ti−1, ti].

Assumptions and Objective

The assumptions we make for this model is also the same as [3]. We assume m ≥ n.
We assume the conservation of energy ∑

1≤j≤n
βj(i) = 1 holds for all 1 ≤ i ≤m. Given only the

measurements s(i) and dj(i) for all 1 ≤ i ≤ m,1 ≤ j ≤ n, our objective is to estimate path
loss rate πj(i) for all 1 ≤ i ≤m,1 ≤ j ≤ n.

Formulation

We first review the formulation of the problem in [3].

The equation for the amount of energy reaching the node labeled as j in the time
interval [ti−1, ti] is

s(i)βj(i)(1 − πj(i)) = dj(i).

Rearranging the equation, we can get

s(i)βj(i) =
dj(i)

1 − πj(i)
,∀1 ≤ i ≤m,1 ≤ j ≤ n.

We sum the equations up for all leaves

∑
1≤j≤n

s(i)βj(i) =∑
j∈L

dj(i)
(1 − πj(i))

,∀1 ≤ i ≤m.

Notice that ∑
1≤j≤n

s(i)βj(i) = s(i) ∑
1≤j≤n

βj(i) = s(i). Consequently we have the following

simplification

∑
1≤j≤n

dj(i)
(1 − πj(i))

= s(i),∀1 ≤ i ≤m.

Let bi = s(i), xi = [ d1(i) d2(i) . . . dn(i) ]⊺ ∈ Rn for 1 ≤ i ≤m, and

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮
bm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x⊺1
x⊺2
⋮
x⊺m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Also let

θ(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−π1(i)

1
1−π2(i)
⋮
1

1−πn(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Figure 2.3: The circle A represents a smart meter. A smart meter measures energy based
on the voltage at the meter and the electric current flowing through it. If we tamper with
the meter by connecting both ends of it, then the electric current flowing through the meter
becomes less and hence the energy recorded by the meter is less than the real consumption.

for 1 ≤ i ≤m, then θ(i)
⊺
xi = b. That is to say, xi locates at the hyperplane θ(i)

⊺
x = b. Then

we have two cases as below: 1) θ(i) does not change with time; 2) θ(i) is time-varying.

If θ(i) does not change with time, then θ(1) = θ(2) = . . . = θ(m). For convenience, we just
let θ ∶= θ(1). Thus we have the following linear system of equations

Xθ = b, (2.4)

where X and b are known and θ is unknown. We use X̃ and b̃ to represent the measurement
of X and b respectively. In practice, we have m much larger than n and the measurement is
noisy, consequently the equation does not strictly hold and instead it provides that X̃θ ≈ b̃.
In other words, the linear system is over-determined. The paper [3] uses least squares
estimation to estimate θ. Here we adopt `1-minimization to minimize ∥Xθ−b∥1. Moreover,
by the definition of the path loss rate, we have 1

πj(i) ≥ 1,∀1 ≤ i ≤ m,1 ≤ j ≤ n. Thus we

impose the constraint that θ ≥ 1n, where 1n ∈ Rn is a vector of all ones. We estimate θ by
solving the following optimization problem

min
θ≥1n

∥X̃θ − b̃∥1, (2.5)

and the minimizer θ̂ of this problem is our estimation of the path loss rate.

If θ(i) is time-varying, then different xi (1 ≤ i ≤ m) are lying on different hyperplanes.
This is the hyperplane separation problem that we will discuss in section 3.4.

2.3 Estimation of Tampering Ratio

A smart meter usually measures the energy consumption of each user. The difference
between supply and the sum of consumption consists of two components, the technical
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losses and non-technical losses such as electricity theft. The measurements of energy does
not provide enough information to distinguish non-technical losses from the total energy
losses and thus cannot pin down the locations of the thieves. Hence we need additional
type of measurements to locate the theft. In this section, we propose a novel solution to
locate the tampering of smart meters by measuring instantaneous electric current.

Figure 2.3 shows a normal way to tamper with a smart meter. Suppose the electric
current that flows from the point P1 to the point P2 is I. If we set a smart meter A
between P1 and P2, then the electric current measured by A should be I. Suppose the
resistance of the smart meter A is R1 and we connect both ends of A with a piece of wire
whose resistance is R2. After connection, suppose the current flowing through the smart
meter becomes I1 and the current flowing though R2 is I2. The conservation of electric
current gives that I = I1 + I2 and ohmic law says that I1R1 = I2R2. Thus we can get that
I = R1+R2

R2
I1. I is equal to the sum of the electric current that passes through the smart

meter and the electric current that bypasses the smart meter, and we call it the real value
of the electric current that flows from P1 to P2. I1 only refers to the electric current that
passes through the smart meter, and we call it the measured value of the electric current
that flows from P1 to P2. If R1 and R2 are constants, then ratio of measured value to
real value is a constant R2

R1+R2
< 1. That is to say, the measured value after tampering is

underestimated by a constant rate.

We define the tampering ratio of a user’s smart meter to be

r ∶= Imeasure
Ireal

,

where Ireal is the real value of the electric current that flows into this user, and Imeasure is
the measured value of Ireal. If a user’s tampering ratio is very close to one, then this user
is very unlikely to be a thief. If a user’s tampering ratio is far less than one, then he (she)
is very likely to be stealing energy.

Settings of Our Model

The settings described by Definition 1 also apply here. In addition, the electric current
is measured at the MPs as well, at time t1, t2,⋯, tm. The tree model used in this section
is depicted by Figure 1.3b. Also, let α denote the distribution parameter of the entire
system.

For any 1 ≤ i ≤ m,1 ≤ j ≤ n, I in0 (i) denotes the real electric current at the entry of the
root at time t = ti; I inj (i) denotes the real electric current at the entry of the leaf node

labeled as j at time t = ti; Ĩ in0 (i) and Ĩ inj (i) respectively denote the measurements of I in0 (i)
and I inj (i) recorded by smart meters; rj(i) denotes the tampering ratio of the smart meter
located at the entry of the leaf node labeled as j at time t = ti.

Assumptions and Objective
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We assume m ≥ n. We assume the conservation of electric current α ∑
1≤j≤n

I inj (i) = I in0 (i)

holds for all 1 ≤ i ≤ m. We assume the measurement of I in0 (i) cannot be tampered with
by users. That is to say, I inj (i) = Ĩ inj (i). Given the measurements Ĩ in0 (i) and Ĩ inj (i), our
objective is to estimate tampering ratio rj(i), for all 1 ≤ i ≤m,1 ≤ j ≤ n.

Formulation

We propose a novel formulation to estimate the tampering ratio of each user as follows.

By the definition of tampering ratio, we have rj(i) =
Ĩinj (i)
Iinj (i)

. Thus I inj (i) = Ĩinj (i)
rj(i) . Then

it follows that

1

α
Ĩ in0 (i) = 1

α
I in0 (i) =

n

∑
j=1

I inj (i) =
n

∑
j=1

1

rj(i)
Ĩ inj (i),∀1 ≤ i ≤m. (2.6)

Let

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α Ĩ

in
0 (1)

1
α Ĩ

in
0 (2)
⋮

1
α Ĩ

in
0 (m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĩ in1 (1) Ĩ in2 (1) . . . Ĩ inn (1)
Ĩ in1 (2) Ĩ in2 (2) . . . Ĩ inn (2)
. . .

Ĩ in1 (m) Ĩ in2 (m) . . . Ĩ inn (m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
r1(i)

1
r2(i)
. . .
1

rn(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,∀1 ≤ i ≤m.

Then we have two cases as below: 1) β(i) does not change with time; 2) β(i) is time-varying.

If β(i) does not change with time, then we can just simplify it to β and we have the
following linear system about β

Xβ = b. (2.7)

Due to the measurement noise, the above linear system does not strictly hold. We adopt
`1-minimization to minimize ∥Xβ − b∥1. Moreover, since the tampering ratio cannot be
greater than 1, we have β ≥ 1n, where 1n ∈ Rn is a vector of all ones. Thus we estimate β
by solving the following problem

min
β≥1n

∥Xβ − b∥1, (2.8)

and the minimizer β̂ of this problem contains our estimation of each user’s tampering ratio.
The numerical results of solving Problem (2.8) are shown in Section 5.2.1.

If β(t) is time-varying, then different rows of X are actually lying on different hyper-
planes. This is the hyperplane separation problem that we will discuss in section 3.4.

Note that the estimation of path loss rate and the estimation of tampering ratio have the
same mathematical formulation but the physical meanings of them are different. The path
losses includes both technical losses and theft and thus the theft cannot be distinguished
from the technical losses. But the tampering ratio can fully reflect whether a customer
is stealing energy. In other words, the violation of the conservation of energy does not
necessarily imply theft but the violation of the conservation of electric current fully implies
the tampering activity.
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2.4 Estimation of The Transmission Resistances in A

Single-layer System

By estimating the tampering ratio, we can locate the theft. Other than the location
of theft, we are also interested in how much energy is stolen. The difference between
energy supply and energy consumption is equal to the sum of technical losses and power
theft. The majority of technical losses comes from the ohmic losses. The ohmic losses are
related to transmission resistance. In this section, we provide two solutions to estimate
the transmission resistance based on two different sets of available measurements. Using
the estimation of transmission resistance together with the measurements of instantaneous
electric current, we can estimate the ohmic losses. With the ohmic losses excluded from
the total energy losses, we can approximately tell the amount of theft.

Note that the work in the previous two sections are not limited to single-layer system,
but the work of this section is only limited to one-layer system. In the next section, we
will extend the one-layer model to a multi-layer model.

2.4.1 On the Measurement of Electric Current and Energy

In this subsection, we first review the model in [20], which uses the measurements of
energy supply, each user’s energy consumption and the instantaneous electric current at
the entry of each user to estimate the transmission resistance of the link to each user.
Then we propose a simple improvement of the model in [20] by adding a non-negativity
constraint. We assume that the measurement of electric current is not tampered with. If the
measurement of electric current is tampered with, then we can first estimate the tampering
ratio, and divide each measurement by the tampering ratio to recover the measurement
before tampering. That is, the electric current flowing to the user j at time ti can be
recovered by

Î inj (i) =
Ĩ inj (i)
rj(i)

. (2.9)

Setting of Our Model

The settings described by Definition 1 also apply here. In addition, the tree topology
adopts a single-layer structure. And the electric current is measured at the MPs as well,
at time t1, t2,⋯, tm. The tree model used in this section is depicted by Figure 2.1a. Also,
let α denote the distribution parameter of the entire system.

For any 1 ≤ i ≤ m,1 ≤ j ≤ n, s(i) denotes the measurement of the energy supply of the
whole grid in time interval [ti−1, ti]; dj(i) denotes the measurement of the energy consump-
tion of the user (leaf) at the jth branch at time interval [ti−1, ti]. For any 0 ≤ i ≤m,1 ≤ j ≤ n,
I inj (i) denotes the input current to the user (leaf) at the jth branch at time ti; Ĩ inj (i) de-
notes the measurement of I inj (i); Rj denotes the resistance of the edge on the jth branch.
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Tj(i) denotes the theft on the jth branch of DT at the time interval [ti−1, ti].

Assumptions and Objective

We assume m ≥ n. We assume that the measurements of I inj (i) for all 1 ≤ i ≤m,1 ≤ j ≤ n
are not tampered with. That is to say, I inj (i) = Ĩ inj (i). We assume there is no unknown link

secretly introduced. Given the measurements Ĩ inj (i), s(i), dj(i) for all 0 ≤ i ≤ m,1 ≤ j ≤ n,
our objective is to estimate the transmission resistance R1,R2,⋯,Rn.

Formulation

We first review the formulation of the problem in [20].

With the measurements of instantaneous current at the entry of user j at the start and
end of the interval [ti−1, ti], we estimate the instantaneous current at the entry of user j
at each moment of the time interval [ti−1, ti] by linear approximation

Îj(t) = Ĩj(i − 1) + ζj(i)(t − ti−1), ti−1 ≤ t ≤ ti,

where ζj denotes the slope of the current at the time interval [ti−1, ti] and ζj is defined as

ζj(i) ∶=
Ĩj(i) − Ĩj(i − 1)

ti − ti−1

.

The estimated amount of ohmic losses of branch j at time interval [ti−1, ti] is

L̂j(i) = ∫
ti

ti−1

Îj(t)2Rjdt, (2.10)

Since we have t = Ĩj(t)−Ĩj(ti−1)
ζj(i) + ti−1 at time interval [ti−1, ti], Equation (2.22) can be re-

written as

L̂j(i) = 1

ζj(i)∫
Ĩj(i)

Ĩj(i−1)
Îj(t)2RjdÎj(t)

=
Rj

3ζj(i)
[Ĩj(i)3 − Ĩj(i − 1)3]

=
(ti − ti−1)Rj

3[Ĩj(i) − Ĩj(i − 1)]
[Ĩj(i)3 − Ĩj(i − 1)3]

=
(ti − ti−1)Rj

3
[Ĩj(i)2 + Ĩj(i)Ĩj(i − 1) + Ĩj(i − 1)2]

Then at any time ti (1 ≤ i ≤m), we have the following equation by conservation of energy

s(i) −
n

∑
j=1

dj(i) =
n

∑
j=1

L̂j(i) +
n

∑
j=1

Tj(i) +L0

=
n

∑
j=1

Rj

3ζj(i)
[Ĩj(i)3 − Ĩj(i − 1)3] +

n

∑
j=1

Tj(i) +L0
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where L0 is the amount of time-independent non-ohmic technical losses in a time interval.
We construct the following vectors

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(1) −
n

∑
j=1
dj(1)

s(2) −
n

∑
j=1
dj(2)

⋮
s(m) −

n

∑
j=1
dj(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

⋮
Rn

L0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n

∑
j=1
Tj(1)

n

∑
j=1
Tj(2)

⋮
n

∑
j=1
Tj(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)

and the following matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĩ1(1)3−Ĩ1(0)3
3ζ1(1)

Ĩ2(1)3−Ĩ2(0)3
3ζ2(1) . . . Ĩn(1)3−Ĩn(0)3

3ζn(1) 1
Ĩ1(2)3−Ĩ1(1)3

3ζ1(2)
Ĩ2(2)3−Ĩ2(1)3

3ζ2(2) . . . Ĩn(2)3−Ĩn(1)3
3ζn(2) 1

. . . . . . . . . . . . 1
Ĩ1(m)3−Ĩ1(m−1)3

3ζ1(m)
Ĩ2(m)3−Ĩ2(m−1)3

3ζ2(m) . . . Ĩn(m)3−Ĩn(m−1)3
3ζn(m) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus the time series of the technical losses L̂ ∈ Rm can be approximated as

L̂ ≈Hx (2.12)

By conservation of energy, we have

Y = L̂ + T ≈Hx + T,

where Y and H are known, x and T are unknown. [20] uses the least squares estimation
to estimate x. Since the amount of power theft T , the transmission resistance as well as
the amount of technical non-ohmic losses are non-negative, we impose the following two
constraints Y ≥ Hx and x ≥ 0 for x. Consequently we estimate x by solving the following
optimization problem

minimize
x∈Rn

∥Y −Hx∥1,

subject to Hx ≤ Y,x ≥ 0.
(2.13)

The minimizer of this problem contains the estimation of the resistance of each transmission
link and the time-independent non-ohmic technical loss. The numerical results of solving
Problem (2.13) are shown in Section 5.3.1.

2.4.2 On the Measurement of Electric Current and Voltage

With the measurement of energy and electric current, an accurate estimation of resistance
depends on the sparsity of occurrence of theft. In this subsection, we propose a solution
to estimate transmission resistance using the measurement of electric current and voltage.
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Given the measurements of the electric current and voltage at the entry of the root
and each user, our objective is to estimate the resistance of each transmission link. In
this subsection, we assume that the measurements of voltage and the measurements of the
input electric current at the root are not tampered with. In fact, it is normally difficult to
tamper with voltage measurements.

Setting of Our Model

The settings described by Definition 1 also apply here. In addition, the tree topology
adopts a single-layer structure. And the electric current and the voltage are measured at
the MPs as well, at time t1, t2,⋯, tm. The tree model used in this section is depicted by
Figure 2.1b. Also, let α denote the distribution parameter of the entire system.

For any 0 ≤ i ≤m,1 ≤ j ≤ n, I in0 (i) denotes the input current to the root at time ti; I inj (i)
denotes the input current to the user (leaf) at the jth branch at time ti; V in

0 (i) denotes
the voltage at the entry of the root at time ti; V in

j (i) denotes the voltage at the entry of

the user (leaf) at the jth branch at time ti; Ĩ in0 (i), Ĩ inj (i), Ṽ in
0 (i), and Ṽ in

j (i) respectively
denotes the measurements of I in0 (i), I inj (i), V in

0 (i), and V in
j (i); Rj denotes the resistance of

the link at the jth branch.

Assumptions and Objective

We assume m ≥ n. We assume the measurement of the voltage cannot be tampered
with. We assume that there is no unknown link secretly introduced. Different from Sub-
section 2.4.1, we do not assume that the measurement of electric current is not tampered
with. Given the measurements Ĩ in0 (i), Ĩ inj (i), Ṽ in

0 (i), Ṽ in
j (i) for all 1 ≤ i ≤ m,1 ≤ j ≤ n, our

objective is to estimate the transmission resistance R1,R2, . . . ,Rn.

Formulation

We propose a novel formulation to estimate the resistance of each link in a single-layer
tree topology as follows.

If Ĩ inj (i) is not tampered with at time ti for 1 ≤ j ≤ n, then αĨ in0 (i) and
n

∑
j=1
Ĩ inj (i) are

equal within a tolerance of small measurement noise f ∈ Rn, that is

αĨ in0 (i) =
n

∑
j=1

Ĩ inj (i) + f, (2.14)

Thus the difference between αĨ in0 (i) and
n

∑
j=1
Ĩ inj (i) reflects the accuracy of measurement at

time ti. If there exists some ti when Equation (2.14) holds for small f , then we assume the
measurements Ṽ in

0 (i), Ṽ in
j (i), Ĩ in0 (i), Ĩ inj (i) are accurate. Then the measurement at time ti

will be sufficient for us to estimate the resistance. Thus Rj can be estimated by

R̂j =
αṼ in

0 (i) − Ṽ in
j (i)

Ĩ inj (i)
,∀1 ≤ j ≤ n. (2.15)
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After the estimation R̂j (of resistance Rj) is obtained, we can estimate the electric current
of the jth branch at time ti by

Î inj (i) =
αṼ in

0 (i) − Ṽ in
j (i)

R̂j

for any 1 ≤ i ≤m. Then we compare the estimated Î inj (i) with the measurement Ĩ inj (i) . If

Ĩ inj (i) ≈ Î inj (i), then no theft occur at the jth branch at time ti; otherwise theft may occur
at the jth branch at time ti.

However, if tampering occurs all the time, then (2.15) cannot be used to estimate the
resistance from the measurement of current. One way to deal with this situation is to
estimate the tampering ratios and recover the real currents flowing to the thieves. In
addition, we propose another method to detect tampering as follows.

According to our prior knowledge about this system, the following constraints should
hold

Ĩ in0 (i) ≥
n

∑
j=1

αṼ in
0 (i) − Ṽ in

j (i)
Rj

,

αṼ in
0 (i) − Ṽ in

j (i) ≥ Ĩ inj (i)Rj,∀1 ≤ j ≤ n,

which can be rephrased to

n

∑
j=1

αṼ in
0 (i) − Ṽ in

j (t)
Rj

≤ Ĩ in0 (i), (2.16)

−
αṼ in

0 (i) − Ṽ in
j (i)

Rj

≤ −Ĩ inj (i),∀1 ≤ j ≤ n, (2.17)

At time ti (1 ≤ i ≤m), we want to minimize the following objective

n

∑
j=1

⎡⎢⎢⎢⎢⎣

αṼ in
0 (i) − Ṽ in

j (i)
Rj

− Ĩ inj (i)
⎤⎥⎥⎥⎥⎦

To vectorize the above expression, we set the vector Ĩout(i) ∈ Rn whose jth entry is Ĩ inj (i)
for all 1 ≤ j ≤ n, and the diagonal matrix D(i) ∈ Rn×n whose diagonal entries are

(D(i))jj = αṼ in
0 (i) − Ṽ in

j (i),∀1 ≤ j ≤ n.

In other words,

Ĩout(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĩ in1 (i)
Ĩ in2 (i)
⋮

Ĩ inn (i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,D(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αṼ in
0 (i) − Ṽ in

1 (i) 0 0 0

0 αṼ in
0 (i) − Ṽ in

2 (i) 0 0
⋮ ⋮ ⋱ ⋮
0 0 0 αṼ in

0 (i) − Ṽ in
n (i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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We set the unknown vector x ∈ Rn as

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
R1
1
R2

⋮
1
Rn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the objective can be vectorized as 1n
⊺(D(i) ⋅ x − Ĩout(i)), where 1n ∈ Rn is a vector

of all ones, and the constraints (2.16) and (2.17) can also be rewritten as

−D(i) ⋅ x ≤ −Ĩout(i), ∀1 ≤ i ≤m,
1
⊺
nD(i) ⋅ x ≤ Ĩout(i), ∀1 ≤ i ≤m.

At each time ti, there is such an objective that we want to minimize, however, the weight
of the objective at each moment differs. If the equation Ĩ in0 (i)−1n⊺Ĩout(i) is small at time
ti, then the weight of the objective at this moment is high and we want to minimize the
objective at ti as much as possible; otherwise the weight of the objective is low and we
would spend less effort to minimize this objective than other objective with higher weight.
That is to say, we need to assign a weight to the objective of each moment such that the
objective has high weight whenever Ĩ in0 (i) − 1n⊺Ĩout(i) is small. As a result, we assign the
following weight to the objective at time ti

1

(Ĩ in0 (i) − 1n⊺Ĩout(i))k
,

where k is a parameter that we need to tune. As a whole, the objective that we want to
minimize among all the m observations is a function about x,

f(x) ∶=
m

∑
i=1

1n
⊺(D(i) ⋅ x − Ĩout(i))

(Ĩ in0 (i) −
n

∑
j=1
Ĩ inj (i))k

.

Note that Ĩout(i) is independent of x, it does not affect the result of optimization if we
remove Ĩout(i) from f(x). We construct the following matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(1)

(Ĩin0 (t1)−
n

∑
j=1

Ĩinj (t1))k

D(2)

(Ĩin0 (t2)−
n

∑
j=1

Ĩinj (t2))k

⋮
D(m)

(Ĩin0 (tm)−
n

∑
j=1

Ĩinj (tm))k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rmn×n, A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−D(1)
−D(2)

⋮
−D(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rmn×n, A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1n
⊺D(1)

1n
⊺D(2)
⋮

1n
⊺D(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rm×n,

and the following vectors

b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ĩout(1)
−Ĩout(2)

⋮
−Ĩout(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rmn, b2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĩ in(1)
Ĩ in(2)

⋮
Ĩ in(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rm,
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then f(x) can be vectorized as f(x) ∶= 1mn⊺Ax, where 1mn ∈ Rmn is a vector of all ones,
and the optimization problem about resistance can be formulated as follows

min
x

f(x) ∶= 1mn⊺Ax

subject to A1x ≤ b1,

A2x ≤ b2.

(2.18)

This is a linear program which can be efficiently solved by existing algorithms. The nu-
merical results of solving Problem (2.18) are shown in Section 5.3.2.

2.5 Estimation of Transmission Resistance in Multi-

layer System

In this section, we extend the formulations described in Section 2.4 to a multi-layer tree
topology.

2.5.1 On the Measurement of Electric Current and Energy

Setting of Our Model

The settings described by Definition 1 also apply here. In addition, the electric current
and the voltage are measured at the MPs as well, at time t1, t2,⋯, tm. The tree model used
in this section is depicted by Figure 1.3b.

We also use the following notations to represent the tree model. Let n̄ denote the
number of layers of the tree, then the layer number ranges from 0 to n̄ − 1. Let αi denote
the transformer parameter of the DT located at layer i, 0 ≤ i ≤ n̄ − 2.

For any 0 ≤ i ≤ m,1 ≤ j ≤ n, s(i) denotes the measurement of the energy supply of
the whole grid in time interval [ti−1, ti]; dj(i) denotes the measurement of the energy con-
sumption of the user at the leaf node labeled as j at time interval [ti−1, ti]; I inv (i) denotes
the input current to node v at time ti; Iu→v(i) denotes the electric current flowing from
node u to node v at time ti; Ru→v denotes the resistance of the tree edge from node u to
node v; Tu→v(i) denotes the amount of power theft along the tree edge from node u to
node v at time interval [ti−1, ti]; Ĩ inv (i), Ĩu→v(i) respectively denote the measurements of
I inv (i), Iu→v(i); R̂u→v denotes the estimation of Ru→v.

Assumptions and Objective

We assume m ≥ n. We assume the measurement of I inv (i) (1 ≤ i ≤ m) for each leaf
v of the tree is not tampered with. That is to say, I inv (i) = Ĩ inv (i). We assume that
there is no unknown link secretly introduced. Given the measurements s(i), dj(i) for all
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1 ≤ i ≤m,1 ≤ j ≤ n, and measurements Ĩ inv (i) (1 ≤ i ≤m) for any leaf node v, our objective
is to estimate the transmission resistance Ru→v for any transmission link u→ v in the tree.

Formulation

We extend the formulation in [20] to a multi-layer tree topology as follows.

First, we have the measurement Ĩ inv (i) for any node v locating at the (n̄ − 1)th layer
at time ti. Then we can estimate the electric current at the entry of any node u at the
(n̄ − 2)th layer at time ti by

I inu (i) = 1

αn̄−2

× ∑
v∈Children(u)

Iu→v(i) (2.19)

≈ 1

αn̄−2

× ∑
v∈Children(u)

Ĩu→v(i) (2.20)

For any v ∈ Children(u), v is locating at the (n̄ − 1)th layer of the tree and hence the
measurement Ĩ inv (i) is available at time ti. Thus this estimation (2.20) is computable.
Then we can propagate such computation layer by layer from bottom to top to estimate
the electric current at the entry of any node at any intermediate layer of the tree.

For any link u → v in the tree, with the estimation (or measurements) of instanta-
neous transmission current of the link u → v at the start and end of the interval [ti−1, ti],
Ĩu→v(i − 1) and Ĩu→v(i), we estimate the instantaneous current of this link at each moment
of the time interval [ti−1, ti] by linear approximation

Îu→v(t) = Ĩu→v(i − 1) + ζu→v(i)(t − ti−1), ti−1 ≤ t ≤ ti, (2.21)

where ζu→v(i) = Ĩu→v(i)−Ĩu→v(i−1)
ti−ti−1

is the slope of electric current at the time interval [ti−1, ti].
The amount of estimated technical losses of the link u→ v at time interval [ti−1, ti] is

L̂u→v(i) = ∫
ti

ti−1

Îu→v(t)2Ru→vdt, (2.22)

Using Equation (2.21), Equation (2.22) can be re-written as

L̂u→v(i) = 1

ζu→v(i)∫
Ĩu→v(i)

Ĩu→v(i−1)
Îu→v(t)2Ru→vdÎu→v(t)

= Ru→v

3ζu→v(i)
[Ĩu→v(i)3 − Ĩu→v(i − 1)3]

Then at any time ti(1 ≤ i ≤m), we have the following equation

s(i) −
n

∑
j=1

dj(i) = ∑
(u,v)∈E

L̂u→v(i) + ∑
(u,v)∈E

Tu→v(i) +L0

= ∑
(u,v)∈E

Ru→v

3ζu→v(i)
[Ĩu→v(i)3 − Ĩu→v(i − 1)3] + ∑

(u,v)∈E
Tu→v(i) +L0
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where E denotes the set of edges of the tree; (u, v) ∈ E denotes that there is a link from
the node u to node v; L0 ∈ R is the amount of time-independent non-ohmic technical losses
in a time interval. Then we have the linear system same as in section 2.4.2.

Y =Hx + T,

where Ru→v for each transmission link (u, v) in the tree is a component of the unknown
vector x and the last entry of x is the amount of time-independent non-ohmic technical
losses in a time interval; the last column of H contains all ones, and the entry of H locating

at the ith row and at the column corresponding to the link (u, v) is set to Ĩu→v(i)3−Ĩu→v(i−1)3
3ζu→v(i) .

Similarly, we estimate x by solving the optimization problem (2.13).

2.5.2 On the Measurement of Electric Current and Voltage

Setting of Our Model

The settings described by Definition 1 also apply here. In addition, the electric current
and the voltage are measured at the MPs as well, at time t1, t2,⋯, tm. The tree model used
in this section is depicted by Figure 1.3c.

We also use the following notations to represent the tree model. Let n̄ denote the num-
ber of layers, then the layer number ranges from 0 to n̄− 1. Let αi denote the transformer
parameter of the DT located at layer i, 0 ≤ i ≤ n̄ − 2. Let vkj denote the jth node (from
left to right) at the kth layer, with Parent(vkj) denoting the parent of the node vkj and
Children(vkj) denoting the set of children of the node vkj.

We regularly measure the instantaneous electric current and voltage at the entries of
the root and the leaves of the tree at time t = t1,⋯, tm−1, tm. V in

0 (i) denotes the voltage at
the entry of the root node at time ti; V in

k,j(i) denotes the voltage at the entry of the node
vkj at time ti; V out

vlr→vkj(i) denotes the voltage at the exit of the node vlr directed towards

node vkj at time ti; I in0 (i) denotes the input current to the root node at time ti; I ink,j(i)
denotes the input current to node vkj at time ti; Ioutvlr→vkj(i) denotes the output current of
node vlr to node vkj at time ti; Rvlr→vkj denotes the resistance of the tree edge between
node vlr and node vkj; path(x, y) denotes the set of edges that are on the path from x to
y; V in

0 (i), V in
k,j(i), V out

vlr→vkj(i), I
in
0 (i), I ink,j(i), and Ioutvlr→vkj(i) represent the true values before

tampering; Ṽ in
0 (i), Ṽ in

k,j(i), Ṽ out
vlr→vkj(i), Ĩ

in
0 (i), Ĩ ink,j(i), and Ĩoutvlr→vkj(i) respectively denote the

measurements of V in
0 (i), V in

k,j(i), V out
vlr→vkj(i), I

in
0 (i), I ink,j(i), and Ioutvlr→vkj(i); R̂vlr→vkj denotes

the estimation of Rvlr→vkj .

Assumptions and Objective

We assume m ≥ n. We assume the measurement of I ink,j(i) for all vkj in the tree and all

1 ≤ i ≤ m are not tampered with. That is to say, I ink,j(i) = Ĩ ink,j(i). We assume that there

is no unknown link secretly introduced. Given the measurements Ṽ in
0 (i), for all 1 ≤ i ≤m,
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and the measurements Ṽ in
k,j(i), Ĩ ink,j(i) for any leaf node vkj for all 1 ≤ i ≤ m, our objective

is to estimate the transmission resistance Rvlr→vkj for any transmission link vlr → vkj in the
tree.

Formulation

We propose a novel formulation to estimate the resistance of each link in a multi-layer
tree topology as follows.

Along the leftmost path (the yellow path in Figure 2.2) at the tree, we have the following
equations at time ti:

α0V0(i) − I in11(i)Rv01→v11 = V in
11 (i), (2.23)

α1V
in

11 (i) − I in21(i)Rv11→v21 = V in
21 (i), (2.24)

α2V
in

21 (i) − I in31(i)Rv21→v31 = V in
31 (i), (2.25)

⋮ ⋮
αn̄−2V

in
n̄−2(i) − I inn̄−1,1(i)Rvn̄−2,1→vn̄−1,1 = V in

n̄−1,1(i). (2.26)

Substitute the left hand side of (2.23) for V in
11 (i) into (2.24), we can get

α1α0V0(i) − α1I
in
11(i)Rv01→v11 − I in21(i)Rv11→v21 = V in

21 (i). (2.27)

Substitute the left hand side of (2.27) for V in
21 (i) into (2.25), we can get

α2α1α0V0(i) − α2α1I
in
11(i)Rv01→v11 − α2I

in
21(i)Rv11→v21 − I in31(i)Rv21→v31 = V in

31 (i). (2.28)

We proceed such substitution inductively and we eventually get

(
n̄−2

∏
j=0

αj)V0(i) −
n̄−1

∑
k=1

(
n̄−2

∏
j=k

αj)I ink,1(i)Rvk−1,1→vk,1 = Vn̄−1,1(i). (2.29)

Thus we have the following linear system about Rv0,1→v1,1 ,Rv1,1→v2,1 , . . . ,Rvn−1,1→vn,1 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n̄−2

∏
j=1

αj)I in1,1(1) . . . αn̄−2I inn̄−2,1(1) I inn̄−1,1(1)

(
n̄−2

∏
j=1

αj)I in1,1(2) . . . αn̄−2I inn̄−2,1(2) I inn̄−1,1(2)

. . .

(
n̄−2

∏
j=1

αj)I in1,1(m) . . . αn̄−2I inn̄−2,1(m) I inn̄−1,1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rv0,1→v1,1

Rv1,1→v2,1

. . .
Rvn̄−2,1→vn̄−1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n̄−2

∏
j=0

aj)V0(1) − Vn̄−1,1(1)

(
n̄−2

∏
j=0

aj)V0(2) − Vn̄−1,1(2)

. . .

(
n̄−2

∏
j=0

aj)V0(m) − Vn̄−1,1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.30)
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If we let

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n̄−2

∏
j=1

αj)Ĩ in1,1(1) . . . αn̄−2Ĩ inn̄−2,1(1) Ĩ inn̄−1,1(1)

(
n̄−2

∏
j=1

αj)Ĩ in1,1(2) . . . αn̄−2Ĩ inn̄−2,1(2) Ĩ inn̄−1,1(2)

. . .

(
n̄−2

∏
j=1

αj)Ĩ in1,1(m) . . . αn̄−2Ĩ inn̄−2,1(m) Ĩ inn̄−1,1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n̄−2

∏
j=0

aj)Ṽ0(1) − Ṽn̄−1,1(1)

(
n̄−2

∏
j=0

aj)Ṽ0(2) − Ṽn̄−1,1(2)

. . .

(
n̄−2

∏
j=0

aj)Ṽ0(m) − Ṽn̄−1,1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

x ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rv0,1→v1,1

Rv1,1→v2,1

. . .
Rvn−1,1→vn,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

then the resulting linear system Ax ≈ b is normally over-determined due to the measurement
noise. Hence we use the minimizer of the following optimization problem

min
x≥0

∥Ax − b∥1 (2.31)

to be the estimator of the resistance of each link on the yellow path in Figure 2.2. The
resistance of the links on any other path can be estimated in a similar way. The numerical
results of solving Problem (2.31) are shown in Section 5.3.2.

2.6 A Big Picture

Figure 2.4 shows the big map of our theft detection procedure. Our method depends on the
measurement of the electric currents that flows to each customer. If the electric currents
measured by the smart meters satisfy the law of conservation (2.3), then we proceed to state
St (of Figure 2.4). Otherwise we go to both state S3 for the estimation of the tampering
ratios and state S4 for the recovery of electric currents. After the recovery, if we measure
the voltages (at the root and the leaves), we can go to state S8 to estimate the resistance
of each link in the power grid by solving 2.31; otherwise we go to state S9 to estimate the
resistance of each link by solving 2.13 . After we estimate the resistances, we can go to
state S11 to estimate the time series of electricity theft. If we find the estimated tampering
ratio of some user is much greater than one and the amount of estimated theft is very large
at some time, then this is a strong evidence of the existence of power theft.
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S1: Does
(2.3) hold
at some
time ti?

S2:
Estimate

tampering
ratios

by (2.8)

S4:
Recover

the electric
current
by (2.9)

S6: Is
voltage
mea-

sured?

S3: Some
tampering
ratios >>

1?

Theft

S5: Ap-
proximate
the time
series of
technical
losses by
(2.12),
L̂ ≈ Hx

S7:
Compute
the time

series
of total
losses Y
by (2.11)

S8:
Estimate
R by

(2.31 )

S9: Solve
x̂ =

argmin
Hx≤Y

∥Y −

Hx∥1,
estimate R
by R̂i = x̂i

S10:
Estimate
the time
series of
theft by

T̂ = Y −Hx̂

S11: Is
T̂ much
greater

than zero?

No

Yes

Yes

No

Yes

Yes

Figure 2.4: BigMap
S1, S2,⋯, S11 respectively denote the 11 states in the flow-chart.
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Chapter 3

`1 Minimization in Non-negative
Space

In Section 3.1 we review the formulation and the KKT conditions of a linear program. In
Section 3.2, we analyze under what conditions the optimization problem min

x≥0
∥y − Ax∥1

can give an exact reconstruction of the true underlying value x∗, assuming the observation
y ∈ Rm is Ax∗ + e, where e is a sparse noise vector. In Section 3.3, we argue that by adding
additional feasible constraint Y ≥Hx, which appears in the formulation of Problem (2.13)

minimize
x∈Rn

∥Y −Hx∥1,

subject to Hx ≤ Y,x ≥ 0.

introduced previously, we can reduce the effect of outliers to the estimation of the resis-
tance of each link. In Section 3.4, we propose a hyperplane separation algorithm that
can potentially detect the time-varying theft in different scenarios described previously in
Chapter 2.

3.1 Linear Programming and `1 Minimization

3.1.1 Linear Program

A linear program can be stated in the following form [4]

min
x∈Rn

c⊺x,

subject to Aineqx ≤ bineq,

Aeqx = beq,

(3.1)

where Aeq ∈ Rm1×n, Aineq ∈ Rm2×n are two matrices, c ∈ Rn, beq ∈ Rm1 , bineq ∈ Rm2 are
vectors, x ∈ Rn is an unknown vector. The term c⊺x is the objective function. The
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equality Aeqx = beq and inequality Aineqx ≤ bineq are the linear constraints. The objective
of a linear program is to find an x that minimizes the objective function over the linear
constraints. Generally, there is no closed form solution to Problem (3.1). Fortunately, as a
convex optimization problem, a linear program can be solved efficiently by many effective
numerical methods such as simplex methods and interior point methods.

Given a matrix A ∈ Rm×n and a vector b ∈ Rm, if rank(A) < n, then the linear system
(about the unknown variable x)

Ax = b (P)

is under-determined and it can have infinitely many solution. In the pursuit of simplicity,
`1 regularization is often imposed to choose a sparse solution of equation (P). That is, we
want to solve the following optimization problem [4]

minimize
x

∥x∥1

subject to Ax = b
(3.2)

This problem can be equivalently expressed as a linear programming problem. We define
ρ = ∣x∣, in other words, ρi = ∣xi∣, where ρi and xi respectively denote the ith coordinate of
ρ and x. Then ρ and x satisfy the constraint −ρ ≤ x ≤ ρ. In addition, ∥x∥1 = e⊺ρ, where e
is a vector of ones. Therefore Problem (3.2) can be equivalently written as

minimize
x

e⊺ρ,

subject to Ax = b,
x − ρ ≤ 0,

−x − ρ ≤ 0.

which is in the form of a linear program.

3.1.2 KKT Conditions

A general optimization problem is typically formulated as below [4]

min
x∈Rn

f(x),

subject to hi(x) ≤ 0, i = 1,2, . . . ,m,

lj(x) = 0, j = 1,2, . . . , r,

(3.3)
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where f, hi, lj are all differentiable function. The Karush-Kuhn-Tucker(KKT) conditions
of the above optimization problem in general form are [4]

∇f(x) +
m

∑
i=1

ui∇hi(x) +
r

∑
j=1

vj∇lj(x) = 0,

uihi(x) = 0,∀i,
hi(x) ≤ 0,∀i,
lj(x) = 0,∀j,
ui ≥ 0,∀i,

where ∇f(x), ∇hi(x), ∇li(x) respectively denote the derivative of f(x), hi(x), li(x); ui and
vi are called Lagrangian multiplier. The KKT conditions of (3.1) can be written as

c +A⊺
inequ +A⊺

eqv = 0,

diag(u)(Aineqx − bineq) = 0,

Aineqx ≤ bineq,

Aeqx = beq,

u ≥ 0,

where diag(u) is a diagonal matrix whose diagonal contains the entries of u.

3.2 Exact Reconstruction Based on Sparsity

In this section, we introduce an `1 minimization problem on which our theft detection
framework heavily relies. Given a non-negative over-determined matrix A ∈ Rm×n, assume
we have a non-negative vector f ∈ Rn and a sparse vector e ∈ Rm that has at most S
non-zero entries, put y ∶= Af + e. In this scenario, both A and y are known, f and e are
unknown. We consider whether we can recover f from A and y. We estimate f by solving
the following `1 minimization problem in the non-negative space

min ∥y −Ax∥1,

subject to x ≥ 0.
(3.4)

We hope that the minimizer of Problem (3.4) is f . We show that under suitable conditions
of the coefficient matrix A, the unknown non-negative input vector f is the unique solution
to Problem (3.4). In the following subsections 3.2.1 and 3.2.2, the symbols f and e share
the same meaning as we have just defined here.

The theft detection framework introduced in Chapter 2 solves four different optimiza-
tion problems (2.5), (2.8), (2.13), (2.31) according to different sets of available measure-
ments. Among these four formulations, Problem (2.5), (2.8) and (2.31) can be cast into the
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same form (3.4). In different scenarios, f has different physical meanings while e means the
difference between the measured values (of some electrical quantity) and the corresponding
real values. This motivates us to investigate under what conditions of the coefficient matrix
A the minimizer of Problem (3.4) gives an exact recovery of the real answer f .

Our analysis in this section is based on the work of [6] by Candes and Tao. The problem
considered in [6] is y = Af+e where f and A are not necessarily non-negative. They estimate
f by solving an `1 minimization problem without the non-negativity constraint of x:

min ∥y −Ax∥1. (3.5)

[8] and [30] consider the following problem

min ∥y −Ax∥1,

subject to Ax ≤ y,
(3.6)

which has an additional non-negativity constraint Ax ≤ y compared to Problem (3.5).
However, this is not the non-negativity that we are interested in. In our case, we are
interested in putting the non-negativity constraint on x, i.e., x ≥ 0.

In subsection 3.2.1 we first review the paper [6] and illustrate the motivation of our
extension to their work. In subsection 3.2.2 we introduce how we extend the results in [6].
We use the following notations in the following sections. J1, J2 denote the following two
two sets of integer indices

J1 = {1,2, . . . , n}, J2 = {n + 1, n + 2, . . . ,m}. (3.7)

Given a matrix F ∈ Rm×n, a vector c ∈ Rm, two sets T ⊂ J1 ∪ J2 and T ′ ⊆ J1, FT denotes
the sub-matrix of F with column indices j ∈ T ; FT ′,∶ denotes the sub-matrix of F with row
indices i ∈ T ′; FT ′,T denotes the sub-matrix of F with row indices i ∈ T ′ and column indices
j ∈ T ; Fj denotes the jth column of F ; cT denotes the sub-vector of c with row indices
j ∈ T ; ci denotes the ith entry of c; sgn(x) denotes the vector whose entries are -1, 1, 0
corresponding to the negative entries, positive entries, zero entries of x respectively.

3.2.1 Decoding by Linear Programming

We first provide the definitions of several norms that will appear in the following contexts.
The `1-norm ∥ ⋅ ∥1 of a vector v ∈ Rn is defined to be [29]

∥v∥1 =

¿
ÁÁÀ

n

∑
i=1

∣vi∣. (3.8)

The `2-norm ∥ ⋅ ∥ of a vector v ∈ Rn is defined to be [29]

∥v∥ =

¿
ÁÁÀ

n

∑
i=1

v2
i . (3.9)
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The `1-norm ∥ ⋅ ∥1 of a matrix M ∈ Rm×n is defined to be [29]

∥M∥1 = max
1≤j≤n

m

∑
i=1

∣Mij ∣ . (3.10)

Then we review the following definitions introduced in [6].

Definition 2 Let F be the matrix with finite collection of vectors (Fj)j∈J ∈ Rm as columns.
For every integer 1 ≤ S ≤ ∣J ∣, the S−restricted isometry constant δS(F ) with respect to F
is the smallest number such that FT obeys

(1 − δS(F ))∥c∥2 ≤ ∥FT c∥2 ≤ (1 + δS(F ))∥c∥2

for all subsets T ⊂ J of cardinality at most S, and all real vectors c supported on T .
Similarly, the S,S′−restricted orthogonal constants θS,S′(F ) with respect to F for S+S′ ≤ ∣J ∣
is the smallest number such that

∣c⊺F ⊺
TFT ′c

′∣ ≤ θS,S′(F )∥c∥∥c′∥

holds for all disjoint T,T ′ ⊂ J of cardinality ∣T ∣ ≤ S and ∣T ′∣ ≤ S′, and all real coefficients
(cj)j∈T , (c′j)j∈T ′.

The numbers δS and θS measures how close the columns of the matrix F corresponding to
the non-zero entries of the vector c behave like an orthonormal system. Candes et al point
out in [6] that δS and θS,S′ are clearly non-decreasing in S, S′. Candes et al construct a
matrix F such that FA = 0 and multiply F on both sides of y = Af + e to obtain [6]

ỹ ∶= Fy = F (Af + e) = Fe.

Note that recovering f is equivalent to recovering e. Since y and F are known, ỹ can be
computed. Let d = y −Af , then Fd = F (y −Af) = ỹ − FAf = ỹ. Therefore Problem (3.5)
is equivalently written as [6]

min ∥d∥1

subject to Fd = ỹ
(3.11)

In [8] and [30], correspondingly, Problem (3.6) is equivalently written as

min ∥d∥1,

subject to Fd = ỹ, d ≥ 0.
(3.12)

The following main result is provided in [6]:

Theorem 1 Suppose that S ≥ 1 is such that δS + θS + θS,2S < 1, and let c be a real vector
supported on a set T ⊂ J obeying ∣T ∣ ≤ S. Put ỹ ∶= Fc. Then c is the unique minimizer to

min
d

∥d∥1

subject to Fd = ỹ
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The companion result of Theorem 1 is as follows [6].

Theorem 2 Suppose F is such that FA = 0 and let S ≥ 1 be a number obeying the hypoth-
esis of Theorem 1. Set y = Af + e, where e is a real vector supported on a set of size at
most S. Then f is the unique minimizer to

min
g

∥y −Ag∥1

The condition δS + θS + θS,2S < 1 of Theorem 1 on S and F requires the vector c to
be sufficiently sparse. Theorem 1 actually says that if c is sparse enough such that the
condition δS + θS + θS,2S < 1 holds, then c is the unique minimizer to the optimization
problem mentioned in Theorem 1. The proof of Theorem 1 relies on the following two
important lemmas in [6].

Lemma 1 Given F ∈ Rm×n, let S,S′ ≥ 1 be such that δS(F ) < 1, and c be a real vector
supported on T ⊂ J1 such that ∣T ∣ < S. Then there exists a vector w ∈ Rm such that F ⊺

j w = cj
for all j ∈ T . Furthermore, there is an exceptional set E ⊂ J1 which is disjoint from T , of
size at most

∣E∣ ≤ S′,
and with the properties

∣F ⊺
j w∣ ≤

θS,S′(F )
(1 − δS(F ))

√
S
∥c∥,∀j ∉ T ∪E

and

∥F ⊺
Ew∥ ≤ θS(F )

1 − δS(F )
∥c∥

In addition, ∥w∥ ≤K∥c∥ for some constant K ≥ 0 only depending upon δS.

The detailed proof of this lemma can be found in the paper [6] . The main idea is that, if
we set w ∈ Rm to be the vector

w ∶= FT (F ⊺
TFT )−1cT ,

then it can be verified that w satisfies all the conditions above.

Lemma 2 Given F ∈ Rm×n, let S ≥ 1 be such that δS(F ) + θS,2S(F ) < 1, and c be a real
vector supported on T ⊂ J obeying ∣T ∣ ≤ S. Then there exits a vector w such that F ⊺

j w = cj
for all j ∈ T . Furthermore, w satisfies that

∣F ⊺
j w∣ ≤ θS(F )

(1 − δS(F ) − θS,2S(F ))
√
S
∥c∥

for all j ∉ T .

The detailed proof of this lemma can be found in the paper [6].
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3.2.2 Non-negativity

The non-negativity constraint of x is not considered in [6] . In each scenario of our theft
detection framework, f is non-negative. Hence we impose the non-negativity constraint
and solve Problem (3.4) to find the minimizer. We investigate under what conditions of A
the minimizer of Problem (3.4) provides the exact reconstruction of f .

Given two vectors f ∈ Rn, c ∈ Rm, we define the following two sets

Z ∶= {i ∶ fi = 0, i ∈ J1}, /Z ∶= {i ∶ fi ≠ 0, i ∈ J1}, (3.13)

T ∶= {i ∶ ci ≠ 0, i ∈ J1 ∪ J2}, /T ∶= {i ∶ ci = 0, i ∈ J1 ∪ J2}. (3.14)

Then we have the following equalities

Z ∪ /Z = J1 (3.15)

T ∪ /T = J1 ∪ J2 (3.16)

Let K be the size of the set Z, M be the size of the set T . For simplicity, we rearrange
the entries of f and c such that f1 = f2 = . . . = fK = 0, c1 ≠ 0, . . . , cM ≠ 0, in other words,
Z = {1,2, . . . ,K}, T = {1,2, . . . ,M}. Thus f and c can be written as

f = [ fZ
f/Z

] , c = [ cT
c/T

] .

We also rearrange the columns and rows of A such that the columns of A correspond to f
and the rows of A correspond to c.

We construct a matrix H ∈ n ×m such that

HA = I, (3.17)

where I is an n by n identity matrix. Namely, H is a left inverse of A. A can have many
different left inverses. For example, if we set H ∶= (A⊺A)−1A⊺, then HA = (A⊺A)−1A⊺A = I.
Using HA = I, d = y − Af and f ≥ 0, we can get Hd = H(y − Af) = Hy − f ≤ Hy. Let
ȳ ∶=Hy. Then Problem (3.4) can be equivalently written as

min ∥d∥1

subject to Hd ≤ ȳ

Fd = ỹ

(3.18)

Compared to Problem (3.11), Problem (3.18) has one more constraint Hd ≤ ȳ. Imposing
the constraint Hd ≤ ȳ may sacrifice the sparsity of the optimal solution of Problem (3.18).
In other words, the minimizer of Problem (3.18) may be less sparse than the minimizer
of Problem (3.11). This motivates us to explore whether imposing the constraint Hd ≤ ȳ
requires fewer zero entries in the real underlying solution for exact reconstruction.

36



From HA = I and H = [ HZ

H/Z
], we require that

HZ,∶A = [ IZ,Z 0 ] .

For any subset R ⊆ Z, we define the value K(R) ∈ R with respect to R by

K(R) ∶= {
0 If R = ∅
∥AR,∶(A⊺

/T,∶A/T,∶)
−1A⊺

/T,∶∥1 Otherwise
(3.19)

where ∥ ⋅ ∥1 is the `1-norm of a matrix. Before we introduce our main result Theorem 3, we
first provide the following lemma, which is used to prove Theorem 3.

Lemma 3 Let S ≥ 1 be such that c ∈ Rm is a real vector supported on T ⊂ J obeying
∣T ∣ ≤ S. Given a matrix A ∈ Rm×n, where the sub-matrix A/T,∶ of A has full rank, suppose
F is such that FA = 0. Let f ∈ Rn be a non-negative real vector supported on /Z with
exactly K zero entries. Let y = Af + c. If there is a subset R ⊂ T of size κ such that κ ≤K,
K(R) < 1 and

0 < θS−κ(F )
1 − δS−κ(F ) − θS−κ,2S−2κ(F )

< 1 −K(R)
1 +K(R)

, (3.20)

where K(R) is defined as (3.19), then there exists a real vector β, a non-negative real vector
α ∈ Rn and a left inverse H of A (i.e., HA = I) such that α ≥ 0, α/Z = 0 and

H⊺
j α + F ⊺

j β = − sgn(cj) if j ∈ T,
∣H⊺

j α + F ⊺
j β∣ <1 if j ∉ T.

(3.21)

Proof: Let K be the size of the set Z, M be the size of the set T . Without loss of
generality, we rearrange the columns and rows of A, the entries of c and f such that

R = {1,2,⋯, κ},
Z = {1,2,⋯,K},
T = {1,2,⋯,M}.

The rearrangement keeps the columns of A corresponding to f and the rows of A corre-
sponding to c. Let C ∶= {1,⋯, κ} and thus C =R. We define c′ by

c′i = {
0 i ∈R
ci Otherwise

Let T /R denote the set {i ∶ i ∈ T, i ∉ R}. Then c′ is supported on T /R and the size of the

support of c′ is at most S −κ. Using (3.20), we can show that θS−κ(F )
1−δS−κ(F )−θS−κ,2S−2κ(F ) < 1 and

hence θS−κ(F ) + δS−κ(F ) + θS−κ,2S−2κ(F ) < 1. Then it follows that

δS−κ(F ) + θS−κ,2S−2κ(F ) < θS−κ(F ) + δS−κ(F ) + θS−κ,2S−2κ(F )
< 1.
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By Lemma 2, there exits a vector β such that the following two conditions hold:

F ⊺
T /Rβ = −sgn(c′T /R), (3.22a)

∣β⊺Fj ∣ <
θS−K(F )

1 − δS−K(F ) − θS−K,2S−2K(F )
,∀j ∉ T /R. (3.22b)

Then we define α ∈ Rn by specifying each entry of α to be

αi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

ε
∣sgn(ci) + β⊺Fi∣ i ∈ C,

0 Otherwise,
(3.23)

for some sufficiently large ε > 0 (we will discuss how large this ε should be later). Thus we
have α ≥ 0 and α/C = 0, where /C = {i ∶ i ∉ C, i ∈ J1}. Since /Z is a subset of /C, we have
α/Z = 0. Then for any j ∉ T , we have

∣α⊺C ⋅ ε ⋅ diag(sgn(cR))AR,∶(A⊺
/T,∶A/T,∶)

−1A⊺
j,∶∣

≤∑
i∈R

∣(sgn(ci) + β⊺Fi)∣ ⋅ ∣Ai,∶(A⊺
/T,∶A/T,∶)

−1A⊺
j,∶∣ (using (3.23) and R = C)

≤(1 + θS−κ(F )
1 − δS−κ(F ) − θS−κ,2S−2κ(F )

) ∥AR,∶(A⊺
/T,∶A/T,∶)

−1A⊺
j,∶∥

1
(using (3.22b))

≤(1 + θS−κ(F )
1 − δS−κ(F ) − θS−κ,2S−2κ(F )

)K(R) (using (3.19))

<(1 + 1 −K(R)
1 +K(R)

)K(R) (using (3.20))

Since the above inequality strictly holds independent of ε, there must exist a sufficiently
large ε ∈ R such that each entry αi of α is sufficiently small (according to (3.23)) and

∣α⊺C ⋅ ε ⋅ diag(sgn(cR))AR,∶(A⊺
/T,∶A/T,∶)

−1A⊺
j,∶∣ + ∣α⊺C [ IC,C 0 ] (A⊺

/T,∶A/T,∶)
−1A⊺

j,∶∣

<(1 + 1 −K(R)
1 +K(R)

)K(R)
(3.24)

for any j ∈ /T . We set HC,∶ to be

HC,∶ = [ ε ⋅ diag(-sgn(cR)) 0κ×(M−κ) B ] , (3.25)

where 0κ×(M−κ) denotes the κ by (M − κ) zero matrix, B ∈ Rκ×(m−M) is defined as

B = ([ IC,C 0κ,n−κ ] + ε ⋅ diag(sgn(cR))AR,∶) (A⊺
/T,∶A/T,∶)

−1A⊺
/T,∶. (3.26)
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Then we can show that

HC,∶A = [ ε ⋅ diag(−sgn(cR)) 0 B ]
⎡⎢⎢⎢⎢⎢⎣

AR,∶
AT /R,∶
A/T,∶

⎤⎥⎥⎥⎥⎥⎦
= ε ⋅ diag(−sgn(cR))AR,∶ +BA/T,∶
= ε ⋅ diag(−sgn(cR))AR,∶ + ([ IC,C 0 ] + ε ⋅ diag(sgn(cR))AR,∶) (A⊺

/T,∶A/T,∶)
−1(A⊺

/T,∶A/T,∶)

= ε ⋅ diag(−sgn(cR))AR,∶ + [ IC,C 0 ] + ε ⋅ diag(sgn(cR))AR,∶
= [ IC,C 0 ] .

If j ∈R, then we have

α⊺Hj + β⊺Fj = α⊺CHC,j + β⊺Fj
= −αj ⋅ ε ⋅ sgn(cj) + β⊺Fj (using (3.25) and R = C)
= −∣sgn(cj) + β⊺Fj ∣sgn(cj) + β⊺Fj (using (3.23))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− (1 + β⊺Fj) + β⊺Fj if sgn(cj) = 1

(1 − β⊺Fj) + β⊺Fj if sgn(cj) = −1

(using (3.22b))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− 1 if sgn(cj) = 1

1 if sgn(cj) = −1

= −sgn(cj) .

If j ∈ T /R, then we have

α⊺Hj + β⊺Fj = α⊺CHC,j + β⊺Fj (using (3.23))
= β⊺Fj (using (3.26))
= −sgn(c′j) (using (3.22a))
= −sgn(cj).
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If j ∉ T , then we have

∣α⊺Hj + β⊺Fj ∣
≤∣α⊺CHC,j ∣ + ∣β⊺Fj ∣
=∣α⊺CBj−M ∣ + ∣β⊺Fj ∣ (using (3.25))

≤ ∣α⊺C ⋅ ε ⋅ diag(sgn(cR))AR,∶(A⊺
/T,∶A/T,∶)

−1A⊺
j,∶∣+

∣α⊺C [ IC,C 0 ] (A⊺
/T,∶A/T,∶)

−1A⊺
j,∶∣ + ∣β⊺Fj ∣ (using (3.26))

<(1 + 1 −K(R)
1 +K(R)

)K(R) + θS−κ(F )
1 − δS−κ(F ) − θS−κ,2S−2κ(F )

(using (3.22b), (3.24))

<K(R) + 1 −K(R)
1 +K(R)

(1 +K(R))

=1.

Summing up all the three cases (j ∈R, j ∈ T /R, j ∉ T ) above, we have

α⊺Hj + β⊺Fj = −sgn(cj), j ∈ T,
∣α⊺Hj + β⊺Fj ∣ < 1, j ∉ T.

◻

Now we present our main result Theorem 3, which shows under what conditions Problem
(3.18) gives an exact reconstruction.

Theorem 3 Let S ≥ 1 be such that c ∈ Rm is a real vector supported on T ⊂ J obeying
∣T ∣ ≤ S. Given a matrix A ∈ Rm×n, where the sub-matrix A/T,∶ of A has full rank, suppose F
is such that FA = 0. Let f ∈ Rn be a non-negative real vector supported on /Z with exactly
K zero entries. Let y = Af + c. Assume δS(F ) < 1. If there is a subset R ⊂ T of size κ
such that κ ≤K, K(R) < 1 and

0 < θS−κ(F )
1 − δS−κ(F ) − θS−κ,2S−2κ(F )

< 1 −K(R)
1 +K(R)

, (3.28)

where K(R) is defined as (3.19), then there exists a left inverse of A (i.e., HA = I) such
that c is the unique minimizer to the optimization problem

min ∥d∥1

subject to Fd = b1

Hd ≤ b2

(3.29)

where b1 ∶= Fy, b2 ∶=Hy.
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Proof: According to Lemma 3, we can find a real vector β, a real non-negative vector
α ∈ Rn and a left inverse H of A (i.e., HA = I) such that α ≥ 0, α/Z = 0, and

α⊺Hj + β⊺Fj = −sgn(cj), ∀j ∈ T, (3.30a)

∣α⊺Hj + β⊺Fj ∣ < 1, ∀j ∉ T. (3.30b)

By the definition of b1, b2, we have b2 =Hy =H(Af+c) = f+Hc ≥Hc, Fc = F (y−Af) = Fy =
b1 and hence c is feasible to Problem (3.29). The definition of Z implies that (b2)i = (Hc)i
if and only if i ∈ Z. If d̂ is a minimizer of Problem (3.29), then d̂ is feasible to Problem
(3.29) and ∥d̂∥1 ≤ ∥c∥1. Hence we have F d̂ = b1 = Fc and Hd̂ ≤ b2. By the property of α that
α/Z = 0, we have αi = 0 if (Hc− b2)i ≠ 0. As a result α⊺(Hc− b2) = 0. By the non-negativity

of α, we can imply that α⊺Hd̂ ≤ α⊺b2. Using the information above, we can compute that

∥d̂∥1 =∑
j∈T

∣cj + d̂j − cj ∣ +∑
j∉T

∣d̂j ∣

≥∑
j∈T

sgn(cj)(cj + d̂j − cj) +∑
j∉T

d̂j(−α⊺Hj − β⊺Fj) (using (3.30b))

=∑
j∈T

sgn(cj)cj +∑
j∈T

sgn(cj)(d̂j − cj) −∑
j∉T

d̂j(α⊺Hj + β⊺Fj)

=∑
j∈T

∣cj ∣ +∑
j∈T

(−α⊺Hj − β⊺Fj)(d̂j − cj) −∑
j∉T

d̂j(α⊺Hj + β⊺Fj) (using (3.30a))

=∑
j∈T

∣cj ∣ + α⊺(∑
j∈T

cjHj − ∑
j∈J1∪J2

d̂jHj) + β⊺(∑
j∈T

cjFj − ∑
j∈J1∪J2

d̂jFj) (using (3.14), (3.16))

=∑
j∈T

∣cj ∣ + α⊺( ∑
j∈J1∪J2

cjHj − ∑
j∈J1∪J2

d̂jHj)+

β⊺( ∑
j∈J1∪J2

cjFj − ∑
j∈J1∪J2

d̂jFj) (using c supported on T )

=∑
j∈T

∣cj ∣ + α⊺(Hc −Hd̂) + β⊺(Fc − F d̂) (using (3.7))

≥∑
j∈T

∣cj ∣ + α⊺(Hc − b2) (using α⊺Hd̂ ≤ α⊺b2, F c = F d̂)

=∥c∥1 (using α⊺(Hc − b2) = 0).

Thus ∥d̂∥1 = ∥c∥1, and therefore the all the inequalities in the above computation must be
equality. Since ∣α⊺Hj + β⊺Fj ∣ < 1 strictly holds whenever j ∉ T , if we want the inequality

∑
j∉T

∣d̂j ∣ ≥ ∑
j∉T

d̂j(−α⊺Hj−β⊺Fj) to appear as an equality, we must have d̂j = 0 whenever j ∉ T .

In other words, d̂j = cj = 0 if j ∉ T . Then it follows that

FT d̂T = F d̂ = b1 = FT cT
Ô⇒ FT (d̂T − cT ) = 0.

Noting that we have the hypothesis δS(F ) < 1, if d̂T − cT ≠ 0, then we can imply that
∥d̂T − cT ∥ > 0 and moreover 0 = ∥FT (d̂T − cT )∥ ≥ (1 − δS(F ))∥d̂T − cT ∥ > 0, contradiction.
Therefore we must have d̂T = cT . Finally, d̂ can be concluded to be identical to c. ◻
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When R = ∅, we have κ = 0,K(R) = 0 and thus the condition θS−κ(F )
1−δS−κ(F )−θS−κ,2S−2κ(F ) <

1−K(R)
1+K(R) becomes θS(F )

1−δS(F )−θS,2S(F ) <
1−0
1+0 = 1. Consequently Theorem 3 is identical to Theo-

rem 1 in this case. When κ > 0, we have θS−κ(F ) ≤ θS(F ), δS−κ(F ) ≤ δS(F ) as well as

θS−κ,2S−2κ(F ) ≤ θS,2S(F ) according to Definition 2, therefore we have θS−κ(F )
1−δS−κ(F )−θS−κ,2S−2κ(F ) ≤

θS(F )
1−δS(F )−θS,2S(F ) . If 1−K(R)

1+K(R) is close to 1 but θS−κ(F )
1−δS−κ(F )−θS−κ,2S−2κ(F ) is much smaller than

θS(F )
1−δS(F )−θS,2S(F ) , then the condition θS−κ(F )

1−δS−κ(F )−θS−κ,2S−2κ(F ) <
1−K(R)
1+K(R) (on F and S) of The-

orem 3 is weaker than the condition δS(F ) + θS(F ) + θS,2S(F ) < 1 of Theorem 1.

Theorem 3 actually says that if we have one more constraint Hx ≤ b2 for Problem (3.11)
mentioned in Theorem 1, then a weaker condition on the sparsity of c may guarantee c
to be the unique solution to Problem (3.29). The companion result of Theorem 1 and
Theorem 3 is as follows.

Theorem 4 Suppose F is such that FA = 0 and let S ≥ 1 be a number obeying the hypoth-
esis of Theorem 1 or the hypothesis of Theorem 3. Set y = Af + e, where e is a real vector
supported on a set of size at most S. Then f is the unique minimizer to

min
g≥0

∥y −Ag∥1

3.3 Robustness to Outliers

In this section, we analyze the advantage of the formulation of Problem (2.13) in Section
2.4 compared to least squares estimation without the constraint Y ≥ Ax. If the given data
points (x1, y1), (x2, y2), . . ., (xn, yn), (xn+1, yn+1), . . ., (xm, ym), where xi ∈ Rn, yi ∈ R for all
1 ≤ i ≤ m, are lying above and close to the hyperplane y = ᾱ⊺x + b with ᾱ ∈ Rn and b ∈ R,
then we use the following estimator

(α̂, b̂) ∶= argmin
α∈Rn,b∈R

1
⊺
m(Y −Xα − b ⋅ 1m) s.t. Y ≥Xα + b ⋅ 1m, (3.31)

where X =
⎡⎢⎢⎢⎢⎢⎣

x⊺1
⋮
x⊺m

⎤⎥⎥⎥⎥⎥⎦
∈ Rm×n, Y =

⎡⎢⎢⎢⎢⎢⎣

y1

⋮
ym

⎤⎥⎥⎥⎥⎥⎦
∈ Rm, and y = α̂⊺x + b̂ to estimate the hyperplane

y = ᾱ⊺x + b. Given sufficient number of observations of the points lying around the hyper-
plane, the least squares estimation is very sensitive to the points far from the hyperplane,
namely outliers. By imposing the constraint that each point is located above the estimated
hyperplane, our estimation is less sensitive to the outliers.

The theorem that we present in this section relies on the definition of convex hull. We
first provide the the definition of convex hull as follows.

42



Definition 3 Let v1, . . . , vk ∈ Rn, the convex hull of {v1, . . . , vk} denoted conv(v1, . . . , vk)
is the set defined as

conv(v1, . . . , vk) = {
k

∑
i=1

λivi ∶
k

∑
i=1

λi = 1, λ1, . . . , λk ≥ 0},

Then we provide the theorem which shows that the estimator (3.31) is less sensitive to
the outliers and the estimator provides an exact reconstruction of the hyperplane under
some conditions.

Theorem 5 Given m data points (x1, y1), (x2, y2), . . . , (xm, ym) where xi ∈ Rn, yi ∈ R, i =
1, . . . ,m, and m > n, suppose there exists a subset T = {l1, l2, . . . , ln+1} of J = {1,2, . . . ,m}
such that

yi = ᾱ⊺xi + b, i ∈ T,
yi > ᾱ⊺xi + b, i ∉ T,

in addition, assume (xl1 ,1), (xl2 ,1), . . . , (xln ,1), (xln+1 ,1) are linearly independent, and

{xi ∶ i ∉ T} ⊆ conv(xl1 , xl2 , . . . , xln+1),

then it follows that

ᾱ = α̂ ∶= argmin
α

1
⊺
m(Y −Xα − b ⋅ 1m) s.t. Y ≥Xα + b ⋅ 1m,

where Y = [y1 y2 . . . ym]⊺ ∈ Rm, X = [x1 x2 . . . xm]⊺ ∈ Rm×n and 1m is an m by 1 vector
with each entry to be 1.

Proof: Without loss of generality, suppose li = i, i = 1, . . . , n + 1. We first define two sets

S1 = {j ∶ α̂⊺xj + b > yj,1 ≤ j ≤ n + 1, j ∈ Z},
S2 = {j ∶ α̂⊺xj + b = yj,1 ≤ j ≤ n + 1, j ∈ Z},

When 1 ≤ i ≤ n + 1, it follows that

ᾱ⊺xi + b = yi,

α̂⊺xi + b ≤ yi,

and hence
ᾱ⊺xi ≥ α̂⊺xi.

When n + 2 ≤ i ≤m, xi can be written as

xi =
n+1

∑
k=1

t
(i)
k xk,
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where t
(i)
1 , t

(i)
2 , . . . , t

(i)
n+1 ≥ 0 and

n+1

∑
k=1

t
(i)
k = 1. Thus it follows that

ᾱ⊺xi = ᾱ⊺
n+1

∑
k=1

t
(i)
k xk =

n+1

∑
k=1

t
(i)
k ᾱ⊺xk =

n+1

∑
k=1

t
(i)
k (yk − b),

α̂⊺xi = α̂⊺
n+1

∑
k=1

t
(i)
k xk =

n+1

∑
k=1

t
(i)
k α̂⊺xk ≤ ∑

k∈S1

t
(i)
k (yk − b) + ∑

k∈S2

t
(i)
k (yk − b) =

n+1

∑
k=1

t
(i)
k (yk − b),

and hence
ᾱ⊺xi ≥ α̂⊺xi.

Hence, we have
ᾱ⊺xi ≥ α̂⊺xi,∀1 ≤ i ≤m.

If S1 ≠ ∅, then the following strict inequality,

ᾱ⊺xi > α̂⊺xi,∀i ∈ S1,

suggests that α̂ cannot be the minimizer, contradiction. Thus S1 = ∅. Since (x1,1), (x2,1),
. . ., (xn+1,1) are linear independent, the solution (of (α, b)) to the linear system

α⊺xi + b = yi,∀1 ≤ i ≤ n + 1

is unique. Hence ᾱ = α̂ ◻

We note that, {xi ∶ i ∉ T} ⊆ conv(xl1 , xl2 , . . . , xln+1) is a very strong condition. It
implies that xl1 , xl2 , . . . , xln+1 can represent any other data point and they form a good
representative of the entire data set. Theorem 5 says, if a good representative of the whole
data set fortunately locates at the underlying hyperplane ᾱ⊺x + b = y, then the estimation
of the underlying hyperplane by the above minimization objective can be immune to any
number of outliers.

The theft detection framework introduced in Chaper 2 estimates the resistance of each
link by solving Problem (2.13) in Section 2.4. Theorem 5 is related to Problem (2.13). The
resistance of each link decides the underlying hyperplane. The measurements obtained
when no theft occurs corresponds to the data points that is close to the underlying hyper-
planes while the measurements obtained when a large amount of theft occurs corresponds
to the outliers. Theorem 5 provides a condition under which Problem (2.13) gives an exact
recovery of the resistance of each link. Theorem 5 also shows the advantage of the opti-
mization formulation (2.13) over the previous method. The previous method proposed in
[20] estimates the resistance of each link by by the least squares estimation, which is very
sensitive to outliers. Even though we have a sufficient number of the measurements that
are obtained when the power theft is tiny, the least squares estimation may still give an
incorrect estimation far from the real values if several measurements are obtained when
the power theft is large. Theorem 5 shows that the minimizer to Problem (2.13) is immune
to the measurements that are obtained when large power theft occurs provided that there
is a sufficient number of the measurements that are collected when the power theft is tiny.
The proof of Theorem 5 is as follows.
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3.4 Hyperplane Separation By `1 Minimization

Before we introduce the problem, we first provide a definition as follows:

Definition 4 Given α,β ∈ Rn, b1, b2 ∈ R, two hyperplanes y = α⊺x + b1 and y = β⊺x + b2

are said to be separated in non-negative space if the set {x > 0 ∶ α⊺x+ b1 = β⊺x+ b2} is an
empty set.

In this section, we consider the following problem. If we have a sequence of non-negative
data points lying in several unknown hyperplanes separated in non-negative space, how can
we find the underlying hyperplanes? To answer the question above, we propose Algorithm
1 to partition the input data points into several hyperplanes. In Algorithm 1, the function
size(A) returns the dimension of the matrix A, zeros(n,1) produces an n-dimensional
zero vector, countNonZeros(b) returns the number of non-zero entries in b.

Given a sequence of m non-negative data points (x1, y1), (x2, y2),⋯, (xm, ym), where
x1, x2,⋯, xm ∈ Rn, y1, y2,⋯, ym ∈ R, we construct A ∈ Rm×n and b ∈ Rm as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x⊺1
x⊺2
⋮
x⊺m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

⋮
ym

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we pass A and b to Algorithm 1. Among the hyperplanes higher than all remaining
data points, Algorithm 1 recursively looks for the hyperplane closest to all remaining data
points by minimizing the total distance of all the data points from the target hyperplane
while the inequality constraint that any point is not higher than the target hyperplane is
imposed to the minimization. After such a target hyperplane is found, the points close
this hyperplane are removed. Then Algorithm 1 proceeds to the next iteration to find the
next target hyperplane. The iterations halt when the rank of the remaining matrix is less
than the number of columns n. Since estimating the rank of a matrix is computationally
expensive, we use the number of remaining entries in b as an indicator to tell the whether
the remaining matrix is full rank. If the number of remaining entries in b is less than n,
then the corresponding remaining rows in A are less than n and hence A becomes rank
deficient .

Algorithm 1 is used to solve the theft detection problems in different scenarios as
described in Section 2.2, 2.3, 2.4, 2.5. Since the formulation of these problems are the same,
we only use the estimation of tampering ratio as a case study to explain how Algorithm 1
is related and helpful to our theft detection problems. Recall that if the tampering ratio
of each user is a constant, then we solve Problem (2.8) to estimate the tampering ratio of
each user. However, if the tampering ratio of each user is time-varying, then formulation
(2.8) is not applicable. Instead, we pass the (X, b) defined in formulation (2.8) (as (A, b))
to Algorithm 1 and estimate the time-varying tampering ratios.
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Here we provide an example where the formulation (2.8) is not applicable to the time-
varying tampering ratios. For simplicity, the topology we use in this example is the single-
layer tree as described in Figure 2.1, and the distribution transformer at the root is con-
nected to only two users (leaves), user 1 and user 2. We suppose the distribution parameter
is one. I in denotes the instantaneous electric current that flows to the distribution trans-
former. I1, I2 respectively stand for the instantaneous electric currents that flow to user 1
and user 2. If we obtain the following data points (I1, I2, I in) from measurements, (2.64,
17.36, 20), (16.41, 3.59, 20), (2.37, 14.10, 20), (13.15, 5.48, 20), (5.07, 9.95, 20), (9.62, 6.92,
20), (3.53, 8.24, 20), (9.86, 5.07, 20), then the input measurement data I in and Iout are

Iout =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.64 17.36
16.41 3.59
2.37 14.10
13.15 5.48
5.07 9.95
9.62 6.92
3.53 8.24
9.86 5.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, I in =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20
20
20
20
20
20
20
20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Suppose the measurement of I1 is always accurate but the measurement of I2 is lower than
the real values. Then the real tampering ratios of these users are summarized as follows

β = [ 1 1 1 1 1 1 1 1
1 1 1.25 1.25 1.5 1.5 1.9984 1.9984

] ,

where each column of β corresponds to the tampering ratios of two users at each time,
the first row and the second row correspond to the tampering ratios of user 1 and user 2
respectively at different times.

Given A = I in, b = Iout as input, the optimal solution of Problem (2.8) is

β̂ = [ 1 1 ]⊺ ,

which fails to recover the original current due to the time-varying β in this case. Given
A = I in, b = Iout, ε = 0.01 as input, the output of Algorithm 1 is

β̂ = [ 1 1 1 1
1 1.25 1.5 1.9984

] ,

which shows Algorithm 1 is able to recognize the change of β at different times in this case.
This is a heuristic algorithm which does not guarantee the success of recognition all the
time. The effectiveness of Algorithm 1 can be found from more numerical results shown in
Section 5.2.2, 5.2.3.
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[w,S] := planeSepr(A, b, ε):
input : A matrix A ∈ Rm×n, a vector b ∈ Rm and a threshold ε ∈ R
output: A weight vector w ∈ Rn and a set S of n-dimensional vectors

[m,n] ∶=size(A);
w ∶= zeros(n,1);
S ∶= ∅;
while countNonZeros(b) ≥ n do

β̂ ∶= argmin
β∶Aβ≤b,β≥0

∥Aβ − b∥1;

S ∶= S ∪ {β̂};
for i ∈ {i ∶ ∣A(i, ∶)β − bi∣ < ε} do

A(i, ∶) ∶= 0;
bi ∶= 0;
wi ∶= wi + 1;

end

end
return [w,S];

Algorithm 1: Hyperplane Separation Algorithm
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Chapter 4

Clustering and Anomaly Detection

In Chapter 2, we analyze the electricity theft in the form of tampering with the smart
meter. In this chapter, we tackle the theft in another form, tapping into a power line
from a point ahead of the energy meter (as indicated in Figure 4.1). Figure 4.1 shows
an example of how an unknown transmission link is introduced. In this case, the energy
consumption data recorded by the smart meter of User 2 ( as depicted in Figure 4.1) is
much less than his real consumption and thus highly likely to demonstrate some abnormal
patterns compared to the normal users. We do not have a formal definition for “normal
pattern” and “abnormal pattern”. However, their difference can be easily judged by the
human eyes. The subplots on the first three rows of Figure 4.2 show the patterns of normal
users while Figure 4.3 shows the synthetically generated patterns of abnormal users. This
visualization shows that a normal user’s plot is smooth and natural while the thief’s plot
is sharp.

The introduction of an unknown link breaks the conservation of energy and the con-
servation of the flows of electric currents. Hence the prior knowledge of the physical laws
in electricity and the knowledge of the connection topology are not applicable. We assume
that the usage data of a thief who illegally draws the energy by a direct hooking from a line
indicates an anomaly pattern compared to the normal users (who are not stealing energy).
Let n denote the number of users. All users’ data are collected in the same period. For
user i (1 ≤ i ≤ n), we have the vector xi ∈ Rm that records the time-series usage data of this
user in m equal-sized contiguous time intervals. Then we run the clustering algorithms
on these n vectors to partition them. A desired algorithm is expected to put the vectors
corresponding to the thieves into one group and the other vectors into the other group.
(Note: the unknown users are not considered in the scope of this thesis. Clustering is
applied to potentially detect whether a known user introduce an unknown link to steal
energy. )

Clustering is a fundamental and useful tool in data mining that groups data according
to their similarities. However, the clustering problem is not well defined. Under different
assumptions and criteria, different clustering algorithms may produce dramatically differ-
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Figure 4.1: The circle A represents a smart meter. User 2 directly draw the energy from
the point S, which is ahead of the smart meter of user 1. User 2 could also draw the
energy from the point P3, which is ahead his own smart meter. Thus the power does not
flow through the smart meter located at the entry of user 2, which is supposed to record the
energy consumption of user 2.

ent results. In Section 4.1 and 4.2, we first introduce the K-means algorithm [10] and
spectral clustering [28], which are two popular and effective clustering techniques in data
mining. Then in Section 4.3 and 4.4 we propose a clustering method that bi-partitions the
data according to their difference along their maximum variance direction and a hierarchi-
cal clustering method which bi-partitions the data recursively until the variance inside a
group is sufficiently low.

4.1 K-Means

The goal of K-Means is to partition the data points into K groups such that the sum of
dissimilarities inside each group is minimized [10]. Each input sample is indexed by an
integer i ∈ {1,2, . . . ,N}. We assign each sample to a group and we denote the assignment
of the ith sample (the sample labeled by i) by C(i). Corresponding to K groups, the
value of C(i) is in the range of {1,2, . . . ,K}. Given the input samples (feature vectors)
x1, x2, . . . , xn ∈ Rm, the objective of K-means is to minimize the following objective function

f(C) ∶=
K

∑
k=1

∑
C(i)=k

∑
C(j)=k

d(xi, xj),

where d(xi, xj) denotes the dissimilarity between xi and xj. A standard dissimilarity
measure is squared Euclidean distance [10]:

d(xi, xj) = (xi − xj)⊺(xi − xj) = ∥xi − xj∥2
2.
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We want to to solve the following optimization problem

minimize
C

f(C) ∶=
K

∑
k=1

∑
C(i)=k

∑
C(j)=k

∥xi − xj∥2
2, (4.1)

which is known to be NP-hard. Let x̄k be the mean vector, which can be obtained from
dividing the sum of all vectors in this cluster by the number of vectors in this cluster,
associated with the kth cluster. Let Nk be the size of the kth cluster. Then we can extract
the mean vector of each group and write the objective function f(C) alternatively as

f(C) =
K

∑
k=1

∑
C(i)=k

∑
C(j)=k

∥xi − xj∥2
2

= 2
K

∑
k=1

Nk ∑
C(i)=k

∥xi − x̄k∥2
2.

And thus Problem (4.1) can be equivalently written as

minimize
C

K

∑
k=1

Nk ∑
C(i)=k

∥xi − x̄k∥2
2. (4.2)

input : m vectors x1, x2, . . . , xn ∈ Rm, an integer K
output: An assignment C partitions x1, x2, . . . , xm into group 1,2, . . . ,K

Initialize C randomly;
while not convergent yet do

for i=1 to k do
x̄k ← 1

Nk
∑

C(i)=k
xi

end
for i=1 to m do

C(i)← argmin
1≤k≤K

∥xi − x̄k∥2

end

end
Return C;

Algorithm 2: K-means Algorithm

A local optimizer of Problem (4.2) can be effectively solved by an iterative descent
algorithm as shown in Algorithm 2 [10]. In order to partition the data points into two
groups, we just need to simply choose the parameter K = 2.

4.2 Spectral Clustering

In this section, we introduce another clustering method called spectral clustering which
adopts a different objective from K-means to group data points.
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4.2.1 Graph Laplacian

The radial basis function kernel (RBF kernel) on two input vectors x and y with respect
to parameter σ is defined as [7]

KRBF(x, y) = exp((x − y)
⊺(x − y)

2σ2
).

The parameter σ is typically set to be the variance of input data points. Given the input
samples x1, x2, . . . , xn ∈ Rm, we define the similarity matrix W ∈ Rn×n by

Wij =KRBF(xi, xj),

where Wij denotes the entry located at the ith row and the jth column of W . Then we
define a diagonal matrix G by

Gii =
n

∑
j=1

Wij,

where Gii denotes the ith diagonal entry of G. Finally, the graph Laplacian [28] is defined
by

L = G −W.

4.2.2 Ratio Cut

We represent the dissimilarity S(A,B) between setA and setB by S(A,B) = ∑
x∈A
∑
y∈B

KRBF(x, y)

[28]. Then the ratio cut [28] between two sets A,B is defined as follows

RatioCut(A,B) = 1

2
[S(A,B)

∣A∣
+ S(A,B)

∣B∣
] ,

where ∣A∣ and ∣B∣ denote the size of set A and B.

If we want to partition the input data points into two groups, A and Ā, then our
objective is to maximize RatioCut(A, Ā). Intuitively, this objective aims at maximizing
the dissimilarity between two groups, while this dissimilarity is normalized by the size of one
group to prevent the dominance of either. Given the input data points x1, x2, . . . , xn ∈ Rm,
we define the vector f ∈ Rn with respect to the two-group partition A and Ā by

fi = {
√

∣Ā∣/∣A∣ if xi ∈ A,
−
√

∣A∣/∣Ā∣ if xi ∈ Ā,
(4.3)

where fi is the ith entry of f . It can be shown that maximizing RatioCut(A, Ā) can be
relaxed to the following optimization problem

maximize
f∈Rn

f⊺Lf,

subject to f⊺f = 1,

e⊺f = 0.

(4.4)
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The optimal solution f̂ to Problem (4.4) is the second non-principle eigenvector of L [28].
Each entry of f̂ corresponds to one input data point. According to (4.3), the sign of f̂i
decides which group the ith sample is assigned to. That is, if fi > 0, then the ith sample
is assigned to group A and otherwise to group Ā.

4.3 Bi-partition along the Principle Component

In the two-group spectral clustering, the second non-principle eigenvector is used as an
indicator of partition. Motivated by the power of eigenvector, we propose a ”one-dimension
bi-partition along principle eigenvector”(1DBPE) method which also uses the principle
eigenvector. Different from spectral clustering, we use the principle eigenvector of the
covariance matrix of input data points, which is shown to be the direction of maximum
variance in feature space.

Before we introduce our 1D bi-partition method, we assume that a sorting method
[sortArray rank] ∶=sort(array) is given. The routine sort(array) takes an a list of
unsorted real numbers array as input. It outputs a list sortArray of sorted numbers
and a list rank of ranks of each number from array. For example, if the input is array =
[4,8,9,2,5], and we run the routine [sortArray rank] ∶=sort([4,8,9,2,5]), then the output
is sortArray = [2,4,5,8,9] and rank = [2,4,5,1,3].

We look for a direction to project the input data points such that the variance of the
projections is maximized. Given n input data points x1, x2, . . . , xn ∈ Rm, we include all
data points into a m × n matrix

X = [ x1 x2 . . . xn ] .

In other words, the ith column of X is xi, 1 ≤ i ≤ n. Then we define the column mean x̄ of
X by

x̄ = 1

n

n

∑
i=1

xi.

We also define X̄ = [ x̄ x̄ . . . x̄ ] ∈ Rm×n. Then the n-by-n covariance matrix of X is
defined as

V = (X − X̄)(X − X̄)⊺.
In order the catch the main difference between two column groups of data, we attempt to
compute the direction ω of feature space along which the variance of data is maximum.
The variance of data along the direction ω in the feature space is

VAR(ω⊺X) = ω⊺(X − X̄)(X − X̄)⊺ω = ω⊺V ω

Since we only care about the direction, ω can be scaled to be a unit vector and the constraint
ω⊺ω = 1 is imposed. Thus we want to solve the following optimization problem

max
ω

f(ω) ∶= ω⊺V ω

subject to ω⊺ω = 1
(4.5)
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It can be shown that the solution to the optimization problem 4.5 is the eigenvector of V
corresponding to its largest eigenvalue [11], which is also named the principle eigenvector
of V . The projection of the columns of the matrix X to the direction ω is ωω⊺X, where

[I, L]=oneD-Bipartition(X):
input : A m by n matrix X, where each of the n columns corresponds to a

sample and each sample has m features
output: An indicator vector I that shows which group each data point is

assigned to, and a list L of the projection of the input data points
to their principle eigenvector

u ∶=principleEigenVector(X);
L ∶= u⊺X ;
[sortL rank] ∶=sort(L);
n ∶=size(sortL);
cut ∶= −1;
minSoFar ∶= +Inf ;
for i = 1 to n − 1 do

sumV ar(i) ∶= VAR(sortL(1 ∶ i)) +VAR(sortL(i + 1 ∶ n)) ;
if (sumV ar(i) <minSoFar then

minSoFar ∶= sumV ar(i) ;
cut ∶= i ;

end

end
I(rank(1 ∶ cut)) = 1;
I(rank(cut + 1 ∶ n)) = 2;
Return [I, L];

Algorithm 3: 1D Bipartition

ωω⊺ is a projection matrix since (ωω⊺)(ωω⊺) = ωω⊺. Thus the projection of the ith column
xi of X is (ω⊺xi)ω for all 1 ≤ i ≤ n and each column of X is projected to be a multiple of ω.
Then we sort the numbers ω⊺x1, ω⊺x2, . . ., ω⊺xn. After the numbers are sorted, we want
to partition the numbers into two groups such that the sum of variance inside two groups
are minimized. The algorithm of 1D bi-partition is summarized in Algorithm 3.

Our bipartition algorithm can be simply summarized in two steps:

1. Project the data points onto the direction ω along which the variance maximized;

2. Partition the projections ω⊺X of data on ω, which is a one-dimensional list, into two
groups such that the sum of variance in two groups are minimized.
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Figure 4.2: The instantaneous current of each user is observed every half an hour. We
have 289 observations for each user. The X-axis of each subplot represents the observation
number from 0 to 288, the Y-axis represents the instantaneous current at each observation.
In this figure, the first 9 users are normal users while the 10th one(the one in the first
column and the fourth row) is the thief.

4.4 Hierarchical Clustering =An Extension of 1D Bi-

partition along Principle Component

In order to separate the normal users and the thieves, we expect to run clustering algo-
rithms to partition the data points into two groups, one group corresponding to the normal
users and the other corresponding to the thieves. Clustering algorithms group data points
according to their similarities and similar data points are partitioned into the same group.
Although the normal users share much similarity, there may be huge diversity among the
thieves. As a result, the thieves may not be partitioned into the same group by the above
clustering algorithms. Thus partitioning the data points into two groups may not be enough
to separate normal users and thieves. While the clustering methods introduced previously
requires the number of groups to be explicitly provided, it is not easy to determine how
many groups that the data points should be partitioned into in advance. With respect
to such a drawback of the above methods, we extend our bi-partition routine to a multi-
group clustering method, which does not need the the number of groups as an input and
figures out the number of groups automatically. In our multi-group clustering algorithm,
we recursively project data to its maximum variance direction,and partition the resulted
one-dimensional list into two groups by minimizing the sum of variance of two groups.
The data points are then bi-partitioned the same as how their projections are partitioned.
The recursion halts until the list of 1D projection has a sufficiently small variance. Since
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the bi-partition recursively proceeds and the clustering results demonstrate a hierarchical
structure of binary tree, we call it hierarchical clustering. The details of this algorithm are
shown in Algorithm 4.

[I, Z] = HierachyClustering(X,Y,σ):
input : A m by n matrix X, where each of the n columns corresponds to a

sample and each sample has m features
output: An indicator vector I that shows which group each data point is

assigned to

[m n] ∶=size(X);
I =∶ Y ×ones(n,1);
[Î L] =∶ oneD-Bipartition(X);
if

√
VAR(L) < σ then

Return [I, Y + 1];
end

[I(find(Î == 1)) Y ] = HierachyClustering(X(∶,find(Î == 1)), Y, σ);
[I(find(Î == 2)) Y ] = HierachyClustering(X(∶,find(Î == 2)), Y, σ);
Return [I, Y ];

Algorithm 4: Hierachy Clustering
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Figure 4.3: Shift1, Shift2 and Shift3 are obtained by shifting the theft pattern appearing
in figure 4.2 to different phases; Periodic1, Periodic2 and Periodic3 are designed to
simulate periodic theft patterns; Victim1, Victim2 and Victim3 are generated by adding
periodic theft to normal user pattern.
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Chapter 5

Numerical Results

In this chapter, we show the numerical results of the theft detection methods introduced
and proposed at Chapter 2 and 4. Section 5.1 describes the data set that we use. Section
5.2 describes the simulation of the time-invariant tampering as well as the time-varying
tampering and shows the numerical results of the methods proposed in Section 2.3 and
3.4. Section 5.3 shows the numerical results of the methods introduced at Section 2.4.1 and
proposed at Section 2.4.2 and 2.5.2. Section 5.4 describes the simulation of the anomaly
in the time-series measurements of electric currents and shows the numerical results of the
clustering methods introduced and proposed in Chapter 4.

5.1 Description of the Data

We employ the data set used in [20] for testing. We name this data set Nikovski2013.
Nikovski2013 contains the demand profiles of ten users, where the first nine users are
honest (not stealing energy) and the tenth user is stealing energy. All these ten users
are attached to the same distribution transformer. The time span of the data collection
of Nikovski2013 was 144 hours and the measurements of instantaneous electric currents
and energy were made every 30 minutes. The theft only occurred in the last 24 hours, that
is, no theft occurred at the first 120 hours. Figure 4.2 shows the plots of electric currents
of the 10 users of Nikovski2013. Nikovski2013 also provides the simulated resistance
of each link from the DT (at the root) to each user (at the leaf) for evaluation [20]. The
major limitation of Nikovski2013 is the low ratio of thieves to honest users. In practice,
a higher percentage of users could be stealing energy. In the following sections, scenarios
with more thieves are simulated .
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5.2 Estimation of Tampering Ratio

The objective of this section is to estimate the tampering ratio of each user. This section
shows the numerical results of the methods in Section 2.3 and 3.4.

5.2.1 Constant Tampering Ratio

In the following tests, we use 14 users for testing, where the first nine users are all the
nine honest users directly from Nikovski2013, and users 10∼14 are additionally simulated
thieves based on Nikovski2013. We describe how users 10∼14 are simulated as follows.

We denote the time-series real electric currents that flow to all users by the matrix
I ∈ R288×14, where the ith row I(i, ∶) of I corresponds to the electric currents flowing
to all users at the ith time, the jth column I(∶, j) of I corresponds to the real electric
currents flowing to User j at different times. The first nine columns of I are directly from
Nikovski2013. The last five columns of I are simulated as follows. The real current
flowing to the 10th user is simulated to be the mean of the currents flowing to the first 9
users. For i = 11,12,13,14, the real currents flowing to the ith user is simulated to be

I(∶, i) = 2

10
I(∶,1 ∶ 10)γ + f, γ ∈ R10, f ∈ R288,

where the coordinates γj (1 ≤ j ≤ 10) of γ are independently drawn from a uniform dis-
tribution Unif(0,1), f ∈ R288 is drawn from a multi-variate Gaussian distribution. The
realizations of γ and f for different users are independent.

The measurements of the electric currents that flow to the first nine users are simulated
to be their real electric currents plus small Gaussian noises. As for users 10∼14, we use
0.2⋅I(∶,10), 0.6⋅I(∶,11), 0.4⋅I(∶,12), 0.68932⋅I(∶,13), 0.4814789⋅I(∶,14) as the measurements
of I(∶,10), I(∶,11), I(∶,12), I(∶,13), I(∶,14) respectively.

Recall that we estimate the tampering ratios by solving Problem (2.8). In fact, the
minimizer of Problem (2.8) contains the estimation of the multiplicative inverse of the
tampering ratio of each user. For convenience, we define the recovery parameter of a
user to be the multiplicative inverse of the tampering ratio of this user. That is to say,
the minimizer of Problem (2.8) contains the estimation of the recovery parameter of each
user. According to the simulation above, the vector β ∈ R14 that includes the real recovery
parameters of all the 14 users is

β = [ 1 1 1 1 1 1 1 1 1 5 1.667 2.5 1.6969 2.0769 ]⊺ .

Then we conduct the following 5 tests. In the first test, we only use the first 10 users,
the measured input current is the sum of the real currents of the first 10 users; in the
second test, we only use the first 11 users, the measured input current is the sum of the
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Tst1 Est. Tst2 Est. Tst3 Est. Tst4 Est. Tst5 Est. Real RP.
User 1 1.0121 1.0072 1.0062 1.0000 1.0000 1.0000
User 2 1.0065 1.0059 1.0053 1.0094 1.0000 1.0000
User 3 1.0064 1.0051 1.0000 1.0085 1.0000 1.0000
User 4 1.0000 1.0000 1.0000 1.0001 1.0000 1.0000
User 5 1.004 1.0015 1.0026 1.0000 1.0000 1.0000
User 6 1.0031 1.0000 1.0082 1.0073 1.0000 1.0000
User 7 1.0000 1.0014 1.0000 1.0000 1.0000 1.0000
User 8 1.0081 1.0083 1.0000 1.0046 1.0000 1.0000
User 9 1.0000 1.0012 1.0082 1.0099 1.0031 1.0000
User 10 4.8102 4.8813 4.9282 4.8626 4.9432 5.0000
User 11 NA 1.6427 1.6191 1.6761 1.6301 1.667
User 12 NA NA 2.4870 2.3922 2.5587 2.5
User 13 NA NA NA 1.7376 1.6680 1.6969
User 14 NA NA NA NA 2.1121 2.0769

Table 5.1: Constant Tampering Ratio
The column “Tst1 Est.” records the estimation of recovery parameter in the first test,
“Tst2 Est.” records the second and so forth. RP is short for the term recovery parameter
and the column “Real RP.” lists the real values of the recovery parameters.

real currents of the first 11 users plus a small Gaussian noise; in the third test, we only use
the first 12 users, the measured input current is the sum of the real currents of the first
12 users plus a small Gaussian noise; in the fourth test, we only use the first 13 users, the
measured input current is the sum of the real currents of the first 13 users plus a small
Gaussian noise; in the fifth test, we use all the 14 users, the measured input current is the
sum of the real currents of all the 14 users plus a small Gaussian noise.

Using the measurements of the instantaneous currents at the entry of the DT and at
the entry of each user, our objective is to estimate the tampering ratio of each user. The
estimation results of the recovery parameter (the multiplicative inverse of the tampering
ratio) of each user in these 5 tests are displayed in Table 5.1. The column “Tst1 Est.”
records the estimation of the recovery parameters in the first test, “Tst2 Est.” records the
estimation in the second test and so forth. The column “Real Val” lists the real value of
the recovery parameter of each user. As we can see from the table, the estimated values
are very close to the real values. These results show that `1 minimization is immune to
slight white noise of measurement and estimates the recovery parameters accurately.

In the following two subsections, keeping the real electric currents the same as in this
subsection, we generate time-varying tampering ratios.

59



5.2.2 Discrete Time-varying Tampering Ratio

The simulation of the real electric currents flowing to the 14 users in Subsection 5.2.1
still apply in this subsection. Instead of simulating constant tampering ratios, we sim-
ulate discrete time-varying tampering ratios. We generate a sequence of m numbers,
ai = 3sin(i), i = 1,2, . . . ,m, which are used to decide the change of tampering ratios.
We simulate time-varying tampering ratios for the currents flowing to users 10, 12 and
14. The measured currents flowing to user 10 are simulated to be 0.2⋅I(i,10), 0.25⋅I(i,10)
and 0.3⋅I(i,10) respectively when ∣ai∣ ≤ 1,1 < ∣ai∣ ≤ 2, and 2 < ∣ai∣ ≤ 3; the measured
currents flowing to user 12 are simulated to be 0.9⋅I(i,12), 0.7⋅I(i,12), and 0.83⋅I(i,12)
respectively when ∣ai∣ ≤ 1,1 < ∣ai∣ ≤ 2, and 2 < ∣ai∣ ≤ 3; the measured currents flowing to
user 14 are simulated to be 0.64⋅I(i,14), 0.59⋅I(i,14), and 0.74⋅I(i,14) respectively when
∣ai∣ ≤ 1,1 < ∣ai∣ ≤ 2, and 2 < ∣ai∣ ≤ 3, where i ranges from 1 to m. The measured currents of
other users are the same as in Subsection 5.2.1. The measured input current is the sum of
the real currents of all the 14 users plus a small Gaussian noise.

Using the measurements of the instantaneous currents at the entry of the DT and at
the entry of each user, our objective is to estimate the tampering ratio of each user. With
respect to the above simulation of discrete time-varying tampering ratios, Table 5.2 shows
the estimation of the recovery parameters by solving the optimization problem (2.8), while
Table 5.3 lists the estimation results by the time-varying recovery method (Algorithm
1). The formulation of Problem (2.8) assumes that the tampering ratio of each user is
constant and thus it only gives a single estimation of the tampering ratio for each user,
which is closest to the lowest real tampering ratio (of each user) during the horizon. The
time-varying recovery method catches the changes of the tampering ratios and provides a
sequence of estimations, which are all very close to the real recovery parameters during the
horizon.

5.2.3 Continuous Time-varying Tampering Ratio

The simulation of the real electric currents flowing to the 14 users in Subsection 5.2.1
still apply in this subsection. In this part, we simulate continuous time-varying tampering
ratios. We generate a sequence of m numbers, ci = 0.8 × ∣sin(2i + 5)∣, i = 1,2, . . . ,m, which
determines the fluctuation of tampering ratios. We simulate a continuous time-varying
tampering ratio for the current flowing to user 14. The measurements of the current
I(i,14) flowing to user 14 is simulated to be ci ⋅I(i,14). As a result, the tampering ratio of
user 14 is simulated to be a continuous function of time. The measured currents of other
users are the same as in Subsection 5.2.1.

Using the measurements of the instantaneous currents at the entry of the DT and
at the entry of each user, our objective is to estimate the tampering ratio of each user.
With respect to the simulation of continuous time-varying tampering ratios, Table 5.2
lists the estimation results of the recovery parameters by solving the optimization problem
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Discrete Variance Cont. Variance
Users Est. RP Real RP. Est. RP Real RP
User 1 1.0644 1.0000 1.0117 1.0000
User 2 1.0000 1.0000 1.0000 1.0000
User 3 1.1025 1.0000 1.0506 1.0000
User 4 1.0229 1.0000 1.0129 1.0000
User 5 1.0448 1.0000 1.0000 1.0000
User 6 1.0000 1.0000 1.1015 1.0000
User 7 1.1952 1.0000 1.0634 1.0000
User 8 1.2198 1.0000 1.0288 1.0000
User 9 1.0000 1.0000 1.000 1.0000
User 10 1.8430 3.3333,4,5 2.7384 2.9412
User 11 1.7981 1.6667 3.5825 3.5714
User 12 1.1367 1.2048, 1.4286, 1.1111 4.0082 4.0000
User 13 1.5372 1.4507 3.0825 3.2258
User 14 1.3514 1.3514, 1.6949, 1.5625 1.0000 0.3sin(2t+5

24 ) + 0.6,1 ≤ t ≤m.

Table 5.2: Estimation of Recovery Parameter by Time-invariant Method
RP is short for the term recovery parameter. The column “Discrete Variance”
corresponds to the case when the simulated tampering ratio changes with time discretely.
“Cont. Variance” corresponds to the case when the simulated tampering ratio changes
with time continuously.

User 1st Est. 2nd Est. 3rd Est. 4th Est. 5th Est. 6th Est. 7th Est. Real RP
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
2 1.0000 1.0000 1.0006 1.0077 1.0000 1.0000 1.0000 1.000
3 1.0000 1.0000 1.0189 1.0131 1.0014 1.0000 1.0000 1.000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
5 1.0000 1.0095 1.0034 1.0000 1.0000 1.0000 1.0000 1.000
6 1.0000 1.0000 1.0017 1.0000 1.0017 1.0000 1.000 1.0000
7 1.0000 1.0000 1.0006 1.0093 1.0004 1.0000 1.0000 1.000
8 1.0000 1.0023 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
9 1.0000 1.0017 1.0013 1.0024 1.0000 1.0000 1.0000 1.000
10 3.3333 4.0106 4.0157 3.9618 4.0136 4.000 5.000 3.3333,4,5
11 1.6667 1.7053 1.7087 1.6766 1.6657 1.6667 1.6667 1.6667
12 1.2048 1.3349 1.3775 1.3811 1.4180 1.4286 1.1111 1.20,1.43,1.11
13 1.4507 1.4699 1.4589 1.4798 1.4575 1.4507 1.4507 1.4507
14 1.3514 1.6255 1.5376 1.5465 1.6665 1.6949 1.5625 1.35,1.69,1.56

Table 5.3: Estimation of Recovery Parameters by Time-varying Method
RP is short for the term recovery parameter. This table provides the estimation results
of recovery parameters by Algorithm 1 when the simulated tampering ratios change with
time discretely.
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Figure 5.1: Continuous Time-varying Recovery of Electric Current
The X-axis and Y-axis of each diagram respectively represent the time and the recovery pa-
rameter(RP). The red plots shows the real value of the recovery parameter of each user. The
green plots shows the estimation of recovery parameters by the dynamic recovery method.
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(2.8), while Figure 5.1 shows the estimation results by the time-varying recovery method
(Algorithm 1). The solution to Problem (2.8) estimates the recovery parameter of user 14
to be a constant one, which does not reflect the fact that the recovery parameter of user 14
varies continuously between 1 and 3.33. The time-varying recovery method can recognize
the trend of the continuous change of the recovery parameter of user 14. An unsatisfactory
indication from Figure 5.1 is that it is a bit away from an accurate estimation of all the
tampering ratios during the horizon, which is probably due to the insufficient number of the
measurements with respect to each single tampering ratio during the horizon and the large
range of the changes of the tampering ratios. However, a continuous change of the recovery
parameter in the form of a sine function 0.8× ∣sin(2x+ 5)∣ is unlikely in practice. The fact
that, in such extreme conditions, the time-varying recovery method can still recognize the
pattern of change is an acceptable performance.

5.3 Estimation of The Resistance

The objective of this section is to estimate the resistance of each link in the smart distri-
bution network. This section shows the numerical results of the methods in Section 2.4.1,
2.4.2 and 2.5.2.

5.3.1 Estimation Based on Electric Current and Energy

In this part, we use the data of the first 9 users from the data set Nikovski2013. We
define the Theft Frequency to be the ratio of the number of time intervals in which
power theft occurs to the total number of time intervals (when energy is measured). We
define the Theft Ratio to be the ratio of the mean of power theft to the ohmic losses in
each time interval. Given a sequence of real values R1,R2, . . . ,Rm of the resistance of the
links and the estimation values R̂1, R̂2, . . . , R̂m of R1,R2, . . . ,Rm, we define the Relative
Estimation Error of Resistance to be

¿
ÁÁÀ m

∑
i=1

(R̂i −Ri)2

R2
i

.

Given the real amount of energy theft Ti and the estimation of energy theft T̂i at the ith
time interval, we define the Estimation Error of Theft in the ith interval to be

(T̂i − Ti)2

Given the theft frequency κ and the theft ratio q, we simulate the power theft to appear
in each time interval with probability κ; if theft occurs in a time interval, we simulate the
theft amount to be q times the ohmic losses in this time interval plus some Gaussian noise.
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Resistance (Ω)
Estimation

Real Val
Before Recovery After Recovery

R1 0.3869 0.3869 0.3869
R2 0.4613 0.4613 0.4613
R3 0.4613 0.4613 0.4613
R4 0.5152 0.5152 0.5152
R5 0.3288 0.3288 0.3288
R6 0.4192 0.4192 0.4192
R7 0.3894 0.3895 0.3894
R8 0.3369 0.3370 0.3369
R9 0.5149 0.5134 0.5149
R10 2.3386 0.4731 0.4677
R11 0.1703 0.1055 0.1022
R12 0.5054 0.1991 0.2022
R13 0.2922 0.1773 0.1722
R14 0.4605 0.2200 0.2217

Table 5.4: Estimation of Resistance Using Measurement of Voltage 1

Resistance (Ω)
Estimation

Real Val
Before Recovery Time-invariant Time-varying

R1 0.3701 0.3736 0.3941 0.3869
R2 0.4207 0.4751 0.4681 0.4613
R3 0.4003 0.3842 0.4135 0.4126
R4 0.4848 0.5168 0.5232 0.5152
R5 0.3173 0.3237 0.3350 0.3288
R6 0.3964 0.4314 0.4260 0.4192
R7 0.3653 0.3337 0.3935 0.3894
R8 0.3215 0.2832 0.3435 0.3369
R9 0.4914 0.5289 0.5195 0.5149
R10 1.0532 0.8933 0.4742 0.4677
R11 0.2292 0.1836 0.1888 0.1837
R12 0.2187 0.2133 0.1657 0.2041
R13 0.3869 0.2666 0.2784 0.2691
R14 0.2382 0.2806 0.1863 0.1876

Table 5.5: Estimation of Resistance Using Measurement of Voltage 2
The column of “Time-invariant” corresponds to the estimation of resistance after the recov-
ery by solving Problem (2.8). The column of “Time-varying” corresponds to the estimation
of resistance after the recovery by the time-varying recovery method
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Figure 5.2: The X-axis of this figure represents the theft frequency while the Y-axis stands
for the relative estimation error of resistance. The green plot is the result of least squares
estimation while the red plot is the result of `1 minimization. As we can see, the estimation
error of `1 minimization is less than the estimation error of least squares estimation overall.
In addition, the estimation error of `1 minimization is more robust than least squares
estimation with the increase of theft frequency.
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Figure 5.2 shows the comparison between `1 minimization and least squares estima-
tion in estimating the resistance of the links with the increase of theft frequency. The
estimation errors of these two methods are very close when the theft frequency is close to
zero. With the increase of theft frequency, the error of least squares method dramatically
increases but the error of `1 minimization method only increases slightly. After the theft
frequency crosses over 0.4, the estimation error of least squares estimation falls back while
the estimation error of `1 minimization still increases slightly. The estimation error of least
squares estimation is greater than `1 minimization overall.

Figure 5.3 shows that comparison between `1 minimization and least squares estimation
in estimating the resistance of the links with the increase of theft ratio. The estimation
errors of least squares estimation is smaller than `1 minimization when the theft ratio
is lower then 0.03. After the theft ratio crosses over 0.04, the estimation error of least
squares estimation becomes greater than `1 minimization. With the increase of theft ratio,
the estimation error of least squares method dramatically increases but the estimation error
of `1 minimization method is almost not changed. Here is the reason for the robustness
of `1 minimization compared to `2 minimization: if the locations of the non-zero entries
of the residual are fixed, then the optimality conditions (the KKT conditions) for the `1

minimization problem are not changed with the increase of the size of residual; for `2

minimization, the optimality conditions depend on the size of the residual and thus the
solution may change significantly with the increase of the size of the residual.

When the theft ratio is 0.08 and the theft frequency is 0.4, the red plot and the green
plot of Figure 5.4 respectively record the error in estimating the amount of energy theft in
each time interval by `1 minimization and least squares estimation. Figure 5.4 shows that
`1 minimization has better accuracy in estimating the amount of energy theft in each time
interval than least squares estimation.

The above results show that the accuracy of the estimation by `1 minimization is robust
while the accuracy of least squares estimation is very sensitive to the increase of theft ratio
or theft frequency. The reason is, since the non-negativity constraint has already enforced
the estimated resistance in a correct range, some bad samples (collected when theft occurs)
cannot affect the estimation much. Least squares estimation selects a hyperplane in the
middle of the data points. If there are several bad data points that are far away from and
on the same side of the correct hyperplane, least squares estimation needs to compromise
to these bad points and thus the estimation is seriously mislead to the wrong side.

5.3.2 Estimation based on Voltage and Electric Current

Simulation in Single-layer Tree Topology

The simulation of the real electric currents flowing to the 14 users in Subsection 5.2.1
still apply in this subsection.

All the 14 users are attached to a single DT. We denote the resistance of the link
between the DT and the ith user by Ri, for i = 1,2,⋯,14. The resistance of the links
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Figure 5.3: The X-axis of this figure stands for the theft rate while the Y-axis corresponds to
the relative estimation error of resistance. The green plot is the result by the least squares
estimation while the red plot is the result of `1 minimization. As we can see, the estimation
error of least squares estimation increases rapidly with the increase of theft rate while the
estimation error of `1 minimization is robust against the increase of theft ratio.
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Figure 5.4: The X-axis of this figure represents the time interval number while the Y-axis
stands for the estimation error of theft in a time interval. The green plot is the result
of least squares estimation while the red plot is the result of the `1 minimization. As we
can see, the estimation error of `1 minimization is smaller than least squares estimation
overall.
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between DT and the first 10 users are directly from Nikovski2013. For i = 11,12,13,14,
the resistance of the line between DT and the ith user is generated to be

Ri =
2

10
[ R1 R2 . . . R10 ]σ,σ ∈ R10,

where the coordinates σj (1 ≤ j ≤ 10) are independently drawn from a uniform distribution
Unif(0,1). The realizations of σ for different users are independent. The DT parameter
is set to be 1

20 . The voltage potentials measured at the entry of the DT and at the entry of
each user are simulated respectively to be 5,000 Volts and 250 Volts plus a small Gaussian
noise.

In the following discussion, if method 1 and method 2 respectively estimate the resis-
tance R to be R̂ and R̃, with R̃ being closer to R than that of R̂, then we say that method
2 (compared to method 1) improves the accuracy of estimation by

∣R̂ −R∣ − ∣R̃ −R∣
R

.

We conduct the following two tests. In the first test, we use the simulated measurements
of electric currents from Subsection 5.2.1. We recover the incorrect measurements by
solving Problem (2.8) and Table 5.4 shows the estimation of resistance before and after the
recovery of incorrect measurements. Since the first nine users are not tampering with the
meters, there is not much difference between the accuracy of the estimation of R1,⋯,R9

before and after the recovery. However, the accuracy of the estimation of R10,⋯,R14 is
improved significantly by at least 50% after the recovery.

In the second test, we use the simulated measurements of electric currents from Sub-
section 5.2.2. We recover the incorrect measurements by two different recovery methods
(solving Problem (2.8) and running Algorithm 1), and Table 5.5 shows the estimation of
resistance before and after the recovery of incorrect measurements. As indicated in Ta-
ble 5.5, the accuracy of the estimation of R1,⋯,R9 before the recovery is affected by the
time-varying tampering ratios of Users 10, 12, 14 even though the first nine users are not
tampering with the smart meters. As for the estimation of R2 and R4, both recovery
methods improves the accuracy by at least 5%; as for the estimation of R11 and R13, both
recovery methods improves the accuracy by at least 20%; as for the estimation of R10 and
R14, the recovery method by solving Problem (2.8) does not show significant improvement
while the time-varying recovery method increases the accuracy by at least 25%; as for the
estimation of the other resistance, both recovery methods do no show significant improve-
ment.

Simulation in Multi-layer Tree Topology

The topology we use for simulation is shown in Figure 5.5. The nodes v0,1, v1,1, v1,2, v2,1,
v2,2, v2,3, v2,4 decrease the voltage and distribute the energy to users, which are represented
by the nodes v3,1, v3,2, v3,3, v3,4, v3,5, v3,6, v3,7, v3,8. The real electric currents that flow to
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Figure 5.5: Topology for the Simulation in Section 4.4
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Resistance Estimation Real Val
Rv0,1→v1,1 0.1957 0.1957
Rv0,1→v1,2 0.2069 0.2076
Rv1,1→v2,1 21.8860 21.7003
Rv1,1→v2,2 27.0417 27.1434
Rv1,2→v2,3 20.1511 19.7573
Rv1,2→v2,4 18.4532 18.2867
Rv2,1→v3,1 0.2185 0.2185
Rv2,1→v3,2 0.1815 0.1815
Rv2,2→v3,3 0.2359 0.2359
Rv2,2→v3,4 0.2418 0.2418
Rv2,3→v3,5 0.2148 0.2148
Rv2,3→v3,6 0.1789 0.1789
Rv2,4→v3,7 0.1806 0.1806
Rv2,4→v3,8 0.2296 0.2296

Table 5.6: Estimation of Transmission Resistance Using Measurement of Voltage 3

Resistance
Estimation

Real Val
Before Recovery After Recovery

Rv0,1→v1,1 0.1957 0.1957 0.1957
Rv0,1→v1,2 0.2069 0.2069 0.2069
Rv1,1→v2,1 22.2054 22.2054 21.8860
Rv1,1→v2,2 27.3867 27.3867 27.0417
Rv1,2→v2,3 20.2986 20.2986 20.1511
Rv1,2→v2,4 18.7835 18.7835 18.4532
Rv2,1→v3,1 0.5202 0.2185 0.2185
Rv2,1→v3,2 0.1815 0.1815 0.1815
Rv2,2→v3,3 0.6427 0.2359 0.2359
Rv2,2→v3,4 0.2417 0.2418 0.2418
Rv2,3→v3,5 0.3181 0.2147 0.2148
Rv2,3→v3,6 0.1789 0.1789 0.1789
Rv2,4→v3,7 0.3909 0.1806 0.1806
Rv2,4→v3,8 0.2296 0.2296 0.2296

Table 5.7: Estimation of Transmission Resistance Using Measurement of Voltage 4
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the users located at the leaves are directly from Nikovski2013. The real resistance of each
link is simulated in the same way as described in the part of Simulation in Single-layer
Tree Topology. Electric current and voltage are measured only at the entry of the DT
v0,1 and the entries of all users. The measurement of voltage at the entry of each user is
simulated to be 240 Volts plus a small Gaussian noise.

In the first test, we do not simulate any user who is tampering with the smart meter.
The measurement of the electric current flowing to each user is simulated to its real value
plus a small Gaussian noise. The results of estimations are shown in Table 5.6. The result
shows that our estimations are not affected much by the the noise of measurement and
very close to the real values.

In the second test, the red users in the Figure 5.5, v3,1, v3,3, v3,5, v3,7 are simulated to
be tampering with the smart meters. The measurements of the electric currents flowing
through the red links are respectively simulated to be 0.42, 0.367, 0.675 and 0.462 times of
their real values. Table 5.7 shows the estimation of resistance before and after the recovery
of incorrect measurements. As for the estimation of Rv2,1→v3,1 , Rv2,2→v3,3 , Rv2,3→v3,5 and
Rv2,4→v3,7 , the estimation accuracy is improved by at least 50% after the recovery; as for
the estimation of other resistance, the estimation accuracy is not significantly improved
after the recovery.

5.4 Clustering

5.4.1 Test 1—Different Electric Current Patterns of Power Theft

In this subsection, we use 18 users in total for testing. The first nine users that we use
for this section are all the nine honest users directly from the Nikovski2013 data set.
In addition to the honest users from Nikovski2013, we simulate 9 more users who are
stealing energy by directly tapping a line. The simulated measurements of the electric
currents flowing to these 9 thieves are shown in Figure 4.3. We call these 9 different theft
patterns (of electric currents) in Figure 4.3 Shift1, Shift2, Shift3, Periodic1, Periodic2,
Periodic 3, Victim1, Victim2, and Victim3. We run 9 tests and in each of the nine tests
we use one of the these nine simulated thieves as user 10. For user i (1 ≤ i ≤ 10), we have
the vector xi ∈ R288 that records the time-series measurements of electric current flowing to
user i at 288 different moments. In each of these 9 tests, we apply 3 clustering algorithms
K-means, spectral clustering and 1DBPE to partition the 10 vectors corresponding to the
10 users into two groups. The clustering results are shown in Table 5.8. As Table 5.8
indicates, all the clustering algorithms can figure out which one of the ten vectors of the
measured electric currents shows an anomaly.
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10th User
K-means Spectral Clustering 1DBPE

Group1 Group2 Group1 Group2 Group1 Group2
Shift1 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Shift2 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Shift3 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10

Periodic1 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Periodic2 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Periodic3 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Victim1 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Victim2 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10
Victim3 Users 1∼9 User 10 Users 1∼9 User 10 Users 1∼9 User 10

Table 5.8: Accuracy of Three Clustering Methods for Alternative Theft Patterns

Algorithm Partition Results in Group1 Partition Results in Group2
K-means Users 1∼9 and users 14∼18 Users 10∼13
Spectral Clustering Users 1∼9 and users 13∼18 Users 10∼12
1DBPE Users 1∼9 and users 14∼18 Users 10∼13

Table 5.9: Accuracy of Three Clustering Methods for Standard Data Set

5.4.2 Test 2—An Explore of Clustering Accuracy VS Many Thieves

In the simulation of the last section, we have only one thieve and all of those 3 clustering
algorithms can figure out whose measured currents shows anomaly compared to others .
We are interested in how the clustering result changes with the increase of the number of
abnormal users.

This section studies the relationship between the accuracy of clustering and the number
of thieves. We maintain the first 9 honest users. We include all the 9 theft patterns in
Figure 4.3 into our test. That is to say, there are 9 honest users and 9 abnormal users in
this test, where users 1∼9 are honest and users 10∼18 are abnormal. Table 5.9 shows the
results of clustering.

Unfortunately, the honest users and the abnormal users cannot be perfectly separated.
The honest users share large similarities but the theft patterns are diverse. The common
objective of all these clustering algorithms is to minimize the dissimilarities between dif-
ferent groups or maximize the similarities inside each group. Under such objective, it is
unlikely for these clustering algorithms to put all these theft patterns in the same group
since there is a huge diversity among them. Consequently, some theft patterns are parti-
tioned into the same group as the honest users. For example, in the result (Table 5.9) of
this test, users 14∼18 (thieves) are assigned to the same group (group1) as users 1∼9 (the
honest users). In this situation, we may want to proceed one more step of bi-partition in
group 1 to separate users 1∼ 9 and users 14∼18. This motivates us to apply the hierarchical
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(1–18)

(1–9, 14–18)

(16)(1–9,14,15,17,18)

(14)(1–9,15,17,18)

(17,18)

(18)(17)

(1–9, 15)

(1–9)(15)

(10,11,12,13)

(10,12,13)(11)

Figure 5.6: Recursion Tree

Results of Hierarchy Clustering
Group1 User 11
Group2 User 10,12,13
Group3 User 16
Group4 Users 1∼9
Group5 User 18
Group6 User 17
Group7 User 14
Group8 User 15

Table 5.10: Partition Results of Hierarchy Clustering

clustering, which bi-partitions the data points recursively until the dissimilarity inside a
group is low enough.

To better illustrate the working process of the hierarchical clustering, we show the
recursion tree of clustering in Figure 5.6. At the first step of clustering, 18 users are
divided into two groups, the first group contains users 10∼13, the second group contains
users 1∼9, 14∼18. So the normal users 1∼9 and thieves are assigned to the same group in
the first step. With the proceeding of recursion, thieves are gradually excluded from the
group of normal users. Finally, at the base level (leaf node), normal users 1∼9 are in the

# Users Members of Majority Group Size of Second Majority # Groups
30 Users 1∼9 3 19
40 Users 1∼9 3 28
50 Users 1∼9 4 32
60 Users 1∼9 4 38

Table 5.11: Hierarchy Clustering VS Number of Theives
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same group with no thieves involved.

5.4.3 Test 3—An Explore of Clustering Accuracy VS Number of
Thieves

In this subsection, we directly use the first 9 honest users from Nikovski2013 and generate
at most 51 thieves. The measurements of the electric currents flowing to the 51 thieves
are generated from a linear combination of the 9 vectors in Figure 4.3. The coefficients
of the linear combination are absolute values of a series of numbers drawn from Gaussian
distribution. Consequently there are only 15% normal users in the worst case. To explore
whether the accuracy of hierarchy clustering is affected by number of thieves, we include
21,31,41,51 thieves into our tests in turn.

The results of hierarchical clustering with 21, 31, 41, 51 thieves are summarized in
Table 5.11. Table 5.11 shows the members of the majority group, the size of the second
majority group, and the total number of groups partitioned by hierarchical clustering with
the increase of thieves. The result tells that the hierarchical clustering constantly includes
the normal users into the majority group while any other thieve is excluded from the
majority group. The number of groups(partitioned by hierarchy clustering) increases with
the number of thieves. Other than the majority group, any other group has only very few
members. So the hierarchy clustering can recognize the normal users as the majority group
even though the percentage of normal users is as low as 18%.
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Chapter 6

Conclusion

In this thesis, we deal with mainly two types of theft: tampering with a smart meter and
tapping a line. For the theft in the form of tampering with the smart meters, we propose
a theft detection framework based on the knowledge of the tree topology of the electricity
grid, which can potentially locate the source of theft and estimate the resistance of each
link in the grid using the measurements of electric current, voltage and energy, where the
measurement points are only set at the root distribution transformer and at the entries of
all customers. When the theft in the form of tapping a line happens, the secretly introduced
links prevent us from using the knowledge of the tree topology of the grid and thus our
theft detection framework cannot locate the unknown illegal links. In this situation, we
apply clustering algorithms to analyze the anomalies in the usage data of all customers. We
propose a hierarchical clustering named 1DBPE which recursively bi-partitions the data
along the principle eigenvector and separate the usage data of normal users and abnormal
users.

On the numerical side of this thesis, we test our theft detection framework and our
clustering algorithm 1DBPE on the computer simulation based on real data. Our numerical
results show that

� Our theft detection framework can effectively locate the tampering and accurately
estimate the tampering ratio of each user within a range of measurement noises when
the tampering ratios are constant;

� Our theft detection framework can recognize the time-varying tampering but the
exact recovery of the real electric currents is not guaranteed when the tampering
ratios change with time;

� Our theft detection framework can accurately estimate the resistance of each link as
long as the measurements (or the estimations) of the electric currents are accurate
and hence the severe lossy links can be accurately located;
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� Given a suitable threshold of variance, our clustering algorithm 1DBPE can automat-
ically decide the number of groups that the data are partitioned into, and separate
the usage data of normal users from the abnormal users.

On the theoretical side of this thesis, we observe that our estimation of path loss rates,
estimation of tampering ratios and estimation of transmission resistance share the same
formulation min

x≥0
∥Y − Ax∥`1 . We give a novel proof to show that under some suitable

conditions, the `1 minimization problem has a unique minimizer and the unique minimizer
is equal to the real underlying solution.
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