
A Statistical Analysis of the
Aggregation of Crowdsourced Labels

by

David Szepesvari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© David Szepesvari 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Crowdsourcing, due to its inexpensive and timely nature, has become a popular method
of collecting data that is difficult for computers to generate. We focus on using this
method of human computation to gather labels for classification tasks, to be used for
machine learning. However, data gathered this way may be of varying quality, ranging
from spam to perfect. We aim to maintain the cost-effective property of crowdsourcing,
while also obtaining quality results. Towards a solution, we have multiple workers label
the same problem instance, aggregating the responses into one label afterwards. We study
what aggregation method to use, and what guarantees we can provide on its estimates.
Different crowdsourcing models call for different techniques – we outline and organize
various directions taken in the literature, and focus on the Dawid-Skene model. In this
setting each instance has a true label, workers are independent, and the performance of each
individual is assumed to be uniform over all instances, in the sense that she has an inherent
skill that governs the probability with which she labels correctly. Her skill is unknown to us.
Aggregation methods aim to find the true label of each task based solely on the labels the
workers reported. We measure the performance of these methods by the probability with
which the estimates they output match the true label. In practice, a popular procedure is to
run the EM algorithm to find estimates of the skills and labels. However, this method is not
directly guaranteed to perform well in our measure. We collect and evaluate theoretical
results that bound the error of various aggregation methods, including specific variants
of EM. Finally, we prove a guarantee on the error suffered by the maximum likelihood
estimator, the global optima of the function that EM aims to numerically optimize.

iii

Acknowledgements

First and foremost I would like to thank my supervisor Shai Ben-David for his patience,
support and the freedom he has given me in the topic of my study. I appreciate his
deep understanding of many subjects, the clarity of his thoughts and communication—
compelling me to work towards the same—and the feedback he provided.

I am also grateful to my parents for the example they have set for me in all aspects of
life; additionally, my father for making his invaluable knowledge, insights and experience
available to me in general and in the context of this work, too; my mother, as well as
brother-in-law Deon and friend Shreya for the motivation, time and attention they have
granted me and this project.

Finally, I would like to acknowledge my friends, in particular Neeraj, and everyone else
who made my time at the University of Waterloo as pleasant as it was.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Crowdsourcing Problems 3

2.1 The Nature of Crowdsourced Data . 4

2.2 Mathematical Formulations of Label Aggregation 6

2.2.1 Categorization by Degrees of Freedom 6

2.2.2 Models of Labelling . 8

3 Inference in the Dawid-Skene Model 11

3.1 Problem Definition . 11

3.2 Discussion of the Model . 14

3.3 Performance Baselines . 16

3.3.1 Majority Voting . 16

3.3.2 Stylized Crowds . 17

3.4 Existing Results . 18

3.4.1 Known or Approximate Parameters 19

3.4.2 Inference with Task Allocation . 21

3.4.3 General Inference . 26

3.4.4 Comparison of Bounds . 27

v

4 Background 30

4.1 The Log-Likehood Function . 30

4.2 Concentration Inequalities . 32

4.3 Uniform Deviations . 34

4.4 Covering Numbers . 36

5 Results 38

5.1 A Convergence Rate for Label Inference 38

5.1.1 The Log-Likelihood Functions and Their Maximizers 39

5.1.2 The Convergence of the Log-Likelihood to its Expectation 41

5.1.3 The Proximity of the Maximizing Parameters 43

5.1.4 From Approximate Weights to Labels 46

5.1.5 A Mistake Bound . 48

5.2 Additional Results . 49

5.2.1 Inference with Weights That are Independent of Labels 50

5.2.2 Separation Criterion . 50

6 Conclusion and Future Work 52

7 Proofs 54

7.1 The Log-Likelihood Functions and Their Maximizers 54

7.2 The Convergence of the Log-Likelihood to its Expectation 55

7.2.1 Concentration of the LLF at a fixed parameter 55

7.2.2 The covering number of our space 57

7.2.3 High probability uniform deviation bound 58

7.3 Bounds on the Error of the Weight Estimate 60

7.4 From Approximate Weights to Labels . 66

7.4.1 Optimal Weights Close to Erring 66

vi

7.4.2 A Modular Mistake Bound . 67

7.5 Mistake Bounds . 68

7.6 Inference with Deterministic Weights . 70

7.7 Supplementary Results . 70

References 73

A Supporting Material for Conjecture 1 77

A.1 Range restriction on v̌ and the inequality over [−vλ, v∗] 80

B A Counterexample 85

vii

List of Tables

3.1 Comparison of the guarantees provided for various algorithms in the litera-
ture.
We consider a number of algorithms with theoretical guarantees on the probability of mis-

labelling; the algorithms and the bounds for them are precisely stated in Section 3.4.4.

We evaluate each of these methods on the typical crowds introduced earlier, displaying

the negative exponent of the resulting guarantees in this table. We use α1
.
= 1− 2(1−ε)

w ,

α2
.
= 1− 2(1−ε2)

w ; both quantities go to 1 with w increasing. 28

viii

List of Figures

2.1 An example of a worker label matrix, the input to the Inference Problem.
Here 5 workers (rows) provided labels for a total of 6 instances (columns) of a binary

task. The entries in the matrix are the labels provided by the workers; entry (i, j) is the

label assigned to instance j by worker i. If an entry is missing, the worker did not label

the corresponding instance. 7

2.2 A possible confusion matrix.
Here “t” stands for the “true label”, “r” stands for the “response”, and the real number

in entry (i, j) is the probability that the worker will assign label j to an instance with

true label i. 8

3.1 Confusion matrix for the one-coin model.
Here “t” stands for the “true label”, “r” stands for the “response”. p∗i is the probability

of returning the correct label, which is the same for both positive and negative labels in

this model. 12

3.2 The locally tree-like structure of Karger et al.’s task allocation, for k = 1.
For this representation we “folded out” the bipartite graph to reveal the tree. Black

vertices represent instances, white ones workers. Note, we set l = 3 and r = 5 for this

illustration. 24

5.1 The transformed negative binary entropy acting as the Separation Criterion. 51

7.1 An illustration of the set of ε that satisfy Equation (7.1).
The shaded interval on the x-axis is the set of satisfying ε. We hope to find the smallest

such ε, ε′, though we only do so approximately. 60

7.2 The contour plot of L (v, y) for w = 1 and continuous label y ∈ [−1, 1].
Weights are shown on the horizontal axis, the continuous label on the vertical axis. For

the generation of this plot the true skill was set to 2.2. 61

ix

7.3 The plot of A2(v) in red and l0.75
q (v) in green.

The vertical line near v = 5 is vλ for λ =
√

2/105. 63

7.4 Functions of bounded uniform deviation have similar maxima. 71

A.1 Comparing the true and approximate minimizers of fv(·, λ).
We compare, as a function of p = − log(λ), the location of the true minimizer of fv in

v, calculated numerically, and the approximate location used, log(p). We see that they

behave similarly, with the approximate appearing to be consistently larger after some

point. Note: label on the x-axis is wrong, it should be p. 79

A.2 The behavior of min0<v<v∗ fv(v, λ).
The graph depicts 3 functions: (1) the numerically calculated best γ∗(λ) given as min0<v<v∗ fv(v, λ)

(2) our conjectured lower bound of γ∗(λ),
√

2/p (3) a lower bound suggested by our anal-

ysis, 1
25

√
2(p+1)

p(p−log p)

[
1− 1

2(p+1)

]
(v̂−v̌)+

√
2/p . These are plotted in terms of p = − log λ.

The graph was generated with the “find gamma approx.py” script, by running “find approx diff()”

with options approx="lam npow", der approx="reduced expr", value at approx estimate

= np.sqrt(2/p) and distance estimate = (vs-v appr). 81

A.3 Illustrating the lower bound lγq with γ(p) =
√

2/p for v∗ ∈ {0, 1, 2}. 82

A.4 Illustrating the lower bound lγq with γ(p) =
√

2/p for v∗ ∈ {3, 4, 5}. 83

A.5 Illustrating the lower bound lγq with γ(p) =
√

2/p for v∗ = 6 at the same
scale as that of Figures A.3 and A.4, as well as zoomed in. 84

x

Chapter 1

Introduction

Crowdsourcing, a recent buzzword, refers to the process of distributing jobs to a large
group of people over the internet. The so-called workers get exposed to more opportunities
through which they can earn a wage, and for the employers it provides a convenient, quick,
and often cheap way of getting tasks done that would otherwise require hiring someone.
Nonetheless, crowdsourcing is not always monetarily motivated; the Zooniverse1 project is
one of the numerous “volunteer research” platforms.

Our main motivation of using crowdsourcing is to collect labels for supervised learning.
In modern-day techniques, predictors get trained on thousands, if not millions of examples.
With crowdsourcing these labels can often be collected in a cheap and timely fashion; the
caveat being that the quality of these labels is not guaranteed and in fact, a large part of
it can even be spam. One solution is to request multiple workers to solve, or in our case
label each problem. For many crowdsourcing problems, identifying the best solutions can
be done manually. However, given the large quantity of data we are considering, there is a
need for an automated method. We aim to aggregate responses, from a number of sources
of varying reliability, into labels for each supervised learning instance that we believe are
perfect with high confidence.

This is a popular and well-studied problem. We devote the next chapter to outlining
and organizing a number of approaches taken in the literature. In the remainder of the
thesis, we focus on the theoretical aspect of the problem, that is, we wish to see and provide
guarantees on the performance of various aggregation methods. Moreover, we want these
guarantees to come in the form of a mislabelling error: assuming that each problem to be
labelled has a true label associated to it, we wish to obtain that label with high probability.

1https://www.zooniverse.org/

1

https://www.zooniverse.org/

We select the one-coin model (an instance of the Dawid-Skene model) — which is simple,
yet effective — and discuss in-depth the available knowledge pertaining to it. The key
assumption in this model is that each worker providing labels has an inherent level of
reliability that is uniform over her labelling, governing the probability with which her labels
are correct. In order to better reflect on the performance of aggregation methods used and
analysed in this setting we use a tabular representation, contrasting the guarantees offered
for each, in various stylized scenarios.

In the model of our choice, one of the most common practical aggregation algorithms
is the well known EM meta-algorithm. As EM is not directly guaranteed to perform well
according to our natural measure, there have been various studies to establish the low
mislabelling error (Gao and Zhou, 2013; Zhang et al., 2014). We uncover an important
mistake in a proof given by Gao et al.Gao and Zhou (2013) pertaining to the performance
of the global maximizer of the function EM optimizes. Furthermore, we set out to prove
an upper bound in a similar setting. To be precise, we consider the maximum likelihood
estimate and work towards a proof of an upper bound on its probability of mislabelling.
We finish with a finite sample bound that controls the error rate of these estimates, but
relies on a simple analytic statement that is well-justified, albeit not yet proven.

Outline. In Chapter 2, we detail the crowdsourcing scenario considered along with the
common problems related to it. Chapter Chapter 3 specifies the model we work with in
full mathematical detail while introducing some notation used throughout the thesis. We
also quote and discuss relevant statements from the literature, and present their guarantees
for an overview. Chapter 4 elaborates common techniques that will be used in the proofs
towards the main result. Finally, Chapter 5 shows our main results leading up to a bound on
the error rate of the maximum likelihood estimates. In Chapter 6, we conclude the thesis,
reflecting on our result, its place in the literature, and outlining directions in which the
investigation could and should continue. Chapter 7 holds the proofs of the mathematical
claims made throughout the thesis.

2

Chapter 2

Crowdsourcing Problems

Our motivation is to collect labelled examples for (semi-)supervised learning. Historically
there was a shift from supervised to semi-supervised learning motivated by the fact that
in many domains unlabelled data is abundant, does aid learning, and labels are costly in
comparison. With crowdsourcing, however, one now has access to cheap labelled data –
though of possibly low quality. The goal is to have the cake and eat it too; can we boost
the quality of the labels acquired from crowds while keeping the cost low?

In order to boost the label quality, we ask multiple workers – who are assumed to be
labelling independently of each other – to label the same instance. We can report the
majority label as our estimate with increased confidence. Clearly, then, a strategy is to
keep adding such independent workers. However, we would like to keep costs as low as
possible, therefore study whether there are more “efficient” ways to combine, or aggregate
the labels provided by the workers. We will make the key assumption that the performance
of each worker is in some way consistent over all instances of a task. Details vary between
different works, but in general the inclusion of this assumption does enable significant
improvements over the above mentioned majority voting in the label quality-cost trade-off.

For an illustration, consider the situation that there are some instances of the problem
where all the workers specified the same label. This increases our confidence in these
workers’ abilities, and we trust them more than others. This, in turn, may reveal that
there are other instances where workers appearing skilful are mostly in agreement. Again,
we use this information to adjust our evaluation of the workers. Eventually, we get a sense
of the workers’ skill, while providing estimates for the labels that takes this into account.
Although the pattern exploited in this illustration may be more subtle in typical data
gathered through crowd-sourcing, it is still possible to utilize it.

3

Note that this process of gathering labels of unknown quality is not exclusive to crowd-
sourcing. The sources of the labels are irrelevant, as long as it is sensible to make the
required assumptions. An important example is the aggregation of labels from already
trained classifiers. The problem of aggregating classifiers is well studied in statistical
learning, though traditionally this is done using labelled data. The crowdsourcing problem
may be interpreted as the aggregation of classifiers using unlabelled data; the recent work
of Jaffe et al. (2015) is, in fact, phrased in such a way.

This chapter presents the general framework we consider and provides an overview of
the research studying it. We describe a typical crowdsourcing platform, as well as the
nature of the data collected with it. We then identify three problem families dealing with
crowdsourced data. Independently of these, we categorize works based on the relationship
they assume between the labels to be recovered and those provided by workers.

2.1 The Nature of Crowdsourced Data

Since our study is motivated by the use of crowdsourcing to acquire labels for machine
learning tasks, in particular classification, we often require a copious number of instances
to be labelled by the crowd, with each individual instance quickly categorized by a human
in exchange for a small sum of money on the scale of 1-3 cents. Such crowdsourcing
tasks are often referred to as microtasks. We outline here key facts about Amazon Turk
(Amazon, 2015), a crowdsourcing site, which was the first well-known such platform and
is still popular in the microtasking community. Its system is representative of a large body
of crowdsourcing sites:

• It is the workers that decide which tasks they will do. That is, employers cannot
request workers, let alone workers of given accuracy. However there are ways – widely
used in the hope of reducing the amount of spam – to filter the workers that can even
attempt the task based on a simplistic system-wide measure of reported reliability.
This does not actually seem to stop spammers, however (Ipeirotis, 2010).

• It is possible to require training of workers before they can attempt a task.

• It is possible to reject work submitted by a worker, meaning they will not be paid.
This should not be done lightly, though, as it may result in a bad reputation of the
employer, with workers not even attempting future tasks (Chen, 2012; Kumar, 2014).

4

• It is reasonable to require workers complete some given number of instances per
payout. However, more often each payout is tied to a small number of instances with
the system making it simple to continue with new instances of the same task. In
fact, workers tend to grind on one task if they like it. This means we can mostly
expect two types of workers: ones who complete a few tasks, and ones who do many
–measured in 10s, 100s or even 1000s (Chen, 2012; Kumar, 2014; redditer, 2014).

• Each user’s ID is available with their submission, so they can be identified.

• It is possible to specify that workers cannot repeat the same instance multiple times.

Note that the last bullet point aids in actually enforcing the assumption that sources are
independent. Furthermore, that the fact that IDs are available with each submission allows
us to identify and track each worker, which is needed in order to utilize the assumption on
the workers’ labelling performance. On the other hand, it is apparent that controlling the
quality of responses is difficult; it is expected to see spammers whose responses carry no
information about the true label of the instances. Workers exerting effort may also make
varying numbers of mistakes.

The Amazon Turk framework has a serious limitation: it is not possible to request
specific workers. Put differently, workers cannot be allocated to specific tasks or even
instances. This would likely increase the efficiency of a smart microtasking and label
aggregation system – though it also brings up various design questions. We concentrate
on the system offered by Amazon Turk and other similar platforms, as it is the most
widespread contemporary design.

A word on label quality: It is important to note that in practice the way labelling
problems are presented to the worker have a tremendous effect on the quality of each
individual worker label. While not the prime example of a microtask, in a Zooniverse task
(Zooniverse, 2015) involving labelling animals on pictures taken by deployed cameras in
the Serengeti, the user interface helps with identifying the type of animal. This is based on
a number of features that individually become simple labelling tasks (e.g. the shape of the
horn of the animal, if any) and act as filters on all possible answers to the original instance.
In effect, the daunting task is broken down into a sequence of easily manageable problems.
Similarly, even attributes of the batch of instances submitted to a crowdsourcing system,
such as the number of total available tasks, the default payment delay and the payout
also influence the quantity and the quality of the labels from the workers (Kumar, 2014;
Chen, 2012). While it may be interesting to study how to motivate or optimize for quality
labels, it is not our focus. We take the labels received granted, and aim to aggregate them
effectively.

5

2.2 Mathematical Formulations of Label Aggregation

There are various directions in studying label aggregation; we characterize them in two
independent ways. We first describe a range of aggregation problems with increasing
degree of freedom, then we categorize works by how they model the relationship between
the true and worker labels. First, however, let us establish a common dictionary, and with
it a precise statement of the scenario investigated.

Setup. In the crowdsourcing setting we have instances of tasks, each with its own (true)
label. These labels, however, are generally not known to us, and we ask workers or labellers
to label them. We see the labels they provide, and refer to these as worker labels. The
workers are assumed to have an inherent skill that, vaguely speaking, captures how good
they are at labelling instances of tasks. A task here refers to a type of labelling problem,
containing many instances that are homogeneous in nature. We may speak of multiple
tasks to express that the skill of a worker on one task may be different from her skill
on another task. Unfortunately the term task difficulty, which should really be instance
difficulty, corresponds to varying levels of labelling hardness amongst otherwise similar
instances, even for the same worker. The reason for this terminology is that in the literature
concerned solely with homogeneous instances each instance is, in fact, often referred to as
a task. As the main focus of this thesis is the homogeneous setting, we will also adopt
this convention starting in the next chapter. Until then we maintain the distinction for
clarity. All instances are uploaded to a crowdsourcing system by employers or requesters.
Requesters may use gold(en) units, also known as gold standards, instances whose true
label they know – these can be used to test workers. Finally, variables such as skills, task
difficulties and sometimes the true labels as well, are often referred to as parameters.

Our goal is to recover the true label of each instance. We quantify the success of
various methods as the fraction of instances whose label they recovered correctly. In the
context of the statistical models used in the literature, we may say we infer or estimate the
true labels. When analysing inference methods in this setting theoretically, our measure
of success translates into the expected value of the fraction of mistakes made, or more
generally the cumulative distribution of the same (random) quantity.

2.2.1 Categorization by Degrees of Freedom

We consider three types of problems:

6


+ − + +
− + − + −

+ − − −
+ + + − −
+ + + −


Figure 2.1: An example of a worker label matrix, the input to the Inference Problem.
Here 5 workers (rows) provided labels for a total of 6 instances (columns) of a binary task. The entries in

the matrix are the labels provided by the workers; entry (i, j) is the label assigned to instance j by worker

i. If an entry is missing, the worker did not label the corresponding instance.

• Prediction Problem: given the parameters (other than the true labels), upon observ-
ing labels for a new instance output an estimate for its true label. More generally,
we may only have estimates of the parameters (Berend and Kontorovich, 2014).

• Inference Problem: upon seeing only the labels provided by the workers on a number
of instances, infer the true task labels, possibly other parameters as well. The input
to the inference algorithm can be thought of as an incomplete matrix that collects the
responses from the workers; see Figure 2.1 for an example. Additionally, the methods
may incorporate golden data as well, though the key is that they effectively utilise
the worker labels arriving from dubious sources in the estimation of the true label.
As outlined above, we measure performance by the portion of true labels recovered.
This is the classical crowdsourcing aggregation problem, with works including that
of Whitehill et al. (2009); Welinder et al. (2010); Liu et al. (2012); Gao and Zhou
(2013); Zhang et al. (2014); Jaffe et al. (2015) and this thesis.

• Instance Allocation: (interactively) allocate instances to workers in order to infer
the true task labels (and other parameters) with as few queries as possible (Kolobov
et al., 2013; Bragg et al., 2014; Abbasi-Yadkori et al., 2015).

The main results in Karger et al. (2011b, 2013, 2014) fix a specific allocation before seeing
any labels, and solve the inference problem once the labels do arrive; this places them
closer to the second category.

There are also various other directions studied that are outside the scope of this doc-
ument; we highlight two here that are more closely related to our interests, though. Liu
et al. (2015) consider the inference problem, but insert gold units after the data was col-
lected, one by one, in order to try to get the best increase in label quality. A line of work in
task allocation (Ho et al., 2013; Jung, 2014) considers allocating different tasks to workers,

7

t\r - +
- 0.8 0.2
+ 0.3 0.7

Figure 2.2: A possible confusion matrix.
Here “t” stands for the “true label”, “r” stands for the “response”, and the real number in entry (i, j) is

the probability that the worker will assign label j to an instance with true label i.

not simply instances. They aim to automatically find similar instances and utilize this
information in the allocation methods.

2.2.2 Models of Labelling

Some sort of model describing the relationship between the true and the worker label is
required for any result. Most papers in this domain explicitly work with a simple expression
for the probability of a worker mislabelling an instance. We may phrase many such popular
models in either the Dawid-Skene or the Joint CrowdSourcing (JoCR) model. We now
describe these in detail, mentioning their variants that appear in the literature. Afterwards,
some models that work under significantly different assumptions are also mentioned.

Dawid-Skene model. This model was introduced by Dawid and Skene in 1979 (Dawid
et al., 1979) and has become a classical label crowdsourcing model forming the basis for a
fruitful line of research (Karger et al., 2011b; Liu et al., 2012; Li et al., 2013; Berend and
Kontorovich, 2014), recently culminating in methods claiming (near-)optimal results (Gao
and Zhou, 2013; Karger et al., 2014; Zhang et al., 2014). Most work is set in the Inference
Problem scenario.
We assume each worker has a latent confusion matrix describing the joint probability
distribution over true and reported labels. An example of such a confusion matrix for the
case of binary classification is shown in Figure 2.2. The worker with the confusion matrix
shown on this figure will label negative instances correctly with probability 0.8, positive
instances with 0.7. Other workers may have completely different confusion matrices.

Considerable amount of research is focused on labelling binary tasks; then the model
is also referred to as the two-coin model. We may further specialize it by restricting the
diagonal entries to be equal. This model is called the one-coin, or sometimes the Symmetric
Dawid-Skene model. It models uniform behaviour over the two classes, and hence we lose
the ability to model worker bias.

8

Joint CrowdSourcing (JoCR). The general JoCR framework was introduced by Kolobov
et al. (2013). The main merit of JoCR is that it is able to model a possibly ever-changing
pool of workers, allocating tasks to them in real time. Note that some of the work refer-
enced in this category works only on a static pool, though, or was published outside of the
JoCR framework but can be naturally rephrased in its notation.

There is a set of tasks Q, each task q ∈ Q with a small number of possible answers Aq.
Each task q has an inherent difficulty dq, and each worker w ∈ W has an inherent skill
γw, where W is a pool of workers, which may or may not be changing from timestep to
timestep.

The probability that worker w will label question q correctly is p(dq, γw), that is, it
depends only on these two parameters. Note that this assumption, again, implies we
cannot model bias towards certain labels. Different functions p may appear in different
works, however, we often can re-parametrise one into the other. We present some examples
that model truly different assumptions.

• The model that appeared most prominently, for example in the work of Bragg et al.
(2014), is

p(dq, γw) =
1

2

[
1 + (1− dq)

1
γw

]
,

where dq ∈ [0, 1] and γw ∈ (0,∞). Note that this assumption cannot model workers
who tend to label incorrectly.

• For anonymous workers the model reduces to P (correct label for j) = diffj, that is,
we only have difficulties. Here Abbasi-Yadkori et al. (2015) is interested in optimizing
the order in which the instances of unknown difficulty should be put up for labelling.

• The model used by Whitehill et al. (2009) for inference also falls into this category:

p(dq, γw) =
1

1 + e−dqγw
.

Here the probability of worker w labelling an instance with difficulty dq correctly is
modelled by the logistic function with input −dqγw for γw ∈ [−∞,+∞] and dq ∈
[0,∞]. This function p generalizes the one-coin model by introducing difficulties.

We illustrate the existence of models that do not explicitly work with the probability of
labelling correctly, rather they describe the process as a sequence of steps. Welinder et al.
(2010), for example, describe:

9

1. Each instance is mapped to a vector characterization that correspond to features a
perfect labeller would consider in order to label the instance. This step can capture
some instances being more difficult than others.

2. Each individual worker observes these features with varying degrees of accuracy. This
is modelled by using a gaussian noise of different variances on the different features,
according to the skill of the worker.

3. The worker reports a label based on their internal affine decision boundary.

They explicitly incorporate biases, and model different levels of uncertainty quite well.

10

Chapter 3

Inference in the Dawid-Skene Model

We work in a special case of the Dawid-Skene model. Nonetheless, we first precisely
introduce the model in its generality, then restrict our attention to its simplification. This
will clarify the relationship between our and the general model, and will also allow us to
discuss results more effectively. Though we have already outlined and provided context for
the inference problem and the Dawid-Skene model, this chapter is devoted to the detailed
and mathematically precise treatment of these topics, followed by an in-depth investigation
of the theoretical literature on crowdsourcing in this setting.

3.1 Problem Definition

We follow a number of conventions. First, matrices and random variables will be denoted
by capital letters unless otherwise specified. Vectors and scalars most often are lower case.
We use the notation [n] = {1, 2, . . . , n}, and I {·} for the indicator function. The model
will include a number of parameters, and these will be estimated. Generally the true
parameters receive a star, as in p∗i or p∗, estimates a hat p̂i. Note that these estimates
are truly the output of estimators on the random data, and, as such, random variables.
Arguments to functions playing roles similar to these parameters will stand without any
decoration. We use 1 to denote vectors whose components are all one. All vectors are
column vectors unless otherwise noted. We use ·> to denote the transpose operation.
Finally, we note that log denotes the natural logarithm.

General Dawid-Skene. There are t -for task- instances of a K-way classification task,
with instances commonly indexed by j. Here we assume the labels are from the set [K].

11

t\r - +
- p∗i 1− p∗i
+ 1− p∗i p∗i

Figure 3.1: Confusion matrix for the one-coin model.
Here “t” stands for the “true label”, “r” stands for the “response”. p∗i is the probability of returning the

correct label, which is the same for both positive and negative labels in this model.

Each instance j has a true label y∗j ∈ [K], collectively denoted by y∗ ∈ [K]t. There are w

workers, indexed by i, each with an inherent confusion matrix P ∗i = (p∗i,cl)c,l ∈ [0, 1]K×K ,
p∗i,cl holding the probability that worker i labels an instance with true label c as l. That
is, we must have

∑
l∈[K] p

∗
i,cl = 1 for any c ∈ [K]. Here we assume that every worker labels

every instance, though it is common to model missing values by assuming that whether
a worker labels a task is like a Bernoulli random variable with some parameter specific
to that worker. The worker responses may be formatted into a matrix. We denote the
random variable corresponding to the reported label of worker i on instance j by Yij, and
the random matrix that collects these by Y . The Dawid-Skene assumption, then, can be
written as

P (Yij = l) = p∗i,y∗j l, i ∈ [w], j ∈ [t], l ∈ [K] and

(Yuv)(u,v)∈A ⊥ (Yxy)(x,y)∈B for A,B ⊂ [w]× [t], A ∩B = ∅ ,

where the second line records that the Yij are mutually independent.

One-coin model. As mentioned earlier, the one-coin model is the special case of the
Dawid-Skene model where we only consider binary tasks, and assume that workers exhibit
no bias toward either class. The simpler notation we introduce here is what the rest of the
thesis will use.

In this case we redefine the labels to be either positive or negative, that is, y∗ ∈ {±1}t.
Due to the additional assumption on the confusion matrix, we now have just one parameter
pi ∈ [0, 1] determining the whole confusion matrix shown on Figure 3.1. Formally, for any
worker i

p∗i,cl =

{
p∗i , c = l ;

1− p∗i , c 6= l,

that is, workers label correctly with probability pi. Instead of working with p, we introduce
s = 2p − 1 ∈ [−1,+1], which communicates the nature of the worker better. The sign of

12

s indicates whether the worker is biased towards the correct label, or they are more likely
reporting the wrong answer. The magnitude of s, in turn, clearly communicates how strong
the worker’s bias is. In particular, if s = 0, we have a spammer; if |s| = 1, then our worker
is what we call perfect - though may be malicious. Again, the individual worker skills s∗i
form the vector s∗. With this, the one-coin model assumption can be written as

P
(
Yij = y∗j

)
=

1 + s∗i
2

, for i ∈ [w], j ∈ [t] and

(Yuv)(u,v)∈A ⊥ (Yxy)(x,y)∈B for A,B ⊂ [w]× [t], A ∩B = ∅ .
(3.1)

Finally, it will be convenient to work with the random variable Tij denoting whether
the reported worker label for a given task is correct. Define

Tij
.
= 2 I

{
Yij = y∗j

}
− 1 ∈ {±1}.

Convenient alternative ways to write this are

Tij = y∗jYij, Yij = y∗jTij.

Note that, Tij ∼ 2 Ber
(

1+s∗i
2

)
− 1, and therefore E [Tij] = s∗i .

The goal. Our main focus is the inference problem: upon observing the labels provided
by the workers we wish to find y∗.

More precisely, we wish to find an estimation “procedure”, A : {±1}w×t → {±1}t that
achieves low loss, measured as the probability of mislabelling a uniformly randomly chosen
task J :

`(A)
.
= P (A(Y)J 6= y∗J) .

The loss of a procedure A will depend on the input distribution; which is fully characterized
by the skills s∗ of the workers and the true labels y∗ of the tasks. Naturally, we wish to find
a procedure that has low loss for all possible input distributions. To enable this discussion,
we make explicit this dependence: denote by `(A, (s∗, y∗)) the expected loss of procedure
A when run on data conforming to the Dawid-Skene model with parameters (s∗, y∗). We,
not unreasonably, ask that a procedure A achieve small loss over any true label setting,
that is, we measure its performance as

sup
y∗∈{±1}t

`(A, (s∗, y∗)) . (3.2)

13

On the other hand, it is also reasonable to expect that procedures are able to perform
better when the workers are generally more qualified. In order to capture this, we may
wish to compare the performance of A to so-called oracles that are aware of the skill of
each worker. The loss associated to the best oracle is captured by

`∗(s∗)
.
= inf

A
sup

y∗∈{pm1}t
`(A, (s∗, y∗)) , (3.3)

where the infimum is over the procedures. Indeed, since s∗ is fixed, the best choice
for A in this expression can depend on s∗. We will see in Section 3.4 the optimal or-
acle rule and a tight characterization of the loss it suffers. Observe that comparing
infA supy∗∈{±1}t `(A, (s∗, y∗)) to `∗(s∗) reveals the additional difficulty of the inference prob-
lem introduced by the unknown skills.

Additional notes. There is an inherent ambiguity in this model. Consider the true
generating parameters (s∗, y∗) and their negation (−s∗,−y∗), meaning the workers have
the same absolute skill but report the opposite answer, and the generating true label also
flipped. These are impossible to distinguish based on the observed worker labels. To break
this symmetry we assume ∑

i

s∗i > 0, (3.4)

that is, on average, the workers are biased towards the correct answer. For the purposes of
the analysis we will evaluate our procedures against both the true and flipped labels, and
take the better, that is,

`(A) = min{P (A(Y)J 6= y∗J) ,P (−A(Y)J 6= y∗J)} . (3.5)

Eventually we will investigate under what conditions, in addition to Equation (3.4), we
are able to differentiate between the two otherwise symmetric label assignments. The final
note to make is that for the purpose of the analysis and without loss of generality, we
assume that y∗ = 1. This indeed can be done as long as the estimation method A is not
biased towards any label.

3.2 Discussion of the Model

As any result stated is only guaranteed to hold when the data matches our model, it is
important to evaluate how realistic the model is. On the other hand, one should not

14

mistaken the conditions as to being necessary for algorithms to work. In fact, it is very
likely that the algorithm can produce good results under weaker conditions, too.

With this in mind, let us discuss the constraints imposed by the model. The inde-
pendent source (worker) assumption may be violated for a number of reasons. Clearly, if
workers copy or simply collaborate they cease to be independent. However, for microtask-
ing problems where each individual instance takes only seconds, with a platform such as
Amazon Turk where it is not possible to transfer answers to a large number of instances,
this is not likely to be an issue. We also suppose that the performance of the worker is
uniform over all instances. This is quite possibly not true, even when the instances are ho-
mogeneous in nature. However, experimental work suggests that despite this, such models
still lead to significantly better results than the baseline majority voting.

Altogether the model imposes a rigid structure on the labelling process, and, as shown
by Gao and Zhou (2013), can lead to performance worse than uniform majority in misspec-
ified models: consider two types of tasks and two groups of workers. The first group labels
very well on task type I, and knows nothing of type II, and vice versa. If the two worker
groups are equal in size, the number of the instances belonging to each task is imbalanced
in a quadratic fashion, and the number of tasks is significantly larger than the number of
workers, assuming the Dawid-Skene model and the maximum likelihood estimates suffers
loss (measured in expected average number of mistakes made) that converges to zero at a
rate only polynomial in the number of instances. In contrast, the error rate of majority
voting still converges exponentially fast in the number of workers. Note that while these
are stated in terms of different parameters, the above statement about the convergence
rate in the Dawid-Skene model implies that it is also polynomial in the number of workers.
While an important illustration, the setup used is not typical of simple, homogeneous la-
belling problems – for these the one-coin model, or more generally the Dawid-Skene model
is reasonable, and this is supported by the large number of experimental work showing the
benefits of these models in practice.

One final technical assumption made is that every worker labels every instance. This
can be relaxed; for instance Zhang et al. (2014) introduce a “labelling probability” specific
to each worker in addition to their skills. This is a good model when the worker does not
choose to skip instances, and the order in which she was presented with them was chosen
uniformly randomly from all orders.

15

3.3 Performance Baselines

Before presenting results from the literature, we prepare by specifying a number of ways
in which they can be evaluated. The first method to consider for the aggregation of the
worker labels is (Uniform) Majority Voting (MV): the algorithm that outputs the label
that was reported the most often, individually on each task. Note that MV is indifferent
to the skills of the workers, therefore one hopes that inference methods that do take
skills into account will outperform it. An upper bound on the loss of MV is presented
in Section 3.3.1. Afterwards, in Section 3.3.2, we define various stylized types of crowds,
or worker collections, on which we evaluate the error bounds associated to the inference
methods in the literature. These error rates will be compiled into a table, namely 3.1, at
the end of the chapter.

3.3.1 Majority Voting

Uniform Majority Voting is a special instance of the weighted majority voting (WMV)
algorithm. We define, for v ∈ Rw, the v-weighted majority rule to be

fmaj
v : {±1}w → {±1}

x 7→ sgn
(
x>v

)
,

(3.6)

where x serves as the collection of worker labels on an instance. Note that the scale of the
weight vector has no bearing on the decision rule, that is fmaj

v = fmaj
rv for all r > 0. While

the case that x>v = 0 is not handled by the definition, we will turn a blind eye, and for
the purposes of the analysis we will assume this results in an error. We can extend fmaj

v to
allow weights that have components infinite in magnitude, but only if all such components
have the same sign. Finally, by abusing notation, we shall also write fmaj

v for the extension
of this map to a {±1}w×t → {±1}t map, where fmaj

v (Y)j
.
= fmaj

v (Y:j), 1 ≤ j ≤ t and Y:j

stands for the vector (Yij)1≤i≤w, i.e., the jth column of Y .

Uniform Majority Voting (or simply Majority Voting) is WMV with uniform weights
– for instance v = 1, – and will be denoted by fmaj. We see that this indeed reduces to
reporting the label that occurred more often. In Section 5.2.1 (Corollary 2) we show that
for a task with true label y∗,

P
(
fmaj(Y) 6= y∗

)
≤ exp

(
−1

4

(w∑
i=1

s∗i
v∗i

)−1(w∑
i=1

s∗i

)2
)

(3.7)

16

holds, where v∗i denotes the log-odds of worker i labelling correctly, that is,

v∗i = log
1 + s∗i
1− s∗i

. (3.8)

We will later see that the star notation, suggesting –by our convention– that these are
“true” weights is in a sense justified. The expression in the exponent of the bound is
somewhat convoluted. We offer two simplifications. For the degenerate case of every
worker having the same skill s∗i = s∗0, the exponent becomes −1

4
s∗0v
∗
0, where v∗0 = log

1+s∗0
1−s∗0

.

We will see the same (up to a constant) in Section 3.4.1, where it characterises the error
of the optimal decision rule. The coincidence is only under this uniformity assumption.
Alternatively, we note s∗i /v

∗
i = s∗i / log

1+s∗i
1−s∗i
≤ 1/2 no matter the value of s∗i ∈ [−1, 1], which

leads to

P
(
fmaj(Y) 6= y∗

)
≤ exp

(
−1

2
w
(1

w

w∑
i=1

s∗i

)2
)
. (3.9)

This is really loose; we have s∗i /v
∗
i → 0 as |s∗i | → 1, yet we upper bound it by 1/2. On

the other hand, to the best of our knowledge, this was the bound known for the error of
majority voting before; for example Li et al. (2013), in their Corollary 6, offer the same.

3.3.2 Stylized Crowds

We define some special, parametrized collections of workers that will help reveal the be-
haviour of the bounds proved on the various inference methods. The first two are well-
known in the literature, and are commonly used for lower bound arguments; the third is
our addition as far as we know. There are three measures of crowds that commonly appear
in bounds: the average of the skills (s̄), the average of the absolute values of the skills (µ̄),
and the average of the squares of the skills (ν̄). We show each of these for every crowd
considered.

Uniform. Perhaps the simplest crowd: let each of the w workers have the same skill s.
A crowd with this property will be referred to as CU

s . The associated measures are s̄ = s,
µ̄ = |s|, and ν̄ = s2.

Spammer-hammer. Everyone in our crowd either has s = 0, a spammer, or s = 1,
called a hammer. Such crowds demand that inference algorithms be able to differentiate
between workers of vastly different skills. This class, CSH

q , is parametrized by q, the portion
of workers that are hammers. We also see that s̄ = q, µ̄ = q, and ν̄ = q.

17

Evil Twins. Out of 2w + 2 workers w has skill 1, w has skill −1, and 2 have skills
ε > 0. This crowd is very knowledgeable, therefore we can expect near perfect labels from
inference methods able to differentiate between malicious and honest workers. We use CET

ε

to refer to this type of crowd, parametrized by the bias of the near-spammer workers. In

this case s̄ = 2ε, µ̄ = 1− 2(1−ε)
w

, and ν̄ = 1− 2(1−ε2)
w

.

3.4 Existing Results

We collect, under a unified notation, and discuss the existing theoretical knowledge per-
taining to the inference problem in the Dawid-Skene and the one-coin model. This work
spans the past years, recently culminating in results claiming (near)-optimality. It has
been long known (Nitzan and Paroush, 1982) that weighted majority voting with weights
corresponding to the log-odds of the worker labelling correctly leads to optimal decisions.
That is, the optimal decision rule fOPT is given by fmaj

v∗ :

sgn
(
x>v∗

)
= sgn

∑
i∈[w]

xi log
1 + s∗i
1− s∗i

 , (3.10)

for x = (xi)i ∈ {±1}w, s∗ ∈ [−1, 1]w. The rule is optimal in the sense that it has loss `∗(s∗)
(cf. Equation (3.3)); this can be derived from the Neyman-Pearson lemma. However,
until recently it was not clear what error this method suffers. Berend and Kontorovich
(2014) show an improved upper bound on the probability of mislabelling, as well as an
asymptotically matching lower bound. Details of these and additional results can be found
in Section 3.4.1. Li et al. (2013) explored the error rate for all hyperplane rules, considering
missing worker labels as well. When skills are unknown the problem becomes considerably
harder.

Karger et al. (2011b,a), in a sequence of works, proposes various methods to estimate
binary labels in the one-coin model, finally achieving minimax optimality in some measure;
although, they require a special structure on the allocation of instances to workers. They
first notice that the worker response matrix has low-rank with the first left and right
singular vectors corresponding to true labels and skills, respectively. Later they replace this
estimation method with an almost identical message-passing algorithm for which they can
show much stronger, exponential bounds on the error rate. This analysis relies on having
a very large number of tasks and workers, however. Details are deferred to Section 3.4.2.

Ghosh et al. (2011), also working in the one-coin model but with (nearly-)full worker
response matrices, applies singular value decomposition to Y Y > to obtain bounds similar

18

to that of Karger et al. (2011b). Dalvi et al. (2013) analyse any allocation in terms of the
so-called expansion gap of the bipartite graph on instances and workers induced by the
labelling. They show finite sample bounds on the error of the skill estimates measured in
squared `2 norm, which in the special task allocation of Karger et al. (2011b) leads to an
exponential bound on the expected number of mistakes. Jaffe et al. (2015), working in the
two-coin model, use spectral methods on the same matrix as Ghosh et al. (2011) do and
show asymptotic rates on the recovery of the confusion matrix.

Another approach taken by Gao and Zhou (2013); Zhang et al. (2014) is the analysis
of a regularized log-likelihood function associated to this model, and the EM algorithm
that attempts to find its maximizing parameters: the generating skills and true labels.
The log-likelihood function corresponding to this model is not convex, therefore EM is not
guaranteed to find maximum likelihood (ML) estimates. Moreover, the ML estimate of a
model does not automatically enjoy low loss. In a paper only published on arXiv (though
cited a number of times) Gao and Zhou (2013) claims a minimax optimal exponential
bound on the loss for both the global maximizer of the regularized log-likelihood function
and the estimate returned by a slightly modified version of EM. We have found a mistake
in the proof of the former and communicated it to the authors – who have confirmed it,
while the argument for the latter bound stands. In fact, Zhang et al. (2014) use the same
analysis of the same modified EM algorithm, now in the multiclass and fully general Dawid-
Skene setting, to claim near-optimal sufficient conditions for a perfect label reconstruction.
For EM to be successful with high probability, a special, spectral-based initialization is
used. Details appear in Section 3.4.3. The bound we prove in Chapter 5 is on the global
maximizing parameters of the likelihood function for the one-coin model. As such, we fill
the gap that opened in (Gao and Zhou, 2013); though, our bound is presented in a different
form.

Chapter 4 introduces a number of topics, including the log-likelihood function, EM
and concentration inequalities familiarity with which may be needed for the more in-depth
discussions in the following sections.

3.4.1 Known or Approximate Parameters

We start with studying the simpler case when the skills are known, or we are given estimates
of them, and only the true labels remain to be inferred. The resulting rates serve as a
benchmark, and also reveal quantities that characterize the effectiveness of a crowd of
workers. The definitive work on this topic is that of Berend and Kontorovich (2014). They
work in the one-coin model, and are concerned with the error made by the optimal decision

19

rule, fOPT : {±1}t → {±1}, given by Equation (3.10). It is shown that the so called (total)
committee potential

Φ =
∑
i∈[w]

s∗i log
1 + s∗i
1− s∗i

(3.11)

governs the probability of making an error. For a single task (i.e., t = 1) we have

P
(
fOPT(Y) 6= y∗

)
≤ exp

(
− 1

2
Φ
)
, (3.12)

P
(
fOPT(Y) 6= y∗

)
≥ 3

4[1 + exp(2 Φ + 4
√

Φ)]
. (3.13)

In short, we see that
− logP

(
fOPT(Y) 6= y∗

)
� Φ ,

where � denotes equivalence up to universal multiplicative constants. Both the lower and
upper bounds are contributions of this paper. The upper bound is proven using Kearns
and Saul’s inequality (Lemma 3), which is tighter in this setting than other commonly used
concentration bounds, and is therefore of interest to us as well. Note that the committee
potential increases with each additional (non-spammer) worker; sometimes we may wish
to talk about the average committee potential, 1

w

∑
i∈[w] s

∗
i v
∗
i , denoted by Φ, instead. This

notion is especially informative when analysing the effects of the quality of the crowd and
the number of workers separately.

In addition to the known-skill setting, the scenario where the skills are estimated on a
number of golden units, instances with known labels, is also studied, both from a frequentist
and a Bayesian point of view. In the frequentist approach, one option is to replace the true
skills in the weighted majority decision rule by the estimates ŝ ∈ [−1, 1]w, yielding weights
v̂i = log 1+ŝi

1−ŝi and the rule fmaj
v̂ . We base the proof of our Lemma 11 on the argument of

Berend and Kontorovich who showed a finite sample bound on the mislabelling probability
of fmaj

v̂ . The form of their bound is as follows. For any 0 < δ < 1, 0 < ε < min{5, 2Φ},
letting ti denote the number of golden units worker i was tested on, if

ti(1− |si|) ≥ 6

(√
4ε+ 1− 1

4

)−2

log
4w

δ
,

then

P
(
fmaj
v̂ (Y) 6= y∗

)
≤ δ + exp

[
−w (2Φ− ε)2

8Φ

]
.

Here δ is associated to the probability of receiving a non-representative sample of worker
labels on the golden units, ε captures how much we err when estimating weights. Note that

20

the bound captures the additional error suffered over that of the optimal oracle decision
rule due to having to estimate the skills.

3.4.2 Inference with Task Allocation

In this section we discuss inference results that require a special worker-instance, or worker-
task pairing. This allocation of tasks to workers, however, is designed statically before
any labelling takes place, the workers then provide their labels on the tasks that were
assigned to them, and finally an algorithm aggregates these into estimates of the true labels.
Karger et al. (2011b,a, 2013, 2014) design inference methods in this setting. The results
that they derive have since been superseded by other works, which do not even require
such specific assumptions on the structure of labelling. Nonetheless, it is educational to
examine the methods they propose as well, for they provide a different perspective on the
same problem. Moreover, while not our current focus, these works also allude to adaptive
(dynamic) task allocation. Karger et al. (2011b) characterize their crowd by the quantity
ν̄ = 1

w

∑
i∈[w](s

∗
i)

2 = 1
w
‖s∗‖2

2, and show upper and lower bounds (for relatively weak crowds)
on the mislabelling probability of their methods in the one-coin model, with ν̄ appearing in
the exponent of both. Another important quantity they work with is the number of times
each task is labelled, l, in their task-allocation. This is considered to be small; in fact
their final results are phrased in the form of bounds on l when other problem parameters,
including the probability of mislabelling, are fixed. The first paper (Karger et al., 2011b)
introduces the instance allocation procedure, and uses singular value decomposition on the
collected worker labels to recover the skills and true labels. The resulting upper bound
on the loss ` (cf. Equation (3.2)) is only in the order of 1

lν̄
. The following paper (Karger

et al., 2011a) replaces the inference method by a message passing algorithm that is almost
identical, but allows for an analysis leading to a bound on the loss that is now on the scale
of exp(−lν̄). A significantly extended version of the same conference paper was published
some time later (Karger et al., 2014). Finally, Karger et al. (2013) reduce the multi-class,
general Dawid-Skene problem to a number of binary tasks, for which they call their already
proposed estimation, yielding a near minimax optimal algorithm.

Instance allocation. Intuitively, the instance allocation proposed aims to spread the
workers out evenly over the instances. An allocation will be represented by a bipartite
graph, with vertices on the left denoting instances, and those on the right workers. There
is an edge between an instance and a worker if the worker will provide a label for the
instance. As mentioned, each instance is labelled by l workers, and each worker labels r

21

instances. (Clearly, we require lt = rw.) We construct a random, so-called (l, r)-regular
bipartite graph on these t + w vertices. Start by attaching “half edges” to each task and
worker vertex. Order all half-edges coming from instances in the natural (or any fixed)
order, and pick a random order (uniformly over all possible orders) for the half-edges
attached to worker vertices. Join the half-edges that sit in identical locations of the two
orders. It is known from random graph theory that the resulting graph, especially when its
large in size compared to l and r, and therefore is sparse, enjoys some desirable properties.
Karger et al. (2011b) use that this graph has large spectral gap, which aids in separating
the signal from the noise in the worker response matrix when singular value decomposition
is used. Karger et al. (2011a) use that these graphs become locally tree-like for large
systems: if we denote by Gv,k the set of vertices reachable from vertex v in k steps along
the edges of the graph, one can prove that Gv,k is a tree with probability no more than
[(l − 1)(r − 1)]k−1 3lr

t
. This becomes important to the analysis of the inference algorithm.

Inference Algorithm. We focus only on the message passing algorithm of Karger et al.
(2011a). The method takes as argument a worker label matrix A; ni and nj denote the
neighbourhoods of the worker vertex i and instance vertex j, respectively. The algorithm
iteratively passes “messages” between the partitions of the graph, with each vertex, in a
sense, broadcasting its “belief” on the true value of the parameter it represents. We identify
two types of messages, corresponding to where they originate from. Task messages, x{j→i},
represent the log-likelihood of task j having a positive label. Worker messages, y{i→j},
represent how reliable worker i is. To calculate a new message {a → b}′, we consider all
incoming messages to a, except the one from b, and sum those up with the signs set by the
appropriate entry from A. This leads to the algorithm:

1. Initialize worker messages as y{i→j} ∼ N (1, 1), the normal distribution with mean
and variance 1.

2. In each iteration, update the messages. For every (i, j) edge:

(a) x′{j→i} ←
∑

i′∈nj\{i} Ai′jy{i′→j}

(b) y′{i→j} ←
∑

j′∈ni\{j} Aij′x{j′→i}

3. Output the estimates from weighted majority voting:

sgn

∑
i∈nj

Aijy{i→j}

 .

22

Regarding the number of iterations, k: there are multiple bounds offered in the paper, one
is in terms of k; another requires that k reaches a threshold – specified in terms of other
problem parameters, – above which the convergence rate displayed becomes independent
of the iteration number.

Karger et al. (2014) draw the attention of the reader to the fact that if the omitted term
in the sums of the update rule were included, this algorithm would calculate the exact same
quantity as that of Karger et al. (2011b). In practice, the two algorithms behave similarly.
However, in terms of the analysis this difference seems crucial.

Proof Technique. Here we describe the proof technique used by Karger et al. (2014).
Fix (or, equivalently, uniformly randomly select) a task vertex j, and denote the random
variable corresponding to its label estimate after k iterations by X̂(k). Recall, the loss is

defined as P
(
X̂(k) 6= (y∗)j

)
. For the purposes of the analysis, we automatically make an

error if (1) at vertex j, the graph is not locally tree-like up to 2k − 1 steps, (2) X̂(k) is
incorrect, given that the graph is locally tree-like. The result mentioned regarding the
locally tree-like structure of these bipartite graphs is used to bound the probability of the
first event. This term will vanish when the number of tasks is large, leaving the second
term to be dominant. A technique called density evolution is used to bound the probability
of the second event; the intuition behind it is not complicated. Note that in k iterations of
the inference algorithm information from only the closest 2k−1 vertices can propagate to j;
all other vertices, therefore, have no influence on the label reported for that instance. This
justifies focusing only on this local neighbourhood of j. The requirement that the local
neighbourhood is a tree guarantees the independence of the random variables corresponding
to the messages.

We offer additional intuition; this is along the lines of the justification used for the
so-called belief propagation algorithms often used for inference. Due to the design of the
update rules, the spread of “information” in the tree itself exhibits structured behaviour.
For ease of communication let us root the tree at j; the reader may wish to follow the
argument on Figure 3.2. We will refer to vertices by depth: the root, vertex j, being at
depth 0 and the last layer on the figure at depth 3. Recall that the label estimate X̂(k) was

the sign of the weighted average of the incoming worker messages, sgn
(∑

i∈nj Aijy{i→j}

)
.

Visually, these messages are directed from depth 1 to 0. Consider one of the workers, say
i, sending such a message y{i→j}. In the last iteration of the algorithm, this was calculated
as
∑

j′∈ni\{j} Aij′x{j′→i}. Notice that it only aggregates information from its children

(deeper in the tree) due to the exclusion of the x{j→i} message. In turn, applying this same

23

Figure 3.2: The locally tree-like structure of Karger et al.’s task allocation, for k = 1.
For this representation we “folded out” the bipartite graph to reveal the tree. Black vertices represent

instances, white ones workers. Note, we set l = 3 and r = 5 for this illustration.

argument to these incoming messages, we see that y{i→j} only aggregates information from
the subtree rooted at it. Continuing with this argument, we conclude that this message
passing algorithm is equivalent to propagating the messages upwards from the leaves, layer
by layer, finally leading to a label estimate at the root.

In the technical analysis the distribution of the messages is studied from iteration to
iteration. With each one, the signal -the assumed bias towards the correct label- gets am-
plified, and the message distributions concentrate around their true values, distinguishing
good and bad workers, positive and negative labels with ever increasing confidence.

We now quantify these statements, quoting Theorem 1 and Corollary 1 of Karger et al.
(2014). First, for brevity, let l̂ = l − 1 and r̂ = r − 1, and define

σ2
k
.
=

2ν̄

µ̄(ν̄2l̂r̂)k−1
+
(

3 +
1

ν̄r̂

)1− (1/ν̄2 l̂r̂)k−1

1− (1/ν̄2 l̂r̂)
,

which actually controls the variance of the sub-gaussian tail of the estimate X̂(k).

Theorem 1. If µ̄ > 0 and ν̄2 > 1/(l̂r̂), then for any y∗ ∈ {±1}t, the estimate after k
iterations of the algorithm ŷ(k) achieves, on the uniformly randomly chosen task J ,

P
(
ŷ

(k)
J 6= y∗J

)
≤ e−lν̄/(2σ

2
k) +

3lr

t
(l̂r̂)2k−2.

For a simpler presentation of the result they make a number of observations. First, the
second term vanishes with large t. Second, under the assumption ν̄2l̂r̂ > 1, for large k, σ2

k

24

converges linearly to the finite

σ2
∞ =

(
3 +

1

ν̄r̂

) ν̄2l̂r̂

ν̄2l̂r̂ − 1
.

This leads to the following corollary of the above theorem:

Corollary 1. Under the same hypothesis, for t0 = 3lrelν̄/(4σ
2
∞)(l̂r̂)2(k−1) and k0 = 1 +(

log(ν̄/µ̄2)/ log(l̂r̂ν̄2)
)

we have

P
(
ŷ

(k)
J 6= y∗J

)
≤ 2 exp

(
− lν̄

4σ2
∞

)
(3.14)

for all t ≥ t0 and k ≥ k0. Observe that in lν̄/(4σ2
∞) the term 4σ2

∞ becomes negligible
asymptotically as t→∞.

In the original paper the brackets are missing around 4σ2
∞ in the expression for t0;

we added them here. The authors note that a shortcoming of this bound is that t0 is
impractically large. They point out, though, that in practice the inference method seems
to exhibit similar performance on smaller problem sets as well.

Towards better understanding the problem, the authors prove minimax lower bounds on
the loss: we are interested in how much error the best inference method makes in a worst-
case sense. In the context of task allocation, we also allow to optimize over assignment
schemes, though we parametrize them by l, the number of times the most labelled instance
is labelled. The set Tl collects all assignment schemes with this property. Additionally, the
loss suffered by any inference method depends on the crowd of the workers providing the
labels; therefore we evaluate the estimation procedures over crowd classes characterized by
some measure of the crowd quality. Motivated by the appearance of ν̄ in the upper bound,
the minimax rate will be parametrized by the same. Similarly, the loss has to be measured
over all possible generating true labels. Precisely stated, the minimax loss studied is

min
τ∈Tl,A

max
y∗,s∗∈Pq

`(A) ,

where A ranges over all possible inference methods, ` depends on τ , y∗, s∗ (suppressed in
the notation) and Pq = {s∗ | ν̄(s∗) = q} denotes worker collections with ν̄ equal to a
prescribed q. Using the spammer-hammer crowd CSH

q and the estimator that is aware of
all skills, the authors get a lower bound on the minimax rate:

min
τ∈Tl,A

max
y∗,s∗∈Pq

`(A) ≥ 1

2
exp

(
−(q + q2)l

)
,

25

shown in the q ≤ 2/3 domain; we will see later that we in fact require another measure
for crowds with high quality, and that this inference method is not order-optimal in such
settings. Towards establishing the minimax optimality of their method in the given domain
we observe that q2 ≤ q ≤ 1, therefore the exponent asymptotically matches −ql = −ν̄l.
We do note that one may consider other parametrizations of crowd collections that the
max is taken over, that are perhaps sensitive to other quality measures of the crowd.

Our additional contribution to understanding the performance of this method is ma-
terialized in the evaluation of the error bound on our collection of typical crowds. For a
detailed comparison between inference methods see Section 3.4.4. The fact that the uniform
majority voting (MV) algorithm has tighter bounds than this method is understandable;
MV works perfectly on such crowds. But notice that on spammer-hammer crowds the MV
may still outperform the inference method of this paper. Namely, if 1/q ≤ 4 r

r−1
holds, the

upper bound on the loss of majority voting is tighter than that on this message passing
algorithm. (Derived from setting the exponent of the bound on MV to be larger than that
of this algorithm.) This may come as a surprise, especially considering that Karger et al.
(2014) conclude, as a consequence of a lower bound on the loss of MV (Lemma 2), that
majority voting performs worse than their message passing algorithm. Indeed, in many
scenarios that is the case, but not all, and while this may be captured by their exact result
the discussion seems to omit the necessary qualifications. It may be interesting to inves-
tigate why the error bound associated to this message passing algorithm suggests poor
performance in some scenarios with high quality workers; to understand whether it is a
failure of the inference method, or the analysis. The authors do note that they found prac-
tical datasets often have ν̄ ≈ 0.3, but that already renders the above condition on majority
voting outperforming their algorithm true. (Recall, for the spammer-hammer crowd CSH

q

we have ν̄ = q.) Nonetheless, we do exhibit a crowd of high quality, CET
ε , on which the

message passing algorithm does perform significantly better than majority voting.

Finally, let us mention that Liu et al. (2012) observed that their message passing
algorithm can be realized as belief propagation (BP) with a specific prior over the skills.
Belief propagation is a heuristic algorithm for finding the maximum a posteriori probability
(MAP) estimate. This estimate is closely related to the maximum likelihood (ML) estimate,
establishing an interesting connection between their work and the methods we study in
the next section.

3.4.3 General Inference

Two closely related works (Gao and Zhou, 2013; Zhang et al., 2014) provide bounds on the
loss suffered by inference methods working directly with maximum likelihood estimates.

26

Gao and Zhou (2013) consider the objective function that EM optimizes, which may be
interpreted as a regularized log-likelihood function, and claim exponential bounds, stronger
than any other appearing in the literature, on the loss of its global optimizer. They also
show that despite this objective function not being convex, under some mild conditions a
well-initialized EM finds label estimates that enjoy practically the same statistical guar-
antees as the global optimum. We show that their proof regarding the global optimizer is
incorrect; the bound on the estimates returned by EM appears to hold.

In order to study the global optima of the objective function F that EM optimizes, Gao
and Zhou (2013) study the expected behaviour of F , and find its maximizing parameters
θ̃ = (s̃, ỹ). The proof first provides guarantees on the mislabelling probability when ỹ is
used, then establishes that this error, with high probability, controls that of the maximizing
parameters of the random F we observe. We find a mistake in a crucial step of this latter
argument. We showcase a counterexample to one of the steps, included in Appendix B,
and in personal communication with the authors establish that the (sub)-result, Lemma
F.1, whose proof contains this step “is not correct. As [we] have pointed out, the left-hand
side of the inequality grows in a polynomial rate, while the right-hand side grows only
logarithmically.” (priv. comm. with Gao and Zhou (2013)).

The proof that Gao and Zhou (2013) provide guaranteeing the performance of the
actual estimates returned by the EM algorithm is independent of this result. It relies on
two main steps; (1) they show that if given a “good enough” initializer, EM in just one
iteration will find label estimates that enjoy the strong exponential mistake bounds. Then
they (2) propose an initialisation method that achieves the required accuracy for step (1)
to be applied. We note that accepting this result as true “very likely” implies that the
global optimizer enjoys at least the same bounds, if not better. To make this rigorous one
may show that the global optimizer is a good enough initializer, then vacuously applying
step (1) (applying an EM iteration does not change the parameters we are considering as
we are already at a local maximum) yields the exponential bounds. Zhang et al. (2014)
apply the same proof technique to show, among other things, sufficient conditions on the
number of tasks and workers needed in order to recovering all labels perfectly in the general
Dawid-Skene model by using EM with a spectral based initialisation.

3.4.4 Comparison of Bounds

We collect in this section the bounds claimed on the probability of mislabelling by high-
lighted works, each evaluated on our collection of stylized crowds (cf. Section 3.3.2). This
information, displayed in Table 3.1, highlights for what domains the various proposed

27

Method CU
s CSH

q CET
ε

MV ws log 1+s
1−s

wq
1/q−1

ε2

1−2ε

MP ws2

3+1/(ws2)
wq

3+1/(wq)
wα2

3+1/(wα2)

EM-Spec ws log 1+s
1−s wmax

(
q, 1

3
q log 1+q

1−q

)
wmax

(
α2,

1
3
α1 log 1+α1

1−α1

)
Oracle ws log 1+s

1−s ∞ ∞

Table 3.1: Comparison of the guarantees provided for various algorithms in the literature.
We consider a number of algorithms with theoretical guarantees on the probability of mislabelling; the

algorithms and the bounds for them are precisely stated in Section 3.4.4. We evaluate each of these methods

on the typical crowds introduced earlier, displaying the negative exponent of the resulting guarantees in

this table. We use α1
.
= 1− 2(1−ε)

w , α2
.
= 1− 2(1−ε2)

w ; both quantities go to 1 with w increasing.

methods fit well. Here we list the algorithms, as well as the negative exponent, up to a
constant, of the best known upper bound on the mislabelling probability of each:

- MV: the (uniform) majority voting algorithm fmaj introduced in Section 3.3.1. The

negative exponent of the best known upper bound is
(∑w

i=1
s∗i
v∗i

)−1(∑w
i=1 s

∗
i

)2

, as

given in Equation (3.7).

- MP: the message passing algorithm of Karger et al. (2011b). While the negative
exponent is often quoted as lν̄, it is more specifically

lν̄
(

(3 + 1
(r−1)ν̄

) (r−1)(l−1)ν̄2

(r−1)(l−1)ν̄2−1

)−1

,

as seen in Equation (3.14). The variables l and r denote the number of times each
task is labelled, and the number of times each worker labels, respectively. We tie
l = r − 1, and upper bound the exponent by lν̄

3+1/(lν̄)
.

- EM-Spec: the EM algorithm of Gao and Zhou (2013), initialized with the spectral
methods. We use wmax{ν̄, 1/3µ̄ · v(µ̄)} as the negative exponent, which just upper
bounds the true bound.

- Oracle: The optimal decision rule with access to the true skills. The negative ex-
ponent is the total committee potential Φ, as shown by Berend and Kontorovich
(2014).

28

The definitions of s∗i , v
∗
i , ν̄, µ̄ are as usual. In order to calculate the entries in the table we

simply substitute the appropriate values into these bounds. There are two things to be
noted: in the bounds of Karger et al. (2011b) it is l, the number of times each task was
labelled, that appears, as opposed to the number of workers. To be able to compare the
results we use the latter, w, in the table; they are typically just a constant off anyway.

Before comparing the performances of these bounds to each other, we remark that q
should not be taken to its extreme value of 1, as the resulting expressions will not necessarily
be representative of the true exponents. With this in mind, we may begin evaluating the
algorithms. We first observe that in each column the bounds get stronger as we move
down the rows, except for the message passing algorithm. Already on uniform crowds
it performs significantly worse than other methods, which becomes especially pronounced
when the workers are skilful. (Karger et al. (2011b) do specify they are more concerned with
the case when this is not true.) Even on spammer-hammer crowds MV may outperform
MP, which is surprising as MV is blind to skills. This is not typical, however; over most
problems MP would actually enjoy better guarantees. In fact Gao and Zhou (2013) in their

Theorem 4.1 show that for a spammer-hammer crowd with q = wδ

w
, δ < 1/2, majority vote

becomes inconsistent. We see that MP still recovers the labels when w is taken to infinity.
On the Evil-Twins crowd the inability of MV to differentiate between workers of different
skills is fully captured by the almost vacuously true upper bound on its performance.

We also highlight that EM-Spec captures exactly what MP missed: for crowds with very
skilful workers, µ̄ · v(µ̄) becomes the dominating measure of labelling correctness. Indeed,

observing the exponent of EM-Spec in the spammer-hammer setting we see max
(
q, 1

3
q log 1+q

1−q

)
is q until about > 0.93, and only afterwards does the second term become larger. Finally,
this second term in the bound of EM-Spec is related to the committee potential; the dif-
ference is that as opposed to considering the average committee potential, it calculates
the average skill and bounds the error with the committee potential corresponding to that
average skill. These may be vastly different, the latter providing weaker guarantees.

29

Chapter 4

Background

In this chapter we discuss some concepts and techniques that are required for our our main
result. A seasoned reader may wish to skip this. Context and motivation, as well as some
specific results are provided for each topic.

4.1 The Log-Likehood Function

When studying parametric statistical models, it may be of interest to infer the “generating”
parameters of our observations. To be precise, consider a statistical model (S,P), where
S is the sample space and P = {Pθ : θ ∈ Θ} is a parametrized collection of probability
distributions on S. We consider the problem of observing a sample from one particular but
unknown distribution in this collection, and having to identify which one. Sometimes this
may be phrased as inferring or estimating the true parameter, though these two wordings
may imply different criteria by which we measure success. For example, in the one-coin
model the sample space is the set of all possible worker label matrices of the appropriate
size, the parameter space is Θ = [−1,+1]w×{±1}t – the collection of all possible skill and
true label vectors. Pθ is induced by our assumption that workers label independently on
different tasks and of each other, with the probability of doing so correctly governed by
their skill. Indeed, our goal is to find the “generating” parameter, in particular the true
labels, of the distribution we are observing.

The likelihood function and its maximizer, the maximum likelihood (ML) estimate are
standard tools for doing so. For the rest of the discussion assume that the sample space S
is finite; this is sufficient for our application and saves us from technicalities. Nonetheless,

30

analogous constructs and statements work in general. Given this assumption, we may
define, for x ∈ S pθ(x) = Pθ({x}), the probability mass function associated to Pθ. The
likelihood, in this case, is a function on Θ × S that associates to each element x of the
sample space and model parameter θ the probability of observing x in the distribution Pθ:

L (θ |x) = pθ(x).

The “conditional” in the likelihood is purely notational. When applying this technique,
say to worker label matrices in the one-coin model, we are presented with a matrix x, and
L (θ |x) is interpreted as a measure of the “likelihood” that the distribution Pθ is its source.
The parameters with the largest likelihood, if any exist, are the ML estimates associated
to x:

arg max
θ

L (θ |x) .

While this may be a set of parameters, we work with any arbitrary one. Returning to the
motivation of this definition, we note that the distributions corresponding to the ML esti-
mates minimize the so called KL divergence of Pθ from the empirical distribution induced
by our observation. This quantity can be interpreted as the amount of information lost
when approximating the empirical distribution by Pθ; and therefore the ML estimates, in
this sense, are the best approximations available in the model to our observations. On the
other hand, this does not, in general, impose any constraints on the proximity of the ML
estimates and the true generating parameters when measured directly in the parameter
space.

To be precise, we identify three variants of the likelihood function. We already defined
L (θ |x); L (θ |X), also abbreviated to L (θ), will denote the associated random function;
while L (θ) will be the expected value of the latter. Terminology-wise, fMLE

P : S → Θ by
x 7→ arg maxθ∈Θ L (θ |x) is referred to as the maximum likelihood estimator (MLE), as it
really is an inference method, a map from the sample space to the parameter space. Further,
θ̂ = fMLE

P (X), the estimator applied to the sample results in the (random) estimate θ̂. To
apply the MLE it is not necessary that X is generated from Pθ for some θ ∈ Θ, but often
this is assumed for the sake of the analysis. Note that instead of the likelihood function,
it is common to work with the (negative) log-likelihood function (LLF), which simply
is the (negative) natural logarithm of the likelihood function. Optimizing over either is
equivalent, since log is a convex function.

Now we turn our attention to actually finding the ML estimates. As usual, one can
find the critical points of a differentiable LLF by setting the gradient of the function to 0;
it remains to select the global maxima. When this cannot be done analytically, an alter-
native option is to do so numerically. The so-called EM algorithm is a popular numerical

31

approach for the cases when the model can be phrased in the following form: there is some
unobserved, latent data Z and observed data X (for our purposes both discrete), with joint
probability mass function pθ(X,Z) parametrised by θ ∈ Θ. We want to find the MLE of the
marginal likelihood of the observed data, L (θ |X), defined as the likelihood of the marginal
of the observed data

∑
z pθ(X, z). Again, instead of exact calculations, we take the nu-

merical approach of iteratively finding estimates of the marginal likelihood of the observed
data and its maximizer. That is, initializing with some parameter θ0, we find the expected
value of the log-likelihood with respect to the conditional distribution of Z given X, under
parametrisation θ0 as a function of θ, i.e., the function θ 7→

∑
z pθ0(z|X) log pθ(X, z). Next

we maximize this function to get θ1, which we use in the next iteration. It is shown that
this procedure converges to a local maximum of the (marginal) likelihood function. If the
likelihood function is known to be convex, for example, then this coincides with a ML
estimate. In general, however, there is no way to guarantee finding an actual ML estimate.
In practice many different initializations are tried and the best result is selected.

In the one-coin model we cannot directly find the MLE, so we turn to the EM algorithm.
We treat the true labels as the latent data and the skills remain parameters. To do so,
we need to assume a distribution on the true labels; the uniform distribution is a sensible
choice. Now, from an initial guess on the skill vector the corresponding distribution over
the true labels can be calculated. Using these we calculate the marginal likelihood of the
worker labels we observed, finally maximizing over skills. We restart with this new skill
estimate. At any point the intermediate distribution over the true labels serve as soft
labels, with its rounded value used as the estimate for the true labels.

4.2 Concentration Inequalities

When studying random variables one elemental question is how much, and with what
probability they deviate from a certain value, such as their expectation (if it exists). Con-
centration inequalities are statements probabilistically bounding such deviations. Perhaps
one of the most basic concentration inequalities is Markov’s: for any real-valued, non-
negative integrable random variable X and a > 0 we have

P (X > a) ≤ E [X]

a
.

In this thesis we will consider the (random) log-likelihood function associated to the one-
coin model, and will want to study its deviation from its expected value; concentration
inequalities will prove useful to us. We first state two well known inequalities, Hoeffding’s

32

and its generalization McDiarmid’s. Then we introduce the so-called, more recent, Kearns
and Saul’s inequality, which refines Hoeffding’s inequality. We rely heavily on this result
in our argument. Finally, we note that Berend and Kontorovich (2013) prove a further
improved variant of the same inequality.

Lemma 1 (Hoeffding’s Inequality). Let (Xi)
n
i=1 be independent, almost surely bounded

real-valued random variables with

P (Xi ∈ [ai, bi]) = 1 ∀i ∈ [n].

Let X
.
= 1

n

∑n
i=1 Xi, the empirical mean, then for all t ≥ 0

P
(
X − E

[
X
]
≥ t
)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

On a high level, Hoeffding’s inequality states and quantifies the statement that for most
(typical) samples the sample mean is close to the expected mean. Note that, as stated
above, it (equivalently) bounds the probability of receiving a so-called “bad sample” on
which the empirical mean is larger than the expected, by more than the allowed margin.
By applying the inequality to the negations of the Xi we would bound the probability of
seeing samples on which the empirical mean is smaller than the expected, by more than
the allowed margin. Finally, considering the event that either of these happen, we arrive
at another commonly appearing form of the conclusion of Hoeffding’s inequality:

P
(
|X − E

[
X
]
| ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

McDiarmid generalizes Hoeffding’s Inequality by noticing that in place of the empirical
mean we may use any function that has bounded dependence on each of its individual
arguments.

Lemma 2 (McDiarmid’s Inequality). Let (Xi)
n
i=1 be independent random variables taking

values in the set X . If f : X n → R is such that there exists (ci)
n
i=1 with

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , xi′ , . . . , xn)| ≤ ci

for all i ∈ [n] and all x1, . . . , xn, xi′ ∈ X , then

P (f(X)− E [f(X)] ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

33

These inequalities, however, prove to be weaker than desired in our setting. Instead, we
use an inequality and its corresponding concentration bound proposed by Kearns and Saul
(1998), originally for Bernoulli random variables. We quote a variant of the concentration
bound, from Raginsky and Sason, 2013, Theorem 2.2.6, that is a simple extension of the
original to any bounded real-valued random variable.

Lemma 3 (Kearns and Saul’s inequality). For all p ∈ [0, 1] and t ∈ R,

(1− p)e−tp + pet(1−p) ≤ exp

(
1− 2p

4 log 1−p
p

t2

)
. (4.1)

Lemma 4 (Kearns and Saul’s inequality). Let (Xi)
n
i=1 be independent, real-valued random

variables with Xi ∈ [ai, bi] almost surely for every i ∈ [n]. Let X
.
= 1

n

∑n
i=1Xi. Then, for

all t ≥ 0,

P
(
X − E

[
X
]
≥ t
)
≤ exp

(
− t2n2

4
∑n

i=1 ci(bi − ai)2

)
,

with

ci =


1−2pi

4 log
1−pi
pi

, if pi 6= 1
2
;

1
8
, if pi = 1

2
,

for pi =
E [Xi]− ai
bi − ai

.

Indeed, we see that Hoeffding’s inequality uses ci = 1
8

uniformly, while the expression
given here goes to 0 as pi approaches either 0 or 1. Berend and Kontorovich (2013) give

an improved bound with ci = p(1−p)
2

for 1
2
≤ pi ≤ 1.

4.3 Uniform Deviations

We have seen concentration inequalities bounding the probability of receiving undesired
samples; in fact, if we showed that for any fixed parameter the log-likelihood function (and
therefore a function only of worker label matrices) had bounded dependence on each of
the entries in the worker matrices, then McDiarmid’s inequality would exponentially upper
bound the probability of receiving a bad worker matrix – one to which the log-likelihood
function maps a value that is too far from its expectation. But note, this argument is
applied only at one particular, though arbitrary, parameter setting. When considering a
set of parameters, the set of bad worker matrices may be different for each, so we explicitly
need to consider the probability of receiving a worker matrix to which the log-likehood

34

function evaluated at any of these parameters maps a value that is too far off. We treat
here the problem of providing probabilistic guarantees bounding such deviations uniformly
over a collection of functions.

We loosely follow Bousquet et al. (2004) for the treatment of this subject matter.
Consider a class of measurable functions F from the domain X , parametrized by some Θ:

F = {fθ : X → R | θ ∈ Θ} .

Furthermore, let X be a (X , µ)-valued random variable, for any µ measure on X Concen-
tration inequalities in Section 4.2 are concerned with

fθ(X)− E [fθ(X)] , (4.2)

for a fixed θ. Our quantity of interest is the uniform deviation

sup
θ
fθ(X)− E [fθ(X)] , (4.3)

which is an upper bound of Equation (4.2) for any θ ∈ Θ. First consider the case that Θ
has finite cardinality N ; we show how to control Equation (4.3) in terms of Equation (4.2).
For every θ ∈ Θ, let

Cθ = {x ∈ X : fθ(x)− E [fθ(x)] > ε},

the bad set. Notice that using these we can qualify the bad set C for Equation (4.3): if
x ∈ Cθ for any θ then x ∈ C must also be the case. That is, C ⊆ ∪θ Cθ, and in fact needs
not be larger. By the union bound

P (C) = P (∪θ Cθ) ≤
∑
θ

P (Cθ) ,

whose terms are individually controlled by concentration inequalities, giving P (Cθ) ≤ δθ.
Often we simply use just one δ ≥ δθ. Then

P
(
{x ∈ X : max

θ
fθ(x)− E [fθ(x)] > ε}

)
≤ Nδ.

When Θ is uncountably infinite this technique is bound to fail, though. In order to pro-
vide bounds for such situations one commonly selects a finite number of “representative”
parameters and argues through those. We introduce a way of doing so in the following
Section.

35

4.4 Covering Numbers

We introduce covering numbers in order to talk about all points of a pseudometric space
through a small set of proxy elements. Results, unless otherwise stated, are from Bartlett
(2013). Towards a precise definition suppose (S, d) is a pseudometric space. An ε-cover
for (S, d) is a subset C ⊆ S such that for all s ∈ S there exists c ∈ c with d(s, c) ≤ ε. The
ε-covering number of (S, d) is defined as

N(ε, S, d)
.
= min{C : C is an ε-cover of S} ,

that is, the size of the ε-cover with the smallest size. The following lemma showcases how
an ε-cover may be used to bound uniform deviations over function classes by the uniform
deviation over just its cover.

Lemma 5. Let Θ be a set, and F a class of bounded and measurable functions f : X → R
parametrised by it. We define a pseudo-metric on Θ by

d(θ, θ′) = ‖fθ − fθ′‖∞ .

Let C be an ε/3-cover of (Θ, d). As before, we let X be a (X , µ)-valued random variable,
for any µ measure on X . Then

P
(

sup
θ∈Θ
|fθ(X)− E [fθ(X)] | > ε

)
≤ P

(
sup
θ∈C
|fθ(X)− E [fθ(X)] | > ε

3

)
.

Proof of Lemma 5. The proof is based solely on passing to the parameters in the cover,
and controlling the approximation error. Take arbitrary θ ∈ Θ. By the definition of C,
there is a θ′ ∈ C such that d(θ, θ′) < ε/3. Thus

|fθ(X)− E [fθ(X)] | ≤ |fθ(X)− fθ′(X)|+ |fθ′(X)− E [fθ′(X)] |+ |E [fθ′(X)]− E [fθ(X)] |

≤ |fθ′(X)− E [fθ′(X)] |+ 2

3
ε.

The first inequality is seen by introducing the extra terms, then applying the triangle
inequality. In the second, we use the definition of the cover twice, along with noting that
by the linearity of the expectation

|E [fθ′(X)]− E [fθ(X)] | = |E [fθ′(X)− fθ(X)] | ≤ E [|fθ′(X)− fθ(X)|] ≤ E [ε/3] .

We complete the proof by noting(
ε < sup

θ∈Θ
|fθ(X)− E [fθ(X)] |

)
⇒

(
ε− 2

3
ε < max

θ∈C
|fθ′(X)− E [fθ′(X)] |

)
.

36

Stronger results can be obtained by considering covers of various sizes – on a high level,
some might fit our space better than others. A technique called chaining automatically
selects the appropriate scales and often leads to slightly improved bounds. We have not
utilised this technique in this thesis, and therefore we instead turn our attention to tools
that simplify the calculation of the covering number of specific spaces.

Lemma 6. For a pseudometric space (Θ, dΘ) and a class of functions parametrised by it,
F = {fθ}, equipped with its own pseudometric dF , if there is some L s.t. for any θ, θ′ ∈ Θ

dF(fθ, fθ′) ≤ L · dΘ(θ, θ′),

that is, if the map θ 7→ fθ is L-Lipschitz w.r.t the appropriate pseudometric spaces, then

N(ε,F , dF) ≤ N(ε/L,Θ, dΘ).

Lemma 7. Consider any norm ‖·‖ on Rd, and let B be the unit ball. Then

1

εd
≤ N(ε, B, ‖·‖) ≤

(
2

ε
+ 1

)d
.

37

Chapter 5

Results

Our main result is a finite sample bound on the loss suffered by the maximum likelihood
estimate. In Section 5.1 we give a sequence of steps leading to this bound. While the
final result is technically a conjecture, we structure the argument in a way to illustrate
how a similar, though somewhat weaker and asymptotic statement about the error can be
rigorously proven. In Section 5.2 we collect additional facts that may provide more insight
into the problem. Proofs will appear in a designated chapter, 7.

5.1 A Convergence Rate for Label Inference

Recall that in the one-coin model we are working with a parametrized – by the true
labels and skills – family of distributions; therefore it is natural to infer the labels from
the observed worker response matrix Y using the maximum likelihood estimator. In this
section we develop a bound for the loss suffered by this estimate.

In order to make a high probability assertions about the proximity of the MLE, θ̂, and
the generating parameters, θ∗, we will pass to the log-likelihood function and study its
properties. Here we use θ in place of the pair of parameters (s, y). We denote the log-
likelihood function of a worker label matrix A by L (θ |A), the random function associated
to it by L (θ |Y) or L (θ) and finally its expected value by L (θ). First we work towards
showing that the maximizer θ of the expected log-likelihood is often close to θ̂. For this
purpose, we study how L (·) concentrates around L (·). We find that on most samples
we their deviation can be bounded uniformly over the full domain under consideration.
This guarantees that their maxima must also be close on the same samples. Finally, due

38

to the shape of the log-likehood function, we find the maximizers themselves are close,
then. All that remains to show is that θ is close to θ∗; we will find that they coincide.
A complication that arises is that the bound on the loss derived from this argument is
weak. To overcome this issue we do not use the label estimates directly, but plug the skill
estimates into the optimal decision rule and analyse the error of its output. Details of the
precise and quantitative results are to follow.

5.1.1 The Log-Likelihood Functions and Their Maximizers

Let Y be a binary w× t random matrix that follows the one-coin model (3.1) with the true
skills and labels being s ∈ [−1, 1]w and y ∈ {±1}t, respectively. Let p(·; s, y) denote the
corresponding probability mass function over {±1}w×t. Then,

p (x; s, y) = P (Y = x) =
∏
j∈[t]

∏
i∈[w]

p (xij; si, yj) =
∏
j∈[t]

∏
i∈[w]

(
1 + si

2

) I{xij=yj}(1− si
2

) I{xij 6=yj}

.

Therefore, the log-likelihood function (LLF), with normalization that will be convenient
later, becomes

L (s, y |x) =
1

wt

∑
j∈[t]

∑
i∈[w]

[
I {xij = yj} log

1 + si
2

+ I {xij 6= yj} log
1− si

2

]

=
1

wt

∑
j∈[t]

∑
i∈[w]

[
1 + xijyj

2
log

1 + si
2

+
1− xijyj

2
log

1− si
2

]

=
1

2

1

w

∑
i∈[w]

[
log

1− s2
i

4

]
+

1

2

1

wt

∑
i,j

[
xijyj log

1 + si
1− si

]
.

A maximum likelihood estimator (MLE) maps x ∈ {±1}w×t to any global maximizer of
this function:

fMLE(x) ∈ arg max
(s,y)∈[−1,1]w×{±1}t

L (s, y |x) .

Indeed, there are at least two such estimates. As noted earlier, the parametrization of the
model is not identifiable: in particular (s, y) and (−s,−y) define the same distribution for
any s, y. By the symmetry breaking assumption, Equation (3.4), however, we will take the
one where the sum of the skills in vector s is positive.

For the rest of the argument we assume that Y follows the one-coin model with skills
and labels given by s∗ ∈ [−1, 1]w and y∗ ∈ {±1}t, respectively, and we will study the

39

behaviour of (ŝ, ŷ) = fMLE(Y). Note that ŝ, ŷ are random, as Y is random. Recall from
Section 3.1 that in this case we may write the worker reported labels in terms of the true
label and the worker correctness matrix T through Tij = Yijy

∗
j . For the purposes of the

analysis and to simplify the presentation, we let y∗j = 1 for all 1 ∈ [t]. Then the LLF
evaluated at x = Y becomes

L (s, y |T) =
1

2

1

w

∑
i∈[w]

[
log

1− s2
i

4

]
+

1

2

1

wt

∑
i,j

[
Tijyj log

1 + si
1− si

]
. (5.1)

In order to analyse the estimates derived from “typical” correctness matrices T , we
study the expected log-likelihood function L defined by L (s, y) = E [L (s, y |Y)], noting
that one expects L (·, · |Y) to be “close” to L (·, ·) under appropriate conditions as the
quantity of the data increases. Taking the expectation of L (s, y |Y), from our previous
assumption on y∗, we compute

L (s, y) = E

1

2

1

w

∑
i∈[w]

[
log

1− s2
i

4

]
+

1

2

1

wt

∑
i,j

[
Tijyj log

1 + si
1− si

]
=

1

2

[
1

w

∑
i∈[w]

log
1− s2

i

4

]
+

1

2

[
1

t

∑
j∈[t]

yj

][
1

w

∑
i

s∗i log
1 + si
1− si

]
. (5.2)

We used the linearity of expectations, and noticed the second sum becomes separable. Let

(s̄, ȳ) ∈ arg max
(s,y)∈[−1,1]w×{±1}t

L (s, y) .

We remind the reader that (s̄, ȳ) is a deterministic element of the parameter space. A
simple direct calculation (found in Section 7.1) gives the following fact:

Fact 1. The maximizers of the expected LLF coincide with the true generating parameters
and their negations, that is,

{(s̄, ȳ), (−s̄,−ȳ)} = {(s∗, y∗), (−s∗,−y∗)} .

Notation for the log-weights. As log 1+s
1−s , which we simply call the weight function,

appears consistently in the remaining of the document we use the shorthand v for it, or
v(s) when its dependence on s requires attention. We further abuse notation by allowing
v(·) to have domain [−1,+1], or [−1,+1]w, whichever is required in the given context. For

40

the latter, the weight function is applied element-wise. As this function is injective in its
domain – with the range of extended reals R̄ – we can work equivalently in the s (skill)
or v (weight) domains. The inverse of weight function is, in fact, the sigmoid function
with range [−1,+1]. We translate the s∗, ŝi, etc. notation to the weight domain, too, as
v∗, v̂i, See Section 7.7 for a detailed treatment of these function.

5.1.2 The Convergence of the Log-Likelihood to its Expectation

In this step we analyse the rate at which the (random) LLF approaches its expected value.
The distance between these functions will be measured in the supremum norm ‖·‖∞, that
is, as the “largest” difference in function values for any point in the parameter space. This
so called uniform deviation bound will allow us to guarantee convergence regardless of what
the true parameters are. Mathematically speaking, we will find some measurable function
f such that

P

(
sup

(s,y)∈[−1,1]w×{±1}t
|L (s, y |T)− L (s, y) | < fs∗(δ, w, t)

)
> 1− δ.

There are a few difficulties. First, the deviation

∆ = sup(s,y)∈[−1,1]w×{±1}t |L (s, y |T)− L (s, y) |

is difficult to control as the magnitudes of the derivatives of both L (s, y) and L (s, y)
diverge to∞ if for some i ∈ [w], |si| approaches one. Hence, they are very sensitive in this
region which makes it hard to control their difference. We take care of this, by restricting
the range of si (for each i) to Sλ

.
= [−1 + λ, 1− λ]. The next issue is that the deviation ∆

might not be a measurable function, making the expression in the above displayed equation
ill-formed. In our case, however, ∆ can be shown to be measurable based on a result stated
in Appendix C of the book of Pollard (1984).

To derive the function fs∗ , we employ the concept of covering numbers. This will allow
us to bound the deviation over the whole domain through a finite number -the covering
number of our space, to be precise- of proxy elements in it (cf. Lemma 5). For each such
element we calculate point-wise tail bounds on the deviation.

Lemma 8 (Concentration of the LLF at a fixed parameter). For T ∈ {±1}w×t generated
according to true skills s∗ ∈ [−1, 1]w, for any s ∈ [−1 + λ, 1− λ]w, y ∈ {±1}t, we have

P
(∣∣∣L (s, y)− L (s, y |T)

∣∣∣ ≥ ε
)
≤ 2 exp

− w2tε2

log2(2λ−1 − 1)
∑

i
s∗i
v∗i

 .

41

Note that the term 1
w

∑
i
s∗i
v∗i

is bounded by 1
2

and decreases to 0 as the quality of workers

goes up, strengthening the bound. This refinement is missed by traditional concentration
inequalities such as that of Hoeffding or McDiarmid; we use an inequality due to Kearns
and Saul (1998) for the proof (cf. Lemma 3). For the covering numbers, we have the
following result:

Lemma 9 (The covering number of our space). Consider the pseudometric on our param-
eter space Θ = [−1 + λ, 1− λ]w × {±1}t given by

d((s, y), (s′, y′)) = ‖L (s, y | ·)− L (s′, y′ | ·)‖∞ .

Let N(ε,Θ, d) denote the ε-covering number of Θ. Then we have

N(ε/3,Θ, d) ≤

(
6
{

1
λ

+ 1
2

log(2λ−1 − 1)
}

ε
+ 1

)w+t

.

Combining these results with the uniform deviation bound of Lemma 5, we arrive at

P
(

sup
θ∈Θ
|L (θ |T)− L (θ) | ≥ ε

)
≤ P

(
max
θ∈C
|L (θ |T)− L (θ) | ≥ ε

3

)
≤
∑
j∈C

P
(
|L (θ |T)− L (θ) | ≥ ε

3

)

≤ |C|2 exp

− w2tε2

9 log2(2λ−1 − 1)
∑

i
s∗i
v∗i


≤ 6

(
2
{

1
λ

+ 1
2

log(2λ−1 − 1)
}

ε
+ 1

)w+t

· exp

− w2tε2

9 log2(2λ−1 − 1)
∑

i
s∗i
v∗i

 .

It is often informative to invert this bound so that the guarantee on the maximum size
of the deviation is expressed in terms of the probability of a bad sample, δ > 0. Doing so
leads to the following lemma.

Lemma 10 (High probability uniform deviation bound). Fix s∗ ∈ [−1, 1]w and let

εs∗(δ, w, t)
.
= 3 log(2λ−1 − 1)

√
1

w

∑
i

s∗i
v∗i

√
1

2wt

[
(w + t) logC + log(2/δ)

]
, (5.3)

42

where C is a problem dependent constant that is polynomial in w, t (the exact expression
for C is given in (5.4)). For T ∈ {±1}w×t generated according to true skills s∗ ∈ [−1, 1]w,
Θ = Swλ × {±1}t, for any δ > 0, we guarantee

P

(
sup

(s,y)∈Θ

|L (s, y)− L (s, y) | < εs∗(δ, w, t)

)
> 1− δ .

The value of C mentioned in this lemma is

C =
6
√

2wt{ 1
λ

+ 1
2

log(2λ−1 − 1)}

3 log(2λ−1 − 1)
√

1
w

∑
i
s∗i
v∗i

√
log(2/δ)

+ 1 . (5.4)

We can see that this quantity does not increase fast with w, t increasing, λ decreasing,
and in fact decreases with δ decreasing to 0. Considering that their contribution to εs∗
is through a logarithm, this term is almost negligible. It is only 1

w

∑
i
s∗i
v∗i

that can easily

make C explode, when a true skill approaches ±1. More precisely, by Fact 3 (shown in the

supplementary material), 1
w

∑
i
s∗i
v∗i
≥ 1

2+Φ
, thus, for small enough λ and δ,

C = O
(

(1 + 1
λ
)

√
wt(1 + Φ)

)
.

The proofs of these claims appear in Section 7.2.

5.1.3 The Proximity of the Maximizing Parameters

We have proven that for most worker label matrices generated according to the one-coin
model the empirical and expected LLFs become close when the quantity of data is large
– in fact we quantified this relationship. Now we show that this is enough to conclude
that each maximizer θ̂ = (ŝ, ŷ) of the LLF over the domain Θ = Swλ × {±1}t associated
to such a worker label matrix is close to a maximizer θ̄ = (s̄, ȳ) of the expected LLF. By
Lemma 13, applied to the empirical and expected LLFs, assuming that θ̄ ∈ Θ,

|L(θ̂)− L(θ̄)| ≤ 2 sup
θ∈Θ

∣∣L (θ)− L (θ)
∣∣ , (5.5)

that is, for some bounded uniform deviation of the empirical from the expected LLF we get
a bounded difference in the values of the expected LLF at the two maximizing parameters.

43

This in turn will lead to bounds on how far these parameters (the skills and labels) can
be. To paraphrase, we find an easy to understand superset of

{θ ∈ Θ | L (θ) ≥ L
(
θ̄
)
− ε} = L−1

(L
(
θ̄
)
− ε),

which (implicitly) bounds the error on the label and skill estimates.

Recall that y only interacts with the expected LLF values through its average (cf. Equa-
tion (5.2)). It is an option to bound the number of mistakes by finding y̌ ∈ {±1}t with
smallest absolute value satisfying

(s, y̌) ∈ L−1
(L
(
θ̄
)
− ε)

for some s, though we found this leads to weak bounds.

Instead, we concentrate on bounding the error in the skill, or rather, the weight esti-
mates as a function of the deviation between L (s, y)−L (s̄, ȳ) = L (s, y)−L (s∗,1) (recalling
that ȳ = 1 for the sake of analysis, and that the corresponding s̄ is s∗). We remind the
reader that the weight associated to a skill s is v = log 1+s

1−s , and that it corresponds to the
weight that a worker with the given skill receives in the optimal decision rule. We present
two bounds; the first is asymptotic, the second relies on an unproven analytic conjecture,
also stated below. Both rely on the same real-analysis argument, given in Section 7.3.

Theorem 2. Fix any 0 < γ < 1, s∗, s ∈ [−1, 1]w, y ∈ {±1}t and consider L : [−1, 1]w ×
{±1}t → R. There exists ε0 > 0 such that if

ε
.
= L (s∗, 1)− L (s, y) < ε0

then the weight estimates enjoy

‖v(s)− χv(s∗)‖1 ≤
2

γ

√
2wε

∑
i

1

1− (s∗i)
2

for χ = sgn
(∑

j yj

)
.

Conjecture 1. For any 0 < λ < 0.0067, s∗ ∈ [−1, 1], s ∈ Sλ we have

log
1− s2

∗
1− s2

+ s∗(v∗ − v) ≥ 1− s2
∗

2 log(1/λ)
(v∗ − v)2 .

44

Although the conjecture is supported by extensive numerical calculations, we have been
unable to show it analytically. See Appendix A for a justification of why the conjecture is
believable.

Theorem 3. Assuming Conjecture 1 holds, for any 0 < λ < 0.0067, s∗ ∈ [−1, 1]w, s ∈ Swλ ,
y ∈ {±1}t, letting

ε
.
= L (s∗, 1)− L (s, y) ,

the weight estimates are bounded as

‖v(s)− χv(s∗)‖1 ≤ 2

√
wε log

(1

λ

)∑
i

1

1− (s∗i)
2

for χ = sgn
(∑

j yj

)
.

The conditions are quite mild. We see that we recover the weights or their negations
depending on the sign of the average label y. Again, when “running” the MLE, we make
sure to choose the label estimate corresponding to the skills whose average is positive – in
accordance with the assumption that workers on average label correctly (cf. Equation (3.4)).

It may be more natural to interpret the results in terms of the normalized `1 norm.
The conclusion of Theorem 3, for example, is

1

w
‖v(s)− v(s∗)‖1 ≤ 2

√√√√ε log
(1

λ

)[1

w

∑
i

1

1− (s∗i)
2

]
.

We clearly see that the average proximity is governed by a measure of the quality of the

crowd,
√

1
w

∑
i

1
1−(s∗i)2

, and
√
ε log(1/λ). We find that the more skilled the workers are,

the harder it is to approximate their weights. This is not surprising: the weights of highly
qualified workers are extremely sensitive to changes in the skill. The term log(1/λ) is quite
small, even if we tie 1/λ to some polynomial function of the data size. Recall, the ε ap-
pearing here is related to the uniform deviation calculated in the previous section, through
Lemma 13. Next, we investigate what errors we make when using approximate weights, of
any source, in the optimal decision rule. Our argument will climax in Section 5.1.5 when
we combine all these results.

45

5.1.4 From Approximate Weights to Labels

In this section, given some weights v̂ ≈ v∗, we want to bound the probability of returning
an incorrect label by using weighted majority voting for a single task. (Note that the
same argument applies if v̂ ≈ −v∗, except then the incorrect label would actually be +1.
Without loss of generality we consider the “positive” case, that is, v̂ ≈ v∗.) Recall, the
v-weighted majority voting decision rule is

f v : {±1}t → {±1}
x 7→ sgn

(
x>v

)
,

(5.6)

which we will apply to the labels Y provided by workers for an instance (thus, in this
section Y and T are column vectors corresponding to a single task). Recall, under the
assumption y∗ = 1 the decision rule becomes sgn

(
v>T

)
, and it makes a mistake if it is not

1. We relate the event that f v makes a mistake to the optimal decision rule f v∗ making
an error. As we will apply this argument to our weight estimates v̂, in the analysis that
follows v̂ denotes a random vector. Now, for any ε > 0

I
{

sgn
(
v̂>T

)
6= 1
}
≤ I

{
v̂>T ≤ 0

}
= I

{
v>∗ T ≤ (v∗ − v̂)>T

}
≤ I

{
v>∗ T ≤ (v∗ − v̂)>T, (v∗ − v̂)>T ≤ ε

}
+ I

{
v>∗ T ≤ (v∗ − v̂)>T, (v∗ − v̂)>T > ε

}
≤ I

{
v>∗ T ≤ ε

}
+ I

{
(v∗ − v̂)>T > ε

}
≤ I

{
v>∗ T ≤ ε

}
+ I {‖v∗ − v̂‖1 > ε} , (5.7)

where in the last step we used that |Ti| ≤ 1. Intuitively, the bound states we make a
mistake using v̂ if the best weights are too close to (or are) making a mistake, or our
weight estimates are too far off from the best ones. The following lemma, utilising Kearns
and Saul’s inequality in its proof (Section 7.4.1), bounds the probability of the former event.
Recall that Φ denotes the total committee potential of our crowd, which fully captures its
labelling power (cf. Section 3.4.1).

Lemma 11. If Φ 6= 0, for any ε > 0, r > 0

P
(
v>∗ T ≤ ε

)
≤ exp

{
rΦ(r − (1− ε

Φ
))
}
,

and assuming

ε ≤ Φ , (5.8)

46

we have

P
(
v>∗ T ≤ ε

)
≤ exp

{
−Φ

4

(
1− ε

Φ

)2
}
.

We turn our attention to the second event, that the approximate weights are too far
from the true weights. The work we have done so far has been towards bounding the
probability of this event: Lemma 10 quantifies the uniform deviations in the LLF, which,
combined with Theorem 2 or Theorem 3, yield high probability bounds on the weight
approximation error. Without concern for the details, we observe that the bounds will be
of the form

P
(
‖v̂ − v∗‖1 > C1

4
√
C2 + log(1/δ)

)
≤ δ (5.9)

for some C1, C2 > 0 problem dependent constants where 0 < δ ≤ 1. Theorem 3 allows δ
to range over 0 < δ ≤ 1, but in order to apply Theorem 2 we require δ ≥ δ0 for some δ0

dependent on the remaining parameters. We remark that δ0 decreases with the size of the
problem (while other parameters are held constant) and becomes 0 when the parameters
cross a certain, problem dependent threshold.

What remains is to choose a way to distribute a prescribed total error between the
two upper bounding events, that is, to choose an ε to apply Equation (5.7) with. Now,
one may optimize the value of ε to minimize an upper bound on the expectation of the
right-hand side of Equation (5.7), but we strive for a simple presentation instead: we relate
the exponents of the two mistake bounds so that their sum is simply controlled from above.
This yields the following general result on the loss, `, of weighted majority voting with any
approximate weights that have high probability bounds of the form outlined above. We
bring to the reader’s attention that the weights are allowed to depend on T in this result.

Theorem 4. Let v∗ be the true weights, v̂ estimates; let C1, C2 be some positive constants
such that for all 0 < δ < 1 we are guaranteed

P
(
‖v̂ − v∗‖1 > C1

4
√
C2 + log(1/δ)

)
≤ δ .

Furthermore, define

t1 =
Φ

4

(
1 +

C1
4
√
C2

2
√

Φ

)−2

, t2 =
Φ

4

(
1 +

C1

2
√

Φ

)−2

.

Then if C2, log(2/δ) ≥ 1 the probability of the v̂-weighted majority algorithm making an
error is bounded as

P
(
sgn

(
v̂>T

)
6= 1
)
≤ 2 exp

{
−min(t1, t

2
1)
}
, (5.10a)

47

furthermore,
P
(
sgn

(
v̂>T

)
6= 1
)
≤ 2 exp

{
−min(t2, t

2
2 + C2)

}
(5.10b)

always holds.

We see that for the error of v̂ to have a negligible effect on the reconstruction error
one needs C1 (and C2) to be small compared to the total committee potential. Finally, we
remark that using weights v̂ close to −v∗ we get the same bounds on P

(
sgn

(
v̂>T

)
6= −1

)
.

See Section 7.4.2 for the proof of the theorem.

5.1.5 A Mistake Bound

In this section we simply combine earlier results for mistake bounds. We will bound the
probability of mislabelling a randomly chosen task, our proposed loss. Note that here, by
“mislabelling” a task, we mean we allow the consistent flipping of all labels and measure
our error against the better one; the corresponding precise definition is Equation (3.5). We
derive a finite sample bound (based on Conjecture 1). We will need the problem specific
constant

C2 = (w + t) log

 6
√

2wt{ 1
λ

+ 1
2

log(2λ−1 − 1)}

3 log(2λ−1 − 1)
√

1
w

∑
i
s∗i
v∗i

√
log(2/δ)

+ 1

+ log(2) .

Theorem 5 (Finite sample mistake bound). Let (ŝ, ŷ) be the ML estimate over Θ =
Swλ × {±1}t, v̂ = v(ŝ), ỹj = sgn

(
v̂>Y:,j

)
be the label obtained using weighted majority

voting with the random weights v̂. Fix any 0 < λ < 0.0067, s∗ ∈ Swλ . Letting

r
.
= log(2/λ)

√√√√6

√
w

2t

√
1

w

∑
i

s∗i
v∗i

(
1

w

∑
i

1

1− (s∗i)
2

)
Φ
−1
,

and given that Conjecture 1 holds, for any j ∈ [t],

P (yj 6= ỹj) ≤ 2 exp
{
−min

(
Φ
4
(1 + r)−2, (Φ

4
(1 + r)−2)2 + C2

)}
.

The proof can be found in Section 7.5. Recall, the oracle predictor’s loss (cf. Sec-
tion 3.4.1) is exp(−Φ) up to a constant in the exponent. Our bound is “diluted” by
(1 + r)−2, therefore the closer r is to 0, the closer the guarantee on the loss suffered by

48

the ML estimates is to that of the oracle predictor. In order to understand the bounds
we need to consider which term the minimum will select. Observe that if C2 ≥ 1, then
the first term will automatically be smaller than the second term: if it were otherwise, it
would require

Φ
4
(1 + r)−2 ≥ (Φ

4
(1 + r)−2)2 + C2 ≥ C2 ≥ 1 ,

but that means
1 ≤ Φ

4
(1 + r)−2 ≤ (Φ

4
(1 + r)−2)2 ,

a contradiction. As C2 ≤ w + t + log(2), we can safely assume it is larger than one, and
hence work with the upper bound as if it was

2 exp
{
−Φ

4
(1 + r)−2

}
.

First let us study the behaviour of the bound in the number of tasks we require labels
for (while keeping other parameters constant). We see that for a large number of tasks
we approximately have r ∼ t−1/4, and in turn for r → 0: (1 + r)−2 ∼ 1 − 2r, yielding
(1 + r)−2 ∼ 1− 2t−1/4. Therefore the error bound scales as

2 exp{−Φ
4
(1− 2t−1/4)}

in t which approaches the error rate of the oracle as t→∞.

In order to study the effect of increasing the number of workers (while keeping others
constant), notice that Φ is the total committee potential, that is, it is equal to wΦ. We
are holding Φ constant, while increasing w. Again, for large w, r ∼ w1/4, and in turn
wΦ
4

(1 + r)−2 ∼ w1/2. We verify that the error of our estimation procedure decreases as
workers are added, though the rate at which this happens is slower than that of any
other method studied earlier, including uniform majority voting, whose exponents all scale
linearly in the number of workers.

5.2 Additional Results

In this section we display any related results of some importance that do not directly
contribute towards the mistake bound of the previous chapter.

49

5.2.1 Inference with Weights That are Independent of Labels

In Section 5.1.4 we showed a bound on the probability of mislabelling when using weight
estimates v̂. In the argument we had to allow v̂ to be dependent on the random matrix
T , as we would apply the result to weights calculated exactly based on the T . We now
explicitly consider the case that the weights v̂ are independent of the labels they are used
on. Denote by

e(v) = P
(
sgn

(
v>T

)
6= 1
)

the probability that we make a mistake with the deterministic weight vector v. We can
show

Lemma 12. For v ∈ Rw fixed, the probability of error, e(v), of the weighted majority rule
on a new task is bounded by

e(v) ≤ exp

−1

4

(v>s∗)
2∑w

i=1
s∗i v

2
i

v∗i

 . (5.11)

The proof is presented in Section 7.6. For brevity, we denote the sum in the denominator

by ρ, that is, ρ(v) =
∑w

i=1
s∗i v

2
i

v∗i
. Note that when v = v∗, ρ = v>∗ s∗, and e(v∗) ≤ e−

1
4
v>∗ s∗ , i.e.,

we get back Theorem 1(i) of Berend-Kontorovich. The uniform weighted majority voting
algorithm is also of special interest. The above result directly yields the following corollary.

Corollary 2. Let ŷj denote the uniform majority estimate for task j. Then

pmaj
.
= P

(
ŷj 6= y∗j

)
≤ exp

−1

4

(
w∑
i=1

s∗i
v∗i

)−1(w∑
i=1

s∗i

)2
 . (5.12)

5.2.2 Separation Criterion

We investigate the conditions under which workers can be distinguished from random
guessers. This, if over half of the labels are estimated correctly, is equivalent to identifying
the direction of every worker’s bias correctly. To be precise, we give a condition on the
size of the deviation of L (s, y) from L (s̄, ȳ) to guarantee this separation. (Recall s̄ = s∗,
ȳ = y∗ = 1 as per our assumption.)

We first characterize this problem for one worker. Recall the shape of the expected LLF
function (cf. Equation (5.2)), which (in the weight domain) may be viewed on Figure 7.2.

50

Notice that some contour lines actually connect the regions of the positive and negative
peaks. In such cases, even if y > 0 is guaranteed, the range of possible skills includes 0 in
its interior.

These peaks are connected exactly if the region includes the low point of the saddle.
Mathematically, the function value difference between the optimum and the low point (0, 0)
of the saddle is

L (s∗, 1)− L (0, 0) =
1

2

[
log

1− (s∗)
2

4
− s∗ log

1 + s∗
1− s∗

]
− 1

2
log

1

4

=
1

2

[
log(1− (s∗)

2)− s∗ log
1 + s∗
1− s∗

]
.
=
b(s∗)

2
,

where b(x) denotes the transformed negative binary entropy function shown on Figure 5.1.
Note that it bounds the allowed deviation to be 0 for a worker of skill 0.

Figure 5.1: The transformed negative binary entropy acting as the Separation Criterion.

When considering multiple workers, we wish to guarantee that each one of them is
distinguished from spammers. To guarantee this, ε ≤ b(s∗i)/2 is required for every worker
i. Clearly this is also sufficient.

51

Chapter 6

Conclusion and Future Work

In this thesis, we studied various label aggregation or true label inference methods in the
one-coin model — the simplest variant of the famed Dawid-Skene model. First, we gave
an overview of the existing methods and their analysis. Next, we proceeded to contribute
one of our own — claiming that the MLE associated to this model enjoys a low probability
of mislabelling. We gave a proof of this claim, except for one well-justified, albeit not yet
proven step regarding a function lower-bounding another.

The bound on the mislabelling error is presented in terms of the mislabelling error of
the oracle predictor, the method that has knowledge of the skill of each worker. Therefore,
in a way, it quantifies the additional error introduced by not having knowledge of these
skills, and the possible looseness of our analysis. Furthermore, this presentation illustrates
in what scenarios the performance of the ML estimates of the inference problem approach
those of the oracle.

There are a number of steps in the argument where we may want to exert additional
effort towards a possibly tighter analysis. In Section 5.1.2 instead of the uniform deviations
we may be able to argue more locally near the extrema of the functions considered; in
the same section, when using the covering numbers we may be able to use the so called
chaining argument for a somewhat tighter uniform deviation bound; when bounding the
probability that our weight estimates err on a task, we upper bound expected value of
I
{

(v∗ − v̂)>T > ε
}

by that of I {‖v∗ − v̂‖1 > ε}, while in reality T and (v∗ − v̂) may be
related in such a way that the first quantity is significantly smaller. Furthermore, we may
wish to replace the strategy currently used to distribute the error of mislabelling between
the two terms in Equation (5.7): firstly, the event that the weights are not estimated well
enough should not contribute towards the error of each individual task, rather we should

52

suffer it just once for the full reconstruction process; secondly, the distribution of the error
may be optimized for a potentially better bound. Finally, the conjecture our result hinges
on needs to be proven and we may also wish to carry the somewhat tighter asymptotic
weight approximation result (Theorem 2) to a complete mistake bound.

It would also be educational to prove a (mimimax) lower bound on the performance
of any inference algorithm in this setting. Additionally, we are very much interested in
including task difficulties in the one-coin model, and have some preliminary results not
presented here in that direction.

53

Chapter 7

Proofs

7.1 The Log-Likelihood Functions and Their Maxi-

mizers

Proof of Fact 1. We show that the set of maximizers of L (s, y) is {(s∗, y∗), (−s∗,−y∗)}. By
definition ȳ ∈ arg maxy L (s̄, y). As y only appears in the second term and L is separable
(cf. 5.2), we have

ȳj ∈ arg max
yj

yj
∑
i

s∗i log
1 + si
1− si

.

By inspecting the right-hand side, we see that the maximum is achieved at yj = sgn
(∑

i s
∗
i log 1+si

1−si

)
,

which is actually constant over j, implying that either ȳ = 1t or ȳ = −1t. Consequently,

L (s, ȳ) =
1

2

 1

w

∑
i∈[w]

log
1− s2

i

4
+

∣∣∣∣∣∣ 1

w

∑
i∈[w]

s∗i log
1 + si
1− si

∣∣∣∣∣∣
 .

Next, we study s̄, the skill vector that maximizes L (s, ȳ). In order to work with the
absolute value appearing in this function, consider

l+(s) =
1

2

1

w

∑
i∈[w]

[
log

1− s2
i

4
+ s∗i log

1 + si
1− si

]

54

and

l−(s) =
1

2

1

w

∑
i∈[w]

[
log

1− s2
i

4
− s∗i log

1 + si
1− si

]
.

Then

L (s, ȳ) =

{
l+(s) if 〈s∗, log 1+s

1−s〉 ≥ 0⇔ ȳ = 1t = y∗,

l−(s) otherwise, (⇔ ȳ = −y∗).

Observe, l+(s) ≡ l−(−s) and vice versa; which suggests it is enough to maximize l+. It
also implies that the symmetric solution is the only other maximizer of the expected LLF.
l+ is concave and continuously differentiable on (−1,+1)w. Therefore setting its gradient
to 0 and solving for the skill satisfying this equality will yield a necessary condition on the
maximizer:

∂

∂si
l+(s) =

1

2w

(
1

1− s2
i

(−2si) + s∗i
1− si
1 + si

(1− si) + (1 + si)

(1− si)2

)
=

1

w

−si + s∗i
1− s2

i

= 0,

that is, s̄i = s∗i . We conclude that, as promised,

arg max
s,y

L (s, y) = {(s∗, y∗), (−s∗,−y∗)},

7.2 The Convergence of the Log-Likelihood to its Expectation

7.2.1 Concentration of the LLF at a fixed parameter

Proof of Lemma 8. We wish to bound

P
(
|L (s, y |T)− L (s, y) | ≥ ε

)
for (s, y) ∈ [−1 + λ, 1− λ]w × {±1}t parameters. From the definitions,

L (θ)− L (θ |T) =
1

2

1

wt

∑
i,j

(s∗i − Tij)yivi,

55

therefore, for any α > 0,

P
(
L (θ)− L (θ |T) ≥ ε

)
= P

(
α

1

2

∑
i,j

(s∗i − Tij)yj log
1 + si
1− si

> αwtε

)

= P
(
e
α
(

1
2

∑
i,j(s

∗
i−Tij)yj log

1+si
1−si

−wtε
)
> 1

)
≤ E

[
e
α
(

1
2

∑
ij(s
∗
i−Tij)yj log

1+si
1−si

−wtε
)]

=
∏
i,j

E
[
e
α
2

(s∗i−Tij)yj log
1+si
1−si e−αε

]
,

where we used Markov’s Inequality and the independence of the (Ti,j) in the last two steps.
We will bound the expectation using Lemma 3, the Kearns and Saul’s inequality. Making
the substitutions t = −2av∗i and p = (1− s∗i)/2 into (4.1), we get that for any a ∈ R,

E
[
e−av

∗
i (Tij−s∗i)

]
=

1 + s∗i
2

exp

(
−2av∗i

1− s∗i
2

)
+

1− s∗i
2

exp

(
2av∗i

1 + s∗i
2

)
≤ exp

(
s∗i
4v∗i

(−2av∗i)
2

)
= exp

(
a2s∗i v

∗
i

)
.

We will use this with a = ±α yjvi
2v∗i

. The different signs bound the deviations in the two

different directions, with both combined leading to the standard absolute value form. We
work with just ‘+’, noting that the other case goes the same way. Continuing from where
we left off, we first apply the inequality we just proved term-wise, then simplify:

∏
i,j

E
[
e
α
(

1
2

(s∗i−Tij) log
1+si
1−si

−ε
)]
≤
∏
i,j

exp

(
−αε+ α2

y2
j v

2
i

4(v∗i)
2
s∗i v
∗
i

)

≤ exp

(
−αwtε+ α2

∑
ij

y2
j s
∗
i

4v∗i
v2
i

)
.

Now we minimize the exponent over α. The exponent has the form xα2 − yα, so setting
the derivative to 0 we get 2xα − y = 0, meaning the optimum is α∗ = y

2x
. At that point

56

the value of the exponent is x y2

4x2
− y y

2x
= − y2

4x
. Consequently, we get

P
(
L (θ)− L (θ |T) ≥ ε

)
≤ exp

− w2t2ε2

4
∑

ij

y2j s
∗
i

4v∗i
v2
i


≤ exp

− w2tε2∑
i
s∗i
v∗i
v2
i


≤ exp

− w2tε2

log2(2λ−1 − 1)
∑

i
s∗i
v∗i

 ,

where we first used y2
j ≤ 1, then v2

i ≤ log2 2−λ
λ

= log2(2λ−1− 1), which are true due to the
constraints on the domain.

7.2.2 The covering number of our space

Proof of Lemma 9. We look for an upper bound on N(ε/3,Θ, d), where we recall d is the
pseudometric defined as

d((s, y), (s′, y′))
.
= ‖L (s, y | ·)− L (s′, y′ | ·)‖∞

on the parameter space Θ = [−1 + λ, 1 − λ]w × {±1}t. By construction, any ε-cover of
(Θ, d) is an ε-cover of (F = {L (θ | ·) : θ ∈ Θ}, ‖·‖∞) and vice versa. Therefore we want to
equivalently bound N(ε/3,F , ‖·‖∞)). Here we abused notation slightly by using a norm
in place of a pseudometric – simply consider the metric induced by the norm.

We use results concerning covering numbers collected in Section 4.4. Lemma 6 shows
that we can calculate the covering number for (Θ, ‖·‖∞), then use a Lipschitz constant L
associated to the LLF and the pseudometric spaces in consideration through

N(ε,F , ‖·‖∞) ≤ N(ε/L,Θ, ‖·‖∞).

Lemma 7 upper bounds the right hand side. In order to find the Lipschitz constant it
suffices to calculate the gradient of the LLF with respect to the parameters, as, by the
mean-value theorem and Hölder’s inequality,

‖L (θ | ·)− L (θ′ | ·)‖∞ ≤

 sup
θ∈Θ,

x∈{±1}w×t

‖∇θL (θ |x)‖1

 ‖θ − θ′‖∞ .
57

Since Θ = Swλ ×{±1}t with λ > 0, the skills in the argument of the supremum are bounded
away from ±1. For the gradient we calculate bounds on the partial derivatives:

∣∣∣∣ ∂∂siL (s, y |x)

∣∣∣∣ =

∣∣∣∣∣∣ 1

2w
· −2si

1− s2
i

+
1

2wt

∑
j∈[t]

xijyj
2

1− s2
i

∣∣∣∣∣∣ =
1

w

|si − xi,·y·|
1− s2

i

,

∣∣∣∣ ∂∂yjL (s, y |x)

∣∣∣∣ =

∣∣∣∣∣∣0 +
1

2wt

∑
i∈[w]

xij log
1 + si
1− si

∣∣∣∣∣∣ =
1

2t

∣∣∣∣x·,j log
1 + s·
1− s·

∣∣∣∣ ,
where · denotes the average over the index not displayed. Therefore,

sup
θ∈Θ,

x∈{±1}w×t

∣∣∣∣ ∂∂siL (s, y |x)

∣∣∣∣ =
1

w
sup
s∈Sλ

s+ 1

1− s2
=

1

w

1

1− (1− λ)
=

1

λw
,

sup
θ∈Θ,

x∈{±1}w×t

∣∣∣∣ ∂∂yjL (s, y |x)

∣∣∣∣ =
1

2t
sup
s∈Sλ

log
1 + s

1− s
=

1

2t
log
(
2λ−1 − 1

)
,

and hence L = 1
λ

+ 1
2

log (2λ−1 − 1) is a Lipschitz constant for the function θ 7→ L (θ | ·) as
a map between (Θ, ‖·‖∞) and F . What remains is to calculate the ε-covering number of
(Θ, ‖·‖∞). We note Θ ⊆ [−1,+1]w× [−1,+1]t = [−1,+1]w+t, which is exactly the unit ball
B in Rw+t when using ‖·‖∞, so we directly apply Lemma 7 bounding exactly this quantity.
For any ε > 0

N(ε,Θ, ‖·‖∞) ≤ N(ε, B, ‖·‖∞) ≤
(

2

ε
+ 1

)w+t

.

Combining these, we see

N(ε/3,F , ‖·‖∞) ≤ N(ε/(3L),Θ, ‖·‖∞) ≤
(

6L

ε
+ 1

)w+t

.

7.2.3 High probability uniform deviation bound

Proof of Lemma 10: Inverting the Concentration Bound. The goal is a bound of the form

P
(

sup
s,y
|L (s, y)− L (s, y) | < εs∗(δ, w, t)

)
> 1− δ

58

for every δ > 0, given that

P
(

sup
θ∈Θ
|L (θ |T)− L (θ) | ≥ ε

)
≤ 2

(
6L

ε
+ 1

)w+t

exp

− w2tε2

9 log2(2λ−1 − 1)
∑

i
s∗i
v∗i


for any ε > 0 and parameter settings; here L =

{
1
λ

+ 1
2

log(2λ−1 − 1)
}

. We simply set
the right hand side to be smaller than δ and rearrange the inequality with the goal of
finding the smallest satisfying ε in terms of δ. We get the following sequence of equivalent
inequalities:

2

(
6L

ε
+ 1

)w+t

exp

− 2w2tε2

9 log2(2λ−1 − 1)
∑

i
s∗i
v∗i

 ≤ δ ⇐⇒

(w + t) log

(
6L

ε
+ 1

)
− 2w2tε2

9 log2(2λ−1 − 1)
∑

i
s∗i
v∗i

≤ log(δ/2) ⇐⇒

[
(w + t) log

(
6L

ε
+ 1

)
− log(δ/2)

](
9 log2(2λ−1 − 1)

∑
i

s∗i
v∗i

)
≤ 2w2tε2 ⇐⇒

3 log(2λ−1 − 1)

√
1

w

∑
i

s∗i
v∗i

√
1

2wt

[
(w + t) log

(
6L

ε
+ 1

)
+ log(2/δ)

]
≤ ε. (7.1)

As opposed to directly solving for ε, we have arrived at an inequality -which we will write
as f(ε) ≤ ε for short- with the variable we would like to bound appearing on both sides.
To get a practical upper bound on ε, observe that f is decreasing in ε, therefore if some ε∗
satisfies the inequality, so do larger values. In fact, let ε∗ be such that f(ε∗) = ε∗, which
must (uniquely) exist. Figure 7.1 illustrates these constructs visually. The plan is to select
some l ≤ f(ε∗), then

l ≤ f(ε∗) = ε∗ =⇒ f(l) ≥ f(ε∗) = ε∗ ,

so ε ≥ f(l) is sufficient for Equation (7.1) to hold. We set l to be the asymptote of f ,

3 log(2λ−1 − 1)

√
1

w

∑
i

s∗i
v∗i

√
1

2wt
log(2/δ),

which clearly satisfies l ≤ f(ε) for any ε in fact. There we use f(l),

3 log(2λ−1 − 1)

√
1

w

∑
i

s∗i
v∗i

√
1

2wt

[
(w + t) log

(
6L

l
+ 1

)
+ log(2/δ)

]
,

59

ε

f (ε)

ε ' ε

Figure 7.1: An illustration of the set of ε that satisfy Equation (7.1).
The shaded interval on the x-axis is the set of satisfying ε. We hope to find the smallest such ε, ε′, though

we only do so approximately.

as the εs∗(δ, w, t) we set out to find. Indeed, substituting L and l we arrive at the expression
shown in the statement of the lemma.

7.3 Bounds on the Error of the Weight Estimate

Proofs of Theorem 2 and Theorem 3. Both claims bound the `1 norm between the recov-
ered weights and the true weights with the appropriate sign, given that L (s∗,1)−L (s, y) ≤
ε. That is, if sgn

(∑
j yj

)
≥ 0, we are closer to the global max of y∗ = 1 and therefore mea-

sure the quality of the weights as the distance to the true weights v∗, but if sgn
(∑

j yj

)
≤ 0

we are near the negated peak and therefore recover −v∗. For the purposes of this analysis

we WLOG assume we are in the former situation, that is, sgn
(∑

j yj

)
≥ 0.

The arguments are essentially the same for Theorems 2 and 3, except for a divergence to-
wards the end. For convenience we pass to the weight domain, and interpret L (·, y) accord-
ingly. Additionally, we note that y only interacts with the expected LLF (cf. Equation (5.2))
values through its average. Consequently, we will view L as a L : Rw × [−1, 1]→ R map,

60

defined by

L (v, y) =
1

2

1

w

w∑
i=1

[
log

1− σ(vi)
2

4
+ yσ(v∗i)vi

]
.

Recall that the σ(·) function transforms weights to skills; see Section 7.7 for its properties.
Note that we may still use si in place of σ(vi) for a simpler notation. Figure 7.2 illustrates
this function for one worker. The contours centred around the two maxima at the edges
of the plot demonstrate the pre-images we set out to bound.

-6 -4 -2 0 2 4 6
-1

-0.5

 0

 0.5

 1

-6
-5
-4
-3
-2
-1
 0

Figure 7.2: The contour plot of L (v, y) for w = 1 and continuous label y ∈ [−1, 1].
Weights are shown on the horizontal axis, the continuous label on the vertical axis. For the generation of

this plot the true skill was set to 2.2.

The goal is to upper bound

max{‖v − v∗‖1 : L (v∗, 1)− L (v, y) ≤ ε} . (7.2)

The difference can be calculated to be

L (v∗, 1)− L (v, y) =
1

2

1

w

w∑
i=1

[
log

1− (s∗i)
2

4
− log

1− (si)
2

4
+ 1 · s∗i v∗i − ys∗i vi

]
=

1

2

1

w

w∑
i=1

[
log

1− (s∗i)
2

1− (si)2
+ s∗i (v

∗
i − yvi)

]
.

Observe that it is separable in i; we will work with just one term. Denote

Av∗(v, y)
.
= log

1− s2
∗

1− s2
+ s∗(v∗ − yv) .

61

Equation (7.2) can be written as

max{‖v − v∗‖1 :
1

w

w∑
i=1

Av∗i (v, y) ≤ 2ε} .

Noting that for any fixed v, Av∗i (v, ·) is an increasing function on 0 ≤ y ≤ 1, we see

{v : Av∗i (v, y) ≤ c} ⊂ {v : Av∗i (v, 1) ≤ c}

for any threshold c > 0. Therefore, Equation (7.2) is controlled by

max{‖v − v∗‖1 :
1

w

w∑
i=1

Av∗i (v, 1) ≤ 2ε} . (7.3)

For brevity, we start using Av∗i (v) to denote Av∗i (v, 1). In fact, let lv∗i : R → R be a lower
bound for Av∗i (·, 1). Then Equation (7.3) is upper bounded by

max{‖v − v∗‖1 :
1

w

w∑
i=1

lv∗i (v) ≤ 2ε}.

For the following steps we consider distributing the threshold 2ε amongst the terms.

max{‖v − v∗‖1 :
1

w

w∑
i=1

lv∗i (v) ≤ 2ε}

= max

{
‖v − v∗‖1 : ∀i ∈ [w] lv∗i (v) ≤ εi,

w∑
i=1

εi ≤ 2wε, εi ≥ 0

}

= max

{
w∑
i=1

max
{
|vi − v∗i | : lv∗i (v) ≤ εi

}
:

w∑
i=1

εi ≤ 2wε, εi ≥ 0

}
. (7.4)

At this point the inner max can be optimized depending on the exact form of lv∗i . It is
in the form of the lower-bound that Theorem 2 and Theorem 3 differ. However both rely
on the same initial analysis of the Av∗ function, displayed on Figure 7.3. The idea is to
lower bound it with a quadratic function fitted to it at its minimizer. The appropriate
such function can be found by taking a second derivative:

dAv∗
dv

(v) = σ(v)− σ(v∗) ,

d2Av∗
d2v

(v) =
1

2
(1− σ2(v)) .

There is some difficulty, as for extreme values of v the function Av∗ tends to a linear
function. Nonetheless, we can argue locally. The first claim will lead to Theorem 2.

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

fd(v, vst_)
pa(v, vst_, 0.75)

Figure 7.3: The plot of A2(v) in red and l0.75
q (v) in green.

The vertical line near v = 5 is vλ for λ =
√

2/105.

Claim 1. Let A(v) be as defined above, for any fixed (and hidden) v∗. Then, for any
0 < λ < 1 there is an open interval I around v∗ such that for all v ∈ I

A(v) ≥ γ2

4
(1− σ2(v∗))(v∗ − v)2 .

= lγq (v).

Additionally, since A is convex, outside of this domain we can trivially lower bound it by
the appropriate constant function.

Proof. By construction lγq for γ = 1 and A have the same second derivative at v∗, with
lγ′′q (v∗) < A′′(v∗) for any γ < 1. Moreover these two functions have the same value and
(first) derivative at v∗. Since both functions are (at least) twice continuously differentiable,
there is an open neighbourhood around v∗ where lγq (v) ≤ A(v).

Corollary 3. Fix any 0 < γ < 1, v∗ in the allowed domain. There exists ε0 > 0 such that
for any ε ∈ (0, ε0) we have

A(v) ≤ ε =⇒ lγq (v) ≤ A(v),

which, consequently, yields

|v − v∗| ≤
2

γ

√
ε

1− s2
∗
.

63

Proof. Choose ε = min{lγq (Il), l
γ
q (Ir)}, where (Il, Ir) is the open interval from Claim 1.

This guarantees the first implication. Next, we rearrange lγq = γ2

4
(1 − s2

∗)(v∗ − v)2 ≤ ε to
be

|v − v∗| ≤
2

γ

√
ε

1− s2
∗
.

Under the assumptions of Corollary 3 we can continue from Equation (7.4):

max

{
w∑
i=1

max
{
|vi − v∗i | : lv∗i (v) ≤ εi

}
:

w∑
i=1

εi ≤ 2wε, εi ≥ 0

}

≤ max

{∑
i

2

γ

√
εi

1− (s∗i)
2

:
∑
i

εi ≤ 2wε, εi ≥ 0

}
.

We will find this maximum now. For intuition, we make the transformation xi =
√
εi,

denote ρ = 1√
1−(s∗i)2

. Then the problem can be written as

max
x

2

γ
〈x, ρ〉 s.t.

∑
x2
i ≤ 2wε, xi ≥ 0.

We know the inner product is maximized by aligned vectors with largest possible length,
therefore the maximizing x (denoted simply by x here on) is Cρ for some C > 0. We need
to set its value so that it satisfies the equality constraint:

2wε =
∑
i

x2
i =

∑
i

C2

1− (s∗i)
2
,

which implies C =
√

2wε∑
i

1
1−(s∗

i
)2

. Therefore the maximal value is

〈x, ρ〉 =

√
2wε∑
i

1
1−(s∗i)2

∑
i

1

1− (s∗i)
2

=

√
2wε

∑
i

1

1− (s∗i)
2
.

To summarize, we have shown that under the given conditions

max{‖v − v∗‖1 : L (v∗, 1)− L (v, y) ≤ ε} ≤ 2

γ

√
2wε

∑
i

1

1− (s∗i)
2
,

thus proving Theorem 2.

64

The merit of Theorem 3 is that it applies for any ε-difference in the function values.
Towards this, we use a different strategy to lower bound Av∗ ; Conjecture 1 gives us one.
Note that the inequality postulated in this conjecture is in fact Av∗(v) ≥ lγq (v) with the

choice γ =
√

2
− log λ

.

Corollary 4. Assuming Conjecture 1 holds, for any 0 < λ < 0.0067, v∗ ∈ [−∞,∞]w,
v ∈ [−vλ, vλ]w and ε > 0 we have

Av∗(v) ≤ ε =⇒ |v − v∗| ≤

√
2ε log(1/λ)

1− s2
∗

.

Proof. By Conjecture 1 and our assumption, for any 0 < λ < 0.0067, v∗ ∈ [−∞,∞]w, and
any v ∈ [−vλ, vλ]

1

2 log(1/λ)
(1− s2

∗)(v∗ − v) ≤ Av∗(v) ≤ ε .

Consequently,

|v − v∗| ≤

√
2ε log(1/λ)

1− s2
∗

.

What remains is to find the worst distribution of errors amongst the workers, as it was
done in the case of Theorem 2. Under the assumptions of Corollary 4 we can continue
from Equation (7.4):

max

{
w∑
i=1

max
{
|vi − v∗i | : lv∗i (v) ≤ εi

}
:

w∑
i=1

εi ≤ 2wε, εi ≥ 0

}

≤ max

{∑
i

√
2ε log(1/λ)

1− s2
∗

:
∑
i

εi ≤ 2wε, εi ≥ 0

}

This is the same optimization problem as before, scaled. We therefore get

2

√
wε log(1/λ)

∑
i

1

1− (s∗i)
2
,

as the maximum, which completes the proof of Theorem 3.

65

7.4 From Approximate Weights to Labels

7.4.1 Optimal Weights Close to Erring

Proof of Lemma 11. By Chernoff’s bounding method, for any r > 0,

I
{
v>∗ T ≤ ε

}
= I

{
r(ε− v>∗ T) ≥ 0

}
= I

{
er(ε−v

>
∗ T) ≥ 1

}
≤ er(ε−v

>
∗ T) .

Taking expectations,

P
(
v>∗ T ≤ ε

)
≤ eλεE

[
e−rv

>
∗ T
]
.

Berend and Kontorovich (2014) calculate this expectation based on Kearns and Saul’s
inequality. See their equation (11), with θi = (Ti − s∗i)/2, wi = v∗i , to get

E
[
e−rv

∗
i (Ti−s∗i)

]
≤ er

2s∗i v
∗
i .

We continue bounding the probability of the event of our interest, using the independence
of the (Ti)i, and their inequality term-wise:

P
(
v>∗ T ≤ ε

)
≤ erεE

[
e−rv

>
∗ T
]

= erε
∏
i

E
[
e−rv

∗
i Ti
]

≤ erε
∏
i

es
∗
i v
∗
i (r2−r) = erε+s

>
∗ v∗(r

2−r)

= exp
{
rs>∗ v∗(r − (1− ε

s>∗ v∗
))
}
.

Recalling that s>∗ v∗ is the total committee potential, Φ, we observe that the first claim of
the Lemma is proven. Next, assume

ε ≤ Φ ,

then the minimizer in r of the RHS above is r∗ = 1
2
(1− ε

Φ
) – found by taking a derivative

and setting it to 0:

d

dr

[
rΦ
(
r −

(
1− ε

Φ

))]
= (2r − 1)Φ + ε = 0 ,

and yields

P
(
v>∗ T ≤ ε

)
≤ exp

{
−Φ

4

(
1− ε

Φ

)2
}
.

66

7.4.2 A Modular Mistake Bound

Proof of Theorem 4. The proof of the two parts of the theorem are quite similar; the
difference is that for (5.10a) we relax C2 +log(2/δ) to be C2 log(2/δ), while towards (5.10b)
we work with the exact expression.

The theorem basically calculates Equation (5.7) for a specific value of ε, defined im-
plicitly so that our bounds on P

(
v>∗ T ≤ ε

)
and P (‖v∗ − v̂‖1 > ε) are closely related. To

be precise, given t1 and t2 expressions with

P
(
v>∗ T ≤ ε

)
≤ e−t1 and P (‖v∗ − v̂‖1 > ε) ≤ e−t2 ,

we will set

t1 =

{√
t2, for (5.10a);
√
t2 + C2, for (5.10b).

At this point we concentrate on just one of the two results, give a complete proof of it,
then turn our attention to the other.

Proof of Equation (5.10b) By the high probability weight approximation assumption
of this Theorem, we have ε = C1

4
√
C2 + log(1/δ), or equivalently, δ = exp {−[(ε/C1)4 − C2]},

where δ is an upper bound on P (‖v∗ − v̂‖1 > ε). Therefore our t1, t2 settings become

t1 =
Φ

4

(
1− ε

Φ

)2

and t2 = (ε/C1)4 − C2,

with t1 given by Lemma 11, under the assumption that ε ≤ Φ. We solve
√
t2 + C2 = t1 for

ε; the following equations are all equivalent given that ε ≤ Φ:

(ε/C1)2 =
√
t2 + C2 = t1 = Φ

4

(
1− ε

Φ

)2
,

ε/C1 =
√

Φ
2

(
1− ε

Φ

)
,

ε = C1

√
Φ
(

2 + C1√
Φ

)−1

.

We remark that

ε = C1

√
Φ
(

2 + C1√
Φ

)−1

= Φ C1

2
√

Φ+C1
≤ Φ,

67

as required. Next we find the corresponding t1.

1− ε

Φ
= 1− C1

√
Φ

Φ
(

2 + C1√
Φ

) = 1− C1

Φ
(

2
√

Φ + C1

)
=

2
√

Φ

2
√

Φ + C1

=

(
1 +

C1

2
√

Φ

)−1

,

therefore

t1 =
Φ

4

(
1− ε

Φ

)2

=
Φ

4

(
1 +

C1

2
√

Φ

)−2

.

We trivially bound the probability of making an error:

P
(
v>∗ T ≤ ε

)
≤ e−t1 + e−t2 = e−t1 + e−(t21+C2) ≤ 2 exp{−min(t1, t

2
1 + C2)} .

Proof of Equation (5.10a) As this proof is almost identical we skip some details. We
start by noting that C2 + log(1/δ) ≤ C2 log(1/δ) for C2, log(1/δ) ≥ 1. Then

ε = C1[C2 log(1/δ)]1/4 ⇔ δ = exp{−(ε
C1

4√C2
)4},

with t2 = (ε
C1

4√C2
)4. For this case we set t1 =

√
t2 and solve it for ε. Using C3

.
= C1

4
√
C2

in place of C1 in the calculations of the previous case, we see

ε = C3

√
Φ
(

2 + C3√
Φ

)−1

,

and the corresponding t1 is

Φ

4

(
1 +

C3

2
√

Φ

)−2

.

Here
P
(
v>∗ T ≤ ε

)
≤ e−t1 + e−t2 = e−t1 + e−(t21) ≤ 2 exp{−min(t1, t

2
1)} .

7.5 Mistake Bounds

Proof of Theorem 5. Fix any 0 < λ < 0.0067, s∗ ∈ Swλ . Without loss of generality, as
before, we assume that the true labels are all +1. Let ŝ be the skill estimates returned by

68

the MLE over Θ = Swλ × {±1}t and let ŷ ∈ {±1}t be the corresponding label estimates
(also returned by MLE). Let v̂ = v(ŝ). Under our assumptions, Theorem 3 gives a bound

on ‖v(ŝ)− χv(s∗)‖1 in terms of ε = L (s∗,1)− L (ŝ, ŷ), where χ = sgn
(∑

j ŷj

)
:

‖v̂ − χv(s∗)‖1 ≤ 2

√
wε log(1

λ
)
∑
i

1

1− (s∗i)
2
, (7.5)

By (5.5), specifically since s∗ ∈ Swλ , the value of ε is upper bound as

ε ≤ 2 sup
θ∈Θ

∣∣L (θ)− L (θ)
∣∣ . (7.6)

This, by Lemma 10 is upper bounded by 2εs∗(δ, w, t) with probability 1− δ, where

εs∗(δ, w, t)
.
= 3 log(2λ−1 − 1)

√
1

w

∑
i

s∗i
v∗i

√
1

2wt

[
(w + t) logC + log(2/δ)

]
, (7.7)

with C given by Equation (5.4). Combining (7.5),(7.6) with (7.7) shows that the condition
of Theorem 4, namely that with probability 1− δ,

‖v̂ − v∗‖1 ≤ C1
4
√
C2 + log(1/δ)

holds provided we choose C1, C2 as

C1 = 2

√√√√6w log(λ−1) log(2λ−1 − 1)

√
1

w

∑
i

s∗i
v∗i

√
1

2wt

(∑
i

1

1− (s∗i)
2

)

≤ 2
√
w log(2/λ)

√√√√6

√
w

2t

√
1

w

∑
i

s∗i
v∗i

(
1

w

∑
i

1

1− (s∗i)
2

)
,

C2 = (w + t) logC + log(2)

= (w + t) log

 6
√

2wt{ 1
λ

+ 1
2

log(2λ−1 − 1)}

3 log(2λ−1 − 1)
√

1
w

∑
i
s∗i
v∗i

√
log(2/δ)

+ 1

+ log(2) .

Therefore, by Theorem 4, more specifically, by (5.10b), the probability of mislabelling a
task when using sgn

(
v̂>·
)

on the observed labels of any given task, is upper bounded by

2 exp
{
−min

(
Φ
4
(1 + r)−2, (Φ

4
(1 + r)−2)2 + C2

)}
.

69

where

r
.
=

C1

2
√

Φ
= log(2/λ)

√√√√6

√
w

2t

√
1

w

∑
i

s∗i
v∗i

(
1

w

∑
i

1

1− (s∗i)
2

)
Φ
−1
.

7.6 Inference with Deterministic Weights

Proof of Lemma 12. Assume as before that y∗ = 1. We bound e(v) = P
(
sgn

(
v>T

)
6= 1
)
,

by the same combination of Chernoff’s bounding method and Kearns and Saul’s inequality
(Lemma 3) we have seen before. For any λ ≥ 0,

I
{

sgn
(
v>T

)
6= 1
}
≤ I

{
exp(−λv>T) ≥ 1

}
≤ e−λv

>T = e−λv
>s∗ e−λv

>(T−s∗) ,

hence, by the independence of (Ti)i,

e(v) ≤ e−λv
>s∗

w∏
i=1

E
[
e−λvi(Ti−s

∗
i)
]
.

The Kearns-Saul bound gives

E
[
e−λvi(Ti−s

∗
i)
]
≤ e

λ2
s∗i v

2
i

v∗
i ,

Hence, defining ρ(v) =
∑w

i=1
s∗i v

2
i

v∗i
,

e(v) ≤ e−λv
>s∗+λ2ρ(v) .

The minimizer of the exponent is λ∗ = v>s∗
2ρ(v)

, and with this choice we get

e(v) ≤ e−
1
4

(v>s∗)2
ρ(v) .

7.7 Supplementary Results

Lemma 13. Let f, g : X → R, with a ∈ arg maxx f(x) and b ∈ arg maxx g(x). Then

f(a)− f(b) ≤ 2 sup
x
|f(x)− g(x)|.

70

f
g

a b

Figure 7.4: Functions of bounded uniform deviation have similar maxima.

Proof.

f(a)− f(b) = f(a)− g(a) + g(a)− f(b)

≤ f(a)− g(a) + g(b)− f(b)

≤ 2 sup
x
|f(x)− g(x)|

Fact 2 (The weight and sigmoid functions). We define the sigmoid function, and find its
inverse to be

σ(v) =
1− e−v

1 + e−v
, v = log

1 + σ(v)

1− σ(v)
.

We see that the latter is in fact the weight function. The following will be useful:

1− σ(v) =
2e−v

1 + e−v
, (7.8a)

1 + σ(v) =
2

1 + e−v
. (7.8b)

The first and second derivatives are

d

dv
σ(v) =

1

2
(1− σ2(v)),

d2

d2v
σ(v) = −1

2
σ(v)(1− σ2(v)).

The following derivatives are also used:

d

dv
log(1− σ2(v)) = −σ(v),

d2

d2v
log(1− σ2(v)) = −1

2
(1− σ2(v)).

71

Next, let us restate the weight function with our usual notation:

v(s) = log
1 + s

1− s
.

Its derivative is
d

ds
v(s) =

2

1− s2
.

Fact 3 (A lower bound). Let s ∈ [−1,+1] and v = v(s) be its corresponding weight. Then

1

2 + sv
≤ s

v
,

moreover, for s ∈ [−1,+1]w with corresponding weight vector v

1

w

∑
i∈[w]

si
vi
≥ 1

2 + Φ
,

where we recall Φ is the average committee potential, 1
w

∑
i∈[w] sivi.

Proof of Fact 3. We first rearrange the inequality. For v ≤ 0 and v ≥ 0 we get

0 ≤ v − 2s

1− s2
and 0 ≤ 2s

1− s2
− v

respectively. We treat only the second case, the first is analogous. For the rest of the
argument we write out the dependency of v on s. Note that at s = 0 (v(s) = 0) the right
hand side evaluates to 0. Next, consider its derivative:

d

ds

[
2s

1− s2
− v
]

=
2(s2 + 1)

(1− s2)2
− 2

1− s2
= 2

1− s4

(1− s2)2
.

We see the difference is increasing when 1− s4 ≥ 0; which is true for any s in the domain.
We conclude that 0 ≤ 2s

1−s2 − v(s) holds for all s ≥ 0 (equivalently, v ≥ 0) and consider the
first statement proven.

For the second statement we apply the first inequality term-wise, then use Jensen’s
inequality applied to the convex 1

2+x
:

1

w

∑
i∈[w]

si
vi
≥ 1

w

∑
i∈[w]

1

2 + sv
≥ 1

2 + 1
w

∑
i∈[w] sivi

.

72

References

Abbasi-Yadkori, Y., Bartlett, P. L., Chen, X., and Malek, A. (2015). Large-Scale Markov
Decision Problems with KL Control Cost and its Application to Crowdsourcing. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 1053–1062.

Amazon (2015). Introduction to Amazon Mechanical Turk. http://docs.

aws.amazon.com/AWSMechTurk/2008-08-02/AWSMechanicalTurkRequester/

IntroductionArticle.html.

Bartlett, P. (2013). Theoretical Statistics. Lecture 12. http://www.stat.berkeley.edu/

~bartlett/courses/2013spring-stat210b/notes/12notes.pdf.

Berend, D. and Kontorovich, A. (2013). On the concentration of the missing mass. Electron.
Commun. Probab., 18:no. 3, 1–7.

Berend, D. and Kontorovich, A. (2014). Consistency of weighted majority votes. In Ad-
vances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3446–3454.

Bousquet, O., Boucheron, S., and Lugosi, G. (2004). Introduction to Statistical Learning
Theory. In Bousquet, O., Luxburg, U. v., and Rätsch, G., editors, Advanced Lectures on
Machine Learning, number 3176 in Lecture Notes in Computer Science, pages 169–207.
Springer Berlin Heidelberg.

Bragg, J., Kolobov, A., Mausam, and Weld, D. S. (2014). Parallel Task Routing for Crowd-
sourcing. In Proceedings of the Seconf AAAI Conference on Human Computation and
Crowdsourcing, HCOMP 2014, November 2-4, 2014, Pittsburgh, Pennsylvania, USA.

73

http://docs.aws.amazon.com/AWSMechTurk/2008-08-02/AWSMechanicalTurkRequester/IntroductionArticle.html
http://docs.aws.amazon.com/AWSMechTurk/2008-08-02/AWSMechanicalTurkRequester/IntroductionArticle.html
http://docs.aws.amazon.com/AWSMechTurk/2008-08-02/AWSMechanicalTurkRequester/IntroductionArticle.html
http://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/12notes.pdf
http://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/12notes.pdf

Chen, E. (2012). Making the Most of Mechanical Turk:
Tips and Best Practices. http://blog.echen.me/2012/04/25/

making-the-most-of-mechanical-turk-tips-and-best-practices/.

Dalvi, N., Dasgupta, A., Kumar, R., and Rastogi, V. (2013). Aggregating Crowdsourced
Binary Ratings. In Proceedings of the 22Nd International Conference on World Wide
Web, WWW ’13, pages 285–294, Republic and Canton of Geneva, Switzerland. Interna-
tional World Wide Web Conferences Steering Committee.

Dawid, P., Skene, A. M., Dawid, A. P., and Skene, A. M. (1979). Maximum likelihood
estimation of observer error-rates using the EM algorithm. Applied Statistics, pages
20–28.

Gao, C. and Zhou, D. (2013). Minimax Optimal Convergence Rates for Estimating Ground
Truth from Crowdsourced Labels. arXiv:1310.5764 [math, stat]. version 5.

Ghosh, A., Kale, S., and McAfee, P. (2011). Who Moderates the Moderators?: Crowd-
sourcing Abuse Detection in User-generated Content. In Proceedings of the 12th ACM
Conference on Electronic Commerce, EC ’11, pages 167–176, New York, NY, USA. ACM.

Ho, C.-J., Jabbari, S., and Vaughan, J. W. (2013). Adaptive Task Assignment for Crowd-
sourced Classification. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 534–542.

Ipeirotis, P. (2010). Be a Top Mechanical Turk Worker: You Need $5 and 5 Minutes | A
Computer Scientist in a Business School. http://www.behind-the-enemy-lines.com/
2010/10/be-top-mechanical-turk-worker-you-need.html.

Jaffe, A., Nadler, B., and Kluger, Y. (2015). Estimating the accuracies of multiple classifiers
without labeled data. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May
9-12, 2015.

Jung, H. J. (2014). Quality Assurance in Crowdsourcing via Matrix Factorization Based
Task Routing. In Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, WWW Companion ’14, pages 3–8, Re-
public and Canton of Geneva, Switzerland. International World Wide Web Conferences
Steering Committee.

74

http://blog.echen.me/2012/04/25/making-the-most-of-mechanical-turk-tips-and-best-practices/
http://blog.echen.me/2012/04/25/making-the-most-of-mechanical-turk-tips-and-best-practices/
http://www.behind-the-enemy-lines.com/2010/10/be-top-mechanical-turk-worker-you-need.html
http://www.behind-the-enemy-lines.com/2010/10/be-top-mechanical-turk-worker-you-need.html

Karger, D., Oh, S., and Shah, D. (2011a). Budget-optimal crowdsourcing using low-rank
matrix approximations. In 2011 49th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 284–291.

Karger, D. R., Oh, S., and Shah, D. (2011b). Iterative Learning for Reliable Crowdsourc-
ing Systems. In Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings of a meeting
held 12-14 December 2011, Granada, Spain., pages 1953–1961.

Karger, D. R., Oh, S., and Shah, D. (2013). Efficient crowdsourcing for multi-class labeling.
In ACM SIGMETRICS / International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’13, Pittsburgh, PA, USA, June 17-21, 2013, pages
81–92.

Karger, D. R., Oh, S., and Shah, D. (2014). Budget-Optimal Task Allocation for Reliable
Crowdsourcing Systems. Operations Research, 62(1):1–24.

Kearns, M. J. and Saul, L. K. (1998). Large Deviation Methods for Approximate Proba-
bilistic Inference. In UAI ’98: Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, University of Wisconsin Business School, Madison, Wisconsin,
USA, July 24-26, 1998, pages 311–319.

Kolobov, A., Mausam, and Weld, D. S. (2013). (JoCR) Joint Crowdsourcing of Multiple
Tasks. In First AAAI Conference on Human Computation and Crowdsourcing.

Kumar, N. (2014). Effective Use of Amazon Mechanical Turk (MTurk). http://

neerajkumar.org/writings/mturk/.

Li, H., Yu, B., and Zhou, D. (2013). Error Rate Bounds in Crowdsourcing Models.
arXiv:1307.2674 [cs, stat]. arXiv: 1307.2674.

Liu, Q., Ihler, A. T., and Fisher III, J. (2015). Boosting Crowdsourcing With Expert La-
bels: Local vs. Global Effects. In Information Fusion (Fusion), 2015 18th International
Conference on.

Liu, Q., Peng, J., and Ihler, A. T. (2012). Variational Inference for Crowdsourcing. In
Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States., pages 701–709.

75

http://neerajkumar.org/writings/mturk/
http://neerajkumar.org/writings/mturk/

Nitzan, S. and Paroush, J. (1982). Optimal decision rules in uncertain dichotomous choice
situations. International Economic Review, 23(2):289–297.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer Verlag, New York.

Raginsky, M. and Sason, I. (2013). Concentration of Measure Inequalities in Information
Theory, Communications, and Coding. Foundations and Trends in Communications and
Information Theory, 10(1-2):1–247.

redditer (2014). New to Mturk, Here’s what you should know. * /r/mturk.
http://www.reddit.com/r/mturk/comments/1z4sma/new_to_mturk_heres_what_

you_should_know/.

Welinder, P., Branson, S., Belongie, S., and Perona, P. (2010). The Multidimensional
Wisdom of Crowds. In Advances in Neural Information Processing Systems 23: 24th
Annual Conference on Neural Information Processing Systems 2010. Proceedings of a
meeting held 6-9 December 2010, Vancouver, British Columbia, Canada., pages 2424–
2432.

Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., and Movellan, J. R. (2009). Whose Vote
Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise.
In Advances in Neural Information Processing Systems 22: 23rd Annual Conference
on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada., pages 2035–2043.

Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. (2014). Spectral Methods meet EM:
A Provably Optimal Algorithm for Crowdsourcing. arXiv:1406.3824 [stat]. arXiv:
1406.3824.

Zooniverse (2015). Snapshot Serengeti. http://www.snapshotserengeti.org/

?utm_source=Zooniverse%20Home&utm_medium=Web&utm_campaign=Homepage%

20Catalogue.

76

http://www.reddit.com/r/mturk/comments/1z4sma/new_to_mturk_heres_what_you_should_know/
http://www.reddit.com/r/mturk/comments/1z4sma/new_to_mturk_heres_what_you_should_know/
http://www.snapshotserengeti.org/?utm_source=Zooniverse%20Home&utm_medium=Web&utm_campaign=Homepage%20Catalogue
http://www.snapshotserengeti.org/?utm_source=Zooniverse%20Home&utm_medium=Web&utm_campaign=Homepage%20Catalogue
http://www.snapshotserengeti.org/?utm_source=Zooniverse%20Home&utm_medium=Web&utm_campaign=Homepage%20Catalogue

Appendix A

Supporting Material for Conjecture 1

Recall that Conjecture 1 stated the following:

For any 0 < λ < 0.0067, s∗ ∈ [−1, 1], s ∈ Sλ we have

log
1− s2

∗
1− s2

+ s∗(v∗ − v) ≥ 1− s2
∗

2 log(1/λ)
(v∗ − v)2 . (A.1)

Here, we will explain how this was derived and we present details of an argument that
have some gaps in it but which may eventually lead to a proof of this conjecture.

First, recall that the left-hand-side of (A.1) was earlier called Av∗ : Av∗(v) = log 1−s2∗
1−s2 +

s∗(v∗− v) where we use the earlier adapted convention that v stands for v(s), with v(s) =
log 1+s

1−s (and v∗ = v(s∗)). Also recall that the right-hand-side of (A.1) is equal to lγq (v) =
γ2

4
(1− s2

∗)(v∗ − v)2 with γ =
√

2/ log(1/λ).

The conjecture is derived from the desire to lower bound Av∗ over [−vλ, vλ] with a
quadratic function of simple form that does not depend on v∗, where vλ = v(1− λ) (note
that −vλ = v(−1 + λ)). For the sake of the argument, assume that v∗ ≥ 0; the argument
for v∗ ≤ 0 is analogous.

The idea is that Av∗ is convex (this can be verified). Both Av∗ and lγq are nonnegative,
they are both zero at v = v∗ and thus their first derivatives are both zero at the same point.
Noting that vλ is an upper bound on v∗ by assumption, we first consider the interval [v∗, vλ];
the interval [−vλ, v∗] will be considered later.

77

If lγq stays below Av∗ in a small neighborhood of v∗ then, due to their convexity, if they
first meet at v = vλ or later, lγq will be below Av∗ on the whole interval [v∗, vλ]. Solving
lγq (vλ) = Av∗(vλ) for γ, under the assumption that 0 < λ < 1/2, we get that if

γ ≤ fv(v∗, λ)
.
=

2

vλ − v∗

√
1

1− (s∗)2

(
log

1− (s∗)2

1− (1− λ)2
− s∗(vλ − v∗)

)
then

lγq (vλ) ≤ A(vλ) . (A.2)

Now, we need γ ≤ fv(v∗, λ) to hold regardless the value of v∗. Our approach will
be to use some γ(λ) ≤ min−vλ≤v∗≤vλ fv(v∗, λ). Since f is non-negative and we take the
minimum over a bounded domain, a minimizer actually exists. Let us denote it by v̌.
We conjecture that for v∗ ≥ 0 the minimizer is in [0, vλ]; supporting material appears in
Appendix A.1. In fact, we notice that v̌ ≈ log(vλ) ≈ log(− log(λ)). See Figure A.1 for a
visualization. Clearly, the latter will result in a slightly higher value, so we will have to
correct for this. The function fv appears convex in v, so will use the tangent at the place
of the approximation as a lower bound. This requires us to upper bound the (unsigned)
slope of the function fv at the approximation, and also find how far the approximate and
true minimizers are. But let us study fv(·, λ) at its approximate minimum first. It is more

natural to view λ as e−p for this argument. Then vλ = log 1+(1−e−p)
1−(1−e−p)

= log(2ep − 1), which
is asymptotically the same as p. We use v̂ = log p as the approximate minimum for the
rest of the argument. Next, we collect the precise or approximate values of each term in
fv(v̂, λ):

sλ = 1− e−p ,
vλ = log(2ep − 1) ≈ p ,

vλ − v̂ ≈ p− log p ,

ŝ =
1− e−v̂

1 + e−v̂
=

1− e− log p

1 + e− log p
=
p− 1

p+ 1
,

1

1− (ŝ)2
=

(
1−

[
1− p
1 + p

]2
)−1

=
(1 + p)2

4p
,

log
1− (ŝ)2

1− (1− e−p)2
= log

(
4p

(1 + p)2
· ep

2− e−p

)
= p− log(2− e−p) + log 4 + log p− 2 log(1 + p)

≈ p− log p .

78

0 2 4 6 8 10 12 14 16
-ln(p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
w

ei
gh

t d
om

ai
n

min v point
aprx: log(p)

Figure A.1: Comparing the true and approximate minimizers of fv(·, λ).
We compare, as a function of p = − log(λ), the location of the true minimizer of fv in v, calculated

numerically, and the approximate location used, log(p). We see that they behave similarly, with the

approximate appearing to be consistently larger after some point. Note: label on the x-axis is wrong, it

should be p.

After combining these and executing a number of other approximation we get

inf
v
fv(v, λ) ≈ fv(log p, λ) ≈

√
2(p+ 1)

p(p− log p)
≈
√

2

p
. (A.3)

In fact, one can show fv(log p, λ) �
√

2
p
.

Next, we find the derivative of fv(·, λ):

∂f

∂v
f(v, λ) =

f(v, λ)

2(vλ − v)

[
sv(vλ − v)− 2(f−2(v, λ)− 1)

]
. (A.4)

We are particularly interested in its value at v̂, the approximate minimum we consider.

79

Substituting the approximate value of fv(log p, λ) into the partial derivative we get

∂f

∂v
f(v, λ)|v=log p ≈

√
2(p+ 1)

p(p− log p)

1

p− log p

[
1

2

p− 1

p+ 1
(p− log p)− p(p− log p)

2(p+ 1)
+ 1

]

=

√
2(p+ 1)

p(p− log p)

[
1− 1

2(p+ 1)

]
, (A.5)

which, again, behaves like
√

2
p

asymptotically. In order to guarantee our estimate is an

upper bound on absolute value of the derivative we can choose to use, say p−1/4/50.

At this point we visualize these bounds, but fail to continue the argument: we have not
been able to upper bound the distance of the true and approximate minimizers, and have
not verified that fv(·, λ) is indeed convex for every λ under consideration. Nonetheless,
Figure A.2 illustrates that both simply

√
2/p and the expression derived from our analysis

indeed lower bound and match minv fv(v, λ) well. This is in fact what led to the choice of

γ =
√

2
− log λ

in Conjecture 1. Let us now continue filling the remaining gaps.

A.1 Range restriction on v̌ and the inequality over

[−vλ, v∗]

We now motivate making the conjecture that for v∗ ≥ 0 we have v̌ ∈ [0, vλ]. That is, it is
enough to choose γ(λ) ≤ min0≤v∗≤vλ fv(v∗, λ) as it will be equal to min−vλ≤v∗≤vλ fv(v∗, λ).
The function Av∗ is symmetric for v∗ = 0; as v∗ increases towards vλ it continues to be
steep on (−∞, v∗] while it flattens out on [v∗,∞). Since the lower bound is symmetric
in v∗, this suggests the conjecture will hold. The only concern is that during this process
| − vλ − v∗| grows while |vλ − v∗| decreases. We find that this does not become an issue.

We provide a sequence of images to illustrate that as v∗ moves towards vλ from 0 the
quadratic lower bound used on [v∗, vλ] clearly continues to hold on [−vλ, v∗]. To generate
this sequence of images we set λ = e−6, γ =

√
2/6 accordingly, and plotted Av∗ and lλq for

v∗ ∈ [6]. Figure A.3 and Figure A.4 depict the first 6 of these, Figure A.5 may be used
to verify on a smaller scale that the quadratic function is still indeed lower bounding the
required function.

80

0 5 10 15 20 25 30
-ln(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

ga
m

m
a

gamma
our lb
sqrt(2.0/p)

Figure A.2: The behavior of min0<v<v∗ fv(v, λ).
The graph depicts 3 functions: (1) the numerically calculated best γ∗(λ) given as min0<v<v∗ fv(v, λ)

(2) our conjectured lower bound of γ∗(λ),
√

2/p (3) a lower bound suggested by our analysis,
1
25

√
2(p+1)

p(p−log p)

[
1− 1

2(p+1)

]
(v̂ − v̌) +

√
2/p . These are plotted in terms of p = − log λ.

The graph was generated with the “find gamma approx.py” script, by running “find approx diff()” with op-

tions approx="lam npow", der approx="reduced expr", value at approx estimate = np.sqrt(2/p

) and distance estimate = (vs-v appr).

81

Figure A.3: Illustrating the lower bound lγq with γ(p) =
√

2/p for v∗ ∈ {0, 1, 2}.

82

Figure A.4: Illustrating the lower bound lγq with γ(p) =
√

2/p for v∗ ∈ {3, 4, 5}.

83

Figure A.5: Illustrating the lower bound lγq with γ(p) =
√

2/p for v∗ = 6 at the same scale
as that of Figures A.3 and A.4, as well as zoomed in.

84

Appendix B

A Counterexample

We include here the counterexample rendering the result of Gao and Zhou (2013) regarding
the global optimizer of the function maximized by EM unproven. We use the notation of
the paper for these statements. .

Lemma F.1 relies on inequality (143), which states that for any (p, y)

1

m

∑
j∈S

|yj − ỹj| ≤
√

1

m

∑
j

|ỹ − y∗j |
√

2n
(

∆(p, y) + Λ(p, y)
)

+ C. (B.1)

Here we used the notation from the paper, in particular

• S =
{
j : |ỹ − y∗j | ≤ 1

2

}
(cf page 32 of the supplement),

• ∆(p, y) + Λ(p, y) = 1
mn

(
F̃ (p̃, ỹ) − F̃ (p̃, y) + F̃ (p̃, ỹ) − F̃ (p, ỹ)

)
(cf page 31 of the

supplement),

• C > 0 is an absolute constant.

We show this claim does not hold. We set y∗j = 1 and all true skills to p∗ – by abuse of

notation p∗ = p∗1. For n such workers these together prescribe an F̃n(p, y) function, and
in turn its maximizers. The number of tasks is irrelevant to this because it only uniformly
scales F̃n(p, y) due to the symmetry in the true parameters. From the structure of the
maximizers that is described earlier in the paper, and because of this symmetry in the
parameters we can WLOG consider maximizers (p̃(n), ỹ(n)) with ỹ(n) ≥ 1

2
– in fact each

85

component will be the same. Consequently S = [m], the full task set. We may drop the
(n) superscript for convenience at times, when important we will display it, however. We
will evaluate the two sides of (B.1) for varying n at p = p̃(n) and y = c1 for some fixed
c ≤ 1

2
. We will find that when the number of workers is large enough, the inequality does

not hold. The paper defines the quantity r = 1
m

∑
j |ỹ − y∗j |, which here is equal to 1− ỹ.

We will denote by rn the r corresponding to ỹ(n), and observe that it goes to 0 as n→∞.
We also have 1

m

∑
j∈S |yj− ỹ

(n)
j | > c′ for some absolute constant c′. Before we upper bound

the last term in (B.1), we rearrange the objective function F̃ (p, y) to be:

F̃ (p, y) =
∑
i,j

[
p∗i log(1− pi) + (1− p∗i) log pi + yj(2p

∗
i − 1) log

pi
1− pi

]
+
∑
j

H(yj),

where H(·) denotes the binary entropy function. We then see for any n,m that

2n
(

∆(p̃, y) + Λ(p̃, y)
)

=
2n

mn

(
F̃ (p̃, ỹ)− F̃ (p̃, y) + F̃ (p̃, ỹ)− F̃ (p̃, ỹ)

)
(B.2)

=
2

m

∑
i,j

[
ỹj(2p

∗
i − 1) log

p̃i
1− p̃i

− yj(2p∗i − 1) log
p̃i

1− p̃i

]
+

m∑
j=1

H(ỹj)−H(yj)


(B.3)

≤ 2

m

∑
j

(ỹj − yj)
∑
i

(2p∗i − 1) log
p̃i

1− p̃i

+ C ′ (B.4)

= C ′ +
2

m

∑
j

(ỹj − yj) log(1/r − 1) (B.5)

≤ C ′ + 2 log(1/r(n) − 1). (B.6)

Going from (B.2) to (B.3) we simply cancelled equal quantities. In the next line we collect
terms and use that the difference of the entropies is bounded, as the entropy function
is bounded from both below and above. Step (B.4) to (B.5) uses equality (44) from the
paper, and for the final step we note log(1/r−1) is non-negative as r ≤ 1

2
so we can replace

ỹj − yj by the larger 1 for an upper bound. Additionally, we make explicit that the r in
the inequality is that which corresponds to having n workers. In conclusion, for any n,m
we have

c′ ≤ LHS
?

≤ RHS ≤
√
r(n)

√
2 log(1/r(n) − 1) + C ′′ (B.7)

This cannot be true for every n, however, as the rightmost expression goes to 0 when
n→∞:

lim
r(n)↘0

r(n)
(
2 log(1/r(n) − 1) + C ′′

)
= lim

x→+∞

2 log(x− 1)

x
+ 0 = 0.

86

Since there are certain assumptions on the parameters where this lemma is eventually
applied, we make sure those are also met in our example. Namely, Lemma F.1 is used in
the proof of Lemma 6.3, in “case E.1” where 1

m

∑
j r̂j(1 − r̂j) ≥ exp(−βn) for β defined

as log 1
min(r,1−r) . Here r̂j is 1

m

∑
j |yj − y∗j | applied at certain ŷ. So we use c and get

LHS = c(1− c), RHS = [r(n)]n. Since r(n) already tends to 0 with increasing n, so raising
it to the nth power only makes this faster and the inequality will be satisfied for large
enough n.

87

	List of Tables
	List of Figures
	Introduction
	Crowdsourcing Problems
	The Nature of Crowdsourced Data
	Mathematical Formulations of Label Aggregation
	Categorization by Degrees of Freedom
	Models of Labelling

	Inference in the Dawid-Skene Model
	Problem Definition
	Discussion of the Model
	Performance Baselines
	Majority Voting
	Stylized Crowds

	Existing Results
	Known or Approximate Parameters
	Inference with Task Allocation
	General Inference
	Comparison of Bounds

	Background
	The Log-Likehood Function
	Concentration Inequalities
	Uniform Deviations
	Covering Numbers

	Results
	A Convergence Rate for Label Inference
	The Log-Likelihood Functions and Their Maximizers
	The Convergence of the Log-Likelihood to its Expectation
	The Proximity of the Maximizing Parameters
	From Approximate Weights to Labels
	A Mistake Bound

	Additional Results
	Inference with Weights That are Independent of Labels
	Separation Criterion

	Conclusion and Future Work
	Proofs
	The Log-Likelihood Functions and Their Maximizers
	The Convergence of the Log-Likelihood to its Expectation
	Concentration of the LLF at a fixed parameter
	The covering number of our space
	High probability uniform deviation bound

	Bounds on the Error of the Weight Estimate
	From Approximate Weights to Labels
	Optimal Weights Close to Erring
	A Modular Mistake Bound

	Mistake Bounds
	Inference with Deterministic Weights
	Supplementary Results

	References
	Supporting Material for Conjecture 1
	Range restriction on and the inequality over [-v,v*]

	A Counterexample

